Sample records for acetylcholine ach-induced relaxation

  1. Lipid Emulsion Attenuates Acetylcholine-Induced Relaxation in Isolated Rat Aorta

    PubMed Central

    Ok, Seong-Ho; Lee, Soo Hee; Yu, Jongsun; Park, Jungchul; Shin, Il-Woo; Lee, Youngju; Cho, Hyunhoo; Choi, Mun-Jeoung; Baik, Jiseok; Hong, Jeong-Min; Han, Jeong Yeol; Lee, Heon Keun; Chung, Young-Kyun; Sohn, Ju-Tae

    2015-01-01

    We investigated the effect of Lipofundin MCT/LCT and Intralipid on acetylcholine-induced nitric oxide- (NO-) mediated relaxation in rat aorta to determine which lipid emulsion (LE) is more potent in terms of inhibition of NO-induced relaxation. Dose-response curves of responses induced by acetylcholine, the calcium ionophore A23187, and sodium nitroprusside were generated using isolated rat aorta with or without LE. The effect of Lipofundin MCT/LCT on acetylcholine-induced endothelial nitric oxide synthase (eNOS) phosphorylation in human umbilical vein endothelial cells (HUVECs) was investigated using western blotting. Lipofundin MCT/LCT (0.1 and 0.2%) attenuated acetylcholine-induced relaxation in endothelium-intact aorta with or without tiron, whereas 0.2% Intralipid only inhibited relaxation. Lipofundin MCT/LCT inhibited relaxation induced by the calcium ionophore A23187 and sodium nitroprusside in endothelium-intact aorta, but Lipofundin MCT/LCT had no effect on sodium nitroprusside-induced relaxation in the endothelium-denuded aorta. Combined pretreatment with l-arginine plus Lipofundin MCT/LCT increased acetylcholine-induced maximal relaxation in endothelium-intact aorta compared with Lipofundin MCT/LCT alone. l-Arginine attenuated Lipofundin MCT/LCT-mediated inhibition of acetylcholine-induced eNOS phosphorylation in HUVECs. Taken together, Lipofundin MCT/LCT attenuated acetylcholine-induced NO-mediated relaxation via an inhibitory effect on the endothelium including eNOS, which is proximal to activation of guanylyl cyclase. PMID:26273653

  2. Lipid Emulsion Attenuates Acetylcholine-Induced Relaxation in Isolated Rat Aorta.

    PubMed

    Ok, Seong-Ho; Lee, Soo Hee; Yu, Jongsun; Park, Jungchul; Shin, Il-Woo; Lee, Youngju; Cho, Hyunhoo; Choi, Mun-Jeoung; Baik, Jiseok; Hong, Jeong-Min; Han, Jeong Yeol; Lee, Heon Keun; Chung, Young-Kyun; Sohn, Ju-Tae

    2015-01-01

    We investigated the effect of Lipofundin MCT/LCT and Intralipid on acetylcholine-induced nitric oxide- (NO-) mediated relaxation in rat aorta to determine which lipid emulsion (LE) is more potent in terms of inhibition of NO-induced relaxation. Dose-response curves of responses induced by acetylcholine, the calcium ionophore A23187, and sodium nitroprusside were generated using isolated rat aorta with or without LE. The effect of Lipofundin MCT/LCT on acetylcholine-induced endothelial nitric oxide synthase (eNOS) phosphorylation in human umbilical vein endothelial cells (HUVECs) was investigated using western blotting. Lipofundin MCT/LCT (0.1 and 0.2%) attenuated acetylcholine-induced relaxation in endothelium-intact aorta with or without tiron, whereas 0.2% Intralipid only inhibited relaxation. Lipofundin MCT/LCT inhibited relaxation induced by the calcium ionophore A23187 and sodium nitroprusside in endothelium-intact aorta, but Lipofundin MCT/LCT had no effect on sodium nitroprusside-induced relaxation in the endothelium-denuded aorta. Combined pretreatment with l-arginine plus Lipofundin MCT/LCT increased acetylcholine-induced maximal relaxation in endothelium-intact aorta compared with Lipofundin MCT/LCT alone. L-Arginine attenuated Lipofundin MCT/LCT-mediated inhibition of acetylcholine-induced eNOS phosphorylation in HUVECs. Taken together, Lipofundin MCT/LCT attenuated acetylcholine-induced NO-mediated relaxation via an inhibitory effect on the endothelium including eNOS, which is proximal to activation of guanylyl cyclase.

