Science.gov

Sample records for acetyl transferase reporter

  1. MOF Acetyl Transferase Regulates Transcription and Respiration in Mitochondria.

    PubMed

    Chatterjee, Aindrila; Seyfferth, Janine; Lucci, Jacopo; Gilsbach, Ralf; Preissl, Sebastian; Böttinger, Lena; Mårtensson, Christoph U; Panhale, Amol; Stehle, Thomas; Kretz, Oliver; Sahyoun, Abdullah H; Avilov, Sergiy; Eimer, Stefan; Hein, Lutz; Pfanner, Nikolaus; Becker, Thomas; Akhtar, Asifa

    2016-10-20

    A functional crosstalk between epigenetic regulators and metabolic control could provide a mechanism to adapt cellular responses to environmental cues. We report that the well-known nuclear MYST family acetyl transferase MOF and a subset of its non-specific lethal complex partners reside in mitochondria. MOF regulates oxidative phosphorylation by controlling expression of respiratory genes from both nuclear and mtDNA in aerobically respiring cells. MOF binds mtDNA, and this binding is dependent on KANSL3. The mitochondrial pool of MOF, but not a catalytically deficient mutant, rescues respiratory and mtDNA transcriptional defects triggered by the absence of MOF. Mof conditional knockout has catastrophic consequences for tissues with high-energy consumption, triggering hypertrophic cardiomyopathy and cardiac failure in murine hearts; cardiomyocytes show severe mitochondrial degeneration and deregulation of mitochondrial nutrient metabolism and oxidative phosphorylation pathways. Thus, MOF is a dual-transcriptional regulator of nuclear and mitochondrial genomes connecting epigenetics and metabolism.

  2. Characterization and Prediction of Lysine (K)-Acetyl-Transferase Specific Acetylation Sites*

    PubMed Central

    Li, Tingting; Du, Yipeng; Wang, Likun; Huang, Lei; Li, Wenlin; Lu, Ming; Zhang, Xuegong; Zhu, Wei-Guo

    2012-01-01

    Lysine acetylation is a well-studied post-translational modification on both histone and nonhistone proteins. More than 2000 acetylated proteins and 4000 lysine acetylation sites have been identified by large scale mass spectrometry or traditional experimental methods. Although over 20 lysine (K)-acetyl-transferases (KATs) have been characterized, which KAT is responsible for a given protein or lysine site acetylation is mostly unknown. In this work, we collected KAT-specific acetylation sites manually and analyzed sequence features surrounding the acetylated lysine of substrates from three main KAT families (CBP/p300, GCN5/PCAF, and the MYST family). We found that each of the three KAT families acetylates lysines with different sequence features. Based on these differences, we developed a computer program, Acetylation Set Enrichment Based method to predict which KAT-families are responsible for acetylation of a given protein or lysine site. Finally, we evaluated the efficiency of our method, and experimentally detected four proteins that were predicted to be acetylated by two KAT families when one representative member of the KAT family is over expressed. We conclude that our approach, combined with more traditional experimental methods, may be useful for identifying KAT families responsible for acetylated substrates proteome-wide. PMID:21964354

  3. p300/CBP acetyl transferases interact with and acetylate the nucleotide excision repair factor XPG.

    PubMed

    Tillhon, Micol; Cazzalini, Ornella; Nardo, Tiziana; Necchi, Daniela; Sommatis, Sabrina; Stivala, Lucia A; Scovassi, A Ivana; Prosperi, Ennio

    2012-10-01

    Nucleotide excision repair (NER) is an important DNA repair mechanism through which cells remove bulky DNA lesions. Following DNA damage, the histone acetyltransferase (HAT) p300 (also referred to as lysine acetyltransferase or KAT) is known to associate with proliferating cell nuclear antigen (PCNA), a master regulator of DNA replication and repair processes. This interaction, which results in HAT inhibition, may be dissociated by the cell cycle inhibitor p21(CDKN1A), thereby restoring p300 activity; however, the role of this protein interplay is still unclear. Here, we report that silencing p300 or its homolog CREB-binding protein (CBP) by RNA interference (RNAi) significantly reduces DNA repair synthesis in human fibroblasts. In addition, we determined whether p300 and CBP may associate with and acetylate specific NER factors such as XPG, the 3'-endonuclease that is involved in the incision/excision step and is known to interact with PCNA. Our results show that p300 and CBP interact with XPG, which has been found to be acetylated in vivo. XPG is acetylated by p300 in vitro, and this reaction is inhibited by PCNA. Knocking down both p300/CBP by RNAi or by chemical inhibition with curcumin greatly reduced XPG acetylation, and a concomitant accumulation of the protein at DNA damage sites was observed. The ability of p21 to bind PCNA was found to regulate the interaction between p300 and XPG, and an abnormal accumulation of XPG at DNA damage sites was also found in p21(-/-) fibroblasts. These results indicate an additional function of p300/CBP in NER through the acetylation of XPG protein in a PCNA-p21 dependent manner.

  4. Riboswitch control of induction of aminoglycoside resistance acetyl and adenyl-transferases.

    PubMed

    He, Weizhi; Zhang, Xuhui; Zhang, Jun; Jia, Xu; Zhang, Jing; Sun, Wenxia; Jiang, Hengyi; Chen, Dongrong; Murchie, Alastair I H

    2013-08-01

    The acquisition of antibiotic resistance by human pathogens poses a significant threat to public health. The mechanisms that control the proliferation and expression of antibiotic resistance genes are not yet completely understood. The aminoglycosides are a historically important class of antibiotics that were introduced in the 1940s. Aminoglycoside resistance is conferred most commonly through enzymatic modification of the drug or enzymatic modification of the target rRNA through methylation or through the overexpression of efflux pumps. In our recent paper, we reported that expression of the aminoglycoside resistance genes encoding the aminoglycoside acetyl transferase (AAC) and aminoglycoside adenyl transferase (AAD) enzymes was controlled by an aminoglycoside-sensing riboswitch RNA. This riboswitch is embedded in the leader RNA of the aac/aad genes and is associated with the integron cassette system. The leader RNA can sense and bind specific aminoglycosides such that the binding causes a structural transition in the leader RNA, which leads to the induction of aminoglycoside antibiotic resistance. Specific aminoglycosides induce reporter gene expression mediated by the leader RNA. Aminoglycoside RNA binding was measured directly and, aminoglycoside-induced changes in RNA structure monitored by chemical probing. UV cross-linking and mutational analysis identified potential aminoglycoside binding sites on the RNA.

  5. Purification and properties of an O-acetyl-transferase from Escherichia coli that can O-acetylate polysialic acid sequences

    SciTech Connect

    Higa, H.; Varki, A.

    1986-05-01

    Certain strains of bacteria synthesize an outer polysialic acid (K1) capsule. Some strains of K1/sup +/ E.coli are also capable of adding O-acetyl-esters to the exocyclic hydroxyl groups of the sialic acid residues. Both the capsule and the O-acetyl modification have been correlated with differences in antigenicity and pathogenicity. The authors have developed an assay for an O-acetyl-transferase in E.coli that transfers O-(/sup 3/H)acetyl groups from (/sup 3/H)acetyl-Coenzyme A to colominic acid (fragments of the polysialic acid capsule). Using this assay, the enzyme was solubilized, and purified approx. 600-fold using a single affinity chromatography step with Procion Red-A Agarose. The enzyme also binds to Coenzyme A Sepharose, and can be eluted with high salt or Coenzyme A. The partially purified enzyme has a pH optimum of 7.0 - 7.5, is unaffected by divalent cations, is inhibited by high salt concentrations, is inhibited by Coenzyme A (50% inhibition at 100 ..mu..M), and shows an apparent Km for colominic acid of 3.7 mM (sialic acid concentration). This enzyme could be involved in the O-acetyl +/- form variation seen in some strains of K1/sup +/ E.coli.

  6. Final report on the safety assessment of acetyl triethyl citrate, acetyl tributyl citrate, acetyl trihexyl citrate, and acetyl trioctyl citrate.

    PubMed

    Johnson, Wilbur

    2002-01-01

    Acetyl Triethyl Citrate, Acetyl Tributyl Citrate, Acetyl Trihexyl Citrate, and Acetyl Trioctyl Citrate all function as plasticizers in cosmetics. Additionally, the Trihexyl and Trioctyl forms are described as skin-conditioning agents-emollients, although there are currently no reported uses of Acetyl Trihexyl Citrate or Acetyl Trioctyl Citrate. Acetyl Triethyl Citrate and Acetyl Tributyl Citrate are used in nail products at concentrations up to 7%. Recognizing that there are no reported uses of Acetyl Trihexyl or Trioctyl Citrate, if they were to be used in the future, their concentration of use is expected to be no higher than that reported for Acetyl Triethyl and Tributyl Citrate. These ingredients were sufficiently similar in structure that safety test data on one were considered applicable to all. Approximately 99% of orally administered Acetyl Tributyl Citrate is excreted-intermediate metabolites include acetyl citrate, monobutyl citrate, acetyl monobutyl citrate, dibutyl citrate, and acetyl dibutyl citrate. In acute, short-term, subchronic, and chronic feeding studies, these ingredients were relatively nontoxic. Differences from controls were either not statistically significant or not related to any organ toxicity. Ocular exposures produced moderate reactions that cleared by 48 hours after instillation. Dermal application was not toxic in rabbits. In a guinea pig maximization test, Acetyl Triethyl Citrate was a sensitizer whereas Acetyl Tributyl Citrate was not. Limited clinical testing of Acetyl Triethyl Citrate and Acetyl Tributyl Citrate was negative for both skin irritation and sensitization. These clinical data were considered more relevant than the guinea pig maximization data, suggesting to the Cosmetic Ingredient Review Expert Panel that none of these ingredients would be a sensitizer. Physiologic effects noted with intravenous delivery of Acetyl Triethyl Citrate or Acetyl Tributyl Citrate include dose-related decreases in blood pressure and

  7. Role of Carnitine Acetyl Transferase in Regulation of Nitric Oxide Signaling in Pulmonary Arterial Endothelial Cells

    PubMed Central

    Sharma, Shruti; Sun, Xutong; Agarwal, Saurabh; Rafikov, Ruslan; Dasarathy, Sridevi; Kumar, Sanjiv; Black, Stephen M.

    2013-01-01

    Congenital heart defects with increased pulmonary blood flow (PBF) result in pulmonary endothelial dysfunction that is dependent, at least in part, on decreases in nitric oxide (NO) signaling. Utilizing a lamb model with left-to-right shunting of blood and increased PBF that mimics the human disease, we have recently shown that a disruption in carnitine homeostasis, due to a decreased carnitine acetyl transferase (CrAT) activity, correlates with decreased bioavailable NO. Thus, we undertook this study to test the hypothesis that the CrAT enzyme plays a major role in regulating NO signaling through its effect on mitochondrial function. We utilized the siRNA gene knockdown approach to mimic the effect of decreased CrAT activity in pulmonary arterial endothelial cells (PAEC). Our data indicate that silencing the CrAT gene disrupted cellular carnitine homeostasis, reduced the expression of mitochondrial superoxide dismutase-and resulted in an increase in oxidative stress within the mitochondrion. CrAT gene silencing also disrupted mitochondrial bioenergetics resulting in reduced ATP generation and decreased NO signaling secondary to a reduction in eNOS/Hsp90 interactions. Thus, this study links the disruption of carnitine homeostasis to the loss of NO signaling observed in children with CHD. Preserving carnitine homeostasis may have important clinical implications that warrant further investigation. PMID:23344032

  8. Molecular cloning and heterologous expression of a 10-deacetylbaccatin III-10-O-acetyl transferase cDNA from Taxus x media.

    PubMed

    Guo, Binhui; Kai, Guoyin; Gong, Yifu; Jin, Hongbin; Wang, Yechun; Miao, Zhiqi; Sun, Xiaofen; Tang, Kexuan

    2007-06-01

    A full-length cDNA encoding 10-deacetylbaccatin III-10-O-acetyl transferase (designated as TmDBAT), which catalyzes the acetylation of the C-10 hydroxyl group of the advanced metabolite 10-deacetylbaccatin III (10-DAB) to yield baccatin III, the immediate diterpenoid precursor of Taxol, was isolated from Taxus x media. Heterologous expression of TmDBAT in E. coli demonstrated that TmDBAT was a functional gene. Tissue expression pattern analysis revealed that TmDBAT expressed strongly in leaves, weak in stems and no expression could be detected in fruits, implying that TmDBAT was tissue-specific. Expression profiling analysis of TmDBAT under different elicitor treatments including silver nitrate, ammonium ceric sulphate and methyl jasmonate indicated that TmDBAT was an elicitor-responsive gene. Southern blot analysis suggested that TmDBAT belonged to a small multigene family.

  9. Arylamine N-acetyl Transferase (NAT) in the blue secretion of Telescopium telescopium: xenobiotic metabolizing enzyme as a biomarker for detection of environmental pollution.

    PubMed

    Gorain, Bapi; Chakraborty, Sumon; Pal, Murari Mohan; Sarkar, Ratul; Samanta, Samir Kumar; Karmakar, Sanmoy; Sen, Tuhinadri

    2014-01-01

    Telescopium telescopium, a marine mollusc collected from Sundarban mangrove, belongs to the largest mollusca phylum in the world and exudes a blue secretion when stimulated mechanically. The blue secretion was found to metabolize (preferentially) para-amino benzoic acid, a substrate for N-acetyl transferase (NAT), thereby indicating acetyl transferase like activity of the secretion. Attempts were also made to characterise bioactive fraction of the blue secretion and to further use this as a biomarker for monitoring of marine pollution. NAT like enzyme from marine mollusc is a potential candidate for detoxification of different harmful chemicals. A partially purified extract of blue secretion was obtained by fractional precipitation with (NH4)2SO4. From different fractions obtained by precipitation, the 0-30% fraction (30S) displayed NAT like activity (using para amino benzoic acid as a substrate with para nitrophenyl phosphate or acetyl coenzyme A as acetyl group donors). Maximum NAT like enzyme activity was attained at 25°C and at a pH of 6. The enzyme activity was found to be inhibited by 5 mM phenyl methyl sulfonyl fluoride. The divalent metal ions reduced NAT like activity of 30S. Moreover, Cu(2+) and Zn(2+) (at concentration of 1 mM) completely inhibited NAT activity. The thermal stability and bench-top stability studies were performed and it was found that the enzyme was stable at room temperature for more than 24 hours. Results from the present study further indicate that heavy metal content in blue secretion gradually decreased from pre-monsoon to post-monsoon season, which also corresponded to the change in NAT like activity. Therefore, this article stresses the importance of biomarker research for monitoring pollution.

  10. Crystal Structure of TDP-Fucosamine Acetyl Transferase (WECD) from Escherichia Coli, an Enzyme Required for Enterobacterial Common Antigen Synthesis

    SciTech Connect

    Hung,M.; Rangarajan, E.; Munger, C.; Nadeau, G.; Sulea, T.; Matte, A.

    2006-01-01

    Enterobacterial common antigen (ECA) is a polysaccharide found on the outer membrane of virtually all gram-negative enteric bacteria and consists of three sugars, N-acetyl-D-glucosamine, N-acetyl-D-mannosaminuronic acid, and 4-acetamido-4,6-dideoxy-D-galactose, organized into trisaccharide repeating units having the sequence {yields}(3)-{alpha}-D-Fuc4NAc-(1{yields}4)-{beta}-D-ManNAcA-(1{yields}4)-{alpha}-D-GlcNAc-(1{yields}). While the precise function of ECA is unknown, it has been linked to the resistance of Shiga-toxin-producing Escherichia coli (STEC) O157:H7 to organic acids and the resistance of Salmonella enterica to bile salts. The final step in the synthesis of 4-acetamido-4,6-dideoxy-D-galactose, the acetyl-coenzyme A (CoA)-dependent acetylation of the 4-amino group, is carried out by TDP-fucosamine acetyltransferase (WecD). We have determined the crystal structure of WecD in apo form at a 1.95-Angstroms resolution and bound to acetyl-CoA at a 1.66-Angstroms resolution. WecD is a dimeric enzyme, with each monomer adopting the GNAT N-acetyltransferase fold, common to a number of enzymes involved in acetylation of histones, aminoglycoside antibiotics, serotonin, and sugars. The crystal structure of WecD, however, represents the first structure of a GNAT family member that acts on nucleotide sugars. Based on this cocrystal structure, we have used flexible docking to generate a WecD-bound model of the acetyl-CoA-TDP-fucosamine tetrahedral intermediate, representing the structure during acetyl transfer. Our structural data show that WecD does not possess a residue that directly functions as a catalytic base, although Tyr208 is well positioned to function as a general acid by protonating the thiolate anion of coenzyme A.

  11. ATP Synthesis-coupled and -uncoupled Acetate Production from Acetyl-CoA by Mitochondrial Acetate:Succinate CoA-transferase and Acetyl-CoA Thioesterase in Trypanosoma*

    PubMed Central

    Millerioux, Yoann; Morand, Pauline; Biran, Marc; Mazet, Muriel; Moreau, Patrick; Wargnies, Marion; Ebikeme, Charles; Deramchia, Kamel; Gales, Lara; Portais, Jean-Charles; Boshart, Michael; Franconi, Jean-Michel; Bringaud, Frédéric

    2012-01-01

    Insect stage trypanosomes use an “acetate shuttle” to transfer mitochondrial acetyl-CoA to the cytosol for the essential fatty acid biosynthesis. The mitochondrial acetate sources are acetate:succinate CoA-transferase (ASCT) and an unknown enzymatic activity. We have identified a gene encoding acetyl-CoA thioesterase (ACH) activity, which is shown to be the second acetate source. First, RNAi-mediated repression of ASCT in the ACH null background abolishes acetate production from glucose, as opposed to both single ASCT and ACH mutants. Second, incorporation of radiolabeled glucose into fatty acids is also abolished in this ACH/ASCT double mutant. ASCT is involved in ATP production, whereas ACH is not, because the ASCT null mutant is ∼1000 times more sensitive to oligomycin, a specific inhibitor of the mitochondrial F0/F1-ATP synthase, than wild-type cells or the ACH null mutant. This was confirmed by RNAi repression of the F0/F1-ATP synthase F1β subunit, which is lethal when performed in the ASCT null background but not in the wild-type cells or the ACH null background. We concluded that acetate is produced from both ASCT and ACH; however, only ASCT is responsible, together with the F0/F1-ATP synthase, for ATP production in the mitochondrion. PMID:22474284

  12. N-acetyl-cysteine prevents age-related hearing loss and the progressive loss of inner hair cells in γ-glutamyl transferase 1 deficient mice

    PubMed Central

    Ding, Dalian; Jiang, Haiyan; Chen, Guang-Di; Longo-Guess, Chantal; Muthaiah, Vijaya Prakash Krishnan; Tian, Cong; Sheppard, Adam; Salvi, Richard; Johnson, Kenneth R.

    2016-01-01

    Genetic factors combined with oxidative stress are major determinants of age-related hearing loss (ARHL), one of the most prevalent disorders of the elderly. Dwarf grey mice, Ggt1dwg/dwg, are homozygous for a loss of function mutation of the γ-glutamyl transferase 1 gene, which encodes an important antioxidant enzyme critical for the resynthesis of glutathione (GSH). Since GSH reduces oxidative damage, we hypothesized that Ggt1dwg/dwg mice would be susceptible to ARHL. Surprisingly, otoacoustic emissions and cochlear microphonic potentials, which reflect cochlear outer hair cell (OHC) function, were largely unaffected in mutant mice, whereas auditory brainstem responses and the compound action potential were grossly abnormal. These functional deficits were associated with an unusual and selective loss of inner hair cells (IHC), but retention of OHC and auditory nerve fibers. Remarkably, hearing deficits and IHC loss were completely prevented by N-acetyl-L-cysteine, which induces de novo synthesis of GSH; however, hearing deficits and IHC loss reappeared when treatment was discontinued. Ggt1dwg/dwgmice represent an important new model for investigating ARHL, therapeutic interventions, and understanding the perceptual and electrophysiological consequences of sensory deprivation caused by the loss of sensory input exclusively from IHC. PMID:26977590

  13. N-acetyl-cysteine prevents age-related hearing loss and the progressive loss of inner hair cells in γ-glutamyl transferase 1 deficient mice.

    PubMed

    Ding, Dalian; Jiang, Haiyan; Chen, Guang-Di; Longo-Guess, Chantal; Muthaiah, Vijaya Prakash Krishnan; Tian, Cong; Sheppard, Adam; Salvi, Richard; Johnson, Kenneth R

    2016-04-01

    Genetic factors combined with oxidative stress are major determinants of age-related hearing loss (ARHL), one of the most prevalent disorders of the elderly. Dwarf grey mice, Ggt1dwg/dwg, are homozygous for a loss of function mutation of the g-glutamyl transferase 1 gene, which encodes an important antioxidant enzyme critical for the resynthesis of glutathione (GSH). Since GSH reduces oxidative damage, we hypothesized that Ggt1dwg/dwg mice would be susceptible to ARHL. Surprisingly, otoacoustic emissions and cochlear microphonic potentials, which reflect cochlear outer hair cell (OHC) function, were largely unaffected in mutant mice, whereas auditory brainstem responses and the compound action potential were grossly abnormal. These functional deficits were associated with an unusual and selective loss of inner hair cells (IHC), but retention of OHC and auditory nerve fibers. Remarkably, hearing deficits and IHC loss were completely prevented by N-acetyl-L-cysteine, which induces de novo synthesis of GSH; however, hearing deficits and IHC loss reappeared when treatment was discontinued. Ggt1dwg/dwg mice represent an important new model for investigating ARHL, therapeutic interventions, and understanding the perceptual and electrophysiological consequences of sensory deprivation caused by the loss of sensory input exclusively from IHC.

  14. Histone acetyl transferase 1 is essential for mammalian development, genome stability, and the processing of newly synthesized histones H3 and H4.

    PubMed

    Nagarajan, Prabakaran; Ge, Zhongqi; Sirbu, Bianca; Doughty, Cheryl; Agudelo Garcia, Paula A; Schlederer, Michaela; Annunziato, Anthony T; Cortez, David; Kenner, Lukas; Parthun, Mark R

    2013-06-01

    Histone acetyltransferase 1 is an evolutionarily conserved type B histone acetyltransferase that is thought to be responsible for the diacetylation of newly synthesized histone H4 on lysines 5 and 12 during chromatin assembly. To understand the function of this enzyme in a complex organism, we have constructed a conditional mouse knockout model of Hat1. Murine Hat1 is essential for viability, as homozygous deletion of Hat1 results in neonatal lethality. The lungs of embryos and pups genetically deficient in Hat1 were much less mature upon histological evaluation. The neonatal lethality is due to severe defects in lung development that result in less aeration and respiratory distress. Many of the Hat1(-/-) neonates also display significant craniofacial defects with abnormalities in the bones of the skull and jaw. Hat1(-/-) mouse embryonic fibroblasts (MEFs) are defective in cell proliferation and are sensitive to DNA damaging agents. In addition, the Hat1(-/-) MEFs display a marked increase in genome instability. Analysis of histone dynamics at sites of replication-coupled chromatin assembly demonstrates that Hat1 is not only responsible for the acetylation of newly synthesized histone H4 but is also required to maintain the acetylation of histone H3 on lysines 9, 18, and 27 during replication-coupled chromatin assembly.

  15. MATERNAL SMOKING DURING PREGNANCY, GENETIC VARIATION OF ACETYL-N-TRANSFERASES NAT1 AND NAT2, AND RISK FOR OROFACIAL CLEFTS. (R828292)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  16. αTAT1 controls longitudinal spreading of acetylation marks from open microtubules extremities

    PubMed Central

    Ly, Nathalie; Elkhatib, Nadia; Bresteau, Enzo; Piétrement, Olivier; Khaled, Mehdi; Magiera, Maria M.; Janke, Carsten; Le Cam, Eric; Rutenberg, Andrew D.; Montagnac, Guillaume

    2016-01-01

    Acetylation of the lysine 40 of α-tubulin (K40) is a post-translational modification occurring in the lumen of microtubules (MTs) and is controlled by the α-tubulin acetyl-transferase αTAT1. How αTAT1 accesses the lumen and acetylates α-tubulin there has been an open question. Here, we report that acetylation starts at open ends of MTs and progressively spreads longitudinally from there. We observed acetylation marks at the open ends of in vivo MTs re-growing after a Nocodazole block, and acetylated segments growing in length with time. Bias for MTs extremities was even more pronounced when using non-dynamic MTs extracted from HeLa cells. In contrast, K40 acetylation was mostly uniform along the length of MTs reconstituted from purified tubulin in vitro. Quantitative modelling of luminal diffusion of αTAT1 suggested that the uniform acetylation pattern observed in vitro is consistent with defects in the MT lattice providing lateral access to the lumen. Indeed, we observed that in vitro MTs are permeable to macromolecules along their shaft while cellular MTs are not. Our results demonstrate αTAT1 enters the lumen from open extremities and spreads K40 acetylation marks longitudinally along cellular MTs. This mode of tip-directed microtubule acetylation may allow for selective acetylation of subsets of microtubules. PMID:27752143

  17. Acetylated Triterpene Glycosides and Their Biological Activity from Holothuroidea Reported in the Past Six Decades

    PubMed Central

    Bahrami, Yadollah; Franco, Christopher M. M.

    2016-01-01

    Sea cucumbers have been valued for many centuries as a tonic and functional food, dietary delicacies and important ingredients of traditional medicine in many Asian countries. An assortment of bioactive compounds has been described in sea cucumbers. The most important and abundant secondary metabolites from sea cucumbers are triterpene glycosides (saponins). Due to the wide range of their potential biological activities, these natural compounds have gained attention and this has led to their emergence as high value compounds with extended application in nutraceutical, cosmeceutical, medicinal and pharmaceutical products. They are characterized by bearing a wide spectrum of structures, such as sulfated, non-sulfated and acetylated glycosides. Over 700 triterpene glycosides have been reported from the Holothuroidea in which more than 145 are decorated with an acetoxy group having 38 different aglycones. The majority of sea cucumber triterpene glycosides are of the holostane type containing a C18 (20) lactone group and either Δ7(8) or Δ9(11) double bond in their genins. The acetoxy group is mainly connected to the C-16, C-22, C-23 and/or C-25 of their aglycone. Apparently, the presence of an acetoxy group, particularly at C-16 of the aglycone, plays a significant role in the bioactivity; including induction of caspase, apoptosis, cytotoxicity, anticancer, antifungal and antibacterial activities of these compounds. This manuscript highlights the structure of acetylated saponins, their biological activity, and their structure-activity relationships. PMID:27527190

  18. [Acetyl-CoA cleavage and synthesis in methanogens]. Progress report, September 1994--August 1997

    SciTech Connect

    1998-11-01

    The acetyl-CoA decarbonylase synthase (ACDS) complex has been detected in a variety of methanogens including species of Methanosarcina, Methanothrix (i.e., Methanosaeta), and Methanococcus. The multienzyme complex from Methanosarcina barkeri is composed of five different subunits, possibly arranged in an {alpha}{sub 6}{beta}{sub 6}{gamma}{sub 6}{delta}{sub 6}{var_epsilon}{sub 6} structure with the individual subunits of molecular masses (kDa) of 89, 60, 50, 48, and 20, respectively. This progress report summarizes the work from the past 21 months on studies directed toward understanding how the ACDS complex functions in the physiology of acetate-cleaving, and acetate-synthesizing methanogens.

  19. Molecular Cloning of Adenosinediphosphoribosyl Transferase.

    DTIC Science & Technology

    1987-09-08

    ACCESSION NO.D,. 03261102F 2312 A~5 11. TITLE (include Securqt Classification) 0 Molecular Cloning of Adenosinediphosphoribosyl Transferase 12. PERSONAL...I’:- AFOSR.Tlt. 8 7 - 0 9 8,2 0IL * pi AFOSR- 85 -0377 PROGRESS REPORT Molecular Cloning of Adenosinediphosphoribosyl Transferase 5." Period of...Pharmacology and the Cardiovascular Research Institute September 8, 1987 .’, 5.’- "’S ". -f, AFOSR - 85 -0377 PROGRESS REPORT Molecular Cloning of

  20. Glutathione Transferases

    PubMed Central

    Dixon, David P.; Edwards, Robert

    2010-01-01

    The 55 Arabidopsis glutathione transferases (GSTs) are, with one microsomal exception, a monophyletic group of soluble enzymes that can be divided into phi, tau, theta, zeta, lambda, dehydroascorbate reductase (DHAR) and TCHQD classes. The populous phi and tau classes are often highly stress inducible and regularly crop up in proteomic and transcriptomic studies. Despite much study on their xenobiotic-detoxifying activities their natural roles are unclear, although roles in defence-related secondary metabolism are likely. The smaller DHAR and lambda classes are likely glutathione-dependent reductases, the zeta class functions in tyrosine catabolism and the theta class has a putative role in detoxifying oxidised lipids. This review describes the evidence for the functional roles of GSTs and the potential for these enzymes to perform diverse functions that in many cases are not “glutathione transferase” activities. As well as biochemical data, expression data from proteomic and transcriptomic studies are included, along with subcellular localisation experiments and the results of functional genomic studies. PMID:22303257

  1. N-acetyl cysteine in clomiphene citrate resistant polycystic ovary syndrome: A review of reported outcomes.

    PubMed

    Saha, Lekha; Kaur, Sharonjeet; Saha, Pradip Kumar

    2013-07-01

    Clomiphene citrate (CC) has been the gold-standard drug for ovulation induction in polycystic ovary syndrome (PCOS), but still CC resistance is seen in approximately 15-40% in women with PCOS. N-acetyl cysteine (NAC), a safe and cheap drug available in the market many years ago as mucolytic agent, was found to have a role in infertility management. Recently, some reports discussed the possible beneficial effects of NAC on ovulation. The biological properties of the NAC make this drug a potential candidate for its use in the infertility treatment, especially in the PCOS in inducing or augmenting ovulation. An updated electronic search was performed through PUBMED, MEDLINE, and COCHRANE and focused on peer-reviewed, full text, randomized controlled trials, and observational cohort or case-control studies for role of NAC in CC-resistant PCOS. Thorough search through all the clinical studies showed mixed results. Studies with positive results showed improvement in induction of ovulation as compared to negative studies showing contrary results. More randomized clinical trials are still needed to establish its definitive role in CC-resistant PCOS.

  2. Nonketotic hyperglycinemia: novel mutation in the aminomethyl transferase gene. Case report.

    PubMed

    Gencpinar, Pinar; Çavuşoğlu, Dilek; Özbeyler, Ömer; Kaya, Özge Ö; Baydan, Figen; Olgac Dundar, Nihal

    2016-06-01

    Panton-Valentine leukocidin (PVL) is an exotoxin that is produced by many strains of Staphylococcus aureus, and an important virulence factor. A PVL-positive S. aureus infection leads to rapid and severe infections of soft tissue and necrotizing pneumonia in healthy adolescents, and has a high mortality. This case report included a 12-year-old male patient who admitted for fever, respiratory distress and hip pain and was identified with necrotizing pneumonia with septic pulmonary embolism, psoas abscess, cellulitis and osteomyelitis. The PVL positive methicillin-sensitive S. aureus (MSSA) was isolated in the patient blood culture.

  3. Aerobic production of isoamyl acetate by overexpression of the yeast alcohol acetyl-transferases AFT1 and AFT2 in Escherichia coli and using low-cost fermentation ingredients.

    PubMed

    Singh, R; Vadlani, P V; Harrison, M L; Bennett, G N; San, K-Y

    2008-06-01

    Isoamyl acetate, produced via fermentation, is a natural flavor chemical with applications in the food industry. Two alcohol acetyltransferases from Saccharomyces cerevisiae (ATF1 and ATF2) can catalyze the esterification of isoamyl alcohol with acetyl coenzyme A. The respective genes were cloned and expressed in an appropriate ack-pta(-) strain of Escherichia coli. The engineered strains produce isoamyl acetate when isoamyl alcohol is added to the culture medium. Aerobic shake flask experiments examined isoamyl acetate production over various growth times, temperatures, and initial optical densities. The strain carrying the pBAD-ATF1 plasmid exhibited a high molar ester yield from glucose (1.13) after 48 h of aerobic growth at 25 degrees C. Low-cost media components, such as fusel oil, sorghum glucose and corn steep liquor, were found to give a high yield of isoamyl acetate. High-cell-density gave an increased isoamyl acetate yield of 0.18 g/g of glucose consumed.

  4. Histone acetylation in insect chromosomes.

    PubMed

    Allfrey, V G; Pogo, B G; Littau, V C; Gershey, E L; Mirsky, A E

    1968-01-19

    Acetylation of histones takes place along the salivary gland chromosomes of Chironomus thummi when RNA synthesis is active. It can be observed but not measured quantitatively by autoradiography of chromosome squashes. The "fixatives" commonly used in preparing squashes of insect chromosomes preferentially extract the highly acetylated "arginine-rich" histone fractions; the use of such fixatives may explain the reported absence of histone acetylation in Drosophila melanogaster.

  5. Acetyl chloride

    Integrated Risk Information System (IRIS)

    Acetyl chloride ; CASRN 75 - 36 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  6. Enzymatic Glycosylation by Transferases

    NASA Astrophysics Data System (ADS)

    Blixt, Ola; Razi, Nahid

    Glycosyltransferases are important biological catalysts in cellular systems generating complex cell surface glycans involved in adhesion and signaling processes. Recent advances in glycoscience have increased the demands to access significant amount of glycans representing the glycome. Glycosyltransferases are now playing a key role for in vitro synthesis of oligosaccharides and the bacterial genome are increasingly utilized for cloning and over expression of active transferases in glycosylation reactions. This chapter highlights the recent progress towards preparative synthesis of oligosaccharides representing terminal sequences of glycoproteins and glycolipids using recombinant transferases. Transferases are also being explored in the context of solid-phase synthesis, immobilized on resins and over expression in vivo by engineered bacteria.

  7. Protein acetylation in archaea, bacteria, and eukaryotes.

    PubMed

    Soppa, Jörg

    2010-09-16

    Proteins can be acetylated at the alpha-amino group of the N-terminal amino acid (methionine or the penultimate amino acid after methionine removal) or at the epsilon-amino group of internal lysines. In eukaryotes the majority of proteins are N-terminally acetylated, while this is extremely rare in bacteria. A variety of studies about N-terminal acetylation in archaea have been reported recently, and it was revealed that a considerable fraction of proteins is N-terminally acetylated in haloarchaea and Sulfolobus, while this does not seem to apply for methanogenic archaea. Many eukaryotic proteins are modified by differential internal acetylation, which is important for a variety of processes. Until very recently, only two bacterial proteins were known to be acetylation targets, but now 125 acetylation sites are known for E. coli. Knowledge about internal acetylation in archaea is extremely limited; only two target proteins are known, only one of which--Alba--was used to study differential acetylation. However, indications accumulate that the degree of internal acetylation of archaeal proteins might be underestimated, and differential acetylation has been shown to be essential for the viability of haloarchaea. Focused proteomic approaches are needed to get an overview of the extent of internal protein acetylation in archaea.

  8. Inhibition of Different Histone Acetyltransferases (HATs) Uncovers Transcription-Dependent and -Independent Acetylation-Mediated Mechanisms in Memory Formation

    ERIC Educational Resources Information Center

    Merschbaecher, Katja; Hatko, Lucyna; Folz, Jennifer; Mueller, Uli

    2016-01-01

    Acetylation of histones changes the efficiency of the transcription processes and thus contributes to the formation of long-term memory (LTM). In our comparative study, we used two inhibitors to characterize the contribution of different histone acetyl transferases (HATs) to appetitive associative learning in the honeybee. For one we applied…

  9. Protein kinase C coordinates histone H3 phosphorylation and acetylation

    PubMed Central

    Darieva, Zoulfia; Webber, Aaron; Warwood, Stacey; Sharrocks, Andrew D

    2015-01-01

    The re-assembly of chromatin following DNA replication is a critical event in the maintenance of genome integrity. Histone H3 acetylation at K56 and phosphorylation at T45 are two important chromatin modifications that accompany chromatin assembly. Here we have identified the protein kinase Pkc1 as a key regulator that coordinates the deposition of these modifications in S. cerevisiae under conditions of replicative stress. Pkc1 phosphorylates the histone acetyl transferase Rtt109 and promotes its ability to acetylate H3K56. Our data also reveal novel cross-talk between two different histone modifications as Pkc1 also enhances H3T45 phosphorylation and this modification is required for H3K56 acetylation. Our data therefore uncover an important role for Pkc1 in coordinating the deposition of two different histone modifications that are important for chromatin assembly. DOI: http://dx.doi.org/10.7554/eLife.09886.001 PMID:26468616

  10. 40 CFR 721.10520 - Acetylated fatty acid glycerides (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Acetylated fatty acid glycerides... Specific Chemical Substances § 721.10520 Acetylated fatty acid glycerides (generic). (a) Chemical substance... acetylated fatty acid glycerides (PMN P-11-160) is subject to reporting under this section for...

  11. 40 CFR 721.10520 - Acetylated fatty acid glycerides (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Acetylated fatty acid glycerides... Specific Chemical Substances § 721.10520 Acetylated fatty acid glycerides (generic). (a) Chemical substance... acetylated fatty acid glycerides (PMN P-11-160) is subject to reporting under this section for...

  12. Comparative specificities of Calreticulin Transacetylase to O-acetyl, N-acetyl and S-acetyl derivative of 4-methylcoumarins and their inhibitory effect on AFB1-induced genotoxicity in vitro and in vivo.

    PubMed

    Kumar, Ajit; Ponnan, Prija; Raj, Hanumantharao G; Parmar, Virinder S; Saso, Luciano

    2013-02-01

    We have earlier conclusively established the Calreticulin Transacetylase (CRTAase) catalyzed modifications of functional proteins such as cytochrome-P450-linked mixed function oxidases (Cyt-P450-linked MFOs), NADPH cytochrome c reductase, and glutathione S-transferase by acetoxy derivatives of polyphenols. In this study, we have investigated the comparative specificities of CRTAase to N-acetyl derivative, 7-acetamido-4-methylcoumarin (7-N-AMC), O-acetyl derivative, 7-acetoxy-4-methylcoumarin (7-AMC), S-acetyl derivative, 7-thioacetyl-4-methycoumarin (7-S-AMC) and their parent compounds in the modulation of catalytic activities of aforesaid proteins. Special attention concentrated on the comparative inhibitory effect of aforesaid acetyl moiety on Cyt-P450-linked MFOs such as 7-ethoxyresorufin O-deethylase (EROD), pentoxyresorufin O-dealkylase (PROD) and aflatoxin B(1) (AFB(1))-induced genotoxicity in vitro and in vivo. The results clearly indicated that N-acetyl and O-acetyl derivatives were better substrates for CRTAase while the S-acetyl was found to be a poorer substrate. Our study involving atomic charge, charge density and molecular electrostatic potential (MEP) calculations indicated the pivotal role of electronegativity and charge distribution values of O, N and S atoms of the acetyl group at C-7 position of the 4-methylcoumarins in CRTAase activity. These facts reinforce our hypothesis that the CRTAase catalyzed modifications of the catalytic activities of aforesaid proteins by acetyl derivative of 4-methylcoumarins is probably due to acetylation of these proteins.

  13. Histone Acetylation Inhibitors Promote Axon Growth in Adult DRG neurons

    PubMed Central

    Lin, Shen; Nazif, Kutaiba; Smith, Alexander; Baas, Peter W; Smith, George M

    2015-01-01

    Intrinsic mechanisms that guide damaged axons to regenerate following spinal cord injury remain poorly understood. Manipulation of posttranslational modifications of key proteins in mature neurons could re-invigorate growth machinery after injury. One such modification is acetylation, a reversible process controlled by two enzyme families acting in opposition, the Histone Deacetylases (HDACs) and the Histone Acetyl Transferases (HATs). While acetylated histones in the nucleus is associated with upregulation of growth promoting genes, de-acetylated tubulin in the axoplasm is associated with more labile microtubules, conducive to axon growth. In this study we investigated the effects of HAT inhibitors and HDAC inhibitors on cultured adult dorsal root ganglia (DRG) neurons. We found that inhibition of HATs, using Anacardic Acid or CPTH2, improved axon outgrowth, while inhibition of HDACs using TSA or Tubacin, inhibited axon growth. Furthermore, Anacardic Acid increased the number of axons able to cross an inhibitory chondroitin sulfate proteoglycan (CSPG) border. Histone acetylation, but not tubulin acetylation levels, was affected by HAT inhibitors, whereas tubulin acetylation levels were increased in the presence of HDAC inhibitor Tubacin. Although microtubule stabilizing drug taxol did not have an effect on the lengths of DRG axons, nocodazole decreased axon lengths. While the mechanistic basis will require future studies, our data show that inhibitors of HAT can augment axon growth in adult DRG neurons, with the potential of aiding axon growth over inhibitory substrates produced by the glial scar. PMID:25702820

  14. Plant glutathione transferases

    PubMed Central

    Dixon, David P; Lapthorn, Adrian; Edwards, Robert

    2002-01-01

    The soluble glutathione transferases (GSTs, EC 2.5.1.18) are encoded by a large and diverse gene family in plants, which can be divided on the basis of sequence identity into the phi, tau, theta, zeta and lambda classes. The theta and zeta GSTs have counterparts in animals but the other classes are plant-specific and form the focus of this article. The genome of Arabidopsis thaliana contains 48 GST genes, with the tau and phi classes being the most numerous. The GST proteins have evolved by gene duplication to perform a range of functional roles using the tripeptide glutathione (GSH) as a cosubstrate or coenzyme. GSTs are predominantly expressed in the cytosol, where their GSH-dependent catalytic functions include the conjugation and resulting detoxification of herbicides, the reduction of organic hydroperoxides formed during oxidative stress and the isomerization of maleylacetoacetate to fumarylacetoacetate, a key step in the catabolism of tyrosine. GSTs also have non-catalytic roles, binding flavonoid natural products in the cytosol prior to their deposition in the vacuole. Recent studies have also implicated GSTs as components of ultraviolet-inducible cell signaling pathways and as potential regulators of apoptosis. Although sequence diversification has produced GSTs with multiple functions, the structure of these proteins has been highly conserved. The GSTs thus represent an excellent example of how protein families can diversify to fulfill multiple functions while conserving form and structure. PMID:11897031

  15. THE EXCHANGE REACTION OF ACETYL FLUORIDE AND ACETYL HEXAFLUOROARSENATE,

    DTIC Science & Technology

    From the temperature dependence of the exchange rate of the methyl protons between acetyl fluoride and acetyl hexafluoroarsenate an Arrhenius...the reaction was found to be one-half order in acetyl hexafluoroarsenate and zero order in acetyl fluoride. (Author)

  16. Phospho-N-Acetyl-Muramyl-Pentapeptide Translocase from Escherichia coli: Catalytic Role of Conserved Aspartic Acid Residues

    PubMed Central

    Lloyd, Adrian J.; Brandish, Philip E.; Gilbey, Andrea M.; Bugg, Timothy D. H.

    2004-01-01

    Phospho-N-acetyl-muramyl-pentapeptide translocase (translocase 1) catalyzes the first of a sequence of lipid-linked steps that ultimately assemble the peptidoglycan layer of the bacterial cell wall. This essential enzyme is the target of several natural product antibiotics and has recently been the focus of antimicrobial drug discovery programs. The catalytic mechanism of translocase 1 is believed to proceed via a covalent intermediate formed between phospho-N-acetyl-muramyl-pentapeptide and a nucleophilic amino acid residue. Amino acid sequence alignments of the translocase 1 family and members of the related transmembrane phosphosugar transferase superfamily revealed only three conserved residues that possess nucleophilic side chains: the aspartic acid residues D115, D116, and D267. Here we report the expression and partial purification of Escherichia coli translocase 1 as a C-terminal hexahistidine (C-His6) fusion protein. Three enzymes with the site-directed mutations D115N, D116N, and D267N were constructed, expressed, and purified as C-His6 fusions. Enzymatic analysis established that all three mutations eliminated translocase 1 activity, and this finding verified the essential role of these residues. By analogy with the structural environment of the double aspartate motif found in prenyl transferases, we propose a model whereby D115 and D116 chelate a magnesium ion that coordinates with the pyrophosphate bridge of the UDP-N-acetyl-muramyl-pentapeptide substrate and in which D267 therefore fulfills the role of the translocase 1 active-site nucleophile. PMID:14996806

  17. Global Analysis of Lysine Acetylation Suggests the Involvement of Protein Acetylation in Diverse Biological Processes in Rice (Oryza sativa)

    PubMed Central

    Zhong, Xiaoxian; Tan, Feng; Mujahid, Hana; Zhang, Jian; Nanduri, Bindu; Peng, Zhaohua

    2014-01-01

    Lysine acetylation is a reversible, dynamic protein modification regulated by lysine acetyltransferases and deacetylases. Recent advances in high-throughput proteomics have greatly contributed to the success of global analysis of lysine acetylation. A large number of proteins of diverse biological functions have been shown to be acetylated in several reports in human cells, E.coli, and dicot plants. However, the extent of lysine acetylation in non-histone proteins remains largely unknown in monocots, particularly in the cereal crops. Here we report the mass spectrometric examination of lysine acetylation in rice (Oryza sativa). We identified 60 lysine acetylated sites on 44 proteins of diverse biological functions. Immunoblot studies further validated the presence of a large number of acetylated non-histone proteins. Examination of the amino acid composition revealed substantial amino acid bias around the acetylation sites and the amino acid preference is conserved among different organisms. Gene ontology analysis demonstrates that lysine acetylation occurs in diverse cytoplasmic, chloroplast and mitochondrial proteins in addition to the histone modifications. Our results suggest that lysine acetylation might constitute a regulatory mechanism for many proteins, including both histones and non-histone proteins of diverse biological functions. PMID:24586658

  18. A Dual Pathogenic Mechanism Links Tau Acetylation to Sporadic Tauopathy

    PubMed Central

    Trzeciakiewicz, Hanna; Tseng, Jui-Heng; Wander, Connor M.; Madden, Victoria; Tripathy, Ashutosh; Yuan, Chao-Xing; Cohen, Todd J.

    2017-01-01

    Tau acetylation has recently emerged as a dominant post-translational modification (PTM) in Alzheimer’s disease (AD) and related tauopathies. Mass spectrometry studies indicate that tau acetylation sites cluster within the microtubule (MT)-binding region (MTBR), suggesting acetylation could regulate both normal and pathological tau functions. Here, we combined biochemical and cell-based approaches to uncover a dual pathogenic mechanism mediated by tau acetylation. We show that acetylation specifically at residues K280/K281 impairs tau-mediated MT stabilization, and enhances the formation of fibrillar tau aggregates, highlighting both loss and gain of tau function. Full-length acetylation-mimic tau showed increased propensity to undergo seed-dependent aggregation, revealing a potential role for tau acetylation in the propagation of tau pathology. We also demonstrate that methylene blue, a reported tau aggregation inhibitor, modulates tau acetylation, a novel mechanism of action for this class of compounds. Our study identifies a potential “two-hit” mechanism in which tau acetylation disengages tau from MTs and also promotes tau aggregation. Thus, therapeutic approaches to limit tau K280/K281 acetylation could simultaneously restore MT stability and ameliorate tau pathology in AD and related tauopathies. PMID:28287136

  19. Glutathione transferases and neurodegenerative diseases.

    PubMed

    Mazzetti, Anna Paola; Fiorile, Maria Carmela; Primavera, Alessandra; Lo Bello, Mario

    2015-03-01

    There is substantial agreement that the unbalance between oxidant and antioxidant species may affect the onset and/or the course of a number of common diseases including Parkinson's and Alzheimer's diseases. Many studies suggest a crucial role for oxidative stress in the first phase of aging, or in the pathogenesis of various diseases including neurological ones. Particularly, the role exerted by glutathione and glutathione-related enzymes (Glutathione Transferases) in the nervous system appears more relevant, this latter tissue being much more vulnerable to toxins and oxidative stress than other tissues such as liver, kidney or muscle. The present review addresses the question by focusing on the results obtained by specimens from patients or by in vitro studies using cells or animal models related to Parkinson's and Alzheimer's diseases. In general, there is an association between glutathione depletion and Parkinson's or Alzheimer's disease. In addition, a significant decrease of glutathione transferase activity in selected areas of brain and in ventricular cerebrospinal fluid was found. For some glutathione transferase genes there is also a correlation between polymorphisms and onset/outcome of neurodegenerative diseases. Thus, there is a general agreement about the protective effect exerted by glutathione and glutathione transferases but no clear answer about the mechanisms underlying this crucial role in the insurgence of neurodegenerative diseases.

  20. Histone acetylation in neurodevelopment.

    PubMed

    Contestabile, Antonio; Sintoni, Silvia

    2013-01-01

    Post-translational modification of histones is a primary mechanism through which epigenetic regulation of DNA transcription does occur. Among these modifications, regulation of histone acetylation state is an important tool to influence gene expression. Epigenetic regulation of neurodevelopment contributes to the structural and functional shaping of the brain during neurogenesis and continues to impact on neural plasticity lifelong. Alterations of these mechanisms during neurodevelopment may result in later occurrence of neuropsychatric disorders. The present paper reviews and discusses available data on histone modifications, in particular histone acetylation, in neurogenesis considering results obtained in culture systems of neural progenitors as well as in in vivo studies. Possible teratogenic effects of altered histone acetylation state during development are also considered. The use during pregnancy of drugs such as valproic acid, which acts as a histone deacetylase inhibitor, may result during postnatal development in autistic-like symptoms. The effect of gestational administration of the drug has been, therefore, tested on adult hippocampal neurogenesis in animals showing behavioral impairment as a consequence of the drug administration at a specific stage of pregnancy. These experimental results show that adult neurogenesis in the hippocampal dentate gyrus is not quantitatively altered by gestational valproic acid administration. Future steps and goals of research on the role and mechanisms of histone acetylation in neurodevelopment are briefly discussed.

  1. Tubulin acetylation protects long-lived microtubules against mechanical ageing.

    PubMed

    Portran, Didier; Schaedel, Laura; Xu, Zhenjie; Théry, Manuel; Nachury, Maxence V

    2017-04-01

    Long-lived microtubules endow the eukaryotic cell with long-range transport abilities. While long-lived microtubules are acetylated on Lys40 of α-tubulin (αK40), acetylation takes place after stabilization and does not protect against depolymerization. Instead, αK40 acetylation has been proposed to mechanically stabilize microtubules. Yet how modification of αK40, a residue exposed to the microtubule lumen and inaccessible to microtubule-associated proteins and motors, could affect microtubule mechanics remains an open question. Here we develop FRET-based assays that report on the lateral interactions between protofilaments and find that αK40 acetylation directly weakens inter-protofilament interactions. Congruently, αK40 acetylation affects two processes largely governed by inter-protofilament interactions, reducing the nucleation frequency and accelerating the shrinkage rate. Most relevant to the biological function of acetylation, microfluidics manipulations demonstrate that αK40 acetylation enhances flexibility and confers resilience against repeated mechanical stresses. Thus, unlike deacetylated microtubules that accumulate damage when subjected to repeated stresses, long-lived microtubules are protected from mechanical ageing through their acquisition of αK40 acetylation. In contrast to other tubulin post-translational modifications that act through microtubule-associated proteins, motors and severing enzymes, intraluminal acetylation directly tunes the compliance and resilience of microtubules.

  2. Purification and properties of 4-hydroxybutyrate coenzyme A transferase from Clostridium aminobutyricum.

    PubMed Central

    Scherf, U; Buckel, W

    1991-01-01

    A new coenzyme A (CoA)-transferase from the anaerobe Clostridium aminobutyricum catalyzing the formation of 4-hydroxybutyryl-CoA from 4-hydroxybutyrate and acetyl-CoA is described. The enzyme was purified to homogeneity by standard techniques, including fast protein liquid chromatography under aerobic conditions. Its molecular mass was determined to be 110 kDa, and that of the only subunit was determined to be 54 kDa, indicating a homodimeric structure. Besides acetate and acetyl-CoA, the following substrates were detected (in order of decreasing kcat/Km): 4-hydroxybutyryl-CoA, butyryl-CoA and propionyl-CoA, vinyl-acetyl-CoA (3-butenoyl-CoA), and 5-hydroxyvaleryl-CoA. In an indirect assay the corresponding acids were also found to be substrates; however, DL-lactate, DL-2-hydroxybutyrate, DL-3-hydroxybutyrate, crotonate, and various dicarboxylates were not. PMID:1768145

  3. ASEB: a web server for KAT-specific acetylation site prediction.

    PubMed

    Wang, Likun; Du, Yipeng; Lu, Ming; Li, Tingting

    2012-07-01

    Protein lysine acetylation plays an important role in the normal functioning of cells, including gene expression regulation, protein stability and metabolism regulation. Although large amounts of lysine acetylation sites have been identified via large-scale mass spectrometry or traditional experimental methods, the lysine (K)-acetyl-transferase (KAT) responsible for the acetylation of a given protein or lysine site remains largely unknown due to the experimental limitations of KAT substrate identification. Hence, the in silico prediction of KAT-specific acetylation sites may provide direction for further experiments. In our previous study, we developed the acetylation set enrichment based (ASEB) computer program to predict which KAT-families are responsible for the acetylation of a given protein or lysine site. In this article, we provide KAT-specific acetylation site prediction as a web service. This web server not only provides the online tool and R package for the method in our previous study, but several useful services are also included, such as the integration of protein-protein interaction information to enhance prediction accuracy. This web server can be freely accessed at http://cmbi.bjmu.edu.cn/huac.

  4. Nucleosome acetylation sequencing to study the establishment of chromatin acetylation.

    PubMed

    Mittal, Chitvan; Blacketer, Melissa J; Shogren-Knaak, Michael A

    2014-07-15

    The establishment of posttranslational chromatin modifications is a major mechanism for regulating how genomic DNA is utilized. However, current in vitro chromatin assays do not monitor histone modifications at individual nucleosomes. Here we describe a strategy, nucleosome acetylation sequencing, that allows us to read the amount of modification at each nucleosome. In this approach, a bead-bound trinucleosome substrate is enzymatically acetylated with radiolabeled acetyl CoA by the SAGA complex from Saccharomyces cerevisae. The product is digested by restriction enzymes that cut at unique sites between the nucleosomes and then counted to quantify the extent of acetylation at each nucleosomal site. We find that we can sensitively, specifically, and reproducibly follow enzyme-mediated nucleosome acetylation. Applying this strategy, when acetylation proceeds extensively, its distribution across nucleosomes is relatively uniform. However, when substrates are used that contain nucleosomes mutated at the major sites of SAGA-mediated acetylation, or that are studied under initial rate conditions, changes in the acetylation distribution can be observed. Nucleosome acetylation sequencing should be applicable to analyzing a wide range of modifications. Additionally, because our trinucleosomes synthesis strategy is highly modular and efficient, it can be used to generate nucleosomal systems in which nucleosome composition differs across the array.

  5. STAT5 acetylation

    PubMed Central

    Kosan, Christian; Ginter, Torsten; Heinzel, Thorsten; Krämer, Oliver H

    2013-01-01

    The cytokine-inducible transcription factors signal transducer and activator of transcription 5A and 5B (STAT5A and STAT5B) are important for the proper development of multicellular eukaryotes. Disturbed signaling cascades evoking uncontrolled expression of STAT5 target genes are associated with cancer and immunological failure. Here, we summarize how STAT5 acetylation is integrated into posttranslational modification networks within cells. Moreover, we focus on how inhibitors of deacetylases and tyrosine kinases can correct leukemogenic signaling nodes involving STAT5. Such small molecules can be exploited in the fight against neoplastic diseases and immunological disorders. PMID:24416653

  6. Global analysis of lysine acetylation in strawberry leaves

    PubMed Central

    Fang, Xianping; Chen, Wenyue; Zhao, Yun; Ruan, Songlin; Zhang, Hengmu; Yan, Chengqi; Jin, Liang; Cao, Lingling; Zhu, Jun; Ma, Huasheng; Cheng, Zhongyi

    2015-01-01

    Protein lysine acetylation is a reversible and dynamic post-translational modification. It plays an important role in regulating diverse cellular processes including chromatin dynamic, metabolic pathways, and transcription in both prokaryotes and eukaryotes. Although studies of lysine acetylome in plants have been reported, the throughput was not high enough, hindering the deep understanding of lysine acetylation in plant physiology and pathology. In this study, taking advantages of anti-acetyllysine-based enrichment and high-sensitive-mass spectrometer, we applied an integrated proteomic approach to comprehensively investigate lysine acetylome in strawberry. In total, we identified 1392 acetylation sites in 684 proteins, representing the largest dataset of acetylome in plants to date. To reveal the functional impacts of lysine acetylation in strawberry, intensive bioinformatic analysis was performed. The results significantly expanded our current understanding of plant acetylome and demonstrated that lysine acetylation is involved in multiple cellular metabolism and cellular processes. More interestingly, nearly 50% of all acetylated proteins identified in this work were localized in chloroplast and the vital role of lysine acetylation in photosynthesis was also revealed. Taken together, this study not only established the most extensive lysine acetylome in plants to date, but also systematically suggests the significant and unique roles of lysine acetylation in plants. PMID:26442052

  7. Hibiscus cannabinus feruloyl-coa:monolignol transferase

    SciTech Connect

    Wilkerson, Curtis; Ralph, John; Withers, Saunia; Mansfield, Shawn D.

    2016-11-15

    The invention relates to isolated nucleic acids encoding a feruloyl-CoA:monolignol transferase and feruloyl-CoA:monolignol transferase enzymes. The isolated nucleic acids and/or the enzymes enable incorporation of monolignol ferulates into the lignin of plants, where such monolignol ferulates include, for example, p-coumaryl ferulate, coniferyl ferulate, and/or sinapyl ferulate. The invention also includes methods and plants that include nucleic acids encoding a feruloyl-CoA:monolignol transferase enzyme and/or feruloyl-CoA:monolignol transferase enzymes.

  8. Feruloyl-CoA:monolignol transferase

    DOEpatents

    Wilkerson, Curtis; Ralph, John; Withers, Saunia; Mansfield, Shawn D.

    2016-09-13

    The invention relates to nucleic acids encoding a feruloyl-CoA:monolignol transferase and the feruloyl-CoA:monolignol transferase enzyme that enables incorporation of monolignol ferulates, for example, including p-coumaryl ferulate, coniferyl ferulate, and sinapyl ferulate, into the lignin of plants.

  9. Feruloyl-CoA:monolignol transferase

    DOEpatents

    Wilkerson, Curtis; Ralph, John; Withers, Saunia; Mansfield, Shawn D.

    2016-11-08

    The invention relates to nucleic acids encoding a feruloyl-CoA:monolignol transferase and the feruloyl-CoA:monolignol transferase enzyme that enables incorporation of monolignol ferulates, for example, including p-coumaryl ferulate, coniferyl ferulate, and sinapyl ferulate, into the lignin of plants.

  10. Carnitine palmitoyl transferase deficiency with an atypical presentation and ultrastructural mitochondrial abnormalities.

    PubMed Central

    Carey, M P; Poulton, K; Hawkins, C; Murphy, R P

    1987-01-01

    A case of carnitine palmitoyl transferase deficiency presenting in a 72 year old woman with the clinical picture of ophthalmoplegia plus other muscle weakness is reported. Histological and ultrastructural examination showed the features of a mitochondrial myopathy. Images PMID:3655814

  11. [Nourseothricin (streptothricin) inactivated by plasmid pIE 636-encoded acetyltransferase: detection of N-acetyl-beta-lysine in the inactivated product].

    PubMed

    Seltmann, G

    1985-12-01

    Nourseothricin (streptothricin) can be inactivated by an acetyl transferase synthesized by E. coli strains containing plasmid pIE 636. Nourseothricin inactivated in the presence of 14C-acetyl-coenzyme A was purified and submitted to partial acidic hydrolysis. By electrophoresis of the hydrolysate a 14C-containing substance moving only slowly towards the cathode could be isolated. This substance after complete hydrolysis yields only unlabelled beta-lysine.

  12. 21 CFR 862.1535 - Ornithine carbamyl transferase test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... carbamyl transferase (OCT) in serum. Ornithine carbamyl transferase measurements are used in the diagnosis and treatment of liver diseases, such as infectious hepatitis, acute cholecystitis (inflammation...

  13. Histone acetylation in heterochromatin assembly

    PubMed Central

    Kim, Jeong-Hoon; Workman, Jerry L.

    2010-01-01

    Histone acetylation is generally considered a mark involved in activating gene expression by making chromatin structures less compact. In the April 1, 2010, issue of Genes & Development, Xhemalce and Kouzarides (pp. 647–652) demonstrate that the acetylation of histone H3 at Lys 4 (H3K4) plays a role in the formation of repressive heterochromatin in Schizosaccharomyces pombe. H3K4 acetylation mediates a switch of chromodomain proteins associated with methylated H3K9 during heterochromatin assembly. PMID:20395362

  14. Acetylation dynamics and stoichiometry in Saccharomyces cerevisiae.

    PubMed

    Weinert, Brian T; Iesmantavicius, Vytautas; Moustafa, Tarek; Schölz, Christian; Wagner, Sebastian A; Magnes, Christoph; Zechner, Rudolf; Choudhary, Chunaram

    2014-01-01

    Lysine acetylation is a frequently occurring posttranslational modification; however, little is known about the origin and regulation of most sites. Here we used quantitative mass spectrometry to analyze acetylation dynamics and stoichiometry in Saccharomyces cerevisiae. We found that acetylation accumulated in growth-arrested cells in a manner that depended on acetyl-CoA generation in distinct subcellular compartments. Mitochondrial acetylation levels correlated with acetyl-CoA concentration in vivo and acetyl-CoA acetylated lysine residues nonenzymatically in vitro. We developed a method to estimate acetylation stoichiometry and found that the vast majority of mitochondrial and cytoplasmic acetylation had a very low stoichiometry. However, mitochondrial acetylation occurred at a significantly higher basal level than cytoplasmic acetylation, consistent with the distinct acetylation dynamics and higher acetyl-CoA concentration in mitochondria. High stoichiometry acetylation occurred mostly on histones, proteins present in histone acetyltransferase and deacetylase complexes, and on transcription factors. These data show that a majority of acetylation occurs at very low levels in exponentially growing yeast and is uniformly affected by exposure to acetyl-CoA.

  15. Acetylation of Mammalian ADA3 Is Required for Its Functional Roles in Histone Acetylation and Cell Proliferation

    PubMed Central

    Mohibi, Shakur; Srivastava, Shashank; Bele, Aditya; Mirza, Sameer; Band, Hamid

    2016-01-01

    Alteration/deficiency in activation 3 (ADA3) is an essential component of specific histone acetyltransferase (HAT) complexes. We have previously shown that ADA3 is required for establishing global histone acetylation patterns and for normal cell cycle progression (S. Mohibi et al., J Biol Chem 287:29442–29456, 2012, http://dx.doi.org/10.1074/jbc.M112.378901). Here, we report that these functional roles of ADA3 require its acetylation. We show that ADA3 acetylation, which is dynamically regulated in a cell cycle-dependent manner, reflects a balance of coordinated actions of its associated HATs, GCN5, PCAF, and p300, and a new partner that we define, the deacetylase SIRT1. We use mass spectrometry and site-directed mutagenesis to identify major sites of ADA3 acetylated by GCN5 and p300. Acetylation-defective mutants are capable of interacting with HATs and other components of HAT complexes but are deficient in their ability to restore ADA3-dependent global or locus-specific histone acetylation marks and cell proliferation in Ada3-deleted murine embryonic fibroblasts (MEFs). Given the key importance of ADA3-containing HAT complexes in the regulation of various biological processes, including the cell cycle, our study presents a novel mechanism to regulate the function of these complexes through dynamic ADA3 acetylation. PMID:27402865

  16. Acetylation of Mammalian ADA3 Is Required for Its Functional Roles in Histone Acetylation and Cell Proliferation.

    PubMed

    Mohibi, Shakur; Srivastava, Shashank; Bele, Aditya; Mirza, Sameer; Band, Hamid; Band, Vimla

    2016-10-01

    Alteration/deficiency in activation 3 (ADA3) is an essential component of specific histone acetyltransferase (HAT) complexes. We have previously shown that ADA3 is required for establishing global histone acetylation patterns and for normal cell cycle progression (S. Mohibi et al., J Biol Chem 287:29442-29456, 2012, http://dx.doi.org/10.1074/jbc.M112.378901). Here, we report that these functional roles of ADA3 require its acetylation. We show that ADA3 acetylation, which is dynamically regulated in a cell cycle-dependent manner, reflects a balance of coordinated actions of its associated HATs, GCN5, PCAF, and p300, and a new partner that we define, the deacetylase SIRT1. We use mass spectrometry and site-directed mutagenesis to identify major sites of ADA3 acetylated by GCN5 and p300. Acetylation-defective mutants are capable of interacting with HATs and other components of HAT complexes but are deficient in their ability to restore ADA3-dependent global or locus-specific histone acetylation marks and cell proliferation in Ada3-deleted murine embryonic fibroblasts (MEFs). Given the key importance of ADA3-containing HAT complexes in the regulation of various biological processes, including the cell cycle, our study presents a novel mechanism to regulate the function of these complexes through dynamic ADA3 acetylation.

  17. Enzymic synthesis of indole-3-acetyl-1-O-beta-d-glucose. I. Partial purification and characterization of the enzyme from Zea mays

    NASA Technical Reports Server (NTRS)

    Leznicki, A. J.; Bandurski, R. S.

    1988-01-01

    The first enzyme-catalyzed reaction leading from indole-3-acetic acid (IAA) to the myo-inositol esters of IAA is the synthesis of indole-3-acetyl-1-O-beta-D-glucose from uridine-5'-diphosphoglucose (UDPG) and IAA. The reaction is catalyzed by the enzyme, UDPG-indol-3-ylacetyl glucosyl transferase (IAA-glucose-synthase). This work reports methods for the assay of the enzyme and for the extraction and partial purification of the enzyme from kernels of Zea mays sweet corn. The enzyme has an apparent molecular weight of 46,500 an isoelectric point of 5.5, and its pH optimum lies between 7.3 and 7.6. The enzyme is stable to storage at zero degrees but loses activity during column chromatographic procedures which can be restored only fractionally by addition of column eluates. The data suggest either multiple unknown cofactors or conformational changes leading to activity loss.

  18. Urinary mutagenicity and N-acetylation phenotype in textile industry workers exposed to arylamines

    SciTech Connect

    Sinues, B.; Perez, J.; Bernal, M.L.; Saenz, M.A.; Lanuza, J.; Bartolome, M. )

    1992-09-15

    Primary aromatic amines have been identified epidemiologically as human carcinogens. It has been suggested that the target organ affected by aromatic amines is dependent on the rate of metabolic activation. Epidemiological studies have shown an association between low acetyl transferase activity and bladder cancer risk. On this basis, our working hypothesis was that the slow acetylators could follow in a higher extent the metabolic pathway independent of N-acetylation, leading to the excretion of conjugates of electrophyles with glucuronic acid. The instability of these glucuronides could be responsible for the association between arylamine-induced bladder cancer and slow acetylator phenotype. A total of 153 individuals were included in this study: 70 exposed to arylamines (working in textile industry) and 83 nonexposed. The following parameters were determined in urine: mutagenic index in the absence of metabolic activation, S9; mutagenic index in the presence of S9; and the mutagenic index after incubation of the urine with beta-glucuronidase. All individuals were phenotyped according to their capacity of N-acetylation by using isoniazid as drug test. The results show that the mutagenic index after incubation of the urine with beta-glucuronidase is statistically higher in exposed subjects when compared with nonexposed individuals (P less than 0.001), this parameter being statistically higher among exposed subjects who were slow acetylators than among rapid metabolizers, independent of the fact that they were smokers or nonsmokers. There were no significant differences between groups for the mutagenicity in urine not incubated with beta-glucuronidase.

  19. Functional Dissection of the Bipartite Active Site of the Class I Coenzyme A (CoA)-Transferase Succinyl-CoA:Acetate CoA-Transferase

    PubMed Central

    Murphy, Jesse R.; Mullins, Elwood A.; Kappock, T. Joseph

    2016-01-01

    Coenzyme A (CoA)-transferases catalyze the reversible transfer of CoA from acyl-CoA thioesters to free carboxylates. Class I CoA-transferases produce acylglutamyl anhydride intermediates that undergo attack by CoA thiolate on either the internal or external carbonyl carbon atoms, forming distinct tetrahedral intermediates <3 Å apart. In this study, crystal structures of succinyl-CoA:acetate CoA-transferase (AarC) from Acetobacter aceti are used to examine how the Asn347 carboxamide stabilizes the internal oxyanion intermediate. A structure of the active mutant AarC-N347A bound to CoA revealed both solvent replacement of the missing contact and displacement of the adjacent Glu294, indicating that Asn347 both polarizes and orients the essential glutamate. AarC was crystallized with the nonhydrolyzable acetyl-CoA (AcCoA) analog dethiaacetyl-CoA (1a) in an attempt to trap a closed enzyme complex containing a stable analog of the external oxyanion intermediate. One active site contained an acetylglutamyl anhydride adduct and truncated 1a, an unexpected result hinting at an unprecedented cleavage of the ketone moiety in 1a. Solution studies confirmed that 1a decomposition is accompanied by production of near-stoichiometric acetate, in a process that seems to depend on microbial contamination but not AarC. A crystal structure of AarC bound to the postulated 1a truncation product (2a) showed complete closure of one active site per dimer but no acetylglutamyl anhydride, even with acetate added. These findings suggest that an activated acetyl donor forms during 1a decomposition; a working hypothesis involving ketone oxidation is offered. The ability of 2a to induce full active site closure furthermore suggests that it subverts a system used to impede inappropriate active site closure on unacylated CoA. PMID:27242998

  20. Functional dissection of the bipartite active site of the class I coenzyme A (CoA)-transferase succinyl-CoA:acetate CoA-transferase

    NASA Astrophysics Data System (ADS)

    Murphy, Jesse; Mullins, Elwood; Kappock, T.

    2016-05-01

    Coenzyme A (CoA)-transferases catalyze the reversible transfer of CoA from acyl-CoA thioesters to free carboxylates. Class I CoA-transferases produce acylglutamyl anhydride intermediates that undergo attack by CoA thiolate on either the internal or external carbonyl carbon atoms, forming distinct tetrahedral intermediates less than 3 Å apart. In this study, crystal structures of succinyl-CoA:acetate CoA-transferase (AarC) from Acetobacter aceti are used to examine how the Asn347 carboxamide stabilizes the internal oxyanion intermediate. A structure of the active mutant AarC-N347A bound to CoA revealed both solvent replacement of the missing contact and displacement of the adjacent Glu294, indicating that Asn347 both polarizes and orients the essential glutamate. AarC was crystallized with the nonhydrolyzable acetyl-CoA (AcCoA) analogue dethiaacetyl-CoA (1a) in an attempt to trap a closed enzyme complex containing a stable analogue of the external oxyanion intermediate. One active site contained an acetylglutamyl anhydride adduct and truncated 1a, an unexpected result hinting at an unprecedented cleavage of the ketone moiety in 1a. Solution studies confirmed that 1a decomposition is accompanied by production of near-stoichiometric acetate, in a process that seems to depend on microbial contamination but not AarC. A crystal structure of AarC bound to the postulated 1a truncation product (2a) showed complete closure of one active site per dimer but no acetylglutamyl anhydride, even with acetate added. These findings suggest that an activated acetyl donor forms during 1a decomposition; a working hypothesis involving ketone oxidation is offered. The ability of 2a to induce full active site closure furthermore suggests that it subverts a system used to impede inappropriate active site closure on unacylated CoA.

  1. Functional dissection of the bipartite active site of the class I coenzyme A (CoA)-transferase succinyl-CoA:acetate CoA-transferase

    DOE PAGES

    Murphy, Jesse R.; Mullins, Elwood A.; Kappock, T. Joseph

    2016-05-23

    Coenzyme A (CoA)-transferases catalyze the reversible transfer of CoA from acyl-CoA thioesters to free carboxylates. Class I CoA-transferases produce acylglutamyl anhydride intermediates that undergo attack by CoA thiolate on either the internal or external carbonyl carbon atoms, forming distinct tetrahedral intermediates <3 Å apart. Here in this study, crystal structures of succinyl-CoA:acetate CoA-transferase (AarC) from Acetobacter aceti are used to examine how the Asn347 carboxamide stabilizes the internal oxyanion intermediate. A structure of the active mutant AarC-N347A bound to CoA revealed both solvent replacement of the missing contact and displacement of the adjacent Glu294, indicating that Asn347 both polarizes andmore » orients the essential glutamate. AarC was crystallized with the nonhydrolyzable acetyl-CoA (AcCoA) analog dethiaacetyl-CoA (1a) in an attempt to trap a closed enzyme complex containing a stable analog of the external oxyanion intermediate. One active site contained an acetylglutamyl anhydride adduct and truncated 1a, an unexpected result hinting at an unprecedented cleavage of the ketone moiety in 1a. Solution studies confirmed that 1a decomposition is accompanied by production of near-stoichiometric acetate, in a process that seems to depend on microbial contamination but not AarC. A crystal structure of AarC bound to the postulated 1a truncation product (2a) showed complete closure of one active site per dimer but no acetylglutamyl anhydride, even with acetate added. These findings suggest that an activated acetyl donor forms during 1a decomposition; a working hypothesis involving ketone oxidation is offered. Finally, the ability of 2a to induce full active site closure furthermore suggests that it subverts a system used to impede inappropriate active site closure on unacylated CoA.« less

  2. Functional dissection of the bipartite active site of the class I coenzyme A (CoA)-transferase succinyl-CoA:acetate CoA-transferase

    SciTech Connect

    Murphy, Jesse R.; Mullins, Elwood A.; Kappock, T. Joseph

    2016-05-23

    Coenzyme A (CoA)-transferases catalyze the reversible transfer of CoA from acyl-CoA thioesters to free carboxylates. Class I CoA-transferases produce acylglutamyl anhydride intermediates that undergo attack by CoA thiolate on either the internal or external carbonyl carbon atoms, forming distinct tetrahedral intermediates <3 Å apart. Here in this study, crystal structures of succinyl-CoA:acetate CoA-transferase (AarC) from Acetobacter aceti are used to examine how the Asn347 carboxamide stabilizes the internal oxyanion intermediate. A structure of the active mutant AarC-N347A bound to CoA revealed both solvent replacement of the missing contact and displacement of the adjacent Glu294, indicating that Asn347 both polarizes and orients the essential glutamate. AarC was crystallized with the nonhydrolyzable acetyl-CoA (AcCoA) analog dethiaacetyl-CoA (1a) in an attempt to trap a closed enzyme complex containing a stable analog of the external oxyanion intermediate. One active site contained an acetylglutamyl anhydride adduct and truncated 1a, an unexpected result hinting at an unprecedented cleavage of the ketone moiety in 1a. Solution studies confirmed that 1a decomposition is accompanied by production of near-stoichiometric acetate, in a process that seems to depend on microbial contamination but not AarC. A crystal structure of AarC bound to the postulated 1a truncation product (2a) showed complete closure of one active site per dimer but no acetylglutamyl anhydride, even with acetate added. These findings suggest that an activated acetyl donor forms during 1a decomposition; a working hypothesis involving ketone oxidation is offered. Finally, the ability of 2a to induce full active site closure furthermore suggests that it subverts a system used to impede inappropriate active site closure on unacylated CoA.

  3. Chaperone-mediated acetylation of histones by Rtt109 identified by quantitative proteomics.

    PubMed

    Abshiru, Nebiyu; Ippersiel, Kevin; Tang, Yong; Yuan, Hua; Marmorstein, Ronen; Verreault, Alain; Thibault, Pierre

    2013-04-09

    Rtt109 is a fungal-specific histone acetyltransferase (HAT) that associates with either Vps75 or Asf1 to acetylate histone H3. Recent biochemical and structural studies suggest that site-specific acetylation of H3 by Rtt109 is dictated by the binding chaperone where Rtt109-Asf1 acetylates K56, while Rtt109-Vps75 acetylates K9 and K27. To gain further insights into the roles of Vps75 and Asf1 in directing site-specific acetylation of H3, we used quantitative proteomics to profile the global and site-specific changes in H3 and H4 during in vitro acetylation assays with Rtt109 and its chaperones. Our analyses showed that Rtt109-Vps75 preferentially acetylates H3 K9 and K23, the former residue being the major acetylation site. At high enzyme-to-substrate ratio, Rtt109 also acetylated K14, K18, K27 and to a lower extent K56 of histone H3. Importantly, this study revealed that in contrast to Rtt109-Vps75, Rtt109-Asf1 displayed a far greater site-specificity, with K56 being the primary site of acetylation. For the first time, we also report the acetylation of histone H4 K12 by Rtt109-Vps75, whereas Rtt109-Asf1 showed no detectable activity toward H4. This article is part of a Special Issue entitled: From protein structures to clinical applications.

  4. Chaperone-mediated acetylation of histones by Rtt109 identified by quantitative proteomics

    PubMed Central

    Abshiru, Nebiyu; Ippersiel, Kevin; Tang, Yong; Yuan, Hua; Marmorstein, Ronen; Verreault, Alain; Thibault, Pierre

    2014-01-01

    Rtt109 is a fungal-specific histone acetyltransferase (HAT) that associates with either Vps75 or Asf1 to acetylate histone H3. Recent biochemical and structural studies suggest that site-specific acetylation of H3 by Rtt109 is dictated by the binding chaperone where Rtt109-Asf1 acetylates K56, while Rtt109-Vps75 acetylates K9 and K27. To gain further insights into the roles of Vps75 and Asf1 in directing site-specific acetylation of H3, we used quantitative proteomics to profile the global and site-specific changes in H3 and H4 during in vitro acetylation assays with Rtt109 and its chaperones. Our analyses showed that Rtt109-Vps75 preferentially acetylates H3 K9 and K23, the former residue being the major acetylation site. At high enzyme to substrate ratio, Rtt109 also acetylated K14, K18, K27 and to a lower extent K56 of histone H3. Importantly, this study revealed that in contrast to Rtt109-Vps75, Rtt109-Asf1 displayed a far greater site-specificity, with K56 being the primary site of acetylation. For the first time, we also report the acetylation of histone H4 K12 by Rtt109-Vps75, whereas Rtt109-Asf1 showed no detectable activity toward H4. PMID:23036725

  5. Properties of Succinyl-Coenzyme A:d-Citramalate Coenzyme A Transferase and Its Role in the Autotrophic 3-Hydroxypropionate Cycle of Chloroflexus aurantiacus

    PubMed Central

    Friedmann, Silke; Alber, Birgit E.; Fuchs, Georg

    2006-01-01

    The phototrophic bacterium Chloroflexus aurantiacus uses the 3-hydroxypropionate cycle for autotrophic CO2 fixation. This cycle starts with acetyl-coenzyme A (CoA) and produces glyoxylate. Glyoxylate is an unconventional cell carbon precursor that needs special enzymes for assimilation. Glyoxylate is combined with propionyl-CoA to β-methylmalyl-CoA, which is converted to citramalate. Cell extracts catalyzed the succinyl-CoA-dependent conversion of citramalate to acetyl-CoA and pyruvate, the central cell carbon precursor. This reaction is due to the combined action of enzymes that were upregulated during autotrophic growth, a coenzyme A transferase with the use of succinyl-CoA as the CoA donor and a lyase cleaving citramalyl-CoA to acetyl-CoA and pyruvate. Genomic analysis identified a gene coding for a putative coenzyme A transferase. The gene was heterologously expressed in Escherichia coli and shown to code for succinyl-CoA:d-citramalate coenzyme A transferase. This enzyme, which catalyzes the reaction d-citramalate + succinyl-CoA → d-citramalyl-CoA + succinate, was purified and studied. It belongs to class III of the coenzyme A transferase enzyme family, with an aspartate residue in the active site. The homodimeric enzyme composed of 44-kDa subunits was specific for succinyl-CoA as a CoA donor but also accepted d-malate and itaconate instead of d-citramalate. The CoA transferase gene is part of a cluster of genes which are cotranscribed, including the gene for d-citramalyl-CoA lyase. It is proposed that the CoA transferase and the lyase catalyze the last two steps in the glyoxylate assimilation route. PMID:16952935

  6. Overexpression of GalNAc-transferase GalNAc-T3 Promotes Pancreatic Cancer Cell Growth

    PubMed Central

    Taniuchi, Keisuke; Cerny, Ronald L.; Tanouchi, Aki; Kohno, Kimitoshi; Kotani, Norihiro; Honke, Koichi; Saibara, Toshiji; Hollingsworth, Michael A.

