Science.gov

Sample records for acetyl-coa carboxylase phosphorylation

  1. Rapid changes in chick liver acetyl-CoA carboxylase indicative of phosphorylation control.

    PubMed

    Clarke, S D

    1983-10-31

    Liver fatty acid synthesis was suppressed 75,95 and 90% within 1, 2 and 4 hrs respectively of depriving chicks of food. Accompanying this rapid drop in lipogenesis was a marked reduction in acetyl-CoA carboxylase activity, i.e., 40 and 75% decrease after 2 and 4 hrs of fasting. Adding 10 mM citrate to the crude liver supernatant, or incubating the supernatant at 37 degrees, 30 min increased activity of the briefly fasted birds, but neither method restored carboxylase activity to fed level. Heat and citrate activation were additive and together resulted in an activity comparable to the fed condition. The heat-dependent activation was accelerated by exogenous phosphoprotein phosphatase, and completely blocked by 100 mM NaF. Thus, enhancement of carboxylase activity from liver of briefly fasted chicks appears to be a dephosphorylation process. This is the first report indicating acute changes in chick carboxylase activity may involve a phosphorylation-dephosphorylation mechanism. PMID:6140006

  2. In Vivo and in Vitro Phosphorylation of the Phosphoenolpyruvate Carboxylase from Wheat Seeds during Germination.

    PubMed Central

    Osuna, L.; Gonzalez, M. C.; Cejudo, F. J.; Vidal, J.; Echevarria, C.

    1996-01-01

    Phosphoenolpyruvate carboxylase (PEPC) activity was detected in the aleurone endosperm of wheat (Triticum aestivum cv Chinese Spring) seeds, and specific anti-Sorghum C4 PEPC polyclonal anti-bodies cross-reacted with 103- and 100-kD polypeptides present in dry seeds and seeds that had imbibed; in addition, a new, 108-kD polypeptide was detected 6 h after imbibition. The use of specific anti-phosphorylation-site immunoglobulin G (APS-IgG) identified the presence of a phosphorylation motif equivalent to that found in other plant PEPCs studied so far. The binding of this APS-IgG to the target protein promoted changes in the properties of seed PEPC similar to those produced by phosphorylation, as previously shown for the recombinant Sorghum leaf C4 PEPC. In desalted seed extracts, an endogenous PEPC kinase activity catalyzed a bona fide phosphorylation of the target protein, as deduced from the immunoinhibition of the in vitro phosphorylation reaction by the APS- IgG. In addition, the major, 103-kD PEPC polypeptide was also shown to be radiolabeled in situ 48 h after imbibition in [32P]orthophosphate. The ratio between optimal (pH 8) and suboptimal (pH 7.3 or 7.1) PEPC activity decreased during germination, thereby suggesting a change in catalytic rate related to an in vivo phosphorylation process. These collective data document that the components needed for the regulatory phosphorylation of PEPC are present and functional during germination of wheat seeds. PMID:12226309

  3. Phosphorylation-dephosphorylation process as a probable mechanism for the diurnal regulatory changes of phosphoenolpyruvate carboxylase in CAM plants.

    PubMed

    Brulfert, J; Vidal, J; Le Marechal, P; Gadal, P; Queiroz, O; Kluge, M; Kruger, I

    1986-04-14

    Day and night forms of phosphoenolpyruvate carboxylase (EC 4.1.1.31) (PEPC) were extracted from leaves of the CAM plants Kalanchoe daigremontiana, K. tubiflora and K. blossfeldiana previously fed with [32P] labelled phosphate solution. A one-step immunochemical purification followed by SDS polyacrylamide gel electrophoresis and autoradiography showed that, in all species, the night form of the enzyme was phosphorylated and not the day form. Limited acid hydrolysis of the night form and two-dimensional separation identified predominantly labelled phosphoserine and phosphothreonine. In vitro addition of exogenous acid phosphatase (EC 3.1.3.2) to desalted night form-containing extracts resulted within 30 min in a shift in PEPC enzymic properties similar to the in vivo changes from night to day form. It is suggested that phosphorylation-dephosphorylation of the enzyme could be the primary in vivo process which might explain the observed rhythmicity of enzymic properties. PMID:3707571

  4. Mechanism of glucagon inhibition of liver acetyl-CoA carboxylase. Interrelationship of the effects of phosphorylation, polymer-protomer transition, and citrate on enzyme activity.

    PubMed

    Swenson, T L; Porter, J W

    1985-03-25

    The short-term regulation of rat liver acetyl-CoA carboxylase by glucagon has been studied in hepatocytes from rats that had been fasted and refed a fat-free diet. Glucagon inhibition of the activity of this enzyme can be accounted for by a direct correlation between phosphorylation, polymer-protomer ratio, and activity. Glucagon rapidly inactivates acetyl-CoA carboxylase with an accompanying 4-fold increase in the phosphorylation of the enzyme and 3-fold increase in the protomer-polymer ratio of enzyme protein. Citrate, an allosteric activator of acetyl-CoA carboxylase required for enzyme activity, has no effect on these phenomena, indicating a mechanism that is independent of citrate concentration within the cell. The observation of these effects of glucagon on acetyl-CoA carboxylase activity is absolutely dependent upon the minimization of proteolytic degradation of the enzyme after cell lysis. Therefore, for the first time, an interrelationship has been demonstrated between phosphorylation, protomer-polymer ratio, and citrate for the inactivation of acetyl-CoA carboxylase by glucagon. PMID:2857722

  5. GENES ENCODING PLASTID ACETYL-COA CARBOXYLASE AND 3-PHOSPHOGLYCERATE KINASE OF THE TRITICUM/AEGILOPS COMPLEX AND THE EVOLUTIONARY HISTORY OF POLYPLOID WHEAT.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The classic wheat evolutionary history is one of adaptive radiation of the diploid Triticum/Aegilops species (A, S, D) , genome convergence and divergence of the tetraploid (T. turgidum AABB, and T. timopheevii AAAGG) and hexaploid (T. aestivum, AABBDD) species. The objective of this study was to a...

  6. Serine-15 is the regulatory seryl-phosphorylation site in C sub 4 -leaf phosphoenolpyruvate carboxylase (PEPCase) from maize

    SciTech Connect

    Jiao, Jinan; Chollet, R. )

    1990-05-01

    The {sup 32}P-labeled regulatory site phosphopeptide was purified from a tryptic digest of in vitro phosphorylated/activated dark-form PEPCase by metal ion affinity and reversed-phase chromatography and subjected to automated Edman degradation analysis. The amino acid sequence of this phosphoseryl peptide is His-His-Ser(P)-Ile-Asp-Ala-Gln-Leu-Arg. This nonapeptide, which corresponds exactly to residues 13-21 in the deduced primary sequence of the maize leaf carboxylase, is far removed from a recently identified active-site cysteine (Cys-553) in the C-terminal region of the primary structure. Comparative analysis of the deduced N-terminal sequences of C{sub 3}, C{sub 4}, and CAM leaf PEPCases suggests that the motif of Lys/Arg-X-X-Ser is an important structural requirement of the C{sub 4}- and CAM-leaf protein-serine kinases.

  7. New insights into the post-translational modification of multiple phosphoenolpyruvate carboxylase isoenzymes by phosphorylation and monoubiquitination during sorghum seed development and germination

    PubMed Central

    Ruiz-Ballesta, Isabel; Baena, Guillermo; Gandullo, Jacinto; Wang, Liqun; She, Yi-Min; Plaxton, William Charles; Echevarría, Cristina

    2016-01-01

    Phosphoenolpyruvate carboxylase (PEPC; E.C. 4.1.1.31) was characterized in developing and germinating sorghum seeds, focusing on the transcript and polypeptide abundance of multiple plant-type phosphoenolpyruvate carboxylase (PTPC) genes, and the post-translational modification of each isoenzyme by phosphorylation versus monoubiquitination during germination. We observed high levels of SbPPC4 (Sb07g014960) transcripts during early development (stage I), and extensive transcript abundance of SbPPC2 (Sb02g021090) and SbPPC3 (Sb04g008720) throughout the entire life cycle of the seed. Although tandem mass spectrometry (MS) analysis of immunopurified PTPC indicated that four different PTPC isoenzymes were expressed in the developing and germinating seeds, SbPPC3 was the most abundant isozyme of the developing seed, and of the embryo and the aleurone layer of germinating seeds. In vivo phosphorylation of the different PTPC isoenzymes at their conserved N-terminal seryl phosphorylation site during germination was also established by MS/MS analysis. Furthermore, three of the four isoenzymes were partially monoubiquitinated, with MS/MS pinpointing SbPPC2 and SbPPC3 monoubiquitination at the conserved Lys-630 and Lys-624 residues, respectively. Our results demonstrate that monoubiquitination and phosphorylation simultaneously occur in vivo with different PTPC isozymes during seed germination. In addition, we show that PTPC monoubiquitination in germinating sorghum seeds always increases at stage II (emergence of the radicle), is maintained during the aerobic period of rapid cell division and reserve mobilization, and remains relatively constant until stage IV–V when coleoptiles initiate the formation of the photosynthetic tissues. PMID:27194739

  8. New insights into the post-translational modification of multiple phosphoenolpyruvate carboxylase isoenzymes by phosphorylation and monoubiquitination during sorghum seed development and germination.

    PubMed

    Ruiz-Ballesta, Isabel; Baena, Guillermo; Gandullo, Jacinto; Wang, Liqun; She, Yi-Min; Plaxton, William Charles; Echevarría, Cristina

    2016-05-01

    Phosphoenolpyruvate carboxylase (PEPC; E.C. 4.1.1.31) was characterized in developing and germinating sorghum seeds, focusing on the transcript and polypeptide abundance of multiple plant-type phosphoenolpyruvate carboxylase (PTPC) genes, and the post-translational modification of each isoenzyme by phosphorylation versus monoubiquitination during germination. We observed high levels of SbPPC4 (Sb07g014960) transcripts during early development (stage I), and extensive transcript abundance of SbPPC2 (Sb02g021090) and SbPPC3 (Sb04g008720) throughout the entire life cycle of the seed. Although tandem mass spectrometry (MS) analysis of immunopurified PTPC indicated that four different PTPC isoenzymes were expressed in the developing and germinating seeds, SbPPC3 was the most abundant isozyme of the developing seed, and of the embryo and the aleurone layer of germinating seeds. In vivo phosphorylation of the different PTPC isoenzymes at their conserved N-terminal seryl phosphorylation site during germination was also established by MS/MS analysis. Furthermore, three of the four isoenzymes were partially monoubiquitinated, with MS/MS pinpointing SbPPC2 and SbPPC3 monoubiquitination at the conserved Lys-630 and Lys-624 residues, respectively. Our results demonstrate that monoubiquitination and phosphorylation simultaneously occur in vivo with different PTPC isozymes during seed germination. In addition, we show that PTPC monoubiquitination in germinating sorghum seeds always increases at stage II (emergence of the radicle), is maintained during the aerobic period of rapid cell division and reserve mobilization, and remains relatively constant until stage IV-V when coleoptiles initiate the formation of the photosynthetic tissues. PMID:27194739

  9. Regulation of Phosphoenolpyruvate Carboxylase Phosphorylation by Metabolites and Abscisic Acid during the Development and Germination of Barley Seeds1[C][W

    PubMed Central

    Feria, Ana-Belén; Alvarez, Rosario; Cochereau, Ludivine; Vidal, Jean; García-Mauriño, Sofía; Echevarría, Cristina

    2008-01-01

    During barley (Hordeum vulgare) seed development, phosphoenolpyruvate carboxylase (PEPC) activity increased and PEPC-specific antibodies revealed housekeeping (103-kD) and inducible (108-kD) subunits. Bacterial-type PEPC fragments were immunologically detected in denatured protein extracts from dry and imbibed conditions; however, on nondenaturing gels, the activity of the recently reported octameric PEPC (in castor [Ricinus communis] oil seeds) was not detected. The phosphorylation state of the PEPC, as judged by l-malate 50% inhibition of initial activity values, phosphoprotein chromatography, and immunodetection of the phosphorylated N terminus, was found to be high between 8 and 18 d postanthesis (DPA) and during imbibition. In contrast, the enzyme appeared to be in a low phosphorylation state from 20 DPA up to dry seed. The time course of 32/36-kD, Ca2+-independent PEPC kinase activity exhibited a substantial increase after 30 DPA that did not coincide with the PEPC phosphorylation profile. This kinase was found to be inhibited by l-malate and not by putative protein inhibitors, and the PEPC phosphorylation status correlated with high glucose-6-phosphate to malate ratios, thereby suggesting an in vivo metabolic control of the kinase. PEPC phosphorylation was also regulated by photosynthate supply at 11 DPA. In addition, when fed exogenously to imbibing seeds, abscisic acid significantly increased PEPC kinase activity. This was further enhanced by the cytosolic protein synthesis inhibitor cycloheximide but blocked by protease inhibitors, thereby suggesting that the phytohormone acts on the stability of the kinase. We propose that a similar abscisic acid-dependent effect may contribute to produce the increase in PEPC kinase activity during desiccation stages. PMID:18753284

  10. Reciprocal Control of Anaplerotic Phosphoenolpyruvate Carboxylase by in Vivo Monoubiquitination and Phosphorylation in Developing Proteoid Roots of Phosphate-Deficient Harsh Hakea1[W][OA

    PubMed Central

    Shane, Michael W.; Fedosejevs, Eric T.; Plaxton, William C.

    2013-01-01

    Accumulating evidence indicates important functions for phosphoenolpyruvate (PEP) carboxylase (PEPC) in inorganic phosphate (Pi)-starved plants. This includes controlling the production of organic acid anions (malate, citrate) that are excreted in copious amounts by proteoid roots of nonmycorrhizal species such as harsh hakea (Hakea prostrata). This, in turn, enhances the bioavailability of mineral-bound Pi by solubilizing Al3+, Fe3+, and Ca2+ phosphates in the rhizosphere. Harsh hakea thrives in the nutrient-impoverished, ancient soils of southwestern Australia. Proteoid roots from Pi-starved harsh hakea were analyzed over 20 d of development to correlate changes in malate and citrate exudation with PEPC activity, posttranslational modifications (inhibitory monoubiquitination versus activatory phosphorylation), and kinetic/allosteric properties. Immature proteoid roots contained an equivalent ratio of monoubiquitinated 110-kD and phosphorylated 107-kD PEPC polypeptides (p110 and p107, respectively). PEPC purification, immunoblotting, and mass spectrometry indicated that p110 and p107 are subunits of a 430-kD heterotetramer and that they both originate from the same plant-type PEPC gene. Incubation with a deubiquitinating enzyme converted the p110:p107 PEPC heterotetramer of immature proteoid roots into a p107 homotetramer while significantly increasing the enzyme’s activity under suboptimal but physiologically relevant assay conditions. Proteoid root maturation was paralleled by PEPC activation (e.g. reduced Km [PEP] coupled with elevated I50 [malate and Asp] values) via in vivo deubiquitination of p110 to p107, and subsequent phosphorylation of the deubiquitinated subunits. This novel mechanism of posttranslational control is hypothesized to contribute to the massive synthesis and excretion of organic acid anions that dominates the carbon metabolism of the mature proteoid roots. PMID:23407057

  11. Reciprocal control of anaplerotic phosphoenolpyruvate carboxylase by in vivo monoubiquitination and phosphorylation in developing proteoid roots of phosphate-deficient harsh hakea.

    PubMed

    Shane, Michael W; Fedosejevs, Eric T; Plaxton, William C

    2013-04-01

    Accumulating evidence indicates important functions for phosphoenolpyruvate (PEP) carboxylase (PEPC) in inorganic phosphate (Pi)-starved plants. This includes controlling the production of organic acid anions (malate, citrate) that are excreted in copious amounts by proteoid roots of nonmycorrhizal species such as harsh hakea (Hakea prostrata). This, in turn, enhances the bioavailability of mineral-bound Pi by solubilizing Al(3+), Fe(3+), and Ca(2+) phosphates in the rhizosphere. Harsh hakea thrives in the nutrient-impoverished, ancient soils of southwestern Australia. Proteoid roots from Pi-starved harsh hakea were analyzed over 20 d of development to correlate changes in malate and citrate exudation with PEPC activity, posttranslational modifications (inhibitory monoubiquitination versus activatory phosphorylation), and kinetic/allosteric properties. Immature proteoid roots contained an equivalent ratio of monoubiquitinated 110-kD and phosphorylated 107-kD PEPC polypeptides (p110 and p107, respectively). PEPC purification, immunoblotting, and mass spectrometry indicated that p110 and p107 are subunits of a 430-kD heterotetramer and that they both originate from the same plant-type PEPC gene. Incubation with a deubiquitinating enzyme converted the p110:p107 PEPC heterotetramer of immature proteoid roots into a p107 homotetramer while significantly increasing the enzyme's activity under suboptimal but physiologically relevant assay conditions. Proteoid root maturation was paralleled by PEPC activation (e.g. reduced Km [PEP] coupled with elevated I50 [malate and Asp] values) via in vivo deubiquitination of p110 to p107, and subsequent phosphorylation of the deubiquitinated subunits. This novel mechanism of posttranslational control is hypothesized to contribute to the massive synthesis and excretion of organic acid anions that dominates the carbon metabolism of the mature proteoid roots. PMID:23407057

  12. Plant, cell, and molecular mechanisms of abscisic-acid regulation of stomatal apertures. In vivo phosphorylation of phosphoenolpyruvate carboxylase in guard cells of Vicia faba L. is enhanced by fusicoccin and suppressed by abscisic acid

    SciTech Connect

    Du, Z.; Aghoram, K.; Outlaw, W.H. Jr.

    1996-12-31

    Plants regulate water loss and CO{sub 2} gain by modulating the aperture sizes of stomata that penetrate the epidermis. Aperture size itself is increased by osmolyte accumulation and consequent turgor increase in the pair of guard cells that flank each stoma. Guard-cell phosphoenolpyruvate carboxylase, which catalyzes the regulated step leading to malate synthesis, is crucial for charge and pH maintenance during osmolyte accumulation. Regulation of this cytosolic enzyme by effectors is well documented, but additional regulation by posttranslational modification is predicted by the alteration of PEPC kinetics during stomatal opening. In this study, the authors have investigated whether this alteration is associated with the phosphorylation status of this enzyme. Using sonicated epidermal peels (isolated guard cells) pre-loaded with {sub 32}PO{sub 4}, the authors induced stomatal opening and guard-cell malate accumulation by incubation with 5 {micro}M fusicoccin (FC). In corroboratory experiments, guard cells were incubated with 5 {micro}M fusicoccin (FC). In corroboratory experiments, guard cells were incubated with the FC antagonist, 10 {micro}M abscisic acid (ABA). The phosphorylation status of PEPC was assessed by immunoprecipitation, electrophoresis, immunoblotting, and autoradiography. PEPC was phosphorylated when stomata were stimulated to open, and phosphorylation was lessened by incubation with ABA.

  13. Prebiotic Fiber Increases Hepatic Acetyl CoA Carboxylase Phosphorylation and Suppresses Glucose-Dependent Insulinotropic Polypeptide Secretion More Effectively When Used with Metformin in Obese Rats1,2

    PubMed Central

    Pyra, Kim A.; Saha, Dolan C.; Reimer, Raylene A.

    2013-01-01

    Independently, metformin (MET) and the prebiotic, oligofructose (OFS), have been shown to increase glucagon-like peptide (GLP-1) secretion. Our objective was to determine whether using OFS as an adjunct with MET augments GLP-1 secretion in obese rats. Male, diet-induced obese Sprague Dawley rats were randomized to: 1) high-fat/-sucrose diet [HFHS; control (C); 20% fat, 50% sucrose wt:wt]; 2) HFHS+10% OFS (OFS); 3) HFHS + MET [300 mg/kg/d (MET)]; 4) HFHS+10% OFS+MET (OFS +MET). Body composition, glycemia, satiety hormones, and mechanisms related to dipeptidyl peptidase 4 (DPP4) activity in plasma, hepatic AMP-activated protein kinase (AMPK; Western blots), and gut microbiota (qPCR) were examined. Direct effects of MET and SCFA were examined in human enteroendocrine cells. The interaction between OFS and MET affected fat mass, hepatic TG, secretion of glucose-dependent insulinotropic polypeptide (GIP) and leptin, and AMPKα2 mRNA and phosphorylated acetyl CoA carboxylase (pACC) levels (P < 0.05). Combined, OFS and MET reduced GIP secretion to a greater extent than either treatment alone (P < 0.05). The hepatic pACC level was increased by OFS+MET by at least 50% above all other treatments, which did not differ from each other (P < 0.05). OFS decreased plasma DPP4 activity (P < 0.001). Cecal Bifidobacteria (P < 0.001) were markedly increased and C. leptum decreased (P < 0.001) with OFS consumption. In human enteroendocrine cells, the interaction between MET and SCFA affected GLP-1 secretion (P < 0.04) but was not associated with higher GLP-1 than the highest individual doses. In conclusion, the combined actions of OFS and MET were associated with important interaction effects that have the potential to improve metabolic outcomes associated with obesity. PMID:22223580

  14. Deeper understanding of carboxylase.

    PubMed

    Morrissey, James H

    2016-04-14

    In this issue of Blood, Tie et al report the development of a cleverly engineered, cell-based system for studying mutations in γ-glutamyl carboxylase (GGCX), the enzyme responsible for converting glutamate residues in certain proteins to γ-carboxyglutamate (Gla). They use this cell-based assay system to help explain the clinical manifestations of some otherwise puzzling GGCX gene mutations in humans that cause phenotypes ranging from severe bleeding to Keutel syndrome. PMID:27081093

  15. Ultrasensitive regulation of anapleurosis via allosteric activation of PEP carboxylase

    PubMed Central

    Xu, Yi-Fan; Amador-Noguez, Daniel; Reaves, Marshall Louis; Feng, Xiao-Jiang; Rabinowitz, Joshua D.

    2012-01-01

    Anapleurosis is the filling of the TCA cycle with four-carbon units. The common substrate for both anapleurosis and glucose phosphorylation in bacteria is the terminal glycolytic metabolite, phosphoenolpyruvate (PEP). Here we show that E. coli quickly and almost completely turns off PEP consumption upon glucose removal. The resulting build-up of PEP is used to quickly import glucose if it becomes re-available. The switch-like termination of anapleurosis results from depletion of fructose-1,6-bisphosphate (FBP), an ultrasensitive allosteric activator of PEP carboxylase. E. coli expressing an FBP-insensitive point mutant of PEP carboxylase grow normally on steady glucose. However, they fail to build-up PEP upon glucose removal, grow poorly on oscillating glucose, and suffer from futile cycling at the PEP node on gluconeogenic substrates. Thus, bacterial central carbon metabolism is intrinsically programmed with ultrasensitive allosteric regulation to enable rapid adaptation to changing environmental conditions. PMID:22522319

  16. The dynamic organization of fungal acetyl-CoA carboxylase

    PubMed Central

    Hunkeler, Moritz; Stuttfeld, Edward; Hagmann, Anna; Imseng, Stefan; Maier, Timm

    2016-01-01

    Acetyl-CoA carboxylases (ACCs) catalyse the committed step in fatty-acid biosynthesis: the ATP-dependent carboxylation of acetyl-CoA to malonyl-CoA. They are important regulatory hubs for metabolic control and relevant drug targets for the treatment of the metabolic syndrome and cancer. Eukaryotic ACCs are single-chain multienzymes characterized by a large, non-catalytic central domain (CD), whose role in ACC regulation remains poorly characterized. Here we report the crystal structure of the yeast ACC CD, revealing a unique four-domain organization. A regulatory loop, which is phosphorylated at the key functional phosphorylation site of fungal ACC, wedges into a crevice between two domains of CD. Combining the yeast CD structure with intermediate and low-resolution data of larger fragments up to intact ACCs provides a comprehensive characterization of the dynamic fungal ACC architecture. In contrast to related carboxylases, large-scale conformational changes are required for substrate turnover, and are mediated by the CD under phosphorylation control. PMID:27073141

  17. The dynamic organization of fungal acetyl-CoA carboxylase.

    PubMed

    Hunkeler, Moritz; Stuttfeld, Edward; Hagmann, Anna; Imseng, Stefan; Maier, Timm

    2016-01-01

    Acetyl-CoA carboxylases (ACCs) catalyse the committed step in fatty-acid biosynthesis: the ATP-dependent carboxylation of acetyl-CoA to malonyl-CoA. They are important regulatory hubs for metabolic control and relevant drug targets for the treatment of the metabolic syndrome and cancer. Eukaryotic ACCs are single-chain multienzymes characterized by a large, non-catalytic central domain (CD), whose role in ACC regulation remains poorly characterized. Here we report the crystal structure of the yeast ACC CD, revealing a unique four-domain organization. A regulatory loop, which is phosphorylated at the key functional phosphorylation site of fungal ACC, wedges into a crevice between two domains of CD. Combining the yeast CD structure with intermediate and low-resolution data of larger fragments up to intact ACCs provides a comprehensive characterization of the dynamic fungal ACC architecture. In contrast to related carboxylases, large-scale conformational changes are required for substrate turnover, and are mediated by the CD under phosphorylation control. PMID:27073141

  18. The dynamic organization of fungal acetyl-CoA carboxylase

    NASA Astrophysics Data System (ADS)

    Hunkeler, Moritz; Stuttfeld, Edward; Hagmann, Anna; Imseng, Stefan; Maier, Timm

    2016-04-01

    Acetyl-CoA carboxylases (ACCs) catalyse the committed step in fatty-acid biosynthesis: the ATP-dependent carboxylation of acetyl-CoA to malonyl-CoA. They are important regulatory hubs for metabolic control and relevant drug targets for the treatment of the metabolic syndrome and cancer. Eukaryotic ACCs are single-chain multienzymes characterized by a large, non-catalytic central domain (CD), whose role in ACC regulation remains poorly characterized. Here we report the crystal structure of the yeast ACC CD, revealing a unique four-domain organization. A regulatory loop, which is phosphorylated at the key functional phosphorylation site of fungal ACC, wedges into a crevice between two domains of CD. Combining the yeast CD structure with intermediate and low-resolution data of larger fragments up to intact ACCs provides a comprehensive characterization of the dynamic fungal ACC architecture. In contrast to related carboxylases, large-scale conformational changes are required for substrate turnover, and are mediated by the CD under phosphorylation control.

  19. Activation and inhibition of pyruvate carboxylase from Rhizobium etli.

    PubMed

    Zeczycki, Tonya N; Menefee, Ann L; Jitrapakdee, Sarawut; Wallace, John C; Attwood, Paul V; St Maurice, Martin; Cleland, W Wallace

    2011-11-15

    While crystallographic structures of the R. etli pyruvate carboxylase (PC) holoenzyme revealed the location and probable positioning of the essential activator, Mg(2+), and nonessential activator, acetyl-CoA, an understanding of how they affect catalysis remains unclear. The current steady-state kinetic investigation indicates that both acetyl-CoA and Mg(2+) assist in coupling the MgATP-dependent carboxylation of biotin in the biotin carboxylase (BC) domain with pyruvate carboxylation in the carboxyl transferase (CT) domain. Initial velocity plots of free Mg(2+) vs pyruvate were nonlinear at low concentrations of Mg(2+) and a nearly complete loss of coupling between the BC and CT domain reactions was observed in the absence of acetyl-CoA. Increasing concentrations of free Mg(2+) also resulted in a decrease in the K(a) for acetyl-CoA. Acetyl phosphate was determined to be a suitable phosphoryl donor for the catalytic phosphorylation of MgADP, while phosphonoacetate inhibited both the phosphorylation of MgADP by carbamoyl phosphate (K(i) = 0.026 mM) and pyruvate carboxylation (K(i) = 2.5 mM). In conjunction with crystal structures of T882A R. etli PC mutant cocrystallized with phosphonoacetate and MgADP, computational docking studies suggest that phosphonoacetate could coordinate to one of two Mg(2+) metal centers in the BC domain active site. Based on the pH profiles, inhibition studies, and initial velocity patterns, possible mechanisms for the activation, regulation, and coordination of catalysis between the two spatially distinct active sites in pyruvate carboxylase from R. etli by acetyl-CoA and Mg(2+) are described. PMID:21958066

  20. Regulation of Plant Acetyl-CoA Carboxylase by Adenylate Nucleotides 1

    PubMed Central

    Eastwell, Kenneth C.; Stumpf, Paul K.

    1983-01-01

    The assay of acetyl-CoA carboxylase (EC 6.4.1.2) does not follow ideal zero-order kinetics when assayed in a crude extract from wheat (Triticum aestivum L.) germ. Our results show that the lack of ideality is the consequence of contamination by ATPase and adenylate kinase. These enzyme activities generate significant amounts of ADP and AMP in the assay mixture, thus limiting the availability of ATP for the carboxylase reaction. Moreover, ADP and AMP are competitive inhibitors, with respect to ATP, of acetyl-CoA carboxylase. Similar relationships between adenylate nucleotides and acetyl-CoA carboxylase are found in isolated chloroplasts. There is no evidence that acetyl-CoA carboxylase activity in the extracts of the plant systems examined is altered by covalent modification, such as a phosphorylation-dephosphorylation cycle. A scheme is presented that illustrates the dependency of acetyl-CoA carboxylase and fatty acid synthesis on the energy demands of the chloroplasts in vivo. PMID:16662980

  1. Activation of hepatic acetyl-CoA carboxylase by glutamate and Mg2+ is mediated by protein phosphatase-2A.

    PubMed Central

    Gaussin, V; Hue, L; Stalmans, W; Bollen, M

    1996-01-01

    The activation of hepatic acetyl-CoA carboxylase by Na(+)-cotransported amino acids such as glutamine has been attributed mainly to the stimulation of its dephosphorylation by accumulating dicarboxylic acids, e.g. glutamate. We report here on a hepatic species of protein phosphatase-2A that activates acetyl-CoA carboxylase in the presence of physiological concentrations of glutamate or Mg2+ and, under these conditions, accounts for virtually all the hepatic acetyl-CoA carboxylase phosphatase activity. Glutamate also stimulated the dephosphorylation of a synthetic pentadecapeptide encompassing the Ser-79 phosphorylation site of rat acetyl-CoA carboxylase, but did not affect the dephosphorylation of other substrates such as phosphorylase. Conversely, protamine, which stimulated the dephosphorylation of phosphorylase, inhibited the activation of acetyl-CoA carboxylase. A comparison with various species of muscle protein phosphatase-2A showed that the stimulatory effects of glutamate and Mg2+ on the acetyl-CoA carboxylase phosphatase activity are largely mediated by the regulatory A subunit. Glutamate and Mg2+ emerge from our study as novel regulators of protein phosphatase-2A when acting on acetyl-CoA carboxylase. PMID:8645208

  2. Genetics Home Reference: pyruvate carboxylase deficiency

    MedlinePlus

    ... carboxylase deficiency is an inherited disorder that causes lactic acid and other potentially toxic compounds to accumulate in ... features include developmental delay and a buildup of lactic acid in the blood (lactic acidosis). Increased acidity in ...

  3. Vitamin K-dependent carboxylation of the carboxylase

    PubMed Central

    Berkner, Kathleen L.; Pudota, B. Nirmala

    1998-01-01

    Vitamin K-dependent (VKD) proteins require modification by the VKD-γ-glutamyl carboxylase, an enzyme that converts clusters of glus to glas in a reaction that requires vitamin K hydroquinone, for their activity. We have discovered that the carboxylase also carboxylates itself in a reaction dependent on vitamin K. When pure human recombinant carboxylase was incubated in vitro with 14CO2 and then analyzed after SDS/PAGE, a radiolabeled band corresponding to the size of the carboxylase was observed. Subsequent gla analysis of in vitro-modified carboxylase by base hydrolysis and HPLC showed that all of the radioactivity could be attributed to gla residues. Quantitation of gla, asp, and glu residues indicated 3 mol gla/mol carboxylase. Radiolabeled gla was acid-labile, confirming its identity, and was not observed if vitamin K was not included in the in vitro reaction. Carboxylase carboxylation also was detected in baculovirus(carboxylase)-infected insect cells but not in mock-infected insect cells, which do not express endogenous VKD proteins or carboxylase. Finally, we showed that the carboxylase was carboxylated in vivo. Carboxylase was purified from recombinant carboxylase BHK cells cultured in the presence or absence of vitamin K and analyzed for gla residues. Carboxylation of the carboxylase only was observed with carboxylase isolated from BHK cells cultured in vitamin K, and 3 mol gla/mol carboxylase were detected. Analyses of carboxylase and factor IX carboxylation in vitro suggest a possible role for carboxylase carboxylation in factor IX turnover, and in vivo studies suggest a potential role in carboxylase stability. The discovery of carboxylase carboxylation has broad implications for the mechanism of VKD protein carboxylation and Warfarin-based anti-coagulant therapies that need to be considered both retrospectively and in the future. PMID:9435215

  4. Enzymatic Characterization of a Prokaryotic Urea Carboxylase

    PubMed Central

    Kanamori, Takeshi; Kanou, Norihisa; Atomi, Haruyuki; Imanaka, Tadayuki

    2004-01-01

    We identified the first prokaryotic urea carboxylase (UCA) from a member of the alpha subclass of the class Proteobacteria, Oleomonas sagaranensis. This enzyme (O. sagaranensis Uca) was composed of 1,171 amino acids, and its N-terminal region resembled the biotin carboxylase domains of various biotin-dependent carboxylases. The C-terminal region of the enzyme harbored the Met-Lys-Met motif found in biotin carboxyl carrier proteins. The primary structure of the enzyme was 45% identical to that of the urea carboxylase domain of urea amidolyase from Saccharomyces cerevisiae. O. sagaranensis Uca did not harbor the allophanate hydrolase domain found in the yeast enzyme, but a separate gene with structural similarity was found to be adjacent to the uca gene. Purified recombinant O. sagaranensis Uca displayed ATP-dependent carboxylase activity towards urea (Vmax = 21.2 μmol mg−1 min−1) but not towards acetyl coenzyme A (acetyl-CoA) and propionyl-CoA, indicating that the gene encoded a bona fide UCA and not an acetyl-CoA or propionyl-CoA carboxylase. The enzyme also exhibited high levels of activity towards acetamide and formamide. Kinetic parameters of the enzyme reaction were determined with ATP, urea, acetamide, and formamide. O. sagaranensis could grow on urea, acetamide, and formamide as sole nitrogen sources; moreover, ATP-dependent urea-degrading activity was found in cells grown with urea but not in cells grown with ammonia. The results suggest that the UCA of this organism may be involved in the assimilation of these compounds as nitrogen sources. Furthermore, orthologues of the O. sagaranensis uca gene were found to be widely distributed among Bacteria. This implies that there are two systems of urea degradation in Bacteria, a pathway catalyzed by the previously described ureases and the UCA-allophanate hydrolase pathway identified in this study. PMID:15090492

  5. Gene encoding acetyl-coenzyme A carboxylase

    DOEpatents

    Roessler, P.G.; Ohlrogge, J.B.

    1996-09-24

    A DNA encoding an acetyl-coenzyme A carboxylase (ACCase) from a photosynthetic organism and functional derivatives are disclosed which are resistant to inhibition from certain herbicides. This gene can be placed in organisms to increase their fatty acid content or to render them resistant to certain herbicides. 5 figs.

  6. Gene encoding acetyl-coenzyme A carboxylase

    DOEpatents

    Roessler, Paul G.; Ohlrogge, John B.

    1996-01-01

    A DNA encoding an acetyl-coenzyme A carboxylase (ACCase) from a photosynthetic organism and functional derivatives thereof which are resistant to inhibition from certain herbicides. This gene can be placed in organisms to increase their fatty acid content or to render them resistant to certain herbicides.

  7. Evolutionary history and biotechnological future of carboxylases.

    PubMed

    Schada von Borzyskowski, Lennart; Rosenthal, Raoul G; Erb, Tobias J

    2013-11-01

    Carbon dioxide (CO2) is a potent greenhouse gas whose presence in the atmosphere is a critical factor for global warming. At the same time atmospheric CO2 is also a cheap and readily available carbon source that can in principle be used to synthesize value-added products. However, as uncatalyzed chemical CO2-fixation reactions usually require quite harsh conditions to functionalize the CO2 molecule, not many processes have been developed that make use of CO2. In contrast to synthetical chemistry, Nature provides a multitude of different carboxylating enzymes whose carboxylating principle(s) might be exploited in biotechnology. This review focuses on the biochemical features of carboxylases, highlights possible evolutionary scenarios for the emergence of their reactivity, and discusses current, as well as potential future applications of carboxylases in organic synthesis, biotechnology and synthetic biology. PMID:23702164

  8. Crystal structure of the 500 kD yeast acetyl-CoA carboxylase holoenzyme dimer

    PubMed Central

    Wei, Jia; Tong, Liang

    2015-01-01

    Acetyl-CoA carboxylase (ACC) has crucial roles in fatty acid metabolism and is an attractive target for drug discovery against diabetes, cancer and other diseases1–6. Saccharomyces cerevisiae ACC (ScACC) is crucial for the production of very-long-chain fatty acids and the maintenance of the nuclear envelope7,8. ACC contains biotin carboxylase (BC) and carboxyltransferase (CT) activities, and its biotin is linked covalently to the biotin carboxyl carrier protein (BCCP). Most eukaryotic ACCs are 250 kD, multi-domain enzymes and function as homo-dimers and higher oligomers. They contain a unique, 80 kD central region that shares no homology with other proteins. While the structures of the BC, CT and BCCP domains and other biotin-dependent carboxylase holoenzymes are known1,9–14, currently there is no structural information on the ACC holoenzyme. Here we report the crystal structure of the full-length, 500 kD holoenzyme dimer of ScACC. The structure is strikingly different from those of the other biotin-dependent carboxylases. The central region contains five domains and is important for positioning the BC and CT domains for catalysis. The structure unexpectedly reveals a dimer of the BC domain and extensive conformational differences compared to the structure of BC domain alone, which is a monomer. These structural changes explain why the BC domain alone is catalytically inactive and define the molecular mechanism for the inhibition of eukaryotic ACC by the natural product soraphen A15,16 and by phosphorylation of a Ser residue just prior to the BC domain core in mammalian ACC. The BC and CT active sites are separated by 80 Å, and the entire BCCP domain must translocate during catalysis. PMID:26458104

  9. Crystal structure of the 500-kDa yeast acetyl-CoA carboxylase holoenzyme dimer.

    PubMed

    Wei, Jia; Tong, Liang

    2015-10-29

    Acetyl-CoA carboxylase (ACC) has crucial roles in fatty acid metabolism and is an attractive target for drug discovery against diabetes, cancer and other diseases. Saccharomyces cerevisiae ACC (ScACC) is crucial for the production of very-long-chain fatty acids and the maintenance of the nuclear envelope. ACC contains biotin carboxylase (BC) and carboxyltransferase (CT) activities, and its biotin is linked covalently to the biotin carboxyl carrier protein (BCCP). Most eukaryotic ACCs are 250-kilodalton (kDa), multi-domain enzymes and function as homodimers and higher oligomers. They contain a unique, 80-kDa central region that shares no homology with other proteins. Although the structures of the BC, CT and BCCP domains and other biotin-dependent carboxylase holoenzymes are known, there is currently no structural information on the ACC holoenzyme. Here we report the crystal structure of the full-length, 500-kDa holoenzyme dimer of ScACC. The structure is remarkably different from that of the other biotin-dependent carboxylases. The central region contains five domains and is important for positioning the BC and CT domains for catalysis. The structure unexpectedly reveals a dimer of the BC domain and extensive conformational differences compared to the structure of the BC domain alone, which is a monomer. These structural changes reveal why the BC domain alone is catalytically inactive and define the molecular mechanism for the inhibition of eukaryotic ACC by the natural product soraphen A and by phosphorylation of a Ser residue just before the BC domain core in mammalian ACC. The BC and CT active sites are separated by 80 Å, and the entire BCCP domain must translocate during catalysis. PMID:26458104

  10. Photocontrol of Sorghum Leaf Phosphoenolpyruvate Carboxylase 1

    PubMed Central

    Thomas, Martine; Crétin, Claude; Keryer, Eliane; Vidal, Jean; Gadal, Pierre

    1987-01-01

    The mechanism underlying the light effect on phosphoenolpyruvate carboxylase (PEPC) from the C4 plant sorghum (Sorghum vulgare Pers., var Tamaran) leaves was investigated. Following exposure to light a new isozyme of PEPC, specific for the green leaf and responsible for primary CO2 fixation in photosynthesis, was established. Northern blot experiments revealed the presence of PEPC mRNA showing a molecular weight of 3.4 kilobases. During the greening process, concomitant to enzyme activity, PEPC protein and PEPC messenger RNA amounts increased considerably. This photoresponse was shown to be under phytochrome control. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:16665664

  11. Structure and function of biotin-dependent carboxylases

    PubMed Central

    Tong, Liang

    2012-01-01

    Biotin-dependent carboxylases include acetyl-CoA carboxylase (ACC), propionyl-CoA carboxylase (PCC), 3-methylcrotonyl-CoA carboxylase (MCC), geranyl-CoA carboxylase (GCC), pyruvate carboxylase (PC), and urea carboxylase (UC). They contain biotin carboxylase (BC), carboxyltransferase (CT) and biotin-carboxyl carrier protein (BCCP) components. These enzymes are widely distributed in nature and have important functions in fatty acid metabolism, amino acid metabolism, carbohydrate metabolism, polyketide biosynthesis, urea utilization, and other cellular processes. ACCs are also attractive targets for drug discovery against type 2 diabetes, obesity, cancer, microbial infections, and other diseases, and the plastid ACC of grasses is the target of action of three classes of commercial herbicides. Deficiencies in the activities of PCC, MCC or PC are linked to serious diseases in humans. Our understanding of these enzymes has been greatly enhanced over the past few years by the crystal structures of the holoenzymes of PCC, MCC, PC, and UC. The structures reveal unanticipated features in the architectures of the holoenzymes, including the presence of previously unrecognized domains, and provide a molecular basis for understanding their catalytic mechanism as well as the large collection of disease-causing mutations in PCC, MCC and PC. This review will summarize the recent advances in our knowledge on the structure and function of these important metabolic enzymes. PMID:22869039

  12. Novel Insights into the Biotin Carboxylase Domain Reactions of Pyruvate Carboxylase from Rhizobium etli†

    PubMed Central

    Zeczycki, Tonya N.; Menefee, Ann L.; Adina-Zada, Abdussalam; Jitrapakdee, Sarawut; Surinya, Kathy H.; Wallace, John C.; Attwood, Paul V.; St. Maurice, Martin; Cleland, W. Wallace

    2011-01-01

    The catalytic mechanism of the MgATP-dependent carboxylation of biotin in the biotin carboxylase domain of pyruvate carboxylase from R. etli (RePC) is common to the biotin-dependent carboxylases. The current site-directed mutagenesis study has clarified the catalytic functions of several residues proposed to be pivotal in MgATP-binding and cleavage (Glu218 and Lys245), HCO3− deprotonation (Glu305 and Arg301) and biotin enolization (Arg353). The E218A mutant was inactive for any reaction involving the BC domain and the E218Q mutant exhibited a 75-fold decrease in kcat for both pyruvate carboxylation and the full reverse reaction. The E305A mutant also showed a 75- and 80-fold decrease in kcat for both pyruvate carboxylation and the full reverse reaction, respectively. While Glu305 appears to be the active site base which deprotonates HCO3−, Lys245, Glu218 and Arg301 are proposed to contribute to catalysis through substrate binding interactions. The reactions of the biotin carboxylase and carboxyl transferase domains were uncoupled in the R353M-catalyzed reactions, indicating that Arg353 may not only facilitate the formation of the biotin enolate, but also assist in coordinating catalysis between the two spatially distinct active sites. The 2.5 and 4-fold increase in kcat for the full reverse reaction with the R353K and R353M mutants, respectively, suggests that mutation of Arg353 allows carboxybiotin increased access to the biotin carboxylase domain active site. The proposed chemical mechanism is initiated by the deprotonation of HCO3− by Glu305 and concurrent nucleophilic attack on the γ-phosphate of MgATP. The trianionic carboxyphosphate intermediate formed reversibly decomposes in the active site to CO2 and PO43−. PO43− then acts as the base to deprotonate the tethered biotin at the N1-position. Stabilized by interactions between the ureido oxygen and Arg353, the biotin-enolate reacts with CO2 to give carboxybiotin. The formation of a distinct salt

  13. Analysis and elucidation of phosphoenolpyruvate carboxylase in cyanobacteria.

    PubMed

    Shylajanaciyar, Mohandass; Dineshbabu, Gnanasekaran; Rajalakshmi, Ramamoorthy; Subramanian, Gopalakrishnan; Prabaharan, Dharmar; Uma, Lakshmanan

    2015-02-01

    Phosphoenolpyruvate carboxylase (PEPC) a cytosolic enzyme of higher plants is also found in bacteria and cyanobacteria. Genetic and biochemical investigations have indicated that there are several isoforms of PEPC belonging to C3; C3/C4 and C4 groups but, the evolution of PEPC in cyanobacteria is not yet understood. The present study opens up an opportunity to understand the isoforms and functions of PEPC in cyanobacteria. The variations observed in PEPC among lower and higher orders of cyanobacteria, suggests convergent evolution of PEPC. There is a specific PEPC phosphorylation residue 'serine' at the N-terminus and PEPC determinant residue 'serine' at the C-terminal that facilitates high affinity for substrate binding. These residues were unique to higher orders of cyanobacteria, but, not in lower orders and other prokaryotes. The different PEPC forms of cyanobacteria were investigated for their kinetic properties with phosphoenolpyruvate as the substrate and the findings corroborated well with the in silico findings. In vitro enzymatic study of cyanobacteria belonging to three different orders demonstrated the role of aspartate as an allosteric effector, which inhibited PEPC by interacting with the highly conserved residues in the active site. The differences in mode of inhibition among the different order, thus, give a fair picture about the cyanobacterial PEPCs. The higher orders appear to possess the sequence coordinates and functionally conserved residues similar to isoforms of C4 type higher plants, whereas isoforms of PEPC of the lower orders did not resemble either that of C3 or C4 plants. PMID:25586080

  14. Insulin stimulates the dephosphorylation and activation of acetyl-CoA carboxylase

    SciTech Connect

    Witters, L.A.; Watts, T.D.; Daniels, D.L.; Evans, J.L. )

    1988-08-01

    The mechanism underlying the ability of insulin to acutely activate acetyl-CoA carboxylase has been examined in Fao Reuber hepatoma cells. Insulin promotes the rapid activation of AcCoACase, as measured in cell lysates, and this stimulation persists to the same degree after isolation of AcCoACase by avidin-Sepharose chromatography. The insulin-stimulated enzyme, as compared with control enzyme, exhibits an increase in both citrate-independent and -dependent activity and a decrease in the K{sub a} for citrate. Direct examination of the phosphorylation state of isolated {sup 32}P-labeled AcCoACase after insulin exposure reveals a marked decrease in total enzyme phosphorylation coincident with activation. The dephosphorylation due to insulin appears to be restricted to the phosphorylation sites previously shown to regulate AcCoACase activity. All of these effects of insulin are mimicked by a low molecular weight autocrine factor, tentatively identified as an oligosaccharide, present in conditioned medium of hepatoma cells. These data suggest that insulin may activate AcCoACase by inhibiting the activity of protein kinase(s) or stimulating the activity of protein phosphatase(s) that control the phosphorylation state of the enzyme.

  15. Histone phosphorylation

    PubMed Central

    Rossetto, Dorine; Avvakumov, Nikita; Côté, Jacques

    2012-01-01

    Histone posttranslational modifications are key components of diverse processes that modulate chromatin structure. These marks function as signals during various chromatin-based events, and act as platforms for recruitment, assembly or retention of chromatin-associated factors. The best-known function of histone phosphorylation takes place during cellular response to DNA damage, when phosphorylated histone H2A(X) demarcates large chromatin domains around the site of DNA breakage. However, multiple studies have also shown that histone phosphorylation plays crucial roles in chromatin remodeling linked to other nuclear processes. In this review, we summarize the current knowledge of histone phosphorylation and describe the many kinases and phosphatases that regulate it. We discuss the key roles played by this histone mark in DNA repair, transcription and chromatin compaction during cell division and apoptosis. Additionally, we describe the intricate crosstalk that occurs between phosphorylation and other histone modifications and allows for sophisticated control over the chromatin remodeling processes. PMID:22948226

  16. Expression of PEP carboxylase from Escherichia coli complements the phenotypic effects of pyruvate carboxylase mutations in Saccharomyces cerevisiae.

    PubMed

    Flores, C L; Gancedo, C

    1997-08-01

    We investigated the effects of the expression of the Escherichia coli ppc gene encoding PEP carboxylase in Saccharomyces cerevisiae mutants devoid of pyruvate carboxylase. Functional expression of the ppc gene restored the ability of the yeast mutants to grow in glucose-ammonium medium. Growth yield in this medium was the same in the transformed yeast than in the wild type although the growth rate of the transformed yeast was slower. Growth in pyruvate was slowed down in the transformed strain, likely due to a futile cycle produced by the simultaneous action of PEP carboxykinase and PEP carboxylase. PMID:9276461

  17. Ribulose 1,5-bisphosphate carboxylase and phosphoribulokinase in Prochloron

    NASA Technical Reports Server (NTRS)

    Berhow, M. A.; Mcfadden, B. A.

    1983-01-01

    Ribulose 1,5-bisphosphate (RuBP) carboxylase and phosphoribulokinase, enzymes in the reductive pentose-phosphate cycle, were measured in cell-free extracts of Prochloran didemni. The partial purification and characterization of RuBP carboxylase were described. Prochloron RuBP carboxylase, when purified by isopycnic centrifugation in reoriented linear 0.2 to 0.8 M sucrose gradients, sedimented to a position which corresponded to that of the 520,000-dalton spinach enzyme. Sodium dodecyl sulfate polyacrylamide gel electrophoresis showed that the Prochloron enzyme was composed of large and small subunits (MW = 57,500 and 18,800). Though results established that the enzymes RuBP carboxylase and phosphoribulokinase were present in levels comparable to other CO2-fixing microorganisms, it was suggested that other enzymes in the Calvin cycle limit growth or that additional enzymic insufficiencies exist.

  18. Evolution of the Phosphoenolpyruvate Carboxylase Protein Kinase Family in C3 and C4 Flaveria spp.1[W][OPEN

    PubMed Central

    Aldous, Sophia H.; Weise, Sean E.; Sharkey, Thomas D.; Waldera-Lupa, Daniel M.; Stühler, Kai; Mallmann, Julia; Groth, Georg; Gowik, Udo; Westhoff, Peter; Arsova, Borjana

    2014-01-01

    The key enzyme for C4 photosynthesis, Phosphoenolpyruvate Carboxylase (PEPC), evolved from nonphotosynthetic PEPC found in C3 ancestors. In all plants, PEPC is phosphorylated by Phosphoenolpyruvate Carboxylase Protein Kinase (PPCK). However, differences in the phosphorylation pattern exist among plants with these photosynthetic types, and it is still not clear if they are due to interspecies differences or depend on photosynthetic type. The genus Flaveria contains closely related C3, C3-C4 intermediate, and C4 species, which are evolutionarily young and thus well suited for comparative analysis. To characterize the evolutionary differences in PPCK between plants with C3 and C4 photosynthesis, transcriptome libraries from nine Flaveria spp. were used, and a two-member PPCK family (PPCKA and PPCKB) was identified. Sequence analysis identified a number of C3- and C4-specific residues with various occurrences in the intermediates. Quantitative analysis of transcriptome data revealed that PPCKA and PPCKB exhibit inverse diel expression patterns and that C3 and C4 Flaveria spp. differ in the expression levels of these genes. PPCKA has maximal expression levels during the day, whereas PPCKB has maximal expression during the night. Phosphorylation patterns of PEPC varied among C3 and C4 Flaveria spp. too, with PEPC from the C4 species being predominantly phosphorylated throughout the day, while in the C3 species the phosphorylation level was maintained during the entire 24 h. Since C4 Flaveria spp. evolved from C3 ancestors, this work links the evolutionary changes in sequence, PPCK expression, and phosphorylation pattern to an evolutionary phase shift of kinase activity from a C3 to a C4 mode. PMID:24850859

  19. Characterizing the importance of the biotin carboxylase domain dimer for S. aureus pyruvate carboxylase catalysis

    PubMed Central

    Yu, Linda P. C.; Chou, Chi-Yuan; Choi, Philip H.; Tong, Liang

    2013-01-01

    Biotin carboxylase (BC) is a conserved component among biotin-dependent carboxylases and catalyzes the MgATP-dependent carboxylation of biotin, using bicarbonate as the CO2 donor. Studies with E. coli BC have suggested long-range communication between the two active sites of a dimer, although its mechanism is not well understood. In addition, mutations in the dimer interface can produce stable monomers that are still catalytically active. A homologous dimer for the BC domain is observed in the structure of tetrameric pyruvate carboxylase (PC) holoenzyme. We have introduced site-specific mutations in the BC domain dimer interface of S. aureus PC (SaPC), equivalent to those used for E. coli BC, and also made chimeras replacing the SaPC BC domain with the E. coli BC subunit (EcBC chimera) or the yeast ACC BC domain (ScBC chimera). We assessed the catalytic activities of these mutants and characterized their oligomerization states by gel filtration and analytical ultracentrifugation experiments. The K442E mutant and the ScBC chimera disrupted the BC dimer and were catalytically inactive, while the F403A mutant and the EcBC chimera were still tetrameric and retained catalytic activity. The R54E mutant was also tetrameric but was catalytically inactive. Crystal structures of the R54E, F403A and K442E mutants showed that they were tetrameric in the crystal, with conformational changes near the mutation site as well as in the tetramer organization. We have also produced the isolated BC domain of SaPC. In contrast to E. coli BC, the SaPC BC domain is monomeric in solution and catalytically inactive. PMID:23286247

  20. Characterizing the importance of the biotin carboxylase domain dimer for Staphylococcus aureus pyruvate carboxylase catalysis.

    PubMed

    Yu, Linda P C; Chou, Chi-Yuan; Choi, Philip H; Tong, Liang

    2013-01-22

    Biotin carboxylase (BC) is a conserved component among biotin-dependent carboxylases and catalyzes the MgATP-dependent carboxylation of biotin, using bicarbonate as the CO₂ donor. Studies with Escherichia coli BC have suggested long-range communication between the two active sites of a dimer, although its mechanism is not well understood. In addition, mutations in the dimer interface can produce stable monomers that are still catalytically active. A homologous dimer for the BC domain is observed in the structure of the tetrameric pyruvate carboxylase (PC) holoenzyme. We have introduced site-specific mutations into the BC domain dimer interface of Staphylococcus aureus PC (SaPC), equivalent to those used for E. coli BC, and also made chimeras replacing the SaPC BC domain with the E. coli BC subunit (EcBC chimera) or the yeast ACC BC domain (ScBC chimera). We assessed the catalytic activities of these mutants and characterized their oligomerization states by gel filtration and analytical ultracentrifugation experiments. The K442E mutant and the ScBC chimera disrupted the BC dimer and were catalytically inactive, while the F403A mutant and the EcBC chimera were still tetrameric and retained catalytic activity. The R54E mutant was also tetrameric but was catalytically inactive. Crystal structures of the R54E, F403A, and K442E mutants showed that they were tetrameric in the crystal, with conformational changes near the mutation site as well as in the tetramer organization. We have also produced the isolated BC domain of SaPC. In contrast to E. coli BC, the SaPC BC domain is monomeric in solution and catalytically inactive. PMID:23286247

  1. Interaction Between the Biotin Carboxyl Carrier Domain and the Biotin Carboxylase Domain in Pyruvate Carboxylase from Rhizobium etli†

    PubMed Central

    Lietzan, Adam D.; Menefee, Ann L.; Zeczycki, Tonya N.; Kumar, Sudhanshu; Attwood, Paul V.; Wallace, John C.; Cleland, W. Wallace; Maurice, Martin St.

    2011-01-01

    Pyruvate carboxylase (PC) catalyzes the ATP-dependent carboxylation of pyruvate to oxaloacetate, an important anaplerotic reaction in mammalian tissues. To effect catalysis, the tethered biotin of PC must gain access to active sites in both the biotin carboxylase domain and the carboxyl transferase domain. Previous studies have demonstrated that a mutation of threonine 882 to alanine in PC from Rhizobium etli renders the carboxyl transferase domain inactive and favors the positioning of biotin in the biotin carboxylase domain. We report the 2.4 Å resolution X-ray crystal structure of the Rhizobium etli PC T882A mutant which reveals the first high-resolution description of the domain interaction between the biotin carboxyl carrier protein domain and the biotin carboxylase domain. The overall quaternary arrangement of Rhizobium etli PC remains highly asymmetrical and is independent of the presence of allosteric activator. While biotin is observed in the biotin carboxylase domain, its access to the active site is precluded by the interaction between Arg353 and Glu248, revealing a mechanism for regulating carboxybiotin access to the BC domain active site. The binding location for the biotin carboxyl carrier protein domain demonstrates that tethered biotin cannot bind in the biotin carboxylase domain active site in the same orientation as free biotin, helping to explain the difference in catalysis observed between tethered biotin and free biotin substrates in biotin carboxylase enzymes. Electron density located in the biotin carboxylase domain active site is assigned to phosphonoacetate, offering a probable location for the putative carboxyphosphate intermediate formed during biotin carboxylation. The insights gained from the T882A Rhizobium etli PC crystal structure provide a new series of catalytic snapshots in PC and offer a revised perspective on catalysis in the biotin-dependent enzyme family. PMID:21958016

  2. Structure, function and regulation of pyruvate carboxylase.

    PubMed Central

    Jitrapakdee, S; Wallace, J C

    1999-01-01

    Pyruvate carboxylase (PC; EC 6.4.1.1), a member of the biotin-dependent enzyme family, catalyses the ATP-dependent carboxylation of pyruvate to oxaloacetate. PC has been found in a wide variety of prokaryotes and eukaryotes. In mammals, PC plays a crucial role in gluconeogenesis and lipogenesis, in the biosynthesis of neurotransmitter substances, and in glucose-induced insulin secretion by pancreatic islets. The reaction catalysed by PC and the physical properties of the enzyme have been studied extensively. Although no high-resolution three-dimensional structure has yet been determined by X-ray crystallography, structural studies of PC have been conducted by electron microscopy, by limited proteolysis, and by cloning and sequencing of genes and cDNA encoding the enzyme. Most well characterized forms of active PC consist of four identical subunits arranged in a tetrahedron-like structure. Each subunit contains three functional domains: the biotin carboxylation domain, the transcarboxylation domain and the biotin carboxyl carrier domain. Different physiological conditions, including diabetes, hyperthyroidism, genetic obesity and postnatal development, increase the level of PC expression through transcriptional and translational mechanisms, whereas insulin inhibits PC expression. Glucocorticoids, glucagon and catecholamines cause an increase in PC activity or in the rate of pyruvate carboxylation in the short term. Molecular defects of PC in humans have recently been associated with four point mutations within the structural region of the PC gene, namely Val145-->Ala, Arg451-->Cys, Ala610-->Thr and Met743-->Thr. PMID:10229653

  3. Active site of ribulosebisphosphate carboxylase/oxygenase

    SciTech Connect

    Hartman, F.C.; Stringer, C.D.; Milanez, S.; Lee, E.H.

    1985-01-01

    Previous affinity labeling studies and comparative sequence analyses have identified two different lysines at the active site of ribulosebisphosphate carboxylase/oxygenase and have suggested their essentiality to function. The essential lysines occupy positions 166 and 329 in the Rhodospirillum rubrum enzyme and positions 175 and 334 in the spinach enzyme. Based on the pH-dependencies of inactivations of the two enzymes by trinitrobenzene sulfonate, Lys-166 (R. rubrum enzyme) exhibits a pK/sub a/ of 7.9 and Lys-334 (spinach enzyme) exhibits a pK/sub a/ of 9.0. These low pK/sub a/ values as well as the enhanced nucleophilicities of the lysyl residues argue that both are important to catalysis rather than to substrate binding. Lys-166 may correspond to the essential base that initiates catalysis and that displays a pK/sub a/ of 7.5 in the pH-curve for V/sub max//K/sub m/. Cross-linking experiments with 4,4'-diisothiocyano-2,2'-disulfonate stilbene demonstrate that the two active-site lysines are within 12 A. 50 refs., 7 figs., 1 tab.

  4. Structural analysis, plastid localization, and expression of the biotin carboxylase subunit of acetyl-coenzyme A carboxylase from tobacco.

    PubMed

    Shorrosh, B S; Roesler, K R; Shintani, D; van de Loo, F J; Ohlrogge, J B

    1995-06-01

    Acetyl-coenzyme A carboxylase (ACCase, EC 6.4.1.2) catalyzes the synthesis of malonyl-coenzyme A, which is utilized in the plastid for de novo fatty acid synthesis and outside the plastid for a variety of reactions, including the synthesis of very long chain fatty acids and flavonoids. Recent evidence for both multifunctional and multisubunit ACCase isozymes in dicot plants has been obtained. We describe here the isolation of a tobacco (Nicotiana tabacum L. cv bright yellow 2 [NT1]) cDNA clone (E3) that encodes a 58.4-kD protein that shares 80% sequence similarity and 65% identity with the Anabaena biotin carboxylase subunit of ACCase. Similar to other biotin carboxylase subunits of acetyl-CoA carboxylase, the E3-encoded protein contains a putative ATP-binding motif but lacks a biotin-binding site (methionine-lysine-methionine or methionine-lysine-leucine). The deduced protein sequence contains a putative transit peptide whose function was confirmed by its ability to direct in vitro chloroplast uptake. The subcellular localization of this biotin carboxylase has also been confirmed to be plastidial by western blot analysis of pea (Pisum sativum), alfalfa (Medicago sativa L.), and castor (Ricinus communis L.) plastid preparations. Northern blot analysis indicates that the plastid biotin carboxylase transcripts are expressed at severalfold higher levels in castor seeds than in leaves. PMID:7610168

  5. Probing functional divergence of 5-aminoimidazole ribonucleotide carboxylases

    NASA Astrophysics Data System (ADS)

    Youn, Hasik

    The conversion of AIR to CAIR catalyzed by AIR carboxylase represents the only carbon-carbon bond formation step in de novo purine biosynthesis. Prokaryotic and most eukaryotic AIR carboxylases utilize two proteins, PurK and PurE to accomplish the conversion of AIR to CAIR via N5-CAIR from AIR, ATP, and bicarbonate. In vertebrates, AIR carboxylases utilizes AIR and CO2 directly to produce CAIR without a free intermediate. NAIR is a slow-tight binding inhibitor for G. gallus AIR carboxylase while this compound is a simple competitive inhibitor in the case of the Escherichia coli system. The tight binding nature of NAIR suggested that this compound represents a transition state analog. A structure- activity study was extended in order to understand the role of ring electronics and substituents of NAIR for the tight-binding phenomenon. The analysis of inhibition data of azole nucleotide inhibitors was summarized as follows; (1) N3 of NAIR is not critical for binding, (2) ring electronics are important for binding in the nitro azole derivatives while they are not critical in the series of carboxy amino azole nucleotides, (3) the nitro group is a critical binding element for the tight-binding of NAIR, (4) the exocyclic amino group contributes to the optimum display of charge density of NAIR for tight-binding, (5) the carboxyl group of CAIR plays an import role for initial binding through electrostatic interactions. The fact that the gene for AIR carboxylase from both avian and methanogen can functionally complement E. coli purK and purE mutants despite the lack of any sequence homology with purK raised questions about the divergent functions of AIR carboxylases. The M. thermoautotrophicum AIR carboxylase was overexpressed and the catalytic function was established. Based on the stoichimetry of the ATP consumption, substrate specificities, and NAIR inhibition pattern, the methanogen AIR carboxylase is proposed to be distinctive from the E. coli and vertebrate forms and

  6. Carboxylases in Natural and Synthetic Microbial Pathways▿†

    PubMed Central

    Erb, Tobias J.

    2011-01-01

    Carboxylases are among the most important enzymes in the biosphere, because they catalyze a key reaction in the global carbon cycle: the fixation of inorganic carbon (CO2). This minireview discusses the physiological roles of carboxylases in different microbial pathways that range from autotrophy, carbon assimilation, and anaplerosis to biosynthetic and redox-balancing functions. In addition, the current and possible future uses of carboxylation reactions in synthetic biology are discussed. Such uses include the possible transformation of the greenhouse gas carbon dioxide into value-added compounds and the production of novel antibiotics. PMID:22003013

  7. Characterization of ribulose diphosphate carboxylase and phosphoribulokinase from Thiobacillus thioparus and Thiobacillus neapolitanus.

    NASA Technical Reports Server (NTRS)

    Johnson, E. J.; Johnson, M. K.; Macelroy, R. D.

    1968-01-01

    Ribulose diphosphate carboxylase and phosphoribulokinase activity in chemosynthetic autotrophs Thiobacillus thioparus and Thiobacillus neapolitanus, noting sedimentation and gel filtration characteristics

  8. Covalent dimerization of ribulose bisphosphate carboxylase subunits by UV radiation.

    PubMed

    Ferreira, R M; Franco, E; Teixeira, A R

    1996-08-15

    The effect of UV radiation (UV-A, UV-B and UV-C) on ribulose bisphosphate carboxylase from a variety of plant species was examined. The exposition of plant leaves or the pure enzyme to UV radiation produced a UV-dependent accumulation of a +5 kDa polypeptide (P65). Different approaches were utilized to elucidate the origin and structure of P65: electrophoretic and fluorographic analyses of 35S-labelled ribulose bisphosphate carboxylase exposed to UV radiation and immunological experiments using antibodies specific for P65, for the large and small subunits of ribulose bisphosphate carboxylase and for high-molecular-mass aggregates of the enzyme. These studies revealed that P65 is a dimer, formed by the covalent, non-disulphide linkage of one small subunit with one large subunit of ribulose bisphosphate carboxylase. For short periods of time (< 1 h), the amount of P65 formed increased with the duration of the exposure to the UV radiation and with the energy of the radiation applied. Prolonged exposure to UV radiation (1-6 h) resulted in the formation of high-molecular-mass aggregates of ribulose bisphosphate carboxylase. Formation of P65 was shown to depend on the native state of the protein, was stimulated by inhibitors of enzyme activity, and was inhibited by activators of enzyme activity. A UV-independent accumulation of P65 was also achieved by the in vitro incubation of plant crude extracts. However, the UV-dependent and the UV-independent formation of P65 seemed to occur by distinct molecular mechanisms. The UV-dependent accumulation of P65 was immunologically detected in all species examined, including Lemna minor, Arum italicum, Brassica oleracea, Triticum aestivum, Zea mays, Pisum sativum and Phaseolus vulgaris, suggesting that it may constitute a universal response to UV radiation, common to all photo-synthetic tissues. PMID:8761476

  9. Properties of ribulose diphosphate carboxylase immobilized on porous glass

    NASA Technical Reports Server (NTRS)

    Shapira, J.; Hanson, C. L.; Lyding, J. M.; Reilly, P. J.

    1974-01-01

    Ribulose-1,5-diphosphate carboxylase from spinach has been bound to arylamine porous glass with a diazo linkage and to alklamine porous glass with glutaraldehyde. Stability at elevated temperatures and responses to changes of pH and ribulose-1,5-diphosphate, Mg(2+), and dithiothreitol concentrations were not significantly different from the soluble enzyme, though stability at 4 C was somewhat improved.

  10. Multiple Carboxylase Deficiency (Late Onset) Due to Deficiency of Biotinidase

    PubMed Central

    Mukhopadhyay, Debadatta; Das, Manoj Kumar; Dhar, Sandipan; Mukhopadhyay, Maya

    2014-01-01

    Biotinidase is a ubiquitous mammalian cell enzyme occurring in liver, serum and kidney. It cleaves biotin from biocytin, which is a cofactor for biotin dependent enzymes, namely the human carboxylases. Biotinidase deficiency is associated with a wide spectrum of neurological, dermatological, immunological and ophthalmological abnormalities. This is a case of a 3-year-old boy presenting with delayed developmental milestones, tachypnea, progressively increasing ataxia, alopecia and dermatitis, all which dramatically responded to high doses of biotin. PMID:25284861

  11. Phosphoenolpyruvate carboxykinase and pyruvate carboxylase in developing rat liver

    PubMed Central

    Ballard, F. J.; Hanson, R. W.

    1967-01-01

    1. Phosphoenolpyruvate carboxykinase and pyruvate carboxylase were measured in foetal, newborn and adult rat liver extracts by a radiochemical assay involving the fixation of [14C]bicarbonate. 2. Pyruvate-carboxylase activity in both foetal and adult liver occurs mainly in mitochondrial and nuclear fractions, with about 10% of the activity in the cytoplasm. 3. Similar studies of the intracellular distribution of phosphoenolpyruvate carboxykinase show that more than 90% of the activity is in the cytoplasm. However, in the 17-day foetal liver about 90% of the activity is in mitochondria and nuclei. 4. Pyruvate-carboxylase activity in both particulate and soluble fractions is very low in the 17-day foetal liver and increases to near adult levels before birth. 5. Phosphoenolpyruvate-carboxykinase activity in the soluble cell fraction increases 25-fold in the first 2 days after birth. This same enzyme in the mitochondria has considerable activity in the foetal and adult liver and is lower in the newborn. 6. Kinetic and other studies on the properties of phosphoenolpyruvate carboxykinase have shown no differences between the soluble and mitochondrial enzymes. 7. It is suggested that the appearance of the soluble phosphoenolpyruvate carboxykinase at birth initiates the rapid increase in overall gluconeogenesis at this stage. PMID:6049928

  12. Ribulose diphosphate carboxylase of the cyanobacterium Spirulina platensis

    SciTech Connect

    Terekhova, I.V.; Chernyad'ev, I.I.; Doman, N.G.

    1986-11-20

    The ribulose diphosphate (RDP) carboxylase activity of the cyanobacterium Spirulina platensis is represented by two peaks when a cell homogenate is centrifuged in a sucrose density gradient. In the case of differential centrifugation (40,000 g, 1 h), the activity of the enzyme was distributed between the supernatant liquid (soluble form) and the precipitate (carboxysomal form). From the soluble fraction, in which 80-95% of the total activity of the enzyme is concentrated, electrophoretically homogeneous RDP carboxylase was isolated by precipitation with ammonium sulfate and centrifugation in a sucrose density gradient. The purified enzyme possessed greater electrophoretic mobility in comparison with the RDP carboxylase of beans Vicia faba. The molecular weight of the enzyme, determined by gel filtration, was 450,000. The enzyme consists of monotypic subunits with a molecular weight of 53,000. The small subunits were not detected in electrophoresis in polyacrylamide gel in the presence of SDS after fixation and staining of the gels by various methods.

  13. Large-scale analysis of phosphorylated proteins in maize leaf.

    PubMed

    Bi, Ying-Dong; Wang, Hong-Xia; Lu, Tian-Cong; Li, Xiao-Hui; Shen, Zhuo; Chen, Yi-Bo; Wang, Bai-Chen

    2011-02-01

    Phosphorylation is an ubiquitous regulatory mechanism governing the activity, subcellular localization, and intermolecular interactions of proteins. To identify a broad range of phosphoproteins from Zea mays, we enriched phosphopeptides from Zea mays leaves using titanium dioxide microcolumns and then extensively fractionated and identified the phosphopeptides by mass spectrometry. A total of 165 unique phosphorylation sites with a putative role in biological processes were identified in 125 phosphoproteins. Most of these proteins are involved in metabolism, including carbohydrate and protein metabolism. We identified novel phosphorylation sites on translation initiation factors, splicing factors, nucleolar RNA helicases, and chromatin-remodeling proteins such as histone deacetylases. Intriguingly, we also identified phosphorylation sites on several proteins associated with photosynthesis, and we speculate that these sites may be involved in carbohydrate metabolism or electron transport. Among these phosphoproteins, phosphoenolpyruvate carboxylase and NADH: nitrate reductase (NR) which catalyzes the rate-limiting and regulated step in the pathway of inorganic nitrogen assimilation were identified. A conserved phosphorylation site was found in the cytochrome b5 heme-binding domain of NADH: nitrate reductase, suggesting that NADH: nitrate reductase is phosphorylated by the same protein kinase or highly related kinases. These data demonstrate that the pathways that regulate diverse processes in plants are major targets of phosphorylation. PMID:21053013

  14. Dimerization of the Bacterial Biotin Carboxylase Subunit Is Required for Acetyl Coenzyme A Carboxylase Activity In Vivo

    PubMed Central

    Smith, Alexander C.

    2012-01-01

    Acetyl coenzyme A (acteyl-CoA) carboxylase (ACC) is the first committed enzyme of the fatty acid synthesis pathway. Escherichia coli ACC is composed of four different proteins. The first enzymatic activity of the ACC complex, biotin carboxylase (BC), catalyzes the carboxylation of the protein-bound biotin moiety of another subunit with bicarbonate in an ATP-dependent reaction. Although BC is found as a dimer in cell extracts and the carboxylase activities of the two subunits of the dimer are interdependent, mutant BC proteins deficient in dimerization are reported to retain appreciable activity in vitro (Y. Shen, C. Y. Chou, G. G. Chang, and L. Tong, Mol. Cell 22:807–818, 2006). However, in vivo BC must interact with the other proteins of the complex, and thus studies of the isolated BC may not reflect the intracellular function of the enzyme. We have tested the abilities of three BC mutant proteins deficient in dimerization to support growth and report that the two BC proteins most deficient in dimerization fail to support growth unless expressed at high levels. In contrast, the wild-type protein supports growth at low expression levels. We conclude that BC must be dimeric to fulfill its physiological function. PMID:22037404

  15. Evidence for Light-stimulated Synthesis of Phosphoenolpyruvate Carboxylase in Leaves of Maize 1

    PubMed Central

    Hague, Donald R.; Sims, Thomas L.

    1980-01-01

    Illumination (22,000 lumens per meter2) of etiolated maize plants for 80 hours brings about a 5-fold increase in phosphoenolpyruvate carboxylase activity per unit of protein. An increase in carboxylase protein and incorporation of [35S]methionine into the protein occurs simultaneously with the activity increase. In green plants, the level of phosphoenolpyruvate carboxylase protein and enzyme activity is dependent on the intensity of light during growth. These results are consistent with the conclusion that the activity increase results from light-stimulated de novo synthesis of phosphoenolypyruvate carboxylase protein. Images PMID:16661464

  16. Inhibition of biotin carboxylase by a reaction intermediate analog: implications for the kinetic mechanism.

    PubMed

    Blanchard, C Z; Amspacher, D; Strongin, R; Waldrop, G L

    1999-12-20

    The first committed step in long-chain fatty acid synthesis is catalyzed by the multienzyme complex acetyl CoA carboxylase. One component of the acetyl CoA carboxylase complex is biotin carboxylase which catalyzes the ATP-dependent carboxylation of biotin. The Escherichia coli form of biotin carboxylase can be isolated from the other components of the acetyl CoA carboxylase complex such that enzymatic activity is retained. The synthesis of a reaction intermediate analog inhibitor of biotin carboxylase has been described recently (Organic Lett. 1, 99-102, 1999). The inhibitor is formed by coupling phosphonoacetic acid to the 1'-N of biotin. In this paper the characterization of the inhibition of biotin carboxylase by this reaction-intermediate analog is described. The analog showed competitive inhibition versus ATP with a slope inhibition constant of 8 mM. Noncompetitive inhibition was found for the analog versus biotin. Phosphonoacetate exhibited competitive inhibition with respect to ATP and noncompetitive inhibition versus bicarbonate. Biotin was found to be a noncompetitive substrate inhibitor of biotin carboxylase. These data suggested that biotin carboxylase had an ordered addition of substrates with ATP binding first followed by bicarbonate and then biotin. PMID:10600526

  17. Improving polyketide and fatty acid synthesis by engineering of the yeast acetyl-CoA carboxylase.

    PubMed

    Choi, Jin Wook; Da Silva, Nancy A

    2014-10-10

    Polyketides and fatty acids are important in the production of pharmaceuticals, industrial chemicals, and biofuels. The synthesis of the malonyl-CoA building block, catalyzed by acetyl-CoA carboxylase (Acc1), is considered a limiting step to achieving high titers of polyketides and fatty acids in Saccharomyces cerevisiae. Acc1 is deactivated by AMP-activated serine/threonine protein kinase (Snf1) when glucose is depleted. To prevent this deactivation, the enzyme was aligned with the Rattus norvegicus (rat) Acc1 to identify a critical amino acid (Ser-1157) for phosphorylation and deactivation. Introduction of a S1157A mutation into Acc1 resulted in 9-fold higher specific activity following glucose depletion. The enzyme was tested in yeast engineered to produce the polyketide 6-methylsalisylic acid (6-MSA). Both 6-MSA and native fatty acid levels increased by 3-fold. Utilization of this modified Acc1 enzyme will also be beneficial for other products built from malonyl-CoA. PMID:25078432

  18. Identification of the N-linked glycosylation sites of vitamin K-dependent carboxylase and the effect of glycosylation on carboxylase function†

    PubMed Central

    Tie, Jian-Ke; Zheng, Mei-Yan; Pope, R. Marshall; Straight, David L.; Stafford, Darrel W.

    2014-01-01

    The vitamin K-dependent carboxylase is an integral membrane protein which is required for the post-translational modification of a variety of vitamin K-dependent proteins. Previous studies have suggested carboxylase is a glycoprotein with N-linked glycosylation sites. In the present study, we identified the N-glycosylation sites of carboxylase by mass spectrometric peptide mapping analyses combined with site-directed mutagenesis. Our mass spectrometric results show that the N-linked glycosylation in carboxylase occurs at positions N459, N550, N605, and N627. Eliminating these glycosylation sites by changing asparagine to glutamine caused the mutant carboxylase to migrate faster in SDS-PAGE gel analyses, adding further evidence that these sites are glycosylated. In addition, the mutation studies identified N525, a site not recoverable by mass spectroscopy analysis, as a glycosylation site. Furthermore, the potential glycosylation site at N570 is glycosylated only if all the five natural glycosylation sites are simultaneously mutated. Removal of the oligosaccharides by glycosidase from wild-type carboxylase or by eliminating the functional glycosylation sites by site-directed mutagenesis did not affect either the carboxylation or epoxidation activity when the small pentapeptide FLEEL was used as substrate, suggesting that N-linked glycosylation is not required for the enzymatic function of carboxylase. In contrast, when site N570 and the five natural glycosylation sites were mutated simultaneously, the resulting carboxylase protein was degraded. Our results suggest that N-linked glycosylation is not essential for carboxylase enzymatic activity but it is important for protein folding and stability. PMID:17144668

  19. The active site of ribulose-bisphosphate carboxylase/oxygenase

    SciTech Connect

    Hartman, F.C.

    1991-01-01

    The active site of ribulose-bisphosphate carboxylase/oxygenase requires interacting domains of adjacent, identical subunits. Most active-site residues are located within the loop regions of an eight-stranded {beta}/{alpha}-barrel which constitutes the larger C-terminal domain; additional key residues are located within a segment of the smaller N-terminal domain which partially covers the mouth of the barrel. Site-directed mutagenesis of the gene encoding the enzyme from Rhodospirillum rubrum has been used to delineate functions of active-site residues. 6 refs., 2 figs.

  20. Involvement of phospholipase D and phosphatidic acid in the light-dependent up-regulation of sorghum leaf phosphoenolpyruvate carboxylase-kinase

    PubMed Central

    Monreal, José Antonio; López-Baena, Francisco Javier; Vidal, Jean; Echevarría, Cristina; García-Mauriño, Sofía

    2010-01-01

    The photosynthetic phosphoenolpyruvate carboxylase (C4-PEPC) is regulated by phosphorylation by a phosphoenolpyruvate carboxylase kinase (PEPC-k). In Digitaria sanguinalis mesophyll protoplasts, this light-mediated transduction cascade principally requires a phosphoinositide-specific phospholipase C (PI-PLC) and a Ca2+-dependent step. The present study investigates the cascade components at the higher integrated level of Sorghum bicolor leaf discs and leaves. PEPC-k up-regulation required light and photosynthetic electron transport. However, the PI-PLC inhibitor U-73122 and inhibitors of calcium release from intracellular stores only partially blocked this process. Analysis of [32P]phosphate-labelled phospholipids showed a light-dependent increase in phospholipase D (PLD) activity. Treatment of leaf discs with n-butanol, which decreases the formation of phosphatidic acid (PA) by PLD, led to the partial inhibition of the C4-PEPC phosphorylation, suggesting the participation of PLD/PA in the signalling cascade. PPCK1 gene expression was strictly light-dependent. Addition of neomycin or n-butanol decreased, and a combination of both inhibitors markedly reduced PPCK1 expression and the concomitant rise in PEPC-k activity. The calcium/calmodulin antagonist W7 blocked the light-dependent up-regulation of PEPC-k, pointing to a Ca2+-dependent protein kinase (CDPK) integrating both second messengers, calcium and PA, which were shown to increase the activity of sorghum CDPK. PMID:20410319

  1. Carboxylase Levels and Carbon Dioxide Fixation in Baker's Yeast

    PubMed Central

    Cazzulo, J. J.; Claisse, L. M.; Stoppani, A. O. M.

    1968-01-01

    Levels of pyruvate carboxylase (PC), phosphopyruvate carboxylase (PEPC), and malate dehydrogenase (decarboxylating) were compared in wild-type bakers' yeast (I), a cytoplasmic-respiratory mutant (II), a biotin-deficient wild-type yeast (III), and a biotin-deficient respiratory mutant (IV). PC activities were greatly reduced in III and IV, whereas PEPC was reduced in II and IV. Malate dehydrogenase (decarboxylating) could not be detected in any of the yeasts. With yeast I growing on glucose as the sole carbon source, PEPC decreased to negligible levels during the logarithmic phase of growth (glucose repression effect), whereas PC increased. Both enzymes reverted to their original levels during the stationary phase, when glucose in the medium was exhausted. In agreement with the leading role of PC for CO2 assimilation, the rates of 14CO2 fixation in yeasts I and II were approximately equal and were much higher than that in yeast IV. With I and II, most of the 14C was distributed similarly in oxalacetate derivatives; with yeast IV, most of 14C appeared in a compound apparently unrelated to CO2 fixation via C4-dicarboxylic acids. PMID:5732499

  2. Metabolic analysis of Escherichia coli in the presence and absence of the carboxylating enzymes phosphoenolpyruvate carboxylase and pyruvate carboxylase

    SciTech Connect

    Gokarn, R.R.; Eiteman, M.A.; Altman, E.

    2000-05-01

    Fermentation patterns of Escherichia coli with and without the phosphoenolpyruvate carboxylase (PPC) and pyruvate carboxylase (PYC) enzymes were compared under anaerobic conditions with glucose as a carbon source. Time profiles of glucose and fermentation product concentrations were determined and used to calculate metabolic fluxes through central carbon pathways during exponential cell growth. The presence of the Rhizobium etli pyc gene in E. coli (JCL1242/pTrc99A-pyc) restored the succinate producing ability of E. coli ppc null mutants (JCL1242), with PYC competing favorably with both pyruvate formate lyase and lactate dehydrogenase. Succinate formation was slightly greater by JCL1242/pTrc99a-pyc than by cells which overproduced PPC(JCL1242/pPC201, ppc{sup +}), even though PPC activity in cell extracts of JCL1242/pPC201 (ppc{sup +}) was 40-fold greater than PYC activity in extracts of JCL1242/pTrc99a-pyc. Flux calculations indicate that during anaerobic metabolism the pyc{sup +} strain had a 34% greater specific glucose consumption rate, a 37% greater specific rate of ATP formation, and a 6% greater specific growth rate compared to the ppc{sup +} strain. In light of the important position of pyruvate at the juncture of NADH-generating pathways and NADH-dissimilating branches, the results show that when PPC or PYC is expressed, the metabolic network adapts by altering the flux to lactate and the molar ratio of ethanol to acetate formation.

  3. Phosphoenolpyruvate Carboxylase Kinase in Tobacco Leaves Is Activated by Light in a Similar but Not Identical Way as in Maize.

    PubMed Central

    Li, B.; Zhang, X. Q.; Chollet, R.

    1996-01-01

    We have previously reported the partial purification of a Ca2+- independent phosphoenolpyruvate carboxylase (PEPC) protein-serine/threonine kinase (PEPC-PK) from illuminated leaves of N-sufficient tobacco (Nicotiana tabacum L.) plants (Y.-H. Wang, R. Chollet [1993] FEBS Lett 328: 215-218). We now report that this C3 PEPC-kinase is reversibly light activated in vivo in a time-dependent manner. As the kinase becomes light activated, the activity and L-malate sensitivity of its target protein increases and decreases, respectively. The light activation of tobacco PEPC-PK is prevented by pretreatment of detached leaves with various photosynthesis and cytosolic protein-synthesis inhibitors. Similarly, specific inhibitors of glutamine synthetase block the light activation of tobacco leaf PEPC-kinase under both photorespiratory and nonphotorespiratory conditions. This striking effect is partially and specifically reversed by exogenous glutamine, whereas it has no apparent effect on the light activation of the maize (Zea mays L.) leaf kinase. Using an in situ "activity-gel" phosphorylation assay, we have identified two major Ca2+-independent PEPC-kinase catalytic polypeptides in illuminated tobacco leaves that have the same molecular masses (approximately 30 and 37 kD) as found in illuminated maize leaves. Collectively, these results indicate that the phosphorylation of PEPC in N-sufficient leaves of tobacco (C3) and maize (C4) is regulated through similar but not identical light-signal transduction pathways. PMID:12226305

  4. Targeting Pyruvate Carboxylase Reduces Gluconeogenesis and Adiposity and Improves Insulin Resistance

    PubMed Central

    Kumashiro, Naoki; Beddow, Sara A.; Vatner, Daniel F.; Majumdar, Sachin K.; Cantley, Jennifer L.; Guebre-Egziabher, Fitsum; Fat, Ioana; Guigni, Blas; Jurczak, Michael J.; Birkenfeld, Andreas L.; Kahn, Mario; Perler, Bryce K.; Puchowicz, Michelle A.; Manchem, Vara Prasad; Bhanot, Sanjay; Still, Christopher D.; Gerhard, Glenn S.; Petersen, Kitt Falk; Cline, Gary W.; Shulman, Gerald I.; Samuel, Varman T.