  3. Properties of acetylcholine-induced relaxation of smooth muscle isolated from the proximal colon of the guinea-pig.

    PubMed

    Kodama, Youhei; Iino, Satoshi; Shigemasa, Yuhsuke; Suzuki, Hikaru

    2010-01-01

    The properties of mechanical responses elicited by stimulation with acetylcholine (ACh) were investigated in circular smooth muscle preparations isolated from the proximal colon of guinea-pig. Application of ACh (10(-8)-10(-6) M) for 3-5 min produced a biphasic response, with an initial contraction followed by a relaxation. Atropine inhibited the initial contraction, while N(ω)-nitro-L-arginine (L-NA) inhibited the relaxation, suggesting that the former was produced by activation of muscarinic receptors while the latter was produced by an elevated production of nitric oxide (NO). In the presence of atropine, the ACh-relaxation was attenuated by removal of the mucosa and abolished by removal of both submucosal and mucosal layers. The ACh-induced relaxation was also attenuated by either tetrodotoxin (TTX, 3 × 10(-7) M) or hexamethonium (10(-6) M). In the presence of atropine, transmural nerve stimulation (TNS) elicited a biphasic response, with an initial phasic contraction followed by a relaxation. The amplitude of TNS-induced relaxation was significantly reduced by hexamethonium or L-NA and was abolished by TTX. Both ACh and TNS produced relaxation in preparations isolated from the proximal colon, but not in those from the middle part of colon. Immunohistochemistry for neuronal nitric oxide synthase revealed no difference in the distribution of nitrergic nerves between the proximal and middle part of the colon, with nitrergic nerves in both the mucosal and submucosal layers as well as in the smooth muscle and myenteric layers. These results suggest that ACh induces NO production by excitation of postganglionic nerves distributed mainly in the mucosal and submucosal layers. In circular smooth muscle preparations isolated from the middle part of colon, ACh or TNS produced contractile responses alone, with no associated relaxation, suggesting that the ACh-activated postganglionic nitrergic nerves are distributed in the mucosal and submucosal layers of the proximal

  4. Comparison of the relaxing actions of acetylcholine and substance P in smooth muscle of the guinea-pig aorta.

    PubMed

    Hozumi, T; Fukuta, H; Suzuki, H

    1997-04-01

    The relationship between relaxation produced by acetylcholine (ACh) or substance P (SP) and tissue cyclic GMP content was investigated in the isolated guinea-pig aorta. ACh and SP relaxed aortic rings precontracted with noradrenaline (NA) or high-K solution ([K+]o = 38.8 mM), in an endothelium-dependent manner. The amplitude of relaxation was larger for SP than for ACh. Nitroarginine inhibited ACh-induced but not SP-induced relaxation in NA-contraction, while this chemical inhibited both ACh- and SP-induced relaxations in high-K contraction. The tissue cyclic GMP content was not changed by nitroarginine or by removal of endothelial cells, but was elevated by stimulation with NA, ACh or SP by a factor of about 3, 5 or 11 times, respectively. These actions of ACh or SP were endothelium-dependent, and were inhibited by nitroarginine and remained unaltered by high-K solution. Thus, ACh and SP relax muscles indirectly by releasing endothelial factors, and the former by releasing mainly an endothelium-derived relaxing factor (EDRF), and the latter by releasing EDRF and other unidentified factors. As the relaxing actions of the latter factors are inhibited by high-K solution with no relation to the production of cyclic GMP, an involvement of hyperpolarizing factor, possibly EDHF, is suggested.

  5. Gamma irradiation induces acetylcholine-evoked, endothelium-independent relaxation and activatesk-channels of isolated pulmonary artery of rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eder, Veronique; Gautier, Mathieu; Boissiere, Julien

    2004-12-01

    Purpose: To test the effects of irradiation (R*) on the pulmonary artery (PA). Methods and materials: Isolated PA rings were submitted to gamma irradiation (cesium, 8 Gy/min{sup -1}) at doses of 20 Gy-140 Gy. Rings were placed in an organ chamber, contracted with serotonin (10{sup -4} M 5-hydroxytryptamine [5-HT]), then exposed to acetylcholine (ACh) in incremental concentrations. Smooth muscle cell (SMC) membrane potential was measured with microelectrodes. Results: A high dose of irradiation (60 Gy) increased 5HT contraction by 20%, whereas lower (20 Gy) doses slightly decreased it compared with control. In the absence of the endothelium, 5-HT precontracted ringsmore » exposed to 20 Gy irradiation developed a dose-dependent relaxation induced by acetylcholine (EI-ACh) with maximal relaxation of 60 {+-} 17% (n = 13). This was totally blocked by L-NAME (10{sup -4} M), partly by 7-nitro indazole; it was abolished by hypoxia and iberiotoxin, decreased by tetra-ethyl-ammonium, and not affected by free radical scavengers. In irradiated rings, hypoxia induced a slight contraction which was never observed in control rings. No differences in SMC membrane potential were observed between irradiated and nonirradiated PA rings. Conclusion: Irradiation mediates endothelium independent relaxation by a mechanism involving the nitric oxide pathway and K-channels.« less

  6. Nicotinic Acetylcholine Receptor (nAChR) Dependent Chorda Tympani Taste Nerve Responses to Nicotine, Ethanol and Acetylcholine.