    2011-01-01

    O-linked glycans of secreted and membrane bound proteins play an important role in the pathogenesis of pancreatic cancer by modulating immune responses, inflammation, and tumorigenesis. A critical aspect of O-glycosylation, the position at which proteins are glycosylated with N-acetyl-galactosamine on serine and threonine residues, is regulated by the substrate specificity of UDP-GalNAc: polypeptide N-acetylgalactosaminyl-transferases (GalNAc-Ts). Thus, GalNAc-Ts regulate the first committed step in O-glycosylated protein biosynthesis, determine sites of O-glycosylation on proteins, and are important for understanding normal and carcinoma-associated O-glycosylation. We have found that one of these enzymes, GalNAc-T3, is overexpressed in human pancreatic cancer tissues, and suppression of GalNAc-T3 significantly attenuates growth of pancreatic cancer cells in vitro and in vivo. In addition, suppression of GalNAc-T3 induces apoptosis of pancreatic cancer cells. Our results indicate that GalNAc-T3 is likely to be involved in pancreatic carcinogenesis. Modification of cellular glycosylation occurs in nearly all types of cancer as a result of alterations in the expression levels of glycosyltransferases. We report guanine nucleotide binding protein, alpha transducing activity polypeptide 1 (GNAT1) as a possible substrate protein of GalNAc-T3. GalNAc-T3 is associated with O-glycosylation of GNAT1, and affects the subcellular distribution of GNAT1. Knocking down endogenous GNAT1 significantly suppresses the growth/survival of PDAC cells. Our results imply that GalNAc-T3 contributes to the function of O-glycosylated proteins and thereby affects the growth and survival of pancreatic cancer cells. Thus, substrate proteins of GalNAc-T3 should serve as important therapeutic targets for pancreatic cancers. PMID:21625220

  7. Overexpression of GalNAc-transferase GalNAc-T3 promotes pancreatic cancer cell growth.

    PubMed

    Taniuchi, K; Cerny, R L; Tanouchi, A; Kohno, K; Kotani, N; Honke, K; Saibara, T; Hollingsworth, M A

    2011-12-08

    O-linked glycans of secreted and membrane-bound proteins have an important role in the pathogenesis of pancreatic cancer by modulating immune responses, inflammation and tumorigenesis. A critical aspect of O-glycosylation, the position at which proteins are glycosylated with N-acetyl-galactosamine on serine and threonine residues, is regulated by the substrate specificity of UDP-GalNAc:polypeptide N-acetylgalactosaminyl-transferases (GalNAc-Ts). Thus, GalNAc-Ts regulate the first committed step in O-glycosylated protein biosynthesis, determine sites of O-glycosylation on proteins and are important for understanding normal and carcinoma-associated O-glycosylation. We have found that one of these enzymes, GalNAc-T3, is overexpressed in human pancreatic cancer tissues and suppression of GalNAc-T3 significantly attenuates the growth of pancreatic cancer cells in vitro and in vivo. In addition, suppression of GalNAc-T3 induces apoptosis of pancreatic cancer cells. Our results indicate that GalNAc-T3 is likely involved in pancreatic carcinogenesis. Modification of cellular glycosylation occurs in nearly all types of cancer as a result of alterations in the expression levels of glycosyltransferases. We report guanine the nucleotide-binding protein, α-transducing activity polypeptide-1 (GNAT1) as a possible substrate protein of GalNAc-T3. GalNAc-T3 is associated with O-glycosylation of GNAT1 and affects the subcellular distribution of GNAT1. Knocking down endogenous GNAT1 significantly suppresses the growth/survival of PDAC cells. Our results imply that GalNAc-T3 contributes to the function of O-glycosylated proteins and thereby affects the growth and survival of pancreatic cancer cells. Thus, substrate proteins of GalNAc-T3 should serve as important therapeutic targets for pancreatic cancers.

  8. Olig1 Acetylation and Nuclear Export Mediate Oligodendrocyte Development

    PubMed Central

    Dai, Jinxiang; Bercury, Kathryn K.; Jin, Weilin

    2015-01-01

    The oligodendrocyte transcription factor Olig1 is critical for both oligodendrocyte development and remyelination in mice. Nuclear to cytoplasmic translocation of Olig1 protein occurs during brain development and in multiple sclerosis, but the detailed molecular mechanism of this translocation remains elusive. Here, we report that Olig1 acetylation and deacetylation drive its active translocation between the nucleus and the cytoplasm in both mouse and rat oligodendrocytes. We identified three functional nuclear export sequences (NES) localized in the basic helix-loop-helix domain and one specific acetylation site at Lys 150 (human Olig1) in NES1. Olig1 acetylation and deacetylation are regulated by the acetyltransferase CREB-binding protein and the histone deacetylases HDAC1, HDAC3, and HDAC10. Acetylation of Olig1 decreased its chromatin association, increased its interaction with inhibitor of DNA binding 2 and facilitated its retention in the cytoplasm of mature oligodendrocytes. These studies establish that acetylation of Olig1 regulates its chromatin dissociation and subsequent translocation to the cytoplasm and is required for its function in oligodendrocyte maturation. SIGNIFICANCE STATEMENT The nuclear to cytoplasmic translocation of Olig1 protein has been observed during mouse and human brain development and in multiple sclerosis in several studies, but the detailed molecular mechanism of this translocation remains elusive. Here, we provide insight into the mechanism by which acetylation of Olig1 regulates its unique nuclear-cytoplasmic shuttling during oligodendrocyte development and how the acetylation status of Olig1 modulates its distinct function in the nucleus versus the cytoplasm. The current study provides a unique example of a lineage-specific transcription factor that is actively translocated from the nucleus to the cytoplasm as the cell differentiates. Importantly, we demonstrate that this process is tightly controlled by acetylation at a single

  9. Three CoA Transferases Involved in the Production of Short Chain Fatty Acids in Porphyromonas gingivalis

    PubMed Central

    Sato, Mitsunari; Yoshida, Yasuo; Nagano, Keiji; Hasegawa, Yoshiaki; Takebe, Jun; Yoshimura, Fuminobu

    2016-01-01

    Butyryl-CoA:acetate CoA transferase, which produces butyrate and acetyl-CoA from butyryl-CoA and acetate, is responsible for the final step of butyrate production in bacteria. This study demonstrates that in the periodontopathogenic bacterium Porphyromonas gingivalis this reaction is not catalyzed by PGN_1171, previously annotated as butyryl-CoA:acetate CoA transferase, but by three distinct CoA transferases, PGN_0725, PGN_1341, and PGN_1888. Gas chromatography/mass spectrometry (GC-MS) and spectrophotometric analyses were performed using crude enzyme extracts from deletion mutant strains and purified recombinant proteins. The experiments revealed that, in the presence of acetate, PGN_0725 preferentially utilized butyryl-CoA rather than propionyl-CoA. By contrast, this preference was reversed in PGN_1888. The only butyryl-CoA:acetate CoA transferase activity was observed in PGN_1341. Double reciprocal plots revealed that all the reactions catalyzed by these enzymes follow a ternary-complex mechanism, in contrast to previously characterized CoA transferases. GC-MS analysis to determine the concentrations of short chain fatty acids (SCFAs) in culture supernatants of P. gingivalis wild type and mutant strains revealed that PGN_0725 and PGN_1888 play a major role in the production of butyrate and propionate, respectively. Interestingly, a triple deletion mutant lacking PGN_0725, PGN_1341, and PGN_1888 produced low levels of SCFAs, suggesting that the microorganism contains CoA transferase(s) in addition to these three enzymes. Growth rates of the mutant strains were mostly slower than that of the wild type, indicating that many carbon compounds produced in the SCFA synthesis appear to be important for the biological activity of this microorganism. PMID:27486457

  10. Sirt1 physically interacts with Tip60 and negatively regulates Tip60-mediated acetylation of H2AX

    SciTech Connect

    Yamagata, Kazutsune; Kitabayashi, Issay

    2009-12-25

    Sirt1 appear to be NAD(+)-dependent deacetylase that deacetylates histones and several non-histone proteins. In this study, we identified Sirt1 as a physical interaction partner of Tip60, which is a mammalian MYST-type histone acetyl-transferase that specifically acetylates histones H2A and H4. Although Tip60 also acetylates DNA damage-specific histone H2A variant H2AX in response to DNA damage, which is a process required for appropriate DNA damage response, overexpression of Sirt1 represses Tip60-mediated acetylation of H2AX. Furthermore, Sirt1 depletion by RNAi causes excessive acetylation of H2AX, and enhances accumulation of {gamma}-ray irradiation-induced MDC1, BRCA1, and Rad51 foci in nuclei. These findings suggest that Sirt1 functions as negative regulator of Tip60-mediated acetylation of H2AX. Moreover, Sirt1 deacetylates an acetylated Tip60 in response to DNA damage and stimulates proteasome-dependent Tip60 degradation in vivo, suggesting that Sirt1 negatively regulates the protein level of Tip60 in vivo. Sirt1 may thus repress excessive activation of the DNA damage response and Rad51-homologous recombination repair by suppressing the function of Tip60.

  11. Oxygen-dependent acetylation and dimerization of the corepressor CtBP2 in neural stem cells

    SciTech Connect

    Karaca, Esra; Lewicki, Jakub; Hermanson, Ola

    2015-03-01

    The transcriptional corepressor CtBP2 is essential for proper development of the nervous system. The factor exerts its repression by interacting in complexes with chromatin-modifying factors such as histone deacetylases (HDAC) 1/2 and the histone demethylase LSD1/KDM1. Notably, the histone acetyl transferase p300 acetylates CtBP2 and this is an important regulatory event of the activity and subcellular localization of the protein. We recently demonstrated an essential role for CtBPs as sensors of microenvironmental oxygen levels influencing the differentiation potential of neural stem cells (NSCs), but it is not known whether oxygen levels influence the acetylation levels of CtBP factors. Here we show by using proximity ligation assay (PLA) that CtBP2 acetylation levels increased significantly in undifferentiated, proliferating NSCs under hypoxic conditions. CtBP2 interacted with the class III HDAC Sirt1 but this interaction was unaltered in hypoxic conditions, and treatment with the Sirt1 inhibitor Ex527 did not result in any significant change in total CtBP2 acetylation levels. Instead, we revealed a significant decrease in PLA signal representing CtBP2 dimerization in NSCs under hypoxic conditions, negatively correlating with the acetylation levels. Our results suggest that microenvironmental oxygen levels influence the dimerization and acetylation levels, and thereby the activity, of CtBP2 in proliferating NSCs.

  12. N-ACETYL GROUPS IN VITELLENIN,

    DTIC Science & Technology

    The presence of acetyl groups in vitellenin was confirmed by hydrazinolysis according to the DNP method of Phillips. After hydrazinolysis of 10-30...hydrazinolysis at room temperature for 1 hour, vitellenin contains N- acetyl , but no Oacetyl, groups. (Author)

  13. Acetylated α-Tubulin Regulated by N-Acetyl-Seryl-Aspartyl-Lysyl-Proline(Ac-SDKP) Exerts the Anti-fibrotic Effect in Rat Lung Fibrosis Induced by Silica

    PubMed Central

    Xiaojun, Wang; Yan, Liu; Hong, Xu; Xianghong, Zhang; Shifeng, Li; Dingjie, Xu; Xuemin, Gao; Lijuan, Zhang; Bonan, Zhang; Zhongqiu, Wei; Ruimin, Wang; Brann, Darrell; Fang, Yang

    2016-01-01

    Silicosis is the most serious occupational disease in China. The objective of this study was to screen various proteins related to mechanisms of the pathogenesis of silicosis underlying the anti-fibrotic effect of N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) using proteomic profile analysis. We also aimed to explore a potential mechanism of acetylated α-tubulin (α-Ac-Tub) regulation by Ac-SDKP. Two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF/TOF MS) were used to assess the different protein expression profiles between control and silicosis rats treated with or without Ac-SDKP. Twenty-nine proteins were identified to be potentially involved in the progression of silicosis and the anti-fibrotic effect of Ac-SDKP. Our current study finds that 1) the lost expression of Ac-Tub-α may be a new mechanism in rat silicosis; 2) treatment of silicotic rats with N-acetyl-Seryl-Aspartyl-Lysyl-Proline (Ac-SDKP) inhibits myofibroblast differentiation and collagen deposition accompanied by stabilizing the expression of α-Ac-Tub in vivo and in vitro, which is related with deacetylase family member 6 (HDAC6) and α-tubulin acetyl transferase (α-TAT1). Our data suggest that α-Ac-Tub regulation by Ac-SDKP may potentially be a new anti-fibrosis mechanism. PMID:27577858

  14. Roles for glutathione transferases in antioxidant recycling

    PubMed Central

    Dixon, David P; Steel, Patrick G

    2011-01-01

    Uniquely among the plant glutathione transferases, two classes possess a catalytic cysteine capable of performing glutathione-dependent reductions. These are the dehydroascorbate reductases (DHARs) and the lambda-class glutathione transferases (GSTLs). Using immobilized GSTLs probed with crude plant extracts we have identified flavonols as high affinity ligands and subsequently demonstrated a novel glutathione-dependent role for these enzymes in recycling oxidized quercetin. By comparing the activities of DHARs and GSTLs we now propose a unified catalytic mechanism that suggests oxidized anthocyanidins and tocopherols may be alternative polyphenolic substrates of GSTLs. PMID:21778824

  15. Bacterial protein acetylation: new discoveries unanswered questions.

    PubMed

    Wolfe, Alan J

    2016-05-01

    Nε-acetylation is emerging as an abundant post-translational modification of bacterial proteins. Two mechanisms have been identified: one is enzymatic, dependent on an acetyltransferase and acetyl-coenzyme A; the other is non-enzymatic and depends on the reactivity of acetyl phosphate. Some, but not most, of those acetylations are reversed by deacetylases. This review will briefly describe the current status of the field and raise questions that need answering.

  16. N-Acetyl-4-aminophenol (paracetamol), N-acetyl-2-aminophenol and acetanilide in urine samples from the general population, individuals exposed to aniline and paracetamol users.

    PubMed

    Dierkes, Georg; Weiss, Tobias; Modick, Hendrik; Käfferlein, Heiko Udo; Brüning, Thomas; Koch, Holger M

    2014-01-01

    Epidemiological studies suggest associations between the use of N-acetyl-4-aminophenol (paracetamol) during pregnancy and increased risks of reproductive disorders in the male offspring. Previously we have reported a ubiquitous urinary excretion of N-acetyl-4-aminophenol in the general population. Possible sources are (1) direct intake of paracetamol through medication, (2) paracetamol residues in the food chain and (3) environmental exposure to aniline or related substances that are metabolized into N-acetyl-4-aminophenol. In order to elucidate the origins of the excretion of N-acetyl-4-aminophenol in urine and to contribute to the understanding of paracetamol and aniline metabolism in humans we developed a rapid, turbulent-flow HPLC-MS/MS method with isotope dilution for the simultaneous quantification of N-acetyl-4-aminophenol and two other aniline related metabolites, N-acetyl-2-aminophenol and acetanilide. We applied this method to three sets of urine samples: (1) individuals with no known exposure to aniline and also no recent paracetamol medication; (2) individuals after occupational exposure to aniline but no paracetamol medication and (3) paracetamol users. We confirmed the omnipresent excretion of N-acetyl-4-aminophenol. Additionally we revealed an omnipresent excretion of N-acetyl-2-aminophenol. In contrast, acetanilide was only found after occupational exposure to aniline, not in the general population or after paracetamol use. The results lead to four preliminary conclusions: (1) other sources than aniline seem to be responsible for the major part of urinary N-acetyl-4-aminophenol in the general population; (2) acetanilide is a metabolite of aniline in man and a valuable biomarker for aniline in occupational settings; (3) aniline baseline levels in the general population measured after chemical hydrolysis do not seem to originate from acetanilide and hence not from a direct exposure to aniline itself and (4) N-acetyl-2-aminophenol does not seem to be

  17. The Effect of Acetyl-L-Carnitine Administration on Persons with Down Syndrome

    ERIC Educational Resources Information Center

    Pueschel, Siegfried M.

    2006-01-01

    Since previous investigations reported improvements in cognition of patients with dementia after acetyl-L-carnitine therapy and since there is an increased risk for persons with Down syndrome to develop Alzheimer disease, this study was designed to investigate the effect of acetyl-L-carnitine administration on neurological, intellectual, and…

  18. Farnesyl transferase inhibitors as anticancer agents.

    PubMed

    Haluska, P; Dy, G K; Adjei, A A

    2002-09-01

    Protein farnesylation catalysed by the enzyme farnesyl protein transferase involves the addition of a 15-carbon farnesyl group to conserved amino acid residues at the carboxyl terminus of certain proteins. Protein substrates of farnesyl transferase include several G-proteins, which are critical intermediates of cell signalling and cytoskeletal organisation such as Ras, Rho, PxF and lamins A and B. Activated Ras proteins trigger a cascade of phosphorylation events through sequential activation of the PI3 kinase/AKT pathway, which is critical for cell survival, and the Raf/Mek/Erk kinase pathway that has been implicated in cell proliferation. Ras mutations which encode for constitutively activated proteins are found in 30% of human cancers. Because farnesylation of Ras is required for its transforming and proliferative activity, the farnesyl protein transferase inhibitors were designed as anticancer agents to abrogate Ras function. However, current evidence suggests that the anticancer activity of the farnesyl transferase inhibitors may not be simply due to Ras inhibition. This review will discuss available clinical data on three of these agents that are currently undergoing clinical trials.

  19. Properties of Succinyl-Coenzyme A:l-Malate Coenzyme A Transferase and Its Role in the Autotrophic 3-Hydroxypropionate Cycle of Chloroflexus aurantiacus

    PubMed Central

    Friedmann, Silke; Steindorf, Astrid; Alber, Birgit E.; Fuchs, Georg

    2006-01-01

    The 3-hydroxypropionate cycle has been proposed to operate as the autotrophic CO2 fixation pathway in the phototrophic bacterium Chloroflexus aurantiacus. In this pathway, acetyl coenzyme A (acetyl-CoA) and two bicarbonate molecules are converted to malate. Acetyl-CoA is regenerated from malyl-CoA by l-malyl-CoA lyase. The enzyme forming malyl-CoA, succinyl-CoA:l-malate coenzyme A transferase, was purified. Based on the N-terminal amino acid sequence of its two subunits, the corresponding genes were identified on a gene cluster which also contains the gene for l-malyl-CoA lyase, the subsequent enzyme in the pathway. Both enzymes were severalfold up-regulated under autotrophic conditions, which is in line with their proposed function in CO2 fixation. The two CoA transferase genes were cloned and heterologously expressed in Escherichia coli, and the recombinant enzyme was purified and studied. Succinyl-CoA:l-malate CoA transferase forms a large (αβ)n complex consisting of 46- and 44-kDa subunits and catalyzes the reversible reaction succinyl-CoA + l-malate → succinate + l-malyl-CoA. It is specific for succinyl-CoA as the CoA donor but accepts l-citramalate instead of l-malate as the CoA acceptor; the corresponding d-stereoisomers are not accepted. The enzyme is a member of the class III of the CoA transferase family. The demonstration of the missing CoA transferase closes the last gap in the proposed 3-hydroxypropionate cycle. PMID:16547052

  20. Cloning, expression and properties of porcine trachea UDP-galnac: polypeptide N-acetylgalactosaminyl transferase.

    PubMed

    Sangadala, Sreedhara; Swain, Ja Baris; McNear, Adrian; Mendicino, Joseph

    2004-11-01

    A UDP-GalNAc:polypeptide N-acetyl-galactosaminyl transferase which catalyses the transfer of GalNAc from UDP-GalNAc to serine and threonine residues in mucin polypeptide chains was purified to homogeneity from swine trachea epithelium (Mendicino J, Sangadala S: Mol Cell Biochem 185: 135-145, 1998). Peptides obtained by proteolysis of the purified enzyme were isolated, sequenced and used to prepare degenerate oligonucleotide primers. Amplified segments of a gene encoding GalNAc transferase were synthesised using the primers and a swine trachea epithelial cDNA library. Selected cDNA fragments were then used to screen the cDNA library, and a clone containing an open reading frame encoding 559 amino acids was isolated. The predicted amino acid sequence contains type II transmembrane region, three potential N-glycosylation sites as well as all of the isolated peptide sequences. The nucleotide sequence and predicted primary protein structure of the transferase were very similar to those of type T-1 GalNAc transferases. The isolated clone was transiently expressed in COS 7 cells and the recombinant enzyme, which contained an N-terminal hexa-histidine tag, was purified to homogeneity and its enzymatic properties were examined. The Vmax of the recombinant enzyme, 2.08 micromol/(min mg), was nearly the same as the native enzyme, 2.12 micromol/(min mg), when assayed with partially deglycosylated mucins as glycosyl acceptors. Both enzymes showed much higher activities when assayed with peptides prepared by limited acid hydrolysis of incompletely deglycosylated Cowper's gland, swine, and human respiratory mucins and tryptic peptides isolated from deglycosylated mucin polypeptide chains. However, as noted earlier (Mendicino J, Sangadala S: Mol Cell Biochem 185: 135-145, 1998), these enzymes showed very little activity with completely deglycosylated mucin polypeptide chains. When completely deglycosylated polypeptide chains were partially glycosylated by incubation with microsome

  1. FXR acetylation is normally dynamically regulated by p300 and SIRT1 but constitutively elevated in metabolic disease states.

    PubMed

    Kemper, Jongsook Kim; Xiao, Zhen; Ponugoti, Bhaskar; Miao, Ji; Fang, Sungsoon; Kanamaluru, Deepthi; Tsang, Stephanie; Wu, Shwu-Yuan; Chiang, Cheng-Ming; Veenstra, Timothy D

    2009-11-01

    The nuclear bile acid receptor FXR is critical for regulation of lipid and glucose metabolism. Here, we report that FXR is a target of SIRT1, a deacetylase that mediates nutritional and hormonal modulation of hepatic metabolism. Lysine 217 of FXR is the major acetylation site targeted by p300 and SIRT1. Acetylation of FXR increases its stability but inhibits heterodimerization with RXRalpha, DNA binding, and transactivation activity. Downregulation of hepatic SIRT1 increased FXR acetylation with deleterious metabolic outcomes. Surprisingly, in mouse models of metabolic disease, FXR interaction with SIRT1 and p300 was dramatically altered, FXR acetylation levels were elevated, and overexpression of SIRT1 or resveratrol treatment reduced acetylated FXR levels. Our data demonstrate that FXR acetylation is normally dynamically regulated by p300 and SIRT1 but is constitutively elevated in metabolic disease states. Small molecules that inhibit FXR acetylation by targeting SIRT1 or p300 may be promising therapeutic agents for metabolic disorders.

  2. Histone Deacetylase Inhibitors Globally Enhance H3/H4 Tail Acetylation Without Affecting H3 Lysine 56 Acetylation

    PubMed Central

    Drogaris, Paul; Villeneuve, Valérie; Pomiès, Christelle; Lee, Eun-Hye; Bourdeau, Véronique; Bonneil, Éric; Ferbeyre, Gerardo; Verreault, Alain; Thibault, Pierre

    2012-01-01

    Histone deacetylase inhibitors (HDACi) represent a promising avenue for cancer therapy. We applied mass spectrometry (MS) to determine the impact of clinically relevant HDACi on global levels of histone acetylation. Intact histone profiling revealed that the HDACi SAHA and MS-275 globally increased histone H3 and H4 acetylation in both normal diploid fibroblasts and transformed human cells. Histone H3 lysine 56 acetylation (H3K56ac) recently elicited much interest and controversy due to its potential as a diagnostic and prognostic marker for a broad diversity of cancers. Using quantitative MS, we demonstrate that H3K56ac is much less abundant than previously reported in human cells. Unexpectedly, in contrast to H3/H4 N-terminal tail acetylation, H3K56ac did not increase in response to inhibitors of each class of HDACs. In addition, we demonstrate that antibodies raised against H3K56ac peptides cross-react against H3 N-terminal tail acetylation sites that carry sequence similarity to residues flanking H3K56. PMID:22355734

  3. Purification and characterization of the Oligosaccharyl transferase

    SciTech Connect

    Kapoor, T.M.

    1990-11-01

    Oligosaccharyl transferase was characterized to be a glycoprotein with at least one saccharide unit that had a D-manno or D- glucopyranose configuration with unmodified hydroxy groups at C-3, C-4 and C-6, using a Concanavalin A affinity column. This afforded a 100 fold increase in the transferase purity in the solubilized microsomal sample and also removed over 90% of the microsomal proteins (the cytosolic ones being removed before solubilization). The detergent, N,N-Dimethyldodecylamine N-oxide (LDAO) was used for solubilization and it yielded a system compatible with the assay and the purification steps. An efficient method for detergent extraction without dilution of sample or protein precipitation was also developed.

  4. Rubber transferase in guayule plants. [Parthenium argentatum

    SciTech Connect

    Rosenfield, C.L.; Foster, M.A.; Benedict, C.R.

    1986-04-01

    Rubber transferase catalyzes the transfer of cis-1,4-polyprenyl-PP to isopentenyl-PP (IPP) with the elimination of PP/sub i/. Rubber transferase activity in guayule (Parthenium argentatum Gray) stems was localized in the lipid fraction of the homogenate following centrifugation in buffer and 0.4M Mannitol. Washed rubber particles were obtained by the chromatography of the lipid fraction on Ultrogel columns with an exclusion limit of 750,000 daltons by the procedure of B.G. Audley (private communication). The rubber particles catalyzed the incorporation of /sup 14/C-IPP into cis-polyisoprene. The radioactive cis-polyisoprene was identified by ozonolysis and chromatography of the resulting /sup 14/C-levulinic acid. The synthesis of cis-polyisoprene in the rubber particles required Mg/sup 2 +/ and IPP and was stimulated 2-fold with the addition of DMAPP. Rubber synthesis in guayule plants growing in the Permian Basin of West Texas does not occur during summer months but is induced by the cold night temperatures of the fall and winter. From August to December individual plants (which were transplanted in May) accumulated from 66mg to 11,800mg or rubber. During this period there was a 4-fold increase in rubber transferase activity in stem homogenates induced by the low temperatures.

  5. Analysis of acetylation stoichiometry suggests that SIRT3 repairs nonenzymatic acetylation lesions.

    PubMed

    Weinert, Brian T; Moustafa, Tarek; Iesmantavicius, Vytautas; Zechner, Rudolf; Choudhary, Chunaram

    2015-11-03

    Acetylation is frequently detected on mitochondrial enzymes, and the sirtuin deacetylase SIRT3 is thought to regulate metabolism by deacetylating mitochondrial proteins. However, the stoichiometry of acetylation has not been studied and is important for understanding whether SIRT3 regulates or suppresses acetylation. Using quantitative mass spectrometry, we measured acetylation stoichiometry in mouse liver tissue and found that SIRT3 suppressed acetylation to a very low stoichiometry at its target sites. By examining acetylation changes in the liver, heart, brain, and brown adipose tissue of fasted mice, we found that SIRT3-targeted sites were mostly unaffected by fasting, a dietary manipulation that is thought to regulate metabolism through SIRT3-dependent deacetylation. Globally increased mitochondrial acetylation in fasted liver tissue, higher stoichiometry at mitochondrial acetylation sites, and greater sensitivity of SIRT3-targeted sites to chemical acetylation in vitro and fasting-induced acetylation in vivo, suggest a nonenzymatic mechanism of acetylation. Our data indicate that most mitochondrial acetylation occurs as a low-level nonenzymatic protein lesion and that SIRT3 functions as a protein repair factor that removes acetylation lesions from lysine residues.

  6. Glutathione S-transferase class {pi} polymorphism in baboons

    SciTech Connect

    Aivaliotis, M.J.; Cantu, T.; Gilligan, R.

    1995-02-01

    Glutathione S-transferase (GST) comprises a family of isozymes with broad substrate specificities. One or more GST isozymes are present in most animal tissues and function in several detoxification pathways through the conjugation of reduced glutathione with various electrophiles, thereby reducing their potential toxicity. Four soluble GST isozymes encoded by genes on different chromosomes have been identified in humans. The acidic class pi GST, GSTP (previously designated GST-3), is widely distributed in adult tissues and appears to be the only GST isozyme present in leukocytes and placenta. Previously reported electrophoretic analyses of erythrocyte and leukocyte extracts revealed single bands of activity, which differed slightly in mobility between the two cell types, or under other conditions, a two-banded pattern. To our knowledge, no genetically determined polymorphisms have previously been reported in GSTP from any species. We now report a polymorphism of GSTP in baboon leukocytes, and present family data that verifies autosomal codominant inheritance. 14 refs., 2 figs., 1 tab.

  7. A Method to determine lysine acetylation stoichiometries

    SciTech Connect

    Nakayasu, Ernesto S.; Wu, Si; Sydor, Michael A.; Shukla, Anil K.; Weitz, Karl K.; Moore, Ronald J.; Hixson, Kim K.; Kim, Jong Seo; Petyuk, Vladislav A.; Monroe, Matthew E.; Pasa-Tolic, Ljiljana; Qian, Weijun; Smith, Richard D.; Adkins, Joshua N.; Ansong, Charles

    2014-07-21

    A major bottleneck to fully understanding the functional aspects of lysine acetylation is the lack of stoichiometry information. Here we describe a mass spectrometry method using a combination of isotope labeling and detection of a diagnostic fragment ion to determine the stoichiometry of lysine acetylation on proteins globally. Using this technique, we determined the modification occupancy on hundreds of acetylated peptides from cell lysates and cross-validated the measurements via immunoblotting.

  8. Acetylation of RNA polymerase II regulates growth-factor-induced gene transcription in mammalian cells.

    PubMed

    Schröder, Sebastian; Herker, Eva; Itzen, Friederike; He, Daniel; Thomas, Sean; Gilchrist, Daniel A; Kaehlcke, Katrin; Cho, Sungyoo; Pollard, Katherine S; Capra, John A; Schnölzer, Martina; Cole, Philip A; Geyer, Matthias; Bruneau, Benoit G; Adelman, Karen; Ott, Melanie

    2013-11-07

    Lysine acetylation regulates transcription by targeting histones and nonhistone proteins. Here we report that the central regulator of transcription, RNA polymerase II, is subject to acetylation in mammalian cells. Acetylation occurs at eight lysines within the C-terminal domain (CTD) of the largest polymerase subunit and is mediated by p300/KAT3B. CTD acetylation is specifically enriched downstream of the transcription start sites of polymerase-occupied genes genome-wide, indicating a role in early stages of transcription initiation or elongation. Mutation of lysines or p300 inhibitor treatment causes the loss of epidermal growth-factor-induced expression of c-Fos and Egr2, immediate-early genes with promoter-proximally paused polymerases, but does not affect expression or polymerase occupancy at housekeeping genes. Our studies identify acetylation as a new modification of the mammalian RNA polymerase II required for the induction of growth factor response genes.

  9. The Making of a Sweet Modification: Structure and Function of O-GlcNAc Transferase*

    PubMed Central

    Janetzko, John; Walker, Suzanne

    2014-01-01

    O-GlcNAc transferase is an essential mammalian enzyme responsible for transferring a single GlcNAc moiety from UDP-GlcNAc to specific serine/threonine residues of hundreds of nuclear and cytoplasmic proteins. This modification is dynamic and has been implicated in numerous signaling pathways. An unexpected second function for O-GlcNAc transferase as a protease involved in cleaving the epigenetic regulator HCF-1 has also been reported. Recent structural and biochemical studies that provide insight into the mechanism of glycosylation and HCF-1 cleavage will be described, with outstanding questions highlighted. PMID:25336649

  10. Acetylation of prostaglandin synthase by aspirin.

    PubMed Central

    Roth, G J; Stanford, N; Majerus, P W

    1975-01-01

    When microsomes of sheep or bovine seminal vesicles are incubated with [acetyl-3H]aspirin (acetyl salicylic acid), 200 Ci/mol, we observe acetylation of a single protein, as measured by sodium dodecyl sulfate/polyacrylamide gel electrophoresis. The protein has a molecular weight of 85,000 and corresponds to a similar acetylated protein found in the particulate fraction of aspirin-treated human platelets. The aspirin-mediated acetylation reaction proceeds with the same time course and at the same concentration as does the inhibition of prostaglandin synthase (cyclo-oxygenase) (EC 1.14.99.1; 8,11,14-eicosatrienoate, hydrogen-donor:oxygen oxidoreductase) by the drug. At 100 muM aspirin, 50% inhibition of prostaglandin synthase and 50% of maximal acetylation are observed after 15 min at 37 degrees. Furthermore, the substrate for cyclo-oxygenase, arachidonic acid, inhibits protein acetylation by aspirin at concentrations (50% inhibition at 10-30 muM) which correlate with the Michaelis constant of arachidonic acid as a substrate for cyclooxygenase. Arachidonic acid analogues and indomethacin inhibit the acetylation reaction in proportion to their effectiveness as cyclo-oxygenase inhibitors. The results suggest that aspirin acts as an active-site acetylating agent for the enzyme cyclo-oxygenase. This action of aspirin may account for its anti-inflammatory and anti-platelet action. PMID:810797

  11. Acetylation of woody lignocellulose: significance and regulation

    PubMed Central

    Pawar, Prashant Mohan-Anupama; Koutaniemi, Sanna; Tenkanen, Maija; Mellerowicz, Ewa J.

    2013-01-01

    Non-cellulosic cell wall polysaccharides constitute approximately one quarter of usable biomass for human exploitation. In contrast to cellulose, these components are usually substituted by O-acetyl groups, which affect their properties and interactions with other polymers, thus affecting their solubility and extractability. However, details of these interactions are still largely obscure. Moreover, polysaccharide hydrolysis to constituent monosaccharides is hampered by the presence of O-acetyl groups, necessitating either enzymatic (esterase) or chemical de-acetylation, increasing the costs and chemical consumption. Reduction of polysaccharide acetyl content in planta is a way to modify lignocellulose toward improved saccharification. In this review we: (1) summarize literature on lignocellulose acetylation in different tree species, (2) present data and current hypotheses concerning the role of O-acetylation in determining woody lignocellulose properties, (3) describe plant proteins involved in lignocellulose O-acetylation, (4) give examples of microbial enzymes capable to de-acetylate lignocellulose, and (5) discuss prospects for exploiting these enzymes in planta to modify xylan acetylation. PMID:23734153

  12. Aspirin acetylates wild type and mutant p53 in colon cancer cells: identification of aspirin acetylated sites on recombinant p53.

    PubMed

    Ai, Guoqiang; Dachineni, Rakesh; Kumar, D Ramesh; Marimuthu, Srinivasan; Alfonso, Lloyd F; Bhat, G Jayarama

    2016-05-01

    Aspirin's ability to inhibit cell proliferation and induce apoptosis in cancer cell lines is considered to be an important mechanism for its anti-cancer effects. We previously demonstrated that aspirin acetylated the tumor suppressor protein p53 at lysine 382 in MDA-MB-231 human breast cancer cells. Here, we extended these observations to human colon cancer cells, HCT 116 harboring wild type p53, and HT-29 containing mutant p53. We demonstrate that aspirin induced acetylation of p53 in both cell lines in a concentration-dependent manner. Aspirin-acetylated p53 was localized to the nucleus. In both cell lines, aspirin induced p21(CIP1). Aspirin also acetylated recombinant p53 (rp53) in vitro suggesting that it occurs through a non-enzymatic chemical reaction. Mass spectrometry analysis and immunoblotting identified 10 acetylated lysines on rp53, and molecular modeling showed that all lysines targeted by aspirin are surface exposed. Five of these lysines are localized to the DNA-binding domain, four to the nuclear localization signal domain, and one to the C-terminal regulatory domain. Our results suggest that aspirin's anti-cancer effect may involve acetylation and activation of wild type and mutant p53 and induction of target gene expression. This is the first report attempting to characterize p53 acetylation sites targeted by aspirin.

  13. An Artificial Reaction Promoter Modulates Mitochondrial Functions via Chemically Promoting Protein Acetylation

    PubMed Central

    Shindo, Yutaka; Komatsu, Hirokazu; Hotta, Kohji; Ariga, Katsuhiko; Oka, Kotaro

    2016-01-01

    Acetylation, which modulates protein function, is an important process in intracellular signalling. In mitochondria, protein acetylation regulates a number of enzymatic activities and, therefore, modulates mitochondrial functions. Our previous report showed that tributylphosphine (PBu3), an artificial reaction promoter that promotes acetylransfer reactions in vitro, also promotes the reaction between acetyl-CoA and an exogenously introduced fluorescent probe in mitochondria. In this study, we demonstrate that PBu3 induces the acetylation of mitochondrial proteins and a decrease in acetyl-CoA concentration in PBu3-treated HeLa cells. This indicates that PBu3 can promote the acetyltransfer reaction between acetyl-CoA and mitochondrial proteins in living cells. PBu3-induced acetylation gradually reduced mitochondrial ATP concentrations in HeLa cells without changing the cytoplasmic ATP concentration, suggesting that PBu3 mainly affects mitochondrial functions. In addition, pyruvate, which is converted into acetyl-CoA in mitochondria and transiently increases ATP concentrations in the absence of PBu3, elicited a further decrease in mitochondrial ATP concentrations in the presence of PBu3. Moreover, the application and removal of PBu3 reversibly alternated mitochondrial fragmentation and elongation. These results indicate that PBu3 enhances acetyltransfer reactions in mitochondria and modulates mitochondrial functions in living cells. PMID:27374857

  14. A Method to Determine Lysine Acetylation Stoichiometries

    DOE PAGES

    Nakayasu, Ernesto S.; Wu, Si; Sydor, Michael A.; ...

    2014-01-01

    Lysine acetylation is a common protein posttranslational modification that regulates a variety of biological processes. A major bottleneck to fully understanding the functional aspects of lysine acetylation is the difficulty in measuring the proportion of lysine residues that are acetylated. Here we describe a mass spectrometry method using a combination of isotope labeling and detection of a diagnostic fragment ion to determine the stoichiometry of protein lysine acetylation. Using this technique, we determined the modification occupancy for ~750 acetylated peptides from mammalian cell lysates. Furthermore, the acetylation on N-terminal tail of histone H4 was cross-validated by treating cells with sodiummore » butyrate, a potent deacetylase inhibitor, and comparing changes in stoichiometry levels measured by our method with immunoblotting measurements. Of note we observe that acetylation stoichiometry is high in nuclear proteins, but very low in mitochondrial and cytosolic proteins. In summary, our method opens new opportunities to study in detail the relationship of lysine acetylation levels of proteins with their biological functions.« less

  15. Lysine acetylation and cancer: A proteomics perspective.

    PubMed

    Gil, Jeovanis; Ramírez-Torres, Alberto; Encarnación-Guevara, Sergio

    2017-01-06

    Lysine acetylation is a reversible modification controlled by two groups of enzymes: lysine acetyltransferases (KATs) and lysine deacetylases (KDACs). Acetylated lysine residues are recognized by bromodomains, a family of evolutionarily conserved domains. The use of high-resolution mass spectrometry-based proteomics, in combination with the enrichment of acetylated peptides through immunoprecipitation with anti-acetyl-lysine antibodies, has expanded the number of acetylated proteins from histones and a few nuclear proteins to more than 2000 human proteins. Because acetylation targets almost all cellular processes, this modification has been associated with cancer. Several KATs, KDACs and bromodomain-containing proteins have been linked to cancer development. Many small molecules targeting some of these proteins have been or are being tested as potential cancer therapies. The stoichiometry of lysine acetylation has not been explored in cancer, representing a promising field in which to increase our knowledge of how this modification is affected in cancer. In this review, we will focus on the strategies that can be used to go deeper in the characterization of the protein lysine acetylation emphasizing in cancer research.

  16. Alterations of the degree of xylan acetylation in Arabidopsis xylan mutants

    PubMed Central

    Lee, Chanhui; Teng, Quincy; Zhong, Ruiqin; Ye, Zheng-Hua

    2014-01-01

    Xylan is the second most abundant polysaccharide in secondary walls of dicot plants and one of its structural features is the high degree of acetylation of xylosyl residues. In Arabidopsis, about 60% of xylosyl residues in xylan are acetylated and the biochemical mechanisms controlling xylan acetylation are largely unknown. A recent report by Yuan et al. (2013) revealed the essential role of a DUF231 domain-containing protein, ESKIMO1 (ESK1), in xylan acetylation in Arabidopsis as the esk1 mutation caused specific reductions in the degree of xylan 2-O or 3-O-monoacetylation and in the activity of xylan acetyltransferase. Interestingly, the esk1 mutation also resulted in an elevation of glucuronic acid (GlcA) substitutions in xylan. Since GlcA substitutions in xylan occur at the O-2 position of xylosyl residues, it is plausible that the increase in GlcA substitutions in the esk1 mutant is attributed to the reduction in acetylation at O-2 of xylosyl residues, which renders more O-2 positions available for GlcA substitutions. Here, we investigated the effect of removal of GlcA substitutions on the degree of xylan acetylation. We found that a complete loss of GlcA substitutions in the xylan of the gux1/2/3 triple mutant led to a significant increase in the degree of xylan acetylation, indicating that xylan acetyltransferases and glucuronyltransferases compete with each other for xylosyl residues for their acetylation or GlcA substitutions in planta. In addition, detailed structure analysis of xylan from the rwa1/2/3/4 quadruple mutant revealed that it had a uniform reduction of acetyl substitutions at different positions of the xylosyl residues, which is consistent with the proposed role of RWAs as acetyl coenzyme A transporters. The significance of these findings is discussed. PMID:24518588

  17. Protein acetylation mechanisms in the regulation of insulin and insulin-like growth factor 1 signalling.

    PubMed

    Pirola, Luciano; Zerzaihi, Ouafa; Vidal, Hubert; Solari, Florence

    2012-10-15

    Lysine acetylation is a protein post-translational modification (PTM) initially discovered in abundant proteins such as tubulin, whose acetylated form confers microtubule stability, and histones, where it promotes the transcriptionally active chromatin state. Other individual reports identified lysine acetylation as a PTM regulating transcription factors and co-activators including p53, c-Myc, PGC1α and Ku70. The subsequent employment of proteomics-based approaches revealed that lysine acetylation is a widespread PTM, contributing to cellular regulation as much as protein-phosphorylation based mechanisms. In particular, most of the enzymes of central metabolic processes - glycolysis, tricarboxylic acid and urea cycles, fatty acid and glycogen metabolism - have been shown to be regulated by lysine acetylation, through the opposite actions of protein acetyltransferases and deacetylases, making protein acetylation a PTM that connects the cell's energetic state and its consequent metabolic response. In multicellular organisms, insulin/insulin-like signalling (IIS) is a major hormonal regulator of metabolism and cell growth, and very recent research indicates that most of the enzymes participating in IIS are likewise subjected to acetylation-based regulatory mechanisms, that integrate the classical phosphorylation mechanisms. Here, we review the current knowledge on acetylation/deacetylation regulatory phenomena within the IIS cascade, with emphasis on the enzymatic machinery linking the acetylation/deacetylation switch to the metabolic state. We cover this recent area of investigation because pharmacological modulation of protein acetylation/deacetylation has been shown to be a promising target for the amelioration of the metabolic abnormalities occurring in the metabolic syndrome.

  18. Metabolic control of methylation and acetylation

    PubMed Central

    Su, Xiaoyang; Wellen, Kathryn E.; Rabinowitz, Joshua D

    2015-01-01

    Methylation and acetylation of DNA and histone proteins are the chemical basis for epigenetics. From bacteria to humans, methylation and acetylation are sensitive to cellular metabolic status. Modification rates depend on the availability of one-carbon and two-carbon substrates (S-adenosylmethionine, acetyl-CoA, and in bacteria also acetyl-phosphate). In addition, they are sensitive to demodification enzyme cofactors (α-ketoglutarate, NAD+) and structural analog metabolites that function as epigenetic enzyme inhibitors (e.g., S-adenosylhomocysteine, 2-hydroxyglutarate). Methylation and acetylation likely initially evolved to tailor protein activities in microbes to their metabolic milieu. While the extracellular environment of mammals is more tightly controlled, the combined impact of nutrient abundance and metabolic enzyme expression impacts epigenetics in mammals sufficiently to drive important biological outcomes such as stem cell fate and cancer. PMID:26629854

  19. SPOTing Acetyl-Lysine Dependent Interactions

    PubMed Central

    Picaud, Sarah; Filippakopoulos, Panagis

    2015-01-01

    Post translational modifications have been recognized as chemical signals that create docking sites for evolutionary conserved effector modules, allowing for signal integration within large networks of interactions. Lysine acetylation in particular has attracted attention as a regulatory modification, affecting chromatin structure and linking to transcriptional activation. Advances in peptide array technologies have facilitated the study of acetyl-lysine-containing linear motifs interacting with the evolutionary conserved bromodomain module, which specifically recognizes and binds to acetylated sequences in histones and other proteins. Here we summarize recent work employing SPOT peptide technology to identify acetyl-lysine dependent interactions and document the protocols adapted in our lab, as well as our efforts to characterize such bromodomain-histone interactions. Our results highlight the versatility of SPOT methods and establish an affordable tool for rapid access to potential protein/modified-peptide interactions involving lysine acetylation. PMID:27600229

  20. Metabolic control of methylation and acetylation.

    PubMed

    Su, Xiaoyang; Wellen, Kathryn E; Rabinowitz, Joshua D

    2016-02-01

    Methylation and acetylation of DNA and histone proteins are the chemical basis for epigenetics. From bacteria to humans, methylation and acetylation are sensitive to cellular metabolic status. Modification rates depend on the availability of one-carbon and two-carbon substrates (S-adenosylmethionine, acetyl-CoA, and in bacteria also acetyl-phosphate). In addition, they are sensitive to demodification enzyme cofactors (α-ketoglutarate, NAD(+)) and structural analog metabolites that function as epigenetic enzyme inhibitors (e.g., S-adenosylhomocysteine, 2-hydroxyglutarate). Methylation and acetylation likely initially evolved to tailor protein activities in microbes to their metabolic milieu. While the extracellular environment of mammals is more tightly controlled, the combined impact of nutrient abundance and metabolic enzyme expression impacts epigenetics in mammals sufficiently to drive important biological outcomes such as stem cell fate and cancer.

  1. The Metabolic Fate of Deoxynivalenol and Its Acetylated Derivatives in a Wheat Suspension Culture: Identification and Detection of DON-15-O-Glucoside, 15-Acetyl-DON-3-O-Glucoside and 15-Acetyl-DON-3-Sulfate.

    PubMed

    Schmeitzl, Clemens; Warth, Benedikt; Fruhmann, Philipp; Michlmayr, Herbert; Malachová, Alexandra; Berthiller, Franz; Schuhmacher, Rainer; Krska, Rudolf; Adam, Gerhard

    2015-08-12

    Deoxynivalenol (DON) is a protein synthesis inhibitor produced by the Fusarium species, which frequently contaminates grains used for human or animal consumption. We treated a wheat suspension culture with DON or one of its acetylated derivatives, 3-acetyl-DON (3-ADON), 15-acetyl-DON (15-ADON) and 3,15-diacetyl-DON (3,15-diADON), and monitored the metabolization over a course of 96 h. Supernatant and cell extract samples were analyzed using a tailored LC-MS/MS method for the quantification of DON metabolites. We report the formation of tentatively identified DON-15-O-β-D-glucoside (D15G) and of 15-acetyl-DON-3-sulfate (15-ADON3S) as novel deoxynivalenol metabolites in wheat. Furthermore, we found that the recently identified 15-acetyl-DON-3-O-β-D-glucoside (15-ADON3G) is the major metabolite produced after 15-ADON challenge. 3-ADON treatment led to a higher intracellular content of toxic metabolites after six hours compared to all other treatments. 3-ADON was exclusively metabolized into DON before phase II reactions occurred. In contrast, we found that 15-ADON was directly converted into 15-ADON3G and 15-ADON3S in addition to metabolization into deoxynivalenol-3-O-β-D-glucoside (D3G). This study highlights significant differences in the metabolization of DON and its acetylated derivatives.

  2. Acetylation modulates the STAT signaling code.

    PubMed

    Wieczorek, Martin; Ginter, Torsten; Brand, Peter; Heinzel, Thorsten; Krämer, Oliver H

    2012-12-01

    A fascinating question of modern biology is how a limited number of signaling pathways generate biological diversity and crosstalk phenomena in vivo. Well-defined posttranslational modification patterns dictate the functions and interactions of proteins. The signal transducers and activators of transcription (STATs) are physiologically important cytokine-induced transcription factors. They are targeted by a multitude of posttranslational modifications that control and modulate signaling responses and gene expression. Beyond phosphorylation of serine and tyrosine residues, lysine acetylation has recently emerged as a critical modification regulating STAT functions. Interestingly, acetylation can determine STAT signaling codes by various molecular mechanisms, including the modulation of other posttranslational modifications. Here, we provide an overview on the acetylation of STATs and how this protein modification shapes cellular cytokine responses. We summarize recent advances in understanding the impact of STAT acetylation on cell growth, apoptosis, innate immunity, inflammation, and tumorigenesis. Furthermore, we discuss how STAT acetylation can be targeted by small molecules and we consider the possibility that additional molecules controlling STAT signaling are regulated by acetylation. Our review also summarizes evolutionary aspects and we show similarities between the acetylation-dependent control of STATs and other important molecules. We propose the concept that, similar to the 'histone code', distinct posttranslational modifications and their crosstalk orchestrate the functions and interactions of STAT proteins.

  3. Acetylation of rice straw for thermoplastic applications.

    PubMed

    Zhang, Guangzhi; Huang, Kai; Jiang, Xue; Huang, Dan; Yang, Yiqi

    2013-07-01

    An inexpensive and biodegradable thermoplastic was developed through acetylation of rice straw (RS) with acetic anhydride. Acetylation conditions were optimized. The structure and properties of acetylated RS were characterized by fourier transform infrared (FTIR), solid-state (13)C NMR spectroscopy, X-ray diffractometer (XRD), scanning electron microscope (SEM), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The results showed that acetylation of RS has successfully taken place, and comparing with raw RS, the degree of crystallinity decreased and the decomposition rate was slow. The acetylated RS has got thermoplasticity when weight ratio of RS and acetic anhydride was 1:3, using sulphuric acid (9% to RS) as catalyst in glacial acetic acid 35°C for 12h, and the dosage of solvent was 9 times RS, in which weight percent gain (WPG) of the modified RS powder was 35.5% and its percent acetyl content was 36.1%. The acetylated RS could be formed into transparent thin films with different amount of plasticizer diethyl phthalate (DEP) using tape casting technology.

  4. Nonhistone protein acetylation as cancer therapy targets

    PubMed Central

    Singh, Brahma N; Zhang, Guanghua; Hwa, Yi L; Li, Jinping; Dowdy, Sean C; Jiang, Shi-Wen

    2012-01-01

    Acetylation and deacetylation are counteracting, post-translational modifications that affect a large number of histone and nonhistone proteins. The significance of histone acetylation in the modification of chromatin structure and dynamics, and thereby gene transcription regulation, has been well recognized. A steadily growing number of nonhistone proteins have been identified as acetylation targets and reversible lysine acetylation in these proteins plays an important role(s) in the regulation of mRNA stability, protein localization and degradation, and protein–protein and protein–DNA interactions. The recruitment of histone acetyltransferases (HATs) and histone deacetylases (HDACs) to the transcriptional machinery is a key element in the dynamic regulation of genes controlling cellular proliferation, differentiation and apoptosis. Many nonhistone proteins targeted by acetylation are the products of oncogenes or tumor-suppressor genes and are directly involved in tumorigenesis, tumor progression and metastasis. Aberrant activity of HDACs has been documented in several types of cancers and HDAC inhibitors (HDACi) have been employed for therapeutic purposes. Here we review the published literature in this field and provide updated information on the regulation and function of nonhistone protein acetylation. While concentrating on the molecular mechanism and pathways involved in the addition and removal of the acetyl moiety, therapeutic modalities of HDACi are also discussed. PMID:20553216

  5. Acetyl-phosphate is a critical determinant of lysine acetylation in E. coli.

    PubMed

    Weinert, Brian T; Iesmantavicius, Vytautas; Wagner, Sebastian A; Schölz, Christian; Gummesson, Bertil; Beli, Petra; Nyström, Thomas; Choudhary, Chunaram

    2013-07-25

    Lysine acetylation is a frequently occurring posttranslational modification in bacteria; however, little is known about its origin and regulation. Using the model bacterium Escherichia coli (E. coli), we found that most acetylation occurred at a low level and accumulated in growth-arrested cells in a manner that depended on the formation of acetyl-phosphate (AcP) through glycolysis. Mutant cells unable to produce AcP had significantly reduced acetylation levels, while mutant cells unable to convert AcP to acetate had significantly elevated acetylation levels. We showed that AcP can chemically acetylate lysine residues in vitro and that AcP levels are correlated with acetylation levels in vivo, suggesting that AcP may acetylate proteins nonenzymatically in cells. These results uncover a critical role for AcP in bacterial acetylation and indicate that most acetylation in E. coli occurs at a low level and is dynamically affected by metabolism and cell proliferation in a global, uniform manner.

  6. Crystal structure of tabtoxin resistance protein complexed with acetyl coenzyme A reveals the mechanism for {beta}-lactam acetylation.

    SciTech Connect

    He, H.; Ding, Y.; Bartlam, M.; Sun, F.; Le, Y.; Qin, X.; Tang, H.; Zhang, R.; Joachimiak, A.; Liu, J.; Zhao, N.; Rao, Z.; Biosciences Division; Tsinghua Univ.; Chinese Academy of Science

    2003-01-31

    Tabtoxin resistance protein (TTR) is an enzyme that renders tabtoxin-producing pathogens, such as Pseudomonas syringae, tolerant to their own phytotoxins. Here, we report the crystal structure of TTR complexed with its natural cofactor, acetyl coenzyme A (AcCoA), to 1.55 {angstrom} resolution. The binary complex forms a characteristic 'V' shape for substrate binding and contains the four motifs conserved in the GCN5-related N-acetyltransferase (GNAT) superfamily, which also includes the histone acetyltransferases (HATs). A single-step mechanism is proposed to explain the function of three conserved residues, Glu92, Asp130 and Tyr141, in catalyzing the acetyl group transfer to its substrate. We also report that TTR possesses HAT activity and suggest an evolutionary relationship between TTR and other GNAT members.

  7. Active chromatin domains are defined by acetylation islands revealed by genome-wide mapping.

    PubMed

    Roh, Tae-Young; Cuddapah, Suresh; Zhao, Keji

    2005-03-01

    The identity and developmental potential of a human cell is specified by its epigenome that is largely defined by patterns of chromatin modifications including histone acetylation. Here we report high-resolution genome-wide mapping of diacetylation of histone H3 at Lys 9 and Lys 14 in resting and activated human T cells by genome-wide mapping technique (GMAT). Our data show that high levels of the H3 acetylation are detected in gene-rich regions. The chromatin accessibility and gene expression of a genetic domain is correlated with hyperacetylation of promoters and other regulatory elements but not with generally elevated acetylation of the entire domain. Islands of acetylation are identified in the intergenic and transcribed regions. The locations of the 46,813 acetylation islands identified in this study are significantly correlated with conserved noncoding sequences (CNSs) and many of them are colocalized with known regulatory elements in T cells. TCR signaling induces 4045 new acetylation loci that may mediate the global chromatin remodeling and gene activation. We propose that the acetylation islands are epigenetic marks that allow prediction of functional regulatory elements.

  8. Active chromatin domains are defined by acetylation islands revealed by genome-wide mapping

    PubMed Central

    Roh, Tae-Young; Cuddapah, Suresh; Zhao, Keji

    2005-01-01

    The identity and developmental potential of a human cell is specified by its epigenome that is largely defined by patterns of chromatin modifications including histone acetylation. Here we report high-resolution genome-wide mapping of diacetylation of histone H3 at Lys 9 and Lys 14 in resting and activated human T cells by genome-wide mapping technique (GMAT). Our data show that high levels of the H3 acetylation are detected in gene-rich regions. The chromatin accessibility and gene expression of a genetic domain is correlated with hyperacetylation of promoters and other regulatory elements but not with generally elevated acetylation of the entire domain. Islands of acetylation are identified in the intergenic and transcribed regions. The locations of the 46,813 acetylation islands identified in this study are significantly correlated with conserved noncoding sequences (CNSs) and many of them are colocalized with known regulatory elements in T cells. TCR signaling induces 4045 new acetylation loci that may mediate the global chromatin remodeling and gene activation. We propose that the acetylation islands are epigenetic marks that allow prediction of functional regulatory elements. PMID:15706033

  9. Patterns of N-acetyl-beta-glucosaminidase isoenzymes in the epidermis and hepatopancreas and induction of N-acetyl-beta-glucosaminidase activity by 20-hydroxyecdysone in the fiddler crab, Uca pugilator.

    PubMed

    Zou, E; Fingerman, M

    1999-11-01

    A new staining method for detection of N-acetyl-beta-glucosaminidase on denaturing SDS polyacrylamide gels was developed. The isoenzyme pattern of N-acetyl-beta-glucosaminidase in the epidermis of the fiddler crab, Uca pugilator, is different from that in the hepatopancreas. Two isoforms of N-acetyl-beta-glucosaminidase, with molecular weights of 89 and 45.6 kDa, are present in the hepatopancreas while there is only one form of N-acetyl-beta-glucosaminidase, 89 kDa, in the epidermis. No sexual dimorphism was found in these patterns of N-acetyl-beta-glucosaminidase isoenzymes. The characteristic isoenzyme patterns in the epidermis and hepatopancreas occurred consistently throughout the molting cycle. Injections of the molting hormone, 20-hydroxyecdysone, at 25 microg/g live weight, into crabs in premolt substage D1, significantly increased N-acetyl-beta-glucosaminidase activity in the epidermis by 86%. Since only one form of N-acetyl-beta-glucosaminidase, 89 kDa, is present in the epidermis, the elevation in epidermal enzymatic activity after 20-hydroxyecdysone administration is entirely accounted for by this N-acetyl-beta-glucosaminidase isoenzyme. The results reported herein are the first direct evidence that in a crustacean N-acetyl-beta-glucosaminidase activity is regulated by the steroid molting hormone.

  10. System-wide Studies of N-Lysine Acetylation in Rhodopseudomonas palustris Reveal Substrate Specificity of Protein Acetyltransferases*

    PubMed Central

    Crosby, Heidi A.; Pelletier, Dale A.; Hurst, Gregory B.; Escalante-Semerena, Jorge C.

    2012-01-01

    N-Lysine acetylation is a posttranslational modification that has been well studied in eukaryotes and is likely widespread in prokaryotes as well. The central metabolic enzyme acetyl-CoA synthetase is regulated in both bacteria and eukaryotes by acetylation of a conserved lysine residue in the active site. In the purple photosynthetic α-proteobacterium Rhodopseudomonas palustris, two protein acetyltransferases (RpPat and the newly identified RpKatA) and two deacetylases (RpLdaA and RpSrtN) regulate the activities of AMP-forming acyl-CoA synthetases. In this work, we used LC/MS/MS to identify other proteins regulated by the N-lysine acetylation/deacetylation system of this bacterium. Of the 24 putative acetylated proteins identified, 14 were identified more often in a strain lacking both deacetylases. Nine of these proteins were members of the AMP-forming acyl-CoA synthetase family. RpPat acetylated all nine of the acyl-CoA synthetases identified by this work, and RpLdaA deacetylated eight of them. In all cases, acetylation occurred at the conserved lysine residue in the active site, and acetylation decreased activity of the enzymes by >70%. Our results show that many different AMP-forming acyl-CoA synthetases are regulated by N-lysine acetylation. Five non-acyl-CoA synthetases were identified as possibly acetylated, including glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and Rpa1177, a putative 4-oxalocrotonate tautomerase. Neither RpPat nor RpKatA acetylated either of these proteins in vitro. It has been reported that Salmonella enterica Pat (SePat) can acetylate a number of metabolic enzymes, including GAPDH, but we were unable to confirm this claim, suggesting that the substrate range of SePat is not as broad as suggested previously. PMID:22416131

  11. Plasmodium spp. membrane glutathione S-transferases: detoxification units and drug targets

    PubMed Central

    Lisewski, Andreas M.

    2014-01-01

    Membrane glutathione S-transferases from the class of membrane-associated proteins in eicosanoid and glutathione metabolism (MAPEG) form a superfamily of detoxification enzymes that catalyze the conjugation of reduced glutathione (GSH) to a broad spectrum of xenobiotics and hydrophobic electrophiles. Evolutionarily unrelated to the cytosolic glutathione S-transferases, they are found across bacterial and eukaryotic domains, for example in mammals, plants, fungi and bacteria in which significant levels of glutathione are maintained. Species of genus Plasmodium, the unicellular protozoa that are commonly known as malaria parasites, do actively support glutathione homeostasis and maintain its metabolism throughout their complex parasitic life cycle. In humans and in other mammals, the asexual intraerythrocytic stage of malaria, when the parasite feeds on hemoglobin, grows and eventually asexually replicates inside infected red blood cells (RBCs), is directly associated with host disease symptoms and during this critical stage GSH protects the host RBC and the parasite against oxidative stress from parasite-induced hemoglobin catabolism. In line with these observations, several GSH-dependent Plasmodium enzymes have been characterized including glutathione reductases, thioredoxins, glyoxalases, glutaredoxins and glutathione S-transferases (GSTs); furthermore, GSH itself have been found to associate spontaneously and to degrade free heme and its hydroxide, hematin, which are the main cytotoxic byproducts of hemoglobin catabolism. However, despite the apparent importance of glutathione metabolism for the parasite, no membrane associated glutathione S-transferases of genus Plasmodium have been previously described. We recently reported the first examples of MAPEG members among Plasmodium spp. PMID:28357217

  12. Identification of lysine-acetylated mitochondrial proteins and their acetylation sites.

    PubMed

    Hartl, Markus; König, Ann-Christine; Finkemeier, Iris

    2015-01-01

    The (ε)N-acetylation of lysine side chains is a highly conserved posttranslational modification of both prokaryotic and eukaryotic proteins. Lysine acetylation not only occurs on histones in the nucleus but also on many mitochondrial proteins in plants and animals. As the transfer of the acetyl group to lysine eliminates its positive charge, lysine acetylation can affect the biological function of proteins. This chapter describes two methods for the identification of lysine-acetylated proteins in plant mitochondria using an anti-acetyllysine antibody. We describe the Western blot analysis of a two-dimensional blue native-polyacrylamide gel electrophoresis with an anti-acetyllysine antibody as well as the immuno-enrichment of lysine-acetylated peptides followed by liquid chromatography-tandem mass spectrometry data acquisition and analysis.

  13. Qualitative Differences in the N-Acetyl-D-galactosaminyltransferases Produced by Human A1 and A2 Genes

    PubMed Central

    Schachter, H.; Michaels, M. A.; Tilley, Christine A.; Crookston, Marie C.; Crookston, J. H.

    1973-01-01

    This study describes the kinetic properties of N-acetyl-D-galactosaminyltransferase in serum from subjects with blood groups A1 and A2. When the A1 and A2 enzymes were compared, with lacto-N-fucopentaose I and 2′-fucosyllactose as acceptors, the enzymes differed in their cation requirements, pH optima, and Km values. The two acceptors competed for the same transferase. Mixing experiments showed that the lower activity of the A2 enzyme could not be attributed to a modifier or inhibitor in serum. It was concluded that the A1 and A2 enzymes differ qualitatively. PMID:4509655

  14. Structures of aminoacylase 3 in complex with acetylated substrates

    PubMed Central

    Hsieh, Jennifer M.; Tsirulnikov, Kirill; Sawaya, Michael R.; Magilnick, Nathaniel; Abuladze, Natalia; Kurtz, Ira; Abramson, Jeff; Pushkin, Alexander

    2010-01-01

    Trichloroethylene (TCE) is one of the most widespread environmental contaminants, which is metabolized to N-acetyl-S-1,2-dichlorovinyl-l-cysteine (NA-DCVC) before being excreted in the urine. Alternatively, NA-DCVC can be deacetylated by aminoacylase 3 (AA3), an enzyme that is highly expressed in the kidney, liver, and brain. NA-DCVC deacetylation initiates the transformation into toxic products that ultimately causes acute renal failure. AA3 inhibition is therefore a target of interest to prevent TCE induced nephrotoxicity. Here we report the crystal structure of recombinant mouse AA3 (mAA3) in the presence of its acetate byproduct and two substrates: Nα-acetyl-l-tyrosine and NA-DCVC. These structures, in conjunction with biochemical data, indicated that AA3 mediates substrate specificity through van der Waals interactions providing a dynamic interaction interface, which facilitates a diverse range of substrates. PMID:20921362

  15. Structures of aminoacylase 3 in complex with acetylated substrates.

    PubMed

    Hsieh, Jennifer M; Tsirulnikov, Kirill; Sawaya, Michael R; Magilnick, Nathaniel; Abuladze, Natalia; Kurtz, Ira; Abramson, Jeff; Pushkin, Alexander

    2010-10-19

    Trichloroethylene (TCE) is one of the most widespread environmental contaminants, which is metabolized to N-acetyl-S-1,2-dichlorovinyl-L-cysteine (NA-DCVC) before being excreted in the urine. Alternatively, NA-DCVC can be deacetylated by aminoacylase 3 (AA3), an enzyme that is highly expressed in the kidney, liver, and brain. NA-DCVC deacetylation initiates the transformation into toxic products that ultimately causes acute renal failure. AA3 inhibition is therefore a target of interest to prevent TCE induced nephrotoxicity. Here we report the crystal structure of recombinant mouse AA3 (mAA3) in the presence of its acetate byproduct and two substrates: N(α)-acetyl-L-tyrosine and NA-DCVC. These structures, in conjunction with biochemical data, indicated that AA3 mediates substrate specificity through van der Waals interactions providing a dynamic interaction interface, which facilitates a diverse range of substrates.

  16. Acetylation modification regulates GRP78 secretion in colon cancer cells

    PubMed Central

    Li, Zongwei; Zhuang, Ming; Zhang, Lichao; Zheng, Xingnan; Yang, Peng; Li, Zhuoyu

    2016-01-01

    High glucose-regulated protein 78 (GRP78) expression contributes to the acquisition of a wide range of phenotypic cancer hallmarks, and the pleiotropic oncogenic functions of GRP78 may result from its diverse subcellular distribution. Interestingly, GRP78 has been reported to be secreted from solid tumour cells, participating in cell-cell communication in the tumour microenvironment. However, the mechanism underlying this secretion remains elusive. Here, we report that GRP78 is secreted from colon cancer cells via exosomes. Histone deacetylase (HDAC) inhibitors blocked GRP78 release by inducing its aggregation in the ER. Mechanistically, HDAC inhibitor treatment suppressed HDAC6 activity and led to increased GRP78 acetylation; acetylated GRP78 then bound to VPS34, a class III phosphoinositide-3 kinase, consequently preventing the sorting of GRP78 into multivesicular bodies (MVBs). Of note, we found that mimicking GRP78 acetylation by substituting the lysine at residue 633, one of the deacetylated sites of HDAC6, with a glutamine resulted in decreased GRP78 secretion and impaired tumour cell growth in vitro. Our study thus reveals a hitherto-unknown mechanism of GRP78 secretion and may also provide implications for the therapeutic use of HDAC inhibitors. PMID:27460191

  17. Acetylation Reader Proteins: Linking Acetylation Signaling to Genome Maintenance and Cancer.

    PubMed

    Gong, Fade; Chiu, Li-Ya; Miller, Kyle M

    2016-09-01

    Chromatin-based DNA damage response (DDR) pathways are fundamental for preventing genome and epigenome instability, which are prevalent in cancer. Histone acetyltransferases (HATs) and histone deacetylases (HDACs) catalyze the addition and removal of acetyl groups on lysine residues, a post-translational modification important for the DDR. Acetylation can alter chromatin structure as well as function by providing binding signals for reader proteins containing acetyl-lysine recognition domains, including the bromodomain (BRD). Acetylation dynamics occur upon DNA damage in part to regulate chromatin and BRD protein interactions that mediate key DDR activities. In cancer, DDR and acetylation pathways are often mutated or abnormally expressed. DNA damaging agents and drugs targeting epigenetic regulators, including HATs, HDACs, and BRD proteins, are used or are being developed to treat cancer. Here, we discuss how histone acetylation pathways, with a focus on acetylation reader proteins, promote genome stability and the DDR. We analyze how acetylation signaling impacts the DDR in the context of cancer and its treatments. Understanding the relationship between epigenetic regulators, the DDR, and chromatin is integral for obtaining a mechanistic understanding of genome and epigenome maintenance pathways, information that can be leveraged for targeting acetylation signaling, and/or the DDR to treat diseases, including cancer.

  18. Acetylation Reader Proteins: Linking Acetylation Signaling to Genome Maintenance and Cancer

    PubMed Central

    Miller, Kyle M.

    2016-01-01

    Chromatin-based DNA damage response (DDR) pathways are fundamental for preventing genome and epigenome instability, which are prevalent in cancer. Histone acetyltransferases (HATs) and histone deacetylases (HDACs) catalyze the addition and removal of acetyl groups on lysine residues, a post-translational modification important for the DDR. Acetylation can alter chromatin structure as well as function by providing binding signals for reader proteins containing acetyl-lysine recognition domains, including the bromodomain (BRD). Acetylation dynamics occur upon DNA damage in part to regulate chromatin and BRD protein interactions that mediate key DDR activities. In cancer, DDR and acetylation pathways are often mutated or abnormally expressed. DNA damaging agents and drugs targeting epigenetic regulators, including HATs, HDACs, and BRD proteins, are used or are being developed to treat cancer. Here, we discuss how histone acetylation pathways, with a focus on acetylation reader proteins, promote genome stability and the DDR. We analyze how acetylation signaling impacts the DDR in the context of cancer and its treatments. Understanding the relationship between epigenetic regulators, the DDR, and chromatin is integral for obtaining a mechanistic understanding of genome and epigenome maintenance pathways, information that can be leveraged for targeting acetylation signaling, and/or the DDR to treat diseases, including cancer. PMID:27631103

  19. p53 Acetylation: Regulation and Consequences

    PubMed Central

    Reed, Sara M.; Quelle, Dawn E.

    2014-01-01

    Post-translational modifications of p53 are critical in modulating its tumor suppressive functions. Ubiquitylation, for example, plays a major role in dictating p53 stability, subcellular localization and transcriptional vs. non-transcriptional activities. Less is known about p53 acetylation. It has been shown to govern p53 transcriptional activity, selection of growth inhibitory vs. apoptotic gene targets, and biological outcomes in response to diverse cellular insults. Yet recent in vivo evidence from mouse models questions the importance of p53 acetylation (at least at certain sites) as well as canonical p53 functions (cell cycle arrest, senescence and apoptosis) to tumor suppression. This review discusses the cumulative findings regarding p53 acetylation, with a focus on the acetyltransferases that modify p53 and the mechanisms regulating their activity. We also evaluate what is known regarding the influence of other post-translational modifications of p53 on its acetylation, and conclude with the current outlook on how p53 acetylation affects tumor suppression. Due to redundancies in p53 control and growing understanding that individual modifications largely fine-tune p53 activity rather than switch it on or off, many questions still remain about the physiological importance of p53 acetylation to its role in preventing cancer. PMID:25545885

  20. Biological activity of acetylated phenolic compounds.

    PubMed

    Fragopoulou, Elizabeth; Nomikos, Tzortzis; Karantonis, Haralabos C; Apostolakis, Constantinos; Pliakis, Emmanuel; Samiotaki, Martina; Panayotou, George; Antonopoulou, Smaragdi

    2007-01-10

    In recent years an effort has been made to isolate and identify biologically active compounds that are included in the Mediterranean diet. The existence of naturally occurring acetylated phenolics, as well as studies with synthetic ones, provide evidence that acetyl groups could be correlated with their biological activity. Platelet activating factor (PAF) is implicated in atherosclerosis, whereas its inhibitors seem to play a protective role against cardiovascular disease. The aim of this study was to examine the biological activity of resveratrol and tyrosol and their acetylated derivatives as inhibitors of PAF-induced washed rabbit platelet aggregation. Acetylation of resveratrol and tyrosol was performed, and separation was achieved by HPLC. Acetylated derivatives were identified by negative mass spectrometry. The data showed that tyrosol and its monoacetylated derivatives act as PAF inhibitors, whereas diacetylated derivatives induce platelet aggregation. Resveratrol and its mono- and triacetylated derivatives exert similar inhibitory activity, whereas the diacetylated ones are more potent inhibitors. In conclusion, acetylated phenolics exert the same or even higher antithrombotic activity compared to the biological activity of the initial one.

  1. Structure-Based Design of Inhibitors of the Crucial Cysteine Biosynthetic Pathway Enzyme O-Acetyl Serine Sulfhydrylase.

    PubMed

    Mazumder, Mohit; Gourinath, Samudrala

    2016-01-01

    The cysteine biosynthetic pathway is of fundamental importance for the growth, survival, and pathogenicity of the many pathogens. This pathway is present in many species but is absent in mammals. The ability of pathogens to counteract the oxidative defences of a host is critical for the survival of these pathogens during their long latent phases, especially in anaerobic pathogens such as Entamoeba histolytica, Leishmania donovani, Trichomonas vaginalis, and Salmonella typhimurium. All of these organisms rely on the de novo cysteine biosynthetic pathway to assimilate sulphur and maintain a ready supply of cysteine. The de novo cysteine biosynthetic pathway, on account of its being important for the survival of pathogens and at the same time being absent in mammals, is an important drug target for diseases such as amoebiasis, trichomoniasis & tuberculosis. Cysteine biosynthesis is catalysed by two enzymes: serine acetyl transferase (SAT) followed by O-acetylserine sulfhydrylase (OASS). OASS is well studied, and with the availability of crystal structures of this enzyme in different conformations, it is a suitable template for structure-based inhibitor development. Moreover, OASS is highly conserved, both structurally and sequence-wise, among the above-mentioned organisms. There have been several reports of inhibitor screening and development against this enzyme from different organisms such as Salmonella typhimurium, Mycobacterium tuberculosis and Entamoeba histolytica. All of these inhibitors have been reported to display micromolar to nanomolar binding affinities for the open conformation of the enzyme. In this review, we highlight the structural similarities of this enzyme in different organisms and the attempts for inhibitor development so far. We also propose that the intermediate state of the enzyme may be the ideal target for the design of effective highaffinity inhibitors.

  2. Restoration of DNA-Binding and Growth-Suppressive Activity of Mutant Forms of p53 Via a PCAF-Mediated Acetylation Pathway

    PubMed Central

    PEREZ, RICARDO E.; KNIGHTS, CHAD D.; SAHU, GEETARAM; CATANIA, JASON; KOLUKULA, VAMSI K.; STOLER, DANIEL; GRAESSMANN, ADOLF; OGRYZKO, VASILY; PISHVAIAN, MICHAEL; ALBANESE, CHRISTOPHER; AVANTAGGIATI, MARIA LAURA

    2013-01-01

    Tumor-derived mutant forms of p53 compromise its DNA binding, transcriptional, and growth regulatory activity in a manner that is dependent upon the cell-type and the type of mutation. Given the high frequency of p53 mutations in human tumors, reactivation of the p53 pathway has been widely proposed as beneficial for cancer therapy. In support of this possibility p53 mutants possess a certain degree of conformational flexibility that allows for re-induction of function by a number of structurally different artificial compounds or by short peptides. This raises the question of whether physiological pathways for p53 mutant reactivation also exist and can be exploited therapeutically. The activity of wild-type p53 is modulated by various acetyl-transferases and deacetylases, but whether acetylation influences signaling by p53 mutant is still unknown. Here, we show that the PCAF acetyl-transferase is down-regulated in tumors harboring p53 mutants, where its re-expression leads to p53 acetylation and to cell death. Furthermore, acetylation restores the DNA-binding ability of p53 mutants in vitro and expression of PCAF, or treatment with deacetylase inhibitors, promotes their binding to p53-regulated promoters and transcriptional activity in vivo. These data suggest that PCAF-mediated acetylation rescues activity of at least a set of p53 mutations. Therefore, we propose that dis-regulation of PCAF activity is a pre-requisite for p53 mutant loss of function and for the oncogenic potential acquired by neoplastic cells expressing these proteins. Our findings offer a new rationale for therapeutic targeting of PCAF activity in tumors harboring oncogenic versions of p53. PMID:20589832

  3. Mechanisms and Dynamics of Protein Acetylation in Mitochondria

    PubMed Central

    Baeza, Josue; Smallegan, Michael J.; Denu, John M.

    2016-01-01

    Reversible protein acetylation is a major regulatory mechanism for controlling protein function. Through genetic manipulations, dietary perturbations, and new proteomic technologies, the diverse functions of protein acetylation are coming into focus. Protein acetylation in mitochondria has taken center stage, revealing that 63% of mitochondrially localized proteins contain lysine acetylation sites. Here we summarize the field, and discuss salient topics that cover spurious versus targeted acetylation, the role of SIRT3 deacetylation, nonenzymatic acetylation, and molecular models for regulatory acetylations that display high and low stoichiometry. PMID:26822488

  4. The multifaceted role of lysine acetylation in cancer: prognostic biomarker and therapeutic target

    PubMed Central

    Di Martile, Marta; Del Bufalo, Donatella; Trisciuoglio, Daniela

    2016-01-01

    Lysine acetylation is a post-translational modification that regulates gene transcription by targeting histones as well as a variety of transcription factors in the nucleus. Recently, several reports have demonstrated that numerous cytosolic proteins are also acetylated and that this modification, affecting protein activity, localization and stability has profound consequences on their cellular functions. Interestingly, most non-histone proteins targeted by acetylation are relevant for tumorigenesis. In this review, we will analyze the functional implications of lysine acetylation in different cellular compartments, and will examine our current understanding of lysine acetyltransferases family, highlighting the biological role and prognostic value of these enzymes and their substrates in cancer. The latter part of the article will address challenges and current status of molecules targeting lysine acetyltransferase enzymes in cancer therapy. PMID:27322556

  5. Acetylation dynamics of human nuclear proteins during the ionizing radiation-induced DNA damage response.

    PubMed

    Bennetzen, Martin V; Larsen, Dorthe Helena; Dinant, Christoffel; Watanabe, Sugiko; Bartek, Jiri; Lukas, Jiri; Andersen, Jens S

    2013-06-01

    Genotoxic insults, such as ionizing radiation (IR), cause DNA damage that evokes a multifaceted cellular DNA damage response (DDR). DNA damage signaling events that control protein activity, subcellular localization, DNA binding, protein-protein interactions, etc. rely heavily on time-dependent posttranslational modifications (PTMs). To complement our previous analysis of IR-induced temporal dynamics of nuclear phosphoproteome, we now identify a range of human nuclear proteins that are dynamically regulated by acetylation, and predominantly deacetylation, during IR-induced DDR by using mass spectrometry-based proteomic approaches. Apart from cataloging acetylation sites through SILAC proteomic analyses before IR and at 5 and 60 min after IR exposure of U2OS cells, we report that: (1) key components of the transcriptional machinery, such as EP300 and CREBBP, are dynamically acetylated; (2) that nuclear acetyltransferases themselves are regulated, not on the protein abundance level, but by (de)acetylation; and (3) that the recently reported p53 co-activator and methyltransferase MLL3 is acetylated on five lysines during the DDR. For selected examples, protein immunoprecipitation and immunoblotting were used to assess lysine acetylation status and thereby validate the mass spectrometry data. We thus present evidence that nuclear proteins, including those known to regulate cellular functions via epigenetic modifications of histones, are regulated by (de)acetylation in a timely manner upon cell's exposure to genotoxic insults. Overall, these results present a resource of temporal profiles of a spectrum of protein acetylation sites during DDR and provide further insights into the highly dynamic nature of regulatory PTMs that help orchestrate the maintenance of genome integrity.