    2013-01-01

    We measured the mRNA and protein expression of the key gluconeogenic enzymes in human liver biopsy specimens and found that only hepatic pyruvate carboxylase protein levels related strongly with glycemia. We assessed the role of pyruvate carboxylase in regulating glucose and lipid metabolism in rats through a loss-of-function approach using a specific antisense oligonucleotide (ASO) to decrease expression predominantly in liver and adipose tissue. Pyruvate carboxylase ASO reduced plasma glucose concentrations and the rate of endogenous glucose production in vivo. Interestingly, pyruvate carboxylase ASO also reduced adiposity, plasma lipid concentrations, and hepatic steatosis in high fat–fed rats and improved hepatic insulin sensitivity. Pyruvate carboxylase ASO had similar effects in Zucker Diabetic Fatty rats. Pyruvate carboxylase ASO did not alter de novo fatty acid synthesis, lipolysis, or hepatocyte fatty acid oxidation. In contrast, the lipid phenotype was attributed to a decrease in hepatic and adipose glycerol synthesis, which is important for fatty acid esterification when dietary fat is in excess. Tissue-specific inhibition of pyruvate carboxylase is a potential therapeutic approach for nonalcoholic fatty liver disease, hepatic insulin resistance, and type 2 diabetes. PMID:23423574

  5. In vivo monoubiquitination of anaplerotic phosphoenolpyruvate carboxylase occurs at Lys624 in germinating sorghum seeds.

    PubMed

    Ruiz-Ballesta, Isabel; Feria, Ana-Belén; Ni, Hong; She, Yi-Min; Plaxton, William Charles; Echevarría, Cristina

    2014-02-01

    Phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) is an important cytosolic regulatory enzyme that plays a pivotal role in numerous physiological processes in plants, including seed development and germination. Previous studies demonstrated the occurrence of immunoreactive PEPC polypeptides of ~110 kDa and 107 kDa (p110 and p107, respectively) on immunoblots of clarified extracts of germinating sorghum (Sorghum bicolor) seeds. In order to establish the biochemical basis for this observation, a 460 kDa PEPC heterotetramer composed of an equivalent ratio of p110 and p107 subunits was purified to near homogeneity from the germinated seeds. Mass spectrometry established that p110 and p107 are both encoded by the same plant-type PEPC gene (CP21), but that p107 was in vivo monoubiquitinated at Lys624 to form p110. This residue is absolutely conserved in vascular plant PEPCs and is proximal to a PEP-binding/catalytic domain. Anti-ubiquitin IgG immunodetected p110 but not p107, whereas incubation with a deubiquitinating enzyme (USP-2 core) efficiently converted p110 into p107, while relieving the enzyme's feedback inhibition by L-malate. Partial PEPC monoubiquitination was also detected during sorghum seed development. It is apparent that monoubiquitination at Lys624 is opposed to phosphorylation at Ser7 in terms of regulating the catalytic activity of sorghum seed PEPC. PEPC monoubiquitination is hypothesized to fine-tune anaplerotic carbon flux according to the cell's immediate physiological requirements for tricarboxylic acid cycle intermediates needed in support of biosynthesis and carbon-nitrogen interactions. PMID:24288181

  6. Developmental and molecular physiological evidence for the role of phosphoenolpyruvate carboxylase in rapid cotton fibre elongation.

    PubMed

    Li, Xiao-Rong; Wang, Lu; Ruan, Yong-Ling

    2010-01-01

    Cotton fibres are hair-like single-cells that elongate to several centimetres long after their initiation from the ovule epidermis at anthesis. The accumulation of malate, along with K+ and sugars, is thought to play an important role in fibre elongation through osmotic regulation and charge balance. However, there is a lack of evidence for or against such an hypothesis. Phosphoenolpyruvate carboxylase (PEPC) is a key enzyme responsible for the synthesis of malate. The potential role of PEPC in cotton fibre elongation is examined here. Developmentally, PEPC activity was higher at the rapid elongation phase than that at the slow elongation stage. Genotypically, PEPC activity correlated positively with the rate of fibre elongation and the final fibre length attained. Importantly, suppression of PEPC activity by LiCl that reduces its phosphorylation status decreased fibre length. To examine the molecular basis underlying PEPC activity, two cDNAs encoding PEPC, GhPEPC1 and 2, were cloned, which represents the major PEPC genes expressed in cotton fibre. RT-PCR analyses revealed that GhPEPC1 and 2 were highly expressed at the rapid elongation phase but weakly at the slow-to-terminal elongation period. In situ hybridization detected mRNA of GhPEPC1 and 2 in 1 d young fibres but not in the ovule epidermis prior to fibre initiation. Collectively, the data indicate that cotton fibre elongation requires high activity of PEPC, probably through the expression of the GhPEPC1 and 2 genes. PMID:19815688

  7. In vivo monoubiquitination of anaplerotic phosphoenolpyruvate carboxylase occurs at Lys624 in germinating sorghum seeds

    PubMed Central

    Echevarría, Cristina

    2014-01-01

    Phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) is an important cytosolic regulatory enzyme that plays a pivotal role in numerous physiological processes in plants, including seed development and germination. Previous studies demonstrated the occurrence of immunoreactive PEPC polypeptides of ~110kDa and 107kDa (p110 and p107, respectively) on immunoblots of clarified extracts of germinating sorghum (Sorghum bicolor) seeds. In order to establish the biochemical basis for this observation, a 460kDa PEPC heterotetramer composed of an equivalent ratio of p110 and p107 subunits was purified to near homogeneity from the germinated seeds. Mass spectrometry established that p110 and p107 are both encoded by the same plant-type PEPC gene (CP21), but that p107 was in vivo monoubiquitinated at Lys624 to form p110. This residue is absolutely conserved in vascular plant PEPCs and is proximal to a PEP-binding/catalytic domain. Anti-ubiquitin IgG immunodetected p110 but not p107, whereas incubation with a deubiquitinating enzyme (USP-2 core) efficiently converted p110 into p107, while relieving the enzyme’s feedback inhibition by l-malate. Partial PEPC monoubiquitination was also detected during sorghum seed development. It is apparent that monoubiquitination at Lys624 is opposed to phosphorylation at Ser7 in terms of regulating the catalytic activity of sorghum seed PEPC. PEPC monoubiquitination is hypothesized to fine-tune anaplerotic carbon flux according to the cell’s immediate physiological requirements for tricarboxylic acid cycle intermediates needed in support of biosynthesis and carbon–nitrogen interactions. PMID:24288181

  8. Perspective of ribulose bisphosphate carboxylase/oxygenase, the key catalyst in photosynthesis and photorespiration

    SciTech Connect

    McFadden, B.A.

    1980-11-01

    Reported works dealing with the opposing processes photosynthesis and photorespiration, catalyzed by ribulose biphosphate carboxylase (RuBP) are summarized with 75 references being cited. Some recent findings that suggest that it should be possible to increase the RuBP carboxylase:oxygenase ratio by mutation and that this increase should lead to higher plant productivity are reported. It is pointed out that a better understanding of these catalytic mechanisms is necessary before the activities can be tailored to specific purposes. (BLM)

  9. Variations in Km(CO2) of Ribulose-1,5-bisphosphate Carboxylase among Grasses

    PubMed Central

    Yeoh, Hock-Hin; Badger, Murray R.; Watson, Leslie

    1980-01-01

    A survey of the Km(CO2) values of ribulose-1,5-bisphosphate carboxylase from 60 grass species shows that enzyme from C3 grasses consistently exhibits lower Km(CO2) than does that from C4 grasses. Systematically ordered variation in Km(CO2) of ribulose-1,5-bisphosphate carboxylases from C3 and C4 grasses is also apparent and, among C4 grasses, this shows some correlation with C4 types. PMID:16661586

  10. Crystallization and structure of a recombinant ribulose-1,5-bisphosphate carboxylase

    NASA Astrophysics Data System (ADS)

    Schneider, Gunter; Lindqvist, Ylva; Brändén, Carl-Ivar; Lorimer, George

    1988-07-01

    Ribulose-1,5-bisphosphate carboxylase/oxygenase is the key enzyme in photosynthetic carbon dioxide fixation and photorespiration. The dimeric carboxylase from the photosynthetic bacterium Rhodospirillum rubrum has been cloned and expressed in E. coli. The recombinant enzyme has been crystallized in a number of different crystal forms. The three-dimensional structure of the enzyme has been determined by X-ray crystallographic methods to 2.9Åresolution.

  11. Chemical and Physical Characterization of the Activation of Ribulosebiphosphate Carboxylase/Oxygenase

    DOE R&D Accomplishments Database

    Donnelly, M. I.; Ramakrishnan, V.; Hartman, F. C.

    1983-08-01

    Molecular structure of ribulosebiphosphate carboxylase/oxygenase isolated from Rhodospirillium was compared with the enzyme isolated from Alcaligens eutrophus. Peptides derived from the active center of the bacterial enzyme were highly homologous with those isolated from spinach. Molecular shapes of the carboxylases were estimated using neutron scattering data. These studies suggested that the enzyme as isolated from R. rubrum is a solid prolate ellipsoid or cylinder, while the spinach enzyme resembles a hollow sphere.

  12. Induction of pyruvate carboxylase apoenzyme and holoenzyme in 3T3-L1 cells during differentiation

    PubMed Central

    Freytag, Svend O.; Utter, Merton F.

    1980-01-01

    The specific activity of pyruvate carboxylase [pyruvate:carbon-dioxide ligase (ADP-forming); EC 6.4.1.1] in 3T3-L1 cells increases approximately 20-fold when these cells differentiate to an adipocyte-like form [Mackall, J. C. & Lane, M. D. (1977) Biochem. Biophys. Res. Commun. 79, 720-725]. A specific antibody to the purified rat liver enzyme quantitatively precipitated pyruvate carboxylase from 3T3-L1 crude homogenates. Use of this immunological technique permitted us to demonstrate that the increase in pyruvate carboxylase activity is due to an increase in the intracellular concentration of the enzyme. The content of pyruvate carboxylase in differentiated 3T3-L1 cells is sufficiently high (1-2% of total protein) that the increase in this large protein (subunit Mr = 130,000) can be visualized when 3T3-L1 crude extracts are subjected to electrophoresis on sodium dodecyl sulfate/polyacrylamide gels. When 3T3-L1 cells differentiated in the presence of avidin, they contained less than 5% of the pyruvate carboxylase activity of cells that differentiated in the absence of avidin. However, the immunoprecipitable pyruvate carboxylase content of the avidin-treated cells was essentially the same as that of cells that differentiated without avidin. Full activity of the enzyme was rapidly restored in the avidin-treated cells upon the addition of excess biotin. The recovery of activity was closely correlated with the incorporation of [14C]biotin into immunoprecipitable pyruvate carboxylase. The rapidity with which the activity was restored and the insensitivity of the process to inhibitors of protein synthesis strongly suggest that the apoenzyme of pyruvate carboxylase accumulates during differentiation in the presence of avidin. Images PMID:6929488

  13. Chemical and physical characterization of the activation of ribulosebiphosphate carboxylase/oxygenase

    SciTech Connect

    Donnelly, M.I.; Ramakrishnan, V.; Hartman, F.C.

    1983-01-01

    Molecular structure of ribulosebiphosphate carboxylase/oxygenase isolated from Rhodospirillium was compared with the enzyme isolated from Alcaligens eutrophus. Peptides derived from the active center of the bacterial enzyme were highly homologous with those isolated from spinach. Molecular shapes of the carboxylases were estimated using neutron scattering data. These studies suggested that the enzyme as isolated from R. rubrum is a solid prolate ellipsoid or cylinder, while the spinach enzyme resembles a hollow sphere. 1 drawing.

  14. Structural Analysis of Substrate, Reaction Intermediate, and Product Binding in Haemophilus influenzae Biotin Carboxylase

    PubMed Central

    Broussard, Tyler C.; Pakhomova, Svetlana; Neau, David B.; Bonnot, Ross; Waldrop, Grover L.

    2015-01-01

    Acetyl-CoA carboxylase catalyzes the first and regulated step in fatty acid synthesis. In most Gram-negative and Gram-positive bacteria, the enzyme is composed of three proteins: biotin carboxylase, a biotin carboxyl carrier protein (BCCP), and carboxyltransferase. The reaction mechanism involves two half-reactions with biotin carboxylase catalyzing the ATP-dependent carboxylation of biotin-BCCP in the first reaction. In the second reaction, carboxyltransferase catalyzes the transfer of the carboxyl group from biotin-BCCP to acetyl-CoA to form malonyl-CoA. In this report, high-resolution crystal structures of biotin carboxylase from Haemophilus influenzae were determined with bicarbonate, the ATP analogue AMPPCP; the carboxyphosphate intermediate analogues, phosphonoacetamide and phosphonoformate; the products ADP and phosphate; and the carboxybiotin analogue N1′-methoxycarbonyl biotin methyl ester. The structures have a common theme in that bicarbonate, phosphate, and the methyl ester of the carboxyl group of N1′-methoxycarbonyl biotin methyl ester all bound in the same pocket in the active site of biotin carboxylase and as such utilize the same set of amino acids for binding. This finding suggests a catalytic mechanism for biotin carboxylase in which the binding pocket that binds tetrahedral phosphate also accommodates and stabilizes a tetrahedral dianionic transition state resulting from direct transfer of CO2 from the carboxyphosphate intermediate to biotin. PMID:26020841

  15. Structural Analysis of Substrate, Reaction Intermediate, and Product Binding in Haemophilus influenzae Biotin Carboxylase.

    PubMed

    Broussard, Tyler C; Pakhomova, Svetlana; Neau, David B; Bonnot, Ross; Waldrop, Grover L

    2015-06-23

    Acetyl-CoA carboxylase catalyzes the first and regulated step in fatty acid synthesis. In most Gram-negative and Gram-positive bacteria, the enzyme is composed of three proteins: biotin carboxylase, a biotin carboxyl carrier protein (BCCP), and carboxyltransferase. The reaction mechanism involves two half-reactions with biotin carboxylase catalyzing the ATP-dependent carboxylation of biotin-BCCP in the first reaction. In the second reaction, carboxyltransferase catalyzes the transfer of the carboxyl group from biotin-BCCP to acetyl-CoA to form malonyl-CoA. In this report, high-resolution crystal structures of biotin carboxylase from Haemophilus influenzae were determined with bicarbonate, the ATP analogue AMPPCP; the carboxyphosphate intermediate analogues, phosphonoacetamide and phosphonoformate; the products ADP and phosphate; and the carboxybiotin analogue N1'-methoxycarbonyl biotin methyl ester. The structures have a common theme in that bicarbonate, phosphate, and the methyl ester of the carboxyl group of N1'-methoxycarbonyl biotin methyl ester all bound in the same pocket in the active site of biotin carboxylase and as such utilize the same set of amino acids for binding. This finding suggests a catalytic mechanism for biotin carboxylase in which the binding pocket that binds tetrahedral phosphate also accommodates and stabilizes a tetrahedral dianionic transition state resulting from direct transfer of CO₂ from the carboxyphosphate intermediate to biotin. PMID:26020841

  16. Transcriptional activation of phosphoenolpyruvate carboxylase by phosphorus deficiency in tobacco.

    PubMed

    Toyota, Kentaro; Koizumi, Nozomu; Sato, Fumihiko

    2003-03-01

    Phosphoenolpyruvate carboxylase (PEPC), which catalyses the carboxylation of phosphoenolpyruvate using HCO(3)(-) to generate oxaloacetic acid, is an important enzyme in the primary metabolism of plants. Although the PEPC genes (ppc) comprise only a small gene family, the function of each gene is not clear, except for roles in C(4) photosynthesis and CAM. Three PEPC genes (Nsppc1-3) from the C(3) plant Nicotiana sylvestris were used to investigate their roles and regulation in a C(3) plant, and their regulation by phosphorus depletion in particular. First, the induction of PEPC by phosphorus depletion was confirmed. Next, Nsppc1 was determined to be mainly responsive to phosphorus deficiency at the transcriptional level. Further studies using transgenic tobacco harbouring a chimeric gene consisting of the 2.0 kb promoter region of Nsppc1 and the beta-glucuronidase (GUS) reporter showed that PEPC is transcriptionally induced. It was also found that sucrose had a synergistic effect on the induction of PEPC by phosphorus deficiency. A series of transgenic tobacco containing 5'-deletion mutants of Nsppc1 promoter::GUS fusion revealed that the -539 to -442 bp Nsppc1 promoter region, relative to the translation start site, was necessary for the response to phosphorus deficiency. Gain-of-function analysis using a construct containing three tandem repeats of the -539 to -442 bp region confirmed that this region was sufficient to induce the phosphorus-deficiency response in tobacco. PMID:12598567

  17. Phosphorylation and RLK signaling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant genomes encode hundreds of receptor-like kinases (RLKs) with an organization of functional domains similar to that of animal receptor kinases. Ligand-dependent phosphorylation has now been demonstrated for several plant RLKs and identification of specific phosphorylation sites followed by thei...

  18. Genes encoding biotin carboxylase subunit of acetyl-CoA carboxylase from Brassica napus and parental species: cloning, expression patterns, and evolution

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Comparative genomics is a useful tool to investigate gene and genome evolution. Biotin carboxylase (BC), an important subunit of heteromeric ACCase that is a rate-limiting enzyme in fatty acid biosynthesis in dicots, catalyzes ATP, biotin-carboxyl-carrier protein and CO2 to form carboxybiotin-carbo...

  19. Cloning, expression, purification and physical and kinetic characterization of the phosphoenolpyruvate carboxylase from orange (Citrus sinensis osbeck var. Valencia) fruit juice sacs.

    PubMed

    Perotti, Valeria E; Figueroa, Carlos M; Andreo, Carlos S; Iglesias, Alberto A; Podestá, Florencio E

    2010-11-01

    Phosphoenolpyruvate (PEP) carboxylase (PEPCase) from orange fruit juice sacs has been cloned and heterogously expressed in high yield. The purified recombinant enzyme displays properties typical of plant PEPCase, including activation by sugar phosphates and inhibition by malate and citrate. Malate inhibition is weak in the physiological pH range, and the enzyme is also poorly affected by Glu and Asp, known inhibitors of C(3) plants PEPCases. However, it is strongly inhibited by citrate. Orange fruit PEPCase phosphorylation by mammalian protein kinase A decreased inhibition by malate. The enzyme presents an unusual high molecular mass in the absence of PEP, while in its presence it displays a more common tetrameric arrangement. The overall properties of the enzyme suggest that it is suited for organic acid synthesis and NADH reoxidation in the mature fruit. The present study provides the first analysis of a recombinant fruit PEPCase. PMID:21802611

  20. Pyruvate Carboxylase Activates the RIG-I-like Receptor-Mediated Antiviral Immune Response by Targeting the MAVS signalosome.

    PubMed

    Cao, Zhongying; Zhou, Yaqin; Zhu, Shengli; Feng, Jian; Chen, Xueyuan; Liu, Shi; Peng, Nanfang; Yang, Xiaodan; Xu, Gang; Zhu, Ying

    2016-01-01

    When retinoic acid-inducible gene 1 protein (RIG-I)-like receptors sense viral dsRNA in the cytosol, RIG-I and melanoma differentiation-associated gene 5 (MDA5) are recruited to the mitochondria to interact with mitochondrial antiviral signaling protein (MAVS) and initiate antiviral immune responses. In this study, we demonstrate that the biotin-containing enzyme pyruvate carboxylase (PC) plays an essential role in the virus-triggered activation of nuclear factor kappa B (NF-κB) signaling mediated by MAVS. PC contributes to the enhanced production of type I interferons (IFNs) and pro-inflammatory cytokines, and PC knockdown inhibits the virus-triggered innate immune response. In addition, PC shows extensive antiviral activity against RNA viruses, including influenza A virus (IAV), human enterovirus 71 (EV71), and vesicular stomatitis virus (VSV). Furthermore, PC mediates antiviral action by targeting the MAVS signalosome and induces IFNs and pro-inflammatory cytokines by promoting phosphorylation of NF-κB inhibitor-α (IκBα) and the IκB kinase (IKK) complex, as well as NF-κB nuclear translocation, which leads to activation of interferon-stimulated genes (ISGs), including double-stranded RNA-dependent protein kinase (PKR) and myxovirus resistance protein 1 (Mx1). Our findings suggest that PC is an important player in host antiviral signaling. PMID:26906558

  1. Pyruvate Carboxylase Activates the RIG-I-like Receptor-Mediated Antiviral Immune Response by Targeting the MAVS signalosome

    PubMed Central

    Cao, Zhongying; Zhou, Yaqin; Zhu, Shengli; Feng, Jian; Chen, Xueyuan; Liu, Shi; Peng, Nanfang; Yang, Xiaodan; Xu, Gang; Zhu, Ying

    2016-01-01

    When retinoic acid-inducible gene 1 protein (RIG-I)-like receptors sense viral dsRNA in the cytosol, RIG-I and melanoma differentiation-associated gene 5 (MDA5) are recruited to the mitochondria to interact with mitochondrial antiviral signaling protein (MAVS) and initiate antiviral immune responses. In this study, we demonstrate that the biotin-containing enzyme pyruvate carboxylase (PC) plays an essential role in the virus-triggered activation of nuclear factor kappa B (NF-κB) signaling mediated by MAVS. PC contributes to the enhanced production of type I interferons (IFNs) and pro-inflammatory cytokines, and PC knockdown inhibits the virus-triggered innate immune response. In addition, PC shows extensive antiviral activity against RNA viruses, including influenza A virus (IAV), human enterovirus 71 (EV71), and vesicular stomatitis virus (VSV). Furthermore, PC mediates antiviral action by targeting the MAVS signalosome and induces IFNs and pro-inflammatory cytokines by promoting phosphorylation of NF-κB inhibitor-α (IκBα) and the IκB kinase (IKK) complex, as well as NF-κB nuclear translocation, which leads to activation of interferon-stimulated genes (ISGs), including double-stranded RNA-dependent protein kinase (PKR) and myxovirus resistance protein 1 (Mx1). Our findings suggest that PC is an important player in host antiviral signaling. PMID:26906558

  2. Ribulose bisphosphate carboxylase from methanol-grown Paracoccus denitrificans.

    PubMed Central

    Shively, J M; Saluja, A; McFadden, B A

    1978-01-01

    Paracoccus denitrificans grows on methanol as the sole source of energy and carbon, which it assimilates aerobically via the reductive pentose phosphate cycle. This gram-negative bacterium grew rapidly on 50 mM methanol (generation time, 7 h, 30 degrees C) in excellent yield (3 g of wet-packed cells per liter of culture). Electron microscopic studies indicated that the late-log-phase cells were coccoid, having a thick envelope surrounding a layer of more diffuse electron-dense material and a relatively electron-transparent core. Ribulose bisphosphate carboxylase in the 15,000 X g supernatant of fresh cells had specific activities (micromoles of CO2 fixed per minute per milligram of protein) of 0.026, 0.049, 0.085, 0.128, and 0.034 during the lag, early, mild-, and late log, and late stationary phases, respectively. The enzyme was purified 40-fold by pelleting at 159,000 X g, salting out, sedimentation into a 0.2 to 0.8 M linear sucrose gradient, and elution from a diethylaminoethyl-Sephadex column. The enzyme was homogeneous by the criteria of electrophoresis on polyacrylamide gels polymerized from several acrylamide concentrations and sedimentation behavior. The molecular weight of the native enzyme, as measured by gel electrophoresis and gel filtration, averaged 525,000. Sodium dodecyl sulfate dissociated the enzyme into two types of subunits with molecular weights of 55,000 and 13,600. The S20,w of the enzyme was 14.0 Km values for ribulose bisphosphate and CO2 were 0.166 and 0.051 mM, respectively, and the enzyme was inhibited to the extent of 94% by 1 mM 6-phosphogluconate. Images PMID:659365

  3. Metabolite Regulation of Partially Purified Soybean Nodule Phosphoenolpyruvate Carboxylase 1

    PubMed Central

    Schuller, Kathryn A.; Turpin, David H.; Plaxton, William C.

    1990-01-01

    Phosphoenolpyruvate carboxylase (PEPC) was purified 40-fold from soybean (Glycine max L. Merr.) nodules to a specific activity of 5.2 units per milligram per protein and an estimated purity of 28%. Native and subunit molecular masses were determined to be 440 and 100 kilodaltons, respectively, indicating that the enzyme is a homotetramer. The response of enzyme activity to phosphoenolpyruvate (PEP) concentration and to various effectors was influenced by assay pH and glycerol addition to the assay. At pH 7 in the absence of glycerol, the Km (PEP) was about twofold greater than at pH 7 in the presence of glycerol or at pH 8. At pH 7 or pH 8 the Km (MgPEP) was found to be significantly lower than the respective Km (PEP) values. Glucose-6-phosphate, fructose-6-phosphate, glucose-1-phosphate, and dihydroxyacetone phosphate activated PEPC at pH 7 in the absence of glycerol, but had no effect under the other assay conditions. Malate, aspartate, glutamate, citrate, and 2-oxoglutarate were potent inhibitors of PEPC at pH 7 in the absence of glycerol, but their effectiveness was decreased by raising the pH to 8 and/or by adding glycerol. In contrast, 3-phosphoglycerate and 2-phosphoglycerate were less effective inhibitors at pH 7 in the absence of glycerol than under the other assay conditions. Inorganic phosphate (up to 20 millimolar) was an activator at pH 7 in the absence of glycerol but an inhibitor under the other assay conditions. The possible significance of metabolite regulation of PEPC is discussed in relation to the proposed functions of this enzyme in legume nodule metabolism. Images Figure 1 Figure 2 PMID:16667849

  4. Metabolite Control Overrides Circadian Regulation of Phosphoenolpyruvate Carboxylase Kinase and CO(2) Fixation in Crassulacean Acid Metabolism.

    PubMed

    Borland; Hartwell; Jenkins; Wilkins; Nimmo

    1999-11-01

    Phosphoenolpyruvate carboxylase (PEPc) catalyzes the primary fixation of CO(2) in Crassulacean acid metabolism plants. Flux through the enzyme is regulated by reversible phosphorylation. PEPc kinase is controlled by changes in the level of its translatable mRNA in response to a circadian rhythm. The physiological significance of changes in the levels of PEPc-kinase-translatable mRNA and the involvement of metabolites in control of the kinase was investigated by subjecting Kalanchoë daigremontiana leaves to anaerobic conditions at night to modulate the magnitude of malate accumulation, or to a rise in temperature at night to increase the efflux of malate from vacuole to cytosol. Changes in CO(2) fixation and PEPc kinase activity reflected those in kinase mRNA. The highest rates of CO(2) fixation and levels of kinase mRNA were observed in leaves subjected to anaerobic treatment for the first half of the night and then transferred to ambient air. In leaves subjected to anaerobic treatment overnight and transferred to ambient air at the start of the day, PEPc-kinase-translatable mRNA and activity, the phosphorylation state of PEPc, and fixation of atmospheric CO(2) were significantly higher than those for control leaves for the first 3 h of the light period. A nighttime temperature increase from 19 degrees C to 27 degrees C led to a rapid reduction in kinase mRNA and activity; however, this was not observed in leaves in which malate accumulation had been prevented by anaerobic treatment. These data are consistent with the hypothesis that a high concentration of malate reduces both kinase mRNA and the accumulation of the kinase itself. PMID:10557237

  5. Mining Conditional Phosphorylation Motifs.

    PubMed

    Liu, Xiaoqing; Wu, Jun; Gong, Haipeng; Deng, Shengchun; He, Zengyou

    2014-01-01

    Phosphorylation motifs represent position-specific amino acid patterns around the phosphorylation sites in the set of phosphopeptides. Several algorithms have been proposed to uncover phosphorylation motifs, whereas the problem of efficiently discovering a set of significant motifs with sufficiently high coverage and non-redundancy still remains unsolved. Here we present a novel notion called conditional phosphorylation motifs. Through this new concept, the motifs whose over-expressiveness mainly benefits from its constituting parts can be filtered out effectively. To discover conditional phosphorylation motifs, we propose an algorithm called C-Motif for a non-redundant identification of significant phosphorylation motifs. C-Motif is implemented under the Apriori framework, and it tests the statistical significance together with the frequency of candidate motifs in a single stage. Experiments demonstrate that C-Motif outperforms some current algorithms such as MMFPh and Motif-All in terms of coverage and non-redundancy of the results and efficiency of the execution. The source code of C-Motif is available at: https://sourceforge. net/projects/cmotif/. PMID:26356863

  6. Mitochondrial SIRT4-type proteins in C. elegans and mammals interact with pyruvate carboxylase and other acetylated biotin-dependent carboxylases

    PubMed Central

    Wirth, Martina; Karaca, Samir; Wenzel, Dirk; Ho, Linh; Tishkoff, Daniel; Lombard, David B.; Verdin, Eric; Urlaub, Henning; Jedrusik-Bode, Monika; Fischle, Wolfgang

    2013-01-01

    The biological and enzymatic function of SIRT4 is largely uncharacterized. We show that the C. elegans SIR-2.2 and SIR-2.3 orthologs of SIRT4 are ubiquitously expressed, also localize to mitochondria and function during oxidative stress. Further, we identified conserved interaction with mitochondrial biotin-dependent carboxylases (PC, PCC, MCCC), key enzymes in anaplerosis and ketone body formation. The carboxylases were found acetylated on multiple lysine residues and detailed analysis of mPC suggested that one of these residues, K748ac, might regulate enzymatic activity. Nevertheless, no changes in mPC acetylation levels and enzymatic activity could be detected upon overexpression or loss of functional SIRT4. PMID:23438705

  7. Fenofibrate activates AMPK and increases eNOS phosphorylation in HUVEC

    SciTech Connect

    Murakami, Hisashi; Murakami, Ryuichiro . E-mail: ryuichi@med.nagoya-u.ac.jp; Kambe, Fukushi; Cao, Xia; Takahashi, Ryotaro; Asai, Toru; Hirai, Toshihisa; Numaguchi, Yasushi; Okumura, Kenji; Seo, Hisao; Murohara, Toyoaki

    2006-03-24

    Fenofibrate improves endothelial function by lipid-lowering and anti-inflammatory effects. Additionally, fenofibrate has been demonstrated to upregulate endothelial nitric oxide synthase (eNOS). AMP-activated protein kinase (AMPK) has been reported to phosphorylate eNOS at Ser-1177 and stimulate vascular endothelium-derived nitric oxide (NO) production. We report here that fenofibrate activates AMPK and increases eNOS phosphorylation and NO production in human umbilical vein endothelial cells (HUVEC). Incubation of HUVEC with fenofibrate increased the phosphorylation of AMPK and acetyl-CoA carboxylase. Fenofibrate simultaneously increased eNOS phosphorylation and NO production. Inhibitors of protein kinase A and phosphatidylinositol 3-kinase failed to suppress the fenofibrate-induced eNOS phosphorylation. Neither bezafibrate nor WY-14643 activated AMPK in HUVEC. Furthermore, fenofibrate activated AMPK without requiring any transcriptional activities. These results indicate that fenofibrate stimulates eNOS phosphorylation and NO production through AMPK activation, which is suggested to be a novel characteristic of this agonist and unrelated to its effects on peroxisome proliferator-activated receptor {alpha}.

  8. Competing carboxylases: circadian and metabolic regulation of Rubisco in C3 and CAM Mesembryanthemum crystallinum L.

    PubMed

    Davies, B N; Griffiths, H

    2012-07-01

    The temporal co-ordination of ribulose 1·5-bisphosphate carboxylase/oxygenase (Rubisco) and phosphoenolpyruvate carboxylase (PEPc) activities by Mesembryanthemum crystallinum L. in C(3) and crassulacean acid metabolism (CAM) modes was investigated under conventional light-dark (LD) and continuous light (LL) conditions. When C(3) , net CO(2) assimilation rate increased during each subjective night under LL with maximum carboxylation unrelated to Rubisco activation state. The CAM circadian rhythm of CO(2) uptake was more pronounced, with CO(2) assimilation rate maximal towards the end of each subjective night. In vivo and in vitro techniques were integrated to map carboxylase enzyme regulation to the framework provided by CAM LL gas exchange activity. Rubisco was activated in vitro throughout each subjective dark period and consistently deactivated at each subjective dawn, similar to that observed at true dawn in constitutive CAM species. Instantaneous carbon isotope discrimination showed in vivo carboxylase co-dominance during the CAM subjective night, initially by Rubisco and latterly C(4) (PEPc), despite both enzymes seemingly activated in vitro. The circadian rhythm in titratable acidity accumulation was progressively damped over successive subjective nights, but maintenance of PEPc carboxylation capacity ensures that CAM plants do not become progressively more 'C(3) -like' with time under LL. PMID:22239463

  9. Isolation of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase from Leaves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is a multi-functional enzyme that catalyzes the fixation of CO2 and O2 in photosynthesis and photorespiration, respectively. As the rate-limiting step in photosynthesis, improving the catalytic properties of Rubisco has long been viewed as a...

  10. Crystal Structure of the alpha6beta6 Holoenzyme of propionyl-coenzyme A Carboxylase

    SciTech Connect

    Huang, C.; Sadre-Bazzaz, K; Shen, Y; Deng, B; Zhou, Z; Tong, L

    2010-01-01

    Propionyl-coenzyme A carboxylase (PCC), a mitochondrial biotin-dependent enzyme, is essential for the catabolism of the amino acids Thr, Val, Ile and Met, cholesterol and fatty acids with an odd number of carbon atoms. Deficiencies in PCC activity in humans are linked to the disease propionic acidaemia, an autosomal recessive disorder that can be fatal in infants. The holoenzyme of PCC is an {alpha}{sub 6}{beta}{sub 6} dodecamer, with a molecular mass of 750 kDa. The {alpha}-subunit contains the biotin carboxylase (BC) and biotin carboxyl carrier protein (BCCP) domains, whereas the {beta}-subunit supplies the carboxyltransferase (CT) activity. Here we report the crystal structure at 3.2-{angstrom} resolution of a bacterial PCC {alpha}{sub 6}{beta}{sub 6} holoenzyme as well as cryo-electron microscopy (cryo-EM) reconstruction at 15-{angstrom} resolution demonstrating a similar structure for human PCC. The structure defines the overall architecture of PCC and reveals unexpectedly that the {alpha}-subunits are arranged as monomers in the holoenzyme, decorating a central {beta}{sub 6} hexamer. A hitherto unrecognized domain in the {alpha}-subunit, formed by residues between the BC and BCCP domains, is crucial for interactions with the {beta}-subunit. We have named it the BT domain. The structure reveals for the first time the relative positions of the BC and CT active sites in the holoenzyme. They are separated by approximately 55 {angstrom}, indicating that the entire BCCP domain must translocate during catalysis. The BCCP domain is located in the active site of the {beta}-subunit in the current structure, providing insight for its involvement in the CT reaction. The structural information establishes a molecular basis for understanding the large collection of disease-causing mutations in PCC and is relevant for the holoenzymes of other biotin-dependent carboxylases, including 3-methylcrotonyl-CoA carboxylase (MCC) and eukaryotic acetyl-CoA carboxylase (ACC).

  11. Struvite and prebiotic phosphorylation.

    NASA Technical Reports Server (NTRS)

    Handschuh, G. J.; Orgel, L. E.

    1973-01-01

    Struvite rather than apatite or amorphous calcium phosphate is precipitated when phosphate is added to seawater containing more than 0.01M NH4+ ions. Struvite may have precipitated from evaporating seawater on the primitive earth, and may have been important for prebiotic phosphorylation.

  12. Computational redesign of bacterial biotin carboxylase inhibitors using structure-based virtual screening of combinatorial libraries.

    PubMed

    Brylinski, Michal; Waldrop, Grover L

    2014-01-01

    As the spread of antibiotic resistant bacteria steadily increases, there is an urgent need for new antibacterial agents. Because fatty acid synthesis is only used for membrane biogenesis in bacteria, the enzymes in this pathway are attractive targets for antibacterial agent development. Acetyl-CoA carboxylase catalyzes the committed and regulated step in fatty acid synthesis. In bacteria, the enzyme is composed of three distinct protein components: biotin carboxylase, biotin carboxyl carrier protein, and carboxyltransferase. Fragment-based screening revealed that amino-oxazole inhibits biotin carboxylase activity and also exhibits antibacterial activity against Gram-negative organisms. In this report, we redesigned previously identified lead inhibitors to expand the spectrum of bacteria sensitive to the amino-oxazole derivatives by including Gram-positive species. Using 9,411 small organic building blocks, we constructed a diverse combinatorial library of 1.2×10⁸ amino-oxazole derivatives. A subset of 9×10⁶ of these compounds were subjected to structure-based virtual screening against seven biotin carboxylase isoforms using similarity-based docking by eSimDock. Potentially broad-spectrum antibiotic candidates were selected based on the consensus ranking by several scoring functions including non-linear statistical models implemented in eSimDock and traditional molecular mechanics force fields. The analysis of binding poses of the top-ranked compounds docked to biotin carboxylase isoforms suggests that: (1) binding of the amino-oxazole anchor is stabilized by a network of hydrogen bonds to residues 201, 202 and 204; (2) halogenated aromatic moieties attached to the amino-oxazole scaffold enhance interactions with a hydrophobic pocket formed by residues 157, 169, 171 and 203; and (3) larger substituents reach deeper into the binding pocket to form additional hydrogen bonds with the side chains of residues 209 and 233. These structural insights into drug

  13. Carbon dioxide assimilation in blue-green algae: initial studies on the structure of ribulose 1,5-bisphosphate carboxylase.

    PubMed Central

    Tabita, F R; Stevens, S E; Gibson, J L

    1976-01-01

    D-Ribulose 1,5-bisphosphate carboxylase was purified from the blue-green alga Anabaena cylindrica (Lemm) by procedures involving acid precipitation, ammonium sulfate fractionation, and Sephadex G-200 gel filtration. The enzyme was homogeneous by the criterion of polyacrylamide disc gel electrophoresis and was a multimer of a single-size polypeptide chain of 54,000 daltons. The carboxylases from four species of blue-green algae (Anabaena, Nostoc strain MAC, Agmenellum quadruplicatum strain PR-6, and Anacystis nidulans strain TX20) were closely similar in molecular size, since enzyme activity was eluted at the same volume after sucrose gradient centrifugation. Further analysis by gel filtration indicated that the four blue-green algal carboxylases were nearly identical in molecular weight, ranging from 449 to 453,000. The amino acid composition of the Anabaena carboxylase was determined and was found to resemble closely the composition of the large subunit from eukaryotic photosynthetic organisms. Images PMID:812868

  14. Crystal Structures of Human and Staphylococcus aureus Pyruvate Carboxylase and Molecular Insights into the Carboxyltransfer Reaction

    SciTech Connect

    Xiang,S.; Tong, L.

    2008-01-01

    Pyruvate carboxylase (PC) catalyzes the biotin-dependent production of oxaloacetate and has important roles in gluconeogenesis, lipogenesis, insulin secretion and other cellular processes. PC contains the biotin carboxylase (BC), carboxyltransferase (CT) and biotin-carboxyl carrier protein (BCCP) domains. We report here the crystal structures at 2.8-Angstroms resolution of full-length PC from Staphylococcus aureus and the C-terminal region (missing only the BC domain) of human PC. A conserved tetrameric association is observed for both enzymes, and our structural and mutagenesis studies reveal a previously uncharacterized domain, the PC tetramerization (PT) domain, which is important for oligomerization. A BCCP domain is located in the active site of the CT domain, providing the first molecular insights into how biotin participates in the carboxyltransfer reaction. There are dramatic differences in domain positions in the monomer and the organization of the tetramer between these enzymes and the PC from Rhizobium etli.

  15. Regulation and structure of the heteromeric acetyl-CoA carboxylase.

    PubMed

    Salie, Matthew J; Thelen, Jay J

    2016-09-01

    The enzyme acetyl-CoA carboxylase (ACCase) catalyzes the committed step of the de novo fatty acid biosynthesis (FAS) pathway by converting acetyl-CoA to malonyl-CoA. Two forms of ACCase exist in nature, a homomeric and heteromic form. The heteromeric form of this enzyme requires four different subunits for activity: biotin carboxylase; biotin carboxyl carrier protein; and α- and β-carboxyltransferases. Heteromeric ACCases (htACCase) can be found in prokaryotes and the plastids of most plants. The plant htACCase is regulated by diverse mechanisms reflected by the biochemical and genetic complexity of this multienzyme complex and the plastid stroma where it resides. In this review we summarize the regulation of the plant htACCase and also describe the structural characteristics of this complex from both prokaryotes and plants. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner. PMID:27091637

  16. Inhibition of acetyl-CoA carboxylase by cystamine may mediate the hypotriglyceridemic activity of pantethine.

    PubMed

    McCarty, M F

    2001-03-01

    Pantethine is a versatile and well-tolerated hypolipidemic agent whose efficacy in this regard appears to be mediated by its catabolic product cystamine, a nucleophile which avidly attacks disulfide groups. An overview of pantethine research suggests that the hypotriglyceridemic activity of pantethine reflects cystamine-mediated inhibition of the hepatic acetyl-CoA carboxylase, which can be expected to activate hepatic fatty acid oxidation. Inhibition of HMG-CoA reductase as well as a more distal enzyme in the cholesterol synthetic pathway may account for pantethine's hypocholesterolemic effects. If pantethine does indeed effectively inhibit hepatic acetyl-CoA carboxylase, it may have adjuvant utility in the hepatothermic therapy of obesity. As a safe and effective compound of natural origin, pantethine merits broader use in the management of hyperlipidemias. PMID:11359352

  17. Localization of Ribulose Bisphosphate Carboxylase in the Guard Cells by an Indirect, Immunofluorescence Technique 1

    PubMed Central

    Madhavan, Soundararajan; Smith, Bruce N.

    1982-01-01

    Ribulose bisphosphate carboxylase, a key enzyme in the photosynthetic carboxylation process, has been localized through an indirect immunofluorescent technique in the guard cells of some of the 41 species of plants examined. This sample includes 17 families of both dicotyledons and monocotyledons, one gymnosperm, and one pteridophyte. Plants were selected to represent all of the three major photosynthetic categories, namely C3, C4, and Crassulacean acid metabolism. Antibodies raised against tobacco (Nicotiana tabacum L.) ribulose bisphosphate carboxylase were used for this immunofluorescent study. A good degree of fluorescence was observed in the guard cells of seven out of 21 species exhibiting Crassulacean acid metabolism. C3 plants exhibited a very low degree (almost negligible) of fluorescence, while the C4 species did not exhibit any fluorescence. Images PMID:16662174

  18. Vitamin K-dependent carboxylase: possible role of the substrate "propeptide" as an intracellular recognition site.

    PubMed Central

    Suttie, J W; Hoskins, J A; Engelke, J; Hopfgartner, A; Ehrlich, H; Bang, N U; Belagaje, R M; Schoner, B; Long, G L

    1987-01-01

    The liver microsomal vitamin K-dependent carboxylase catalyzes the posttranslational conversion of specific glutamate residues to gamma-carboxyglutamate residues in a limited number of proteins. A number of these proteins have been shown to contain a homologous basic amino acid-rich "propeptide" between the leader sequence and the amino terminus of the mature protein. Plasmids encoding protein C, a vitamin K-dependent protein, containing or lacking a propeptide region were constructed and the protein was expressed in Escherichia coli. The protein products were assayed as substrates in an in vitro vitamin K-dependent carboxylase system. Only proteins containing a propeptide region were substrates for the enzyme. These data support the hypothesis that this sequence of the primary gene product is an important recognition site for this processing enzyme. PMID:3543932

  19. Phosphoenolpyruvate carboxylase from pennywort (Umbilicus rupestris). Changes in properties after exposure to water stress.

    PubMed Central

    Daniel, P P; Bryant, J A; Woodward, F I

    1984-01-01

    Umbilicus rupestris (pennywort) switches from C3 photosynthesis to an incomplete form of crassulacean acid metabolism (referred to as 'CAM-idling') when exposed to water stress (drought). This switch is accompanied by an increase in the activity of phosphoenolpyruvate carboxylase. This enzyme also shows several changes in properties, including a marked decrease in sensitivity to acid pH, a lower Km for phosphoenolpyruvate, very much decreased sensitivity to the allosteric inhibitor malate, and increased responsiveness to the allosteric effector glucose 6-phosphate. The Mr of the enzyme remains unchanged, at approx. 185 000. These changes in properties of phosphoenolpyruvate carboxylase are discussed in relation to the roles of the enzyme in C3 and in CAM plants. Images Fig. 5. PMID:6712622

  20. Purification and Characterization of the Acetone Carboxylase of Cupriavidus metallidurans Strain CH34

    PubMed Central

    Rosier, Caroline; Leys, Natalie; Henoumont, Céline; Mergeay, Max

    2012-01-01

    Acetone carboxylase (Acx) is a key enzyme involved in the biodegradation of acetone by bacteria. Except for the Helicobacteraceae family, genome analyses revealed that bacteria that possess an Acx, such as Cupriavidus metallidurans strain CH34, are associated with soil. The Acx of CH34 forms the heterohexameric complex α2β2γ2 and can carboxylate only acetone and 2-butanone in an ATP-dependent reaction to acetoacetate and 3-keto-2-methylbutyrate, respectively. PMID:22492439

  1. Purification and characterization of the acetone carboxylase of Cupriavidus metallidurans strain CH34.

    PubMed

    Rosier, Caroline; Leys, Natalie; Henoumont, Céline; Mergeay, Max; Wattiez, Ruddy

    2012-06-01

    Acetone carboxylase (Acx) is a key enzyme involved in the biodegradation of acetone by bacteria. Except for the Helicobacteraceae family, genome analyses revealed that bacteria that possess an Acx, such as Cupriavidus metallidurans strain CH34, are associated with soil. The Acx of CH34 forms the heterohexameric complex α(2)β(2)γ(2) and can carboxylate only acetone and 2-butanone in an ATP-dependent reaction to acetoacetate and 3-keto-2-methylbutyrate, respectively. PMID:22492439

  2. Light Induction of Phosphoenolpyruvate Carboxylase in Etiolated Maize Leaf Tissue 1

    PubMed Central

    Hayakawa, Shinobu; Matsunaga, Kazumi; Sugiyama, Tatsuo

    1981-01-01

    An antibody for phosphoenolpyruvate carboxylase was used to isolate and to quantitate the enzyme from greening maize (cv. KOU 6) leaves. The increase in enzyme activity during greening was due to de novo synthesis, which was paralleled by increases in enzyme protein and incorporation of leucine. The light-induced activity was due to one specific isoenzyme. The action spectrum for enzyme synthesis had red and blue peaks. Images PMID:16661613

  3. Regulation of pyc1 encoding pyruvate carboxylase isozyme I by nitrogen sources in Saccharomyces cerevisiae.

    PubMed

    Huet, C; Menendez, J; Gancedo, C; François, J M

    2000-12-01

    In Saccharomyces cerevisiae, the existence of PYC1 and PYC2 encoding cytosolic pyruvate carboxylase isoform I and II is rather puzzling, owing to the lack of potent differential gene regulation by the carbon sources. We report several findings indicating that these two genes are differentially regulated by the nature of the nitrogen source. In wild-type cells, the activity of pyruvate carboxylase, which is the sum of pyruvate carboxylase isoform I and II, was two- to fivefold lower in carbon medium containing aspartate, asparagine, glutamate or glutamine instead of ammonium as the nitrogen source, whereas it was 1.5- to threefold higher when the ammonium source was substituted by arginine, methionine, threonine or leucine. These enzymatic changes were independent of the nature of the carbon source and closely correlated to the changes in beta-galactosidase from PYC1-lacZ gene fusion and in PYC1 transcripts. Transfer of exponentially growing cells of the pyc2 mutant from an aspartate or a glutamate medium to an ammonium medium caused a fivefold increase in PYC1 mRNA in less than 30 min, whereas in the inverse experiment, PYC1 transcripts returned within 30 min to the low levels found in aspartate/glutamate medium. By contrast, these conditions affected neither the pyruvate carboxylase activity encoded by PYC2 nor PYC2 mRNA. Considering that changes in PYC1 expression inversely correlated with changes in alpha-ketoglutarate concentration or in alpha-ketoglutarate/glutamate ratio following the nitrogen shift experiments, and taking into account the pivotal role of this metabolite in ammonium assimilation, it is suggested that changes in alpha-ketoglutarate or in the alpha-ketoglutarate/glutamate ratio might be implicated in triggering the nitrogen effects on PYC1 expression. The physiological significance of the differential sensitivity of PYC1 and PYC2 genes with respect to the nitrogen source in the growth medium is also discussed. PMID:11082192

  4. Discovery of spirocyclic-diamine inhibitors of mammalian acetyl CoA-carboxylase.

    PubMed

    Kung, Daniel W; Griffith, David A; Esler, William P; Vajdos, Felix F; Mathiowetz, Alan M; Doran, Shawn D; Amor, Paul A; Bagley, Scott W; Banks, Tereece; Cabral, Shawn; Ford, Kristen; Garcia-Irizarry, Carmen N; Landis, Margaret S; Loomis, Kathrine; McPherson, Kirk; Niosi, Mark; Rockwell, Kristin L; Rose, Colin; Smith, Aaron C; Southers, James A; Tapley, Susan; Tu, Meihua; Valentine, James J

    2015-11-15

    A novel series of spirocyclic-diamine based, isoform non-selective inhibitors of acetyl-CoA carboxylase (ACC) is described. These spirodiamine derivatives were discovered by design of a library to mimic the structural rigidity and hydrogen-bonding pattern observed in the co-crystal structure of spirochromanone inhibitor I. The lead compound 3.5.1 inhibited de novo lipogenesis in rat hepatocytes, with an IC50 of 0.30 μM. PMID:26411795

  5. Variations in Kinetic Properties of Ribulose-1,5-bisphosphate Carboxylases among Plants

    PubMed Central

    Yeoh, Hock-Hin; Badger, Murray R.; Watson, Leslie

    1981-01-01

    Studies of ribulose-1,5-bisphosphate (RuBP) carboxylase from taxonomically diverse plants show that the enzyme from C3 and crassulacean acid metabolism pathway species exhibits lower Km(CO2) values (12-25 micromolar) than does that from C4 species (28-34 micromolar). RuBP carboxylase from aquatic angiosperms, an aquatic bryophyte, fresh water and marine algae has yielded consistently high Km(CO2) values (30-70 micromolar), similar in range to that of the enzyme from C4 terrestrial plants. This variation in Km(CO2) is discussed in relation to the correlation between the existence of CO2-concentrating mechanisms for photosynthesis and the affinity of the enzyme for CO2. The Km(RuBP) of the enzyme from various sources ranges from 10 to 136 micromolar; mean ± sd = 36 ± 20 micromolar. This variation in Km(RuBP) does not correlate with different photosynthetic pathways, but shows taxonomic patterns. Among the dicotyledons, the enzyme from crassinucellate species exhibits lower Km(RuBP) (18 ± 4 micromolar) than does that from tenuinucellate species (25 ± 7 micromolar). Among the Poaceae, RuBP carboxylase from Triticeae, chloridoids, andropogonoids, Microlaena, and Tetrarrhena has yielded lower Km(RuBP) values (29 ± 11 micromolar) than has that from other members of the grass family (46 ± 10 micromolar). PMID:16661826

  6. Tissue Distribution of Acetyl-Coenzyme A Carboxylase in Leaves 1

    PubMed Central

    Nikolau, Basil J.; Wurtele, Eve Syrkin; Stumpf, Paul K.

    1984-01-01

    Acetyl-CoA carboxylase [acetyl-CoA—carbon dioxide ligase (ADP forming), EC 6.4.1.2] is a biotin-containing enzyme catalyzing the formation of malonyl-CoA. The tissue distribution of this enzyme was determined for leaves of C3- and C4-plants. The mesophyll tissues of the C3-plants Pisum sativum and Allium porrum contained 90% of the leaf acetyl-CoA carboxylase activity, with the epidermal tissues containing the remainder. Western blotting of proteins fractionated by sodium dodecyl sulfate polyacrylamide gel electrophoresis, using 125I-streptavidin as a probe, revealed biotinyl proteins of molecular weights 62,000, 51,000, and 32,000 in P. sativum and 62,000, 34,000, and 32,000 in A. porrum. In the C4-plant sorghum, epidermal protoplasts, mesophyll protoplasts and strands of bundle sheath cells contained 35, 47, and 17%, respectively, of the total leaf acetyl-CoA carboxylase activity. In Zea mays leaves the respective figures were 10% for epidermal protoplasts, 56% for mesophyll protoplasts, and 32% for bundle sheath strands. Biotinyl proteins of molecular weights 62,000 and 51,000 were identified in leaves of sorghum and Z. mays. The results are discussed with respect to each tissue's requirements for malonyl-CoA for various metabolic pathways. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:16663756

  7. A Substrate-induced Biotin Binding Pocket in the Carboxyltransferase Domain of Pyruvate Carboxylase*

    PubMed Central

    Lietzan, Adam D.; St. Maurice, Martin

    2013-01-01

    Biotin-dependent enzymes catalyze carboxyl transfer reactions by efficiently coordinating multiple reactions between spatially distinct active sites. Pyruvate carboxylase (PC), a multifunctional biotin-dependent enzyme, catalyzes the bicarbonate- and MgATP-dependent carboxylation of pyruvate to oxaloacetate, an important anaplerotic reaction in mammalian tissues. To complete the overall reaction, the tethered biotin prosthetic group must first gain access to the biotin carboxylase domain and become carboxylated and then translocate to the carboxyltransferase domain, where the carboxyl group is transferred from biotin to pyruvate. Here, we report structural and kinetic evidence for the formation of a substrate-induced biotin binding pocket in the carboxyltransferase domain of PC from Rhizobium etli. Structures of the carboxyltransferase domain reveal that R. etli PC occupies a symmetrical conformation in the absence of the biotin carboxylase domain and that the carboxyltransferase domain active site is conformationally rearranged upon pyruvate binding. This conformational change is stabilized by the interaction of the conserved residues Asp590 and Tyr628 and results in the formation of the biotin binding pocket. Site-directed mutations at these residues reduce the rate of biotin-dependent reactions but have no effect on the rate of biotin-independent oxaloacetate decarboxylation. Given the conservation with carboxyltransferase domains in oxaloacetate decarboxylase and transcarboxylase, the structure-based mechanism described for PC may be applicable to the larger family of biotin-dependent enzymes. PMID:23698000

  8. Carbon dioxide assimilation by leaves, isolated chloroplasts, and ribulose bisphosphate carboxylase from spinach.

    PubMed

    Lilley, R M; Walker, D A

    1975-06-01

    The relationship between rate of photosynthesis and CO(2) concentration has been reinvestigated using isolated spinach (Spinacia oleracea) chloroplasts. The apparently low CO(2) concentration required for half-maximal photosynthesis is shown to result partly from a ceiling imposed by electron transport. In double reciprocal plots of rate against CO(2) concentration, this ceiling results in departures from linearity at high CO(2) concentrations. If these rate limitations are disregarded in extrapolation the "true" CO(2) concentration required for half maximal carboxylation by intact chloroplasts is approximately 46 mum (CO(2)).When assayed under comparable conditions, ribulose bisphosphate carboxylase from these chloroplasts also shows an apparent Km (CO(2)) of approximately 46 mum, suggesting that its characteristics are not modified by extraction. An improved assay for ribulose bisphosphate carboxylase yielded rates of carboxylation considerably higher than those previously reported, the highest maximal velocities recorded approaching 1000 mumoles CO(2) fixed mg(-1) chlorophyll hr(-1) at 20 C. With such Km and V(max), values the carboxylase would be able to achieve, at concentrations of CO(2) less than atmospheric, rates of CO(2) fixation equal to those displayed by the parent tissue or by the average plant under favorable conditions in its natural environment. PMID:16659216

  9. The distribution of carbonic anhydrase and ribulose diphosphate carboxylase in maize leaves.

    PubMed

    Poincelot, R P

    1972-09-01

    Extraction of maize (Zea mays) leaves by progressive grinding under suitably protective conditions yields total carbonic anhydrase activities (4800 units per milligram chlorophyll) comparable to the activity in spinach (Spinacia oleracea) leaves. The total ribulose diphosphate carboxylase activity was also equal to or greater than the best literature values for maize. Of the total leaf carbonic anhydrase, 72.5% on a chlorophyll basis was present in the mesophyll cells and 14.2% in the bundle-sheath cells. The distribution of the total leaf ribulose diphosphate carboxylase between the mesophyll and bundle-sheath cells was 42.0 and 48.7% respectively. There was three times as much total chlorophyll in extracts of the mesophyll cells compared with the bundle-sheath cells of maize. Similar results for the above distribution of the two enzymes were found using a differential grinding technique. The possible function of carbonic anhydrase in photosynthesis is discussed. The equal distribution of ribulose diphosphate carboxylase activity between the mesophyll and bundle-sheath cells casts doubt upon the hypothesis that a rigid biochemical compartmentation exists between these cell types in maize. PMID:16658170

  10. Pyruvate carboxylase deficiency: clinical and biochemical response to anaplerotic diet therapy.

    PubMed

    Mochel, Fanny; DeLonlay, Pascale; Touati, Guy; Brunengraber, Henri; Kinman, Renee P; Rabier, Daniel; Roe, Charles R; Saudubray, Jean-Marie

    2005-04-01

    A six-day-old girl was referred for severe hepatic failure, dehydratation, axial hypotonia, and both lactic acidosis and ketoacidosis. Biotin-unresponsive pyruvate carboxylase deficiency type B was diagnosed. Triheptanoin, an odd-carbon triglyceride, was administrated as a source for acetyl-CoA and anaplerotic propionyl-CoA. Although this patient succumbed to a severe infection, during the six months interval of her anaplerotic and biochemical management, the following important observations were documented: (1) the immediate reversal (less than 48 h) of major hepatic failure with full correction of all biochemical abnormalities, (2) on citrate supplementation, the enhanced export from the liver of triheptanoin's metabolites, namely 5 carbon ketone bodies, increasing the availability of these anaplerotic substrates for peripheral organs, (3) the demonstration of the transport of C5 ketone bodies-representing alternative energetic fuel for the brain-across the blood-brain barrier, associated to increased levels of glutamine and free gamma-aminobutyric acid (f-GABA) in the cerebrospinal fluid. Considering that pyruvate carboxylase is a key enzyme for anaplerosis, besides the new perspectives brought by anaplerotic therapies in those rare pyruvate carboxylase deficiencies, this therapeutic trial also emphasizes the possible extended indications of triheptanoin in various diseases where the citric acid cycle is impaired. PMID:15781190

  11. Synaptic plasticity and phosphorylation

    PubMed Central

    Lee, Hey-Kyoung

    2009-01-01

    A number of neuronal functions, including synaptic plasticity, depend on proper regulation of synaptic proteins, many of which can be rapidly regulated by phosphorylation. Neuronal activity controls the function of these synaptic proteins by exquisitely regulating the balance of various protein kinase and protein phosphatase activity. Recent understanding of synaptic plasticity mechanisms underscores important roles that these synaptic phosphoproteins play in regulating both pre- and post-synaptic functions. This review will focus on key postsynaptic phosphoproteins that have been implicated to play a role in synaptic plasticity. PMID:16904750

  12. Determination of GPCR Phosphorylation Status: Establishing a Phosphorylation Barcode.

    PubMed

    Prihandoko, Rudi; Bradley, Sophie J; Tobin, Andrew B; Butcher, Adrian J

    2015-01-01

    G protein-coupled receptors (GPCRs) are rapidly phosphorylated following agonist occupation in a process that mediates receptor uncoupling from its cognate G protein, a process referred to as desensitization. In addition, this process provides a mechanism by which receptors can engage with arrestin adaptor molecules and couple to downstream signaling pathways. The importance of this regulatory process has been highlighted recently by the understanding that ligands can direct receptor signaling along one pathway in preference to another, the phenomenon of signaling bias that is partly mediated by the phosphorylation status or phosphorylation barcode of the receptor. Methods to determine the phosphorylation status of a GPCR in vitro and in vivo are necessary to understand not only the physiological mechanisms involved in GPCR signaling, but also to fully examine the signaling properties of GPCR ligands. This unit describes detailed methods for determining the overall phosphorylation pattern on a receptor (the phosphorylation barcode), as well as mass spectrometry approaches that can define the precise sites that become phosphorylated. These techniques, coupled with the generation and characterization of receptor phosphorylation-specific antibodies, provide a full palate of techniques necessary to determine the phosphorylation status of any given GPCR subtype. PMID:26344213

  13. Uncouplers of oxidative phosphorylation.

    PubMed

    Terada, H

    1990-07-01

    Uncouplers of oxidative phosphorylation in mitochondria inhibit the coupling between the electron transport and phosphorylation reactions and thus inhibit ATP synthesis without affecting the respiratory chain and ATP synthase (H(+)-ATPase). Miscellaneous compounds are known to be uncouplers, but weakly acidic uncouplers are representative because they show very potent activities. The most potent uncouplers discovered so far are the hindered phenol SF 6847, and hydrophobic salicylanilide S-13, which are active in vitro at concentrations in the 10 nM range. For induction of uncoupling, an acid dissociable group, bulky hydrophobic moiety and strong electron-withdrawing group are required. Weakly acidic uncouplers are considered to produce uncoupling by their protonophoric action in the H(+)-impermeable mitochondrial membrane. For exerting these effects, the stability of the respective uncoupler anions in the hydrophobic membrane is very important. High stability is achieved by delocalization of the polar ionic charge through uncoupler (chemical)-specific mechanisms. Such an action of weakly acidic uncouplers is characteristic of the highly efficient membrane targeting action of a nonsite-specific type of bioactive compound. PMID:2176586

  14. Uncouplers of oxidative phosphorylation.

    PubMed Central

    Terada, H

    1990-01-01

    Uncouplers of oxidative phosphorylation in mitochondria inhibit the coupling between the electron transport and phosphorylation reactions and thus inhibit ATP synthesis without affecting the respiratory chain and ATP synthase (H(+)-ATPase). Miscellaneous compounds are known to be uncouplers, but weakly acidic uncouplers are representative because they show very potent activities. The most potent uncouplers discovered so far are the hindered phenol SF 6847, and hydrophobic salicylanilide S-13, which are active in vitro at concentrations in the 10 nM range. For induction of uncoupling, an acid dissociable group, bulky hydrophobic moiety and strong electron-withdrawing group are required. Weakly acidic uncouplers are considered to produce uncoupling by their protonophoric action in the H(+)-impermeable mitochondrial membrane. For exerting these effects, the stability of the respective uncoupler anions in the hydrophobic membrane is very important. High stability is achieved by delocalization of the polar ionic charge through uncoupler (chemical)-specific mechanisms. Such an action of weakly acidic uncouplers is characteristic of the highly efficient membrane targeting action of a nonsite-specific type of bioactive compound. PMID:2176586

  15. Protein phosphorylation in stomatal movement

    PubMed Central

    Zhang, Tong; Chen, Sixue; Harmon, Alice C

    2014-01-01

    As research progresses on how guard cells perceive and transduce environmental cues to regulate stomatal movement, plant biologists are discovering key roles of protein phosphorylation. Early research efforts focused on characterization of ion channels and transporters in guard cell hormonal signaling. Subsequent genetic studies identified mutants of kinases and phosphatases that are defective in regulating guard cell ion channel activities, and recently proteins regulated by phosphorylation have been identified. Here we review the essential role of protein phosphorylation in ABA-induced stomatal closure and in blue light-induced stomatal opening. We also highlight evidence for the cross-talk between different pathways, which is mediated by protein phosphorylation. PMID:25482764

  16. Phosphorylation site prediction in plants.

    PubMed

    Yao, Qiuming; Schulze, Waltraud X; Xu, Dong

    2015-01-01

    Protein phosphorylation events on serine, threonine, and tyrosine residues are the most pervasive protein covalent bond modifications in plant signaling. Both low and high throughput studies reveal the importance of phosphorylation in plant molecular biology. Although becoming more and more common, the proteome-wide screening on phosphorylation by experiments remains time consuming and costly. Therefore, in silico prediction methods are proposed as a complementary analysis tool to enhance the phosphorylation site identification, develop biological hypothesis, or help experimental design. These methods build statistical models based on the experimental data, and they do not have some of the technical-specific bias, which may have advantage in proteome-wide analysis. More importantly computational methods are very fast and cheap to run, which makes large-scale phosphorylation identifications very practical for any types of biological study. Thus, the phosphorylation prediction tools become more and more popular. In this chapter, we will focus on plant specific phosphorylation site prediction tools, with essential illustration of technical details and application guidelines. We will use Musite, PhosPhAt and PlantPhos as the representative tools. We will present the results on the prediction of the Arabidopsis protein phosphorylation events to give users a general idea of the performance range of the three tools, together with their strengths and limitations. We believe these prediction tools will contribute more and more to the plant phosphorylation research community. PMID:25930706

  17. Protein phosphorylation in stomatal movement.

    PubMed

    Zhang, Tong; Chen, Sixue; Harmon, Alice C

    2014-01-01

    As research progresses on how guard cells perceive and transduce environmental cues to regulate stomatal movement, plant biologists are discovering key roles of protein phosphorylation. Early research efforts focused on characterization of ion channels and transporters in guard cell hormonal signaling. Subsequent genetic studies identified mutants of kinases and phosphatases that are defective in regulating guard cell ion channel activities, and recently proteins regulated by phosphorylation have been identified. Here we review the essential role of protein phosphorylation in ABA-induced stomatal closure and in blue light-induced stomatal opening. We also highlight evidence for the cross-talk between different pathways, which is mediated by protein phosphorylation. PMID:25482764

  18. Phosphoenol Pyruvate Carboxylase in Parasitic Plants: Further Characterization in Various Species and Localization at the Level of Cells and Tissues in Lathraea clandestina L.

    PubMed

    Renaudin, S; Thalouarn, P; Rey, L; Vidal, J; Larher, F

    1984-11-01

    Phosphoenolpyruvate carboxylase (PEP carboxylase, EC 4.1.1.31) activity was demonstrated in a range of holo and hemiparasitic phanerogams. Lathraea clandestina was used as a model for a more detailed study. Enzyme activity levels were determined in the various plant parts. Great changes in enzyme capacity were observed in the shoots according to the time of measurement during a 24 hr cycle. PEP carboxylase characterized at the cellular level by using an indirect immunofluorescence method was found to be mainly located in the cytosol. The possible functions of PEP carboxylase in parasitic plants are discussed. PMID:23195386

  19. Molecular cloning and characterization of the cDNA coding for the biotin-containing subunit of 3-methylcrotonoyl-CoA carboxylase: identification of the biotin carboxylase and biotin-carrier domains.

    PubMed Central

    Song, J; Wurtele, E S; Nikolau, B J

    1994-01-01

    Soybean genomic clones were isolated based on hybridization to probes that code for the conserved biotinylation domain of biotin-containing enzymes. The corresponding cDNA was isolated and expressed in Escherichia coli through fusion to the bacterial trpE gene. The resulting chimeric protein was biotinylated in E. coli. Antibodies raised against the chimeric protein reacted specifically with an 85-kDa biotin-containing polypeptide from soybean and inhibited 3-methylcrotonoyl-CoA carboxylase (EC 6.4.1.4) activity in cell-free extracts of soybean leaves. Thus, the isolated soybean gene and corresponding cDNA code for the 85-kDa biotin-containing subunit of 3-methylcrotonoyl-CoA carboxylase. The nucleotide sequence of the cDNA and portions of the genomic clones was determined. Comparison of the deduced amino acid sequence of the biotin-containing subunit of 3-methylcrotonoyl-CoA carboxylase with sequences of other biotin enzymes suggests that this subunit contains the functional domains for the first half-reaction catalyzed by all biotin-dependent carboxylases--namely, the carboxylation of biotin. These domains are arranged serially on the polypeptide, with the biotin carboxylase domain at the amino terminus and the biotin-carboxyl carrier domain at the carboxyl terminus. Images PMID:8016064

  20. Maternal obesity reduces milk lipid production in lactating mice by inhibiting acetyl-CoA carboxylase and impairing fatty acid synthesis.

    PubMed

    Saben, Jessica L; Bales, Elise S; Jackman, Matthew R; Orlicky, David; MacLean, Paul S; McManaman, James L

    2014-01-01

    Maternal metabolic and nutrient trafficking adaptations to lactation differ among lean and obese mice fed a high fat (HF) diet. Obesity is thought to impair milk lipid production, in part, by decreasing trafficking of dietary and de novo synthesized lipids to the mammary gland. Here, we report that de novo lipogenesis regulatory mechanisms are disrupted in mammary glands of lactating HF-fed obese (HF-Ob) mice. HF feeding decreased the total levels of acetyl-CoA carboxylase-1 (ACC), and this effect was exacerbated in obese mice. The relative levels of phosphorylated (inactive) ACC, were elevated in the epithelium, and decreased in the adipose stroma, of mammary tissue from HF-Ob mice compared to those of HF-fed lean (HF-Ln) mice. Mammary gland levels of AMP-activated protein kinase (AMPK), which catalyzes formation of inactive ACC, were also selectively elevated in mammary glands of HF-Ob relative to HF-Ln dams or to low fat fed dams. These responses correlated with evidence of increased lipid retention in mammary adipose, and decreased lipid levels in mammary epithelial cells, of HF-Ob dams. Collectively, our data suggests that maternal obesity impairs milk lipid production, in part, by disrupting the balance of de novo lipid synthesis in the epithelial and adipose stromal compartments of mammary tissue through processes that appear to be related to increased mammary gland AMPK activity, ACC inhibition, and decreased fatty acid synthesis. PMID:24849657

  1. Maternal Obesity Reduces Milk Lipid Production in Lactating Mice by Inhibiting Acetyl-CoA Carboxylase and Impairing Fatty Acid Synthesis

    PubMed Central

    Saben, Jessica L.; Bales, Elise S.; Jackman, Matthew R.; Orlicky, David; MacLean, Paul S.; McManaman, James L.

    2014-01-01

    Maternal metabolic and nutrient trafficking adaptations to lactation differ among lean and obese mice fed a high fat (HF) diet. Obesity is thought to impair milk lipid production, in part, by decreasing trafficking of dietary and de novo synthesized lipids to the mammary gland. Here, we report that de novo lipogenesis regulatory mechanisms are disrupted in mammary glands of lactating HF-fed obese (HF-Ob) mice. HF feeding decreased the total levels of acetyl-CoA carboxylase-1 (ACC), and this effect was exacerbated in obese mice. The relative levels of phosphorylated (inactive) ACC, were elevated in the epithelium, and decreased in the adipose stroma, of mammary tissue from HF-Ob mice compared to those of HF-fed lean (HF-Ln) mice. Mammary gland levels of AMP-activated protein kinase (AMPK), which catalyzes formation of inactive ACC, were also selectively elevated in mammary glands of HF-Ob relative to HF-Ln dams or to low fat fed dams. These responses correlated with evidence of increased lipid retention in mammary adipose, and decreased lipid levels in mammary epithelial cells, of HF-Ob dams. Collectively, our data suggests that maternal obesity impairs milk lipid production, in part, by disrupting the balance of de novo lipid synthesis in the epithelial and adipose stromal compartments of mammary tissue through processes that appear to be related to increased mammary gland AMPK activity, ACC inhibition, and decreased fatty acid synthesis. PMID:24849657

  2. Pyruvate Occupancy in the Carboxyl Transferase Domain of Pyruvate Carboxylase Facilitates Product Release from the Biotin Carboxylase Domain through an Intermolecular Mechanism.

    PubMed

    Westerhold, Lauren E; Adams, Stephanie L; Bergman, Hanna L; Zeczycki, Tonya N

    2016-06-21

    Protein structure, ligand binding, and catalytic turnover contributes to the governance of catalytic events occurring at spatially distinct domains in multifunctional enzymes. Coordination of these catalytic events partially rests on the ability of spatially discrete active sites to communicate with other allosteric and active sites on the same polypeptide chain (intramolecular) or on different polypeptide chains (intermolecular) within the holoenzyme. Often, communication results in long-range effects on substrate binding or product release. For example, pyruvate binding to the carboxyl transferase (CT) domain of pyruvate carboxylase (PC) increases the rate of product release in the biotin carboxylase (BC) domain. In order to address how CT domain ligand occupancy is "sensed" by other domains, we generated functional, mixed hybrid tetramers using the E218A (inactive BC domain) and T882S (low pyruvate binding, low activity) mutant forms of PC. The apparent Ka pyruvate for the pyruvate-stimulated release of Pi catalyzed by the T882S:E218A[1:1] hybrid tetramer was comparable to the wild-type enzyme and nearly 10-fold lower than that for the T882S homotetramer. In addition, the ratio of the rates of oxaloacetate formation to Pi release for the WT:T882S[1:1] and E218A:T882S[1:1] hybrid tetramer-catalyzed reactions was 0.5 and 0.6, respectively, while the T882S homotetramer exhibited a near 1:1 coupling of the two domains, suggesting that the mechanisms coordinating catalytic events is more complicated that we initially assumed. The results presented here are consistent with an intermolecular communication mechanism, where pyruvate binding to the CT domain is "sensed" by domains on a different polypeptide chain within the tetramer. PMID:27254467

  3. Partitioning of Nitrogen among Ribulose-1,5-bisphosphate Carboxylase/Oxygenase, Phosphoenolpyruvate Carboxylase, and Pyruvate Orthophosphate Dikinase as Related to Biomass Productivity in Maize Seedlings.

    PubMed

    Sugiyama, T; Mizuno, M; Hayashi, M

    1984-07-01

    Maize (Zea mays L. cv Golden Cross Bantam T51) seedlings were grown under full sunlight or 50% sunlight in a temperature-controlled glasshouse at the temperatures of near optimum (30/25 degrees C) and suboptimum (17/13 degrees C) with seven levels of nitrate-N (0.4 to 12 millimolars). The contents of phosphoenolpyruvate carboxylase (PEPC), pyruvate orthophosphate dikinase (PPD), and ribulose-1,5-P(2) carboxylase/oxygenase (RuBisCO) were immunochemically determined for each treatment with rabbit antibodies raised against the respective maize leaf proteins (anti-PEPC and anti-PPD) or spinach leaf protein (anti-RuBisCO). The content of each enzymic protein increased with increasing N and raised under reduced temperature. The positive effect of light intensity on their contents was evident only at near optimal temperature. The relative increase in PEPC and PPD content with increasing N was significantly greater than that of RuBisCO irrespective of growth conditions. These enzymic proteins comprised about 8, 6, and 35% of total soluble protein, respectively, at near optimal growth condition. In contrast to significant increase in the proportion of soluble protein allocated to PEPC and PPD seen under certain conditions, the proportion allocated to RuBisCO decreased reciprocally with an increased biomass yield by N supply.These results indicated that the levels of PEPC and PPD parallel to maize biomass more tightly than that of RuBisCO at least under near optimal growth condition. PMID:16663684

  4. Activities of Ribulose Bisphosphate Carboxylase and Phosphoenolpyruvate Carboxylase and 14C-Bicarbonate Fixation during in Vitro Culture of Pinus radiata Cotyledons 1

    PubMed Central

    Kumar, Prakash P.; Bender, Ludwig; Thorpe, Trevor A.

    1988-01-01

    The activities of ribulose bisphosphate carboxylase (RuBPC) and phosphoenolpyruvate carboxylase (PEPC), as indicators of autotrophic and nonautotrophic CO2 fixation, were measured in excised cotyledons of Pinus radiata D. Don cultured for 21 days under shoot-forming (SF) and nonshoot-forming (NSF) conditions. The activity of RuBPC was found to increase in both SF and NSF cultures during the initial 5 days of culture. However, it leveled off from day 5 to day 10 and subsequently began to decrease until the end of the culture period under the SF conditions. In contrast, in the NSF cultures, RuBPC activity increased until day 15, when it was twofold higher than the maximum activity found in the SF cultures. An increase in PEPC activity of about 2.5 times the level of activity in freshly excised cotyledons was observed during the initial 5 days of culture under the SF conditions. PEPC activity began to decline after day 5 until it reached the level of activity seen in NSF cotyledons by day 15. In contrast, the activity of PEPC did not show any significant increase during the initial 10 days of culture under the NSF conditions. The Km (phosphoenolpyruvate) of PEPC from SF cotyledons was about 35% higher than that of NSF cotyledons. Cotyledons from two culture periods (days 5 and 15) were incubated for 15 seconds with NaH14CO3. The label in the malate and asparatate fractions as a percentage of total 14C incorporation was 3 times higher in the SF cotyledons than in the NSF cotyledons. A higher incorporation of 14C into products of photosynthesis under the NSF conditions was also observed. PMID:16666206

  5. Cloning and characterization of ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit (RbcS) cDNA from green microalga Ankistrodesmus convolutus.

    PubMed

    Thanh, Tran; Chi, Vu Thi Quynh; Abdullah, Mohd Puad; Omar, Hishamuddin; Noroozi, Mostafa; Napis, Suhaimi

    2011-11-01

    An initial study on gene cloning and characterization of unicellular green microalga Ankistrodesmus convolutus was carried out to isolate and characterize the full-length cDNA of ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit (RbcS) as a first step towards elucidating the structure of A. convolutus RbcS gene. The full-length of A. convolutus RbcS cDNA (AcRbcS) contained 28 bp of 5' untranslated region (UTR), 225 bp of 3' non-coding region, and an open reading frame of 165 amino acids consisting of a chloroplast transit peptide with 24 amino acids and a mature protein of 141 amino acids. The amino acid sequence has high identity to those of other green algae RbcS genes. The AcRbcS contained a few conserved domains including protein kinase C phosphorylation site, tyrosine kinase phosphorylation site and N-myristoylation sites. The AcRbcS was successfully expressed in Escherichia coli and a ~21 kDa of anticipated protein band was observed on SDS-PAGE. From the phylogenetic analysis of RbcS protein sequences, it was found that the RbcS of A. convolutus has closer genetic relationship with green microalgae species compared to those of green seaweed and green macroalgae species. Southern hybridization analysis revealed that the AcRbcS is a member of a small multigene family comprising of two to six members in A. convolutus genome. Under different illumination conditions, RT-PCR analysis showed that AcRbcS transcription was reduced in the dark, and drastically recovered in the light condition. Results presented in this paper established a good foundation for further study on the photosynthetic process of A. convolutus and other green algae species where little information is known on Rubisco small subunit. PMID:21287365

  6. Phosphorylated. beta. -dicarbonyl compounds

    SciTech Connect

    Liorber, B.G.; Tarzivolova, T.A.; Pavlov, V.A.; Zykova, T.V.; Kisilev, V.V.; Tumasheva, N.A.; Slizkii, A.Yu.; Shagvaleev, F.S.

    1987-08-20

    The reaction of trialkyl phosphites with alkyl malonyl chlorides leads to alkyl 3-dialkoxyphosphoryl-3-oxopropionates, which exist in the stable E-enol form. Depending on the basicities of the bases, the reactions of alkyl 3-dialkoxyphosphoryl-3-oxopropionates with nitrogen bases proceed with retention of the C-P bond and the formation of phosphorylated azomethine derivatives or with cleavage of the C-P bond and the liberation of nitrogen-containing derivatives of malonic acid. The /sup 1/H, /sup 13/C, and /sup 13/P NMR spectra were recorded with a Bruker WP-80 NMR spectrometer. The chemical shifts of the protons and carbon atoms are presented relative to tetramethylsilane (TMS). The chemical shifts of the /sup 31/P nuclei were determined relative to H/sub 3/PO/sub 4/.

  7. Structural evidence for substrate-induced synergism and half-sites reactivity in biotin carboxylase

    PubMed Central

    Mochalkin, Igor; Miller, J. Richard; Evdokimov, Artem; Lightle, Sandra; Yan, Chunhong; Stover, Charles Ken; Waldrop, Grover L.

    2008-01-01

    Bacterial acetyl-CoA carboxylase is a multifunctional biotin-dependent enzyme that consists of three separate proteins: biotin carboxylase (BC), biotin carboxyl carrier protein (BCCP), and carboxyltransferase (CT). Acetyl-CoA carboxylase is a potentially attractive target for novel antibiotics because it catalyzes the first committed step in fatty acid biosynthesis. In the first half-reaction, BC catalyzes the ATP-dependent carboxylation of BCCP. In the second half-reaction, the carboxyl group is transferred from carboxybiotinylated BCCP to acetyl-CoA to produce malonyl-CoA. A series of structures of BC from several bacteria crystallized in the presence of various ATP analogs is described that addresses three major questions concerning the catalytic mechanism. The structure of BC bound to AMPPNP and the two catalytically essential magnesium ions resolves inconsistencies between the kinetics of active-site BC mutants and previously reported BC structures. Another structure of AMPPNP bound to BC shows the polyphosphate chain folded back on itself, and not in the correct (i.e., extended) conformation for catalysis. This provides the first structural evidence for the hypothesis of substrate-induced synergism, which posits that ATP binds nonproductively to BC in the absence of biotin. The BC homodimer has been proposed to exhibit half-sites reactivity where the active sites alternate or “flip-flop” their catalytic cycles. A crystal structure of BC showed the ATP analog AMPPCF2P bound to one subunit while the other subunit was unliganded. The liganded subunit was in the closed or catalytic conformation while the unliganded subunit was in the open conformation. This provides the first structural evidence for half-sites reactivity in BC. PMID:18725455

  8. Inactivation of Maize Leaf Phosphoenolpyruvate Carboxylase by the Binding to Chloroplast Membranes 1

    PubMed Central

    Wu, Min-Xian; Wedding, Randolph T.

    1992-01-01

    Phosphoenolpyruvate carboxylase (PEPC) purified from maize (Zea mays L.) leaves associates with maize leaf chloroplast membrane in vitro. The binding of PEPC to the membrane results in enzyme inactivation. A protein isolated from a maize leaf chloroplast membrane preparation inactivated PEPC. Treatment with membrane preparation or with partially purified inactivating protein accelerates PEPC inactivation at low temperature (4°C). Interaction of PEPC with chloroplast membrane or inactivating protein may inactivate the enzyme by influencing dissociation of the enzyme active tetramer. PMID:16652972

  9. Isolation of ribulose-1,5-bisphosphate carboxylase/oxygenase from leaves.

    PubMed

    Carmo-Silva, A Elizabete; Barta, Csengele; Salvucci, Michael E

    2011-01-01

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is a multifunctional enzyme that catalyzes the fixation of CO2 and O2 in photosynthesis and photorespiration, respectively. As the rate-limiting step in photosynthesis, improving the catalytic properties of Rubisco has long been viewed as a viable strategy for increasing plant productivity. Advances in biotechnology have made this goal more attainable by making it possible to modify Rubisco in planta. To properly evaluate the properties of Rubisco, it is necessary to isolate the enzyme in pure form. This chapter describes procedures for rapid and efficient purification of Rubisco from leaves of several species. PMID:20960141

  10. Thyroid-stimulating hormone decreases HMG-CoA reductase phosphorylation via AMP-activated protein kinase in the liver

    PubMed Central

    Zhang, Xiujuan; Song, Yongfeng; Feng, Mei; Zhou, Xinli; Lu, Yingli; Gao, Ling; Yu, Chunxiao; Jiang, Xiuyun; Zhao, Jiajun

    2015-01-01

    Cholesterol homeostasis is strictly regulated through the modulation of HMG-CoA reductase (HMGCR), the rate-limiting enzyme of cholesterol synthesis. Phosphorylation of HMGCR inactivates it and dephosphorylation activates it. AMP-activated protein kinase (AMPK) is the major kinase phosphorylating the enzyme. Our previous study found that thyroid-stimulating hormone (TSH) increased the hepatocytic HMGCR expression, but it was still unclear whether TSH affected hepatic HMGCR phosphorylation associated with AMPK. We used bovine TSH (bTSH) to treat the primary mouse hepatocytes and HepG2 cells with or without constitutively active (CA)-AMPK plasmid or protein kinase A inhibitor (H89), and set up the TSH receptor (Tshr)-KO mouse models. The p-HMGCR, p-AMPK, and related molecular expression were tested. The ratios of p-HMGCR/HMGCR and p-AMPK/AMPK decreased in the hepatocytes in a dose-dependent manner following bTSH stimulation. The changes above were inversed when the cells were treated with CA-AMPK plasmid or H89. In Tshr-KO mice, the ratios of liver p-HMGCR/HMGCR and p-AMPK/AMPK were increased relative to the littermate wild-type mice. Consistently, the phosphorylation of acetyl-CoA carboxylase, a downstream target molecule of AMPK, increased. All results suggested that TSH could regulate the phosphorylation of HMGCR via AMPK, which established a potential mechanism for hypercholesterolemia involved in a direct action of the TSH in the liver. PMID:25713102

  11. Reactions catalyzed by 5-aminoimidazole ribonucleotide carboxylases from Escherichia coli and Gallus gallus: a case for divergent catalytic mechanisms.

    PubMed

    Firestine, S M; Poon, S W; Mueller, E J; Stubbe, J; Davisson, V J

    1994-10-01

    A comparative investigation of the substrate requirements for the enzyme 5-aminoimidazole ribonucleotide (AIR) carboxylase from E. coli and G. gallus has been conducted using in vivo and in vitro studies. In Escherichia coli, two enzymes PurK and PurE are required for the transformation of AIR to 4-carboxy-5-aminoimidazole ribonucleotide (CAIR). The Gallus gallus PurCE is a bifunctional enzyme containing AIR carboxylase and 4-[(N-succinylamino)carbonyl]-5-aminoimidazole ribonucleotide (SAICAR) synthetase. The E. coli PurE and the C-terminal domain of the G. gallus PurCE protein maintain a significant degree of amino acid sequence identity and also share CAIR as a product of their enzymatic activities. The substrate requirements of AIR carboxylases from E. coli and G. gallus have been compared by a series of in vitro experiments. The carbamic acid, N5-carboxyaminoimidazole ribonucleotide (N5-CAIR) is a substrate for the E. coli PurE (Mueller et al., 1994) but not for the G. gallus AIR carboxylase. In contrast, AIR and CO2 are substrates for the G. gallus AIR carboxylase. The recognition properties of the two proteins were also compared using inhibition studies with 4-nitro-5- aminoimidazole ribonucleotide (NAIR). NAIR is a tight-binding inhibitor of the G. gallus AIR carboxylase (K(i) = 0.34 nM) but only a steady-state inhibitor (K(i) = 0.5 microM) of the E. coli PurE. These data suggest significant differences in the transition states for the reactions catalyzed by these two evolutionarily related enzymes.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7918411

  12. Dark/Light modulation of ribulose bisphosphate carboxylase activity in plants from different photosynthetic categories.