    PubMed

    Ren, Zuo Jun; Mummalaneni, Shobha; Qian, Jie; Baumgarten, Clive M; DeSimone, John A; Lyall, Vijay

    2015-01-01

    Nicotine elicits bitter taste by activating TRPM5-dependent and TRPM5-independent but neuronal nAChR-dependent pathways. The nAChRs represent common targets at which acetylcholine, nicotine and ethanol functionally interact in the central nervous system. Here, we investigated if the nAChRs also represent a common pathway through which the bitter taste of nicotine, ethanol and acetylcholine is transduced. To this end, chorda tympani (CT) taste nerve responses were monitored in rats, wild-type mice and TRPM5 knockout (KO) mice following lingual stimulation with nicotine free base, ethanol, and acetylcholine, in the absence and presence of nAChR agonists and antagonists. The nAChR modulators: mecamylamine, dihydro-β-erythroidine, and CP-601932 (a partial agonist of the α3β4* nAChR), inhibited CT responses to nicotine, ethanol, and acetylcholine. CT responses to nicotine and ethanol were also inhibited by topical lingual application of 8-chlorophenylthio (CPT)-cAMP and loading taste cells with [Ca2+]i by topical lingual application of ionomycin + CaCl2. In contrast, CT responses to nicotine were enhanced when TRC [Ca2+]i was reduced by topical lingual application of BAPTA-AM. In patch-clamp experiments, only a subset of isolated rat fungiform taste cells exposed to nicotine responded with an increase in mecamylamine-sensitive inward currents. We conclude that nAChRs expressed in a subset of taste cells serve as common receptors for the detection of the TRPM5-independent bitter taste of nicotine, acetylcholine and ethanol.

  7. Nicotinic Acetylcholine Receptor (nAChR) Dependent Chorda Tympani Taste Nerve Responses to Nicotine, Ethanol and Acetylcholine

    PubMed Central

    Ren, Zuo Jun; Mummalaneni, Shobha; Qian, Jie; Baumgarten, Clive M.; DeSimone, John A.; Lyall, Vijay

    2015-01-01

    Nicotine elicits bitter taste by activating TRPM5-dependent and TRPM5-independent but neuronal nAChR-dependent pathways. The nAChRs represent common targets at which acetylcholine, nicotine and ethanol functionally interact in the central nervous system. Here, we investigated if the nAChRs also represent a common pathway through which the bitter taste of nicotine, ethanol and acetylcholine is transduced. To this end, chorda tympani (CT) taste nerve responses were monitored in rats, wild-type mice and TRPM5 knockout (KO) mice following lingual stimulation with nicotine free base, ethanol, and acetylcholine, in the absence and presence of nAChR agonists and antagonists. The nAChR modulators: mecamylamine, dihydro-β-erythroidine, and CP-601932 (a partial agonist of the α3β4* nAChR), inhibited CT responses to nicotine, ethanol, and acetylcholine. CT responses to nicotine and ethanol were also inhibited by topical lingual application of 8-chlorophenylthio (CPT)-cAMP and loading taste cells with [Ca2+]i by topical lingual application of ionomycin + CaCl2. In contrast, CT responses to nicotine were enhanced when TRC [Ca2+]i was reduced by topical lingual application of BAPTA-AM. In patch-clamp experiments, only a subset of isolated rat fungiform taste cells exposed to nicotine responded with an increase in mecamylamine-sensitive inward currents. We conclude that nAChRs expressed in a subset of taste cells serve as common receptors for the detection of the TRPM5-independent bitter taste of nicotine, acetylcholine and ethanol. PMID:26039516

  8. Nicotine-Induced Effects on Nicotinic Acetylcholine Receptors (nAChRs), Ca2+ and Brain-Derived Neurotrophic Factor (BDNF) in STC-1 Cells.

    PubMed

    Qian, Jie; Mummalaneni, Shobha K; Alkahtani, Reem M; Mahavadi, Sunila; Murthy, Karnam S; Grider, John R; Lyall, Vijay

    2016-01-01

    In addition to the T2R bitter taste receptors, neuronal nicotinic acetylcholine receptors (nAChRs) have recently been shown to be involved in the bitter taste transduction of nicotine, acetylcholine and ethanol. However, at present it is not clear if nAChRs are expressed in enteroendocrine cells other than beta cells of the pancreas and enterochromaffin cells, and if they play a role in the synthesis and release of neurohumoral peptides. Accordingly, we investigated the expression and functional role of nAChRs in enteroendocrine STC-1 cells. Our studies using RT-PCR, qRT-PCR, immunohistochemical and Western blotting techniques demonstrate that STC-1 cells express several α and β nAChR subunits. Exposing STC-1 cells to nicotine acutely (24h) or chronically (4 days) induced a differential increase in the expression of nAChR subunit mRNA and protein in a dose- and time-dependent fashion. Mecamylamine, a non-selective antagonist of nAChRs, inhibited the nicotine-induced increase in mRNA expression of nAChRs. Exposing STC-1 cells to nicotine increased intracellular Ca2+ in a dose-dependent manner that was inhibited in the presence of mecamylamine or dihydro-β-erythroidine, a α4β2 nAChR antagonist. Brain-derived neurotrophic factor (BDNF) mRNA and protein were detected in STC-1 cells using RT-PCR, specific BDNF antibody, and enzyme-linked immunosorbent assay. Acute nicotine exposure (30 min) decreased the cellular content of BDNF in STC-1 cells. The nicotine-induced decrease in BDNF was inhibited in the presence of mecamylamine. We also detected α3 and β4 mRNA in intestinal mucosal cells and α3 protein expression in intestinal enteroendocrine cells. We conclude that STC-1 cells and intestinal enteroendocrine cells express nAChRs. In STC-1 cells nAChR expression is modulated by exposure to nicotine in a dose- and time-dependent manner. Nicotine interacts with nAChRs and inhibits BDNF expression in STC-1 cells.