  6. Regulation of Histone Acetylation by Autophagy in Parkinson Disease*

    PubMed Central

    Park, Goonho; Tan, Jieqiong; Garcia, Guillermina; Kang, Yunyi; Salvesen, Guy; Zhang, Zhuohua

    2016-01-01

    Parkinson disease (PD) is the most common age-dependent neurodegenerative movement disorder. Accumulated evidence indicates both environmental and genetic factors play important roles in PD pathogenesis, but the potential interaction between environment and genetics in PD etiology remains largely elusive. Here, we report that PD-related neurotoxins induce both expression and acetylation of multiple sites of histones in cultured human cells and mouse midbrain dopaminergic (DA) neurons. Consistently, levels of histone acetylation are markedly higher in midbrain DA neurons of PD patients compared to those of their matched control individuals. Further analysis reveals that multiple histone deacetylases (HDACs) are concurrently decreased in 1-methyl-4-phenylpyridinium (MPP+)-treated cells and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mouse brains, as well as midbrain tissues of human PD patients. Finally, inhibition of histone acetyltransferase (HAT) protects, whereas inhibition of HDAC1 and HDAC2 potentiates, MPP+-induced cell death. Pharmacological and genetic inhibition of autophagy suppresses MPP+-induced HDACs degradation. The study reveals that PD environmental factors induce HDACs degradation and histone acetylation increase in DA neurons via autophagy and identifies an epigenetic mechanism in PD pathogenesis. PMID:26699403

  7. Regulation of Histone Acetylation by Autophagy in Parkinson Disease.

    PubMed

    Park, Goonho; Tan, Jieqiong; Garcia, Guillermina; Kang, Yunyi; Salvesen, Guy; Zhang, Zhuohua

    2016-02-12

    Parkinson disease (PD) is the most common age-dependent neurodegenerative movement disorder. Accumulated evidence indicates both environmental and genetic factors play important roles in PD pathogenesis, but the potential interaction between environment and genetics in PD etiology remains largely elusive. Here, we report that PD-related neurotoxins induce both expression and acetylation of multiple sites of histones in cultured human cells and mouse midbrain dopaminergic (DA) neurons. Consistently, levels of histone acetylation are markedly higher in midbrain DA neurons of PD patients compared to those of their matched control individuals. Further analysis reveals that multiple histone deacetylases (HDACs) are concurrently decreased in 1-methyl-4-phenylpyridinium (MPP(+))-treated cells and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mouse brains, as well as midbrain tissues of human PD patients. Finally, inhibition of histone acetyltransferase (HAT) protects, whereas inhibition of HDAC1 and HDAC2 potentiates, MPP(+)-induced cell death. Pharmacological and genetic inhibition of autophagy suppresses MPP(+)-induced HDACs degradation. The study reveals that PD environmental factors induce HDACs degradation and histone acetylation increase in DA neurons via autophagy and identifies an epigenetic mechanism in PD pathogenesis.

  8. The Genetic Architecture of Murine Glutathione Transferases

    PubMed Central

    Lu, Lu; Pandey, Ashutosh K.; Houseal, M. Trevor; Mulligan, Megan K.

    2016-01-01

    Glutathione S-transferase (GST) genes play a protective role against oxidative stress and may influence disease risk and drug pharmacokinetics. In this study, massive multiscalar trait profiling across a large population of mice derived from a cross between C57BL/6J (B6) and DBA2/J (D2)—the BXD family—was combined with linkage and bioinformatic analyses to characterize mechanisms controlling GST expression and to identify downstream consequences of this variation. Similar to humans, mice show a wide range in expression of GST family members. Variation in the expression of Gsta4, Gstt2, Gstz1, Gsto1, and Mgst3 is modulated by local expression QTLs (eQTLs) in several tissues. Higher expression of Gsto1 in brain and liver of BXD strains is strongly associated (P < 0.01) with inheritance of the B6 parental allele whereas higher expression of Gsta4 and Mgst3 in brain and liver, and Gstt2 and Gstz1 in brain is strongly associated with inheritance of the D2 parental allele. Allele-specific assays confirmed that expression of Gsto1, Gsta4, and Mgst3 are modulated by sequence variants within or near each gene locus. We exploited this endogenous variation to identify coexpression networks and downstream targets in mouse and human. Through a combined systems genetics approach, we provide new insight into the biological role of naturally occurring variants in GST genes. PMID:26829228

  9. Exploring the Possible Role of Lysine Acetylation on Entamoeba histolytica Virulence: A Focus on the Dynamics of the Actin Cytoskeleton

    PubMed Central

    López-Contreras, L.; Hernández-Ramírez, V. I.; Lagunes-Guillén, A. E.; Montaño, Sarita; Chávez-Munguía, B.; Sánchez-Ramírez, B.; Talamás-Rohana, P.

    2013-01-01

    Cytoskeleton remodeling can be regulated, among other mechanisms, by lysine acetylation. The role of acetylation on cytoskeletal and other proteins of Entamoeba histolytica has been poorly studied. Dynamic rearrangements of the actin cytoskeleton are crucial for amebic motility and capping formation, processes that may be effective means of evading the host immune response. Here we report the possible effect of acetylation on the actin cytoskeleton dynamics and in vivo virulence of E. histolytica. Using western blot, immunoprecipitation, microscopy assays, and in silico analysis, we show results that strongly suggest that the increase in Aspirin-induced cytoplasm proteins acetylation reduced cell movement and capping formation, likely as a consequence of alterations in the structuration of the actin cytoskeleton. Additionally, intrahepatic inoculation of Aspirin-treated trophozoites in hamsters resulted in severe impairment of the amebic virulence. Taken together, these results suggest an important role for lysine acetylation in amebic invasiveness and virulence. PMID:24078923

  10. Exploring the possible role of lysine acetylation on Entamoeba histolytica virulence: a focus on the dynamics of the actin cytoskeleton.

    PubMed

    López-Contreras, L; Hernández-Ramírez, V I; Lagunes-Guillén, A E; Montaño, Sarita; Chávez-Munguía, B; Sánchez-Ramírez, B; Talamás-Rohana, P

    2013-01-01

    Cytoskeleton remodeling can be regulated, among other mechanisms, by lysine acetylation. The role of acetylation on cytoskeletal and other proteins of Entamoeba histolytica has been poorly studied. Dynamic rearrangements of the actin cytoskeleton are crucial for amebic motility and capping formation, processes that may be effective means of evading the host immune response. Here we report the possible effect of acetylation on the actin cytoskeleton dynamics and in vivo virulence of E. histolytica. Using western blot, immunoprecipitation, microscopy assays, and in silico analysis, we show results that strongly suggest that the increase in Aspirin-induced cytoplasm proteins acetylation reduced cell movement and capping formation, likely as a consequence of alterations in the structuration of the actin cytoskeleton. Additionally, intrahepatic inoculation of Aspirin-treated trophozoites in hamsters resulted in severe impairment of the amebic virulence. Taken together, these results suggest an important role for lysine acetylation in amebic invasiveness and virulence.

  11. Gcn5 regulates the dissociation of SWI/SNF from chromatin by acetylation of Swi2/Snf2

    PubMed Central

    Kim, Jeong-Hoon; Saraf, Anita; Florens, Laurence; Washburn, Michael; Workman, Jerry L.

    2010-01-01

    The positive link between the SWI/SNF and the Gcn5 histone acetyltransferase in transcriptional activation has been well described. Here we report an inhibitory role for Gcn5 in SWI/SNF targeting. We demonstrate that Gcn5-containing complexes directly acetylate the Snf2 subunit of the SWI/SNF complex in vitro, as well as in vivo. Moreover, the acetylation of Snf2 facilitates the dissociation of the SWI/SNF complex from acetylated histones, and reduces its association with promoters in vivo. These data reveal a novel mechanism by which Gcn5 modulates chromatin structure not only through the acetylation of histones, but also by directly acetylating Snf2. PMID:21159817

  12. Acetyl-L-carnitine in hepatic encephalopathy.

    PubMed

    Malaguarnera, Michele

    2013-06-01

    Hepatic encephalopathy is a common complication of hepatic cirrhosis. The clinical diagnosis is based on two concurrent types of symptoms: impaired mental status and impaired neuromotor function. Impaired mental status is characterized by deterioration in mental status with psychomotor dysfunction, impaired memory, and increased reaction time, sensory abnormalities, poor concentration, disorientation and coma. Impaired neuromotor function include hyperreflexia, rigidity, myoclonus and asterixis. The pathogenesis of hepatic encephalopathy has not been clearly defined. The general consensus is that elevated levels of ammonia and an inflammatory response work in synergy to cause astrocyte to swell and fluid to accumulate in the brain which is thought to explain the symptoms of hepatic encephalopathy. Acetyl-L-carnitine, the short-chain ester of carnitine is endogenously produced within mitochondria and peroxisomes and is involved in the transport of acetyl-moieties across the membranes of these organelles. Acetyl-L-carnitine administration has shown the recovery of neuropsychological activities related to attention/concentration, visual scanning and tracking, psychomotor speed and mental flexibility, language short-term memory, attention, and computing ability. In fact, Acetyl-L-carnitine induces ureagenesis leading to decreased blood and brain ammonia levels. Acetyl-L-carnitine treatment decreases the severity of mental and physical fatigue, depression cognitive impairment and improves health-related quality of life. The aim of this review was to provide an explanation on the possible toxic effects of ammonia in HE and evaluate the potential clinical benefits of ALC.

  13. Acetylation promotes TyrRS nuclear translocation to prevent oxidative damage

    PubMed Central

    Cao, Xuanye; Li, Chaoqun; Xiao, Siyu; Tang, Yunlan; Huang, Jing; Zhao, Shuan; Li, Xueyu; Li, Jixi; Zhang, Ruilin; Yu, Wei

    2017-01-01

    Tyrosyl-tRNA synthetase (TyrRS) is well known for its essential aminoacylation function in protein synthesis. Recently, TyrRS has been shown to translocate to the nucleus and protect against DNA damage due to oxidative stress. However, the mechanism of TyrRS nuclear localization has not yet been determined. Herein, we report that TyrRS becomes highly acetylated in response to oxidative stress, which promotes nuclear translocation. Moreover, p300/CBP-associated factor (PCAF), an acetyltransferase, and sirtuin 1 (SIRT1), a NAD+-dependent deacetylase, regulate the nuclear localization of TyrRS in an acetylation-dependent manner. Oxidative stress increases the level of PCAF and decreases the level of SIRT1 and deacetylase activity, all of which promote the nuclear translocation of hyperacetylated TyrRS. Furthermore, TyrRS is primarily acetylated on the K244 residue near the nuclear localization signal (NLS), and acetylation inhibits the aminoacylation activity of TyrRS. Molecular dynamics simulations have shown that the in silico acetylation of K244 induces conformational changes in TyrRS near the NLS, which may promote the nuclear translocation of acetylated TyrRS. Herein, we show that the acetylated K244 residue of TyrRS protects against DNA damage in mammalian cells and zebrafish by activating DNA repair genes downstream of transcription factor E2F1. Our study reveals a previously unknown mechanism by which acetylation regulates an aminoacyl-tRNA synthetase, thus affecting the repair pathways for damaged DNA. PMID:28069943

  14. PPARα Activation Induces Nε-Lys-Acetylation of Rat Liver Peroxisomal Multifunctional Enzyme Type 1

    PubMed Central

    Contreras, Miguel A.; Alzate, Oscar; Singh, Avtar K.

    2013-01-01

    Peroxisomes are ubiquitous subcellular organelles that participate in metabolic and disease processes, with few of its proteins undergoing posttranslational modifications. As the role of lysine-acetylation has expanded into the cellular intermediary metabolism, we used a combination of differential centrifugation, organelle isolation by linear density gradient centrifugation, western blot analysis, and peptide fingerprinting and amino acid sequencing by mass spectrometry to investigate protein acetylation in control and ciprofibrate-treated rat liver peroxisomes. Organelle protein samples isolated by density gradient centrifugation from PPARα-agonist treated rat liver screened with an anti-Nε-acetyl lysine antibody revealed a single protein band of 75 kDa. Immunoprecipitation with this antibody resulted in the precipitation of a protein from the protein pool of ciprofibrate-induced peroxisomes, but not from the protein pool of non-induced peroxisomes. Peptide mass fingerprinting analysis identified the protein as the peroxisomal multifunctional enzyme type 1. In addition, mass spectrometry-based amino acid sequencing resulted in the identification of unique peptides containing 4 acetylated-Lys residues (K155, K173, K190, and K583). This is the first report that demonstrates posttranslational acetylation of a peroxisomal enzyme in PPARα-dependent proliferation of peroxisomes in rat liver. PMID:24092543

  15. Comprehensive profiling of lysine acetylproteome analysis reveals diverse functions of lysine acetylation in common wheat

    PubMed Central

    Zhang, Yumei; Song, Limin; Liang, Wenxing; Mu, Ping; Wang, Shu; Lin, Qi

    2016-01-01

    Lysine acetylation of proteins, a dynamic and reversible post-translational modification, plays a critical regulatory role in both eukaryotes and prokaryotes. Several researches have been carried out on acetylproteome in plants. However, until now, there have been no data on common wheat, the major cereal crop in the world. In this study, we performed a global acetylproteome analysis of common wheat variety (Triticum aestivum L.), Chinese Spring. In total, 416 lysine modification sites were identified on 277 proteins, which are involved in a wide variety of biological processes. Consistent with previous studies, a large proportion of the acetylated proteins are involved in metabolic process. Interestingly, according to the functional enrichment analysis, 26 acetylated proteins are involved in photosynthesis and Calvin cycle, suggesting an important role of lysine acetylation in these processes. Moreover, protein interaction network analysis reveals that diverse interactions are modulated by protein acetylation. These data represent the first report of acetylome in common wheat and serve as an important resource for exploring the physiological role of lysine acetylation in this organism and likely in all plants. PMID:26875666

  16. Autoregulation of the Rsc4 Tandem Bromodomain by Gcn5 Acetylation

    SciTech Connect

    VanDemark,A.; Kasten, M.; Ferris, E.; Heroux, A.; Hill, C.; Cairns, B.

    2007-01-01

    An important issue for chromatin remodeling complexes is how their bromodomains recognize particular acetylated lysine residues in histones. The Rsc4 subunit of the yeast remodeler RSC contains an essential tandem bromodomain (TBD) that binds acetylated K14 of histone H3 (H3K14ac). We report a series of crystal structures that reveal a compact TBD that binds H3K14ac in the second bromodomain and, remarkably, binds acetylated K25 of Rsc4 itself in the first bromodomain. Endogenous Rsc4 is acetylated only at K25, and Gcn5 is identified as necessary and sufficient for Rsc4 K25 acetylation in vivo and in vitro. Rsc4 K25 acetylation inhibits binding to H3K14ac, and mutation of Rsc4 K25 results in altered growth rates. These data suggest an autoregulatory mechanism in which Gcn5 performs both the activating (H3K14ac) and inhibitory (Rsc4 K25ac) modifications, perhaps to provide temporal regulation. Additional regulatory mechanisms are indicated as H3S10 phosphorylation inhibits Rsc4 binding to H3K14ac peptides.

  17. Distribution of the O-acetyl groups and β-galactofuranose units in galactoxylomannans of the opportunistic fungus Cryptococcus neoformans.

    PubMed

    Previato, Jose O; Vinogradov, Evgeny; Maes, Emmanuel; Fonseca, Leonardo M; Guerardel, Yann; Oliveira, Priscila A V; Mendonça-Previato, Lucia

    2016-12-16

    Galactoxylomannans (GalXMs) are a mixture of neutral and acidic capsular polysaccharides produced by the opportunistic fungus Cryptococcus neoformans that exhibit potent suppressive effects on the host immune system. Previous studies describing the chemical structure of C. neoformans GalXMs have reported species without O-acetyl substituents. Herein we describe that C. neoformans grown in capsule-inducing medium produces highly O-acetylated GalXMs. The location of the O-acetyl groups was determined by nuclear magnetic resonance (NMR) spectroscopy. In the neutral GalXM (NGalXM), 80% of 3-linked mannose (α-Manp) residues present in side chains are acetylated at the O-2 position. In the acidic GalXM also termed glucuronoxylomannogalactan (GXMGal), 85% of the 3-linked α-Manp residues are acetylated either in the O-2 (75%) or in the O-6 (25%) position, but O-acetyl groups are not present at both positions simultaneously. In addition, NMR spectroscopy and methylation analysis showed that β-galactofuranose (β-Galf) units are linked to O-2 and O-3 positions of nonbranched α-galactopyranose (α-Galp) units present in the GalXMs backbone chain. These findings highlight new structural features of C. neoformans GalXMs. Among these features, the high degree of O-acetylation is of particular interest, since O-acetyl group-containing polysaccharides are known to possess a range of immunobiological activities.

  18. Identification and characteristics of the structural gene for the Drosophila eye colour mutant sepia, encoding PDA synthase, a member of the omega class glutathione S-transferases.

    PubMed

    Kim, Jaekwang; Suh, Hyunsuk; Kim, Songhee; Kim, Kiyoung; Ahn, Chiyoung; Yim, Jeongbin

    2006-09-15

    The eye colour mutant sepia (se1) is defective in PDA {6-acetyl-2-amino-3,7,8,9-tetrahydro-4H-pyrimido[4,5-b]-[1,4]diazepin-4-one or pyrimidodiazepine} synthase involved in the conversion of 6-PTP (2-amino-4-oxo-6-pyruvoyl-5,6,7,8-tetrahydropteridine; also known as 6-pyruvoyltetrahydropterin) into PDA, a key intermediate in drosopterin biosynthesis. However, the identity of the gene encoding this enzyme, as well as its molecular properties, have not yet been established. Here, we identify and characterize the gene encoding PDA synthase and show that it is the structural gene for sepia. Based on previously reported information [Wiederrecht, Paton and Brown (1984) J. Biol. Chem. 259, 2195-2200; Wiederrecht and Brown (1984) J. Biol. Chem. 259, 14121-14127; Andres (1945) Drosoph. Inf. Serv. 19, 45; Ingham, Pinchin, Howard and Ish-Horowicz (1985) Genetics 111, 463-486; Howard, Ingham and Rushlow (1988) Genes Dev. 2, 1037-1046], we isolated five candidate genes predicted to encode GSTs (glutathione S-transferases) from the presumed sepia locus (region 66D5 on chromosome 3L). All cloned and expressed candidates exhibited relatively high thiol transferase and dehydroascorbate reductase activities and low activity towards 1-chloro-2,4-dinitrobenzene, characteristic of Omega class GSTs, whereas only CG6781 catalysed the synthesis of PDA in vitro. The molecular mass of recombinant CG6781 was estimated to be 28 kDa by SDS/PAGE and 56 kDa by gel filtration, indicating that it is a homodimer under native conditions. Sequencing of the genomic region spanning CG6781 revealed that the se1 allele has a frameshift mutation from 'AAGAA' to 'GTG' at nt 190-194, and that this generates a premature stop codon. Expression of the CG6781 open reading frame in an se1 background rescued the eye colour defect as well as PDA synthase activity and drosopterins content. The extent of rescue was dependent on the dosage of transgenic CG6781. In conclusion, we have discovered a new catalytic

  19. Gamma-glutamyl transferase and cardiovascular disease

    PubMed Central

    Kastrati, Adnan

    2016-01-01

    Gamma-glutamyl transferase (GGT) is an enzyme located on the external surface of cellular membranes. GGT contributes in maintaining the physiological concentrations of cytoplasmic glutathione and cellular defense against oxidative stress via cleavage of extracellular glutathione and increased availability of amino acids for its intracellular synthesis. Increased GGT activity is a marker of antioxidant inadequacy and increased oxidative stress. Ample evidence suggests that elevated GGT activity is associated with increased risk of cardiovascular disease (CVD) such as coronary heart disease (CHD), stroke, arterial hypertension, heart failure, cardiac arrhythmias and all-cause and CVD-related mortality. The evidence is weaker for an association between elevated GGT activity and acute ischemic events and myocardial infarction. The risk for CVD or CVD-related mortality mediated by GGT may be explained by the close correlation of GGT with conventional CVD risk factors and various comorbidities, particularly non-alcoholic fatty liver disease, alcohol consumption, oxidative stress, metabolic syndrome, insulin resistance and systemic inflammation. The finding of GGT activity in atherosclerotic plaques and correlation of intra-plaque GGT activity with histological indexes of plaque instability may suggest a participation of GGT in the pathophysiology of CVD, particularly atherosclerosis. However, whether GGT has a direct role in the pathophysiology of CVD or it is an epiphenomenon of coexisting CVD risk factors or comorbidities remains unknown and Hill’s criteria of causality relationship between GGT and CVD are not fulfilled. The exploration whether GGT provides prognostic information on top of the information provided by known cardiovascular risk factors regarding the CVD or CVD-related outcome and exploration of molecular mechanisms of GGT involvement in the pathophysiology of CVD and eventual use of interventions to reduce circulating GGT activity remain a duty of

  20. Identification of a diazinon-metabolizing glutathione S-transferase in the silkworm, Bombyx mori

    PubMed Central

    Yamamoto, Kohji; Yamada, Naotaka

    2016-01-01

    The glutathione S-transferase superfamily play key roles in the metabolism of numerous xenobiotics. We report herein the identification and characterization of a novel glutathione S-transferase in the silkworm, Bombyx mori. The enzyme (bmGSTu2) conjugates glutathione to 1-chloro-2,4-dinitrobenzene, as well as metabolizing diazinon, one of the organophosphate insecticides. Quantitative reverse transcription–polymerase chain reaction analysis of transcripts demonstrated that bmGSTu2 expression was induced 1.7-fold in a resistant strain of B. mori. Mutagenesis of putative amino acid residues in the glutathione-binding site revealed that Ile54, Glu66, Ser67, and Asn68 are crucial for enzymatic function. These results provide insights into the catalysis of glutathione conjugation in silkworm by bmGSTu2 and into the detoxification of organophosphate insecticides. PMID:27440377

  1. Preliminary toxicological study of ferric acetyl acetonate

    SciTech Connect

    London, J.E.; Smith, D.M.

    1983-01-01

    The calculated acute oral LD/sub 50//sup 30/ (lethal does for 50% of the animals occuring with 30 days after compound administration) values for ferric acetyl acetonate were 584 mg/kg in mice and 995 mg/kg in rats. According to classical guidelines, this compound would be considered slightly toxic in both species. Skin application studies in the rabbit demonstrated the compound to be irritating. The eye irritation study disclosed the compound to be a severe irritant causing permanent damage to the cornea (inflammation and scarring resulting in blindness). The sensitization study in the guinea pig did not show ferric acetyl acetonate to be deleterious in this regard.

  2. Human glutathione S-transferases. Characterization of the anionic forms from lung and placenta.

    PubMed Central

    Dao, D D; Partridge, C A; Kurosky, A; Awasthi, Y C

    1984-01-01

    Anionic glutathione S-transferases were purified from human lung and placenta. Chemical and immunochemical characterization, including polyacrylamide-gel electrophoresis, gave strong evidence that the anionic lung and placental enzymes are chemically similar, if not identical, proteins. The electrophoretic mobilities of both proteins were identical in conventional alkaline gels as well as in gels containing sodium dodecyl sulphate. Gel filtration of the intact active enzyme established an Mr value of 45000; however, with sodium dodecyl sulphate/polyacrylamide-gel electrophoresis under dissociating conditions a subunit Mr of 22500 was obtained. Amino acid sequence analysis of the N-terminal region of the placental enzyme revealed a single polypeptide sequence identical with that of lung. Results obtained from immunoelectrophoresis, immunotitration, double immunodiffusion and rocket immunoelectrophoresis also indicated the anionic lung and placental enzymes to be closely similar. The chemical similarity of these two proteins was further supported by protein compositional analysis and fragment analysis after chemical hydrolysis. Immunochemical comparison of the anionic lung and placental enzymes with human liver glutathione S-transferases revealed cross-reactivity with the anionic omega enzyme, but no cross-reactivity was detectable with the cationic enzymes. Comparison of the N-terminal region of the human anionic enzyme with reported sequences of rat liver glutathione S-transferases gave strong evidence of chemical similarity, indicating that these enzymes are evolutionarily related. However, computer analysis of the 30-residue N-terminal sequence did not show any significant chemical similarity to any other reported protein sequence, pointing to the fact that the glutathione S-transferases represent a unique class of proteins. Images Fig. 2. Fig. 5. Fig. 6. Fig. 7. PMID:6466318

  3. The glutathione-S-transferase Mu 1 null genotype modulates ozone-induced airway inflammation in humans*

    EPA Science Inventory

    Background: The Glutathione-S-Transferase Mu 1 null genotype has been reported to be a risk factor for acute respiratory disease associated with increases in ambient air ozone. Ozone is known to cause an immediate decrease in lung function and increased airway inflammation. Howev...

  4. Crystal structure of E. coli lipoprotein diacylglyceryl transferase.

    PubMed

    Mao, Guotao; Zhao, Yan; Kang, Xusheng; Li, Zhijie; Zhang, Yan; Wang, Xianping; Sun, Fei; Sankaran, Krishnan; Zhang, Xuejun C

    2016-01-05

    Lipoprotein biogenesis is essential for bacterial survival. Phosphatidylglycerol:prolipoprotein diacylglyceryl transferase (Lgt) is an integral membrane enzyme that catalyses the first reaction of the three-step post-translational lipid modification. Deletion of the lgt gene is lethal to most Gram-negative bacteria. Here we present the crystal structures of Escherichia coli Lgt in complex with phosphatidylglycerol and the inhibitor palmitic acid at 1.9 and 1.6 Å resolution, respectively. The structures reveal the presence of two binding sites and support the previously reported structure-function relationships of Lgt. Complementation results of lgt-knockout cells with different mutant Lgt variants revealed critical residues, including Arg143 and Arg239, that are essential for diacylglyceryl transfer. Using a GFP-based in vitro assay, we correlated the activities of Lgt with structural observations. Together, the structural and biochemical data support a mechanism whereby substrate and product, lipid-modified lipobox-containing peptide, enter and leave the enzyme laterally relative to the lipid bilayer.

  5. Lifespan extension and increased resistance to environmental stressors by N-Acetyl-L-Cysteine in Caenorhabditis elegans

    PubMed Central

    Oh, Seung-Il; Park, Jin-Kook; Park, Sang-Kyu

    2015-01-01

    OBJECTIVE: This study was performed to determine the effect of N-acetyl-L-cysteine, a modified sulfur-containing amino acid that acts as a strong cellular antioxidant, on the response to environmental stressors and on aging in C. elegans. METHOD: The survival of worms under oxidative stress conditions induced by paraquat was evaluated with and without in vivo N-acetyl-L-cysteine treatment. The effect of N-acetyl-L-cysteine on the response to other environmental stressors, including heat stress and ultraviolet irradiation (UV), was also monitored. To investigate the effect on aging, we examined changes in lifespan, fertility, and expression of age-related biomarkers in C. elegans after N-acetyl-L-cysteine treatment. RESULTS: Dietary N-acetyl-L-cysteine supplementation significantly increased resistance to oxidative stress, heat stress, and UV irradiation in C. elegans. In addition, N-acetyl-L-cysteine supplementation significantly extended both the mean and maximum lifespan of C. elegans. The mean lifespan was extended by up to 30.5% with 5 mM N-acetyl-L-cysteine treatment, and the maximum lifespan was increased by 8 days. N-acetyl-L-cysteine supplementation also increased the total number of progeny produced and extended the gravid period of C. elegans. The green fluorescent protein reporter assay revealed that expression of the stress-responsive genes, sod-3 and hsp-16.2, increased significantly following N-acetyl-L-cysteine treatment. CONCLUSION: N-acetyl-L-cysteine supplementation confers a longevity phenotype in C. elegans, possibly through increased resistance to environmental stressors. PMID:26039957

  6. Retinoid X receptor alpha Regulates the expression of glutathione s-transferase genes and modulates acetaminophen-glutathione conjugation in mouse liver.

    PubMed

    Dai, Guoli; Chou, Nathan; He, Lin; Gyamfi, Maxwell A; Mendy, Alphonse J; Slitt, Angela L; Klaassen, Curtis D; Wan, Yu-Jui Y

    2005-12-01

    Nuclear receptors, including constitutive androstane receptor, pregnane X receptor, and retinoid X receptor (RXR), modulate acetaminophen (APAP)-induced hepatotoxicity by regulating the expression of phase I cytochrome P450 (P450) genes. It has not been fully resolved, however, whether they regulate APAP detoxification at the phase II level. The aim of the current study was to evaluate the role of RXRalpha in phase II enzyme-mediated detoxification of APAP. Wild-type and hepatocyte-specific RXRalpha knockout mice were treated with a toxic dose of APAP (500 mg/kg i.p.). Mutant mice were protected from APAP-induced hepatotoxicity, even though basal liver glutathione (GSH) levels were significantly lower in mutant mice compared with those of wild-type mice. High-performance liquid chromatography analysis of APAP metabolites revealed significantly greater levels of APAP-GSH conjugates in livers and bile of mutant mice compared with those of wild-type mice. Furthermore, hepatocyte RXRalpha deficiency altered the gene expression profile of the glutathione S-transferase (Gst) family. Basal expression of 13 of 15 Gst genes studied was altered in hepatocyte-specific RXRalpha-deficient mice. This probably led to enhanced APAP-GSH conjugation and reduced accumulation of N-acetyl-p-benzoquinone imine, a toxic electrophile that is produced by biotransformation of APAP by phase I P450 enzymes. In conclusion, the data presented in this study define an RXRalpha-Gst regulatory network that controls APAP-GSH conjugation. This report reveals a potential novel strategy to enhance the detoxification of APAP or other xenobiotics by manipulating Gst activity through RXRalpha-mediated pathways.

  7. `Up-regulation of histone acetylation induced by social defeat mediates the conditioned rewarding effects of cocaine.

    PubMed

    Montagud-Romero, S; Montesinos, J; Pascual, M; Aguilar, M A; Roger-Sanchez, C; Guerri, C; Miñarro, J; Rodríguez-Arias, M

    2016-10-03

    Social defeat (SD) induces a long-lasting increase in the rewarding effects of psychostimulants measured using the self-administration and conditioned place procedures (CPP). However, little is known about the epigenetic changes induced by social stress and about their role in the increased response to the rewarding effects of psychostimulants. Considering that histone acetylation regulates transcriptional activity and contributes to drug-induced behavioral changes, we addressed the hypothesis that SD induces transcriptional changes by histone modifications associated with the acquisition of place conditioning. After a fourth defeat, H3(K9) acetylation was decreased in the hippocampus, while there was an increase of HAT and a decrease of HDAC levels in the cortex. Three weeks after the last defeat, mice displayed an increase in histone H4(K12) acetylation and an upregulation of histone acetyl transferase (HAT) activity in the hippocampus. In addition, H3(K4)me3, which is closely associated with transcriptional initiation, was also augmented in the hippocampus three weeks after the last defeat. Inhibition of HAT by curcumin (100mg/kg) before each SD blocked the increase in the conditioned reinforcing effects of 1mg/kg of cocaine, while inhibition of HDAC by valproic acid (500mg/kg) before social stress potentiated cocaine-induced CPP. Preference was reinstated when animals received a priming dose of 0.5mg/kg of cocaine, an effect that was absent in untreated defeated mice. These results suggest that the experience of SD induces chromatin remodeling, alters histone acetylation and methylation, and modifies the effects of cocaine on place conditioning. They also point to epigenetic mechanisms as potential avenues leading to new treatments for the long-term effects of social stress on drug addiction.

  8. Gene encoding acetyl-coenzyme A carboxylase

    DOEpatents

    Roessler, P.G.; Ohlrogge, J.B.

    1996-09-24

    A DNA encoding an acetyl-coenzyme A carboxylase (ACCase) from a photosynthetic organism and functional derivatives are disclosed which are resistant to inhibition from certain herbicides. This gene can be placed in organisms to increase their fatty acid content or to render them resistant to certain herbicides. 5 figs.

  9. 21 CFR 172.828 - Acetylated monoglycerides.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... molecular distillation or by steam stripping; or (2) The direct acetylation of edible monoglycerides with acetic anhydride without the use of catalyst or molecular distillation, and with the removal by vacuum distillation, if necessary, of the acetic acid, acetic anhydride, and triacetin. (b) The food additive has...

  10. 21 CFR 172.828 - Acetylated monoglycerides.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... molecular distillation or by steam stripping; or (2) The direct acetylation of edible monoglycerides with acetic anhydride without the use of catalyst or molecular distillation, and with the removal by vacuum distillation, if necessary, of the acetic acid, acetic anhydride, and triacetin. (b) The food additive has...

  11. 21 CFR 172.828 - Acetylated monoglycerides.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... molecular distillation or by steam stripping; or (2) The direct acetylation of edible monoglycerides with acetic anhydride without the use of catalyst or molecular distillation, and with the removal by vacuum distillation, if necessary, of the acetic acid, acetic anhydride, and triacetin. (b) The food additive has...

  12. 21 CFR 172.828 - Acetylated monoglycerides.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... molecular distillation or by steam stripping; or (2) The direct acetylation of edible monoglycerides with acetic anhydride without the use of catalyst or molecular distillation, and with the removal by vacuum distillation, if necessary, of the acetic acid, acetic anhydride, and triacetin. (b) The food additive has...

  13. Gene encoding acetyl-coenzyme A carboxylase

    DOEpatents

    Roessler, Paul G.; Ohlrogge, John B.

    1996-01-01

    A DNA encoding an acetyl-coenzyme A carboxylase (ACCase) from a photosynthetic organism and functional derivatives thereof which are resistant to inhibition from certain herbicides. This gene can be placed in organisms to increase their fatty acid content or to render them resistant to certain herbicides.

  14. Acetyl-L-carnitine ameliorates caerulein-induced acute pancreatitis in rats.

    PubMed

    Arafa, Hossam M M; Hemeida, Ramadan A M; Hassan, Mohamed I A; Abdel-Wahab, Mohammed H; Badary, Osama A; Hamada, Farid M A

    2009-07-01

    In the present study, we have addressed the possible protective role of acetyl-L-carnitine in caerulein-induced acute pancreatitis in male Swiss albino rats. Acute pancreatitis paradigm was developed by challenging animals with a supramaximal dose of caerulein (20 microg/kg, SC) four times at hourly intervals. Caerulein induced acute pancreatitis that was well-characterized morphologically and biochemically. Severe oedema with marked increased relative pancreatic weight, marked atrophy of acini with increased interacinar spaces, vacuolization, and extensive leucocytic infiltration were diagnostic fingerprints of the pancreatitis phenotype. A biochemical test battery that confirmed the model comprised increased plasma amylase and lipase activities, calcium levels as well as increased pancreatic enzymatic myeloperoxidase and glutathione-S-transferase activities, beside increased pancreatic contents of nitric oxide and malondialdehyde and reduced pancreatic glutathione level. Prior administration of acetyl-L-carnitine (200 mg/kg, IP) for seven consecutive days ahead of caerulein challenge alleviated all the histological and biochemical manifestations of acute pancreatitis. These results suggest a possible protective role of the carnitine ester in such a murine acute pancreatitis model probably via regulation of the oxidant/antioxidant balance, beside modulation of the myeloperoxidase and nitric oxide systems, which are involved in the inflammatory cascade that most often associate the disease.

  15. Changes in hepatic lipogenic and oxidative enzymes and glucose homeostasis induced by an acetyl-L-carnitine and nicotinamide treatment in dyslipidaemic insulin-resistant rats.

    PubMed

    Ferreira, Maria R; Camberos, Maria del C; Selenscig, Dante; Martucci, Lucía C; Chicco, Adriana; Lombardo, Yolanda B; Cresto, Juan C

    2013-03-01

    Normal rats fed a sucrose-rich diet (SRD) develop dyslipidaemia and insulin resistance. The present study examined whether administration of the mitochondrial nutrients nicotinamide and acetyl-L-carnitine reversed or improved these metabolic abnormalities. Male Wistar rats were fed an SRD for 90 days. Half the rats then received daily injections of nicotinamide (25 mg/kg, i.p.) and acetyl-L-carnitine (50 mg/kg, i.p.) for a further 90 days. The remaining rats in the SRD-fed group and those in a normal chow-fed control group were injected with an equal volume of saline solution for the same period. The following parameters were determined in all groups: (i) liver activity of fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC) and carnitine-palmitoyl transferase-1 (CPT-1); (ii) hepatic and skeletal muscle triacylglycerol content, plasma glucose, insulin, free fatty acid (FFA) and triacylglycerol levels and pancreatic insulin content; and (iii) glucose tolerance. Administration of nicotinamide and acetyl-L-carnitine to the SRD-fed rats reduced dyslipidaemia, liver steatosis, muscle triacylglycerol content and hepatic FAS and ACC activities and increased CPT-1 activity. In addition nicotinamide and acetyl-L-carnitine improved the glucose disappearance rate (K(g)), normalized plasma glucose levels and moderately increased insulinaemia without altering pancreatic insulin content. Finally, nicotinamide and acetyl-l-carnitine administration reduced bodyweight gain and visceral adiposity. The results of the present study suggest that altering key hepatic lipogenic and fatty acid oxidative enzymatic activity could improve dyslipidaemia, liver steatosis and visceral adiposity. Indeed, administration of nicotinamide and acetyl-l-carnitine improved glucose intolerance and normalized plasma glucose levels.

  16. Identification and quantification of N alpha-acetylated Y. pestis fusion protein F1-V expressed in Escherichia coli using LCMS E.

    PubMed

    Bariola, Pauline A; Russell, Brett A; Monahan, Steven J; Stroop, Steven D

    2007-05-31

    N-terminal acetylation in E coli is a rare event catalyzed by three known N-acetyl-transferases (NATs), each having a specific ribosomal protein substrate. Multiple, gram-scale lots of recombinant F1-V, a fusion protein constructed from Y. Pestis antigens, were expressed and purified from a single stably transformed E. coli cell bank. A variant form of F1-V with mass increased by 42-43 Da was detected in all purified lots by electrospray orthogonal acceleration time-of-flight mass spectrometry (MS). Peptide mapping LCMS localized the increased mass to an N-terminal Lys-C peptide, residues 1-24, and defined it as +42.0308+/-0.0231 Da using a LockSpray exact mass feature and a leucine enkaphalin mass standard. Sequencing of the variant 1-24 peptide by LCMS and high-energy collision induced dissociation (LCMS(E)) further localized the modification to the amino terminal tri-peptide ADL and identified the modification as N(alpha)-acetylation. The average content of N(alpha)-acetylated F1-V in five lots was 24.7+/-2.6% indicating that a stable acetylation activity for F1-V was established in the E. coli expression system. Alignment of the F1-V N-terminal sequence with those of other known N(alpha)-acetylated ectopic proteins expressed in E. coli reveals a substrate motif analogous to the eukaryote NatA' acetylation pathway and distinct from endogenous E. coli NAT substrates.

  17. The Fusarium oxysporum gnt2, encoding a putative N-acetylglucosamine transferase, is involved in cell wall architecture and virulence.

    PubMed

    López-Fernández, Loida; Ruiz-Roldán, Carmen; Pareja-Jaime, Yolanda; Prieto, Alicia; Khraiwesh, Husam; Roncero, M Isabel G

    2013-01-01

    With the aim to decipher the molecular dialogue and cross talk between Fusarium oxysporum f.sp. lycopersci and its host during infection and to understand the molecular bases that govern fungal pathogenicity, we analysed genes presumably encoding N-acetylglucosaminyl transferases, involved in glycosylation of glycoproteins, glycolipids, proteoglycans or small molecule acceptors in other microorganisms. In silico analysis revealed the existence of seven putative N-glycosyl transferase encoding genes (named gnt) in F. oxysporum f.sp. lycopersici genome. gnt2 deletion mutants showed a dramatic reduction in virulence on both plant and animal hosts. Δgnt2 mutants had αalterations in cell wall properties related to terminal αor β-linked N-acetyl glucosamine. Mutant conidia and germlings also showed differences in structure and physicochemical surface properties. Conidial and hyphal aggregation differed between the mutant and wild type strains, in a pH independent manner. Transmission electron micrographs of germlings showed strong cell-to-cell adherence and the presence of an extracellular chemical matrix. Δgnt2 cell walls presented a significant reduction in N-linked oligosaccharides, suggesting the involvement of Gnt2 in N-glycosylation of cell wall proteins. Gnt2 was localized in Golgi-like sub-cellular compartments as determined by fluorescence microscopy of GFP::Gnt2 fusion protein after treatment with the antibiotic brefeldin A or by staining with fluorescent sphingolipid BODIPY-TR ceramide. Furthermore, density gradient ultracentrifugation allowed co-localization of GFP::Gnt2 fusion protein and Vps10p in subcellular fractions enriched in Golgi specific enzymatic activities. Our results suggest that N-acetylglucosaminyl transferases are key components for cell wall structure and influence interactions of F. oxysporum with both plant and animal hosts during pathogenicity.

  18. Functional analysis of N-linking oligosaccharyl transferase enzymes encoded by deep-sea vent proteobacteria

    PubMed Central

    Mills, Dominic C.; Jervis, Adrian J.; Abouelhadid, Sherif; Yates, Laura E.; Cuccui, Jon; Linton, Dennis; Wren, Brendan W.

    2016-01-01

    Bacterial N-linking oligosaccharyl transferases (OTase enzymes) transfer lipid-linked glycans to selected proteins in the periplasm and were first described in the intestinal pathogen Campylobacter jejuni, a member of the ε-proteobacteria-subdivision of bacteria. More recently, orthologues from other ε-proteobacterial Campylobacter and Helicobacter species and a δ-proteobacterium, Desulfovibrio desulfuricans, have been described, suggesting that these two subdivisions of bacteria may be a source of further N-linked protein glycosylation systems. Whole-genome sequencing of both ε- and δ-proteobacteria from deep-sea vent habitats, a rich source of species from these subdivisions, revealed putative ORFs encoding OTase enzymes and associated adjacent glycosyltransferases similar to the C. jejuni N-linked glycosylation locus. We expressed putative OTase ORFs from the deep-sea vent species Nitratiruptor tergarcus, Sulfurovum lithotrophicum and Deferribacter desulfuricans in Escherichia coli and showed they were able to functionally complement the C. jejuni OTase, CjPglB . The enzymes were shown to possess relaxed glycan specificity, transferring diverse glycan structures and demonstrated different glycosylation sequon specificities. Additionally a permissive D. desulfuricans acceptor protein was identified, and we provide evidence that the N-linked glycan synthesised by N. tergarcus and S. lithotrophicum contains an acetylated sugar at the reducing end. This work demonstrates that deep-sea vent bacteria encode functional N-glycosylation machineries and are a potential source of biotechnologically important OTase enzymes. PMID:26610891

  19. Functional analysis of N-linking oligosaccharyl transferase enzymes encoded by deep-sea vent proteobacteria.

    PubMed

    Mills, Dominic C; Jervis, Adrian J; Abouelhadid, Sherif; Yates, Laura E; Cuccui, Jon; Linton, Dennis; Wren, Brendan W

    2016-04-01

    Bacterial N-linking oligosaccharyl transferases (OTase enzymes) transfer lipid-linked glycans to selected proteins in the periplasm and were first described in the intestinal pathogen Campylobacter jejuni, a member of the ε-proteobacteria-subdivision of bacteria. More recently, orthologues from other ε-proteobacterial Campylobacter and Helicobacter species and a δ-proteobacterium, Desulfovibrio desulfuricans, have been described, suggesting that these two subdivisions of bacteria may be a source of further N-linked protein glycosylation systems. Whole-genome sequencing of both ε- and δ-proteobacteria from deep-sea vent habitats, a rich source of species from these subdivisions, revealed putative ORFs encoding OTase enzymes and associated adjacent glycosyltransferases similar to the C. jejuni N-linked glycosylation locus. We expressed putative OTase ORFs from the deep-sea vent species Nitratiruptor tergarcus, Sulfurovum lithotrophicum and Deferribacter desulfuricans in Escherichia coli and showed that they were able to functionally complement the C. jejuni OTase, CjPglB. The enzymes were shown to possess relaxed glycan specificity, transferring diverse glycan structures and demonstrated different glycosylation sequon specificities. Additionally, a permissive D. desulfuricans acceptor protein was identified, and we provide evidence that the N-linked glycan synthesized by N. tergarcus and S. lithotrophicum contains an acetylated sugar at the reducing end. This work demonstrates that deep-sea vent bacteria encode functional N-glycosylation machineries and are a potential source of biotechnologically important OTase enzymes.

  20. Crx activates opsin transcription by recruiting HAT-containing co-activators and promoting histone acetylation

    PubMed Central

    Peng, Guang-Hua; Chen, Shiming

    2008-01-01

    The homeodomain transcription factor Crx is required for expression of many photoreceptor genes in the mammalian retina. The mechanism by which Crx activates transcription remains to be determined. Using protein–protein interaction assays, Crx was found to interact with three co-activator proteins (complexes): STAGA, Cbp and p300, all of which possess histone acetyl-transferase (HAT) activity. To determine the role of Crx–HAT interactions in target gene chromatin modification and transcriptional activation, quantitative RT–PCR and chromatin immunoprecipitation were performed on Crx target genes, rod and cone opsins, in developing mouse retina. Although cone opsins are transcribed earlier than rhodopsin during development, the transcription of each gene is preceded by the same sequence of events in their promoter and enhancer regions: (i) binding of Crx, followed by (ii) binding of HATs, (iii) the acetylation of histone H3, then (iv) binding of other photoreceptor transcription factors (Nrl and Nr2e3) and RNA polymerase II. In Crx knockout mice (Crx−/−), the association of HATs and AcH3 with target promoter/enhancer regions was significantly decreased, which correlates with aberrant opsin transcription and photoreceptor dysfunction in these mice. Similar changes to the opsin chromatin were seen in Y79 retinoblastoma cells, where opsin genes are barely transcribed. These defects in Y79 cells can be reversed by expressing a recombinant Crx or applying histone deacetylase inhibitors. Altogether, these results suggest that one mechanism for Crx-mediated transcriptional activation is to recruit HATs to photoreceptor gene chromatin for histone acetylation, thereby inducing and maintaining appropriate chromatin configurations for transcription. PMID:17656371

  1. Glutathione-Binding Site of a Bombyx mori Theta-Class Glutathione Transferase

    PubMed Central

    Hossain, M. D. Tofazzal; Yamada, Naotaka; Yamamoto, Kohji

    2014-01-01

    The glutathione transferase (GST) superfamily plays key roles in the detoxification of various xenobiotics. Here, we report the isolation and characterization of a silkworm protein belonging to a previously reported theta-class GST family. The enzyme (bmGSTT) catalyzes the reaction of glutathione with 1-chloro-2,4-dinitrobenzene, 1,2-epoxy-3-(4-nitrophenoxy)-propane, and 4-nitrophenethyl bromide. Mutagenesis of highly conserved residues in the catalytic site revealed that Glu66 and Ser67 are important for enzymatic function. These results provide insights into the catalysis of glutathione conjugation in silkworm by bmGSTT and into the metabolism of exogenous chemical agents. PMID:24848539

  2. EB1 acetylation by P300/CBP-associated factor (PCAF) ensures accurate kinetochore–microtubule interactions in mitosis

    PubMed Central

    Xia, Peng; Wang, Zhikai; Liu, Xing; Wu, Bing; Wang, Juncheng; Ward, Tarsha; Zhang, Liangyu; Ding, Xia; Gibbons, Gary; Shi, Yunyu; Yao, Xuebiao

    2012-01-01

    In eukaryotes, microtubules are essential for cellular plasticity and dynamics. Here we show that P300/CBP-associated factor (PCAF), a kinetochore-associated acetyltransferase, acts as a negative modulator of microtubule stability through acetylation of EB1, a protein that controls the plus ends of microtubules. PCAF acetylates EB1 on K220 and disrupts the stability of a hydrophobic cavity on the dimerized EB1 C terminus, which was previously reported to interact with plus-end tracking proteins (TIPs) containing the SxIP motif. As determined with an EB1 acetyl-K220–specific antibody, K220 acetylation is dramatically increased in mitosis and localized to the spindle microtubule plus ends. Surprisingly, persistent acetylation of EB1 delays metaphase alignment, resulting in impaired checkpoint silencing. Consequently, suppression of Mad2 overrides mitotic arrest induced by persistent EB1 acetylation. Thus, our findings identify dynamic acetylation of EB1 as a molecular mechanism to orchestrate accurate kinetochore–microtubule interactions in mitosis. These results establish a previously uncharacterized regulatory mechanism governing localization of microtubule plus-end tracking proteins and thereby the plasticity and dynamics of cells. PMID:23001180

  3. Characterization of O-acetylation in sialoglycans by MALDI-MS using a combination of methylamidation and permethylation

    PubMed Central

    Wu, Zhaoguan; Li, Henghui; Zhang, Qiwei; Liu, Xin; Zheng, Qi; Li, Jianjun

    2017-01-01

    O-Acetylation of sialic acid in protein N-glycans is an important modification and can occur at either 4-, 7-, 8- or 9-position in various combinations. This modification is usually labile under alkaline reaction conditions. Consequently, a permethylation-based analytical method, which has been widely used in glycomics studies, is not suitable for profiling O-acetylation of sialic acids due to the harsh reaction conditions. Alternatively, methylamidation can be used for N-glycan analysis without affecting the base-labile modification of sialic acid. In this report, we applied both permethylation and methylamidation approaches to the analysis of O-acetylation in sialic acids. It has been demonstrated that methylamidation not only stabilizes sialic acids during MALDI processing but also allow for characterization of their O-acetylation pattern. In addition, LC-MS/MS experiments were carried out to distinguish between the O-acetylated glycans with potential isomeric structures. The repeatability of methylamidation was examined to evaluate the applicability of the approach to profiling of O-acetylation in sialic acids. In conclusion, the combination of methylamidation and permethylation methodology is a powerful MALDI-TOF MS-based tool for profiling O-acetylation in sialic acids applicable to screening of N-glycans. PMID:28387371

  4. Reverse Genetic Characterization of Cytosolic Acetyl-CoA Generation by ATP-Citrate Lyase in ArabidopsisW⃞

    PubMed Central

    Fatland, Beth L.; Nikolau, Basil J.; Wurtele, Eve Syrkin

    2005-01-01

    Acetyl-CoA provides organisms with the chemical flexibility to biosynthesize a plethora of natural products that constitute much of the structural and functional diversity in nature. Recent studies have characterized a novel ATP-citrate lyase (ACL) in the cytosol of Arabidopsis thaliana. In this study, we report the use of antisense RNA technology to generate a series of Arabidopsis lines with a range of ACL activity. Plants with even moderately reduced ACL activity have a complex, bonsai phenotype, with miniaturized organs, smaller cells, aberrant plastid morphology, reduced cuticular wax deposition, and hyperaccumulation of starch, anthocyanin, and stress-related mRNAs in vegetative tissue. The degree of this phenotype correlates with the level of reduction in ACL activity. These data indicate that ACL is required for normal growth and development and that no other source of acetyl-CoA can compensate for ACL-derived acetyl-CoA. Exogenous malonate, which feeds into the carboxylation pathway of acetyl-CoA metabolism, chemically complements the morphological and chemical alterations associated with reduced ACL expression, indicating that the observed metabolic alterations are related to the carboxylation pathway of cytosolic acetyl-CoA metabolism. The observations that limiting the expression of the cytosolic enzyme ACL reduces the accumulation of cytosolic acetyl-CoA–derived metabolites and that these deficiencies can be alleviated by exogenous malonate indicate that ACL is a nonredundant source of cytosolic acetyl-CoA. PMID:15608338

  5. Mechanism for the Inhibition of the Carboxyl-transferase

    SciTech Connect

    L Yu; Y Kim; L Tong

    2011-12-31

    Acetyl-CoA carboxylases (ACCs) are crucial metabolic enzymes and have been targeted for drug development against obesity, diabetes, and other diseases. The carboxyltransferase (CT) domain of this enzyme is the site of action for three different classes of herbicides, as represented by haloxyfop, tepraloxydim, and pinoxaden. Our earlier studies have demonstrated that haloxyfop and tepraloxydim bind in the CT active site at the interface of its dimer. However, the two compounds probe distinct regions of the dimer interface, sharing primarily only two common anchoring points of interaction with the enzyme. We report here the crystal structure of the CT domain of yeast ACC in complex with pinoxaden at 2.8-{angstrom} resolution. Despite their chemical diversity, pinoxaden has a similar binding mode as tepraloxydim and requires a small conformational change in the dimer interface for binding. Crystal structures of the CT domain in complex with all three classes of herbicides confirm the importance of the two anchoring points for herbicide binding. The structures also provide a foundation for understanding the molecular basis of the herbicide resistance mutations and cross resistance among the herbicides, as well as for the design and development of new inhibitors against plant and human ACCs.

  6. Effect of (L-Carnitine) on acetyl-L-carnitine production by heart mitochondria

    SciTech Connect

    Bieber, L.L.; Lilly, K.; Lysiak, W.

    1986-05-01

    The authors recently reported a large efflux of acetyl-L-carnitine from rat heart mitochondria during state 3 respiration with pyruvate as substrate both in the presence and absence of malate. In this series of experiments, the effect of the concentration of L-carnitine on the efflux of acetyl-L-carnitine and on the production of /sup 14/CO/sub 2/ from 2-/sup 14/C-pyruvate was determined. Maximum acetylcarnitine production (approximately 25 n moles/min/mg protein) was obtained at 3-5 mM L-carnitine in the absence of added malate. /sup 14/CO/sub 2/ production decreased as the concentration of L-carnitine increased; it plateaued at 3-5 mM L-carnitine. These data indicate carnitine can stimulate flux of pyruvate through pyruvate dehydrogenase and can reduce flux of acetyl CoA through the Krebs cycle by acting as an acceptor of the acetyl moieties of acetyl CoA generated by pyruvate dehydrogenase.

  7. Acetylated deoxycholic (DCA) and cholic (CA) acids are potent ligands of pregnane X (PXR) receptor.

    PubMed

    Carazo, Alejandro; Hyrsova, Lucie; Dusek, Jan; Chodounska, Hana; Horvatova, Alzbeta; Berka, Karel; Bazgier, Vaclav; Gan-Schreier, Hongying; Chamulitrat, Waleé; Kudova, Eva; Pavek, Petr

    2017-01-04

    The Pregnane X (PXR), Vitamin D (VDR) and Farnesoid X (FXR) nuclear receptors have been shown to be receptors of bile acids controlling their detoxification or synthesis. Chenodeoxycholic (CDCA) and lithocholic (LCA) acids are ligands of FXR and VDR, respectively, whereas 3-keto and acetylated derivates of LCA have been described as ligands for all three receptors. In this study, we hypothesized that oxidation or acetylation at position 3, 7 and 12 of bile acids DCA (deoxycholic acid), LCA, CA (cholic acid), and CDCA by detoxification enzymes or microbiome may have an effect on the interactions with bile acid nuclear receptors. We employed reporter gene assays in HepG2 cells, the TR-FRET assay with recombinant PXR and RT-PCR to study the effects of acetylated and keto bile acids on the nuclear receptors activation and their target gene expression in differentiated hepatic HepaRG cells. We demonstrate that the DCA 3,12-diacetate and CA 3,7,12-triacetate derivatives are ligands of PXR and DCA 3,12-diacetate induces PXR target genes such as CYP3A4, CYP2B6 and ABCB1/MDR1. In conclusion, we found that acetylated DCA and CA are potent ligands of PXR. Whether the acetylated bile acid derivatives are novel endogenous ligands of PXR with detoxification or physiological functions should be further studied in ongoing experiments.

  8. MEC-17 deficiency leads to reduced α-tubulin acetylation and impaired migration of cortical neurons.

    PubMed

    Li, Lei; Wei, Dan; Wang, Qiong; Pan, Jing; Liu, Rong; Zhang, Xu; Bao, Lan

    2012-09-12

    Neuronal migration is a fundamental process during the development of the cerebral cortex and is regulated by cytoskeletal components. Microtubule dynamics can be modulated by posttranslational modifications to tubulin subunits. Acetylation of α-tubulin at lysine 40 is important in regulating microtubule properties, and this process is controlled by acetyltransferase and deacetylase. MEC-17 is a newly discovered α-tubulin acetyltransferase that has been found to play a major role in the acetylation of α-tubulin in different species in vivo. However, the physiological function of MEC-17 during neural development is largely unknown. Here, we report that MEC-17 is critical for the migration of cortical neurons in the rat. MEC-17 was strongly expressed in the cerebral cortex during development. MEC-17 deficiency caused migratory defects in the cortical projection neurons and interneurons, and perturbed the transition of projection neurons from the multipolar stage to the unipolar/bipolar stage in the intermediate zone of the cortex. Furthermore, knockdown of α-tubulin deacetylase HDAC6 or overexpression of tubulin(K40Q) to mimic acetylated α-tubulin could reduce the migratory and morphological defects caused by MEC-17 deficiency in cortical projection neurons. Thus, MEC-17, which regulates the acetylation of α-tubulin, appears to control the migration and morphological transition of cortical neurons. This finding reveals the importance of MEC-17 and α-tubulin acetylation in cortical development.

  9. Ubc9 acetylation modulates distinct SUMO target modification and hypoxia response

    PubMed Central

    Hsieh, Yung-Lin; Kuo, Hong-Yi; Chang, Che-Chang; Naik, Mandar T; Liao, Pei-Hsin; Ho, Chun-Chen; Huang, Tien-Chi; Jeng, Jen-Chong; Hsu, Pang-Hung; Tsai, Ming-Daw; Huang, Tai-Huang; Shih, Hsiu-Ming

    2013-01-01

    While numerous small ubiquitin-like modifier (SUMO) conjugated substrates have been identified, very little is known about the cellular signalling mechanisms that differentially regulate substrate sumoylation. Here, we show that acetylation of SUMO E2 conjugase Ubc9 selectively downregulates the sumoylation of substrates with negatively charged amino acid-dependent sumoylation motif (NDSM) consisting of clustered acidic residues located downstream from the core ψ-K-X-E/D consensus motif, such as CBP and Elk-1, but not substrates with core ψ-K-X-E/D motif alone or SUMO-interacting motif. Ubc9 is acetylated at residue K65 and K65 acetylation attenuates Ubc9 binding to NDSM substrates, causing a reduction in NDSM substrate sumoylation. Furthermore, Ubc9 K65 acetylation can be downregulated by hypoxia via SIRT1, and is correlated with hypoxia-elicited modulation of sumoylation and target gene expression of CBP and Elk-1 and cell survival. Our data suggest that Ubc9 acetylation/deacetylation serves as a dynamic switch for NDSM substrate sumoylation and we report a previously undescribed SIRT1/Ubc9 regulatory axis in the modulation of protein sumoylation and the hypoxia response. PMID:23395904

  10. Acetylation of Transition Protein 2 (TP2) by KAT3B (p300) Alters Its DNA Condensation Property and Interaction with Putative Histone Chaperone NPM3*

    PubMed Central

    Pradeepa, Madapura M.; Nikhil, Gupta; Hari Kishore, Annavarapu; Bharath, Giriyapura N.; Kundu, Tapas K.; Rao, Manchanahalli R. Satyanarayana

    2009-01-01

    The hallmark of mammalian spermiogenesis is the dramatic chromatin remodeling process wherein the nucleosomal histones are replaced by the transition proteins TP1, TP2, and TP4. Subsequently these transition proteins are replaced by the protamines P1 and P2. Hyperacetylation of histone H4 is linked to their replacement by transition proteins. Here we report that TP2 is acetylated in vivo as detected by anti-acetylated lysine antibody and mass spectrometric analysis. Further, recombinant TP2 is acetylated in vitro by acetyltransferase KAT3B (p300) more efficiently than by KAT2B (PCAF). In vivo p300 was demonstrated to acetylate TP2. p300 acetylates TP2 in its C-terminal domain, which is highly basic in nature and possesses chromatin-condensing properties. Mass spectrometric analysis showed that p300 acetylates four lysine residues in the C-terminal domain of TP2. Acetylation of TP2 by p300 leads to significant reduction in its DNA condensation property as studied by circular dichroism and atomic force microscopy analysis. TP2 also interacts with a putative histone chaperone, NPM3, wherein expression is elevated in haploid spermatids. Interestingly, acetylation of TP2 impedes its interaction with NPM3. Thus, acetylation of TP2 adds a new dimension to its role in the dynamic reorganization of chromatin during mammalian spermiogenesis. PMID:19710011

  11. Dynamic Protein Acetylation in Plant–Pathogen Interactions

    PubMed Central

    Song, Gaoyuan; Walley, Justin W.

    2016-01-01

    Pathogen infection triggers complex molecular perturbations within host cells that results in either resistance or susceptibility. Protein acetylation is an emerging biochemical modification that appears to play central roles during host–pathogen interactions. To date, research in this area has focused on two main themes linking protein acetylation to plant immune signaling. Firstly, it has been established that proper gene expression during defense responses requires modulation of histone acetylation within target gene promoter regions. Second, some pathogens can deliver effector molecules that encode acetyltransferases directly within the host cell to modify acetylation of specific host proteins. Collectively these findings suggest that the acetylation level for a range of host proteins may be modulated to alter the outcome of pathogen infection. This review will focus on summarizing our current understanding of the roles of protein acetylation in plant defense and highlight the utility of proteomics approaches to uncover the complete repertoire of acetylation changes triggered by pathogen infection. PMID:27066055

  12. Acetylation and characterization of banana (Musa paradisiaca) starch.

    PubMed

    Bello-Pérez, L A; Contreras-Ramos, S M; Jìmenez-Aparicio, A; Paredes-López, O

    2000-01-01

    Banana native starch was acetylated and some of its functional properties were evaluated and compared to corn starch. In general, acetylated banana starch presented higher values in ash, protein and fat than corn acetylated starch. The modified starches had minor tendency to retrogradation assessed as % transmittance of starch pastes. At high temperature acetylated starches presented a water retention capacity similar to their native counterpart. The acetylation considerably increased the solubility of starches, and a similar behavior was found for swelling power. When freeze-thaw stability was studied, acetyl banana starch drained approximately 60% of water in the first and second cycles, but in the third and fourth cycles the percentage of separated water was low. However, acetyl corn starch showed lower freeze-thaw stability than the untreated sample. The modification increased the viscosity of banana starch pastes.

  13. Glutamine Triggers Acetylation-Dependent Degradation of Glutamine Synthetase via the Thalidomide Receptor Cereblon.

    PubMed

    Nguyen, T Van; Lee, J Eugene; Sweredoski, Michael J; Yang, Seung-Joo; Jeon, Seung-Je; Harrison, Joseph S; Yim, Jung-Hyuk; Lee, Sang Ghil; Handa, Hiroshi; Kuhlman, Brian; Jeong, Ji-Seon; Reitsma, Justin M; Park, Chul-Seung; Hess, Sonja; Deshaies, Raymond J

    2016-03-17

    Cereblon (CRBN), a substrate receptor for the cullin-RING ubiquitin ligase 4 (CRL4) complex, is a direct protein target for thalidomide teratogenicity and antitumor activity of immunomodulatory drugs (IMiDs). Here we report that glutamine synthetase (GS) is an endogenous substrate of CRL4(CRBN). Upon exposing cells to high glutamine concentration, GS is acetylated at lysines 11 and 14, yielding a degron that is necessary and sufficient for binding and ubiquitylation by CRL4(CRBN) and degradation by the proteasome. Binding of acetylated degron peptides to CRBN depends on an intact thalidomide-binding pocket but is not competitive with IMiDs. These findings reveal a feedback loop involving CRL4(CRBN) that adjusts GS protein levels in response to glutamine and uncover a new function for lysine acetylation.

  14. Acetylation of EGF Receptor Contributes to Tumor Cell Resistance to Histone Deacetylase Inhibitors

    PubMed Central

    Song, Hui; Li, Chia-Wei; Labaff, Adam M.; Lim, Seung-Oe; Li, Long-Yuan; Kan, Shu-Fen; Chen, Yue; Zhang, Kai; Lang, Jingyu; Xie, Xiaoming; Wang, Yan; Huo, Long-Fei; Hsu, Sheng-Chieh; Chen, Xiaomin; Zhao, Yingming; Hung, Mien-Chie

    2011-01-01

    Alteration of epidermal growth factor receptor (EGFR) is involved in various human cancers and has been intensively investigated. A plethora of evidence demonstrates that posttranslational modifications of EGFR play a pivotal role in controlling its function and metabolism. Here, we show that EGFR can be acetylated by CREB binding protein (CBP) acetyltransferase. Interestingly, EGFR acetylation affects its tyrosine phosphorylation, which may contribute to cancer cell resistance to histone deacetylase inhibitors (HDACIs). Since there is an increasing interest in using HDACIs to treat various cancers in the clinic, our current study provides insights and rationale for selecting effective therapeutic regimen. Consistent with the previous reports, we also show that HDACI combined with EGFR inhibitors achieves better therapeutic outcomes and provides a molecular rationale for the enhanced effect of combination therapy. Our results unveil a critical role of EGFR acetylation that regulates EGFR function, which may have an important clinical implication. PMID:21094134

  15. Acetylation of prostaglandin synthetase by aspirin. Purification and properties of the acetylated protein from sheep vesicular gland.

    PubMed

    Roth, G J; Stanford, N; Jacobs, J W; Majerus, P W

    1977-09-20

    We previously presented evidence that aspirin (acetylsalicylic acid) inhibits prostaglandin synthetase by acetylating and active site of the enzyme. In the current work, we have labeled the enzyme from an aceton-pentane powder of sheep vesicular gland using [acetyl-3H]aspirin and purified the [3H]acetyl-protein to near homogeneity. The final preparation contains protein of a single molecular weight (85 000) and an amino-terminal sequence of Asp-Ala-Gly-Arg-Ala. The [3H]acetyl-protein contained 0.5 mol of acetyl residues per mol of protein based on amino acid composition but only a single sequence was found.

  16. The neurobiology of acetyl-L-carnitine.

    PubMed

    Traina, Giovanna

    2016-06-01

    A large body of evidence points to the positive effects of dietary supplementation of acetyl-L-carnitine (ALC). Its use has shown health benefits in neuroinflammation, which is a common denominator in a host of neurodegenerative diseases. ALC is the principal acetyl ester of L-Carnitine (LC), and it plays an essential role in intermediary metabolism, acting as a donor of acetyl groups and facilitating the transfer of fatty acids from cytosol to mitochondria during beta-oxidation. Dietary supplementation of ALC exerts neuroprotective, neurotrophic, antidepressive and analgesic effects in painful neuropathies. ALC also has antioxidant and anti-apoptotic activity. Moreover, ALC exhibits positive effects on mitochondrial metabolism, and shows promise in the treatment of aging and neurodegenerative pathologies by slowing the progression of mental deterioration. In addition, ALC plays neuromodulatory effects on both synaptic morphology and synaptic transmission. These effects are likely due to affects of ALC through modulation of gene expression on several targets in the central nervous system. Here, we review the current state of knowledge on effects of ALC in the nervous system.

  17. Molecular characterization of a glutathione transferase from Pinus tabulaeformis (Pinaceae).

    PubMed

    Zeng, Qing-Yin; Lu, Hai; Wang, Xiao-Ru

    2005-05-01

    Glutathione transferases (GSTs) play important roles in stress tolerance and detoxification metabolism in plants. To date, studies on GSTs in higher plants have focused largely on agricultural plants. In contrast, there is virtually no information on the molecular characteristics of GSTs in gymnosperms. The present study reports for the first time the cloning, expression and characteristics of a GST gene (PtGSTU1) from a pine, Pinus tabulaeformis, which is widely distributed from northern to central China covering cold temperate and drought regions. The PtGSTU1 gene encodes a protein of 228 amino acid residues with a calculated molecular mass of 26.37 kDa. Reverse transcription PCR revealed that PtGSTU1 was expressed in different tissues, both above and below ground, of P. tabulaeformis. The over-expressed recombinant PtGSTU1 showed high activity towards the substrates 1-chloro-2,4-dinitrobenzene (CDNB) and 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl). Kinetic analysis with respect to CDNB as substrate revealed a Km of 0.47 mM and Vmax of 169.1 micromol/min per mg of protein. The recombinant PtGSTU1 retained more than 60% of its maximum enzymatic activity from 15 degrees C to 45 degrees C with a broad optimum Tm range of 25 degrees C - 35 degrees C. The enzyme had a maximum activity at approximately pH 8.5 - 9.0. Site-directed mutagenesis revealed that Ser13 in the N-terminal domain is a critical catalytic residue, responsible for stabilisation of the thiolate anion of enzyme-bound glutathione. Based on comparative analyses of its amino acid sequence, phylogeny and predicted three-dimensional structure, the PtGSTU1 should be classified as a tau class GST.

  18. Phosphonocarboxylates Inhibit the Second Geranylgeranyl Addition by Rab Geranylgeranyl Transferase*

    PubMed Central

    Baron, Rudi A.; Tavaré, Richard; Figueiredo, Ana C.; Błażewska, Katarzyna M.; Kashemirov, Boris A.; McKenna, Charles E.; Ebetino, Frank H.; Taylor, Adam; Rogers, Michael J.; Coxon, Fraser P.; Seabra, Miguel C.

    2009-01-01

    Rab geranylgeranyl transferase (RGGT) catalyzes the post-translational geranylgeranyl (GG) modification of (usually) two C-terminal cysteines in Rab GTPases. Here we studied the mechanism of the Rab geranylgeranylation reaction by bisphosphonate analogs in which one phosphonate group is replaced by a carboxylate (phosphonocarboxylate, PC). The phosphonocarboxylates used were 3-PEHPC, which was previously reported, and 2-hydroxy-3-imidazo[1,2-a]pyridin-3-yl-2-phosphonopropionic acid ((+)-3-IPEHPC), a >25-fold more potent related compound as measured by both IC50 and Ki.(+)-3-IPEHPC behaves as a mixed-type inhibitor with respect to GG pyrophosphate (GGPP) and an uncompetitive inhibitor with respect to Rab substrates. We propose that phosphonocarboxylates prevent only the second GG transfer onto Rabs based on the following evidence. First, geranylgeranylation of Rab proteins ending with a single cysteine motif such as CAAX, is not affected by the inhibitors, either in vitro or in vivo. Second, the addition of an -AAX sequence onto Rab-CC proteins protects the substrate from inhibition by the inhibitors. Third, we demonstrate directly that in the presence of (+)-3-IPEHPC, Rab-CC and Rab-CXC proteins are modified by only a single GG addition. The presence of (+)-3-IPEHPC resulted in a preference for the Rab N-terminal cysteine to be modified first, suggesting an order of cysteine geranylgeranylation in RGGT catalysis. Our results further suggest that the inhibitor binds to a site distinct from the GGPP-binding site on RGGT. We suggest that phosphonocarboxylate inhibitors bind to a GG-cysteine binding site adjacent to the active site, which is necessary to align the mono-GG-Rab for the second GG addition. These inhibitors may represent a novel therapeutic approach in Rab-mediated diseases. PMID:19074143

  19. Differential lysine acetylation profiles of Erwinia amylovora strains revealed by proteomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protein lysine acetylation (LysAc) in bacteria has recently been demonstrated to be widespread in E. coli and Salmonella and to broadly regulate bacterial physiology and metabolism. However, LysAc in plant pathogenic bacteria is largely unknown. Here we report the lysine acetylome of Erwinia amylovo...

  20. Antibodies specific to acetylated histones document the existence of deposition- and transcription-related histone acetylation in Tetrahymena

    PubMed Central

    1989-01-01

    In this study, we have constructed synthetic peptides which are identical to hyperacetylated amino termini of two Tetrahymena core histones (tetra-acetylated H4 and penta-acetylated hv1) and used them to generate polyclonal antibodies specific for acetylated forms (mono-, di-, tri-, etc.) of these histones. Neither of these antisera recognizes histone that is unacetylated. Immunoblotting analyses demonstrate that both transcription-related and deposition-related acetate groups on H4 are recognized by both antisera. In addition, the antiserum raised against penta-acetylated hv1 also recognizes acetylated forms of this variant. Immunofluorescent analyses with both antisera demonstrate that, as expected, histone acetylation is specific to macronuclei (or new macronuclei) at all stages of the life cycle except when micronuclei undergo periods of rapid replication and chromatin assembly. During this time micronuclear staining is also detected. Our results also suggest that transcription-related acetylation begins selectively in new macronuclei immediately after the second postzygotic division. Acetylated histone is not observed in new micronuclei during stages corresponding to anlagen development and, therefore, histone acetylation can be distributed asymmetrically in development. Equally striking is the rapid turnover of acetylated histone in parental macronuclei during the time of their inactivation and elimination from the cell. Taken together, these data lend strong support to the idea that modulation of histone acetylation plays an important role in gene activation and in chromatin assembly. PMID:2654136

  1. Poly-acetylated chromatin signatures are preferred epitopes for site-specific histone H4 acetyl antibodies.

    PubMed

    Rothbart, Scott B; Lin, Shu; Britton, Laura-Mae; Krajewski, Krzysztof; Keogh, Michael-C; Garcia, Benjamin A; Strahl, Brian D

    2012-01-01

    Antibodies specific for histone post-translational modifications (PTMs) have been central to our understanding of chromatin biology. Here, we describe an unexpected and novel property of histone H4 site-specific acetyl antibodies in that they prefer poly-acetylated histone substrates. By all current criteria, these antibodies have passed specificity standards. However, we find these site-specific histone antibodies preferentially recognize chromatin signatures containing two or more adjacent acetylated lysines. Significantly, we find that the poly-acetylated epitopes these antibodies prefer are evolutionarily conserved and are present at levels that compete for these antibodies over the intended individual acetylation sites. This alarming property of acetyl-specific antibodies has far-reaching implications for data interpretation and may present a challenge for the future study of acetylated histone and non-histone proteins.

  2. The dynamic organization of fungal acetyl-CoA carboxylase

    PubMed Central

    Hunkeler, Moritz; Stuttfeld, Edward; Hagmann, Anna; Imseng, Stefan; Maier, Timm

    2016-01-01

    Acetyl-CoA carboxylases (ACCs) catalyse the committed step in fatty-acid biosynthesis: the ATP-dependent carboxylation of acetyl-CoA to malonyl-CoA. They are important regulatory hubs for metabolic control and relevant drug targets for the treatment of the metabolic syndrome and cancer. Eukaryotic ACCs are single-chain multienzymes characterized by a large, non-catalytic central domain (CD), whose role in ACC regulation remains poorly characterized. Here we report the crystal structure of the yeast ACC CD, revealing a unique four-domain organization. A regulatory loop, which is phosphorylated at the key functional phosphorylation site of fungal ACC, wedges into a crevice between two domains of CD. Combining the yeast CD structure with intermediate and low-resolution data of larger fragments up to intact ACCs provides a comprehensive characterization of the dynamic fungal ACC architecture. In contrast to related carboxylases, large-scale conformational changes are required for substrate turnover, and are mediated by the CD under phosphorylation control. PMID:27073141

  3. The dynamic organization of fungal acetyl-CoA carboxylase

    NASA Astrophysics Data System (ADS)

    Hunkeler, Moritz; Stuttfeld, Edward; Hagmann, Anna; Imseng, Stefan; Maier, Timm

    2016-04-01

    Acetyl-CoA carboxylases (ACCs) catalyse the committed step in fatty-acid biosynthesis: the ATP-dependent carboxylation of acetyl-CoA to malonyl-CoA. They are important regulatory hubs for metabolic control and relevant drug targets for the treatment of the metabolic syndrome and cancer. Eukaryotic ACCs are single-chain multienzymes characterized by a large, non-catalytic central domain (CD), whose role in ACC regulation remains poorly characterized. Here we report the crystal structure of the yeast ACC CD, revealing a unique four-domain organization. A regulatory loop, which is phosphorylated at the key functional phosphorylation site of fungal ACC, wedges into a crevice between two domains of CD. Combining the yeast CD structure with intermediate and low-resolution data of larger fragments up to intact ACCs provides a comprehensive characterization of the dynamic fungal ACC architecture. In contrast to related carboxylases, large-scale conformational changes are required for substrate turnover, and are mediated by the CD under phosphorylation control.

  4. A bromodomain–DNA interaction facilitates acetylation-dependent bivalent nucleosome recognition by the BET protein BRDT

    PubMed Central

    Miller, Thomas C. R.; Simon, Bernd; Rybin, Vladimir; Grötsch, Helga; Curtet, Sandrine; Khochbin, Saadi; Carlomagno, Teresa; Müller, Christoph W.

    2016-01-01

    Bromodomains are critical components of many chromatin modifying/remodelling proteins and are emerging therapeutic targets, yet how they interact with nucleosomes, rather than acetylated peptides, remains unclear. Using BRDT as a model, we characterized how the BET family of bromodomains interacts with site-specifically acetylated nucleosomes. Here we report that BRDT interacts with nucleosomes through its first (BD1), but not second (BD2) bromodomain, and that acetylated histone recognition by BD1 is complemented by a bromodomain–DNA interaction. Simultaneous DNA and histone recognition enhances BRDT's nucleosome binding affinity and specificity, and its ability to localize to acetylated chromatin in cells. Conservation of DNA binding in bromodomains of BRD2, BRD3 and BRD4, indicates that bivalent nucleosome recognition is a key feature of these bromodomains and possibly others. Our results elucidate the molecular mechanism of BRDT association with nucleosomes and identify structural features of the BET bromodomains that may be targeted for therapeutic inhibition. PMID:27991587

  5. Histone Acetylation Induced Transformation of B-DNA to Z-DNA in Cells Probed through FT-IR Spectroscopy.

    PubMed

    Zhang, Fengqiu; Huang, Qing; Yan, Jingwen; Chen, Zhu

    2016-04-19

    A nucleosome is made up of DNA and histones, and acetylation of histones perturbs the interaction of DNA and histones and thus affects the chromatin conformation and function. However, whether or how acetylation induces DNA conformation changes is still elusive. In this work, we applied FT-IR spectroscopy to monitor the DNA signals in cells as the histone acetylation was regulated by trichostatin A (TSA), a reversible inhibitor to histone deacetylases (HDACs). Our results unambiguously demonstrate the significant transformation of B-DNA to Z-DNA upon histone acetylation in the TSA treated HeLa cells. This is the first report providing the explicit experimental evidence for such a B-Z transformation of DNA in the epigenetic states of cells.

  6. Biosynthesis and turnover of O-acetyl and N-acetyl groups in the gangliosides of human melanoma cells

    SciTech Connect

    Manzi, A.E.; Sjoberg, E.R.; Diaz, S.; Varki, A.