    PubMed

    Vu, J C; Allen, L H; Bowes, G

    1984-11-01

    Ribulose bisphosphate carboxylase/oxygenase (RuBPCase) from several plants had substantially greater activity in extracts from lightexposed leaves than dark leaves, even when the extracts were incubated in vitro with saturating HCO(3) (-) and Mg(2+) concentrations. This occurred in Glycine max, Lycopersicon esculentum, Nicotiana tabacum, Panicum bisulcatum, and P. hylaeicum (C(3)); P. maximum (C(4) phosphoenolpyruvate carboxykinase); P. milioides (C(3)/C(4)); and Bromelia pinguin and Ananas comosus (Crassulacean acid metabolism). Little or no difference between light and dark leaf extracts of RuBPCase was observed in Triticum aestivum (C(3)); P. miliaceum (C(4) NAD malic enzyme); Zea mays and Sorghum bicolor (C(4) NADP malic enzyme); Moricandia arvensis (C(3)/C(4)); and Hydrilla verticillata (submersed aquatic macrophyte). It is concluded that, in many plants, especially Crassulacean acid metabolism and C(3) species, a large fraction of ribulose-1,5-bisphosphate carboxylase/oxygenase in the dark is in an inactivatable state that cannot respond to CO(2) and Mg(2+) activation, but which can be converted to an activatable state upon exposure of the leaf to light. PMID:16663937

  13. Dark/Light Modulation of Ribulose Bisphosphate Carboxylase Activity in Plants from Different Photosynthetic Categories 1

    PubMed Central

    Vu, J. Cu V.; Allen, Leon H.; Bowes, George

    1984-01-01

    Ribulose bisphosphate carboxylase/oxygenase (RuBPCase) from several plants had substantially greater activity in extracts from lightexposed leaves than dark leaves, even when the extracts were incubated in vitro with saturating HCO3− and Mg2+ concentrations. This occurred in Glycine max, Lycopersicon esculentum, Nicotiana tabacum, Panicum bisulcatum, and P. hylaeicum (C3); P. maximum (C4 phosphoenolpyruvate carboxykinase); P. milioides (C3/C4); and Bromelia pinguin and Ananas comosus (Crassulacean acid metabolism). Little or no difference between light and dark leaf extracts of RuBPCase was observed in Triticum aestivum (C3); P. miliaceum (C4 NAD malic enzyme); Zea mays and Sorghum bicolor (C4 NADP malic enzyme); Moricandia arvensis (C3/C4); and Hydrilla verticillata (submersed aquatic macrophyte). It is concluded that, in many plants, especially Crassulacean acid metabolism and C3 species, a large fraction of ribulose-1,5-bisphosphate carboxylase/oxygenase in the dark is in an inactivatable state that cannot respond to CO2 and Mg2+ activation, but which can be converted to an activatable state upon exposure of the leaf to light. PMID:16663937

  14. A Symmetrical Tetramer for S. aureus Pyruvate Carboxylase in Complex with Coenzyme A

    SciTech Connect

    Yu, L.; Xiang, S; Lasso, G; Gil, D; Valle, M; Tong, L

    2009-01-01

    Pyruvate carboxylase (PC) is a conserved metabolic enzyme with important cellular functions. We report crystallographic and cryo-electron microscopy (EM) studies of Staphylococcus aureus PC (SaPC) in complex with acetyl-CoA, an allosteric activator, and mutagenesis, biochemical, and structural studies of the biotin binding site of its carboxyltransferase (CT) domain. The disease-causing A610T mutation abolishes catalytic activity by blocking biotin binding to the CT active site, and Thr908 might play a catalytic role in the CT reaction. The crystal structure of SaPC in complex with CoA reveals a symmetrical tetramer, with one CoA molecule bound to each monomer, and cryo-EM studies confirm the symmetrical nature of the tetramer. These observations are in sharp contrast to the highly asymmetrical tetramer of Rhizobium etli PC in complex with ethyl-CoA. Our structural information suggests that acetyl-CoA promotes a conformation for the dimer of the biotin carboxylase domain of PC that might be catalytically more competent.

  15. Hybrid Structure of a Dynamic Single-Chain Carboxylase from Deinococcus radiodurans.

    PubMed

    Hagmann, Anna; Hunkeler, Moritz; Stuttfeld, Edward; Maier, Timm

    2016-08-01

    Biotin-dependent acyl-coenzyme A (CoA) carboxylases (aCCs) are involved in key steps of anabolic pathways and comprise three distinct functional units: biotin carboxylase (BC), biotin carboxyl carrier protein (BCCP), and carboxyl transferase (CT). YCC multienzymes are a poorly characterized family of prokaryotic aCCs of unidentified substrate specificity, which integrate all functional units into a single polypeptide chain. We employed a hybrid approach to study the dynamic structure of Deinococcus radiodurans (Dra) YCC: crystal structures of isolated domains reveal a hexameric CT core with extended substrate binding pocket and a dimeric BC domain. Negative-stain electron microscopy provides an approximation of the variable positioning of the BC dimers relative to the CT core. Small-angle X-ray scattering yields quantitative information on the ensemble of Dra YCC structures in solution. Comparison with other carrier protein-dependent multienzymes highlights a characteristic range of large-scale interdomain flexibility in this important class of biosynthetic enzymes. PMID:27396827

  16. Pathway of assembly of ribulosebisphosphate carboxylase/oxygenase from Anabaena 7210 expressed in Escherichia coli

    SciTech Connect

    Gurevitz, M.; Somerville, C.R.; McIntosh, L.

    1985-10-01

    The authors have placed the genes encoding ribulosebisphosphate carboxylase/oxygenase from the Anabaena 7120 operon under transcriptional control of the lac promoter carried on the Escherichia coli plasmid pUC19. The genes encoding both the large and small subunit polypeptides (rbcL and rbcS) are transcribed and translated so that approx. = 0.6% of the soluble protein in E. coli extracts is a fully functional holoenzyme with a sedimentation coefficient of approximately 18S, which contains stoichiometric amounts of the two subunits. However, expression of the large subunit polypeptide vastly exceeds that of the small subunit because the majority of transcripts terminate in the intergenic region between the rbcL and rbcS genes. As a result, excess large subunit is synthesized and accumulates in E. coli as an insoluble and catalytically inactive form. Because small subunit is found only in the high molecular weight soluble form of ribulosebisphosphate carboxylase/oxygenase, the authors propose that the small subunit promotes assembly of the hexadecameric form of the enzyme via heterodimers of large and small subunits.

  17. Active site histidine in spinach ribulosebisphosphate carboxylase/oxygenase modified by diethyl pyrocarbonate

    SciTech Connect

    Igarashi, Y.; McFadden, B.A.; el-Gul, T.

    1985-07-16

    (TH) Diethyl pyrocarbonate was synthesized from (TH) ethanol prepared by the reduction of acetaldehyde by NaB3H4. Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) from spinach was inactivated with this reagent at pH 7.0 the presence of 20 mM MgS , and tryptic peptides that contained modified histidine residues were isolated by reverse-phase high-performance liquid chromatography. Labeling of the enzyme was conducted in the presence and absence of the competitive inhibitor sedoheptulose 1,7-bisphosphate. The amount of one peptide that was heavily labeled in the absence of this compound was reduced 10-fold in its presence. The labeled residue was histidine-298. This result, in combination with earlier experiments, suggests that His-298 in spinach RuBisCO is located in the active site domain and is essential to enzyme activity. This region of the primary structure is strongly conserved in seven other ribulosebisphosphate carboxylases from divergent sources.

  18. The role of acyl-coenzyme A carboxylase complex in lipstatin biosynthesis of Streptomyces toxytricini

    PubMed Central

    Demirev, Atanas V.; Khanal, Anamika; Sedai, Bhishma R.; Lim, Si Kyu; Na, Min Kyun

    2010-01-01

    Streptomyces toxytricini produces lipstatin, a specific inhibitor of pancreatic lipase, which is derived from two fatty acid moieties with eight and 14 carbon atoms. The pccB gene locus in 10.6 kb fragment of S. toxytricini chromosomal DNA contains three genes for acyl-coenzyme A carboxylase (ACCase) complex accA3, pccB, and pccE that are presumed to be involved in secondary metabolism. The pccB gene encoding a β subunit of ACCase [carboxyltransferase (CT)] was identified upstream of pccE gene for a small protein of ε subunit. The accA3 encoding the α subunit of ACCase [biotin carboxylase (BC)] was also identified downstream of pccB gene. When the pccB and pccE genes were inactivated by homologous recombination, the lipstatin production was reduced as much as 80%. In contrast, the accumulation of another compound, tetradeca-5.8-dienoic acid (the major lipstatin precursor), was 4.5-fold increased in disruptant compared with wild-type. It implies that PccB of S. toxytricini is involved in the activation of octanoic acid to hexylmalonic acid for lipstatin biosynthesis. Electronic supplementary material The online version of this article (doi:10.1007/s00253-010-2587-2) contains supplementary material, which is available to authorized users. PMID:20437235

  19. Functional conformations for pyruvate carboxylase during catalysis explored by cryoelectron microscopy.

    PubMed

    Lasso, Gorka; Yu, Linda P C; Gil, David; Lázaro, Melisa; Tong, Liang; Valle, Mikel

    2014-06-10

    The tetrameric enzyme pyruvate carboxylase (PC), a biotin-dependent carboxylase, produces oxaloacetate by two consecutive reactions that take place in distant active sites. Previous crystal structures revealed two different configurations for PC tetramers, the so-called symmetric and asymmetric, which were understood as characteristic molecular architectures for PC from different organisms. We have analyzed PC samples from Staphylococcus aureus while the enzyme generates oxaloacetate, expecting PC tetramers to display the conformational landscape relevant for its functioning. Using cryoelectron microscopy (cryo-EM) and sorting techniques, we detect previously defined symmetric and asymmetric architectures, demonstrating that PC maps both arrangements by large conformational changes. Furthermore, we observe that each configuration is coupled to one of the two consecutive enzymatic reactions. The findings describe the structural transitions relevant for the allosteric control of the multifunctional PC and demonstrate that by cryo-EM and classification, we can characterize freely working macromolecules. PMID:24882745

  20. Treatment of pyruvate carboxylase deficiency with high doses of citrate and aspartate.

    PubMed

    Ahmad, A; Kahler, S G; Kishnani, P S; Artigas-Lopez, M; Pappu, A S; Steiner, R; Millington, D S; Van Hove, J L

    1999-12-01

    A patient with severe pyruvate carboxylase deficiency presented at age 11 weeks with metabolic decompensation after routine immunization. She was comatose, had severe lactic acidemia (22 mM) and ketosis, low aspartate and glutamate, elevated citrulline and proline, and mild hyperammonemia. Head magnetic resonance imaging showed subdural hematomas and mild generalized brain atrophy. Biotin-unresponsive pyruvate carboxylase deficiency was diagnosed. To provide oxaloacetate, she was treated with high-dose citrate (7.5 mol/kg(-1)/day(-1)), aspartate (10 mmol/kg(-1)/day(-1)), and continuous drip feeding. Lactate and ketones diminished dramatically, and plasma amino acids normalized, except for arginine, which required supplementation. In the cerebrospinal fluid (CSF), glutamine remained low and lysine elevated, showing the treatment had not normalized brain chemistry. Metabolic decompensations, triggered by infections or fasting, diminished after the first year. They were characterized by severe lactic and ketoacidosis, hypernatremia, and a tendency to hypoglycemia. At age 3(1/2) years she has profound mental retardation, spasticity, and grand mal and myoclonic seizures only partially controlled by anticonvulsants. The new treatment regimen has helped maintain metabolic control, but the neurological outcome is still poor. PMID:10588840

  1. Oxidative and Photosynthetic Phosphorylation Mechanisms

    ERIC Educational Resources Information Center

    Wang, Jui H.

    1970-01-01

    Proposes a molecular mechanism for the coupling of phosphorylation to electron transport in both mitochondria and chloroplasts. Justifies the proposed reaction schemes in terms of thermodynamics and biochemical data. Suggests how areobic respiration could have evolved. (EB)

  2. Properties of phosphorylated thymidylate synthase.

    PubMed

    Frączyk, Tomasz; Ruman, Tomasz; Wilk, Piotr; Palmowski, Paweł; Rogowska-Wrzesinska, Adelina; Cieśla, Joanna; Zieliński, Zbigniew; Nizioł, Joanna; Jarmuła, Adam; Maj, Piotr; Gołos, Barbara; Wińska, Patrycja; Ostafil, Sylwia; Wałajtys-Rode, Elżbieta; Shugar, David; Rode, Wojciech

    2015-12-01

    Thymidylate synthase (TS) may undergo phosphorylation endogenously in mammalian cells, and as a recombinant protein expressed in bacterial cells, as indicated by the reaction of purified enzyme protein with Pro-Q® Diamond Phosphoprotein Gel Stain (PGS). With recombinant human, mouse, rat, Trichinella spiralis and Caenorhabditis elegans TSs, expressed in Escherichia coli, the phosphorylated, compared to non-phosphorylated recombinant enzyme forms, showed a decrease in Vmax(app), bound their cognate mRNA (only rat enzyme studied), and repressed translation of their own and several heterologous mRNAs (human, rat and mouse enzymes studied). However, attempts to determine the modification site(s), whether endogenously expressed in mammalian cells, or recombinant proteins, did not lead to unequivocal results. Comparative ESI-MS/analysis of IEF fractions of TS preparations from parental and FdUrd-resistant mouse leukemia L1210 cells, differing in sensitivity to inactivation by FdUMP, demonstrated phosphorylation of Ser(10) and Ser(16) in the resistant enzyme only, although PGS staining pointed to the modification of both L1210 TS proteins. The TS proteins phosphorylated in bacterial cells were shown by (31)P NMR to be modified only on histidine residues, like potassium phosphoramidate (KPA)-phosphorylated TS proteins. NanoLC-MS/MS, enabling the use of CID and ETD peptide fragmentation methods, identified several phosphohistidine residues, but certain phosphoserine and phosphothreonine residues were also implicated. Molecular dynamics studies, based on the mouse TS crystal structure, allowed one to assess potential of several phosphorylated histidine residues to affect catalytic activity, the effect being phosphorylation site dependent. PMID:26315778

  3. Effect of Nitrate and Ammonium Nutrition of Nonnodulated Phaseolus vulgaris L. on Phosphoenolpyruvate Carboxylase and Pyruvate Kinase Activity 1

    PubMed Central

    Schweizer, Patrick; Erismann, Karl H.

    1985-01-01

    Young bean plants (Phaseolus vulgaris L. var Saxa) were fed with 3.5 or 10 millimolar N in either the form of NO3− or NH4+, after being grown on N-free nutrient solution for 8 days. The pH of the nutrient solutions was either 6 or 4. The cell sap pH and the extractable activities of phosphoenolpyruvate carboxylase and of pyruvate kinase from roots and primary leaves were measured over several days. The extractable activity of phosphoenolpyruvate carboxylase (based on soluble protein) from primary leaves increased with NO3− nutrition, whereas with NH4+ nutrition and on N-free nutrient solution the activity remained at a low level. Phosphoenopyruvate carboxylase activity from the roots of NH4+-fed plants at pH 4 was finally somewhat higher than from the roots of plants grown on NO3− at the same pH. There was no difference in activity from the root between the N treatments when pH in the nutrient solutions was 6. The extractable activity of pyruvate kinase from roots and primary leaves seemed not to be influenced by the N nutrition of the plants. The results are discussed in relation to the physiological function of both enzymes with special regard to the postulated functions of phosphoenolpyruvate carboxylase in C3 plants as an anaplerotic enzyme and as part of a cellular pH stat. PMID:16664265

  4. Studies on acetyl-CoA carboxylase and fatty acid synthase from rat mammary gland and mammary tumours.

    PubMed Central

    Ahmad, P M; Feltman, D S; Ahmad, F

    1982-01-01

    The activities of two lipogenic enzymes, acetyl-CoA carboxylase and fatty acid synthase, were determined in two transplantable mammary adenocarcinomas (13762 and R3230AC) carried by non-pregnant, pregnant and lactating rats, and in mammary tissue of control animals (non-tumour-carrying) of comparable physiological states. During mammary-gland differentiation of control or tumour-carrying animals, the activities of acetyl-CoA carboxylase and fatty acid synthase in the lactating gland increased by about 40--50-fold over the values found in non-pregnant animals. On the other hand, in tumours carried by lactating dams there were only modest increases (1.5--2-fold) in acetyl-CoA carboxylase and fatty acid synthase compared with the neoplasms carried by non-pregnant animals. On the basis of the Km values for different substrates and immunodiffusion and immunotitration data, the fatty acid synthase of neoplastic tissues appeared to be indistinguishable from the control mammary-gland enzyme. However, a comparison of the immunotitration and immunodiffusion experiments indicated that the mammary-gland acetyl-CoA carboxylase might differ from the enzyme present in mammary neoplasms. Images Fig. 1. Fig. 2. PMID:6130760

  5. Protein phosphorylation in chloroplasts - a survey of phosphorylation targets.

    PubMed

    Baginsky, Sacha

    2016-06-01

    The development of new software tools, improved mass spectrometry equipment, a suite of optimized scan types, and better-quality phosphopeptide affinity capture have paved the way for an explosion of mass spectrometry data on phosphopeptides. Because phosphoproteomics achieves good sensitivity, most studies use complete cell extracts for phosphopeptide enrichment and identification without prior enrichment of proteins or subcellular compartments. As a consequence, the phosphoproteome of cell organelles often comes as a by-product from large-scale studies and is commonly assembled from these in meta-analyses. This review aims at providing some guidance on the limitations of meta-analyses that combine data from analyses with different scopes, reports on the current status of knowledge on chloroplast phosphorylation targets, provides initial insights into phosphorylation site conservation in different plant species, and highlights emerging information on the integration of gene expression with metabolism and photosynthesis by means of protein phosphorylation. PMID:26969742

  6. Immunolocalization of carbonic anhydrase and phosphoenolpyruvate carboxylase in developing seeds of Medicago sativa.

    PubMed

    Aivalakis, Georgios; Dimou, Maria; Flemetakis, Emmanouil; Plati, Fotini; Katinakis, Panagiotis; Drossopoulos, J B

    2004-03-01

    To investigate the role of carbonic anhydrase (CA; EC 4.2.1.1) and phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) during Medicago sativa seed development, the distribution of both proteins was examined using an immunohistological approach. Both enzymes are co-localized in most ovular and embryonic tissues. In early stages of seed development, both proteins were abundant in embryo and integuments, while at subsequent stages both proteins are accumulated in endosperm, nucellus and integuments. At late stages of seed development when both endosperm and nucellus are degraded, significant accumulation of both proteins was observed in the embryo proper. Chlorophyll was found to accumulate in embryos after the heart stage and reached a maximum at mature stage. It is suggested that CA and PEPC play a role in respiratory carbon dioxide refixation while generating malate to support amino acid and/or fatty acids biosynthesis. PMID:15051041

  7. Activation and Inhibition of Ribulose 1,5-Diphosphate Carboxylase by 6-Phosphogluconate 1

    PubMed Central

    Chu, Douglas K.; Bassham, J. A.

    1973-01-01

    Ribulose 1,5-diphosphate carboxylase, when activated by preincubation with 1 mm bicarbonate and 10 mm MgCl2 in the absence of ribulose 1,5-diphosphate, remains activated for 20 minutes or longer after reaction is initiated by addition of ribulose diphosphate. If as little as 50 μm 6-phosphogluconate is added during this preincubation period, 5 minutes before the start of the reaction, a further 188% activation is observed. However, addition of 6-phosphogluconate at the same time or later than addition of ribulose diphosphate, or at any time with 50 mm bicarbonate, gives inhibition of the enzyme activity. Possible relevance of these effects in vivo regulatory effects is discussed. PMID:16658565

  8. Acetyl CoA Carboxylase 2 Is Dispensable for CD8+ T Cell Responses

    PubMed Central

    Lee, Jang Eun; Walsh, Matthew C.; Hoehn, Kyle L.; James, David E.; Wherry, E. John; Choi, Yongwon

    2015-01-01

    Differentiation of T cells is closely associated with dynamic changes in nutrient and energy metabolism. However, the extent to which specific metabolic pathways and molecular components are determinative of CD8+ T cell fate remains unclear. It has been previously established in various tissues that acetyl CoA carboxylase 2 (ACC2) regulates fatty acid oxidation (FAO) by inhibiting carnitine palmitoyltransferase 1 (CPT1), a rate-limiting enzyme of FAO in mitochondria. Here, we explore the cell-intrinsic role of ACC2 in T cell immunity in response to infections. We report here that ACC2 deficiency results in a marginal increase of cellular FAO in CD8+ T cells, but does not appear to influence antigen-specific effector and memory CD8+ T cell responses during infection with listeria or lymphocytic choriomeningitis virus. These results suggest that ACC2 is dispensable for CD8+ T cell responses. PMID:26367121

  9. Expression of Escherichia coli phosphoenolpyruvate carboxylase in a cyanobacterium. Functional complementation of Synechococcus PCC 7942 ppc.

    PubMed Central

    Luinenburg, I; Coleman, J R

    1993-01-01

    The gene (ppc) coding for phosphoenolpyruvate carboxylase (PEPCase) in the cyanobacterium Synechococcus PCC 7942 has been inactivated via insertional mutagenesis while being functionally complemented by Escherichia coli ppc. Cyanobacterial cells functionally complemented by E. coli ppc showed decreased PEPCase activity in crude cell lysates and detergent-permeabilized whole cell assays. Decreased rates of growth, reduced levels of chlorophyll a, and decreased photosynthetic O2 evolution capacity per cell when compared to wild-type cyanobacterial cells were also observed. Phycobiliprotein levels were not affected. The results are discussed in terms of the impact of reduced PEPCase activity on cyanobacterial cell metabolism and the regulatory properties of the E. coli gene product. PMID:8278492

  10. Acetyl-CoA carboxylase inhibitors from avocado (Persea americana Mill) fruits.

    PubMed

    Hashimura, H; Ueda, C; Kawabata, J; Kasai, T

    2001-07-01

    A methanol extract of avocado fruits showed potent inhibitory activity against acetyl-CoA carboxylase, a key enzyme in fatty acid biosynthesis. The active principles were isolated and identified as (5E,12Z,15Z)-2-hydroxy-4-oxoheneicosa-5,12,15-trienyl (1), (2R,12Z,15Z)-2-hydroxy-4-oxoheneicosa-12,15-dienyl (2), (2R*,4R*)-2,4-dihydroxyheptadec-16-enyl (3) and (2R*,4R*)-2,4-dihydroxyheptadec-16-ynyl (4) acetates by instrumental analyses. The IC50 of the compounds were 4.0 x 10(-6), 4.9 x 10(-6), 9.4 x 10(-6), and 5.1 x 10(-6) M, respectively. PMID:11515553

  11. Intermittent ataxia and immunodeficiency with multiple carboxylase deficiencies: a biotin-responsive disorder.

    PubMed

    Sander, J E; Malamud, N; Cowan, M J; Packman, S; Amman, A J; Wara, D W

    1980-11-01

    A small group of inborn errors of metabolism are manifested by intermittent cerebellar ataxia. We have previously reported a family with an inherited metabolic defect resulting in multiple carboxylase deficiencies which were responsive to pharmacological doses of biotin. Affected children presented with a skin rash, infections, acute intermittent ataxia, and lactic acidosis. Two affected siblings died prior to diagnosis and therapy, and a detailed postmortem examination was performed on one of them. The brain was characterized by atrophy restricted to the superior vermis of the cerebellum, a finding strikingly similar to that found in chronic alcoholism. Intermittent ataxia would suggest a potentially treatable metabolic disease, and clinical evaluation should include studies of intermediary metabolism and immune function. PMID:7436398

  12. Inhibition of E. coli P-enolpyruvate carboxylase by P-enol-3-bromopyruvate

    SciTech Connect

    Asem, K.; Smith, T.E.

    1986-05-01

    The generality of the mechanism based inhibition of P-enolpyruvate carboxylases (PEPCase) by P-enol-3-bromopyruvate (BrPEP) was tested by measuring its effects on the allosterically regulated enzyme from E. coli. In the presence of 1mM Mn/sup 2 +/, BrPEP appears to be a competitive inhibitor (K/sub i/ = 0.0087mM) of PEPCase. Incubation of 0.005mM PEPCase with 0.5mM (or 1.0mM)BrPEP along with H/sup 14/CO/sub 3//sup -/ and Mn/sup 2 +/, yielded, upon reduction with NaBH/sub 4/, a protein containing radioactivity in an amount approximately proportional to that expected from the loss of catalytic activity. At both a 25- and a 50-fold excess (0.5mM and 1.0mM, respectively) of BrPEP to PEPCase subunits, first order loss of activity occurred with k values of 5.24 x 10/sup -3/ min/sup -1/ and 1.03 x 10/sup -2/ min/sup -1/, respectively. At the lower concentration of BrPEP the inactivation process appeared to be reversible after 40 min with no further inhibition occurring even up to two hours of incubation. At the higher concentration of BrPEP, the rate of inhibition slowed dramatically after 50 min and appeared insignificant over the next hour. These data suggest that BrPEP irreversibly inactivates the E. coli PEP carboxylase, but that there may be considerable dissociation of the product, Br-oxaloacetate, before irreversible binding occurs, and that the reduced rate of inactivation may be due to depletion of BrPEP.

  13. Structural and Biochemical Studies on the Regulation of Biotin Carboxylase by Substrate Inhibition and Dimerization

    SciTech Connect

    C Chou; L Tong

    2011-12-31

    Biotin carboxylase (BC) activity is shared among biotin-dependent carboxylases and catalyzes the Mg-ATP-dependent carboxylation of biotin using bicarbonate as the CO{sub 2} donor. BC has been studied extensively over the years by structural, kinetic, and mutagenesis analyses. Here we report three new crystal structures of Escherichia coli BC at up to 1.9 {angstrom} resolution, complexed with different ligands. Two structures are wild-type BC in complex with two ADP molecules and two Ca{sup 2+} ions or two ADP molecules and one Mg{sup 2+} ion. One ADP molecule is in the position normally taken by the ATP substrate, whereas the other ADP molecule occupies the binding sites of bicarbonate and biotin. One Ca{sup 2+} ion and the Mg{sup 2+} ion are associated with the ADP molecule in the active site, and the other Ca{sup 2+} ion is coordinated by Glu-87, Glu-288, and Asn-290. Our kinetic studies confirm that ATP shows substrate inhibition and that this inhibition is competitive against bicarbonate. The third structure is on the R16E mutant in complex with bicarbonate and Mg-ADP. Arg-16 is located near the dimer interface. The R16E mutant has only a 2-fold loss in catalytic activity compared with the wild-type enzyme. Analytical ultracentrifugation experiments showed that the mutation significantly destabilized the dimer, although the presence of substrates can induce dimer formation. The binding modes of bicarbonate and Mg-ADP are essentially the same as those to the wild-type enzyme. However, the mutation greatly disrupted the dimer interface and caused a large re-organization of the dimer. The structures of these new complexes have implications for the catalysis by BC.

  14. Structural and Biochemical Studies on the Regulation of Biotin Carboxylase by Substrate Inhibition and Dimerization

    SciTech Connect

    Chou, Chi-Yuan; Tong, Liang

    2012-06-19

    Biotin carboxylase (BC) activity is shared among biotin-dependent carboxylases and catalyzes the Mg-ATP-dependent carboxylation of biotin using bicarbonate as the CO{sub 2} donor. BC has been studied extensively over the years by structural, kinetic, and mutagenesis analyses. Here we report three new crystal structures of Escherichia coli BC at up to 1.9 {angstrom} resolution, complexed with different ligands. Two structures are wild-type BC in complex with two ADP molecules and two Ca{sup 2+} ions or two ADP molecules and one Mg{sup 2+} ion. One ADP molecule is in the position normally taken by the ATP substrate, whereas the other ADP molecule occupies the binding sites of bicarbonate and biotin. One Ca{sup 2+} ion and the Mg{sup 2+} ion are associated with the ADP molecule in the active site, and the other Ca{sup 2+} ion is coordinated by Glu-87, Glu-288, and Asn-290. Our kinetic studies confirm that ATP shows substrate inhibition and that this inhibition is competitive against bicarbonate. The third structure is on the R16E mutant in complex with bicarbonate and Mg-ADP. Arg-16 is located near the dimer interface. The R16E mutant has only a 2-fold loss in catalytic activity compared with the wild-type enzyme. Analytical ultracentrifugation experiments showed that the mutation significantly destabilized the dimer, although the presence of substrates can induce dimer formation. The binding modes of bicarbonate and Mg-ADP are essentially the same as those to the wild-type enzyme. However, the mutation greatly disrupted the dimer interface and caused a large re-organization of the dimer. The structures of these new complexes have implications for the catalysis by BC.

  15. Interphase phosphorylation of lamin A.

    PubMed

    Kochin, Vitaly; Shimi, Takeshi; Torvaldson, Elin; Adam, Stephen A; Goldman, Anne; Pack, Chan-Gi; Melo-Cardenas, Johanna; Imanishi, Susumu Y; Goldman, Robert D; Eriksson, John E

    2014-06-15

    Nuclear lamins form the major structural elements that comprise the nuclear lamina. Loss of nuclear structural integrity has been implicated as a key factor in the lamin A/C gene mutations that cause laminopathies, whereas the normal regulation of lamin A assembly and organization in interphase cells is still undefined. We assumed phosphorylation to be a major determinant, identifying 20 prime interphase phosphorylation sites, of which eight were high-turnover sites. We examined the roles of these latter sites by site-directed mutagenesis, followed by detailed microscopic analysis - including fluorescence recovery after photobleaching, fluorescence correlation spectroscopy and nuclear extraction techniques. The results reveal three phosphorylation regions, each with dominant sites, together controlling lamin A structure and dynamics. Interestingly, two of these interphase sites are hyper-phosphorylated in mitotic cells and one of these sites is within the sequence that is missing in progerin of the Hutchinson-Gilford progeria syndrome. We present a model where different phosphorylation combinations yield markedly different effects on the assembly, subunit turnover and the mobility of lamin A between, and within, the lamina, the nucleoplasm and the cytoplasm of interphase cells. PMID:24741066

  16. Vitamin K-dependent carboxylase: affinity purification from bovine liver by using a synthetic propeptide containing the gamma-carboxylation recognition site.

    PubMed Central

    Hubbard, B R; Ulrich, M M; Jacobs, M; Vermeer, C; Walsh, C; Furie, B; Furie, B C

    1989-01-01

    The vitamin K-dependent carboxylase catalyzes the posttranslational modification of specific glutamic acid residues to form gamma-carboxyglutamic acid residues within the vitamin K-dependent proteins. This enzyme recognizes the gamma-carboxylation recognition site on the propeptide of the precursor forms of the vitamin K-dependent blood coagulation proteins. To purify this enzyme to homogeneity, the carboxylase from bovine liver microsomes was solubilized with 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS), the protein was fractionated with ammonium sulfate, and then the enzyme was isolated by affinity chromatography using a synthetic peptide based upon the structure of the prothrombin propeptide. Elution with 10 mM propeptide yielded a single major band on SDS gel electrophoresis with a molecular weight of 77,000. In the presence of high concentrations of propeptide, only minimal carboxylase activity was measurable. Antibodies to the protein inhibited the carboxylase activity in crude preparations. In an alternative affinity purification strategy the propeptide was coupled through an NH2-terminal cysteine to an activated thiol-Sepharose column. The carboxylase-propeptide complex was eluted at 25 degrees C by reductive cleavage of the enzyme-propeptide complex in the presence of detergent and phospholipids. The eluted protein (Mr, 77,000) contained both stable vitamin K-dependent carboxylase and vitamin K epoxidase activity. The protein, purified by either method, was detected as a single band (Mr, 77,000) in a Western blot using anti-carboxylase antibodies. A 10,000-fold purification of carboxylase activity from crude microsomes was estimated. Purified bovine liver vitamin K-dependent carboxylase should facilitate the study of its structure and of the mechanism of action of vitamin K as a cofactor in the reaction catalyzed by this enzyme. Images PMID:2780546

  17. SYMPOSIUM ON PLANT PROTEIN PHOSPHORYLATION

    SciTech Connect

    JOHN C WALKER

    2011-11-01

    Protein phosphorylation and dephosphorylation play key roles in many aspects of plant biology, including control of cell division, pathways of carbon and nitrogen metabolism, pattern formation, hormonal responses, and abiotic and biotic responses to environmental signals. A Symposium on Plant Protein Phosphorylation was hosted on the Columbia campus of the University of Missouri from May 26-28, 2010. The symposium provided an interdisciplinary venue at which scholars studying protein modification, as it relates to a broad range of biological questions and using a variety of plant species, presented their research. It also provided a forum where current international challenges in studies related to protein phosphorylation could be examined. The symposium also stimulated research collaborations through interactions and networking among those in the research community and engaged students and early career investigators in studying issues in plant biology from an interdisciplinary perspective. The proposed symposium, which drew 165 researchers from 13 countries and 21 States, facilitated a rapid dissemination of acquired knowledge and technical expertise regarding protein phosphorylation in plants to a broad range of plant biologists worldwide.

  18. Autophagy proteins regulate ERK phosphorylation

    PubMed Central

    Martinez-Lopez, Nuria; Athonvarangkul, Diana; Mishall, Priti; Sahu, Srabani; Singh, Rajat

    2013-01-01

    Autophagy is a conserved pathway that maintains cellular quality control. Extracellular signal-regulated kinase (ERK) controls various aspects of cell physiology including proliferation. Multiple signalling cascades, including ERK, have been shown to regulate autophagy, however whether autophagy proteins (ATG) regulate cell signalling is unknown. Here we show that growth factor exposure increases the interaction of ERK cascade components with ATG proteins in the cytosol and nucleus. ERK and its upstream kinase MEK localize to the extra-luminal face of autophagosomes. ERK2 interacts with ATG proteins via its substrate-binding domains. Deleting Atg7 or Atg5 or blocking LC3 lipidation or ATG5–ATG12 conjugation decreases ERK phosphorylation. Conversely, increasing LC3-II availability by silencing the cysteine protease ATG4B or acute trehalose exposure increases ERK phosphorylation. Decreased ERK phosphorylation in Atg5−/− cells does not occur from overactive phosphatases. Our findings thus reveal an unconventional function of ATG proteins as cellular scaffolds in the regulation of ERK phosphorylation. PMID:24240988

  19. Phosphorylation in halobacterial signal transduction.

    PubMed Central

    Rudolph, J; Tolliday, N; Schmitt, C; Schuster, S C; Oesterhelt, D

    1995-01-01

    Regulated phosphorylation of proteins has been shown to be a hallmark of signal transduction mechanisms in both Eubacteria and Eukarya. Here we demonstrate that phosphorylation and dephosphorylation are also the underlying mechanism of chemo- and phototactic signal transduction in Archaea, the third branch of the living world. Cloning and sequencing of the region upstream of the cheA gene, known to be required for chemo- and phototaxis in Halobacterium salinarium, has identified cheY and cheB analogs which appear to form part of an operon which also includes cheA and the following open reading frame of 585 nucleotides. The CheY and CheB proteins have 31.3 and 37.5% sequence identity compared with the known signal transduction proteins CheY and CheB from Escherichia coli, respectively. The biochemical activities of both CheA and CheY were investigated following their expression in E.coli, isolation and renaturation. Wild-type CheA could be phosphorylated in a time-dependent manner in the presence of [gamma-32P]ATP and Mg2+, whereas the mutant CheA(H44Q) remained unlabeled. Phosphorylated CheA was dephosphorylated rapidly by the addition of wild-type CheY. The mutant CheY(D53A) had no effect on phosphorylated CheA. The mechanism of chemo- and phototactic signal transduction in the Archaeon H.salinarium, therefore, is similar to the two-component signaling system known from chemotaxis in the eubacterium E.coli. Images PMID:7556066

  20. Glutamine synthetase in ribulose 1,5-bisphosphate carboxylase/oxygenase deficient tobacco mutants in cell suspension culture.

    PubMed

    Hirel, B; Nato, A; Martin, F

    1984-06-01

    In two tobacco mutants lacking ribulose, 1,5-bisphosphate carboxylase/oxygenase the amount of glutamine synthetase and its activity were determined and compared with the wild type green cells. It was shown that in these two mutants glutamine synthetase protein content was six times lower than in the wild type. This situation was comparable to that found in etiolated cells where ribulose 1,5-bisphosphate carboxylase/oxygenase was absent. These observations suggest that a common regulatory mechanism might control the dual light dependent biosynthesis of both enzymes. The results have also implications concerning the efficiency of the reassimilation of ammonia by chloroplastic glutamine synthetase during the photorespiratory process. PMID:24253436

  1. Nitrate-Dependent Degradation of Acetone by Alicycliphilus and Paracoccus Strains and Comparison of Acetone Carboxylase Enzymes ▿

    PubMed Central

    Dullius, Carlos Henrique; Chen, Ching-Yuan; Schink, Bernhard

    2011-01-01

    A novel acetone-degrading, nitrate-reducing bacterium, strain KN Bun08, was isolated from an enrichment culture with butanone and nitrate as the sole sources of carbon and energy. The cells were motile short rods, 0.5 to 1 by 1 to 2 μm in size, which gave Gram-positive staining results in the exponential growth phase and Gram-negative staining results in the stationary-growth phase. Based on 16S rRNA gene sequence analysis, the isolate was assigned to the genus Alicycliphilus. Besides butanone and acetone, the strain used numerous fatty acids as substrates. An ATP-dependent acetone-carboxylating enzyme was enriched from cell extracts of this bacterium and of Alicycliphilus denitrificans K601T by two subsequent DEAE Sepharose column procedures. For comparison, acetone carboxylases were enriched from two additional nitrate-reducing bacterial species, Paracoccus denitrificans and P. pantotrophus. The products of the carboxylase reaction were acetoacetate and AMP rather than ADP. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis of cell extracts and of the various enzyme preparations revealed bands corresponding to molecular masses of 85, 78, and 20 kDa, suggesting similarities to the acetone carboxylase enzymes described in detail for the aerobic bacterium Xanthobacter autotrophicus strain Py2 (85.3, 78.3, and 19.6 kDa) and the phototrophic bacterium Rhodobacter capsulatus. Protein bands were excised and compared by mass spectrometry with those of acetone carboxylases of aerobic bacteria. The results document the finding that the nitrate-reducing bacteria studied here use acetone-carboxylating enzymes similar to those of aerobic and phototrophic bacteria. PMID:21841031

  2. Carboxylation mechanism and stereochemistry of crotonyl-CoA carboxylase/reductase, a carboxylating enoyl-thioester reductase

    PubMed Central

    Erb, Tobias J.; Brecht, Volker; Fuchs, Georg; Müller, Michael; Alber, Birgit E.

    2009-01-01

    Chemo- and stereoselective reductions are important reactions in chemistry and biology, and reductases from biological sources are increasingly applied in organic synthesis. In contrast, carboxylases are used only sporadically. We recently described crotonyl-CoA carboxylase/reductase, which catalyzes the reduction of (E)-crotonyl-CoA to butyryl-CoA but also the reductive carboxylation of (E)-crotonyl-CoA to ethylmalonyl-CoA. In this study, the complete stereochemical course of both reactions was investigated in detail. The pro-(4R) hydrogen of NADPH is transferred in both reactions to the re face of the C3 position of crotonyl-CoA. In the course of the carboxylation reaction, carbon dioxide is incorporated in anti fashion at the C2 atom of crotonyl-CoA. For the reduction reaction that yields butyryl-CoA, a solvent proton is added in anti fashion instead of the CO2. Amino acid sequence analysis showed that crotonyl-CoA carboxylase/reductase is a member of the medium-chain dehydrogenase/reductase superfamily and shares the same phylogenetic origin. The stereospecificity of the hydride transfer from NAD(P)H within this superfamily is highly conserved, although the substrates and reduction reactions catalyzed by its individual representatives differ quite considerably. Our findings led to a reassessment of the stereospecificity of enoyl(-thioester) reductases and related enzymes with respect to their amino acid sequence, revealing a general pattern of stereospecificity that allows the prediction of the stereochemistry of the hydride transfer for enoyl reductases of unknown specificity. Further considerations on the reaction mechanism indicated that crotonyl-CoA carboxylase/reductase may have evolved from enoyl-CoA reductases. This may be useful for protein engineering of enoyl reductases and their application in biocatalysis. PMID:19458256

  3. Structural and functional analysis of the phosphoenolpyruvate carboxylase gene from the purple nonsulfur bacterium Rhodopseudomonas palustris No. 7.

    PubMed Central

    Inui, M; Dumay, V; Zahn, K; Yamagata, H; Yukawa, H

    1997-01-01

    The ppc gene, encoding phosphoenolpyruvate carboxylase (PEPC), from Rhodopseudomonas palustris No. 7 was cloned and sequenced. Primer extension analysis identified a transcriptional start site 42 bp upstream of the ppc initiation codon. An R. palustris No. 7 PEPC-deficient strain showed a slower doubling time compared with the wild-type strain either anaerobically in the light or aerobically in the dark, when pyruvate was used as a carbon source. PMID:9244286

  4. Discovery of Small Molecule Isozyme Non-specific Inhibitors of Mammalian Acetyl-CoA Carboxylase 1 and 2

    SciTech Connect

    Corbett, J.; Freeman-Cook, K; Elliott, R; Vajdos, F; Rajamohan, F; Kohls, D; Marr, E; Harwood Jr., H; Esler, W; et al.

    2010-01-01

    Screening Pfizer's compound library resulted in the identification of weak acetyl-CoA carboxylase inhibitors, from which were obtained rACC1 CT-domain co-crystal structures. Utilizing HTS hits and structure-based drug discovery, a more rigid inhibitor was designed and led to the discovery of sub-micromolar, spirochromanone non-specific ACC inhibitors. Low nanomolar, non-specific ACC-isozyme inhibitors that exhibited good rat pharmacokinetics were obtained from this chemotype.

  5. Acetyl Coenzyme A Carboxylase Activity in Developing Seedlings and Chloroplasts of Barley and Its Virescens Mutant 1

    PubMed Central

    Thomson, Lawrence W.; Zalik, Saul

    1981-01-01

    Acetyl coenzyme A (CoA) carboxylase activity of whole tissue homogenates and chloroplast preparations was analyzed as the acetyl-CoA-dependent incorporation of [14C]bicarbonate into an acid-stable product. The absolute requirement for ATP and MgCl2, the complete inhibition with avidin, and end-product analysis were consistent with the presence of acetyl-CoA carboxylase activity. Little difference was found between the mutant and normal tissue homogenates from the 1- to 3-day growth stages, during which period both showed a 3-fold increase. However, by 4 days, the activity of the mutant exceeded that of the normal. Fractionation studies showed that the enzyme was a soluble protein present in the stromal fraction of chloroplasts. The biotin content was also highest in the stroma, although it was found in the lamellar fraction as well. For both the mutant and the normal, the highest acetyl-CoA carboxylase activities were obtained in the stromal preparations from 4-day seedlings (54 and 31 nmoles per milligram protein per minute for the mutant and the normal, respectively) with a progressive decline by 6 and 8 days. The difference between the mutant and the normal was not due to the accumulation of an inhibitor in the normal. PMID:16661731

  6. Characterization of the Mycobacterial Acyl-CoA Carboxylase Holo Complexes Reveals Their Functional Expansion into Amino Acid Catabolism

    PubMed Central

    Ehebauer, Matthias T.; Zimmermann, Michael; Jakobi, Arjen J.; Noens, Elke E.; Laubitz, Daniel; Cichocki, Bogdan; Marrakchi, Hedia; Lanéelle, Marie-Antoinette; Daffé, Mamadou; Sachse, Carsten; Dziembowski, Andrzej; Sauer, Uwe; Wilmanns, Matthias

    2015-01-01

    Biotin-mediated carboxylation of short-chain fatty acid coenzyme A esters is a key step in lipid biosynthesis that is carried out by multienzyme complexes to extend fatty acids by one methylene group. Pathogenic mycobacteria have an unusually high redundancy of carboxyltransferase genes and biotin carboxylase genes, creating multiple combinations of protein/protein complexes of unknown overall composition and functional readout. By combining pull-down assays with mass spectrometry, we identified nine binary protein/protein interactions and four validated holo acyl-coenzyme A carboxylase complexes. We investigated one of these - the AccD1-AccA1 complex from Mycobacterium tuberculosis with hitherto unknown physiological function. Using genetics, metabolomics and biochemistry we found that this complex is involved in branched amino-acid catabolism with methylcrotonyl coenzyme A as the substrate. We then determined its overall architecture by electron microscopy and found it to be a four-layered dodecameric arrangement that matches the overall dimensions of a distantly related methylcrotonyl coenzyme A holo complex. Our data argue in favor of distinct structural requirements for biotin-mediated γ-carboxylation of α−β unsaturated acid esters and will advance the categorization of acyl-coenzyme A carboxylase complexes. Knowledge about the underlying structural/functional relationships will be crucial to make the target category amenable for future biomedical applications. PMID:25695631

  7. Cellular regulation by protein phosphorylation.

    PubMed

    Fischer, Edmond H

    2013-01-11

    A historical account of the discovery of reversible protein phosphorylation is presented. This process was uncovered in the mid 1950s in a study undertaken with Edwin G. Krebs to elucidate the complex hormonal regulation of skeletal muscle glycogen phosphorylase. Contrary to the known activation of this enzyme by AMP which serves as an allosteric effector, its hormonal regulation results from a phosphorylation of the protein by phosphorylase kinase following the activation of the latter by Ca(2+) and ATP. The study led to the establishment of the first hormonal cascade of successive enzymatic reactions, kinases acting on kinases, initiated by cAMP discovered by Earl Sutherland. It also showed how two different physiological processes, carbohydrate metabolism and muscle contraction, could be regulated in concert. PMID:23058924

  8. Quaternary Structure of the Oxaloacetate Decarboxylase Membrane Complex and Mechanistic Relationships to Pyruvate Carboxylases*

    PubMed Central

    Balsera, Monica; Buey, Ruben M.; Li, Xiao-Dan

    2011-01-01

    The oxaloacetate decarboxylase primary Na+ pump (OAD) is an essential membrane protein complex that functions in the citrate fermentation pathway of some pathogenic bacteria under anaerobic conditions. OAD contains three different subunits: Oad-α, a biotinylated extrinsic protein that catalyzes the α-ketodecarboxylation of oxaloacetate; Oad-γ, a structural bitopic membrane protein whose cytosolic tail (named as Oad-γ′) binds tightly to Oad-α; and Oad-β, a multispan transmembrane α-helical protein that constitutes the Na+ channel. How OAD is organized structurally at the membrane and what the molecular determinants are that lead to an efficient energy coupling mechanism remain elusive. In the present work, we elucidate the stoichiometry of the native complex as well as the low resolution structure of the peripheral components of OAD (Oad-α and Oad-γ′) by small angle x-ray scattering. Our results point to a quaternary assembly similar to the pyruvate carboxylase complex organization. Herein, we propose a model in which the association in pairs of Oad-α dimers, mediated by Oad-γ, results in the acquisition of a functional oligomeric state at the bacterial membrane. New structural insights for the conformational rearrangements associated with the carboxylbiotin transfer reaction within OAD are provided. PMID:21209096

  9. Phosphoenolpyruvate Carboxylase Identified as a Key Enzyme in Erythrocytic Plasmodium falciparum Carbon Metabolism

    PubMed Central

    Chokkathukalam, Achuthanunni; Watson, David G.; Breitling, Rainer; Coombs, Graham H.; Müller, Sylke

    2014-01-01

    Phospoenolpyruvate carboxylase (PEPC) is absent from humans but encoded in the Plasmodium falciparum genome, suggesting that PEPC has a parasite-specific function. To investigate its importance in P. falciparum, we generated a pepc null mutant (D10Δpepc), which was only achievable when malate, a reduction product of oxaloacetate, was added to the growth medium. D10Δpepc had a severe growth defect in vitro, which was partially reversed by addition of malate or fumarate, suggesting that pepc may be essential in vivo. Targeted metabolomics using 13C-U-D-glucose and 13C-bicarbonate showed that the conversion of glycolytically-derived PEP into malate, fumarate, aspartate and citrate was abolished in D10Δpepc and that pentose phosphate pathway metabolites and glycerol 3-phosphate were present at increased levels. In contrast, metabolism of the carbon skeleton of 13C,15N-U-glutamine was similar in both parasite lines, although the flux was lower in D10Δpepc; it also confirmed the operation of a complete forward TCA cycle in the wild type parasite. Overall, these data confirm the CO2 fixing activity of PEPC and suggest that it provides metabolites essential for TCA cycle anaplerosis and the maintenance of cytosolic and mitochondrial redox balance. Moreover, these findings imply that PEPC may be an exploitable target for future drug discovery. PMID:24453970

  10. Activating phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxykinase in combination for improvement of succinate production.

    PubMed

    Tan, Zaigao; Zhu, Xinna; Chen, Jing; Li, Qingyan; Zhang, Xueli

    2013-08-01

    Phosphoenolpyruvate (PEP) carboxylation is an important step in the production of succinate by Escherichia coli. Two enzymes, PEP carboxylase (PPC) and PEP carboxykinase (PCK), are responsible for PEP carboxylation. PPC has high substrate affinity and catalytic velocity but wastes the high energy of PEP. PCK has low substrate affinity and catalytic velocity but can conserve the high energy of PEP for ATP formation. In this work, the expression of both the ppc and pck genes was modulated, with multiple regulatory parts of different strengths, in order to investigate the relationship between PPC or PCK activity and succinate production. There was a positive correlation between PCK activity and succinate production. In contrast, there was a positive correlation between PPC activity and succinate production only when PPC activity was within a certain range; excessive PPC activity decreased the rates of both cell growth and succinate formation. These two enzymes were also activated in combination in order to recruit the advantages of each for the improvement of succinate production. It was demonstrated that PPC and PCK had a synergistic effect in improving succinate production. PMID:23747698

  11. Deregulation of feedback inhibition of phosphoenolpyruvate carboxylase for improved lysine production in Corynebacterium glutamicum.

    PubMed

    Chen, Zhen; Bommareddy, Rajesh Reddy; Frank, Doinita; Rappert, Sugima; Zeng, An-Ping

    2014-02-01

    Allosteric regulation of phosphoenolpyruvate carboxylase (PEPC) controls the metabolic flux distribution of anaplerotic pathways. In this study, the feedback inhibition of Corynebacterium glutamicum PEPC was rationally deregulated, and its effect on metabolic flux redistribution was evaluated. Based on rational protein design, six PEPC mutants were designed, and all of them showed significantly reduced sensitivity toward aspartate and malate inhibition. Introducing one of the point mutations (N917G) into the ppc gene, encoding PEPC of the lysine-producing strain C. glutamicum LC298, resulted in ∼37% improved lysine production. In vitro enzyme assays and (13)C-based metabolic flux analysis showed ca. 20 and 30% increases in the PEPC activity and corresponding flux, respectively, in the mutant strain. Higher demand for NADPH in the mutant strain increased the flux toward pentose phosphate pathway, which increased the supply of NADPH for enhanced lysine production. The present study highlights the importance of allosteric regulation on the flux control of central metabolism. The strategy described here can also be implemented to improve other oxaloacetate-derived products. PMID:24334667

  12. Abiotic stresses affecting water balance induce phosphoenolpyruvate carboxylase expression in roots of wheat seedlings.

    PubMed

    González, María-Cruz; Sánchez, Rosario; Cejudo, Francisco J

    2003-04-01

    Phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) plays an important role in CO(2) fixation in C4 and CAM plants. In C3 plants, PEPC is widely expressed in most organs; however, its function is not yet clearly established. With the aim of providing clues on the function of PEPC in C3 plants, we have analyzed its pattern of expression in wheat ( Triticum aestivum L.) seedlings. Roots showed almost double the level of PEPC activity of shoots. Further analysis of PEPC expression in roots by in situ localization techniques showed a high accumulation of PEPC transcripts and polypeptides in meristematic cells, whereas in the rest of the root PEPC localized preferentially to the vascular tissue. Treatment with NaCl and LiCl induced PEPC expression in roots. Similarly, other abiotic stresses affecting water status, such as drought or cold, induced PEPC expression. Induction was root-specific except for the cold treatment, which also induced PEPC in shoots, although to a lesser extent. In contrast, hypoxia, which does not affect water balance, did not promote any induction of PEPC expression. These results suggest an important role for this enzyme in the adaptation of plants to environmental changes. PMID:12687366

  13. Functional metagenomic selection of ribulose 1, 5-bisphosphate carboxylase/oxygenase from uncultivated bacteria.

    PubMed

    Varaljay, Vanessa A; Satagopan, Sriram; North, Justin A; Witte, Brian; Dourado, Manuella N; Anantharaman, Karthik; Arbing, Mark A; McCann, Shelley Hoeft; Oremland, Ronald S; Banfield, Jillian F; Wrighton, Kelly C; Tabita, F Robert

    2016-04-01

    Ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) is a critical yet severely inefficient enzyme that catalyses the fixation of virtually all of the carbon found on Earth. Here, we report a functional metagenomic selection that recovers physiologically active RubisCO molecules directly from uncultivated and largely unknown members of natural microbial communities. Selection is based on CO2 -dependent growth in a host strain capable of expressing environmental deoxyribonucleic acid (DNA), precluding the need for pure cultures or screening of recombinant clones for enzymatic activity. Seventeen functional RubisCO-encoded sequences were selected using DNA extracted from soil and river autotrophic enrichments, a photosynthetic biofilm and a subsurface groundwater aquifer. Notably, three related form II RubisCOs were recovered which share high sequence similarity with metagenomic scaffolds from uncultivated members of the Gallionellaceae family. One of the Gallionellaceae RubisCOs was purified and shown to possess CO2 /O2 specificity typical of form II enzymes. X-ray crystallography determined that this enzyme is a hexamer, only the second form II multimer ever solved and the first RubisCO structure obtained from an uncultivated bacterium. Functional metagenomic selection leverages natural biological diversity and billions of years of evolution inherent in environmental communities, providing a new window into the discovery of CO2 -fixing enzymes not previously characterized. PMID:26617072

  14. Inhibition of acetyl-coenzyme A carboxylase by two classes of grass-selective herbicides

    SciTech Connect

    Rendina, A.R.; Craig-Kennard, A.C.; Beaudoin, J.D.; Breen, M.K. )

    1990-05-01

    The selective grass herbicides diclofop, haloxyfop, and trifop (((aryloxy)phenoxy)propionic acids) and alloxydim, sethoxydim, and clethodim (cyclohexanediones) are potent, reversible inhibitors of acetyl-coenzyme A carboxylase (ACC) partially purified from barley, corn, and wheat. Although inhibition of the wheat enzyme by clethodim and diclofop is noncompetitive versus each of the substrates adenosine triphosphate (ATP), HCO{sub 3}{sup {minus}}, and acetyl-coenzyme A (acetyl-CoA), diclofop and clethodim are nearly competitive versus acetyl-CoA since the level of inhibition is most sensitive to the concentration of acetyl-CoA (K{sub is} < K{sub ii}). To conclusively show whether the herbicides interact at the biotin carboxylation site or the carboxyl transfer site, the inhibition of isotope exchange and partial reactions catalyzed at each site was studied with the wheat enzyme. Only the ({sup 14}C)acetyl-CoA-malonyl-CoA exchange and decarboxylation of ({sup 14}C)malonyl-CoA reactions are strongly inhibited by clethodim and diclofop, suggesting that the herbicides interfere with the carboxyl transfer site rather than the biotin carboxylation site of the enzyme. Double-inhibition studies with diclofop and clethodim suggest that the ((aryloxy)phenoxy)propionic acid and cyclohexanedione herbicides may bind to the same region of the enzyme.

  15. Phosphoenolpyruvate carboxylase from cherimoya fruit: properties, kinetics and effects of high CO(2).

    PubMed

    Muñoz, T; Escribano, M I; Merodio, C

    2001-12-01

    Phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) regulatory properties were studied in non-photosynthetic (mesocarp) and photosynthetic (peel) tissues from cherimoya (Annona cherimola Mill.) fruit stored in air, in order to gain a better understanding of in vivo enzyme regulation. Analyses were also performed with fruit treated with 20% CO(2)-20% O(2) to define the role of PEPC as part of an adaptive mechanism to high external carbon dioxide levels. The results revealed that the special kinetic characteristics of the enzyme from mesocarp--high V(max) and low sensibility to L-malate inhibition - are related to the active acid metabolism of these fruits and point to a high rate of reassimilation of respired CO(2) into keto-acids. With respect to fruit stored in air, PEPC in crude extracts from CO(2)-treated cherimoyas gave a similar V(max) (1.12+/-0.03 microkat x mg(-1) protein), a lower apparent K(m) (68+/-9 microM for PEP) and a higher I(50) of L-malate (5.95+/-0.3 mM). These kinetic values showed the increase in the affinity of this enzyme toward one of its substrate, PEP, by elevated external CO(2) concentrations. The lower K(m) value and lower sensitivity to L-malate are consistent with higher in vivo carboxylation reaction efficiency in CO(2)-treated cherimoyas, while pointing to an additional enzyme regulation system via CO(2). PMID:11730863

  16. Improvement of the phosphoenolpyruvate carboxylase activity of Phaeodactylum tricornutum PEPCase 1 through protein engineering.

    PubMed

    Chang, Kwang Suk; Jeon, Hancheol; Seo, Seungbeom; Lee, Yew; Jin, EonSeon

    2014-06-10

    In order to mitigate CO2 accumulation and decrease the rate of global warming and climate change, we previously presented a strategy for the development of an efficient CO2 capture and utilization system. The system employs two recombinant enzymes, carbonic anhydrase and phosphoenolpyruvate carboxylase, which were originated from microalgae. Although utilization of this integrated system would require a large quantity of high quality PEPCase protein, such quantities could be produced by increasing the solubility of the Phaeodactylum tricornutum PEPCase 1 (PtPEPCase 1) protein in the Escherichia coli heterologous expression system. We first expressed the putative mitochondria targeting peptide- and chloroplast transit peptide-truncated proteins of PtPEPCase 1, mPtPEPCase 1 and cPtPEPCase 1, respectively, in E. coli. After affinity chromatography, the amount of purified PEPCase protein from 500mL of E. coli culture was greatest for cPtPEPCase 1 (1.99mg), followed by mPtPEPCase 1 (0.82mg) and PtPEPCase 1 (0.61mg). Furthermore, the enzymatic activity of mPtPEPCase 1 and cPtPEPCase 1 showed approximately 1.6-fold (32.19 units/mg) and 3-fold (59.48 units/mg) increases, respectively. Therefore, cPtPEPCase 1 purified using the E. coli heterogeneous expression system could be a strong candidate for a platform technology to capture CO2 and produce value-added four-carbon platform chemicals. PMID:24835101

  17. Ribulose Bisphosphate Carboxylase Activity in Anther-Derived Plants of Saintpaulia ionantha Wendl. Shag 1

    PubMed Central

    Bhaskaran, Shyamala; Smith, Roberta H.; Finer, John J.

    1983-01-01

    Plants obtained from anther culture of the African violet, Saintpaulia ionantha Wendl. `Shag' and vegetatively cloned copies of the parent anther donor plant were examined for their ploidy and ribulose-1,5-biphosphate carboxylase (RuBPcase) activity. The cloned parent plants were all diploid and did not vary much in their nuclear DNA, chlorophyll, and RuBPcase activity. Some of the anther-derived plants were similar to the parent plants while others were not. Different levels of ploidy were observed among the androgenetic plants. RuBPcase activities higher than that of the parent plants were found in some anther-derived plants. However, there was no direct correlation between ploidy and RuBPcase activity. Expression of nuclear genes from a single parent in the anther-derived plants and it's diploidization or plastid changes during early stages of microsporogenesis or androgenesis are suggested as possible reasons for the variations observed among them. This could be a useful technique to obtain physiological variants which could be agronomically desirable. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:16663273

  18. Ribulose Bisphosphate Carboxylase Activity in Anther-Derived Plants of Saintpaulia ionantha Wendl. Shag.

    PubMed

    Bhaskaran, S; Smith, R H; Finer, J J

    1983-11-01

    Plants obtained from anther culture of the African violet, Saintpaulia ionantha Wendl. ;Shag' and vegetatively cloned copies of the parent anther donor plant were examined for their ploidy and ribulose-1,5-biphosphate carboxylase (RuBPcase) activity. The cloned parent plants were all diploid and did not vary much in their nuclear DNA, chlorophyll, and RuBPcase activity. Some of the anther-derived plants were similar to the parent plants while others were not. Different levels of ploidy were observed among the androgenetic plants. RuBPcase activities higher than that of the parent plants were found in some anther-derived plants. However, there was no direct correlation between ploidy and RuBPcase activity. Expression of nuclear genes from a single parent in the anther-derived plants and it's diploidization or plastid changes during early stages of microsporogenesis or androgenesis are suggested as possible reasons for the variations observed among them. This could be a useful technique to obtain physiological variants which could be agronomically desirable. PMID:16663273

  19. Regulation of Phosphoenolpyruvate Carboxylase and Crassulacean Acid Metabolism Induction in Mesembryanthemum crystallinum L. by Cytokinin 1

    PubMed Central

    Schmitt, Jürgen M.; Piepenbrock, Mechtild

    1992-01-01

    Phosphoenolpyruvate carboxylase (PEPCase), the key enzyme of Crassulacean acid metabolism, is induced by water stress in leaves of Mesembryanthemum crystallinum. In water-stressed plants or excised leaves, exogenous cytokinin suppresses PEPCase transcript accumulation in the leaves. Cytokinin (6-benzylaminopurine) used in concentrations from 5 to 500 micromolar (a) inhibits the upregulation of PEPCase transcripts, enzyme activity, and Crassulacean acid metabolism induction in salt-stressed intact plants when sprayed once daily during the stress period, (b) inhibits the accumulation of PEPCase mRNA in leaves from well-watered plants, (c) down-regulates PEPCase transcripts within 8 hours in prestressed, intact plants after a single spraying of an individual leaf, (d) inhibits accumulation of PEPCase transcripts in excised, wilting leaves, and (e) accelerates the net decrease of PEPCase transcripts in excised leaves from prestressed plants under rehydration conditions. When roots, the main site of cytokinin biosynthesis, are excised, PEPCase induction under drought stress is intensified. We propose that roots, acting as sensors of soil water status, may regulate PEPCase gene expression in the leaves with cytokinin as a signal transducer. ImagesFigure 2Figure 7 PMID:16669088

  20. Soraphen A, an inhibitor of acetyl CoA carboxylase activity, interferes with fatty acid elongation

    PubMed Central

    Jump, Donald B.; Torres-Gonzalez, Moises; Olson, L. Karl

    2010-01-01

    Acetyl CoA carboxylase (ACC1 & ACC2) generates malonyl CoA, a substrate for de novo lipogenesis (DNL) and an inhibitor of mitochondrial fatty acid β-oxidation (FAO). Malonyl CoA is also a substrate for microsomal fatty acid elongation, an important pathway for saturated (SFA), mono- (MUFA) and polyunsaturated fatty acid (PUFA) synthesis. Despite the interest in ACC as a target for obesity and cancer therapy, little attention has been given to the role ACC plays in long chain fatty acid synthesis. This report examines the effect of pharmacological inhibition of ACC on DNL & palmitate (16:0) and linoleate (18:2,n-6) metabolism in HepG2 and LnCap cells. The ACC inhibitor, soraphen A, lowers cellular malonyl CoA, attenuates DNL and the formation of fatty acid elongation products derived from exogenous fatty acids, i.e., 16:0 & 18:2,n-6; IC50 ~ 5 nM. Elevated expression of fatty acid elongases (Elovl5, Elovl6) or desaturases (FADS1, FADS2) failed to override the soraphen A effect on SFA, MUFA or PUFA synthesis. Inhibition of fatty acid elongation leads to the accumulation of 16- and 18-carbon unsaturated fatty acids derived from 16:0 and 18:2,n-6, respectively. Pharmacological inhibition of ACC activity will not only attenuate DNL and induce FAO, but will also attenuate the synthesis of very long chain saturated, mono- and polyunsaturated fatty acids. PMID:21184748

  1. Regulation of Phosphoenolpyruvate Carboxylase from the Green Alga Selenastrum minutum1

    PubMed Central

    Schuller, Kathryn A.; Plaxton, William C.; Turpin, David H.

    1990-01-01

    Two isoforms of phosphoenolpyruvate carboxylase (PEPC) with very different regulatory properties were partially purified from the green alga Selenastrum minutum. They were designated PEPC1 and PEPC2. PEPC1 showed sigmoidal kinetics with respect to phosphoenolpyruvate (PEP) whereas PEPC2 exhibited a typical Michaelis-Menten response. The S0.5(PEP) of PEPC1 was 2.23 millimolar. This was fourfold greater than the S0.5(PEP) of PEPC2, which was 0.57 millimolar. PEPC1 was activated more than fourfold by 2.0 millimolar glutamine and sixfold by 2.0 millimolar dihydroxyacetone phosphate (DHAP) at a subsaturating PEP concentration of 0.625 millimolar. In contrast, PEPC2 showed only 8% and 52% activation by glutamine and DHAP, respectively. The effects of glutamine and DHAP were additive. PEPC1 was more sensitive to inhibition by glutamate, 2-oxoglutarate, and aspartate than PEPC2. Both isoforms were equally inhibited by malate. All of these metabolites affected only the S0.5(PEP) not the Vmax. The regulatory properties of S. minutum PEPC in vitro are discussed in terms of (a) increased rates of dark carbon fixation (shown to be catalyzed predominantly by PEPC) and (b) changes in metabolite levels in vivo during enhanced NH4+ assimilation. Finally, a model is proposed for the regulation of PEPC in vivo in relation to its role in replenishing tricarboxylic acid cycle intermediates consumed in NH4+ assimilation. PMID:16667617

  2. Soybean ribulose bisphosphate carboxylase small subunit: Mechanisms and determinants of RNA turnover. Annual progress report

    SciTech Connect

    Meagher, R.B.

    1993-12-31

    An in vitro degradation system has been developed from petunia and soybean polysomes in order to investigate the mechanisms and determinants controlling RNA turnover in higher plants. This system faithfully degrades soybean ribulose-1,5-bisphosphate carboxylase small subunit (rbcS) mRNA into the same products observed in total RNA preparations. In previous years it was shown that the most stable products represent a nested constellation of fragments, which are shortened from their 3{prime} ends, and have intact 5{prime} ends. Exogenous rbcS RNA tagged with novel 5{prime} sequence 15 or 56 bp long were synthesized in vitro as Sp6 and T7 runoff transcripts, respectively. When added to the system they were degraded faithfully into constellation of products which were 15 or 56 bp longer than the endogenous products, respectively. Detailed kinetics on the appearance of these exogenous products confirmed degradation proceeds in an overall 3{prime} to 5{prime} direction but suggested that there are multiple pathways through which the RNA may be degraded. To further demonstrate a precursor product relationships, in vitro synthesized transcripts truncated at their 3{prime} ends were shown to degrade into the expected smaller fragments previously mapped in the 5{prime} portion of the rbcS RNA.

  3. Fluoride, hydrogen, and formate activate ribulosebisphosphate carboxylase formation in Alcaligenes eutrophus.

    PubMed Central

    Im, D S; Friedrich, C G

    1983-01-01

    Alcaligenes eutrophus formed ribulosebisphosphate carboxylase (RuBPCase; EC 4.1.1.39) when grown on fructose. Addition of sodium fluoride (NaF) to fructose minimal medium resulted in a slightly decreased growth rate and a rapid fivefold increase in RuBPCase specific activity. With citrate, a glucogenic carbon source, RuBPCase was also formed, However, addition of NaF to cells growing on citrate resulted in a 50% decrease in RuBPCase specific activity. Among the enzymes of fructose catabolism, NaF (10 mM) inhibited enolase in vitro by 98% and gluconate 6-phosphate dehydratase by 87%. Inhibition of the dehydratase by NaF was insignificant in vivo, as determined with a mutant defective in phosphoglycerate mutase activity. Growth of this mutant on fructose was not inhibited by NaF, and only a minor increase in RuBPCase activity was observed. From these results, we concluded that the product of the enolase reaction, phosphoenolpyruvate, played a role in RuBPCase formation. Addition of H2 or formate to the wild type growing on fructose or citrate did not affect the growth rate but resulted in rapid formation of RuBPCase activity. Mutants impaired in H2 metabolism formed RuBPCase at a low rate during growth on fructose plus H2 but at a high rate on formate. Apparently, additional reductant from H2 or formate metabolism induced RuBPCase formation in A. eutrophus. PMID:6841316

  4. A mutation affecting carbon catabolite repression suppresses growth defects in pyruvate carboxylase mutants from Saccharomyces cerevisiae.

    PubMed

    Blázquez, M A; Gamo, F J; Gancedo, C

    1995-12-18

    Yeasts with disruptions in the genes PYC1 and PYC2 encoding the isoenzymes of pyruvate carboxylase cannot grow in a glucose-ammonium medium (Stucka et al. (1991) Mol. Gen. Genet. 229, 307-315). We have isolated a dominant mutation, BPC1-1, that allows growth in this medium of yeasts with interrupted PYC1 and PYC2 genes. The BPC1-1 mutation abolishes catabolite repression of a series of genes and allows expression of the enzymes of the glyoxylate cycle during growth in glucose. A functional glyoxylate cycle is necessary for suppression as a disruption of gene ICL1 encoding isocitrate lyase abolished the phenotypic effect of BPC1-1 on growth in glucose-ammonium. Concurrent expression from constitutive promoters of genes ICL1 and MLS1 (encoding malate synthase) also suppressed the growth phenotype of pyc1 pyc2 mutants. The mutation BPC1-1 is either allelic or closely linked to the mutation DGT1-1. PMID:8543050

  5. Urea carboxylase and allophanate hydrolase are components of a multifunctional protein in yeast.

    PubMed

    Sumrada, R A; Cooper, T G

    1982-08-10

    Saccharomyces cerevisiae can use urea as sole nitrogen source by degrading it in two steps (urea carboxylase and allophanate hydrolase) to ammonia and carbon dioxide. We previously demonstrated that: 1) the enzymatic functions required for degradation are encoded in two tightly linked genetic loci and 2) pleiotropic mutations each resulting in the loss of both activities are found in both loci. These and other observations led to the hypothesis that urea degradation might be catalyzed by a multifunctional polypeptide. Waheed and Castric (1977) J. Biol. Chem. 252, 1628-1632), on the other hand, purified urea amidolyase from Candida utilis and reported it to be a tetramer composed of nonidentical 70- and 170-kilodalton subunits. To resolve the differing views of urea amidolyase structure, we purified the protein using rapid methods designed to avoid proteolytic cleavage. Application of these methods resulted in the isolation of a single, inducible and repressible, 204-kilodalton species. We observed no evidence for the existence of nonidentical subunits. A similar inducible, high molecular weight species was also detected in C. utilis. These biochemical results support our earlier hypothesis that urea degradation is carried out in yeast by an inducible and repressible protein composed of identical, multifunctional subunits. PMID:6124544

  6. Metal Ion Interactions with Phosphoenolpyruvate Carboxylase from Crassula argentea and Zea mays1

    PubMed Central

    Nguyen, Tien T.; Ngam-ek, Apinya; Jenkins, Joane; Grover, Scott D.

    1988-01-01

    Metal ion interactions with phosphoenolpyruvate carboxylase from the CAM plant Crassula argentea and the C4 plant Zea mays were kinetically analyzed. Fe2+ and Cd2+ were found to be active metal cofactors along with the previously known active metals Mg2+, Mn2+, and Co2+. In studies with the Crassula enzyme, Mg2+ yielded the highest Vmax value but also generated the highest values of Km(metal) and Km(pep). For these five active metals lower Km(metal) values tended to be associated with lower Km(pep) values. PEP saturation curves showed more kinetic cooperativity than the corresponding metal saturation curves. The activating metal ions all have ionic radii in the range of 0.86 to 1.09 Å. Ca2+, Sr2+, Ba2+, and Ni2+ inhibited competitively with respect to Mg2+, whereas Be2+, Cu2+, Zn2+, and Pd2+ showed mixed-type inhibition. Vmax trends with the five active metals were similar for the C. argentea and Z. mays enzymes except that Cd2+ was less effective with the maize enzyme. Km(metal) values were 10- to 60-fold higher in the enzyme from Z. mays. PMID:16665847

  7. Regulation of synthesis of pyruvate carboxylase in the photosynthetic bacterium Rhodobacter capsulatus.

    PubMed Central

    Yakunin, A F; Hallenbeck, P C

    1997-01-01

    The synthesis of pyruvate carboxylase (PC) was studied by using quantitative immunoblot analysis with an antibody raised against PC purified from Rhodobacter capsulatus and was found to vary 20-fold depending on the growth conditions. The PC content was high in cells grown on pyruvate or on carbon substrates metabolized via pyruvate (lactate, D-malate, glucose, or fructose) and low in cells grown on tricarboxylic acid (TCA) cycle intermediates or substrates metabolized without intermediate formation of pyruvate (acetate or glutamate). Under dark aerobic growth conditions with lactate as a carbon source, the PC content was approximately twofold higher than that found under light anaerobic growth conditions. The results of incubation experiments demonstrate that PC synthesis is induced by pyruvate and repressed by TCA cycle intermediates, with negative control dominating over positive control. The content of PC in R. capsulatus cells was also directly related to the growth rate in continuous cultures. The analysis of intracellular levels of pyruvate and TCA cycle intermediates in cells grown under different conditions demonstrated that the content of PC is directly proportional to the ratio between pyruvate and C4 dicarboxylates. These results suggest that the regulation of PC synthesis by oxygen and its direct correlation with growth rate may reflect effects on the balance of intracellular pyruvate and C4 dicarboxylates. Thus, this important enzyme is potentially regulated both allosterically and at the level of synthesis. PMID:9045800

  8. Phosphoenolpyruvate carboxylase intrinsically located in the chloroplast of rice plays a crucial role in ammonium assimilation

    PubMed Central

    Masumoto, Chisato; Miyazawa, Shin-Ichi; Ohkawa, Hiroshi; Fukuda, Takuya; Taniguchi, Yojiro; Murayama, Seiji; Kusano, Miyako; Saito, Kazuki; Fukayama, Hiroshi; Miyao, Mitsue

    2010-01-01

    Phosphoenolpyruvate carboxylase (PEPC) is a key enzyme of primary metabolism in bacteria, algae, and vascular plants, and is believed to be cytosolic. Here we show that rice (Oryza sativa L.) has a plant-type PEPC, Osppc4, that is targeted to the chloroplast. Osppc4 was expressed in all organs tested and showed high expression in the leaves. Its expression in the leaves was confined to mesophyll cells, and Osppc4 accounted for approximately one-third of total PEPC protein in the leaf blade. Recombinant Osppc4 was active in the PEPC reaction, showing Vmax comparable to cytosolic isozymes. Knockdown of Osppc4 expression by the RNAi technique resulted in stunting at the vegetative stage, which was much more marked when rice plants were grown with ammonium than with nitrate as the nitrogen source. Comparison of leaf metabolomes of ammonium-grown plants suggested that the knockdown suppressed ammonium assimilation and subsequent amino acid synthesis by reducing levels of organic acids, which are carbon skeleton donors for these processes. We also identified the chloroplastic PEPC gene in other Oryza species, all of which are adapted to waterlogged soil where the major nitrogen source is ammonium. This suggests that, in addition to glycolysis, the genus Oryza has a unique route to provide organic acids for ammonium assimilation that involves a chloroplastic PEPC, and that this route is crucial for growth with ammonium. This work provides evidence for diversity of primary ammonium assimilation in the leaves of vascular plants. PMID:20194759

  9. Ribulose-1,5-bisphosphate Carboxylase/Oxygenase content, assimilatory charge, and mesophyll conductance in leaves

    PubMed

    Eichelmann; Laisk

    1999-01-01

    The content of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) (Et; EC 4.1.1.39) measured in different-aged leaves of sunflower (Helianthus annuus) and other plants grown under different light intensities, varied from 2 to 75 &mgr;mol active sites m-2. Mesophyll conductance (&mgr;) was measured under 1.5% O2, as well as postillumination CO2 uptake (assimilatory charge, a gas-exchange measure of the ribulose-1,5-bisphosphate pool). The dependence of &mgr; on Et saturated at Et = 30 &mgr;mol active sites m-2 and &mgr; = 11 mm s-1 in high-light-grown leaves. In low-light-grown leaves the dependence tended toward saturation at similar Et but reached a &mgr; of only 6 to 8 mm s-1. &mgr; was proportional to the assimilatory charge, with the proportionality constant (specific carboxylation efficiency) between 0.04 and 0.075 &mgr;M-1 s-1. Our data show that the saturation of the relationship between Et and &mgr; is caused by three limiting components: (a) the physical diffusion resistance (a minor limitation), (b) less than full activation of Rubisco (related to Rubisco activase and the slower diffusibility of Rubisco at high protein concentrations in the stroma), and (c) chloroplast metabolites, especially 3-phosphoglyceric acid and free inorganic phosphate, which control the reaction kinetics of ribulose-1,5-bisphosphate carboxylation by competitive binding to active sites. PMID:9880359

  10. Small Oligomers of Ribulose-bisphosphate Carboxylase/Oxygenase (Rubisco) Activase Are Required for Biological Activity

    PubMed Central

    Keown, Jeremy R.; Griffin, Michael D. W.; Mertens, Haydyn D. T.; Pearce, F. Grant

    2013-01-01

    Ribulose-bisphosphate carboxylase/oxygenase (Rubisco) activase uses the energy from ATP hydrolysis to remove tight binding inhibitors from Rubisco, thus playing a key role in regulating photosynthesis in plants. Although several structures have recently added much needed structural information for different Rubisco activase enzymes, the arrangement of these subunits in solution remains unclear. In this study, we use a variety of techniques to show that Rubisco activase forms a wide range of structures in solution, ranging from monomers to much higher order species, and that the distribution of these species is highly dependent on protein concentration. The data support a model in which Rubisco activase forms an open spiraling structure rather than a closed hexameric structure. At protein concentrations of 1 μm, corresponding to the maximal activity of the enzyme, Rubisco activase has an oligomeric state of 2–4 subunits. We propose a model in which Rubisco activase requires at least 1 neighboring subunit for hydrolysis of ATP. PMID:23720775

  11. Molecular cloning of matrix Gla protein: implications for substrate recognition by the vitamin K-dependent gamma-carboxylase.

    PubMed Central

    Price, P A; Fraser, J D; Metz-Virca, G

    1987-01-01

    Matrix Gla protein (MGP), a low molecular weight protein found in bone, dentin, and cartilage, contains 5 residues of the vitamin K-dependent amino acid gamma-carboxyglutamic acid (Gla). We have used antibodies raised against MGP and oligonucleotide probes to screen a lambda gt11 cDNA library constructed from the rat osteosarcoma cells (line ROS 17/2) that had been pretreated with 1 alpha,25-dihydroxyvitamin D3. By sequencing several cloned cDNAs, we established a 523-base-pair sequence that predicts an 84-residue mature MGP and a 19-residue hydrophobic signal peptide. The 84-residue mature rat MGP predicted from the cDNA sequence has an additional 5 residues at its C terminus (-Arg-Arg-Gly-Ala-Lys) not seen in the sequence of MGP isolated from bovine bone. The structure of rat MGP provides insight into the mechanisms by which the vitamin K-dependent gamma-carboxylase recognizes substrate. The present studies show that MGP, unlike other vitamin K-dependent proteins, lacks a propeptide. The absence of an MGP propeptide demonstrates that gamma-carboxylation and secretion of vitamin K-dependent proteins need not be linked to the presence of a propeptide or to its proteolytic removal. The propeptides of other vitamin K-dependent proteins are structurally homologous, and there is evidence that this homologous propeptide domain is important to substrate recognition by the gamma-carboxylase. Mature MGP has a sequence segment (residues 15-30) that is homologous to the propeptide of other vitamin K-dependent proteins and probably serves the same role in gamma-carboxylase recognition. Rat MGP also has a second sequence that has recently been identified in all known vitamin K-dependent vertebrate proteins, the invariant unit Glu-Xaa-Xaa-Xaa-Glu-Xaa-Cys (EXXXEXC). Since the glutamic residues in this unit are sites of gamma-carboxylation, it has been suggested that the EXXXEXC unit could allow the gamma-carboxylase to discriminate between substrate and product. The

  12. Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin–sensitizing effects of metformin

    PubMed Central

    Fullerton, Morgan D.; Galic, Sandra; Marcinko, Katarina; Sikkema, Sarah; Pulinilkunnil, Thomas; Chen, Zhi–Ping; O’Neill, Hayley M.; Ford, Rebecca J.; Palanivel, Rengasamy; O’Brien, Matthew; Hardie, D. Grahame; Macaulay, S. Lance; Schertzer, Jonathan D.; Dyck, Jason R. B.; van Denderen, Bryce J.; Kemp, Bruce E.; Steinberg, Gregory R.

    2016-01-01

    The obesity epidemic has led to an increased incidence of non–alcoholic fatty liver disease (NAFLD) and type 2 diabetes. AMP–activated protein kinase (Ampk) regulates energy homeostasis and is activated by cellular stress, hormones and the widely prescribed anti–type 2 diabetic drug metformin1,2. Ampk phosphorylates murine acetyl–CoA carboxylase3,4 (Acc) 1 at Ser79 and Acc2 at Ser212, inhibiting the conversion of acetyl–CoA to malonyl–CoA, a precursor in fatty acid synthesis5 as well as an allosteric inhibitor of fatty acid transport into mitochondria for oxidation6. To test the physiological impact of these phosphorylation events we generated mice with alanine knock–in mutations in both Acc1 (Ser79) and Acc2 (Ser212) (Acc double knock–in, AccDKI). These mice have elevated lipogenesis and lower fatty acid oxidation compared to wild–type (WT) mice, which contribute to the progression of insulin resistance, glucose intolerance and NAFLD, but not obesity. Remarkably, AccDKI mice made obese by high–fat feeding, are refractory to the lipid–lowering and insulin–sensitizing effects of metformin. These findings establish that inhibitory phosphorylation of Acc by Ampk is essential for the control of lipid metabolism, and in the setting of obesity, for metformin–induced improvements in insulin action. PMID:24185692

  13. Mycobacterium tuberculosis supports protein tyrosine phosphorylation

    PubMed Central

    Kusebauch, Ulrike; Ortega, Corrie; Ollodart, Anja; Rogers, Richard S.; Sherman, David R.; Moritz, Robert L.; Grundner, Christoph

    2014-01-01

    Reversible protein phosphorylation determines growth and adaptive decisions in Mycobacterium tuberculosis (Mtb). At least 11 two-component systems and 11 Ser/Thr protein kinases (STPKs) mediate phosphorylation on Asp, His, Ser, and Thr. In contrast, protein phosphorylation on Tyr has not been described previously in Mtb. Here, using a combination of phospho-enrichment and highly sensitive mass spectrometry, we show extensive protein Tyr phosphorylation of diverse Mtb proteins, including STPKs. Several STPKs function as dual-specificity kinases that phosphorylate Tyr in cis and in trans, suggesting that dual-specificity kinases have a major role in bacterial phospho-signaling. Mutation of a phosphotyrosine site of the essential STPK PknB reduces its activity in vitro and in live Mtb, indicating that Tyr phosphorylation has a functional role in bacterial growth. These data identify a previously unrecognized phosphorylation system in a human pathogen that claims ∼1.4 million lives every year. PMID:24927537

  14. Multiple Inter-Kingdom Horizontal Gene Transfers in the Evolution of the Phosphoenolpyruvate Carboxylase Gene Family

    PubMed Central

    Wang, Wen; Su, Bing

    2012-01-01

    Pepcase is a gene encoding phosphoenolpyruvate carboxylase that exists in bacteria, archaea and plants,playing an important role in plant metabolism and development. Most plants have two or more pepcase genes belonging to two gene sub-families, while only one gene exists in other organisms. Previous research categorized one plant pepcase gene as plant-type pepcase (PTPC) while the other as bacteria-type pepcase (BTPC) because of its similarity with the pepcase gene found in bacteria. Phylogenetic reconstruction showed that PTPC is the ancestral lineage of plant pepcase, and that all bacteria, protistpepcase and BTPC in plants are derived from a lineage of pepcase closely related with PTPC in algae. However, their phylogeny contradicts the species tree and traditional chronology of organism evolution. Because the diversification of bacteria occurred much earlier than the origin of plants, presumably all bacterialpepcase derived from the ancestral PTPC of algal plants after divergingfrom the ancestor of vascular plant PTPC. To solve this contradiction, we reconstructed the phylogeny of pepcase gene family. Our result showed that both PTPC and BTPC are derived from an ancestral lineage of gamma-proteobacteriapepcases, possibly via an ancient inter-kingdom horizontal gene transfer (HGT) from bacteria to the eukaryotic common ancestor of plants, protists and cellular slime mold. Our phylogenetic analysis also found 48other pepcase genes originated from inter-kingdom HGTs. These results imply that inter-kingdom HGTs played important roles in the evolution of the pepcase gene family and furthermore that HGTsare a more frequent evolutionary event than previouslythought. PMID:23251445

  15. Effects of phosphoenolpyruvate carboxylase desensitization on glutamic acid production in Corynebacterium glutamicum ATCC 13032.