  9. Folic acid consumption reduces resistin level and restores blunted acetylcholine-induced aortic relaxation in obese/diabetic mice.

    PubMed

    Seto, Sai Wang; Lam, Tsz Yan; Or, Penelope Mei Yu; Lee, Wayne Yuk Wai; Au, Alice Lai Shan; Poon, Christina Chui Wa; Li, Rachel Wai Sum; Chan, Shun Wan; Yeung, John Hok Keung; Leung, George Pak Heng; Lee, Simon Ming Yuen; Ngai, Sai Ming; Kwan, Yiu Wa

    2010-09-01

    Folic acid supplementation provides beneficial effects on endothelial functions in patients with hyperhomocysteinemia. However, its effects on vascular functions under diabetic conditions are largely unknown. Therefore, the effect(s) of folic acid (5.7 and 71 microg/kg/day for 4 weeks) on aortic relaxation was investigated using obese/diabetic (+db/+db) mice and lean littermate (+db/+m) mice. Acetylcholine-induced relaxation in +db/+db mice was less than that observed in +db/+m mice. The reduced relaxation in +db/+db mice was restored by consumption of 71 microg/kg folic acid. Acetylcholine-induced relaxation (with and without folic acid treatment) was sensitive to N(G)-nitro-L-arginine methyl ester, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one, geldanamycin and triciribine. In addition, acetylcholine-induced relaxation was attenuated by resistin. The plasma level of resistin in +db/+db mice was sevenfold higher than that measured in +db/+m mice, and the elevated plasma level of resistin in +db/+db mice was reduced by 25% after treatment with 71 microg/kg folic acid. Folic acid slightly increased the ratio of reduced glutathione to oxidized glutathione in +db/+db mice. Moreover, folic acid caused a reduction in PTEN (phosphatase and tensin homolog deleted on chromosome 10) expression, an increase in the phosphorylation of endothelial nitric oxide synthase (eNOS(Ser1177)) and Akt(Ser473), and an enhanced interaction of heat shock protein 90 (HSP90) with eNOS in both strains, with greater magnitude observed in +db/+db mice. In conclusion, folic acid consumption improved blunted acetylcholine-induced relaxation in +db/+db mice. The mechanism may be, at least partly, attributed to enhancement of PI3K/HSP90/eNOS/Akt cascade, reduction in plasma resistin level, down-regulation of PTEN and slight modification of oxidative state. Copyright 2010 Elsevier Inc. All rights reserved.

  10. Hyperbaric oxygenation affects the mechanisms of acetylcholine-induced relaxation in diabetic rats.

    PubMed

    Unfirer, Sanela; Mihalj, Martina; Novak, Sanja; Kibel, Aleksandar; Cavka, Ava; Mijalevic, Zrinka; Gros, Mario; Brizic, Ivica; Budimir, Danijela; Cosic, Anita; Boban, Mladen; Drenjancevic, Ines

    2016-01-01

    The effects of hyperbaric oxygenation (HBO₂) on acetylcholine-induced vasorelaxation (AChIR) were evaluated in male Sprague-Dawley (SD) rats randomized into four groups: healthy controls (Ctrl), diabetic rats (DM), and control and diabetic rats that underwent hyperbaric oxygenation (Ctrl+HBO₂ and DM+HBO₂). AChIR was measured in aortic rings, with L-NAME, indomethacin, or MS-PPOH and a combination of inhibitors. mRNA expression of eNOS, iNOS, COX-1 and COX-2 was assessed by qPCR, and protein expression of CYP4A(1-3) by Western blot. Plasma antioxidative capacity and systemic oxidative stress were determined with the ferric reducing ability of plasma (FRAP) and thiobarbituric acid-reactive substances (TBARS) assays, respectively. AChIR was preserved in all groups of rats, but mediated with different mechanisms. In all experimental groups of rats, AChIR was mediated mainly by NO, with the contribution of CYP450 vasodilator metabolites. This effect was the most prominent in the DM+HBO₂ group of rats. The TBARS was significantly higher in both DM and DM+HBO₂ groups compared to respective controls. eNOS expression was upregulated in the DM+HBO₂ group compared to other groups, COX-1 expression was upregulated in the DM+HBO₂ group compared to the control. CYP450-4A1 / A2/A3protein expression was significantly higher expressed in both hyperbaric groups compared to their respective controls. In conclusion, HBO₂ affected all three vasodilator pathways and shifted AChIR to CYP450 enzymes pathway. Copyright© Undersea and Hyperbaric Medical Society.