    1990-08-05

    We and others previously described the melanoma-associated oncofetal glycosphingolipid antigen 9-O-acetyl-GD3, a disialoganglioside O-acetylated at the 9-position of the outer sialic acid residue. We have now developed methods to examine the biosynthesis and turnover of disialogangliosides in cultured melanoma cells and in Golgi-enriched vesicles from these cells. O-Acetylation was selectively expressed on di- and trisialogangliosides, but not on monosialogangliosides, nor on glycoprotein-bound sialic acids. Double-labeling of cells with (3H)acetate and (14C)glucosamine introduced easily detectable labels into each of the components of the ganglioside molecules. Pulse-chase studies of such doubly labeled molecules indicated that the O-acetyl groups turn over faster than the parent molecule. When Golgi-enriched vesicles from these cells were incubated with (acetyl-3H)acetyl-coenzyme A, the major labeled products were disialogangliosides. (Acetyl-3H)O-acetyl groups were found at both the 7- and the 9-positions, indicating that both 7-O-acetyl GD3 and 9-O-acetyl GD3 were synthesized by the action of O-acetyltransferase(s) on endogenous GD3. Analysis of the metabolically labeled molecules confirmed the existence of both 7- and 9-O-acetylated GD3 in the intact cells. Surprisingly, the major 3H-labeled product of the in vitro labeling reaction was not O-acetyl-GD3, but GD3, with the label exclusively in the sialic acid residues. Fragmentation of the labeled sialic acids by enzymatic and chemical methods showed that the 3H-label was exclusively in (3H)N-acetyl groups. Analyses of the double-labeled sialic acids from intact cells also showed that the 3H-label from (3H)acetate was exclusively in the form of (3H)N-acetyl groups, whereas the 14C-label was at the 4-position.

  7. Late onset ornithine carbamoyl transferase deficiency in males.

    PubMed Central

    Drogari, E; Leonard, J V

    1988-01-01

    Six boys with ornithine carbamoyl transferase deficiency presenting in infancy or later childhood are described. There was wide variation in both the time of presentation and the symptoms, which may initially suggest a neurological, behavioural, or gastroenterological problem. Two patients died, as did two male siblings who were probably affected, but with early recognition of the hyperammonaemia the outlook is good. PMID:3202644

  8. Histamine N-methyl transferase: inhibition by drugs.

    PubMed Central

    Pacifici, G M; Donatelli, P; Giuliani, L

    1992-01-01

    1. Histamine N-methyl transferase activity was measured in samples of human liver, brain, kidney, lung and intestinal mucosa. The mean (+/- s.d.) rate (nmol min-1 mg-1 protein) of histamine N-methylation was 1.78 +/- 0.59 (liver, n = 60), 1.15 +/- 0.38 (renal cortex, n = 8), 0.79 +/- 0.14 (renal medulla, n = 8), 0.35 +/- 0.08 (lung, n = 20), 0.47 +/- 0.18 (human intestine, n = 30) and 0.29 +/- 0.14 (brain, n = 13). 2. Inhibition of histamine N-methyl transferase by 15 drugs was investigated in human liver. The IC50 for the various drugs ranged over three orders of magnitude; chloroquine was the most potent inhibitor. 3. The average IC50 values for chloroquine were 12.6, 22.0, 19.0, 21.6 microM in liver, renal cortex, brain and colon, respectively. These values are lower than the Michaelis-Menten constant for histamine N-methyltransferase in liver (43.8 microM) and kidney (45.5 microM). Chloroquine carried a mixed non-competitive inhibition of hepatic histamine N-methyl transferase. Some side-effects of chloroquine may be explained by inhibition of histamine N-methyl transferase. PMID:1457266

  9. Rational design of an organometallic glutathione transferase inhibitor

    SciTech Connect

    Ang, W.H.; Parker, L.J.; De Luca, A.; Juillerat-Jeanneret, L.; Morton, C.J.; LoBello, M.; Parker, M.W.; Dyson, P.J.

    2010-08-17

    A hybrid organic-inorganic (organometallic) inhibitor was designed to target glutathione transferases. The metal center is used to direct protein binding, while the organic moiety acts as the active-site inhibitor. The mechanism of inhibition was studied using a range of biophysical and biochemical methods.

  10. Homogentisate solanesyl transferase (HST) cDNA’s in maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize white seedling 3 (w3) has served as a model albino-seedling mutant since its discovery in 1923. We show that the w3 phenotype is caused by disruptions in homogentisate solanesyl transferase (HST), an enzyme that catalyzes the committed step in plastoquinone-9 (PQ9) biosynthesis. This reaction ...

  11. GLUTATHIONE S-TRANSFERASE-MEDIATED METABOLISM OF BROMODICHLOROMETHANE

    EPA Science Inventory

    GLUTATHIONE s-TRANSFERASE-MEDIATED METABOLISM OF BROMODICHLOROMETHANE. M K Ross1 and R A Pegram2. 1Curriculum in Toxicology, University of North Carolina at Chapel Hill; 2Experimental Toxicology Division, NHEERL/ORD, United States Environmental Protection Agency, Research Triangl...

  12. Histone H3K56 Acetylation, Rad52, and Non-DNA Repair Factors Control Double-Strand Break Repair Choice with the Sister Chromatid

    PubMed Central

    Rothstein, Rodney; Aguilera, Andrés

    2013-01-01

    DNA double-strand breaks (DSBs) are harmful lesions that arise mainly during replication. The choice of the sister chromatid as the preferential repair template is critical for genome integrity, but the mechanisms that guarantee this choice are unknown. Here we identify new genes with a specific role in assuring the sister chromatid as the preferred repair template. Physical analyses of sister chromatid recombination (SCR) in 28 selected mutants that increase Rad52 foci and inter-homolog recombination uncovered 8 new genes required for SCR. These include the SUMO/Ub-SUMO protease Wss1, the stress-response proteins Bud27 and Pdr10, the ADA histone acetyl-transferase complex proteins Ahc1 and Ada2, as well as the Hst3 and Hst4 histone deacetylase and the Rtt109 histone acetyl-transferase genes, whose target is histone H3 Lysine 56 (H3K56). Importantly, we use mutations in H3K56 residue to A, R, and Q to reveal that H3K56 acetylation/deacetylation is critical to promote SCR as the major repair mechanism for replication-born DSBs. The same phenotype is observed for a particular class of rad52 alleles, represented by rad52-C180A, with a DSB repair defect but a spontaneous hyper-recombination phenotype. We propose that specific Rad52 residues, as well as the histone H3 acetylation/deacetylation state of chromatin and other specific factors, play an important role in identifying the sister as the choice template for the repair of replication-born DSBs. Our work demonstrates the existence of specific functions to guarantee SCR as the main repair event for replication-born DSBs that can occur by two pathways, one Rad51-dependent and the other Pol32-dependent. A dysfunction can lead to genome instability as manifested by high levels of homolog recombination and DSB accumulation. PMID:23357952

  13. SWI/SNF Displaces SAGA-Acetylated Nucleosomes

    PubMed Central

    Chandy, Mark; Gutiérrez, José L.; Prochasson, Philippe; Workman, Jerry L.

    2006-01-01

    SWI/SNF is a well-characterized chromatin remodeling complex that remodels chromatin by sliding nucleosomes in cis and/or displacing nucleosomes in trans. The latter mechanism has the potential to remove promoter nucleosomes, allowing access to transcription factors and RNA polymerase. In vivo, histone acetylation often precedes apparent nucleosome loss; therefore, we sought to determine whether nucleosomes containing acetylated histones could be displaced by the SWI/SNF chromatin remodeling complex. We found that SAGA-acetylated histones were lost from an immobilized nucleosome array when treated with the SWI/SNF complex. When the nucleosome array was acetylated by SAGA in the presence of bound transcription activators, it generated a peak of acetylation surrounding the activator binding sites. Subsequent SWI/SNF treatment suppressed this acetylation peak. Immunoblots indicated that SWI/SNF preferentially displaced acetylated histones from the array relative to total histones. Moreover, the Swi2/Snf2 bromodomain, an acetyl-lysine binding domain, played a role in the displacement of acetylated histones. These data indicate that targeted histone acetylation by the SAGA complex predisposes promoter nucleosomes for displacement by the SWI/SNF complex. PMID:17030999

  14. Importance of acetylator phenotype in the identity of Asian populations.

    PubMed

    Zaid, R B; Nargis, M; Neelotpol, S; Sayeed, M A; Banu, A; Shurovi, S; Hassan, K N; Salimullah, M; Ali, L; Azad Khan, A K

    2007-06-01

    The Marma, Tripura, and Chakma are tribal populations of South Asian countries such as Bangladesh. The populations are thought to be immigrants who started moving from their original home in the Far East toward the west and south. We randomly selected 80 Marma, 53 Tripura, and 43 Chakma to determine acetylation capacity and acetylator phenotype. The mean acetylation capacities were 63% in the Marma, 65% in the Tripura, and 70% in the Chakma. The acetylator phenotype was bimodally distributed as fast and slow acetylator. The frequencies of fast acetylator were 83% in the Marma, 89% in the Tripura, and 88% in the Chakma. According to acetylation capacity, the tribes are different from the founder nontribal populations of Bangladesh. They identify themselves as having a separate single population origin. The frequency of fast acetylator predicted served as the acetylator status of the Far East Asian population. The segregation of populations by acetylator phenotype on geographic longitude might be appropriate for geonational identification of Asian populations.

  15. Kinetics of CO Insertion and Acetyl Group Transfer Steps, and a Model of the Acetyl-CoA Synthase Catalytic Mechanism

    PubMed Central

    Tan, Xiangshi; Surovtsev, Ivan V.; Lindahl, Paul A.

    2008-01-01

    Acetyl-CoA synthase/carbon monoxide dehydrogenase is a Ni-Fe-S-containing enzyme that catalyzes the synthesis of acetyl-CoA from CO, CoA and a methyl group. The methyl group is transferred onto the enzyme from a corrinoid-iron-sulfur protein (CoFeSP). The kinetics of two steps within the catalytic mechanism were studied using the stopped-flow method, including the insertion of CO into a putative Ni2+-CH3 bond and the transfer of the resulting acetyl group to CoA. Neither step had been studied previously. Reactions were monitored indirectly, starting with the methylated intermediate form of the enzyme. Resulting traces were analyzed by constructing a simple kinetic model describing the catalytic mechanism under reducing conditions. Besides methyl group transfer, CO insertion, and acetyl group transfer, fitting to experimental traces required the inclusion of an inhibitory step in which CO reversibly bound to the form of the enzyme obtained immediately after product release. Global simulation of the reported datasets afforded a consistent set of kinetic parameters. The equilibrium constant for the overall synthesis of acetyl-CoA was estimated and compared to the product of the individual equilibrium constants. Simulations obtained with the model recapitulated the essential behavior of the enzyme, in terms of the variation of activity with [CO], and the time-dependent decay of the NiFeC EPR signal upon reaction with CoFeSP. Under standard assay conditions, the model suggests that the vast majority of active enzyme molecules in a population should be in the methylated form, suggesting that the subsequent catalytic step, namely CO insertion, is rate limiting. This conclusion is further supported by a sensitivity analysis showing that the rate is most sensitively affected by a change in the rate-coefficient associated with the CO insertion step. PMID:16967985

  16. 21 CFR 862.1315 - Galactose-1-phosphate uridyl transferase test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Galactose-1-phosphate uridyl transferase test... Chemistry Test Systems § 862.1315 Galactose-1-phosphate uridyl transferase test system. (a) Identification. A galactose-1-phosphate uridyl transferase test system is a device intended to measure the...

  17. Miners compensated for pneumoconiosis and glutathione s-transferases M1 and T1 genotypes.

    PubMed

    Zimmermann, Anna; Ebbinghaus, Rainer; Prager, Hans-Martin; Blaszkewicz, Meinolf; Hengstler, Jan G; Golka, Klaus

    2012-01-01

    Chronic inhalation of quartz-containing dust produces reversible inflammatory changes in lungs resulting in irreversible fibrotic changes termed pneumoconiosis. Due to the inflammatory process in the lungs, highly reactive substances are released that may be detoxified by glutathione S-transferases. Therefore, 90 hard coal miners with pneumoconiosis as a recognized occupational disease (in Germany: Berufskrankheit BK 4101) were genotyped for glutathione S-transferases M1 (GSTM1) and T1 (GSTT1) according to standard methods. Furthermore, occupational exposure and smoking habits were assessed by questionnaire. Changes in a chest x-ray were classified according to ILO classification 2000. Of the investigated hard coal miners 43% were GSTM1 negative whereas 57% were GSTM1 positive. The arithmetic mean of the age at time of investigation was 74.2 yr (range: 42-87 yr). Seventy-four percent of the hard coal miners reported being ever smokers, while 26% denied smoking. All hard coal miners provided pneumoconiosis-related changes in the chest x-ray. The observed frequency of GSTM1 negative hard coal miners was not different from frequencies reported for general Caucasian populations and in agreement with findings reported for Chinese coal miners. In contrast, in a former study, 16 of 19 German hard coal miners (84%) with urinary bladder cancer displayed a GSTM1 negative genotype. The outcome of this study provides evidence that severely occupationally exposed Caucasian hard coal miners do not present an elevated level of GSTM1 negative individuals.

  18. Coordination of a transcriptional switch by HMGI(Y) acetylation.

    PubMed

    Munshi, N; Agalioti, T; Lomvardas, S; Merika, M; Chen, G; Thanos, D

    2001-08-10

    Dynamic control of interferon-beta (IFN-beta) gene expression requires the regulated assembly and disassembly of the enhanceosome, a higher-order nucleoprotein complex formed in response to virus infection. The enhanceosome activates transcription by recruiting the histone acetyltransferase proteins CREB binding protein (CBP) and p300/CBP-associated factors (PCAF)/GCN5, which, in addition to modifying histones, acetylate HMGI(Y), the architectural component required for enhanceosome assembly. We show that the accurate execution of the IFN-beta transcriptional switch depends on the ordered acetylation of the high-mobility group I protein HMGI(Y) by PCAF/GCN5 and CBP, which acetylate HMGI(Y) at distinct lysine residues on endogenous promoters. Whereas acetylation of HMGI(Y) by CBP at lysine-65 destabilizes the enhanceosome, acetylation of HMGI(Y) by PCAF/GCN5 at lysine-71 potentiates transcription by stabilizing the enhanceosome and preventing acetylation by CBP.

  19. Survey of the human acetylator polymorphism in spontaneous disorders.

    PubMed Central

    Evans, D A

    1984-01-01

    There is ample evidence that the human acetylator phenotypes are associated with drug induced phenomena. It is principally the slow acetylators who exhibit toxic adverse effects because of their relative inability to detoxify the original drug compounds. In rare instances, however, it is the rapid acetylators who are at a disadvantage. In the matter of association of spontaneous disease with either acetylator phenotype, there are two groups of disorders to consider. First, disorders in which carcinogenic amines are known to be an aetiological factor. This is because these amines are substrates for the polymorphic N-acetyltransferase activity and hence there is a possible rational basis for searching for an association. Secondly, other disorders where searches for associations are based more on hunches. In the first group there is a definite statistical association between cancer of the bladder and the slow acetylator phenotype. In prevalence studies the slow phenotype is 39% more associated with bladder cancer than is the rapid phenotype. On the basis of the evidence now available it is not possible to say whether this association is because slow acetylators develop the disease more frequently or whether they survive longer. In the second group the relevant studies show (1) a greatly increased prevalence of slow acetylators in Gilbert's disease; (2) a confirmed association between the rapid acetylator phenotype and diabetes; (3) a possible association between the rapid acetylator phenotype and breast cancer; (4) a possible association between the slow acetylator phenotype and leprosy in Chinese patients; (5) an earlier age of onset of thyrotoxicosis (Graves' disease) in slow acetylators than in rapid acetylators; (6) no evidence of an association between either phenotype and spontaneous systemic lupus erythematosus. PMID:6387123

  20. DNA methylation and histone acetylation work in concert to regulate memory formation and synaptic plasticity.

    PubMed

    Miller, Courtney A; Campbell, Susan L; Sweatt, J David

    2008-05-01

    A clear understanding is developing concerning the importance of epigenetic-related molecular mechanisms in transcription-dependent long-term memory formation. Chromatin modification, in particular histone acetylation, is associated with transcriptional activation, and acetylation of histone 3 (H3) occurs in Area CA1 of the hippocampus following contextual fear conditioning training. Conversely, DNA methylation is associated with transcriptional repression, but is also dynamically regulated in Area CA1 following training. We recently reported that inhibition of the enzyme responsible for DNA methylation, DNA methyltransferase (DNMT), in the adult rat hippocampus blocks behavioral memory formation. Here, we report that DNMT inhibition also blocks the concomitant memory-associated H3 acetylation, without affecting phosphorylation of its upstream regulator, extracellular signal-regulated kinase (ERK). Interestingly, the DNMT inhibitor-induced deficit in memory consolidation, along with deficits in long-term potentiation, can be rescued by pharmacologically increasing levels of histone acetylation prior to DNMT inhibition. These observations suggest that DNMT activity is not only necessary for memory and plasticity, but that DNA methylation may work in concert with histone modifications to regulate plasticity and memory formation in the adult rat hippocampus.

  1. Lipase-catalyzed synthesis of acetylated EGCG and antioxidant properties of the acetylated derivatives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    (-)-Epigallocatechin-3-O-gallate (EGCG) acetylated derivatives were prepared by lipase catalyzed acylation of EGCG with vinyl acetate to improve its lipophilicity and expand its application in lipophilic media. The immobilized lipase, Lipozyme RM IM, was found to be the optimum catalyst. The optimiz...

  2. Acetylation of TUG protein promotes the accumulation of GLUT4 glucose transporters in an insulin-responsive intracellular compartment.

    PubMed

    Belman, Jonathan P; Bian, Rachel R; Habtemichael, Estifanos N; Li, Don T; Jurczak, Michael J; Alcázar-Román, Abel; McNally, Leah J; Shulman, Gerald I; Bogan, Jonathan S

    2015-02-13

    Insulin causes the exocytic translocation of GLUT4 glucose transporters to stimulate glucose uptake in fat and muscle. Previous results support a model in which TUG traps GLUT4 in intracellular, insulin-responsive vesicles termed GLUT4 storage vesicles (GSVs). Insulin triggers TUG cleavage to release the GSVs; GLUT4 then recycles through endosomes during ongoing insulin exposure. The TUG C terminus binds a GSV anchoring site comprising Golgin-160 and possibly other proteins. Here, we report that the TUG C terminus is acetylated. The TUG C-terminal peptide bound the Golgin-160-associated protein, ACBD3 (acyl-CoA-binding domain-containing 3), and acetylation reduced binding of TUG to ACBD3 but not to Golgin-160. Mutation of the acetylated residues impaired insulin-responsive GLUT4 trafficking in 3T3-L1 adipocytes. ACBD3 overexpression enhanced the translocation of GSV cargos, GLUT4 and insulin-regulated aminopeptidase (IRAP), and ACBD3 was required for intracellular retention of these cargos in unstimulated cells. Sirtuin 2 (SIRT2), a NAD(+)-dependent deacetylase, bound TUG and deacetylated the TUG peptide. SIRT2 overexpression reduced TUG acetylation and redistributed GLUT4 and IRAP to the plasma membrane in 3T3-L1 adipocytes. Mutation of the acetylated residues in TUG abrogated these effects. In mice, SIRT2 deletion increased TUG acetylation and proteolytic processing. During glucose tolerance tests, glucose disposal was enhanced in SIRT2 knock-out mice, compared with wild type controls, without any effect on insulin concentrations. Together, these data support a model in which TUG acetylation modulates its interaction with Golgi matrix proteins and is regulated by SIRT2. Moreover, acetylation of TUG enhances its function to trap GSVs within unstimulated cells and enhances insulin-stimulated glucose uptake.

  3. Interindividual and intraindividual variability in acetylation: characterization with caffeine.

    PubMed

    Hardy, B G; Lemieux, C; Walker, S E; Bartle, W R

    1988-08-01

    The degree of interindividual and intraindividual variability in acetylator activity was investigated with caffeine used as a probe of enzyme activity. Acetylator phenotype and relative N-acetyltransferase activity were estimated in 46 subjects by measuring the urinary ratio of two metabolites, AFMU/1-MX, after a single 300 mg oral dose of caffeine on five separate occasions. Thirty homozygous slow (rr) and 15 heterozygous rapid (Rr) acetylators were identified. The degree of interindividual variability in acetylator activity was observed to be a mean of 32% (range 27% to 36%) and 20% (range 11% to 29%) in the rr and Rr groups, respectively. The mean intraindividual variation on repetitive measurement was 19% (range 6% to 49%) in the rr and 14% (range 7% to 24%) in the Rr acetylator group. Four subjects had apparent changes in acetylator activity with time such that they were unable to be assigned to any one acetylator group. Two of these four subjects exhibited apparent homozygous rapid acetylator activity intermittently during the 5-week trial. This variability may explain, in part, some of the high degree of patient variability observed in the toxicity, efficacy, and drug-related disease associated with acetylated drugs and environmental toxins.

  4. Structure, morphology and functionality of acetylated and oxidised barley starches.

    PubMed

    El Halal, Shanise Lisie Mello; Colussi, Rosana; Pinto, Vânia Zanella; Bartz, Josiane; Radunz, Marjana; Carreño, Neftali Lenin Villarreal; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2015-02-01

    Acetylation and oxidation are chemical modifications which alter the properties of starch. The degree of modification of acetylated and oxidized starches is dependent on the catalyst and active chlorine concentrations, respectively. The objective of this study was to evaluate the effect of acetylation and oxidation on the structural, morphological, physical-chemical, thermal and pasting properties of barley starch. Barley starches were acetylated at different catalyst levels (11%, 17%, and 23% of NaOH solution) and oxidized at different sodium hypochlorite concentrations (1.0%, 1.5%, and 2.0% of active chlorine). Fourier-transformed infrared spectroscopy (FTIR), X-ray diffractograms, thermal, morphological, and pasting properties, swelling power and solubility of starches were evaluated. The degree of substitution (DS) of the acetylated starches increased with the rise in catalyst concentration. The percentage of carbonyl (CO) and carboxyl (COOH) groups in oxidized starches also increased with the rise of active chlorine level. The presence of hydrophobic acetyl groups, carbonyl and carboxyl groups caused a partial disorganization and depolymerization of starch granules. The structural, morphological and functional changes in acetylated and oxidized starches varied according to reaction conditions. Acetylation makes barley starch more hydrophobic by the insertion of acetyl groups. Also the oxidation promotes low retrogradation and viscosity. All these characteristics are important for biodegradable film production.

  5. N-ACETYL-β-GLUCOSAMINIDASE ACTIVITY IN SERUM DURING PREGNANCY

    PubMed Central

    Walker, P. G.; Woollen, Mary E.; Pugh, Doreen

    1960-01-01

    A spectrophotometric method for the estimation of N-acetyl-β-glucosaminidase in serum has been devised. Sera from normal adult males and females showed similar levels of activity. The activity in serum rose progressively during pregnancy and fell rapidly after parturition to normal levels. This change resembled closely that which occurs in serum β-glucuronidase. Placenta showed a moderate and chorion a high level of N-acetyl-β-glucosaminidase. High N-acetyl-β-glucosaminidase activity was demonstrated histochemically in decidual cells. The functions of N-acetyl-β-glucosaminidase and β-glucuronidase and factors influencing their activity are discussed. Images PMID:13782743

  6. Identification of a capsular variant and characterization of capsular acetylation in Klebsiella pneumoniae PLA-associated type K57

    PubMed Central

    Hsu, Chun-Ru; Liao, Chun-Hsing; Lin, Tzu-Lung; Yang, Han-Ru; Yang, Feng-Ling; Hsieh, Pei-Fang; Wu, Shih-Hsiung; Wang, Jin-Town

    2016-01-01

    Klebsiella pneumoniae can cause community-acquired pyogenic liver abscess (PLA). Capsular polysaccharide (CPS) is important for its virulence. Among 79 capsular (K) types discovered thus far, K57 is often associated with PLA. Here, we report the identification of a K57 variant. Cps gene locus sequencing revealed differences between the K57 reference strain 4425/51 (Ref-K57) and a variant, the PLA isolate A1142. While Ref-K57 cps contained orf13 encoding a putative acetyltransferase, the insertion of a putative transposase-encoding gene at this position was detected in A1142. This variation was detected in other K57 clinical strains. Biochemical analyses indicated that A1142 was deficient in CPS acetylation. Genetic replacement and complementation verified that orf13 was responsible for CPS acetylation. Acetylation increased CPS immunoreactivity to antiserum and enhanced K. pneumoniae induction of pro-inflammatory cytokines through JNK and MAPK signaling. While acetylation diminished the serum resistance of bacteria, it promoted adhesion to intestinal epithelial cells possibly via increasing production of type I fimbriae. In conclusion, acetylation-mediated capsular variation in K57 was observed. Capsular acetylation contributed to the variety and antigenic diversity of CPS, influenced its biological activities, and was involved in K. pneumoniae-host interactions. These findings have implications for vaccine design and pathogenicity of K. pneumoniae. PMID:27550826

  7. Biotinylation of lysine method identifies acetylated histone H3 lysine 79 in Saccharomyces cerevisiae as a substrate for Sir2.

    PubMed

    Bheda, Poonam; Swatkoski, Stephen; Fiedler, Katherine L; Boeke, Jef D; Cotter, Robert J; Wolberger, Cynthia

    2012-04-17

    Although the biological roles of many members of the sirtuin family of lysine deacetylases have been well characterized, a broader understanding of their role in biology is limited by the challenges in identifying new substrates. We present here an in vitro method that combines biotinylation and mass spectrometry (MS) to identify substrates deacetylated by sirtuins. The method permits labeling of deacetylated residues with amine-reactive biotin on the ε-nitrogen of lysine. The biotin can be utilized to purify the substrate and identify the deacetylated lysine by MS. The biotinyl-lysine method was used to compare deacetylation of chemically acetylated histones by the yeast sirtuins, Sir2 and Hst2. Intriguingly, Sir2 preferentially deacetylates histone H3 lysine 79 as compared to Hst2. Although acetylation of K79 was not previously reported in Saccharomyces cerevisiae, we demonstrate that a minor population of this residue is indeed acetylated in vivo and show that Sir2, and not Hst2, regulates the acetylation state of H3 lysine 79. The in vitro biotinyl-lysine method combined with chemical acetylation made it possible to identify this previously unknown, low-abundance histone acetyl modification in vivo. This method has further potential to identify novel sirtuin deacetylation substrates in whole cell extracts, enabling large-scale screens for new deacetylase substrates.

  8. Lysine Acetylation and Succinylation in HeLa Cells and their Essential Roles in Response to UV-induced Stress

    PubMed Central

    Xu, Hong; Chen, Xuanyi; Xu, Xiaoli; Shi, Rongyi; Suo, Shasha; Cheng, Kaiying; Zheng, Zhiguo; Wang, Meixia; Wang, Liangyan; Zhao, Ye; Tian, Bing; Hua, Yuejin

    2016-01-01

    Lysine acetylation and succinylation are major types of protein acylation that are important in many cellular processes including gene transcription, cellular metabolism, DNA damage response. Malfunctions in these post-translational modifications are associated with genome instability and disease in higher organisms. In this study, we used high-resolution nano liquid chromatography-tandem mass spectrometry combined with affinity purification to quantify the dynamic changes of protein acetylation and succinylation in response to ultraviolet (UV)-induced cell stress. A total of 3345 acetylation sites in 1440 proteins and 567 succinylation sites in 246 proteins were identified, many of which have not been reported previously. Bioinformatics analysis revealed that these proteins are involved in many important biological processes, including cell signalling transduction, protein localization and cell metabolism. Crosstalk analysis between these two modifications indicated that modification switches might regulate protein function in response to UV-induced DNA damage. We further illustrated that FEN1 acetylation at different sites could lead to different cellular phenotypes, suggesting the multiple function involvement of FEN1 acetylation under DNA damage stress. These systematic analyses provided valuable resources and new insight into the potential role of lysine acetylation and succinylation under physiological and pathological conditions. PMID:27452117

  9. Acetylation of barnyardgrass starch with acetic anhydride under iodine catalysis.

    PubMed

    Bartz, Josiane; Goebel, Jorge Tiago; Giovanaz, Marcos Antônio; Zavareze, Elessandra da Rosa; Schirmer, Manoel Artigas; Dias, Alvaro Renato Guerra

    2015-07-01

    Barnyardgrass (Echinochloa crus-galli) is an invasive plant that is difficult to control and is found in abundance as part of the waste of the paddy industry. In this study, barnyardgrass starch was extracted and studied to obtain a novel starch with potential food and non-food applications. We report some of the physicochemical, functional and morphological properties as well as the effect of modifying this starch with acetic anhydride by catalysis with 1, 5 or 10mM of iodine. The extent of the introduction of acetyl groups increased with increasing iodine levels as catalyst. The shape of the granules remained unaltered, but there were low levels of surface corrosion and the overall relative crystallinity decreased. The pasting temperature, enthalpy and other gelatinisation temperatures were reduced by the modification. There was an increase in the viscosity of the pastes, except for the peak viscosity, which was strongly reduced in 10mM iodine.

  10. The Role of the Plant-Specific ALTERED XYLOGLUCAN9 Protein in Arabidopsis Cell Wall Polysaccharide O-Acetylation1[OPEN

    PubMed Central

    Schultink, Alex; Naylor, Dan; Dama, Murali; Pauly, Markus

    2015-01-01

    A mutation in the ALTERED XYLOGLUCAN9 (AXY9) gene was found to be causative for the decreased xyloglucan acetylation phenotype of the axy9.1 mutant, which was identified in a forward genetic screen for Arabidopsis (Arabidopsis thaliana) mutants. The axy9.1 mutant also exhibits decreased O-acetylation of xylan, implying that the AXY9 protein has a broad role in polysaccharide acetylation. An axy9 insertional mutant exhibits severe growth defects and collapsed xylem, demonstrating the importance of wall polysaccharide O-acetylation for normal plant growth and development. Localization and topological experiments indicate that the active site of the AXY9 protein resides within the Golgi lumen. The AXY9 protein appears to be a component of the plant cell wall polysaccharide acetylation pathway, which also includes the REDUCED WALL ACETYLATION and TRICHOME BIREFRINGENCE-LIKE proteins. The AXY9 protein is distinct from the TRICHOME BIREFRINGENCE-LIKE proteins, reported to be polysaccharide acetyltransferases, but does share homology with them and other acetyltransferases, suggesting that the AXY9 protein may act to produce an acetylated intermediate that is part of the O-acetylation pathway. PMID:25681330

  11. α-Tubulin acetylation elevated in metastatic and basal-like breast cancer cells promotes microtentacle formation, adhesion, and invasive migration.

    PubMed

    Boggs, Amanda E; Vitolo, Michele I; Whipple, Rebecca A; Charpentier, Monica S; Goloubeva, Olga G; Ioffe, Olga B; Tuttle, Kimberly C; Slovic, Jana; Lu, Yiling; Mills, Gordon B; Martin, Stuart S

    2015-01-01

    Metastatic cases of breast cancer pose the primary challenge in clinical management of this disease, demanding the identification of effective therapeutic strategies that remain wanting. In this study, we report that elevated levels of α-tubulin acetylation are a sufficient cause of metastatic potential in breast cancer. In suspended cell culture conditions, metastatic breast cancer cells exhibited high α-tubulin acetylation levels that extended along microtentacle (McTN) protrusions. Mutation of the acetylation site on α-tubulin and enzymatic modulation of this posttranslational modification exerted a significant impact on McTN frequency and the reattachment of suspended tumor cells. Reducing α-tubulin acetylation significantly inhibited migration but did not affect proliferation. In an analysis of more than 140 matched primary and metastatic tumors from patients, we found that acetylation was maintained and in many cases increased in lymph node metastases compared with primary tumors. Proteomic analysis of an independent cohort of more than 390 patient specimens further documented the relationship between increased α-tubulin acetylation and the aggressive behaviors of basal-like breast cancers, with a trend toward increased risk of disease progression and death in patients with high-intensity α-tubulin acetylation in primary tumors. Taken together, our results identify a tight correlation between acetylated α-tubulin levels and aggressive metastatic behavior in breast cancer, with potential implications for the definition of a simple prognostic biomarker in patients with breast cancer.

  12. Glutathione Transferase from Trichoderma virens Enhances Cadmium Tolerance without Enhancing Its Accumulation in Transgenic Nicotiana tabacum

    PubMed Central

    Dixit, Prachy; Mukherjee, Prasun K.; Ramachandran, V.; Eapen, Susan

    2011-01-01

    Background Cadmium (Cd) is a major heavy metal pollutant which is highly toxic to plants and animals. Vast agricultural areas worldwide are contaminated with Cd. Plants take up Cd and through the food chain it reaches humans and causes toxicity. It is ideal to develop plants tolerant to Cd, without enhanced accumulation in the edible parts for human consumption. Glutathione transferases (GST) are a family of multifunctional enzymes known to have important roles in combating oxidative stresses induced by various heavy metals including Cd. Some GSTs are also known to function as glutathione peroxidases. Overexpression/heterologous expression of GSTs is expected to result in plants tolerant to heavy metals such as Cd. Results Here, we report cloning of a glutathione transferase gene from Trichoderma virens, a biocontrol fungus and introducing it into Nicotiana tabacum plants by Agrobacterium-mediated gene transfer. Transgenic nature of the plants was confirmed by Southern blot hybridization and expression by reverse transcription PCR. Transgene (TvGST) showed single gene Mendelian inheritance. When transgenic plants expressing TvGST gene were exposed to different concentrations of Cd, they were found to be more tolerant compared to wild type plants, with transgenic plants showing lower levels of lipid peroxidation. Levels of different antioxidant enzymes such as glutathione transferase, superoxide dismutase, ascorbate peroxidase, guiacol peroxidase and catalase showed enhanced levels in transgenic plants expressing TvGST compared to control plants, when exposed to Cd. Cadmium accumulation in the plant biomass in transgenic plants were similar or lower than wild-type plants. Conclusion The results of the present study suggest that transgenic tobacco plants expressing a Trichoderma virens GST are more tolerant to Cd, without enhancing its accumulation in the plant biomass. It should be possible to extend the present results to crop plants for developing Cd tolerance and

  13. Natural rubber biosynthesis in plants: rubber transferase.

    PubMed

    Cornish, Katrina; Xie, Wenshuang

    2012-01-01

    Rubber biosynthesis in plants is a fascinating biochemical system, which evolved at the dawn of the dicotyledoneae and is present in at least four of the dictolydonous superorders. Rubber biosynthesis is catalyzed by a membrane complex in a monolayer membrane envelope, requires two distinct substrates and a divalent cation cofactor, and produces a high-molecular-weight isoprenoid polymer. A solid understanding of this system underpins valuable papers in the literature. However, the published literature is rife with unreliable reports in which the investigators have fallen into traps created by the current incomplete understanding of the biochemistry of rubber synthesis. In this chapter, we attempt to guide both new and more established researchers around these pitfalls.

  14. Interaction of antimicrobial peptide with mycolyl transferase in Mycobacterium tuberculosis.

    PubMed

    Banerjee, Devjani I; Gohil, Tejas P

    2016-03-01

    It is estimated that about 40% of the Indian population are infected with tuberculosis (TB) and that ∼3,000,000 people die as a result of TB annually. TB is caused by Mycobacterium tuberculosis. In 2011, the World Health Organization declared India as having the highest TB burden worldwide. An important criteria for pathogenicity is the presence of mycolic acid linked to the protective outer membrane of bacteria. Mycolyl transferase catalyzes the transfer of mycolic acid and promotes cell wall synthesis. This is also considered as a novel target for drug-mediated intervention strategies. Here, we have attempted to understand the interaction between the antimicrobial peptide (AMP), dermcidin, and mycolyl transferase in M. tuberculosis using a computational approach. The present study was undertaken in order to elucidate the capability of AMPs to treat this bacteria, which is less sensitive to available antibiotics, and to design a novel method for new therapies.

  15. [Glutathione S-transferase of alpha class from pike liver].

    PubMed

    Borvinskaia, E V; Smirnov, L P; Nemova, N N

    2013-01-01

    In this study, glutathione S-transferase (GST) was isolated from the liver of pike Esox lucius, which was homogenous according to SDS-PAGE and isoelectrofocusing. It is a homodimer with subunits mass 25235.36 Da (according to HPLC-MS/MS) and pI about 6.4. Substrate specificity, thermostability, some kinetic characteristics and optimum pH were determined. The enzyme was identified as Alpha class GST.

  16. Molecular Basis of Substrate Specific Acetylation by N-Terminal Acetyltransferase NatB.

    PubMed

    Hong, Haiyan; Cai, Yongfei; Zhang, Shijun; Ding, Hongyan; Wang, Haitao; Han, Aidong

    2017-04-04

    The NatB N-terminal acetyltransferase specifically acetylates the N-terminal group of substrate protein peptides starting with Met-Asp/Glu/Asn/Gln. How NatB recognizes and acetylates these substrates remains unknown. Here, we report crystal structures of a NatB holoenzyme from Candida albicans in the presence of its co-factor CoA and substrate peptides. The auxiliary subunit Naa25 of NatB forms a horseshoe-like deck to hold specifically its catalytic subunit Naa20. The first two amino acids Met and Asp of a substrate peptide mediate the major interactions with the active site in the Naa20 subunit. The hydrogen bonds between the substrate Asp and pocket residues of Naa20 are essential to determine the NatB substrate specificity. Moreover, a hydrogen bond between the amino group of the substrate Met and a carbonyl group in the Naa20 active site directly anchors the substrate toward acetyl-CoA. Together, these structures define a unique molecular mechanism of specific N-terminal acetylation acted by NatB.

  17. In vitro assessment of antioxidant activity of tyrosol, resveratrol and their acetylated derivatives.

    PubMed

    Vlachogianni, Ioanna C; Fragopoulou, Elizabeth; Kostakis, Ioannis K; Antonopoulou, Smaragdi

    2015-06-15

    Consumption of phenolic compounds is associated with beneficial effects in humans even though many of them are poorly absorbed. The aim of this study was to investigate the in vitro antioxidant activity of tyrosol (T), resveratrol (R) and their acetylated derivatives (AcD), as increased lipophilicity has been reported to improve absorption. The chemically synthesized AcDs were evaluated by their ability to scavenge DPPH radicals, inhibit non-enzymatic linoleic acid peroxidation, inhibit human serum oxidation in the presence of copper ions and inhibit lipoxygenase activity. T showed an inhibitory effect only in serum oxidation, where the T-acetylated at aromatic-OH was the most active. The T-acetylated at aliphatic-OH and 3,5-diacetyl-R exhibited the most powerful effect in non-enzymatic linoleic acid peroxidation with IC50 values 2.4 mM ± 0.21 and 0.055 mM ± 0.0018, respectively. In all other tests R was the most potent among all its AcD and T. Increasing lipophilicity by acetylation improves antioxidant activity of phenolic compounds in non-enzymatic lipid peroxidation assays.

  18. HIF1α protein stability is increased by acetylation at lysine 709.

    PubMed

    Geng, Hao; Liu, Qiong; Xue, Changhui; David, Larry L; Beer, Tomasz M; Thomas, George V; Dai, Mu-Shui; Qian, David Z

    2012-10-12

    Lysine acetylation regulates protein stability and function. p300 is a component of the HIF-1 transcriptional complex and positively regulates the transactivation of HIF-1. Here, we show a novel molecular mechanism by which p300 facilitates HIF-1 activity. p300 increases HIF-1α (HIF1α) protein acetylation and stability. The regulation can be opposed by HDAC1, but not by HDAC3, and is abrogated by disrupting HIF1α-p300 interaction. Mechanistically, p300 specifically acetylates HIF1α at Lys-709, which increases the protein stability and decreases polyubiquitination in both normoxia and hypoxia. Compared with the wild-type protein, a HIF1α K709A mutant protein is more stable, less polyubiquitinated, and less dependent on p300. Overexpression of the HIF1α wild-type or K709A mutant in cancer cells lacking the endogenous HIF1α shows that the K709A mutant is transcriptionally more active toward the HIF-1 reporter and some endogenous target genes. Cancer cells containing the K709A mutant are less sensitive to hypoxia-induced growth arrest than the cells containing the HIF1α wild-type. Taken together, these data demonstrate a novel biological consequence upon HIF1α-p300 interaction, in which HIF1α can be stabilized by p300 via Lys-709 acetylation.

  19. An Alternative Strategy for Pan-acetyl-lysine Antibody Generation.

    PubMed

    Kim, Sun-Yee; Sim, Choon Kiat; Zhang, Qiongyi; Tang, Hui; Brunmeir, Reinhard; Pan, Hong; Karnani, Neerja; Han, Weiping; Zhang, Kangling; Xu, Feng

    2016-01-01

    Lysine acetylation is an important post-translational modification in cell signaling. In acetylome studies, a high-quality pan-acetyl-lysine antibody is key to successful enrichment of acetylated peptides for subsequent mass spectrometry analysis. Here we show an alternative method to generate polyclonal pan-acetyl-lysine antibodies using a synthesized random library of acetylated peptides as the antigen. Our antibodies are tested to be specific for acetyl-lysine peptides/proteins via ELISA and dot blot. When pooled, five of our antibodies show broad reactivity to acetyl-lysine peptides, complementing a commercial antibody in terms of peptide coverage. The consensus sequence of peptides bound by our antibody cocktail differs slightly from that of the commercial antibody. Lastly, our antibodies are tested in a proof-of-concept to analyze the acetylome of HEK293 cells. In total we identified 1557 acetylated peptides from 416 proteins. We thus demonstrated that our antibodies are well-qualified for acetylome studies and can complement existing commercial antibodies.

  20. Effect of acetaminophen on sulfamethazine acetylation in male volunteers.

    PubMed

    Tahir, I M; Iqbal, T; Saleem, S; Mehboob, H; Akhter, N; Riaz, M

    2016-03-01

    The effect of acetaminophen on sulfamethazine N-acetylation by human N-acetyltrasferase-2 (NAT2) was studied in 19 (n=19) healthy male volunteers in two different phases. In the first phase of the study the volunteers were given an oral dose of sulfamethazine 500 mg alone and blood and urine samples were collected. After the 10-day washout period the same selected volunteers were again administered sulfamethazine 500 mg along with 1000 mg acetaminophen. The acetylation of sulfamethazine by human NAT2 in both phases with and without acetaminophen was determined by HPLC to establish their respective phenotypes. In conclusion obtained statistics of present study revealed that acetaminophen significantly (P<0.0001) decreased sulfamethazine acetylation in plasma of both slow and fast acetylator male volunteers. A highly significant (P<0.0001) decrease in plasma-free and total sulfamethazine concentration was also observed when acetaminophen was co-administered. Urine acetylation status in both phases of the study was found not to be in complete concordance with that of plasma. Acetaminophen significantly (P<0.0001) increased the acetyl, free and total sulfamethazine concentration in urine of both slow and fast acetylators. Urine acetylation analysis has not been found to be a suitable approach for phenotypic studies.

  1. Histone H4 lysine 16 acetylation breaks the genome's silence

    PubMed Central

    Shia, Wei-Jong; Pattenden, Samantha G; Workman, Jerry L

    2006-01-01

    Acetylation at histone H4 lysine 16 is involved in many cellular processes in organisms as diverse as yeast and humans. A recent biochemical study pinpoints this particular acetylation mark as a switch for changing chromatin from a repressive to a transcriptionally active state. PMID:16689998

  2. Epsilon glutathione transferases possess a unique class-conserved subunit interface motif that directly interacts with glutathione in the active site

    PubMed Central

    Wongsantichon, Jantana; Robinson, Robert C.; Ketterman, Albert J.

    2015-01-01

    Epsilon class glutathione transferases (GSTs) have been shown to contribute significantly to insecticide resistance. We report a new Epsilon class protein crystal structure from Drosophila melanogaster for the glutathione transferase DmGSTE6. The structure reveals a novel Epsilon clasp motif that is conserved across hundreds of millions of years of evolution of the insect Diptera order. This histidine-serine motif lies in the subunit interface and appears to contribute to quaternary stability as well as directly connecting the two glutathiones in the active sites of this dimeric enzyme. PMID:26487708

  3. A two-process model describes the hydrogen exchange behavior of cytochrome c in the molten globule state with various extents of acetylation.

    PubMed

    Szewczuk, Z; Konishi, Y; Goto, Y

    2001-08-14

    Acetylation of Lys residues of horse cytochrome c steadily stabilizes the molten globule state in 18 mM HCl as more Lys residues are acetylated [Goto and Nishikiori (1991) J. Mol. Biol. 222, 679-686]. The dynamic features of the molten globule state were characterized by hydrogen/deuterium exchange of amide protons, monitored by mass spectrometry as each deuteration increased the protein mass by 1 Da. Electrospray mass spectrometry enabled us to monitor simultaneously the exchange kinetics of more than seven species with a different number of acetyl groups. One to four Lys residue-acetylated cytochrome c showed almost no protection of the amide protons from rapid exchange. The transition from the unprotected to the protected state occurred between five and eight Lys residue-acetylated species. For species with more than nine acetylated Lys residues, the exchange kinetics were independent of the extent of acetylation, and 26 amide protons were protected at 60 min of exchange, indicating the formation of a rigid hydrophobic core with hydrogen-bonded secondary structures. The apparent transition to the protected state required a higher degree of acetylation than the conformational transition measured by circular dichroism, which had a midpoint at about four acetylated residues. This difference in the transitions suggested a two-process model in which the exchange occurs either from the protected folded state or from the unprotected unfolded state through global unfolding. On the basis of a two-process model and with the reported values of the exchange and stability parameters, we simulated the exchange kinetics of a series of acetylated cytochrome c species. The simulated kinetics reproduced the observed kinetics well, indicating validity of this model for hydrogen exchange of the molten globule state.

  4. Acetylome analysis reveals the involvement of lysine acetylation in photosynthesis and carbon metabolism in the model cyanobacterium Synechocystis sp. PCC 6803.

    PubMed

    Mo, Ran; Yang, Mingkun; Chen, Zhuo; Cheng, Zhongyi; Yi, Xingling; Li, Chongyang; He, Chenliu; Xiong, Qian; Chen, Hui; Wang, Qiang; Ge, Feng

    2015-02-06

    Cyanobacteria are the oldest known life form inhabiting Earth and the only prokaryotes capable of performing oxygenic photosynthesis. Synechocystis sp. PCC 6803 (Synechocystis) is a model cyanobacterium used extensively in research on photosynthesis and environmental adaptation. Posttranslational protein modification by lysine acetylation plays a critical regulatory role in both eukaryotes and prokaryotes; however, its extent and function in cyanobacteria remain unexplored. Herein, we performed a global acetylome analysis on Synechocystis through peptide prefractionation, antibody enrichment, and high accuracy LC-MS/MS analysis; identified 776 acetylation sites on 513 acetylated proteins; and functionally categorized them into an interaction map showing their involvement in various biological processes. Consistent with previous reports, a large fraction of the acetylation sites are present on proteins involved in cellular metabolism. Interestingly, for the first time, many proteins involved in photosynthesis, including the subunits of phycocyanin (CpcA, CpcB, CpcC, and CpcG) and allophycocyanin (ApcA, ApcB, ApcD, ApcE, and ApcF), were found to be lysine acetylated, suggesting that lysine acetylation may play regulatory roles in the photosynthesis process. Six identified acetylated proteins associated with photosynthesis and carbon metabolism were further validated by immunoprecipitation and Western blotting. Our data provide the first global survey of lysine acetylation in cyanobacteria and reveal previously unappreciated roles of lysine acetylation in the regulation of photosynthesis. The provided data set may serve as an important resource for the functional analysis of lysine acetylation in cyanobacteria and facilitate the elucidation of the entire metabolic networks and photosynthesis process in this model cyanobacterium.

  5. [Transferase activity of horse blood serum cholinesterase at hydrolysis of 1-methyl-8-acetoxychinolium iodide in the presence of aliphatic alcohols].

    PubMed

    Basova, N E; Kormilitsyn, B N; Perchenok, A Yu; Rozengart, E V; Saakov, V S; Suvorov, A A

    2014-01-01

    To check whether the horse blood serum butyrylcholinesterase expresses transferase activity at the complex ester hydrolysis in the presense of several low-molecular aliphatic alcohols, a study was performed with aid of the chromogenic substrate 1-methyl-8-acetoxychinolium whose phenolic hydrolysis product absorbs intensively at 445 nm, whereas the initial ester in this specter area practically does not absorb. This allowed measuring simultaneously the products of accumulation of both products of enzymatic hydrolysis: of acetic acid by the potentiometric, while of phenol--by the photometric method. Rates of formation of both products of enzymatic hydrolysis are practically equal in experiments with all studied alcohols. This indicates that horse blood serum butyrylcholinesterase under these experimental conditions does not catalize transfer of acetyl residue to the studied aliphatic alcohols, i. e. does not have transefase activity.

  6. Antemortem stress regulates protein acetylation and glycolysis in postmortem muscle.

    PubMed

    Li, Zhongwen; Li, Xin; Wang, Zhenyu; Shen, Qingwu W; Zhang, Dequan

    2016-07-01

    Although exhaustive research has established that preslaughter stress is a major factor contributing to pale, soft, exudative (PSE) meat, questions remain regarding the biochemistry of postmortem glycolysis. In this study, the influence of preslaughter stress on protein acetylation in relationship to glycolysis was studied. The data show that antemortem swimming significantly enhanced glycolysis and the total acetylated proteins in postmortem longissimus dorsi (LD) muscle of mice. Inhibition of protein acetylation by histone acetyltransferase (HAT) inhibitors eliminated stress induced increase in glycolysis. Inversely, antemortem injection of histone deacetylase (HDAC) inhibitors, trichostatin A (TSA) and nicotinamide (NAM), further increased protein acetylation early postmortem and the glycolysis. These data provide new insight into the biochemistry of postmortem glycolysis by showing that protein acetylation regulates glycolysis, which may participate in the regulation of preslaughter stress on glycolysis in postmortem muscle.

  7. Acetylated triterpene saponins from the Thai medicinal plant, Sapindus emarginatus.

    PubMed

    Kanchanapoom, T; Kasai, R; Yamasaki, K

    2001-09-01

    From the pericarps of Sapindus emarginatus (Sapindaceae), three new acetylated triterpene saponins were isolated together with hederagenin and five known triterpene saponins, as well as one known sweet acyclic sesquiterpene glycoside, mukurozioside IIb. The structures of new compounds were elucidated as hederagenin 3-O-(2-O-acetyl-beta-D-xylopyranosyl)-(1-->3)-alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranoside, 23-O-acetyl-hederagenin 3-O-(4-O-acetyl-beta-D-xylopyranosyl)-(1-->3)-alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranoside and oleanolic acid 3-O-(4-O-acetyl-beta-D-xylopyranosyl)-(1-->3)-alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranoside by chemical and spectroscopic data.

  8. Structure of Human O-GlcNAc Transferase and its Complex with a Peptide Substrate

    SciTech Connect

    M Lazarus; Y Nam; J Jiang; P Sliz; S Walker

    2011-12-31

    The essential mammalian enzyme O-linked {beta}-N-acetylglucosamine transferase (O-GlcNAc transferase, here OGT) couples metabolic status to the regulation of a wide variety of cellular signalling pathways by acting as a nutrient sensor. OGT catalyses the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine (UDP-GlcNAc) to serines and threonines of cytoplasmic, nuclear and mitochondrial proteins, including numerous transcription factors, tumour suppressors, kinases, phosphatases and histone-modifying proteins. Aberrant glycosylation by OGT has been linked to insulin resistance, diabetic complications, cancer and neurodegenerative diseases including Alzheimer's. Despite the importance of OGT, the details of how it recognizes and glycosylates its protein substrates are largely unknown. We report here two crystal structures of human OGT, as a binary complex with UDP (2.8 {angstrom} resolution) and as a ternary complex with UDP and a peptide substrate (1.95 {angstrom}). The structures provide clues to the enzyme mechanism, show how OGT recognizes target peptide sequences, and reveal the fold of the unique domain between the two halves of the catalytic region. This information will accelerate the rational design of biological experiments to investigate OGT's functions; it will also help the design of inhibitors for use as cellular probes and help to assess its potential as a therapeutic target.

  9. Structure of a lipid A phosphoethanolamine transferase suggests how conformational changes govern substrate binding.

    PubMed

    Anandan, Anandhi; Evans, Genevieve L; Condic-Jurkic, Karmen; O'Mara, Megan L; John, Constance M; Phillips, Nancy J; Jarvis, Gary A; Wills, Siobhan S; Stubbs, Keith A; Moraes, Isabel; Kahler, Charlene M; Vrielink, Alice

    2017-02-28

    Multidrug-resistant (MDR) gram-negative bacteria have increased the prevalence of fatal sepsis in modern times. Colistin is a cationic antimicrobial peptide (CAMP) antibiotic that permeabilizes the bacterial outer membrane (OM) and has been used to treat these infections. The OM outer leaflet is comprised of endotoxin containing lipid A, which can be modified to increase resistance to CAMPs and prevent clearance by the innate immune response. One type of lipid A modification involves the addition of phosphoethanolamine to the 1 and 4' headgroup positions by phosphoethanolamine transferases. Previous structural work on a truncated form of this enzyme suggested that the full-length protein was required for correct lipid substrate binding and catalysis. We now report the crystal structure of a full-length lipid A phosphoethanolamine transferase from Neisseria meningitidis, determined to 2.75-Å resolution. The structure reveals a previously uncharacterized helical membrane domain and a periplasmic facing soluble domain. The domains are linked by a helix that runs along the membrane surface interacting with the phospholipid head groups. Two helices located in a periplasmic loop between two transmembrane helices contain conserved charged residues and are implicated in substrate binding. Intrinsic fluorescence, limited proteolysis, and molecular dynamics studies suggest the protein may sample different conformational states to enable the binding of two very different- sized lipid substrates. These results provide insights into the mechanism of endotoxin modification and will aid a structure-guided rational drug design approach to treating multidrug-resistant bacterial infections.

  10. Acetylated histone H3 increases nucleosome dissociation

    NASA Astrophysics Data System (ADS)

    Simon, Marek; Manohar, Mridula; Ottesen, Jennifer; Poirier, Michael

    2009-03-01

    Chromatin's basic unit structure is the nucleosome, i.e. genomic DNA wrapped around a particular class of proteins -- histones -- which due to their physical hindrance, block vital biological processes, such as DNA repair, DNA replication, and RNA transcription. Histone post-translational modifications, which are known to exist in vivo, are hypothesized to regulate these biological processes by directly altering DNA-histone interactions and thus nucleosome structure and stability. Using magnetic tweezers technique we studied the acetylation of histone H3 in the dyad region, i.e. at K115 and K122, on reconstituted arrays of nucleosomes under constant external force. Based on the measured increase in the probability of dissociation of modified nucleosomes, we infer that this double modification could facilitate histone chaperone mediated nucleosome disassembly in vivo.

  11. Aedes aegypti juvenile hormone acid methyl transferase, the ultimate enzyme in the biosynthetic pathway of juvenile hormone III, exhibits substrate control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report on the cloning, sequencing, characterization, 3D modeling and docking of Aedes aegypti juvenile hormone acid methyl transferase (AeaJHAMT), the enzyme that converts juvenile hormone acid (JHA) into juvenile hormone (JH). Purified recombinant AeaJHAMT was extensively characterized for enzym...

  12. Comprehensive profiling of lysine acetylation suggests the widespread function is regulated by protein acetylation in the silkworm, Bombyx mori.

    PubMed

    Nie, Zuoming; Zhu, Honglin; Zhou, Yong; Wu, Chengcheng; Liu, Yue; Sheng, Qing; Lv, Zhengbing; Zhang, Wenping; Yu, Wei; Jiang, Caiying; Xie, Longfei; Zhang, Yaozhou; Yao, Juming

    2015-09-01

    Lysine acetylation in proteins is a dynamic and reversible PTM and plays an important role in diverse cellular processes. In this study, using lysine-acetylation (Kac) peptide enrichment coupled with nano HPLC/MS/MS, we initially identified the acetylome in the silkworms. Overall, a total of 342 acetylated proteins with 667 Kac sites were identified in silkworm. Sequence motifs analysis around Kac sites revealed an enrichment of Y, F, and H in the +1 position, and F was also enriched in the +2 and -2 positions, indicating the presences of preferred amino acids around Kac sites in the silkworm. Functional analysis showed the acetylated proteins were primarily involved in some specific biological processes. Furthermore, lots of nutrient-storage proteins, such as apolipophorin, vitellogenin, storage proteins, and 30 K proteins, were highly acetylated, indicating lysine acetylation may represent a common regulatory mechanism of nutrient utilization in the silkworm. Interestingly, Ser2 proteins, the coating proteins of larval silk, were found to contain many Kac sites, suggesting lysine acetylation may be involved in the regulation of larval silk synthesis. This study is the first to identify the acetylome in a lepidoptera insect, and expands greatly the catalog of lysine acetylation substrates and sites in insects.

  13. Methamphetamine promotes α-tubulin deacetylation in endothelial cells: the protective role of acetyl-l-carnitine.

    PubMed

    Fernandes, S; Salta, S; Summavielle, T

    2015-04-16

    Methamphetamine (METH) is a powerful psychostimulant drug used worldwide for its reinforcing properties. In addition to the classic long-lasting monoaminergic-disrupting effects extensively described in the literature, METH has been consistently reported to increase blood brain barrier (BBB) permeability, both in vivo and in vitro, as a result of tight junction and cytoskeleton disarrangement. Microtubules play a critical role in cell stability, which relies on post-translational modifications such as α-tubulin acetylation. As there is evidence that psychostimulants drugs modulate the expression of histone deacetylases (HDACs), we hypothesized that in endothelial cells METH-mediation of cytoplasmatic HDAC6 activity could affect tubulin acetylation and further contribute to BBB dysfunction. To validate our hypothesis, we exposed the bEnd.3 endothelial cells to increasing doses of METH and verified that it leads to an extensive α-tubulin deacetylation mediated by HDACs activation. Furthermore, since we recently reported that acetyl-l-carnitine (ALC), a natural occurring compound, prevents BBB structural loss in a context of METH exposure, we reasoned that ALC could also preserve the acetylation of microtubules under METH action. The present results confirm that ALC is able to prevent METH-induced deacetylation providing effective protection on microtubule acetylation. Although further investigation is still needed, HDACs regulation may become a new therapeutic target for ALC.

  14. Deciphering the Regulatory Circuitry That Controls Reversible Lysine Acetylation in Salmonella enterica

    PubMed Central

    Hentchel, Kristy L.; Thao, Sandy; Intile, Peter J.

    2015-01-01

    ABSTRACT In Salmonella enterica, the reversible lysine acetylation (RLA) system is comprised of the protein acetyltransferase (Pat) and sirtuin deacetylase (CobB). RLA controls the activities of many proteins, including the acetyl coenzyme A (acetyl-CoA) synthetase (Acs), by modulating the degree of Acs acetylation. We report that IolR, a myo-inositol catabolism repressor, activates the expression of genes encoding components of the RLA system. In vitro evidence shows that the IolR protein directly regulates pat expression. An iolR mutant strain displayed a growth defect in minimal medium containing 10 mM acetate, a condition under which RLA function is critical to control Acs activity. Increased levels of Pat, CobB, or Acs activity reversed the growth defect, suggesting the Pat/CobB ratio in an iolR strain is altered and that such a change affects the level of acetylated, inactive Acs. Results of quantitative reverse transcription-PCR (qRT-PCR) analyses of pat, cobB, and acs expression indicated that expression of the genes alluded to in the IolR-deficient strain was reduced 5-, 3-, and 2.6-fold, respectively, relative to the levels present in the strain carrying the iolR+ allele. Acs activity in cell-free extracts from an iolR mutant strain was reduced ~25% relative to that of the iolR+ strain. Glucose differentially regulated expression of pat, cobB, and acs. The catabolite repressor protein (Crp) positively regulated expression of pat while having no effect on cobB. PMID:26199328

  15. Carfilzomib-related acute kidney injury may be prevented by N-acetyl-L-cysteine.

    PubMed

    Wanchoo, Rimda; Khan, Seyyar; Kolitz, Jonathan E; Jhaveri, Kenar D

    2015-08-01

    Carfilzomib is a second-generation epoxyketone proteasome inhibitor that is approved for treatment of relapsed and refractory multiple myeloma. Phase 2 trials have reported that 25% of treated patients have renal adverse effects. Pre-renal/vasoconstriction-related insult from this chemotherapy agent has been documented. We describe a case of a 78-year-old man with refractory multiple myeloma with acute kidney injury associated with carfilzomib treatment. We show that use of N-acetyl-l-cysteine in our patient partially mitigated the renal injury upon re-challenge. This case report hypothesizes that acute renal injury from carfilzomib is caused by vasoconstriction of the renal vessels, which may be prevented by N-acetyl-l-cysteine.

  16. Replacement of the Saccharomyces cerevisiae acetyl-CoA synthetases by alternative pathways for cytosolic acetyl-CoA synthesis.

    PubMed

    Kozak, Barbara U; van Rossum, Harmen M; Benjamin, Kirsten R; Wu, Liang; Daran, Jean-Marc G; Pronk, Jack T; van Maris, Antonius J A

    2014-01-01

    Cytosolic acetyl-coenzyme A is a precursor for many biotechnologically relevant compounds produced by Saccharomyces cerevisiae. In this yeast, cytosolic acetyl-CoA synthesis and growth strictly depend on expression of either the Acs1 or Acs2 isoenzyme of acetyl-CoA synthetase (ACS). Since hydrolysis of ATP to AMP and pyrophosphate in the ACS reaction constrains maximum yields of acetyl-CoA-derived products, this study explores replacement of ACS by two ATP-independent pathways for acetyl-CoA synthesis. After evaluating expression of different bacterial genes encoding acetylating acetaldehyde dehydrogenase (A-ALD) and pyruvate-formate lyase (PFL), acs1Δ acs2Δ S. cerevisiae strains were constructed in which A-ALD or PFL successfully replaced ACS. In A-ALD-dependent strains, aerobic growth rates of up to 0.27 h(-1) were observed, while anaerobic growth rates of PFL-dependent S. cerevisiae (0.20 h(-1)) were stoichiometrically coupled to formate production. In glucose-limited chemostat cultures, intracellular metabolite analysis did not reveal major differences between A-ALD-dependent and reference strains. However, biomass yields on glucose of A-ALD- and PFL-dependent strains were lower than those of the reference strain. Transcriptome analysis suggested that reduced biomass yields were caused by acetaldehyde and formate in A-ALD- and PFL-dependent strains, respectively. Transcript profiles also indicated that a previously proposed role of Acs2 in histone acetylation is probably linked to cytosolic acetyl-CoA levels rather than to direct involvement of Acs2 in histone acetylation. While demonstrating that yeast ACS can be fully replaced, this study demonstrates that further modifications are needed to achieve optimal in vivo performance of the alternative reactions for supply of cytosolic acetyl-CoA as a product precursor.

  17. Two Trichome Birefringence-Like Proteins Mediate Xylan Acetylation, Which Is Essential for Leaf Blight Resistance in Rice1[OPEN

    PubMed Central

    He, Congwu; Liu, Xiangling; Tian, Yanbao; Liu, Xue-Hui; Pauly, Markus

    2017-01-01

    Acetylation is a ubiquitous modification on cell wall polymers, which play a structural role in plant growth and stress defenses. However, the mechanisms for how crop plants accomplish cell wall polymer O-acetylation are largely unknown. Here, we report on the isolation and characterization of two trichome birefringence-like (tbl) mutants in rice (Oryza sativa), which are affected in xylan O-acetylation. ostbl1 and ostbl2 single mutant and the tbl1 tbl2 double mutant displayed a stunted growth phenotype with varied degree of dwarfism. As shown by chemical assays, the wall acetylation level is affected in the mutants and the knock-down and overexpression transgenic plants. Furthermore, NMR spectroscopy analyses showed that all those mutants have varied decreases in xylan monoacetylation. The divergent expression levels of OsTBL1 and OsTBL2 explained the chemotype difference and indicated that OsTBL1 is a functionally dominant gene. OsTBL1 was found to be Golgi-localized. The recombinant OsTBL1 protein incorporates acetyl groups onto xylan. By using xylopentaose, a preferred acceptor substrate, OsTBL1 can transfer up to four acetyl residues onto xylopentaose, and this activity showed saturable kinetics. 2D-NMR spectroscopy showed that OsTBL1 transfers acetate to both 2-O and 3-O sites of xylosyl residues. In addition, ostbl1 and tbl1 tbl2 displayed susceptibility to rice blight disease, indicating that this xylan modification is required for pathogen resistance. This study identifies the major genes responsible for xylan acetylation in rice plants. PMID:27864442

  18. Two Trichome Birefringence-Like Proteins Mediate Xylan Acetylation, Which Is Essential for Leaf Blight Resistance in Rice.

    PubMed

    Gao, Yaping; He, Congwu; Zhang, Dongmei; Liu, Xiangling; Xu, Zuopeng; Tian, Yanbao; Liu, Xue-Hui; Zang, Shanshan; Pauly, Markus; Zhou, Yihua; Zhang, Baocai

    2017-01-01

    Acetylation is a ubiquitous modification on cell wall polymers, which play a structural role in plant growth and stress defenses. However, the mechanisms for how crop plants accomplish cell wall polymer O-acetylation are largely unknown. Here, we report on the isolation and characterization of two trichome birefringence-like (tbl) mutants in rice (Oryza sativa), which are affected in xylan O-acetylation. ostbl1 and ostbl2 single mutant and the tbl1 tbl2 double mutant displayed a stunted growth phenotype with varied degree of dwarfism. As shown by chemical assays, the wall acetylation level is affected in the mutants and the knock-down and overexpression transgenic plants. Furthermore, NMR spectroscopy analyses showed that all those mutants have varied decreases in xylan monoacetylation. The divergent expression levels of OsTBL1 and OsTBL2 explained the chemotype difference and indicated that OsTBL1 is a functionally dominant gene. OsTBL1 was found to be Golgi-localized. The recombinant OsTBL1 protein incorporates acetyl groups onto xylan. By using xylopentaose, a preferred acceptor substrate, OsTBL1 can transfer up to four acetyl residues onto xylopentaose, and this activity showed saturable kinetics. 2D-NMR spectroscopy showed that OsTBL1 transfers acetate to both 2-O and 3-O sites of xylosyl residues. In addition, ostbl1 and tbl1 tbl2 displayed susceptibility to rice blight disease, indicating that this xylan modification is required for pathogen resistance. This study identifies the major genes responsible for xylan acetylation in rice plants.

  19. Chitosan Molecular Structure as a Function of N-Acetylation

    SciTech Connect

    Franca, Eduardo F.; Freitas, Luiz C.; Lins, Roberto D.

    2011-07-01

    Molecular dynamics simulations have been carried out to characterize the structure and solubility of chitosan nanoparticle-like structures as a function of the deacetylation level (0, 40, 60, and 100%) and the spatial distribution of the N-acetyl groups in the particles. The polysaccharide chains of highly N-deacetylated particles where the N-acetyl groups are uniformly distributed present a high flexibility and preference for the relaxed two-fold helix and five-fold helix motifs. When these groups are confined to a given region of the particle, the chains adopt preferentially a two-fold helix with f and w values close to crystalline chitin. Nanoparticles with up to 40% acetylation are moderately soluble, forming stable aggregates when the N-acetyl groups are unevenly distributed. Systems with 60% or higher N-acetylation levels are insoluble and present similar degrees of swelling regardless the distribution of their N-acetyl groups. Overall particle solvation is highly affected by electrostatic forces resulting from the degree of acetylation. The water mobility and orientation around the polysaccharide chains affects the stability of the intramolecular O3- HO3(n) ... O5(n+ 1) hydrogen bond, which in turn controls particle aggregation.

  20. Regulation of Autophagy and Mitophagy by Nutrient Availability and Acetylation

    PubMed Central

    Webster, Bradley R.; Scott, Iain; Traba, Javier; Han, Kim; Sack, Michael N.

    2014-01-01

    Normal cellular function is dependent on a number of highly regulated homeostatic mechanisms, which act in concert to maintain conditions suitable for life. During periods of nutritional deficit, cells initiate a number of recycling programs which break down complex intracellular structures, thus allowing them to utilize the energy stored within. These recycling systems, broadly named “autophagy”, enable the cell to maintain the flow of nutritional substrates until they can be replenished from external sources. Recent research has shown that a number of regulatory components of the autophagy program are controlled by lysine acetylation. Lysine acetylation is a reversible post-translational modification that can alter the activity of enzymes in a number of cellular compartments. Strikingly, the main substrate for this modification is a product of cellular energy metabolism: acetyl-CoA. This suggests a direct and intricate link between fuel metabolites and the systems which regulate nutritional homeostasis. In this review, we examine how acetylation regulates the systems that control cellular autophagy, and how global protein acetylation status may act as a trigger for recycling of cellular components in a nutrient-dependent fashion. In particular, we focus on how acetylation may control the degradation and turnover of mitochondria, the major source of fuel-derived acetyl-CoA. PMID:24525425

  1. Serine/threonine acetylation of TGFβ-activated kinase (TAK1) by Yersinia pestis YopJ inhibits innate immune signaling

    PubMed Central

    Paquette, Nicholas; Conlon, Joseph; Sweet, Charles; Rus, Florentina; Wilson, Lindsay; Pereira, Andrea; Rosadini, Charles V.; Goutagny, Nadege; Weber, Alexander N. R.; Lane, William S.; Shaffer, Scott A.; Maniatis, Stephanie; Fitzgerald, Katherine A.; Stuart, Lynda; Silverman, Neal

    2012-01-01

    The Gram-negative bacteria Yersinia pestis, causative agent of plague, is extremely virulent. One mechanism contributing to Y. pestis virulence is the presence of a type-three secretion system, which injects effector proteins, Yops, directly into immune cells of the infected host. One of these Yop proteins, YopJ, is proapoptotic and inhibits mammalian NF-κB and MAP-kinase signal transduction pathways. Although the molecular mechanism remained elusive for some time, recent work has shown that YopJ acts as a serine/threonine acetyl-transferase targeting MAP2 kinases. Using Drosophila as a model system, we find that YopJ inhibits one innate immune NF-κB signaling pathway (IMD) but not the other (Toll). In fact, we show YopJ mediated serine/threonine acetylation and inhibition of dTAK1, the critical MAP3 kinase in the IMD pathway. Acetylation of critical serine/threonine residues in the activation loop of Drosophila TAK1 blocks phosphorylation of the protein and subsequent kinase activation. In addition, studies in mammalian cells show similar modification and inhibition of hTAK1. These data present evidence that TAK1 is a target for YopJ-mediated inhibition. PMID:22802624

  2. Histone Acetylation Facilitates Rapid and Robust Memory CD8 T Cell Response through Differential Expression of Effector Molecules (Eomesodermin and Its Targets: Perforin and Granzyme B)1

    PubMed Central

    Araki, Yasuto; Fann, Monchou; Wersto, Robert; Weng, Nan-ping

    2008-01-01

    To understand the mechanism regulating the effector function of memory CD8 T cells, we examined expression and chromatin state of a key transcription factor (eomesodermin, EOMES) and two of its targets: perforin (PRF1) and granzyme B (GZMB). Accessible chromatin associated histone 3 lysine 9 acetylation (H3K9Ac) was found significantly higher at the proximal promoter and the first exon region of all three genes in memory CD8 T cells than in naive CD8 T cells. Correspondingly, EOMES and PRF1 were constitutively higher expressed in memory CD8 T cells than in naive CD8 T cells at resting and activated states. In contrast, higher expression of GZMB was induced in memory CD8 T cells than in naive CD8 T cells only after activation. Regardless of their constitutive or inducible expression, decreased H3K9Ac levels after treatment with a histone acetyl-transferase inhibitor (Curcumin) led to decreased expression of all three genes in activated memory CD8 T cells. These findings suggest that H3K9Ac associated accessible chromatin state serves as a corner stone for the differentially high expression of these effector genes in memory CD8 T cells. Thus, epigenetic changes mediated via histone acetylation may provide a chromatin “memory” for the rapid and robust transcriptional response of memory CD8 T cells. PMID:18523274

  3. Erasers of Histone Acetylation: The Histone Deacetylase Enzymes

    PubMed Central

    Seto, Edward; Yoshida, Minoru

    2014-01-01

    Histone deacetylases (HDACs) are enzymes that catalyze the removal of acetyl functional groups from the lysine residues of both histone and nonhistone proteins. In humans, there are 18 HDAC enzymes that use either zinc- or NAD+-dependent mechanisms to deacetylate acetyl lysine substrates. Although removal of histone acetyl epigenetic modification by HDACs regulates chromatin structure and transcription, deacetylation of nonhistones controls diverse cellular processes. HDAC inhibitors are already known potential anticancer agents and show promise for the treatment of many diseases. PMID:24691964

  4. Acetylation of cellulose nanowhiskers with vinyl acetate under moderate conditions.

    PubMed

    Cetin, Nihat Sami; Tingaut, Philippe; Ozmen, Nilgül; Henry, Nathan; Harper, David; Dadmun, Mark; Sèbe, Gilles

    2009-10-08

    A novel and straightforward method for the surface acetylation of cellulose nanowhiskers by transesterification of vinyl acetate is proposed. The reaction of vinyl acetate with the hydroxyl groups of cellulose nanowhiskers obtained from cotton linters was examined with potassium carbonate as catalyst. Results indicate that during the first stage of the reaction, only the surface of the nanowhiskers was modified, while their dimensions and crystallinity remained unchanged. With increasing reaction time, diffusion mechanisms controlled the rate, leading to nanowhiskers with higher levels of acetylation, smaller dimensions, and lower crystallinity. In THF, a solvent of low polarity, the suspensions from modified nanowhiskers showed improved stability with increased acetylation.

  5. Structural Basis of Eco1-Mediated Cohesin Acetylation

    PubMed Central

    Chao, William C. H.; Wade, Benjamin O.; Bouchoux, Céline; Jones, Andrew W.; Purkiss, Andrew G.; Federico, Stefania; O’Reilly, Nicola; Snijders, Ambrosius P.; Uhlmann, Frank; Singleton, Martin R.

    2017-01-01

    Sister-chromatid cohesion is established by Eco1-mediated acetylation on two conserved tandem lysines in the cohesin Smc3 subunit. However, the molecular basis of Eco1 substrate recognition and acetylation in cohesion is not fully understood. Here, we discover and rationalize the substrate specificity of Eco1 using mass spectrometry coupled with in-vitro acetylation assays and crystallography. Our structures of the X. laevis Eco2 (xEco2) bound to its primary and secondary Smc3 substrates demonstrate the plasticity of the substrate-binding site, which confers substrate specificity by concerted conformational changes of the central β hairpin and the C-terminal extension. PMID:28290497

  6. The convergent chemical synthesis of histone H3 protein for site-specific acetylation at Lys56 and ubiquitination at Lys122.

    PubMed

    Qi, Yun-Kun; He, Qiao-Qiao; Ai, Hua-Song; Guo, Jing; Li, Jia-Bin

    2017-03-29

    Deposition of (H3-H4)2 tetramers is believed to be the critical step in nucleosome assembly. Site-specific acetylation and ubiquitination of histone H3 have been speculated to synergistically facilitate the formation and deposition of (H3-H4)2 tetramers. Here we report our endeavors toward the first chemical synthesis of homogenous histone H3, which bears Lys56 acetylation and Lys122 ubiquitination, for in vitro biochemical and biophysical studies.

  7. 21 CFR 862.1315 - Galactose-1-phosphate uridyl transferase test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... of the enzyme galactose-1-phosphate uridyl transferase in erythrocytes (red blood cells... hereditary disease galactosemia (disorder of galactose metabolism) in infants. (b) Classification. Class II....

  8. 21 CFR 862.1315 - Galactose-1-phosphate uridyl transferase test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... of the enzyme galactose-1-phosphate uridyl transferase in erythrocytes (red blood cells... hereditary disease galactosemia (disorder of galactose metabolism) in infants. (b) Classification. Class II....

  9. 21 CFR 862.1315 - Galactose-1-phosphate uridyl transferase test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1315 Galactose-1-phosphate uridyl transferase test system. (a)...

  10. 21 CFR 862.1315 - Galactose-1-phosphate uridyl transferase test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1315 Galactose-1-phosphate uridyl transferase test system. (a)...

  11. Thiosemicarbazone modification of 3-acetyl coumarin inhibits Aβ peptide aggregation and protect against Aβ-induced cytotoxicity.

    PubMed

    Ranade, Dnyanesh S; Bapat, Archika M; Ramteke, Shefali N; Joshi, Bimba N; Roussel, Pascal; Tomas, Alain; Deschamps, Patrick; Kulkarni, Prasad P

    2016-10-04

    Aggregation of amyloid β peptide (Aβ) is an important event in the progression of Alzheimer's disease. Therefore, among the available therapeutic approaches to fight with disease, inhibition of Aβ aggregation is widely studied and one of the promising approach for the development of treatments for Alzheimer's disease. Thiosemicarbazone compounds are known for their variety of biological activities. However, the potential of thiosemicarbazone compounds towards inhibition of Aβ peptide aggregation and the subsequent toxicity is little explored. Herein, we report synthesis and x-ray crystal structure of novel compound 3-acetyl coumarin thiosemicarbazone and its efficacy toward inhibition of Aβ(1-42) peptide aggregation. Our results indicate that 3-acetyl coumarin thiosemicarbazone inhibits Aβ(1-42) peptide aggregation up to 80% compared to the parent 3-acetyl coumarin which inhibits 52%. Further, 3-acetyl coumarin thiosemicarbazone provides neuroprotection against Aβ-induced cytotoxicity in SH-SY5Y cell line. These findings indicate that thiosemicarbazone modification renders 3-acetyl coumarin neuroprotective properties.