    PubMed

    Wada, Masaru; Sawada, Kazunori; Ogura, Kotaro; Shimono, Yuta; Hagiwara, Takuya; Sugimoto, Masakazu; Onuki, Akiko; Yokota, Atsushi

    2016-02-01

    Phosphoenolpyruvate carboxylase (PEPC) in Corynebacterium glutamicum ATCC13032, a glutamic-acid producing actinobacterium, is subject to feedback inhibition by metabolic intermediates such as aspartic acid and 2-oxoglutaric acid, which implies the importance of PEPC in replenishing oxaloacetic acid into the TCA cycle. Here, we investigated the effects of feedback-insensitive PEPC on glutamic acid production. A single amino-acid substitution in PEPC, D299N, was found to relieve the feedback control by aspartic acid, but not by 2-oxoglutaric acid. A simple mutant, strain R1, having the D299N substitution in PEPC was constructed from ATCC 13032 using the double-crossover chromosome replacement technique. Strain R1 produced glutamic acid at a concentration of 31.0 g/L from 100 g/L glucose in a jar fermentor culture under biotin-limited conditions, which was significantly higher than that of the parent, 26.0 g/L (1.19-fold), indicative of the positive effect of desensitized PEPC on glutamic acid production. Another mutant, strain DR1, having both desensitized PEPC and PYK-gene deleted mutations, was constructed in a similar manner using strain D1 with a PYK-gene deleted mutation as the parent. This mutation had been shown to enhance glutamic acid production in our previous study. Although marginal, strain D1 produced higher glutamic acid, 28.8 g/L, than ATCC13032 (1.11-fold). In contrast, glutamic acid production by strain DR-1 was elevated up to 36.9 g/L, which was 1.42-fold higher than ATCC13032 and significantly higher than the other three strains. The results showed a synergistic effect of these two mutations on glutamic acid production in C. glutamicum. PMID:26168906

  16. Epigenetic regulation of pyruvate carboxylase gene expression in the postpartum liver.

    PubMed

    Walker, C G; Crookenden, M A; Henty, K M; Handley, R R; Kuhn-Sherlock, B; White, H M; Donkin, S S; Snell, R G; Meier, S; Heiser, A; Loor, J J; Mitchell, M D; Roche, J R

    2016-07-01

    Hepatic gluconeogenesis is essential for maintenance of whole body glucose homeostasis and glucose supply for mammary lactose synthesis in the dairy cow. Upregulation of the gluconeogenic enzyme pyruvate carboxylase (PC) during the transition period is vital in the adaptation to the greater glucose demands associated with peripartum lactogenesis. The objective of this study was to determine if PC transcription in hepatocytes is regulated by DNA methylation and if treatment with a nonsteroidal anti-inflammatory drug (NSAID) alters methylation of an upstream DNA sequence defined as promoter 1. Dairy cows were left untreated (n=20), or treated with a NSAID during the first 5 d postcalving (n=20). Liver was biopsied at d 7 precalving and d 7, 14, and 28 postcalving. Total PC and transcript specific gene expression was quantified using quantitative PCR and DNA methylation of promoter 1 was quantified using bisulfite Sanger sequencing. Expression of PC changed over the transition period, with increased expression postcalving occurring concurrently with increased circulating concentration of nonesterified fatty acids. The DNA methylation percentage was variable at all sites quantified and ranged from 21 to 54% across the 15 CpG dinucleotides within promoter 1. The DNA methylation at wk 1 postcalving, however, was not correlated with gene expression of promoter 1-regulated transcripts and we did not detect an effect of NSAID treatment on DNA methylation or PC gene expression. Our results do not support a role for DNA methylation in regulating promoter 1-driven gene expression of PC at wk 1 postcalving. Further research is required to determine the mechanisms regulating increased PC expression over the transition period. PMID:27085418

  17. Identification of Interactions between Abscisic Acid and Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase

    PubMed Central

    Galka, Marek M.; Rajagopalan, Nandhakishore; Buhrow, Leann M.; Nelson, Ken M.; Switala, Jacek; Cutler, Adrian J.; Palmer, David R. J.; Loewen, Peter C.; Abrams, Suzanne R.; Loewen, Michele C.

    2015-01-01

    Abscisic acid ((+)-ABA) is a phytohormone involved in the modulation of developmental processes and stress responses in plants. A chemical proteomics approach using an ABA mimetic probe was combined with in vitro assays, isothermal titration calorimetry (ITC), x-ray crystallography and in silico modelling to identify putative (+)-ABA binding-proteins in crude extracts of Arabidopsis thaliana. Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) was identified as a putative ABA-binding protein. Radiolabelled-binding assays yielded a Kd of 47 nM for (+)-ABA binding to spinach Rubisco, which was validated by ITC, and found to be similar to reported and experimentally derived values for the native ribulose-1,5-bisphosphate (RuBP) substrate. Functionally, (+)-ABA caused only weak inhibition of Rubisco catalytic activity (Ki of 2.1 mM), but more potent inhibition of Rubisco activation (Ki of ~ 130 μM). Comparative structural analysis of Rubisco in the presence of (+)-ABA with RuBP in the active site revealed only a putative low occupancy (+)-ABA binding site on the surface of the large subunit at a location distal from the active site. However, subtle distortions in electron density in the binding pocket and in silico docking support the possibility of a higher affinity (+)-ABA binding site in the RuBP binding pocket. Overall we conclude that (+)-ABA interacts with Rubisco. While the low occupancy (+)-ABA binding site and weak non-competitive inhibition of catalysis may not be relevant, the high affinity site may allow ABA to act as a negative effector of Rubisco activation. PMID:26197050

  18. Transcription control of ribulose bisphosphate carboxylase/oxygenase activase and adjacent genes in Anabaena species.

    PubMed Central

    Li, L A; Tabita, F R

    1994-01-01

    The gene encoding ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) activase (rca) was uniformly localized downstream from the genes encoding the large and small subunits of RubisCO (rbcL and rbcS) in three strains of Anabaena species. However, two open reading frames (ORF1 and ORF2), situated between rbcS and rca in Anabaena sp. strain CA, were not found in the intergenic region of Anabaena variabilis and Anabaena sp. strain PCC 7120. During autotrophic growth of Anabaena cells, rca and rbc transcripts accumulated in the light and diminished in the dark; light-dependent expression of these genes was not affected by the nitrogen source and the concentration of exogenous CO2 supplied to the cells. When grown on fructose, rca- and rbc-specific transcripts accumulated in A. variabilis regardless of whether the cells were illuminated. Transcript levels, however, were much lower in dark-grown heterotrophic cultures than in photoheterotrophic cultures. In photoheterotrophic cultures, the expression of the rca and rbc genes was similar to that in cultures grown with CO2 as the sole source of carbon. Although the rbcL-rbcS and rca genes are linked and are in the same transcriptional orientation in Anabaena strains, hybridization of rbc and rca to distinct transcripts suggested that these genes are not cotranscribed, consistent with the results of primer extension and secondary structure analysis of the nucleotide sequence. Transcription from ORF1 and ORF2 was not detected under the conditions examined, and the function of these putative genes remains unknown. Images PMID:7961423

  19. The ribulose-1,5-bisphosphate carboxylase/oxygenase gene cluster of Methylococcus capsulatus (Bath).

    PubMed

    Baxter, Nardia J; Hirt, Robert P; Bodrossy, Levente; Kovacs, Kornel L; Embley, T Martin; Prosser, James I; Murrell, J Colin

    2002-04-01

    The genes encoding the ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) from Methylococcus capsulatus (Bath) were localised to an 8.3-kb EcoRI fragment of the genome. Genes encoding the large subunit ( cbbL), small subunit ( cbbS) and putative regulatory gene ( cbbQ) were shown to be located on one cluster. Surprisingly, cbbO, a second putative regulatory gene, was not located in the remaining 1.2-kb downstream (3') of cbbQ. However, probing of the M. capsulatus (Bath) genome with cbbO from Nitrosomonas europaea demonstrated that a cbbO homologue was contained within a separate 3.0-kb EcoRI fragment. Instead of a cbbR ORF being located upstream (5') of cbbL, there was a moxR-like ORF that was transcribed in the opposite direction to cbbL. There were three additional ORFs within the large 8.3-kb EcoRI fragment: a pyrE-like ORF, an rnr-like ORF and an incomplete ORF with no sequence similarity to any known protein. Phylogenetic analysis of cbbL from M. capsulatus (Bath) placed it within clade A of the green-type Form 1 Rubisco. cbbL was expressed in M. capsulatus (Bath) when grown with methane as a sole carbon and energy source under both copper-replete and copper-limited conditions. M. capsulatus (Bath) was capable of autotrophic growth on solid medium but not in liquid medium. Preliminarily investigations suggested that other methanotrophs may also be capable of autotrophic growth. Rubisco genes were also identified, by PCR, in Methylococcus-like strains and Methylocaldum species; however, no Rubisco genes were found in Methylomicrobium album BG8, Methylomonas methanica S1, Methylomonas rubra, Methylosinus trichosporium OB3b or Methylocystis parvus OBBP. PMID:11889481

  20. Multiple inter-kingdom horizontal gene transfers in the evolution of the phosphoenolpyruvate carboxylase gene family.

    PubMed

    Peng, Yingmei; Cai, Jing; Wang, Wen; Su, Bing

    2012-01-01

    Pepcase is a gene encoding phosphoenolpyruvate carboxylase that exists in bacteria, archaea and plants,playing an important role in plant metabolism and development. Most plants have two or more pepcase genes belonging to two gene sub-families, while only one gene exists in other organisms. Previous research categorized one plant pepcase gene as plant-type pepcase (PTPC) while the other as bacteria-type pepcase (BTPC) because of its similarity with the pepcase gene found in bacteria. Phylogenetic reconstruction showed that PTPC is the ancestral lineage of plant pepcase, and that all bacteria, protistpepcase and BTPC in plants are derived from a lineage of pepcase closely related with PTPC in algae. However, their phylogeny contradicts the species tree and traditional chronology of organism evolution. Because the diversification of bacteria occurred much earlier than the origin of plants, presumably all bacterialpepcase derived from the ancestral PTPC of algal plants after divergingfrom the ancestor of vascular plant PTPC. To solve this contradiction, we reconstructed the phylogeny of pepcase gene family. Our result showed that both PTPC and BTPC are derived from an ancestral lineage of gamma-proteobacteriapepcases, possibly via an ancient inter-kingdom horizontal gene transfer (HGT) from bacteria to the eukaryotic common ancestor of plants, protists and cellular slime mold. Our phylogenetic analysis also found 48other pepcase genes originated from inter-kingdom HGTs. These results imply that inter-kingdom HGTs played important roles in the evolution of the pepcase gene family and furthermore that HGTsare a more frequent evolutionary event than previouslythought. PMID:23251445

  1. Despite slow catalysis and confused substrate specificity, all ribulose bisphosphate carboxylases may be nearly perfectly optimized

    PubMed Central

    Tcherkez, Guillaume G. B.; Farquhar, Graham D.; Andrews, T. John

    2006-01-01

    The cornerstone of autotrophy, the CO2-fixing enzyme, d-ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), is hamstrung by slow catalysis and confusion between CO2 and O2 as substrates, an “abominably perplexing” puzzle, in Darwin's parlance. Here we argue that these characteristics stem from difficulty in binding the featureless CO2 molecule, which forces specificity for the gaseous substrate to be determined largely or completely in the transition state. We hypothesize that natural selection for greater CO2/O2 specificity, in response to reducing atmospheric CO2:O2 ratios, has resulted in a transition state for CO2 addition in which the CO2 moiety closely resembles a carboxylate group. This maximizes the structural difference between the transition states for carboxylation and the competing oxygenation, allowing better differentiation between them. However, increasing structural similarity between the carboxylation transition state and its carboxyketone product exposes the carboxyketone to the strong binding required to stabilize the transition state and causes the carboxyketone intermediate to bind so tightly that its cleavage to products is slowed. We assert that all Rubiscos may be nearly perfectly adapted to the differing CO2, O2, and thermal conditions in their subcellular environments, optimizing this compromise between CO2/O2 specificity and the maximum rate of catalytic turnover. Our hypothesis explains the feeble rate enhancement displayed by Rubisco in processing the exogenously supplied carboxyketone intermediate, compared with its nonenzymatic hydrolysis, and the positive correlation between CO2/O2 specificity and 12C/13C fractionation. It further predicts that, because a more product-like transition state is more ordered (decreased entropy), the effectiveness of this strategy will deteriorate with increasing temperature. PMID:16641091

  2. Phosphoenolpyruvate Carboxylase in Arabidopsis Leaves Plays a Crucial Role in Carbon and Nitrogen Metabolism1

    PubMed Central

    Shi, Jianghua; Yi, Keke; Liu, Yu; Xie, Li; Zhou, Zhongjing; Chen, Yue; Hu, Zhanghua; Zheng, Tao; Liu, Renhu; Chen, Yunlong; Chen, Jinqing

    2015-01-01

    Phosphoenolpyruvate carboxylase (PEPC) is a crucial enzyme that catalyzes an irreversible primary metabolic reaction in plants. Previous studies have used transgenic plants expressing ectopic PEPC forms with diminished feedback inhibition to examine the role of PEPC in carbon and nitrogen metabolism. To date, the in vivo role of PEPC in carbon and nitrogen metabolism has not been analyzed in plants. In this study, we examined the role of PEPC in plants, demonstrating that PPC1 and PPC2 were highly expressed genes encoding PEPC in Arabidopsis (Arabidopsis thaliana) leaves and that PPC1 and PPC2 accounted for approximately 93% of total PEPC activity in the leaves. A double mutant, ppc1/ppc2, was constructed that exhibited a severe growth-arrest phenotype. The ppc1/ppc2 mutant accumulated more starch and sucrose than wild-type plants when seedlings were grown under normal conditions. Physiological and metabolic analysis revealed that decreased PEPC activity in the ppc1/ppc2 mutant greatly reduced the synthesis of malate and citrate and severely suppressed ammonium assimilation. Furthermore, nitrate levels in the ppc1/ppc2 mutant were significantly lower than those in wild-type plants due to the suppression of ammonium assimilation. Interestingly, starch and sucrose accumulation could be prevented and nitrate levels could be maintained by supplying the ppc1/ppc2 mutant with exogenous malate and glutamate, suggesting that low nitrogen status resulted in the alteration of carbon metabolism and prompted the accumulation of starch and sucrose in the ppc1/ppc2 mutant. Our results demonstrate that PEPC in leaves plays a crucial role in modulating the balance of carbon and nitrogen metabolism in Arabidopsis. PMID:25588735

  3. Glucose and fat metabolism in adipose tissue of acetyl-CoA carboxylase 2 knockout mice

    PubMed Central

    Oh, WonKeun; Abu-Elheiga, Lutfi; Kordari, Parichher; Gu, Zeiwei; Shaikenov, Tattym; Chirala, Subrahmanyam S.; Wakil, Salih J.

    2005-01-01

    Acc2-/- mutant mice, when fed a high-fat/high-carbohydrate (HF/HC) diet, were protected against diet-induced obesity and diabetes. To investigate the role of acetyl-CoA carboxylase 2 (ACC2) in the regulation of energy metabolism in adipose tissues, we studied fatty acid and glucose oxidation in primary cultures of adipocytes isolated from wild-type and Acc2-/- mutant mice fed either normal chow or a HF/HC diet. When fed normal chow, oxidation of [14C]palmitate in adipocytes of Acc2-/- mutant mice was ≈80% higher than in adipocytes of WT mice, and it remained significantly higher in the presence of insulin. Interestingly, in addition to increased fatty acid oxidation, we also observed increased glucose oxidation in adipocytes of Acc2-/- mutant mice compared with that of WT mice. When fed a HF/HC diet for 4-5 months, adipocytes of Acc2-/- mutant mice maintained a 25% higher palmitate oxidation and a 2-fold higher glucose oxidation than WT mice. The mRNA level of glucose transporter 4 (GLUT4) decreased several fold in the adipose tissue of WT mice fed a HF/HC diet; however, in the adipose tissue of Acc2-/- mutant mice, it was 7-fold higher. Moreover, lipolysis activity was higher in adipocytes of Acc2-/- mutant mice compared with that in WT mice. These findings suggest that continuous fatty acid oxidation in the adipocytes of Acc2-/- mutant mice, combined with a higher level of glucose oxidation and a higher rate of lipolysis, are major factors leading to efficient maintenance of insulin sensitivity and leaner Acc2-/- mutant mice. PMID:15677334

  4. Phosphorylated nano-diamond/ Polyimide Nanocomposites

    NASA Astrophysics Data System (ADS)

    Beyler-Çiǧil, Asli; Çakmakçi, Emrah; Vezir Kahraman, Memet

    2014-08-01

    In this study, a novel route to synthesize polyimide (PI)/phosphorylated nanodiamond films with improved thermal and mechanical properties was developed. Surface phosphorylation of nano-diamond was performed in dichloromethane. Phosphorylation dramatically enhanced the thermal stability of nano-diamond. Poly(amic acid) (PAA), which is the precursor of PI, was successfully synthesized with 3,3',4,4'-Benzophenonetetracarboxylic dianhydride (BTDA) and 4,4'-oxydianiline (4,4'-ODA) in the solution of N,N- dimethylformamide (DMF). Pure BTDA-ODA polyimide films and phosphorylated nanodiamond containing BTDA-ODA PI films were prepared. The PAA displayed good compatibility with phosphorylated nano-diamond. The morphology of the polyimide (PI)/phosphorylated nano-diamond was characterized by scanning electron microscopy (SEM). Chemical structure of polyimide and polyimide (PI)/phosphorylated nano-diamond was characterized by FTIR. SEM and FTIR results showed that the phosphorylated nano-diamond was successfully prepared. Thermal properties of the polyimide (PI)/phosphorylated nanodiamond was characterized by thermogravimetric analysis (TGA). TGA results showed that the thermal stability of (PI)/phosphorylated nano-diamond film was increased.

  5. Isolated spinach ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit .sup..epsilon. N-methyltransferase and method of inactivating ribulose-1,5-bisphosphatase carboxylase/oxygenase large subunit .sup..epsilon. N-methyltransferase activity

    DOEpatents

    Houtz, Robert L.

    1999-01-01

    The gene sequence for ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) large subunit (LS) .sup..epsilon. N-methyltransferase (protein methylase III or Rubisco LSMT) from a plant which has a des(methyl) lysyl residue in the LS is disclosed. In addition, the full-length cDNA clones for Rubisco LSMT are disclosed. Transgenic plants and methods of producing same which have the Rubisco LSMT gene inserted into the DNA are also provided. Further, methods of inactivating the enzymatic activity of Rubisco LSMT are also disclosed.

  6. Structure and substrate selectivity of the 750-kDa α6β6 holoenzyme of geranyl-CoA carboxylase.

    PubMed

    Jurado, Ashley R; Huang, Christine S; Zhang, Xing; Zhou, Z Hong; Tong, Liang

    2015-01-01

    Geranyl-CoA carboxylase (GCC) is essential for the growth of Pseudomonas organisms with geranic acid as the sole carbon source. GCC has the same domain organization and shares strong sequence conservation with the related biotin-dependent carboxylases 3-methylcrotonyl-CoA carboxylase (MCC) and propionyl-CoA carboxylase (PCC). Here we report the crystal structure of the 750-kDa α6β6 holoenzyme of GCC, which is similar to MCC but strikingly different from PCC. The structures provide evidence in support of two distinct lineages of biotin-dependent acyl-CoA carboxylases, one carboxylating the α carbon of a saturated organic acid and the other carboxylating the γ carbon of an α-β unsaturated acid. Structural differences in the active site region of GCC and MCC explain their distinct substrate preferences. Especially, a glycine residue in GCC is replaced by phenylalanine in MCC, which blocks access by the larger geranyl-CoA substrate. Mutation of this residue in the two enzymes can change their substrate preferences. PMID:26593090

  7. Structure and substrate selectivity of the 750-kDa α6β6 holoenzyme of geranyl-CoA carboxylase

    PubMed Central

    Jurado, Ashley R.; Huang, Christine S.; Zhang, Xing; Zhou, Z. Hong; Tong, Liang

    2015-01-01

    Geranyl-CoA carboxylase (GCC) is essential for the growth of Pseudomonas organisms with geranic acid as the sole carbon source. GCC has the same domain organization and shares strong sequence conservation with the related biotin-dependent carboxylases 3-methylcrotonyl-CoA carboxylase (MCC) and propionyl-CoA carboxylase (PCC). Here we report the crystal structure of the 750-kDa α6β6 holoenzyme of GCC, which is similar to MCC but strikingly different from PCC. The structures provide evidence in support of two distinct lineages of biotin-dependent acyl-CoA carboxylases, one carboxylating the α carbon of a saturated organic acid and the other carboxylating the γ carbon of an α-β unsaturated acid. Structural differences in the active site region of GCC and MCC explain their distinct substrate preferences. Especially, a glycine residue in GCC is replaced by phenylalanine in MCC, which blocks access by the larger geranyl-CoA substrate. Mutation of this residue in the two enzymes can change their substrate preferences. PMID:26593090

  8. Starch phosphorylation: insights and perspectives.

    PubMed

    Mahlow, Sebastian; Orzechowski, Sławomir; Fettke, Joerg

    2016-07-01

    During starch metabolism, the phosphorylation of glucosyl residues of starch, to be more precise of amylopectin, is a repeatedly observed process. This phosphorylation is mediated by dikinases, the glucan, water dikinase (GWD) and the phosphoglucan, water dikinase (PWD). The starch-related dikinases utilize ATP as dual phosphate donor transferring the terminal γ-phosphate group to water and the β-phosphate group selectively to either C6 position or C3 position of a glucosyl residue within amylopectin. By the collaborative action of both enzymes, the initiation of a transition of α-glucans from highly ordered, water-insoluble state to a less order state is realized and thus the initial process of starch degradation. Consequently, mutants lacking either GWD or PWD reveal a starch excess phenotype as well as growth retardation. In this review, we focus on the increased knowledge collected over the last years related to enzymatic properties, the precise definition of the substrates, the physiological implications, and discuss ongoing questions. PMID:27147464

  9. Histone tyrosine phosphorylation comes of age

    PubMed Central

    Singh, Rakesh Kumar

    2011-01-01

    Histones were discovered over a century ago and have since been found to be the most extensively post-translationally modified proteins, although tyrosine phosphorylation of histones had remained elusive until recently. The year 2009 proved to be a landmark year for histone tyrosine (Y) phosphorylation as five research groups independently discovered this modification. Three groups describe phosphorylation of Y142 in the variant histone H2A.X, where it may be involved in the cellular decision making process to either undergo DNA repair or apoptosis in response to DNA damage. Further, one group suggests that phosphorylation of histone H3 on Y99 is crucial for its regulated proteolysis in yeast, while another found that Y41 phosphorylation modulates chromatin architecture and oncogenesis in mammalian cells. These pioneering studies provide the initial conceptual framework for further analyses of the diverse roles of tyrosine phosphorylation on different histones, with far reaching implications for human health and disease. PMID:20935492

  10. Prebiotic phosphorylation of nucleosides in formamide

    NASA Technical Reports Server (NTRS)

    Schoffstall, A. M.

    1976-01-01

    Results are presented for an experimental study intended to assess phosphorylation under neither aqueous nor dry thermal conditions. Instead, phosphorylations were attempted in possible nonaqueous prebiotic solvents. Formamide appeared to be the most obvious candidate for phosphorylation studies. Three main classes of phosphorylated products were formed in formamide solution: adenosine monophosphates, cyclic adenosine phosphate, and adenosine diphosphates. Experiments were designed to investigate the extent of phosphorylation of nucleosides in formamide, the relative amounts of nucleoside monophosphate, diphosphates and cyclic phosphate formed and the relative effectiveness of different sources of phosphate as phosphorylating agents in formamide. Reaction variables were temperature, nature of the phosphate or condensed phosphate, nucleoside, concentration of reactants and possible effects of additives. Product identification was based on qualitative and quantitative thin layer chromatography.

  11. Comparative Characterization of Phosphoenolpyruvate Carboxylase in C3, C4, and C3-C4 Intermediate Panicum Species 1

    PubMed Central

    Holaday, A. Scott; Black, Clanton C.

    1981-01-01

    Various properties of phosphoenolpyruvate carboxylases were compared in leaf preparations from C3-C4 intermediate, C3, and C4Panicum species. Values of Vmax in micromoles per milligram chlorophyll per hour at pH 8.3 were 57 to 75 for the enzyme from Panicum milioides, Panicum schenckii, and Panicum decipiens (all C3-C4). The values for Panicum laxum (C3) and Panicum prionitis (C4) were 20 to 40 and 952 to 1374, respectively. The Vmax values did not change at pH 7.3 except for the C4 value, which increased about 24%. At pH 8.3, the phosphoenolpyruvate carboxylases from C3 and C3-C4 species had slightly higher Km HCO3− and lower K′ phosphoenolpyruvate values than did the C4 enzyme. With each species at pH 7.3, all K′ phosphoenolpyruvate values were 2- to 4-fold greater. The enzyme from all species was inhibited 85 to 90% by 1 millimolar malate at rate-limiting phosphoenolpyruvate and Mg2+ levels. With low levels of malate, 0.2 millimolar, the rate curve with respect to phosphoenolpyruvate was distinctly sigmoidal, and the inhibition was not eliminated at 5 millimolar phosphoenolpyruvate. Malate at 10 millimolar protected all phosphoenolpyruvate carboxylases from inactivation at 55 C at pH 5.5, but not at pH 8.3. Aspartate did not protect well. When incubated at 37 C at pH 8.3 without phosphoenolpyruvate, but with HCO3−, the enzyme from several C4 grasses lost 92 to 98% of the initial activity after 4 minutes, whereas the enzymes from C3 and C3-C4Panicum species retained 60 to 70% of their activities. In contrast, 5 millimolar phosphoenolpyruvate stabilized the enzyme at 37 C in all plant extracts. The phosphoenolpyruvate carboxylase from C3-C4 intermediate Panicum species has properties most similar to the enzyme from C3Panicum species. The higher leaf activity of the enzyme from the intermediate plants than from C3 species is not due to any unusual property assayed other than a higher Vmax. PMID:16661669

  12. [Sugar phosphorylation activities in acetogenic bacteria].

    PubMed

    Jiang, W; Patterson, J A

    1999-12-01

    Seven acetogenic bacteria (Acetitomaculum ruminis, Acetobacterium woodii, Eubacterium limosum as well as isolates A2, A4, A10 and H3HH) were tested for PEP- and ATP-dependent phosphorylation of glucose and 2-deoxyglucose. Although all organisms had detectable phosphorylation activity, substantial variation existed in the rates of both PEP- and ATP-dependent phosphorylation. Isolate Alo had the highest rate of PEP-dependent phosphorylation of 11.62 nmol.L-1.mg-1.min-1. Isolate A10, H3HH as well as E. limosum most likely have a glucose phosphotransferase system(PTS). In contrast, A ruminis, A. woodii and isolate A2, A4 had PEP-dependent glucose phosphorylation rates very similar to control rates, suggesting the lack of PTS activity. The rates of ATP-dependent glucose phosphorylation were higher than PEP-dependent phosphorylation in all organisms surveyed. However, substantial variation existed in the rates of ATP-dependent glucose phosphorylation. The glucose PTS of isolates A10 and H3HH were induced by the presence of extracellular glucose. Moreover, the specific activity of the glucose PTS of both isolates increased as cultures progressed from the early log to late log phase of growth. ATP- and PEP-dependent maltose and sucrose phosphorylation was detected in isolates A10 and H3HH. Although activity was detected in both isolates(A10 and H3HH), the rate of activity varied considerably, depending on the sugar and organism tested. PMID:12555560

  13. Inactivation of ribulosebisphosphate carboxylase/oxygenase from Rhodospirillum rubrum and spinach with the new affinity label 2-bromo-1,5-dihydroxy-3-pentanone 1,5-bisphosphate

    SciTech Connect

    Donnelly, M.I.; Hartman, F.C.

    1981-11-16

    In an attempt to identify the active-site base believed to initiate catalysis by ribulosebisphosphate carboxylase, we have synthesized 2-bromo-1, 5-dihydroxy-3-pentanone 1,5-bisphosphate, a reactive analogue of a postulated intermediate of carboxylation. Although highly unstable, this compound can be shown to inactivate the carboxylases from both Rhodospirillum rubrum and spinach rapidly and irreversibly. Inactivation follows pseudo first-order kinetics, shows rate saturation and is greatly reduced by saturating amounts of the competitive inhibitor, 2-carboxyribitol 1,5-bisphosphate. The incorporation of reagent, quantified by reducing the modified carboxylases with (/sup 3/H)NaBH/sub 4/, shows that inactivation results from the modification of approximately one residue per catalytic subunit of the Rhodospirillum rubrum enzyme and less than one residue per protomeric unit of the spinach enzyme.

  14. Kinetic studies on two isoforms of acetyl-CoA carboxylase from maize leaves.

    PubMed Central

    Herbert, D; Price, L J; Alban, C; Dehaye, L; Job, D; Cole, D J; Pallett, K E; Harwood, J L

    1996-01-01

    The steady-state kinetics of two multifunctional isoforms of acetyl-CoA carboxylase (ACCase) from maize leaves (a major isoform, ACCase1 and a minor isoform, ACCase2) have been investigated with respect to reaction mechanism, inhibition by two graminicides of the aryloxyphenoxypropionate class (quizalofop and fluazifop) and some cellular metabolites. Substrate interaction and product inhibition patterns indicated that ADP and P(i) products from the first partial reaction were not released before acetyl-CoA bound to the enzymes. Product inhibition patterns did not match exactly those predicted for an ordered Ter Ter or a random Ter Ter mechanism, but were close to those postulated for an ordered mechanism. ACCase2 was about 1/2000 as sensitive as ACCase1 to quizalofop but only about 1/150 as sensitive to fluazifop. Fitting inhibition data to the Hill equation indicated that binding of quizalofop or fluazifop to ACCase1 was non-cooperative, as shown by the Hill constant (n(app)) values of 0.86 and 1.16 for quizalofop and fluazifop respectively. Apparent inhibition constant values (K' from the Hill equation) for ACCase1 were 0.054 microM for quizalofop and 21.8 microM for fluazifop. On the other hand, binding of quizalofop or fluazifop to ACCase2 exhibited positive co-operativity, as shown by the (napp) values of 1.85 and 1.59 for quizalofop and fluazifop respectively. K' values for ACCase2 were 1.7 mM for quizalofop and 140 mM for fluazifop. Kinetic parameters for the co-operative binding of quizalofop to maize ACCase2 were close to those of another multifunctional ACCase of limited sensitivity to graminicide, ACC220 from pea. Inhibition of ACCase1 by quizalofop was mixed-type with respect to acetyl-CoA or ATP, but the concentration of acetyl-CoA had the greater effect on the level of inhibition. Neither ACCase1 nor ACCase2 was appreciably sensitive to CoA esters of palmitic acid (16:0) or oleic acid (18:1). Approximate IC50 values were 10 microM (ACCase2) and 50

  15. Regulation of bovine pyruvate carboxylase mRNA and promoter expression by thermal stress.

    PubMed

    White, H M; Koser, S L; Donkin, S S

    2012-09-01

    Pyruvate carboxylase (PC) catalyzes the rate-limiting step in gluconeogenesis from lactate and is a determinant of tricarboxylic acid cycle carbon flux. Bovine PC 5' untranslated region (UTR) mRNA variants are the products of a single PC gene containing 3 promoter regions (P3, P2, and P1, 5' to 3') that are responsive to physiological and nutritional stressors. The objective of this study was to determine the direct effects of thermal stress on PC mRNA and gene expression in bovine hepatocyte monolayer cultures, rat hepatoma (H4IIE) cells, and Madin-Darby bovine kidney epithelial (MDBK) cells. Hepatocytes were isolated from 3 Holstein bull calves and used to prepare monolayer cultures. Rat hepatoma cells and MDBK cells were obtained from American Type Culture Collection, Manassas, VA. Beginning 24 h after initial seeding, cells were subjected to either 37°C (control) or 42°C (thermal stress) for 24 h. Treatments were applied in triplicate in a minimum of 3 independent cell preparations. For bovine primary hepatocytes, endogenous expression of bovine PC mRNA increased (P < 0.1) with 24 h of thermal stress (1.31 vs. 2.79 ± 0.49, arbitrary units, control vs. thermal stress, respectively), but there was no change (P ≥ 0.1) in cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C) mRNA expression. Similarly, exposure of MDBK cells to thermal stress increased (P < 0.1) expression of bovine PC mRNA without altering (P ≥ 0.1) PEPCK-C mRNA expression. Conversely, there was no effect (P ≥ 0.1) of thermal stress on endogenous rat PC (0.47 vs. 0.30 ± 0.08, control vs. thermal stress) or PEPCK-C (1.61 vs. 1.20 ± 0.48, arbitrary units, control vs. thermal stress, respectively) mRNA expressions in H4IIE cells. To further investigate the regulation of PC, H4IIE cells were transiently transfected with bovine promoter-luciferase constructs containing either P1, P2, or P3, and exposed to thermal stress for 23 h. Activity of P1 was suppressed (P < 0.1) 5-fold, activity of P2

  16. The role of phosphoenolpyruvate carboxylase during C4 photosynthetic isotope exchange and stomatal conductance.

    PubMed

    Cousins, Asaph B; Baroli, Irene; Badger, Murray R; Ivakov, Alexander; Lea, Peter J; Leegood, Richard C; von Caemmerer, Susanne

    2007-11-01

    Phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) plays a key role during C(4) photosynthesis and is involved in anaplerotic metabolism, pH regulation, and stomatal opening. Heterozygous (Pp) and homozygous (pp) forms of a PEPC-deficient mutant of the C(4) dicot Amaranthus edulis were used to study the effect of reduced PEPC activity on CO(2) assimilation rates, stomatal conductance, and (13)CO(2) (Delta(13)C) and C(18)OO (Delta(18)O) isotope discrimination during leaf gas exchange. PEPC activity was reduced to 42% and 3% and the rates of CO(2) assimilation in air dropped to 78% and 10% of the wild-type values in the Pp and pp mutants, respectively. Stomatal conductance in air (531 mubar CO(2)) was similar in the wild-type and Pp mutant but the pp mutant had only 41% of the wild-type steady-state conductance under white light and the stomata opened more slowly in response to increased light or reduced CO(2) partial pressure, suggesting that the C(4) PEPC isoform plays an essential role in stomatal opening. There was little difference in Delta(13)C between the Pp mutant (3.0 per thousand +/- 0.4 per thousand) and wild type (3.3 per thousand +/- 0.4 per thousand), indicating that leakiness (), the ratio of CO(2) leak rate out of the bundle sheath to the rate of CO(2) supply by the C(4) cycle, a measure of the coordination of C(4) photosynthesis, was not affected by a 60% reduction in PEPC activity. In the pp mutant Delta(13)C was 16 per thousand +/- 3.2 per thousand, indicative of direct CO(2) fixation by Rubisco in the bundle sheath at ambient CO(2) partial pressure. Delta(18)O measurements indicated that the extent of isotopic equilibrium between leaf water and the CO(2) at the site of oxygen exchange () was low (0.6) in the wild-type and Pp mutant but increased to 0.9 in the pp mutant. We conclude that in vitro carbonic anhydrase activity overestimated as compared to values determined from Delta(18)O in wild-type plants. PMID:17827274

  17. Purification and characterization of a novel phosphoenolpyruvate carboxylase from banana fruit.

    PubMed Central

    Law, R D; Plaxton, W C

    1995-01-01

    Phosphoenolpyruvate carboxylase (PEPC) from ripened banana (Musa cavendishii L.) fruits has been purified 127-fold to apparent homogeneity and a final specific activity of 32 mumol of oxaloacetate produced/min per mg of protein. Non-denaturing PAGE of the final preparation resolved a single protein-staining band that co-migrated with PEPC activity. Polypeptides of 103 (alpha-subunit) and 100 (beta-subunit) kDa, which stain for protein with equal intensity and cross-react strongly with anti-(maize leaf PEPC) immune serum, were observed following SDS/PAGE of the final preparation. CNBr cleavage patterns of the two subunits were similar, but not identical, suggesting that these polypeptides are related, but distinct, proteins. The enzyme's native molecular mass was estimated to be about 425 kDa. These data indicate that in contrast to the homotetrameric PEPC from most other sources, the banana fruit enzyme exists as an alpha 2 beta 2 heterotetramer. Monospecific rabbit anti-(banana PEPC) immune serum effectively immunoprecipitated the activity of the purified enzyme. Immunoblotting studies established that the 100 kDa subunit did not arise via proteolysis of the 103 kDa subunit after tissue extraction, and that the subunit composition of banana PEPC remains uniform throughout the ripening process. PEPC displayed a typical pH activity profile with an alkaline optimum and activity rapidly decreasing below pH 7.0. Enzymic activity was absolutely dependent on the presence of a bivalent metal cation, with Mg2+ or Mn2+ fulfilling this requirement. The response of the PEPC activity to PEP concentration and to various effectors was greatly influenced by pH and glycerol addition to the assay. The enzyme was activated by hexose-monophosphates and potently inhibited by malate, succinate, aspartate and glutamate at pH 7.0, whereas the effect of these metabolites was considerably diminished or completely abolished at pH 8.0. The significance of metabolite regulation of PEPC is

  18. Phosphorylation of human link proteins

    SciTech Connect

    Oester, D.A.; Caterson, B.; Schwartz, E.R.

    1986-06-13

    Three link proteins of 48, 44 and 40 kDa were purified from human articular cartilage and identified with monoclonal anti-link protein antibody 8-A-4. Two sets of lower molecular weight proteins of 30-31 kDa and 24-26 kDa also contained link protein epitopes recognized by the monoclonal antibody and were most likely degradative products of the intact link proteins. The link proteins of 48 and 40 kDa were identified as phosphoproteins while the 44 kDa link protein did not contain /sup 32/P. The phosphorylated 48 and 40 kDa link proteins contained approximately 2 moles PO/sub 4//mole link protein.

  19. Inhibition of acetyl-CoA carboxylase activity in isolated rat adipocytes incubated with glucagon. Interactions with the effects of insulin, adrenaline and adenosine deaminase

    PubMed Central

    Zammit, Victor A.; Corstorphine, Clark G.

    1982-01-01

    1. Adipocytes isolated from epididymal fat-pads of fed rats were incubated with different concentrations of glucagon, insulin, adrenaline and adenosine deaminase, and the effects of these agents on the `initial' activity of acetyl-CoA carboxylase in the cells were studied. 2. Glucagon (at concentrations between 0.1 and 10nm) inhibited acetyl-CoA carboxylase activity. Maximal inhibition was approx. 70% of the `control' activity in the absence of added hormone, and the concentration of hormone required for half-maximal inhibition was 0.3–0.5nm-glucagon. 3. Incubation of cells with adenosine deaminase resulted in a similar inhibition of acetyl-CoA carboxylase activity. Preincubation of adipocytes with adenosine deaminase did not alter either the sensitivity of carboxylase activity to increasing concentrations of glucagon or the maximal extent of inhibition. 4. Adrenaline inhibited acetyl-CoA carboxylase to the same extent as glucagon. Preincubation of the cells with glucagon did not alter the sensitivity of enzyme activity to adrenaline or the degree of maximal inhibition. 5. Insulin activated the enzyme by 70–80% of `control' activity. Preincubation of the cells with glucagon did not alter the concentration of insulin required to produce half the maximal stimulatory effect (about 12μunits of insulin/ml). The effects of insulin and glucagon appeared to be mediated completely independently, and were approximately quantitatively similar but opposite. These characteristics resulted in the mutual cancellation of the effects of the two hormones when they were both present at equally effective concentrations. 6. The implications of these findings with regard to current concepts about the mechanism of regulation of acetyl-CoA carboxylase and to the regulation of the enzyme in vivo are discussed. PMID:6131671

  20. Phosphorylation of the multidrug resistance associated glycoprotein

    SciTech Connect

    Mellado, W.; Horwitz, S.B.

    1987-11-03

    Drug-resistant cell lines derived from the mouse macrophage-like cell line J774.2 express the multidrug resistant phenotype which includes the overexpression of a membrane glycoprotein (130-140 kilodaltons). Phosphorylation of this resistant-specific glycoprotein (P-glycoprotein) in intact cells and in cell-free membrane fractions has been studied. The phosphorylated glycoprotein can be immunoprecipitated by a rabbit polyclonal antibody specific for the glycoprotein. Phosphorylation studies done with partially purified membrane fractions derived from colchicine-resistant cells indicated that (a) phosphorylation of the glycoprotein in 1 mM MgCl/sub 2/ was enhanced a minimum of 2-fold by 10 ..mu..M cAMP and (b) the purified catalytic subunit of the cAMP-dependent protein kinase (protein kinase A) phosphorylated partially purified glycoprotein that was not phosphorylated by (..gamma..-/sup 32/P)ATP alone, suggesting that autophosphorylation was not involved. These results indicate that the glycoprotein is a phosphoprotein and that at least one of the kinases responsible for its phosphorylation is a membrane-associated protein kinase A. The state of phosphorylation of the glycoprotein, which is a major component of the multidrug resistance phenotype, may be related to the role of the glycoprotein in maintaining drug resistance.

  1. Phosphorylation of the multidrug resistance associated glycoprotein.

    PubMed

    Mellado, W; Horwitz, S B

    1987-11-01

    Drug-resistant cell lines derived from the mouse macrophage-like cell line J774.2 express the multidrug resistance phenotype which includes the overexpression of a membrane glycoprotein (130-140 kilodaltons). Phosphorylation of this resistant-specific glycoprotein (P-glycoprotein) in intact cells and in cell-free membrane fractions has been studied. The phosphorylated glycoprotein can be immunoprecipitated by a rabbit polyclonal antibody specific for the glycoprotein. Phosphorylation studies done with partially purified membrane fractions derived from colchicine-resistant cells indicated that (a) phosphorylation of the glycoprotein in 1 mM MgCl2 was enhanced a minimum of 2-fold by 10 microM cAMP and (b) the purified catalytic subunit of the cAMP-dependent protein kinase (protein kinase A) phosphorylated partially purified glycoprotein that was not phosphorylated by [gamma-32P]ATP alone, suggesting that autophosphorylation was not involved. These results indicate that the glycoprotein is a phosphoprotein and that at least one of the kinases responsible for its phosphorylation is a membrane-associated protein kinase A. The state of phosphorylation of the glycoprotein, which is a major component of the multidrug resistance phenotype, may be related to the role of the glycoprotein in maintaining drug resistance. PMID:3427052

  2. Cisplatin stimulates protein tyrosine phosphorylation in macrophages.

    PubMed

    Kumar, R; Shrivastava, A; Sodhi, A

    1995-03-01

    Cisplatin [cis-dichlorodiamine platinum (II)], a potent anti-tumor compound, stimulates immune responses by activating monocyte-macrophages and other cells of the immune system. The mechanism by which cisplatin activates these cells is poorly characterized. Since protein tyrosine phosphorylation appears to be a major intracellular signalling event that mediates cellular responses, we examined whether cisplatin alters tyrosine phosphorylation in macrophages. We found that cisplatin increased tyrosine phosphorylation of several proteins in peritoneal macrophages and in P388D1 and IC-21 macrophage cell lines. Treatment of macrophages with tyrosine kinase inhibitors, genestein and lavendustin A, inhibited cisplatin-stimulated protein tyrosine phosphorylation in macrophages. Macrophages treated with cisplatin also exhibit increased fluorescence with anti-phosphotyrosine-FITC antibody. These data indicate that protein tyrosine phosphorylation plays a role in cisplatin-induced activation of macrophages. PMID:7539662

  3. Oxidative phosphorylation and lacunar stroke

    PubMed Central

    Anderson, Christopher D.; Hurford, Robert; Bevan, Steve; Markus, Hugh S.

    2016-01-01

    Objective: We investigated whether oxidative phosphorylation (OXPHOS) abnormalities were associated with lacunar stroke, hypothesizing that these would be more strongly associated in patients with multiple lacunar infarcts and leukoaraiosis (LA). Methods: In 1,012 MRI-confirmed lacunar stroke cases and 964 age-matched controls recruited from general practice surgeries, we investigated associations between common genetic variants within the OXPHOS pathway and lacunar stroke using a permutation-based enrichment approach. Cases were phenotyped using MRI into those with multiple infarcts or LA (MLI/LA) and those with isolated lacunar infarcts (ILI) based on the number of subcortical infarcts and degree of LA, using the Fazekas grading. Using gene-level association statistics, we tested for enrichment of genes in the OXPHOS pathway with all lacunar stroke and the 2 subtypes. Results: There was a specific association with strong evidence of enrichment in the top 1% of genes in the MLI/LA (subtype p = 0.0017) but not in the ILI subtype (p = 1). Genes in the top percentile for the all lacunar stroke analysis were not significantly enriched (p = 0.07). Conclusions: Our results implicate the OXPHOS pathway in the pathogenesis of lacunar stroke, and show the association is specific to patients with the MLI/LA subtype. They show that MRI-based subtyping of lacunar stroke can provide insights into disease pathophysiology, and imply that different radiologic subtypes of lacunar stroke subtypes have distinct underlying pathophysiologic processes. PMID:26674331

  4. Association of polymorphisms in the promoter I of bovine acetyl-CoA carboxylase-alpha gene with beef fatty acid composition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to identify single nucleotide polymorphisms (SNPs) in the promoter I (PI) region of bovine acetyl-CoA carboxylase-alpha (ACACA) gene and evaluate the extent to which they were associated with lipid-related traits and fatty acid composition of beef. Eight novel SNPs w...

  5. In the Beginning, There Was Protein Phosphorylation

    PubMed Central

    Kyriakis, John M.

    2014-01-01

    The importance of reversible protein phosphorylation to cellular regulation cannot be overstated. In eukaryotic cells, protein kinase/phosphatase signaling pathways regulate a staggering number of cellular processes, including cell proliferation, cell death (apoptosis, necroptosis, necrosis), metabolism (at both the cellular and organismal levels), behavior and neurological function, development, and pathogen resistance. Although protein phosphorylation as a mode of eukaryotic cell regulation is familiar to most biochemists, many are less familiar with protein kinase/phosphatase signaling networks that function in prokaryotes. In this thematic minireview series, we present four minireviews that cover the important field of prokaryotic protein phosphorylation. PMID:24554697

  6. Activity ratios of ribulose-1,5-bisphosphate carboxylase accurately reflect carbamylation ratios. [Phaseolus vulgaris, Spinacla oleracea

    SciTech Connect

    Butz, N.D.; Sharkey, T.D. )

    1989-03-01

    Activity ratios and carbamylation ratios of ribulose-1,5-bisphosphate carboxylase (RuBPCase) were determined for leaves of Phaseolus vulgaris and Spinacia oleracea exposed to a variety of partial pressures of CO{sub 2} and O{sub 2} and photon flux densities (PFD). It was found that activity ratios accurately predicted carbamylation ratios except in extracts from leaves held in low PFD. In particular, it was confirmed that the loss of FuBPCase activity in low partial pressure of O{sub 2} and high PFD results from reduced carbamylation. Activity ratios of RuBPCase were lower than carbamylation ratios for Phaseolus leaves sampled in low PFD, presumably because of the presence of 2-carboxyarabinitol 1-phosphate. Spinacia leaves sampled in darkness also exhibited lower activity ratios than carbamylation ratios indicating that this species may also have an RuBPCase inhibitor even though carboxyarabinitol 1-phosphate has not been detected in this species in the past.

  7. Cloning and developmental expression of pea ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit N-methyltransferase

    DOEpatents

    Houtz, Robert L.

    1998-01-01

    The gene sequence for ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) large subunit (LS) .epsilon.N-methyltransferase (protein methylase III or Rubisco LSMT) is disclosed. This enzyme catalyzes methylation of the .epsilon.-amine of lysine-14 in the large subunit of Rubisco. In addition, a full-length cDNA clone for Rubisco LSMT is disclosed. Transgenic plants and methods of producing same which (1) have the Rubisco LSMT gene inserted into the DNA, and (2) have the Rubisco LSMT gene product or the action of the gene product deleted from the DNA are also provided. Further, methods of using the gene to selectively deliver desired agents to a plant are also disclosed.

  8. Cloning and developmental expression of pea ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit epsilon N-methyltransferase

    DOEpatents

    Houtz, Robert L.

    1999-01-01

    The gene sequence for ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) large subunit (LS) .sup..epsilon. N-methyltransferase (protein methylase III or Rubisco LSMT) is disclosed. This enzyme catalyzes methylation of the .epsilon.-amine of lysine-14 in the large subunit of Rubisco. In addition, a full-length cDNA clone for Rubisco LSMT is disclosed. Transgenic plants and methods of producing same which (1) have the Rubisco LSMT gene inserted into the DNA, and (2) have the Rubisco LSMT gene product or the action of the gene product deleted from the DNA are also provided. Further, methods of using the gene to selectively deliver desired agents to a plant are also disclosed.

  9. Cloning and developmental expression of pea ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit epsilon N-methyltransferase

    DOEpatents

    Houtz, R.L.

    1999-02-02

    The gene sequence for ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) large subunit (LS){sup {epsilon}}N-methyltransferase (protein methylase III or Rubisco LSMT) is disclosed. This enzyme catalyzes methylation of the {epsilon}-amine of lysine-14 in the large subunit of Rubisco. In addition, a full-length cDNA clone for Rubisco LSMT is disclosed. Transgenic plants and methods of producing same which (1) have the Rubisco LSMT gene inserted into the DNA, and (2) have the Rubisco LSMT gene product or the action of the gene product deleted from the DNA are also provided. Further, methods of using the gene to selectively deliver desired agents to a plant are also disclosed. 8 figs.

  10. Cloning and developmental expression of pea ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit N-methyltransferase

    DOEpatents

    Houtz, R.L.

    1998-03-03

    The gene sequence for ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) large subunit (LS) {epsilon}N-methyltransferase (protein methylase III or Rubisco LSMT) is disclosed. This enzyme catalyzes methylation of the {epsilon}-amine of lysine-14 in the large subunit of Rubisco. In addition, a full-length cDNA clone for Rubisco LSMT is disclosed. Transgenic plants and methods of producing same which (1) have the Rubisco LSMT gene inserted into the DNA, and (2) have the Rubisco LSMT gene product or the action of the gene product deleted from the DNA are also provided. Further, methods of using the gene to selectively deliver desired agents to a plant are also disclosed. 5 figs.

  11. Control of light saturated photosynthesis: Concentration and activity of ribulose bisphosphate carboxylase. Final report, September 1, 1993--February 28, 1997

    SciTech Connect

    Geider, R.J. |

    1997-05-01

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is one of the most abundant enzymes on the planet and is responsible for catalysing the net fixation of CO{sub 2} into organic matter. It is central, therefore, to primary productivity in marine and terrestrial ecosystems. Rubisco is a large enzyme with low substrate affinity and low catalytic efficiency and is considered to limit the rate of light-saturated photosynthesis. This report summarizes research into the molecular basis of the regulation of phytoplankton photosynthesis. It describes experimental and theoretical studies of the role of Rubisco in regulating the photosynthetic rate of phytoplankton. It also describes the integration of a mechanistically based phytoplankton growth model into a description of primary productivity in the sea. This work was conducted as part of the Ocean Margins Program.

  12. Synthesis of the small subunit of ribulose-bisphosphate carboxylase from genes cloned into plasmids containing the SP6 promoter.

    PubMed Central

    Anderson, S; Smith, S M

    1986-01-01

    DNA sequences encoding ribulose 1,5-bisphosphate carboxylase small subunit precursor from Pisum sativum L. have been transcribed from plasmids containing the SP6 promoter, and translated in a wheat germ cell-free system. The small subunit precursor polypeptide, its N-terminal leader sequence (transit peptide) and the mature small subunit have each been synthesized independently from three different plasmid constructs. The precursor polypeptide is imported into isolated pea chloroplasts and processed to the mature small subunit by a stromal proteinase. The mature polypeptide is neither imported, nor subject to proteolysis by stromal extracts. The transit peptide alone is very rapidly degraded by a stromal proteinase activity which can be inhibited by EDTA or 1,10-phenanthroline. The use of these gene constructs helps to establish the crucial role of the transit peptide in protein import into the chloroplast. Images Fig. 3. Fig. 4. Fig. 5. Fig. 6. PMID:3827863

  13. The Chemical Biology of Protein Phosphorylation

    PubMed Central

    Tarrant, Mary Katherine; Cole, Philip A.

    2011-01-01

    The explosion of scientific interest in protein kinase-mediated signaling networks has led to the infusion of new chemical methods and their applications related to the analysis of phosphorylation pathways. We highlight some of these chemical biology approaches across three areas. First, we discuss the development of chemical tools to modulate the activity of protein kinases to explore kinase mechanisms and their contributions to phosphorylation events and cellular processes. Second, we describe chemical techniques developed in the past few years to dissect the structural and functional effects of phosphate modifications at specific sites in proteins. Third, we cover newly developed molecular imaging approaches to elucidate the spatiotemporal aspects of phosphorylation cascades in live cells. Exciting advances in our understanding of protein phosphorylation have been obtained with these chemical biology approaches, but continuing opportunities for technological innovation remain. PMID:19489734

  14. Comparative modeling and molecular dynamics suggest high carboxylase activity of the Cyanobium sp. CACIAM14 RbcL protein.

    PubMed

    Siqueira, Andrei Santos; Lima, Alex Ranieri Jerônimo; Dall'Agnol, Leonardo Teixeira; de Azevedo, Juliana Simão Nina; da Silva Gonçalves Vianez, João Lídio; Gonçalves, Evonnildo Costa

    2016-03-01

    Rubisco catalyzes the first step reaction in the carbon fixation pathway, bonding atmospheric CO2/O2 to ribulose 1,5-bisphosphate; it is therefore considered one of the most important enzymes in the biosphere. Genetic modifications to increase the carboxylase activity of rubisco are a subject of great interest to agronomy and biotechnology, since this could increase the productivity of biomass in plants, algae and cyanobacteria and give better yields in crops and biofuel production. Thus, the aim of this study was to characterize in silico the catalytic domain of the rubisco large subunit (rbcL gene) of Cyanobium sp. CACIAM14, and identify target sites to improve enzyme affinity for ribulose 1,5-bisphosphate. A three-dimensional model was built using MODELLER 9.14, molecular dynamics was used to generate a 100 ns trajectory by AMBER12, and the binding free energy was calculated using MM-PBSA, MM-GBSA and SIE methods with alanine scanning. The model obtained showed characteristics of form-I rubisco, with 15 beta sheets and 19 alpha helices, and maintained the highly conserved catalytic site encompassing residues Lys175, Lys177, Lys201, Asp203, and Glu204. The binding free energy of the enzyme-substrate complexation of Cyanobium sp. CACIAM14 showed values around -10 kcal mol(-1) using the SIE method. The most important residues for the interaction with ribulose 1,5-bisphosphate were Arg295 followed by Lys334. The generated model was successfully validated, remaining stable during the whole simulation, and demonstrated characteristics of enzymes with high carboxylase activity. The binding analysis revealed candidates for directed mutagenesis sites to improve rubisco's affinity. PMID:26936271

  15. A 3-methylcrotonyl-CoA carboxylase deficient human skin fibroblast transcriptome reveals underlying mitochondrial dysfunction and oxidative stress.

    PubMed

    Zandberg, L; van Dyk, H C; van der Westhuizen, F H; van Dijk, A A

    2016-09-01

    Isolated 3-methylcrotonyl-CoA carboxylase (MCC) deficiency is an autosomal recessive inherited metabolic disease of leucine catabolism with a highly variable phenotype. Apart from extensive mutation analyses of the MCCC1 and MCCC2 genes encoding 3-methylcrotonyl-CoA carboxylase (EC 6.4.1.4), molecular data on MCC deficiency gene expression studies in human tissues is lacking. For IEMs, unbiased '-omics' approaches are starting to reveal the secondary cellular responses to defects in biochemical pathways. Here we present the first whole genome expression profile of immortalized cultured skin fibroblast cells of two clinically affected MCC deficient patients and two healthy individuals generated using Affymetrix(®)HuExST1.0 arrays. There were 16191 significantly differentially expressed transcript IDs of which 3591 were well annotated and present in the predefined knowledge database of Ingenuity Pathway Analysis software used for downstream functional analyses. The most noticeable feature of this MCCA deficient skin fibroblast transcriptome was the typical genetic hallmark of mitochondrial dysfunction, decreased antioxidant response and disruption of energy homeostasis, which was confirmed by mitochondrial functional analyses. The MCC deficient transcriptome seems to predict oxidative stress that could alter the complex secondary cellular response that involve genes of the glycolysis, the TCA cycle, OXPHOS, gluconeogenesis, β-oxidation and the branched-chain fatty acid metabolism. An important emerging insight from this human MCCA transcriptome in combination with previous reports is that chronic exposure to the primary and secondary metabolites of MCC deficiency and the resulting oxidative stress might impact adversely on the quality of life and energy levels, irrespective of whether MCC deficient individuals are clinically affected or asymptomatic. PMID:27417235

  16. Protein phosphorylation: Localization in regenerating optic axons

    SciTech Connect

    Larrivee, D. )

    1990-09-01

    A number of axonal proteins display changes in phosphorylation during goldfish optic nerve regeneration. (1) To determine whether the phosphorylation of these proteins was closely linked to their synthesis in the retinal ganglion cell body, cycloheximide was injected intraocularly into goldfish whose optic nerves had been regenerating for 3 weeks. Cycloheximide reduced the incorporation of (3H)proline and 32P orthophosphate into total nerve protein by 84% and 46%, respectively. Of the 20 individual proteins examined, 17 contained less than 15% of the (3H)proline label measured in corresponding controls, whereas 18 proteins contained 50% or more of the 32P label, suggesting that phosphorylation was largely independent of synthesis. (2) To determine whether the proteins were phosphorylated in the ganglion cell axons, axonal transport of proteins was blocked by intraocular injection of vincristine. Vincristine reduced (3H)proline labeling of total protein by 88% and 32P labeling by 49%. Among the individual proteins (3H)proline labeling was reduced by 90% or more in 18 cases but 32P labeling was reduced only by 50% or less. (3) When 32P was injected into the cranial cavity near the ends of the optic axons, all of the phosphoproteins were labeled more intensely in the optic tract than in the optic nerve. These results suggest that most of the major phosphoproteins that undergo changes in phosphorylation in the course of regeneration are phosphorylated in the optic axons.

  17. Phosphorylation of human skeletal muscle myosin

    SciTech Connect

    Houston, M.E.; Lingley, M.D.; Stuart, D.S.; Hoffman-Goetz, L.

    1986-03-01

    Phosphorylation of the P-light chains (phosphorylatable light chains) in human skeletal muscle myosin was studied in vitro and in vivo under resting an d contracted conditions. biopsy samples from rested vastus lateralis muscle of male and female subjects were incubated in oxygenated physiological solution at 30/sup 0/C. Samples frozen following a quiescent period showed the presence of only unphosphorylated P-light chains designated LC2f (light chain two of fast myosin) CL2s and LC2s'(light chains two of slow myosin). Treatment with caffeine (10 mM) or direct electrical stimulation resulted in the appearance of three additional bands which were identified as the phosphorylated forms of the P-light chains i.e. LC2f-P, LC2s-P and LC2s'-P. The presence of phosphate was confirmed by prior incubation with (/sup 30/P) orthophosphate. Muscle samples rapidly frozen from resting vastus lateralis muscle revealed the presence of unphosphorylated and phosphorylated P-light chains in approximately equal ratios. Muscle samples rapidly frozen following a maximal 10 second isometric contraction showed virtually only phosphorylated fast and slow P-light chains. These results reveal that the P-light chains in human fast and slow myosin may be rapidly phosphorylated, but the basal level of phosphorylation in rested human muscle considerably exceeds that observed in animal muscles studied in vitro or in situ.

  18. Protein phosphorylation in neurodegeneration: friend or foe?

    PubMed Central

    Tenreiro, Sandra; Eckermann, Katrin; Outeiro, Tiago F.

    2014-01-01

    Protein misfolding and aggregation is a common hallmark in neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), and fronto-temporal dementia (FTD). In these disorders, the misfolding and aggregation of specific proteins occurs alongside neuronal degeneration in somewhat specific brain areas, depending on the disorder and the stage of the disease. However, we still do not fully understand the mechanisms governing protein aggregation, and whether this constitutes a protective or detrimental process. In PD, alpha-synuclein (aSyn) forms protein aggregates, known as Lewy bodies, and is phosphorylated at serine 129. Other residues have also been shown to be phosphorylated, but the significance of phosphorylation in the biology and pathophysiology of the protein is still controversial. In AD and in FTD, hyperphosphorylation of tau protein causes its misfolding and aggregation. Again, our understanding of the precise consequences of tau phosphorylation in the biology and pathophysiology of the protein is still limited. Through the use of a variety of model organisms and technical approaches, we are now gaining stronger insight into the effects of phosphorylation in the behavior of these proteins. In this review, we cover recent findings in the field and discuss how targeting phosphorylation events might be used for therapeutic intervention in these devastating diseases of the nervous system. PMID:24860424

  19. Protein phosphorylation during Plasmodium berghei gametogenesis.

    PubMed

    Alonso-Morales, Alberto; González-López, Lorena; Cázares-Raga, Febe Elena; Cortés-Martínez, Leticia; Torres-Monzón, Jorge Aurelio; Gallegos-Pérez, José Luis; Rodríguez, Mario Henry; James, Anthony A; Hernández-Hernández, Fidel de la Cruz

    2015-09-01

    Plasmodium gametogenesis within the mosquito midgut is a complex differentiation process involving signaling mediated by phosphorylation, which modulate metabolic routes and protein synthesis required to complete this development. However, the mechanisms leading to gametogenesis activation are poorly understood. We analyzed protein phosphorylation during Plasmodium berghei gametogenesis in vitro in serum-free medium using bidimensional electrophoresis (2-DE) combined with immunoblotting (IB) and antibodies specific to phosphorylated serine, threonine and tyrosine. Approximately 75 protein exhibited phosphorylation changes, of which 23 were identified by mass spectrometry. These included components of the cytoskeleton, heat shock proteins, and proteins involved in DNA synthesis and signaling pathways among others. Novel phosphorylation events support a role for these proteins during gametogenesis. The phosphorylation sites of six of the identified proteins, HSP70, WD40 repeat protein msi1, enolase, actin-1 and two isoforms of large subunit of ribonucleoside reductase were investigated using TiO2 phosphopeptides enrichment and tandem mass spectrometry. In addition, transient exposure to hydroxyurea, an inhibitor of ribonucleoside reductase, impaired male gametocytes exflagellation in a dose-dependent manner, and provides a resource for functional studies. PMID:26008612

  20. Fibronectin phosphorylation by ecto-protein kinase

    SciTech Connect

    Imada, Sumi; Sugiyama, Yayoi; Imada, Masaru )

    1988-12-01

    The presence of membrane-associated, extracellular protein kinase (ecto-protein kinase) and its substrate proteins was examined with serum-free cultures of Swiss 3T3 fibroblast. When cells were incubated with ({gamma}-{sup 32})ATP for 10 min at 37{degree}C, four proteins with apparent molecular weights between 150 and 220 kDa were prominently phosphorylated. These proteins were also radiolabeled by lactoperoxidase catalyzed iodination and were sensitive to mild tryptic digestion, suggesting that they localized on the cell surface or in the extracellular matrix. Phosphorylation of extracellular proteins with ({gamma}-{sup 32}P)ATP in intact cell culture is consistent with the existence of ecto-protein kinase. Anti-fibronectin antibody immunoprecipitated one of the phosphoproteins which comigrated with a monomer and a dimer form of fibronectin under reducing and nonreducing conditions of electrophoresis, respectively. The protein had affinity for gelatin as demonstrated by retention with gelatin-conjugated agarose. This protein substrate of ecto-protein kinase was thus concluded to be fibronectin. The sites of phosphorylation by ecto-protein kinase were compared with those of intracellularly phosphorylated fibronectin by the analysis of radiolabeled amino acids and peptides. Ecto-protein kinase phosphorylated fibronectin at serine and threonine residues which were distinct from the sites of intracellular fibronectin phosphorylation.

  1. Long-term dynamics of multisite phosphorylation.

    PubMed

    Rubinstein, Boris Y; Mattingly, Henry H; Berezhkovskii, Alexander M; Shvartsman, Stanislav Y

    2016-07-15

    Multisite phosphorylation cycles are ubiquitous in cell regulation systems and are studied at multiple levels of complexity, from molecules to organisms, with the ultimate goal of establishing predictive understanding of the effects of genetic and pharmacological perturbations of protein phosphorylation in vivo. Achieving this goal is essentially impossible without mathematical models, which provide a systematic framework for exploring dynamic interactions of multiple network components. Most of the models studied to date do not discriminate between the distinct partially phosphorylated forms and focus on two limiting reaction regimes, distributive and processive, which differ in the number of enzyme-substrate binding events needed for complete phosphorylation or dephosphorylation. Here we use a minimal model of extracellular signal-related kinase regulation to explore the dynamics of a reaction network that includes all essential phosphorylation forms and arbitrary levels of reaction processivity. In addition to bistability, which has been studied extensively in distributive mechanisms, this network can generate periodic oscillations. Both bistability and oscillations can be realized at high levels of reaction processivity. Our work provides a general framework for systematic analysis of dynamics in multisite phosphorylation systems. PMID:27226482

  2. Compartment-Specific Phosphorylation of Squid Neurofilaments.

    PubMed

    Grant, Philip; Pant, Harish C

    2016-01-01

    Studies of the giant axon and synapse of third-order neurons in the squid stellate ganglion have provided a vast literature on neuronal physiology and axon transport. Large neuronal size also lends itself to comparative biochemical studies of cell body versus axon. These have focused on the regulation of synthesis, assembly, posttranslational modification and function of neuronal cytoskeletal proteins (microtubules (MTs) and neurofilaments (NFs)), the predominant proteins in axoplasm. These contribute to axonal organization, stability, transport, and impulse transmission responsible for rapid contractions of mantle muscles underlying jet propulsion. Studies of vertebrate NFs have established an extensive literature on NF structure, organization, and function; studies of squid NFs, however, have made it possible to compare compartment-specific regulation of NF synthesis, assembly, and function in soma versus axoplasm. Since NFs contain over 100 eligible sites for phosphorylation by protein kinases, the compartment-specific patterns of phosphorylation have been a primary focus of biochemical studies. We have learned that NF phosphorylation is tightly compartmentalized; extensive phosphorylation occurs only in the axonal compartment in squid and in vertebrate neurons. This extensive phosphorylation plays a key role in organizing NFs, in association with microtubules (MTs), into a stable, dynamic functional lattice that supports axon growth, diameter, impulse transmission, and synaptic activity. To understand how cytoskeletal phosphorylation is topographically regulated, the kinases and phosphatases, bound to NFs isolated from cell bodies and axoplasm, have also been studied. PMID:26795486

  3. Phosphorylation meets nuclear import: a review

    PubMed Central

    2010-01-01

    Phosphorylation is the most common and pleiotropic modification in biology, which plays a vital role in regulating and finely tuning a multitude of biological pathways. Transport across the nuclear envelope is also an essential cellular function and is intimately linked to many degeneration processes that lead to disease. It is therefore not surprising that phosphorylation of cargos trafficking between the cytoplasm and nucleus is emerging as an important step to regulate nuclear availability, which directly affects gene expression, cell growth and proliferation. However, the literature on phosphorylation of nucleocytoplasmic trafficking cargos is often confusing. Phosphorylation, and its mirror process dephosphorylation, has been shown to have opposite and often contradictory effects on the ability of cargos to be transported across the nuclear envelope. Without a clear connection between attachment of a phosphate moiety and biological response, it is difficult to fully understand and predict how phosphorylation regulates nucleocytoplasmic trafficking. In this review, we will recapitulate clue findings in the field and provide some general rules on how reversible phosphorylation can affect the nuclear-cytoplasmic localization of substrates. This is only now beginning to emerge as a key regulatory step in biology. PMID:21182795

  4. PKA regulates calcineurin function through the phosphorylation of RCAN1: Identification of a novel phosphorylation site

    SciTech Connect

    Kim, Seon Sook; Lee, Eun Hye; Lee, Kooyeon; Jo, Su-Hyun; Seo, Su Ryeon

    2015-04-17

    Calcineurin is a calcium/calmodulin-dependent phosphatase that has been implicated in T cell activation through the induction of nuclear factors of activated T cells (NFAT). We have previously suggested that endogenous regulator of calcineurin (RCAN1, also known as DSCR1) is targeted by protein kinase A (PKA) for the control of calcineurin activity. In the present study, we characterized the PKA-mediated phosphorylation site in RCAN1 by mass spectrometric analysis and revealed that PKA directly phosphorylated RCAN1 at the Ser 93. PKA-induced phosphorylation and the increase in the half-life of the RCAN1 protein were prevented by the substitution of Ser 93 with Ala (S93A). Furthermore, the PKA-mediated phosphorylation of RCAN1 at Ser 93 potentiated the inhibition of calcineurin-dependent pro-inflammatory cytokine gene expression by RCAN1. Our results suggest the presence of a novel phosphorylation site in RCAN1 and that its phosphorylation influences calcineurin-dependent inflammatory target gene expression. - Highlights: • We identify novel phosphorylation sites in RCAN1 by LC-MS/MS analysis. • PKA-dependent phosphorylation of RCAN1 at Ser 93 inhibits calcineurin-mediated intracellular signaling. • We show the immunosuppressive function of RCAN1 phosphorylation at Ser 93 in suppressing cytokine expression.

  5. Phosphorylation Modulates Catalytic Activity of Mycobacterial Sirtuins

    PubMed Central

    Yadav, Ghanshyam S.; Ravala, Sandeep K.; Malhotra, Neha; Chakraborti, Pradip K.

    2016-01-01

    Sirtuins are NAD+-dependent deacetylases involved in the regulation of diverse cellular processes and are conserved throughout phylogeny. Here we report about in vitro transphosphorylation of the only NAD+-dependent deacetylase (mDAC) present in the genome of Mycobacterium tuberculosis by eukaryotic-type Ser/Thr kinases, particularly PknA. The phosphorylated mDAC displayed decreased deacetylase activity compared to its unphosphorylated counterpart. Mass-spectrometric study identified seven phosphosites in mDAC; however, mutational analysis highlighted major contribution of Thr-214 for phosphorylation of the protein. In concordance to this observation, variants of mDAC substituting Thr-214 with either Ala (phospho-ablated) or Glu (phosphomimic) exhibited significantly reduced deacetylase activity suggesting phosphorylation mediated control of enzymatic activity. To assess the role of phosphorylation towards functionality of mDAC, we opted for a sirtuin knock-out strain of Escherichia coli (Δdac), where interference of endogenous mycobacterial kinases could be excluded. The Δdac strain in nutrient deprived acetate medium exhibited compromised growth and complementation with mDAC reversed this phenotype. The phospho-ablated or phosphomimic variant, on the other hand, was unable to restore the functionality of mDAC indicating the role of phosphorylation per se in the process. We further over-expressed mDAC or mDAC-T214A as His-tagged protein in M. smegmatis, where endogenous eukaryotic-type Ser/Thr kinases are present. Anti-phosphothreonine antibody recognized both mDAC and mDAC-T214A proteins in western blotting. However, the extent of phosphorylation as adjudged by scanning the band intensity, was significantly low in the mutant protein (mDAC-T214A) compared to that of the wild-type (mDAC). Furthermore, expression of PknA in the mDAC complemented Δdac strain was able to phosphorylate M. tuberculosis sirtuin. The growth profile of this culture in acetate medium was

  6. Phosphorylated tau and the neurodegenerative foldopathies.

    PubMed

    Kosik, Kenneth S; Shimura, Hideki

    2005-01-01

    Many studies have implicated phosphorylated tau in the Alzheimer disease process. However, the cellular fate of phosphorylated tau has only recently been described. Recent work has shown that tau phosphorylation at substrate sites for the kinases Cdk5 and GSK3-beta can trigger the binding of tau to the chaperones Hsc70 and Hsp27. The binding of phosphorylated tau to Hsc70 implied that the complex may be a substrate for the E3 ligase CHIP and this possibility was experimentally verified. The presence of this system in cells suggests that phosphorylated tau may hold toxic dangers for cell viability, and the response of the cell is to harness a variety of protective mechanisms. These include binding to chaperones, which may prevent more toxic conformations of the protein, ubiquitination which will direct the protein to the proteasome, segregation of tau aggregates from the cellular machinery, and recruitment of Hsp27 which will confer anti-apoptotic properties to the cell. PMID:15615647

  7. Extensive phosphorylation of AMPA receptors in neurons.

    PubMed

    Diering, Graham H; Heo, Seok; Hussain, Natasha K; Liu, Bian; Huganir, Richard L

    2016-08-16

    Regulation of AMPA receptor (AMPAR) function is a fundamental mechanism controlling synaptic strength during long-term potentiation/depression and homeostatic scaling. AMPAR function and membrane trafficking is controlled by protein-protein interactions, as well as by posttranslational modifications. Phosphorylation of the GluA1 AMPAR subunit at S845 and S831 play especially important roles during synaptic plasticity. Recent controversy has emerged regarding the extent to which GluA1 phosphorylation may contribute to synaptic plasticity. Here we used a variety of methods to measure the population of phosphorylated GluA1-containing AMPARs in cultured primary neurons and mouse forebrain. Phosphorylated GluA1 represents large fractions from 12% to 50% of the total population under basal and stimulated conditions in vitro and in vivo. Furthermore, a large fraction of synapses are positive for phospho-GluA1-containing AMPARs. Our results support the large body of research indicating a prominent role of GluA1 phosphorylation in synaptic plasticity. PMID:27482106

  8. Protein phosphorylation systems in postmortem human brain

    SciTech Connect

    Walaas, S.I.; Perdahl-Wallace, E.; Winblad, B.; Greengard, P. )

    1989-01-01

    Protein phosphorylation systems regulated by cyclic adenosine 3',5'-monophosphate (cyclic AMP), or calcium in conjunction with calmodulin or phospholipid/diacylglycerol, have been studied by phosphorylation in vitro of particulate and soluble fractions from human postmortem brain samples. One-dimensional or two-dimensional gel electrophoretic protein separations were used for analysis. Protein phosphorylation catalyzed by cyclic AMP-dependent protein kinase was found to be highly active in both particulate and soluble preparations throughout the human CNS, with groups of both widely distributed and region-specific substrates being observed in different brain nuclei. Dopamine-innervated parts of the basal ganglia and cerebral cortex contained the phosphoproteins previously observed in rodent basal ganglia. In contrast, calcium/phospholipid-dependent and calcium/calmodulin-dependent protein phosphorylation systems were less prominent in human postmortem brain than in rodent brain, and only a few widely distributed substrates for these protein kinases were found. Protein staining indicated that postmortem proteolysis, particularly of high-molecular-mass proteins, was prominent in deeply located, subcortical regions in the human brain. Our results indicate that it is feasible to use human postmortem brain samples, when obtained under carefully controlled conditions, for qualitative studies on brain protein phosphorylation. Such studies should be of value in studies on human neurological and/or psychiatric disorders.

  9. Sugar phosphorylation activity in ruminal acetogens.

    PubMed

    Jiang, W; Pinder, R S; Patterson, J A; Ricke, S C

    2012-01-01

    Acetogenic bacteria Acetitomaculum ruminis, Acetobacterium woodii, and Eubacterium limosum were compared for phosphoenolpyruvate (PEP) and ATP-dependent phosphorylation of glucose and 2-deoxy-glucose. Rate of phosphorylation activity was measured in toluene-treated acetogenic cells using PEP and ATP and radiolabled glucose or 2-deoxy glucose. Eubacterium limosum, most likely has a glucose phosphotransferase system (PTS). In contrast, A. ruminis, and A. woodii had PEP-dependent glucose phosphorylation rates very similar to control rates, suggesting the lack of PTS activity. These results were confirmed by PEP dependent 2-deoxyglucose phosphorylation data. The rates of ATP-dependent glucose phosphorylation were higher than PEP-dependent glucose dependent in all organisms surveyed. Only E. limosum appeared to have PTS. The presence of PTS in E. limosum could explain why it is not capable of utilizing sugars and H(2)/CO(2) simultaneously and why acetogenesis is not as prominant in the rumen because of the availability of carbohydrates as alternative energy substrates. PMID:22423990

  10. Phosphorylation state-dependent interaction between AKAP7δ/γ and phospholamban increases phospholamban phosphorylation.

    PubMed

    Rigatti, Marc; Le, Andrew V; Gerber, Claire; Moraru, Ion I; Dodge-Kafka, Kimberly L

    2015-09-01

    Changes in heart rate and contractility in response to sympathetic stimulation occur via activation of cAMP dependent protein kinase A (PKA), leading to phosphorylation of numerous substrates that alter Ca(2+) cycling. Phosphorylation of these substrates is coordinated by A-kinase anchoring proteins (AKAPs), which recruit PKA to specific substrates [1]. Phosphorylation of the PKA substrate phospholamban (PLB) is a critical determinant of Ca(2+) re-entry into the sarcoplasmic reticulum and is coordinated by AKAP7δ/γ [2,3]. Here, we further these findings by showing that phosphorylation of PLB requires interaction with AKAP7δ/γ and that this interaction occurs only when PLB is unphosphorylated. Additionally, we find that two mutants of PLB (R9C and Δ14), which are associated with dilated cardiomyopathy in humans, prevent association with AKAP7δ/γ and display reduced phosphorylation in vitro. This finding implicates the AKAP7δ/γ-PLB interaction in the pathology of the disease phenotype. Further exploration of the AKAP7δ/γ-PLB association demonstrated a phosphorylation state-dependence of the interaction. Computational modeling revealed that this mode of interaction allows for small amounts of AKAP and PKA (100-200nM) to regulate the phosphorylation of large quantities of PLB (50μM). Our results confirm that AKAP7γ/δ binding to PLB is important for phosphorylation of PLB, and describe a novel phosphorylation state-dependent binding mechanism that explains how phosphorylation of highly abundant PKA substrates can be regulated by AKAPs present at ~100-200 fold lower concentrations. PMID:26027516

  11. Phosphorylated silk fibroin matrix for methotrexate release.

    PubMed

    Volkov, Vadim; Sárria, Marisa P; Gomes, Andreia C; Cavaco-Paulo, Artur

    2015-01-01

    Silk-based matrix was produced for delivery of a model anticancer drug, methotrexate (MTX). The calculation of net charge of silk fibroin and MTX was performed to better understand the electrostatic interactions during matrix formation upon casting. Silk fibroin films were cast at pH 7.2 and pH 3.5. Protein kinase A was used to prepare phosphorylated silk fibroin. The phosphorylation content of matrix was controlled by mixing at specific ratios the phosphorylated and unphosphorylated solutions. In vitro release profiling data suggest that the observed interactions are mainly structural and not electrostatical. The release of MTX is facilitated by use of proteolytic enzymes and higher pHs. The elevated β-sheet content and crystallinity of the acidified-cast fibroin solution seem not to favor drug retention. All the acquired data underline the prevalence of structural interactions over electrostatical interactions between methotrexate and silk fibroin. PMID:25435334

  12. Phosphorylation of RACK1 in plants

    SciTech Connect

    Chen, Jay -Gui

    2015-08-31

    Receptor for Activated C Kinase 1 (RACK1) is a versatile scaffold protein that interacts with a large, diverse group of proteins to regulate various signaling cascades. RACK1 has been shown to regulate hormonal signaling, stress responses and multiple processes of growth and development in plants. However, little is known about the molecular mechanism underlying these regulations. Recently, it has been demonstrated that Arabidopsis RACK1 is phosphorylated by an atypical serine/threonine protein kinase, WITH NO LYSINE 8 (WNK8). Furthermore, RACK1 phosphorylation by WNK8 negatively regulates RACK1 function by influencing its protein stability. In conclusion, these findings promote a new regulatory system in which the action of RACK1 is controlled by phosphorylation and subsequent protein degradation.

  13. Phosphorylation of RACK1 in plants

    DOE PAGESBeta

    Chen, Jay -Gui

    2015-08-31

    Receptor for Activated C Kinase 1 (RACK1) is a versatile scaffold protein that interacts with a large, diverse group of proteins to regulate various signaling cascades. RACK1 has been shown to regulate hormonal signaling, stress responses and multiple processes of growth and development in plants. However, little is known about the molecular mechanism underlying these regulations. Recently, it has been demonstrated that Arabidopsis RACK1 is phosphorylated by an atypical serine/threonine protein kinase, WITH NO LYSINE 8 (WNK8). Furthermore, RACK1 phosphorylation by WNK8 negatively regulates RACK1 function by influencing its protein stability. In conclusion, these findings promote a new regulatory systemmore » in which the action of RACK1 is controlled by phosphorylation and subsequent protein degradation.« less

  14. The biochemistry of fatty liver and kidney syndrome. Biotin-mediated restoration of hepatic gluconeogenesis in vitro and its relationship to pyruvate carboxylase activity.

    PubMed Central

    Bannister, D W

    1976-01-01

    Liver slices from chicks affected by the fatty liver and kidney syndrome display an extremely low extent of hepatic gluconeogenesis which is associated with decreased activities of certain rate-limiting gluconeogenic enzymes. Pyruvate carboxylase activity is particularly severely affected, being less than 4% of control values. Incubation of affected slices in a biotin-containing nutrient medium restores both gluconeogenesis and pyruvate carboxylase actiivity (the latter to approx. 35% of the control valve). Activities of the other enzymes studied were not greatly affected by this treatment. Restoration of gluconeogenesis did not occur if biotin was excluded from the nutrient medium, nor was it prevented by protein-synthesis inhibitors. It is concluded that the syndrome involves the lack of available biotin in the liver rather than suppression of apocarboxylase synthesis. PMID:182141

  15. Src kinase regulation by phosphorylation and dephosphorylation

    SciTech Connect

    Roskoski, Robert . E-mail: biocrr@lsuhsc.edu

    2005-05-27

    Src and Src-family protein-tyrosine kinases are regulatory proteins that play key roles in cell differentiation, motility, proliferation, and survival. The initially described phosphorylation sites of Src include an activating phosphotyrosine 416 that results from autophosphorylation, and an inhibiting phosphotyrosine 527 that results from phosphorylation by C-terminal Src kinase (Csk) and Csk homologous kinase. Dephosphorylation of phosphotyrosine 527 increases Src kinase activity. Candidate phosphotyrosine 527 phosphatases include cytoplasmic PTP1B, Shp1 and Shp2, and transmembrane enzymes include CD45, PTP{alpha}, PTP{epsilon}, and PTP{lambda}. Dephosphorylation of phosphotyrosine 416 decreases Src kinase activity. Thus far PTP-BL, the mouse homologue of human PTP-BAS, has been shown to dephosphorylate phosphotyrosine 416 in a regulatory fashion. The platelet-derived growth factor receptor protein-tyrosine kinase mediates the phosphorylation of Src Tyr138; this phosphorylation has no direct effect on Src kinase activity. The platelet-derived growth factor receptor and the ErbB2/HER2 growth factor receptor protein-tyrosine kinases mediate the phosphorylation of Src Tyr213 and activation of Src kinase activity. Src kinase is also a substrate for protein-serine/threonine kinases including protein kinase C (Ser12), protein kinase A (Ser17), and CDK1/cdc2 (Thr34, Thr46, and Ser72). Of the three protein-serine/threonine kinases, only phosphorylation by CDK1/cdc2 has been demonstrated to increase Src kinase activity. Although considerable information on the phosphoprotein phosphatases that catalyze the hydrolysis of Src phosphotyrosine 527 is at hand, the nature of the phosphatases that mediate the hydrolysis of phosphotyrosine 138 and 213, and phosphoserine and phosphothreonine residues has not been determined.

  16. Protein phosphorylation is involved in bacterial chemotaxis.

    PubMed Central

    Hess, J F; Oosawa, K; Matsumura, P; Simon, M I

    1987-01-01

    The nature of the biochemical signal that is involved in the excitation response in bacterial chemotaxis is not known. However, ATP is required for chemotaxis. We have purified all of the proteins involved in signal transduction and show that the product of the cheA gene is rapidly autophosphorylated, while some mutant CheA proteins cannot be phosphorylated. The presence of stoichiometric levels of two other purified components in the chemotaxis system, the CheY and CheZ proteins, induces dephosphorylation. We suggest that the phosphorylation of CheA by ATP plays a central role in signal transduction in chemotaxis. Images PMID:3313398

  17. AMPK activation represses the human gene promoter of the cardiac isoform of acetyl-CoA carboxylase: Role of nuclear respiratory factor-1

    SciTech Connect

    Adam, Tasneem; Opie, Lionel H.; Essop, M. Faadiel

    2010-07-30

    Research highlights: {yields} AMPK inhibits acetyl-CoA carboxylase beta gene promoter activity. {yields} Nuclear respiratory factor-1 inhibits acetyl-CoA carboxylase beta promoter activity. {yields} AMPK regulates acetyl-CoA carboxylase beta at transcriptional level. -- Abstract: The cardiac-enriched isoform of acetyl-CoA carboxylase (ACC{beta}) produces malonyl-CoA, a potent inhibitor of carnitine palmitoyltransferase-1. AMPK inhibits ACC{beta} activity, lowering malonyl-CoA levels and promoting mitochondrial fatty acid {beta}-oxidation. Previously, AMPK increased promoter binding of nuclear respiratory factor-1 (NRF-1), a pivotal transcriptional modulator controlling gene expression of mitochondrial proteins. We therefore hypothesized that NRF-1 inhibits myocardial ACC{beta} promoter activity via AMPK activation. A human ACC{beta} promoter-luciferase construct was transiently transfected into neonatal cardiomyocytes {+-} a NRF-1 expression construct. NRF-1 overexpression decreased ACC{beta} gene promoter activity by 71 {+-} 4.6% (p < 0.001 vs. control). Transfections with 5'-end serial promoter deletions revealed that NRF-1-mediated repression of ACC{beta} was abolished with a pPII{beta}-18/+65-Luc deletion construct. AMPK activation dose-dependently reduced ACC{beta} promoter activity, while NRF-1 addition did not further decrease it. We also investigated NRF-1 inhibition in the presence of upstream stimulatory factor 1 (USF1), a known transactivator of the human ACC{beta} gene promoter. Here NRF-1 blunted USF1-dependent induction of ACC{beta} promoter activity by 58 {+-} 7.5% (p < 0.001 vs. control), reversed with a dominant negative NRF-1 construct. NRF-1 also suppressed endogenous USF1 transcriptional activity by 55 {+-} 6.2% (p < 0.001 vs. control). This study demonstrates that NRF-1 is a novel transcriptional inhibitor of the human ACC{beta} gene promoter in the mammalian heart. Our data extends AMPK regulation of ACC{beta} to the transcriptional level.

  18. Dynamics of ribulose 1,5-bisphosphate carboxylase/oxygenase gene expression in the coccolithophorid Coccolithus pelagicus during a tracer release experiment in the Northeast Atlantic.