  11. Acetylcholine-induced current in perfused rat myoballs

    PubMed Central

    1980-01-01

    Spherical "myoballs" were grown under tissue culture conditions from striated muscle of neonatal rat thighs. The myoballs were examined electrophysiologically with a suction pipette which was used to pass current and perfuse internally. A microelectrode was used to record membrane potential. Experiments were performed with approximately symmetrical (intracellular and extracellular) sodium aspartate solutions. The resting potential, acetylcholine (ACh) reversal potential, and sodium channel reversal potential were all approximately 0 mV. ACh-induced currents were examined by use of both voltage jumps and voltage ramps in the presence of iontophoretically applied agonist. The voltage-jump relaxations had a single exponential time-course. The time constant, tau, was exponentially related to membrane potential, increasing e-fold for 81 mV hyperpolarization. The equilibrium current- voltage relationship was also approximately exponential, from -120 to +81 mV, increasing e-fold for 104 mV hyperpolarization. The data are consistent with a first-order gating process in which the channel opening rate constant is slightly voltage dependent. The instantaneous current-voltage relationship was sublinear in the hyperpolarizing direction. Several models are discussed which can account for the nonlinearity. Evidence is presented that the "selectivity filter" for the ACh channel is located near the intracellular membrane surface. PMID:7381423

  12. Muscarinic acetylcholine receptor M1 and M3 subtypes mediate acetylcholine-induced endothelium-independent vasodilatation in rat mesenteric arteries.

    PubMed

    Tangsucharit, Panot; Takatori, Shingo; Zamami, Yoshito; Goda, Mitsuhiro; Pakdeechote, Poungrat; Kawasaki, Hiromu; Takayama, Fusako

    2016-01-01

    The present study investigated pharmacological characterizations of muscarinic acetylcholine receptor (AChR) subtypes involving ACh-induced endothelium-independent vasodilatation in rat mesenteric arteries. Changes in perfusion pressure to periarterial nerve stimulation and ACh were measured before and after the perfusion of Krebs solution containing muscarinic receptor antagonists. Distributions of muscarinic AChR subtypes in mesenteric arteries with an intact endothelium were studied using Western blotting. The expression level of M1 and M3 was significantly greater than that of M2. Endothelium removal significantly decreased expression levels of M2 and M3, but not M1. In perfused mesenteric vascular beds with intact endothelium and active tone, exogenous ACh (1, 10, and 100 nmol) produced concentration-dependent and long-lasting vasodilatations. In endothelium-denuded preparations, relaxation to ACh (1 nmol) disappeared, but ACh at 10 and 100 nmol caused long-lasting vasodilatations, which were markedly blocked by the treatment of pirenzepine (M1 antagonist) or 4-DAMP (M1 and M3 antagonist) plus hexamethonium (nicotinic AChR antagonist), but not methoctramine (M2 and M4 antagonist). These results suggest that muscarinic AChR subtypes, mainly M1, distribute throughout the rat mesenteric arteries, and that activation of M1 and/or M3 which may be located on CGRPergic nerves releases CGRP, causing an endothelium-independent vasodilatation. Copyright © 2015 Japanese Pharmacological Society. Production and hosting by Elsevier B.V. All rights reserved.

  13. Chloride channel blockade relaxes airway smooth muscle and potentiates relaxation by β-agonists

    PubMed Central

    Yim, Peter; Rinderspacher, Alison; Fu, Xiao Wen; Zhang, Yi; Landry, Donald W.; Emala, Charles W.

    2014-01-01

    Severe bronchospasm refractory to β-agonists continues to cause significant morbidity and mortality in asthmatic patients. We questioned whether chloride channels/transporters are novel targets for the relaxation of airway smooth muscle (ASM). We have screened a library of compounds, derivatives of anthranilic and indanyloxyacetic acid, that were originally developed to antagonize chloride channels in the kidney. We hypothesized that members of this library would be novel calcium-activated chloride channel blockers for the airway. The initial screen of this compound library identified 4 of 20 compounds that relaxed a tetraethylammonium chloride-induced contraction in guinea pig tracheal rings. The two most effective compounds, compounds 1 and 13, were further studied for their potential to either prevent the initiation of or relax the maintenance phase of an acetylcholine (ACh)-induced contraction or to potentiate β-agonist-mediated relaxation. Both relaxed an established ACh-induced contraction in human and guinea pig ex vivo ASM. In contrast, the prevention of an ACh-induced contraction required copretreatment with the sodium-potassium-chloride cotransporter blocker bumetanide. The combination of compound 13 and bumetanide also potentiated relaxation by the β-agonist isoproterenol in guinea pig tracheal rings. Compounds 1 and 13 hyperpolarized the plasma cell membrane of human ASM cells and blocked spontaneous transient inward currents, a measure of chloride currents in these cells. These functional and electrophysiological data suggest that modulating ASM chloride flux is a novel therapeutic target in asthma and other bronchoconstrictive diseases. PMID:24879056

  14. Quercetin acutely relaxes airway smooth muscle and potentiates β-agonist-induced relaxation via dual phosphodiesterase inhibition of PLCβ and PDE4

    PubMed Central

    Emala, Charles W.