  12. A novel acetylation of β-tubulin by San modulates microtubule polymerization via down-regulating tubulin incorporation

    PubMed Central

    Chu, Chih-Wen; Hou, Fajian; Zhang, Junmei; Phu, Lilian; Loktev, Alex V.; Kirkpatrick, Donald S.; Jackson, Peter K.; Zhao, Yingming; Zou, Hui

    2011-01-01

    Dynamic instability is a critical property of microtubules (MTs). By regulating the rate of tubulin polymerization and depolymerization, cells organize the MT cytoskeleton to accommodate their specific functions. Among many processes, posttranslational modifications of tubulin are implicated in regulating MT functions. Here we report a novel tubulin acetylation catalyzed by acetyltransferase San at lysine 252 (K252) of β-tubulin. This acetylation, which is also detected in vivo, is added to soluble tubulin heterodimers but not tubulins in MTs. The acetylation-mimicking K252A/Q mutants were incorporated into the MT cytoskeleton in HeLa cells without causing any obvious MT defect. However, after cold-induced catastrophe, MT regrowth is accelerated in San-siRNA cells while the incorporation of acetylation-mimicking mutant tubulins is severely impeded. K252 of β-tubulin localizes at the interface of α-/β-tubulins and interacts with the phosphate group of the α-tubulin-bound GTP. We propose that the acetylation slows down tubulin incorporation into MTs by neutralizing the positive charge on K252 and allowing tubulin heterodimers to adopt a conformation that disfavors tubulin incorporation. PMID:21177827

  13. PCAF-mediated acetylation of transcriptional factor HOXB9 suppresses lung adenocarcinoma progression by targeting oncogenic protein JMJD6

    PubMed Central

    Wan, Junhu; Xu, Weizhi; Zhan, Jun; Ma, Ji; Li, Xueying; Xie, Yuping; Wang, Jiadong; Zhu, Wei-guo; Luo, Jianyuan; Zhang, Hongquan

    2016-01-01

    HOXB9 is a homeobox domain-containing transcription factor, playing an important role in embryonic development and cancer progression. However, the precise post-translational modifications (PTMs) of HOXB9 and the corresponding roles are unclear. Here, we report that acetyltransferase p300/CBP-associated factor (PCAF) interacts with and acetylates HOXB9 both in vivo and in vitro. Conversely, the acetylation of HOXB9 can be reversed by deacetylase SIRT1. Furthermore, we found that HOXB9 is acetylated at lysine 27 (AcK27). Functionally, in contrast to the wild type HOXB9, AcK27-HOXB9 decreased its capacity in promoting lung cancer cell migration and tumor growth in mice. Mechanistically, AcK27-HOXB9 suppresses the transcription of its target gene Jumonji domain-containing protein 6 (JMJD6) by direct occupying the promoter of JMJD6 gene. For clinical relevance, elevated HOXB9 acetylation at K27 predicts a better prognosis in lung adenocarcinoma patients. Taken together, we identified the first PTM of HOXB9 by demonstrating that HOXB9 can be acetylated and AcK27-HOXB9 counteracts the role of the wild-type HOXB9 in regulating lung adenocarcinoma progression. PMID:27613418

  14. Acetylation dictates the morphology of nanophase biosilica precipitated by a 14-amino acid leucine-lysine peptide.

    PubMed

    Lutz, Helmut; Jaeger, Vance; Bonn, Mischa; Pfaendtner, Jim; Weidner, Tobias

    2017-02-01

    N-terminal acetylation is a commonly used modification technique for synthetic peptides, mostly applied for reasons of enhanced stability, and in many cases regarded as inconsequential. In engineered biosilification - the controlled deposition of silica for nanotechnology applications by designed peptides - charged groups often play a deciding role. Here we report that changing the charge by acetylation of a 14-amino acid leucine-lysine (LK) peptide dramatically changes the morphology of precipitated biosilica; acetylated LK peptides produce nano-spheres, whereas nano-wires are precipitated by the same peptide in a non-acetylated form. By using interface-specific vibrational spectroscopy and coarse-grained molecular simulations, we show that this change in morphology is not the result of modified peptide-silica interactions, but rather caused by the stabilization of the hydrophobic core of peptide aggregates created by the removal of a peptide charge upon acetylation. These results should raise awareness of the potential impact of N-terminal modifications in peptide applications. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  15. Structure of the Rtt109-AcCoA/Vps75 Complex and Implications for Chaperone-Mediated Histone Acetylation

    PubMed Central

    Tang, Yong; Holbert, Marc A.; Delgoshaie, Neda; Wurtele, Hugo; Guillemette, Benoît; Meeth, Katrina; Yuan, Hua; Drogaris, Paul; Lee, Eun-Hye; Durette, Chantal; Thibault, Pierre; Verreault, Alain; Cole, Philip A.; Marmorstein, Ronen

    2011-01-01

    Yeast Rtt109 promotes nucleosome assembly and genome stability by acetylating K9, K27 and K56 of histone H3 through interaction with either of two distinct histone chaperones, Vps75 or Asf1. We report the crystal structure of an Rtt109-AcCoA/Vps75 complex revealing an elongated Vps75 homodimer bound to two globular Rtt109 molecules to form a symmetrical holoenzyme with a ~12 Å diameter central hole. Vps75 and Rtt109 residues that mediate complex formation in the crystals are also important for Rtt109-Vps75 interaction and H3K9/K27 acetylation both in vitro and in yeast cells. The same Rtt109 residues do not participate in Asf1-mediated Rtt109 acetylation in vitro or H3K56 acetylation in yeast cells, demonstrating that Asf1 and Vps75 dictate Rtt109 substrate specificity through distinct mechanisms. These studies also suggest that Vps75 binding stimulates Rtt109 catalytic activity by appropriately presenting the H3–H4 substrate within the central cavity of the holoenzyme to promote H3K9/K27 acetylation of new histones prior to deposition. PMID:21256037

  16. Inhibition of SIRT1 Catalytic Activity Increases p53 Acetylation but Does Not Alter Cell Survival following DNA Damage

    PubMed Central

    Solomon, Jonathan M.; Pasupuleti, Rao; Xu, Lei; McDonagh, Thomas; Curtis, Rory; DiStefano, Peter S.; Huber, L. Julie

    2006-01-01

    Human SIRT1 is an enzyme that deacetylates the p53 tumor suppressor protein and has been suggested to modulate p53-dependent functions including DNA damage-induced cell death. In this report, we used EX-527, a novel, potent, and specific small-molecule inhibitor of SIRT1 catalytic activity to examine the role of SIRT1 in p53 acetylation and cell survival after DNA damage. Treatment with EX-527 dramatically increased acetylation at lysine 382 of p53 after different types of DNA damage in primary human mammary epithelial cells and several cell lines. Significantly, inhibition of SIRT1 catalytic activity by EX-527 had no effect on cell growth, viability, or p53-controlled gene expression in cells treated with etoposide. Acetyl-p53 was also increased by the histone deacetylase (HDAC) class I/II inhibitor trichostatin A (TSA). EX-527 and TSA acted synergistically to increase acetyl-p53 levels, confirming that p53 acetylation is regulated by both SIRT1 and HDACs. While TSA alone reduced cell survival after DNA damage, the combination of EX-527 and TSA had no further effect on cell viability and growth. These results show that, although SIRT1 deacetylates p53, this does not play a role in cell survival following DNA damage in certain cell lines and primary human mammary epithelial cells. PMID:16354677

  17. 9-O-Acetylation of sialic acids is catalysed by CASD1 via a covalent acetyl-enzyme intermediate

    PubMed Central

    Baumann, Anna-Maria T.; Bakkers, Mark J. G.; Buettner, Falk F. R.; Hartmann, Maike; Grove, Melanie; Langereis, Martijn A.; de Groot, Raoul J.; Mühlenhoff, Martina

    2015-01-01

    Sialic acids, terminal sugars of glycoproteins and glycolipids, play important roles in development, cellular recognition processes and host–pathogen interactions. A common modification of sialic acids is 9-O-acetylation, which has been implicated in sialoglycan recognition, ganglioside biology, and the survival and drug resistance of acute lymphoblastic leukaemia cells. Despite many functional implications, the molecular basis of 9-O-acetylation has remained elusive thus far. Following cellular approaches, including selective gene knockout by CRISPR/Cas genome editing, we here show that CASD1—a previously identified human candidate gene—is essential for sialic acid 9-O-acetylation. In vitro assays with the purified N-terminal luminal domain of CASD1 demonstrate transfer of acetyl groups from acetyl-coenzyme A to CMP-activated sialic acid and formation of a covalent acetyl-enzyme intermediate. Our study provides direct evidence that CASD1 is a sialate O-acetyltransferase and serves as key enzyme in the biosynthesis of 9-O-acetylated sialoglycans. PMID:26169044

  18. Metabolism of acetyl-L-carnitine for energy and neurotransmitter synthesis in the immature rat brain.

    PubMed

    Scafidi, Susanna; Fiskum, Gary; Lindauer, Steven L; Bamford, Penelope; Shi, Da; Hopkins, Irene; McKenna, Mary C

    2010-08-01

    Acetyl-L-carnitine (ALCAR) is an endogenous metabolic intermediate that facilitates the influx and efflux of acetyl groups across the mitochondrial inner membrane. Exogenously administered ALCAR has been used as a nutritional supplement and also as an experimental drug with reported neuroprotective properties and effects on brain metabolism. The aim of this study was to determine oxidative metabolism of ALCAR in the immature rat forebrain. Metabolism was studied in 21-22 day-old rat brain at 15, 60 and 120 min after an intraperitoneal injection of [2-(13)C]acetyl-L-carnitine. The amount, pattern, and fractional enrichment of (13)C-labeled metabolites were determined by ex vivo(13)C-NMR spectroscopy. Metabolism of the acetyl moiety from [2-(13)C]ALCAR via the tricarboxylic acid cycle led to incorporation of label into the C4, C3 and C2 positions of glutamate (GLU), glutamine (GLN) and GABA. Labeling patterns indicated that [2-(13)C]ALCAR was metabolized by both neurons and glia; however, the percent enrichment was higher in GLN and GABA than in GLU, demonstrating high metabolism in astrocytes and GABAergic neurons. Incorporation of label into the C3 position of alanine, both C3 and C2 positions of lactate, and the C1 and C5 positions of glutamate and glutamine demonstrated that [2-(13)C]ALCAR was actively metabolized via the pyruvate recycling pathway. The enrichment of metabolites with (13)C from metabolism of ALCAR was highest in alanine C3 (11%) and lactate C3 (10%), with considerable enrichment in GABA C4 (8%), GLN C3 (approximately 4%) and GLN C5 (5%). Overall, our (13)C-NMR studies reveal that the acetyl moiety of ALCAR is metabolized for energy in both astrocytes and neurons and the label incorporated into the neurotransmitters glutamate and GABA. Cycling ratios showed prolonged cycling of carbon from the acetyl moiety of ALCAR in the tricarboxylic acid cycle. Labeling of compounds formed from metabolism of [2-(13)C]ALCAR via the pyruvate recycling pathway

  19. Nucleotidyl transferase assisted DNA labeling with different click chemistries.

    PubMed

    Winz, Marie-Luise; Linder, Eva Christina; André, Timon; Becker, Juliane; Jäschke, Andres

    2015-09-30

    Here, we present a simple, modular and efficient strategy that allows the 3'-terminal labeling of DNA, regardless of whether it has been chemically or enzymatically synthesized or isolated from natural sources. We first incorporate a range of modified nucleotides at the 3'-terminus, using terminal deoxynucleotidyl transferase. In the second step, we convert the incorporated nucleotides, using either of four highly efficient click chemistry-type reactions, namely copper-catalyzed azide-alkyne cycloaddition, strain-promoted azide-alkyne cycloaddition, Staudinger ligation or Diels-Alder reaction with inverse electron demand. Moreover, we create internal modifications, making use of either ligation or primer extension, after the nucleotidyl transferase step, prior to the click reaction. We further study the influence of linker variants on the reactivity of azides in different click reactions. We find that different click reactions exhibit distinct substrate preferences, a fact that is often overlooked, but should be considered when labeling oligonucleotides or other biomolecules with click chemistry. Finally, our findings allowed us to extend our previously published RNA labeling strategy to the use of a different copper-free click chemistry, namely the Staudinger ligation.

  20. Characterization of glutathione S-transferase of Taenia solium.

    PubMed

    Vibanco-Pérez, N; Jiménez, L; Merchant, M T; Landa, A

    1999-06-01

    A Taenia solium glutathione-S-transferase fraction (SGSTF) was isolated from a metacestode crude extract by affinity chromatography on reduced glutathione (GSH)-sepharose. The purified fraction displayed a specific glutathione S-transferase (GST) activity of 2.8 micromol/min/mg and glutathione peroxidase selenium-independent activity of 0.22 micromol/min/mg. Enzymatic characterization of the fraction suggested that the activity was closer to the mammalian mu-class GSTs. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis, gel filtration, and enzyme activity analysis showed that the fraction was composed of a major band of Mr = 26 kd and that the active enzyme was dimeric. Immunohistochemical studies using specific antibodies against the major 26-kd band of the SGSTF indicated that GST protein was present in the tegument, parenchyma, protonephridial, and tegumentary cytons of the T. solium metacestode. Antibodies generated against the SGSTF tested in western blot showed cross-reactivity against GSTs purified from Taenia saginata, T. taeniaeformis, and T. crassiceps, but did not react with GSTs from Schistosoma mansoni, or mice, rabbit, and pig liver tissue. Furthermore, immunization of mice with SGSTF reduced the metacestode burden up to 74.2%. Our findings argue in favor of GST having an important role in the survival of T. solium in its hosts.

  1. Characterization of two Arabidopsis thaliana glutathione S-transferases.

    PubMed

    Nutricati, Eliana; Miceli, Antonio; Blando, Federica; De Bellis, Luigi

    2006-09-01

    Glutathione S-transferases (GST) are multifunctional proteins encoded by a large gene family, divided on the basis of sequence identity into phi, tau, theta, zeta and lambda classes. The phi and tau classes are present only in plants. GSTs appear to be ubiquitous in plants and are involved in herbicide detoxification and stress response, but little is known about the precise role of GSTs in normal plant physiology and during biotic and abiotic stress response. Two cDNAs representing the two plant classes tau and phi, AtGSTF9 and AtGSTU26, were expressed in vitro and the corresponding proteins were analysed. Both GSTs were able to catalyse a glutathione conjugation to 1-chloro-2,4-dinitrobenzene (CDNB), but they were inactive as transferases towards p-nitrobenzylchloride (pNBC). AtGSTF9 showed activity towards benzyl isothiocyanate (BITC) and an activity as glutathione peroxidase with cumene hydroperoxide (CumHPO). AtGSTU26 was not active as glutathione peroxidase and towards BITC. RT-PCR analysis was used to evaluate the expression of the two genes in response to treatment with herbicides and safeners, chemicals, low and high temperature. Our results reveal that AtGSTU26 is induced by the chloroacetanilide herbicides alachlor and metolachlor and the safener benoxacor, and after exposure to low temperatures. In contrast, AtGSTF9 seems not to be influenced by the treatments employed.

  2. Nucleotidyl transferase assisted DNA labeling with different click chemistries

    PubMed Central

    Winz, Marie-Luise; Linder, Eva Christina; André, Timon; Becker, Juliane; Jäschke, Andres

    2015-01-01

    Here, we present a simple, modular and efficient strategy that allows the 3′-terminal labeling of DNA, regardless of whether it has been chemically or enzymatically synthesized or isolated from natural sources. We first incorporate a range of modified nucleotides at the 3′-terminus, using terminal deoxynucleotidyl transferase. In the second step, we convert the incorporated nucleotides, using either of four highly efficient click chemistry-type reactions, namely copper-catalyzed azide-alkyne cycloaddition, strain-promoted azide-alkyne cycloaddition, Staudinger ligation or Diels-Alder reaction with inverse electron demand. Moreover, we create internal modifications, making use of either ligation or primer extension, after the nucleotidyl transferase step, prior to the click reaction. We further study the influence of linker variants on the reactivity of azides in different click reactions. We find that different click reactions exhibit distinct substrate preferences, a fact that is often overlooked, but should be considered when labeling oligonucleotides or other biomolecules with click chemistry. Finally, our findings allowed us to extend our previously published RNA labeling strategy to the use of a different copper-free click chemistry, namely the Staudinger ligation. PMID:26013812

  3. Structural basis for the interaction of antibiotics with peptidyl transferase center in eubacteria

    SciTech Connect

    Schlunzen, Frank; Zarivach, Raz; Harms, Jörg; Bashan, Anat; Tocilj, Ante; Albrecht, Renate; Yonath, Ada; Franceschi, Francois

    2009-10-07

    Ribosomes, the site of protein synthesis, are a major target for natural and synthetic antibiotics. Detailed knowledge of antibiotic binding sites is central to understanding the mechanisms of drug action. Conversely, drugs are excellent tools for studying the ribosome function. To elucidate the structural basis of ribosome-antibiotic interactions, we determined the high-resolution X-ray structures of the 50S ribosomal subunit of the eubacterium Deinococcus radiodurans, complexed with the clinically relevant antibiotics chloramphenicol, clindamycin and the three macrolides erythromycin, clarithromycin and roxithromycin. We found that antibiotic binding sites are composed exclusively of segments of 23S ribosomal RNA at the peptidyl transferase cavity and do not involve any interaction of the drugs with ribosomal proteins. Here we report the details of antibiotic interactions with the components of their binding sites. Our results also show the importance of putative Mg{sup +2} ions for the binding of some drugs. This structural analysis should facilitate rational drug design.

  4. O-GlcNAc transferase invokes nucleotide sugar pyrophosphate participation in catalysis.

    PubMed

    Schimpl, Marianne; Zheng, Xiaowei; Borodkin, Vladimir S; Blair, David E; Ferenbach, Andrew T; Schüttelkopf, Alexander W; Navratilova, Iva; Aristotelous, Tonia; Albarbarawi, Osama; Robinson, David A; Macnaughtan, Megan A; van Aalten, Daan M F

    2012-12-01

    Protein O-GlcNAcylation is an essential post-translational modification on hundreds of intracellular proteins in metazoa, catalyzed by O-linked β-N-acetylglucosamine (O-GlcNAc) transferase (OGT) using unknown mechanisms of transfer and substrate recognition. Through crystallographic snapshots and mechanism-inspired chemical probes, we define how human OGT recognizes the sugar donor and acceptor peptide and uses a new catalytic mechanism of glycosyl transfer, involving the sugar donor α-phosphate as the catalytic base as well as an essential lysine. This mechanism seems to be a unique evolutionary solution to the spatial constraints imposed by a bulky protein acceptor substrate and explains the unexpected specificity of a recently reported metabolic OGT inhibitor.

  5. Glutathione S-transferase mediates an ageing response to mitochondrial dysfunction

    PubMed Central

    Dancy, Beverley M.; Brockway, Nicole; Ramadasan-Nair, Renjini; Yang, Yoing; Sedensky, Margaret M.; Morgan, Philip G.

    2016-01-01

    To understand primary mitochondrial disease, we utilized a complex I-deficient Caenorhabditis elegans mutant, gas-1. These animals strongly upregulate the expression of gst-14 (encoding a glutathione S-transferase). Knockdown of gst-14 dramatically extends the lifespan of gas-1 and increases hydroxynonenal (HNE) modified mitochondrial proteins without improving complex I function. We observed no change in reactive oxygen species levels as measured by Mitosox staining, consistent with a potential role of GST-14 in HNE clearance. The upregulation of gst-14 in gas-1 animals is specific to the pharynx. These data suggest that an HNE-mediated response in the pharynx could be beneficial for lifespan extension in the context of complex I dysfunction in C. elegans. Thus, whereas HNE is typically considered damaging, our work is consistent with recent reports of its role in signaling, and that in this case, the signal is pro-longevity in a model of mitochondrial dysfunction. PMID:26704446

  6. Irreversible Inhibition of Glutathione S-Transferase by Phenethyl Isothiocyanate (PEITC), a Dietary Cancer Chemopreventive Phytochemical

    PubMed Central

    Kumari, Vandana; Dyba, Marzena A.; Holland, Ryan J.; Liang, Yu-He; Singh, Shivendra V.

    2016-01-01

    Dietary isothiocyanates abundant as glucosinolate precursors in many edible cruciferous vegetables are effective for prevention of cancer in chemically-induced and transgenic rodent models. Some of these agents, including phenethyl isothiocyanate (PEITC), have already advanced to clinical investigations. The primary route of isothiocyanate metabolism is its conjugation with glutathione (GSH), a reaction catalyzed by glutathione S-transferase (GST). The pi class GST of subunit type 1 (hGSTP1) is much more effective than the alpha class GST of subunit type 1 (hGSTA1) in catalyzing the conjugation. Here, we report the crystal structures of hGSTP1 and hGSTA1 each in complex with the GSH adduct of PEITC. We find that PEITC also covalently modifies the cysteine side chains of GST, which irreversibly inhibits enzymatic activity. PMID:27684484

  7. Partially Acetylated Sugarcane Bagasse For Wicking Oil From Contaminated Wetlands

    EPA Science Inventory

    Sugarcane bagasse was partially acetylated to enhance its oil-wicking ability in saturated environments while holding moisture for hydrocarbon biodegradation. The water sorption capacity of raw bagasse was reduced fourfold after treatment, which indicated considerably increased ...

  8. Data detailing the platelet acetyl-lysine proteome.

    PubMed

    Aslan, Joseph E; David, Larry L; McCarty, Owen J T

    2015-12-01

    Here we detail proteomics data that describe the acetyl-lysine proteome of blood platelets (Aslan et al., 2015 [1]). An affinity purification - mass spectrometry (AP-MS) approach was used to identify proteins modified by Nε-lysine acetylation in quiescent, washed human platelets. The data provide insights into potential regulatory mechanisms of platelet function mediated by protein lysine acetylation. Additionally, as platelets are anucleate and lack histone proteins, they offer a unique and valuable system to study the regulation of cytosolic proteins by lysine acetylation. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium (Vizcaino et al., 2014 [2]) via with PRIDE partner repository with the dataset identifier PXD002332.

  9. Acetylation of C/EBPα inhibits its granulopoietic function

    PubMed Central

    Bararia, Deepak; Kwok, Hui Si; Welner, Robert S.; Numata, Akihiko; Sárosi, Menyhárt B.; Yang, Henry; Wee, Sheena; Tschuri, Sebastian; Ray, Debleena; Weigert, Oliver; Levantini, Elena; Ebralidze, Alexander K.; Gunaratne, Jayantha; Tenen, Daniel G.

    2016-01-01

    CCAAT/enhancer-binding protein alpha (C/EBPα) is an essential transcription factor for myeloid lineage commitment. Here we demonstrate that acetylation of C/EBPα at lysine residues K298 and K302, mediated at least in part by general control non-derepressible 5 (GCN5), impairs C/EBPα DNA-binding ability and modulates C/EBPα transcriptional activity. Acetylated C/EBPα is enriched in human myeloid leukaemia cell lines and acute myeloid leukaemia (AML) samples, and downregulated upon granulocyte-colony stimulating factor (G-CSF)- mediated granulocytic differentiation of 32Dcl3 cells. C/EBPα mutants that mimic acetylation failed to induce granulocytic differentiation in C/EBPα-dependent assays, in both cell lines and in primary hematopoietic cells. Our data uncover GCN5 as a negative regulator of C/EBPα and demonstrate the importance of C/EBPα acetylation in myeloid differentiation. PMID:27005833

  10. Synthesis of 6-(F-18)L-fluoro-dopa using F-18 labelled acetyl hypofluorite

    SciTech Connect

    Adam, M.J.; Abeysekera, B.; Ruth, T.J.; Grierson, J.R.; Pate, B.D.

    1985-05-01

    The synthesis of (F-18)6-fluoro-dopa via acetyl hypofluorite has recently been reported. The authors have modified this procedure by adding an acetate protecting group on the dopa ring and have treated this new starting material with either solution or gas phase F-18 acetyl hypofluorite. Using this starting material the yield has been significantly increased over the published method. The authors routinely prepare 4-5 mCi of pure (F-18)6-fluoro-dopa (3-4% radiochemical yield, at EOS) in an overall synthesis time of 2 hours. Both 2 and 6 fluoro-dopa are produced in nearly equivalent amounts by this method as determined by /sup 19/F nmr. These are easily separated by HPLC after deblocking with HI. The final isolated product is >99% in the L-isomer form and fluorinated in >97% in the 6 position.

  11. Differential lysine acetylation profiles of Erwinia amylovora strains revealed by proteomics.

    PubMed

    Wu, Xia; Vellaichamy, Adaikkalam; Wang, Dongping; Zamdborg, Leonid; Kelleher, Neil L; Huber, Steven C; Zhao, Youfu

    2013-02-21

    Protein lysine acetylation (LysAc) has recently been demonstrated to be widespread in E. coli and Salmonella, and to broadly regulate bacterial physiology and metabolism. However, LysAc in plant pathogenic bacteria is largely unknown. Here we first report the lysine acetylome of Erwinia amylovora, an enterobacterium causing serious fire blight disease of apples and pears. Immunoblots using generic anti-lysine acetylation antibodies demonstrated that growth conditions strongly affected the LysAc profiles in E. amylovora. Differential LysAc profiles were also observed for two E. amylovora strains, known to have differential virulence in plants, indicating translational modification of proteins may be important in determining virulence of bacterial strains. Proteomic analysis of LysAc in two E. amylovora strains identified 141 LysAc sites in 96 proteins that function in a wide range of biological pathways. Consistent with previous reports, 44% of the proteins are involved in metabolic processes, including central metabolism, lipopolysaccharide, nucleotide and amino acid metabolism. Interestingly, for the first time, several proteins involved in E. amylovora virulence, including exopolysaccharide amylovoran biosynthesis- and type III secretion-associated proteins, were found to be lysine acetylated, suggesting that LysAc may play a major role in bacterial virulence. Comparative analysis of LysAc sites in E. amylovora and E. coli further revealed the sequence and structural commonality for LysAc in the two organisms. Collectively, these results reinforce the notion that LysAc of proteins is widespread in bacterial metabolism and virulence.

  12. A colorimetric assay for the determination of acetyl xylan esterase or cephalosporin C acetyl esterase activities using 7-amino cephalosporanic acid, cephalosporin C, or acetylated xylan as substrate.

    PubMed

    Martínez-Martínez, Irene; Montoro-García, Silvia; Lozada-Ramírez, José Daniel; Sánchez-Ferrer, Alvaro; García-Carmona, Francisco

    2007-10-15

    A bromothymol blue-based colorimetric assay has been devised to screen for acetyl xylan esterase or cephalosporin C (CPC) deacetylase activities using 7-amino cephalosporanic acid (7-ACA), CPC, or acetylated xylan as substrate. These enzymes are not screened with their natural substrates because of the tedious procedures available previously. Acetyl xylan esterase from Bacillus pumilus CECT 5072 was cloned, expressed in Escherichia coli Rosetta (DE3), and characterized using this assay. Similar K(M) values for 7-ACA and CPC were obtained when compared with those described using HPLC methods. The assay is easy to perform and can be carried out in robotic high-throughput colorimetric devices normally used in directed evolution experiments. The assay allowed us to detect improvements in activity at a minimum of twofold with a very low coefficient of variance in 96-well plates. This method is significantly faster and more convenient to use than are known HPLC and pH-stat procedures.

  13. Regulation of S-Adenosylhomocysteine Hydrolase by Lysine Acetylation*

    PubMed Central

    Wang, Yun; Kavran, Jennifer M.; Chen, Zan; Karukurichi, Kannan R.; Leahy, Daniel J.; Cole, Philip A.

    2014-01-01

    S-Adenosylhomocysteine hydrolase (SAHH) is an NAD+-dependent tetrameric enzyme that catalyzes the breakdown of S-adenosylhomocysteine to adenosine and homocysteine and is important in cell growth and the regulation of gene expression. Loss of SAHH function can result in global inhibition of cellular methyltransferase enzymes because of high levels of S-adenosylhomocysteine. Prior proteomics studies have identified two SAHH acetylation sites at Lys401 and Lys408 but the impact of these post-translational modifications has not yet been determined. Here we use expressed protein ligation to produce semisynthetic SAHH acetylated at Lys401 and Lys408 and show that modification of either position negatively impacts the catalytic activity of SAHH. X-ray crystal structures of 408-acetylated SAHH and dually acetylated SAHH have been determined and reveal perturbations in the C-terminal hydrogen bonding patterns, a region of the protein important for NAD+ binding. These crystal structures along with mutagenesis data suggest that such hydrogen bond perturbations are responsible for SAHH catalytic inhibition by acetylation. These results suggest how increased acetylation of SAHH may globally influence cellular methylation patterns. PMID:25248746

  14. Acetyl radical generation in cigarette smoke: Quantification and simulations

    NASA Astrophysics Data System (ADS)

    Hu, Na; Green, Sarah A.

    2014-10-01

    Free radicals are present in cigarette smoke and can have a negative effect on human health. However, little is known about their formation mechanisms. Acetyl radicals were quantified in tobacco smoke and mechanisms for their generation were investigated by computer simulations. Acetyl radicals were trapped from the gas phase using 3-amino-2, 2, 5, 5-tetramethyl-proxyl (3AP) on solid support to form stable 3AP adducts for later analysis by high-performance liquid chromatography (HPLC), mass spectrometry/tandem mass spectrometry (MS-MS/MS) and liquid chromatography-mass spectrometry (LC-MS). Simulations were performed using the Master Chemical Mechanism (MCM). A range of 10-150 nmol/cigarette of acetyl radical was measured from gas phase tobacco smoke of both commercial and research cigarettes under several different smoking conditions. More radicals were detected from the puff smoking method compared to continuous flow sampling. Approximately twice as many acetyl radicals were trapped when a glass fiber particle filter (GF/F specifications) was placed before the trapping zone. Simulations showed that NO/NO2 reacts with isoprene, initiating chain reactions to produce hydroxyl radical, which abstracts hydrogen from acetaldehyde to generate acetyl radical. These mechanisms can account for the full amount of acetyl radical detected experimentally from cigarette smoke. Similar mechanisms may generate radicals in second hand smoke.

  15. Kinetic studies on enzymatic acetylation of chloramphenicol in Streptococcus faecalis.

    PubMed Central

    Nakagawa, Y; Nitahara, Y; Miyamura, S

    1979-01-01

    The kinetics of chloramphenicol (CP) acetylation by CP acetyltransferase from Streptococcus faecalis was studied. CP was shown to be acetylated enzymatically to its 3-O-acetyl derivative (3-AcCP) in the presence of acetyl coenzyme A, after which 3-AcCP was converted nonenzymatically to its 1-O-acetyl isomer, 1-O-acetyl CP (1-AcCP). At equilibrium, the 1-AcCP and 3-AcCP were present in a 1:4 ratio. Subsequently the diacetylated product, 1,3-O-O-diacetyl CP [1,3-(Ac)2CP], was enzymatically produced from 1-AcCP by the same enzyme. Theoretical calculation of rate constants (k1, k2, k3) for each successive reaction is as follows: (Formula: see text). This calculation gave k1 = 0.4 min-1, k2 = 0.002 min-1, and k3 = 0.016 min-1. Experimental results agreed closely with these calculated values. Images PMID:119483

  16. Maintenance of Glucose Homeostasis through Acetylation of the Metabolic Transcriptional Coactivator PGC1-alpha

    DTIC Science & Technology

    2009-02-01

    highlight that PGC-1α chemical acetylation is directly controlled by two enzymes: GCN5 and SIRT1 ; this strengths the possibility to use small...acetylated through GCN5 acetyltransferase activity, however under low nutrient conditions Sirt1 deacetylase will keep PGC-1α de-acetylated in an active form...acetylated by GCN5, we decided to use R13 because it did not respond to low glucose levels or Sirt1 activators. We think that the additional acetylation

  17. Thermodynamics of Enzyme-Catalyzed Reactions: Part 2. Transferases

    NASA Astrophysics Data System (ADS)

    Goldberg, Robert N.; Tewari, Yadu B.

    1994-07-01

    Equilibrium constants and enthalpy changes for reactions catalyzed by the transferase class of enzymes have been compiled. For each reaction the following information is given: the reference for the data; the reaction studied; the name of the enzyme used and its Enzyme Commission number; the method of measurement; the conditions of measurement [temperature, pH, ionic strength, and the buffer(s) and cofactor(s) used]; the data and an evaluation of it; and, sometimes, commentary on the data and on any corrections which have been applied to it or any calculations for which the data have been used. The data from 285 references have been examined and evaluated. Chemical Abstract Service registry numbers are given for the substances involved in these various reactions. There is a cross reference between the substances and the Enzyme Commission numbers of the enzymes used to catalyze the reactions in which the substances participate.

  18. A Glutathione Transferase from Agrobacterium tumefaciens Reveals a Novel Class of Bacterial GST Superfamily

    PubMed Central

    Skopelitou, Katholiki; Dhavala, Prathusha; Papageorgiou, Anastassios C.; Labrou, Nikolaos E.

    2012-01-01

    In the present work, we report a novel class of glutathione transferases (GSTs) originated from the pathogenic soil bacterium Agrobacterium tumefaciens C58, with structural and catalytic properties not observed previously in prokaryotic and eukaryotic GST isoenzymes. A GST-like sequence from A. tumefaciens C58 (Atu3701) with low similarity to other characterized GST family of enzymes was identified. Phylogenetic analysis showed that it belongs to a distinct GST class not previously described and restricted only in soil bacteria, called the Eta class (H). This enzyme (designated as AtuGSTH1-1) was cloned and expressed in E. coli and its structural and catalytic properties were investigated. Functional analysis showed that AtuGSTH1-1 exhibits significant transferase activity against the common substrates aryl halides, as well as very high peroxidase activity towards organic hydroperoxides. The crystal structure of AtuGSTH1-1 was determined at 1.4 Å resolution in complex with S-(p-nitrobenzyl)-glutathione (Nb-GSH). Although AtuGSTH1-1 adopts the canonical GST fold, sequence and structural characteristics distinct from previously characterized GSTs were identified. The absence of the classic catalytic essential residues (Tyr, Ser, Cys) distinguishes AtuGSTH1-1 from all other cytosolic GSTs of known structure and function. Site-directed mutagenesis showed that instead of the classic catalytic residues, an Arg residue (Arg34), an electron-sharing network, and a bridge of a network of water molecules may form the basis of the catalytic mechanism. Comparative sequence analysis, structural information, and site-directed mutagenesis in combination with kinetic analysis showed that Phe22, Ser25, and Arg187 are additional important residues for the enzyme's catalytic efficiency and specificity. PMID:22496785

  19. Engineering Acetyl Coenzyme A Supply: Functional Expression of a Bacterial Pyruvate Dehydrogenase Complex in the Cytosol of Saccharomyces cerevisiae

    PubMed Central

    Kozak, Barbara U.; van Rossum, Harmen M.; Luttik, Marijke A. H.; Akeroyd, Michiel; Benjamin, Kirsten R.; Wu, Liang; de Vries, Simon; Daran, Jean-Marc; Pronk, Jack T.

    2014-01-01

    ABSTRACT The energetic (ATP) cost of biochemical pathways critically determines the maximum yield of metabolites of vital or commercial relevance. Cytosolic acetyl coenzyme A (acetyl-CoA) is a key precursor for biosynthesis in eukaryotes and for many industrially relevant product pathways that have been introduced into Saccharomyces cerevisiae, such as isoprenoids or lipids. In this yeast, synthesis of cytosolic acetyl-CoA via acetyl-CoA synthetase (ACS) involves hydrolysis of ATP to AMP and pyrophosphate. Here, we demonstrate that expression and assembly in the yeast cytosol of an ATP-independent pyruvate dehydrogenase complex (PDH) from Enterococcus faecalis can fully replace the ACS-dependent pathway for cytosolic acetyl-CoA synthesis. In vivo activity of E. faecalis PDH required simultaneous expression of E. faecalis genes encoding its E1α, E1β, E2, and E3 subunits, as well as genes involved in lipoylation of E2, and addition of lipoate to growth media. A strain lacking ACS that expressed these E. faecalis genes grew at near-wild-type rates on glucose synthetic medium supplemented with lipoate, under aerobic and anaerobic conditions. A physiological comparison of the engineered strain and an isogenic Acs+ reference strain showed small differences in biomass yields and metabolic fluxes. Cellular fractionation and gel filtration studies revealed that the E. faecalis PDH subunits were assembled in the yeast cytosol, with a subunit ratio and enzyme activity similar to values reported for PDH purified from E. faecalis. This study indicates that cytosolic expression and assembly of PDH in eukaryotic industrial microorganisms is a promising option for minimizing the energy costs of precursor supply in acetyl-CoA-dependent product pathways. PMID:25336454

  20. Transactivation of bad by vorinostat-induced acetylated p53 enhances doxorubicin-induced cytotoxicity in cervical cancer cells.

    PubMed

    Lee, Sook-Jeong; Hwang, Sung-Ook; Noh, Eun Joo; Kim, Dong-Uk; Nam, Miyoung; Kim, Jong Hyeok; Nam, Joo Hyun; Hoe, Kwang-Lae

    2014-02-14

    Vorinostat (VOR) has been reported to enhance the cytotoxic effects of doxorubicin (DOX) with fewer side effects because of the lower DOX dosage in breast cancer cells. In this study, we investigated the novel mechanism underlying the synergistic cytotoxic effects of VOR and DOX co-treatment in cervical cancer cells HeLa, CaSki and SiHa cells. Co-treatment with VOR and DOX at marginal doses led to the induction of apoptosis through caspase-3 activation, poly (ADP-ribose) polymerase cleavage and DNA micronuclei. Notably, the synergistic growth inhibition induced by the co-treatment was attributed to the upregulation of the pro-apoptotic protein Bad, as the silencing of Bad expression using small interfering RNA (siRNA) abolished the phenomenon. As siRNA against p53 did not result in an increase in acetylated p53 and the consequent upregulation of Bad, the observed Bad upregulation was mediated by acetylated p53. Moreover, a chromatin immunoprecipitation analysis showed that the co-treatment of HeLa cells with VOR and DOX increased the recruitment of acetylated p53 to the bad promoter, with consequent bad transactivation. Conversely, C33A cervical cancer cells containing mutant p53 co-treated with VOR and DOX did not exhibit Bad upregulation, acetylated p53 induction or consequent synergistic growth inhibition. Together, the synergistic growth inhibition of cervical cancer cell lines induced by co-treatment with VOR and DOX can be attributed to the upregulation of Bad, which is induced by acetylated p53. These results show for the first time that the acetylation of p53, rather than histones, is a mechanism for the synergistic growth inhibition induced by VOR and DOX co-treatments.

  1. Quantitative assessment of the impact of the gut microbiota on lysine epsilon-acetylation of host proteins using gnotobiotic mice.

    PubMed

    Simon, Gabriel M; Cheng, Jiye; Gordon, Jeffrey I

    2012-07-10

    The gut microbiota influences numerous aspects of human biology. One facet that has not been thoroughly explored is its impact on the host proteome. We hypothesized that the microbiota may produce certain of its effects through covalent modification of host proteins. We focused on protein lysine ε-acetylation because of its recently discovered roles in regulation of cell metabolism, and the potential for products of microbial fermentation to interact with the lysine acetylation machinery of host cells. Germ-free mice, fed a (15)N-labeled diet for two generations, were colonized as adults with a microbiota harvested from conventionally raised mouse donors. Using high-resolution mass spectrometry, we quantified 3,891 liver and proximal colonic proteins, 558 of which contained 1,602 sites of lysine acetylation, 43% not previously described. Multiple proteins from multiple subcellular compartments underwent microbiota-associated increases in their levels of lysine acetylation at one or more residues, in one or both tissues. Acetylated proteins were enriched in functions related to energy production, respiration, and primary metabolism. A number of the acetylation events affect lysine residues at or near the active sites of enzymes, whereas others occur at locations that may affect other facets of protein function. One of these modifications, affecting Lys292 in mouse α-1-antitrypsin, was detected in the corresponding lysine of the human serum protein. Methods described in this report can be applied to other co- or posttranslational modifications, and add quantitation of protein expression and covalent modification to the arsenal of techniques for characterizing the dynamic, important interactions between gut symbionts and their hosts.

  2. Linker histone H1 and H3K56 acetylation are antagonistic regulators of nucleosome dynamics.

    PubMed

    Bernier, Morgan; Luo, Yi; Nwokelo, Kingsley C; Goodwin, Michelle; Dreher, Sarah J; Zhang, Pei; Parthun, Mark R; Fondufe-Mittendorf, Yvonne; Ottesen, Jennifer J; Poirier, Michael G

    2015-12-09

    H1 linker histones are highly abundant proteins that compact nucleosomes and chromatin to regulate DNA accessibility and transcription. However, the mechanisms that target H1 regulation to specific regions of eukaryotic genomes are unknown. Here we report fluorescence measurements of human H1 regulation of nucleosome dynamics and transcription factor (TF) binding within nucleosomes. H1 does not block TF binding, instead it suppresses nucleosome unwrapping to reduce DNA accessibility within H1-bound nucleosomes. We then investigated H1 regulation by H3K56 and H3K122 acetylation, two transcriptional activating histone post translational modifications (PTMs). Only H3K56 acetylation, which increases nucleosome unwrapping, abolishes H1.0 reduction of TF binding. These findings show that nucleosomes remain dynamic, while H1 is bound and H1 dissociation is not required for TF binding within the nucleosome. Furthermore, our H3K56 acetylation measurements suggest that a single-histone PTM can define regions of the genome that are not regulated by H1.

  3. Insights into the Sirtuin Mechanism from Ternary Complexes Containing NAD[superscript +] and Acetylated Peptide

    SciTech Connect

    Hoff, Kevin G.; Avalos, Jose L.; Sens, Kristin; Wolberger, Cynthia

    2010-07-22

    Sirtuin proteins comprise a unique class of NAD{sup +}-dependent protein deacetylases. Although several structures of sirtuins have been determined, the mechanism by which NAD{sup +} cleavage occurs has remained unclear. We report the structures of ternary complexes containing NAD{sup +} and acetylated peptide bound to the bacterial sirtuin Sir2Tm and to a catalytic mutant (Sir2Tm{sup H116Y}). NAD{sup +} in these structures binds in a conformation different from that seen in previous structures, exposing the {alpha} face of the nicotinamide ribose to the carbonyl oxygen of the acetyl lysine substrate. The NAD{sup +} conformation is identical in both structures, suggesting that proper coenzyme orientation is not dependent on contacts with the catalytic histidine. We also present the structure of Sir2Tm{sup H116A} bound to deacteylated peptide and 3{prime}-O-acetyl ADP ribose. Taken together, these structures suggest a mechanism for nicotinamide cleavage in which an invariant phenylalanine plays a central role in promoting formation of the O-alkylamidate reaction intermediate and preventing nicotinamide exchange.

  4. MOF Acetylates the Histone Demethylase LSD1 to Suppress Epithelial-to-Mesenchymal Transition.

    PubMed

    Luo, Huacheng; Shenoy, Anitha K; Li, Xuehui; Jin, Yue; Jin, Lihua; Cai, Qingsong; Tang, Ming; Liu, Yang; Chen, Hao; Reisman, David; Wu, Lizi; Seto, Edward; Qiu, Yi; Dou, Yali; Casero, Robert A; Lu, Jianrong

    2016-06-21

    The histone demethylase LSD1 facilitates epithelial-to-mesenchymal transition (EMT) and tumor progression by repressing epithelial marker expression. However, little is known about how its function may be modulated. Here, we report that LSD1 is acetylated in epithelial but not mesenchymal cells. Acetylation of LSD1 reduces its association with nucleosomes, thus increasing histone H3K4 methylation at its target genes and activating transcription. The MOF acetyltransferase interacts with LSD1 and is responsible for its acetylation. MOF is preferentially expressed in epithelial cells and is downregulated by EMT-inducing signals. Expression of exogenous MOF impedes LSD1 binding to epithelial gene promoters and histone demethylation, thereby suppressing EMT and tumor invasion. Conversely, MOF depletion enhances EMT and tumor metastasis. In human cancer, high MOF expression correlates with epithelial markers and a favorable prognosis. These findings provide insight into the regulation of LSD1 and EMT and identify MOF as a critical suppressor of EMT and tumor progression.

  5. SIRT2 deletion enhances KRAS-induced tumorigenesis in vivo by regulating K147 acetylation status

    PubMed Central

    Song, Ha Yong; Biancucci, Marco; Kang, Hong-Jun; O'Callaghan, Carol; Park, Seong-Hoon; Principe, Daniel R.; Jiang, Haiyan; Yan, Yufan; Satchell, Karla Fullner; Raparia, Kirtee; Gius, David; Vassilopoulos, Athanassios

    2016-01-01

    The observation that cellular transformation depends on breaching a crucial KRAS activity threshold, along with the finding that only a small percentage of cellsharboring KRAS mutations are transformed, support the idea that additional, not fully uncovered, regulatory mechanisms may contribute to KRAS activation. Here we report that KrasG12D mice lacking Sirt2 show an aggressive tumorigenic phenotype as compared to KrasG12D mice. This phenotype includes increased proliferation, KRAS acetylation, and activation of RAS downstream signaling markers. Mechanistically, KRAS K147 is identified as a novel SIRT2-specific deacetylation target by mass spectrometry, whereas its acetylation status directly regulates KRAS activity, ultimately exerting an impact on cellular behavior as revealed by cell proliferation, colony formation, and tumor growth. Given the significance of KRAS activity as a driver in tumorigenesis, identification of K147 acetylation as a novel post-translational modification directed by SIRT2 in vivo may provide a better understanding of the mechanistic link regarding the crosstalk between non-genetic and genetic factors in KRAS driven tumors. PMID:27637077

  6. Linker histone H1 and H3K56 acetylation are antagonistic regulators of nucleosome dynamics

    PubMed Central

    Bernier, Morgan; Luo, Yi; Nwokelo, Kingsley C.; Goodwin, Michelle; Dreher, Sarah J.; Zhang, Pei; Parthun, Mark R.; Fondufe-Mittendorf, Yvonne; Ottesen, Jennifer J.; Poirier, Michael G.

    2015-01-01

    H1 linker histones are highly abundant proteins that compact nucleosomes and chromatin to regulate DNA accessibility and transcription. However, the mechanisms that target H1 regulation to specific regions of eukaryotic genomes are unknown. Here we report fluorescence measurements of human H1 regulation of nucleosome dynamics and transcription factor (TF) binding within nucleosomes. H1 does not block TF binding, instead it suppresses nucleosome unwrapping to reduce DNA accessibility within H1-bound nucleosomes. We then investigated H1 regulation by H3K56 and H3K122 acetylation, two transcriptional activating histone post translational modifications (PTMs). Only H3K56 acetylation, which increases nucleosome unwrapping, abolishes H1.0 reduction of TF binding. These findings show that nucleosomes remain dynamic, while H1 is bound and H1 dissociation is not required for TF binding within the nucleosome. Furthermore, our H3K56 acetylation measurements suggest that a single-histone PTM can define regions of the genome that are not regulated by H1. PMID:26648124

  7. Suppression of Dwarf and irregular xylem Phenotypes Generates Low-Acetylated Biomass Lines in Arabidopsis.

    PubMed

    Bensussan, Matthieu; Lefebvre, Valérie; Ducamp, Aloïse; Trouverie, Jacques; Gineau, Emilie; Fortabat, Marie-Noëlle; Guillebaux, Alexia; Baldy, Aurélie; Naquin, Delphine; Herbette, Stéphane; Lapierre, Catherine; Mouille, Gregory; Horlow, Christine; Durand-Tardif, Mylène

    2015-06-01

    eskimo1-5 (esk1-5) is a dwarf Arabidopsis (Arabidopsis thaliana) mutant that has a constitutive drought syndrome and collapsed xylem vessels, along with low acetylation levels in xylan and mannan. ESK1 has xylan O-acetyltransferase activity in vitro. We used a suppressor strategy on esk1-5 to screen for variants with wild-type growth and low acetylation levels, a favorable combination for ethanol production. We found a recessive mutation in the KAKTUS (KAK) gene that suppressed dwarfism and the collapsed xylem character, the cause of decreased hydraulic conductivity in the esk1-5 mutant. Backcrosses between esk1-5 and two independent knockout kak mutants confirmed suppression of the esk1-5 effect. kak single mutants showed larger stem diameters than the wild type. The KAK promoter fused with a reporter gene showed activity in the vascular cambium, phloem, and primary xylem in the stem and hypocotyl. However, suppression of the collapsed xylem phenotype in esk1 kak double mutants was not associated with the recovery of cell wall O-acetylation or any major cell wall modifications. Therefore, our results indicate that, in addition to its described activity as a repressor of endoreduplication, KAK may play a role in vascular development. Furthermore, orthologous esk1 kak double mutants may hold promise for ethanol production in crop plants.

  8. Modification of oil palm wood using acetylation and impregnation process

    NASA Astrophysics Data System (ADS)

    Subagiyo, Lambang; Rosamah, Enih; Hesim

    2017-03-01

    The purpose of this study is chemical modification by process of acetylation and impregnation of oil palm wood to improve the dimensional stability. Acetylation process aimed at substituting the hydroxyl groups in a timber with an acetyl group. By increasing the acetyl groups in wood is expected to reduce the ability of wood to absorb water vapor which lead to the dimensions of the wood becomes more stable. Studies conducted on oil palm wood (Elaeis guineensis Jacq) by acetylation and impregnation method. The results showed that acetylated and impregnated wood oil palm (E. guineensis Jacq) were changed in their physical properties. Impregnation with coal ashfly provide the greatest response to changes in weight (in wet conditions) and after conditioning (dry) with the average percentage of weight gain of 198.16% and 66.41% respectively. Changes in volume indicates an increase of volume in the wet condition (imbibition) with the coal ashfly treatment gave highest value of 23.04 %, whereas after conditioning (dry) the highest value obtained in the treatment of gum rosin:ethanol with a volume increase of 13:44%. The highest changes of the density with the coal ashfly impregnation in wet condition (imbibition) in value of 142.32% and after conditioning (dry) of 57.87%. The result of reduction in water absorption (RWA) test showed that in the palm oil wood samples most stable by using of gum rosin : ethanol of 0.97%, whereas the increase in oil palm wood dimensional stability (ASE) is the best of 59.42% after acetylation with Acetic Anhydride: Xylene.

  9. Allergic contact dermatitis from the synthetic fragrances Lyral and acetyl cedrene in separate underarm deodorant preparations.

    PubMed

    Handley, J; Burrows, D

    1994-11-01

    The case is reported of a 28-year-old man who developed allergic contact dermatitis from 2 synthetic fragrance ingredients, Lyral (3- and 4-(4-hydroxy-4-methylpentyl)-3-cyclohexene-1-aldehyde) and acetyl cedrene, in separate underarm deodorant preparations. The implications of the patient's negative patch test reactions to the European standard series (Trolab) and cosmetics and fragrance series (both Chemotechnique Diagnostics) are discussed. The importance is stressed of patch testing with the patient's own preparations when cosmetic dermatitis is suspected, and of identifying and reporting offending fragrance ingredients, with a view possibly to updating the European standard series and commercially available cosmetics and fragrance series.

  10. Null genotypes of glutathione S-transferase μ1 and glutathione S-transferase θ1 are associated with osteosarcoma risk: A meta-analysis

    PubMed Central

    HAN, JICHENG; DENG, WEI; WANG, LAIYING; QI, WANLI

    2015-01-01

    Glutathione S-transferase (GST) genetic polymorphisms has been reported to be associated with osteosarcoma; however, the results of previous studies are conflicting. Thus, in the present study, a meta-analysis was conducted to investigate the effects of GSTM1 and GSTT1 polymorphisms on osteosarcoma risk. A literature search was performed in the PubMed, Cochrane Library and China National Knowledge Infrastructure databases to identify case-control studies published prior to March 2014. Data were extracted and pooled odds ratios (OR) with 95% confidence intervals (CI) were calculated. In addition, Begg’s test was used to measure publication bias. Sensitivity analysis were performed to ensure the accuracy of the results. The meta-analysis results demonstrated no significant association between the null genotype of GSTM1 and osteosarcoma risk (OR=0.83; 95% CI, 0.37–1.85). By contrast, the results revealed a significant association for the comparison of null vs. non-null genotypes of GSTT1 (OR=1.54; 95% CI, 1.09–2.19). In conclusion, the GSTT1 null genotype may be associated with an increased risk of developing osteosarcoma. Further studies with larger sample sizes and well-designed methodologies are required to verify these conclusions. PMID:25789067

  11. Engineering acetyl coenzyme A supply: functional expression of a bacterial pyruvate dehydrogenase complex in the cytosol of Saccharomyces cerevisiae.

    PubMed

    Kozak, Barbara U; van Rossum, Harmen M; Luttik, Marijke A H; Akeroyd, Michiel; Benjamin, Kirsten R; Wu, Liang; de Vries, Simon; Daran, Jean-Marc; Pronk, Jack T; van Maris, Antonius J A

    2014-10-21

    The energetic (ATP) cost of biochemical pathways critically determines the maximum yield of metabolites of vital or commercial relevance. Cytosolic acetyl coenzyme A (acetyl-CoA) is a key precursor for biosynthesis in eukaryotes and for many industrially relevant product pathways that have been introduced into Saccharomyces cerevisiae, such as isoprenoids or lipids. In this yeast, synthesis of cytosolic acetyl-CoA via acetyl-CoA synthetase (ACS) involves hydrolysis of ATP to AMP and pyrophosphate. Here, we demonstrate that expression and assembly in the yeast cytosol of an ATP-independent pyruvate dehydrogenase complex (PDH) from Enterococcus faecalis can fully replace the ACS-dependent pathway for cytosolic acetyl-CoA synthesis. In vivo activity of E. faecalis PDH required simultaneous expression of E. faecalis genes encoding its E1α, E1β, E2, and E3 subunits, as well as genes involved in lipoylation of E2, and addition of lipoate to growth media. A strain lacking ACS that expressed these E. faecalis genes grew at near-wild-type rates on glucose synthetic medium supplemented with lipoate, under aerobic and anaerobic conditions. A physiological comparison of the engineered strain and an isogenic Acs(+) reference strain showed small differences in biomass yields and metabolic fluxes. Cellular fractionation and gel filtration studies revealed that the E. faecalis PDH subunits were assembled in the yeast cytosol, with a subunit ratio and enzyme activity similar to values reported for PDH purified from E. faecalis. This study indicates that cytosolic expression and assembly of PDH in eukaryotic industrial microorganisms is a promising option for minimizing the energy costs of precursor supply in acetyl-CoA-dependent product pathways. Importance: Genetically engineered microorganisms are intensively investigated and applied for production of biofuels and chemicals from renewable sugars. To make such processes economically and environmentally sustainable, the energy

  12. Engineering cofactor and transport mechanisms in Saccharomyces cerevisiae for enhanced acetyl-CoA and polyketide biosynthesis.

    PubMed

    Cardenas, Javier; Da Silva, Nancy A

    2016-07-01

    Synthesis of polyketides at high titer and yield is important for producing pharmaceuticals and biorenewable chemical precursors. In this work, we engineered cofactor and transport pathways in Saccharomyces cerevisiae to increase acetyl-CoA, an important polyketide building block. The highly regulated yeast pyruvate dehydrogenase bypass pathway was supplemented by overexpressing a modified Escherichia coli pyruvate dehydrogenase complex (PDHm) that accepts NADP(+) for acetyl-CoA production. After 24h of cultivation, a 3.7-fold increase in NADPH/NADP(+) ratio was observed relative to the base strain, and a 2.2-fold increase relative to introduction of the native E. coli PDH. Both E. coli pathways increased acetyl-CoA levels approximately 2-fold relative to the yeast base strain. Combining PDHm with a ZWF1 deletion to block the major yeast NADPH biosynthesis pathway resulted in a 12-fold NADPH boost and a 2.2-fold increase in acetyl-CoA. At 48h, only this coupled approach showed increased acetyl-CoA levels, 3.0-fold higher than that of the base strain. The impact on polyketide synthesis was evaluated in a S. cerevisiae strain expressing the Gerbera hybrida 2-pyrone synthase (2-PS) for the production of the polyketide triacetic acid lactone (TAL). Titers of TAL relative to the base strain improved only 30% with the native E. coli PDH, but 3.0-fold with PDHm and 4.4-fold with PDHm in the Δzwf1 strain. Carbon was further routed toward TAL production by reducing mitochondrial transport of pyruvate and acetyl-CoA; deletions in genes POR2, MPC2, PDA1, or YAT2 each increased titer 2-3-fold over the base strain (up to 0.8g/L), and in combination to 1.4g/L. Combining the two approaches (NADPH-generating acetyl-CoA pathway plus reduced metabolite flux into the mitochondria) resulted in a final TAL titer of 1.6g/L, a 6.4-fold increase over the non-engineered yeast strain, and 35% of theoretical yield (0.16g/g glucose), the highest reported to date. These biological driving

  13. O-linked-N-acetylglucosamine modification of mammalian Notch receptors by an atypical O-GlcNAc transferase Eogt1

    SciTech Connect

    Sakaidani, Yuta; Ichiyanagi, Naoki; Saito, Chika; Nomura, Tomoko; Ito, Makiko; Nishio, Yosuke; Nadano, Daita; Matsuda, Tsukasa; Furukawa, Koichi; Okajima, Tetsuya

    2012-03-02

    Highlights: Black-Right-Pointing-Pointer We characterized A130022J15Rik (Eogt1)-a mouse gene homologous to Drosophila Eogt. Black-Right-Pointing-Pointer Eogt1 encodes EGF domain O-GlcNAc transferase. Black-Right-Pointing-Pointer Expression of Eogt1 in Drosophila rescued the cell-adhesion defect in the Eogt mutant. Black-Right-Pointing-Pointer O-GlcNAcylation reaction in the secretory pathway is conserved through evolution. -- Abstract: O-linked-{beta}-N-acetylglucosamine (O-GlcNAc) modification is a unique cytoplasmic and nuclear protein modification that is common in nearly all eukaryotes, including filamentous fungi, plants, and animals. We had recently reported that epidermal growth factor (EGF) repeats of Notch and Dumpy are O-GlcNAcylated by an atypical O-GlcNAc transferase, EOGT, in Drosophila. However, no study has yet shown whether O-GlcNAcylation of extracellular proteins is limited to insects such as Drosophila or whether it occurs in other organisms, including mammals. Here, we report the characterization of A130022J15Rik, a mouse gene homolog of Drosophila Eogt (Eogt 1). Enzymatic analysis revealed that Eogt1 has a substrate specificity similar to that of Drosophila EOGT, wherein the Thr residue located between the fifth and sixth conserved cysteines of the folded EGF-like domains is modified. This observation is supported by the fact that the expression of Eogt1 in Drosophila rescued the cell-adhesion defect caused by Eogt downregulation. In HEK293T cells, Eogt1 expression promoted modification of Notch1 EGF repeats by O-GlcNAc, which was further modified, at least in part, by galactose to generate a novel O-linked-N-acetyllactosamine structure. These results suggest that Eogt1 encodes EGF domain O-GlcNAc transferase and that O-GlcNAcylation reaction in the secretory pathway is a fundamental biochemical process conserved through evolution.

  14. Degradation of aromatics and chloroaromatics by Pseudomonas sp. strain B13: purification and characterization of 3-oxoadipate:succinyl-coenzyme A (CoA) transferase and 3-oxoadipyl-CoA thiolase.

    PubMed

    Kaschabek, Stefan R; Kuhn, Bernd; Müller, Dagmar; Schmidt, Eberhard; Reineke, Walter

    2002-01-01

    The degradation of 3-oxoadipate in Pseudomonas sp. strain B13 was investigated and was shown to proceed through 3-oxoadipyl-coenzyme A (CoA) to give acetyl-CoA and succinyl-CoA. 3-Oxoadipate:succinyl-CoA transferase of strain B13 was purified by heat treatment and chromatography on phenyl-Sepharose, Mono-Q, and Superose 6 gels. Estimation of the native molecular mass gave a value of 115,000 +/- 5,000 Da with a Superose 12 column. Polyacrylamide gel electrophoresis under denaturing conditions resulted in two distinct bands of equal intensities. The subunit A and B values were 32,900 and 27,000 Da. Therefore it can be assumed that the enzyme is a heterotetramer of the type A2B2 with a molecular mass of 120,000 Da. The N-terminal amino acid sequences of both subunits are as follows: subunit A, AELLTLREAVERFVNDGTVALEGFTHLIPT; subunit B, SAYSTNEMMTVAAARRLKNGAVVFV. The pH optimum was 8.4. Km values were 0.4 and 0.2 mM for 3-oxoadipate and succinyl-CoA, respectively. Reversibility of the reaction with succinate was shown. The transferase of strain B13 failed to convert 2-chloro- and 2-methyl-3-oxoadipate. Some activity was observed with 4-methyl-3-oxoadipate. Even 2-oxoadipate and 3-oxoglutarate were shown to function as poor substrates of the transferase. 3-oxoadipyl-CoA thiolase was purified by chromatography on DEAE-Sepharose, blue 3GA, and reactive brown-agarose. Estimation of the native molecular mass gave 162,000 +/- 5,000 Da with a Superose 6 column. The molecular mass of the subunit of the denatured protein, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, was 42 kDa. On the basis of these results, 3-oxoadipyl-CoA thiolase should be a tetramer of the type A4. The N-terminal amino acid sequence of 3-oxoadipyl-CoA thiolase was determined to be SREVYI-DAVRTPIGRFG. The pH optimum was 7.8. Km values were 0.15 and 0.01 mM for 3-oxoadipyl-CoA and CoA, respectively. Sequence analysis of the thiolase terminus revealed high percentages of identity

  15. Targeting O-Acetyl-GD2 Ganglioside for Cancer Immunotherapy.

    PubMed

    Fleurence, Julien; Fougeray, Sophie; Bahri, Meriem; Cochonneau, Denis; Clémenceau, Béatrice; Paris, François; Heczey, Andras; Birklé, Stéphane

    2017-01-01

    Target selection is a key feature in cancer immunotherapy, a promising field in cancer research. In this respect, gangliosides, a broad family of structurally related glycolipids, were suggested as potential targets for cancer immunotherapy based on their higher abundance in tumors when compared with the matched normal tissues. GD2 is the first ganglioside proven to be an effective target antigen for cancer immunotherapy with the regulatory approval of dinutuximab, a chimeric anti-GD2 therapeutic antibody. Although the therapeutic efficacy of anti-GD2 monoclonal antibodies is well documented, neuropathic pain may limit its application. O-Acetyl-GD2, the O-acetylated-derivative of GD2, has recently received attention as novel antigen to target GD2-positive cancers. The present paper examines the role of O-acetyl-GD2 in tumor biology as well as the available preclinical data of anti-O-acetyl-GD2 monoclonal antibodies. A discussion on the relevance of O-acetyl-GD2 in chimeric antigen receptor T cell therapy development is also included.

  16. Targeting O-Acetyl-GD2 Ganglioside for Cancer Immunotherapy

    PubMed Central

    Fleurence, Julien; Fougeray, Sophie; Bahri, Meriem; Cochonneau, Denis; Clémenceau, Béatrice; Paris, François; Heczey, Andras

    2017-01-01

    Target selection is a key feature in cancer immunotherapy, a promising field in cancer research. In this respect, gangliosides, a broad family of structurally related glycolipids, were suggested as potential targets for cancer immunotherapy based on their higher abundance in tumors when compared with the matched normal tissues. GD2 is the first ganglioside proven to be an effective target antigen for cancer immunotherapy with the regulatory approval of dinutuximab, a chimeric anti-GD2 therapeutic antibody. Although the therapeutic efficacy of anti-GD2 monoclonal antibodies is well documented, neuropathic pain may limit its application. O-Acetyl-GD2, the O-acetylated-derivative of GD2, has recently received attention as novel antigen to target GD2-positive cancers. The present paper examines the role of O-acetyl-GD2 in tumor biology as well as the available preclinical data of anti-O-acetyl-GD2 monoclonal antibodies. A discussion on the relevance of O-acetyl-GD2 in chimeric antigen receptor T cell therapy development is also included. PMID:28154831

  17. N-Acetylation of Glucosamine-6-Phosphate in Leuconostoc mesenteroides

    PubMed Central

    DeMoss, R. D.; Moser, K.

    1969-01-01

    A partially purified enzyme (120-fold) from Leuconostoc mesenteroides catalyzed the reversible N-acetylation of d-glucosamine-6-phosphate. Coenzyme A was not required and inhibited the reaction rate. Neither d-glucosamine nor N-acetyl-d-glucosamine served as a substrate for the reversible reaction. The enzyme preparation retained 50% of its original activity after 5 min at 100 C. The Km for acetate was 7.7 × 10−2m in the presence of 2 × 10−2md-glucosamine-6-phosphate. The Km for d-glucosamine-6-phosphate was 5.0 × 10−3m in the presence of 0.64 m acetate. The product of the reaction was characterized by comparison with N-acetyl-d-glucosamine-6-phosphate prepared by enzymatic phosphorylation of N-acetyl-d-glusamine. The characterization tests were: chromatographic migration, acid hydrolysis, enzymatic dephosphorylation, sodium borohydride reduction, and periodate oxidation. The equilibrium constant for the reaction was about 7.5 m for the expression K = (d-glucosamine-6-phosphate)(acetate)/N-acetyl-d-glucosamine-6-phosphate. The standard free energy of the reaction was approximately 1,200 cal per mole. PMID:5781575

  18. Upregulation of mGlu2 receptors via NF-κB p65 acetylation is involved in the Proneurogenic and antidepressant effects of acetyl-L-carnitine.

    PubMed

    Cuccurazzu, Bruna; Bortolotto, Valeria; Valente, Maria Maddalena; Ubezio, Federica; Koverech, Aleardo; Canonico, Pier Luigi; Grilli, Mariagrazia

    2013-10-01

    Acetyl-L-carnitine (ALC) is a naturally occurring molecule with an important role in cellular bioenergetics and as donor of acetyl groups to proteins, including NF-κB p65. In humans, exogenously administered ALC has been shown to be effective in mood disturbances, with a good tolerability profile. No current information is available on the antidepressant effect of ALC in animal models of depression and on the putative mechanism involved in such effect. Here we report that ALC is a proneurogenic molecule, whose effect on neuronal differentiation of adult hippocampal neural progenitors is independent of its neuroprotective activity. The in vitro proneurogenic effects of ALC appear to be mediated by activation of the NF-κB pathway, and in particular by p65 acetylation, and subsequent NF-κB-mediated upregulation of metabotropic glutamate receptor 2 (mGlu2) expression. When tested in vivo, chronic ALC treatment could revert depressive-like behavior caused by unpredictable chronic mild stress, a rodent model of depression with high face validity and predictivity, and its behavioral effect correlated with upregulated expression of mGlu2 receptor in hippocampi of stressed mice. Moreover, chronic, but not acute or subchronic, drug treatment significantly increased adult born neurons in hippocampi of stressed and unstressed mice. We now propose that this mechanism could be potentially involved in the antidepressant effect of ALC in humans. These results are potentially relevant from a clinical perspective, as for its high tolerability profile ALC may be ideally employed in patient subpopulations who are sensitive to the side effects associated with classical antidepressants.

  19. Synthetic Biology for Engineering Acetyl Coenzyme A Metabolism in Yeast

    PubMed Central

    2014-01-01

    ABSTRACT The yeast Saccharomyces cerevisiae is a widely used cell factory for the production of fuels, chemicals, and pharmaceuticals. The use of this cell factory for cost-efficient production of novel fuels and chemicals requires high yields and low by-product production. Many industrially interesting chemicals are biosynthesized from acetyl coenzyme A (acetyl-CoA), which serves as a central precursor metabolite in yeast. To ensure high yields in production of these chemicals, it is necessary to engineer the central carbon metabolism so that ethanol production is minimized (or eliminated) and acetyl-CoA can be formed from glucose in high yield. Here the perspective of generating yeast platform strains that have such properties is discussed in the context of a major breakthrough with expression of a functional pyruvate dehydrogenase complex in the cytosol. PMID:25370498

  20. H4K44 Acetylation Facilitates Chromatin Accessibility during Meiosis.

    PubMed

    Hu, Jialei; Donahue, Greg; Dorsey, Jean; Govin, Jérôme; Yuan, Zuofei; Garcia, Benjamin A; Shah, Parisha P; Berger, Shelley L

    2015-12-01

    Meiotic recombination hotspots are associated with histone post-translational modifications and open chromatin. However, it remains unclear how histone modifications and chromatin structure regulate meiotic recombination. Here, we identify acetylation of histone H4 at Lys44 (H4K44ac) occurring on the nucleosomal lateral surface. We show that H4K44 is acetylated at pre-meiosis and meiosis and displays genome-wide enrichment at recombination hotspots in meiosis. Acetylation at H4K44 is required for normal meiotic recombination, normal levels of double-strand breaks (DSBs) during meiosis, and optimal sporulation. Non-modifiable H4K44R results in increased nucleosomal occupancy around DSB hotspots. Our results indicate that H4K44ac functions to facilitate chromatin accessibility favorable for normal DSB formation and meiotic recombination.

  1. Toxicology of deoxynivalenol and its acetylated and modified forms.

    PubMed

    Payros, Delphine; Alassane-Kpembi, Imourana; Pierron, Alix; Loiseau, Nicolas; Pinton, Philippe; Oswald, Isabelle P

    2016-12-01

    Mycotoxins are the most frequently occurring natural contaminants in human and animal diet. Among them, deoxynivalenol (DON), produced by Fusarium, is one of the most prevalent and thus represents an important health risk. Recent detection methods revealed new mycotoxins and new molecules derivated from the "native" mycotoxins. The main derivates of DON are the acetylated forms produced by the fungi (3- and 15-acetyl-DON), the biologically "modified" forms produced by the plant (deoxynivalenol-3-β-D-glucopyranoside), or after bacteria transformation (de-epoxy DON, 3-epi-DON and 3-keto-DON) as well as the chemically "modified" forms (norDON A-C and DON-sulfonates). High proportions of acetylated and modified forms of DON co-occur with DON, increasing the exposure and the health risk. DON and its acetylated and modified forms are rapidly absorbed following ingestion. At the molecular level, DON binds to the ribosome, induces a ribotoxic stress leading to the activation of MAP kinases, cellular cell-cycle arrest and apoptosis. The toxic effects of DON include emesis and anorexia, alteration of intestinal and immune functions, reduced absorption of the nutrients as well as increased susceptibility to infection and chronic diseases. In contrast to DON, very little information exists concerning the acetylated and modified forms; some can be converted back to DON, their ability to bind to the ribosome and to induce cellular effects varies according to the toxin. Except for the acetylated forms, their toxicity and impact on human and animal health are poorly documented.

  2. Kinetics and product yields of the acetyl peroxy + HO2 radical reaction studied by photoionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Dodson, L. G.; Shen, L.; Savee, J. D.; Eddingsaas, N. C.; Welz, O.; Taatjes, C. A.; Osborn, D. L.; Sander, S. P.; Okumura, M.

    2013-12-01

    The acetyl peroxy radical (CH3C(O)O2) is a key intermediate in the oxidation of carbonyl-containing hydrocarbons in the troposphere. Reaction of acetyl peroxy radicals with HO2 has been suggested as a source of OH radicals in low-NOx environments. Previous work on this reaction observed only two product channels forming (1) peracetic acid and (2) acetic acid. Recent experiments have shown that there is a third channel that generates the radicals OH and acetoxy: CH3C(O)O2 + HO2 → (1) CH3C(O)OOH + O2 (2) CH3C(O)OH + O3 (3) CH3C(O)O + O2 + OH This last pathway to OH formation would then contribute to the apparent isoprene OH recycling suggested by discrepancies between atmospheric models and field observations of OH. There have, however, been significant disagreements among experiments on the yield of OH from reaction of acetyl peroxy radicals with HO2. We report our preliminary studies of acetyl peroxy self-reaction and its reaction with HO2 at 298 K and 8 Torr. Experiments were conducted at the Advanced Light Source synchrotron at the Lawerence Berkeley National Laboratory using tunable VUV ionizing radiation coupled to the Sandia National Laboratory pulsed-laser-photolysis multiplexed photoionization mass spectrometer to detect the time- and isomer-resolved formation of radical intermediates and products. From these results, we report new branching fractions of the three product channels in the acetyl peroxy + HO2 radical reaction.

  3. HAT3-mediated acetylation of PCNA precedes PCNA monoubiquitination following exposure to UV radiation in Leishmania donovani

    PubMed Central

    Kumar, Devanand; Saha, Swati

    2015-01-01

    Histone modifications impact various processes. In examining histone acetyltranferase HAT3 of Leishmania donovani, we find elimination of HAT3 causes decreased cell viability due to defects in histone deposition, and aberrant cell cycle progression pattern. HAT3 associates with proliferating cell nuclear antigen (PCNA), helping load PCNA onto chromatin in proliferating cells. HAT3-nulls show heightened sensitivity to UV radiation. Following UV exposure, PCNA cycles off/on chromatin only in cells expressing HAT3. Inhibition of the ubiquitin-proteasome pathway prior to UV exposure allows accumulation of chromatin-bound PCNA, and reveals that HAT3-nulls are deficient in PCNA monoubiquitination as well as polyubiquitination. While poor monoubiquitination of PCNA may adversely affect translesion DNA synthesis-based repair processes, polyubiquitination deficiencies may result in continued retention of chromatin-bound PCNA, leading to genomic instability. On suppressing the proteasome pathway we also find that HAT3 mediates PCNA acetylation in response to UV. HAT3-mediated PCNA acetylation may serve as a flag for PCNA ubiquitination, thus aiding DNA repair. While PCNA acetylation has previously been linked to its degradation following UV exposure, this is the first report linking a HAT-mediated PCNA acetylation to PCNA monoubiquitination. These findings add a new dimension to our knowledge of the mechanisms regulating PCNA ubiquitination post-UV exposure in eukaryotes. PMID:25948582

  4. Loss of α-Tubulin Acetylation Is Associated with TGF-β-induced Epithelial-Mesenchymal Transition*

    PubMed Central

    Gu, Shuchen; Liu, Yanjing; Zhu, Bowen; Ding, Ke; Yao, Tso-Pang; Chen, Fenfang; Zhan, Lixing; Xu, Pinglong; Ehrlich, Marcelo; Liang, Tingbo; Lin, Xia; Feng, Xin-Hua

    2016-01-01

    The epithelial-to-mesenchymal transition (EMT) is a process by which differentiated epithelial cells reprogram gene expression, lose their junctions and polarity, reorganize their cytoskeleton, increase cell motility and assume a mesenchymal morphology. Despite the critical functions of the microtubule (MT) in cytoskeletal organization, how it participates in EMT induction and maintenance remains poorly understood. Here we report that acetylated α-tubulin, which plays an important role in microtubule (MT) stabilization and cell morphology, can serve as a novel regulator and marker of EMT. A high level of acetylated α-tubulin was correlated with epithelial morphology and it profoundly decreased during TGF-β-induced EMT. We found that TGF-β increased the activity of HDAC6, a major deacetylase of α-tubulin, without affecting its expression levels. Treatment with HDAC6 inhibitor tubacin or TGF-β type I receptor inhibitor SB431542 restored the level of acetylated α-tubulin and consequently blocked EMT. Our results demonstrate that acetylated α-tubulin can serve as a marker of EMT and that HDAC6 represents an important regulator during EMT process. PMID:26763233

  5. HAT3-mediated acetylation of PCNA precedes PCNA monoubiquitination following exposure to UV radiation in Leishmania donovani.

    PubMed

    Kumar, Devanand; Saha, Swati

    2015-06-23

    Histone modifications impact various processes. In examining histone acetyltranferase HAT3 of Leishmania donovani, we find elimination of HAT3 causes decreased cell viability due to defects in histone deposition, and aberrant cell cycle progression pattern. HAT3 associates with proliferating cell nuclear antigen (PCNA), helping load PCNA onto chromatin in proliferating cells. HAT3-nulls show heightened sensitivity to UV radiation. Following UV exposure, PCNA cycles off/on chromatin only in cells expressing HAT3. Inhibition of the ubiquitin-proteasome pathway prior to UV exposure allows accumulation of chromatin-bound PCNA, and reveals that HAT3-nulls are deficient in PCNA monoubiquitination as well as polyubiquitination. While poor monoubiquitination of PCNA may adversely affect translesion DNA synthesis-based repair processes, polyubiquitination deficiencies may result in continued retention of chromatin-bound PCNA, leading to genomic instability. On suppressing the proteasome pathway we also find that HAT3 mediates PCNA acetylation in response to UV. HAT3-mediated PCNA acetylation may serve as a flag for PCNA ubiquitination, thus aiding DNA repair. While PCNA acetylation has previously been linked to its degradation following UV exposure, this is the first report linking a HAT-mediated PCNA acetylation to PCNA monoubiquitination. These findings add a new dimension to our knowledge of the mechanisms regulating PCNA ubiquitination post-UV exposure in eukaryotes.

  6. Resistance to acetyl-CoA carboxylase-inhibiting herbicides.

    PubMed

    Kaundun, Shiv S

    2014-09-01

    Resistance to acetyl-CoA carboxylase herbicides is documented in at least 43 grass weeds and is particularly problematic in Lolium, Alopecurus and Avena species. Genetic studies have shown that resistance generally evolves independently and can be conferred by target-site mutations at ACCase codon positions 1781, 1999, 2027, 2041, 2078, 2088 and 2096. The level of resistance depends on the herbicides, recommended field rates, weed species, plant growth stages, specific amino acid changes and the number of gene copies and mutant ACCase alleles. Non-target-site resistance, or in essence metabolic resistance, is prevalent, multigenic and favoured under low-dose selection. Metabolic resistance can be specific but also broad, affecting other modes of action. Some target-site and metabolic-resistant biotypes are characterised by a fitness penalty. However, the significance for resistance regression in the absence of ACCase herbicides is yet to be determined over a practical timeframe. More recently, a fitness benefit has been reported in some populations containing the I1781L mutation in terms of vegetative and reproductive outputs and delayed germination. Several DNA-based methods have been developed to detect known ACCase resistance mutations, unlike metabolic resistance, as the genes remain elusive to date. Therefore, confirmation of resistance is still carried out via whole-plant herbicide bioassays. A growing number of monocotyledonous crops have been engineered to resist ACCase herbicides, thus increasing the options for grass weed control. While the science of ACCase herbicide resistance has progressed significantly over the past 10 years, several avenues provided in the present review remain to be explored for a better understanding of resistance to this important mode of action.

  7. Inactivation of Anopheles gambiae Glutathione Transferase ε2 by Epiphyllocoumarin

    PubMed Central

    Marimo, Patience; Hayeshi, Rose; Mukanganyama, Stanley

    2016-01-01

    Glutathione transferases (GSTs) are part of a major family of detoxifying enzymes that can catalyze the reductive dehydrochlorination of dichlorodiphenyltrichloroethane (DDT). The delta and epsilon classes of insect GSTs have been implicated in conferring resistance to this insecticide. In this study, the inactivation of Anopheles gambiae GSTε2 by epiphyllocoumarin (Tral 1) was investigated. Recombinant AgGSTε2 was expressed in Escherichia coli cells containing a pET3a-AGSTε2 plasmid and purified by affinity chromatography. Tral 1 was shown to inactivate GSTε2 both in a time-dependent manner and in a concentration-dependent manner. The half-life of GSTε2 in the presence of 25 μM ethacrynic acid (ETA) was 22 minutes and with Tral 1 was 30 minutes, indicating that Tral 1 was not as efficient as ETA as an inactivator. The inactivation parameters kinact and KI were found to be 0.020 ± 0.001 min−1 and 7.5 ± 2.1 μM, respectively, after 90 minutes of incubation. Inactivation of GSTε2 by Tral 1 implies that Tral 1 covalently binds to this enzyme in vitro and would be expected to exhibit time-dependent effects on the enzyme in vivo. Tral 1, therefore, would produce irreversible effects when used together with dichlorodiphenyltrichloroethane (DDT) in malaria control programmes where resistance is mediated by GSTs. PMID:26925266

  8. Glutathione S-transferase polymorphisms in thyroid cancer patients.

    PubMed

    Hernández, Alba; Céspedes, Walkiria; Xamena, Noel; Surrallés, Jordi; Creus, Amadeu; Galofré, Pere; Marcos, Ricardo

    2003-02-10

    Glutathione S-transferases (GST) are enzymes involved in the metabolism of many carcinogens and mutagens, also acting as important free-radical scavengers. The existence of different genetic polymorphisms in human populations has proven to be a susceptibility factor for different tumours. Nevertheless, as far as we know, for thyroid cancer no study has been conducted until now linking its incidence to genetic susceptibility biomarkers. The present investigation has been conducted to detect the possible association between polymorphism at the GSTM1, GSTT1 and GSTP1 genes and thyroid cancer incidence. Thus, 134 thyroid cancer patients and 116 controls, all from the urban district of Barcelona (Spain), have been included in this study. The results indicate that, according to the calculated odds ratio, the frequencies of the different genotypes found in the group of cancer patients do not significantly differ from those values obtained in the controls. This is true for the overall data as well as for the tumour characterization as follicular and papillar types. In addition, none of the possible combinations of mutant genotypes were shown to be risk factors. Finally, when the sex of the patients, the age of tumour onset, and life-style habits were also taken into account, no influence was observed related to the different genotypes. In conclusion, the results obtained in this study clearly suggest that those susceptibility factors related to the different GST polymorphic enzymes are not a predisposing factor in thyroid cancer disease.

  9. Production of N-Acetyl-d-glucosamine from Mycelial Waste by a Combination of Bacterial Chitinases and an Insect N-Acetyl-d-glucosaminidase.