    PubMed

    Wyman, Michael; Davies, John T; Hodgson, Sylvia; Tarran, Glen A; Purdie, Duncan A

    2005-03-01

    We report a pronounced diel rhythm in ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) gene expression in a natural population of the coccolithophorid Coccolithus pelagicus sampled during a Lagrangian experiment in the Northeast Atlantic. Our observations show that there is greater heterogeneity in the temporal regulation of RubisCO expression among planktonic chromophytes than has been reported hitherto. PMID:15746374

  19. Rapid alteration of protein phosphorylation during postmortem: implication in the study of protein phosphorylation.

    PubMed

    Wang, Yifan; Zhang, Yanchong; Hu, Wen; Xie, Shutao; Gong, Cheng-Xin; Iqbal, Khalid; Liu, Fei

    2015-01-01

    Protein phosphorylation is an important post-translational modification of proteins. Postmortem tissues are widely being utilized in the biomedical studies, but the effects of postmortem on protein phosphorylation have not been received enough attention. In the present study, we found here that most proteins in mouse brain, heart, liver, and kidney were rapidly dephosphorylated to various degrees during 20 sec to 10 min postmortem. Phosphorylation of tau at Thr212 and glycogen synthase kinase 3β (GSK-3β) at Ser9 was reduced by 50% in the brain with 40 sec postmortem, a regular time for tissue processing. During postmortem, phosphorylation of cAMP-dependent protein kinase (PKA) and AMP activated kinase (AMPK) was increased in the brain, but not in other organs. Perfusion of the brain with cold or room temperature phosphate-buffered saline (PBS) also caused significant alteration of protein phosphorylation. Cooling down and maintaining mouse brains in the ice-cold buffer prevented the alteration effectively. This study suggests that phosphorylation of proteins is rapidly changed during postmortem. Thus, immediate processing of tissues followed by cooling down in ice-cold buffer is vitally important and perfusion has to be avoided when protein phosphorylation is to be studied. PMID:26511732

  20. Rapid alteration of protein phosphorylation during postmortem: implication in the study of protein phosphorylation

    PubMed Central

    Wang, Yifan; Zhang, Yanchong; Hu, Wen; Xie, Shutao; Gong, Cheng-Xin; Iqbal, Khalid; Liu, Fei

    2015-01-01

    Protein phosphorylation is an important post-translational modification of proteins. Postmortem tissues are widely being utilized in the biomedical studies, but the effects of postmortem on protein phosphorylation have not been received enough attention. In the present study, we found here that most proteins in mouse brain, heart, liver, and kidney were rapidly dephosphorylated to various degrees during 20 sec to 10 min postmortem. Phosphorylation of tau at Thr212 and glycogen synthase kinase 3β (GSK-3β) at Ser9 was reduced by 50% in the brain with 40 sec postmortem, a regular time for tissue processing. During postmortem, phosphorylation of cAMP-dependent protein kinase (PKA) and AMP activated kinase (AMPK) was increased in the brain, but not in other organs. Perfusion of the brain with cold or room temperature phosphate-buffered saline (PBS) also caused significant alteration of protein phosphorylation. Cooling down and maintaining mouse brains in the ice-cold buffer prevented the alteration effectively. This study suggests that phosphorylation of proteins is rapidly changed during postmortem. Thus, immediate processing of tissues followed by cooling down in ice-cold buffer is vitally important and perfusion has to be avoided when protein phosphorylation is to be studied. PMID:26511732

  1. A sensitive, simultaneous analysis of ribulose 1,5-bisphosphate carboxylase/oxygenase efficiencies: Graphical determination of the CO2/O 2 specificity factor.

    PubMed

    Kostov, R V; McFadden, B A

    1995-01-01

    A simple approach to determine CO2/O2 specificity factor (τ) of ribulose 1,5-bisphosphate carboxylase/oxygenase is described. The assay measures the amount of CO2 fixation at varying [CO2]/[O2] ratios after complete consumption of ribulose 1,5-bisphosphate (RuBP). Carbon dioxide fixation catalyzed by the carboxylase was monitored by directly measuring the moles of (14)CO2 incorporated into 3-phosphoglycerate (PGA). This measurement at different [CO2]/[O2] ratios is used to determine graphically by several different linear plots the total RuBP consumed by the two activities and the CO2/O2 specificity factor. The assay can be used to measure the amounts of products of the carboxylase and oxygenase reactions and to determine the concentration of the substrate RuBP converted to an endpoint amount of PGA and phosphoglycolate. The assay was found to be suitable for all [CO2]/[O2] ratios examined, ranging from 14 to 215 micromolar CO2 (provided as 1-16 mM NaHCO3) and 614 micromolar O2 provided as 50% O2. The procedure described is extremely rapid and sensitive. Specificity factors for enzymes of highly divergent τ values are in good agreement with previously published data. PMID:24306640

  2. Identification of the large subunit of Ribulose 1,5-bisphosphate carboxylase/oxygenase as a substrate for transglutaminase in Medicageo sativa L. (alfalfa)

    SciTech Connect

    Margosiak, S.A.; Dharma, A.; Carver, M.R.B.; Gonzales, A.P., Louie, D.; Kuehn, G.D. )

    1990-01-01

    Extract prepared from floral meristematic tissue of alfalfa (Medicago sativa L.) were investigated for expression of the enzyme transglutaminase in order to identify the major protein substrate for transglutaminase-directed modifications among plant proteins. The large polymorphic subunits of ribulose 1,5-bisphosphate carboxylase/oxygenase in alfalfa, with molecular weights of 52,700 and 57,600, are major substrates for transglutaminase in these extracts. This was established by: (a) covalent conjugation of monodansylcadaverine to the large subunit followed by fluorescent detection in SDS-polyacrylamide gels; (b) covalent conjugation of ({sup 14}C)putrescine to the large subunit with detection by autoradiography; (c) covalent conjugation of monodansylcadaverine to the large subunit and demonstration of immunocross-reactivity on nitrocellulose transblot of the modified large subunit with antibody prepared in rabbits against dansylated-ovalbumin; (d) demonstration of a direct dependence of the rate of transglutaminase-mediated, ({sup 14}C)putresciene incorporation upon the concentration of ribulose, 1,5-bisphosphate carboxylase/oxygenase from alfalfa or spinach; and (e) presumptive evidence from size exclusion chromatography that transglutaminase may cofractionate with native molecules of ribulose 1,5-bisphosphate carboxylase/oxygenase in crude extracts.

  3. The source and characteristics of chemiluminescence associated with the oxygenase reaction catalyzed by Mn(2+)-ribulosebisphosphate carboxylase.

    PubMed

    Lilley, R M; Riesen, H; Andrews, T J

    1993-07-01

    We confirm the observation of Mogel and McFadden (Mogel, S.N., and McFadden, B. A. (1990) Biochemistry 29, 8333-8337) that ribulosebisphosphate carboxylase/oxygenase (rubisco) exhibits chemiluminescence while catalyzing its oxygenase reaction in the presence of Mn2+. However, our results with the spinach and Rhodospirillum rubrum enzymes differ markedly in the following respects. 1) Chemiluminescence intensity was directly proportional to enzyme concentration and behaved as if representing the rate of oxygenase catalysis. 2) The wavelength spectrum peaked at about 770 nm and extended beyond 810 nm. This seems inconsistent with chemiluminescence generated by simultaneous decay of pairs of singlet O2 molecules. It is consistent with manganese(II) luminescence and we discuss its possible sources. The time course of chemiluminescence (resolution, 0.25 s) was distinctively different for spinach and R. rubrum enzymes during the initial 5 s of catalysis, with the bacterial enzyme exhibiting a pronounced initial "burst." Chemiluminescence by the spinach enzyme responded to substrate concentrations in a manner consistent with known oxygenase properties, exhibiting Michaelis-Menten kinetics with ribulose-1,5-bisphosphate (Km 400 nM). Chemiluminescence required carbamylated enzyme with Mn2+ bound at the active site (activation energy, -57.1 KJ.mol-1). As an indicator of oxygenase activity, chemiluminescence represents an improvement over oxygen electrode measurements in response time and sensitivity by factors of at least 100. PMID:8314755

  4. (Nuclear genes from nicotiana encoding the small subunit of ribulose-1,5-bisphosphate carboxylase). Progress report

    SciTech Connect

    Cashmore, A.R.

    1985-01-01

    Two pea nuclear genes encoding ribulose-1,5-bisphosphate carboxylase (rbcS) were isolated and completely sequenced. These sequence studies include approximately 1 kb of 5' noncoding region and several hundred nucleotides of 3' noncoding sequences. The two genes are tightly linked being separated by 10 kb of DNA and they are oriented with their 3' ends towards one another. The two genes (ss3.6 and ss8.0) correspond to two of five EcoRI fragments of pea DNA that hybridize to a rbcS hybridization probe. The two genes ss3.6 and ss8.0 are quite divergent at their 5' and their 3' ends and in the first of the two intervening sequences. In direct contrast the second of the two intervening sequences is total conserved between the two genes. This conservation of sequence identity could result directly from evolutionary forces selecting against any sequence change. Such selection would presumably reflect a very sequence-dependent function for these introns. A role in splicing is one possibility and a transcriptional regulatory element is another possibility. 9 refs.

  5. Temperature Responses of C4 Photosynthesis: Biochemical Analysis of Rubisco, Phosphoenolpyruvate Carboxylase, and Carbonic Anhydrase in Setaria viridis1[OPEN

    PubMed Central

    Boyd, Ryan A.; Gandin, Anthony; Cousins, Asaph B.

    2015-01-01

    The photosynthetic assimilation of CO2 in C4 plants is potentially limited by the enzymatic rates of Rubisco, phosphoenolpyruvate carboxylase (PEPc), and carbonic anhydrase (CA). Therefore, the activity and kinetic properties of these enzymes are needed to accurately parameterize C4 biochemical models of leaf CO2 exchange in response to changes in CO2 availability and temperature. There are currently no published temperature responses of both Rubisco carboxylation and oxygenation kinetics from a C4 plant, nor are there known measurements of the temperature dependency of the PEPc Michaelis-Menten constant for its substrate HCO3−, and there is little information on the temperature response of plant CA activity. Here, we used membrane inlet mass spectrometry to measure the temperature responses of Rubisco carboxylation and oxygenation kinetics, PEPc carboxylation kinetics, and the activity and first-order rate constant for the CA hydration reaction from 10°C to 40°C using crude leaf extracts from the C4 plant Setaria viridis. The temperature dependencies of Rubisco, PEPc, and CA kinetic parameters are provided. These findings describe a new method for the investigation of PEPc kinetics, suggest an HCO3− limitation imposed by CA, and show similarities between the Rubisco temperature responses of previously measured C3 species and the C4 plant S. viridis. PMID:26373659

  6. Promotion of photosynthesis in transgenic rice over-expressing of maize C4 phosphoenolpyruvate carboxylase gene by nitric oxide donors.

    PubMed

    Chen, Pingbo; Li, Xia; Huo, Kai; Wei, Xiaodong; Dai, Chuanchao; Lv, Chuangen

    2014-03-15

    We determined the effects of exogenous nitric oxide on photosynthesis and gene expression in transgenic rice plants (PC) over-expressing the maize C4pepc gene, which encodes phosphoenolpyruvate carboxylase (PEPC). Seedlings were subjected to treatments with NO donors, an NO scavenger, phospholipase inhibitors, a Ca(2+) chelator, a Ca(2+) channel inhibitor, and a hydrogen peroxide (H2O2) inhibitor, individually and in various combinations. The NO donors significantly increased the net photosynthetic rate (PN) of PC and wild-type (WT), especially that of PC. Treatment with an NO scavenger did inhibit the PN of rice plants. The treatments with phospholipase inhibitors and a Ca(2+) chelator decreased the PN of WT and PC, and photosynthesis was more strongly inhibited in WT than in PC. Further analyses showed that the NO donors increased endogenous levels of NO and PLD activity, but decreased endogenous levels of Ca(2+) both WT and PC. However, there was a greater increase in NO in WT and a greater increase in PLD activity and Ca(2+) level in PC. The NO donors also increased both PEPC activity and pepc gene expression in PC. PEPC activity can be increased by SNP alone. But the expression of its encoding gene in PC might be regulated by SNP, together with PA and Ca(2+). PMID:24594398

  7. Multiple isoforms of phosphoenolpyruvate carboxylase in the Orchidaceae (subtribe Oncidiinae): implications for the evolution of crassulacean acid metabolism

    PubMed Central

    Silvera, Katia; Winter, Klaus; Rodriguez, B. Leticia; Albion, Rebecca L.; Cushman, John C.

    2014-01-01

    Phosphoenolpyruvate carboxylase (PEPC) catalyses the initial fixation of atmospheric CO2 into oxaloacetate and subsequently malate. Nocturnal accumulation of malic acid within the vacuole of photosynthetic cells is a typical feature of plants that perform crassulacean acid metabolism (CAM). PEPC is a ubiquitous plant enzyme encoded by a small gene family, and each member encodes an isoform with specialized function. CAM-specific PEPC isoforms probably evolved from ancestral non-photosynthetic isoforms by gene duplication events and subsequent acquisition of transcriptional control elements that mediate increased leaf-specific or photosynthetic-tissue-specific mRNA expression. To understand the patterns of functional diversification related to the expression of CAM, ppc gene families and photosynthetic patterns were characterized in 11 closely related orchid species from the subtribe Oncidiinae with a range of photosynthetic pathways from C3 photosynthesis (Oncidium cheirophorum, Oncidium maduroi, Rossioglossum krameri, and Oncidium sotoanum) to weak CAM (Oncidium panamense, Oncidium sphacelatum, Gomesa flexuosa and Rossioglossum insleayi) and strong CAM (Rossioglossum ampliatum, Trichocentrum nanum, and Trichocentrum carthagenense). Phylogenetic analysis revealed the existence of two main ppc lineages in flowering plants, two main ppc lineages within the eudicots, and three ppc lineages within the Orchidaceae. Our results indicate that ppc gene family expansion within the Orchidaceae is likely to be the result of gene duplication events followed by adaptive sequence divergence. CAM-associated PEPC isoforms in the Orchidaceae probably evolved from several independent origins. PMID:24913627

  8. Algal evolution in relation to atmospheric CO2: carboxylases, carbon-concentrating mechanisms and carbon oxidation cycles

    PubMed Central

    Raven, John A.; Giordano, Mario; Beardall, John; Maberly, Stephen C.

    2012-01-01

    Oxygenic photosynthesis evolved at least 2.4 Ga; all oxygenic organisms use the ribulose bisphosphate carboxylase-oxygenase (Rubisco)–photosynthetic carbon reduction cycle (PCRC) rather than one of the five other known pathways of autotrophic CO2 assimilation. The high CO2 and (initially) O2-free conditions permitted the use of a Rubisco with a high maximum specific reaction rate. As CO2 decreased and O2 increased, Rubisco oxygenase activity increased and 2-phosphoglycolate was produced, with the evolution of pathways recycling this inhibitory product to sugar phosphates. Changed atmospheric composition also selected for Rubiscos with higher CO2 affinity and CO2/O2 selectivity correlated with decreased CO2-saturated catalytic capacity and/or for CO2-concentrating mechanisms (CCMs). These changes increase the energy, nitrogen, phosphorus, iron, zinc and manganese cost of producing and operating Rubisco–PCRC, while biosphere oxygenation decreased the availability of nitrogen, phosphorus and iron. The majority of algae today have CCMs; the timing of their origins is unclear. If CCMs evolved in a low-CO2 episode followed by one or more lengthy high-CO2 episodes, CCM retention could involve a combination of environmental factors known to favour CCM retention in extant organisms that also occur in a warmer high-CO2 ocean. More investigations, including studies of genetic adaptation, are needed. PMID:22232762

  9. A Different Mechanism for the Inhibition of the Carboxyltransferase Domain of Acetyl-coenzyme A Carboxylase by Tepraloxydim

    SciTech Connect

    Xiang, S.; Callaghan, M; Watson, K; Tong, L

    2009-01-01

    Acetyl-CoA carboxylases (ACCs) are crucial metabolic enzymes and are attractive targets for drug discovery. Haloxyfop and tepraloxydim belong to two distinct classes of commercial herbicides and kill sensitive plants by inhibiting the carboxyltransferase (CT) activity of ACC. Our earlier structural studies showed that haloxyfop is bound near the active site of the CT domain, at the interface of its dimer, and a large conformational change in the dimer interface is required for haloxyfop binding. We report here the crystal structure at 2.3 {angstrom} resolution of the CT domain of yeast ACC in complex with tepraloxydim. The compound has a different mechanism of inhibiting the CT activity compared to haloxyfop, as well as the mammalian ACC inhibitor CP-640186. Tepraloxydim probes a different region of the dimer interface and requires only small but important conformational changes in the enzyme, in contrast to haloxyfop. The binding mode of tepraloxydim explains the structure-activity relationship of these inhibitors, and provides a molecular basis for their distinct sensitivity to some of the resistance mutations, as compared to haloxyfop. Despite the chemical diversity between haloxyfop and tepraloxydim, the compounds do share two binding interactions to the enzyme, which may be important anchoring points for the development of ACC inhibitors

  10. Enhancement of succinate production by metabolically engineered Escherichia coli with co-expression of nicotinic acid phosphoribosyltransferase and pyruvate carboxylase.

    PubMed

    Ma, Jiangfeng; Gou, Dongmei; Liang, Liya; Liu, Rongming; Chen, Xu; Zhang, Changqing; Zhang, Jiuhua; Chen, Kequan; Jiang, Min

    2013-08-01

    Escherichia coli BA002, in which the ldhA and pflB genes are deleted, cannot utilize glucose anaerobically due to the inability to regenerate NAD(+). To restore glucose utilization, overexpression of nicotinic acid phosphoribosyltransferase (NAPRTase) encoded by the pncB gene, a rate-limiting enzyme of NAD(H) synthesis pathway, resulted in a significant increase in cell mass and succinate production under anaerobic conditions. However, a high concentration of pyruvate accumulated. Thus, co-expression of NAPRTase and the heterologous pyruvate carboxylase (PYC) of Lactococcus lactis subsp. cremoris NZ9000 in recombinant E. coli BA016 was investigated. The total concentration of NAD(H) was 9.8-fold higher in BA016 than in BA002, and the NADH/NAD(+) ratio decreased from 0.60 to 0.04. Under anaerobic conditions, BA016 consumed 17.50 g l(-1) glucose and produced 14.08 g l(-1) succinate with a small quantity of pyruvate. Furthermore, when the reducing agent dithiothreitol or reduced carbon source sorbitol was added, the cell growth and carbon source consumption rate of BA016 was reasonably enhanced and succinate productivity increased. PMID:23740313

  11. Genetic inhibition of hepatic acetyl-CoA carboxylase activity increases liver fat and alters global protein acetylationa

    PubMed Central

    Chow, Jenny D.Y.; Lawrence, Robert T.; Healy, Marin E.; Dominy, John E.; Liao, Jason A.; Breen, David S.; Byrne, Frances L.; Kenwood, Brandon M.; Lackner, Carolin; Okutsu, Saeko; Mas, Valeria R.; Caldwell, Stephen H.; Tomsig, Jose L.; Cooney, Gregory J.; Puigserver, Pere B.; Turner, Nigel; James, David E.; Villén, Judit; Hoehn, Kyle L.

    2014-01-01

    Lipid deposition in the liver is associated with metabolic disorders including fatty liver disease, type II diabetes, and hepatocellular cancer. The enzymes acetyl-CoA carboxylase 1 (ACC1) and ACC2 are powerful regulators of hepatic fat storage; therefore, their inhibition is expected to prevent the development of fatty liver. In this study we generated liver-specific ACC1 and ACC2 double knockout (LDKO) mice to determine how the loss of ACC activity affects liver fat metabolism and whole-body physiology. Characterization of LDKO mice revealed unexpected phenotypes of increased hepatic triglyceride and decreased fat oxidation. We also observed that chronic ACC inhibition led to hyper-acetylation of proteins in the extra-mitochondrial space. In sum, these data reveal the existence of a compensatory pathway that protects hepatic fat stores when ACC enzymes are inhibited. Furthermore, we identified an important role for ACC enzymes in the regulation of protein acetylation in the extra-mitochondrial space. PMID:24944901

  12. Interaction between potyvirus P3 and ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) of host plants.

    PubMed

    Lin, Lin; Luo, Zhaopeng; Yan, Fei; Lu, Yuwen; Zheng, Hongying; Chen, Jianping

    2011-08-01

    The P3 protein encoded by Shallot yellow stripe virus onion isolate (SYSV-O) interacted in the Yeast Two-hybrid (Y2H) system and in co-immunoprecipitation (Co-IP) assays with the large subunit of the ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) protein that is encoded by the rbcL gene of its onion host. Dissection analysis by Y2H showed that the main part of SYSV P3 (amino acids 1-390) and onion RbcL (amino acids 1-137) were responsible for the interaction. The P3 proteins encoded by Onion yellow dwarf virus (OYDV), Soybean mosaic virus Pinellia isolate (SMV-P), and Turnip mosaic virus (TuMV) also interacted with RbcL, suggesting that a P3/RbcL interaction might exist generally for potyviruses. An interaction between P3 of these potyviruses and the small subunit of RubisCO (RbcS) was also demonstrated. Moreover, the P3N-PIPO protein encoded by a newly identified open reading frame embedded within the P3 cistron also interacted with both RbcL and RbcS. It is possible that the potyvirus P3 protein affects the normal functions of RubisCO which thus contributes to symptom development. PMID:21400205

  13. [Activity of NADP-dependent glyceraldehyde-phosphate dehydrogenase and phosphoenolpyruvate carboxylase in wheat leaves under water stress].

    PubMed

    Cherniad'ev, I I; Monakhova, O F

    2006-01-01

    The activities of NADP: glyceraldehyde-phosphate dehydrogenase (GAPDH), an enzyme complex comprising of phosphoglycerate kinase (EC 2.7.2.3) and glyceraldehyde-phosphate dehydrogenase (EC 1.2.1.13), and phosphoenolpyruvate carboxylase (PEPK; EC 4.1.1.31) in seedlings and leaves of wheat (Triticum aestivum L.) plants of the cultivars Mironovskaya 808 and Lutescens 758 have been compared under conditions of normal water supply, water deficiency, and subsequent rehydration. GAPDH activity, which determines the carbohydrate route of photosynthetic metabolism at the initial stages, is decreased by water stress to a greater extent than that of PEPK, on the activity of which non-carbohydrate metabolic pathways depend. Pretreatment of seedlings and mature plants with natural (6-benzylaminopurine) and synthetic (tidiazuron, kartolin-2, and kartolin-4) cytokinins attenuates the loss of enzyme activities during drought and facilitates their recovery within the period of rehydration; both effects are underlain by augmentation of reparation processes. The relative intensification of non-carbohydrate pathways of photosynthetic metabolism, observed under conditions of water deficiency, is accompanied by an increase in the osmotic pressure of cell sap. Possible mechanisms of this protector effect of cytokinin preparations are discussed. PMID:16878554

  14. Dominant mutations causing alterations in acetyl-coenzyme A carboxylase confer tolerance to cyclohexanedione and aryloxyphenoxypropionate herbicides in maize.

    PubMed Central

    Parker, W B; Marshall, L C; Burton, J D; Somers, D A; Wyse, D L; Gronwald, J W; Gengenbach, B G

    1990-01-01

    A partially dominant mutation exhibiting increased tolerance to cyclohexanedione and aryloxyphenoxypropionate herbicides was isolated by exposing susceptible maize (Zea mays) tissue cultures to increasingly inhibitory concentrations of sethoxydim (a cyclohexanedione). The selected tissue culture (S2) was greater than 40-fold more tolerant to sethoxydim and 20-fold more tolerant to haloxyfop (an aryloxyphenoxypropionate) than the nonselected wild-type tissue culture. Regenerated S2 plants were heterozygous for the mutant allele and exhibited a high-level, but not complete, tolerance to both herbicides. Homozygous mutant families derived by self-pollinating the regenerated S2 plants exhibited no injury after treatment with 0.8 kg of sethoxydim per ha, which was greater than 16-fold the rate lethal to wild-type plants. Acetyl-coenzyme A carboxylase (ACCase; EC 6.4.1.2) is the target enzyme of cyclohexanedione and aryloxyphenoxypropionate herbicides. ACCase activities of the nonselected wild-type and homozygous mutant seedlings were similar in the absence of herbicide. ACCase activity from homozygous tolerant plants required greater than 100-fold more sethoxydim and 16-fold more haloxyfop for 50% inhibition than ACCase from wild-type plants. These results indicate that tolerance to sethoxydim and haloxyfop is controlled by a partially dominant nuclear mutation encoding a herbicide-insensitive alteration in maize ACCase. Images PMID:1976254

  15. Methylcrotonyl-CoA Carboxylase Regulates Triacylglycerol Accumulation in the Model Diatom Phaeodactylum tricornutum[C][W][OPEN

    PubMed Central

    Ge, Feng; Huang, Weichao; Chen, Zhuo; Zhang, Chunye; Xiong, Qian; Bowler, Chris; Yang, Juan; Xu, Jin; Hu, Hanhua

    2014-01-01

    The model marine diatom Phaeodactylum tricornutum can accumulate high levels of triacylglycerols (TAGs) under nitrogen depletion and has attracted increasing attention as a potential system for biofuel production. However, the molecular mechanisms involved in TAG accumulation in diatoms are largely unknown. Here, we employed a label-free quantitative proteomics approach to estimate differences in protein abundance before and after TAG accumulation. We identified a total of 1193 proteins, 258 of which were significantly altered during TAG accumulation. Data analysis revealed major changes in proteins involved in branched-chain amino acid (BCAA) catabolic processes, glycolysis, and lipid metabolic processes. Subsequent quantitative RT-PCR and protein gel blot analysis confirmed that four genes associated with BCAA degradation were significantly upregulated at both the mRNA and protein levels during TAG accumulation. The most significantly upregulated gene, encoding the β-subunit of methylcrotonyl-CoA carboxylase (MCC2), was selected for further functional studies. Inhibition of MCC2 expression by RNA interference disturbed the flux of carbon (mainly in the form of leucine) toward BCAA degradation, resulting in decreased TAG accumulation. MCC2 inhibition also gave rise to incomplete utilization of nitrogen, thus lowering biomass during the stationary growth phase. These findings help elucidate the molecular and metabolic mechanisms leading to increased lipid production in diatoms. PMID:24769481

  16. Acetyl-CoA carboxylase inhibition by ND-630 reduces hepatic steatosis, improves insulin sensitivity, and modulates dyslipidemia in rats

    PubMed Central

    Harriman, Geraldine; Greenwood, Jeremy; Bhat, Sathesh; Huang, Xinyi; Wang, Ruiying; Paul, Debamita; Tong, Liang; Saha, Asish K.; Westlin, William F.; Kapeller, Rosana; Harwood, H. James

    2016-01-01

    Simultaneous inhibition of the acetyl-CoA carboxylase (ACC) isozymes ACC1 and ACC2 results in concomitant inhibition of fatty acid synthesis and stimulation of fatty acid oxidation and may favorably affect the morbidity and mortality associated with obesity, diabetes, and fatty liver disease. Using structure-based drug design, we have identified a series of potent allosteric protein–protein interaction inhibitors, exemplified by ND-630, that interact within the ACC phosphopeptide acceptor and dimerization site to prevent dimerization and inhibit the enzymatic activity of both ACC isozymes, reduce fatty acid synthesis and stimulate fatty acid oxidation in cultured cells and in animals, and exhibit favorable drug-like properties. When administered chronically to rats with diet-induced obesity, ND-630 reduces hepatic steatosis, improves insulin sensitivity, reduces weight gain without affecting food intake, and favorably affects dyslipidemia. When administered chronically to Zucker diabetic fatty rats, ND-630 reduces hepatic steatosis, improves glucose-stimulated insulin secretion, and reduces hemoglobin A1c (0.9% reduction). Together, these data suggest that ACC inhibition by representatives of this series may be useful in treating a variety of metabolic disorders, including metabolic syndrome, type 2 diabetes mellitus, and fatty liver disease. PMID:26976583

  17. Algal evolution in relation to atmospheric CO2: carboxylases, carbon-concentrating mechanisms and carbon oxidation cycles.

    PubMed

    Raven, John A; Giordano, Mario; Beardall, John; Maberly, Stephen C

    2012-02-19

    Oxygenic photosynthesis evolved at least 2.4 Ga; all oxygenic organisms use the ribulose bisphosphate carboxylase-oxygenase (Rubisco)-photosynthetic carbon reduction cycle (PCRC) rather than one of the five other known pathways of autotrophic CO(2) assimilation. The high CO(2) and (initially) O(2)-free conditions permitted the use of a Rubisco with a high maximum specific reaction rate. As CO(2) decreased and O(2) increased, Rubisco oxygenase activity increased and 2-phosphoglycolate was produced, with the evolution of pathways recycling this inhibitory product to sugar phosphates. Changed atmospheric composition also selected for Rubiscos with higher CO(2) affinity and CO(2)/O(2) selectivity correlated with decreased CO(2)-saturated catalytic capacity and/or for CO(2)-concentrating mechanisms (CCMs). These changes increase the energy, nitrogen, phosphorus, iron, zinc and manganese cost of producing and operating Rubisco-PCRC, while biosphere oxygenation decreased the availability of nitrogen, phosphorus and iron. The majority of algae today have CCMs; the timing of their origins is unclear. If CCMs evolved in a low-CO(2) episode followed by one or more lengthy high-CO(2) episodes, CCM retention could involve a combination of environmental factors known to favour CCM retention in extant organisms that also occur in a warmer high-CO(2) ocean. More investigations, including studies of genetic adaptation, are needed. PMID:22232762

  18. Construction and use of a gene bank of Alcaligenes eutrophus in the analysis of ribulose bisphosphate carboxylase genes.

    PubMed Central

    Andersen, K; Wilke-Douglas, M

    1984-01-01

    A gene bank of the DNA from the hydrogen bacterium Alcaligenes eutrophus ATCC 17707 was constructed in the broad host range cosmid vector pVK102 and established in Escherichia coli. A triparental replica plating procedure was developed to allow rapid screening of large numbers of isolated E. coli gene bank clones for complementation of A. eutrophus mutants. This procedure was used to identify hybrid cosmids that complemented CO2 fixation-negative (Cfx-), H2 uptake-negative (Hup-), and auxotrophic A. eutrophus mutants. The average insert DNA size in these hybrid cosmids was 22 kilobases. Nine hybrid cosmids that complemented ribulose bisphosphate carboxylase-negative (RuBPCase-) mutants were characterized. They fell into two distinct groups with respect to their restriction patterns. Complementing subclones from the two groups contained no common restriction fragments, but hybridization experiments indicated a high degree of sequence homology. Restriction fragments corresponding to one of the subclones were absent in total DNA from a cured strain that had lost plasmid pAE7, indigenous to the wild type. It is concluded that functional CO2 fixation genes in the A. eutrophus ATCC 17707 chromosome are reiterated on plasmid pAE7. Images PMID:6090401

  19. Trifluoromethanesulfonamide anthelmintics. Protonophoric uncouplers of oxidative phosphorylation.

    PubMed

    McCracken, R O; Carr, A W; Stillwell, W H; Lipkowitz, K B; Boisvenue, R; O'Doherty, G O; Wickiser, D I

    1993-05-01

    A series of trifluoromethanesulfonamides (TFMS) was synthesized and tested for uncoupling activity in rat liver mitochondria. With succinate as the mitochondrial substrate, and the respiratory control index (RCI) as an indicator of their uncoupling ability, we found that all of the TFMS tested were uncouplers of oxidative phosphorylation; the effective concentration (RCI I50) ranged from less than 1 microM to greater than 1000 microM. Correlation techniques were used to assess the strength of the relationship between the ability of a TFMS to uncouple oxidative phosphorylation and its ability to lower the electrical resistance of planar bimolecular lipid membranes. There was a highly significant (P < 0.001) positive linear relationship (r = 0.97) between the ability of a TFMS to uncouple oxidative phosphorylation and its ability to lower electrical resistance. These findings are consistent with the view that the TFMS are lipophilic protonophoric uncouplers of mitochondrial oxidative phosphorylation. Quantitative structure-activity relationship studies using experiment and semiempirical molecular orbital theory revealed that the hydrophobicity of a TFMS and its molecular dipole moment were the principal determinants of mitochondrial uncoupling activity within the pKa range examined. PMID:8388210

  20. Identification of extracellularly phosphorylated membrane proteins.

    PubMed

    Burghoff, Sandra; Willberg, Wibke; Schrader, Jürgen

    2015-10-01

    Ecto-protein kinases phosphorylate extracellular membrane proteins and exhibit similarities to casein kinases and protein kinases A and C. However, the identification of their protein substrates still remains a challenge because a clear separation from intracellular phosphoproteins is difficult. Here, we describe a straightforward method for the identification of extracellularly phosphorylated membrane proteins in human umbilical vein endothelial cells (HUVECs) and K562 cells which used the protease bromelain to selectively remove ectoproteins from intact cells and combined this with the subsequent analysis using IMAC and LC-MS/MS. A "false-positive" strategy in which cells without protease treatment served as controls was applied. Using this approach we identified novel phosphorylation sites on five ectophosphoproteins (NOTCH1, otopetrin 1, regulator of G-protein signalling 13 (RGS13), protein tyrosine phosphatase receptor type D isoform 3 (PTPRD), usherin isoform B (USH2A)). Use of bromelain appears to be a reliable technique for the further identification of phosphorylated surface-exposed peptides when extracellular adenosine-5'-triphosphate is elevated during purinergic signalling. PMID:26152529

  1. Regulation of protein phosphorylation in oat mitochondria

    SciTech Connect

    Pike, C.; Kopeck, K.; Sceppa, E. )

    1989-04-01

    We sought to identify phosphorylated proteins in isolated oat mitocchondria and to characterize the enzymatic and regulatory properties of the protein kinase(s). Mitochondria from oats (Avena sativa L. cv. Garry) were purified on Percoll gradients. Mitochondria were incubated with {sup 32}P-{gamma}-ATP; proteins were separated by SDS-PAGE. A small number of bands was detected on autoradiograms, most prominently at 70 kD and 42 kD; the latter band has been tentatively identified as a subunit of the pyruvate dehydrogenase complex, a well-known phosphoprotein. The protein kinase(s) could also phosphorylate casein, but not histone. Spermine enhanced the phosphorylation of casein and inhibited the phosphorylation of the 42 kD band. These studies were carried out on both intact and burst mitochondria. Control by calcium and other ions was investigated. The question of the action of regulators on protein kinase or protein phosphatase was studied by the use of {sup 35}S-adenosine thiotriphosphate.

  2. Metaphase protein phosphorylation in Xenopus laevis eggs.

    PubMed Central

    Lohka, M J; Kyes, J L; Maller, J L

    1987-01-01

    Cytoplasmic extracts of metaphase (M-phase)-arrested Xenopus laevis eggs support nuclear envelope breakdown and chromosome condensation in vitro. Induction of nuclear breakdown is inhibited by AMPP(NH)P, a nonhydrolyzable ATP analog, but not by ATP or gamma-S-ATP, a hydrolyzable ATP analog, suggesting that protein phosphorylation may be required for M-phase nuclear events in vitro. By addition of [gamma-32P]ATP, we have identified in cytoplasmic extracts and in intact eggs at least six phosphoproteins that are present during M-phase but absent in G1/S-phase. These phosphoproteins also appear in response to partially purified preparations of maturation-promoting factor. A subset of these proteins are thiophosphorylated by gamma-S-ATP under conditions that promote nuclear envelope breakdown and chromosome condensation. Each of these proteins is phosphorylated on serine and threonine, and one, a 42-kilodalton protein, is also phosphorylated on tyrosine both in extracts and in intact eggs. These results indicate that activation of protein kinases accounts for at least part of the increased phosphorylation in M-phase and that both protein-serine-threonine kinases and protein-tyrosine kinases may play a role in controlling M-phase nuclear behavior. Images PMID:3821728

  3. Nucleoside phosphorylation by the mineral schreibersite

    PubMed Central

    Gull, Maheen; Mojica, Mike A.; Fernández, Facundo M.; Gaul, David A.; Orlando, Thomas M.; Liotta, Charles L.; Pasek, Matthew A.

    2015-01-01

    Phosphorylation of the nucleosides adenosine and uridine by the simple mixing and mild heating of aqueous solutions of the organic compounds with synthetic analogs of the meteoritic mineral schreibersite, (Fe,Ni)3P under slightly basic conditions (pH ~9) is reported. These results suggest a potential role for meteoritic phosphorus in the origin and development of early life. PMID:26606901

  4. Ion channels, phosphorylation and mammalian sperm capacitation

    PubMed Central

    Visconti, Pablo E; Krapf, Dario; de la Vega-Beltrán, José Luis; Acevedo, Juan José; Darszon, Alberto

    2011-01-01

    Sexually reproducing animals require an orchestrated communication between spermatozoa and the egg to generate a new individual. Capacitation, a maturational complex phenomenon that occurs in the female reproductive tract, renders spermatozoa capable of binding and fusing with the oocyte, and it is a requirement for mammalian fertilization. Capacitation encompasses plasma membrane reorganization, ion permeability regulation, cholesterol loss and changes in the phosphorylation state of many proteins. Novel tools to study sperm ion channels, image intracellular ionic changes and proteins with better spatial and temporal resolution, are unraveling how modifications in sperm ion transport and phosphorylation states lead to capacitation. Recent evidence indicates that two parallel pathways regulate phosphorylation events leading to capacitation, one of them requiring activation of protein kinase A and the second one involving inactivation of ser/thr phosphatases. This review examines the involvement of ion transporters and phosphorylation signaling processes needed for spermatozoa to achieve capacitation. Understanding the molecular mechanisms leading to fertilization is central for societies to deal with rising male infertility rates, to develop safe male gamete-based contraceptives and to preserve biodiversity through better assisted fertilization strategies. PMID:21540868

  5. Phosphorylation of plastoglobular proteins in Arabidopsis thaliana.

    PubMed

    Lohscheider, Jens N; Friso, Giulia; van Wijk, Klaas J

    2016-06-01

    Plastoglobules (PGs) are plastid lipid-protein particles with a small specialized proteome and metabolome. Among the 30 core PG proteins are six proteins of the ancient ABC1 atypical kinase (ABC1K) family and their locations in an Arabidopsis mRNA-based co-expression network suggested central regulatory roles. To identify candidate ABC1K targets and a possible ABC1K hierarchical phosphorylation network within the chloroplast PG proteome, we searched Arabidopsis phosphoproteomics data from publicly available sources. Evaluation of underlying spectra and/or associated information was challenging for a variety of reasons, but supported pSer sites and a few pThr sites in nine PG proteins, including five FIBRILLINS. PG phosphorylation motifs are discussed in the context of possible responsible kinases. The challenges of collection and evaluation of published Arabidopsis phosphorylation data are discussed, illustrating the importance of deposition of all mass spectrometry data in well-organized repositories such as PRIDE and ProteomeXchange. This study provides a starting point for experimental testing of phosho-sites in PG proteins and also suggests that phosphoproteomics studies specifically designed toward the PG proteome and its ABC1K are needed to understand phosphorylation networks in these specialized particles. PMID:26962209

  6. Phosphorylation of plastoglobular proteins in Arabidopsis thaliana

    PubMed Central

    Lohscheider, Jens N.; Friso, Giulia; van Wijk, Klaas J.

    2016-01-01

    Plastoglobules (PGs) are plastid lipid–protein particles with a small specialized proteome and metabolome. Among the 30 core PG proteins are six proteins of the ancient ABC1 atypical kinase (ABC1K) family and their locations in an Arabidopsis mRNA-based co-expression network suggested central regulatory roles. To identify candidate ABC1K targets and a possible ABC1K hierarchical phosphorylation network within the chloroplast PG proteome, we searched Arabidopsis phosphoproteomics data from publicly available sources. Evaluation of underlying spectra and/or associated information was challenging for a variety of reasons, but supported pSer sites and a few pThr sites in nine PG proteins, including five FIBRILLINS. PG phosphorylation motifs are discussed in the context of possible responsible kinases. The challenges of collection and evaluation of published Arabidopsis phosphorylation data are discussed, illustrating the importance of deposition of all mass spectrometry data in well-organized repositories such as PRIDE and ProteomeXchange. This study provides a starting point for experimental testing of phosho-sites in PG proteins and also suggests that phosphoproteomics studies specifically designed toward the PG proteome and its ABC1K are needed to understand phosphorylation networks in these specialized particles. PMID:26962209

  7. Protein Synthesis Initiation Factors: Phosphorylation and Regulation

    SciTech Connect

    Karen S. Browning

    2009-06-15

    The initiation of the synthesis of proteins is a fundamental process shared by all living organisms. Each organism has both shared and unique mechanisms for regulation of this vital process. Higher plants provide for a major amount of fixation of carbon from the environment and turn this carbon into food and fuel sources for our use. However, we have very little understanding of how plants regulate the synthesis of the proteins necessary for these metabolic processes. The research carried out during the grant period sought to address some of these unknowns in the regulation of protein synthesis initiation. Our first goal was to determine if phosphorylation plays a significant role in plant initiation of protein synthesis. The role of phosphorylation, although well documented in mammalian protein synthesis regulation, is not well studied in plants. We showed that several of the factors necessary for the initiation of protein synthesis were targets of plant casein kinase and showed differential phosphorylation by the plant specific isoforms of this kinase. In addition, we identified and confirmed the phosphorylation sites in five of the plant initiation factors. Further, we showed that phosphorylation of one of these factors, eIF5, affected the ability of the factor to participate in the initiation process. Our second goal was to develop a method to make initiation factor 3 (eIF3) using recombinant methods. To date, we successfully cloned and expressed 13/13 subunits of wheat eIF3 in E. coli using de novo gene construction methods. The final step in this process is to place the subunits into three different plasmid operons for co-expression. Successful completion of expression of eIF3 will be an invaluable tool to the plant translation community.

  8. Mode of action of the macrolide-type antibiotic, chlorothricin. Effect of the antibiotic on the catalytic activity and some structural parameters of pyruvate carboxylases purified from rat and chicken liver.

    PubMed

    Schindler, P W; Scrutton, M C

    1975-07-15

    The macrolide-type antibiotic chlorothricin inhibits pyruvate carboxylases purified from rat liver, chicken liver and Azotobacter vinelandii. Under standard assay conditions the concentration of chlorothricin required for half-maximal inhibition of oxalacetate synthesis is 0.26 mM (rat liver), 0.12 mM (chicken liver), and 0.5 mM (Azobacter vinelandii). Inhibition by chlorothricin appears non-competitive in character when measured as a function of the concentration of the substrates of the pyruvate carboxylase reaction as well as of CoASAc and Mg2+. This pattern of inhibition suggests that this antibiotic interacts at unique sites on chicken and rat liver pyruvate carboxylase which are distinct from both the catalytic and activator sites. Interaction of chlorothricin with the two vertebrate liver pyruvate carboxylases differs from the effect exerted by this antibiotic on pyruvate carboxylase purified from Azotobacter vinelandii. A sigmoidal relationship between initial velocity and inhibitor concentration is observed for the vertebrate enzymes under most conditions whereas a hyperbolic profile characterizes the concentration dependence of inhibition of the Azotobacter vinelandii enzyme by chlorothricin. In the case of rat liver pyruvate carboxylase chlorothricin does not alter the extent of cooperativity in the relationship between initial rate and CoASAc concentration. However, a small but significant increase of the Hill coefficient from a value of 2.7 in the absence of antibiotic to that of 3.3 in the presence of 0.5 mM chlorothricin is observed for chicken liver pyruvate carboxylase. Chlorothricin decreases the rate of inactivation observed when rat liver pyruvate carboxylase is incubated with trinitrobenzenesulfonate and when chicken liver pyruvate carboxylase is incubated at 2 degrees C. The maximal decrease in inactivation observed in the presence of saturating concentrations of antibiotic is 50% for cold inactivation of the chicken liver enzyme and 60% for

  9. Phosphorylation in vitro of human fibrinogen with casein kinase TS and characterization of phosphorylated sites

    SciTech Connect

    Heldin, P.

    1987-09-01

    Human fibrinogen was phosphorylated by casein kinase TS. The (/sup 32/P)phosphate incorporated varied between 0.5 and 1 mol of phosphate per mole of fibrinogen. The phosphate was localized to Ser523 and Ser590 and serine and threonine residues between amino acids 259 and 268 in the A alpha-chain. In addition, Thr416 and Ser420 were phosphorylated in the gamma'-chain, which is a variant of the gamma-chain, constituting 7-10% of the gamma-chain population. The functional significance of casein kinase TS-induced phosphorylation of fibrinogen remains unknown; however, a slight but consistent increase of the turbidity in a gelation assay was observed for phosphorylated compared to unphosphorylated fibrinogen.

  10. When phosphorylated at Thr148, the β2-subunit of AMP-activated kinase does not associate with glycogen in skeletal muscle.

    PubMed

    Xu, Hongyang; Frankenberg, Noni T; Lamb, Graham D; Gooley, Paul R; Stapleton, David I; Murphy, Robyn M

    2016-07-01

    The 5'-AMP-activated protein kinase (AMPK), a heterotrimeric complex that functions as an intracellular fuel sensor that affects metabolism, is activated in skeletal muscle in response to exercise and utilization of stored energy. The diffusibility properties of α- and β-AMPK were examined in isolated skeletal muscle fiber segments dissected from rat fast-twitch extensor digitorum longus and oxidative soleus muscles from which the surface membranes were removed by mechanical dissection. After the muscle segments were washed for 1 and 10 min, ∼60% and 75%, respectively, of the total AMPK pools were found in the diffusible fraction. After in vitro stimulation of the muscle, which resulted in an ∼80% decline in maximal force, 20% of the diffusible pool became bound in the fiber. This bound pool was not associated with glycogen, as determined by addition of a wash step containing amylase. Stimulation of extensor digitorum longus muscles resulted in 28% glycogen utilization and a 40% increase in phosphorylation of the downstream AMPK target acetyl carboxylase-CoA. This, however, had no effect on the proportion of total β2-AMPK that was phosphorylated in whole muscle homogenates measured by immunoprecipitation. These findings suggest that, in rat skeletal muscle, β2-AMPK is not associated with glycogen and that activation of AMPK by muscle contraction does not dephosphorylate β2-AMPK. These findings question the physiological relevance of the carbohydrate-binding function of β2-AMPK in skeletal muscle. PMID:27099349

  11. Protein phosphorylation in isolated human adipocytes - Adrenergic control of the phosphorylation of hormone-sensitive lipase

    SciTech Connect

    Smiley, R.M. Columbia Univ College of Physicians and Surgeons, New York, NY ); Paul, S.; Browning, M.D.; Leibel, R.L.; Hirsch, J. )

    1990-01-01

    The effect of adrenergic agents on protein phosphorylation in human adipocytes was examined. Freshly isolated human fat cells were incubated with {sup 32}PO{sub 4} in order to label intracellular ATP, then treated with a variety of adrenergic and other pharmacologic agents. Treatment with the {beta}-adrenergic agonist isoproterenol led to a significant increase in phosphate content of at least five protein bands (M{sub r} 52, 53, 63, 67, 84 kDa). The increase in phosphorylation was partially inhibited by the {alpha}-2 agonist clonidine. Epinephrine, a combined {alpha} and {beta} agonist, was less effective at increasing phosphate content of the proteins than was isoproterenol. Neither insulin nor the {alpha}-1 agonist phenylephrine had any discernible effect on the pattern of protein phosphorylation. The 84 kDa phosphorylated peptide band appears to contain hormone-sensitive lipase, a key enzyme in the lipolytic pathway which is activated by phosphorylation. These results are somewhat different than previously reported results for rat adipocytes, and represent the first report of overall pattern and adrenergic modulation of protein phosphorylation in human adipocytes.

  12. Glucose and Stress Independently Regulate Source and Sink Metabolism and Defense Mechanisms via Signal Transduction Pathways Involving Protein Phosphorylation.

    PubMed Central

    Ehness, R.; Ecker, M.; Godt, D. E.; Roitsch, T.

    1997-01-01

    In higher plants, sugars are required not only to sustain heterotrophic growth but also to regulate the expression of a variety of genes. Environmental stresses, such as pathogen infection and wounding, activate a cascade of defense responses and may also affect carbohydrate metabolism. In this study, the relationship between sugar- and stress-activated signal transduction pathways and the underlying regulatory mechanism was analyzed. Photoautotrophically growing suspension culture cells of Chenopodium rubrum were used as a model system to study the effects of the metabolic regulator D-glucose and of different stress-related stimuli on photosynthesis, sink metabolism, and defense response by analyzing the regulation of mRNAs for representative enzymes of these pathways. Glucose as well as the fungal elicitor chitosan, the phosphatase inhibitor endothall, and benzoic acid were shown to result in a coordinated regulatory mechanism. The mRNAs for phenylalanine ammonia-lyase, a key enzyme of defense response, and for the sink-specific extracellular invertase were induced. In contrast, the mRNA for the Calvin cycle enzyme ribulose bisphosphate carboxylase was repressed. This inverse regulatory pattern was also observed in experiments with wounded leaves of C. rubrum plants. The differential effect of the protein kinase inhibitor staurosporine on mRNA regulation demonstrates that the carbohydrate signal and the stress-related stimuli independently activate different intracellular signaling pathways that ultimately are integrated to coordinately regulate source and sink metabolism and activate defense responses. The various stimuli triggered the transient and rapid activation of protein kinases that phosphorylate the myelin basic protein. The involvement of phosphorylation in signal transduction is further supported by the effect of the protein kinase inhibitor staurosporine on mRNA levels. PMID:12237349

  13. The importance of intrinsic disorder for protein phosphorylation.

    PubMed

    Iakoucheva, Lilia M; Radivojac, Predrag; Brown, Celeste J; O'Connor, Timothy R; Sikes, Jason G; Obradovic, Zoran; Dunker, A Keith

    2004-01-01

    Reversible protein phosphorylation provides a major regulatory mechanism in eukaryotic cells. Due to the high variability of amino acid residues flanking a relatively limited number of experimentally identified phosphorylation sites, reliable prediction of such sites still remains an important issue. Here we report the development of a new web-based tool for the prediction of protein phosphorylation sites, DISPHOS (DISorder-enhanced PHOSphorylation predictor, http://www.ist.temple. edu/DISPHOS). We observed that amino acid compositions, sequence complexity, hydrophobicity, charge and other sequence attributes of regions adjacent to phosphorylation sites are very similar to those of intrinsically disordered protein regions. Thus, DISPHOS uses position-specific amino acid frequencies and disorder information to improve the discrimination between phosphorylation and non-phosphorylation sites. Based on the estimates of phosphorylation rates in various protein categories, the outputs of DISPHOS are adjusted in order to reduce the total number of misclassified residues. When tested on an equal number of phosphorylated and non-phosphorylated residues, the accuracy of DISPHOS reaches 76% for serine, 81% for threonine and 83% for tyrosine. The significant enrichment in disorder-promoting residues surrounding phosphorylation sites together with the results obtained by applying DISPHOS to various protein functional classes and proteomes, provide strong support for the hypothesis that protein phosphorylation predominantly occurs within intrinsically disordered protein regions. PMID:14960716

  14. Syntheses and insulin-like activity of phosphorylated galactose derivatives.

    PubMed

    Caro, H N; Martín-Lomas, M; Bernabé, M

    1993-02-24

    The syntheses of the poly-phosphorylated galactosides 6, 8, 10, 13, 16, and 20, isolated as sodium salts, have been performed. The non-phosphorylated disaccharide 17 and trisaccharide 21 have been prepared via glycosylation of the 2-(trimethylsilyl)ethyl galactosides 3 and 2, respectively, and subsequent complete deprotection. Preliminary insulin-like activity of the phosphorylated derivatives is reported. PMID:8458006

  15. Phosphorylation of Kraft fibers with phosphate esters.

    PubMed

    Shi, Ying; Belosinschi, Dan; Brouillette, François; Belfkira, Ahmed; Chabot, Bruno

    2014-06-15

    Phosphate esters, derived from two different long-chain aliphatic alcohols, were used as phosphorylating reagents for Kraft pulp fibers. High phosphorus contents and almost non-degraded fibers were obtained by following this pathway. The phosphorylation efficiency was influenced by the alkyl chain length of PEs since the phosphorus content in modified fibers was higher for the shorter chain reagent. Due to the heterogeneous reaction environment, the amount of grafted phosphorus was found to be almost three times higher at the surface than in the bulk of the fibers. Analyses also indicated that the phosphorus was bonded to fibers as a phosphate-like structure. Furthermore, the situation seemed to be different for the fiber surface where significant amounts of phosphorus were present in more complex structures like pyrophosphate or even oligo-phosphate. PMID:24721058

  16. Ribulose-1,5-bisphosphate carboxylase/oxygenase gene expression and diversity of Lake Erie planktonic microorganisms

    SciTech Connect

    Xu, H.H.; Tabita, F.R.

    1996-06-01

    Carbon dioxide fixation is carried out primarily through the Calvin-Benson-Bassham reductive pentose phosphate cycle, in which rubulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) is the key enzyme. The primary structure of the large subunit of form I RubisCO is well conserved; however, four distinct types, A, B, C, and D, may be distinguished. To better understand the environmental regulation of RubisCO in Lake Erie phytoplanktonic microorganisms, we have isolated total RNA and DNA from four Lake Erie sampling sites. Probes prepared from RubisCO large-subunit genes (rbcL) of the freshwater cyanobacterium Synechococcus sp. strain PCC6301 (representative of type IB) and the diatom Cylindrotheca sp. strain N1 (representative of type ID) was determined. It appeared that type ID (diatom) rbcL gene expression per gene dose decreased as the sampling sites shifted toward open water. By contrast, a similar trend was not observed for cyanobacterial (type IB) rbcL gene expression per gene dose. Thus far, a total of 21 clones of rbcL genes derived from mRNA have been obtained and completely sequenced from the Ballast Island site. For surface water samples, deduced amino acid sequences of five of six clones appeared to be representative of green algae. In contrast, six of nine sequenced rbcL clones from 10-m-deep samples were a chromophytic and rhodophytic lineages. At 5 m deep, the active CO{sub 2}-fixing planktonic organisms represented a diverse group, including organisms related to Chlorella ellipsoidea, Cylindrotheca sp. strain N1, and Olisthodiscus luteus. Although many more samplings at diverse sites must be accomplished, the discovery of distinctly different sequences of rbcL mRNA at different water depths suggests that there is a stratification of active CO{sub 2}-fixing organisms in western Lake Erie. 54 refs., 7 figs.

  17. Construction of a Synechocystis PCC6803 mutant suitable for the study of variant hexadecameric ribulose bisphosphate carboxylase/oxygenase enzymes.

    PubMed

    Amichay, D; Levitz, R; Gurevitz, M

    1993-11-01

    The cyanobacterium Synechocystis PCC6803 was chosen as a target organism for construction of a suitable photosynthetic host to enable selection of variant plant-like ribulose bisphosphate carboxylase/oxygenase (Rubisco) enzymes. The DNA region containing the operon encoding Rubisco (rbc) was cloned, sequenced and used for the construction of a transformation vector bearing flanking sequences to the rbc genes. This vector was utilized for the construction of a cyanobacterial rbc null mutant in which the entire sequence comprising both rbc genes, was replaced by the Rhodospirillum rubrum rbcL gene linked to a chloramphenicol resistance gene. Chloramphenicol-resistant colonies, Syn6803 delta rbc, were detected within 8 days when grown under 5% CO2 in air. These transformants were unable to grow in air (0.03% CO2). Analysis of their genome and Rubisco protein confirmed the site of the mutation at the rbc locus, and indicated that the mutation had segregated throughout all of the chromosome copies, consequently producing only the bacterial type of the enzyme. In addition, no carboxysome structures could be detected in the new mutant. Successful restoration of the wild-type rbc locus, using vectors bearing the rbc operon flanked by additional sequences at both termini, could only be achieved upon incubating the transformed cells under 5% CO2 in air prior to their transferring to air. The yield of restored transformants was proportionally related to the length of those sequences flanking the rbc operon which participate in the homologous recombination. The Syn6803 delta rbc mutant is amenable for the introduction of in vitro mutagenized rbc genes into the rbc locus, aiming at the genetic modification of the hexadecameric type Rubisco. PMID:8219082

  18. Osteoblast-Specific γ-Glutamyl Carboxylase-Deficient Mice Display Enhanced Bone Formation With Aberrant Mineralization.

    PubMed

    Azuma, Kotaro; Shiba, Sachiko; Hasegawa, Tomoka; Ikeda, Kazuhiro; Urano, Tomohiko; Horie-Inoue, Kuniko; Ouchi, Yasuyoshi; Amizuka, Norio; Inoue, Satoshi

    2015-07-01

    Vitamin K is a fat-soluble vitamin that is necessary for blood coagulation. In addition, it has bone-protective effects. Vitamin K functions as a cofactor of γ-glutamyl carboxylase (GGCX), which activates its substrates by carboxylation. These substrates are found throughout the body and examples include hepatic blood coagulation factors. Furthermore, vitamin K functions as a ligand of the nuclear receptor known as steroid and xenobiotic receptor (SXR) and its murine ortholog, pregnane X receptor (PXR). We have previously reported on the bone-protective role of SXR/PXR signaling by demonstrating that systemic Pxr-knockout mice displayed osteopenia. Because systemic Ggcx-knockout mice die shortly after birth from severe hemorrhage, the GGCX-mediated effect of vitamin K on bone metabolism has been difficult to evaluate. In this work, we utilized Ggcx-floxed mice to generate osteoblast-specific GGCX-deficient (Ggcx(Δobl/Δobl)) mice by crossing them with Col1-Cre mice. The bone mineral density (BMD) of Ggcx(Δobl/Δobl) mice was significantly higher than that of control Col1-Cre (Ggcx(+/+)) mice. Histomorphometrical analysis of trabecular bones in the proximal tibia showed increased osteoid volume and a higher rate of bone formation in Ggcx(Δobl/Δobl) mice. Histomorphometrical analysis of cortical bones revealed a thicker cortical width and a higher rate of bone formation in Ggcx(Δobl/Δobl) mice. Electron microscopic examination revealed disassembly of mineralized nodules and aberrant calcification of collagen fibers in Ggcx(Δobl/Δobl) mice. The mechanical properties of bones from Ggcx(Δobl/Δobl) mice tended to be stronger than those from control Ggcx(+/+) mice. These results suggest that GGCX in osteoblasts functions to prevent abnormal mineralization in bone formation, although this function may not be a prerequisite for the bone-protective effect of vitamin K. PMID:25600070

  19. Composition, quaternary structure, and catalytic properties of D-ribulose-1, 5-bisphosphate carboxylase from Euglena gracilis.

    PubMed

    McFadden, B A; Lord, J M; Rowe, A; Dilks, S

    1975-05-01

    D-Ribulose-1,5-bisphosphate carboxylase has been purified in one step by sedimenting extracts of autotrophically-grown Euglena gracilis into a linear 0.2-0.8 M sucrose density gradient. The resultant product was pure by the criteria of disc electrophoresis in gels polymerized from 5 or 7.5% acrylamide and sedimentation. The molecular weight of the enzyme estimated by density gradient centrifugation and electrophoresis in gels polymerized from various concentrations of acrylamide was 5.25 X 10(5). The S20,W was 16.4 S. Dissociation and polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate established that the enzyme was composed of two types of subunits (mr 50,000 and 15,000). The oligomeric structure was visualized through negative staining and transmission electron microscopy leading to a model for the quaternary structure. Although the enzyme was moderately unstable, the estimated maximal specific activity was 1.6 mumol CO2 fixed min-1 mg protien-1 at 30 degrees C and pH 8.0 Km values were 2.2 m M, 15. 1 MUM and 0.63 mM for Mg2+, ribulose 1,5-bisphosphate, and CO2, respectively, when measured under air. 6-Phospho-D-gluconate was a noncompetitive inhibitor with respect to ribulose 1,5-bisphosphate (Ki = 0.04 mM). Oxygen was a competitive inhibitor with respect to CO2 suggesting that the enzyme was also an oxygenase. The latter was confirmed by experiments showing a molar equivalence between ribulose-1,5-bisphosphate-dependent oxygen consumption and phosphoglycerate production. PMID:807477

  20. Decline of activity and quantity of ribulose bisphosphate carboxylase/oxygenase and net photosynthesis in ozone-treated potato foliage

    SciTech Connect

    Dann, M.S.; Pell, E.J. )

    1989-09-01

    The effect of ozone (O{sub 3}) on ribulose bisphosphate carboxylase/oxygenase (Rubisco) activity and quantity and net photosynthesis in greenhouse-grown Solanum tuberosum L. cv Norland foliage was studied in relation to oxidant-induced premature senescence. Plants, 26 days old, were exposed to 0.06 to 0.08 microliters per liter O{sub 3} from 1,000 to 1,600 hours for 4 days in a controlled environment chamber. On day 5, plants were exposed to a 6-hour simulated inversion in which O{sub 3} peaked at 0.12 microliters per liter. Net photosynthesis declined in response to O{sub 3} but recovered to near control levels 3 days after the exposure ended. Rubisco activity and quantity in control potato foliage increased and then decreased during the 12-day interval of the study. In some experiments foliage studied was physiologically mature and Rubisco activity had peaked when O{sub 3} exposure commenced. In those cases, O{sub 3} accelerated the decline in Rubisco activity. When less mature foliage was treated with O{sub 3}, the leaves never achieved the maximal level of Rubisco activity observed in control foliage and also exhibited more rapid decline in initial and total activity. Percent activation of Rubisco (initial/total activity) was not affected significantly by treatment. Quantity of Rubisco decreased in concert with activity. The reduction in the quantity of Rubisco, an important foliage storage protein, could contribute to premature senescence associated with toxicity of this air pollutant.

  1. Role of pyruvate carboxylase in accumulation of intracellular lipid of the oleaginous yeast Yarrowia lipolytica ACA-DC 50109.

    PubMed

    Wang, Guang-Yuan; Zhang, Yan; Chi, Zhe; Liu, Guang-Lei; Wang, Zhi-Peng; Chi, Zhen-Ming

    2015-02-01

    Yarrowia lipolytica ACA-DC 50109 is an oleaginous yeast. In order to know the function of pyruvate carboxylase (PYC) in lipid biosynthesis, the PYC gene cloned from Pichia guilliermondii Pcla22 was overexpressed in the oleaginous yeast. The lipid contents in the wild-type strain ACA-DC 50109 and the transformants P4, P7, and P103 were 30.2 % (w/w) 36.5 % (w/w), 38.2 % (w/w), and 37.9 % (w/w). However, the amount of the secreted citric acids by strains ACA-DC 50109, P4, P77, and P103 were 0.5, 10.1, 11.5, and 9.4 g/L. In order to reduce the amount of the secreted citric acid, the PYC gene and endogenous ACL1 gene encoding ATP citrate lyase (ACL1) were simultaneously overexpressed in the oleaginous yeast. The lipid contents of the transformants PA19, PA56, PA124 were 44.4 % (w/w), 45.3 % (w/w), and 43.7 % (w/w). At the same time, the amount of the secreted citric acid by the transformants PA19, PA56, and PA124 was reduced to 5.4, 6.2, and 6.3 g/L. The PYC and ACL1 activities and their gene transcriptional levels in all the transformants were greatly enhanced compared to those in their wild-type strain ACA-DC 50109. During 10-L fermentation, lipid content in the transformant PA56 was 49.6 % (w/w) and the amount of secreted citric acid was 2.9 g/L. This meant that PYC and ACL1 can play an important role in accumulation of intracellular lipid of the oleaginous yeast Y. lipolytica ACA-DC 50109. PMID:25427679

  2. Positive selection of Kranz and non-Kranz C4 phosphoenolpyruvate carboxylase amino acids in Suaedoideae (Chenopodiaceae)

    PubMed Central

    Rosnow, Josh J.; Edwards, Gerald E.; Roalson, Eric H.

    2014-01-01

    In subfamily Suaedoideae, four independent gains of C4 photosynthesis are proposed, which includes two parallel origins of Kranz anatomy (sections Salsina and Schoberia) and two independent origins of single-cell C4 anatomy (Bienertia and Suaeda aralocaspica). Additional phylogenetic support for this hypothesis was generated from sequence data of the C-terminal portion of the phosphoenolpyruvate carboxylase (PEPC) gene used in C4 photosynthesis (ppc-1) in combination with previous sequence data. ppc-1 sequence was generated for 20 species in Suaedoideae and two outgroup Salsola species that included all types of C4 anatomies as well as two types of C3 anatomies. A branch-site test for positively selected codons was performed using the software package PAML. From labelling of the four branches where C4 is hypothesized to have developed (foreground branches), residue 733 (maize numbering) was identified to be under positive selection with a posterior probability >0.99 and residue 868 at the >0.95 interval using Bayes empirical Bayes (BEB). When labelling all the branches within C4 clades, the branch-site test identified 13 codons to be under selection with a posterior probability >0.95 by BEB; this is discussed considering current information on functional residues. The signature C4 substitution of an alanine for a serine at position 780 in the C-terminal end (which is considered a major determinant of affinity for PEP) was only found in four of the C4 species sampled, while eight of the C4 species and all the C3 species have an alanine residue; indicating that this substitution is not a requirement for C4 function. PMID:24600021

  3. QM/MM study of the reaction mechanism of the carboxyl transferase domain of pyruvate carboxylase from Staphylococcus aureus.

    PubMed

    Sheng, Xiang; Liu, Yongjun

    2014-07-15

    Pyruvate carboxylase (PC) catalyzes the carboxylation of pyruvate to produce oxaloacetate. Its activity is directly related to insulin release and thus PC has recently attracted great interest as a potential target for diabetes treatment. In this article, the catalytic mechanism of the carboxyl transferase domain of PC from Staphylococcus aureus was investigated by using a combined quantum-mechanical/molecular-mechanical approach. Our calculation results indicate that the catalytic reaction starts from the decarboxylation of carboxybiotin to generate an enol-BTI intermediate, followed by two consecutive proton-transfer processes (from T908 to enol-BTI and from PYR to T908). During the catalytic reaction, the main-chain amide of T908 plays a key role in catching CO2 and preventing its diffusion from the active center. A triad of residues, R571, Q575, and K741, contributes both to substrate binding and enol-pyruvate stabilization. The oxyanion hole, consisting of the side-chain hydroxyl of S911 and the side-chain amino of Q870, plays an important role in stabilizing the hydroxyl anion of BTI. The coordination of the metal cation by pyruvate is a second sphere, rather than an inner sphere, interaction, and the metal cation stabilizes the species through the medium of residue K741. The decarboxylation of carboxybiotin corresponds to the highest free energy barrier of 21.7 kcal/mol. Our results may provide useful information for both the regulation of enzyme activity and the development of related biocatalytic applications. PMID:24963911

  4. Phylogenetic Analysis of Nucleus-Encoded Acetyl-CoA Carboxylases Targeted at the Cytosol and Plastid of Algae.

    PubMed

    Huerlimann, Roger; Zenger, Kyall R; Jerry, Dean R; Heimann, Kirsten

    2015-01-01

    The understanding of algal phylogeny is being impeded by an unknown number of events of horizontal gene transfer (HGT), and primary and secondary/tertiary endosymbiosis. Through these events, previously heterotrophic eukaryotes developed photosynthesis and acquired new biochemical pathways. Acetyl-CoA carboxylase (ACCase) is a key enzyme in the fatty acid synthesis and elongation pathways in algae, where ACCase exists in two locations (cytosol and plastid) and in two forms (homomeric and heteromeric). All algae contain nucleus-encoded homomeric ACCase in the cytosol, independent of the origin of the plastid. Nucleus-encoded homomeric ACCase is also found in plastids of algae that arose from a secondary/tertiary endosymbiotic event. In contrast, plastids of algae that arose from a primary endosymbiotic event contain heteromeric ACCase, which consists of three nucleus-encoded and one plastid-encoded subunits. These properties of ACCase provide the potential to inform on the phylogenetic relationships of hosts and their plastids, allowing different hypothesis of endosymbiotic events to be tested. Alveolata (Dinoflagellata and Apicomplexa) and Chromista (Stramenopiles, Haptophyta and Cryptophyta) have traditionally been grouped together as Chromalveolata, forming the red lineage. However, recent genetic evidence groups the Stramenopiles, Alveolata and green plastid containing Rhizaria as SAR, excluding Haptophyta and Cryptophyta. Sequences coding for plastid and cytosol targeted homomeric ACCases were isolated from Isochrysis aff. galbana (TISO), Chromera velia and Nannochloropsis oculata, representing three taxonomic groups for which sequences were lacking. Phylogenetic analyses show that cytosolic ACCase strongly supports the SAR grouping. Conversely, plastidial ACCase groups the SAR with the Haptophyta, Cryptophyta and Prasinophyceae (Chlorophyta). These two ACCase based, phylogenetic relationships suggest that the plastidial homomeric ACCase was acquired by the

  5. Mutations in the PCCA gene encoding the {alpha} subunit of propionyl-CoA carboxylase in patients with propionic acidemia

    SciTech Connect

    Campeau, E.; Leon-Del-Rio, A.; Gravel, R.A.

    1994-09-01

    Propionic acidemia is a rare autosomal recessive disorder characterized by a deficiency of the mitochondrial biotin-dependent enzyme, propionyl-CoA carboxylase (PCC). PCC has the structure {alpha}{sub 4}{beta}{sub 4}, with the {alpha} subunit containing the biotin prosthetic group. This study is concerned with defining the spectrum of mutations occurring in the PCCA gene encoding the {alpha} subunit. Mutations were initially assigned to this gene through complementation experiments done after somatic fusion of patient fibroblasts. The analyses were performed on PCR-amplified reverse transcripts of fibroblast RNA. The mutations were identified by single strand conformational polymorphism analysis and direct sequencing of PCR products. Three candidate disease-causing mutations and one DNA polymorphism were identified in the {alpha} subunit sequence in different patients: (1) a 3 bp deletion {triangle}CTG{sub 2058-2060}, which eliminates Cys687 near the biotin binding site (Lys669); (2) T{sub 611}{r_arrow}A which converts Met204 to Lys in a highly conserved region matching that of an ATP binding site; (3) An {approximately}50 bp deletion near the 3{prime} end of the cDNA which likely corresponds to the loss of an exon due to a splicing defect; and (4) a 3 bp insertion, +CAG{sub 2203}, located downstream of the stop codon, which is likely a DNA polymorphism. In order to determine the effect of the Cys687 deletion on the biotinylation of PCC, we expressed the mutation in a 67 amino acid C-terminal fragment of the PCC {alpha} subunit in E. coli in which biotinylation is directed by the bacterial biotin ligase. While the mutant peptide was expressed at about half-normal levels, the biotinylation of the peptide that was present was reduced to only {approximately}20% normal. We suggest, therefore, that the absence of PCC activity due to {triangle}Cys687 results at least in part from defective biotinylation of an unstable protein.

  6. Insights into the carboxyltransferase reaction of pyruvate carboxylase from the structures of bound product and intermediate analogs.

    PubMed

    Lietzan, Adam D; St Maurice, Martin

    2013-11-15

    Pyruvate carboxylase (PC) is a biotin-dependent enzyme that catalyzes the MgATP- and bicarbonate-dependent carboxylation of pyruvate to oxaloacetate, an important anaplerotic reaction in central metabolism. The carboxyltransferase (CT) domain of PC catalyzes the transfer of a carboxyl group from carboxybiotin to the accepting substrate, pyruvate. It has been hypothesized that the reactive enolpyruvate intermediate is stabilized through a bidentate interaction with the metal ion in the CT domain active site. Whereas bidentate ligands are commonly observed in enzymes catalyzing reactions proceeding through an enolpyruvate intermediate, no bidentate interaction has yet been observed in the CT domain of PC. Here, we report three X-ray crystal structures of the Rhizobium etli PC CT domain with the bound inhibitors oxalate, 3-hydroxypyruvate, and 3-bromopyruvate. Oxalate, a stereoelectronic mimic of the enolpyruvate intermediate, does not interact directly with the metal ion. Instead, oxalate is buried in a pocket formed by several positively charged amino acid residues and the metal ion. Furthermore, both 3-hydroxypyruvate and 3-bromopyruvate, analogs of the reaction product oxaloacetate, bind in an identical manner to oxalate suggesting that the substrate maintains its orientation in the active site throughout catalysis. Together, these structures indicate that the substrates, products and intermediates in the PC-catalyzed reaction are not oriented in the active site as previously assumed. The absence of a bidentate interaction with the active site metal appears to be a unique mechanistic feature among the small group of biotin-dependent enzymes that act on α-keto acid substrates. PMID:24157795

  7. Phylogenetic Analysis of Nucleus-Encoded Acetyl-CoA Carboxylases Targeted at the Cytosol and Plastid of Algae

    PubMed Central

    Huerlimann, Roger; Zenger, Kyall R.; Jerry, Dean R.; Heimann, Kirsten

    2015-01-01

    The understanding of algal phylogeny is being impeded by an unknown number of events of horizontal gene transfer (HGT), and primary and secondary/tertiary endosymbiosis. Through these events, previously heterotrophic eukaryotes developed photosynthesis and acquired new biochemical pathways. Acetyl-CoA carboxylase (ACCase) is a key enzyme in the fatty acid synthesis and elongation pathways in algae, where ACCase exists in two locations (cytosol and plastid) and in two forms (homomeric and heteromeric). All algae contain nucleus-encoded homomeric ACCase in the cytosol, independent of the origin of the plastid. Nucleus-encoded homomeric ACCase is also found in plastids of algae that arose from a secondary/tertiary endosymbiotic event. In contrast, plastids of algae that arose from a primary endosymbiotic event contain heteromeric ACCase, which consists of three nucleus-encoded and one plastid-encoded subunits. These properties of ACCase provide the potential to inform on the phylogenetic relationships of hosts and their plastids, allowing different hypothesis of endosymbiotic events to be tested. Alveolata (Dinoflagellata and Apicomplexa) and Chromista (Stramenopiles, Haptophyta and Cryptophyta) have traditionally been grouped together as Chromalveolata, forming the red lineage. However, recent genetic evidence groups the Stramenopiles, Alveolata and green plastid containing Rhizaria as SAR, excluding Haptophyta and Cryptophyta. Sequences coding for plastid and cytosol targeted homomeric ACCases were isolated from Isochrysis aff. galbana (TISO), Chromera velia and Nannochloropsis oculata, representing three taxonomic groups for which sequences were lacking. Phylogenetic analyses show that cytosolic ACCase strongly supports the SAR grouping. Conversely, plastidial ACCase groups the SAR with the Haptophyta, Cryptophyta and Prasinophyceae (Chlorophyta). These two ACCase based, phylogenetic relationships suggest that the plastidial homomeric ACCase was acquired by the

  8. Characterization of spinach ribulose-1,5-bisphosphate carboxylase/oxygenase activase isoforms reveals hexameric assemblies with increased thermal stability.

    PubMed

    Keown, Jeremy R; Pearce, Frederick Grant

    2014-12-15

    Most plants contain two isoforms of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase (Rca), a chloroplast protein that maintains the activity of Rubisco during photosynthesis. The longer (α-) Rca isoform has previously been shown to regulate the activity of Rubisco in response to both the ADP:ATP ratio and redox potential via thioredoxin-f. We have characterized the arrangement of the different spinach (Spinacia oleracea) isoforms in solution, and show how the presence of nucleotides changes the oligomeric state. Although the shorter (β-) isoform from both tobacco (Nicotiana tabacum) and spinach tend to form a range of oligomers in solution, the size of which are relatively unaffected by the addition of nucleotide, the spinach α-isoform assembles as a hexamer in the presence of adenosine 5'-[γ-thio]triphosphate (ATPγS). These hexamers have significantly higher heat stability, and may play a role in optimizing photosynthesis at higher temperatures. Hexamers were also observed for mixtures of the two isoforms, suggesting that the α-isoform can act as a structural scaffold for hexamer formation by the β-isoform. Additionally, it is shown that a variant of the tobacco β-isoform acts in a similar fashion to the α-isoform of spinach, forming thermally stable hexamers in the presence of ATPγS. Both isoforms had similar rates of ATP hydrolysis, suggesting that a propensity for hexamer formation may not necessarily be correlated with activity. Modelling of the hexameric structures suggests that although the N-terminus of Rca forms a highly dynamic, extended structure, the C-terminus is located adjacent to the intersubunit interface. PMID:25247706

  9. Characteristics and composition of the vitamin K-dependent gamma-glutamyl carboxylase-binding domain on osteocalcin.

    PubMed Central

    Houben, Roger J T J; Rijkers, Dirk T S; Stanley, Thomas B; Acher, Francine; Azerad, Robert; Käkönen, Sanna-Maria; Vermeer, Cees; Soute, Berry A M

    2002-01-01

    Two different sites on vitamin K-dependent gamma-glutamyl carboxylase (VKC) are involved in enzyme-substrate interaction: the propeptide-binding site required for high-affinity substrate binding and the active site for glutamate carboxylation. Synthetic descarboxy osteocalcin (d-OC) is a low-K(m) substrate for the VKC, but unique since it possesses a high-affinity recognition site for the VKC, distinct from the propeptide which is essential as a binding site for VKC. However, the exact location and composition of this VKC-recognition domain on d-OC has remained unclear until now. Using a stereospecific substrate analogue [t-butyloxycarbonyl-(2S,4S)-4-methylglutamic acid-Glu-Val (S-MeTPT)] we demonstrate in this paper that the high affinity of d-OC for VKC cannot be explained by a direct interaction with either the active site or with the propeptide-binding site on VKC. It is shown using various synthetic peptides derived from d-OC that there are two domains on d-OC necessary for recognition: one located between residues 1 and 12 and a second between residues 26 and 39, i.e. at the C-terminal side of the gamma-carboxyglutamate (Gla) domain. Both internal sequences contribute substantially to the efficiency of carboxylation. On the basis of these data we postulate the presence of a second high-affinity substrate-binding site on VKC capable of specifically binding d-OC, which is the first vitamin K-dependent substrate of which the VKC binding domain is interrupted by the Gla domain. PMID:11988107

  10. Solid polymer electrolyte from phosphorylated chitosan

    SciTech Connect

    Fauzi, Iqbal Arcana, I Made

    2014-03-24

    Recently, the need of secondary battery application continues to increase. The secondary battery which using a liquid electrolyte was indicated had some weakness. A solid polymer electrolyte is an alternative electrolytes membrane which developed in order to replace the liquid electrolyte type. In the present study, the effect of phosphorylation on to polymer electrolyte membrane which synthesized from chitosan and lithium perchlorate salts was investigated. The effect of the component’s composition respectively on the properties of polymer electrolyte, was carried out by analyzed of it’s characterization such as functional groups, ion conductivity, and thermal properties. The mechanical properties i.e tensile resistance and the morphology structure of membrane surface were determined. The phosphorylation processing of polymer electrolyte membrane of chitosan and lithium perchlorate was conducted by immersing with phosphoric acid for 2 hours, and then irradiated on a microwave for 60 seconds. The degree of deacetylation of chitosan derived from shrimp shells was obtained around 75.4%. Relative molecular mass of chitosan was obtained by viscometry method is 796,792 g/mol. The ionic conductivity of chitosan membrane was increase from 6.33 × 10{sup −6} S/cm up to 6.01 × 10{sup −4} S/cm after adding by 15 % solution of lithium perchlorate. After phosphorylation, the ionic conductivity of phosphorylated lithium chitosan membrane was observed 1.37 × 10{sup −3} S/cm, while the tensile resistance of 40.2 MPa with a better thermal resistance. On the strength of electrolyte membrane properties, this polymer electrolyte membrane was suggested had one potential used for polymer electrolyte in field of lithium battery applications.

  11. Regulation of peroxisome dynamics by phosphorylation.

    PubMed

    Oeljeklaus, Silke; Schummer, Andreas; Mastalski, Thomas; Platta, Harald W; Warscheid, Bettina

    2016-05-01

    Peroxisomes are highly dynamic organelles that can rapidly change in size, abundance, and protein content in response to alterations in nutritional and other environmental conditions. These dynamic changes in peroxisome features, referred to as peroxisome dynamics, rely on the coordinated action of several processes of peroxisome biogenesis. Revealing the regulatory mechanisms of peroxisome dynamics is an emerging theme in cell biology. These mechanisms are inevitably linked to and synchronized with the biogenesis and degradation of peroxisomes. To date, the key players and basic principles of virtually all steps in the peroxisomal life cycle are known, but regulatory mechanisms remained largely elusive. A number of recent studies put the spotlight on reversible protein phosphorylation for the control of peroxisome dynamics and highlighted peroxisomes as hubs for cellular signal integration and regulation. Here, we will present and discuss the results of several studies performed using yeast and mammalian cells that convey a sense of the impact protein phosphorylation may have on the modulation of peroxisome dynamics by regulating peroxisomal matrix and membrane protein import, proliferation, inheritance, and degradation. We further put forward the idea to make use of current data on phosphorylation sites of peroxisomal and peroxisome-associated proteins reported in advanced large-scale phosphoproteomic studies. PMID:26775584

  12. Phosphorylation Stoichiometries of Human Eukaryotic Initiation Factors

    PubMed Central

    Andaya, Armann; Villa, Nancy; Jia, Weitao; Fraser, Christopher S.; Leary, Julie A.

    2014-01-01

    Eukaryotic translation initiation factors are the principal molecular effectors regulating the process converting nucleic acid to functional protein. Commonly referred to as eIFs (eukaryotic initiation factors), this suite of proteins is comprised of at least 25 individual subunits that function in a coordinated, regulated, manner during mRNA translation. Multiple facets of eIF regulation have yet to be elucidated; however, many of the necessary protein factors are phosphorylated. Herein, we have isolated, identified and quantified phosphosites from eIF2, eIF3, and eIF4G generated from log phase grown HeLa cell lysates. Our investigation is the first study to globally quantify eIF phosphosites and illustrates differences in abundance of phosphorylation between the residues of each factor. Thus, identification of those phosphosites that exhibit either high or low levels of phosphorylation under log phase growing conditions may aid researchers to concentrate their investigative efforts to specific phosphosites that potentially harbor important regulatory mechanisms germane to mRNA translation. PMID:24979134

  13. Phosphorylation-dephosphorylation of yeast pyruvate dehydrogenase

    SciTech Connect

    Uhlinger, D.J.; Reed, L.J.

    1986-05-01

    Pyruvate dehydrogenase complex (PDC) was purified to homogeneity from baker's yeast (Saccharomyces cerevisiae). No pyruvate dehydrogenase (PDH) kinase activity was detected at any stage of the purification. However, the purified PDC was phosphorylated and inactivated by purified PDH kinase from bovine kidney mitochondria, Mg/sup 2 +/, and (..gamma..-/sup 32/P)ATP. The protein-bound radioactivity was localized in the PDH ..cap alpha.. subunit. The phosphorylated, inactivated PDC was dephosphorylated and reactivated with purified bovine PDH phosphatase, Mg/sup 2 +/, and Ca/sup 2 +/. From a tryptic digest of phosphorylated yeast PDC a radioactive peptide was isolated by anion and reverse phase HPLC. The sequence of this tetradecapeptide is Tyr-Gly-Gly-His-Ser(P)-Met-Ser-Asp-Pro-Gly-Thr-Thr-Tyr-Arg. This sequence is very similar to the sequence of a tryptic phosphopeptide derived from the ..cap alpha.. subunit of bovine kidney and heart PDH: Tyr-His-Gly-His-Ser(P)-Met-Ser-Asp-Pro-Gly-Val-Ser-Tyr-Arg.

  14. Phosphorylation network rewiring by gene duplication

    PubMed Central

    Freschi, Luca; Courcelles, Mathieu; Thibault, Pierre; Michnick, Stephen W; Landry, Christian R

    2011-01-01

    Elucidating how complex regulatory networks have assembled during evolution requires a detailed understanding of the evolutionary dynamics that follow gene duplication events, including changes in post-translational modifications. We compared the phosphorylation profiles of paralogous proteins in the budding yeast Saccharomyces cerevisiae to that of a species that diverged from the budding yeast before the duplication of those genes. We found that 100 million years of post-duplication divergence are sufficient for the majority of phosphorylation sites to be lost or gained in one paralog or the other, with a strong bias toward losses. However, some losses may be partly compensated for by the evolution of other phosphosites, as paralogous proteins tend to preserve similar numbers of phosphosites over time. We also found that up to 50% of kinase–substrate relationships may have been rewired during this period. Our results suggest that after gene duplication, proteins tend to subfunctionalize at the level of post-translational regulation and that even when phosphosites are preserved, there is a turnover of the kinases that phosphorylate them. PMID:21734643

  15. Phosphorylation of proteins in Clostridium thermohydrosulfuricum

    SciTech Connect

    Londesborough, J.

    1986-02-01

    Cell extracts of the thermophile Clostridium thermohydrosulfuricum catalyzed the phosphorylation by (..gamma..-/sup 32/P)ATP of several endogenous proteins with M/sub r/s between 13,000 and 100,000. Serine and tyrosine were the main acceptors. Distinct substrate proteins were found in the soluble (e.g., proteins p66, p63, and p53 of M/sub r/s 66,000, 63,000, and 53,000, respectively) and particulate (p76 and p30) fractions, both of which contained protein kinase and phosphatase activity. The soluble fraction suppressed the phosphorylation of particulate proteins and contained a protein kinase inhibitor. Phosphorylation of p53 was promoted by 10..mu..M fructose 1,6-bisphosphate or glucose 1,6-bisphosphate and suppressed by hexose monophosphates, whereas p30 and p13 were suppressed by 5 ..mu..M brain (but not spinach) calmodulin. Polyamines, including the odd polyamines characteristic of thermophiles, modulated the labeling of most of the phosphoproteins. Apart from p66, all the proteins labeled in vitro were also rapidly labeled in intact cells by /sub 32/P/sub i/. Several proteins strongly labeled in vivo were labeled slowly or not at all in vitro.

  16. Phosphorylated tyrosine in the flagellum filament protein of Pseudomonas aeruginosa

    SciTech Connect

    Kelly-Wintenberg, K.; Anderson, T.; Montie, T.C. )

    1990-09-01

    Purified flagella from two strains of {sup 32}P-labeled Pseudomonas aeruginosa were shown to be phosphorylated. This was confirmed by autoradiography of flagellin protein in polyacrylamide gels. Thin-layer electrophoresis and autoradiography of flagellin partial hydrolysates indicated that phosphotyrosine was the major phosphorylated amino acid. High-pressure liquid chromatographic analysis confirmed the presence of phosphotyrosine in flagellum filament protein. Preliminary data indicated that less than one tyrosine per subunit was phosphorylated. No evidence was found for phosphorylation of serine or threonine. A function related to tyrosine phosphorylation has not been determined.