    2013-01-01

    Asthma is a disease of the airways with symptoms including exaggerated airway narrowing and airway inflammation. Early asthma therapies used methylxanthines to relieve symptoms, in part, by inhibiting cyclic nucleotide phosphodiesterases (PDEs), the enzyme responsible for degrading cAMP. The classification of tissue-specific PDE subtypes and the clinical introduction of PDE-selective inhibitors for chronic obstructive pulmonary disease (i.e., roflumilast) have reopened the possibility of using PDE inhibition in the treatment of asthma. Quercetin is a naturally derived PDE4-selective inhibitor found in fruits, vegetables, and tea. We hypothesized that quercetin relaxes airway smooth muscle via cAMP-mediated pathways and augments β-agonist relaxation. Tracheal rings from male A/J mice were mounted in myographs and contracted with acetylcholine (ACh). Addition of quercetin (100 nM-1 mM) acutely and concentration-dependently relaxed airway rings precontracted with ACh. In separate studies, pretreatment with quercetin (100 μM) prevented force generation upon exposure to ACh. In additional studies, quercetin (50 μM) significantly potentiated isoproterenol-induced relaxations. In in vitro assays, quercetin directly attenuated phospholipase C activity, decreased inositol phosphate synthesis, and decreased intracellular calcium responses to Gq-coupled agonists (histamine or bradykinin). Finally, nebulization of quercetin (100 μM) in an in vivo model of airway responsiveness significantly attenuated methacholine-induced increases in airway resistance. These novel data show that the natural PDE4-selective inhibitor quercetin may provide therapeutic relief of asthma symptoms and decrease reliance on short-acting β-agonists. PMID:23873842

  15. Cigarette toxin 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) induces experimental pancreatitis through α7 nicotinic acetylcholine receptors (nAChRs) in mice

    PubMed Central

    Alahmari, A. A.; Sreekumar, B.; Patel, V.; Ashat, M.; Alexandre, M.; Uduman, A. K.; Akinbiyi, E. O.; Ceplenski, A.; Shugrue, C. A.; Kolodecik, T. R.; Messenger, S. W.; Groblewski, G. E.; Gorelick, F. S.

    2018-01-01

    Clinical studies have shown that cigarette smoking is a dose-dependent and independent risk factor for acute pancreatitis. Cigarette smoke contains nicotine which can be converted to the potent receptor ligand and toxin, NNK [4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone]. Previously, we have shown that NNK induces premature activation of pancreatic zymogens in rats, an initiating event in pancreatitis, and this activation is prevented by pharmacologic inhibition of nicotinic acetylcholine receptors (nAChR). In this study, we determined whether NNK mediates pancreatitis through the α7 isoform of nAChR using α7nAChR knockout mice. PCR analysis confirmed expression of non-neuronal α7nAChR in C57BL/6 (WT) mouse and human acinar cells. NNK treatment stimulated trypsinogen activation in acini from WT but not α7nAChR-/- mice. NNK also stimulated trypsinogen activation in human acini. To further confirm these findings, WT and α7nAChR-/- mice were treated with NNK in vivo and markers of pancreatitis were measured. As observed in acini NNK treatment induced trypsinogen activation in WT but not α7nAChR-/- mice. NNK also induced other markers of pancreatitis including pancreatic edema, vacuolization and pyknotic nuclei in WT but not α7nAChR-/- animals. NNK treatment led to increased neutrophil infiltration, a marker of inflammation, in WT mice and to a significantly lesser extent in α7nAChR-/- mice. We also examined downstream targets of α7nAChR activation and found that calcium and PKC activation are involved down stream of NNK stimulation of α7nAChR. In this study we used genetic deletion of the α7nAChR to confirm our previous inhibitor studies that demonstrated NNK stimulates pancreatitis by activating this receptor. Lastly, we demonstrate that NNK can also stimulate zymogen activation in human acinar cells and thus may play a role in human disease. PMID:29870540

  16. A selective molecularly imprinted polymer for immobilization of acetylcholinesterase (AChE): an active enzyme targeted and efficient method.

    PubMed

    Demirci, Gökhan; Doğaç, Yasemin İspirli; Teke, Mustafa

    2015-11-01

    In the present study, we immobilized acetylcholinesterase (AChE) enzyme onto acetylcholine removed imprinted polymer and acetylcholine containing polymer. First, the polymers were produced with acetylcholine, substrate of AChE, by dispersion polymerization. Then, the enzyme was immobilized onto the polymers by using two different methods: In the first method (method A), acetylcholine was removed from the polymer, and then AChE was immobilized onto this polymer (acetylcholine removed imprinted polymer). In the second method (method B), AChE was immobilized onto acetylcholine containing polymer by affinity. In method A, enzyme-specific species (binding sites) occurred by removing acetylcholine from the polymer. The immobilized AChE reached 240% relative specific activity comparison with free AChE because the active enzyme molecules bounded onto the polymer. Transmission electron microscopy results were taken before and after immobilization of AChE for the assessment of morphological structure of polymer. Also, the experiments, which include optimum temperature (25-65 °C), optimum pH (3-10), thermal stability (4-70 °C), kinetic parameters, operational stability and reusability, were performed to determine the characteristic of the immobilized AChE. Copyright © 2015 John Wiley & Sons, Ltd.

  17. Acetylcholine Attenuates Hydrogen Peroxide-Induced Intracellular Calcium Dyshomeostasis Through Both Muscarinic and Nicotinic Receptors in Cardiomyocytes.