    PubMed

    Zhu, Weixing; Wang, Di; Liu, Tian; Yang, Qing

    2016-09-07

    N-Acetyl-d-glucosamine (GlcNAc) has great potential to be used as a food additive and medicine. The enzymatic degradation of chitin-containing biomass for producing GlcNAc is an eco-friendly approach but suffers from a high cost. The economical efficiency can be improved by both optimizing the member and ratio of the chitinolytic enzymes and using new inexpensive substrates. To address this, a novel combination of bacterial and insect chitinolytic enzymes was developed in this study to efficiently produce GlcNAc from the mycelia of Asperillus niger, a fermentation waste. This enzyme combination contained three bacterial chitinases (chitinase A from Serratia marcescens (SmChiA), SmChiB, SmChiC) and one insect N-acetyl-d-glucosaminidase from Ostrinia furnacalis (OfHex1) in a ratio of 39.1% of SmChiA, 26.7% of SmChiB, 32.9% of SmChiC, and 1.3% of OfHex1. A yield of 6.3 mM (1.4 mg/mL) GlcNAc with a purity of 95% can be obtained from 10 mg/mL mycelial powder in 24 h. The enzyme combination reported here exhibited 5.8-fold higher hydrolytic activity over the commercial chitinase preparation derived from Streptomyces griseus.

  10. Allyl isothiocyanate depletes glutathione and upregulates expression of glutathione S-transferases in Arabidopsis thaliana

    PubMed Central

    Øverby, Anders; Stokland, Ragni A.; Åsberg, Signe E.; Sporsheim, Bjørnar; Bones, Atle M.

    2015-01-01

    Allyl isothiocyanate (AITC) is a phytochemical associated with plant defense in plants from the Brassicaceae family. AITC has long been recognized as a countermeasure against external threats, but recent reports suggest that AITC is also involved in the onset of defense-related mechanisms such as the regulation of stomatal aperture. However, the underlying cellular modes of action in plants remain scarcely investigated. Here we report evidence of an AITC-induced depletion of glutathione (GSH) and the effect on gene expression of the detoxification enzyme family glutathione S-transferases (GSTs) in Arabidopsis thaliana. Treatment of A. thaliana wild-type with AITC resulted in a time- and dose-dependent depletion of cellular GSH. AITC-exposure of mutant lines vtc1 and pad2-1 with elevated and reduced GSH-levels, displayed enhanced and decreased AITC-tolerance, respectively. AITC-exposure also led to increased ROS-levels in the roots and loss of chlorophyll which are symptoms of oxidative stress. Following exposure to AITC, we found that GSH rapidly recovered to the same level as in the control plant, suggesting an effective route for replenishment of GSH or a rapid detoxification of AITC. Transcriptional analysis of genes encoding GSTs showed an upregulation in response to AITC. These findings demonstrate cellular effects by AITC involving a reversible depletion of the GSH-pool, induced oxidative stress, and elevated expression of GST-encoding genes. PMID:25954298

  11. Isolation of a mutant Arabidopsis plant that lacks N-aetyl glucosaminyl transferase I and is unable to synthesize Golgi-modified complex N-linked glycans

    SciTech Connect

    Schaewen, A. von; O'Neill, J.; Chrispeels, M.J. ); Sturm, A. )

    1993-08-01

    The complex asparagine-linked glycans of plant glycoproteins, characterized by the presence of [beta]1[yields]2 xylose and [alpha]1[yields]3 fucose residues, are derived from typical mannose[sub 9](N-acetylglucosamine)[sub 2] (Man[sub 9]GlcNAc[sub 2]) N-linked glycans through the activity of a series of glycosidases and glycosyl transferases in the Golgi apparatus. By screening leaf extracts with an antiserum against complex glycans, we isolated a mutant of Arbidopsis thaliana that is blocked in the conversion of high-manne to complex glycans. In callus tissues derived from the mutant plants, all glycans bind to concanavalin A. These glycans can be released by treatment with endoglycosidase H, and the majority has the same size as Man[sub 5]GlcNAc[sub 1] glycans. In the presence of deoxymannojirimycin, an inhibitor of mannosidase I, the mutant cells synthesize Man[sub 9]GlcNAc[sub 2] and Man[sub 8]GlcNAc[sub 2] glycans, suggesting that the biochemical lesion in the mutant is not in the biosynthesis of high-mannose glycans in the endoplasmic reticulum but in their modification in the Golgi. Direct enzyme assays of cell extracts show that the mutant cells lack N-acetyl glucosaminyl transferase I, the first enzyme in the pathway of complex glycan biosynthesis. The mutant plants are able to complete their development normally under several environmental conditions, suggesting that complex glycans are not essential for normal developmental processes. By crossing the complex-glycan-deficient strain of A. thaliana with a transgenic strain that expresses the glycoprotein phytohemagglutinin, a unique strain was obtained that synthesizes phytohemagglutinin with two high-mannose glycans, instead of one high-mannose and one complex glycan. 42 refs., 8 figs., 1 tab.

  12. Causal role of histone acetylations in enhancer function

    PubMed Central

    Pradeepa, Madapura M.

    2017-01-01

    ABSTRACT Enhancers control development and cellular function by spatiotemporal regulation of gene expression. Co-occurrence of acetylation of histone H3 at lysine 27 (H3K27ac) and mono methylation of histone H3 at lysine 4 (H3K4me1) has been widely used for identification of active enhancers. However, increasing evidence suggests that using this combination of marks alone for enhancer identification gives an incomplete picture of the active enhancer repertoire. We have shown that the H3 globular domain acetylations, H3K64ac and H3K122ac, and an H4 tail acetylation, H4K16ac, are enriched at active enhancers together with H3K27ac, and also at a large number of enhancers without detectable H3K27ac. We propose that acetylations at these lysine residues of histones H3 and H4 might function by directly affecting chromatin structure, nucleosome–nucleosome interactions, nucleosome stability, and transcription factor accessibility. PMID:27792455

  13. 21 CFR 172.372 - N-Acetyl-L-methionine.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... amino acid methionine formed by addition of an acetyl group to the alpha-amino group of methionine. It... amino acid) by weight of the total protein of the finished food, including the amount naturally present... of the additive contained therein. (2) The amounts of additive and each amino acid contained in...

  14. 21 CFR 172.372 - N-Acetyl-L-methionine.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... amino acid methionine formed by addition of an acetyl group to the alpha-amino group of methionine. It... amino acid) by weight of the total protein of the finished food, including the amount naturally present... of the additive contained therein. (2) The amounts of additive and each amino acid contained in...

  15. 21 CFR 172.372 - N-Acetyl-L-methionine.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...-Acetyl-L-methionine (Chemical Abstracts Service Registry No. 65-82-7) is the derivative of the amino acid... provide a total of 3.1 percent L- and DL-methionine (expressed as the free amino acid) by weight of the... contained therein. (2) The amounts of additive and each amino acid contained in any mixture. (3)...

  16. 21 CFR 172.372 - N-Acetyl-L-methionine.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... amino acid methionine formed by addition of an acetyl group to the alpha-amino group of methionine. It... amino acid) by weight of the total protein of the finished food, including the amount naturally present... of the additive contained therein. (2) The amounts of additive and each amino acid contained in...

  17. Genistein mediated histone acetylation and demethylation activates tumor suppressor genes in prostate cancer cells.

    PubMed

    Kikuno, Nobuyuki; Shiina, Hiroaki; Urakami, Shinji; Kawamoto, Ken; Hirata, Hiroshi; Tanaka, Yuichiro; Majid, Shahana; Igawa, Mikio; Dahiya, Rajvir

    2008-08-01

    Genistein is a phytoestrogen that has been reported to suppress the AKT signaling pathway in several malignancies. However, the molecular mechanism of genistein action is not known. We tested the hypothesis that genistein activates expression of several aberrantly silenced tumor suppressor genes (TSGs) that have unmethylated promoters such as PTEN, CYLD, p53 and FOXO3a. We report here that genistein activates TSGs through remodeling of the heterochromatic domains at promoters in prostate cancer cells by modulating histone H3-Lysine 9 (H3-K9) methylation and deacetylation. Genistein activation involved demethylation and acetylation of H3-K9 at the PTEN and the CYLD promoter, while acetylation of H3-K9 at the p53 and the FOXO3a promoter occurred through reduction of endogenous SIRT1 activity. There was a decrease of SIRT1 expression and accumulation of SIRT1 in the cytoplasm from the nucleus. Increased expression of these TSGs was also reciprocally related to attenuation of phosphorylated-AKT and NF-kappaB binding activity in prostate cancer cells. This is the first report describing a novel epigenetic pathway that activates TSGs by modulating either histone H3-Lysine 9 (H3-K9) methylation or deacetylation at gene promoters leading to inhibition of the AKT signaling pathway. These findings strengthen the understanding of how genistein may be chemoprotective in prostate cancer.

  18. Expression, purification, and characterization of human acetyl-CoA carboxylase 2.

    PubMed

    Kim, Ki Won; Yamane, Harvey; Zondlo, James; Busby, James; Wang, Minghan

    2007-05-01

    The full-length human acetyl-CoA carboxylase 1 (ACC1) was expressed and purified to homogeneity by two separate groups (Y.G. Gu, M. Weitzberg, R.F. Clark, X. Xu, Q. Li, T. Zhang, T.M. Hansen, G. Liu, Z. Xin, X. Wang, T. McNally, H. Camp, B.A. Beutel, H.I. Sham, Synthesis and structure-activity relationships of N-{3-[2-(4-alkoxyphenoxy)thiazol-5-yl]-1-methylprop-2-ynyl}carboxy derivatives as selective acetyl-CoA carboxylase 2 inhibitors, J. Med. Chem. 49 (2006) 3770-3773; D. Cheng, C.H. Chu, L. Chen, J.N. Feder, G.A. Mintier, Y. Wu, J.W. Cook, M.R. Harpel, G.A. Locke, Y. An, J.K. Tamura, Expression, purification, and characterization of human and rat acetyl coenzyme A carboxylase (ACC) isozymes, Protein Expr. Purif., in press). However, neither group was successful in expressing the full-length ACC2 due to issues of solubility and expression levels. The two versions of recombinant human ACC2 in these reports are either truncated (lacking 1-148 aa) or have the N-terminal 275 aa replaced with the corresponding ACC1 region (1-133 aa). Despite the fact that ACC activity was observed in both cases, these constructs are not ideal because the N-terminal region of ACC2 could be important for the correct folding of the catalytic domains. Here, we report the high level expression and purification of full-length human ACC2 that lacks only the N-terminal membrane attachment sequence (1-20 and 1-26 aa, respectively) in Trichoplusia ni cells. In addition, we developed a sensitive HPLC assay to analyze the kinetic parameters of the recombinant enzyme. The recombinant enzyme is a soluble protein and has a K(m) value of 2 microM for acetyl-CoA, almost 30-fold lower than that reported for the truncated human ACC2. Our recombinant enzyme also has a lower K(m) value for ATP (K(m)=52 microM). Although this difference could be ascribed to different assay conditions, our data suggest that the longer human ACC2 produced in our system may have higher affinities for the substrates and could

  19. SIRT1 overexpression decreases cisplatin-induced acetylation of NF-{kappa}B p65 subunit and cytotoxicity in renal proximal tubule cells

    SciTech Connect

    Jung, Yu Jin; Lee, Jung Eun; Lee, Ae Sin; Kang, Kyung Pyo; Lee, Sik; Park, Sung Kwang; Lee, Sang Yong; Han, Myung Kwan; Kim, Duk Hoon; Kim, Won

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer Cisplatin increases acetylation of NF-{kappa}B p65 subunit in HK2 cells. Black-Right-Pointing-Pointer SIRT1 overexpression decreases cisplatin-induced p65 acetylation and -cytotoxicity. Black-Right-Pointing-Pointer Resveratrol decreased cisplatin-induced cell viability through deacetylation of p65. -- Abstract: As the increased acetylation of p65 is linked to nuclear factor-{kappa}B (NF-{kappa}B) activation, the regulation of p65 acetylation can be a potential target for the treatment of inflammatory injury. Cisplatin-induced nephrotoxicity is an important issue in chemotherapy of cancer patients. SIRT1, nicotinamide adenine dinucleotide (NAD{sup +})-dependent protein deacetylase, has been implicated in a variety of cellular processes such as inflammatory injury and the control of multidrug resistance in cancer. However, there is no report on the effect of SIRT1 overexpression on cisplatin-induced acetylation of p65 subunit of NF-{kappa}B and cell injury. To investigate the effect of SIRT1 in on cisplatin-induced acetylation of p65 subunit of NF-{kappa}B and cell injury, HK2 cells were exposed with SIRT1 overexpression, LacZ adenovirus or dominant negative adenovirus after treatment with cisplatin. While protein expression of SIRT1 was decreased by cisplatin treatment compared with control buffer treatment, acetylation of NF-{kappa}B p65 subunit was significantly increased after treatment with cisplatin. Overexpression of SIRT1 ameliorated the increased acetylation of p65 of NF-{kappa}B during cisplatin treatment and cisplatin-induced cytotoxicity. Further, treatment of cisplatin-treated HK2 cells with resveratrol, a SIRT1 activator, also decreased acetylation of NF-{kappa}B p65 subunit and cisplatin-induced increase of the cell viability in HK2 cells. Our findings suggests that the regulation of acetylation of p65 of NF-{kappa}B through SIRT1 can be a possible target to attenuate cisplatin-induced renal cell damage.

  20. Effects of acetyl-L-carnitine on lamb oocyte blastocyst rate, ultrastructure, and mitochondrial DNA copy number.

    PubMed

    Reader, Karen L; Cox, Neil R; Stanton, Jo-Ann L; Juengel, Jennifer L

    2015-06-01

    Viable lambs can be produced after transfer of in vitro-derived embryos from oocytes harvested from prepubertal lambs. However, this occurs at a much lower efficiency than from adult ewe oocyte donors. The reduced competence of prepubertal oocytes is believed to be due, at least in part, to deficiencies in cytoplasmic maturation. Differences in the cytoplasmic ultrastructure between prepubertal and adult oocytes have been described in the sheep, pig, and cow. Prepubertal lamb oocytes have been shown to have a different distribution of mitochondria and lipid droplets, and less mitochondria and storage vesicles than their adult counterparts. L-carnitine plays a role in supplying energy to the cell by transporting long-chain fatty acids into mitochondria for β-oxidation to produce ATP. Both L-carnitine and its derivative acetyl-L-carnitine have been reported to increase the blastocyst rate of oocytes from mice, cows, and pigs, treated during IVM. L-carnitine has also been shown to increase mitochondrial biogenesis in adipose cells. Therefore, the aims of this study were to determine if treatment of oocytes from prepubertal lambs with acetyl-L-carnitine during IVM could increase the blastocyst rate and alter mitochondria, vesicle, or lipid droplet number, volume, or distribution. The blastocyst rate was doubled in prepubertal lamb oocytes treated with acetyl-L-carnitine when compared to untreated oocytes (10.0% and 4.6%, respectively; P = 0.028). Light microscopy, scanning electron microscopy, and stereology techniques were used to quantify organelles in untreated and acetyl-L-carnitine-treated lamb oocytes, and quantitative polymerase chain reaction methods were used to measure the mitochondrial DNA copy number. There were no differences in mitochondrial volume, number, or mitochondrial DNA copy number. Acetyl-L-carnitine treatment increased the cytoplasmic volume (P = 0.015) of the oocytes, and there were trends toward an increase in the vesicle volume (P = 0

  1. Protein-based peptide-bond formation by aminoacyl-tRNA protein transferase.

    PubMed

    Watanabe, Kazunori; Toh, Yukimatsu; Suto, Kyoko; Shimizu, Yoshihiro; Oka, Natsuhisa; Wada, Takeshi; Tomita, Kozo

    2007-10-18

    Eubacterial leucyl/phenylalanyl-tRNA protein transferase (LF-transferase) catalyses peptide-bond formation by using Leu-tRNA(Leu) (or Phe-tRNA(Phe)) and an amino-terminal Arg (or Lys) of a protein, as donor and acceptor substrates, respectively. However, the catalytic mechanism of peptide-bond formation by LF-transferase remained obscure. Here we determine the structures of complexes of LF-transferase and phenylalanyl adenosine, with and without a short peptide bearing an N-terminal Arg. Combining the two separate structures into one structure as well as mutation studies reveal the mechanism for peptide-bond formation by LF-transferase. The electron relay from Asp 186 to Gln 188 helps Gln 188 to attract a proton from the alpha-amino group of the N-terminal Arg of the acceptor peptide. This generates the attacking nucleophile for the carbonyl carbon of the aminoacyl bond of the aminoacyl-tRNA, thus facilitating peptide-bond formation. The protein-based mechanism for peptide-bond formation by LF-transferase is similar to the reverse reaction of the acylation step observed in the peptide hydrolysis reaction by serine proteases.

  2. The determination of tRNALeu recognition nucleotides for Escherichia coli L/F transferase

    PubMed Central

    Fung, Angela Wai Shan; Leung, Charles Chung Yun; Fahlman, Richard Peter

    2014-01-01

    Escherichia coli leucyl/phenylalanyl-tRNA protein transferase catalyzes the tRNA-dependent post-translational addition of amino acids onto the N-terminus of a protein polypeptide substrate. Based on biochemical and structural studies, the current tRNA recognition model by L/F transferase involves the identity of the 3′ aminoacyl adenosine and the sequence-independent docking of the D-stem of an aminoacyl-tRNA to the positively charged cluster on L/F transferase. However, this model does not explain the isoacceptor preference observed 40 yr ago. Using in vitro-transcribed tRNA and quantitative MALDI-ToF MS enzyme activity assays, we have confirmed that, indeed, there is a strong preference for the most abundant leucyl-tRNA, tRNALeu (anticodon 5′-CAG-3′) isoacceptor for L/F transferase activity. We further investigate the molecular mechanism for this preference using hybrid tRNA constructs. We identified two independent sequence elements in the acceptor stem of tRNALeu (CAG)—a G3:C70 base pair and a set of 4 nt (C72, A4:U69, C68)—that are important for the optimal binding and catalysis by L/F transferase. This maps a more specific, sequence-dependent tRNA recognition model of L/F transferase than previously proposed. PMID:24935875

  3. RhoGDIα Acetylation at K127 and K141 Affects Binding toward Nonprenylated RhoA.

    PubMed

    Kuhlmann, Nora; Wroblowski, Sarah; Scislowski, Lukas; Lammers, Michael

    2016-01-19

    Rho proteins are major regulators of the cytoskeleton. As most Ras-related proteins, they switch between an active, GTP-bound and an inactive, GDP-bound conformation. Rho proteins are targeted to the plasma membrane via a polybasic region and a prenyl group attached to a C-terminal cysteine residue. To distribute Rho proteins in the cell, the molecular chaperone RhoGDIα binds to the prenylated Rho proteins forming a cytosolic pool of mainly GDP-loaded Rho. Most studies characterized the interaction of prenylated Rho proteins and RhoGDIα. However, RhoGDIα was also shown to bind to nonprenylated Rho proteins with physiologically relevant micomolar affinities. Recently, it was discovered that RhoGDIα is targeted by post-translational lysine acetylation. For one site, K141, it was hypothesized that acetylation might lead to increased levels of formation of filamentous actin and filopodia in mammalian cells. The functional consequences of lysine acetylation for the interplay with nonprenylated RhoA have not been investigated. Here, we report that lysine acetylation at lysines K127 and K141 in the RhoGDIα immunoglobulin domain interferes with the interaction toward nonprenylated RhoA using a combined biochemical and biophysical approach. We determined the first crystal structure of a doubly acetylated protein, RhoGDIα, in complex with RhoA·GDP. We discover that the C-terminus of RhoA adopts a different conformation forming an intermolecular β-sheet with the RhoGDIα immunoglobulin domain.

  4. Nucleosome competition reveals processive acetylation by the SAGA HAT module

    PubMed Central

    Ringel, Alison E.; Cieniewicz, Anne M.; Taverna, Sean D.; Wolberger, Cynthia

    2015-01-01

    The Spt-Ada-Gcn5 acetyltransferase (SAGA) coactivator complex hyperacetylates histone tails in vivo in a manner that depends upon histone 3 lysine 4 trimethylation (H3K4me3), a histone mark enriched at promoters of actively transcribed genes. SAGA contains a separable subcomplex known as the histone acetyltransferase (HAT) module that contains the HAT, Gcn5, bound to Sgf29, Ada2, and Ada3. Sgf29 contains a tandem Tudor domain that recognizes H3K4me3-containing peptides and is required for histone hyperacetylation in vivo. However, the mechanism by which H3K4me3 recognition leads to lysine hyperacetylation is unknown, as in vitro studies show no effect of the H3K4me3 modification on histone peptide acetylation by Gcn5. To determine how H3K4me3 binding by Sgf29 leads to histone hyperacetylation by Gcn5, we used differential fluorescent labeling of histones to monitor acetylation of individual subpopulations of methylated and unmodified nucleosomes in a mixture. We find that the SAGA HAT module preferentially acetylates H3K4me3 nucleosomes in a mixture containing excess unmodified nucleosomes and that this effect requires the Tudor domain of Sgf29. The H3K4me3 mark promotes processive, multisite acetylation of histone H3 by Gcn5 that can account for the different acetylation patterns established by SAGA at promoters versus coding regions. Our results establish a model for Sgf29 function at gene promoters and define a mechanism governing crosstalk between histone modifications. PMID:26401015

  5. Glucose-6-phosphate dehydrogenase deficiency and sulfadimidin acetylation phenotypes in Egyptian oases.

    PubMed

    Hussein, L; Yamamah, G; Saleh, A

    1992-04-01

    Screening of 1315 males from two Egyptian oases for glucose-6-phosphate dehydrogenase deficiency (G-6PD) found an incidence of 5.9%. The rate of acetylation of sulfadimidin was also studied, and a bimodal distribution was found with 73% rapid acetylators. There is a correlation between high frequency of G-6PD deficiency and high frequency of slow acetylation rate.

  6. Acetylation of lysine 40 in alpha-tubulin is not essential in Tetrahymena thermophila

    PubMed Central

    1995-01-01

    In Tetrahymena, at least 17 distinct microtubule structures are assembled from a single primary sequence type of alpha- and beta- tubulin heterodimer, precluding distinctions among microtubular systems based on tubulin primary sequence isotypes. Tetrahymena tubulins also are modified by several types of posttranslational reactions including acetylation of alpha-tubulin at lysine 40, a modification found in most eukaryotes. In Tetrahymena, axonemal alpha-tubulin and numerous other microtubules are acetylated. We completely replaced the single type of alpha-tubulin gene in the macronucleus with a version encoding arginine instead of lysine 40 and therefore cannot be acetylated at this position. No acetylated tubulin was detectable in these transformants using a monoclonal antibody specific for acetylated lysine 40. Surprisingly, mutants lacking detectable acetylated tubulin are indistinguishable from wild-type cells. Thus, acetylation of alpha- tubulin at lysine 40 is non-essential in Tetrahymena. In addition, isoelectric focusing gel analysis of axonemal tubulin from cells unable to acetylate alpha-tubulin leads us to conclude that: (a) most or all ciliary alpha-tubulin is acetylated, (b) other lysines cannot be acetylated to compensate for loss of acetylation at lysine 40, and (c) acetylated alpha-tubulin molecules in wild-type cells contain one or more additional charge-altering modifications. PMID:7775576

  7. The Acetyl Group Buffering Action of Carnitine Acetyltransferase Offsets Macronutrient-induced Lysine Acetylation of Mitochondrial Proteins

    PubMed Central

    Davies, Michael N.; Kjalarsdottir, Lilja; Thompson, J. Will; Dubois, Laura G.; Stevens, Robert D.; Ilkayeva, Olga R.; Brosnan, M. Julia; Rolph, Timothy P.; Grimsrud, Paul A.; Muoio, Deborah M.

    2016-01-01

    Lysine acetylation (AcK), a posttranslational modification wherein a two-carbon acetyl group binds covalently to a lysine residue, occurs prominently on mitochondrial proteins and has been linked to metabolic dysfunction. An emergent theory suggests mitochondrial AcK occurs via mass action rather than targeted catalysis. To test this hypothesis we performed mass spectrometry-based acetylproteomic analyses of quadriceps muscles from mice with skeletal muscle-specific deficiency of carnitine acetyltransferase (CrAT), an enzyme that buffers the mitochondrial acetyl-CoA pool by converting short-chain acyl-CoAs to their membrane permeant acylcarnitine counterparts. CrAT deficiency increased tissue acetyl-CoA levels and susceptibility to diet-induced AcK of broad-ranging mitochondrial proteins, coincident with diminished whole body glucose control. Sub-compartment acetylproteome analyses of muscles from obese mice and humans showed remarkable overrepresentation of mitochondrial matrix proteins. These findings reveal roles for CrAT and L-carnitine in modulating the muscle acetylproteome and provide strong experimental evidence favoring the nonenzymatic carbon pressure model of mitochondrial AcK. PMID:26748706

  8. Hexavalent Chromium (Cr(VI)) Down-Regulates Acetylation of Histone H4 at Lysine 16 through Induction of Stressor Protein Nupr1

    PubMed Central

    Chen, Danqi; Kluz, Thomas; Fang, Lei; Zhang, Xiaoru; Sun, Hong; Jin, Chunyuan; Costa, Max

    2016-01-01

    The environmental and occupational carcinogen Hexavalent Chromium (Cr(VI)) has been shown to cause lung cancer in humans when inhaled. In spite of a considerable research effort, the mechanisms of Cr(VI)-induced carcinogenesis remain largely unknown. Nupr1 (nuclear protein 1) is a small, highly basic, and unfolded protein with molecular weight of 8,800 daltons and is induced by a variety of stressors. Studies in animal models have suggested that Nupr1 is a key factor in the development of lung and pancreatic cancers, with little known about the underlying molecular mechanisms. Here we report that the level of Nupr1 is significantly increased in human bronchial epithelial BEAS2B cells following exposure to Cr(VI) through epigenetic mechanisms. Interestingly, Cr(VI) exposure also results in the loss of acetylation at histone H4K16, which is considered a ‘hallmark’ of human cancer. Cr(VI)-induced reduction of H4K16 acetylation appears to be caused by the induction of Nupr1, since (a) overexpression of Nupr1 decreased the levels of both H4K16 acetylation and the histone acetyltransferase MOF (male absent on the first; also known as Kat8, Myst 1), which specifically acetylates H4K16; (b) the loss of acetylation of H4K16 upon Cr(VI) exposure is greatly compromised by knockdown of Nupr1. Moreover, Nupr1-induced reduction of H4K16 acetylation correlates with the transcriptional down-regulation at several genomic loci. Notably, overexpression of Nupr1 induces anchorage-independent cell growth and knockdown of Nupr1 expression prevents Cr(VI)-induced cell transformation. We propose that Cr(VI) induces Nupr1 and rapidly perturbs gene expression by downregulating H4K16 acetylation, thereby contributing to Cr(VI)-induced carcinogenesis. PMID:27285315

  9. Hexavalent chromium-induced differential disruption of cortical microtubules in some Fabaceae species is correlated with acetylation of α-tubulin.

    PubMed

    Eleftheriou, Eleftherios P; Adamakis, Ioannis-Dimosthenis S; Michalopoulou, Vasiliki A

    2016-03-01

    The effects of hexavalent chromium [Cr(VI)] on the cortical microtubules (MTs) of five species of the Fabaceae family (Vicia faba, Pisum sativum, Vigna sinensis, Vigna angularis, and Medicago sativa) were investigated by confocal laser scanning microscopy after immunolocalization of total tubulin with conventional immunofluorescence techniques and of acetylated α-tubulin with the specific 6-11B-1 monoclonal antibody. Moreover, total α-tubulin and acetylated α-tubulin were quantified by Western immunoblotting and scanning densitometry. Results showed the universality of Cr(VI) detrimental effects to cortical MTs, which proved to be a sensitive and reliable subcellular marker for monitoring Cr(VI) toxicity in plant cells. However, a species-specific response was recorded, and a correlation of MT disturbance with the acetylation status of α-tubulin was demonstrated. In V. faba, MTs were depolymerized at the gain of cytoplasmic tubulin background and displayed low α-tubulin acetylation, while in P. sativum, V. sinensis, V. angularis, and M. sativa, MTs became bundled and changed orientation from perpendicular to oblique or longitudinal. Bundled MTs were highly acetylated as determined by both immunofluorescence and Western immunoblotting. Tubulin acetylation in P. sativum and M. sativa preceded MT bundling; in V. sinensis it followed MT derangement, while in V. angularis the two phenomena coincided. Total α-tubulin remained constant in all treatments. Should acetylation be an indicator of MT stabilization, it is deduced that bundled MTs became stabilized, lost their dynamic properties, and were rendered inactive. Results of this report allow the conclusion that Cr(VI) toxicity disrupts MTs and deranges the MT-mediated functions either by depolymerizing or stabilizing them.

  10. Contribution of liver mitochondrial membrane-bound glutathione transferase to mitochondrial permeability transition pores

    SciTech Connect

    Hossain, Quazi Sohel; Ulziikhishig, Enkhbaatar; Lee, Kang Kwang; Yamamoto, Hideyuki; Aniya, Yoko

    2009-02-15

    We recently reported that the glutathione transferase in rat liver mitochondrial membranes (mtMGST1) is activated by S-glutathionylation and the activated mtMGST1 contributes to the mitochondrial permeability transition (MPT) pore and cytochrome c release from mitochondria [Lee, K.K., Shimoji, M., Quazi, S.H., Sunakawa, H., Aniya, Y., 2008. Novel function of glutathione transferase in rat liver mitochondrial membrane: role for cytochrome c release from mitochondria. Toxcol. Appl. Pharmacol. 232, 109-118]. In the present study we investigated the effect of reactive oxygen species (ROS), generator gallic acid (GA) and GST inhibitors on mtMGST1 and the MPT. When rat liver mitochondria were incubated with GA, mtMGST1 activity was increased to about 3 fold and the increase was inhibited with antioxidant enzymes and singlet oxygen quenchers including 1,4-diazabicyclo [2,2,2] octane (DABCO). GA-mediated mtMGST1 activation was prevented by GST inhibitors such as tannic acid, hematin, and cibacron blue and also by cyclosporin A (CsA). In addition, GA induced the mitochondrial swelling which was also inhibited by GST inhibitors, but not by MPT inhibitors CsA, ADP, and bongkrekic acid. GA also released cytochrome c from the mitochondria which was inhibited completely by DABCO, moderately by GST inhibitors, and somewhat by CsA. Ca{sup 2+}-mediated mitochondrial swelling and cytochrome c release were inhibited by MPT inhibitors but not by GST inhibitors. When the outer mitochondrial membrane was isolated after treatment of mitochondria with GA, mtMGST1 activity was markedly increased and oligomer/aggregate of mtMGST1 was observed. These results indicate that mtMGST1 in the outer mitochondrial membrane is activated by GA through thiol oxidation leading to protein oligomerization/aggregation, which may contribute to the formation of ROS-mediated, CsA-insensitive MPT pore, suggesting a novel mechanism for regulation of the MPT by mtMGST1.

  11. Staphylococcus aureus Formyl-Methionyl Transferase Mutants Demonstrate Reduced Virulence Factor Production and Pathogenicity

    PubMed Central

    Lewandowski, Thomas; Huang, Jianzhong; Fan, Frank; Rogers, Shannon; Gentry, Daniel; Holland, Reannon; DeMarsh, Peter; Zalacain, Magdalena

    2013-01-01

    Inhibitors of peptide deformylase (PDF) represent a new class of antibacterial agents with a novel mechanism of action. Mutations that inactivate formyl methionyl transferase (FMT), the enzyme that formylates initiator methionyl-tRNA, lead to an alternative initiation of protein synthesis that does not require deformylation and are the predominant cause of resistance to PDF inhibitors in Staphylococcus aureus. Here, we report that loss-of-function mutations in FMT impart pleiotropic effects that include a reduced growth rate, a nonhemolytic phenotype, and a drastic reduction in production of multiple extracellular proteins, including key virulence factors, such as α-hemolysin and Panton-Valentine leukocidin (PVL), that have been associated with S. aureus pathogenicity. Consequently, S. aureus FMT mutants are greatly attenuated in neutropenic and nonneutropenic murine pyelonephritis infection models and show very high survival rates compared with wild-type S. aureus. These newly discovered effects on extracellular virulence factor production demonstrate that FMT-null mutants have a more severe fitness cost than previously anticipated, leading to a substantial loss of pathogenicity and a restricted ability to produce an invasive infection. PMID:23571548

  12. [A prevalent genetic variety of UDP-glycuronosyl transferase predicts high risk of irinotecan toxicity].

    PubMed

    Valsecchi, Matias; Garberi, Juan; Ferrandini, Silvia; Berenguer, Roxana; Trini, Ernesto; Politi, Pedro

    2007-01-01

    The advances in genetics and molecular biology have raised new areas in medicine, such as pharmacogenomics, which tries to predict drug responses and toxicities based on the individual genetic variability, describing the so called: pharmacogenomic syndromes. Oncology would find this development extremely useful because of the severe toxicity of chemotherapy. There are a lot of genetic loci under investigation for their potential in predicting drug toxicity, but only three of them have showed clinical usefulness up to now. In particular, quantification of the number of thymine-adenine (TA) dinucleotics in the promoter region of the UDP-glucuronosyl-transferase 1A1 enzime (TA indel) proved to be capable of predicting severe neutropenia in patients exposed to intermediate or high doses of irinotecan. Herein we report a case of a patient with small cell lung cancer who suffered severe hematological and gastrointestinal toxicity after being treated with relatively low doses (65 mg/m(2)) of irinotecan and whose leucocyte DNA analysis showed the presence of seven TA repetitions in both alleles. This case is an example of the clinical applicability and the utility of the test as a toxicity predictor. We also discuss the clinical decisions that may be taken with these patients.

  13. Rhabdomyolysis and respiratory failure: rare presentation of carnitine palmityl-transferase II deficiency.

    PubMed

    Gentili, A; Iannella, E; Masciopinto, F; Latrofa, M E; Giuntoli, L; Baroncini, S

    2008-05-01

    Carnitine palmityl-transferase (CPT) II deficiency is a rare disorder of the fatty acid beta-oxidation cycle. CPT II deficiency can be associated with rhabdomyolysis in particular conditions that increase the requirement for fatty acid oxidation, such as low-carbohydrate and high-fat diet, fasting, exposure to excessive cold, lack of sleep and prolonged exercise. The best known CPT II deficiency is the muscular form with episodic muscle necrosis and paroxysmal myoglobinuria after prolonged exercise. We report a case of a four-year-old male child, who, after one day of hyperthermia and fasting, developed a massive rhabdomyolysis beginning with acute respiratory failure and later complicated by acute renal failure. Appropriate management in Pediatric Intensive Care Unit (PICU) (mechanical ventilatory support, fluid supply combined with mannitol and bicarbonate infusions, administration of acetaminophen and antibiotics, and continuous venovenous haemofiltration) brought about complete resolution with an excellent outcome. Biochemical investigation of muscle biopsy and genetic analysis showed a deficiency of CPT II. The onset of CPT II deficiency with respiratory failure is extremely rare, but a correct and early diagnosis of rhabdomyolysis is the key to successful treatment. A metabolic myopathy such as CPT II deficiency should be suspected in children affected by rhabdomyolysis if trauma, crash, infections, drugs or extreme exertion can be excluded.

  14. Mechanistic evaluation and transcriptional signature of a glutathione S-transferase omega 1 inhibitor

    PubMed Central

    Ramkumar, Kavya; Samanta, Soma; Kyani, Anahita; Yang, Suhui; Tamura, Shuzo; Ziemke, Elizabeth; Stuckey, Jeanne A.; Li, Si; Chinnaswamy, Krishnapriya; Otake, Hiroyuki; Debnath, Bikash; Yarovenko, Vladimir; Sebolt-Leopold, Judith S.; Ljungman, Mats; Neamati, Nouri

    2016-01-01

    Glutathione S-transferase omega 1 (GSTO1) is an atypical GST isoform that is overexpressed in several cancers and has been implicated in drug resistance. Currently, no small-molecule drug targeting GSTO1 is under clinical development. Here we show that silencing of GSTO1 with siRNA significantly impairs cancer cell viability, validating GSTO1 as a potential new target in oncology. We report on the development and characterization of a series of chloroacetamide-containing potent GSTO1 inhibitors. Co-crystal structures of GSTO1 with our inhibitors demonstrate covalent binding to the active site cysteine. These potent GSTO1 inhibitors suppress cancer cell growth, enhance the cytotoxic effects of cisplatin and inhibit tumour growth in colon cancer models as single agent. Bru-seq-based transcription profiling unravelled novel roles for GSTO1 in cholesterol metabolism, oxidative and endoplasmic stress responses, cytoskeleton and cell migration. Our findings demonstrate the therapeutic utility of GSTO1 inhibitors as anticancer agents and identify the novel cellular pathways under GSTO1 regulation in colorectal cancer. PMID:27703239

  15. Expression profiling of selected glutathione transferase genes in Zea mays (L.) seedlings infested with cereal aphids.

    PubMed

    Sytykiewicz, Hubert; Chrzanowski, Grzegorz; Czerniewicz, Paweł; Sprawka, Iwona; Łukasik, Iwona; Goławska, Sylwia; Sempruch, Cezary

    2014-01-01

    The purpose of this report was to evaluate the expression patterns of selected glutathione transferase genes (gst1, gst18, gst23 and gst24) in the tissues of two maize (Zea mays L.) varieties (relatively resistant Ambrozja and susceptible Tasty Sweet) that were colonized with oligophagous bird cherry-oat aphid (Rhopalosiphum padi L.) or monophagous grain aphid (Sitobion avenae L.). Simultaneously, insect-triggered generation of superoxide anion radicals (O2•-) in infested Z. mays plants was monitored. Quantified parameters were measured at 1, 2, 4, 8, 24, 48 and 72 h post-initial aphid infestation (hpi) in relation to the non-infested control seedlings. Significant increases in gst transcript amounts were recorded in aphid-stressed plants in comparison to the control seedlings. Maximal enhancement in the expression of the gst genes in aphid-attacked maize plants was found at 8 hpi (gst23) or 24 hpi (gst1, gst18 and gst24) compared to the control. Investigated Z. mays cultivars formed excessive superoxide anion radicals in response to insect treatments, and the highest overproduction of O2•- was noted 4 or 8 h after infestation, depending on the aphid treatment and maize genotype. Importantly, the Ambrozja variety could be characterized as having more profound increments in the levels of gst transcript abundance and O2•- generation in comparison with the Tasty Sweet genotype.

  16. Ablation of Arg-tRNA-protein transferases results in defective neural tube development.

    PubMed

    Kim, Eunkyoung; Kim, Seonmu; Lee, Jung Hoon; Kwon, Yong Tae; Lee, Min Jae

    2016-08-01

    The arginylation branch of the N-end rule pathway is a ubiquitin-mediated proteolytic system in which post-translational conjugation of Arg by ATE1-encoded Arg-tRNA-protein transferase to N-terminal Asp, Glu, or oxidized Cys residues generates essential degradation signals. Here, we characterized the ATE1-/- mice and identified the essential role of N-terminal arginylation in neural tube development. ATE1-null mice showed severe intracerebral hemorrhages and cystic space near the neural tubes. Expression of ATE1 was prominent in the developing brain and spinal cord, and this pattern overlapped with the migration path of neural stem cells. The ATE1-/- brain showed defective G-protein signaling. Finally, we observed reduced mitosis in ATE1-/- neuroepithelium and a significantly higher nitric oxide concentration in the ATE1-/- brain. Our results strongly suggest that the crucial role of ATE1 in neural tube development is directly related to proper turn-over of the RGS4 protein, which participate in the oxygen-sensing mechanism in the cells. [BMB Reports 2016; 49(8): 443-448].

  17. Altered acetylation and succinylation profiles in Corynebacterium glutamicum in response to conditions inducing glutamate overproduction.

    PubMed

    Mizuno, Yuta; Nagano-Shoji, Megumi; Kubo, Shosei; Kawamura, Yumi; Yoshida, Ayako; Kawasaki, Hisashi; Nishiyama, Makoto; Yoshida, Minoru; Kosono, Saori

    2016-02-01

    The bacterium Corynebacterium glutamicum is utilized during industrial fermentation to produce amino acids such as L-glutamate. During L-glutamate fermentation, C. glutamicum changes the flux of central carbon metabolism to favor L-glutamate production, but the molecular mechanisms that explain these flux changes remain largely unknown. Here, we found that the profiles of two major lysine acyl modifications were significantly altered upon glutamate overproduction in C. glutamicum; acetylation decreased, whereas succinylation increased. A label-free semi-quantitative proteomic analysis identified 604 acetylated proteins with 1328 unique acetylation sites and 288 succinylated proteins with 651 unique succinylation sites. Acetylation and succinylation targeted enzymes in central carbon metabolic pathways that are directly related to glutamate production, including the 2-oxoglutarate dehydrogenase complex (ODHC), a key enzyme regulating glutamate overproduction. Structural mapping revealed that several critical lysine residues in the ODHC components were susceptible to acetylation and succinylation. Furthermore, induction of glutamate production was associated with changes in the extent of acetylation and succinylation of lysine, suggesting that these modifications may affect the activity of enzymes involved in glutamate production. Deletion of phosphotransacetylase decreased the extent of protein acetylation in nonproducing condition, suggesting that acetyl phosphate-dependent acetylation is active in C. glutamicum. However, no effect was observed on the profiles of acetylation and succinylation in glutamate-producing condition upon disruption of acetyl phosphate metabolism or deacetylase homologs. It was considered likely that the reduced acetylation in glutamate-producing condition may reflect metabolic states where the flux through acid-producing pathways is very low, and substrates for acetylation do not accumulate in the cell. Succinylation would occur more

  18. Novel Family of Carbohydrate Esterases, Based on Identification of the Hypocrea jecorina Acetyl Esterase Gene▿ †

    PubMed Central

    Li, Xin-Liang; Skory, Christopher D.; Cotta, Michael A.; Puchart, Vladimir; Biely, Peter

    2008-01-01

    Plant cell walls have been shown to contain acetyl groups in hemicelluloses and pectin. The gene aes1, encoding the acetyl esterase (Aes1) of Hypocrea jecorina, was identified by amino-terminal sequencing, peptide mass spectrometry, and genomic sequence analyses. The coded polypeptide had 348 amino acid residues with the first 19 serving as a secretion signal peptide. The calculated molecular mass and isoelectric point of the secreted enzyme were 37,088 Da and pH 5.89, respectively. No significant homology was found between the predicated Aes1 and carbohydrate esterases of known families, but putative aes1 orthologs were found in genomes of many fungi and bacteria that produce cell wall-degrading enzymes. The aes1 transcript levels were high when the fungal cells were induced with sophorose, cellulose, oat spelt xylan, lactose, and arabinose. The recombinant Aes1 produced by H. jecorina transformed with aes1 under the cellobiohydrolase I promoter displayed properties similar to those reported for the native enzyme. The enzyme hydrolyzed acetate ester bond specifically. Using 4-nitrophenyl acetate as substrate, the activity of the recombinant enzyme was enhanced by d-xylose, d-glucose, cellobiose, d-galactose, and xylooligosaccharides but not by arabinose, mannose, or lactose. With the use of 4-nitrophenyl-β-d-xylopyranoside monoacetate as substrate in a β-xylosidase-coupled assay, Aes1 hydrolyzed positions 3 and 4 with the same efficiency while the H. jecorina acetylxylan esterase 1 exclusively deacetylated the position 2 acetyl group. Aes1 was capable of transacetylating methylxyloside in aqueous solution. The data presented demonstrate that Aes1 and other homologous microbial proteins may represent a new family of esterases for lignocellulose biodegradation. PMID:18978092

  19. Astrocyte Reactivity Following Blast Exposure Involves Aberrant Histone Acetylation.

    PubMed

    Bailey, Zachary S; Grinter, Michael B; VandeVord, Pamela J

    2016-01-01

    Blast induced neurotrauma (BINT) is a prevalent injury within military and civilian populations. The injury is characterized by persistent inflammation at the cellular level which manifests as a multitude of cognitive and functional impairments. Epigenetic regulation of transcription offers an important control mechanism for gene expression and cellular function which may underlie chronic inflammation and result in neurodegeneration. We hypothesize that altered histone acetylation patterns may be involved in blast induced inflammation and the chronic activation of glial cells. This study aimed to elucidate changes to histone acetylation occurring following injury and the roles these changes may have within the pathology. Sprague Dawley rats were subjected to either a 10 or 17 psi blast overpressure within an Advanced Blast Simulator (ABS). Sham animals underwent the same procedures without blast exposure. Memory impairments were measured using the Novel Object Recognition (NOR) test at 2 and 7 days post-injury. Tissues were collected at 7 days for Western blot and immunohistochemistry (IHC) analysis. Sham animals showed intact memory at each time point. The novel object discrimination decreased significantly between two and 7 days for each injury group (p < 0.05). This is indicative of the onset of memory impairment. Western blot analysis showed glial fibrillary acidic protein (GFAP), a known marker of activated astrocytes, was elevated in the prefrontal cortex (PFC) following blast exposure for both injury groups. Analysis of histone protein extract showed no changes in the level of any total histone proteins within the PFC. However, acetylation levels of histone H2b, H3, and H4 were decreased in both groups (p < 0.05). Co-localization immunofluorescence was used to further investigate any potential correlation between decreased histone acetylation and astrocyte activation. These experiments showed a similar decrease in H3 acetylation in astrocytes exposed to a 17

  20. Astrocyte Reactivity Following Blast Exposure Involves Aberrant Histone Acetylation

    PubMed Central

    Bailey, Zachary S.; Grinter, Michael B.; VandeVord, Pamela J.

    2016-01-01

    Blast induced neurotrauma (BINT) is a prevalent injury within military and civilian populations. The injury is characterized by persistent inflammation at the cellular level which manifests as a multitude of cognitive and functional impairments. Epigenetic regulation of transcription offers an important control mechanism for gene expression and cellular function which may underlie chronic inflammation and result in neurodegeneration. We hypothesize that altered histone acetylation patterns may be involved in blast induced inflammation and the chronic activation of glial cells. This study aimed to elucidate changes to histone acetylation occurring following injury and the roles these changes may have within the pathology. Sprague Dawley rats were subjected to either a 10 or 17 psi blast overpressure within an Advanced Blast Simulator (ABS). Sham animals underwent the same procedures without blast exposure. Memory impairments were measured using the Novel Object Recognition (NOR) test at 2 and 7 days post-injury. Tissues were collected at 7 days for Western blot and immunohistochemistry (IHC) analysis. Sham animals showed intact memory at each time point. The novel object discrimination decreased significantly between two and 7 days for each injury group (p < 0.05). This is indicative of the onset of memory impairment. Western blot analysis showed glial fibrillary acidic protein (GFAP), a known marker of activated astrocytes, was elevated in the prefrontal cortex (PFC) following blast exposure for both injury groups. Analysis of histone protein extract showed no changes in the level of any total histone proteins within the PFC. However, acetylation levels of histone H2b, H3, and H4 were decreased in both groups (p < 0.05). Co-localization immunofluorescence was used to further investigate any potential correlation between decreased histone acetylation and astrocyte activation. These experiments showed a similar decrease in H3 acetylation in astrocytes exposed to a 17

  1. Induction of Glutathione S-Transferase Isozymes in Sorghum by Herbicide Antidotes 1

    PubMed Central

    Dean, John V.; Gronwald, John W.; Eberlein, Charlotte V.

    1990-01-01

    Certain chemicals referred to as herbicide antidotes protect sorghum from injury by chloroacetanilide herbicides such as metolachlor. The effect of herbicide antidotes on the glutathione S-transferase isozyme complement of etiolated sorghum (Sorghum bicolor [L.] Moench) shoots was examined. Elution profiles of glutathione S-transferase isozymes from untreated and antidote-treated seedlings were generated by fast protein liquid chromatography utilizing an anion exchange (Mono Q) column. In untreated seedlings, there were two glutathione S-transferase isozymes, a major isozyme which exhibited activity toward 1-chloro-2,4-dinitrobenzene and a minor isozyme which exhibited activity toward metolachlor. Treating sorghum seedlings with various antidotes (flurazole, oxabetrinil, CGA-133205, naphthalic anhydride, dichlormid) resulted in the appearance of four to five additional glutathione S-transferase isozymes (de-pending on the particular antidote) which exhibited activity toward metolachlor as a substrate and little or no activity with 1-chloro-2,4-dinitrobenzene. Treating etiolated sorghum shoots with metolachlor was also found to induce at least four isozymes which exhibited activity toward the herbicide. An increase in glutathione S-transferase activity, measured with metolachlor as substrate, was detected within 4 h after treatment with 30 micromolar oxabetrinil, but 36 hours were required for maximum expression of activity. Addition of either the transcription inhibitor cordycepin or the translation inhibitor cycloheximide inhibited the appearance of glutathione S-transferase activity measured with metolachlor as substrate. The results are consistent with the hypothesis that antidotes confer protection against metolachlor injury in sorghum by inducing the de novo synthesis of glutathione S-transferase isozymes which catalyze the detoxification of the herbicide. PMID:16667299

  2. Identification of Nα-acetyl-α-lysine as a probable thermolyte and its accumulation mechanism in Salinicoccus halodurans H3B36

    PubMed Central

    Jiang, Kai; Xue, Yanfen; Ma, Yanhe

    2015-01-01

    Salinicoccus halodurans H3B36 is a moderate halophile that was isolated from a 3.2-m-deep sediment sample in Qaidam Basin, China. Our results suggest that Nα-acetyl-α-lysine can accumulate and act as a probable thermolyte in this strain. The accumulation mechanism and biosynthetic pathway for this rare compatible solute were also elucidated. We confirmed that the de novo synthesis pathway of Nα-acetyl-α-lysine in this strain starts from aspartate and passes through lysine. Through RNA sequencing, we also found an 8-gene cluster (orf_1582–1589) and another gene (orf_2472) that might encode the biosynthesis of Nα-acetyl-α-lysine in S. halodurans H3B36. Orf_192, orf_193, and orf_1259 might participate in the transportation of precursors for generating Nα-acetyl-α-lysine under the heat stress. The transcriptome reported here also generated a global view of heat-induced changes and yielded clues for studying the regulation of Nα-acetyl-α-lysine accumulation. Heat stress triggered a global transcriptional disturbance and generated a series of actions to adapt the strain to heat stress. Furthermore, the transcriptomic results showed that the regulon of RpoN (orf_2534) may be critical to conferring heat stress tolerance and survival to S. halodurans. PMID:26687465

  3. Multiple Mass Isotopomer Tracing of Acetyl-CoA Metabolism in Langendorff-perfused Rat Hearts

    PubMed Central

    Li, Qingling; Deng, Shuang; Ibarra, Rafael A.; Anderson, Vernon E.; Brunengraber, Henri; Zhang, Guo-Fang

    2015-01-01

    We developed an isotopic technique to assess mitochondrial acetyl-CoA turnover (≈citric acid flux) in perfused rat hearts. Hearts are perfused with buffer containing tracer [13C2,2H3]acetate, which forms M5 + M4 + M3 acetyl-CoA. The buffer may also contain one or two labeled substrates, which generate M2 acetyl-CoA (e.g. [13C6]glucose or [1,2-13C2]palmitate) or/and M1 acetyl-CoA (e.g. [1-13C]octanoate). The total acetyl-CoA turnover and the contributions of fuels to acetyl-CoA are calculated from the uptake of the acetate tracer and the mass isotopomer distribution of acetyl-CoA. The method was applied to measurements of acetyl-CoA turnover under different conditions (glucose ± palmitate ± insulin ± dichloroacetate). The data revealed (i) substrate cycling between glycogen and glucose-6-P and between glucose-6-P and triose phosphates, (ii) the release of small excess acetyl groups as acetylcarnitine and ketone bodies, and (iii) the channeling of mitochondrial acetyl-CoA from pyruvate dehydrogenase to carnitine acetyltransferase. Because of this channeling, the labeling of acetylcarnitine and ketone bodies released by the heart are not proxies of the labeling of mitochondrial acetyl-CoA. PMID:25645937

  4. Stoichiometry of site-specific lysine acetylation in an entire proteome.

    PubMed

    Baeza, Josue; Dowell, James A; Smallegan, Michael J; Fan, Jing; Amador-Noguez, Daniel; Khan, Zia; Denu, John M

    2014-08-01

    Acetylation of lysine ϵ-amino groups influences many cellular processes and has been mapped to thousands of sites across many organisms. Stoichiometric information of acetylation is essential to accurately interpret biological significance. Here, we developed and employed a novel method for directly quantifying stoichiometry of site-specific acetylation in the entire proteome of Escherichia coli. By coupling isotopic labeling and a novel pairing algorithm, our approach performs an in silico enrichment of acetyl peptides, circumventing the need for immunoenrichment. We investigated the function of the sole NAD(+)-dependent protein deacetylase, CobB, on both site-specific and global acetylation. We quantified 2206 peptides from 899 proteins and observed a wide distribution of acetyl stoichiometry, ranging from less than 1% up to 98%. Bioinformatic analysis revealed that metabolic enzymes, which either utilize or generate acetyl-CoA, and proteins involved in transcriptional and translational processes displayed the highest degree of acetylation. Loss of CobB led to increased global acetylation at low stoichiometry sites and induced site-specific changes at high stoichiometry sites, and biochemical analysis revealed altered acetyl-CoA metabolism. Thus, this study demonstrates that sirtuin deacetylase deficiency leads to both site-specific and global changes in protein acetylation stoichiometry, affecting central metabolism.

  5. Histone acetylation dependent energy landscapes in tri-nucleosome revealed by residue-resolved molecular simulations

    PubMed Central

    Chang, Le; Takada, Shoji

    2016-01-01

    Histone tail acetylation is a key epigenetic marker that tends to open chromatin folding and activate transcription. Despite intensive studies, precise roles of individual lysine acetylation in chromatin folding have only been poorly understood. Here, we revealed structural dynamics of tri-nucleosomes with several histone tail acetylation states and analyzed histone tail interactions with DNA by performing molecular simulations at an unprecedentedly high resolution. We found versatile acetylation-dependent landscapes of tri-nucleosome. The H4 and H2A tail acetylation reduced the contact between the first and third nucleosomes mediated by the histone tails. The H3 tail acetylation reduced its interaction with neighboring linker DNAs resulting in increase of the distance between consecutive nucleosomes. Notably, two copies of the same histone in a single nucleosome have markedly asymmetric interactions with DNAs, suggesting specific pattern of nucleosome docking albeit high inherent flexibility. Estimated transcription factor accessibility was significantly high for the H4 tail acetylated structures. PMID:27698366

  6. Metabolic actions of some sympathomimetic amines and their acetyl derivatives in the rabbit.

    PubMed

    Marvola, M

    1977-01-01

    To study how acetylation affects the activity of sympathomimetic amines the effects of tyramine, amphetamine, ephedrine, phenylephrine, orciprenaline and salbutamol and of their O- and N-acetyl derivatives on blood glucose and free fatty acid concentrations were studied in the rabbit. Hyperglycemia was induced by all parent compounds except amphetamine which tended to have a weak hypoglycaemic action. Hyperlipaemia in the doses used was induced by ephedrine and orciprenaline but not by the other parent compounds. Usually acetylation decreased the metabolic effects of the compounds but O-acetylation of tyramine and salbutamol caused hyperlipaemia and O-acetylation of ephedrine increased its fatty acid-mobilizing action, perhaps as a consequence of increased lipid solubility of the compounds. The ultimate effects of the O-acetyl derivatives were probably at least partly due to deacetylation at their sites of action. However O-acetylation of sympathomimetics could perhaps be used to induce drug latentiation.

  7. N-Terminal Acetylation Acts as an Avidity Enhancer Within an Interconnected Multiprotein Complex

    SciTech Connect

    Scott, Daniel C.; Monda, Julie K.; Bennett, Eric J.; Harper, J. Wade; Schulman, Brenda A.

    2012-10-25

    Although many eukaryotic proteins are amino (N)-terminally acetylated, structural mechanisms by which N-terminal acetylation mediates protein interactions are largely unknown. Here, we found that N-terminal acetylation of the E2 enzyme, Ubc12, dictates distinctive E3-dependent ligation of the ubiquitin-like protein Nedd8 to Cul1. Structural, biochemical, biophysical, and genetic analyses revealed how complete burial of Ubc12's N-acetyl-methionine in a hydrophobic pocket in the E3, Dcn1, promotes cullin neddylation. The results suggest that the N-terminal acetyl both directs Ubc12's interactions with Dcn1 and prevents repulsion of a charged N terminus. Our data provide a link between acetylation and ubiquitin-like protein conjugation and define a mechanism for N-terminal acetylation-dependent recognition.

  8. Infrared and 13C MAS nuclear magnetic resonance spectroscopic study of acetylation of cotton

    NASA Astrophysics Data System (ADS)

    Adebajo, Moses O.; Frost, Ray L.

    2004-01-01

    The acetylation of commercial cotton samples with acetic anhydride without solvents in the presence of about 5% 4-dimethylaminopyridine (DMAP) catalyst was followed using Fourier transform infrared (FTIR) and 13C MAS NMR spectroscopy. This preliminary investigation was conducted in an effort to develop hydrophobic, biodegradable, cellulosic materials for subsequent application in oil spill cleanup. The FTIR results provide clear evidence for successful acetylation though the NMR results indicate that the level of acetylation is low. Nevertheless, the overall results indicate that cotton fibres are potential candidates suitable for further development via acetylation into hydrophobic sorbent materials for subsequent oil spill cleanup application. The results also indicate that de-acetylation, the reverse of the equilibrium acetylation reaction, occurred when the acetylation reaction was prolonged beyond 3 h.

  9. [Effect of acetylation and oxidation on some properties of breadfruit (Artocarpus altilis) seed starch].

    PubMed

    Rincón, Alicia Mariela; Bou Rached, Lizet; Aragoza, Luis E; Padilla, Fanny

    2007-09-01

    Starch extracted from seeds of Artocarpus altilis (Breadfruit) was chemically modified by acetylation and oxidation, and its functional properties were evaluated and compared with these of native starch. Analysis of the chemical composition showed that moisture content was higher for modified starches. Ash, protein, crude fiber and amylose contents were reduced by the modifications, but did not alter the native starch granules' irregularity, oval shape and smooth surface. Acetylation produced changes in water absorption, swelling power and soluble solids, these values were higher for acetylated starch, while values for native and oxidized starches were similar. Both modifications reduced pasting temperature; oxidation reduced maximum peak viscosity but it was increased by acetylation. Hot paste viscosity was reduced by both modifications, whereas cold paste viscosity was lower in the oxidized starch and higher in the acetylated starch. Breakdown was increased by acetylation and reduced with oxidation. Setback value was reduced after acetylation, indicating it could minimize retrogradation of the starch.

  10. Acetyl-L-carnitine improves aged brain function.

    PubMed

    Kobayashi, Satoru; Iwamoto, Machiko; Kon, Kazuo; Waki, Hatsue; Ando, Susumu; Tanaka, Yasukazu

    2010-07-01

    The effects of acetyl-L-carnitine (ALCAR), an acetyl derivative of L-carnitine, on memory and learning capacity and on brain synaptic functions of aged rats were examined. Male Fischer 344 rats were given ALCAR (100 mg/kg bodyweight) per os for 3 months and were subjected to the Hebb-Williams tasks and AKON-1 task to assess their learning capacity. Cholinergic activities were determined with synaptosomes isolated from brain cortices of the rats. Choline parameters, the high-affinity choline uptake, acetylcholine (ACh) synthesis and depolarization-evoked ACh release were all enhanced in the ALCAR group. An increment of depolarization-induced calcium ion influx into synaptosomes was also evident in rats given ALCAR. Electrophysiological studies using hippocampus slices indicated that the excitatory postsynaptic potential slope and population spike size were both increased in ALCAR-treated rats. These results indicate that ALCAR increases synaptic neurotransmission in the brain and consequently improves learning capacity in aging rats.

  11. Acetylated tubulin is essential for touch sensation in mice.

    PubMed

    Morley, Shane J; Qi, Yanmei; Iovino, Loredana; Andolfi, Laura; Guo, Da; Kalebic, Nereo; Castaldi, Laura; Tischer, Christian; Portulano, Carla; Bolasco, Giulia; Shirlekar, Kalyanee; Fusco, Claudia M; Asaro, Antonino; Fermani, Federica; Sundukova, Mayya; Matti, Ulf; Reymond, Luc; De Ninno, Adele; Businaro, Luca; Johnsson, Kai; Lazzarino, Marco; Ries, Jonas; Schwab, Yannick; Hu, Jing; Heppenstall, Paul A

    2016-12-13

    At its most fundamental level, touch sensation requires the translation of mechanical energy into mechanosensitive ion channel opening, thereby generating electro-chemical signals. Our understanding of this process, especially how the cytoskeleton influences it, remains unknown. Here we demonstrate that mice lacking the α-tubulin acetyltransferase Atat1 in sensory neurons display profound deficits in their ability to detect mechanical stimuli. We show that all cutaneous afferent subtypes, including nociceptors have strongly reduced mechanosensitivity upon Atat1 deletion, and that consequently, mice are largely insensitive to mechanical touch and pain. We establish that this broad loss of mechanosensitivity is dependent upon the acetyltransferase activity of Atat1, which when absent leads to a decrease in cellular elasticity. By mimicking α-tubulin acetylation genetically, we show both cellular rigidity and mechanosensitivity can be restored in Atat1 deficient sensory neurons. Hence, our results indicate that by influencing cellular stiffness, α-tubulin acetylation sets the force required for touch.

  12. MRG15 activates the cdc2 promoter via histone acetylation in human cells

    SciTech Connect

    Pena, AndreAna N.; Tominaga, Kaoru; Pereira-Smith, Olivia M.

    2011-07-01

    Chromatin remodeling is required for transcriptional activation and repression. MRG15 (MORF4L1), a chromatin modulator, is a highly conserved protein and is present in complexes containing histone acetyltransferases (HATs) as well as histone deacetylases (HDACs). Loss of expression of MRG15 in mice and Drosophila results in embryonic lethality and fibroblast and neural stem/progenitor cells cultured from Mrg15 null mouse embryos exhibit marked proliferative defects when compared with wild type cells. To determine the role of MRG15 in cell cycle progression we performed chromatin immunoprecipitation with an antibody to MRG15 on normal human fibroblasts as they entered the cell cycle from a quiescent state, and analyzed various cell cycle gene promoters. The results demonstrated a 3-fold increase in MRG15 occupancy at the cdc2 promoter during S phase of the cell cycle and a concomitant increase in acetylated histone H4. H4 lysine 12 was acetylated at 24 h post-serum stimulation while there was no change in acetylation of lysine 16. HDAC1 and 2 were decreased at this promoter during cell cycle progression. Over-expression of MRG15 in HeLa cells activated a cdc2 promoter-reporter construct in a dose-dependent manner, whereas knockdown of MRG15 resulted in decreased promoter activity. In order to implicate HAT activity, we treated cells with the HAT inhibitor anacardic acid and determined that HAT inhibition results in loss of expression of cdc2 mRNA. Further, chromatin immunoprecipitation with Tip60 localizes the protein to the same 110 bp stretch of the cdc2 promoter pulled down by MRG15. Additionally, we determined that cotransfection of MRG15 with the known associated HAT Tip60 had a cooperative effect in activating the cdc2 promoter. These results suggest that MRG15 is acting in a HAT complex involving Tip60 to modify chromatin via acetylation of histone H4 at the cdc2 promoter to activate transcription.

  13. Structure of the adenylylation domain of E. coli glutamine synthetase adenylyl transferase: evidence for gene duplication and evolution of a new active site.

    PubMed

    Xu, Yibin; Carr, Paul D; Vasudevan, Subhash G; Ollis, David L

    2010-02-26

    The X-ray structure of the C-terminal fragment, containing residues 449-946, of Escherichia coli glutamine synthetase adenylyl transferase (ATase) has been determined. ATase is part of the cascade that regulates the enzymatic activity of E. coli glutamine synthetase, a key component of the cell's machinery for the uptake of ammonia. It has two enzymatic activities, adenylyl removase (AR) and adenylyl transferase (AT), which are located in distinct catalytic domains that are separated by a regulatory (R) domain. We previously reported the three-dimensional structure of the AR domain (residues 1-440). The present structure contains both the R and AT domains. AR and AT share 24% sequence identity and also contain the beta-polymerase motif that is characteristic of many nucleotidylyl transferase enzymes. The structures overlap with an rmsd of 2.4 A when the superhelical R domain is omitted. A model for the complete ATase molecule is proposed, along with some refinements of domain boundaries. A rather more speculative model for the complex of ATase with glutamine synthetase and the nitrogen signal transduction protein PII is also presented.

  14. The p53-SET Interplays Reveal A New Mode of Acetylation-dependent Regulation

    PubMed Central

    Lasso, Gorka; Jiang, Le; Leng, Wenchuan; Zhu, Wei-Guo; Qin, Jun; Honig, Barry; Gu, Wei

    2016-01-01

    Summary Although lysine acetylation is now recognized as a general protein modification for both histones and non-histone proteins1-3, the mechanisms of acetylation mediated actions are not completely understood. Acetylation of the C-terminal domain (CTD) of p53 was the first example for non-histone protein acetylation4. Yet the precise role of the CTD acetylation remains elusive. Lysine acetylation often creates binding sites for bromodomain-containing “reader” proteins5,6; surprisingly, in a proteomic screen, we identified SET as a major cellular factor whose binding with p53 is totally dependent on the CTD acetylation status. SET profoundly inhibits p53 transcriptional activity in unstressed cells but SET-mediated repression is completely abolished by stress-induced p53 CTD acetylation. Moreover, loss of the interaction with SET activates p53, resulting in tumor regression in mouse xenograft models. Notably, the acidic domain of SET acts as a “reader” for unacetylated CTD of p53 and this mechanism of acetylation-dependent regulation is widespread in nature. For example, p53 acetylation also modulates its interactions with similar acidic domains found in other p53 regulators including VPRBP, DAXX and PELP1 (refs. 7-9), and computational analysis of the proteome identified numerous proteins with the potential to serve as the acidic domain readers and lysine-rich ligands. Unlike bromodomain readers, which preferentially bind the acetylated forms of their cognate ligands, the acidic domain readers specifically recognize the unacetylated forms of their ligands. Finally, the acetylation-dependent regulation of p53 was further validated in vivo by using a knockin mouse model expressing an acetylation-mimicking form of p53. These results reveal that the acidic domain-containing factors act as a new class of acetylation-dependent regulators by targeting p53 and potentially, beyond. PMID:27626385

  15. Acetyl-coenzyme A deacylase activity in liver is not an artifact. Subcellular distribution and substrate specificity of acetyl-coenzyme A deacylase activities in rat liver

    PubMed Central

    Grigat, Klaus-P.; Koppe, Klaus; Seufert, Claus-D.; Söling, Hans-D

    1979-01-01

    Whole liver and isolated liver mitochondria are able to release free acetate, especially under conditions of increased fatty acid oxidation. In the present paper it is shown that rat liver contains acetyl-CoA deacylase (EC 3.1.2.1) activity (0.72μmol/min per g wet wt. of liver at 30°C and 0.5mm-acetyl-CoA). At 0.5mm-acetyl-CoA 73% of total enzyme activity was found in the mitochondria, 8% in the lysosomal fraction and 19% in the postmicrosomal supernatant. Mitochondrial subfractionation shows that mitochondrial acetyl-CoA deacylase activity is restricted to the matrix space. Mitochondrial acetyl-CoA deacylase showed almost no activity with either butyryl- or hexanoyl-CoA. Acetyl-CoA hydrolase activity from purified rat liver lysosomes exhibited a very low affinity for acetyl-CoA (apparent Km>15mm compared with an apparent Km value of 0.5mm for the mitochondrial enzyme) and reacted at about the same rate with acetyl-, n-butyryl- and hexanoyl-CoA. We could not confirm the findings of Costa & Snoswell [(1975) Biochem. J. 152, 167–172] according to which mitochondrial acetyl-CoA deacylase was considered to be an artifact resulting from the combined actions of acetyl-CoA–l-carnitine acetyltransferase (EC 2.3.1.7) and acetylcarnitine hydrolase. The results are in line with the concept that free acetate released by the liver under physiological conditions stems from the intramitochondrial deacylation of acetyl-CoA. PMID:34392

  16. Tomatidine, a tomato sapogenol, ameliorates hyperlipidemia and atherosclerosis in apoE-deficient mice by inhibiting acyl-CoA:cholesterol acyl-transferase (ACAT).

    PubMed

    Fujiwara, Yukio; Kiyota, Naoko; Tsurushima, Keiichiro; Yoshitomi, Makiko; Horlad, Hasita; Ikeda, Tsuyoshi; Nohara, Toshihiro; Takeya, Motohiro; Nagai, Ryoji

    2012-03-14

    It was previously revealed that esculeoside A, a new glycoalkaloid, and esculeogenin A, a new aglycon of esculeoside A, contained in ripe tomato ameliorate atherosclerosis in apoE-deficent mice. This study examined whether tomatidine, the aglycone of tomatine, which is a major tomato glycoalkaloid, also shows similar inhibitory effects on cholesterol ester (CE) accumulation in human monocyte-derived macrophages (HMDM) and atherogenesis in apoE-deficient mice. Tomatidine significantly inhibited the CE accumulation induced by acetylated LDL in HMDM in a dose-dependent manner. Tomatidine also inhibited CE formation in Chinese hamster ovary cells overexpressing acyl-CoA:cholesterol acyl-transferase (ACAT)-1 or ACAT-2, suggesting that tomatidine suppresses both ACAT-1 and ACAT-2 activities. Furthermore, the oral administration of tomatidine to apoE-deficient mice significantly reduced levels of serum cholesterol, LDL-cholesterol, and areas of atherosclerotic lesions. The study provides the first evidence that tomatidine significantly suppresses the activity of ACAT and leads to reduction of atherogenesis.

  17. Glyceryl trinitrate metabolism in the quail embryo by the glutathione S-transferases leads to a perturbation in redox status and embryotoxicity.

    PubMed

    Bardai, Ghalib K; Hales, Barbara F; Sunahara, Geoffrey I

    2013-07-01

    Exposure of stage 9 quail (Coturnix coturnix japonica) embryos to glyceryl trinitrate (GTN) induces malformations that were associated in previous studies with an increase in protein nitration. Increased nitration suggests metabolism of GTN by the embryo. The goals of this study were to characterize the enzymes and co-factors required for GTN metabolism by quail embryos, and to determine the effects of in ovo treatment with N-acetyl cysteine (NAC), a precursor of glutathione (GSH), on GTN embryotoxicity. GTN treatment of quail embryos resulted in an increase in nitrite, a decrease in total GSH, and an increase in the ratio of NADP(+)/NADPH, indicating that redox balance may be compromised in exposed embryos. Glutathione S-transferases (GSTs; EC 2.5.1.18) purified from the whole embryo (K(m) 0.84 mM; V(max) 36 μM/min) and the embryonic eye (K(m) 0.20 mM; V(max) 30 μM/min) had GTN-metabolizing activity (1436 and 34 nmol/min/mg, respectively); the addition of ethacrynic acid, an inhibitor of GST activity, decreased GTN metabolism. Peptide sequencing of the GST isozymes indicated that alpha- or mu-type GSTs in the embryo and embryonic eye had GTN metabolizing activity. NAC co-treatment partially protected against the effects of GTN exposure. Thus, GTN denitration by quail embryo GSTs may represent a key initial step in the developmental toxicity of GTN.

  18. Mechanistic Insight into the Rh(III)-Catalyzed C-H Activation of 2-Acetyl-1-Arythydrazines in Water.

    PubMed

    Wu, Weirong; Liu, Tao; Huang, Caiyun; Zhang, Jing; Man, Xiaoping

    2017-03-02

    A mechanistic study of the Cp*Rh(III)-catalyzed C-H functionalization of 2-acetyl-1-arythydrazines with diazo compounds in water was carried out by using density functional theory calculations. The results reveal that the acetyl-bonded N-H deprotonation is prior to the phenyl C-H activation. The mechanisms from protonation by acetic acid disagree with the proposal by the Wang group. Different from the Rh(III)-catalyzed C-H activation reported by experimental literature, the rate-determining step of the whole catalytic cycle with an overall barrier of 31.7 kcal mol(-1) (IV → TS12-P') is the protonation process of hydroxy O rather than the C-H bond cleavage step. The present theoretical study rationalizes the experimental observation at the molecular level.

  19. Natural occurrence of deoxynivalenol, 15-acetyl-deoxynivalenol, and zearalenone in refusal factor corn stored since 1972.

    PubMed Central

    Abbas, H K; Mirocha, C J; Tuite, J

    1986-01-01

    Two samples of "refusal factor" corn, one stored frozen in Minnesota and one stored dry in Indiana since 1972 or 1973, were analyzed for the presence of Fusarium spp. and Fusarium toxins. Both samples were from corn refused by swine in Indiana from 1972 to 1973. Sample FS 808 (stored in Indiana) contained 20 ppm of deoxynivalenol (20 micrograms/g), 16 ppm of 15-acetyl-deoxynivalenol, 5 ppm of zearalenone, and 0.2 ppm of alpha-zearalenol. Sample FS 362 (stored in Minnesota) contained 3 ppm of deoxynivalenol, 1 ppm of 15-acetyldeoxynivalenol, and 0.3 ppm of zearalenone. The presence of 15-acetyl-deoxynivalenol is significant because it is the first report of it occurring naturally in refusal factor corn, and it may account in part for the refusal that could not be solely attributed to deoxynivalenol. PMID:2939798

  20. Selected properties of acetylated adipate of retrograded starch.

    PubMed

    Zięba, T; Gryszkin, A; Kapelko, M

    2014-01-01

    Native potato starch (NS) and retrograded starch (R - obtained via freezing and defrosting of a starch paste) were used to prepare starch acetates: NS-A and R-A, and then acetylated distarch adipates: NS-ADA and R-ADA. The chemically-modified preparations produced from retrograded starch (R-A; R-ADA) were characterized by a higher degree of esterification compared to the modified preparations produced under the same conditions from native potato starch (NS-A; NS-ADA). Starch resistance to amylolysis was observed to increase (to 30-40 g/100 g) as a result of starch retrogradation and acetylation. Starch cross-linking had a significant impact on the increased viscosity of the paste in the entire course of pasting characteristics and on the increased values of rheological coefficients determined from the equations describing flow curves. The produced preparation of acetylated retrograded starch cross-linked with adipic acid (R-ADA) may be deemed an RS3/4 preparation to be used as a food thickening agent.

  1. Carbon isotope fractionation and the acetyl-CoA pathway

    NASA Astrophysics Data System (ADS)

    Blaser, Martin; Conrad, Ralf

    2010-05-01

    Homoacetogenic bacteria can catalyze the reductive synthesis of acetate from CO2 via the acetyl-CoA pathway. Besides this unifying property homoacetogenic bacteria constitute a metabolically and phylogenetically diverse bacteriological group. Therefore their environmental role is difficult to address. It has been recognized that in methanogenic environments homoacetogenic bacteria contribute to the degradation of organic matter. The natural abundance of 13C may be used to understand the functional impact of homoacetogenic bacteria in the soil environment. To distinguish the acetyl-CoA pathway from other dominant processes, the isotopic composition of acetate and CO2 can be determined and the fractionation factors of the individual processes may be used to discriminate between the dominant pathways. To characterize the fractionation factor associated with the acetyl-CoA pathway the phylogenetic and metabolic diversity needs to be considered. Therefore the fractionation factor of substrate utilization and product formation of different homoacetogens (Acetobacterium woodii, Sporomusa ovata, Thermoanaerobacter kivui, Morella thermoautotrophica) has been studied under pure culture conditions in two defined minimal medium with H2/CO2 as sole source of carbon and energy. It became obvious that the cultivation conditions have a major impact on the obtained fractionation factors.

  2. Getting a Knack for NAC: N-Acetyl-Cysteine.

    PubMed

    Sansone, Randy A; Sansone, Lori A

    2011-01-01

    N-acetyl-cysteine, N-acetylcysteine, N-acetyl cysteine, and N-acetyl-L-cysteine are all designations for the same compound, which is abbreviated as NAC. NAC is a precursor to the amino acid cysteine, which ultimately plays two key metabolic roles. Through its metabolic contribution to glutathione production, cysteine participates in the general antioxidant activities of the body. Through its role as a modulator of the glutamatergic system, cysteine influences the reward-reinforcement pathway. Because of these functions, NAC may exert a therapeutic effect on psychiatric disorders allegedly related to oxidative stress (e.g., schizophrenia, bipolar disorder) as well as psychiatric syndromes characterized by impulsive/compulsive symptoms (e.g., trichotillomania, pathological nail biting, gambling, substance misuse). While the dosages, pharmacological strategies (monotherapy versus augmentation), and long-term risks are not fully evident, NAC appears to be a promising, relatively low-risk intervention. If so, NAC might be an ideal treatment strategy for a variety of psychiatric conditions in both psychiatric and primary care settings.

  3. Lower "N"-Acetyl-Aspartate Levels in Prefrontal Cortices in Pediatric Bipolar Disorder: A (Superscript 1]H Magnetic Resonance Spectroscopy Study

    ERIC Educational Resources Information Center

    Caetano, Sheila C.; Olvera, Rene L.; Hatch, John P.; Sanches, Marsal; Chen, Hua Hsuan; Nicoletti, Mark; Stanley, Jeffrey A.; Fonseca, Manoela; Hunter, Kristina; Lafer, Beny; Pliszka, Steven R.; Soares, Jair C.

    2011-01-01

    Objective: The few studies applying single-voxel [superscript 1]H spectroscopy in children and adolescents with bipolar disorder (BD) have reported low "N"-acetyl-aspartate (NAA) levels in the dorsolateral prefrontal cortex (DLPFC), and high myo-inositol/phosphocreatine plus creatine (PCr+Cr) ratios in the anterior cingulate. The aim of this study…

  4. Bacteria-induced natural product formation in the fungus Aspergillus nidulans requires Saga/Ada-mediated histone acetylation.

    PubMed

    Nützmann, Hans-Wilhelm; Reyes-Dominguez, Yazmid; Scherlach, Kirstin; Schroeckh, Volker; Horn, Fabian; Gacek, Agnieszka; Schümann, Julia; Hertweck, Christian; Strauss, Joseph; Brakhage, Axel A

    2011-08-23

    Sequence analyses of fungal genomes have revealed that the potential of fungi to produce secondary metabolites is greatly underestimated. In fact, most gene clusters coding for the biosynthesis of antibiotics, toxins, or pigments are silent under standard laboratory conditions. Hence, it is one of the major challenges in microbiology to uncover the mechanisms required for pathway activation. Recently, we discovered that intimate physical interaction of the important model fungus Aspergillus nidulans with the soil-dwelling bacterium Streptomyces rapamycinicus specifically activated silent fungal secondary metabolism genes, resulting in the production of the archetypal polyketide orsellinic acid and its derivatives. Here, we report that the streptomycete triggers modification of fungal histones. Deletion analysis of 36 of 40 acetyltransferases, including histone acetyltransferases (HATs) of A. nidulans, demonstrated that the Saga/Ada complex containing the HAT GcnE and the AdaB protein is required for induction of the orsellinic acid gene cluster by the bacterium. We also showed that Saga/Ada plays a major role for specific induction of other biosynthesis gene clusters, such as sterigmatocystin, terrequinone, and penicillin. Chromatin immunoprecipitation showed that the Saga/Ada-dependent increase of histone 3 acetylation at lysine 9 and 14 occurs during interaction of fungus and bacterium. Furthermore, the production of secondary metabolites in A. nidulans is accompanied by a global increase in H3K14 acetylation. Increased H3K9 acetylation, however, was only found within gene clusters. This report provides previously undescribed evidence of Saga/Ada dependent histone acetylation triggered by prokaryotes.