  17. Heat shock triggers rapid protein phosphorylation in soybean seedings

    SciTech Connect

    Krishnan, H.B.; Pueppke, S.G.

    1987-10-29

    Heat shock arrests the synthesis of many cellular proteins and simultaneously initiates expression of a unique set of proteins, termed heat shock proteins. We have found that heat shock rapidly triggers phosphorylation of a set of proteins in soybean seedlings. Although the kinetics of phosphorylation and the heat shock response are similar, the major identified phosphorylation products do not comigrate with heat shock proteins on polyacrylamide gels. Cadmium, which is known to induce the heat shock response, stimulates phosphorylation of the same set of proteins. The rapidity of phosphorylation suggests that it may play a pivotal role in sensing and transducing elevated temperature stress in plants.

  18. A strategy to quantitate global phosphorylation of bone matrix proteins.

    PubMed

    Sroga, Grażyna E; Vashishth, Deepak

    2016-04-15

    Current studies of protein phosphorylation focus primarily on the importance of specific phosphoproteins and their landscapes of phosphorylation in the regulation of different cellular functions. However, global changes in phosphorylation of extracellular matrix phosphoproteins measured "in bulk" are equally important. For example, correct global phosphorylation of different bone matrix proteins is critical to healthy tissue biomineralization. To study changes of bone matrix global phosphorylation, we developed a strategy that combines a procedure for in vitro phosphorylation/dephosphorylation of fully mineralized bone in addition to quantitation of the global phosphorylation levels of bone matrix proteins. For the first time, we show that it is possible to enzymatically phosphorylate/dephosphorylate fully mineralized bone originating from either cadaveric human donors or laboratory animals (mice). Using our strategy, we detected the difference in the global phosphorylation levels of matrix proteins isolated from wild-type and osteopontin knockout mice. We also observed that the global phosphorylation levels of matrix proteins isolated from human cortical bone were lower than those isolated from trabecular bone. The developed strategy has the potential to open new avenues for studies on the global phosphorylation of bone matrix proteins and their role in biomineralization as well for other tissues/cells and protein-based materials. PMID:26851341

  19. Ethanol-induced phosphorylation of cytokeratin in cultured hepatocytes

    SciTech Connect

    Kawahara, Hiromu; Cadrin, M.; French, S.W. )

    1990-01-01

    The authors studied the effect of ethanol on the phosphorylation of cytokeratins (CKs) in cultured hepatocytes since CK filaments are resulted by phosphorylation and they are abnormal in alcoholic liver disease. Hepatocytes were obtained from 14-day-old rats and cultured for 48 hrs. The hepatocytes were exposed to ethanol for 30 min. The residual insoluble cytoskeletons were analyzed by two-dimensional gel electrophoresis and autoradiography. 2D gel electrophoresis showed CK 55 and CK 49 or 8 and 18 and actin. The CKs had several isoelectric variants. The most basic spot was the dominant protein which was not phosphorylated. The more acidic spots were phosphorylated. After ethanol treatment, the phosphorylation of CK 55 and CK 49 were markedly increased over controls. They compared these results, with the effect of vasopressin, TPA and db-cAMP on the phosphorylation of CKs. Vasopressin and TPA caused the phosphorylation of CK 55 and 49 but db-cAMP did not.

  20. Investigation of the Roles of Allosteric Domain Arginine, Aspartate, and Glutamate Residues of Rhizobium etli Pyruvate Carboxylase in Relation to Its Activation by Acetyl CoA.

    PubMed

    Sirithanakorn, Chaiyos; Jitrapakdee, Sarawut; Attwood, Paul V

    2016-08-01

    The mechanism of allosteric activation of pyruvate carboxylase by acetyl CoA is not fully understood. Here we have examined the roles of residues near the acetyl CoA binding site in the allosteric activation of Rhizobium etli pyruvate carboxylase using site-directed mutagenesis. Arg429 was found to be especially important for acetyl CoA binding as substitution with serine resulted in a 100-fold increase in the Ka of acetyl CoA activation and a large decrease in the cooperativity of this activation. Asp420 and Arg424, which do not make direct contact with bound acetyl CoA, were nonetheless found to affect acetyl CoA binding when mutated, probably through changed interactions with another acetyl CoA binding residue, Arg427. Thermodynamic activation parameters for the pyruvate carboxylation reaction were determined from modified Arrhenius plots and showed that acetyl CoA acts to decrease the activation free energy of the reaction by both increasing the activation entropy and decreasing the activation enthalpy. Most importantly, mutations of Asp420, Arg424, and Arg429 enhanced the activity of the enzyme in the absence of acetyl CoA. A main focus of this work was the detailed investigation of how this increase in activity occurred in the R424S mutant. This mutation decreased the activation enthalpy of the pyruvate carboxylation reaction by an amount consistent with removal of a single hydrogen bond. It is postulated that Arg424 forms a hydrogen bonding interaction with another residue that stabilizes the asymmetrical conformation of the R. etli pyruvate carboxylase tetramer, constraining its interconversion to the symmetrical conformer that is required for catalysis. PMID:27379711

  1. Transforming growth factor-{beta}-inducible phosphorylation of Smad3.

    PubMed

    Wang, Guannan; Matsuura, Isao; He, Dongming; Liu, Fang

    2009-04-10

    Smad proteins transduce the transforming growth factor-beta (TGF-beta) signal at the cell surface into gene regulation in the nucleus. Upon TGF-beta treatment, the highly homologous Smad2 and Smad3 are phosphorylated by the TGF-beta receptor at the SSXS motif in the C-terminal tail. Here we show that in addition to the C-tail, three (S/T)-P sites in the Smad3 linker region, Ser(208), Ser(204), and Thr(179) are phosphorylated in response to TGF-beta. The linker phosphorylation peaks at 1 h after TGF-beta treatment, behind the peak of the C-tail phosphorylation. We provide evidence suggesting that the C-tail phosphorylation by the TGF-beta receptor is necessary for the TGF-beta-induced linker phosphorylation. Although the TGF-beta receptor is necessary for the linker phosphorylation, the receptor itself does not phosphorylate these sites. We further show that ERK is not responsible for TGF-beta-dependent phosphorylation of these three sites. We show that GSK3 accounts for TGF-beta-inducible Ser(204) phosphorylation. Flavopiridol, a pan-CDK inhibitor, abolishes TGF-beta-induced phosphorylation of Thr(179) and Ser(208), suggesting that the CDK family is responsible for phosphorylation of Thr(179) and Ser(208) in response to TGF-beta. Mutation of the linker phosphorylation sites to nonphosphorylatable residues increases the ability of Smad3 to activate a TGF-beta/Smad-target gene as well as the growth-inhibitory function of Smad3. Thus, these observations suggest that TGF-beta-induced phosphorylation of Smad3 linker sites inhibits its antiproliferative activity. PMID:19218245

  2. Phosphorylated testis-specific serine/threonine kinase 4 may phosphorylate Crem at Ser-117.

    PubMed

    Fu, Guolong; Wei, Youheng; Wang, Xiaoli; Yu, Long

    2016-06-01

    We aimed to investigate the internal existence status of testis-specific serine/threonine kinase 4 (Tssk4) and the interaction of Tssk4 and Cre-responsive element modulator (Crem). The internal existence status of Tssk4 in testis of mice was detected using western blotting and dephosphorylation method. The interaction of Tssk4 and Crem was analyzed by western blotting, immunohistochemistry, immunofluorescence, in vitro co-immunoprecipitation assays, and in vitro kinase assay. The results revealed that Tssk4 existed in testis both in phosphorylation and unphosphorylation status by a temporal manner with the development of testis. Immunofluorescence results showed that Tssk4 had identical distribution pattern with Crem in testis, which was utterly different to the localization of Cre-responsive element binding (Creb). In conclusion, our study demonstrated that phosphorylated Tssk4 might participate in testis genes expressions by phosphorylating Crem at Ser-117. PMID:26940607

  3. Binding to serine 65-phosphorylated ubiquitin primes Parkin for optimal PINK1-dependent phosphorylation and activation

    PubMed Central

    Kazlauskaite, Agne; Martínez-Torres, R Julio; Wilkie, Scott; Kumar, Atul; Peltier, Julien; Gonzalez, Alba; Johnson, Clare; Zhang, Jinwei; Hope, Anthony G; Peggie, Mark; Trost, Matthias; van Aalten, Daan MF; Alessi, Dario R; Prescott, Alan R; Knebel, Axel; Walden, Helen; Muqit, Miratul MK

    2015-01-01

    Mutations in the mitochondrial protein kinase PINK1 are associated with autosomal recessive Parkinson disease (PD). We and other groups have reported that PINK1 activates Parkin E3 ligase activity both directly via phosphorylation of Parkin serine 65 (Ser65)—which lies within its ubiquitin-like domain (Ubl)—and indirectly through phosphorylation of ubiquitin at Ser65. How Ser65-phosphorylated ubiquitin (ubiquitinPhospho-Ser65) contributes to Parkin activation is currently unknown. Here, we demonstrate that ubiquitinPhospho-Ser65 binding to Parkin dramatically increases the rate and stoichiometry of Parkin phosphorylation at Ser65 by PINK1 in vitro. Analysis of the Parkin structure, corroborated by site-directed mutagenesis, shows that the conserved His302 and Lys151 residues play a critical role in binding of ubiquitinPhospho-Ser65, thereby promoting Parkin Ser65 phosphorylation and activation of its E3 ligase activity in vitro. Mutation of His302 markedly inhibits Parkin Ser65 phosphorylation at the mitochondria, which is associated with a marked reduction in its E3 ligase activity following mitochondrial depolarisation. We show that the binding of ubiquitinPhospho-Ser65 to Parkin disrupts the interaction between the Ubl domain and C-terminal region, thereby increasing the accessibility of Parkin Ser65. Finally, purified Parkin maximally phosphorylated at Ser65 in vitro cannot be further activated by the addition of ubiquitinPhospho-Ser65. Our results thus suggest that a major role of ubiquitinPhospho-Ser65 is to promote PINK1-mediated phosphorylation of Parkin at Ser65, leading to maximal activation of Parkin E3 ligase activity. His302 and Lys151 are likely to line a phospho-Ser65-binding pocket on the surface of Parkin that is critical for the ubiquitinPhospho-Ser65 interaction. This study provides new mechanistic insights into Parkin activation by ubiquitinPhospho-Ser65, which could aid in the development of Parkin activators that mimic the effect of

  4. Respiration and Oxidative Phosphorylation in Treponema pallidum

    PubMed Central

    Lysko, Paul G.; Cox, C. D.

    1978-01-01

    Exogenous and endogenously generated reduced pyridine nucleotides caused marked stimulation of O2 uptake when added to treponemal cell-free extracts, which indicated that terminal electron transport was coupled to the consumption of O2. Oxidation of reduced nicotinamide adenine dinucleotide (NADH) was shown to correlate stoichiometrically with O2 reduction, suggesting that NADH was being oxidized through a mainstream respiratory chain dehydrogenase. Oxygen evolution in treponemal extracts was observed after the completion of O2 uptake which was stimulated by exogenous NADH and endogenously generated reduced NAD phosphate. Oxygen evolution was inhibited by both cyanide and pyruvate, which was consistent with O2 release from H2O2 by catalase. The addition of exogenous H2O2 to treponemal extracts caused rapid O2 evolution characteristic of a catalase reaction. A spectrophotometric assay was used to measure ATP formation in T. pallidum cell-free extracts that were stimulated with NADH. P/O ratios from 0.5 to 1.1 were calculated from the amounts of ATP formed versus NADH oxidized. Phosphorylating activity was dependent on Pi concentration and was sensitive to cyanide, N, N′-dicyclohexylcarbodiimide, and carbonyl cyanide m-chlorophenyl hydrazone. Adenine nucleotide pools of T. pallidum were measured by the firefly luciferin-luciferase assay. Shifts in adenine nucleotide levels upon the addition of NADH to cell-free extracts were impossible to evaluate due to the presence of NAD+ nucleosidase. However, when whole cells, previously incubated under an atmosphere of 95% N2-5% CO2, were sparged with air, ATP and ADP levels increased, while AMP levels decreased. The shift was attributed to both oxidative phosphorylation and to the presence of an adenylate kinase activity. T. pallidum was also found to possess an Mg2+ - and Ca2+ -stimulated ATPase activity which was sensitive to N, N′ -dicyclohexylcarbodiimide. These data indicated a capability for oxidative phosphorylation

  5. Interfacing protein lysine acetylation and protein phosphorylation

    PubMed Central

    Tran, Hue T.; Uhrig, R. Glen; Nimick, Mhairi; Moorhead, Greg B.

    2012-01-01

    Recognition that different protein covalent modifications can operate in concert to regulate a single protein has forced us to re-think the relationship between amino acid side chain modifications and protein function. Results presented by Tran et al. 2012 demonstrate the association of a protein phosphatase (PP2A) with a histone/lysine deacetylase (HDA14) on plant microtubules along with a histone/lysine acetyltransferase (ELP3). This finding reveals a regulatory interface between two prevalent covalent protein modifications, protein phosphorylation and acetylation, emphasizing the integrated complexity of post-translational protein regulation found in nature. PMID:22827947

  6. Roles of subunit phosphorylation in regulating glutamate receptor function

    PubMed Central

    Wang, John Q.; Guo, Ming-Lei; Jin, Dao-Zhong; Xue, Bing; Fibuch, Eugene E.; Mao, Li-Min

    2014-01-01

    Protein phosphorylation is an important mechanism for regulating ionotropic glutamate receptors (iGluRs). Early studies have established that major iGluR subtypes, including α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors and N-methyl-D-aspartate (NMDA) receptors, are subject to phosphorylation. Multiple serine, threonine, and tyrosine residues predominantly within the C-terminal regions of AMPA receptor and NMDA receptor subunits have been identified as sensitive phosphorylation sites. These distinct sites undergo either constitutive phosphorylation or activity-dependent phosphorylation induced by changing cellular and synaptic inputs as reversible events. An increasing number of synapse-enriched protein kinases have been found to phosphorylate iGluR. The common kinases include protein kinase A, protein kinase C, Ca2+/calmodulin-dependent protein kinase II, Src/Fyn non-receptor tyrosine kinases, and cyclin dependent kinase-5. Regulated phosphorylation plays a well-documented role in modulating the biochemical, biophysical, and functional properties of the receptor. In the future, identifying the precise mechanisms how phosphorylation regulates iGluR activities and finding the link between iGluR phosphorylation and the pathogenesis of various brain diseases, including psychiatric and neurodegenerative diseases, chronic pain, stroke, Alzheimer’s disease and substance addiction, will be hot topics and could contribute to the development of novel pharmacotherapies, by targeting the defined phosphorylation process, for suppressing iGluR-related disorders. PMID:24291102

  7. Ribulose-1,5-bisphosphate carboxylase/oxygenase gene expression and diversity of Lake Erie planktonic microorganisms.

    PubMed

    Xu, H H; Tabita, F R

    1996-06-01

    Carbon dioxide fixation is carried out primarily through the Calvin-Benson-Bassham reductive pentose phosphate cycle, in which ribulose-1, 5-bisphosphate carboxylase/oxygenase (RubisCO) is the key enzyme. The primary structure of the large subunit of form I RubisCO is well conserved; however, four distinct types, A, B, C, and D, may be distinguished, with types A and B and types C and D more closely related to one another. To better understand the environmental regulation of RubisCO in Lake Erie phytoplanktonic microorganisms, we have isolated total RNA and DNA from four Lake Erie sampling sites. Probes prepared from RubisCO large-subunit genes (rbcL) of the freshwater cyanobacterium Synechococcus sp. strain PCC6301 (representative of type IB) and the diatom Cylindrotheca sp. strain N1 (representative of type ID) were hybridized to the isolated RNA and DNA. To quantitate rbcL gene expression for each sample, the amount of gene expression per gene dose (i.e., the amount of mRNA divided by the amount of target DNA) was determined. With a limited number of sampling sites, it appeared that type ID (diatom) rbcL gene expression per gene dose decreased as the sampling sites shifted toward open water. By contrast, a similar trend was not observed for cyanobacterial (type IB) rbcL gene expression per gene dose. Complementary DNA specific for rbcL was synthesized from Lake Erie RNA samples and used as a template for PCR amplification of portions of various rbcL genes. Thus far, a total of 21 clones of rbcL genes derived from mRNA have been obtained and completely sequenced from the Ballast Island site. For surface water samples, deduced amino acid sequences of five of six clones appeared to be representative of green algae. In contrast, six of nine sequenced rbcL clones from 10-m-deep samples were of chromophytic and rhodophytic lineages. At 5 m deep, the active CO2-fixing planktonic organisms represented a diverse group, including organisms related to Chlorella ellipsoidea

  8. An evolutionary view on thylakoid protein phosphorylation uncovers novel phosphorylation hotspots with potential functional implications.

    PubMed

    Grieco, Michele; Jain, Arpit; Ebersberger, Ingo; Teige, Markus

    2016-06-01

    The regulation of photosynthetic light reactions by reversible protein phosphorylation is well established today, but functional studies have so far mostly been restricted to processes affecting light-harvesting complex II and the core proteins of photosystem II. Virtually no functional data are available on regulatory effects at the other photosynthetic complexes despite the identification of multiple phosphorylation sites. Therefore we summarize the available data from 50 published phospho-proteomics studies covering the main complexes involved in photosynthetic light reactions in the 'green lineage' (i.e. green algae and land plants) as well as its cyanobacterial counterparts. In addition, we performed an extensive orthologue search for the major photosynthetic thylakoid proteins in 41 sequenced genomes and generated sequence alignments to survey the phylogenetic distribution of phosphorylation sites and their evolutionary conservation from green algae to higher plants. We observed a number of uncharacterized phosphorylation hotspots at photosystem I and the ATP synthase with potential functional relevance as well as an unexpected divergence of phosphosites. Although technical limitations might account for a number of those differences, we think that many of these phosphosites have important functions. This is particularly important for mono- and dicot plants, where these sites might be involved in regulatory processes such as stress acclimation. PMID:27117338

  9. Stat5a serine phosphorylation. Serine 779 is constitutively phosphorylated in the mammary gland, and serine 725 phosphorylation influences prolactin-stimulated in vitro DNA binding activity.

    PubMed

    Beuvink, I; Hess, D; Flotow, H; Hofsteenge, J; Groner, B; Hynes, N E

    2000-04-01

    The activity of transcription factors of the Stat family is controlled by phosphorylation of a conserved, carboxyl-terminal tyrosine residue. Tyrosine phosphorylation is essential for Stat dimerization, nuclear translocation, DNA binding, and transcriptional activation. Phosphorylation of Stats on specific serine residues has also been described. We have previously shown that in HC11 mammary epithelial cells Stat5a is phosphorylated on Tyr(694) in a prolactin-sensitive manner, whereas serine phosphorylation is constitutive (Wartmann, M., Cella, N., Hofer, P., Groner, B., Xiuwen, L., Hennighausen, L., and Hynes, N. E. (1996) J. Biol. Chem. 271, 31863-31868). By using mass spectrometry and site-directed mutagenesis, we have now identified Ser(779), located in a unique Stat5a SP motif, as the site of serine phosphorylation. By using phospho-Ser(779)-specific antiserum, we have determined that Ser(779) is constitutively phosphorylated in mammary glands taken from different developmental stages. Stat5a isolated from spleen, heart, brain, and lung was also found to be phosphorylated on Ser(779). Ser(725) in Stat5a has also been identified as a phosphorylation site (Yamashita, H., Xu, J., Erwin, R. A., Farrar, W. L., Kirken, R. A., and Rui, H. (1998) J. Biol. Chem. 273, 30218-30224). Here we show that mutagenesis of Ser(725), Ser(779), or a combination of Ser(725/779) to an Ala had no effect on prolactin-induced transcriptional activation of a beta-casein reporter construct. However, following prolactin induction the Ser(725) mutant displayed sustained DNA binding activity compared with that of wild type Stat5a. The results suggest that Ser(725) phosphorylation has an impact on signal duration. PMID:10744710

  10. Mild water stress effects on carbon-reduction-cycle intermediates, ribulose bisphosphate carboxylase activity, and spatial homogeneity of photosynthesis in intact leaves

    SciTech Connect

    Sharkey, T.D.; Seemann, J.R. Univ. of Nevada, Reno )

    1989-04-01

    We have examined the effect of mild water stress on photosynthetic chloroplast reactions of intact Phaseolus vulgaris leaves by measuring two parameters of ribulose bisphosphate (RuBP) carboxylase activity and the pool sizes of RuBP, 3-phosphoglycerate (PGA), triose phosphates, hexose monophosphates, and ATP. We also tested for patchy stomatal closure by feeding {sup 14}CO{sub 2}. The k{sub cat} of RuBP carboxylase (moles CO{sub 2} fixed per mole enzyme per second) which could be measured after incubating the enzyme with CO{sub 2} and Mg{sup 2+} was unchanged by water stress. The ratio of activity before and after incubation with CO{sub 2} and Mg{sup 2+} (the carbamylation state) was slightly reduced by severe stress but not by mild stress. Likewise, the concentration of RuBP was slightly reduced by severe stress but not by mild stress. The concentration of PGA was markedly reduced by both mild and severe water stress. The concentration of triose phosphates did not decline as much as PGA. We found that photosynthesis in water stressed leaves occurred in patches. The patchiness of photosynthesis during water stress may lead to an underestimation of the effect of stomatal closure. We conclude that reductions in whole leaf photosynthesis caused by mild water stress are primarily the result of stomatal closure and that there is no indication of damage to chloroplast reactions.

  11. Moringa oleifera leaf extract ameliorates alloxan-induced diabetes in rats by regeneration of β cells and reduction of pyruvate carboxylase expression.

    PubMed

    Abd El Latif, Amira; El Bialy, Badr El Said; Mahboub, Hamada Dahi; Abd Eldaim, Mabrouk Attia

    2014-10-01

    Moringa oleifera Lam. contains many active ingredients with nutritional and medicinal values. It is commonly used in folk medicine as an antidiabetic agent. The present study was designed to investigate how an aqueous extract from the leaves of M. oleifera reveals hypoglycemia in diabetic rats. M. oleifera leaf extract counteracted the alloxan-induced diabetic effects in rats as it normalized the elevated serum levels of glucose, triglycerides, cholesterol, and malondialdehyde, and normalized mRNA expression of the gluconeogenic enzyme pyruvate carboxylase in hepatic tissues. It also increased live body weight gain and normalized the reduced mRNA expression of fatty acid synthase in the liver of diabetic rats. Moreover, it restored the normal histological structure of the liver and pancreas damaged by alloxan in diabetic rats. This study revealed that the aqueous extract of M. oleifera leaves possesses potent hypoglycemic effects through the normalization of elevated hepatic pyruvate carboxylase enzyme and regeneration of damaged hepatocytes and pancreatic β cells via its antioxidant properties. PMID:25289966

  12. Mild Water Stress Effects on Carbon-Reduction-Cycle Intermediates, Ribulose Bisphosphate Carboxylase Activity, and Spatial Homogeneity of Photosynthesis in Intact Leaves 1

    PubMed Central

    Sharkey, Thomas D.; Seemann, Jeffrey R.

    1989-01-01

    We have examined the effect of mild water stress on photosynthetic chloroplast reactions of intact Phaseolus vulgaris leaves by measuring two parameters of ribulose bisphosphate (RuBP) carboxylase activity and the pool sizes of RuBP, 3-phosphoglycerate (PGA), triose phosphates, hexose monophosphates, and ATP. We also tested for patchy stomatal closure by feeding 14CO2. The kcat of RuBP carboxylase (moles CO2 fixed per mole enzyme per second) which could be measured after incubating the enzyme with CO2 and Mg2+ was unchanged by water stress. The ratio of activity before and after incubation with CO2 and Mg2+ (the carbamylation state) was slightly reduced by severe stress but not by mild stress. Likewise, the concentration of RuBP was slightly reduced by severe stress but not by mild stress. The concentration of PGA was markedly reduced by both mild and severe water stress. The concentration of triose phosphates did not decline as much as PGA. We found that photosynthesis in water stressed leaves occurred in patches. The patchiness of photosynthesis during water stress may lead to an underestimation of the effect of stomatal closure. We conclude that reductions in whole leaf photosynthesis caused by mild water stress are primarily the result of stomatal closure and that there is no indication of damage to chloroplast reactions. Images Figure 1 Figure 4 PMID:16666664

  13. Effect of Triacontanol on Chlamydomonas: II. Specific Activity of Ribulose-Bisphosphate Carboxylase/Oxygenase, Ribulose-Bisphosphate Concentration, and Characteristics of Photorespiration.

    PubMed

    Houtz, R L; Ries, S K; Tolbert, N E

    1985-10-01

    Increased photosynthetic CO(2) assimilation by Chlamydomonas reinhardtii cells treated with triacontanol (TRIA) was not due to changes in glycolate excretion, CO(2) compensation point, or the sensitivity of photosynthetic CO(2) assimilation to O(2). Kinetic analysis of TRIA-treated cells showed that the increase in photosynthetic CO(2) assimilation was a result of an increase in the apparent V(max) for intact cells. The total activity of ribulose-P(2) carboxylase/oxygenase was higher in cell lysates from TRIA-treated cells. However quantification of this enzyme concentration by binding of [(14)C]carboxyarabinitol-P(2) did not show an increase in TRIA-treated cells. Thus, there was an increase in the specific activity of ribulose-P(2) carboxylase/oxygenase extracted from Chlamydomonas cells treated with TRIA. TRIA alone had no effect on the activity of the enzyme in cell lysates from Chlamydomonas or purified from spinach (Spinacia oleracea L.) leaves.The ribulose-P(2) pool was 50 to 60% higher in cells treated with TRIA that were assayed for photosynthetic CO(2) assimilation at high- and low-CO(2). TRIA also increased ribulose-P(2) levels in the absence of CO(2) in the light with atmospheres of N(2) or N(2) with 21% O(2). PMID:16664415

  14. Regulation of cardiac C-protein phosphorylation

    SciTech Connect

    Titus, F.L.

    1985-01-01

    Molecular mechanisms of cardiac sympathetic and parasympathetic responses were addressed by studying subcellular changes in protein phosphorylation, cAMP-dependent protein kinase activity and protein phosphatase activity in frog hearts. B-adrenergic agonists increased and muscarinic cholinergic agonists decreased (/sup 32/P)phosphate incorporation into C-protein, a thick filament component. Regulation of protein phosphatase activity by Iso and methacholine (MCh) was assayed using extracts of drug treated frog hearts and (/sup 32/P)phospho-C-protein as substrate. Total phosphatase activity decreased 21% in extracts from hearts perfused with 0.1 ..mu..M Iso and 17% in hearts exposed to Iso plus 1 ..mu..M methacholine. This decrease reflected decreased phosphatase-2A activity. No changes in total phosphatase activity were measurable in broken cells treated with Iso or MCh. The results suggest adrenergic stimulation changes contractile activity in frog hearts by activating cAMP-dependent protein kinase associated with particulate cellular elements and inactivating soluble protein phosphatase-2A. This is the first demonstration of coordinated regulation of these enzymes by B-adrenergic agonists favoring phosphorylation of effector proteins. Coordinated regulation by methacholine in the presence of Iso was not observed.

  15. Immunodetection of phosphorylation sites gives new insights into the mechanisms underlying phospholamban phosphorylation in the intact heart.

    PubMed

    Mundiña-Weilenmann, C; Vittone, L; Ortale, M; de Cingolani, G C; Mattiazzi, A

    1996-12-27

    Phosphorylation site-specific antibodies, quantification of 32P incorporation into phospholamban, and simultaneous measurements of mechanical activity were used in Langendorff-perfused rat hearts to provide further insights into the underlying mechanisms of phospholamban phosphorylation. Immunological detection of phospholamban phosphorylation sites showed that the isoproterenol concentration-dependent increase in phospholamban phosphorylation was due to increases in phosphorylation of both Ser16 and Thr17 residues. When isoproterenol concentration was increased at extremely low Ca2+ supply to the myocardium, phosphorylation of Thr17 was virtually absent. Under these conditions, 32P incorporation into phospholamban, due to Ser16, decreased by 50%. Changes in Ca2+ supply to the myocardium either at constant beta-adrenergic stimulation or in the presence of okadaic acid, a phosphatase inhibitor, exclusively modified Thr17 phosphorylation. Changes in phospholamban phosphorylation due to either Ser16 and/or Thr17 were paralleled by changes in myocardial relaxation. The results indicate that cAMP- (Ser16) and Ca2+-calmodulin (Thr17)-dependent pathways of phospholamban phosphorylation can occur independently of each other. However, in the absence of beta-adrenergic stimulation, phosphorylation of Thr17 could only be detected after simultaneous activation of Ca2+-calmodulin-dependent protein kinase and inactivation of phosphatase. It is suggested that under physiological conditions, this requisite is only filled by cAMP-dependent mechanisms. PMID:8969222

  16. Phosphorylation modifies the molecular stability of β-amyloid deposits

    NASA Astrophysics Data System (ADS)

    Rezaei-Ghaleh, Nasrollah; Amininasab, Mehriar; Kumar, Sathish; Walter, Jochen; Zweckstetter, Markus

    2016-04-01

    Protein aggregation plays a crucial role in neurodegenerative diseases. A key feature of protein aggregates is their ubiquitous modification by phosphorylation. Little is known, however, about the molecular consequences of phosphorylation of protein aggregates. Here we show that phosphorylation of β-amyloid at serine 8 increases the stability of its pathogenic aggregates against high-pressure and SDS-induced dissociation. We further demonstrate that phosphorylation results in an elevated number of hydrogen bonds at the N terminus of β-amyloid, the region that is critically regulated by a variety of post-translational modifications. Because of the increased lifetime of phosphorylated β-amyloid aggregates, phosphorylation can promote the spreading of β-amyloid in Alzheimer pathogenesis. Our study suggests that regulation of the molecular stability of protein aggregates by post-translational modifications is a crucial factor for disease progression in the brain.

  17. Phosphorylation modifies the molecular stability of β-amyloid deposits

    PubMed Central

    Rezaei-Ghaleh, Nasrollah; Amininasab, Mehriar; Kumar, Sathish; Walter, Jochen; Zweckstetter, Markus

    2016-01-01

    Protein aggregation plays a crucial role in neurodegenerative diseases. A key feature of protein aggregates is their ubiquitous modification by phosphorylation. Little is known, however, about the molecular consequences of phosphorylation of protein aggregates. Here we show that phosphorylation of β-amyloid at serine 8 increases the stability of its pathogenic aggregates against high-pressure and SDS-induced dissociation. We further demonstrate that phosphorylation results in an elevated number of hydrogen bonds at the N terminus of β-amyloid, the region that is critically regulated by a variety of post-translational modifications. Because of the increased lifetime of phosphorylated β-amyloid aggregates, phosphorylation can promote the spreading of β-amyloid in Alzheimer pathogenesis. Our study suggests that regulation of the molecular stability of protein aggregates by post-translational modifications is a crucial factor for disease progression in the brain. PMID:27072999

  18. Phosphorylated TDP-43 in frontotemporal lobar degeneration and ALS

    PubMed Central

    Hasegawa, Masato; Arai, Tetsuaki; Nonaka, Takashi; Kametani, Fuyuki; Yoshida, Mari; Hashizume, Yoshio; Beach, Thomas G.; Buratti, Emanuele; Baralle, Francisco; Morita, Mitsuya; Nakano, Imaharu; Oda, Tatsuro; Tsuchiya, Kuniaki; Akiyama, Haruhiko

    2009-01-01

    Objective TDP-43 is deposited as cytoplasmic and intranuclear inclusions in brains of subjects with frontotemporal lobar degeneration with ubiquitinated inclusions (FTLD-U) and amyotrophic lateral sclerosis (ALS). Previous studies reported that abnormal phosphorylation takes place in deposited TDP-43. The aim of this study was to identify the phosphorylation sites and responsible kinases, and to clarify the pathological significance of phosphorylation of TDP-43. Methods We generated multiple antibodies specific to phosphorylated TDP-43 by immunizing phosphopeptides of TDP-43, and analyzed FTLD-U and ALS brains by immunohistochemistry, immunoelectron microscopy and immunoblots. Additionally, we performed investigations aimed at identifying the responsible kinases and we assessed the effects of phosphorylation on TDP-43 oligomerization and fibrillization. Results We identified multiple phosphorylation sites in carboxyl-terminal regions of deposited TDP-43. Phosphorylation-specific antibodies stained more inclusions than antibodies to ubiquitin and, unlike existing commercially-available anti-TDP-43 antibodies, did not stain normal nuclei. Ultrastructurally, these antibodies labeled abnormal fibers of 15 nm diameter, and on immunoblots recognized hyperphosphorylated TDP-43 at 45 kDa, with additional 22–28 kDa fragments in sarkosyl-insoluble fractions from FTLD-U and ALS brains. The phosphorylated epitopes were generated by casein kinase 1 and 2, and phosphorylation led to increased oligomerization and fibrillization of TDP-43. Interpretation These results suggest that phosphorylated TDP-43 is a major component of the inclusions, and that abnormal phosphorylation of TDP-43 is a critical step in the pathogenesis of FTLD-U and ALS. Phosphorylation-specific antibodies will be powerful tools for the investigation of these disorders. PMID:18546284

  19. Constitutive phosphorylation of cardiac myosin regulatory light chain in vivo.

    PubMed

    Chang, Audrey N; Battiprolu, Pavan K; Cowley, Patrick M; Chen, Guohua; Gerard, Robert D; Pinto, Jose R; Hill, Joseph A; Baker, Anthony J; Kamm, Kristine E; Stull, James T

    2015-04-24

    In beating hearts, phosphorylation of myosin regulatory light chain (RLC) at a single site to 0.45 mol of phosphate/mol by cardiac myosin light chain kinase (cMLCK) increases Ca(2+) sensitivity of myofilament contraction necessary for normal cardiac performance. Reduction of RLC phosphorylation in conditional cMLCK knock-out mice caused cardiac dilation and loss of cardiac performance by 1 week, as shown by increased left ventricular internal diameter at end-diastole and decreased fractional shortening. Decreased RLC phosphorylation by conventional or conditional cMLCK gene ablation did not affect troponin-I or myosin-binding protein-C phosphorylation in vivo. The extent of RLC phosphorylation was not changed by prolonged infusion of dobutamine or treatment with a β-adrenergic antagonist, suggesting that RLC is constitutively phosphorylated to maintain cardiac performance. Biochemical studies with myofilaments showed that RLC phosphorylation up to 90% was a random process. RLC is slowly dephosphorylated in both noncontracting hearts and isolated cardiac myocytes from adult mice. Electrically paced ventricular trabeculae restored RLC phosphorylation, which was increased to 0.91 mol of phosphate/mol of RLC with inhibition of myosin light chain phosphatase (MLCP). The two RLCs in each myosin appear to be readily available for phosphorylation by a soluble cMLCK, but MLCP activity limits the amount of constitutive RLC phosphorylation. MLCP with its regulatory subunit MYPT2 bound tightly to myofilaments was constitutively phosphorylated in beating hearts at a site that inhibits MLCP activity. Thus, the constitutive RLC phosphorylation is limited physiologically by low cMLCK activity in balance with low MLCP activity. PMID:25733667

  20. Evolutionary constraints of phosphorylation in eukaryotes, prokaryotes, and mitochondria.

    PubMed

    Gnad, Florian; Forner, Francesca; Zielinska, Dorota F; Birney, Ewan; Gunawardena, Jeremy; Mann, Matthias

    2010-12-01

    High accuracy mass spectrometry has proven to be a powerful technology for the large scale identification of serine/threonine/tyrosine phosphorylation in the living cell. However, despite many described phosphoproteomes, there has been no comparative study of the extent of phosphorylation and its evolutionary conservation in all domains of life. Here we analyze the results of phosphoproteomics studies performed with the same technology in a diverse set of organisms. For the most ancient organisms, the prokaryotes, only a few hundred proteins have been found to be phosphorylated. Applying the same technology to eukaryotic species resulted in the detection of thousands of phosphorylation events. Evolutionary analysis shows that prokaryotic phosphoproteins are preferentially conserved in all living organisms, whereas-site specific phosphorylation is not. Eukaryotic phosphosites are generally more conserved than their non-phosphorylated counterparts (with similar structural constraints) throughout the eukaryotic domain. Yeast and Caenorhabditis elegans are two exceptions, indicating that the majority of phosphorylation events evolved after the divergence of higher eukaryotes from yeast and reflecting the unusually large number of nematode-specific kinases. Mitochondria present an interesting intermediate link between the prokaryotic and eukaryotic domains. Applying the same technology to this organelle yielded 174 phosphorylation sites mapped to 74 proteins. Thus, the mitochondrial phosphoproteome is similarly sparse as the prokaryotic phosphoproteomes. As expected from the endosymbiotic theory, phosphorylated as well as non-phosphorylated mitochondrial proteins are significantly conserved in prokaryotes. However, mitochondrial phosphorylation sites are not conserved throughout prokaryotes, consistent with the notion that serine/threonine phosphorylation in prokaryotes occurred relatively recently in evolution. Thus, the phosphoproteome reflects major events in the

  1. Stoichiometry and phosphoisotypes of hippocampal AMPA type glutamate receptor phosphorylation

    PubMed Central

    Hosokawa, Tomohisa; Mitsushima, Dai; Kaneko, Rina; Hayashi, Yasunori

    2014-01-01

    SUMMARY It has been proposed that the AMPAR phosphorylation regulates trafficking and channel activity, thereby playing an important role in synaptic plasticity. However, the actual stoichiometry of phosphorylation, information critical to understand the role of phosphorylation, is not known because of the lack of appropriate techniques for measurement. Here, using Phos-tag SDS-PAGE, we estimated the proportion of phosphorylated AMPAR subunit GluA1. The level of phosphorylated GluA1 at S831 and S845, two major sites implicated in AMPAR regulation, is almost negligible. Less than 1% of GluA1 is phosphorylated at S831 and less than 0.1% at S845. Considering the number of AMPAR at each synapse, the majority of synapses do not contain any phosphorylated AMPAR. Also, we did not see evidence of GluA1 dually phosphorylated at S831 and S845. Neuronal stimulation and learning increased phosphorylation but the proportion was still low. Our results impel us to reconsider the mechanisms underlying synaptic plasticity. PMID:25533481

  2. Prioritizing functional phosphorylation sites based on multiple feature integration

    PubMed Central

    Xiao, Qingyu; Miao, Benpeng; Bi, Jie; Wang, Zhen; Li, Yixue

    2016-01-01

    Protein phosphorylation is an important type of post-translational modification that is involved in a variety of biological activities. Most phosphorylation events occur on serine, threonine and tyrosine residues in eukaryotes. In recent years, many phosphorylation sites have been identified as a result of advances in mass-spectrometric techniques. However, a large percentage of phosphorylation sites may be non-functional. Systematically prioritizing functional sites from a large number of phosphorylation sites will be increasingly important for the study of their biological roles. This study focused on exploring the intrinsic features of functional phosphorylation sites to predict whether a phosphosite is likely to be functional. We found significant differences in the distribution of evolutionary conservation, kinase association, disorder score, and secondary structure between known functional and background phosphorylation datasets. We built four different types of classifiers based on the most representative features and found that their performances were similar. We also prioritized 213,837 human phosphorylation sites from a variety of phosphorylation databases, which will be helpful for subsequent functional studies. All predicted results are available for query and download on our website (Predict Functional Phosphosites, PFP, http://pfp.biosino.org/). PMID:27090940

  3. Mapping of phosphorylation sites in polyomavirus large T antigen

    SciTech Connect

    Hassauer, M.; Scheidtmann, K.H.; Walter, G.

    1986-06-01

    The phosphorylation sites of polyomavirus large T antigen from infected or transformed cells were investigated. Tryptic digestion of large T antigen from infected, /sup 32/P/sub i/-labeled cells revealed seven major phosphopeptides. Five of these were phosphorylated only at serine residues, and two were phosphorylated at serine and threonine residues. The overall ratio of phosphoserine to phosphothreonine was 6:1. The transformed cell line B4 expressed two polyomavirus-specific phosphoproteins: large T antigen, which was only weakly phosphorylated, and a truncated form of large T antigen of 34,000 molecular weight which was heavily phosphorylated. Both showed phosphorylation patterns similar to that of large T antigen from infected cells. Peptide analyses of large T antigens encoded by the deletion mutants dl8 and dl23 or of specific fragments of wild-type large T antigen indicated that the phosphorylation sites are located in an amino-terminal region upstream of residue 194. The amino acid composition of the phosphopeptides as revealed by differential labeling with various amino acids indicated that several phosphopeptides contain overlapping sequences and that all phosphorylation sites are located in four tryptic peptides derived from a region between Met71 and Arg191. Two of the potential phosphorylation sites were identified as Ser81 and Thr187. The possible role of this modification of large T antigen is discussed.

  4. A Crystallographic Snapshot of Tyrosine Trans-phosphorylation in Action

    SciTech Connect

    Chen, H.; Xu, C; Ma, J; Eliseenkova, A; Li, W; Pollock, P; Pitteloud, N; Miller, W; Neubert, T; Mohammadi, M

    2008-01-01

    Tyrosine trans-phosphorylation is a key event in receptor tyrosine kinase signaling, yet, the structural basis for this process has eluded definition. Here, we present the crystal structure of the FGF receptor 2 kinases caught in the act of trans-phosphorylation of Y769, the major C-terminal phosphorylation site. The structure reveals that enzyme- and substrate-acting kinases engage each other through elaborate and specific interactions not only in the immediate vicinity of Y769 and the enzyme active site, but also in regions that are as much of 18 {angstrom} away from D626, the catalytic base in the enzyme active site. These interactions lead to an unprecedented level of specificity and precision during the trans-phosphorylation on Y769. Time-resolved mass spectrometry analysis supports the observed mechanism of trans-phosphorylation. Our data provide a molecular framework for understanding the mechanism of action of Kallmann syndrome mutations and the order of trans-phosphorylation reactions in FGFRs. We propose that the salient mechanistic features of Y769 trans-phosphorylation are applicable to trans-phosphorylation of the equivalent major phosphorylation sites in many other RTKs.

  5. Sequential Phosphorylation of Smoothened Transduces Graded Hedgehog Signaling

    PubMed Central

    Su, Ying; Ospina, Jason K.; Zhang, Junzheng; Michelson, Andrew P.; Schoen, Adam M.; Zhu, Alan Jian

    2012-01-01

    The correct interpretation of a gradient of the morphogen Hedgehog (Hh) during development requires phosphorylation of the Hh signaling activator Smoothened (Smo); however, the molecular mechanism by which Smo transduces graded Hh signaling is not well understood. We show that regulation of the phosphorylation status of Smo by distinct phosphatases at specific phosphorylated residues creates differential thresholds of Hh signaling. Phosphorylation of Smo was initiated by adenosine 3′,5′-monophosphate (cAMP)–dependent protein kinase (PKA) and further enhanced by casein kinase I (CKI). We found that protein phosphatase 1 (PP1) directly dephosphorylated PKA-phosphorylated Smo to reduce signaling mediated by intermediate concentrations of Hh, whereas PP2A specifically dephosphorylated PKA-primed, CKI-phosphorylated Smo to restrict signaling by high concentrations of Hh. We also established a functional link between sequentially phosphorylated Smo species and graded Hh activity. Thus, we propose a sequential phosphorylation model in which precise interpretation of morphogen concentration can be achieved upon versatile phosphatase-mediated regulation of the phosphorylation status of an essential activator in developmental signaling. PMID:21730325

  6. Oxidative phosphorylation and energy buffering in cyanobacteria.

    PubMed Central

    Nitschmann, W H; Peschek, G A

    1986-01-01

    The onset of respiration in the cyanobacteria Anacystis nidulans and Nostoc sp. strain Mac upon a shift from dark anaerobic to aerobic conditions was accompanied by rapid energization of the adenylate pool (owing to the combined action of ATP synthase and adenylate kinase) and also the guanylate, uridylate, and cytidylate pools (owing to nucleoside diphosphate and nucleoside monophosphate kinases). Rates of the various transphosphorylation reactions were comparable to the rate of oxidative phosphorylation, thus explaining, in part, low approximately P/O ratios which incorporate adenylates only. The increase of ATP, GTP, UTP, and CTP levels (nanomoles per minute per milligram [dry weight]) in oxygen-pulsed cells of A. nidulans and Nostoc species was calculated to be, on average, 2.3, 1.05, 0.8, and 0.57, respectively. Together with aerobic steady-state pool sizes of 1.35, 0.57, 0.5, and 0.4 nmol/mg (dry weight) for these nucleotides, a fairly uniform turnover of 1.3 to 1.5 min-1 was derived. All types of nucleotides, therefore, may be conceived of as being in equilibrium with each other, reflecting the energetic homeostasis or energy buffering of the (respiring) cyanobacterial cell. For the calculation of net efficiencies of oxidative phosphorylation in terms of approximately P/O ratios, this energy buffering was taken into account. Moreover, in A. nidulans an additional 30% of the energy initially conserved in ATP by oxidative phosphorylation was immediately used up by a plasma membrane-bound reversible H+-ATPase for H+ extrusion. Consequently, by allowing for energy buffering and ATPase-linked H+ extrusion, maximum P/O ratios of 2.6 to 3.3 were calculated. By contrast, in Nostoc sp. all the H+ extrusion, appeared to be linked to a plasma membrane-bound respiratory chain, thus bypassing any ATP formation and leading to P/O ratios of only 1.3 to 1.5 despite the correction for energy buffering. PMID:3023299

  7. The bacterial phosphoenolpyruvate:carbohydrate phosphotransferase system: regulation by protein phosphorylation and phosphorylation-dependent protein-protein interactions.

    PubMed

    Deutscher, Josef; Aké, Francine Moussan Désirée; Derkaoui, Meriem; Zébré, Arthur Constant; Cao, Thanh Nguyen; Bouraoui, Houda; Kentache, Takfarinas; Mokhtari, Abdelhamid; Milohanic, Eliane; Joyet, Philippe

    2014-06-01

    The bacterial phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS) carries out both catalytic and regulatory functions. It catalyzes the transport and phosphorylation of a variety of sugars and sugar derivatives but also carries out numerous regulatory functions related to carbon, nitrogen, and phosphate metabolism, to chemotaxis, to potassium transport, and to the virulence of certain pathogens. For these different regulatory processes, the signal is provided by the phosphorylation state of the PTS components, which varies according to the availability of PTS substrates and the metabolic state of the cell. PEP acts as phosphoryl donor for enzyme I (EI), which, together with HPr and one of several EIIA and EIIB pairs, forms a phosphorylation cascade which allows phosphorylation of the cognate carbohydrate bound to the membrane-spanning EIIC. HPr of firmicutes and numerous proteobacteria is also phosphorylated in an ATP-dependent reaction catalyzed by the bifunctional HPr kinase/phosphorylase. PTS-mediated regulatory mechanisms are based either on direct phosphorylation of the target protein or on phosphorylation-dependent interactions. For regulation by PTS-mediated phosphorylation, the target proteins either acquired a PTS domain by fusing it to their N or C termini or integrated a specific, conserved PTS regulation domain (PRD) or, alternatively, developed their own specific sites for PTS-mediated phosphorylation. Protein-protein interactions can occur with either phosphorylated or unphosphorylated PTS components and can either stimulate or inhibit the function of the target proteins. This large variety of signal transduction mechanisms allows the PTS to regulate numerous proteins and to form a vast regulatory network responding to the phosphorylation state of various PTS components. PMID:24847021

  8. The Bacterial Phosphoenolpyruvate:Carbohydrate Phosphotransferase System: Regulation by Protein Phosphorylation and Phosphorylation-Dependent Protein-Protein Interactions

    PubMed Central

    Aké, Francine Moussan Désirée; Derkaoui, Meriem; Zébré, Arthur Constant; Cao, Thanh Nguyen; Bouraoui, Houda; Kentache, Takfarinas; Mokhtari, Abdelhamid; Milohanic, Eliane; Joyet, Philippe

    2014-01-01

    SUMMARY The bacterial phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS) carries out both catalytic and regulatory functions. It catalyzes the transport and phosphorylation of a variety of sugars and sugar derivatives but also carries out numerous regulatory functions related to carbon, nitrogen, and phosphate metabolism, to chemotaxis, to potassium transport, and to the virulence of certain pathogens. For these different regulatory processes, the signal is provided by the phosphorylation state of the PTS components, which varies according to the availability of PTS substrates and the metabolic state of the cell. PEP acts as phosphoryl donor for enzyme I (EI), which, together with HPr and one of several EIIA and EIIB pairs, forms a phosphorylation cascade which allows phosphorylation of the cognate carbohydrate bound to the membrane-spanning EIIC. HPr of firmicutes and numerous proteobacteria is also phosphorylated in an ATP-dependent reaction catalyzed by the bifunctional HPr kinase/phosphorylase. PTS-mediated regulatory mechanisms are based either on direct phosphorylation of the target protein or on phosphorylation-dependent interactions. For regulation by PTS-mediated phosphorylation, the target proteins either acquired a PTS domain by fusing it to their N or C termini or integrated a specific, conserved PTS regulation domain (PRD) or, alternatively, developed their own specific sites for PTS-mediated phosphorylation. Protein-protein interactions can occur with either phosphorylated or unphosphorylated PTS components and can either stimulate or inhibit the function of the target proteins. This large variety of signal transduction mechanisms allows the PTS to regulate numerous proteins and to form a vast regulatory network responding to the phosphorylation state of various PTS components. PMID:24847021

  9. A grammar inference approach for predicting kinase specific phosphorylation sites.

    PubMed

    Datta, Sutapa; Mukhopadhyay, Subhasis

    2015-01-01

    Kinase mediated phosphorylation site detection is the key mechanism of post translational mechanism that plays an important role in regulating various cellular processes and phenotypes. Many diseases, like cancer are related with the signaling defects which are associated with protein phosphorylation. Characterizing the protein kinases and their substrates enhances our ability to understand the mechanism of protein phosphorylation and extends our knowledge of signaling network; thereby helping us to treat such diseases. Experimental methods for predicting phosphorylation sites are labour intensive and expensive. Also, manifold increase of protein sequences in the databanks over the years necessitates the improvement of high speed and accurate computational methods for predicting phosphorylation sites in protein sequences. Till date, a number of computational methods have been proposed by various researchers in predicting phosphorylation sites, but there remains much scope of improvement. In this communication, we present a simple and novel method based on Grammatical Inference (GI) approach to automate the prediction of kinase specific phosphorylation sites. In this regard, we have used a popular GI algorithm Alergia to infer Deterministic Stochastic Finite State Automata (DSFA) which equally represents the regular grammar corresponding to the phosphorylation sites. Extensive experiments on several datasets generated by us reveal that, our inferred grammar successfully predicts phosphorylation sites in a kinase specific manner. It performs significantly better when compared with the other existing phosphorylation site prediction methods. We have also compared our inferred DSFA with two other GI inference algorithms. The DSFA generated by our method performs superior which indicates that our method is robust and has a potential for predicting the phosphorylation sites in a kinase specific manner. PMID:25886273

  10. A Grammar Inference Approach for Predicting Kinase Specific Phosphorylation Sites

    PubMed Central

    Datta, Sutapa; Mukhopadhyay, Subhasis

    2015-01-01

    Kinase mediated phosphorylation site detection is the key mechanism of post translational mechanism that plays an important role in regulating various cellular processes and phenotypes. Many diseases, like cancer are related with the signaling defects which are associated with protein phosphorylation. Characterizing the protein kinases and their substrates enhances our ability to understand the mechanism of protein phosphorylation and extends our knowledge of signaling network; thereby helping us to treat such diseases. Experimental methods for predicting phosphorylation sites are labour intensive and expensive. Also, manifold increase of protein sequences in the databanks over the years necessitates the improvement of high speed and accurate computational methods for predicting phosphorylation sites in protein sequences. Till date, a number of computational methods have been proposed by various researchers in predicting phosphorylation sites, but there remains much scope of improvement. In this communication, we present a simple and novel method based on Grammatical Inference (GI) approach to automate the prediction of kinase specific phosphorylation sites. In this regard, we have used a popular GI algorithm Alergia to infer Deterministic Stochastic Finite State Automata (DSFA) which equally represents the regular grammar corresponding to the phosphorylation sites. Extensive experiments on several datasets generated by us reveal that, our inferred grammar successfully predicts phosphorylation sites in a kinase specific manner. It performs significantly better when compared with the other existing phosphorylation site prediction methods. We have also compared our inferred DSFA with two other GI inference algorithms. The DSFA generated by our method performs superior which indicates that our method is robust and has a potential for predicting the phosphorylation sites in a kinase specific manner. PMID:25886273

  11. Simple determination of the CO sub 2 /O sub 2 specificity of Ribulose-1,5-bisphosphate carboxylase/oxygenase by the specific radioactivity of ( sup 14 C) glycerate 3-phosphate

    SciTech Connect

    Genhai Zhu; Jensen, R.G.; Hallick, R.B.; Wildner, G.F. )

    1992-02-01

    A new method is presented for measurement of the CO{sub 2}/O{sub 2} specificity factor of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). The ({sup 14}C)3-phosphoglycerate (PGA) from the Rubisco carboxylase reaction and its dilution by the Rubisco oxygenase reaction was monitored by directly measuring the specific radioactivity of PGA. {sup 14}CO{sub 2} fixation with Rubisco occurred under two reaction conditions: carboxylase with oxygenase with 40 micromolar CO{sub 2} in O{sub 2}-saturated water and carboxylase only with 160 micromolar CO{sub 2} under N{sub 2}. Detection of the specific radioactivity used the amount of PGA as obtained from the peak area, which was determined by pulsed amperometry following separation by high-performance anion exchange chromatography and the radioactive counts of the ({sup 14}C)PGA in the same peak. The specificity factor of Rubisco from spinach (Spinacia oleracea L.) (93 {plus minus} 4), from the green alga Chlamydomonas reinhardtii (66 {plus minus} 1), and from the photosynthetic bacterium Rhodospirillum rubrum (13) were comparable with the published values measured by different methods.

  12. Hypertension alters phosphorylation of VASP in brain endothelial cells.

    PubMed

    Arlier, Zulfikar; Basar, Murat; Kocamaz, Erdogan; Kiraz, Kemal; Tanriover, Gamze; Kocer, Gunnur; Arlier, Sefa; Giray, Semih; Nasırcılar, Seher; Gunduz, Filiz; Senturk, Umit K; Demir, Necdet

    2015-04-01

    Hypertension impairs cerebral vascular function. Vasodilator-stimulated phosphoprotein (VASP) mediates active reorganization of the cytoskeleton via membrane ruffling, aggregation and tethering of actin filaments. VASP regulation of endothelial barrier function has been demonstrated by studies using VASP(-/-) animals under conditions associated with tissue hypoxia. We hypothesize that hypertension regulates VASP expression and/or phosphorylation in endothelial cells, thereby contributing to dysfunction in the cerebral vasculature. Because exercise has direct and indirect salutary effects on vascular systems that have been damaged by hypertension, we also investigated the effect of exercise on maintenance of VASP expression and/or phosphorylation. We used immunohistochemistry, Western blotting and immunocytochemistry to examine the effect of hypertension on VASP expression and phosphorylation in brain endothelial cells in normotensive [Wistar-Kyoto (WKY)] and spontaneously hypertensive (SH) rats under normal and exercise conditions. In addition, we analyzed VASP regulation in normoxia- and hypoxia-induced endothelial cells. Brain endothelial cells exhibited significantly lower VASP immunoreactivity and phosphorylation at the Ser157 residue in SHR versus WKY rats. Exercise reversed hypertension-induced alterations in VASP phosphorylation. Western blotting and immunocytochemistry indicated reduction in VASP phosphorylation in hypoxic versus normoxic endothelial cells. These results suggest that diminished VASP expression and/or Ser157 phosphorylation mediates endothelial changes associated with hypertension and exercise may normalize these changes, at least in part, by restoring VASP phosphorylation. PMID:24894047

  13. Phosphorylation of eukaryotic aminoacyl-tRNA synthetases

    SciTech Connect

    Pendergast, A.M.

    1986-01-01

    The phosphorylation of the highly purified aminoacyl-tRNA synthetase complex from rabbit reticulocytes was examined. The synthetase complex contained, in addition to eight aminoacyl-tRNA synthetases, three unidentified proteins and was free of endogenous protein kinase activity. Incubation of the complex with casein kinase I in the presence of ATP resulted in the phosphorylation of four synthetases, the glutamyl-, isoleucyl-, methionyl-, and lysyl-tRNA synthetases. Phosphorylation by casein kinase I altered binding to tRNA-Sepharose such that the phosphorylated complex eluted at 190 mM NaCl instead of the 275 mM salt observed for the nonphosphorylated form. Phosphorylation by casein kinase I resulted in a significant inhibition of aminoacylation with the four synthetases; the activities of the nonphosphorylated synthetases were unchanged. One of the unidentified proteins in the complex (M/sub r/ 37,000) was also an excellent substrate for casein kinase I. A comparison of the properties and two-dimensional phosphopeptide pattern of this protein with that of casein kinase I suggest that the 37,000 dalton protein in the synthetase complex is an inactive form of casein kinase I. Two other protein kinases were shown to phosphorylate aminoacyl-tRNA synthetases in the complex. The phosphorylation of threonyl-tRNA synthetase was also investigated. Five aminoacyl-tRNA synthetases in the high molecular weight complex were shown to be phosphorylated in rabbit reticulocytes following labeling with (/sup 32/P)orthophosphate.

  14. Phosphorylation Regulates Functions of ZEB1 Transcription Factor.

    PubMed

    Llorens, M Candelaria; Lorenzatti, Guadalupe; Cavallo, Natalia L; Vaglienti, Maria V; Perrone, Ana P; Carenbauer, Anne L; Darling, Douglas S; Cabanillas, Ana M

    2016-10-01

    ZEB1 transcription factor is important in both development and disease, including many TGFβ-induced responses, and the epithelial-to-mesenchymal transition (EMT) by which many tumors undergo metastasis. ZEB1 is differentially phosphorylated in different cell types; however the role of phosphorylation in ZEB1 activity is unknown. Luciferase reporter studies and electrophoresis mobility shift assays (EMSA) show that a decrease in phosphorylation of ZEB1 increases both DNA-binding and transcriptional repression of ZEB1 target genes. Functional analysis of ZEB1 phosphorylation site mutants near the second zinc finger domain (termed ZD2) show that increased phosphorylation (due to either PMA plus ionomycin, or IGF-1) can inhibit transcriptional repression by either a ZEB1-ZD2 domain clone, or full-length ZEB1. This approach identifies phosphosites that have a substantial effect regulating the transcriptional and DNA-binding activity of ZEB1. Immunoprecipitation with anti-ZEB1 antibodies followed by western analysis with a phospho-Threonine-Proline-specific antibody indicates that the ERK consensus site at Thr-867 is phosphorylated in ZEB1. In addition to disrupting in vitro DNA-binding measured by EMSA, IGF-1-induced MEK/ERK phosphorylation is sufficient to disrupt nuclear localization of GFP-ZEB1 fusion clones. These data suggest that phosphorylation of ZEB1 integrates TGFβ signaling with other signaling pathways such as IGF-1. J. Cell. Physiol. 231: 2205-2217, 2016. © 2016 Wiley Periodicals, Inc. PMID:26868487

  15. Altered protein phosphorylation as a resource for potential AD biomarkers.

    PubMed

    Henriques, Ana Gabriela; Müller, Thorsten; Oliveira, Joana Machado; Cova, Marta; da Cruz E Silva, Cristóvão B; da Cruz E Silva, Odete A B

    2016-01-01

    The amyloidogenic peptide, Aβ, provokes a series of events affecting distinct cellular pathways regulated by protein phosphorylation. Aβ inhibits protein phosphatases in a dose-dependent manner, thus it is expected that the phosphorylation state of specific proteins would be altered in response to Aβ. In fact several Alzheimer's disease related proteins, such as APP and TAU, exhibit pathology associated hyperphosphorylated states. A systems biology approach was adopted and the phosphoproteome, of primary cortical neuronal cells exposed to Aβ, was evaluated. Phosphorylated proteins were recovered and those whose recovery increased or decreased, upon Aβ exposure across experimental sets, were identified. Significant differences were evident for 141 proteins and investigation of their interactors revealed key protein clusters responsive to Aβ treatment. Of these, 73 phosphorylated proteins increased and 68 decreased upon Aβ addition. These phosphorylated proteins represent an important resource of potential AD phospho biomarkers that should be further pursued. PMID:27466139

  16. Altered protein phosphorylation as a resource for potential AD biomarkers

    PubMed Central

    Henriques, Ana Gabriela; Müller, Thorsten; Oliveira, Joana Machado; Cova, Marta; da Cruz e Silva, Cristóvão B.; da Cruz e Silva, Odete A. B.

    2016-01-01

    The amyloidogenic peptide, Aβ, provokes a series of events affecting distinct cellular pathways regulated by protein phosphorylation. Aβ inhibits protein phosphatases in a dose-dependent manner, thus it is expected that the phosphorylation state of specific proteins would be altered in response to Aβ. In fact several Alzheimer’s disease related proteins, such as APP and TAU, exhibit pathology associated hyperphosphorylated states. A systems biology approach was adopted and the phosphoproteome, of primary cortical neuronal cells exposed to Aβ, was evaluated. Phosphorylated proteins were recovered and those whose recovery increased or decreased, upon Aβ exposure across experimental sets, were identified. Significant differences were evident for 141 proteins and investigation of their interactors revealed key protein clusters responsive to Aβ treatment. Of these, 73 phosphorylated proteins increased and 68 decreased upon Aβ addition. These phosphorylated proteins represent an important resource of potential AD phospho biomarkers that should be further pursued. PMID:27466139

  17. Mimicking Ndc80 phosphorylation triggers spindle assembly checkpoint signalling

    PubMed Central

    Kemmler, Stefan; Stach, Manuel; Knapp, Maria; Ortiz, Jennifer; Pfannstiel, Jens; Ruppert, Thomas; Lechner, Johannes

    2009-01-01

    The protein kinase Mps1 is, among others, essential for the spindle assembly checkpoint (SAC). We found that Saccharomyces cerevisiae Mps1 interacts physically with the N-terminal domain of Ndc80 (Ndc801−257), a constituent of the Ndc80 kinetochore complex. Furthermore, Mps1 effectively phosphorylates Ndc801−257 in vitro and facilitates Ndc80 phosphorylation in vivo. Mutating 14 of the phosphorylation sites to alanine results in compromised checkpoint signalling upon nocodazole treatment of mutants. Mutating the identical sites to aspartate (to simulate constitutive phosphorylation) causes a metaphase arrest with wild-type-like bipolar kinetochore–microtubule attachment. This arrest is due to a constitutively active SAC and consequently the inviable aspartate mutant can be rescued by disrupting SAC signalling. Therefore, we conclude that a putative Mps1-dependent phosphorylation of Ndc80 is important for SAC activation at kinetochores. PMID:19300438

  18. Protein phosphorylation in response to stress in Clostridium acetobutylicum

    SciTech Connect

    Balodimos, I.A.; Rapaport, E.; Kashket, E.R. )

    1990-07-01

    The possible involvement of protein phosphorylation in the clostridial stress response was investigated by radioactively labeling growing cells of Clostridium acetobutylicum with {sup 32}P{sub i} or cell extracts with ({gamma}-{sup 32}P)ATP. Several phosphoproteins were identified; these were not affected by the growth stage of the culture. Although the extent of protein phosphorylation was increased by heat stress, the phosphoproteins did not correspond to known stress proteins seen in one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Purified clostridial DnaK, a stress protein, acted as a kinase catalyzing the phosphorylation of a 50-kilodalton protein. The phosphorylation of this protein was enhanced in extracts prepared from heat-stressed cells. Diadenosine-5{prime},5{double prime}{prime}-P{sup 1},P{sup 4}-tetraphosphate had no influence on protein phosphorylation.

  19. Toward a systems-level view of dynamic phosphorylation networks

    PubMed Central

    Newman, Robert H.; Zhang, Jin; Zhu, Heng

    2014-01-01

    To better understand how cells sense and respond to their environment, it is important to understand the organization and regulation of the phosphorylation networks that underlie most cellular signal transduction pathways. These networks, which are composed of protein kinases, protein phosphatases and their respective cellular targets, are highly dynamic. Importantly, to achieve signaling specificity, phosphorylation networks must be regulated at several levels, including at the level of protein expression, substrate recognition, and spatiotemporal modulation of enzymatic activity. Here, we briefly summarize some of the traditional methods used to study the phosphorylation status of cellular proteins before focusing our attention on several recent technological advances, such as protein microarrays, quantitative mass spectrometry, and genetically-targetable fluorescent biosensors, that are offering new insights into the organization and regulation of cellular phosphorylation networks. Together, these approaches promise to lead to a systems-level view of dynamic phosphorylation networks. PMID:25177341

  20. Involvement of histamine receptors in SAPK/JNK phosphorylation.

    PubMed

    Dandekar, Radhika D; Khan, Manzoor M

    2012-06-01

    Histamine is a mediator of inflammation in allergic disease and asthma. Stress activated protein kinases/c-jun N-terminal kinases (SAPK/JNK) are involved in asthma. This study examined the role of histamine receptors on the phosphorylation of SAPK/JNK in splenocytes. C57BL/6 mice splenocytes were treated with histamine (10⁻⁴ M to 10⁻¹¹ M), and its selective receptor agonists, phorbol 12 myristate 13-acetate (PMA) was used as a positive control, and phosphorylation of SAPK/JNK was determined. Histamine (10⁻⁴ M-10⁻⁸ M) inhibited phosphorylation of SAPK/JNK. H1R agonist betahistine (10⁻⁵ M) decreased SAPK/JNK phosphorylation and H2R agonist amthamine (10⁻⁵ M) did not show any significant effect. However, H3R agonist methimepip (10⁻⁶ M) and H4R agonist 4-methyl histamine (10⁻⁶ M), increased SAPK/JNK phosphorylation. We used TNFα knockout mice to determine if histamine regulated SAPK/JNK phosphorylation via TNFα. While the effects of histamine and H1 agonists were similar to that of wild type mice in inhibiting the phosphorylation of SAPK/JNK, the effects of H3 and H4 agonists differed in TNFα knockout mice splenocytes. Activation of H3 receptors decreased SAPK/JNK phosphorylation in TNFα knockout mice, as opposed to an increase in wild type mice, whereas H4 agonist did not show any significant effect on the phosphorylation of SAPK/JNK. This data showed that histamine acting through H4 receptors caused the phosphorylation of SAPK/JNK via TNFα. The role of H4 receptors in pro-inflammatory response is intriguing. PMID:22487127

  1. Regulation of renal fibrosis by Smad3 Thr388 phosphorylation.

    PubMed

    Qu, Xinli; Li, Xueling; Zheng, Yaowu; Ren, Yi; Puelles, Victor G; Caruana, Georgina; Nikolic-Paterson, David J; Li, Jinhua

    2014-04-01

    Transforming growth factor-β (TGF-β) promotes tissue fibrosis via receptor-mediated phosphorylation of the receptor-activated Smad2/3, together with Smad4. Of these, Smad3 plays a major profibrotic role in mouse models of tissue fibrosis. Transcriptional activity of the Smad3 protein is regulated by phosphorylation of residues in the C-terminal domain and the linker region. Herein, we examined the role of a novel phosphorylation site within the MH2 domain (T388) in the regulation of Smad3 activity. Confocal microscopy using an Smad3 phosphorylated T388-specific antibody identified phosphorylation of Smad3 T388 in myofibroblasts and tubular epithelial cells in human focal and segmental glomerulosclerosis and mouse models of unilateral ureteric obstruction and diabetic nephropathy, whereas phosphorylated T388 was largely absent in normal kidney. In vitro, TGF-β1 induced phosphorylation of Smad3 T388 in a biphasic pattern. A point mutation of T388/V in an Smad3 construct demonstrated that phosphorylation of T388 promotes Smad3 binding to Smad4 and CDK8, but was not necessary for nuclear translocation. Furthermore, T388 phosphorylation was required for TGF-β-induced collagen I gene promoter activity and extracellular matrix production in cultured fibroblasts. In conclusion, our study identifies phosphorylation of T388 in the Smad3 MH2 domain as an important mechanism that regulates the profibrotic TGF-β/Smad3 signaling pathway, which has direct relevance to human and experimental fibrotic kidney disease. PMID:24485922

  2. Isolation of regulatory-competent, phosphorylated cytochrome C oxidase.

    PubMed

    Lee, Icksoo; Salomon, Arthur R; Yu, Kebing; Samavati, Lobelia; Pecina, Petr; Pecinova, Alena; Hüttemann, Maik

    2009-01-01

    The role of posttranslational modifications, specifically reversible phosphorylation as a regulatory mechanism operating in the mitochondria, is a novel research direction. The mitochondrial oxidative phosphorylation system is a particularly interesting unit because it is responsible for the production of the vast majority of cellular energy in addition to free radicals, two factors that are aberrant in numerous human diseases and that may be influenced by reversible phosphorylation of the oxidative phosphorylation complexes. We here describe a detailed protocol for the isolation of mammalian liver and heart mitochondria and subsequently cytochrome c oxidase (CcO) under conditions maintaining the physiological phosphorylation state. The protocol employs the use of activated vanadate, an unspecific tyrosine phosphatase inhibitor, fluoride, an unspecific serine/threonine phosphatase inhibitor, and EGTA, a calcium chelator to prevent the activation of calcium-dependent protein phosphatases. CcO purified without manipulation of signaling pathways shows strong tyrosine phosphorylation on subunits II and IV, whereas tyrosine phosphorylation of subunit I can be induced by the cAMP- and TNFalpha-dependent pathways in liver. Using our protocol on cow liver tissue we further show the identification of a new phosphorylation site on CcO subunit IV tyrosine 11 of the mature protein (corresponding to tyrosine 33 of the precursor peptide) via immobilized metal affinity chromatography/nano-liquid chromatography/electrospray ionization mass spectrometry (IMAC/nano-LC/ESI-MS). This phosphorylation site is located close to the ATP and ADP binding site, which adjusts CcO activity to cellular energy demand, and we propose that phosphorylation of tyrosine 11 enables allosteric regulation. PMID:19426869

  3. Cardiac mitochondrial matrix and respiratory complex protein phosphorylation

    PubMed Central

    Covian, Raul

    2012-01-01

    It has become appreciated over the last several years that protein phosphorylation within the cardiac mitochondrial matrix and respiratory complexes is extensive. Given the importance of oxidative phosphorylation and the balance of energy metabolism in the heart, the potential regulatory effect of these classical signaling events on mitochondrial function is of interest. However, the functional impact of protein phosphorylation and the kinase/phosphatase system responsible for it are relatively unknown. Exceptions include the well-characterized pyruvate dehydrogenase and branched chain α-ketoacid dehydrogenase regulatory system. The first task of this review is to update the current status of protein phosphorylation detection primarily in the matrix and evaluate evidence linking these events with enzymatic function or protein processing. To manage the scope of this effort, we have focused on the pathways involved in energy metabolism. The high sensitivity of modern methods of detecting protein phosphorylation and the low specificity of many kinases suggests that detection of protein phosphorylation sites without information on the mole fraction of phosphorylation is difficult to interpret, especially in metabolic enzymes, and is likely irrelevant to function. However, several systems including protein translocation, adenine nucleotide translocase, cytochrome c, and complex IV protein phosphorylation have been well correlated with enzymatic function along with the classical dehydrogenase systems. The second task is to review the current understanding of the kinase/phosphatase system within the matrix. Though it is clear that protein phosphorylation occurs within the matrix, based on 32P incorporation and quantitative mass spectrometry measures, the kinase/phosphatase system responsible for this process is ill-defined. An argument is presented that remnants of the much more labile bacterial protein phosphoryl transfer system may be present in the matrix and that the

  4. Crystallization and preliminary X-ray diffraction analysis of AntE, a crotonyl-CoA carboxylase/reductase from Streptomyces sp. NRRL 2288

    PubMed Central

    Zhang, Lihan; Chen, Jing; Mori, Takahiro; Yan, Yan; Liu, Wen; Abe, Ikuro

    2014-01-01

    AntE from Streptomyces sp. NRRL 2288 is a crotonyl-CoA carboxylase/reductase that catalyzes the reductive carboxylation of various α,β-unsaturated acyl-CoAs to provide the building block at the C7 position for antimycin A biosynthesis. Recombinant AntE expressed in Escherichia coli was crystallized by the sitting-drop vapour-diffusion method. The crystals belonged to space group I222 or I212121, with unit-cell parameters a = 76.4, b = 96.7, c = 129.6 Å, α = β = γ = 90.0°. A diffraction data set was collected at the KEK Photon Factory to 2.29 Å resolution. PMID:24915081

  5. Photoperiodism and crassulacean acid metabolism : I. Immunological and kinetic evidences for different patterns of phosphoenolpyruvate carboxylase isoforms in photoperiodically inducible and non-inducible Crassulacean acid metabolism plants.

    PubMed

    Brulfert, J; Müller, D; Kluge, M; Queiroz, O

    1982-05-01

    Plants of Kalanchoe blossfeldiana v. Poelln. Tom Thumb and Sedum morganianum E. Walth. were grown under controlled photoperiodic conditions under either short or long days. Gaz exchange measurements confirmed that in K. blossfeldiana Crassulacean acid metabolism (CAM) was photoperiodically inducible and that S. morganianum performed CAM independently of photoperiod. With K. blossfeldiana, a comparison of catalytic and regulatory properties of phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) from short-day and long-day grown plants showed differences, but not with S. morganianum. Ouchterlony double diffusion tests and immunotitration experiments (using a S. morganianum PEPC antibody) established that CAM is induced in K. blossfeldiana-but not in S. morganianum-through the synthesis of a new PEPC isoform; this form shows an immunological behavior different from that prevailing under non-inductive conditions and can be considered as specific for CAM performance. PMID:24276159

  6. Inhibition of acetate and propionate assimilation by itaconate via propionyl-CoA carboxylase in isocitrate lyase-negative purple bacterium Rhodospirillum rubrum.

    PubMed

    Berg, Ivan A; Filatova, Ludmila V; Ivanovsky, Ruslan N

    2002-10-29

    Itaconate is known as a potent inhibitor of isocitrate lyase. Unexpectedly, itaconate was a strong inhibitor of acetate and propionate assimilation in isocitrate lyase-negative purple non-sulfur bacterium Rhodospirillum rubrum. It was shown that in cell extracts of R. rubrum itaconate inhibited propionyl-CoA carboxylase (PCC) activity. The participation of PCC in propionate assimilation in R. rubrum is well-documented, but the inhibition of acetate assimilation suggests that PCC is also involved in acetate metabolism. PCC is one of the enzymes of the citramalate cycle, the anaplerotic pathway proposed for R. rubrum as a substitute for the glyoxylate cycle. These results provide further support for the hypothesis of the occurrence of the citramalate cycle in R. rubrum. PCC from other isocitrate lyase-negative phototrophs, Rhodobacter sphaeroides and Phaeospirillum fulvum, was not inhibited by itaconate. PMID:12423751

  7. Accumulation fatty acids of in Chlorella vulgaris under heterotrophic conditions in relation to activity of acetyl-CoA carboxylase, temperature, and co-immobilization with Azospirillum brasilense

    NASA Astrophysics Data System (ADS)

    Leyva, Luis A.; Bashan, Yoav; Mendoza, Alberto; de-Bashan, Luz E.

    2014-10-01

    The relation between fatty acid accumulation, activity of acetyl-CoA carboxylase (ACC), and consequently lipid accumulation was studied in the microalgae Chlorella vulgaris co-immobilized with the plant growth-promoting bacterium Azospirillum brasilense under dark heterotrophic conditions with Na acetate as a carbon source. In C. vulgaris immobilized alone, cultivation experiments for 6 days showed that ACC activity is directly related to fatty acid accumulation, especially in the last 3 days. In co-immobilization experiments, A. brasilense exerted a significant positive effect over ACC activity, increased the quantity in all nine main fatty acids, increased total lipid accumulation in C. vulgaris, and mitigated negative effects of nonoptimal temperature for growth. No correlation between ACC activity and lipid accumulation in the cells was established for three different temperatures. This study demonstrated that the interaction between A. brasilense and C. vulgaris has a significant effect on fatty acid and lipid accumulation in the microalgae.

  8. Cloning and Characterization of a Pyruvate Carboxylase Gene from Penicillium rubens and Overexpression of the Genein the Yeast Yarrowia lipolytica for Enhanced Citric Acid Production.

    PubMed

    Fu, Ge-Yi; Lu, Yi; Chi, Zhe; Liu, Guang-Lei; Zhao, Shou-Feng; Jiang, Hong; Chi, Zhen-Ming

    2016-02-01

    In this study, a pyruvate carboxylase gene (PYC1) from a marine fungus Penicillium rubens I607 was cloned and characterized. ORF of the gene (accession number: KM397349.1) had 3534 bp encoding 1177 amino acids with a molecular weight of 127.531 kDa and a PI of 6.20. The promoter of the gene was located at -1200 bp and contained a TATAA box, several CAAT boxes and a sequence 5'-SYGGRG-3'. The PYC1 deduced from the gene had no signal peptide, was a homotetramer (α4), and had the four functional domains. After expression of the PYC1 gene from the marine fungus in the marine-derived yeast Yarrowia lipolytica SWJ-1b, the transformant PR32 obtained had much higher specific pyruvate carboxylase activity (0.53 U/mg) than Y. lipolytica SWJ-1b (0.07 U/mg), and the PYC1 gene expression (133.8%) and citric acid production (70.2 g/l) by the transformant PR32 were also greatly enhanced compared to those (100 % and 27.3 g/l) by Y. lipolytica SWJ-1b. When glucose concentration in the medium was 60.0 g/l, citric acid (CA) concentration formed by the transformant PR32 was 36.1 g/l, leading to conversion of 62.1% of glucose into CA. During a 10-l fed-batch fermentation, the final concentration of CA was 111.1 ± 1.3 g/l, the yield was 0.93 g/g, the productivity was 0.46 g/l/h, and only 1.72 g/l reducing sugar was left in the fermented medium within 240 h. HPLC analysis showed that most of the fermentation products were CA. However, minor malic acid and other unknown products also existed in the culture. PMID:26470708

  9. Genes encoding the alpha-carboxyltransferase subunit of acetyl-CoA carboxylase from Brassica napus and parental species: cloning, expression patterns, and evolution.

    PubMed

    Li, Zhi-Guo; Yin, Wei-Bo; Guo, Huan; Song, Li-Ying; Chen, Yu-Hong; Guan, Rong-Zhan; Wang, Jing-Qiao; Wang, Richard R-C; Hu, Zan-Min

    2010-05-01

    Heteromeric acetyl coenzyme A carboxylase (ACCase), a rate-limiting enzyme in fatty acid biosynthesis in dicots, is a multi-enzyme complex consisting of biotin carboxylase, biotin carboxyl carrier protein, and carboxyltransferase (alpha-CT and beta-CT). In the present study, four genes encoding alpha-CT were cloned from Brassica napus, and two were cloned from each of the two parental species, B. rapa and B. oleracea. Comparative and cluster analyses indicated that these genes were divided into two major groups. The major divergence between group-1 and group-2 occurred in the second intron. Group-2 alpha-CT genes represented the ancestral form in the genus Brassica. The divergence of group-1 and group-2 genes occurred in their common ancestor 12.96-17.78 million years ago (MYA), soon after the divergence of Arabidopsis thaliana and Brassica (15-20 MYA). This time of divergence is identical to that reported for the paralogous subgenomes of diploid Brassica species (13-17 MYA). Real-time reverse transcription PCR revealed that the expression patterns of the two groups of genes were similar in different organs, except in leaves. To better understand the regulation and evolution of alpha-CT genes, promoter regions from two sets of orthologous gene copies from B. napus, B. rapa, and B. oleracea were cloned and compared. The function of the promoter of gene Bnalpha-CT-1-1 in group-1 and gene Bnalpha-CT-2-1 in group-2 was examined by assaying beta-glucuronidase activity in transgenic A. thaliana. Our results will be helpful in elucidating the evolution and regulation of ACCase in oilseed rape. PMID:20616867

  10. Propionyl Coenzyme A (Propionyl-CoA) Carboxylase in Haloferax mediterranei: Indispensability for Propionyl-CoA Assimilation and Impacts on Global Metabolism

    PubMed Central

    Hou, Jing

    2014-01-01

    Propionyl coenzyme A (propionyl-CoA) is an important intermediate during the biosynthesis and catabolism of intracellular carbon storage of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) in haloarchaea. However, the haloarchaeal propionyl-CoA carboxylase (PCC) and its physiological significance remain unclear. In this study, we identified a PCC that catalyzed propionyl-CoA carboxylation with an acetyl-CoA carboxylation side activity in Haloferax mediterranei. Gene knockout/complementation demonstrated that the PCC enzyme consisted of a fusion protein of a biotin carboxylase and a biotin-carboxyl carrier protein (PccA [HFX_2490]), a carboxyltransferase component (PccB [HFX_2478]), and an essential small subunit (PccX [HFX_2479]). Knockout of pccBX led to an inability to utilize propionate and a higher intracellular propionyl-CoA level, indicating that the PCC enzyme is indispensable for propionyl-CoA utilization. Interestingly, H. mediterranei DBX (pccBX-deleted strain) displayed multiple phenotypic changes, including retarded cell growth, decreased glucose consumption, impaired PHBV biosynthesis, and wrinkled cells. A propionyl-CoA concentration equivalent to the concentration that accumulated in DBX cells was demonstrated to inhibit succinyl-CoA synthetase of the tricarboxylic acid cycle in vitro. Genome-wide microarray analysis showed that many genes for glycolysis, pyruvate oxidation, PHBV accumulation, electron transport, and stress responses were affected in DBX. This study not only identified the haloarchaeal PCC for the metabolism of propionyl-CoA, an important intermediate in haloarchaea, but also demonstrated that impaired propionyl-CoA metabolism affected global metabolism in H. mediterranei. PMID:25398867

  11. Transcriptional regulation of a gene encoding the small subunit of ribulose-1,5-bisphosphate carboxylase in soybean tissue is linked to the phytochrome response.

    PubMed Central

    Berry-Lowe, S L; Meagher, R B

    1985-01-01

    The effects of white light, far-red light, and darkness on the transcription of a soybean ribulose-1,5-biphosphate carboxylase small subunit gene, SRS1, were investigated. RNA was labeled with [alpha-32P]UTP in nuclei isolated from plants grown under different conditions of light and darkness and used to probe Southern blots and dot blots. The levels of small subunit mRNA synthesis were normalized to ribosomal RNA synthesis. We demonstrate that the SRS1 gene is transcribed at a rate 16- to 32-fold higher in plants grown in the light than in those grown in darkness. Transcription of the small subunit increased dramatically when plants grown in darkness were given 30 min to 6 h of light and then leveled off after 24 to 48 h of exposure. When light-grown seedlings were exposed to greater than 2 h of darkness, a gradual decrease in transcription was detected. This decrease in transcription reached basal dark-grown levels after 48 h of exposure to darkness. The increase in transcription in etiolated seedlings treated with white light for 15 min could be reduced to basal levels if the treatment was followed by treatment with far-red light for 15 min. In addition, transcription in ligh-grown seedlings was reduced to basal levels when plants were exposed to far-red light for 15 min. The transcription of this ribulose-1,5-biphosphate carboxylase small subunit gene is strongly positively regulated by white light, is negatively regulated by far-red light, and exhibits a classic phytochrome-linked response. Images PMID:3837851

  12. Mimicking respiratory phosphorylation using purified enzymes.

    PubMed

    von Ballmoos, Christoph; Biner, Olivier; Nilsson, Tobias; Brzezinski, Peter

    2016-04-01

    The enzymes of oxidative phosphorylation is a striking example of the functional association of multiple enzyme complexes, working together to form ATP from cellular reducing equivalents. These complexes, such as cytochrome c oxidase or the ATP synthase, are typically investigated individually and therefore, their functional interplay is not well understood. Here, we present methodology that allows the co-reconstitution of purified terminal oxidases and ATP synthases in synthetic liposomes. The enzymes are functionally coupled via proton translocation where upon addition of reducing equivalents the oxidase creates and maintains a transmembrane electrochemical proton gradient that energizes the synthesis of ATP by the F1F0 ATP synthase. The method has been tested with the ATP synthases from Escherichia coli and spinach chloroplasts, and with the quinol and cytochrome c oxidases from E. coli and Rhodobacter sphaeroides, respectively. Unlike in experiments with the ATP synthase reconstituted alone, the setup allows in vitro ATP synthesis under steady state conditions, with rates up to 90 ATP×s(-1)×enzyme(-1). We have also used the novel system to study the phenomenon of "mild uncoupling" as observed in mitochondria upon addition of low concentrations of ionophores (e.g. FCCP, SF6847) and the recoupling effect of 6-ketocholestanol. While we could reproduce the described effects, our data with the in vitro system does not support the idea of a direct interaction between a mitochondrial protein and the uncoupling agents as proposed earlier. PMID:26707617

  13. Phosphorylation site on yeast pyruvate dehydrogenase complex

    SciTech Connect

    Uhlinger, D.J.

    1986-01-01

    The pyruvate dehydrogenase complex was purified to homogeneity from baker's yeast (Saccharomyces cerevisiae). Yeast cells were disrupted in a Manton-Gaulin laboratory homogenizer. The pyruvate dehydrogenase complex was purified by fractionation with polyethylene glycol, isoelectric precipitation, ultracentrifugation and chromatography on hydroxylapatite. Final purification of the yeast pyruvate dehydrogenase complex was achieved by cation-exchange high pressure liquid chromatography (HPLC). No endogenous pyruvate dehydrogenase kinase activity was detected during the purification. However, the yeast pyruvate dehydrogenase complex was phosphorylated and inactivated with purified pyruvate dehydrogenase kinase from bovine kidney. Tryptic digestion of the /sup 32/P-labeled complex yielded a single phosphopeptide which was purified to homogeniety. The tryptic digest was subjected to chromatography on a C-18 reverse phase HPLC column with a linear gradient of acetonitrile. Radioactive fractions were pooled, concentrated, and subjected to anion-exchange HPLC. The column was developed with a linear gradient of ammonium acetate. Final purification of the phosphopeptide was achieved by chromatography on a C-18 reverse phase HPLC column developed with a linear gradient of acetonitrile. The amino acid sequence of the homogeneous peptide was determined by manual modified Edman degradation.