    PubMed

    Palee, Siripong; Apaijai, Nattayaporn; Shinlapawittayatorn, Krekwit; Chattipakorn, Siriporn C; Chattipakorn, Nipon

    2016-01-01

    Oxidative stress induced intracellular Ca2+ overload plays an important role in the pathophysiology of several heart diseases. Acetylcholine (ACh) has been shown to suppress reactive oxygen species generation during oxidative stress. However, there is little information regarding the effects of ACh on the intracellular Ca2+ regulation in the presence of oxidative stress. Therefore, we investigated the effects of ACh applied before or after hydrogen peroxide (H2O2) treatment on the intracellular Ca2+ regulation in isolated cardiomyocytes. Single ventricular myocytes were isolated from the male Wistar rats for the intracellular Ca2+ transient study by a fluorimetric ratio technique. H2O2 significantly decreased both of intracellular Ca2+ transient amplitude and decay rate. ACh applied before, but not after, H2O2 treatment attenuated the reduction of intracellular Ca2+ transient amplitude and decay rate. Both atropine (a muscarinic acetylcholine receptor blocker) and mecamylamine (a nicotinic acetylcholine receptor blocker) significantly decreased the protective effects of acetylcholine on the intracellular Ca2+ regulation. Moreover, the combination of atropine and mecamylamine completely abolished the protective effects of acetylcholine on intracellular Ca2+ transient amplitude and decay rate. ACh pretreatment attenuates H2O2-induced intracellular Ca2+ dyshomeostasis through both muscarinic and nicotinic receptors. © 2016 The Author(s) Published by S. Karger AG, Basel.

  18. Menthol Enhances Nicotine Reward-Related Behavior by Potentiating Nicotine-Induced Changes in nAChR Function, nAChR Upregulation, and DA Neuron Excitability.

    PubMed

    Henderson, Brandon J; Wall, Teagan R; Henley, Beverley M; Kim, Charlene H; McKinney, Sheri; Lester, Henry A

    2017-11-01

    Understanding why the quit rate among smokers of menthol cigarettes is lower than non-menthol smokers requires identifying the neurons that are altered by nicotine, menthol, and acetylcholine. Dopaminergic (DA) neurons in the ventral tegmental area (VTA) mediate the positive reinforcing effects of nicotine. Using mouse models, we show that menthol enhances nicotine-induced changes in nicotinic acetylcholine receptors (nAChRs) expressed on midbrain DA neurons. Menthol plus nicotine upregulates nAChR number and function on midbrain DA neurons more than nicotine alone. Menthol also enhances nicotine-induced changes in DA neuron excitability. In a conditioned place preference (CPP) assay, we observed that menthol plus nicotine produces greater reward-related behavior than nicotine alone. Our results connect changes in midbrain DA neurons to menthol-induced enhancements of nicotine reward-related behavior and may help explain how smokers of menthol cigarettes exhibit reduced cessation rates.

  19. Menthol Enhances Nicotine Reward-Related Behavior by Potentiating Nicotine-Induced Changes in nAChR Function, nAChR Upregulation, and DA Neuron Excitability

    PubMed Central

    Henderson, Brandon J; Wall, Teagan R; Henley, Beverley M; Kim, Charlene H; McKinney, Sheri; Lester, Henry A

    2017-01-01

    Understanding why the quit rate among smokers of menthol cigarettes is lower than non-menthol smokers requires identifying the neurons that are altered by nicotine, menthol, and acetylcholine. Dopaminergic (DA) neurons in the ventral tegmental area (VTA) mediate the positive reinforcing effects of nicotine. Using mouse models, we show that menthol enhances nicotine-induced changes in nicotinic acetylcholine receptors (nAChRs) expressed on midbrain DA neurons. Menthol plus nicotine upregulates nAChR number and function on midbrain DA neurons more than nicotine alone. Menthol also enhances nicotine-induced changes in DA neuron excitability. In a conditioned place preference (CPP) assay, we observed that menthol plus nicotine produces greater reward-related behavior than nicotine alone. Our results connect changes in midbrain DA neurons to menthol-induced enhancements of nicotine reward-related behavior and may help explain how smokers of menthol cigarettes exhibit reduced cessation rates. PMID:28401925

  20. Acetylcholine affects osteocytic MLO-Y4 cells via acetylcholine receptors.

    PubMed

    Ma, Yuanyuan; Li, Xianxian; Fu, Jing; Li, Yue; Gao, Li; Yang, Ling; Zhang, Ping; Shen, Jiefei; Wang, Hang

    2014-03-25

    The identification of the neuronal control of bone remodeling has become one of the many significant recent advances in bone biology. Cholinergic activity has recently been shown to favor bone mass accrual by complex cellular regulatory networks. Here, we identified the gene expression of the muscarinic and nicotinic acetylcholine receptors (m- and nAChRs) in mice tibia tissue and in osteocytic MLO-Y4 cells. Acetylcholine, which is a classical neurotransmitter and an osteo-neuromediator, not only influences the mRNA expression of the AChR subunits but also significantly induces the proliferation and viability of osteocytes. Moreover, acetylcholine treatment caused the reciprocal regulation of RANKL and OPG mRNA expression, which resulted in a significant increase in the mRNA ratio of RANKL:OPG in osteocytes via acetylcholine receptors. The expression of neuropeptide Y and reelin, which are two neurogenic markers, was also modulated by acetylcholine via m- and nAChRs in MLO-Y4 cells. These results indicated that osteocytic acetylcholine receptors might be a new valuable mediator for cell functions and even for bone remodeling. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. Acetylcholine protects mesenteric arteries against hypoxia/reoxygenation injury via inhibiting calcium-sensing receptor.