  5. Expanding the Phenotype Associated with NAA10-Related N-Terminal Acetylation Deficiency.

    PubMed

    Saunier, Chloé; Støve, Svein Isungset; Popp, Bernt; Gérard, Bénédicte; Blenski, Marina; AhMew, Nicholas; de Bie, Charlotte; Goldenberg, Paula; Isidor, Bertrand; Keren, Boris; Leheup, Bruno; Lampert, Laetitia; Mignot, Cyril; Tezcan, Kamer; Mancini, Grazia M S; Nava, Caroline; Wasserstein, Melissa; Bruel, Ange-Line; Thevenon, Julien; Masurel, Alice; Duffourd, Yannis; Kuentz, Paul; Huet, Frédéric; Rivière, Jean-Baptiste; van Slegtenhorst, Marjon; Faivre, Laurence; Piton, Amélie; Reis, André; Arnesen, Thomas; Thauvin-Robinet, Christel; Zweier, Christiane

    2016-08-01

    N-terminal acetylation is a common protein modification in eukaryotes associated with numerous cellular processes. Inherited mutations in NAA10, encoding the catalytic subunit of the major N-terminal acetylation complex NatA have been associated with diverse, syndromic X-linked recessive disorders, whereas de novo missense mutations have been reported in one male and one female individual with severe intellectual disability but otherwise unspecific phenotypes. Thus, the full genetic and clinical spectrum of NAA10 deficiency is yet to be delineated. We identified three different novel and one known missense mutation in NAA10, de novo in 11 females, and due to maternal germ line mosaicism in another girl and her more severely affected and deceased brother. In vitro enzymatic assays for the novel, recurrent mutations p.(Arg83Cys) and p.(Phe128Leu) revealed reduced catalytic activity. X-inactivation was random in five females. The core phenotype of X-linked NAA10-related N-terminal-acetyltransferase deficiency in both males and females includes developmental delay, severe intellectual disability, postnatal growth failure with severe microcephaly, and skeletal or cardiac anomalies. Genotype-phenotype correlations within and between both genders are complex and may include various factors such as location and nature of mutations, enzymatic stability and activity, and X-inactivation in females.

  6. Expanding the Phenotype Associated with NAA10‐Related N‐Terminal Acetylation Deficiency

    PubMed Central

    Saunier, Chloé; Støve, Svein Isungset; Popp, Bernt; Gérard, Bénédicte; Blenski, Marina; AhMew, Nicholas; de Bie, Charlotte; Goldenberg, Paula; Isidor, Bertrand; Keren, Boris; Leheup, Bruno; Lampert, Laetitia; Mignot, Cyril; Tezcan, Kamer; Mancini, Grazia M.S.; Nava, Caroline; Wasserstein, Melissa; Bruel, Ange‐Line; Thevenon, Julien; Masurel, Alice; Duffourd, Yannis; Kuentz, Paul; Huet, Frédéric; Rivière, Jean‐Baptiste; van Slegtenhorst, Marjon; Faivre, Laurence; Piton, Amélie; Reis, André; Thauvin‐Robinet, Christel; Zweier, Christiane

    2016-01-01

    ABSTRACT N‐terminal acetylation is a common protein modification in eukaryotes associated with numerous cellular processes. Inherited mutations in NAA10, encoding the catalytic subunit of the major N‐terminal acetylation complex NatA have been associated with diverse, syndromic X‐linked recessive disorders, whereas de novo missense mutations have been reported in one male and one female individual with severe intellectual disability but otherwise unspecific phenotypes. Thus, the full genetic and clinical spectrum of NAA10 deficiency is yet to be delineated. We identified three different novel and one known missense mutation in NAA10, de novo in 11 females, and due to maternal germ line mosaicism in another girl and her more severely affected and deceased brother. In vitro enzymatic assays for the novel, recurrent mutations p.(Arg83Cys) and p.(Phe128Leu) revealed reduced catalytic activity. X‐inactivation was random in five females. The core phenotype of X‐linked NAA10‐related N‐terminal‐acetyltransferase deficiency in both males and females includes developmental delay, severe intellectual disability, postnatal growth failure with severe microcephaly, and skeletal or cardiac anomalies. Genotype–phenotype correlations within and between both genders are complex and may include various factors such as location and nature of mutations, enzymatic stability and activity, and X‐inactivation in females. PMID:27094817

  7. Photosensitized [2 + 2] cycloaddition of N-acetylated cytosine affords stereoselective formation of cyclobutane pyrimidine dimer

    PubMed Central

    Yamamoto, Junpei; Nishiguchi, Kosuke; Manabe, Koichiro; Masutani, Chikahide; Hanaoka, Fumio; Iwai, Shigenori

    2011-01-01

    Photocycloaddition between two adjacent bases in DNA produces a cyclobutane pyrimidine dimer (CPD), which is one of the major UV-induced DNA lesions, with either the cis-syn or trans-syn structure. In this study, we investigated the photosensitized intramolecular cycloaddition of partially-protected thymidylyl-(3′→5′)-N4-acetyl-2′-deoxy-5-methylcytidine, to clarify the effect of the base modification on the cycloaddition reaction. The reaction resulted in the stereoselective formation of the trans-syn CPD, followed by hydrolysis of the acetylamino group. The same result was obtained for the photocycloaddition of thymidylyl-(3′→5′)-N4-acetyl-2′-deoxycytidine, whereas both the cis-syn and trans-syn CPDs were formed from thymidylyl-(3′→5′)-thymidine. Kinetic analyses revealed that the activation energy of the acid-catalyzed hydrolysis is comparable to that reported for the thymine-cytosine CPD. These findings provided a new strategy for the synthesis of oligonucleotides containing the trans-syn CPD. Using the synthesized oligonucleotide, translesion synthesis by human DNA polymerase η was analyzed. PMID:20880992

  8. Histone H3 lysine 56 acetylation and the response to DNA replication fork damage.

    PubMed

    Wurtele, Hugo; Kaiser, Gitte Schalck; Bacal, Julien; St-Hilaire, Edlie; Lee, Eun-Hye; Tsao, Sarah; Dorn, Jonas; Maddox, Paul; Lisby, Michael; Pasero, Philippe; Verreault, Alain

    2012-01-01

    In Saccharomyces cerevisiae, histone H3 lysine 56 acetylation (H3K56ac) occurs in newly synthesized histones that are deposited throughout the genome during DNA replication. Defects in H3K56ac sensitize cells to genotoxic agents, suggesting that this modification plays an important role in the DNA damage response. However, the links between histone acetylation, the nascent chromatin structure, and the DNA damage response are poorly understood. Here we report that cells devoid of H3K56ac are sensitive to DNA damage sustained during transient exposure to methyl methanesulfonate (MMS) or camptothecin but are only mildly affected by hydroxyurea. We demonstrate that, after exposure to MMS, H3K56ac-deficient cells cannot complete DNA replication and eventually segregate chromosomes with intranuclear foci containing the recombination protein Rad52. In addition, we provide evidence that these phenotypes are not due to defects in base excision repair, defects in DNA damage tolerance, or a lack of Rad51 loading at sites of DNA damage. Our results argue that the acute sensitivity of H3K56ac-deficient cells to MMS and camptothecin stems from a failure to complete the repair of specific types of DNA lesions by recombination and/or from defects in the completion of DNA replication.

  9. Histone H3 Lysine 56 Acetylation and the Response to DNA Replication Fork Damage

    PubMed Central

    Wurtele, Hugo; Kaiser, Gitte Schalck; Bacal, Julien; St-Hilaire, Edlie; Lee, Eun-Hye; Tsao, Sarah; Dorn, Jonas; Maddox, Paul; Lisby, Michael; Pasero, Philippe

    2012-01-01

    In Saccharomyces cerevisiae, histone H3 lysine 56 acetylation (H3K56ac) occurs in newly synthesized histones that are deposited throughout the genome during DNA replication. Defects in H3K56ac sensitize cells to genotoxic agents, suggesting that this modification plays an important role in the DNA damage response. However, the links between histone acetylation, the nascent chromatin structure, and the DNA damage response are poorly understood. Here we report that cells devoid of H3K56ac are sensitive to DNA damage sustained during transient exposure to methyl methanesulfonate (MMS) or camptothecin but are only mildly affected by hydroxyurea. We demonstrate that, after exposure to MMS, H3K56ac-deficient cells cannot complete DNA replication and eventually segregate chromosomes with intranuclear foci containing the recombination protein Rad52. In addition, we provide evidence that these phenotypes are not due to defects in base excision repair, defects in DNA damage tolerance, or a lack of Rad51 loading at sites of DNA damage. Our results argue that the acute sensitivity of H3K56ac-deficient cells to MMS and camptothecin stems from a failure to complete the repair of specific types of DNA lesions by recombination and/or from defects in the completion of DNA replication. PMID:22025679

  10. ACSS2-mediated acetyl-CoA synthesis from acetate is necessary for human cytomegalovirus infection.

    PubMed

    Vysochan, Anna; Sengupta, Arjun; Weljie, Aalim M; Alwine, James C; Yu, Yongjun

    2017-02-21

    Recent studies have shown that human cytomegalovirus (HCMV) can induce a robust increase in lipid synthesis which is critical for the success of infection. In mammalian cells the central precursor for lipid biosynthesis, cytosolic acetyl CoA (Ac-CoA), is produced by ATP-citrate lyase (ACLY) from mitochondria-derived citrate or by acetyl-CoA synthetase short-chain family member 2 (ACSS2) from acetate. It has been reported that ACLY is the primary enzyme involved in making cytosolic Ac-CoA in cells with abundant nutrients. However, using CRISPR/Cas9 technology, we have shown that ACLY is not essential for HCMV growth and virally induced lipogenesis. Instead, we found that in HCMV-infected cells glucose carbon can be used for lipid synthesis by both ACLY and ACSS2 reactions. Further, the ACSS2 reaction can compensate for the loss of ACLY. However, in ACSS2-KO human fibroblasts both HCMV-induced lipogenesis from glucose and viral growth were sharply reduced. This reduction suggests that glucose-derived acetate is being used to synthesize cytosolic Ac-CoA by ACSS2. Previous studies have not established a mechanism for the production of acetate directly from glucose metabolism. Here we show that HCMV-infected cells produce more glucose-derived pyruvate, which can be converted to acetate through a nonenzymatic mechanism.

  11. Heterologous expression, purification and characterization of rat class theta glutathione transferase T2-2.

    PubMed Central

    Jemth, P; Stenberg, G; Chaga, G; Mannervik, B

    1996-01-01

    Rat glutathione transferase (GST) T2-2 of class Theta (rGST T2-2), previously known as GST 12-12 and GST Yrs-Yrs, has been heterologously expressed in Escherichia coli XLI-Blue. The corresponding cDNA was isolated from a rat hepatoma cDNA library, ligated into and expressed from the plasmid pKK-D. The sequence is the same as that of the previously reported cDNA of GST Yrs-Yrs. The enzyme was purified using ion-exchange chromatography followed by affinity chromatography with immobilized ferric ions, and the yield was approx. 200 mg from a 1 litre bacterial culture. The availability of a stable recombinant rGST T2-2 has paved the way for a more accurate characterization of the enzyme. The functional properties of the recombinant rGST T2-2 differ significantly from those reported earlier for the enzyme isolated from rat tissues. These differences probably reflect the difficulties in obtaining fully active enzyme from sources where it occurs in relatively low concentrations, which has been the case in previous studies. 1-Chloro-2,4-dinitrobenzene, a substrate often used with GSTs of classes Alpha, Mu and Pi, is a substrate also for rGST T2-2, but the specific activity is relatively low. The Km value for glutathione was determined with four different electrophiles and was found to be in the range 0.3 mM-0.8 mM. The Km values for some electrophilic substrates were found to be in the micromolar range, which is low compared with those determined for GSTs of other classes. The highest catalytic efficiency was obtained with menaphthyl sulphate, which gave a Kcat/Km value of 2.3 x 10(6) s-1.M-1 and a rate enhancement over the uncatalysed reaction of 3 x 10(10). PMID:8645195

  12. A Novel Method of Production and Biophysical Characterization of the Catalytic Domain of Yeast Oligosaccharyl Transferase

    PubMed Central

    Huang, Chengdong; Mohanty, Smita; Banerjee, Monimoy

    2010-01-01

    Oligosaccharyl transferase (OT) is a multi-subunit enzyme that catalyzes N-linked glycosylation of nascent polypeptides in the lumen of the endoplasmic reticulum. In the case of Saccharomyces cerevisiae, OT is composed of nine integral membrane protein subunits. Defects in N-linked glycosylation cause a series of disorders known as congenital disorders of glycosylation (CDG). The C-terminal domain of Stt3p subunit has been reported to contain the acceptor protein recognition site and/or catalytic site. We report here the subcloning, overexpression, a robust but novel method of production of pure C-terminal domain of Stt3p at 60∼70 mg/L in E. coli. CD spectra indicate that the C-terminal Stt3p is highly helical and has a stable tertiary structure in SDS micelles. The well dispersed 2D {1H-15N}-HSQC spectrum in SDS micelles indicates that it is feasible to determine the atomic structure by NMR. The effect of the conserved D518E mutation on the conformation of the C-terminal Stt3p is particularly interesting. The comparative analysis of the fluorescence and NMR data of the mutant and the wild-type C-terminal domain of Stt3p revealed that the replacement of the key residue Asp518, which is located within the WWDYG signature motif (residues 516-520), led to a distinct tertiary structure, even though both proteins have similar overall secondary structures. This observation strongly suggests that Asp518, which was previously proposed to primarily function as a catalytic residue, also plays a critical structural role. Moreover, the activity of the protein was confirmed by Saturation Transfer Difference (STD) and NMR titration studies. PMID:20047336

  13. Separation of glutathione transferase subunits from Proteus vulgaris by two-dimensional gel electrophoresis.

    PubMed

    Hong, Giaming; Chien, Yi-Chih; Chien, Cheng-I

    2003-10-01

    Cytosolic glutathione transferases of Proteus vulgaris were purified by affinity chromatography and characterized by two-dimensional gel electrophoresis. Four different subunits were identified, and each subunit contained a different molecular mass, ranging from 26.2 kDa to 28.5 kDa; a different pI value, ranging from 8.2 to 9.4; and a different amount of protein fraction, ranging from 10% to 56%. All four subunits existed as basic proteins (pI > 7.0). From these results, we concluded that multiple forms of glutathione transferase enzymes existed in Proteus vulgaris, and four different glutathione transferase subunits were separated by 2-D gel electrophoresis.

  14. N-Acetyl-β-D-glucosaminidase activity in feral Carcinus maenas exposed to cadmium.

    PubMed

    Mesquita, Sofia Raquel; Ergen, Şeyda Fikirdeşici; Rodrigues, Aurélie Pinto; Oliva-Teles, M Teresa; Delerue-Matos, Cristina; Guimarães, Laura

    2015-02-01

    Cadmium is a priority hazardous substance, persistent in the aquatic environment, with the capacity to interfere with crustacean moulting. Moulting is a vital process dictating crustacean growth, reproduction and metamorphosis. However, for many organisms, moult disruption is difficult to evaluate in the short term, what limits its inclusion in monitoring programmes. N-acetyl-β-D-glucosaminidase (NAGase) is an enzyme acting in the final steps of the endocrine-regulated moulting cascade, allowing for the cast off of the old exoskeleton, with potential interest as a biomarker of moult disruption. This study investigated responses to waterborne cadmium of NAGase activity of Carcinus maenas originating from estuaries with different histories of anthropogenic contamination: a low impacted and a moderately polluted one. Crabs from both sites were individually exposed for seven days to cadmium concentrations ranging from 1.3 to 2000 μg/L. At the end of the assays, NAGase activity was assessed in the epidermis and digestive gland. Detoxification, antioxidant, energy production, and oxidative stress biomarkers implicated in cadmium metabolism and tolerance were also assessed to better understand differential NAGase responses: activity of glutathione S-transferases (GST), glutathione peroxidase (GPx) glutathione reductase (GR), levels of total glutathiones (TG), lipid peroxidation (LPO), lactate dehydrogenase (LDH), and NADP(+)-dependent isocitrate dehydrogenase (IDH). Animals from the moderately polluted estuary had lower NAGase activity both in the epidermis and digestive gland than in the low impacted site. NAGase activity in the epidermis and digestive gland of C. maenas from both estuaries was sensitive to cadmium exposure suggesting its usefulness for inclusion in monitoring programmes. However, in the digestive gland NAGase inhibition was found in crabs from the less impacted site but not in those from the moderately contaminated one. Altered glutathione levels were

  15. Acetylation of Werner syndrome protein (WRN): relationships with DNA damage, DNA replication and DNA metabolic activities

    PubMed Central

    Lozada, Enerlyn; Yi, Jingjie; Luo, Jianyuan; Orren, David K.

    2014-01-01

    Loss of WRN function causes Werner Syndrome, characterized by increased genomic instability, elevated cancer susceptibility and premature aging. Although WRN is subject to acetylation, phosphorylation and sumoylation, the impact of these modifications on WRN’s DNA metabolic function remains unclear. Here, we examined in further depth the relationship between WRN acetylation and its role in DNA metabolism, particularly in response to induced DNA damage. Our results demonstrate that endogenous WRN is acetylated somewhat under unperturbed conditions. However, levels of acetylated WRN significantly increase after treatment with certain DNA damaging agents or the replication inhibitor hydroxyurea. Use of DNA repair-deficient cells or repair pathway inhibitors further increase levels of acetylated WRN, indicating that induced DNA lesions and their persistence are at least partly responsible for increased acetylation. Notably, acetylation of WRN correlates with inhibition of DNA synthesis, suggesting that replication blockage might underlie this effect. Moreover, WRN acetylation modulates its affinity for and activity on certain DNA structures, in a manner that may enhance its relative specificity for physiological substrates. Our results also show that acetylation and deacetylation of endogenous WRN is a dynamic process, with sirtuins and other histone deacetylases contributing to WRN deacetylation. These findings advance our understanding of the dynamics of WRN acetylation under unperturbed conditions and following DNA damage induction, linking this modification not only to DNA damage persistence but also potentially to replication stalling caused by specific DNA lesions. Our results are consistent with proposed metabolic roles for WRN and genomic instability phenotypes associated with WRN deficiency. PMID:24965941

  16. Cell differentiation along multiple pathways accompanied by changes in histone acetylation status.

    PubMed

    Legartová, Soňa; Kozubek, Stanislav; Franek, Michal; Zdráhal, Zbyněk; Lochmanová, Gabriela; Martinet, Nadine; Bártová, Eva

    2014-04-01

    Post-translational modification of histones is fundamental to the regulation of basic nuclear processes and subsequent cellular events, including differentiation. In this study, we analyzed acetylated forms of histones H2A, H2B, and H4 during induced differentiation in mouse (mESCs) and human (hESCs) embryonic stem cells and during induced enterocytic differentiation of colon cancer cells in vitro. Endoderm-like differentiation of mESCs induced by retinoic acid and enterocytic differentiation induced by histone deacetylase inhibitor sodium butyrate were accompanied by increased mono-, di-, and tri-acetylation of histone H2B and a pronounced increase in di- and tri-acetylation of histone H4. In enterocytes, mono-acetylation of histone H2A also increased and tetra-acetylation of histone H4 appeared only after induction of this differentiation pathway. During differentiation of hESCs, we observed increased mono-acetylation and decreased tri-acetylation of H2B. Mono-, di-, and tri-acetylation of H4 were reduced, manifested by a significant increase in nonacetylated H4 histones. Levels of acetylated histones increased during induced differentiation in mESCs and during histone deacetylase (HDAC) inhibitor-induced enterocytic differentiation, whereas differentiation of human ESCs was associated with reduced acetylation of histones H2B and H4.

  17. Acetylation mimic of lysine 280 exacerbates human Tau neurotoxicity in vivo

    PubMed Central

    Gorsky, Marianna Karina; Burnouf, Sylvie; Dols, Jacqueline; Mandelkow, Eckhard; Partridge, Linda

    2016-01-01

    Dysfunction and accumulation of the microtubule-associated human Tau (hTau) protein into intraneuronal aggregates is observed in many neurodegenerative disorders including Alzheimer’s disease (AD). Reversible lysine acetylation has recently emerged as a post-translational modification that may play an important role in the modulation of hTau pathology. Acetylated hTau species have been observed within hTau aggregates in human AD brains and multi-acetylation of hTau in vitro regulates its propensity to aggregate. However, whether lysine acetylation at position 280 (K280) modulates hTau-induced toxicity in vivo is unknown. We generated new Drosophila transgenic models of hTau pathology to evaluate the contribution of K280 acetylation to hTau toxicity, by analysing the respective toxicity of pseudo-acetylated (K280Q) and pseudo-de-acetylated (K280R) mutant forms of hTau. We observed that mis-expression of pseudo-acetylated K280Q-hTau in the adult fly nervous system potently exacerbated fly locomotion defects and photoreceptor neurodegeneration. In addition, modulation of K280 influenced total hTau levels and phosphorylation without changing hTau solubility. Altogether, our results indicate that pseudo-acetylation of the single K280 residue is sufficient to exacerbate hTau neurotoxicity in vivo, suggesting that acetylated K280-hTau species contribute to the pathological events leading to neurodegeneration in AD. PMID:26940749

  18. Isopentenyl Pyrophosphate cis-1,4-Polyisoprenyl Transferase from Guayule (Parthenium argentatum Gray).

    PubMed

    Madhavan, S; Benedict, C R

    1984-08-01

    Electron micrographs of the mesophyll cells of guayule Parthenium argentatum Gray leaves show deposits of cis-polyisoprene (rubber) in the cytoplasm in the vicinity of mitochondria and chloroplasts and demonstrate that the rubber-synthesizing enzymes are present in guayule leaves. The terminal step in the synthesis of cis-polyisoprene from isopentenyl pyrophosphate (IPP) catalyzed by isopentenyl pyrophosphate cis-1,4-polyisoprenyl transferase has been demonstrated in crude leaf extracts by the enzymic incorporation of [(14)C]isopentenyl pyrophosphate into the polymer and the recovery of [(14)C]levulinic acid following ozonolysis. The rubber transferase activity in the crude extracts of guayule leaves was 5.8 nanomoles isopentenyl pyrophosphate incorporated per milligram protein per hour. This is the first description of the rubber transferase from a nonlaticiferous plant.The specific activity (in units of nanomoles IPP converted per milligram protein per hour) of the partially purified enzyme following chromatography on diethylaminoethyl-cellulose columns was 41.7 units and contained 0.29 units of IPP isomerase activity and 0.08 units of farnesyl pyrophosphate synthetase activity. The rubber transferase requires reduced glutathione and Mg(2+) for maximal activity. There was no incorporation of IPP into cis-1,4-polyisoprene in the absence of rubber particles as primer, and Langmuir isotherm plots showed that the specific activity of the enzyme was proportional to the concentration of the enzyme on the surface of the rubber particles. For a given rubber particle distribution, enzyme activity was proportional to time, IPP concentration, and rubber concentration. The addition of 0.4 millimolar dimethylallyl pyrophosphate to the rubber transferase reaction resulted in a 2-fold increase in the incorporation of IPP into rubber. A comparison was made of the relative activities of rubber transferase in different species of Parthenium, Ficus, and Euphorbia.

  19. Isopentenyl Pyrophosphate cis-1,4-Polyisoprenyl Transferase from Guayule (Parthenium argentatum Gray) 1

    PubMed Central

    Madhavan, S.; Benedict, Chauncey R.

    1984-01-01

    Electron micrographs of the mesophyll cells of guayule Parthenium argentatum Gray leaves show deposits of cis-polyisoprene (rubber) in the cytoplasm in the vicinity of mitochondria and chloroplasts and demonstrate that the rubber-synthesizing enzymes are present in guayule leaves. The terminal step in the synthesis of cis-polyisoprene from isopentenyl pyrophosphate (IPP) catalyzed by isopentenyl pyrophosphate cis-1,4-polyisoprenyl transferase has been demonstrated in crude leaf extracts by the enzymic incorporation of [14C]isopentenyl pyrophosphate into the polymer and the recovery of [14C]levulinic acid following ozonolysis. The rubber transferase activity in the crude extracts of guayule leaves was 5.8 nanomoles isopentenyl pyrophosphate incorporated per milligram protein per hour. This is the first description of the rubber transferase from a nonlaticiferous plant. The specific activity (in units of nanomoles IPP converted per milligram protein per hour) of the partially purified enzyme following chromatography on diethylaminoethyl-cellulose columns was 41.7 units and contained 0.29 units of IPP isomerase activity and 0.08 units of farnesyl pyrophosphate synthetase activity. The rubber transferase requires reduced glutathione and Mg2+ for maximal activity. There was no incorporation of IPP into cis-1,4-polyisoprene in the absence of rubber particles as primer, and Langmuir isotherm plots showed that the specific activity of the enzyme was proportional to the concentration of the enzyme on the surface of the rubber particles. For a given rubber particle distribution, enzyme activity was proportional to time, IPP concentration, and rubber concentration. The addition of 0.4 millimolar dimethylallyl pyrophosphate to the rubber transferase reaction resulted in a 2-fold increase in the incorporation of IPP into rubber. A comparison was made of the relative activities of rubber transferase in different species of Parthenium, Ficus, and Euphorbia. Images Fig. 2 Fig. 3

  20. Mapping of amino acid substitutions conferring herbicide resistance in wheat glutathione transferase.

    PubMed

    Govindarajan, Sridhar; Mannervik, Bengt; Silverman, Joshua A; Wright, Kathy; Regitsky, Drew; Hegazy, Usama; Purcell, Thomas J; Welch, Mark; Minshull, Jeremy; Gustafsson, Claes

    2015-03-20

    We have used design of experiments (DOE) and systematic variance to efficiently explore glutathione transferase substrate specificities caused by amino acid substitutions. Amino acid substitutions selected using phylogenetic analysis were synthetically combined using a DOE design to create an information-rich set of gene variants, termed infologs. We used machine learning to identify and quantify protein sequence-function relationships against 14 different substrates. The resulting models were quantitative and predictive, serving as a guide for engineering of glutathione transferase activity toward a diverse set of herbicides. Predictive quantitative models like those presented here have broad applicability for bioengineering.

  1. Royal Jelly Constituents Increase the Expression of Extracellular Superoxide Dismutase through Histone Acetylation in Monocytic THP-1 Cells.

    PubMed

    Makino, Junya; Ogasawara, Rie; Kamiya, Tetsuro; Hara, Hirokazu; Mitsugi, Yukari; Yamaguchi, Eiji; Itoh, Akichika; Adachi, Tetsuo

    2016-04-22

    Extracellular superoxide dismutase (EC-SOD) is one of the main SOD isozymes and plays an important role in the prevention of cardiovascular diseases by accelerating the dismutation reaction of superoxide. Royal jelly includes 10-hydroxy-2-decenoic acid (10H2DA, 2), which regulates the expression of various types of genes in epigenetics through the effects of histone deacetylase (HDAC) antagonism. The expression of EC-SOD was previously reported to be regulated epigenetically through histone acetylation in THP-1 cells. Therefore, we herein evaluated the effects of the royal jelly constituents 10-hydroxydecanoic acid (10HDA, 1), sebacic acid (SA, 3), and 4-hydroperoxy-2-decenoic acid ethyl ester (4-HPO-DAEE, 4), which is a derivative of 2, on the expression of EC-SOD in THP-1 cells. The treatment with 1 mM 1, 2, or 3 or 100 μM 4 increased EC-SOD expression and histone H3 and H4 acetylation levels. Moreover, the enrichment of acetylated histone H4 was observed in the proximal promoter region of EC-SOD and was caused by the partial promotion of ERK phosphorylation (only 4) and inhibition of HDAC activities, but not by the expression of HDACs. Overall, 4 exerted stronger effects than 1, 2, or 3 and has potential as a candidate or lead compound against atherosclerosis.

  2. Suppression of Dwarf and irregular xylem Phenotypes Generates Low-Acetylated Biomass Lines in Arabidopsis1[OPEN

    PubMed Central

    Lefebvre, Valérie; Ducamp, Aloïse; Trouverie, Jacques; Fortabat, Marie-Noëlle; Guillebaux, Alexia; Baldy, Aurélie; Naquin, Delphine; Lapierre, Catherine; Mouille, Gregory; Horlow, Christine; Durand-Tardif, Mylène

    2015-01-01

    eskimo1-5 (esk1-5) is a dwarf Arabidopsis (Arabidopsis thaliana) mutant that has a constitutive drought syndrome and collapsed xylem vessels, along with low acetylation levels in xylan and mannan. ESK1 has xylan O-acetyltransferase activity in vitro. We used a suppressor strategy on esk1-5 to screen for variants with wild-type growth and low acetylation levels, a favorable combination for ethanol production. We found a recessive mutation in the KAKTUS (KAK) gene that suppressed dwarfism and the collapsed xylem character, the cause of decreased hydraulic conductivity in the esk1-5 mutant. Backcrosses between esk1-5 and two independent knockout kak mutants confirmed suppression of the esk1-5 effect. kak single mutants showed larger stem diameters than the wild type. The KAK promoter fused with a reporter gene showed activity in the vascular cambium, phloem, and primary xylem in the stem and hypocotyl. However, suppression of the collapsed xylem phenotype in esk1 kak double mutants was not associated with the recovery of cell wall O-acetylation or any major cell wall modifications. Therefore, our results indicate that, in addition to its described activity as a repressor of endoreduplication, KAK may play a role in vascular development. Furthermore, orthologous esk1 kak double mutants may hold promise for ethanol production in crop plants. PMID:25888614

  3. Differential regulation of DNA methylation versus histone acetylation in cardiomyocytes during HHcy in vitro and in vivo: an epigenetic mechanism.

    PubMed

    Chaturvedi, Pankaj; Kalani, Anuradha; Givvimani, Srikanth; Kamat, Pradip Kumar; Familtseva, Anastasia; Tyagi, Suresh C

    2014-04-01

    The mechanisms of homocysteine-mediated cardiac threats are poorly understood. Homocysteine, being the precursor to S-adenosyl methionine (a methyl donor) through methionine, is indirectly involved in methylation phenomena for DNA, RNA, and protein. We reported previously that cardiac-specific deletion of N-methyl-d-aspartate receptor-1 (NMDAR1) ameliorates homocysteine-posed cardiac threats, and in this study, we aim to explore the role of NMDAR1 in epigenetic mechanisms of heart failure, using cardiomyocytes during hyperhomocysteinemia (HHcy). High homocysteine levels activate NMDAR1, which consequently leads to abnormal DNA methylation vs. histone acetylation through modulation of DNA methyltransferase 1 (DNMT1), HDAC1, miRNAs, and MMP9 in cardiomyocytes. HL-1 cardiomyocytes cultured in Claycomb media were treated with 100 μM homocysteine in a dose-dependent manner. NMDAR1 antagonist (MK801) was added in the absence and presence of homocysteine at 10 μM in a dose-dependent manner. The expression of DNMT1, histone deacetylase 1 (HDAC1), NMDAR1, microRNA (miR)-133a, and miR-499 was assessed by real-time PCR as well as Western blotting. Methylation and acetylation levels were determined by checking 5'-methylcytosine DNA methylation and chromatin immunoprecipitation. Hyperhomocysteinemic mouse models (CBS+/-) were used to confirm the results in vivo. In HHcy, the expression of NMDAR1, DNMT1, and matrix metalloproteinase 9 increased with increase in H3K9 acetylation, while HDAC1, miR-133a, and miR-499 decreased in cardiomyocytes. Similar results were obtained in heart tissue of CBS+/- mouse. High homocysteine levels instigate cardiovascular remodeling through NMDAR1, miR-133a, miR-499, and DNMT1. A decrease in HDAC1 and an increase in H3K9 acetylation and DNA methylation are suggestive of chromatin remodeling in HHcy.

  4. Okra pectin contains an unusual substitution of its rhamnosyl residues with acetyl and alpha-linked galactosyl groups.

    PubMed

    Sengkhamparn, Nipaporn; Bakx, Edwin J; Verhoef, René; Schols, Henk A; Sajjaanantakul, Tanaboon; Voragen, Alphons G J

    2009-09-28

    The okra plant, Abelmoschus esculentus (L.) Moench, a native plant from Africa, is now cultivated in many other areas such as Asia, Africa, Middle East, and the southern states of the USA. Okra pods are used as vegetables and as traditional medicines. Sequential extraction showed that the Hot Buffer Soluble Solids (HBSS) extract of okra consists of highly branched rhamnogalacturonan (RG) I containing high levels of acetyl groups and short galactose side chains. In contrast, the CHelating agent Soluble Solids (CHSS) extract contained pectin with less RG I regions and slightly longer galactose side chains. Both pectic populations were incubated with homogeneous and well characterized rhamnogalacturonan hydrolase (RGH), endo-polygalacturonase (PG), and endo-galactanase (endo-Gal), monitoring both high and low molecular weight fragments. RGH is able to degrade saponified HBSS and, to some extent, also non-saponified HBSS, while PG and endo-Gal are hardly able to degrade either HBSS or saponified HBSS. In contrast, PG is successful in degrading CHSS, while RGH and endo-Gal are hardly able to degrade the CHSS structure. These results point to a much higher homogalacturonan (HG) ratio for CHSS when compared to HBSS. In addition, the CHSS contained slightly longer galactan side chains within its RG I region than HBSS. Matrix-assisted laser desorption ionization-time of flight mass spectrometry indicated the presence of acetylated RG oligomers in the HBSS and CHSS enzyme digests and electron spray ionization-ion trap-mass spectrum showed that not only galacturonosyl residues but also rhamnosyl residues in RG I oligomers were O-acetylated. NMR spectroscopy showed that all rhamnose residues in a 20kDa HBSS population were O-acetylated at position O-3. Surprisingly, the NMR data also showed that terminal alpha-linked galactosyl groups were present as neutral side chain substituents. Taken together, these results demonstrate that okra contained RG I structures which have not

  5. 8-Methoxypsoralen is a competitive inhibitor of glutathione S-transferase P1-1

    PubMed Central

    de Oliveira, Diêgo Madureira; de Farias, Marcel Tavares; Teles, André Lacerda Braga; dos Santos Junior, Manoelito Coelho; de Cerqueira, Martins Dias; Lima, Rute Maria Ferreira; El-Bachá, Ramon Santos

    2014-01-01

    The blood-brain barrier (BBB) is known to protect healthy brain cells from potentially dangerous chemical agents, but there are many evidences supporting the idea that this protective action is extended to tumor cells. Since the process of angiogenesis in brain tumors leads to BBB breakdown, biochemical characteristics of the BBB seem to be more relevant than physical barriers to protect tumor cells from chemotherapy. In fact, a number of resistance related factors were already demonstrated to be component of both BBB and tumor cells. The enzyme glutathione S-transferases (GST) detoxify electrophilic xenobiotics and endogenous secondary metabolites formed during oxidative stress. A role has been attributed to GST in the resistance of cancer cells to chemotherapeutic agents. This study characterized 8-methoxypsoralen (8-MOP) as a human GST P1-1 (hGST P1-1) inhibitor. To identify and characterize the potential inhibitory activity of 8-MOP, we studied the enzyme kinetics of the conjugation of 1-chloro-2,4-dinitrobenzene (CDNB) with GSH catalyzed by hGST P1-1. We report here that 8-MOP competitively inhibited hGST P1-1 relative to CDNB, but there was an uncompetitive inhibition relative to GSH. Chromatographic analyses suggest that 8-MOP is not a substrate. Molecular docking simulations suggest that 8-MOP binds to the active site, but its position prevents the GSH conjugation. Thus, we conclude that 8-MOP is a promising prototype for new GST inhibitors pharmacologically useful in the treatment of neurodegenerative disorders and the resistance of cancer to chemotherapy. PMID:25324722

  6. Glucosylceramide transferase in Giardia preferentially catalyzes the synthesis of galactosylceramide during encystation.

    PubMed

    Robles-Martinez, Leobarda; Mendez, Tavis L; Apodaca, Jennifer; Das, Siddhartha

    2017-01-01

    The stage differentiation from trophozoite to cyst (i.e., encystation) is an essential step for Giardia to survive outside its human host and spread the infection via the fecal-oral route. We have previously shown that Giardia expresses glucosylceramide transferase 1 (GlcT1) enzyme, the activity of which is elevated during encystation. We have also reported that blocking the activity of gGlcT1 interferes with the biogenesis of encystation-specific vesicles (ESVs) and cyst viability in Giardia. To further understand the role of this enzyme and how it regulates encystation, we overexpressed, knocked down, and rescued the giardial GlcT1 (gGlcT1) gene and measured its enzymatic activity in live parasites as well as in isolated membrane fractions using NBD-ceramide and UDP-glucose or UDP-galactose. We observed that gGlcT1 is able to catalyze the synthesis of both glucosylceramide (GlcCer) and galactosylceramide (GalCer), however the synthesis of GalCer is 2-3 fold higher than of GlcCer. Although both activities follow Michaelis-Menten kinetics, the bindings of UDP-glucose and UDP-galactose with the enzyme appear to be non-competitive and independent of each other. The modulation of gGlcT1 synthesis concomitantly influenced the expression cyst-wall protein (CWP) and overall encystation. We propose that gGlcT1 is a unique enzyme and that Giardia uses this enzyme to synthesize both GlcCer and GalCer to facilitate the process of encystation/cyst production.

  7. The poplar Phi class glutathione transferase: expression, activity and structure of GSTF1

    PubMed Central

    Pégeot, Henri; Koh, Cha San; Petre, Benjamin; Mathiot, Sandrine; Duplessis, Sébastien; Hecker, Arnaud; Didierjean, Claude; Rouhier, Nicolas

    2014-01-01

    Glutathione transferases (GSTs) constitute a superfamily of enzymes with essential roles in cellular detoxification and secondary metabolism in plants as in other organisms. Several plant GSTs, including those of the Phi class (GSTFs), require a conserved catalytic serine residue to perform glutathione (GSH)-conjugation reactions. Genomic analyses revealed that terrestrial plants have around ten GSTFs, eight in the Populus trichocarpa genome, but their physiological functions and substrates are mostly unknown. Transcript expression analyses showed a predominant expression of all genes both in reproductive (female flowers, fruits, floral buds) and vegetative organs (leaves, petioles). Here, we show that the recombinant poplar GSTF1 (PttGSTF1) possesses peroxidase activity toward cumene hydroperoxide and GSH-conjugation activity toward model substrates such as 2,4-dinitrochlorobenzene, benzyl and phenetyl isothiocyanate, 4-nitrophenyl butyrate and 4-hydroxy-2-nonenal but interestingly not on previously identified GSTF-class substrates. In accordance with analytical gel filtration data, crystal structure of PttGSTF1 showed a canonical dimeric organization with bound GSH or 2-(N-morpholino)ethanesulfonic acid molecules. The structure of these protein-substrate complexes allowed delineating the residues contributing to both the G and H sites that form the active site cavity. In sum, the presence of GSTF1 transcripts and proteins in most poplar organs especially those rich in secondary metabolites such as flowers and fruits, together with its GSH-conjugation activity and its documented stress-responsive expression suggest that its function is associated with the catalytic transformation of metabolites and/or peroxide removal rather than with ligandin properties as previously reported for other GSTFs. PMID:25566286

  8. Pharmacological stimulation of brain carnitine palmitoyl-transferase-1 decreases food intake and body weight.

    PubMed

    Aja, Susan; Landree, Leslie E; Kleman, Amy M; Medghalchi, Susan M; Vadlamudi, Aravinda; McFadden, Jill M; Aplasca, Andrea; Hyun, Jayson; Plummer, Erica; Daniels, Khadija; Kemm, Matthew; Townsend, Craig A; Thupari, Jagan N; Kuhajda, Francis P; Moran, Timothy H; Ronnett, Gabriele V

    2008-02-01

    Inhibition of brain carnitine palmitoyl-transferase-1 (CPT-1) is reported to decrease food intake and body weight in rats. Yet, the fatty acid synthase (FAS) inhibitor and CPT-1 stimulator C75 produces hypophagia and weight loss when given to rodents intracerebroventricularly (icv). Thus roles and relative contributions of altered brain CPT-1 activity and fatty acid oxidation in these phenomena remain unclarified. We administered compounds that target FAS or CPT-1 to mice by single icv bolus and examined acute and prolonged effects on feeding and body weight. C75 decreased food intake rapidly and potently at all doses (1-56 nmol) and dose dependently inhibited intake on day 1. Dose-dependent weight loss on day 1 persisted through 4 days of postinjection monitoring. The FAS inhibitor cerulenin produced dose-dependent (560 nmol) hypophagia for 1 day, weight loss for 2 days, and weight regain to vehicle control by day 3. The CPT-1 inhibitor etomoxir (32, 320 nmol) did not alter overall day 1 feeding. However, etomoxir attenuated the hypophagia produced by C75, indicating that CPT-1 stimulation is important for C75's effect. A novel compound, C89b, was characterized in vitro as a selective stimulator of CPT-1 that does not affect fatty acid synthesis. C89b (100, 320 nmol) decreased feeding in mice for 3 days and produced persistent weight loss for 6 days without producing conditioned taste aversion. Similarly, intraperitoneal administration decreased feeding and body weight without producing conditioned taste aversion. These results suggest a role for brain CPT-1 in the regulation of energy balance and implicate CPT-1 stimulation as a pharmacological approach to weight loss.

  9. In silico analysis of protein Lys-N𝜀-acetylation in plants

    PubMed Central

    Rao, R. Shyama Prasad; Thelen, Jay J.; Miernyk, Ján A.

    2014-01-01

    Among post-translational modifications, there are some conceptual similarities between Lys-N𝜀-acetylation and Ser/Thr/Tyr O-phosphorylation. Herein we present a bioinformatics-based overview of reversible protein Lys-acetylation, including some comparisons with reversible protein phosphorylation. The study of Lys-acetylation of plant proteins has lagged behind studies of mammalian and microbial cells; 1000s of acetylation sites have been identified in mammalian proteins compared with only hundreds of sites in plant proteins. While most previous emphasis was focused on post-translational modifications of histones, more recent studies have addressed metabolic regulation. Being directly coupled with cellular CoA/acetyl-CoA and NAD/NADH, reversible Lys-N𝜀-acetylation has the potential to control, or contribute to control, of primary metabolism, signaling, and growth and development. PMID:25136347

  10. Purification and Biochemical Characterization of Glutathione S-Transferase from Down Syndrome and Normal Children Erythrocytes: A Comparative Study

    ERIC Educational Resources Information Center

    Hamed, Ragaa R.; Maharem, Tahany M.; Abdel-Meguid, Nagwa; Sabry, Gilane M.; Abdalla, Abdel-Monem; Guneidy, Rasha A.

    2011-01-01

    Down syndrome (DS) is the phenotypic manifestation of trisomy 21. Our study was concerned with the characterization and purification of glutathione S-transferase enzyme (GST) from normal and Down syndrome (DS) erythrocytes to illustrate the difference in the role of this enzyme in the cell. Glutathione S-transferase and glutathione (GSH) was…

  11. Acetyl phosphate-sensitive regulation of flagellar biogenesis and capsular biosynthesis depends on the Rcs phosphorelay.

    PubMed

    Fredericks, Christine E; Shibata, Satoshi; Aizawa, Shin-Ichi; Reimann, Sylvia A; Wolfe, Alan J

    2006-08-01

    As part of our attempt to map the impact of acetyl phosphate (acetyl approximately P) on the entire network of two-component signal transduction pathways in Escherichia coli, we asked whether the influence of acetyl approximately P on capsular biosynthesis and flagellar biogenesis depends on the Rcs phosphorelay. To do so, we performed a series of epistasis experiments: mutations in the components of the pathway that controls acetyl approximately P levels were combined with mutations in components of the Rcs phosphorelay. Cells that did not synthesize acetyl approximately P produced no capsule under normally permissive conditions, while those that accumulated acetyl approximately P synthesized capsule under conditions previously considered to be non-permissive. Acetyl approximately P-dependent capsular biosynthesis required both RcsB and RcsA, while the lack of RcsC restored capsular biosynthesis to acetyl approximately P-deficient cells. Similarly, acetyl approximately P-sensitive repression of flagellar biogenesis was suppressed by the loss of RcsB (but not of RcsA), while it was enhanced by the lack of RcsC. Taken together, these results show that both acetyl approximately P-sensitive activation of capsular biosynthesis and acetyl approximately P-sensitive repression of flagellar biogenesis require the Rcs phosphorelay. Moreover, they provide strong genetic support for the hypothesis that RcsC can function as either a kinase or a phosphatase dependent on environmental conditions. Finally, we learned that RcsB and RcsC inversely regulated the timing of flagellar biogenesis: rcsB mutants elaborated flagella prematurely, while rcsC mutants delayed their display of flagella. Temporal control of flagella biogenesis implicates the Rcs phosphorelay (and, by extension, acetyl approximately P) in the transition of motile, planktonic individuals into sessile biofilm communities.

  12. Smad Acetylation: A New Level of Regulation in TGF-Beta Signaling

    DTIC Science & Technology

    2007-07-01

    AD_________________ Award Number: W81XWH-04-1-0357 TITLE: Smad Acetylation : A New Level of...TYPE Annual Summary 3. DATES COVERED (From - To) 1 JUL 2004 - 30 JUN 2007 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Smad Acetylation : A New...proposal suggests a series of experiments designed to study the acetylation of Smad proteins. We have determined that Smad2 can be efficiently

  13. Autoimmune regulator is acetylated by transcription coactivator CBP/p300

    SciTech Connect

    Saare, Mario; Rebane, Ana; Rajashekar, Balaji; Vilo, Jaak; Peterson, Paert

    2012-08-15

    The Autoimmune Regulator (AIRE) is a regulator of transcription in the thymic medulla, where it controls the expression of a large set of peripheral-tissue specific genes. AIRE interacts with the transcriptional coactivator and acetyltransferase CBP and synergistically cooperates with it in transcriptional activation. Here, we aimed to study a possible role of AIRE acetylation in the modulation of its activity. We found that AIRE is acetylated in tissue culture cells and this acetylation is enhanced by overexpression of CBP and the CBP paralog p300. The acetylated lysines were located within nuclear localization signal and SAND domain. AIRE with mutations that mimicked acetylated K243 and K253 in the SAND domain had reduced transactivation activity and accumulated into fewer and larger nuclear bodies, whereas mutations that mimicked the unacetylated lysines were functionally similar to wild-type AIRE. Analogously to CBP, p300 localized to AIRE-containing nuclear bodies, however, the overexpression of p300 did not enhance the transcriptional activation of AIRE-regulated genes. Further studies showed that overexpression of p300 stabilized the AIRE protein. Interestingly, gene expression profiling revealed that AIRE, with mutations mimicking K243/K253 acetylation in SAND, was able to activate gene expression, although the affected genes were different and the activation level was lower from those regulated by wild-type AIRE. Our results suggest that the AIRE acetylation can influence the selection of AIRE activated genes. -- Highlights: Black-Right-Pointing-Pointer AIRE is acetylated by the acetyltransferases p300 and CBP. Black-Right-Pointing-Pointer Acetylation occurs between CARD and SAND domains and within the SAND domain. Black-Right-Pointing-Pointer Acetylation increases the size of AIRE nuclear dots. Black-Right-Pointing-Pointer Acetylation increases AIRE protein stability. Black-Right-Pointing-Pointer AIRE acetylation mimic regulates a different set of AIRE

  14. Epigenetic Readers of Lysine Acetylation Regulate Cocaine-Induced Plasticity

    PubMed Central

    Sartor, Gregory C.; Powell, Samuel K.; Brothers, Shaun P.

    2015-01-01

    Epigenetic processes that regulate histone acetylation play an essential role in behavioral and molecular responses to cocaine. To date, however, only a small fraction of the mechanisms involved in the addiction-associated acetylome have been investigated. Members of the bromodomain and extraterminal (BET) family of epigenetic “reader” proteins (BRD2, BRD3, BRD4, and BRDT) bind acetylated histones and serve as a scaffold for the recruitment of macromolecular complexes to modify chromatin accessibility and transcriptional activity. The role of BET proteins in cocaine-induced plasticity, however, remains elusive. Here, we used behavioral, pharmacological, and molecular techniques to examine the involvement of BET bromodomains in cocaine reward. Of the BET proteins, BRD4, but not BRD2 or BRD3, was significantly elevated in the nucleus accumbens (NAc) of mice and rats following repeated cocaine injections and self-administration. Systemic and intra-accumbal inhibition of BRD4 with the BET inhibitor, JQ1, attenuated the rewarding effects of cocaine in a conditioned place preference procedure but did not affect conditioned place aversion, nor did JQ1 alone induce conditioned aversion or preference. Investigating the underlying mechanisms, we found that repeated cocaine injections enhanced the binding of BRD4, but not BRD3, to the promoter region of Bdnf in the NAc, whereas systemic injection of JQ1 attenuated cocaine-induced expression of Bdnf in the NAc. JQ1 and siRNA-mediated knockdown of BRD4 in vitro also reduced expression of Bdnf. These findings indicate that disrupting the interaction between BET proteins and their acetylated lysine substrates may provide a new therapeutic avenue for the treatment of drug addiction. SIGNIFICANCE STATEMENT Proteins involved in the “readout” of lysine acetylation marks, referred to as BET bromodomain proteins (including BRD2, BRD3, BRD4, and BRDT), have been shown to be key regulators of chromatin dynamics and disease, and

  15. Piperazine oxadiazole inhibitors of acetyl-CoA carboxylase.

    PubMed

    Bourbeau, Matthew P; Siegmund, Aaron; Allen, John G; Shu, Hong; Fotsch, Christopher; Bartberger, Michael D; Kim, Ki-Won; Komorowski, Renee; Graham, Melissa; Busby, James; Wang, Minghan; Meyer, James; Xu, Yang; Salyers, Kevin; Fielden, Mark; Véniant, Murielle M; Gu, Wei

    2013-12-27

    Acetyl-CoA carboxylase (ACC) is a target of interest for the treatment of metabolic syndrome. Starting from a biphenyloxadiazole screening hit, a series of piperazine oxadiazole ACC inhibitors was developed. Initial pharmacokinetic liabilities of the piperazine oxadiazoles were overcome by blocking predicted sites of metabolism, resulting in compounds with suitable properties for further in vivo studies. Compound 26 was shown to inhibit malonyl-CoA production in an in vivo pharmacodynamic assay and was advanced to a long-term efficacy study. Prolonged dosing with compound 26 resulted in impaired glucose tolerance in diet-induced obese (DIO) C57BL6 mice, an unexpected finding.

  16. Reduced Wall Acetylation Proteins Play Vital and Distinct Roles in Cell Wall O-Acetylation in Arabidopsis1[C][W][OPEN

    PubMed Central

    Manabe, Yuzuki; Verhertbruggen, Yves; Gille, Sascha; Harholt, Jesper; Chong, Sun-Li; Pawar, Prashant Mohan-Anupama; Mellerowicz, Ewa J.; Tenkanen, Maija; Cheng, Kun; Pauly, Markus; Scheller, Henrik Vibe

    2013-01-01

    The Reduced Wall Acetylation (RWA) proteins are involved in cell wall acetylation in plants. Previously, we described a single mutant, rwa2, which has about 20% lower level of O-acetylation in leaf cell walls and no obvious growth or developmental phenotype. In this study, we generated double, triple, and quadruple loss-of-function mutants of all four members of the RWA family in Arabidopsis (Arabidopsis thaliana). In contrast to rwa2, the triple and quadruple rwa mutants display severe growth phenotypes revealing the importance of wall acetylation for plant growth and development. The quadruple rwa mutant can be completely complemented with the RWA2 protein expressed under 35S promoter, indicating the functional redundancy of the RWA proteins. Nevertheless, the degree of acetylation of xylan, (gluco)mannan, and xyloglucan as well as overall cell wall acetylation is affected differently in different combinations of triple mutants, suggesting their diversity in substrate preference. The overall degree of wall acetylation in the rwa quadruple mutant was reduced by 63% compared with the wild type, and histochemical analysis of the rwa quadruple mutant stem indicates defects in cell differentiation of cell types with secondary cell walls. PMID:24019426

  17. Genetic polymorphisms in glutathione-S-transferases are associated with anxiety and mood disorders in nicotine dependence

    PubMed Central

    Pizzo de Castro, Márcia Regina; Ehara Watanabe, Maria Angelica; Losi Guembarovski, Roberta; Odebrecht Vargas, Heber; Vissoci Reiche, Edna Maria; Kaminami Morimoto, Helena; Dodd, Seetal; Berk, Michael

    2014-01-01

    Background Nicotine dependence is associated with an increased risk of mood and anxiety disorders and suicide. The primary hypothesis of this study was to identify whether the polymorphisms of two glutathione-S-transferase enzymes (GSTM1 and GSTT1 genes) predict an increased risk of mood and anxiety disorders in smokers with nicotine dependence. Materials and methods Smokers were recruited at the Centre of Treatment for Smokers. The instruments were a sociodemographic questionnaire, Fagerström Test for Nicotine Dependence, diagnoses of mood disorder and nicotine dependence according to DSM-IV (SCID-IV), and the Alcohol, Smoking and Substance Involvement Screening Test. Anxiety disorder was assessed based on the treatment report. Laboratory assessment included glutathione-S-transferases M1 (GSTM1) and T1 (GSTT1), which were detected by a multiplex-PCR protocol. Results Compared with individuals who had both GSTM1 and GSTT1 genes, a higher frequency of at least one deletion of the GSTM1 and GSTT1 genes was identified in anxious smokers [odds ratio (OR)=2.21, 95% confidence interval (CI)=1.05–4.65, P=0.034], but there was no association with bipolar and unipolar depression (P=0.943). Compared with nonanxious smokers, anxious smokers had a greater risk for mood disorders (OR=4.67; 95% CI=2.24–9.92, P<0.001), lung disease (OR=6.78, 95% CI=1.95–23.58, P<0.003), and suicide attempts (OR=17.01, 95% CI=2.23–129.91, P<0.006). Conclusion This study suggests that at least one deletion of the GSTM1 and GSTT1 genes represents a risk factor for anxious smokers. These two genes may modify the capacity for the detoxification potential against oxidative stress. PMID:24637631

  18. Association between glutathione S-transferase M1 null genotype and risk of gallbladder cancer: a meta-analysis.

    PubMed

    Sun, Hong-Li; Han, Bing; Zhai, Hong-Peng; Cheng, Xin-Hua; Ma, Kai

    2014-01-01

    Glutathione S-transferases (GSTs) are a family of enzymes which are involved in the detoxification of potential carcinogens. Glutathione S-transferase M1 (GSTM1) null genotype can impair the enzyme activity of GSTs and is suspected to increase the susceptibility to gallbladder cancer. Previous studies investigating the association between GSTM1 null genotype and risk of gallbladder cancer reported inconsistent findings. To quantify the association between GSTM1 null genotype and risk of gallbladder cancer, we performed a meta-analysis of published studies. We searched PubMed, Embase, and Wanfang databases for all possible studies. We estimated the pooled odds ratio (OR) with its 95% confidence interval (95% CI) to assess the association. Meta-analysis of total included studies showed that GSTM1 null genotype was not associated with gallbladder cancer risk (OR = 1.13, 95% CI 0.88-1.46, P = 0.332). Subgroup analysis by ethnicity showed that there was no association between GSTM1 null genotype and risk of gallbladder cancer in both Caucasians and Asians. However, meta-analysis of studies with adjusted estimations showed that GSTM1 null genotype was associated with increased risk of gallbladder cancer (OR = 1.46, 95% CI 1.02-2.09, P = 0.038). Thus, this meta-analysis shows that GSTM1 null genotype is likely to be associated with risk of gallbladder cancer. More studies with well design and large sample size are needed to further validate the association between GSTM1 null genotype and gallbladder cancer.

  19. Synergistic and independent actions of multiple terminal nucleotidyl transferases in the 3' tailing of small RNAs in Arabidopsis.

    PubMed

    Wang, Xiaoyan; Zhang, Shuxin; Dou, Yongchao; Zhang, Chi; Chen, Xuemei; Yu, Bin; Ren, Guodong

    2015-04-01

    All types of small RNAs in plants, piwi-interacting RNAs (piRNAs) in animals and a subset of siRNAs in Drosophila and C. elegans are subject to HEN1 mediated 3' terminal 2'-O-methylation. This modification plays a pivotal role in protecting small RNAs from 3' uridylation, trimming and degradation. In Arabidopsis, HESO1 is a major enzyme that uridylates small RNAs to trigger their degradation. However, U-tail is still present in null hen1 heso1 mutants, suggesting the existence of (an) enzymatic activities redundant with HESO1. Here, we report that UTP: RNA uridylyltransferase (URT1) is a functional paralog of HESO1. URT1 interacts with AGO1 and plays a predominant role in miRNA uridylation when HESO1 is absent. Uridylation of miRNA is globally abolished in a hen1 heso1 urt1 triple mutant, accompanied by an extensive increase of 3'-to-5' trimming. In contrast, disruption of URT1 appears not to affect the heterochromatic siRNA uridylation. This indicates the involvement of additional nucleotidyl transferases in the siRNA pathway. Analysis of miRNA tailings in the hen1 heso1 urt1 triple mutant also reveals the existence of previously unknown enzymatic activities that can add non-uridine nucleotides. Importantly, we show HESO1 may also act redundantly with URT1 in miRNA uridylation when HEN1 is fully competent. Taken together, our data not only reveal a synergistic action of HESO1 and URT1 in the 3' uridylation of miRNAs, but also independent activities of multiple terminal nucleotidyl transferases in the 3' tailing of small RNAs and an antagonistic relationship between uridylation and trimming. Our results may provide further insight into the mechanisms of small RNA 3' end modification and stability control.

  20. The silkworm glutathione S-transferase gene noppera-bo is required for ecdysteroid biosynthesis and larval development.

    PubMed

    Enya, Sora; Daimon, Takaaki; Igarashi, Fumihiko; Kataoka, Hiroshi; Uchibori, Miwa; Sezutsu, Hideki; Shinoda, Tetsuro; Niwa, Ryusuke

    2015-06-01

    Insect molting and metamorphosis are tightly controlled by ecdysteroids, which are important steroid hormones that are synthesized from dietary sterols in the prothoracic gland. One of the ecdysteroidogenic genes in the fruit fly Drosophila melanogaster is noppera-bo (nobo), also known as GSTe14, which encodes a member of the epsilon class of glutathione S-transferases. In D. melanogaster, nobo plays a crucial role in utilizing cholesterol via regulating its transport and/or metabolism in the prothoracic gland. However, it is still not known whether the orthologs of nobo from other insects are also involved in ecdysteroid biosynthesis via cholesterol transport and/or metabolism in the prothoracic gland. Here we report genetic evidence showing that the silkworm Bombyx mori ortholog of nobo (nobo-Bm; GSTe7) is essential for silkworm development. nobo-Bm is predominantly expressed in the prothoracic gland. To assess the functional importance of nobo-Bm, we generated a B. mori genetic mutant of nobo-Bm using TALEN-mediated genome editing. We show that loss of nobo-Bm function causes larval arrest and a glossy cuticle phenotype, which are rescued by the application of 20-hydroxyecdysone. Moreover, the prothoracic gland cells isolated from the nobo-Bm mutant exhibit an abnormal accumulation of 7-dehydrocholesterol, a cholesterol metabolite. These results suggest that the nobo family of glutathione S-transferases is essential for development and for the regulation of sterol utilization in the prothoracic gland in not only the Diptera but also the Lepidoptera. On the other hand, loss of nobo function mutants of D. melanogaster and B. mori abnormally accumulates different sterols, implying that the sterol utilization in the PG is somewhat different between these two insect species.

  1. Sirtuin-dependent reversible lysine acetylation of glutamine synthetases reveals an autofeedback loop in nitrogen metabolism

    PubMed Central

    You, Di; Yin, Bin-Cheng; Li, Zhi-Hai; Zhou, Ying; Yu, Wen-Bang; Zuo, Peng; Ye, Bang-Ce

    2016-01-01

    In cells of all domains of life, reversible lysine acetylation modulates the function of proteins involved in central cellular processes such as metabolism. In this study, we demonstrate that the nitrogen regulator GlnR of the actinomycete Saccharopolyspora erythraea directly regulates transcription of the acuA gene (SACE_5148), which encodes a Gcn5-type lysine acetyltransferase. We found that AcuA acetylates two glutamine synthetases (GlnA1 and GlnA4) and that this lysine acetylation inactivated GlnA4 (GSII) but had no significant effect on GlnA1 (GSI-β) activity under the conditions tested. Instead, acetylation of GlnA1 led to a gain-of-function that modulated its interaction with the GlnR regulator and enhanced GlnR–DNA binding. It was observed that this regulatory function of acetylated GSI-β enzymes is highly conserved across actinomycetes. In turn, GlnR controls the catalytic and regulatory activities (intracellular acetylation levels) of glutamine synthetases at the transcriptional and posttranslational levels, indicating an autofeedback loop that regulates nitrogen metabolism in response to environmental change. Thus, this GlnR-mediated acetylation pathway provides a signaling cascade that acts from nutrient sensing to acetylation of proteins to feedback regulation. This work presents significant new insights at the molecular level into the mechanisms underlying the regulation of protein acetylation and nitrogen metabolism in actinomycetes. PMID:27247389

  2. Preparation of radioactive acetyl-l-carnitine by an enzymatic exchange reaction

    SciTech Connect

    Emaus, R.; Bieber, L.L.

    1982-01-15

    A rapid method for the preparation of (1-/sup 14/C)acetyl-L-carnitine is described. The method involves exchange of (1-/sup 14/C)acetic acid into a pool of unlabeled acetyl-L-carnitine using the enzymes acetyl-CoA synthetase and carnitine acetyltransferase. After isotopic equilibrium is attained, radioactive acetylcarnitine is separated from the other reaction components by chromatography on Dowex 1 (C1/sup -/) anion exchange resin. One of the procedures used to verify the product (1-/sup 14/C)acetyl-L-carnitine can be used to synthesize (3S)-(5-/sup 14/C)citric acid.

  3. Inhibition of N-acetylneuraminate lyase by N-acetyl-4-oxo-D-neuraminic acid.

    PubMed

    Gross, H J; Brossmer, R

    1988-05-09

    We show that the 4-oxo analogue of N-acetyl-D-neuraminic acid strongly inhibits N-acetylneuraminate lyase (NeuAc aldolase, EC 4.1.3.3) from Clostridum perfringens (Ki = 0.025 mM) and Escherichia coli (Ki = 0.15 mM). In each case the inhibition was competitive. N-Acetyl-D-neuraminic acid; N-Acetylneuraminate lyase; N-Acetyl-D-neuraminic acid analog; 5-Acetamido-3,5-dideoxy-beta-D-manno-non-2,4-diulosonic acid; 2-Deoxy-2,3-didehydro-N-acetyl-4-oxo-neuraminic acid; Competitive inhibitor.

  4. First Comprehensive Proteome Analyses of Lysine Acetylation and Succinylation in Seedling Leaves of Brachypodium distachyon L.

    PubMed Central

    Zhen, Shoumin; Deng, Xiong; Wang, Jian; Zhu, Gengrui; Cao, Hui; Yuan, Linlin; Yan, Yueming

    2016-01-01

    Protein acetylation and succinylation are the most crucial protein post-translational modifications (PTMs) involved in the regulation of plant growth and development. In this study, we present the first lysine-acetylation and lysine-succinylation proteome analysis of seedling leaves in Brachypodium distachyon L (Bd). Using high accuracy nano LC-MS/MS combined with affinity purification, we identified a total of 636 lysine-acetylated sites in 353 proteins and 605 lysine-succinylated sites in 262 proteins. These proteins participated in many biology processes, with various molecular functions. In particular, 119 proteins and 115 sites were found to be both acetylated and succinylated, simultaneously. Among the 353 acetylated proteins, 148 had acetylation orthologs in Oryza sativa L., Arabidopsis thaliana, Synechocystis sp. PCC 6803, and Glycine max L. Among the 262 succinylated proteins, 170 of them were found to have homologous proteins in Oryza sativa L., Escherichia coli, Sacchayromyces cerevisiae, or Homo sapiens. Motif-X analysis of the acetylated and succinylated sites identified two new acetylated motifs (K---K and K-I-K) and twelve significantly enriched succinylated motifs for the first time, which could serve as possible binding loci for future studies in plants. Our comprehensive dataset provides a promising starting point for further functional analysis of acetylation and succinylation in Bd and other plant species. PMID:27515067

  5. Proteome-wide analysis of lysine acetylation in the plant pathogen Botrytis cinerea

    PubMed Central

    Lv, Binna; Yang, Qianqian; Li, Delong; Liang, Wenxing; Song, Limin

    2016-01-01

    Lysine acetylation is a dynamic and reversible post-translational modification that plays an important role in diverse cellular processes. Botrytis cinerea is the most thoroughly studied necrotrophic species due to its broad host range and huge economic impact. However, to date, little is known about the functions of lysine acetylation in this plant pathogen. In this study, we determined the lysine acetylome of B. cinerea through the combination of affinity enrichment and high-resolution LC-MS/MS analysis. Overall, 1582 lysine acetylation sites in 954 proteins were identified. Bioinformatics analysis shows that the acetylated proteins are involved in diverse biological functions and show multiple cellular localizations. Several particular amino acids preferred near acetylation sites, including KacY, KacH, Kac***R, KacF, FKac and Kac***K, were identified in this organism. Protein interaction network analysis demonstrates that a variety of interactions are modulated by protein acetylation. Interestingly, 6 proteins involved in virulence of B. cinerea, including 3 key components of the high-osmolarity glycerol pathway, were found to be acetylated, suggesting that lysine acetylation plays regulatory roles in pathogenesis. These data provides the first comprehensive view of the acetylome of B. cinerea and serves as a rich resource for functional analysis of lysine acetylation in this plant pathogen. PMID:27381557

  6. Peptidoglycan O Acetylation and Autolysin Profile of Enterococcus faecalis in the Viable but Nonculturable State

    PubMed Central

    Pfeffer, John M.; Strating, Hendrik; Weadge, Joel T.; Clarke, Anthony J.

    2006-01-01

    The O acetylation of peptidoglycan occurs specifically at the C-6 hydroxyl group of muramoyl residues. Using a combination of high-performance liquid chromatography-based organic acid analysis and carbohydrate analysis by high-pH anion-exchange chromatography, we determined that strains of Entercoccus durans, E. faecalis, E. faecium, and E. hirae produce O-acetylated peptidoglycan. The levels of O acetylation ranged from 19% to 72% relative to the muramic acid content, and they were found to vary with the growth phase of the culture. Increases of 10 to 40% in O acetylation were observed with cultures entering the stationary phase. Cells of E. faecalis in the viable but nonculturable (VBNC) state had the highest levels of peptidoglycan O acetylation. The presence of this modification to peptidoglycan was shown to inhibit the action of hen egg white lysozyme in a concentration-dependent manner. Zymography using sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels containing either O-acetylated or chemically de-O-acetylated peptidoglycan was used to monitor the production of specific autolysins in E. faecalis. Differences in the expression of specific autolysins were observed with the age of the culture, and VBNC E. faecalis produced the highest levels of these enzymes. This technique also permitted classification of the enterococcal autolysins into enzymes that preferentially hydrolyze either O-acetylated or non-O-acetylated peptidoglycan and enzymes that show no apparent preference for either substrate type. PMID:16428393

  7. Lysine Acetylation of CREBH Regulates Fasting-Induced Hepatic Lipid Metabolism

    PubMed Central

    Kim, Hyunbae; Mendez, Roberto; Chen, Xuequn; Fang, Deyu

    2015-01-01

    Cyclic AMP-responsive element-binding protein 3-like 3, hepatocyte specific (CREBH), is a hepatic transcription factor that functions as a key regulator of energy homeostasis. Here, we defined a regulatory CREBH posttranslational modification process, namely, lysine-specific acetylation, and its functional involvement in fasting-induced hepatic lipid metabolism. Fasting induces CREBH acetylation in mouse livers in a time-dependent manner, and this event is critical for CREBH transcriptional activity in regulating hepatic lipid homeostasis. The histone acetyltransferase PCAF-mediated acetylation and the deacetylase sirtuin-1-mediated deacetylation coexist to maintain CREBH acetylation states under fasting conditions. Site-directed mutagenesis and functional analyses revealed that the lysine (K) residue at position 294 (K294) within the bZIP domain of the CREBH protein is the site where fasting-induced acetylation/deacetylation occurs. Introduction of the acetylation-deficient (K294R) or acetylation-mimicking (K294Q) mutation inhibited or enhanced CREBH transcriptional activity, respectively. Importantly, CREBH acetylation at lysine 294 was required for the interaction and synergy between CREBH and peroxisome proliferator-activated receptor α (PPARα) in activating their target genes upon fasting or glucagon stimulation. Introduction of the CREBH lysine 294 mutation in the liver leads to hepatic steatosis and hyperlipidemia in animals under prolonged fasting. In summary, our study reveals a molecular mechanism by which fasting or glucagon stimulation modulates lipid homeostasis through acetylation of CREBH. PMID:26438600

  8. Conserved Lysine Acetylation within the Microtubule-Binding Domain Regulates MAP2/Tau Family Members

    PubMed Central

    Hwang, Andrew W.; Trzeciakiewicz, Hanna; Friedmann, Dave; Yuan, Chao-Xing; Marmorstein, Ronen; Lee, Virginia M. Y.; Cohen, Todd J.

    2016-01-01

    Lysine acetylation has emerged as a dominant post-translational modification (PTM) regulating tau proteins in Alzheimer’s disease (AD) and related tauopathies. Mass spectrometry studies indicate that tau acetylation sites cluster within the microtubule-binding region (MTBR), a region that is highly conserved among tau, MAP2, and MAP4 family members, implying that acetylation could represent a conserved regulatory mechanism for MAPs beyond tau. Here, we combined mass spectrometry, biochemical assays, and cell-based approaches to demonstrate that the tau family members MAP2 and MAP4 are also subject to reversible acetylation. We identify a cluster of lysines in the MAP2 and MAP4 MTBR that undergo CBP-catalyzed acetylation, many of which are conserved in tau. Similar to tau, MAP2 acetylation can occur in a cysteine-dependent auto-regulatory manner in the presence of acetyl-CoA. Furthermore, tubulin reduced MAP2 acetylation, suggesting tubulin binding dictates MAP acetylation status. Taken together, these results uncover a striking conservation of MAP2/Tau family post-translational modifications that could expand our understanding of the dynamic mechanisms regulating microtubules. PMID:28002468

  9. Lysine Acetylation of CREBH Regulates Fasting-Induced Hepatic Lipid Metabolism.

    PubMed

    Kim, Hyunbae; Mendez, Roberto; Chen, Xuequn; Fang, Deyu; Zhang, Kezhong

    2015-12-01

    Cyclic AMP-responsive element-binding protein 3-like 3, hepatocyte specific (CREBH), is a hepatic transcription factor that functions as a key regulator of energy homeostasis. Here, we defined a regulatory CREBH posttranslational modification process, namely, lysine-specific acetylation, and its functional involvement in fasting-induced hepatic lipid metabolism. Fasting induces CREBH acetylation in mouse livers in a time-dependent manner, and this event is critical for CREBH transcriptional activity in regulating hepatic lipid homeostasis. The histone acetyltransferase PCAF-mediated acetylation and the deacetylase sirtuin-1-mediated deacetylation coexist to maintain CREBH acetylation states under fasting conditions. Site-directed mutagenesis and functional analyses revealed that the lysine (K) residue at position 294 (K294) within the bZIP domain of the CREBH protein is the site where fasting-induced acetylation/deacetylation occurs. Introduction of the acetylation-deficient (K294R) or acetylation-mimicking (K294Q) mutation inhibited or enhanced CREBH transcriptional activity, respectively. Importantly, CREBH acetylation at lysine 294 was required for the interaction and synergy between CREBH and peroxisome proliferator-activated receptor α (PPARα) in activating their target genes upon fasting or glucagon stimulation. Introduction of the CREBH lysine 294 mutation in the liver leads to hepatic steatosis and hyperlipidemia in animals under prolonged fasting. In summary, our study reveals a molecular mechanism by which fasting or glucagon stimulation modulates lipid homeostasis through acetylation of CREBH.

  10. Functional Interplay between CBP and PCAF in Acetylation and Regulation of Transcription Factor KLF13 Activity

    PubMed Central

    Song, Chao-Zhong; Keller, Kimberly; Chen, Yangchao; Stamatoyannopoulos, George

    2010-01-01

    The transcriptional co-activators CBP/p300 and PCAF participate in transcriptional activation by many factors. We have shown that both CBP/p300 and PCAF stimulate the transcriptional activation by KLF13, a member of the KLF/Sp1 family, either individually or cooperatively. Here we further investigated how CBP and PCAF acetylation regulate KLF13 activity, and how these two co-activators functionally interplay in the regulation of KLF13 activity. We found that CBP and PCAF acetylated KLF13 at specific lysine residues in the zinc finger domain of KLF13. The acetylation by CBP, however, resulted in disruption of KLF13 DNA binding. Although the acetyltransferase activity of CBP is not required for stimulating the DNA binding activity of all of the transcription factors that we have examined, the disruption of factor DNA binding by CBP acetylation is factor-specific. We further showed that PCAF and CBP act synergistically and antagonistically to regulate KLF13 DNA binding depending on the status of acetylation. PCAF blocked CBP acetylation and disruption of KLF13 DNA binding. Conversely, acetylation of KLF13 by CBP prevented PCAF stimulation of KLF13 DNA binding. PCAF blocked CBP disruption of KLF13 DNA binding by preventing CBP acetylation of KLF13. These results demonstrate that acetylation by CBP has distinct effects on transcription factor DNA binding, and that CBP and PCAF regulate each other functionally in their regulation of transcription factor DNA binding. PMID:12758070

  11. The acetylation of alpha-tubulin and its relationship to the assembly and disassembly of microtubules

    PubMed Central

    1986-01-01

    A tight association between Chlamydomonas alpha-tubulin acetyltransferase (TAT) and flagellar axonemes, and the cytoplasmic localization of both tubulin deacetylase (TDA) and an inhibitor of tubulin acetylation have been demonstrated by the use of calf brain tubulin as substrate for these enzymes. A major axonemal TAT of 130 kD has been solubilized by high salt treatment, purified, and characterized. Using the Chlamydomonas TAT with brain tubulin as substrate, we have studied the effects of acetylation on the assembly and disassembly of microtubules in vitro. We also determined the relative rates of acetylation of tubulin dimers and polymers. The acetylation does not significantly affect the temperature-dependent polymerization or depolymerization of tubulin in vitro. Furthermore, polymerization of tubulin is not a prerequisite for the acetylation, although the polymer is a better substrate for TAT than the dimer. The acetylation is sensitive to calcium ions which completely inhibit the acetylation of both dimers and polymers of tubulin. Acetylation of the dimer is not inhibited by colchicine; the effect of colchicine on acetylation of the polymer can be explained by its depolymerizing effect on the polymer. PMID:3733880

  12. Insight into the carboxyl transferase domain mechanism of pyruvate carboxylase from Rhizobium etli†

    PubMed Central

    Zeczycki, Tonya N.; Maurice, Martin St.; Jitrapakdee, Sarawut; Wallace, John C.; Attwood, Paul V.; Cleland, W. Wallace

    2009-01-01

    The effects of mutations in the active site of the carboxyl transferase domain of R. etli pyruvate carboxylase have been determined for the forward reaction to form oxaloacetate, the reverse reaction to form MgATP, the oxamate-induced decarboxylation of oxaloacetate, the phosphorylation of MgADP by carbamoyl phosphate and the bicarbonate-dependent ATPase reaction. Additional studies with these mutants examined the effect of pyruvate and oxamate on the reactions of the biotin carboxylase domain. From these mutagenic studies, putative roles for catalytically relevant active site residues were assigned and a more accurate description of the mechanism of the carboxyl transferase domain is presented. The T882A mutant showed no catalytic activity for reactions involving the carboxyl transferase domain, but surprisingly showed a 7- and 3.5-fold increase in activity, as compared to the wild-type enzyme, for the ADP phosphorylation and bicarbonate-dependent ATPase reactions, respectively. Furthermore, the partial inhibition of the T882A catalyzed BC domain reactions by oxamate and pyruvate further supports the critical role of Thr882 in the proton transfer between biotin and pyruvate in the carboxyl transferase domain. The catalytic mechanism appears to involve the decarboxylation of carboxybiotin and proton removal from Thr882 by the resulting biotin enolate with either a concerted or subsequent transfer of a proton from pyruvate to Thr882. The resulting enolpyruvate then reacts with CO2 to form oxaloacetate and complete the reaction. PMID:19341298

  13. GLUTATHIONE S-TRANSFERASE THETA 1-1-DEPENDENT METABOLISM OF THE DISINFECTION BYPRODUCT BROMODICHLOROMETHANE

    EPA Science Inventory

    ABSTRACT
    Bromodichloromethane (BDCM), a prevalent drinking water disinfection by-product, was previously shown to be mutagenic in Salmonella expressing glutathione S-transferase (GST) theta 1-1 (GST T1-1). In the present study, in vitro experiments were performed to study the...

  14. 21 CFR 573.130 - Aminoglycoside 3′-phospho- transferase II.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... genetically modified cotton, oilseed rape, and tomatoes in accordance with the following prescribed conditions... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Aminoglycoside 3â²-phospho- transferase II. 573.130 Section 573.130 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND...

  15. 21 CFR 573.130 - Aminoglycoside 3′-phospho- transferase II.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... genetically modified cotton, oilseed rape, and tomatoes in accordance with the following prescribed conditions... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Aminoglycoside 3â²-phospho- transferase II. 573.130 Section 573.130 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND...

  16. 21 CFR 573.130 - Aminoglycoside 3′-phospho- transferase II.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... genetically modified cotton, oilseed rape, and tomatoes in accordance with the following prescribed conditions... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Aminoglycoside 3â²-phospho- transferase II. 573.130 Section 573.130 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND...

  17. 21 CFR 573.130 - Aminoglycoside 3′-phospho- transferase II.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... genetically modified cotton, oilseed rape, and tomatoes in accordance with the following prescribed conditions... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Aminoglycoside 3â²-phospho- transferase II. 573.130 Section 573.130 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND...

  18. The TIP GROWTH DEFECTIVE1 S-acyl transferase regulates plant cell growth in Arabidopsis.

    PubMed

    Hemsley, Piers A; Kemp, Alison C; Grierson, Claire S

    2005-09-01

    TIP GROWTH DEFECTIVE1 (TIP1) of Arabidopsis thaliana affects cell growth throughout the plant and has a particularly strong effect on root hair growth. We have identified TIP1 by map-based cloning and complementation of the mutant phenotype. TIP1 encodes an ankyrin repeat protein with a DHHC Cys-rich domain that is expressed in roots, leaves, inflorescence stems, and floral tissue. Two homologues of TIP1 in yeast (Saccharomyces cerevisiae) and human (Homo sapiens) have been shown to have S-acyl transferase (also known as palmitoyl transferase) activity. S-acylation is a reversible hydrophobic protein modification that offers swift, flexible control of protein hydrophobicity and affects protein association with membranes, signal transduction, and vesicle trafficking within cells. We show that TIP1 binds the acyl group palmitate, that it can rescue the morphological, temperature sensitivity, and yeast casein kinase2 localization defects of the yeast S-acyl transferase mutant akr1Delta, and that inhibition of acylation in wild-type Arabidopsis roots reproduces the Tip1- mutant phenotype. Our results demonstrate that S-acylation is essential for normal plant cell growth and identify a plant S-acyl transferase, an essential research tool if we are to understand how this important, reversible lipid modification operates in plant cells.

  19. DNA BINDING POTENTIAL OF BROMODICHLOROMETHANE MEDIATED BY GLUTATHIONE S-TRANSFERASE THETA 1-1

    EPA Science Inventory


    DNA BINDING POTENTIAL OF BROMODICHLOROMETHANE MEDIATED BY GLUTATHIONE S-TRANSFERASE THETA 1-1. R A Pegram1 and M K Ross2. 2Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC; 1Pharmacokinetics Branch, NHEERL, ORD, United States Environmental Protection Ag...