  14. Impaired oxidative phosphorylation in overtrained rat myocardium

    PubMed Central

    Kadaja, Lumme; Eimre, Margus; Paju, Kalju; Roosimaa, Mart; Põdramägi, Taavi; Kaasik, Priit; Pehme, Ando; Orlova, Ehte; Mudist, Margareeta; Peet, Nadezhda; Piirsoo, Andres; Seene, Teet; Gellerich, Frank N; Seppet, Enn K

    2010-01-01

    The present study was undertaken to characterize and review the changes in energy metabolism in rat myocardium in response to chronic exhaustive exercise. It was shown that a treadmill exercise program applied for six weeks led the rats into a state characterized by decreased performance, loss of body weight and enhanced muscle catabolism, indicating development of overtraining syndrome. Electron microscopy revealed disintegration of the cardiomyocyte structure, cellular swelling and appearance of peroxisomes. Respirometric assessment of mitochondria in saponin-permeabilized cells in situ revealed a decreased rate of oxidative phosphorylation (OXPHOS) due to diminished control over it by ADP and impaired functional coupling of adenylate kinase to OXPHOS. In parallel, reduced tissue content of cytochrome c was observed, which could limit the maximal rate of OXPHOS. The results are discussed with respect to relationships between the volume of work and corresponding energy metabolism. It is concluded that overtraining syndrome is not restricted to skeletal muscle but can affect cardiac muscle as well. PMID:21264069

  15. Comprehensive analysis of phosphorylated proteins of Escherichia coli ribosomes.

    PubMed

    Soung, George Y; Miller, Jennifer L; Koc, Hasan; Koc, Emine C

    2009-07-01

    Phosphorylation of bacterial ribosomal proteins has been known for decades; however, there is still very limited information available on specific locations of the phosphorylation sites in ribosomal proteins and the role they might play in protein synthesis. In this study, we have mapped the specific phosphorylation sites in 24 Escherichia coli ribosomal proteins by tandem mass spectrometry. Detection of phosphorylation was achieved by either phosphorylation specific visualization techniques, ProQ staining, and antibodies for phospho-Ser, Thr, and Tyr; or by mass spectrometry equipped with a capability to detect addition and loss of the phosphate moiety. Enrichment by immobilized metal affinity and/or strong cation exchange chromatography was used to improve the success of detection of the low abundance phosphopeptides. We found the small subunit (30S) proteins S3, S4, S5, S7, S11, S12, S13, S18, and S21 and the large subunit (50S) proteins L1, L2, L3, L5, L6, L7/L12, L13, L14, L16, L18, L19, L21, L22, L28, and L31 to be phosphorylated at one or more residues. Potential roles for each specific site in ribosome function were deduced through careful evaluation of the given phosphorylation sites in 3D-crystal structure models of ribosomes and the previous mutational studies of E. coli ribosomal proteins. PMID:19469554

  16. DNA Oligonucleotide 3'-Phosphorylation by a DNA Enzyme.

    PubMed

    Camden, Alison J; Walsh, Shannon M; Suk, Sarah H; Silverman, Scott K

    2016-05-10

    T4 polynucleotide kinase is widely used for 5'-phosphorylation of DNA and RNA oligonucleotide termini, but no natural protein enzyme is capable of 3'-phosphorylation. Here, we report the in vitro selection of deoxyribozymes (DNA enzymes) capable of DNA oligonucleotide 3'-phosphorylation, using a 5'-triphosphorylated RNA transcript (pppRNA) as the phosphoryl donor. The basis of selection was the capture, during each selection round, of the 3'-phosphorylated DNA substrate terminus by 2-methylimidazole activation of the 3'-phosphate (forming 3'-MeImp) and subsequent splint ligation with a 5'-amino DNA oligonucleotide. Competing and precedented DNA-catalyzed reactions were DNA phosphodiester hydrolysis or deglycosylation, each also leading to a 3'-phosphate but at a different nucleotide position within the DNA substrate. One oligonucleotide 3'-kinase deoxyribozyme, obtained from an N40 random pool and named 3'Kin1, can 3'-phosphorylate nearly any DNA oligonucleotide substrate for which the 3'-terminus has the sequence motif 5'-NKR-3', where N denotes any oligonucleotide sequence, K = T or G, and R = A or G. These results establish the viabilty of in vitro selection for identifying DNA enzymes that 3'-phosphorylate DNA oligonucleotides. PMID:27063020

  17. A systems model of phosphorylation for inflammatory signaling events.

    PubMed

    Sadreev, Ildar I; Chen, Michael Z Q; Welsh, Gavin I; Umezawa, Yoshinori; Kotov, Nikolay V; Valeyev, Najl V

    2014-01-01

    Phosphorylation is a fundamental biochemical reaction that modulates protein activity in cells. While a single phosphorylation event is relatively easy to understand, multisite phosphorylation requires systems approaches for deeper elucidation of the underlying molecular mechanisms. In this paper we develop a mechanistic model for single- and multi-site phosphorylation. The proposed model is compared with previously reported studies. We compare the predictions of our model with experiments published in the literature in the context of inflammatory signaling events in order to provide a mechanistic description of the multisite phosphorylation-mediated regulation of Signal Transducer and Activator of Transcription 3 (STAT3) and Interferon Regulatory Factor 5 (IRF-5) proteins. The presented model makes crucial predictions for transcription factor phosphorylation events in the immune system. The model proposes potential mechanisms for T cell phenotype switching and production of cytokines. This study also provides a generic framework for the better understanding of a large number of multisite phosphorylation-regulated biochemical circuits. PMID:25333362

  18. 3,5 Diiodo-L-Thyronine (T2) Does Not Prevent Hepatic Steatosis or Insulin Resistance in Fat-Fed Sprague Dawley Rats

    PubMed Central

    Vatner, Daniel F.; Snikeris, Jaclyn; Popov, Violeta; Perry, Rachel J.; Rahimi, Yasmeen; Samuel, Varman T.

    2015-01-01

    Thyroid hormone mimetics are alluring potential therapies for diseases like dyslipidemia, nonalcoholic fatty liver disease (NAFLD), and insulin resistance. Though diiodothyronines are thought inactive, pharmacologic treatment with 3,5- Diiodo-L-Thyronine (T2) reportedly reduces hepatic lipid content and improves glucose tolerance in fat-fed male rats. To test this, male Sprague Dawley rats fed a safflower-oil based high-fat diet were treated with T2 (0.25 mg/kg-d) or vehicle. Neither 10 nor 30 days of T2 treatment had an effect on weight, adiposity, plasma fatty acids, or hepatic steatosis. Insulin action was quantified in vivo by a hyperinsulinemic-euglycemic clamp. T2 did not alter fasting plasma glucose or insulin concentration. Basal endogenous glucose production (EGP) rate was unchanged. During the clamp, there was no difference in insulin stimulated whole body glucose disposal. Insulin suppressed EGP by 60% ± 10 in T2-treated rats as compared with 47% ± 4 suppression in the vehicle group (p = 0.32). This was associated with an improvement in hepatic insulin signaling; insulin stimulated Akt phosphorylation was ~2.5 fold greater in the T2-treated group as compared with the vehicle-treated group (p = 0.003). There was no change in expression of genes thought to mediate the effect of T2 on hepatic metabolism, including genes that regulate hepatic lipid oxidation (ppara, carnitine palmitoyltransferase 1a), genes that regulate hepatic fatty acid synthesis (srebp1c, acetyl coa carboxylase, fatty acid synthase), and genes involved in glycolysis and gluconeogenesis (L-pyruvate kinase, glucose 6 phosphatase). Therefore, in contrast with previous reports, in Sprague Dawley rats fed an unsaturated fat diet, T2 administration failed to improve NAFLD or whole body insulin sensitivity. Though there was a modest improvement in hepatic insulin signaling, this was not associated with significant differences in hepatic insulin action. Further study will be necessary before

  19. 3,5 Diiodo-L-Thyronine (T2) Does Not Prevent Hepatic Steatosis or Insulin Resistance in Fat-Fed Sprague Dawley Rats.

    PubMed

    Vatner, Daniel F; Snikeris, Jaclyn; Popov, Violeta; Perry, Rachel J; Rahimi, Yasmeen; Samuel, Varman T

    2015-01-01

    Thyroid hormone mimetics are alluring potential therapies for diseases like dyslipidemia, nonalcoholic fatty liver disease (NAFLD), and insulin resistance. Though diiodothyronines are thought inactive, pharmacologic treatment with 3,5- Diiodo-L-Thyronine (T2) reportedly reduces hepatic lipid content and improves glucose tolerance in fat-fed male rats. To test this, male Sprague Dawley rats fed a safflower-oil based high-fat diet were treated with T2 (0.25 mg/kg-d) or vehicle. Neither 10 nor 30 days of T2 treatment had an effect on weight, adiposity, plasma fatty acids, or hepatic steatosis. Insulin action was quantified in vivo by a hyperinsulinemic-euglycemic clamp. T2 did not alter fasting plasma glucose or insulin concentration. Basal endogenous glucose production (EGP) rate was unchanged. During the clamp, there was no difference in insulin stimulated whole body glucose disposal. Insulin suppressed EGP by 60% ± 10 in T2-treated rats as compared with 47% ± 4 suppression in the vehicle group (p = 0.32). This was associated with an improvement in hepatic insulin signaling; insulin stimulated Akt phosphorylation was ~2.5 fold greater in the T2-treated group as compared with the vehicle-treated group (p = 0.003). There was no change in expression of genes thought to mediate the effect of T2 on hepatic metabolism, including genes that regulate hepatic lipid oxidation (ppara, carnitine palmitoyltransferase 1a), genes that regulate hepatic fatty acid synthesis (srebp1c, acetyl coa carboxylase, fatty acid synthase), and genes involved in glycolysis and gluconeogenesis (L-pyruvate kinase, glucose 6 phosphatase). Therefore, in contrast with previous reports, in Sprague Dawley rats fed an unsaturated fat diet, T2 administration failed to improve NAFLD or whole body insulin sensitivity. Though there was a modest improvement in hepatic insulin signaling, this was not associated with significant differences in hepatic insulin action. Further study will be necessary before

  20. Catalytic roles of flexible regions at the active site of ribulose-bisphosphate carboxylase/oxygenase (Rubisco)

    SciTech Connect

    Hartman, F.C.; Harpel, M.R.; Chen, Yuh-Ru; Larson, E.M.; Larimer, F.W.

    1995-12-31

    Chemical and mutagenesis studies of Rubisco have identified Lys329 and Glu48 as active-site residues that are located in distinct, interacting domains from adjacent subunits. Crystallographic analyses have shown that Lys329 is the apical residue in a 12-residue flexible loop (loop 6) of the {Beta},{alpha}-barrel domain of the active site and that Glu48 resides at the end of helix B of the N-terminal domain of the active site. When phosphorylated ligands are bound by the enzyme, loop 6 adopts a closed conformation and, in concert with repositioning of helix B, thereby occludes the active site from the external environment. In this closed conformation, the {gamma}-carboxylate of Glu48 and the {epsilon}-amino group of Lys329 engage in intersubunit electrostatic interaction. By use of appropriate site-directed mutants of Rhodospirillum rubrum Rubisco, we are addressing several issues: the catalytic roles of Lys329 and Glu48, the functional significance of the intersubunit salt bridge comprised of these two residues, and the roles of loop 6 and helix B in stabilizing labile reaction intermediates. Characterization of novel products derived from misprocessing of D-ribulose-1,5-bisphosphate (RuBP) by the mutant proteins have illuminated the structure of the key intermediate in the normal oxygenase pathway.

  1. Acute exercise modifies titin phosphorylation and increases cardiac myofilament stiffness.

    PubMed

    Müller, Anna E; Kreiner, Matthias; Kötter, Sebastian; Lassak, Philipp; Bloch, Wilhelm; Suhr, Frank; Krüger, Martina

    2014-01-01

    Titin-based myofilament stiffness is largely modulated by phosphorylation of its elastic I-band regions N2-Bus (decreases passive stiffness, PT) and PEVK (increases PT). Here, we tested the hypothesis that acute exercise changes titin phosphorylation and modifies myofilament stiffness. Adult rats were exercised on a treadmill for 15 min, untrained animals served as controls. Titin phosphorylation was determined by Western blot analysis using phosphospecific antibodies to Ser4099 and Ser4010 in the N2-Bus region (PKG and PKA-dependent. respectively), and to Ser11878 and Ser 12022 in the PEVK region (PKCα and CaMKIIδ-dependent, respectively). Passive tension was determined by step-wise stretching of isolated skinned cardiomyocytes to sarcomere length (SL) ranging from 1.9 to 2.4 μm and showed a significantly increased PT from exercised samples, compared to controls. In cardiac samples titin N2-Bus phosphorylation was significantly decreased by 40% at Ser4099, however, no significant changes were observed at Ser4010. PEVK phosphorylation at Ser11878 was significantly increased, which is probably mediated by the observed exercise-induced increase in PKCα activity. Interestingly, relative phosphorylation of Ser12022 was substantially decreased in the exercised samples. Surprisingly, in skeletal samples from acutely exercised animals we detected a significant decrease in PEVK phosphorylation at Ser11878 and an increase in Ser12022 phosphorylation; however, PKCα activity remained unchanged. In summary, our data show that a single exercise bout of 15 min affects titin domain phosphorylation and titin-based myocyte stiffness with obviously divergent effects in cardiac and skeletal muscle tissues. The observed changes in titin stiffness could play an important role in adapting the passive and active properties of the myocardium and the skeletal muscle to increased physical activity. PMID:25477822

  2. Acute exercise modifies titin phosphorylation and increases cardiac myofilament stiffness

    PubMed Central

    Müller, Anna E.; Kreiner, Matthias; Kötter, Sebastian; Lassak, Philipp; Bloch, Wilhelm; Suhr, Frank; Krüger, Martina

    2014-01-01

    Titin-based myofilament stiffness is largely modulated by phosphorylation of its elastic I-band regions N2-Bus (decreases passive stiffness, PT) and PEVK (increases PT). Here, we tested the hypothesis that acute exercise changes titin phosphorylation and modifies myofilament stiffness. Adult rats were exercised on a treadmill for 15 min, untrained animals served as controls. Titin phosphorylation was determined by Western blot analysis using phosphospecific antibodies to Ser4099 and Ser4010 in the N2-Bus region (PKG and PKA-dependent. respectively), and to Ser11878 and Ser 12022 in the PEVK region (PKCα and CaMKIIδ-dependent, respectively). Passive tension was determined by step-wise stretching of isolated skinned cardiomyocytes to sarcomere length (SL) ranging from 1.9 to 2.4 μm and showed a significantly increased PT from exercised samples, compared to controls. In cardiac samples titin N2-Bus phosphorylation was significantly decreased by 40% at Ser4099, however, no significant changes were observed at Ser4010. PEVK phosphorylation at Ser11878 was significantly increased, which is probably mediated by the observed exercise-induced increase in PKCα activity. Interestingly, relative phosphorylation of Ser12022 was substantially decreased in the exercised samples. Surprisingly, in skeletal samples from acutely exercised animals we detected a significant decrease in PEVK phosphorylation at Ser11878 and an increase in Ser12022 phosphorylation; however, PKCα activity remained unchanged. In summary, our data show that a single exercise bout of 15 min affects titin domain phosphorylation and titin-based myocyte stiffness with obviously divergent effects in cardiac and skeletal muscle tissues. The observed changes in titin stiffness could play an important role in adapting the passive and active properties of the myocardium and the skeletal muscle to increased physical activity. PMID:25477822

  3. Predicting and analyzing protein phosphorylation sites in plants using musite.

    PubMed

    Yao, Qiuming; Gao, Jianjiong; Bollinger, Curtis; Thelen, Jay J; Xu, Dong

    2012-01-01

    Although protein phosphorylation sites can be reliably identified with high-resolution mass spectrometry, the experimental approach is time-consuming and resource-dependent. Furthermore, it is unlikely that an experimental approach could catalog an entire phosphoproteome. Computational prediction of phosphorylation sites provides an efficient and flexible way to reveal potential phosphorylation sites and provide hypotheses in experimental design. Musite is a tool that we previously developed to predict phosphorylation sites based solely on protein sequence. However, it was not comprehensively applied to plants. In this study, the phosphorylation data from Arabidopsis thaliana, B. napus, G. max, M. truncatula, O. sativa, and Z. mays were collected for cross-species testing and the overall plant-specific prediction as well. The results show that the model for A. thaliana can be extended to other organisms, and the overall plant model from Musite outperforms the current plant-specific prediction tools, Plantphos, and PhosphAt, in prediction accuracy. Furthermore, a comparative study of predicted phosphorylation sites across orthologs among different plants was conducted to reveal potential evolutionary features. A bipolar distribution of isolated, non-conserved phosphorylation sites, and highly conserved ones in terms of the amino acid type was observed. It also shows that predicted phosphorylation sites conserved within orthologs do not necessarily share more sequence similarity in the flanking regions than the background, but they often inherit protein disorder, a property that does not necessitate high sequence conservation. Our analysis also suggests that the phosphorylation frequencies among serine, threonine, and tyrosine correlate with their relative proportion in disordered regions. Musite can be used as a web server (http://musite.net) or downloaded as an open-source standalone tool (http://musite.sourceforge.net/). PMID:22934099

  4. Cyanogen induced phosphorylation of D-fructose. [prebiotic modeling

    NASA Technical Reports Server (NTRS)

    Degani, CH.; Kawatsuji, M.; Halmann, M.

    1975-01-01

    It has been demonstrated that a phosphorylated sugar, identified as alpha-D-fructopyranose, can be formed as the result of cyanogen-induced phosphorylation of D-fructose at pH 8.8. The product was isolated from barium and cyclohexylammonium salts and identified on the basis of its chromatographic and electrophoretic properties, its lability to hydrolysis by alkaline phosphatase, the rate of its acid-catalyzed hydrolysis, and the results of periodate oxidation and optical rotatory measurements. These results support the suggestion that the cyanogen-induced phosphorylation of free sugars could be a possible process for formation of sugar phosphates under prebiotic conditions (Halman et al., 1969).

  5. Phosphorylation of a neuronal-specific beta-tubulin isotype

    SciTech Connect

    Diaz-Nido, J.; Serrano, L.; Lopez-Otin, C.; Vandekerckhove, J.; Avila, J. )

    1990-08-15

    Adult rats were intracraneally injected with ({sup 32}P) phosphate and brain microtubules isolated. The electrophoretically purified, in vivo phospholabeled, beta-tubulin was digested with the V8-protease and the labeled peptide purified by reversed-phase liquid chromatography. Its amino acid sequence corresponds to the COOH-terminal sequence of a minor neuronal beta 3-tubulin isoform from chicken and human. The phosphorylation site was at serine 444. A synthetic peptide with sequence EMYEDDEEESESQGPK, corresponding to that of the COOH terminus of beta 3-tubulin, was efficiently phosphorylated in vitro by casein kinase II at the same serine 444. The functional meaning of tubulin phosphorylation is still unclear. However, the modification of the protein takes place after microtubule assembly, and phosphorylated tubulin is mainly present in the assembled microtubule protein fraction.

  6. A secretory kinase complex regulates extracellular protein phosphorylation.

    PubMed

    Cui, Jixin; Xiao, Junyu; Tagliabracci, Vincent S; Wen, Jianzhong; Rahdar, Meghdad; Dixon, Jack E

    2015-01-01

    Although numerous extracellular phosphoproteins have been identified, the protein kinases within the secretory pathway have only recently been discovered, and their regulation is virtually unexplored. Fam20C is the physiological Golgi casein kinase, which phosphorylates many secreted proteins and is critical for proper biomineralization. Fam20A, a Fam20C paralog, is essential for enamel formation, but the biochemical function of Fam20A is unknown. Here we show that Fam20A potentiates Fam20C kinase activity and promotes the phosphorylation of enamel matrix proteins in vitro and in cells. Mechanistically, Fam20A is a pseudokinase that forms a functional complex with Fam20C, and this complex enhances extracellular protein phosphorylation within the secretory pathway. Our findings shed light on the molecular mechanism by which Fam20C and Fam20A collaborate to control enamel formation, and provide the first insight into the regulation of secretory pathway phosphorylation. PMID:25789606

  7. Evidence of histidine phosphorylation in isocitrate lyase from Escherichia coli

    SciTech Connect

    Roberston, E.F.; Hoyt, J.C.; Reeves, H.C.

    1987-05-01

    Escherichia coli isocitrate lyase can be phosphorylated in vitro in an ATP-dependent reaction. Partially purified extracts were incubated with ..gamma..-/sup 32/P-ATP and analyzed by two-dimensional polyacrylamide gel electrophoresis followed by a Western blot and autoradiography. Radioactivity was associated with the lyase only when blotting was performed under alkaline conditions. This suggests that phosphate groups are attached to the lyase via an acid-labile P-N bond rather than a more stable P-O bond. Treatment of the lyase with diethyl pyrocarbonate, a histidine modifying agent, blocks incorporation of /sup 32/P-phosphate. Treatment with phosphoramidate, a histidine phosphorylating agent, alters the isoelectric point of the lyase suggesting that the enzyme can be phosphorylated at histidine residues. Loss of catalytic activity after treatment with potato acid phosphatase indicates that isocitrate lyase activity may be modulated by phosphorylation.

  8. Abiotic regioselective phosphorylation of adenosine with borate in formamide.

    PubMed

    Furukawa, Yoshihiro; Kim, Hyo-Joong; Hutter, Daniel; Benner, Steven A

    2015-04-01

    Nearly 40 years ago, Schoffstall and his coworkers used formamide as a solvent to permit the phosphorylation of nucleosides by inorganic phosphate to give nucleoside phosphates, which (due to their thermodynamic instability with respect to hydrolysis) cannot be easily created in water by an analogous phosphorylation (the "water problem" in prebiotic chemistry). More recently, we showed that borate could stabilize certain carbohydrates against degradation (the "asphalt problem"). Here, we combine the two concepts to show that borate can work in formamide to guide the reactivity of nucleosides under conditions where they are phosphorylated. Specifically, reaction of adenosine in formamide with inorganic phosphate and pyrophosphate in the presence of borate gives adenosine-5'-phosphate as the only detectable phosphorylated product, with formylation (as opposed to hydrolysis) being the competing reaction. PMID:25826074

  9. Cysteine mutations cause defective tyrosine phosphorylation in MEGF10 myopathy

    PubMed Central

    Mitsuhashi, Satomi; Mitsuhashi, Hiroaki; Alexander, Matthew S; Sugimoto, Hiroyuki; Kang, Peter B

    2013-01-01

    Recessive mutations in MEGF10 are known to cause a congenital myopathy in humans. Two mutations in the extracellular EGF-like domains of MEGF10, C326R and C774R, were associated with decreased tyrosine phosphorylation of MEGF10 in vitro. Y1030 was identified to be the major tyrosine phosphorylation site in MEGF10 and is phosphorylated at least in part by c-Src. Overexpression of wild-type MEGF10 enhanced C2C12 myoblast proliferation, while overexpression of Y1030F mutated MEGF10 did not. We conclude that MEGF10-mediated signaling via tyrosine phosphorylation helps to regulate myoblast proliferation. Defects in this signaling pathway may contribute to the disease mechanism of MEGF10 myopathy. PMID:23954233

  10. Methods for generating phosphorylation site-specific immunological reagents

    DOEpatents

    Anderson, Carl W.; Appella, Ettore; Sakaguchi, Kazuyasu

    2001-01-01

    The present invention provides methods for generating phosphorylation site-specific immunological reagents. More specifically, a phosphopeptide mimetic is incorporated into a polypeptide in place of a phosphorylated amino acid. The polypeptide is used as antigen by standard methods to generate either monoclonal or polyclonal antibodies which cross-react with the naturally phosphorylated polypeptide. The phosphopeptide mimetic preferably contains a non-hydrolyzable linkage from the appropriate carbon atom of the amino acid residue to a phosphate group. A preferred linkage is a CF.sub.2 group. Such a linkage is used to generate the phosphoserine mimetic F.sub.2 Pab, which is incorporated into a polypeptide sequence derived from p53 to produce antibodies which recognize a specific phosphorylation state of p53. A CF.sub.2 group linkage is also used to produce the phosphothreonine mimetic F.sub.2 Pmb, and to produce the phosphotyrosine mimetic, F.sub.2 Pmp.

  11. Microfluidic IEF technique for sequential phosphorylation analysis of protein kinases

    NASA Astrophysics Data System (ADS)

    Choi, Nakchul; Song, Simon; Choi, Hoseok; Lim, Bu-Taek; Kim, Young-Pil

    2015-11-01

    Sequential phosphorylation of protein kinases play the important role in signal transduction, protein regulation, and metabolism in living cells. The analysis of these phosphorylation cascades will provide new insights into their physiological functions in many biological functions. Unfortunately, the existing methods are limited to analyze the cascade activity. Therefore, we suggest a microfluidic isoelectric focusing technique (μIEF) for the analysis of the cascade activity. Using the technique, we show that the sequential phosphorylation of a peptide by two different kinases can be successfully detected on a microfluidic chip. In addition, the inhibition assay for kinase activity and the analysis on a real sample have also been conducted. The results indicate that μIEF is an excellent means for studies on phosphorylation cascade activity.

  12. Phosphorylation of Mad controls competition between wingless and BMP signaling.

    PubMed

    Eivers, Edward; Demagny, Hadrien; Choi, Renee H; De Robertis, Edward M

    2011-01-01

    Bone morphogenetic proteins (BMPs) and Wnts are growth factors that provide essential patterning signals for cell proliferation and differentiation. Here, we describe a molecular mechanism by which the phosphorylation state of the Drosophila transcription factor Mad determines its ability to transduce either BMP or Wingless (Wg) signals. Previously, Mad was thought to function in gene transcription only when phosphorylated by BMP receptors. We found that the unphosphorylated form of Mad was required for canonical Wg signaling by interacting with the Pangolin-Armadillo transcriptional complex. Phosphorylation of the carboxyl terminus of Mad by BMP receptor directed Mad toward BMP signaling, thereby preventing Mad from functioning in the Wg pathway. The results show that Mad has distinct signal transduction roles in the BMP and Wnt pathways depending on its phosphorylation state. PMID:21990430

  13. Enrichment of phosphorylated peptides and proteins by selective precipitation methods.

    PubMed

    Rainer, Matthias; Bonn, Günther K

    2015-01-01

    Protein phosphorylation is one of the most prominent post-translational modifications involved in the regulation of cellular processes. Fundamental understanding of biological processes requires appropriate bioanalytical methods for selectively enriching phosphorylated peptides and proteins. Most of the commonly applied enrichment approaches include chromatographic materials including Fe(3+)-immobilized metal-ion affinity chromatography or metal oxides. In the last years, the introduction of several non-chromatographic isolation technologies has increasingly attracted the interest of many scientists. Such approaches are based on the selective precipitation of phosphorylated peptides and proteins by applying various metal cations. The excellent performance of precipitation-based enrichment methods can be explained by the absence of any stationary phase, resin or sorbent, which usually leads to unspecific binding. This review provides an overview of recently published methods for the selective precipitation of phosphorylated peptides and proteins. PMID:25587840

  14. Biological phosphoryl-transfer reactions: understanding mechanism and catalysis.

    PubMed

    Lassila, Jonathan K; Zalatan, Jesse G; Herschlag, Daniel

    2011-01-01

    Phosphoryl-transfer reactions are central to biology. These reactions also have some of the slowest nonenzymatic rates and thus require enormous rate accelerations from biological catalysts. Despite the central importance of phosphoryl transfer and the fascinating catalytic challenges it presents, substantial confusion persists about the properties of these reactions. This confusion exists despite decades of research on the chemical mechanisms underlying these reactions. Here we review phosphoryl-transfer reactions with the goal of providing the reader with the conceptual and experimental background to understand this body of work, to evaluate new results and proposals, and to apply this understanding to enzymes. We describe likely resolutions to some controversies, while emphasizing the limits of our current approaches and understanding. We apply this understanding to enzyme-catalyzed phosphoryl transfer and provide illustrative examples of how this mechanistic background can guide and deepen our understanding of enzymes and their mechanisms of action. Finally, we present important future challenges for this field. PMID:21513457

  15. Identification of Phosphorylation Sites Regulating sst3 Somatostatin Receptor Trafficking.

    PubMed

    Lehmann, Andreas; Kliewer, Andrea; Günther, Thomas; Nagel, Falko; Schulz, Stefan

    2016-06-01

    The human somatostatin receptor 3 (sst3) is expressed in about 50% of all neuroendocrine tumors and hence a promising target for multireceptor somatostatin analogs. The sst3 receptor is unique among ssts in that it exhibits a very long intracellular C-terminal tail containing a huge number of potential phosphate acceptor sites. Consequently, our knowledge about the functional role of the C-terminal tail in sst3 receptor regulation is very limited. Here, we have generated a series of phosphorylation-deficient mutants that enabled us to determine crucial sites for its agonist-induced β-arrestin mobilization, internalization, and down-regulation. Based on this information, we generated phosphosite-specific antibodies for C-terminal Ser(337)/Thr(341), Thr(348), and Ser(361) that enabled us to investigate the temporal patterns of sst3 phosphorylation and dephosphorylation. We found that the endogenous ligand somatostatin induced a rapid and robust phosphorylation that was completely blocked by the sst3 antagonist NVP-ACQ090. The stable somatostatin analogs pasireotide and octreotide promoted clearly less phosphorylation compared with somatostatin. We also show that sst3 phosphorylation occurred within seconds to minutes, whereas dephosphorylation of the sst3 receptor occurred at a considerable slower rate. In addition, we also identified G protein-coupled receptor kinases 2 and 3 and protein phosphatase 1α and 1β as key regulators of sst3 phosphorylation and dephosphorylation, respectively. Thus, we here define the C-terminal phosphorylation motif of the human sst3 receptor that regulates its agonist-promoted phosphorylation, β-arrestin recruitment, and internalization of this clinically relevant receptor. PMID:27101376

  16. Phosphorylation of mouse melanopsin by protein kinase A.

    PubMed

    Blasic, Joseph R; Brown, R Lane; Robinson, Phyllis R

    2012-01-01

    The visual pigment melanopsin is expressed in intrinsically photosensitive retinal ganglion cells (ipRGCs) in the mammalian retina, where it is involved in non-image forming light responses including circadian photoentrainment, pupil constriction, suppression of pineal melatonin synthesis, and direct photic regulation of sleep. It has recently been shown that the melanopsin-based light response in ipRGCs is attenuated by the neurotransmitter dopamine. Here, we use a heterologous expression system to demonstrate that mouse melanopsin can be phosphorylated by protein kinase A, and that phosphorylation can inhibit melanopsin signaling in HEK cells. Site-directed mutagenesis experiments revealed that this inhibitory effect is primarily mediated by phosphorylation of sites T186 and S287 located in the second and third intracellular loops of melanopsin, respectively. Furthermore, we show that this phosphorylation can occur in vivo using an in situ proximity-dependent ligation assay (PLA). Based on these data, we suggest that the attenuation of the melanopsin-based light response by dopamine is mediated by direct PKA phosphorylation of melanopsin, rather than phosphorylation of a downstream component of the signaling cascade. PMID:23049792

  17. Bak apoptotic function is not directly regulated by phosphorylation.

    PubMed

    Tran, V H; Bartolo, R; Westphal, D; Alsop, A; Dewson, G; Kluck, R M

    2013-01-01

    During apoptosis, Bak and Bax permeabilize the mitochondrial outer membrane by undergoing major conformational change and oligomerization. This activation process in Bak is reported to require dephosphorylation of tyrosine-108 close to an activation trigger site. To investigate how dephosphorylation of Bak contributes to its activation and conformational change, one-dimensional isoelectric focusing (1D-IEF) and mutagenesis was used to monitor Bak phosphorylation. On 1D-IEF, Bak extracted from a range of cell types migrated as a single band near the predicted isoelectric point of 5.6 both before and after phosphatase treatment, indicating that Bak is not significantly phosphorylated at any residue. In contrast, three engineered 'phosphotagged' Bak variants showed a second band at lower pI, indicating phosphorylation. Apoptosis induced by several stimuli failed to alter Bak pI, indicating little change in phosphorylation status. In addition, alanine substitution of tyrosine-108 and other putative phosphorylation sites failed to enhance Bak activation or pro-apoptotic function. In summary, Bak is not significantly phosphorylated at any residue, and Bak activation during apoptosis does not require dephosphorylation. PMID:23303126

  18. ZDHHC3 Tyrosine Phosphorylation Regulates Neural Cell Adhesion Molecule Palmitoylation.

    PubMed

    Lievens, Patricia Marie-Jeanne; Kuznetsova, Tatiana; Kochlamazashvili, Gaga; Cesca, Fabrizia; Gorinski, Natalya; Galil, Dalia Abdel; Cherkas, Volodimir; Ronkina, Natalia; Lafera, Juri; Gaestel, Matthias; Ponimaskin, Evgeni; Dityatev, Alexander

    2016-09-01

    The neural cell adhesion molecule (NCAM) mediates cell-cell and cell-matrix adhesion. It is broadly expressed in the nervous system and regulates neurite outgrowth, synaptogenesis, and synaptic plasticity. Previous in vitro studies revealed that palmitoylation of NCAM is required for fibroblast growth factor 2 (FGF2)-stimulated neurite outgrowth and identified the zinc finger DHHC (Asp-His-His-Cys)-containing proteins ZDHHC3 and ZDHHC7 as specific NCAM-palmitoylating enzymes. Here, we verified that FGF2 controlled NCAM palmitoylation in vivo and investigated molecular mechanisms regulating NCAM palmitoylation by ZDHHC3. Experiments with overexpression and pharmacological inhibition of FGF receptor (FGFR) and Src revealed that these kinases control tyrosine phosphorylation of ZDHHC3 and that ZDHHC3 is phosphorylated by endogenously expressed FGFR and Src proteins. By site-directed mutagenesis, we found that Tyr18 is an FGFR1-specific ZDHHC3 phosphorylation site, while Tyr295 and Tyr297 are specifically phosphorylated by Src kinase in cell-based and cell-free assays. Abrogation of tyrosine phosphorylation increased ZDHHC3 autopalmitoylation, enhanced interaction with NCAM, and upregulated NCAM palmitoylation. Expression of ZDHHC3 with tyrosine mutated in cultured hippocampal neurons promoted neurite outgrowth. Our findings for the first time highlight that FGFR- and Src-mediated tyrosine phosphorylation of ZDHHC3 modulates ZDHHC3 enzymatic activity and plays a role in neuronal morphogenesis. PMID:27247265

  19. Structural basis for Mep2 ammonium transceptor activation by phosphorylation

    PubMed Central

    van den Berg, Bert; Chembath, Anupama; Jefferies, Damien; Basle, Arnaud; Khalid, Syma; Rutherford, Julian C.

    2016-01-01

    Mep2 proteins are fungal transceptors that play an important role as ammonium sensors in fungal development. Mep2 activity is tightly regulated by phosphorylation, but how this is achieved at the molecular level is not clear. Here we report X-ray crystal structures of the Mep2 orthologues from Saccharomyces cerevisiae and Candida albicans and show that under nitrogen-sufficient conditions the transporters are not phosphorylated and present in closed, inactive conformations. Relative to the open bacterial ammonium transporters, non-phosphorylated Mep2 exhibits shifts in cytoplasmic loops and the C-terminal region (CTR) to occlude the cytoplasmic exit of the channel and to interact with His2 of the twin-His motif. The phosphorylation site in the CTR is solvent accessible and located in a negatively charged pocket ∼30 Å away from the channel exit. The crystal structure of phosphorylation-mimicking Mep2 variants from C. albicans show large conformational changes in a conserved and functionally important region of the CTR. The results allow us to propose a model for regulation of eukaryotic ammonium transport by phosphorylation. PMID:27088325

  20. The phosphorylation of troponin I from cardiac muscle.

    PubMed Central

    Cole, H A; Perry, S V

    1975-01-01

    1. Troponin I isolated from fresh cardiac muscle by affinity chromatography contains about 1.9 mol of covalently bound phosphate/mol. Similar preparations of white-skeletal-muscle troponin I contain about 0.5 mol of phosphate/mol. 2. A 3':5'-cyclic AMP-dependent protein kinase and a protein phosphatase are associated with troponin isolated from cardiac muscle. 3. Bovine cardiac 3':5'-cyclic AMP-dependent protein kinase catalyses the phosphorylation of cardiac troponin I 30 times faster than white-skeletal-muscle troponin I. 4. Troponin I is the only component of cardiac troponin phosphorylated at a significant rate by the endogenous or a bovine cardiac 3':5'-cyclic AMP-dependent protein kinase. 5. Phosphorylase kinase catalyses the phosphorylation of cardiac troponin I at similar or slightly faster rates than white-skeletal-muscle troponin I. 6. Troponin C inhibits the phosphorylation of cardiac and skeletal troponin I catalysed by phosphorylase kinase and the phosphorylation of white skeletal troponin I catalysed by 3':5'-cyclic AMP-dependent protein kinase; the phosphorylation of cardiac troponin I catalysed by the latter enzyme is not inhibited. Images Fig. 1. PMID:173290

  1. Protein phosphorylation and its role in archaeal signal transduction.

    PubMed

    Esser, Dominik; Hoffmann, Lena; Pham, Trong Khoa; Bräsen, Christopher; Qiu, Wen; Wright, Phillip C; Albers, Sonja-Verena; Siebers, Bettina

    2016-09-01

    Reversible protein phosphorylation is the main mechanism of signal transduction that enables cells to rapidly respond to environmental changes by controlling the functional properties of proteins in response to external stimuli. However, whereas signal transduction is well studied in Eukaryotes and Bacteria, the knowledge in Archaea is still rather scarce. Archaea are special with regard to protein phosphorylation, due to the fact that the two best studied phyla, the Euryarchaeota and Crenarchaeaota, seem to exhibit fundamental differences in regulatory systems. Euryarchaeota (e.g. halophiles, methanogens, thermophiles), like Bacteria and Eukaryotes, rely on bacterial-type two-component signal transduction systems (phosphorylation on His and Asp), as well as on the protein phosphorylation on Ser, Thr and Tyr by Hanks-type protein kinases. Instead, Crenarchaeota (e.g. acidophiles and (hyper)thermophiles) only depend on Hanks-type protein phosphorylation. In this review, the current knowledge of reversible protein phosphorylation in Archaea is presented. It combines results from identified phosphoproteins, biochemical characterization of protein kinases and protein phosphatases as well as target enzymes and first insights into archaeal signal transduction by biochemical, genetic and polyomic studies. PMID:27476079

  2. Characterisation and properties of homo- and heterogenously phosphorylated nanocellulose.

    PubMed

    Kokol, Vanja; Božič, Mojca; Vogrinčič, Robert; Mathew, Aji P

    2015-07-10

    Nano-sized cellulose ester derivatives having phosphoryl side groups were synthesised by phosphorylation of nanofibrilated cellulose (NFC) and nanocrystaline cellulose (NCC), using different heterogeneous (in water) and homogeneous (in molten urea) processes with phosphoric acid as phosphoryl donor. The phosphorylation mechanism, efficacy, stability, as well as its influence on the NC crystallinity and thermal properties, were evaluated using ATR-FTIR and (13)C NMR spectroscopies, potentiometric titration, capillary electrophoresis, X-ray diffraction, colorimetry, thermogravimmetry and SEM. Phosphorylation under both processes created dibasic phosphate and monobasic tautomeric phosphite groups at C6 and C3 positioned hydroxyls of cellulose, yielded 60-fold (∼1,173 mmol/kg) and 2-fold (∼1.038 mmol/kg) higher surface charge density for p-NFC and p-NCC, respectively, under homogenous conditions. None of the phosphorylations affected neither the NC crystallinity degree nor the structure, and noticeably preventing the derivatives from weight loss during the pyrolysis process. The p-NC showed high hydrolytic stability to water at all pH mediums. Reusing of the treatment bath was examined after the heterogeneous process. PMID:25857987

  3. JNK phosphorylates β-catenin and regulates adherens junctions

    PubMed Central

    Lee, Meng-Horng; Koria, Piyush; Qu, Jun; Andreadis, Stelios T.

    2009-01-01

    The c-Jun amino-terminal kinase (JNK) is an important player in inflammation, proliferation, and apoptosis. More recently, JNK was found to regulate cell migration by phosphorylating paxillin. Here, we report a novel role of JNK in cell adhesion. Specifically, we provide evidence that JNK binds to E-cadherin/β-catenin complex and phosphorylates β-catenin at serine 37 and threonine 41, the sites also phosphorylated by GSK-3β. Inhibition of JNK kinase activity using dominant-negative constructs reduces phosphorylation of β-catenin and promotes localization of E-cadherin/β-catenin complex to cell-cell contact sites. Conversely, activation of JNK induces β-catenin phosphorylation and disruption of cell contacts, which are prevented by JNK siRNA. We propose that JNK binds to β-catenin and regulates formation of adherens junctions, ultimately controlling cell-to-cell adhesion.—Lee, M.-H., Koria, P., Qu, J., Andreadis, S. T. JNK phosphorylates β-catenin and regulates adherens junctions. PMID:19667122

  4. Tyrosine phosphorylation of clathrin heavy chain under oxidative stress.

    PubMed

    Ihara, Yoshito; Yasuoka, Chie; Kageyama, Kan; Wada, Yoshinao; Kondo, Takahito

    2002-09-20

    In mouse pancreatic insulin-producing betaTC cells, oxidative stress due to H(2)O(2) causes tyrosine phosphorylation in various proteins. To identify proteins bearing phosphotyrosine under stress, the proteins were affinity purified using an anti-phosphotyrosine antibody-conjugated agarose column. A protein of 180kDa was identified as clathrin heavy chain (CHC) by electrophoresis and mass spectrometry. Immunoprecipitated CHC showed tyrosine phosphorylation upon H(2)O(2) treatment and the phosphorylation was suppressed by the Src kinase inhibitor, PP2. The phosphorylation status of CHC affected the intracellular localization of CHC and the clathrin-dependent endocytosis of transferrin under oxidative stress. In conclusion, CHC is a protein that is phosphorylated at tyrosine by H(2)O(2) and this phosphorylation status is implicated in the intracellular localization and functions of CHC under oxidative stress. The present study demonstrates that oxidative stress affects intracellular vesicular trafficking via the alteration of clathrin-dependent vesicular trafficking. PMID:12237126

  5. Whose Entropy: A Maximal Entropy Analysis of Phosphorylation Signaling

    NASA Astrophysics Data System (ADS)

    Remacle, F.; Graeber, T. G.; Levine, R. D.

    2011-07-01

    High throughput experiments, characteristic of studies in systems biology, produce large output data sets often at different time points or under a variety of related conditions or for different patients. In several recent papers the data is modeled by using a distribution of maximal information-theoretic entropy. We pose the question: `whose entropy' meaning how do we select the variables whose distribution should be compared to that of maximal entropy. The point is that different choices can lead to different answers. Due to the technological advances that allow for the system-wide measurement of hundreds to thousands of events from biological samples, addressing this question is now part of the analysis of systems biology datasets. The analysis of the extent of phosphorylation in reference to the transformation potency of Bcr-Abl fusion oncogene mutants is used as a biological example. The approach taken seeks to use entropy not simply as a statistical measure of dispersion but as a physical, thermodynamic, state function. This highlights the dilemma of what are the variables that describe the state of the signaling network. Is what matters Boolean, spin-like, variables that specify whether a particular phosphorylation site is or is not actually phosphorylated. Or does the actual extent of phosphorylation matter. Last but not least is the possibility that in a signaling network some few specific phosphorylation sites are the key to the signal transduction even though these sites are not at any time abundantly phosphorylated in an absolute sense.

  6. Tonoplast-Bound Protein Kinase Phosphorylates Tonoplast Intrinsic Protein 1

    PubMed Central

    Johnson, Kenneth D.; Chrispeels, Maarten J.

    1992-01-01

    Tonoplast intrinsic protein (TIP) is a member of a family of putative membrane channels found in bacteria, animals, and plants. Plants have seed-specific, vegetative/reproductive organ-specific, and water-stress-induced forms of TIP. Here, we report that the seed-specific TIP is a phosphoprotein whose phosphorylation can be monitored in vivo by allowing bean cotyledons to take up [32P]orthophosphate and in vitro by incubating purified tonoplasts with γ-labeled [32P]ATP. Characterization of the in vitro phosphorylation of TIP indicates that a membrane-bound protein kinase phosphorylates TIP in a Ca2+-dependent manner. The capacity of the isolated tonoplast membranes to phosphorylate TIP declined markedly during seed germination, and this decline occurred well before the development-mediated decrease in TIP occurs. Phosphoamino acid analysis of purified, radiolabeled TIP showed that serine is the major, if not only, phosphorylated residue, and cyanogen bromide cleavage yielded a single radioactive peptide peak on a reverse-phase high-performance liquid chromatogram. Estimation of the molecular mass of the cyanogen bromide phosphopeptide by laser desorption mass spectroscopy led to its identification as the hydrophilic N-terminal domain of TIP. The putative phosphate-accepting serine residue occurs in a consensus phosphorylation site for serine/threonine protein kinases. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 PMID:16653198

  7. Phospho-oligosaccharide dependent phosphorylation of ATP citrate lyase.

    PubMed

    Puerta, J; Mato, J M; Alemany, S

    1990-01-01

    The effect of insulin on ATP citrate lyase phosphorylation has been shown to be mimicked by a phospho-oligosaccharide in intact adipocytes. We demonstrate that the addition of phospho-oligosaccharide to intact adipocytes enhances the phosphorylation of ATP citrate lyase in the same tryptic peptide as insulin does. The addition of phospho-oligosaccharide to an adipocyte extract also results in an increase in ATP citrate lyase phosphorylation but in a different site than that observed in intact cells. The phospho-oligosaccharide-dependent incorporation of phosphate into ATP citrate lyase in intact cells is resistant to isopropanol and acetic acid, but the phosphoenzyme phosphorylated in cell extracts is acid labile. In cell extracts, the addition of phospho-oligosaccharide markedly inhibits ATP hydrolysis, which may explain the effect of this molecule on ATP citrate lyase phosphorylation in broken cells. These results support the hypothesis that this phospho-oligosaccharide mediates some of the effects of insulin on protein phosphorylation. They also indicate that caution should be exercised in interpreting the results obtained by adding phospho-oligosaccharide to broken cell preparations. PMID:2119547

  8. Cholinergic regulation of protein phosphorylation in bovine adrenal chromaffin cells

    SciTech Connect

    Haycock, J.W.; Browning, M.D.; Greengard, P.

    1988-03-01

    Chromaffin cells were isolated from bovine adrenal medullae and maintained in primary culture. After prelabeling with /sup 32/PO/sub 4/, exposure of the chromaffin cells to acetylcholine increased the phosphorylation of a M/sub r/ approx. = 100,000 protein and a M/sub r/ approx. = 60,000 protein (tyrosine hydroxylase), visualized after separation of total cellular proteins in NaDodSO/sub 4//polyacrylamide gels. Immunoprecipitation with antibodies to three known phosphoproteins (100-kDa, 87-kDa, and protein III) revealed an acetylcholine-dependent phosphorylation of these proteins. These three proteins were also shown to be present in bovine adrenal chromaffin cells by immunolabeling techniques. 100-kDa is a M/sub r/ approx. = 100,000 protein selectively phosphorylated by calcium/calmodulin-dependent protein kinase III, 87-kDa is a M/sub r/ approx. = 87,000 protein selectively phosphorylated by protein kinase C, and protein III is a phosphoprotein doublet of M/sub r/ approx. = 74,000 (IIIa) and M/sub r/ approx. = 55,000 (IIIb) phosphorylated by cAMP-dependent protein kinase and calcium/calmodulin-dependent protein kinase I. The data demonstrate that cholinergic activation of chromaffin cells increases the phosphorylation of several proteins and that several protein kinase systems may be involved in these effects.

  9. Protein phosphorylation in isolated hepatocytes of septic and endotoxemic rats

    SciTech Connect

    Deaciuc, I.V.; Spitzer, J.A. )

    1989-11-01

    The purpose of this study was to investigate possible alterations induced by sepsis and endotoxicosis in the late phase of Ca2+-dependent signaling in rat liver. Hepatocytes isolated from septic or chronically endotoxin (ET)-treated rats were labeled with (32P)H3PO4 and stimulated with various agents. Proteins were resolved by one-dimensional polyacrylamide gel electrophoresis and autoradiographed. Vasopressin (VP)- and phenylephrine (PE)-induced responses were attenuated in both septic and ET-treated rats for cytosolic and membrane proteins compared with their respective controls. Glucagon and 12-O-myristate phorbol-13-acetate (TPA) affected only the phosphorylation of membrane proteins. Glucagon-induced changes in the phosphorylation of membrane proteins were affected by both sepsis and endotoxicosis, whereas TPA-stimulated phosphorylation was lowered only in endotoxicosis. Response to the Ca2+ ionophore A23187 was depressed in septic rats for cytosolic proteins. The phosphorylation of two cytosolic proteins, i.e., 93 and 61 kDa (previously identified as glycogen phosphorylase and pyruvate kinase, respectively), in response to VP, PE, and A23187 was severely impaired by endotoxicosis and sepsis. TPA did not affect the phosphorylation state of these two proteins. The results show that sepsis and endotoxicosis produce perturbations of the phosphorylation step in Ca2+ transmembrane signaling. Such changes can explain alterations of glycogenolysis and gluconeogenesis associated with sepsis and endotoxicosis.

  10. Multisite phosphorylation of spinach leaf sucrose-phosphate synthase

    SciTech Connect

    Huber, J.L.; Huber, S.C. )

    1990-05-01

    Spinach leaf sucrose-phosphate synthase is phosphorylated both in vivo and in vitro on serine residues. Phosphorylation of SPS in vivo yields twelve major phosphopeptides after a tryptic digest and two dimensional mapping. The in vivo labeling of three of these SPS P-peptides is reduced in illuminated leaves where the extracted enzyme is activated relative to that of dark leaves. Two of these inhibitory sites are phosphorylated as well when SPS is inactivated in vitro using ({sup 32}P)ATP. In vivo phosphorylation of two other sites is enhanced during mannose feeding of the leaves (in light or dark) which produces the highest activation state of SPS. Overall, the results confirm that light-dark regulation of SPS activity occurs as a result of regulatory seryl-phosphorylation and involves a balance between phosphorylation of sites which inhibit or stimulate activity. Regulation of the SPS protein kinase that inhibits activity is relatively unaffected by phosphate but inhibited by G1c 6-P (IC{sub 50}{approx}5 mM), which may explain the control of SPS activation state by light-dark signals.

  11. Control of serotonin transporter phosphorylation by conformational state.

    PubMed

    Zhang, Yuan-Wei; Turk, Benjamin E; Rudnick, Gary

    2016-05-17

    Serotonin transporter (SERT) is responsible for reuptake and recycling of 5-hydroxytryptamine (5-HT; serotonin) after its exocytotic release during neurotransmission. Mutations in human SERT are associated with psychiatric disorders and autism. Some of these mutations affect the regulation of SERT activity by cGMP-dependent phosphorylation. Here we provide direct evidence that this phosphorylation occurs at Thr276, predicted to lie near the cytoplasmic end of transmembrane helix 5 (TM5). Using membranes from HeLa cells expressing SERT and intact rat basophilic leukemia cells, we show that agents such as Na(+) and cocaine that stabilize outward-open conformations of SERT decreased phosphorylation and agents that stabilize inward-open conformations (e.g., 5-HT, ibogaine) increased phosphorylation. The opposing effects of the inhibitors cocaine and ibogaine were each reversed by an excess of the other inhibitor. Inhibition of phosphorylation by Na(+) and stimulation by ibogaine occurred at concentrations that induced outward opening and inward opening, respectively, as measured by the accessibility of cysteine residues in the extracellular and cytoplasmic permeation pathways, respectively. The results are consistent with a mechanism of SERT regulation that is activated by the transport of 5-HT, which increases the level of inward-open SERT and may lead to unwinding of the TM5 helix to allow phosphorylation. PMID:27140629

  12. Chemoselective synthesis and analysis of naturally occurring phosphorylated cysteine peptides.

    PubMed

    Bertran-Vicente, Jordi; Penkert, Martin; Nieto-Garcia, Olaia; Jeckelmann, Jean-Marc; Schmieder, Peter; Krause, Eberhard; Hackenberger, Christian P R

    2016-01-01

    In contrast to protein O-phosphorylation, studying the function of the less frequent N- and S-phosphorylation events have lagged behind because they have chemical features that prevent their manipulation through standard synthetic and analytical methods. Here we report on the development of a chemoselective synthetic method to phosphorylate Cys side-chains in unprotected peptides. This approach makes use of a reaction between nucleophilic phosphites and electrophilic disulfides accessible by standard methods. We achieve the stereochemically defined phosphorylation of a Cys residue and verify the modification using electron-transfer higher-energy dissociation (EThcD) mass spectrometry. To demonstrate the use of the approach in resolving biological questions, we identify an endogenous Cys phosphorylation site in IICB(Glc), which is known to be involved in the carbohydrate uptake from the bacterial phosphotransferase system (PTS). This new chemical and analytical approach finally allows further investigating the functions and significance of Cys phosphorylation in a wide range of crucial cellular processes. PMID:27586301

  13. Protein phosphorylation and its role in archaeal signal transduction

    PubMed Central

    Esser, Dominik; Hoffmann, Lena; Pham, Trong Khoa; Bräsen, Christopher; Qiu, Wen; Wright, Phillip C.; Albers, Sonja-Verena; Siebers, Bettina

    2016-01-01

    Reversible protein phosphorylation is the main mechanism of signal transduction that enables cells to rapidly respond to environmental changes by controlling the functional properties of proteins in response to external stimuli. However, whereas signal transduction is well studied in Eukaryotes and Bacteria, the knowledge in Archaea is still rather scarce. Archaea are special with regard to protein phosphorylation, due to the fact that the two best studied phyla, the Euryarchaeota and Crenarchaeaota, seem to exhibit fundamental differences in regulatory systems. Euryarchaeota (e.g. halophiles, methanogens, thermophiles), like Bacteria and Eukaryotes, rely on bacterial-type two-component signal transduction systems (phosphorylation on His and Asp), as well as on the protein phosphorylation on Ser, Thr and Tyr by Hanks-type protein kinases. Instead, Crenarchaeota (e.g. acidophiles and (hyper)thermophiles) only depend on Hanks-type protein phosphorylation. In this review, the current knowledge of reversible protein phosphorylation in Archaea is presented. It combines results from identified phosphoproteins, biochemical characterization of protein kinases and protein phosphatases as well as target enzymes and first insights into archaeal signal transduction by biochemical, genetic and polyomic studies. PMID:27476079

  14. Protein Phosphorylation during Coconut Zygotic Embryo Development1

    PubMed Central

    Islas-Flores, Ignacio; Oropeza, Carlos; Hernández-Sotomayor, S.M. Teresa

    1998-01-01

    Evidence was obtained on the occurrence of protein threonine, serine, and tyrosine (Tyr) kinases in developing coconut (Cocos nucifera L.) zygotic embryos, based on in vitro phosphorylation of proteins in the presence of [γ-32P]ATP, alkaline treatment, and thin-layer chromatography analysis, which showed the presence of [32P]phosphoserine, [32P]phosphothreonine, and [32P]phosphotyrosine in [32P]-labeled protein hydrolyzates. Tyr kinase activity was further confirmed in extracts of embryos at different stages of development using antiphosphotyrosine monoclonal antibodies and the synthetic peptide derived from the amino acid sequence surrounding the phosphorylation site in pp60src (RR-SRC), which is specific for Tyr kinases. Anti-phosphotyrosine western blotting revealed a changing profile of Tyr-phosphorylated proteins during embryo development. Tyr kinase activity, as assayed using RR-SRC, also changed during embryo development, showing two peaks of activity, one during early and another during late embryo development. In addition, the use of genistein, a Tyr kinase inhibitor, diminished the ability of extracts to phosphorylate RR-SRC. Results presented here show the occurrence of threonine, serine, and Tyr kinases in developing coconut zygotic embryos, and suggest that protein phosphorylation, and the possible inference of Tyr phosphorylation in particular, may play a role in the coordination of the development of embryos in this species. PMID:9733545

  15. Structural basis for Mep2 ammonium transceptor activation by phosphorylation.

    PubMed

    van den Berg, Bert; Chembath, Anupama; Jefferies, Damien; Basle, Arnaud; Khalid, Syma; Rutherford, Julian C

    2016-01-01

    Mep2 proteins are fungal transceptors that play an important role as ammonium sensors in fungal development. Mep2 activity is tightly regulated by phosphorylation, but how this is achieved at the molecular level is not clear. Here we report X-ray crystal structures of the Mep2 orthologues from Saccharomyces cerevisiae and Candida albicans and show that under nitrogen-sufficient conditions the transporters are not phosphorylated and present in closed, inactive conformations. Relative to the open bacterial ammonium transporters, non-phosphorylated Mep2 exhibits shifts in cytoplasmic loops and the C-terminal region (CTR) to occlude the cytoplasmic exit of the channel and to interact with His2 of the twin-His motif. The phosphorylation site in the CTR is solvent accessible and located in a negatively charged pocket ∼30 Å away from the channel exit. The crystal structure of phosphorylation-mimicking Mep2 variants from C. albicans show large conformational changes in a conserved and functionally important region of the CTR. The results allow us to propose a model for regulation of eukaryotic ammonium transport by phosphorylation. PMID:27088325

  16. Phosphorylation of bovine rod photoreceptor cyclic GMP phosphodiesterase.

    PubMed Central

    Udovichenko, I P; Cunnick, J; Gonzales, K; Takemoto, D J

    1993-01-01

    The cyclic GMP phosphodiesterase (PDE) of retinal rods plays a key role in phototransduction and consists of two catalytic subunits (PDE alpha and PDE beta) and two identical inhibitory subunits (PDE gamma). Here we report that PDE alpha and PDE gamma are phosphorylated by protein kinase(s) C (PKC) from brain and rod outer segments (ROS). These same two types of PKC also phosphorylate PDE alpha in trypsin-activated PDE (without PDE gamma). In contrast, cyclic-AMP-dependent protein kinase catalytic subunit phosphorylates both PDE alpha and PDE beta, but not PDE gamma. This kinase does not phosphorylate trypsin-activated PDE. The synthetic peptides AKVISNLLGPREAAV (PDE alpha 30-44) and KQRQTRQFKSKPPKK (PDE gamma 31-45) inhibited phosphorylation of PDE by PKC from ROS. These data suggest that sites (at least one for each subunit) for phosphorylation of PDE by PKC are localized in these corresponding regions of PDE alpha and PDE gamma. Isoenzyme-specific PKC antibodies against peptides unique to the alpha, beta, gamma, delta, epsilon and zeta isoforms of protein kinase C were used to show that a major form of PKC in ROS is PKC alpha. However, other minor forms were also present. Images Figure 1 Figure 4 Figure 6 Figure 7 PMID:8216238

  17. In vitro phosphorylation does not influence the aggregation kinetics of WT α-synuclein in contrast to its phosphorylation mutants.

    PubMed

    Schreurs, Sarah; Gerard, Melanie; Derua, Rita; Waelkens, Etienne; Taymans, Jean-Marc; Baekelandt, Veerle; Engelborghs, Yves

    2014-01-01

    The aggregation of alpha-synuclein (α-SYN) into fibrils is characteristic for several neurodegenerative diseases, including Parkinson's disease (PD). Ninety percent of α-SYN deposited in Lewy Bodies, a pathological hallmark of PD, is phosphorylated on serine129. α-SYN can also be phosphorylated on tyrosine125, which is believed to regulate the membrane binding capacity and thus possibly its normal function. A better understanding of the effect of phosphorylation on the aggregation of α-SYN might shed light on its role in the pathogenesis of PD. In this study we compare the aggregation properties of WT α-SYN with the phospho-dead and phospho-mimic mutants S129A, S129D, Y125F and Y125E and in vitro phosphorylated α-SYN using turbidity, thioflavin T and circular dichroism measurements as well as transmission electron microscopy. We show that the mutants S129A and S129D behave similarly compared to wild type (WT) α-SYN, while the mutants Y125F and Y125E fibrillate significantly slower, although all mutants form fibrillar structures similar to the WT protein. In contrast, in vitro phosphorylation of α-SYN on either S129 or Y125 does not significantly affect the fibrillization kinetics. Moreover, FK506 binding proteins (FKBPs), enzymes with peptidyl-prolyl cis-trans isomerase activity, still accelerate the aggregation of phosphorylated α-SYN in vitro, as was shown previously for WT α-SYN. In conclusion, our results illustrate that phosphorylation mutants can display different aggregation properties compared to the more biologically relevant phosphorylated form of α-SYN. PMID:24434619

  18. dimerization and DNA binding alter phosphorylation of Fos and Jun

    SciTech Connect

    Abate, C.; Baker, S.J.; Curran, T. ); Lees-Miller, S.P.; Anderson, C.W. ); Marshak, D.R. )

    1993-07-15

    Fos and Jun form dimeric complexes that bind to activator protein 1 (AP-1) DNA sequences and regulate gene expression. The levels of expression and activities of these proteins are regulated by a variety of extracellular stimuli. They are thought to function in nuclear signal transduction processes in many different cell types. The role of Fos and Jun in gene transcription is complex and may be regulated in several ways including association with different dimerization partners, interactions with other transcription factors, effects on DNA topology, and reduction/oxidation of a conserved cysteine residue in the DNA-binding domain. In addition, phosphorylation has been suggested to control the activity of Fos and Jun. Here the authors show that phosphorylation of Fos and Jun by several protein kinases is affected by dimerization and binding to DNA. Jun homodimers are phosphorylated efficiently by casein kinase II, whereas Fos-Jun heterodimers are not. DNA binding also reduces phosphorylation of Jun by casein kinase II, p34[sup cdc2] (cdc2) kinase, and protein kinase C. Phosphorylation of Fos by cAMP-dependent protein kinase and cdc2 is relatively insensitive to dimerization and DNA binding, whereas phosphorylation of Fos and Jun by DNA-dependent protein kinase is dramatically stimulated by binding to the AP-1 site. These results imply that different protein kinases can distinguish among Fos and Jun proteins in the form of monomers, homodimers, and heterodimers and between DNA-bound and non-DNA-bound proteins. Thus, potentially, these different states of Fos and Jun can be recognized and regulated independently by phosphorylation. 44 refs., 4 figs.

  19. Effects of phosphorylation on function of the Rad GTPase.

    PubMed Central

    Moyers, J S; Zhu, J; Kahn, C R

    1998-01-01

    Rad, Gem and Kir possess unique structural features in comparison with other Ras-like GTPases, including a C-terminal 31-residue extension that lacks typical prenylation motifs. We have recently shown that Rad and Gem bind calmodulin in a Ca2+-dependent manner via this C-terminal extension, involving residues 278-297 in human Rad. This domain also contains several consensus sites for serine phosphorylation, and Rad is complexed with calmodulin-dependent protein kinase II (CaMKII) in C2C12 cells. Here we show that Rad serves as a substrate for phosphorylation by CaMKII, cAMP-dependent protein kinase (PKA), protein kinase C (PKC) and casein kinase II (CKII) with stoichiometries in vitro of 0.2-1.3 mol of phosphate/mol of Rad. By deletion and point mutation analysis we show that phosphorylation by CaMKII and PKA occurs on a single serine residue at position 273, whereas PKC and CKII phosphorylate multiple C-terminal serine residues, including Ser214, Ser257, Ser273, Ser290 and Ser299. Incubation of Rad with PKA decreases GTP binding by 60-70%, but this effect seems to be independent of phosphorylation, as it is observed with the Ser273-->Ala mutant of Rad containing a mutation at the site of PKA phosphorylation. The remainder of the serine kinases have no effect on Rad GTP binding, intrinsic GTP hydrolysis or GTP hydrolysis stimulated by the putative tumour metastasis suppressor nm23. However, phosphorylation of Rad by PKC and CKII abolishes the interaction of Rad with calmodulin. These findings suggest that the binding of Rad to calmodulin, as well as its ability to bind GTP, might be regulated by the activation of several serine kinases. PMID:9677319

  20. Effects of phosphorylation on function of the Rad GTPase.

    PubMed

    Moyers, J S; Zhu, J; Kahn, C R

    1998-08-01

    Rad, Gem and Kir possess unique structural features in comparison with other Ras-like GTPases, including a C-terminal 31-residue extension that lacks typical prenylation motifs. We have recently shown that Rad and Gem bind calmodulin in a Ca2+-dependent manner via this C-terminal extension, involving residues 278-297 in human Rad. This domain also contains several consensus sites for serine phosphorylation, and Rad is complexed with calmodulin-dependent protein kinase II (CaMKII) in C2C12 cells. Here we show that Rad serves as a substrate for phosphorylation by CaMKII, cAMP-dependent protein kinase (PKA), protein kinase C (PKC) and casein kinase II (CKII) with stoichiometries in vitro of 0.2-1.3 mol of phosphate/mol of Rad. By deletion and point mutation analysis we show that phosphorylation by CaMKII and PKA occurs on a single serine residue at position 273, whereas PKC and CKII phosphorylate multiple C-terminal serine residues, including Ser214, Ser257, Ser273, Ser290 and Ser299. Incubation of Rad with PKA decreases GTP binding by 60-70%, but this effect seems to be independent of phosphorylation, as it is observed with the Ser273-->Ala mutant of Rad containing a mutation at the site of PKA phosphorylation. The remainder of the serine kinases have no effect on Rad GTP binding, intrinsic GTP hydrolysis or GTP hydrolysis stimulated by the putative tumour metastasis suppressor nm23. However, phosphorylation of Rad by PKC and CKII abolishes the interaction of Rad with calmodulin. These findings suggest that the binding of Rad to calmodulin, as well as its ability to bind GTP, might be regulated by the activation of several serine kinases. PMID:9677319

  1. Abundant protein phosphorylation potentially regulates Arabidopsis anther development

    PubMed Central

    Ye, Juanying; Zhang, Zaibao; You, Chenjiang; Zhang, Xumin; Lu, Jianan; Ma, Hong

    2016-01-01

    As the male reproductive organ of flowering plants, the stamen consists of the anther and filament. Previous studies on stamen development mainly focused on single gene functions by genetic methods or gene expression changes using comparative transcriptomic approaches, especially in model plants such as Arabidopsis thaliana. However, studies on Arabidopsis anther protein expression and post-translational modifications are still lacking. Here we report proteomic and phosphoproteomic studies on developing Arabidopsis anthers at stages 4–7 and 8–12. We identified 3908 high-confidence phosphorylation sites corresponding to 1637 phosphoproteins. Among the 1637 phosphoproteins, 493 were newly identified, with 952 phosphorylation sites. Phosphopeptide enrichment prior to LC-MS analysis facilitated the identification of low-abundance proteins and regulatory proteins, thereby increasing the coverage of proteomic analysis, and facilitated the analysis of more regulatory proteins. Thirty-nine serine and six threonine phosphorylation motifs were uncovered from the anther phosphoproteome and further analysis supports that phosphorylation of casein kinase II, mitogen-activated protein kinases, and 14-3-3 proteins is a key regulatory mechanism in anther development. Phosphorylated residues were preferentially located in variable protein regions among family members, but they were they were conserved across angiosperms in general. Moreover, phosphorylation might reduce activity of reactive oxygen species scavenging enzymes and hamper brassinosteroid signaling in early anther development. Most of the novel phosphoproteins showed tissue-specific expression in the anther according to previous microarray data. This study provides a community resource with information on the abundance and phosphorylation status of thousands of proteins in developing anthers, contributing to understanding post-translational regulatory mechanisms during anther development. PMID:27531888

  2. Systematic Analysis of Protein Phosphorylation Networks From Phosphoproteomic Data*

    PubMed Central

    Song, Chunxia; Ye, Mingliang; Liu, Zexian; Cheng, Han; Jiang, Xinning; Han, Guanghui; Songyang, Zhou; Tan, Yexiong; Wang, Hongyang; Ren, Jian; Xue, Yu; Zou, Hanfa

    2012-01-01

    In eukaryotes, hundreds of protein kinases (PKs) specifically and precisely modify thousands of substrates at specific amino acid residues to faithfully orchestrate numerous biological processes, and reversibly determine the cellular dynamics and plasticity. Although over 100,000 phosphorylation sites (p-sites) have been experimentally identified from phosphoproteomic studies, the regulatory PKs for most of these sites still remain to be characterized. Here, we present a novel software package of iGPS for the prediction of in vivo site-specific kinase-substrate relations mainly from the phosphoproteomic data. By critical evaluations and comparisons, the performance of iGPS is satisfying and better than other existed tools. Based on the prediction results, we modeled protein phosphorylation networks and observed that the eukaryotic phospho-regulation is poorly conserved at the site and substrate levels. With an integrative procedure, we conducted a large-scale phosphorylation analysis of human liver and experimentally identified 9719 p-sites in 2998 proteins. Using iGPS, we predicted a human liver protein phosphorylation networks containing 12,819 potential site-specific kinase-substrate relations among 350 PKs and 962 substrates for 2633 p-sites. Further statistical analysis and comparison revealed that 127 PKs significantly modify more or fewer p-sites in the liver protein phosphorylation networks against the whole human protein phosphorylation network. The largest data set of the human liver phosphoproteome together with computational analyses can be useful for further experimental consideration. This work contributes to the understanding of phosphorylation mechanisms at the systemic level, and provides a powerful methodology for the general analysis of in vivo post-translational modifications regulating sub-proteomes. PMID:22798277

  3. Integrin Ligation Results in Nephrin Tyrosine Phosphorylation In Vitro

    PubMed Central

    Verma, Rakesh; Venkatareddy, Madhusudan; Kalinowski, Anne; Patel, Sanjeevkumar R.; Garg, Puneet

    2016-01-01

    Nephrin is expressed at the basolateral aspect of podocytes and is an important signaling protein at the glomerular slit diaphragm. In vitro studies have demonstrated that Nephrin phosphorylation-dependent signaling is able to assemble a protein complex that is able to polymerize actin. However, proximal signaling events that result in nephrin tyrosine phosphorylation are not well understood. Nephrin deletion in mice and human nephrin mutations result in developmental failure of the podocyte intercellular junction resutling in proteinuria. This has been presumed to be due to a failure to respond to an external polarized cue in the absence of nephrin or a failure to transduce an outside-in signal in patients with nephrin mutations. The nephrin extracellular domain binds to itself or neph1 across the foot process intercellular junction. Nephrin is tyrosine phosphorylation-silent in healthy glomeruli when presumably the nephrin extracellular domain is in an engaged state. These observations raise the possibility of an alternate proximal signaling mechanism that might be responsible for nephrin tyrosine phosphorylation. Here we present data showing that integrin engagement at the basal aspect of cultured podocytes results in nephrin tyrosine phosphorylation. This is abrogated by incubating podocytes with an antibody that prevents integrin β1 ligation and activation in response to binding to extracellular matrix. Furthermore, nephrin tyrosine phosphorylation was observed in podocytes expressing a membrane-targeted nephrin construct that lacks the extracellular domain. We propose, integrin-activation based signaling might be responsible for nephrin phosphorylation rather than engagment of the nephrin extracellular domain by a ligand. PMID:26848974

  4. Abundant protein phosphorylation potentially regulates Arabidopsis anther development.

    PubMed

    Ye, Juanying; Zhang, Zaibao; You, Chenjiang; Zhang, Xumin; Lu, Jianan; Ma, Hong

    2016-09-01

    As the male reproductive organ of flowering plants, the stamen consists of the anther and filament. Previous studies on stamen development mainly focused on single gene functions by genetic methods or gene expression changes using comparative transcriptomic approaches, especially in model plants such as Arabidopsis thaliana However, studies on Arabidopsis anther protein expression and post-translational modifications are still lacking. Here we report proteomic and phosphoproteomic studies on developing Arabidopsis anthers at stages 4-7 and 8-12. We identified 3908 high-confidence phosphorylation sites corresponding to 1637 phosphoproteins. Among the 1637 phosphoproteins, 493 were newly identified, with 952 phosphorylation sites. Phosphopeptide enrichment prior to LC-MS analysis facilitated the identification of low-abundance proteins and regulatory proteins, thereby increasing the coverage of proteomic analysis, and facilitated the analysis of more regulatory proteins. Thirty-nine serine and six threonine phosphorylation motifs were uncovered from the anther phosphoproteome and further analysis supports that phosphorylation of casein kinase II, mitogen-activated protein kinases, and 14-3-3 proteins is a key regulatory mechanism in anther development. Phosphorylated residues were preferentially located in variable protein regions among family members, but they were they were conserved across angiosperms in general. Moreover, phosphorylation might reduce activity of reactive oxygen species scavenging enzymes and hamper brassinosteroid signaling in early anther development. Most of the novel phosphoproteins showed tissue-specific expression in the anther according to previous microarray data. This study provides a community resource with information on the abundance and phosphorylation status of thousands of proteins in developing anthers, contributing to understanding post-translational regulatory mechanisms during anther development. PMID:27531888

  5. Biotin augments acetyl CoA carboxylase 2 gene expression in the hypothalamus, leading to the suppression of food intake in mice.

    PubMed

    Sone, Hideyuki; Kamiyama, Shin; Higuchi, Mutsumi; Fujino, Kaho; Kubo, Shizuka; Miyazawa, Masami; Shirato, Saya; Hiroi, Yuka; Shiozawa, Kota

    2016-07-29

    It is known that biotin prevents the development of diabetes by increasing the functions of pancreatic beta-cells and improving insulin sensitivity in the periphery. However, its anti-obesity effects such as anorectic effects remain to be clarified. Acetyl CoA carboxylase (ACC), a biotin-dependent enzyme, has two isoforms (ACC1 and ACC2) and serves to catalyze the reaction of acetyl CoA to malonyl CoA. In the hypothalamus, ACC2 increases the production of malonyl CoA, which acts as a satiety signal. In this study, we investigated whether biotin increases the gene expression of ACC2 in the hypothalamus and suppresses food intake in mice administered excessive biotin. Food intake was significantly decreased by biotin, but plasma regulators of appetite, including glucose, ghrelin, and leptin, were not affected. On the other hand, biotin notably accumulated in the hypothalamus and enhanced ACC2 gene expression there, but it did not change the gene expression of ACC1, malonyl CoA decarboxylase (a malonyl CoA-degrading enzyme), and AMP-activated protein kinase α-2 (an ACC-inhibitory enzyme). These findings strongly suggest that biotin potentiates the suppression of appetite by upregulating ACC2 gene expression in the hypothalamus. This effect of biotin may contribute to the prevention of diabetes by biotin treatment. PMID:27181349

  6. In vitro synthesis and processing of a maize chloroplast transcript encoded by the ribulose 1,5-bisphosphate carboxylase large subunit gene.

    PubMed Central

    Hanley-Bowdoin, L; Orozco, E M; Chua, N H

    1985-01-01

    The large subunit gene (rbcL) of ribulose 1,5-bisphosphate carboxylase was transcribed in vitro by using maize and pea chloroplast extracts and a cloned plastid DNA template containing 172 base pairs (bp) of the maize rbcL protein-coding region and 791 bp of upstream sequences. Three major in vitro RNA species were synthesized which correspond to in vivo maize rbcL RNAs with 5' termini positioned 300, 100 to 105, and 63 nucleotides upstream of the protein-coding region. A deletion of 109 bp, including the "-300" 5' end (the 5' end at position -300), depressed all rbcL transcription in vitro. A plasmid DNA containing this 109-bp fragment was sufficient to direct correct transcription initiation in vitro. A cloned template, containing 191 bp of plastid DNA which includes the -105 and -63 rbcL termini, did not support transcription in vitro. Exogenously added -300 RNA could be converted to the -63 transcript by maize chloroplast extract. These results established that the -300 RNA is the primary maize rbcL transcript, the -63 RNA is a processed form of the -300 transcript, and synthesis of the -105 RNA is dependent on the -300 region. The promoter for the maize rbcL gene is located within the 109 bp flanking the -300 site. Mutagenesis of the 109-bp chloroplast sequence 11 bp upstream of the -300 transcription initiation site reduced rbcL promoter activity in vitro. Images PMID:2874479

  7. Electrophoretic Assay for Ribulose 1,5-Bisphosphate Carboxylase/Oxygenase in Guard Cells and Other Leaf Cells of Vicia faba L. 1

    PubMed Central

    Tarczynski, Mitchell C.; Outlaw, William H.; Arold, Norbert; Neuhoff, Volker; Hampp, Rüdiger

    1989-01-01

    The ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) contents of guard cells and other cells of Vicia faba L. leaflet were determined. To prevent proteolysis, proteins of frozen protoplast preparations or of cells excised from freeze-dried leaf were extracted directly in a sodium-dodecyl-sulfate-containing solution, which was heated immediately after sample addition. Protein profiles of the different cell types were obtained by electrophoresis of the extracts and subsequent densitometry of the stained protein bands. About one-third of the protein of palisade parenchyma and of spongy parenchyma was Rubisco large subunit. Using chlorophyll (Chl):protein ratios previously obtained, we calculate mesophyll contained ca. 22 millimoles Rubisco per mole Chl. In contrast, guard-cell protoplast preparations were calculated to contain from 0.7 to 2.2 millimoles Rubisco per mole Chl. The upper end of this range is an overestimate resulting from contamination by mesophyll and to the method of peak integration. Extracts of excised guard cells were calculated to contain 0.05 to 0.17 millimole Rubisco per mole Chl. We conclude that Rubisco is absent, or virtually so, in guard cells of V. faba. PMID:16666669

  8. The MDM2-p53-pyruvate carboxylase signalling axis couples mitochondrial metabolism to glucose-stimulated insulin secretion in pancreatic β-cells.

    PubMed

    Li, Xiaomu; Cheng, Kenneth K Y; Liu, Zhuohao; Yang, Jin-Kui; Wang, Baile; Jiang, Xue; Zhou, Yawen; Hallenborg, Philip; Hoo, Ruby L C; Lam, Karen S L; Ikeda, Yasuhiro; Gao, Xin; Xu, Aimin

    2016-01-01

    Mitochondrial metabolism is pivotal for glucose-stimulated insulin secretion (GSIS) in pancreatic β-cells. However, little is known about the molecular machinery that controls the homeostasis of intermediary metabolites in mitochondria. Here we show that the activation of p53 in β-cells, by genetic deletion or pharmacological inhibition of its negative regulator MDM2, impairs GSIS, leading to glucose intolerance in mice. Mechanistically, p53 activation represses the expression of the mitochondrial enzyme pyruvate carboxylase (PC), resulting in diminished production of the TCA cycle intermediates oxaloacetate and NADPH, and impaired oxygen consumption. The defective GSIS and mitochondrial metabolism in MDM2-null islets can be rescued by restoring PC expression. Under diabetogenic conditions, MDM2 and p53 are upregulated, whereas PC is reduced in mouse β-cells. Pharmacological inhibition of p53 alleviates defective GSIS in diabetic islets by restoring PC expression. Thus, the MDM2-p53-PC signalling axis links mitochondrial metabolism to insulin secretion and glucose homeostasis, and could represent a therapeutic target in diabetes. PMID:27265727

  9. Integration and expression of Sorghum C(4) phosphoenolpyruvate carboxylase and chloroplastic NADP(+)-malate dehydrogenase separately or together in C(3) potato plants(1).

    PubMed

    Beaujean, A; Issakidis-Bourguet, E; Catterou, M; Dubois, F; Sangwan, R S.; Sangwan-Norreel, B S.

    2001-05-01

    We have integrated two cDNAs expressing Sorghum photosynthetic phosphoenolpyruvate carboxylase (C(4)-PEPC) and NADP-malate dehydrogenase (cpMDH), two key enzymes involved in the primary carbon fixation pathway of NADP-malic enzyme-type C(4) plants, separately or together into a C(3) plant (potato). Analysis of the transgenic plants showed a 1.5-fold increase in PEPC and cpMDH activities compared to untransformed plants. Immunolocalization confirmed an increase at the protein level of these two enzymes in the transgenic plants and indicated that the Sorghum cpMDH was specifically addressed to the chloroplasts of potato mesophyll cells. However, integration of either or both of the cDNAs into the potato genome did not appear to significantly modify either tuber starch grain content or the rate of photosynthetic O(2) production compared to control untransformed plants. The low level of transgene expression probably explains the lack of influence on carbon metabolism and photosynthetic rates. This general observation suggests that some complex mechanism may regulate the level of production of foreign C(4) metabolism enzymes in C(3) plants. PMID:11337077

  10. Effect of CO{sub 2} concentration on carbonic anhydrase and ribulose-1,5-bisphosphate carboxylase/oxygenase expression in pea

    SciTech Connect

    Majeau, N.; Coleman, J.R.

    1996-10-01

    The effect of external CO{sub 2} concentration on the expression of carbonic anhydrase (CA) and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) was examined in pea (Pisum sativum cv Little Marvel) leaves. Enzyme activities and their transcript levels were reduced in plants grown at 1000 {mu}L/L CO{sub 2} compared with plants grown in ambient air. Growth at 160 {mu}L/L CO{sub 2} also appeared to reduce steady-state transcript levels for the rbcS, the gene encoding the small subunit of Rubisco, and for ca, the gene encoding CA; however, rbcS transcripts were reduced to a greater extent at this concentration. Rubisco activity was slightly lower in plants grown at 160 {mu}L/L CO{sub 2}, and CA activity was significantly higher than that observed in air-grown plants. Transfer of plants from 1000 {mu}L/L to air levels of CO{sub 2} resulted in a rapid increase in both ca and rbcS transcript abundance in fully expanded leaves, followed by an increase in enzyme activity. Plants transferred from air to high-CO{sub 2} concentrations appeared to modulate transcript abundance and enzyme activity less quickly. Foliar carbohydrate levels were also examined in plants grown continuously at high and ambient CO{sub 2}, and following changes in growth conditions that rapidly altered ca and rbcS transcript abundance and enzyme activities. 39 refs., 2 figs., 3 tabs.

  11. Increased expression of fatty acid synthase and acetyl-CoA carboxylase in the prefrontal cortex and cerebellum in the valproic acid model of autism

    PubMed Central

    Chen, Jianling; Wu, Wei; Fu, Yingmei; Yu, Shunying; Cui, Donghong; Zhao, Min; Du, Yasong; Li, Jijun; Li, Xiaohong

    2016-01-01

    The primary aim of the present study was to investigate alterations in enzymes associated with fatty acid synthesis, namely fatty acid synthase (FASN) and acetyl-CoA carboxylase (ACC), in the prefrontal cortex and cerebellum of the valproic acid (VPA)-induced animal model of autism. In this model, pregnant rats were given a single intraperitoneal injection of VPA, and prefrontal cortex and cerebellum samples from their pups were analyzed. The results of western blotting and reverse transcription-quantitative polymerase chain reaction analyses demonstrated that the protein and mRNA expression levels of FASN, ACC and phospho-ACC (pACC) were increased in the prefrontal cortex and cerebellum of the VPA model of autism. Furthermore, in the prefrontal cortex and cerebellum of the VPA model of autism, AMPK expression is increased, whereas PI3K and Akt expression are unchanged. This suggests that disorder of the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/Akt/FASN and/or adenosine 5′-monophosphate-activated protein kinase (AMPK)/ACC pathway may be involved in the pathogenesis of autism. It is hypothesized that fatty acid synthesis participates in autism through PI3K/Akt/FASN and AMPK/ACC pathways. PMID:27602061

  12. The glossyhead1 Allele of ACC1 Reveals a Principal Role for Multidomain Acetyl-Coenzyme A Carboxylase in the Biosynthesis of Cuticular Waxes by Arabidopsis

    SciTech Connect

    Lu, S.; Xu, C.; Zhao, H.; Parsons, E. P.; Kosma, D. K.; Xu, X.; Chao, D.; Lohrey, G.; Bangarusamy, D. K.; Wang, G.; Bressan, R. A.; Jenks, M. A.

    2011-11-01

    A novel mutant of Arabidopsis (Arabidopsis thaliana), having highly glossy inflorescence stems, postgenital fusion in floral organs, and reduced fertility, was isolated from an ethyl methanesulfonate-mutagenized population and designated glossyhead1 (gsd1). The gsd1 locus was mapped to chromosome 1, and the causal gene was identified as a new allele of Acetyl-Coenzyme A Carboxylase1 (ACC1), a gene encoding the main enzyme in cytosolic malonyl-coenzyme A synthesis. This, to our knowledge, is the first mutant allele of ACC1 that does not cause lethality at the seed or early germination stage, allowing for the first time a detailed analysis of ACC1 function in mature tissues. Broad lipid profiling of mature gsd1 organs revealed a primary role for ACC1 in the biosynthesis of the very-long-chain fatty acids (C{sub 20:0} or longer) associated with cuticular waxes and triacylglycerols. Unexpectedly, transcriptome analysis revealed that gsd1 has limited impact on any lipid metabolic networks but instead has a large effect on environmental stress-responsive pathways, especially senescence and ethylene synthesis determinants, indicating a possible role for the cytosolic malonyl-coenzyme A-derived lipids in stress response signaling.

  13. Evolution of the C4 phosphoenolpyruvate carboxylase promoter of the C4 species Flaveria trinervia: the role of the proximal promoter region

    PubMed Central

    Engelmann, Sascha; Zogel, Corinna; Koczor, Maria; Schlue, Ute; Streubel, Monika; Westhoff, Peter

    2008-01-01

    Background The key enzymes of photosynthetic carbon assimilation in C4 plants have evolved independently several times from C3 isoforms that were present in the C3 ancestral species. The C4 isoform of phosphoenolpyruvate carboxylase (PEPC), the primary CO2-fixing enzyme of the C4 cycle, is specifically expressed at high levels in mesophyll cells of the leaves of C4 species. We are interested in understanding the molecular changes that are responsible for the evolution of this C4-characteristic PEPC expression pattern, and we are using the genus Flaveria (Asteraceae) as a model system. It is known that cis-regulatory sequences for mesophyll-specific expression of the ppcA1 gene of F. trinervia (C4) are located within a distal promoter region (DR). Results In this study we focus on the proximal region (PR) of the ppcA1 promoter of F. trinervia and present an analysis of its function in establishing a C4-specific expression pattern. We demonstrate that the PR harbours cis-regulatory determinants which account for high levels of PEPC expression in the leaf. Our results further suggest that an intron in the 5' untranslated leader region of the PR is not essential for the control of ppcA1 gene expression. Conclusion The allocation of cis-regulatory elements for enhanced expression levels to the proximal region of the ppcA1 promoter provides further insight into the regulation of PEPC expression in C4 leaves. PMID:18208593

  14. Salt stress leads to differential expression of two isogenes of phosphoenolpyruvate carboxylase during Crassulacean acid metabolism induction in the common ice plant.