  20. 21 CFR 573.130 - Aminoglycoside 3′-phospho- transferase II.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.130 Aminoglycoside 3′-phospho- transferase II. The...) which catalyzes the phosphorylation of certain aminoglycoside antibiotics, including kanamycin,...

  1. Maize white seedling 3 results from disruption of homogentisate solanesyl transferase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize white seedling 3 (w3) has served as a model albino-seedling mutant since its discovery in 1923. We show here that the w3 phenotype is caused by disruptions in homogentisate solanesyl transferase (HST), an enzyme that catalyzes the committed step in plastoquinone-9 (PQ9) biosynthesis. This re...

  2. 21 CFR 862.1030 - Alanine amino transferase (ALT/SGPT) test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Alanine amino transferase (ALT/SGPT) test system. 862.1030 Section 862.1030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  3. 21 CFR 862.1100 - Aspartate amino transferase (AST/SGOT) test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Aspartate amino transferase (AST/SGOT) test system. 862.1100 Section 862.1100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  4. 21 CFR 862.1100 - Aspartate amino transferase (AST/SGOT) test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Aspartate amino transferase (AST/SGOT) test system. 862.1100 Section 862.1100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  5. 21 CFR 862.1030 - Alanine amino transferase (ALT/SGPT) test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Alanine amino transferase (ALT/SGPT) test system. 862.1030 Section 862.1030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  6. 21 CFR 862.1100 - Aspartate amino transferase (AST/SGOT) test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Aspartate amino transferase (AST/SGOT) test system. 862.1100 Section 862.1100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  7. 21 CFR 862.1030 - Alanine amino transferase (ALT/SGPT) test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Alanine amino transferase (ALT/SGPT) test system. 862.1030 Section 862.1030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  8. 21 CFR 862.1100 - Aspartate amino transferase (AST/SGOT) test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Aspartate amino transferase (AST/SGOT) test system. 862.1100 Section 862.1100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  9. 21 CFR 862.1030 - Alanine amino transferase (ALT/SGPT) test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Alanine amino transferase (ALT/SGPT) test system. 862.1030 Section 862.1030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  10. 21 CFR 862.1100 - Aspartate amino transferase (AST/SGOT) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Aspartate amino transferase (AST/SGOT) test system. 862.1100 Section 862.1100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  11. 21 CFR 862.1030 - Alanine amino transferase (ALT/SGPT) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Alanine amino transferase (ALT/SGPT) test system. 862.1030 Section 862.1030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  12. Metabolomic Analysis of Blood Plasma after Oral Administration of N-acetyl-d-Glucosamine in Dogs

    PubMed Central

    Osaki, Tomohiro; Kurozumi, Seiji; Sato, Kimihiko; Terashi, Taro; Azuma, Kazuo; Murahata, Yusuke; Tsuka, Takeshi; Ito, Norihiko; Imagawa, Tomohiro; Minami, Saburo; Okamoto, Yoshiharu

    2015-01-01

    N-acetyl-d-glucosamine (GlcNAc) is a monosaccharide that polymerizes linearly through (1,4)-β-linkages. GlcNAc is the monomeric unit of the polymer chitin. GlcNAc is a basic component of hyaluronic acid and keratin sulfate found on the cell surface. The aim of this study was to examine amino acid metabolism after oral GlcNAc administration in dogs. Results showed that plasma levels of ectoine were significantly higher after oral administration of GlcNAc than prior to administration (p < 0.001). To our knowledge, there have been no reports of increased ectoine concentrations in the plasma. The mechanism by which GlcNAc administration leads to increased ectoine plasma concentration remains unclear; future studies are required to clarify this mechanism. PMID:26262626

  13. Thermochemical study of 1-acetyl vinyl p-nitrobenzoate: vinyl bond enthalpy in captodative olefins.

    PubMed

    Rojas, Aarón; Valdés-Ordoñez, Alejandro; Martínez-Herrera, Melchor; Torres, Luis Alfonso; Campos, Myriam; Hernández-Obregón, Javier; Herrera, Rafael; Tamariz, Joaquín

    2015-05-21

    Captodative olefins are highly reactive and selective substrates in Diels-Alder and 1,3-dipolar cycloadditions. Seeking an explanation of this fact based on molecular energetics, the thermochemical analysis of 1-acetyl vinyl p-nitrobenzoate, a captodative olefin, has been performed using semi-micro-combustion calorimetry, effusion measurements through a quartz crystal microbalance, and differential scanning calorimetry. The molar standard combustion energy and enthalpy as well as the molar standard formation enthalpy are reported along with sublimation and melting enthalpies. From these data, experimental formation enthalpy of the gas-phase is derived and compared with the theoretical value calculated through the density functional theory procedure. The olefinic bond enthalpy is also computed from experimental data, and the relevance of the results is discussed.

  14. Mechanisms of N-acetyl cysteine-mediated protection from 2-hydroxyethyl methacrylate-induced apoptosis.

    PubMed

    Paranjpe, Avina; Cacalano, Nicholas A; Hume, Wyatt R; Jewett, Anahid

    2008-10-01

    Resin-based materials are now commonly used in dentistry in restorative materials as well as in endodontic sealers. These materials have been shown to be cytotoxic. The mechanisms by which resin-based materials mediate their adverse effects have not been completely elucidated. Here we show that 2-hydroxyethyl methacrylate (HEMA) induces apoptotic cell death in oral keratinocytes and immune cells through the intrinsic cell death pathway. Functional loss and cell death induced by HEMA was significantly inhibited in the presence of N-acetyl cysteine (NAC) treatment. In addition, HEMA induced a decrease in mitochondrial membrane potential, and an increase in cleaved caspases was potently inhibited in the presence of NAC treatment. Overall, the results reported in this article indicate that NAC is an effective chemoprotectant that can safely be used to protect the pulp and the surrounding tissues from adverse effects of dental restorative and endodontic materials.

  15. FT-Raman and FTIR-ATR spectroscopies and DFT calculations of triterpene acetyl aleuritolic acid

    NASA Astrophysics Data System (ADS)

    Melo, I. R. S.; Teixeira, A. M. R.; Sena Junior, D. M.; Santos, H. S.; Albuquerque, M. R. J. R.; Bandeira, P. N.; Rodrigues, A. S.; Braz-Filho, R.; Gusmão, G. O. M.; Silva, J. H.; Faria, J. L. B.; Bento, R. R. F.

    2014-01-01

    Triterpenoids comprise an important class of compounds presenting a wide range of biologically important properties. Acetyl aleutitolic acid (AAA) is a triterpenoid isolated from Croton zehntneri, with molecular formula C32H50O4. Its structure has been characterized by NMR spectroscopy, however, there are no papers available regarding its vibrational properties. The Fourier-Transform Infrared with Attenuated Total Reflectance and Fourier-Transform Raman spectra, together with Density Functional Theory calculations of AAA are reported. Vibrational spectra were recorded at 300 K in the regions 600 cm-1 to 4000 cm-1 and 40 cm-1 to 4000 cm-1, for IR and Raman, respectively. Vibrational wavenumbers were predicted using Density Functional Theory calculations with the hybrid functional B3LYP and the basis set 6-31 G(d,p). A complete assignment of vibrational modes is given.

  16. Comparative analysis of pharmacological treatments with N-acetyl-DL-leucine (Tanganil) and its two isomers (N-acetyl-L-leucine and N-acetyl-D-leucine) on vestibular compensation: Behavioral investigation in the cat.

    PubMed

    Tighilet, Brahim; Leonard, Jacques; Bernard-Demanze, Laurence; Lacour, Michel

    2015-12-15

    Head roll tilt, postural imbalance and spontaneous nystagmus are the main static vestibular deficits observed after an acute unilateral vestibular loss (UVL). In the UVL cat model, these deficits are fully compensated over 6 weeks as the result of central vestibular compensation. N-Acetyl-dl-leucine is a drug prescribed in clinical practice for the symptomatic treatment of acute UVL patients. The present study investigated the effects of N-acetyl-dl-leucine on the behavioral recovery after unilateral vestibular neurectomy (UVN) in the cat, and compared the effects of each of its two isomers N-acetyl-L-leucine and N-acetyl-D-leucine. Efficacy of these three drug treatments has been evaluated with respect to a placebo group (UVN+saline water) on the global sensorimotor activity (observation grids), the posture control (support surface measurement), the locomotor balance (maximum performance at the rotating beam test), and the spontaneous vestibular nystagmus (recorded in the light). Whatever the parameters tested, the behavioral recovery was strongly and significantly accelerated under pharmacological treatments with N-acetyl-dl-leucine and N-acetyl-L-leucine. In contrast, the N-acetyl-D-leucine isomer had no effect at all on the behavioral recovery, and animals of this group showed the same recovery profile as those receiving a placebo. It is concluded that the N-acetyl-L-leucine isomer is the active part of the racemate component since it induces a significant acceleration of the vestibular compensation process similar (and even better) to that observed under treatment with the racemate component only.

  17. A case of classical galactosemia: identification and characterization of 3 distinct mutations in galactose-1-phosphate uridyl transferase (GALT) gene in a single family.

    PubMed

    Singh, Ramandeep; Kaur, Gurjit; Thapa, Babu R; Prasad, Rajendra; Kulkarni, Ketan

    2011-07-01

    Galactosemia is an autosomal recessive disorder of galactose metabolism. In the very first instance of its kind from India, the authors report the presence of three different galatose-1-phosphate uridyl transferase (GALT) gene mutations, associated with galactosemia, in a single Indian family. One of the three mutations, S307X, is a novel mutation (GenBank Accession number GQ355273) and is of nonsense nature causing the truncation of the GALT protein resulting in the decreased enzyme activity. The authors have also emphasized the importance of introduction of new born screening program for galactosemia and its genetic analysis in select settings across the country.

  18. Characterization of acetylated corn starch prepared under ultrahigh pressure (UHP).

    PubMed

    Kim, Hyun-Seok; Choi, Hyun-Shik; Kim, Byung-Yong; Baik, Moo-Yeol

    2010-03-24

    To investigate the impact of ultrahigh pressure (UHP) on the physicochemical properties of the UHP-assisted starch acetate, common corn starch was subjected to either conventional (0.1 MPa, 30 degrees C, 60 min) or UHP-assisted (400 MPa, 25 degrees C, 15 min) acetylation reactions at three levels (4, 8, or 12%) of acetic anhydride. Without significant changes in starch granule crystal structure, UHP-assisted reaction exhibited lower degree of substitution values than conventional reaction across reagent addition levels. An increase in reagent addition levels exhibited common trends in starch solubility/swelling power, gelatinization, and pasting properties for the conventional and UHP-assisted starch acetates relative to native starch. Within an equivalent derivatization level, however, the UHP-assisted (relative to conventional) starch acetates revealed restricted starch solubility/swelling power, reduced gelatinization temperatures, and lower pasting viscosities. Overall, this result suggested that UHP treatment in acetylation reaction might influence the physicochemical properties of starch acetate by facilitating the formation of lipid-complexed amylose or altering granular reaction patterns to acetic anhydride.

  19. Acetylated tubulin is essential for touch sensation in mice

    PubMed Central

    Morley, Shane J; Qi, Yanmei; Iovino, Loredana; Andolfi, Laura; Guo, Da; Kalebic, Nereo; Castaldi, Laura; Tischer, Christian; Portulano, Carla; Bolasco, Giulia; Shirlekar, Kalyanee; Fusco, Claudia M; Asaro, Antonino; Fermani, Federica; Sundukova, Mayya; Matti, Ulf; Reymond, Luc; De Ninno, Adele; Businaro, Luca; Johnsson, Kai; Lazzarino, Marco; Ries, Jonas; Schwab, Yannick; Hu, Jing; Heppenstall, Paul A

    2016-01-01

    At its most fundamental level, touch sensation requires the translation of mechanical energy into mechanosensitive ion channel opening, thereby generating electro-chemical signals. Our understanding of this process, especially how the cytoskeleton influences it, remains unknown. Here we demonstrate that mice lacking the α-tubulin acetyltransferase Atat1 in sensory neurons display profound deficits in their ability to detect mechanical stimuli. We show that all cutaneous afferent subtypes, including nociceptors have strongly reduced mechanosensitivity upon Atat1 deletion, and that consequently, mice are largely insensitive to mechanical touch and pain. We establish that this broad loss of mechanosensitivity is dependent upon the acetyltransferase activity of Atat1, which when absent leads to a decrease in cellular elasticity. By mimicking α-tubulin acetylation genetically, we show both cellular rigidity and mechanosensitivity can be restored in Atat1 deficient sensory neurons. Hence, our results indicate that by influencing cellular stiffness, α-tubulin acetylation sets the force required for touch. DOI: http://dx.doi.org/10.7554/eLife.20813.001 PMID:27976998

  20. Two Arabidopsis Proteins Synthesize Acetylated Xylan in Vitro

    PubMed Central

    Urbanowicz, Breeanna R.; Peña, Maria J.; Moniz, Heather A.; Moremen, Kelley W.; York, William S.

    2014-01-01

    SUMMARY Xylan is the third most abundant glycopolymer on earth after cellulose and chitin. As a major component of wood, grain and forage, this natural biopolymer has far-reaching impacts on human life. This highly acetylated cell wall polysaccharide is a vital component of the plant cell wall, which functions as a molecular scaffold, providing plants with mechanical strength and flexibility. Mutations that impair synthesis of the xylan backbone give rise to plants that fail to grow normally due to collapsed xylem cells in the vascular system. Phenotypic analysis of these mutants has implicated many proteins in xylan biosynthesis. However, the enzymes directly responsible for elongation and acetylation of the xylan backbone have not been unambiguously identified. Here we provide direct biochemical evidence that two Arabidopsis thaliana proteins, IRREGULAR XYLEM 10-L (IRX10-L) and ESKIMO1/ TRICOME BIREFRINGENCE 29 (ESK1/TBL29), catalyze these respective processes in vitro. By identifying the elusive xylan synthase and establishing ESK1/TBL29 as the archetypal plant polysaccharide O-acetyltransferase, we have resolved two long-standing questions in plant cell wall biochemistry. These findings shed light on integral steps in the molecular pathways utilized by plants to synthesize a major component of the world's biomass and expand our toolkit for producing glycopolymers with valuable properties. PMID:25141999

  1. RAPID SEMISYNTHESIS OF ACETYLATED AND SUMOYLATED HISTONE ANALOGS

    PubMed Central

    Dhall, Abhinav; Weller, Caroline E.

    2016-01-01

    The density and diversity of post-translational modifications (PTMs) observed in histone proteins typically limits their purification to homogeneity from biological sources. Access to quantities of uniformly modified histones is, however, critical for investigating the downstream effects of histone PTMs on chromatin-templated processes. Therefore, a number of semisynthetic methodologies have been developed to generate histones bearing precisely defined PTMs or close analogs thereof. In this chapter, we present two optimized and rapid strategies for generating functional analogs of site-specifically acetylated and sumoylated histones. First, we describe a convergent strategy to site-specifically attach the small ubiquitin-like modifier-3 (SUMO-3) protein to the site of Lys12 in histone H4 by means of a disulfide linkage. We then describe the generation of thialysine analogs of histone H3 acetylated at Lys 14 or Lys 56, using thiol-ene coupling chemistry. Both strategies afford multi-milligram quantities of uniformly modified histones that are easily incorporated into mononucleosomes and nucleosome arrays for biophysical and biochemical investigations. These methods are readily extendable to any desired sites in the four core nucleosomal histones and their variant forms. PMID:27423861

  2. Protein acetylation sites mediated by Schistosoma mansoni GCN5

    SciTech Connect

    Moraes Maciel, Renata de; Furtado Madeiro da Costa, Rodrigo; Meirelles Bastosde Oliveira, Francisco; Rumjanek, Franklin David; Fantappie, Marcelo Rosado

    2008-05-23

    The transcriptional co-activator GCN5, a histone acetyltransferase (HAT), is part of large multimeric complexes that are required for chromatin remodeling and transcription activation. As in other eukaryotes, the DNA from the parasite Schistosome mansoni is organized into nucleosomes and the genome encodes components of chromatin-remodeling complexes. Using a series of synthetic peptides we determined that Lys-14 of histone H3 was acetylated by the recombinant SmGCN5-HAT domain. SmGCN5 was also able to acetylate schistosome non-histone proteins, such as the nuclear receptors SmRXR1 and SmNR1, and the co-activator SmNCoA-62. Electron microscopy revealed the presence of SmGCN5 protein in the nuclei of vitelline cells. Within the nucleus, SmGCN5 was found to be located in interchromatin granule clusters (IGCs), which are transcriptionally active structures. The data suggest that SmGCN5 is involved in transcription activation.

  3. Microtubule acetylation promotes kinesin-1 binding and transport.

    PubMed

    Reed, Nathan A; Cai, Dawen; Blasius, T Lynne; Jih, Gloria T; Meyhofer, Edgar; Gaertig, Jacek; Verhey, Kristen J

    2006-11-07

    Long-distance intracellular delivery is driven by kinesin and dynein motor proteins that ferry cargoes along microtubule tracks . Current models postulate that directional trafficking is governed by known biophysical properties of these motors-kinesins generally move to the plus ends of microtubules in the cell periphery, whereas cytoplasmic dynein moves to the minus ends in the cell center. However, these models are insufficient to explain how polarized protein trafficking to subcellular domains is accomplished. We show that the kinesin-1 cargo protein JNK-interacting protein 1 (JIP1) is localized to only a subset of neurites in cultured neuronal cells. The mechanism of polarized trafficking appears to involve the preferential recognition of microtubules containing specific posttranslational modifications (PTMs) by the kinesin-1 motor domain. Using a genetic approach to eliminate specific PTMs, we show that the loss of a single modification, alpha-tubulin acetylation at Lys-40, influences the binding and motility of kinesin-1 in vitro. In addition, pharmacological treatments that increase microtubule acetylation cause a redirection of kinesin-1 transport of JIP1 to nearly all neurite tips in vivo. These results suggest that microtubule PTMs are important markers of distinct microtubule populations and that they act to control motor-protein trafficking.

  4. Autotrophic acetyl coenzyme A biosynthesis in Methanococcus maripaludis.

    PubMed Central

    Shieh, J; Whitman, W B

    1988-01-01

    To detect autotrophic CO2 assimilation in cell extracts of Methanococcus maripaludis, lactate dehydrogenase and NADH were added to convert pyruvate formed from autotrophically synthesized acetyl coenzyme A to lactate. The lactate produced was determined spectrophotometrically. When CO2 fixation was pulled in the direction of lactate synthesis, CO2 reduction to methane was inhibited. Bromoethanesulfonate (BES), a potent inhibitor of methanogenesis, enhanced lactate synthesis, and methyl coenzyme M inhibited it in the absence of BES. Lactate synthesis was dependent on CO2 and H2, but H2 + CO2-independent synthesis was also observed. In cell extracts, the rate of lactate synthesis was about 1.2 nmol min-1 mg of protein-1. When BES was added, the rate of lactate synthesis increased to 2.3 nmol min-1 mg of protein-1. Because acetyl coenzyme A did not stimulate lactate synthesis, pyruvate synthase may have been the limiting activity in these assays. Radiolabel from 14CO2 was incorporated into lactate. The percentages of radiolabel in the C-1, C-2, and C-3 positions of lactate were 73, 33, and 11%, respectively. Both carbon monoxide and formaldehyde stimulated lactate synthesis. 14CH2O was specifically incorporated into the C-3 of lactate, and 14CO was incorporated into the C-1 and C-2 positions. Low concentrations of cyanide also inhibited autotrophic growth, CO dehydrogenase activity, and autotrophic lactate synthesis. These observations are in agreement with the acetogenic pathway of autotrophic CO2 assimilation. PMID:3133359

  5. Preparation and characterization of N-benzoyl-O-acetyl-chitosan.

    PubMed

    Cai, Jinping; Dang, Qifeng; Liu, Chengsheng; Fan, Bing; Yan, Jingquan; Xu, Yanyan; Li, Jingjing

    2015-01-01

    A novel amphipathic chitosan derivative, N-benzoyl-O-acetyl-chitosan (BACS), was prepared by using the selective partial acylation of chitosan (CS), benzoyl chloride, and acetic acid under high-intensity ultrasound. The chemical structure and physical properties of BACS were characterized by FTIR, (1)H NMR, TGA, and XRD techniques. The degrees of substitution of benzoyl and acetyl for the chitosan derivatives were 0.26 and 1.15, respectively, which were calculated from the peak areas in NMR spectra by using the combined integral methods. The foaming properties of CS and BACS were determined and the results suggested BACS had better foam capacity and stability than those of chitosan. In addition, the antimicrobial activities of CS and BACS were also investigated against two species of bacteria (Escherichia coli and Staphylococcus aureus) and a fungus (Aspergillus niger), the results indicated that the antibacterial and antifungal activities of BACS were much stronger than those of the parent chitosan. These findings suggested that BACS was preferable for use as a food additive with a dual role of both foaming agent and food preservative.

  6. Effect of Acetyl-L-Carnitine on Antioxidant Status, Lipid Peroxidation, and Oxidative Damage of Arsenic in Rat.

    PubMed

    Sepand, Mohammad Reza; Razavi-Azarkhiavi, Kamal; Omidi, Ameneh; Zirak, Mohammad Reza; Sabzevari, Samin; Kazemi, Ali Reza; Sabzevari, Omid

    2016-05-01

    Arsenic (As) is a widespread environmental contaminant present around the world in both organic and inorganic forms. Oxidative stress is postulated as the main mechanism for As-induced toxicity. This study was planned to examine the protective effect of acetyl-L-carnitine (ALC) on As-induced oxidative damage in male rats. Animals were randomly divided into four groups of control (saline), sodium arsenite (NaAsO2, 20 mg/kg), ALC (300 mg/kg), and NaAsO2 plus ALC. Animals were dosed orally for 28 successive days. Blood and tissue samples including kidney, brain, liver, heart, and lung were collected on the 28th day and evaluated for oxidative damage and histological changes. NaAsO2 exposure caused a significant lipid peroxidation as evidenced by elevation in thiobarbituric acid-reactive substances (TBARS). The activity of antioxidant enzymes such as glutathione-S-transferase (GST), catalase (CAT), superoxide dismutase (SOD), as well as sulfhydryl group content (SH group) was significantly suppressed in various organs following NaAsO2 treatment (P < 0.05). Furthermore, NaAsO2 administration increased serum values of alanine aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), and bilirubin. Our findings revealed that co-administration of ALC and NaAsO2 significantly suppressed the oxidative damage induced by NaAsO2. Tissue histological studies have confirmed the biochemical findings and provided evidence for the beneficial role of ALC. The results concluded that ALC attenuated NaAsO2-induced toxicity, and this protective effect may result from the ability of ALC in maintaining oxidant-antioxidant balance.

  7. Characterization of nucleolin K88 acetylation defines a new pool of nucleolin colocalizing with pre-mRNA splicing factors.

    PubMed

    Das, Sadhan; Cong, Rong; Shandilya, Jayasha; Senapati, Parijat; Moindrot, Benoit; Monier, Karine; Delage, Hélène; Mongelard, Fabien; Kumar, Sanjeev; Kundu, Tapas K; Bouvet, Philippe

    2013-03-01

    Nucleolin is a multifunctional protein that carries several post-translational modifications. We characterized nucleolin acetylation and developed antibodies specific to nucleolin K88 acetylation. Using this antibody we show that nucleolin is acetylated in vivo and is not localized in the nucleoli, but instead is distributed throughout the nucleoplasm. Immunofluorescence studies indicate that acetylated nucleolin is co-localized with the splicing factor SC35 and partially with Y12. Acetylated nucleolin is expressed in all tested proliferating cell types. Our findings show that acetylation defines a new pool of nucleolin which support a role for nucleolin in the regulation of mRNA maturation and transcription by RNA polymerase II.

  8. Mutations of Arabidopsis TBL32 and TBL33 Affect Xylan Acetylation and Secondary Wall Deposition

    PubMed Central

    Yuan, Youxi; Teng, Quincy; Zhong, Ruiqin; Haghighat, Marziyeh; Richardson, Elizabeth A.; Ye, Zheng-Hua

    2016-01-01

    Xylan is a major acetylated polymer in plant lignocellulosic biomass and it can be mono- and di-acetylated at O-2 and O-3 as well as mono-acetylated at O-3 of xylosyl residues that is substituted with glucuronic acid (GlcA) at O-2. Based on the finding that ESK1, an Arabidopsis thaliana DUF231 protein, specifically mediates xylan 2-O- and 3-O-monoacetylation, we previously proposed that different acetyltransferase activities are required for regiospecific acetyl substitutions of xylan. Here, we demonstrate the functional roles of TBL32 and TBL33, two ESK1 close homologs, in acetyl substitutions of xylan. Simultaneous mutations of TBL32 and TBL33 resulted in a significant reduction in xylan acetyl content and endoxylanase digestion of the mutant xylan released GlcA-substituted xylooligomers without acetyl groups. Structural analysis of xylan revealed that the tbl32 tbl33 mutant had a nearly complete loss of 3-O-acetylated, 2-O-GlcA-substituted xylosyl residues. A reduction in 3-O-monoacetylated and 2,3-di-O-acetylated xylosyl residues was also observed. Simultaneous mutations of TBL32, TBL33 and ESK1 resulted in a severe reduction in xylan acetyl level down to 15% of that of the wild type, and concomitantly, severely collapsed vessels and stunted plant growth. In particular, the S2 layer of secondary walls in xylem vessels of tbl33 esk1 and tbl32 tbl33 esk1 exhibited an altered structure, indicating abnormal assembly of secondary wall polymers. These results demonstrate that TBL32 and TBL33 play an important role in xylan acetylation and normal deposition of secondary walls. PMID:26745802

  9. Acetylproteomic analysis reveals functional implications of lysine acetylation in human spermatozoa (sperm).

    PubMed

    Yu, Heguo; Diao, Hua; Wang, Chunmei; Lin, Yan; Yu, Fudong; Lu, Hui; Xu, Wei; Li, Zheng; Shi, Huijuan; Zhao, Shimin; Zhou, Yuchuan; Zhang, Yonglian

    2015-04-01

    Male infertility is a medical condition that has been on the rise globally. Lysine acetylation of human sperm, an essential posttranslational modification involved in the etiology of sperm abnormality, is not fully understood. Therefore, we first generated a qualified pan-anti-acetyllysine monoclonal antibody to characterize the global lysine acetylation of uncapacitated normal human sperm with a proteomics approach. With high enrichment ratios that were up to 31%, 973 lysine-acetylated sites that matched to 456 human sperm proteins, including 671 novel lysine acetylation sites and 205 novel lysine-acetylated proteins, were identified. These proteins exhibited conserved motifs XXXKYXXX, XXXKFXXX, and XXXKHXXX, were annotated to function in multiple metabolic processes, and were localized predominantly in the mitochondrion and cytoplasmic fractions. Between the uncapacitated and capacitated sperm, different acetylation profiles in regard to functional proteins involved in sperm capacitation, sperm-egg recognition, sperm-egg plasma fusion, and fertilization were observed, indicating that acetylation of functional proteins may be required during sperm capacitation. Bioinformatics analysis revealed association of acetylated proteins with diseases and drugs. Novel acetylation of voltage-dependent anion channel proteins was also found. With clinical sperm samples, we observed differed lysine acetyltransferases and lysine deacetylases expression between normal sperm and abnormal sperm of asthenospermia or necrospermia. Furthermore, with sperm samples impaired by epigallocatechin gallate to mimic asthenospermia, we observed that inhibition of sperm motility was partly through the blockade of voltage-dependent anion channel 2 Lys-74 acetylation combined with reduced ATP levels and mitochondrial membrane potential. Taken together, we obtained a qualified pan-anti-acetyllysine monoclonal antibody, analyzed the acetylproteome of uncapacitated human sperm, and revealed

  10. Mutations of Arabidopsis TBL32 and TBL33 affect xylan acetylation and secondary wall deposition

    DOE PAGES

    Yuan, Youxi; Teng, Quincy; Zhong, Ruiqin; ...

    2016-01-08

    Xylan is a major acetylated polymer in plant lignocellulosic biomass and it can be monoand di-acetylated at O-2 and O-3 as well as mono-acetylated at O-3 of xylosyl residues that is substituted with glucuronic acid (GlcA) at O-2. Based on the finding that ESK1, an Arabidopsis thaliana DUF231 protein, specifically mediates xylan 2-O- and 3-O-monoacetylation, we previously proposed that different acetyltransferase activities are required for regiospecific acetyl substitutions of xylan. Here, we demonstrate the functional roles of TBL32 and TBL33, two ESK1 close homologs, in acetyl substitutions of xylan. Simultaneous mutations of TBL32 and TBL33 resulted in a significant reductionmore » in xylan acetyl content and endoxylanase digestion of the mutant xylan released GlcA-substituted xylooligomers without acetyl groups. Structural analysis of xylan revealed that the tbl32 tbl33 mutant had a nearly complete loss of 3-O-acetylated, 2-O-GlcA-substituted xylosyl residues. A reduction in 3-Omonoacetylated and 2,3-di-O-acetylated xylosyl residues was also observed. Simultaneous mutations of TBL32, TBL33 and ESK1 resulted in a severe reduction in xylan acetyl level down to 15% of that of the wild type, and concomitantly, severely collapsed vessels and stunted plant growth. In particular, the S2 layer of secondary walls in xylem vessels of tbl33 esk1 and tbl32 tbl33 esk1 exhibited an altered structure, indicating abnormal assembly of secondary wall polymers. Furthermore, these results demonstrate that TBL32 and TBL33 play an important role in xylan acetylation and normal deposition of secondary walls.« less

  11. Toll-Like receptor-3 mediates HIV-1 transactivation via NFκB and JNK pathways and histone acetylation, but prolonged activation suppresses Tat and HIV-1 replication

    PubMed Central

    Bhargavan, Biju; Woollard, Shawna M.; Kanmogne, Georgette D.

    2016-01-01

    TLR3 has been implicated in the pathogenesis of several viral infections, including SIV- and HIV-1-induced inflammation and AIDS. However the molecular mechanisms of these TLR3-mediated effects are not known, and it is not known whether HIV interacts with cellular TLR3 to affect disease process. Here we investigate the effects of TLR3 ligands on HIV-1 transactivation using both primary human macrophages and cells containing integrated copies of the HIV-1 promoter. We demonstrate that TLR3 activation induced upregulation of transcription factors such as c-Jun, CCAAT/enhancer-binding protein alpha (CEBPA), signal transducer and activator of transcription (STAT)-1, STAT-2, RELB, and nuclear factor kappa-B1 (NFκB1), most of which are known to regulate the HIV promoter activity. We also demonstrate that TLR3 activation increased HIV-1 transactivation via the c-Jun N-terminal kinase (JNK) and NFκB pathways. This was associated with epigenetics modifications, including decreased histone deacetylase activity, increased histone acetyl transferase (HAT) activity, and increased acetylation of histones H3 and H4 at lysine residues in the nucleosome-0 and nucleosome-1 of the HIV-1 promoter. However, prolonged TLR3 activation decreased HIV-1 transactivation, decreased HAT activity and Tat transcription, and suppressed viral replication. Overall, data suggests TLR3 can acts as viral sensor to mediate viral transactivation, cellular signaling, innate immune response, and inflammation in HIV-infected humans. Our study provides novel insights into the molecular basis for these TLR3-mediated effects. PMID:26569339

  12. The Folding of Acetyl(Ala)28NH2 and Acetyl(Ala)40NH2 Extended Strand Peptides into Antiparallel β-Sheets. A Density Functional Theory Study of β-Sheets with β-Turns

    PubMed Central

    Ali-Torres, Jorge

    2012-01-01

    We report ONIOM calculations using B3LYP/D95** and AM1 on β-sheet formation from acetyl(Ala)NNH2 (N=28 or 40). The sheets contain from one to four β-turns for N=28 and up to six for N=40. We have obtained four types of geometrically optimized structures. All contain only β-turns. They differ from each other in the types of β-turns formed. The unsolvated sheets containing two turns are most stable. Aqueous solvation (using the SM5.2 and CPCM methods) reduces the stabilities of the folded structures compared to the extended strands. PMID:23157432

  13. Structural Investigation of a Novel N-Acetyl Glucosamine Binding Chi-Lectin Which Reveals Evolutionary Relationship with Class III Chitinases

    PubMed Central

    Patil, Dipak N.; Datta, Manali; Dev, Aditya; Dhindwal, Sonali; Singh, Nirpendra; Dasauni, Pushpanjali; Kundu, Suman; Sharma, Ashwani K.; Tomar, Shailly; Kumar, Pravindra

    2013-01-01

    The glycosyl hydrolase 18 (GH18) family consists of active chitinases as well as chitinase like lectins/proteins (CLPs). The CLPs share significant sequence and structural similarities with active chitinases, however, do not display chitinase activity. Some of these proteins are reported to have specific functions and carbohydrate binding property. In the present study, we report a novel chitinase like lectin (TCLL) from Tamarindus indica. The crystal structures of native TCLL and its complex with N-acetyl glucosamine were determined. Similar to the other CLPs of the GH18 members, TCLL lacks chitinase activity due to mutations of key active site residues. Comparison of TCLL with chitinases and other chitin binding CLPs shows that TCLL has substitution of some chitin binding site residues and more open binding cleft due to major differences in the loop region. Interestingly, the biochemical studies suggest that TCLL is an N-acetyl glucosamine specific chi-lectin, which is further confirmed by the complex structure of TCLL with N-acetyl glucosamine complex. TCLL has two distinct N-acetyl glucosamine binding sites S1 and S2 that contain similar polar residues, although interaction pattern with N-acetyl glucosamine varies extensively among them. Moreover, TCLL structure depicts that how plants utilize existing structural scaffolds ingenuously to attain new functions. To date, this is the first structural investigation of a chi-lectin from plants that explore novel carbohydrate binding sites other than chitin binding groove observed in GH18 family members. Consequently, TCLL structure confers evidence for evolutionary link of lectins with chitinases. PMID:23717482

  14. N-Acetyl-Cysteine as Effective and Safe Chelating Agent in Metal-on-Metal Hip-Implanted Patients: Two Cases

    PubMed Central

    Lonati, Davide; Ragghianti, Benedetta; Ronchi, Anna; Vecchio, Sarah; Locatelli, Carlo Alessandro

    2016-01-01

    Systemic toxicity associated with cobalt (Co) and chromium (Cr) containing metal hip alloy may result in neuropathy, cardiomyopathy, and hypothyroidism. However clinical management concerning chelating therapy is still debated in literature. Here are described two metal-on-metal hip-implanted patients in which N-acetyl-cysteine decreased elevated blood metal levels. A 67-year-old male who underwent Co/Cr hip implant in September 2009 referred to our Poison Control Centre for persisting elevated Co/Cr blood levels (from March 2012 to November 2014). After receiving oral high-dose N-acetyl-cysteine, Co/Cr blood concentrations dropped by 86% and 87% of the prechelation levels, respectively, and persisted at these latter concentrations during the following 6 months of follow-up. An 81-year-old female who underwent Co/Cr hip implant in January 2007 referred to our Centre for detection of high Co and Cr blood levels in June 2012. No hip revision was indicated. After a therapy with oral high-dose N-acetyl-cysteine Co/Cr blood concentrations decreased of 45% and 24% of the prechelation levels. Chelating agents reported in hip-implanted patients (EDTA, DMPS, and BAL) are described in few cases. N-acetyl-cysteine may provide chelating sites for metals and in our cases reduced Co and Cr blood levels and resulted well tolerable. PMID:27148463

  15. Histone deacetylase inhibitors decrease NHEJ both by acetylation of repair factors and trapping of PARP1 at DNA double-strand breaks in chromatin.

    PubMed

    Robert, Carine; Nagaria, Pratik K; Pawar, Nisha; Adewuyi, Adeoluwa; Gojo, Ivana; Meyers, David J; Cole, Philip A; Rassool, Feyruz V

    2016-06-01

    Histone deacetylase inhibitors (HDACi) induce acetylation of histone and non-histone proteins, and modulate the acetylation of proteins involved in DNA double-strand break (DSB) repair. Non-homologous end-joining (NHEJ) is one of the main pathways for repairing DSBs. Decreased NHEJ activity has been reported with HDACi treatment. However, mechanisms through which these effects are regulated in the context of chromatin are unclear. We show that pan-HDACi, trichostatin A (TSA), causes differential acetylation of DNA repair factors Ku70/Ku80 and poly ADP-ribose polymerase-1 (PARP1), and impairs NHEJ. Repair effects are reversed by treatments with p300/CBP inhibitor C646, with significantly decreased acetylation of PARP1. In keeping with these findings, TSA treatment significantly increases PARP1 binding to DSBs in chromatin. Notably, AML patients treated with HDACi entinostat (MS275) in vivo also show increased formation of poly ADP-ribose (PAR) that co-localizes with DSBs. Further, we demonstrate that PARP1 bound to chromatin increases with duration of TSA exposure, resembling PARP "trapping". Knockdown of PARP1 inhibits trapping and mitigates HDACi effects on NHEJ. Finally, combination of HDACi with potent PARP inhibitor talazoparib (BMN673) shows a dose-dependent increase in PARP "trapping", which correlates with increased apoptosis. These results provide a mechanism through which HDACi inhibits deacetylation and increases binding of PARP1 to DSBs, leading to decreased NHEJ and cytotoxicity of leukemia cells.

  16. Development of a rapid high-efficiency scalable process for acetylated Sus scrofa cationic trypsin production from Escherichia coli inclusion bodies.

    PubMed

    Zhao, Mingzhi; Wu, Feilin; Xu, Ping

    2015-12-01

    Trypsin is one of the most important enzymatic tools in proteomics and biopharmaceutical studies. Here, we describe the complete recombinant expression and purification from a trypsinogen expression vector construct. The Sus scrofa cationic trypsin gene with a propeptide sequence was optimized according to Escherichia coli codon-usage bias and chemically synthesized. The gene was inserted into pET-11c plasmid to yield an expression vector. Using high-density E. coli fed-batch fermentation, trypsinogen was expressed in inclusion bodies at 1.47 g/L. The inclusion body was refolded with a high yield of 36%. The purified trypsinogen was then activated to produce trypsin. To address stability problems, the trypsin thus produced was acetylated. The final product was generated upon gel filtration. The final yield of acetylated trypsin was 182 mg/L from a 5-L fermenter. Our acetylated trypsin product demonstrated higher BAEE activity (30,100 BAEE unit/mg) than a commercial product (9500 BAEE unit/mg, Promega). It also demonstrated resistance to autolysis. This is the first report of production of acetylated recombinant trypsin that is stable and suitable for scale-up.

  17. Matrix Attachment Region-Dependent Function of the Immunoglobulin μ Enhancer Involves Histone Acetylation at a Distance without Changes in Enhancer Occupancy

    PubMed Central

    Fernández, Luis A.; Winkler, Michael; Grosschedl, Rudolf

    2001-01-01

    Nuclear matrix attachment regions (MARs), which flank the immunoglobulin μ heavy-chain enhancer on either side, are required for the activation of the distal variable-region (VH) promoter in transgenic mice. Previously, we have shown that the MARs extend a local domain of chromatin accessibility at the μ enhancer to more distal sites. In this report, we examine the influence of MARs on the formation of a nucleoprotein complex at the enhancer and on the acetylation of histones, which have both been implicated in contributing to chromatin accessibility. By in vivo footprint analysis of transgenic μ gene constructs, we show that the occupancy of factor-binding sites at the μ enhancer is similar in transcriptionally active wild-type and transcriptionally inactive ΔMAR genes. Chromatin immunoprecipitation experiments indicate, however, that the acetylation of histones at enhancer-distal nucleosomes is enhanced 10-fold in the presence of MARs, whereas the levels of histone acetylation at enhancer-proximal nucleosomes are similar for wild-type and ΔMAR genes. Taken together, these data indicate that the function of MARs in mediating long-range chromatin accessibility and transcriptional activation of the VH promoter involves the generation of an extended domain of histone acetylation, independent of changes in the occupancy of the μ enhancer. PMID:11113195

  18. Acetylation of cell wall is required for structural integrity of the leaf surface and exerts a global impact on plant stress responses

    SciTech Connect

    Nafisi, Majse; Stranne, Maria; Fimognari, Lorenzo; Atwell, Susanna; Martens, Helle J.; Pedas, Pai R.; Hansen, Sara F.; Nawrath, Christiane; Scheller, Henrik V.; Kliebenstein, Daniel J.; Sakuragi, Yumiko

    2015-07-22

    Here we report that the epidermis on leaves protects plants from pathogen invasion and provides a waterproof barrier. It consists of a layer of cells that is surrounded by thick cell walls, which are partially impregnated by highly hydrophobic cuticular components. We show that the Arabidopsis T-DNA insertion mutants of REDUCED WALL ACETYLATION 2 (rwa2), previously identified as having reduced O-acetylation of both pectins and hemicelluloses, exhibit pleiotrophic phenotype on the leaf surface. The cuticle layer appeared diffused and was significantly thicker and underneath cell wall layer was interspersed with electron-dense deposits. A large number of trichomes were collapsed and surface permeability of the leaves was enhanced in rwa2 as compared to the wild type. A massive reprogramming of the transcriptome was observed in rwa2 as compared to the wild type, including a coordinated up-regulation of genes involved in responses to abiotic stress, particularly detoxification of reactive oxygen species and defense against microbial pathogens (e.g., lipid transfer proteins, peroxidases). In accordance, peroxidase activities were found to be elevated in rwa2 as compared to the wild type. These results indicate that cell wall acetylation is essential for maintaining the structural integrity of leaf epidermis, and that reduction of cell wall acetylation leads to global stress responses in Arabidopsis.

  19. Acetylation of cell wall is required for structural integrity of the leaf surface and exerts a global impact on plant stress responses

    DOE PAGES

    Nafisi, Majse; Stranne, Maria; Fimognari, Lorenzo; ...

    2015-07-22

    Here we report that the epidermis on leaves protects plants from pathogen invasion and provides a waterproof barrier. It consists of a layer of cells that is surrounded by thick cell walls, which are partially impregnated by highly hydrophobic cuticular components. We show that the Arabidopsis T-DNA insertion mutants of REDUCED WALL ACETYLATION 2 (rwa2), previously identified as having reduced O-acetylation of both pectins and hemicelluloses, exhibit pleiotrophic phenotype on the leaf surface. The cuticle layer appeared diffused and was significantly thicker and underneath cell wall layer was interspersed with electron-dense deposits. A large number of trichomes were collapsed andmore » surface permeability of the leaves was enhanced in rwa2 as compared to the wild type. A massive reprogramming of the transcriptome was observed in rwa2 as compared to the wild type, including a coordinated up-regulation of genes involved in responses to abiotic stress, particularly detoxification of reactive oxygen species and defense against microbial pathogens (e.g., lipid transfer proteins, peroxidases). In accordance, peroxidase activities were found to be elevated in rwa2 as compared to the wild type. These results indicate that cell wall acetylation is essential for maintaining the structural integrity of leaf epidermis, and that reduction of cell wall acetylation leads to global stress responses in Arabidopsis.« less

  20. Simple and validated quantitative ¹H NMR method for the determination of methylation, acetylation, and feruloylation degree of pectin.

    PubMed

    Müller-Maatsch, Judith; Caligiani, Augusta; Tedeschi, Tullia; Elst, Kathy; Sforza, Stefano

    2014-09-17

    The knowledge of pectin esterification degree is of primary importance to predict gelling and other properties of pectin from different sources. This paper reports the development of a simple and rapid (1)H NMR-based method for the simultaneous quantitative determination of methylation, acetylation, and feruloylation degree of pectin isolated from various food sources. Pectin esters are hydrolyzed in NaOH/D2O, and the obtained methanol, acetic acid, and ferulic acid are directly measured by (1)H NMR. High accuracy, repeatability, and reproducibility of the method were obtained, and the analysis time is reduced as compared to conventional chromatography- or titration-based methods.

  1. A dysregulated acetyl/SUMO switch of FXR promotes hepatic inflammation in obesity

    PubMed Central

    Kim, Dong-Hyun; Xiao, Zhen; Kwon, Sanghoon; Sun, Xiaoxiao; Ryerson, Daniel; Tkac, David; Ma, Ping; Wu, Shwu-Yuan; Chiang, Cheng-Ming; Zhou, Edward; Xu, H Eric; Palvimo, Jorma J; Chen, Lin-Feng; Kemper, Byron; Kemper, Jongsook Kim

    2015-01-01

    Acetylation of transcriptional regulators is normally dynamically regulated by nutrient status but is often persistently elevated in nutrient-excessive obesity conditions. We investigated the functional consequences of such aberrantly elevated acetylation of the nuclear receptor FXR as a model. Proteomic studies identified K217 as the FXR acetylation site in diet-induced obese mice. In vivo studies utilizing acetylation-mimic and acetylation-defective K217 mutants and gene expression profiling revealed that FXR acetylation increased proinflammatory gene expression, macrophage infiltration, and liver cytokine and triglyceride levels, impaired insulin signaling, and increased glucose intolerance. Mechanistically, acetylation of FXR blocked its interaction with the SUMO ligase PIASy and inhibited SUMO2 modification at K277, resulting in activation of inflammatory genes. SUMOylation of agonist-activated FXR increased its interaction with NF-κB but blocked that with RXRα, so that SUMO2-modified FXR was selectively recruited to and trans-repressed inflammatory genes without affecting FXR/RXRα target genes. A dysregulated acetyl/SUMO switch of FXR in obesity may serve as a general mechanism for diminished anti-inflammatory response of other transcriptional regulators and provide potential therapeutic and diagnostic targets for obesity-related metabolic disorders. PMID:25425577

  2. Modulation of Central Carbon Metabolism by Acetylation of Isocitrate Lyase in Mycobacterium tuberculosis

    PubMed Central

    Bi, Jing; Wang, Yihong; Yu, Heguo; Qian, Xiaoyan; Wang, Honghai; Liu, Jun; Zhang, Xuelian

    2017-01-01

    Several enzymes involved in central carbon metabolism such as isocitrate lyase and phosphoenolpyruvate carboxykinase are key determinants of pathogenesis of Mycobacterium tuberculosis (M. tb). In this study, we found that lysine acetylation plays an important role in the modulation of central carbon metabolism in M. tb. Mutant of M. tb defective in sirtuin deacetylase exhibited improved growth in fatty acid-containing media. Global analysis of lysine acetylome of M. tb identified three acetylated lysine residues (K322, K331, and K392) of isocitrate lyase (ICL1). Using a genetically encoding system, we demonstrated that acetylation of K392 increased the enzyme activity of ICL1, whereas acetylation of K322 decreased its activity. Antibodies that specifically recognized acetyllysine at 392 and 322 of ICL1 were used to monitor the levels of ICL1 acetylation in M. tb cultures. The physiological significance of ICL1 acetylation was demonstrated by the observation that M. tb altered the levels of acetylated K392 in response to changes of carbon sources, and that acetylation of K392 affected the abundance of ICL1 protein. Our study has uncovered another regulatory mechanism of ICL1. PMID:28322251

  3. Acetylation of Starch with Vinyl Acetate in Imidazolium Ionic Liquids and Characterization of Acetate Distribution

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Starch was acetylated with vinyl acetate in different 1-butyl-3-methylimidazolium (BMIM) salts as solvent in effort to produce starches with different acetylation patterns. Overall degree of substitution was much higher for basic anions such as acetate and dicyanimide (dca) than for neutral anions ...

  4. Requirements for Carnitine Shuttle-Mediated Translocation of Mitochondrial Acetyl Moieties to the Yeast Cytosol

    PubMed Central

    van Rossum, Harmen M.; Kozak, Barbara U.; Niemeijer, Matthijs S.; Dykstra, James C.; Luttik, Marijke A. H.; van Maris, Antonius J. A.

    2016-01-01

    ABSTRACT In many eukaryotes, the carnitine shuttle plays a key role in intracellular transport of acyl moieties. Fatty acid-grown Saccharomyces cerevisiae cells employ this shuttle to translocate acetyl units into their mitochondria. Mechanistically, the carnitine shuttle should be reversible, but previous studies indicate that carnitine shuttle-mediated export of mitochondrial acetyl units to the yeast cytosol does not occur in vivo. This apparent unidirectionality was investigated by constitutively expressing genes encoding carnitine shuttle-related proteins in an engineered S. cerevisiae strain, in which cytosolic acetyl coenzyme A (acetyl-CoA) synthesis could be switched off by omitting lipoic acid from growth media. Laboratory evolution of this strain yielded mutants whose growth on glucose, in the absence of lipoic acid, was l-carnitine dependent, indicating that in vivo export of mitochondrial acetyl units to the cytosol occurred via the carnitine shuttle. The mitochondrial pyruvate dehydrogenase complex was identified as the predominant source of acetyl-CoA in the evolved strains. Whole-genome sequencing revealed mutations in genes involved in mitochondrial fatty acid synthesis (MCT1), nuclear-mitochondrial communication (RTG2), and encoding a carnitine acetyltransferase (YAT2). Introduction of these mutations into the nonevolved parental strain enabled l-carnitine-dependent growth on glucose. This study indicates intramitochondrial acetyl-CoA concentration and constitutive expression of carnitine shuttle genes as key factors in enabling in vivo export of mitochondrial acetyl units via the carnitine shuttle. PMID:27143389

  5. Novel Family of Carbohydrate Esterases, Based on Identification of the Hypocrea jecorina Acetyl Esterase Gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant cell walls have been shown to contain acetyl groups in hemicelluloses and pectin. The gene, ae1, encoding the acetyl esterase (Ae1) of Hypocrea jecorina was identified by amino terminal sequencing, peptide mass spectrometry, and genomic sequence analyses. The coded polypeptide had 348 amino ...

  6. Protein acetylation affects acetate metabolism, motility and acid stress response in Escherichia coli

    PubMed Central

    Castaño-Cerezo, Sara; Bernal, Vicente; Post, Harm; Fuhrer, Tobias; Cappadona, Salvatore; Sánchez-Díaz, Nerea C; Sauer, Uwe; Heck, Albert JR; Altelaar, AF Maarten; Cánovas, Manuel

    2014-01-01

    Although protein acetylation is widely observed, it has been associated with few specific regulatory functions making it poorly understood. To interrogate its functionality, we analyzed the acetylome in Escherichia coli knockout mutants of cobB, the only known sirtuin-like deacetylase, and patZ, the best-known protein acetyltransferase. For four growth conditions, more than 2,000 unique acetylated peptides, belonging to 809 proteins, were identified and differentially quantified. Nearly 65% of these proteins are related to metabolism. The global activity of CobB contributes to the deacetylation of a large number of substrates and has a major impact on physiology. Apart from the regulation of acetyl-CoA synthetase, we found that CobB-controlled acetylation of isocitrate lyase contributes to the fine-tuning of the glyoxylate shunt. Acetylation of the transcription factor RcsB prevents DNA binding, activating flagella biosynthesis and motility, and increases acid stress susceptibility. Surprisingly, deletion of patZ increased acetylation in acetate cultures, which suggests that it regulates the levels of acetylating agents. The results presented offer new insights into functional roles of protein acetylation in metabolic fitness and global cell regulation. PMID:25518064

  7. Observed surface lysine acetylation of human carbonic anhydrase II expressed in Escherichia coli

    PubMed Central

    Mahon, Brian P; Lomelino, Carrie L; Salguero, Antonieta L; Driscoll, Jenna M; Pinard, Melissa A; McKenna, Robert

    2015-01-01

    Acetylation of surface lysine residues of proteins has been observed in Escherichia coli (E. coli), an organism that has been extensively utilized for recombinant protein expression. This post-translational modification is shown to be important in various processes such as metabolism, stress-response, transcription, and translation. As such, utilization of E. coli expression systems for protein production may yield non-native acetylation events of surface lysine residues. Here we present the crystal structures of wild-type and a variant of human carbonic anhydrase II (hCA II) that have been expressed in E. coli and exhibit surface lysine acetylation and we speculate on the effect this has on the conformational stability of each enzyme. Both structures were determined to 1.6 Å resolution and show clear electron density for lysine acetylation. The lysine acetylation does not distort the structure and the surface lysine acetylation events most likely do not interfere with the biological interpretation. However, there is a reduction in conformational stability in the hCA II variant compared to wild type (∼4°C decrease). This may be due to other lysine acetylation events that have occurred but are not visible in the crystal structure due to intrinsic disorder. Therefore, surface lysine acetylation events may affect overall protein stability and crystallization, and should be considered when using E. coli expression systems. PMID:26266677

  8. Protective Effects of Acetylation on the Pathological Reactions of the Lens Crystallins with Homocysteine Thiolactone

    PubMed Central

    Moafian, Zeinab; Khoshaman, Kazem; Oryan, Ahmad; Kurganov, Boris I.; Yousefi, Reza

    2016-01-01

    Various post-translational lens crystallins modifications result in structural and functional insults, contributing to the development of lens opacity and cataract disorders. Lens crystallins are potential targets of homocysteinylation, particularly under hyperhomocysteinemia which has been indicated in various eye diseases. Since both homocysteinylation and acetylation primarily occur on protein free amino groups, we applied different spectroscopic methods and gel mobility shift analysis to examine the possible preventive role of acetylation against homocysteinylation. Lens crystallins were extensively acetylated in the presence of acetic anhydride and then subjected to homocysteinylation in the presence of homocysteine thiolactone (HCTL). Extensive acetylation of the lens crystallins results in partial structural alteration and enhancement of their stability, as well as improvement of α-crystallin chaperone-like activity. In addition, acetylation partially prevents HCTL-induced structural alteration and aggregation of lens crystallins. Also, acetylation protects against HCTL-induced loss of α-crystallin chaperone activity. Additionally, subsequent acetylation and homocysteinylation cause significant proteolytic degradation of crystallins. Therefore, further experimentation is required in order to judge effectively the preventative role of acetylation on the structural and functional insults induced by homocysteinylation of lens crystallins. PMID:27706231

  9. Histone Acetylation is Recruited in Consolidation as a Molecular Feature of Stronger Memories

    ERIC Educational Resources Information Center

    Federman, Noel; Fustinana, Maria Sol; Romano, Arturo

    2009-01-01

    Gene expression is a key process for memory consolidation. Recently, the participation of epigenetic mechanisms like histone acetylation was evidenced in long-term memories. However, until now the training strength required and the persistence of the chromatin acetylation recruited are not well characterized. Here we studied whether histone…

  10. Control of poly-beta-hydroxybutyrate synthase mediated by acetyl phosphate in cyanobacteria.

    PubMed Central

    Miyake, M; Kataoka, K; Shirai, M; Asada, Y

    1997-01-01

    Poly-beta-hydroxybutyrate (PHB) synthesis in a cyanobacterium, Synechococcus sp. strain MA19, is controlled at the enzyme level and is dependent on the C/N balance in the culture medium. The control involves at least two enzymes. The first enzyme is PHB synthase. Little PHB synthase activity was detected in crude extracts from cells grown under nitrogen-sufficient conditions (MA19(+N)). The activity was detected exclusively in membrane fractions from nitrogen-deprived cells (MA19(-N)) under light but not dark conditions. The shift in the enzyme activity was insensitive to chloramphenicol, which suggests posttranslational activation. Acetyl phosphate activated PHB synthase in membrane fractions from MA19(+N). In vitro, the activation level of PHB synthase changed, depending on the concentration of acetyl phosphate. The second enzyme was phosphotransacetylase (EC 2.3.1.8), which catalyzes the conversion of acetyl coenzyme A (acetyl-CoA) to acetyl phosphate. The activity was detected in crude extracts from MA19(-N) but not in those from MA19(+N). The results suggested that intracellular acetyl phosphate concentration could be controlled, depending on C/N balance and intracellular acetyl-CoA concentration. Acetyl phosphate probably acts as a signal of C/N balance affecting PHB metabolism in MA19. PMID:9260940

  11. Post-translational modification by acetylation regulates the mitochondrial carnitine/acylcarnitine transport protein.

    PubMed

    Giangregorio, Nicola; Tonazzi, Annamaria; Console, Lara; Indiveri, Cesare

    2017-02-01

    The carnitine/acylcarnitine transporter (CACT; SLC25A20) mediates an antiport reaction allowing entry of acyl moieties in the form of acylcarnitines into the mitochondrial matrix and exit of free carnitine. The transport function of CACT is crucial for the β-oxidation pathway. In this work, it has been found that CACT is partially acetylated in rat liver mitochondria as demonstrated by anti-acetyl-lys antibody immunostaining. Acetylation was reversed by the deacetylase Sirtuin 3 in the presence of NAD(+). After treatment of the mitochondrial extract with the deacetylase, the CACT activity, assayed in proteoliposomes, increased. The half-saturation constant of the CACT was not influenced, while the V max was increased by deacetylation. Sirtuin 3 was not able to deacetylate the CACT when incubation was performed in intact mitoplasts, indicating that the acetylation sites are located in the mitochondrial matrix. Prediction on the localization of acetylated residues by bioinformatics correlates well with the experimental data. Recombinant CACT treated with acetyl-CoA was partially acetylated by non-enzymatic mechanism with a corresponding decrease of transport activity. The experimental data indicate that acetylation of CACT inhibits its transport activity, and thus may contribute to the regulation of the mitochondrial β-oxidation pathway.

  12. Effects of acetylation on the emulsifying properties of Artemisia sphaerocephala Krasch. polysaccharide.

    PubMed

    Li, Junjun; Hu, Xinzhong; Li, Xiaoping; Ma, Zhen

    2016-06-25

    In the present study, polysaccharides extracted from Artemisia sphaerocephala Krasch. seeds (ASKP) were acetylated to improve the emulsifying properties of the macromolecules. Several methods were applied for the acetylation purpose, among which the acetic anhydride-pyridine method with formamide as solvent was found to be the most effective one. Acetylated ASKPs with various degree of substitution (DS) were successfully produced and structurally characterized using HPSEC-MALS, FTIR and (1)H NMR techniques in this study. Results showed that acetylation treatment could cause the degradation of ASKP. Moreover, with the increase of DS, both the molecular weight and radius of gyration increased, as well as the molecular conformation trended to be more compact. Low DS (DS: 0.04 and 0.13) conferred acetylated ASKP a lower viscosity than that of ASKP. With the increase of DS, the viscosity of acetylated ASKPs increased and exceeded that of ASKP. Compared with ASKP, acetylated ASKPs could reduce the surface tension to a greater extent and demonstrated a much smaller droplet size (ZD) in an oil/water emulsion system. Acetylated ASKPs were capable of stabilizing the oil/water emulsion for 3 days at 60°C, whose performance was as good as that of gum acacia. In conclusion, such a hydrophobic modification on ASKP conferred it better emulsifying properties.

  13. A bioinformatics-based overview of protein Lys-Ne-acetylation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Among posttranslational modifications, there are some conceptual similarities between Lys-N'-acetylation and Ser/Thr/Tyr O-phosphorylation. Herein we present a bioinformatics-based overview of reversible protein Lys-acetylation, including some comparisons with reversible protein phosphorylation. T...

  14. Phase I clinical trial of O-Acetylated pectin conjugate, a plant polysaccharide based typhoid vaccine

    PubMed Central

    Szu, Shousun C.; Lin, Kimi F-Y; Hunt, Steven; Chu, Chiayung; Thinh, Nguyen Duc

    2014-01-01

    Background Typhoid fever remains an important cause of morbidity and mortality in the developing countries. Vi capsular polysaccharide conjugate vaccine demonstrated safety and efficacy in young children in high endemic regions. A novel typhoid conjugate vaccine based on plant polysaccharide pectin was studied in a phase I trial. Methods Fruit pectin, having the same carbohydrate backbone structure as Vi, was purified from citrus peel and used as the polysaccharide source to prepare a semi-synthetic typhoid conjugate vaccine. Pectin was chemically O-acetylated (OAcPec) to antigenically resemble Vi and conjugated to carrier protein rEPA, a recombinant exoprotein A from Pseudomonas aeruginosa. 25 healthy volunteers, 18–45 years old, were injected once with OAcPec-rEPA. Safety and IgG antibodies reactive with Vi and pectin were analyzed. Results No vaccine associated serious adverse reaction was reported. Six weeks after the injection of OAcPec-rEPA, 64% of the volunteers elicited >4 fold rise of anti-Vi IgG. At 26 weeks the level declined, but the difference between the levels at 6 and 26 weeks are not statistically significant. There is a direct correlation between the level of anti-Vi IgG before and after the injection (R2 = 0.96). The anti-Vi IgG can be absorbed by Vi, but not by pectin. There was no corresponding increase of anti-pectin after the injection, indicating the antibody response to OAcPec-rEPA was specific to Vi. There is no Vi-rEPA data in US adults for comparison of immune responses. The OAcPec-rEPA elicited significantly less IgG anti-Vi in US adults than those by Vi-rEPA in Vietnamese adults. Conclusion The O-acetylated pectin conjugate, a plant based typhoid vaccine, is safe and immunogenic in adult volunteers. PMID:24657719

  15. Impact of histone H4K16 acetylation on the meiotic recombination checkpoint in Saccharomyces cerevisiae

    PubMed Central

    Cavero, Santiago; Herruzo, Esther; Ontoso, David; San-Segundo, Pedro A.

    2016-01-01

    In meiotic cells, the pachytene checkpoint or meiotic recombination checkpoint is a surveillance mechanism that monitors critical processes, such as recombination and chromosome synapsis, which are essential for proper distribution of chromosomes to the meiotic progeny. Failures in these processes lead to the formation of aneuploid gametes. Meiotic recombination occurs in the context of chromatin; in fact, the histone methyltransferase Dot1 and the histone deacetylase Sir2 are known regulators of the pachytene checkpoint in Saccharomyces cerevisiae. We report here that Sas2-mediated acetylation of histone H4 at lysine 16 (H4K16ac), one of the Sir2 targets, modulates meiotic checkpoint activity in response to synaptonemal complex defects. We show that, like sir2, the H4-K16Q mutation, mimicking constitutive acetylation of H4K16, eliminates the delay in meiotic cell cycle progression imposed by the checkpoint in the synapsis-defective zip1 mutant. We also demonstrate that, like in dot1, zip1-induced phosphorylation of the Hop1 checkpoint adaptor at threonine 318 and the ensuing Mek1 activation are impaired in H4-K16 mutants. However, in contrast to sir2 and dot1, the H4-K16R and H4-K16Q mutations have only a minor effect in checkpoint activation and localization of the nucleolar Pch2 checkpoint factor in ndt80-prophase-arrested cells. We also provide evidence for a cross-talk between Dot1-dependent H3K79 methylation and H4K16ac and show that Sir2 excludes H4K16ac from the rDNA region on meiotic chromosomes. Our results reveal that proper levels of H4K16ac orchestrate this meiotic quality control mechanism and that Sir2 impinges on additional targets to fully activate the checkpoint. PMID:28357333

  16. Human Apurinic/Apyrimidinic Endonuclease (APE1) Is Acetylated at DNA Damage Sites in Chromatin, and Acetylation Modulates Its DNA Repair Activity

    PubMed Central

    Roychoudhury, Shrabasti; Nath, Somsubhra; Song, Heyu; Hegde, Muralidhar L.; Bellot, Larry J.; Mantha, Anil K.; Sengupta, Shiladitya; Ray, Sutapa; Natarajan, Amarnath

    2016-01-01

    ABSTRACT Apurinic/apyrimidinic (AP) sites, the most frequently formed DNA lesions in the genome, inhibit transcription and block replication. The primary enzyme that repairs AP sites in mammalian cells is the AP endonuclease (APE1), which functions through the base excision repair (BER) pathway. Although the mechanism by which APE1 repairs AP sites in vitro has been extensively investigated, it is largely unknown how APE1 repairs AP sites in cells. Here, we show that APE1 is acetylated (AcAPE1) after binding to the AP sites in chromatin and that AcAPE1 is exclusively present on chromatin throughout the cell cycle. Positive charges of acetylable lysine residues in the N-terminal domain of APE1 are essential for chromatin association. Acetylation-mediated neutralization of the positive charges of the lysine residues in the N-terminal domain of APE1 induces a conformational change; this in turn enhances the AP endonuclease activity of APE1. In the absence of APE1 acetylation, cells accumulated AP sites in the genome and showed higher sensitivity to DNA-damaging agents. Thus, mammalian cells, unlike Saccharomyces cerevisiae or Escherichia coli cells, require acetylation of APE1 for the efficient repair of AP sites and base damage in the genome. Our study reveals that APE1 acetylation is an integral part of the BER pathway for maintaining genomic integrity. PMID:27994014

  17. Determination of the weight percentage gain and of the acetyl group content of acetylated wood by means of different infrared spectroscopic methods.

    PubMed

    Stefke, Barbara; Windeisen, Elisabeth; Schwanninger, Manfred; Hinterstoisser, Barbara

    2008-02-15

    The weight percentage gain (WPG) and the acetyl group content of wood due to acetylation with acetic anhydride have been analyzed by means of Fourier transform infrared spectroscopy (FTIR) and near-infrared spectroscopy (NIR). Band height ratios (BHR) (1240/1030 (1230/1030) and 1745/1030 (1740/1030)) of the bands at 1745 (1740), 1240 (1230), and 1030 cm-1 were calculated from FTIR-KBr and FTIR-ATR (attenuated total reflection) spectra. The good linear correlation with a coefficient of determination of about 0.94 over a range from 0 to 27% WPG existing between BHRs and WPG and acetyl group content, respectively, requires only a few samples to calibrate FTIR. Partial least-squares regression models based on second derivatives of the NIR spectra in the wavenumber range from 6080 to 5760 cm-1 resulted in a R2 value of 0.99, number of PLS components (rank) between 3 and 5, root-mean-square error of cross-validation between 0.6 and 0.79%, and a residual prediction deviation up to 10. Although a wide range of input parameters (i.e., various wood species and different procedures of acetylation) was used, highly satisfactory results were obtained. Both FTIR and NIR spectroscopic means fulfill the need for determining the WPG and the acetyl content of acetylated wood. By reason of its additional potential for on-line process control, the NIR method may even outperform the FTIR method.

  18. Loss-of-Function Mutation of REDUCED WALL ACETYLATION2 in Arabidopsis Leads to Reduced Cell Wall Acetylation and Increased Resistance to Botrytis cinerea1[W][OA

    PubMed Central

    Manabe, Yuzuki; Nafisi, Majse; Verhertbruggen, Yves; Orfila, Caroline; Gille, Sascha; Rautengarten, Carsten; Cherk, Candice; Marcus, Susan E.; Somerville, Shauna; Pauly, Markus; Knox, J. Paul; Sakuragi, Yumiko; Scheller, Henrik Vibe

    2011-01-01

    Nearly all polysaccharides in plant cell walls are O-acetylated, including the various pectic polysaccharides and the hemicelluloses xylan, mannan, and xyloglucan. However, the enzymes involved in the polysaccharide acetylation have not been identified. While the role of polysaccharide acetylation in vivo is unclear, it is known to reduce biofuel yield from lignocellulosic biomass by the inhibition of microorganisms used for fermentation. We have analyzed four Arabidopsis (Arabidopsis thaliana) homologs of the protein Cas1p known to be involved in polysaccharide O-acetylation in Cryptococcus neoformans. Loss-of-function mutants in one of the genes, designated REDUCED WALL ACETYLATION2 (RWA2), had decreased levels of acetylated cell wall polymers. Cell wall material isolated from mutant leaves and treated with alkali released about 20% lower amounts of acetic acid when compared with the wild type. The same level of acetate deficiency was found in several pectic polymers and in xyloglucan. Thus, the rwa2 mutations affect different polymers to the same extent. There were no obvious morphological or growth differences observed between the wild type and rwa2 mutants. However, both alleles of rwa2 displayed increased tolerance toward the necrotrophic fungal pathogen Botrytis cinerea. PMID:21212300

  19. Restoration of Hypoxanthine Phosphoribosyl Transferase Activity in Mouse 1R Cells After Fusion with Chick-Embryo Fibroblasts

    PubMed Central

    Bakay, Bohdan; Croce, Carlo M.; Koprowski, Hilary; Nyhan, William L.

    1973-01-01

    Fusion of the 1R mouse cell, which lacks activity of hypoxanthine phosphoribosyl transferase (EC 2.4.2.8), with chick-embryo fibroblasts yielded progeny cells that survived in hypoxanthine-aminopterin-thymidine selective medium. This property and the failure of the progeny to survive in 8-azaguanine indicated that hypoxanthine phosphoribosyl transferase activity was present. Electrophoretic analysis revealed that the enzyme was of mouse, not chick, origin. These observations are consistent with the operation of a regulator gene responsible for the absence of hypoxanthine phosphoribosyl-transferase activity in the 1R cell and its presence in the progeny. Images PMID:4516198

  20. Effect of Acetyl Group on Mechanical Properties of Chitin/Chitosan Nanocrystal: A Molecular Dynamics Study.

    PubMed

    Cui, Junhe; Yu, Zechuan; Lau, Denvid

    2016-01-05

    Chitin fiber is the load-bearing component in natural chitin-based materials. In these materials, chitin is always partially deacetylated to different levels, leading to diverse material properties. In order to understand how the acetyl group enhances the fracture resistance capability of chitin fiber, we constructed atomistic models of chitin with varied acetylation degree and analyzed the hydrogen bonding pattern, fracture, and stress-strain behavior of these models. We notice that the acetyl group can contribute to the formation of hydrogen bonds that can stabilize the crystalline structure. In addition, it is found that the specimen with a higher acetylation degree presents a greater resistance against fracture. This study describes the role of the functional group, acetyl groups, in crystalline chitin. Such information could provide preliminary understanding of nanomaterials when similar functional groups are encountered.

  1. Effect of Acetyl Group on Mechanical Properties of Chitin/Chitosan Nanocrystal: A Molecular Dynamics Study

    PubMed Central

    Cui, Junhe; Yu, Zechuan; Lau, Denvid

    2016-01-01

    Chitin fiber is the load-bearing component in natural chitin-based materials. In these materials, chitin is always partially deacetylated to different levels, leading to diverse material properties. In order to understand how the acetyl group enhances the fracture resistance capability of chitin fiber, we constructed atomistic models of chitin with varied acetylation degree and analyzed the hydrogen bonding pattern, fracture, and stress-strain behavior of these models. We notice that the acetyl group can contribute to the formation of hydrogen bonds that can stabilize the crystalline structure. In addition, it is found that the specimen with a higher acetylation degree presents a greater resistance against fracture. This study describes the role of the functional group, acetyl groups, in crystalline chitin. Such information could provide preliminary understanding of nanomaterials when similar functional groups are encountered. PMID:26742033

  2. ESIMS and NMR studies on the selective deprotection of acetylated glucosides by dibutyltin oxide.

    PubMed

    Wang, Shao-Min; Zhu, Wei-Guo; Kang, Jian-Xun; Liu, Hong-Min; Chen, Jun-Miao; Li, Cui-Ping; Zhang, Kai

    2011-02-01

    The reaction process for the selective deprotection of acetylated glucosides by dibutyltin oxide in methanol is investigated by using methyl 2,3,4,6-tetra-O-acetyl-α-d-glucopyranoside as a model substrate with ESIMS and NMR techniques. According to the results, it is inferred that at first, dimeric 1,3-dimethoxytetrabutyldistannoxane is formed by the reaction of dibutyltin oxide with methanol, and then the tetraorganodistannoxane reacts with the acetylated glucoside to produce glucoside-organotin complex intermediates. Finally, the complex intermediates are hydrolyzed leading to the free-OH glucoside and organotin acetate derivatives. The reaction is affected by neighboring group participation and steric hindrance, which allow for high selectivities among different acetyl groups in acetylated glucosides.

  3. Acetylome analysis reveals the involvement of lysine acetylation in diverse biological processes in Phytophthora sojae.

    PubMed

    Li, Delong; Lv, Binna; Tan, Lingling; Yang, Qianqian; Liang, Wenxing

    2016-07-14

    Lysine acetylation is a dynamic and highly conserved post-translational modification that plays an important regulatory role in almost every aspects of cell metabolism in both eukaryotes and prokaryotes. Phytophthora sojae is one of the most important plant pathogens due to its huge economic impact. However, to date, little is known about the functions of lysine acetylation in this Phytopthora. Here, we conducted a lysine acetylome in P. sojae. Overall, 2197 lysine acetylation sites in 1150 proteins were identified. The modified proteins are involved in diverse biological processes and are localized to multiple cellular compartments. Importantly, 7 proteins involved in the pathogenicity or the secretion pathway of P. sojae were found to be acetylated. These data provide the first comprehensive view of the acetylome of P. sojae and serve as an important resource for functional analysis of lysine acetylation in plant pathogens.

  4. Acetylome analysis reveals the involvement of lysine acetylation in diverse biological processes in Phytophthora sojae

    PubMed Central

    Li, Delong; Lv, Binna; Tan, Lingling; Yang, Qianqian; Liang, Wenxing

    2016-01-01

    Lysine acetylation is a dynamic and highly conserved post-translational modification that plays an important regulatory role in almost every aspects of cell metabolism in both eukaryotes and prokaryotes. Phytophthora sojae is one of the most important plant pathogens due to its huge economic impact. However, to date, little is known about the functions of lysine acetylation in this Phytopthora. Here, we conducted a lysine acetylome in P. sojae. Overall, 2197 lysine acetylation sites in 1150 proteins were identified. The modified proteins are involved in diverse biological processes and are localized to multiple cellular compartments. Importantly, 7 proteins involved in the pathogenicity or the secretion pathway of P. sojae were found to be acetylated. These data provide the first comprehensive view of the acetylome of P. sojae and serve as an important resource for functional analysis of lysine acetylation in plant pathogens. PMID:27412925

  5. Further evidence for an acetylator phenotype difference in the metabolism of hydralazine in man.

    PubMed Central

    Facchini, V; Timbrell, J A

    1981-01-01

    1 The 0-24 h urine from hypertensive patients treated with hydralazine (100 mg twice daily) has been analysed by gas chromatography and high pressure liquid chromatography. 2 4-N-Acetylhydrazinophthalazine-1-one (NAcHPZ), s-triazolo [3, 4-a] phthalazine (TP), phthalazinone (PZ) and hydralazine (free, H; acid-labile hydrazones, HH) were detected and assayed. 3 The results indicate that slow acetylators excrete less NAcHPZ and TP than rapid acetylators but more PZ and HH. 4 Free hydralazine was present in low levels and was only detected in some urine samples. 5 The ratios of the metabolites NAcHPZ/HH; TP/HH; NAcHPZ/PZ and PZ/TP are different in the two acetylator phenotypes. 6 It is possible the ratio PZ/TP may be used for determination of acetylator phenotype. 7 It is concluded that hydralazine metabolism is dependent on the acetylator phenotype. PMID:7259927

  6. Structural, morphological, and physicochemical properties of acetylated high-, medium-, and low-amylose rice starches.

    PubMed

    Colussi, Rosana; Pinto, Vania Zanella; El Halal, Shanise Lisie Mello; Vanier, Nathan Levien; Villanova, Franciene Almeida; Marques E Silva, Ricardo; da Rosa Zavareze, Elessandra; Dias, Alvaro Renato Guerra

    2014-03-15

    The high-, medium-, and low-amylose rice starches were isolated by the alkaline method and acetylated by using acetic anhydride for 10, 30, and 90 min of reaction. The degree of substitution (DS), the Fourier-transformed infrared spectroscopy (FTIR), the X-ray diffractograms, the thermal, morphological, and pasting properties, and the swelling power and solubility of native and acetylated starches were evaluated. The DS of the low-amylose rice starch was higher than the DS of the medium- and the high-amylose rice starches. The introduction of acetyl groups was confirmed by FTIR spectroscopy. The acetylation treatment reduced the crystallinity, the viscosity, the swelling power, and the solubility of rice starch; however, there was an increase in the thermal stability of rice starch modified by acetylation.

  7. A Review on Various Uses of N-Acetyl Cysteine

    PubMed Central

    Mokhtari, Vida; Afsharian, Parvaneh; Shahhoseini, Maryam; Kalantar, Seyed Mehdi; Moini, Ashraf

    2017-01-01

    N-acetyl cysteine (NAC), as a nutritional supplement, is a greatly applied antioxidant in vivo and in vitro. NAC is a precursor of L-cysteine that results in glutathione elevation biosynthesis. It acts directly as a scavenger of free radicals, especially oxygen radicals. NAC is a powerful antioxidant. It is also recommended as a potential treatment option for different disorders resulted from generation of free oxygen radicals. Additionally, it is a protected and endured mucolytic drug that mellows tenacious mucous discharges. It has been used for treatment of various diseases in a direct action or in a combination with some other medications. This paper presents a review on various applications of NAC in treatment of several diseases. PMID:28367412

  8. (2-Naphthoxy)acetyl chloride, a simple fluorescent reagent.

    PubMed

    Duh, Tsai-Hui; Wu, Hsin-Lung; Kou, Hwang-Shang; Lu, Chi-Yu

    2003-02-14

    In continuing the search for fluorescent reagents for analytical derivatization in chromatography, we found a simple chemical, (2-naphthoxy)acetyl chloride, with potential fluorophore/chromophore characteristics for the highly sensitive detection of analytes with an amino function. The reagent has an auxochrome (a substituted alkoxy moiety) attached to the fluorophoric/chromophoric naphthalene system, resulting in favorable spectrophotometric properties. The reagent can be easily prepared from (2-naphthoxy)acetic acid and has been used in organic synthesis; it is initially introduced as a fluorescent reagent to derivatise amantadine and memantine (amino pharmaceuticals) as model analytes. The resulting naphthoxy derivatives of the drugs can be analyzed at sub-microM levels by HPLC with fluorimetric detection (excitation wavelength 227 nm, emission wavelength 348 nm). Application of the reagent to the fluorimetric derivatization of important biological amines for sensitive detection can be expected.

  9. Phylogeny, classification and metagenomic bioprospecting of microbial acetyl xylan esterases.

    PubMed

    Adesioye, Fiyinfoluwa A; Makhalanyane, Thulani P; Biely, Peter; Cowan, Don A

    2016-11-01

    Acetyl xylan esterases (AcXEs), also termed xylan deacetylases, are broad specificity Carbohydrate-Active Enzymes (CAZymes) that hydrolyse ester bonds to liberate acetic acid from acetylated hemicellulose (typically polymeric xylan and xylooligosaccharides). They belong to eight families within the Carbohydrate Esterase (CE) class of the CAZy database. AcXE classification is largely based on sequence-dependent phylogenetic relationships, supported in some instances with substrate specificity data. However, some sequence-based predictions of AcXE-encoding gene identity have proved to be functionally incorrect. Such ambiguities can lead to mis-assignment of genes and enzymes during sequence data-mining, reinforcing the necessity for the experimental confirmation of the functional properties of putative AcXE-encoding gene products. Although one-third of all characterized CEs within CAZy families 1-7 and 16 are AcXEs, there is a need to expand the sequence database in order to strengthen the link between AcXE gene sequence and specificity. Currently, most AcXEs are derived from a limited range of (mostly microbial) sources and have been identified via culture-based bioprospecting methods, restricting current knowledge of AcXEs to data from relatively few microbial species. More recently, the successful identification of AcXEs via genome and metagenome mining has emphasised the huge potential of culture-independent bioprospecting strategies. We note, however, that the functional metagenomics approach is still hampered by screening bottlenecks. The most relevant recent reviews of AcXEs have focused primarily on the biochemical and functional properties of these enzymes. In this review, we focus on AcXE phylogeny, classification and the future of metagenomic bioprospecting for novel AcXEs.

  10. Acetylated lysozyme as impurity in lysozyme crystals: constant distribution coefficient

    NASA Astrophysics Data System (ADS)

    Thomas, B. R.; Chernov, A. A.

    2001-