    PubMed Central

    Cushman, J C; Meyer, G; Michalowski, C B; Schmitt, J M; Bohnert, H J

    1989-01-01

    The common ice plant is a facultative halophyte in which Crassulacean acid metabolism, a metabolic adaptation to arid environments, can be induced by irrigating plants with high levels of NaCl or by drought. This stress-induced metabolic transition is accompanied by up to a 50-fold increase in the activity of phosphoenolpyruvate carboxylase (PEPCase). To analyze the molecular basis of this plant response to water stress, we have isolated and characterized two members of the PEPCase gene family from the common ice plant. The PEPCase isogenes, designated Ppc1 and Ppc2, have conserved intron-exon organizations, are 76.4% identical at the nucleotide sequence level within exons, and encode predicted polypeptides with 83% amino acid identity. Steady-state levels of mRNAs from the two genes differ dramatically when plants are salt-stressed. Transcripts of Ppc1 increase about 30-fold in leaves within 5 days of salt stress. In contrast, steady-state levels of Ppc2 transcripts decrease slightly in leaf tissue over the same stress period. Steady-state levels of transcripts of both genes decrease in roots over 5 days of salt stress. We have used in vitro transcription assays with nuclei isolated from leaves to demonstrate that the increased expression of Ppc1 caused by water stress occurs in part at the transcriptional level. PMID:2535520

  15. Regulating Pyruvate Carboxylase in the Living Culture of Aspergillus Terreus Nrrl 1960 by L-Aspartate for Enhanced Itaconic Acid Production.

    PubMed

    Songserm, Pajareeya; Thitiprasert, Sitanan; Tolieng, Vasana; Piluk, Jiraporn; Tanasupawat, Somboon; Assabumrungrat, Sutthichai; Yang, Shang-Tian; Karnchanatat, Aphichart; Thongchul, Nuttha

    2015-10-01

    Aspergillus terreus was reported as the promising fungal strain for itaconic acid; however, the commercial production suffers from the low yield. Low production yield was claimed as the result of completing the tricarboxylic acid (TCA) cycle towards biomass synthesis while under limiting phosphate and nitrogen; TCA cycle was somewhat shunted and consequently, the metabolite fluxes move towards itaconic acid production route. By regulating enzymes in TCA cycle, it is believed that itaconic acid production can be improved. One of the key responsible enzymes involved in itaconic acid production was triggered in this study. Pyruvate carboxylase was allosterically inhibited by L-aspartate. The presence of 10 mM L-aspartate in the production medium directly repressed PC expression in the living A. terreus while the limited malate flux regulated the malate/citrate antiporters resulting in the increasing cis-aconitate decarboxylase activity to simultaneously convert cis-aconitate, citrate isomer, into itaconic acid. The transport of cis-aconitate via the antiporters induced citrate synthase and 6-phosphofructo-1-kinase activities in response to balance the fluxes of TCA intermediates. Successively, itaconic acid production yield and final concentration could be improved by 8.33 and 60.32 %, respectively, compared to those obtained from the control fermentation with the shortened lag time to produce itaconic acid during the production phase. PMID:26208692

  16. Chloroplast acetyl-CoA carboxylase activity is 2-oxoglutarate–regulated by interaction of PII with the biotin carboxyl carrier subunit

    PubMed Central

    Feria Bourrellier, Ana Belen; Valot, Benoit; Guillot, Alain; Ambard-Bretteville, Françoise; Vidal, Jean; Hodges, Michael

    2009-01-01

    The PII protein is a signal integrator involved in the regulation of nitrogen metabolism in bacteria and plants. Upon sensing of cellular carbon and energy availability, PII conveys the signal by interacting with target proteins, thereby modulating their biological activity. Plant PII is located to plastids; therefore, to identify new PII target proteins, PII-affinity chromatography of soluble extracts from Arabidopsis leaf chloroplasts was performed. Several proteins were retained only when Mg-ATP was present in the binding medium and they were specifically released from the resin by application of a 2-oxoglutarate-containing elution buffer. Mass spectroscopy of SDS/PAGE-resolved protein bands identified the biotin carboxyl carrier protein subunits of the plastidial acetyl-CoA carboxylase (ACCase) and three other proteins containing a similar biotin/lipoyl-binding motif as putative PII targets. ACCase is a key enzyme initiating the synthesis of fatty acids in plastids. In in vitro reconstituted assays supplemented with exogenous ATP, recombinant Arabidopsis PII inhibited chloroplastic ACCase activity, and this was completely reversed in the presence of 2-oxoglutarate, pyruvate, or oxaloacetate. The inhibitory effect was PII-dose-dependent and appeared to be PII-specific because ACCase activity was not altered in the presence of other tested proteins. PII decreased the Vmax of the ACCase reaction without altering the Km for acetyl-CoA. These data show that PII function has evolved between bacterial and plant systems to control the carbon metabolism pathway of fatty acid synthesis in plastids. PMID:20018655

  17. Decreasing the Rate of Metabolic Ketone Reduction in the Discovery of a Clinical Acetyl-CoA Carboxylase Inhibitor for the Treatment of Diabetes

    PubMed Central

    2015-01-01

    Acetyl-CoA carboxylase (ACC) inhibitors offer significant potential for the treatment of type 2 diabetes mellitus (T2DM), hepatic steatosis, and cancer. However, the identification of tool compounds suitable to test the hypothesis in human trials has been challenging. An advanced series of spirocyclic ketone-containing ACC inhibitors recently reported by Pfizer were metabolized in vivo by ketone reduction, which complicated human pharmacology projections. We disclose that this metabolic reduction can be greatly attenuated through introduction of steric hindrance adjacent to the ketone carbonyl. Incorporation of weakly basic functionality improved solubility and led to the identification of 9 as a clinical candidate for the treatment of T2DM. Phase I clinical studies demonstrated dose-proportional increases in exposure, single-dose inhibition of de novo lipogenesis (DNL), and changes in indirect calorimetry consistent with increased whole-body fatty acid oxidation. This demonstration of target engagement validates the use of compound 9 to evaluate the role of DNL in human disease. PMID:25423286

  18. Diversity of ribulose-1,5-bisphosphate carboxylase/oxygenase large-subunit genes in the MgCl2-dominated deep hypersaline anoxic basin discovery.

    PubMed

    van der Wielen, Paul W J J

    2006-06-01

    Partial sequences of the form I (cbbL) and form II (cbbM) of the ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) large subunit genes were obtained from the brine and interface of the MgCl2-dominated deep hypersaline anoxic basin Discovery. CbbL and cbbM genes were found in both brine and interface of the Discovery Basin but were absent in the overlying seawater. The diversity of both genes in the brine and interface was low, which might caused by the extreme saline conditions in Discovery of approximately 5 M MgCl2. None of the retrieved sequences were closely related to sequences deposited in the GenBank database. A phylogenetic analysis demonstrated that the cbbL sequences were affiliated with a Thiobacillus sp. or with one of the RuBisCO genes from Hydrogenovibrio marinus. The cbbM sequences clustered with thiobacilli or formed a new group with no close relatives. The results implicate that bacteria with the potential for carbon dioxide fixation and chemoautotrophy are present in the Discovery Basin. This is the first report demonstrating that RuBisCO genes are present under hypersaline conditions of 5 M MgCl2. PMID:16734797

  19. Decreasing the rate of metabolic ketone reduction in the discovery of a clinical acetyl-CoA carboxylase inhibitor for the treatment of diabetes.

    PubMed

    Griffith, David A; Kung, Daniel W; Esler, William P; Amor, Paul A; Bagley, Scott W; Beysen, Carine; Carvajal-Gonzalez, Santos; Doran, Shawn D; Limberakis, Chris; Mathiowetz, Alan M; McPherson, Kirk; Price, David A; Ravussin, Eric; Sonnenberg, Gabriele E; Southers, James A; Sweet, Laurel J; Turner, Scott M; Vajdos, Felix F

    2014-12-26

    Acetyl-CoA carboxylase (ACC) inhibitors offer significant potential for the treatment of type 2 diabetes mellitus (T2DM), hepatic steatosis, and cancer. However, the identification of tool compounds suitable to test the hypothesis in human trials has been challenging. An advanced series of spirocyclic ketone-containing ACC inhibitors recently reported by Pfizer were metabolized in vivo by ketone reduction, which complicated human pharmacology projections. We disclose that this metabolic reduction can be greatly attenuated through introduction of steric hindrance adjacent to the ketone carbonyl. Incorporation of weakly basic functionality improved solubility and led to the identification of 9 as a clinical candidate for the treatment of T2DM. Phase I clinical studies demonstrated dose-proportional increases in exposure, single-dose inhibition of de novo lipogenesis (DNL), and changes in indirect calorimetry consistent with increased whole-body fatty acid oxidation. This demonstration of target engagement validates the use of compound 9 to evaluate the role of DNL in human disease. PMID:25423286

  20. RNAi knockdown of acetyl-CoA carboxylase gene eliminates jinggangmycin-enhanced reproduction and population growth in the brown planthopper, Nilaparvata lugens

    PubMed Central

    Zhang, Yi-Xin; Ge, Lin-Quan; Jiang, Yi-Ping; Lu, Xiu-Li; Li, Xin; Stanley, David; Song, Qi-Sheng; Wu, Jin-Cai

    2015-01-01

    A major challenge in ecology lies in understanding the coexistence of intraguild species, well documented at the organismal level, but not at the molecular level. This study focused on the effects of the antibiotic, jinggangmycin (JGM), a fungicide widely used in Asian rice agroecosystems, on reproduction of insects within the planthopper guild, including the brown planthopper (BPH) Nilaparvata lugens and the white-backed planthopper (WBPH) Sogatella furcifera, both serious resurgence rice pests. JGM exposure significantly increased BPH fecundity and population growth, but suppressed both parameters in laboratory and field WBPH populations. We used digital gene expression and transcriptomic analyses to identify a panel of differentially expressed genes, including a set of up-regulated genes in JGM-treated BPH, which were down-regulated in JGM-treated WBPH. RNAi silencing of Acetyl Co-A carboxylase (ACC), highly expressed in JGM-treated BPH, reduced ACC expression (by > 60%) and eliminated JGM-induced fecundity increases in BPH. These findings support our hypothesis that differences in ACC expression separates intraguild species at the molecular level. PMID:26482193

  1. Modification of the Host Cell Lipid Metabolism Induced by Hypolipidemic Drugs Targeting the Acetyl Coenzyme A Carboxylase Impairs West Nile Virus Replication

    PubMed Central

    Merino-Ramos, Teresa; Vázquez-Calvo, Ángela; Casas, Josefina; Sobrino, Francisco; Saiz, Juan-Carlos

    2015-01-01

    West Nile virus (WNV) is a neurotropic flavivirus transmitted by the bite of mosquitoes that causes meningitis and encephalitis in humans, horses, and birds. Several studies have highlighted that flavivirus infection is highly dependent on cellular lipids for virus replication and infectious particle biogenesis. The first steps of lipid synthesis involve the carboxylation of acetyl coenzyme A (acetyl-CoA) to malonyl-CoA that is catalyzed by the acetyl-CoA carboxylase (ACC). This makes ACC a key enzyme of lipid synthesis that is currently being evaluated as a therapeutic target for different disorders, including cancers, obesity, diabetes, and viral infections. We have analyzed the effect of the ACC inhibitor 5-(tetradecyloxy)-2-furoic acid (TOFA) on infection by WNV. Lipidomic analysis of TOFA-treated cells confirmed that this drug reduced the cellular content of multiple lipids, including those directly implicated in the flavivirus life cycle (glycerophospholipids, sphingolipids, and cholesterol). Treatment with TOFA significantly inhibited the multiplication of WNV in a dose-dependent manner. Further analysis of the antiviral effect of this drug showed that the inhibitory effect was related to a reduction of viral replication. Furthermore, treatment with another ACC inhibitor, 3,3,14,14-tetramethylhexadecanedioic acid (MEDICA 16), also inhibited WNV infection. Interestingly, TOFA and MEDICA 16 also reduced the multiplication of Usutu virus (USUV), a WNV-related flavivirus. These results point to the ACC as a druggable cellular target suitable for antiviral development against WNV and other flaviviruses. PMID:26503654

  2. An unusual insertion/deletion in the gene encoding the. beta. -subunit of propionyl-CoA carboxylase is a frequent mutation in Caucasian propionic acidemia

    SciTech Connect

    Tahara, T.; Kraus, J.P.; Rosenberg, L.E. )

    1990-02-01

    Propionic acidemia is an inherited disorder of organic acid metabolism that is caused by deficiency of propionly-CoA carboxylase. Affected patients fall into two complementation groups, pccA and pccBC (subgroups B, C, and BC), resulting from deficiency of the nonidentical {alpha} and {beta} subunits of PCC, respectively. The authors have detected an unusual insertion/deletion in the DNA of patients from the pccBC and pccC subgroups that replaces 14 nucleotides in the coding sequence of the {beta} subunit with 12 nucleotides unrelated to this region of the gene. Among 14 unrelated Caucasian patients in the pccBc complementation group, this unique mutation was found in 8 of 28 mutant alleles examined. Mutant allele-specific oligonucleotide hybridization to amplified genomic DNAs revealed that the inserted 12 nucleotides do not originate in an {approx}1000-bp region around the mutation. In the course of the investigation, they identified another mutation in the same exon: a 3-bp in-frame deletion that eliminates one of two isoleucine codons immediately preceding the Msp I site. Two unrelated patients were compound heterozygotes for this single-codon deletion and for the insertion/deletion described above. They conclude that either there is a propensity for the PCC {beta}-subunit gene to undergo mutations of this sort at this position or, more likely, the mutations in all of the involved Caucasian patients have a common origin in preceding generations.

  3. Decreasing the Rate of Metabolic Ketone Reduction in the Discovery of a Clinical Acetyl-CoA Carboxylase Inhibitor for the Treatment of Diabetes

    SciTech Connect

    Griffith, David A.; Kung, Daniel W.; Esler, William P.; Amor, Paul A.; Bagley, Scott W.; Beysen, Carine; Carvajal-Gonzalez, Santos; Doran, Shawn D.; Limberakis, Chris; Mathiowetz, Alan M.; McPherson, Kirk; Price, David A.; Ravussin, Eric; Sonnenberg, Gabriele E.; Southers, James A.; Sweet, Laurel J.; Turner, Scott M.; Vajdos, Felix F.

    2014-12-26

    We found that Acetyl-CoA carboxylase (ACC) inhibitors offer significant potential for the treatment of type 2 diabetes mellitus (T2DM), hepatic steatosis, and cancer. However, the identification of tool compounds suitable to test the hypothesis in human trials has been challenging. An advanced series of spirocyclic ketone-containing ACC inhibitors recently reported by Pfizer were metabolized in vivo by ketone reduction, which complicated human pharmacology projections. Here, we disclose that this metabolic reduction can be greatly attenuated through introduction of steric hindrance adjacent to the ketone carbonyl. Incorporation of weakly basic functionality improved solubility and led to the identification of 9 as a clinical candidate for the treatment of T2DM. Phase I clinical studies demonstrated dose-proportional increases in exposure, single-dose inhibition of de novo lipogenesis (DNL), and changes in indirect calorimetry consistent with increased whole-body fatty acid oxidation. This demonstration of target engagement validates the use of compound 9 to evaluate the role of DNL in human disease.

  4. Evidence for effects on the in vivo activity of ribulose-bisphosphate carboxylase/oxygenase during development of Mn toxicity in tobacco. [Nicotiana tabacum L. cv KY14

    SciTech Connect

    Houtz, R.L.; Nable, R.O.; Cheniae, G.M. )

    1988-04-01

    The progressive decrease in net photosynthesis accompanying development of Mn toxicity in young leaves of burley tobacco (Nicotiana tabacum L. cv KY 14) is a result of effects on in vivo activity of ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase (rubisco, EC 4.1.1.39). This conclusion is supported by: (a) decrease in rates of CO{sub 2} depletion during measurements of CO{sub 2} compensation, (b) increase in leaf RuBP concentrations, (c) progressive decreases in rate-constants of RuBP loss (light to dark transition analyses) with progressive increases of leaf Mn concentrations, and (d) restoration of diminished rates of net photosynthesis to control rates by elevated CO{sub 2} (5%). Moreover, elevated CO{sub 2} (1100 microliters per liter) during culture of Mn-treated plants decreased elevated RuBP concentrations to control levels and alleviated foliar symptoms of Mn toxicity. These effects of Mn toxicity on in vivo activity of rubisco were not expressed by in vitro kinetic analyses of rubisco prepared under conditions to sequester Mn or to adsorb polyphenols or their oxidation products. Similarly, the in vitro activity of fructose bisphosphatase (EC 3.1.3.11) was unaffected by Mn toxicity.

  5. The MDM2–p53–pyruvate carboxylase signalling axis couples mitochondrial metabolism to glucose-stimulated insulin secretion in pancreatic β-cells

    PubMed Central

    Li, Xiaomu; Cheng, Kenneth K. Y.; Liu, Zhuohao; Yang, Jin-Kui; Wang, Baile; Jiang, Xue; Zhou, Yawen; Hallenborg, Philip; Hoo, Ruby L. C.; Lam, Karen S. L.; Ikeda, Yasuhiro; Gao, Xin; Xu, Aimin

    2016-01-01

    Mitochondrial metabolism is pivotal for glucose-stimulated insulin secretion (GSIS) in pancreatic β-cells. However, little is known about the molecular machinery that controls the homeostasis of intermediary metabolites in mitochondria. Here we show that the activation of p53 in β-cells, by genetic deletion or pharmacological inhibition of its negative regulator MDM2, impairs GSIS, leading to glucose intolerance in mice. Mechanistically, p53 activation represses the expression of the mitochondrial enzyme pyruvate carboxylase (PC), resulting in diminished production of the TCA cycle intermediates oxaloacetate and NADPH, and impaired oxygen consumption. The defective GSIS and mitochondrial metabolism in MDM2-null islets can be rescued by restoring PC expression. Under diabetogenic conditions, MDM2 and p53 are upregulated, whereas PC is reduced in mouse β-cells. Pharmacological inhibition of p53 alleviates defective GSIS in diabetic islets by restoring PC expression. Thus, the MDM2–p53–PC signalling axis links mitochondrial metabolism to insulin secretion and glucose homeostasis, and could represent a therapeutic target in diabetes. PMID:27265727

  6. Quantitative analyses of ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) large-subunit genes (cbbL) in typical paddy soils.

    PubMed

    Xiao, Ke-Qing; Bao, Peng; Bao, Qiong-Li; Jia, Yan; Huang, Fu-Yi; Su, Jian-Qiang; Zhu, Yong-Guan

    2014-01-01

    The Calvin cycle is known to be the major pathway for CO2 fixation, but our current understanding of its occurrence and importance in paddy soils is poor. In this study, the diversity of three ribulose-1,5-bisphosphate carboxylase/oxygenase large-subunit genes (cbbLG, cbbLR, cbbM) was investigated by clone library, T-RFLP, qPCR, and enzyme assay in five paddy soils in China. The cbbLG sequences revealed a relatively low level of diversity and were mostly related to the sequences of species from Thiobacillus. In contrast, highly diverse cbbLR and cbbM sequences were dispersed on the phylogenetic trees, and most of them were distantly related to known sequences, even forming separate clusters. Abundances of three cbbL genes ranged from 10(6) to 10(9) copies g(-1) soil, and cbbLR outnumbered cbbM and cbbLG in all soil samples, indicating that cbbLR may play a more important role than other two cbbL genes. Soil properties significantly influenced cbbL diversity in five paddy soils, of which clay content, C/N ratio, CEC, pH, and SOC correlated well with variations in microbial composition and abundance. In summary, this study provided a comparison of three cbbL genes, advancing our understanding of their role in carbon sequestration and nutrient turnover in the paddy soil. PMID:24024547

  7. Residues in three conserved regions of the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase are required for quaternary structure

    SciTech Connect

    Fitchen, J.H.; McIntosh, L. ); Knight, S.; Andersson, I.; Branden, C.I. )

    1990-08-01

    To explore the role of individual residues in the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase, small subunits with single amino acid substitutions in three regions of relative sequence conservation were produced by directed mutagenesis of the rbcS gene from Anabaena 7120. These altered small subunits were cosythesized with large subunits (from an expressed Anabaena rbcL gene) in Escherichia coli. Mutants were analyzed for effects on quaternary structure and catalytic activity. Changing Glu-13S (numbering used is that of the spinach enzyme) to Val, Trp-67S to Arg, Pro-73S to His, or Tyr-98S to Asn prevented accumulation of stable holoenzyme. Interpretation of these results using a model for the three-dimensional structure of the spinach enzyme based on x-ray crystallographic data suggests that our small subunit mutants containing substitutions at positions 13S and 67S probably do not assemble because of mispairing or nonpairing of charged residues on the interfacing surfaces of the large and small subunits. The failure of small subunits substituted at positions 73S or 98S to assemble correctly may result from disruption of intersubunit or intrasubunit hydrophobic pockets, respectively.

  8. [Effect of co-expression of nicotinic acid phosphoribosyl transferase and pyruvate carboxylase on succinic acid production in Escherichia coli BA002].

    PubMed

    Cao, Weijia; Gou, Dongmei; Liang, Liya; Liu, Rongming; Chen, Kequan; Ma, Jiangfeng; Jiang, Min

    2013-12-01

    Escherichia coli BA002, in which the ldhA and pflB genes are deleted, cannot utilize glucose anaerobically due to the inability to regenerate NAD+. To restore glucose utilization, overexpression of nicotinic acid phosphoribosyltransferase (NAPRTase) encoded by the pncB gene, a rate-limiting enzyme of NAD(H) synthesis pathway, resulted in a significant increase in cell mass and succinate production under anaerobic conditions. However, a high concentration of pyruvate was accumulated. Thus, co-expression of NAPRTase and the heterologous pyruvate carboxylase (PYC) of Lactococcus lactis subsp. cremoris NZ9000 in recombinant E. coli BA016 was investigated. Results in 3 L fermentor showed that OD600 is 4.64 and BA016 consumed 35.00 g/L glucose and produced 25.09 g/L succinate after 112 h under anaerobic conditions. Overexpression of pncB and pyc in BA016, the accumulation of pyruvic acid was further decreased, and the formation of succinic acid was further increased. PMID:24660633

  9. Expression of glnB and a glnB-Like Gene (glnK) in a Ribulose Bisphosphate Carboxylase/Oxygenase-Deficient Mutant of Rhodobacter sphaeroides

    PubMed Central

    Qian, Yilei; Tabita, F. Robert

    1998-01-01

    In a ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO)-deficient mutant of Rhodobacter sphaeroides, strain 16PHC, nitrogenase activity was derepressed in the presence of ammonia under photoheterotrophic growth conditions. Previous studies also showed that reintroduction of a functional RubisCO and Calvin-Benson-Bassham (CBB) pathway suppressed the deregulation of nitrogenase synthesis in this strain. In this study, the derepression of nitrogenase synthesis in the presence of ammonia in strain 16PHC was further explored by using a glnB::lacZ fusion, since the product of the glnB gene is known to have a negative effect on ammonia-regulated nif control. It was found that glnB expression was repressed in strain 16PHC under photoheterotrophic growth conditions with either ammonia or glutamate as the nitrogen source; glutamine synthetase (GS) levels were also affected in this strain. However, when cells regained a functional CBB pathway by trans complementation of the deleted genes, wild-type levels of GS and glnB expression were restored. Furthermore, a glnB-like gene, glnK, was isolated from this organism, and its expression was found to be under tight nitrogen control in the wild type. Surprisingly, glnK expression was found to be derepressed in strain 16PHC under photoheterotrophic conditions in the presence of ammonia. PMID:9721307

  10. Posttranslational Modifications in the Amino- Terminal Region of the Large Subunit of Ribulose- 1,5-Bisphosphate Carboxylase/Oxygenase from Several Plant Species 1

    PubMed Central

    Houtz, Robert L.; Poneleit, Loelle; Jones, Samantha B.; Royer, Malcolm; Stults, John T.

    1992-01-01

    A combination of limited tryptic proteolysis, reverse phasehigh performance liquid chromatography, Edman degradative sequencing, amino acid analysis, and fast-atom bombardment mass-spectrometry was used to remove and identify the first 14 to 18 N-terminal amino acid residues of the large subunit of higher plant-type ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) from Chlamydomonas reinhardtii, Marchantia polymorpha, pea (Pisum sativum), tomato (Lycopersicon esculentum), potato (Solanum tuberosum), pepper (Capsicum annuum), soybean (Glycine max), petunia (Petunia x hybrida), cowpea (Vigna sinensis), and cucumber (Cucumis sativus) plants. The N-terminal tryptic peptide from acetylated Pro-3 to Lys-8 of the large subunit of Rubisco was identical in all species, but the amino acid sequence of the penultimate N-terminal tryptic peptide varied. Eight of the 10 species examined contained a trimethyllysyl residue at position 14 in the large subunit of Rubisco, whereas Chlamydomonas and Marchantia contained an unmodified lysyl residue at this position. ImagesFigure 1 PMID:16668742

  11. Nuclear-Cytoplasmic Conflict in Pea (Pisum sativum L.) Is Associated with Nuclear and Plastidic Candidate Genes Encoding Acetyl-CoA Carboxylase Subunits

    PubMed Central

    Bogdanova, Vera S.; Zaytseva, Olga O.; Mglinets, Anatoliy V.; Shatskaya, Natalia V.; Kosterin, Oleg E.; Vasiliev, Gennadiy V.

    2015-01-01

    In crosses of wild and cultivated peas (Pisum sativum L.), nuclear-cytoplasmic incompatibility frequently occurs manifested as decreased pollen fertility, male gametophyte lethality, sporophyte lethality. High-throughput sequencing of plastid genomes of one cultivated and four wild pea accessions differing in cross-compatibility was performed. Candidate genes for involvement in the nuclear-plastid conflict were searched in the reconstructed plastid genomes. In the annotated Medicago truncatula genome, nuclear candidate genes were searched in the portion syntenic to the pea chromosome region known to harbor a locus involved in the conflict. In the plastid genomes, a substantial variability of the accD locus represented by nucleotide substitutions and indels was found to correspond to the pattern of cross-compatibility among the accessions analyzed. Amino acid substitutions in the polypeptides encoded by the alleles of a nuclear locus, designated as Bccp3, with a complementary function to accD, fitted the compatibility pattern. The accD locus in the plastid genome encoding beta subunit of the carboxyltransferase of acetyl-coA carboxylase and the nuclear locus Bccp3 encoding biotin carboxyl carrier protein of the same multi-subunit enzyme were nominated as candidate genes for main contribution to nuclear-cytoplasmic incompatibility in peas. Existence of another nuclear locus involved in the accD-mediated conflict is hypothesized. PMID:25789472

  12. Identification and sequence analysis of Escherichia coli purE and purK genes encoding 5'-phosphoribosyl-5-amino-4-imidazole carboxylase for de novo purine biosynthesis.

    PubMed Central

    Watanabe, W; Sampei, G; Aiba, A; Mizobuchi, K

    1989-01-01

    It has been shown that the Escherichia coli purE locus specifying 5'-phosphoribosyl-5-amino-4-imidazole carboxylase in de novo purine nucleotide synthesis is divided into two cistrons. We cloned and determined a 2,449-nucleotide sequence including the purE locus. This sequence contains two overlapped open reading frames, ORF-18 and ORF-39, encoding proteins with molecular weights of 18,000 and 39,000, respectively. The purE mutations of CSH57A and DCSP22 were complemented by plasmids carrying ORF-18, while that of NK6051 was complemented by plasmids carrying ORF-39. Thus, the purE locus consists of two distinct genes, designated purE and purK for ORF-18 and ORF-39, respectively. These genes constitute a single operon. A highly conserved 16-nucleotide sequence, termed the PUR box, was found in the upstream region of purE by comparing the sequences of the purF and purMN operons. We also found three entire and one partial repetitive extragenic palindromic (REP) sequences in the downstream region of purK. Roles of the PUR box and REP sequences are discussed in relation to the genesis of the purEK operon. Images PMID:2644189

  13. Tyrosine Phosphorylation in Toll-Like Receptor Signaling

    PubMed Central

    Chattopadhyay, Saurabh; Sen, Ganes C.

    2014-01-01

    There is a wealth of knowledge about how different Ser/Thr protein kinases participate in Toll-like receptor (TLR) signaling. In many cases, we know the identities of the Ser/Thr residues of various components of the TLR-signaling pathways that are phosphorylated, the functional consequences of the phosphorylation and the responsible protein kinases. In contrast, the analysis of Tyr-phosphorylation of TLRs and their signaling proteins is currently incomplete, because several existing analyses are not systematic or they do not rely on robust experimental data. Nevertheless, it is clear that many TLRs require, for signaling, ligand-dependent phosphorylation of specific Tyr residues in their cytoplasmic domains; the list includes TLR2, TLR3, TLR4, TLR5, TLR8 and TLR9. In this article, we discuss the current status of knowledge on the effect of Tyr-phosphorylation of TLRs and their signaling proteins on their biochemical and biological functions, the possible identities of the relevant protein tyrosine kinases (PTKs) and the nature of regulations of PTK-mediated activation of TLR signaling pathways. PMID:25022196

  14. A phosphorylated pseudokinase complex controls cell wall synthesis in mycobacteria.

    PubMed

    Gee, Christine L; Papavinasasundaram, Kadamba G; Blair, Sloane R; Baer, Christina E; Falick, Arnold M; King, David S; Griffin, Jennifer E; Venghatakrishnan, Harene; Zukauskas, Andrew; Wei, Jun-Rong; Dhiman, Rakesh K; Crick, Dean C; Rubin, Eric J; Sassetti, Christopher M; Alber, Tom

    2012-01-24

    Prokaryotic cell wall biosynthesis is coordinated with cell growth and division, but the mechanisms regulating this dynamic process remain obscure. Here, we describe a phosphorylation-dependent regulatory complex that controls peptidoglycan (PG) biosynthesis in Mycobacterium tuberculosis. We found that PknB, a PG-responsive Ser-Thr protein kinase (STPK), initiates complex assembly by phosphorylating a kinase-like domain in the essential PG biosynthetic protein, MviN. This domain was structurally diverged from active kinases and did not mediate phosphotransfer. Threonine phosphorylation of the pseudokinase domain recruited the FhaA protein through its forkhead-associated (FHA) domain. The crystal structure of this phosphorylated pseudokinase-FHA domain complex revealed the basis of FHA domain recognition, which included unexpected contacts distal to the phosphorylated threonine. Conditional degradation of these proteins in mycobacteria demonstrated that MviN was essential for growth and PG biosynthesis and that FhaA regulated these processes at the cell poles and septum. Controlling this spatially localized PG regulatory complex is only one of several cellular roles ascribed to PknB, suggesting that the capacity to coordinate signaling across multiple processes is an important feature conserved between eukaryotic and prokaryotic STPK networks. PMID:22275220

  15. A Phosphorylated Pseudokinase Complex Controls Cell Wall Synthesis in Mycobacteria

    PubMed Central

    Gee, Christine L.; Papavinasasundaram, Kadamba G.; Blair, Sloane R.; Baer, Christina E.; Falick, Arnold M.; King, David S.; Griffin, Jennifer E.; Venghatakrishnan, Harene; Zukauskas, Andrew; Wei, Jun-Rong; Dhiman, Rakesh K.; Crick, Dean C.; Rubin, Eric J.; Sassetti, Christopher M.; Alber, Tom

    2013-01-01

    Prokaryotic cell wall biosynthesis is coordinated with cell growth and division, but the mechanisms regulating this dynamic process remain obscure. Here, we describe a phosphorylation-dependent regulatory complex that controls peptidoglycan (PG) biosynthesis in Mycobacterium tuberculosis. We found that PknB, a PG-responsive Ser-Thr protein kinase (STPK), initiates complex assembly by phosphorylating a kinase-like domain in the essential PG biosynthetic protein, MviN. This domain was structurally diverged from active kinases and did not mediate phosphotransfer. Threonine phosphorylation of the pseudokinase domain recruited the FhaA protein through its forkhead-associated (FHA) domain. The crystal structure of this phosphorylated pseudokinase–FHA domain complex revealed the basis of FHA domain recognition, which included unexpected contacts distal to the phosphorylated threonine. Conditional degradation of these proteins in mycobacteria demonstrated that MviN was essential for growth and PG biosynthesis and that FhaA regulated these processes at the cell poles and septum. Controlling this spatially localized PG regulatory complex is only one of several cellular roles ascribed to PknB, suggesting that the capacity to coordinate signaling across multiple processes is an important feature conserved between eukaryotic and prokaryotic STPK networks. PMID:22275220

  16. Determining in vivo Phosphorylation Sites using Mass Spectrometry

    PubMed Central

    Breitkopf, Susanne B.; Asara, John M.

    2012-01-01

    Phosphorylation is the most studied protein post-translational modification (PTM) in biological systems since it controls cell growth, proliferation, survival, etc. High resolution/high mass accuracy mass spectrometers are used to identify protein phosphorylation sites due to their speed, sensitivity, selectivity and throughput. The protocol described here focuses on two common strategies: 1) Identifying phosphorylation sites from individual proteins and small protein complexes, and 2) Identifying global phosphorylation sites from whole cell and tissue extracts. For the first, endogenous or epitope tagged proteins are typically immunopurified (IP) from cell lysates, purified via gel electrophoresis or precipitation and enzymatically digested into peptides. Samples can be optionally enriched for phosphopeptides using immobilized metal affinity chromatography (IMAC) or titanium dioxide (TiO2) and then analyzed by microcapillary liquid chromatography/tandem mass spectrometry (LC-MS/MS). Global phosphorylation site analyses that capture pSer/pThr/pTyr sites from biological sources sites are more resource and time-consuming and involve digesting the whole cell lysate, followed by peptide fractionation by strong cation exchange chromatography (SCX), phosphopeptide enrichment by IMAC or TiO2 and LC-MS/MS. Alternatively, one can fractionate the protein lysate by SDS-PAGE, followed by digestion, phosphopeptide enrichment and LC-MS/MS. One can also IP only phospho-tyrosine peptides using a pTyr antibody followed by LC-MS/MS. PMID:22470061

  17. XGef Mediates Early CPEB Phosphorylation during Xenopus Oocyte Meiotic Maturation

    PubMed Central

    Martínez, Susana E.; Yuan, Lei; Lacza, Charlemagne; Ransom, Heather; Mahon, Gwendolyn M.; Whitehead, Ian P.; Hake, Laura E.

    2005-01-01

    Polyadenylation-induced translation is an important regulatory mechanism during metazoan development. During Xenopus oocyte meiotic progression, polyadenylation-induced translation is regulated by CPEB, which is activated by phosphorylation. XGef, a guanine exchange factor, is a CPEB-interacting protein involved in the early steps of progesterone-stimulated oocyte maturation. We find that XGef influences early oocyte maturation by directly influencing CPEB function. XGef and CPEB interact during oogenesis and oocyte maturation and are present in a c-mos messenger ribonucleoprotein (mRNP). Both proteins also interact directly in vitro. XGef overexpression increases the level of CPEB phosphorylated early during oocyte maturation, and this directly correlates with increased Mos protein accumulation and acceleration of meiotic resumption. To exert this effect, XGef must retain guanine exchange activity and the interaction with CPEB. Overexpression of a guanine exchange deficient version of XGef, which interacts with CPEB, does not enhance early CPEB phosphorylation. Overexpression of a version of XGef that has significantly reduced interaction with CPEB, but retains guanine exchange activity, decreases early CPEB phosphorylation and delays oocyte maturation. Injection of XGef antibodies into oocytes blocks progesterone-induced oocyte maturation and early CPEB phosphorylation. These findings indicate that XGef is involved in early CPEB activation and implicate GTPase signaling in this process. PMID:15635100

  18. Site-specific Proteasome Phosphorylation Controls Cell Proliferation and Tumorigenesis

    PubMed Central

    Guo, Xing; Wang, Xiaorong; Wang, Zhiping; Banerjee, Sourav; Yang, Jing; Huang, Lan; Dixon, Jack E.

    2015-01-01

    Despite the fundamental importance of proteasomal degradation in cells, little is known about whether and how the 26S proteasome itself is regulated in coordination with various physiological processes. Here we show that the proteasome is dynamically phosphorylated during cell cycle at Thr25 of the 19S subunit Rpt3. CRISPR/Cas9-mediated genome editing, RNA interference and biochemical studies demonstrate that blocking Rpt3-Thr25 phosphorylation markedly impairs proteasome activity and impedes cell proliferation. Through a kinome-wide screen, we have identified dual-specificity tyrosine-regulated kinase 2 (DYRK2) as the primary kinase that phosphorylates Rpt3-Thr25, leading to enhanced substrate translocation and degradation. Importantly, loss of the single phosphorylation of Rpt3-Thr25 or knockout of DYRK2 significantly inhibits tumor formation by proteasome-addicted human breast cancer cells in mice. These findings define an important mechanism for proteasome regulation and demonstrate the biological significance of proteasome phosphorylation in regulating cell proliferation and tumorigenesis. PMID:26655835

  19. Phosphorylation of Cysteine String Protein Triggers a Major Conformational Switch.

    PubMed

    Patel, Pryank; Prescott, Gerald R; Burgoyne, Robert D; Lian, Lu-Yun; Morgan, Alan

    2016-08-01

    Cysteine string protein (CSP) is a member of the DnaJ/Hsp40 chaperone family that localizes to neuronal synaptic vesicles. Impaired CSP function leads to neurodegeneration in humans and model organisms as a result of misfolding of client proteins involved in neurotransmission. Mammalian CSP is phosphorylated in vivo on Ser10, and this modulates its protein interactions and effects on neurotransmitter release. However, there are no data on the structural consequences of CSP phosphorylation to explain these functional effects. We show that Ser10 phosphorylation causes an order-to-disorder transition that disrupts CSP's extreme N-terminal α helix. This triggers the concomitant formation of a hairpin loop stabilized by ionic interactions between phosphoSer10 and the highly conserved J-domain residue, Lys58. These phosphorylation-induced effects result in significant changes to CSP conformation and surface charge distribution. The phospho-switch revealed here provides structural insight into how Ser10 phosphorylation modulates CSP function and also has potential implications for other DnaJ phosphoproteins. PMID:27452402

  20. Control of Host Cell Phosphorylation by Legionella Pneumophila

    PubMed Central

    Haenssler, Eva; Isberg, Ralph R.

    2011-01-01

    Phosphorylation is one of the most frequent modifications in intracellular signaling and is implicated in many processes ranging from transcriptional control to signal transduction in innate immunity. Many pathogens modulate host cell phosphorylation pathways to promote growth and establish an infectious disease. The intracellular pathogen Legionella pneumophila targets and exploits the host phosphorylation system throughout the infection cycle as part of its strategy to establish an environment beneficial for replication. Key to this manipulation is the L. pneumophila Icm/Dot type IV secretion system, which translocates bacterial proteins into the host cytosol that can act directly on phosphorylation cascades. This review will focus on the different stages of L. pneumophila infection, in which host kinases and phosphatases contribute to infection of the host cell and promote intracellular survival of the pathogen. This includes the involvement of phosphatidylinositol 3-kinases during phagocytosis as well as the role of phosphoinositide metabolism during the establishment of the replication vacuole. Furthermore, L. pneumophila infection modulates the NF-κB and mitogen-activated protein kinase pathways, two signaling pathways that are central to the host innate immune response and involved in regulation of host cell survival. Therefore, L. pneumophila infection manipulates host cell signal transduction by phosphorylation at multiple levels. PMID:21747787

  1. Phosphorylation and desensitization of alpha1d-adrenergic receptors.

    PubMed Central

    García-Sáinz, J A; Vázquez-Cuevas, F G; Romero-Avila, M T

    2001-01-01

    In rat-1 fibroblasts stably expressing rat alpha(1d)-adrenoceptors, noradrenaline and PMA markedly decreased alpha(1d)-adrenoceptor function (noradrenaline-elicited increases in calcium in whole cells and [(35)S]guanosine 5'-[gamma-thio]triphosphate binding in membranes), suggesting homologous and heterologous desensitizations. Photoaffinity labelling, Western blotting and immunoprecipitation identified alpha(1d)-adrenoceptors as a broad band of 70-80 kDa. alpha(1d)-Adrenoceptors were phosphorylated in the basal state and noradrenaline and PMA increased it. The effect of noradrenaline was concentration-dependent (EC(50) 75 nM), rapid (maximum at 1 min) and transient. Phorbol ester-induced phosphorylation was concentration-dependent (EC(50) 25 nM), slightly slower (maximum at 5 min) and stable for at least 60 min. Inhibitors of protein kinase C decreased the effect of phorbol esters but not that of noradrenaline. Evidence of cross-talk of alpha(1d)-adrenoceptors with receptors endogenously expressed in rat-1 fibroblasts was given by the ability of endothelin, lysophosphatidic acid and bradykinin to induce alpha(1d)-adrenoceptor phosphorylation. In summary, it is shown for the first time here that alpha(1d)-adrenoceptors are phosphoproteins and that receptor phosphorylation is increased by the natural ligand, noradrenaline, by direct activation of protein kinase C and via cross-talk with other receptors endogenously expressed in rat-1 fibroblasts. Receptor phosphorylation has functional repercussions. PMID:11171057

  2. Regulation of ABC Transporter Function Via Phosphorylation by Protein Kinases

    PubMed Central

    Stolarczyk, Elzbieta I.; Reiling, Cassandra J.; Paumi, Christian M.

    2011-01-01

    ATP-binding cassette (ABC) transporters are multispanning membrane proteins that utilize ATP to move a broad range of substrates across cellular membranes. ABC transporters are involved in a number of human disorders and diseases [1]. Overexpression of a subset of the transporters has been closely linked to multidrug resistance in both bacteria and viruses and in cancer. A poorly understood and important aspect of ABC transporter biology is the role of phosphorylation as a mechanism to regulate transporter function. In this review, we summarize the current literature addressing the role of phosphorylation in regulating ABC transporter function. A comprehensive list of all the phosphorylation sites that have been identified for the human ABC transporters is presented, and we discuss the role of individual kinases in regulating transporter function. We address the potential pitfalls and difficulties associated with identifying phosphorylation sites and the corresponding kinase(s), and we discuss novel techniques that may circumvent these problems. We conclude by providing a brief perspective on studying ABC transporter phosphorylation. PMID:21118091

  3. Negative regulation of Vps34 by Cdk mediated phosphorylation

    PubMed Central

    Furuya, Tsuyoshi; Kim, Minsu; Lipinski, Marta; Li, Juying; Kim, Dohoon; Lu, Tao; Shen, Yong; Rameh, Lucia; Yankner, Bruce; Tsai, Li-Huei; Yuan, Junying

    2010-01-01

    Summary Vps34 (vacuolar protein sorting 34) complexes, the class III PtdIns3 kinase, specifically phosphorylate the D3-position of PtdIns to produce PtdIns3P. Vps34 is involved in the control of multiple key intracellular membrane trafficking pathways including endocytic sorting and autophagy. In mammalian cells, Vps34 interacts with Beclin 1, an orthologue of Atg6 in yeast, to regulate the production of PtdIns3P and autophagy. We show that Vps34 is phosphorylated on Thr159 by Cdk1, which negatively regulates its interaction with Beclin1 during mitosis. Cdk5/p25, a neuronal cdk shown to play a role in Alzheimer’s disease, can also phosphorylate Thr159 of Vps34. Phosphorylation of Vps34 on Thr159 inhibits its interaction with Beclin 1. We propose that phosphorylation of Thr159 in Vps34 is a key regulatory mechanism that controls the class III PtdIns3 kinase activity in cell cycle progression, development and human diseases including neurodegeneration and cancers. PMID:20513426

  4. Inhibition of Bcr serine kinase by tyrosine phosphorylation.

    PubMed Central

    Liu, J; Wu, Y; Ma, G Z; Lu, D; Haataja, L; Heisterkamp, N; Groffen, J; Arlinghaus, R B

    1996-01-01

    The first exon of the BCR gene encodes a new serine/threonine protein kinase. Abnormal fusion of the BCR and ABL genes, resulting from the formation of the Philadelphia chromosome (Ph), is the hallmark of Ph-positive leukemia. We have previously demonstrated that the Bcr protein is tyrosine phosphorylated within first-exon sequences by the Bcr-Abl oncoprotein. Here we report that in addition to tyrose 177 (Y-177), Y-360 and Y283 are phosphorylated in Bcr-Abl proteins in vitro. Moreover, Bcr tyrosine 360 is phosphorylated in vivo within both Bcr-Abl and Bcr. Bcr mutant Y177F had a greatly reduced ability to transphosphorylate casein and histone H1, whereas Bcr mutants Y177F and Y283F had wild-type activities. In contrast, the Y360F mutation had little effect on Bcr's autophosphorylation activity. Tyrosine-phosphorylated Bcr, phosphorylated in vitro by Bcr-Abl, was greatly inhibited in its serine/threonine kinase activity, impairing both auto- and transkinase activities of Bcr. Similarly, the isolation of Bcr from cells expressing Bcr-Abl under conditions that preserve phosphotyrosine residues also reduced Bcr's kinase activity. These results indicate that tyrosine 360 of Bcr is critical for the transphosphorylation activity of Bcr and that in Ph-positive leukemia, Bcr serine/threonine kinase activity is seriously impaired. PMID:8622703

  5. Phosphorylation of vaccinia virus core proteins during transcription in vitro.

    PubMed Central

    Moussatche, N; Keller, S J

    1991-01-01

    The phosphorylation of vaccinia virus core proteins has been studied in vitro during viral transcription. The incorporation of [gamma-32P]ATP into protein is linear for the first 2 min of the reaction, whereas incorporation of [3H]UTP into RNA lags for 1 to 2 min before linear synthesis. At least 12 different proteins are phosphorylated on autoradiograms of acrylamide gels, and the majority of label is associated with low-molecular-weight proteins. If the transcription reaction is reduced by dropping the pH to 7 from its optimal of 8.5, two proteins (70 and 80 kDa) are no longer phosphorylated. RNA isolated from the pH 7 transcription reaction hybridized primarily to the vaccinia virus HindIII DNA fragments D to F, whereas the transcripts synthesized at pH 8.5 hybridized to almost all of the HindIII-digested vaccinia virus DNA fragments. The differences between the pH 7.0 and 8.5 transcription reactions in phosphorylation and transcription could be eliminated by preincubating the viral cores with 2 mM ATP. In sum, the results suggest that the phosphorylation of the 70- and 80-kDa peptides may contribute to the regulation of early transcription. Images PMID:2016772

  6. RNA polymerase II subunit composition, stoichiometry, and phosphorylation.

    PubMed Central

    Kolodziej, P A; Woychik, N; Liao, S M; Young, R A

    1990-01-01

    RNA polymerase II subunit composition, stoichiometry, and phosphorylation were investigated in Saccharomyces cerevisiae by attaching an epitope coding sequence to a well-characterized RNA polymerase II subunit gene (RPB3) and by immunoprecipitating the product of this gene with its associated polypeptides. The immunopurified enzyme catalyzed alpha-amanitin-sensitive RNA synthesis in vitro. The 10 polypeptides that immunoprecipitated were identical in size and number to those previously described for RNA polymerase II purified by conventional column chromatography. The relative stoichiometry of the subunits was deduced from knowledge of the sequence of the subunits and from the extent of labeling with [35S]methionine. Immunoprecipitation from 32P-labeled cell extracts revealed that three of the subunits, RPB1, RPB2, and RPB6, are phosphorylated in vivo. Phosphorylated and unphosphorylated forms of RPB1 could be distinguished; approximately half of the RNA polymerase II molecules contained a phosphorylated RPB1 subunit. These results more precisely define the subunit composition and phosphorylation of a eucaryotic RNA polymerase II enzyme. Images PMID:2183013

  7. Screening for protein phosphorylation using nanoscale reactions on microdroplet arrays.

    PubMed

    Küster, Simon K; Pabst, Martin; Zenobi, Renato; Dittrich, Petra S

    2015-01-26

    We present a novel and straightforward screening method to detect protein phosphorylations in complex protein mixtures. A proteolytic digest is separated by a conventional nanoscale liquid chromatography (nano-LC) separation and the eluate is immediately compartmentalized into microdroplets, which are spotted on a microarray MALDI plate. Subsequently, the enzyme alkaline phosphatase is applied to every second microarray spot to remove the phosphate groups from phosphorylated peptides, which results in a mass shift of n×-80 Da. The MALDI-MS scan of the microarray is then evaluated by a software algorithm to automatically identify the phosphorylated peptides by exploiting the characteristic chromatographic peak profile induced by the phosphatase treatment. This screening method does not require extensive MS/MS experiments or peak list evaluation and can be easily extended to other enzymatic or chemical reactions. PMID:25504774

  8. Phosphorylation of lamins determine their structural properties and signaling functions

    PubMed Central

    Torvaldson, Elin; Kochin, Vitaly; Eriksson, John E

    2015-01-01

    Lamin A/C is part of the nuclear lamina, a meshwork of intermediate filaments underlying the inner nuclear membrane. The lamin network is anchoring a complex set of structural and linker proteins and is either directly or through partner proteins also associated or interacting with a number of signaling protein and transcription factors. During mitosis the nuclear lamina is dissociated by well established phosphorylation- dependent mechanisms. A-type lamins are, however, also phosphorylated during interphase. A recent study identified 20 interphase phosphorylation sites on lamin A/C and explored their functions related to lamin dynamics; movements, localization and solubility. Here we discuss these findings in the light of lamin functions in health and disease. PMID:25793944

  9. Phosphorylation of Izumo1 and its role in male infertility

    PubMed Central

    Young, Samantha AM; Aitken, John; Baker, Mark A

    2015-01-01

    Izumo1 is a testis-specific gene product, whose function is essential for sperm-egg fusion. Throughout its lifespan, Izumo1 is posttranslationally modified, being both N-linked glycosylated on its extracellular domain and phosphorylated on the intracellular C-terminal tail. Within the caput regions of the rat epididymis, two phosphorylation events have been documented. However, as sperm pass through the epididymis, this cytoplasmic portion of Izumo1 has been shown to contain up to seven phosphorylation sites. Remarkably, in the rat, in correlation with these events, Izumo1 undergoes sub-cellular re-location, moving from the head/tail regions of the spermatozoa, to a predominantly equatorial segment location once they have reached the caudal end of the epididymis. PMID:25994654

  10. Crystal Structure of a Phosphorylation-coupled Saccharide Transporter

    SciTech Connect

    Y Cao; X Jin; E Levin; H Huang; Y Zong; W Hendrickson; J Javitch; K Rajashankar; M Zhou; et al.

    2011-12-31

    Saccharides have a central role in the nutrition of all living organisms. Whereas several saccharide uptake systems are shared between the different phylogenetic kingdoms, the phosphoenolpyruvate-dependent phosphotransferase system exists almost exclusively in bacteria. This multi-component system includes an integral membrane protein EIIC that transports saccharides and assists in their phosphorylation. Here we present the crystal structure of an EIIC from Bacillus cereus that transports diacetylchitobiose. The EIIC is a homodimer, with an expansive interface formed between the amino-terminal halves of the two protomers. The carboxy-terminal half of each protomer has a large binding pocket that contains a diacetylchitobiose, which is occluded from both sides of the membrane with its site of phosphorylation near the conserved His250 and Glu334 residues. The structure shows the architecture of this important class of transporters, identifies the determinants of substrate binding and phosphorylation, and provides a framework for understanding the mechanism of sugar translocation.

  11. EGFR phosphorylates FAM129B to promote Ras activation

    PubMed Central

    Ji, Haitao; Lee, Jong-Ho; Wang, Yugang; Pang, Yilin; Zhang, Tao; Xia, Yan; Zhong, Lianjin; Lyu, Jianxin; Lu, Zhimin

    2016-01-01

    Ras GTPase-activating proteins (GAPs) are important regulators for Ras activation, which is instrumental in tumor development. However, the mechanism underlying this regulation remains elusive. We demonstrate here that activated EGFR phosphorylates the Y593 residue of the protein known as family with sequence similarity 129, member B (FAM129B), which is overexpressed in many types of human cancer. FAM129B phosphorylation increased the interaction between FAM129B and Ras, resulting in reduced binding of p120-RasGAP to Ras. FAM129B phosphorylation promoted Ras activation, increasing ERK1/2- and PKM2-dependent β-catenin transactivation and leading to the enhanced glycolytic gene expression and the Warburg effect; promoting tumor cell proliferation and invasion; and supporting brain tumorigenesis. Our studies unearthed a novel and important mechanism underlying EGFR-mediated Ras activation in tumor development. PMID:26721396

  12. Ultrasensitive dual phosphorylation dephosphorylation cycle kinetics exhibits canonical competition behavior

    NASA Astrophysics Data System (ADS)

    Huang, Qingdao; Qian, Hong

    2009-09-01

    We establish a mathematical model for a cellular biochemical signaling module in terms of a planar differential equation system. The signaling process is carried out by two phosphorylation-dephosphorylation reaction steps that share common kinase and phosphatase with saturated enzyme kinetics. The pair of equations is particularly simple in the present mathematical formulation, but they are singular. A complete mathematical analysis is developed based on an elementary perturbation theory. The dynamics exhibits the canonical competition behavior in addition to bistability. Although widely understood in ecological context, we are not aware of a full range of biochemical competition in a simple signaling network. The competition dynamics has broad implications to cellular processes such as cell differentiation and cancer immunoediting. The concepts of homogeneous and heterogeneous multisite phosphorylation are introduced and their corresponding dynamics are compared: there is no bistability in a heterogeneous dual phosphorylation system. A stochastic interpretation is also provided that further gives intuitive understanding of the bistable behavior inside the cells.

  13. Phosphorylation of Intrinsically Disordered Regions in Remorin Proteins

    PubMed Central

    Marín, Macarena; Ott, Thomas

    2012-01-01

    Plant-specific remorin proteins reside in subdomains of plasma membranes, originally termed membrane rafts. They probably facilitate cellular signal transduction by direct interaction with signaling proteins such as receptor-like kinases and may dynamically modulate their lateral segregation within plasma membranes. Recent evidence suggests such functions of remorins during plant–microbe interactions and innate immune responses, where differential phosphorylation of some of these proteins has been described to be dependent on the perception of the microbe-associated molecular pattern (MAMP) flg22 and the presence of the NBS–LRR resistance protein RPM1. A number of specifically phosphorylated residues in their highly variable and intrinsically disordered N-terminal regions have been identified. Sequence diversity of these evolutionary distinct domains suggests that remorins may serve a wide range of biological functions. Here, we describe patterns and features of intrinsic disorder in remorin protein and discuss possible functional implications of phosphorylation within these rapidly evolving domains. PMID:22639670

  14. Regulation of CDK9 activity by phosphorylation and dephosphorylation.

    PubMed

    Nekhai, Sergei; Petukhov, Michael; Breuer, Denitra

    2014-01-01

    HIV-1 transcription is regulated by CDK9/cyclin T1, which, unlike a typical cell cycle-dependent kinase, is regulated by associating with 7SK small nuclear ribonuclear protein complex (snRNP). While the protein components of this complex are well studied, the mechanism of the complex formation is still not fully understood. The association of CDK9/cyclin T1 with 7SK snRNP is, in part, regulated by a reversible CDK9 phosphorylation. Here, we present a comprehensive review of the kinases and phosphatases involved in CDK9 phosphorylation and discuss their role in regulation of HIV-1 replication and potential for being targeted for drug development. We propose a novel pathway of HIV-1 transcription regulation via CDK9 Ser-90 phosphorylation by CDK2 and CDK9 Ser-175 dephosphorylation by protein phosphatase-1. PMID:24524087

  15. Inhibition by calmodulin of calcium/phospholipid-dependent protein phosphorylation.

    PubMed Central

    Albert, K A; Wu, W C; Nairn, A C; Greengard, P

    1984-01-01

    Calmodulin was previously found to inhibit the Ca2+/phospholipid-dependent phosphorylation of an endogenous substrate, called the 87-kilodalton protein, in a crude extract prepared from rat brain synaptosomal cytosol. We investigated the mechanism of this inhibition, using Ca2+/phospholipid-dependent protein kinase and the 87-kilodalton protein, both of which had been purified to homogeneity from bovine brain. Rabbit brain calmodulin and some other Ca2+-binding proteins inhibited the phosphorylation of the 87-kilodalton protein by this kinase in the purified system. Calmodulin also inhibited the Ca2+/phospholipid-dependent phosphorylation of H1 histone, synapsin I, and the delta subunit of the acetylcholine receptor, with use of purified components. These results suggest that calmodulin may be a physiological regulator of Ca2+/phospholipid-dependent protein kinase. Images PMID:6233611

  16. Phosphorylation of alfalfa mosaic virus movement protein in vivo.

    PubMed

    Kim, Bong-Suk; Halk, Edward L; Merlo, Donald J; Nelson, Steven E; Loesch-Fries, L Sue

    2014-07-01

    The 32-kDa movement protein, P3, of alfalfa mosaic virus (AMV) is essential for cell-to-cell spread of the virus in plants. P3 shares many properties with other virus movement proteins (MPs); however, it is not known if P3 is posttranslationally modified by phosphorylation, which is important for the function of other MPs. When expressed in Nicotiana tabacum, P3 accumulated primarily in the cell walls of older leaves or in the cytosol of younger leaves. When expressed in Pischia pastoris, P3 accumulated primarily in a soluble form. Metabolic labeling indicated that a portion of P3 was phosphorylated in both tobacco and yeast, suggesting that phosphorylation regulates the function of this protein as it does for other virus MPs. PMID:24435161

  17. Protein kinase C coordinates histone H3 phosphorylation and acetylation

    PubMed Central

    Darieva, Zoulfia; Webber, Aaron; Warwood, Stacey; Sharrocks, Andrew D

    2015-01-01

    The re-assembly of chromatin following DNA replication is a critical event in the maintenance of genome integrity. Histone H3 acetylation at K56 and phosphorylation at T45 are two important chromatin modifications that accompany chromatin assembly. Here we have identified the protein kinase Pkc1 as a key regulator that coordinates the deposition of these modifications in S. cerevisiae under conditions of replicative stress. Pkc1 phosphorylates the histone acetyl transferase Rtt109 and promotes its ability to acetylate H3K56. Our data also reveal novel cross-talk between two different histone modifications as Pkc1 also enhances H3T45 phosphorylation and this modification is required for H3K56 acetylation. Our data therefore uncover an important role for Pkc1 in coordinating the deposition of two different histone modifications that are important for chromatin assembly. DOI: http://dx.doi.org/10.7554/eLife.09886.001 PMID:26468616

  18. Cardiac Troponin I Tyrosine 26 Phosphorylation Decreases Myofilament Ca2+ Sensitivity and Accelerates Deactivation

    PubMed Central

    Salhi, Hussam E.; Walton, Shane D.; Hassel, Nathan C.; Brundage, Elizabeth A.; de Tombe, Pieter P.; Janssen, Paul M.L.; Davis, Jonathan P.; Biesiadecki, Brandon J.

    2014-01-01

    Troponin I (TnI), the inhibitory subunit of the troponin complex, can be phosphorylated as a key regulatory mechanism to alter the calcium regulation of contraction. Recent work has identified phosphorylation of TnI Tyr-26 in the human heart with unknown functional effects. We hypothesized that TnI Tyr-26 N-terminal phosphorylation decreases calcium sensitivity of the thin filament, similar to the desensitizing effects of TnI Ser-23/24 phosphorylation. Our results demonstrate Tyr-26 phosphorylation and pseudo-phosphorylation decrease calcium binding to Troponin C (TnC) on the thin filament and calcium sensitivity of force development to a similar magnitude as TnI Ser-23/24 pseudo-phosphorylation. To investigate the effects of TnI Tyr-26 phosphorylation on myofilament deactivation, we measured the rate of calcium dissociation from TnC. Results demonstrate filaments containing Tyr-26 pseudo-phosphorylated TnI accelerate the rate of calcium dissociation from TnC similar to that of TnI Ser-23/24. Finally, to assess functional integration of TnI Tyr-26 with Ser-23/24 phosphorylation, we generated recombinant TnI phospho-mimetic substitutions at all three residues. Our biochemical analyses demonstrated no additive effect on calcium sensitivity or calcium-sensitive force development imposed by Tyr-26 and Ser-23/24 phosphorylation integration. However, integration of Tyr-26 phosphorylation with pseudo-phosphorylated Ser-23/24 further accelerated thin filament deactivation. Our findings suggest that TnI Tyr-26 phosphorylation functions similarly to Ser-23/24 N-terminal phosphorylation to decrease myofilament calcium sensitivity and accelerate myofilament relaxation. Furthermore, Tyr-26 phosphorylation can buffer the desensitization of Ser-23/24 phosphorylation while further accelerating thin filament deactivation. Therefore, the functional integration of TnI phosphorylation may be a common mechanism to modulate Ser-23/24 phosphorylation function. PMID:25252176

  19. Cardiac troponin I tyrosine 26 phosphorylation decreases myofilament Ca2+ sensitivity and accelerates deactivation.

    PubMed

    Salhi, Hussam E; Walton, Shane D; Hassel, Nathan C; Brundage, Elizabeth A; de Tombe, Pieter P; Janssen, Paul M L; Davis, Jonathan P; Biesiadecki, Brandon J

    2014-11-01

    Troponin I (TnI), the inhibitory subunit of the troponin complex, can be phosphorylated as a key regulatory mechanism to alter the calcium regulation of contraction. Recent work has identified phosphorylation of TnI Tyr-26 in the human heart with unknown functional effects. We hypothesized that TnI Tyr-26N-terminal phosphorylation decreases calcium sensitivity of the thin filament, similar to the desensitizing effects of TnI Ser-23/24 phosphorylation. Our results demonstrate that Tyr-26 phosphorylation and pseudo-phosphorylation decrease calcium binding to troponin C (TnC) on the thin filament and calcium sensitivity of force development to a similar magnitude as TnI Ser-23/24 pseudo-phosphorylation. To investigate the effects of TnI Tyr-26 phosphorylation on myofilament deactivation, we measured the rate of calcium dissociation from TnC. Results demonstrate that filaments containing Tyr-26 pseudo-phosphorylated TnI accelerate the rate of calcium dissociation from TnC similar to that of TnI Ser-23/24. Finally, to assess functional integration of TnI Tyr-26 with Ser-23/24 phosphorylation, we generated recombinant TnI phospho-mimetic substitutions at all three residues. Our biochemical analyses demonstrated no additive effect on calcium sensitivity or calcium-sensitive force development imposed by Tyr-26 and Ser-23/24 phosphorylation integration. However, integration of Tyr-26 phosphorylation with pseudo-phosphorylated Ser-23/24 further accelerated thin filament deactivation. Our findings suggest that TnI Tyr-26 phosphorylation functions similarly to Ser-23/24N-terminal phosphorylation to decrease myofilament calcium sensitivity and accelerate myofilament relaxation. Furthermore, Tyr-26 phosphorylation can buffer the desensitization of Ser-23/24 phosphorylation while further accelerating thin filament deactivation. Therefore, the functional integration of TnI phosphorylation may be a common mechanism to modulate Ser-23/24 phosphorylation function. PMID:25252176

  20. Tyrosine phosphorylation of RAS by ABL allosterically enhances effector binding

    PubMed Central

    Ting, Pamela Y.; Johnson, Christian W.; Fang, Cong; Cao, Xiaoqing; Graeber, Thomas G.; Mattos, Carla; Colicelli, John

    2015-01-01

    RAS proteins are signal transduction gatekeepers that mediate cell growth, survival, and differentiation through interactions with multiple effector proteins. The RAS effector RAS- and RAB-interacting protein 1 (RIN1) activates its own downstream effectors, the small GTPase RAB5 and the tyrosine kinase Abelson tyrosine-protein kinase (ABL), to modulate endocytosis and cytoskeleton remodeling. To identify ABL substrates downstream of RAS-to-RIN1 signaling, we examined human HEK293T cells overexpressing components of this pathway. Proteomic analysis revealed several novel phosphotyrosine peptides, including Harvey rat sarcoma oncogene (HRAS)-pTyr137. Here we report that ABL phosphorylates tyrosine 137 of H-, K-, and NRAS. Increased RIN1 levels enhanced HRAS-Tyr137 phosphorylation by nearly 5-fold, suggesting that RAS-stimulated RIN1 can drive ABL-mediated RAS modification in a feedback circuit. Tyr137 is well conserved among RAS orthologs and is part of a transprotein H-bond network. Crystal structures of HRASY137F and HRASY137E revealed conformation changes radiating from the mutated residue. Although consistent with Tyr137 participation in allosteric control of HRAS function, the mutations did not alter intrinsic GTP hydrolysis rates in vitro. HRAS-Tyr137 phosphorylation enhanced HRAS signaling capacity in cells, however, as reflected by a 4-fold increase in the association of phosphorylated HRASG12V with its effector protein RAF proto-oncogene serine/threonine protein kinase 1 (RAF1). These data suggest that RAS phosphorylation at Tyr137 allosterically alters protein conformation and effector binding, providing a mechanism for effector-initiated modulation of RAS signaling.—Ting, P. Y., Johnson, C. W., Fang, C., Cao, X., Graeber, T. G., Mattos, C., Colicelli, J. Tyrosine phosphorylation of RAS by ABL allosterically enhances effector binding. PMID:25999467

  1. Effect of ethanol on hydrogen peroxide-induced AMPK phosphorylation

    PubMed Central

    Liangpunsakul, Suthat; Wou, Sung-Eun; Zeng, Yan; Ross, Ruth A.; Jayaram, Hiremagalur N.; Crabb, David W.

    2008-01-01

    AMP-activated protein kinase (AMPK) responds to oxidative stress. Previous work has shown that ethanol treatment of cultured hepatoma cells and of mice inhibited the activity of AMPK and reduced the amount of AMPK protein. Ethanol generates oxidative stress in the liver. Since AMPK is activated by reactive oxygen species, it seems paradoxical that ethanol would inhibit AMPK in the hepatoma cells. In an attempt to understand the mechanism whereby ethanol inhibits AMPK, we studied the effect of ethanol on AMPK activation by exogenous hydrogen peroxide. The effects of ethanol, hydrogen peroxide, and inhibitors of protein phosphatase 2A (PP2A) [either okadaic acid or PP2A small interference RNA (siRNA)] on AMPK phosphorylation and activity were examined in rat hepatoma cells (H4IIEC3) and HeLa cells. In H4IIEC3 cells, hydrogen peroxide (H2O2, 1 mM) transiently increased the level of phospho-AMPK to 1.5-fold over control (P < 0.05). Similar findings were observed in HeLa cells, which do not express the upstream AMPK kinase, LKB1. H2O2 markedly increased the phosphorylation of LKB1 in H4IIEC3 cells. Ethanol significantly inhibited the phosphorylation of PKC-ζ, LKB1, and AMPK caused by exposure to H2O2. This inhibitory effect of ethanol required its metabolism. More importantly, the inhibitory effects of ethanol on H2O2-induced AMPK phosphorylation were attenuated by the presence of the PP2A inhibitor, okadaic acid, or PP2A siRNA. The inhibitory effect of ethanol on AMPK phosphorylation is exerted through the inhibition of PKC-ζ and LKB1 phosphorylation and the activation of PP2A. PMID:18832448

  2. Mechanism of APC/CCDC20 activation by mitotic phosphorylation

    PubMed Central

    Qiao, Renping; Weissmann, Florian; Yamaguchi, Masaya; Brown, Nicholas G.; VanderLinden, Ryan; Imre, Richard; Jarvis, Marc A.; Brunner, Michael R.; Davidson, Iain F.; Litos, Gabriele; Haselbach, David; Mechtler, Karl; Stark, Holger; Schulman, Brenda A.; Peters, Jan-Michael

    2016-01-01

    Chromosome segregation and mitotic exit are initiated by the 1.2-MDa ubiquitin ligase APC/C (anaphase-promoting complex/cyclosome) and its coactivator CDC20 (cell division cycle 20). To avoid chromosome missegregation, APC/CCDC20 activation is tightly controlled. CDC20 only associates with APC/C in mitosis when APC/C has become phosphorylated and is further inhibited by a mitotic checkpoint complex until all chromosomes are bioriented on the spindle. APC/C contains 14 different types of subunits, most of which are phosphorylated in mitosis on multiple sites. However, it is unknown which of these phospho-sites enable APC/CCDC20 activation and by which mechanism. Here we have identified 68 evolutionarily conserved mitotic phospho-sites on human APC/C bound to CDC20 and have used the biGBac technique to generate 47 APC/C mutants in which either all 68 sites or subsets of them were replaced by nonphosphorylatable or phospho-mimicking residues. The characterization of these complexes in substrate ubiquitination and degradation assays indicates that phosphorylation of an N-terminal loop region in APC1 is sufficient for binding and activation of APC/C by CDC20. Deletion of the N-terminal APC1 loop enables APC/CCDC20 activation in the absence of mitotic phosphorylation or phospho-mimicking mutations. These results indicate that binding of CDC20 to APC/C is normally prevented by an autoinhibitory loop in APC1 and that its mitotic phosphorylation relieves this inhibition. The predicted location of the N-terminal APC1 loop implies that this loop controls interactions between the N-terminal domain of CDC20 and APC1 and APC8. These results reveal how APC/C phosphorylation enables CDC20 to bind and activate the APC/C in mitosis. PMID:27114510

  3. Mechanism of APC/CCDC20 activation by mitotic phosphorylation.

    PubMed

    Qiao, Renping; Weissmann, Florian; Yamaguchi, Masaya; Brown, Nicholas G; VanderLinden, Ryan; Imre, Richard; Jarvis, Marc A; Brunner, Michael R; Davidson, Iain F; Litos, Gabriele; Haselbach, David; Mechtler, Karl; Stark, Holger; Schulman, Brenda A; Peters, Jan-Michael

    2016-05-10

    Chromosome segregation and mitotic exit are initiated by the 1.2-MDa ubiquitin ligase APC/C (anaphase-promoting complex/cyclosome) and its coactivator CDC20 (cell division cycle 20). To avoid chromosome missegregation, APC/C(CDC20) activation is tightly controlled. CDC20 only associates with APC/C in mitosis when APC/C has become phosphorylated and is further inhibited by a mitotic checkpoint complex until all chromosomes are bioriented on the spindle. APC/C contains 14 different types of subunits, most of which are phosphorylated in mitosis on multiple sites. However, it is unknown which of these phospho-sites enable APC/C(CDC20) activation and by which mechanism. Here we have identified 68 evolutionarily conserved mitotic phospho-sites on human APC/C bound to CDC20 and have used the biGBac technique to generate 47 APC/C mutants in which either all 68 sites or subsets of them were replaced by nonphosphorylatable or phospho-mimicking residues. The characterization of these complexes in substrate ubiquitination and degradation assays indicates that phosphorylation of an N-terminal loop region in APC1 is sufficient for binding and activation of APC/C by CDC20. Deletion of the N-terminal APC1 loop enables APC/C(CDC20) activation in the absence of mitotic phosphorylation or phospho-mimicking mutations. These results indicate that binding of CDC20 to APC/C is normally prevented by an autoinhibitory loop in APC1 and that its mitotic phosphorylation relieves this inhibition. The predicted location of the N-terminal APC1 loop implies that this loop controls interactions between the N-terminal domain of CDC20 and APC1 and APC8. These results reveal how APC/C phosphorylation enables CDC20 to bind and activate the APC/C in mitosis. PMID:27114510

  4. Spatiotemporal dynamics of phosphorylation in lipid second messenger signaling.

    PubMed

    Antal, Corina E; Newton, Alexandra C

    2013-12-01

    The plasma membrane serves as a dynamic interface that relays information received at the cell surface into the cell. Lipid second messengers coordinate signaling on this platform by recruiting and activating kinases and phosphatases. Specifically, diacylglycerol and phosphatidylinositol 3,4,5-trisphosphate activate protein kinase C and Akt, respectively, which then phosphorylate target proteins to transduce downstream signaling. This review addresses how the spatiotemporal dynamics of protein kinase C and Akt signaling can be monitored using genetically encoded reporters and provides information on how the coordination of signaling at protein scaffolds or membrane microdomains affords fidelity and specificity in phosphorylation events. PMID:23788531

  5. QSAR studies of hydrazone uncouplers of oxidative phosphorylation.

    PubMed

    Winkler, D A; Holan, G; Smith, D R; Middleton, E J; Hart, N K; Rihs, K; Smith, K W

    1988-07-01

    Semiempirical molecular orbital calculations have been performed on a series of hydrazone uncouplers of mitochondrial oxidative phosphorylation which show insecticidal activity. Regression analysis yielded significant correlations between uncoupling activity, insecticidal potency and such physicochemical or theoretically-derived parameters as lipophilicity, pKa and atom charges. PMID:3255329

  6. Anxiolytic action of pterostilbene: involvement of hippocampal ERK phosphorylation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pterostilbene, a natural analog of resveratrol, has diverse health-beneficial properties. However, the neurological activities of this compound are largely unexplored. Here we report that pterostilbene shows anxiolytic action by downregulating phosphorylated levels of ERKs in the hippocampus of mice...

  7. Alterations of Histone H1 Phosphorylation During Bladder Carcinogenesis

    PubMed Central

    Telu, Kelly H.; Abbaoui, Besma; Thomas-Ahner, Jennifer M.; Zynger, Debra L.; Clinton, Steven K.

    2013-01-01

    There is a crucial need for development of prognostic and predictive biomarkers in human bladder carcinogenesis in order to personalize preventive and therapeutic strategies and improve outcomes. Epigenetic alterations, such as histone modifications, are implicated in the genetic dysregulation that is fundamental to carcinogenesis. Here we focus on profiling the histone modifications during the progression of bladder cancer. Histones were extracted from normal human bladder epithelial cells, an immortalized human bladder epithelial cell line (hTERT), and four human bladder cancer cell lines (RT4, J82, T24, and UMUC3) ranging from superficial low-grade to invasive high-grade cancers. Liquid Chromatography-Mass Spectrometry (LC-MS) profiling revealed a statistically significant increase in phosphorylation of H1 linker histones from normal human bladder epithelial cells to low-grade superficial to high-grade invasive bladder cancer cells. This finding was further validated by immunohistochemical staining of the normal epithelium and transitional cell cancer from human bladders. Cell cycle analysis of histone H1 phosphorylation by western blotting showed an increase of phosphorylation from G0/G1 phase to M phase, again supporting this as a proliferative marker. Changes in histone H1 phosphorylation status may further clarify epigenetic changes during bladder carcinogenesis and provide diagnostic and prognostic biomarkers or targets for future therapeutic interventions. PMID:23675690

  8. Phosphorylation of K+ channels at single residues regulates memory formation

    PubMed Central

    Vernon, Jeffrey; Irvine, Elaine E.; Peters, Marco; Jeyabalan, Jeshmi

    2016-01-01

    Phosphorylation is a ubiquitous post-translational modification of proteins, and a known physiological regulator of K+ channel function. Phosphorylation of K+ channels by kinases has long been presumed to regulate neuronal processing and behavior. Although circumstantial evidence has accumulated from behavioral studies of vertebrates and invertebrates, the contribution to memory of single phosphorylation sites on K+ channels has never been reported. We have used gene targeting in mice to inactivate protein kinase A substrate residues in the fast-inactivating subunit Kv4.2 (T38A mutants), and in the small-conductance Ca2+-activated subunit SK1 (S105A mutants). Both manipulations perturbed a specific form of memory, leaving others intact. T38A mutants had enhanced spatial memory for at least 4 wk after training, whereas performance in three tests of fear memory was unaffected. S105A mutants were impaired in passive avoidance memory, sparing fear, and spatial memory. Together with recent findings that excitability governs the participation of neurons in a memory circuit, this result suggests that the memory type supported by neurons may depend critically on the phosphorylation of specific K+ channels at single residues. PMID:26980786

  9. Phosphorylation of proteins in Dictyostelium discoideum during development

    SciTech Connect

    Coffman, D.S.

    1982-01-01

    The phosphoproteins in D. discoideum were studied with respect to their formation, metabolic stability, cellular and subcellular distribution. Special emphasis was on the role of cAMP on the pattern of phosphorylation. Amoebae were metabolically labeled with /sup 32/P/sub i/; subsequently proteins of the total lysate, nuclei and membranes were resolved by SDS-polyacrylamide gel electrophoresis and subjected to autoradiography. Numerous changes in the profile of phosphoproteins were observed during development. Functions were assigned to four membranal phosphoproteins; only one protein, the heavy chain of myosin, was susceptible to phosphorylation in vitro when purified membranes and /sup 32/P-ATP were used. A comparison between the time of protein synthesis and phosphorylation, as examined in vivo using /sup 35/S-methionine and /sup 32/P/sub i/ labeling of amoebae and two-dimensional gel electrophoresis, indicated that phosphorylation is concurrent with synthesis. It appears then that there are two classes of membranal phosphoproteins in D. discoideum which differ with respect to the stability of the phosphate moiety. It is evident that the turnover of the phosphate moiety in myosin heavy chain plays a crucial role in the function of myosin; a role for the metabolically inert phosphate of other membranal proteins remains to be established. The G protein which couples occupancy of hormone receptor to stimulation of adenylate cyclase in higher multicellular eukaryotes was detected in D. discoideum. The G protein is present in approximately equal amounts in vegetative and in developing amoebae.

  10. A mathematical model of phosphorylation AKT in Acute Myeloid Leukemia

    NASA Astrophysics Data System (ADS)

    Adi, Y. A.; Kusumo, F. A.; Aryati, L.; Hardianti, M. S.

    2016-04-01

    In this paper we consider a mathematical model of PI3K/AKT signaling pathways in phosphorylation AKT. PI3K/AKT pathway is an important mediator of cytokine signaling implicated in regulation of hematopoiesis. Constitutive activation of PI3K/AKT signaling pathway has been observed in Acute Meyloid Leukemia (AML) it caused by the mutation of Fms-like Tyrosine Kinase 3 in internal tandem duplication (FLT3-ITD), the most common molecular abnormality associated with AML. Depending upon its phosphorylation status, protein interaction, substrate availability, and localization, AKT can phosphorylate or inhibite numerous substrates in its downstream pathways that promote protein synthesis, survival, proliferation, and metabolism. Firstly, we present a mass action ordinary differential equation model describing AKT double phosphorylation (AKTpp) in a system with 11 equations. Finally, under the asumtion enzyme catalyst constant and steady state equilibrium, we reduce the system in 4 equation included Michaelis Menten constant. Simulation result suggested that a high concentration of PI3K and/or a low concentration of phospatase increased AKTpp activation. This result also indicates that PI3K is a potential target theraphy in AML.

  11. Phosphorylation-independent stimulation of DNA topoisomerase II alpha activity.

    PubMed

    Kimura, K; Saijo, M; Tanaka, M; Enomoto, T

    1996-05-01

    It has been suggested that casein kinase II phosphorylates DNA topoisomerase II alpha (topo II alpha) in mouse FM3A cells, by comparison of phosphopeptide maps of topo II alpha labeled in intact cells and of topo II alpha phosphorylated by various kinases in vitro. The phosphorylation of purified topo II alpha by casein kinase II, which attached a maximum of two phosphate groups per topo II alpha molecule, had no effect on the activity of topo II alpha. Dephosphorylation of purified topo II alpha by potato acid phosphatase, which almost completely dephosphorylated the topo II alpha, did not reduce the activity of topo II alpha. The incubation itself, regardless of phosphorylation or dephosphorylation status, stimulated the enzyme activity in both reactions. Topo II alpha activity was stimulated by incubation in a medium containing low concentrations of glycerol but not in that containing high concentrations of glycerol, such as the 50% in which purified topo II alpha is stored. The stimulation of topo II alpha activity by incubation was dependent on the concentration of topo II alpha, requiring a relatively high concentration of topo II alpha. PMID:8631919

  12. METHIONINE OXIDATION AND PROTEIN PHOSPHORYLATION: INTERACTIVE PARTNERS IN SIGNALING?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protein phosphorylation can affect the activity, stability or localization of a protein and as result plays a broad role in regulation of processes ranging from metabolism to control of plant growth and development. One aspect of current interest in our lab is how protein kinases target their substr...

  13. Stress Induces Pain Transition by Potentiation of AMPA Receptor Phosphorylation

    PubMed Central

    Li, Changsheng; Yang, Ya; Liu, Sufang; Fang, Huaqiang; Zhang, Yong; Furmanski, Orion; Skinner, John; Xing, Ying; Johns, Roger A.

    2014-01-01

    Chronic postsurgical pain is a serious issue in clinical practice. After surgery, patients experience ongoing pain or become sensitive to incident, normally nonpainful stimulation. The intensity and duration of postsurgical pain vary. However, it is unclear how the transition from acute to chronic pain occurs. Here we showed that social defeat stress enhanced plantar incision-induced AMPA receptor GluA1 phosphorylation at the Ser831 site in the spinal cord and greatly prolonged plantar incision-induced pain. Interestingly, targeted mutation of the GluA1 phosphorylation site Ser831 significantly inhibited stress-induced prolongation of incisional pain. In addition, stress hormones enhanced GluA1 phosphorylation and AMPA receptor-mediated electrical activity in the spinal cord. Subthreshold stimulation induced spinal long-term potentiation in GluA1 phosphomimetic mutant mice, but not in wild-type mice. Therefore, spinal AMPA receptor phosphorylation contributes to the mechanisms underlying stress-induced pain transition. PMID:25297100

  14. A secretory kinase complex regulates extracellular protein phosphorylation

    PubMed Central

    Cui, Jixin; Xiao, Junyu; Tagliabracci, Vincent S; Wen, Jianzhong; Rahdar, Meghdad; Dixon, Jack E

    2015-01-01

    Although numerous extracellular phosphoproteins have been identified, the protein kinases within the secretory pathway have only recently been discovered, and their regulation is virtually unexplored. Fam20C is the physiological Golgi casein kinase, which phosphorylates many secreted proteins and is critical for proper biomineralization. Fam20A, a Fam20C paralog, is essential for enamel formation, but the biochemical function of Fam20A is unknown. Here we show that Fam20A potentiates Fam20C kinase activity and promotes the phosphorylation of enamel matrix proteins in vitro and in cells. Mechanistically, Fam20A is a pseudokinase that forms a functional complex with Fam20C, and this complex enhances extracellular protein phosphorylation within the secretory pathway. Our findings shed light on the molecular mechanism by which Fam20C and Fam20A collaborate to control enamel formation, and provide the first insight into the regulation of secretory pathway phosphorylation. DOI: http://dx.doi.org/10.7554/eLife.06120.001 PMID:25789606

  15. Animation Model to Conceptualize ATP Generation: A Mitochondrial Oxidative Phosphorylation

    ERIC Educational Resources Information Center

    Jena, Ananta Kumar

    2015-01-01

    Adenosine triphosphate (ATP) is the molecular unit of intracellular energy and it is the product of oxidative phosphorylation of cellular respiration uses in cellular processes. The study explores the growth of the misconception levels amongst the learners and evaluates the effectiveness of animation model over traditional methods. The data…

  16. Protein phosphorylation in Bradyrhizobium japonicum bacteroids and cultures.

    PubMed Central

    Karr, D B; Emerich, D W

    1989-01-01

    Protein phosphorylation was demonstrated in Bradyrhizobium japonicum bacteroids in vivo and in cultures in vivo and in vitro. Comparison of in vivo-labeled phosphoproteins of bacteroids and of cultured cells showed differences in both the pattern and intensity of labeling. In cultured cells, comparison of the labeling patterns and intensities of in vivo- and in vitro-labeled phosphoproteins showed a number of similarities; however, several phosphoproteins were found only after one of the two labeling conditions. The labeling intensity was time dependent in both in vivo and in vitro assays and was dependent on the presence of magnesium in in vitro assays. Differences in the rates of phosphorylation and dephosphorylation were noted for a number of proteins. The level of incorporation of 32P into protein was only 2% or less of the total phosphate accumulated during the in vivo labeling period. Several isolation and sample preparation procedures resulted in differences in labeling patterns. Phosphatase inhibitors and several potential metabolic effectors had negligible effects on the phosphorylation pattern. There were no significant changes in the phosphorylation patterns of cells cultured on mannitol, acetate, and succinate, although the intensity of the labeling did vary with the carbon source. Images PMID:2498290

  17. Doubling down on peptide phosphorylation as a variable mass modification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Some mass spectrometrists believe that searching for variable post-translational modifications like phosphorylation of serine or threonine when using database-search algorithms to interpret peptide tandem mass spectra will increase false positive rates. The basis for this is the premise that the al...

  18. Mechanism of Ribonuclease III Catalytic Regulation by Serine Phosphorylation

    PubMed Central

    Gone, Swapna; Alfonso-Prieto, Mercedes; Paudyal, Samridhdi; Nicholson, Allen W.

    2016-01-01

    Ribonuclease III (RNase III) is a conserved, gene-regulatory bacterial endonuclease that cleaves double-helical structures in diverse coding and noncoding RNAs. RNase III is subject to multiple levels of control, reflective of its global regulatory functions. Escherichia coli (Ec) RNase III catalytic activity is known to increase during bacteriophage T7 infection, reflecting the expression of the phage-encoded protein kinase, T7PK. However, the mechanism of catalytic enhancement is unknown. This study shows that Ec-RNase III is phosphorylated on serine in vitro by purified T7PK, and identifies the targets as Ser33 and Ser34 in the N-terminal catalytic domain. Kinetic experiments reveal a 5-fold increase in kcat and a 1.4-fold decrease in Km following phosphorylation, providing a 7.4–fold increase in catalytic efficiency. Phosphorylation does not change the rate of substrate cleavage under single-turnover conditions, indicating that phosphorylation enhances product release, which also is the rate-limiting step in the steady-state. Molecular dynamics simulations provide a mechanism for facilitated product release, in which the Ser33 phosphomonoester forms a salt bridge with the Arg95 guanidinium group, thereby weakening RNase III engagemen