    PubMed

    Zhao, Ming; He, Xi; Yang, Yong-Hua; Yu, Xiao-Jiang; Bi, Xue-Yuan; Yang, Yang; Xu, Man; Lu, Xing-Zhu; Sun, Qiang; Zang, Wei-Jin

    2015-04-01

    The Ca(2+)-sensing receptor (CaSR) plays an important role in regulating vascular tone. In the present study, we investigated the positive effects of the vagal neurotransmitter acetylcholine by suppressing CaSR activation in mesenteric arteries exposed to hypoxia/reoxygenation (H/R). The artery rings were exposed to a modified 'ischemia mimetic' solution and an anaerobic environment to simulate an H/R model. Our results showed that acetylcholine (10(-6) mol/L) significantly reduced the contractions induced by KCl and phenylephrine and enhanced the endothelium-dependent relaxation induced by acetylcholine. Additionally, acetylcholine reduced CaSR mRNA expression and activity when the rings were subjected to 4 h of hypoxia and 12 h of reoxygenation. Notably, the CaSR antagonist NPS2143 significantly reduced the contractions but did not improve the endothelium-dependent relaxation. When a contractile response was achieved with extracellular Ca(2+), both acetylcholine and NPS2143 reversed the H/R-induced abnormal vascular vasoconstriction, and acetylcholine reversed the calcimimetic R568-induced abnormal vascular vasoconstriction in the artery rings. In conclusion, this study suggests that acetylcholine ameliorates the dysfunctional vasoconstriction of the arteries after H/R, most likely by decreasing CaSR expression and activity, thereby inhibiting the increase in intracellular calcium concentration. Our findings may be indicative of a novel mechanism underlying ACh-induced vascular protection. Copyright © 2015 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  2. Antioxidant effects of methylprednisolone and hydrocortisone on the impairment of endothelium dependent relaxation induced by reactive oxygen species in rabbit abdominal aorta

    PubMed Central

    Lee, Hee Jong; Song, Hyun Hoo; Jeong, Mi Ae; Yeom, Jong Hoon; Kim, Dong Won

    2013-01-01

    Background The reperfusion following ischemia produces reactive oxygen species (ROS). We studied the influences of methylprednisolone (MPD) and hydrocortisone (CRT) on ROS effects using the endothelium of rabbit abdominal aorta. Methods Isolated rabbit aortic rings were suspended in an organ bath filled with Krebs-Henseleit (K-H) solution. After precontraction with norepinephrine, changes in arterial tension were recorded following the cumulative administration of acetylcholine (ACh). The percentages of ACh-induced relaxation of aortic rings before and after exposure to ROS, generated by electrolysis of K-H solution, were used as the control and experimental values, respectively. The aortic rings were pretreated with MPD or CRT at the same concentrations, and the effects of these agents were compared with the effects of ROS scavenger inhibitors: superoxide dismutase inhibitor, diethylthiocarbamate (DETCA), and the catalase inhibitor, 3-amino-1,2,4-triazole (3AT). Results Both MPD and CRT maintained endothelium-dependent relaxation induced by ACh in a dose-related manner in spite of ROS attack. The restored ACh-induced relaxation of MPD and CRT group was not attenuated by pretreatment of 3AT and DETCA. Conclusions MPD and CRT preserve the endothelium-dependent vasorelaxation against the attack of ROS, in a dose-related manner. Endothelial protection mechanisms of MPD and CRT may be not associated with hydrogen peroxide and superoxide scavenging. PMID:23372887

  3. Acetylcholine ameliorates endoplasmic reticulum stress in endothelial cells after hypoxia/reoxygenation via M3 AChR-AMPK signaling.

    PubMed

    Bi, Xueyuan; He, Xi; Xu, Man; Zhao, Ming; Yu, Xiaojiang; Lu, Xingzhu; Zang, Weijin

    2015-08-03

    Endoplasmic reticulum (ER) stress is associated with various cardiovascular diseases. However, its pathophysiological relevance and the underlying mechanisms in the context of hypoxia/reoxygenation (H/R) in endothelial cells are not fully understood. Previous findings have suggested that acetylcholine (ACh), the major vagal nerve neurotransmitter, protected against cardiomyocyte injury by activating AMP-activated protein kinase (AMPK). This study investigated the role of ER stress in endothelial cells during H/R and explored the beneficial effects of ACh. Our results showed that H/R triggered ER stress and apoptosis in endothelial cells, evidenced by the elevation of glucose-regulated protein 78, cleaved caspase-12 and C/EBP homologous protein expression. ACh significantly decreased ER stress and terminal deoxynucleotidyl transferase mediated dUTP-biotin nick end labeling positive cells and restored ER ultrastructural changes induced by H/R, possibly via protein kinase-like ER kinase and inositol-requiring kinase 1 pathways. Additionally, 4-diphenylacetoxy-N-methylpiperidine methiodide, a type-3 muscarinic ACh receptor (M3 AChR) inhibitor, abolished ACh-mediated increase in AMPK phosphorylation during H/R. Furthermore, M3 AChR or AMPK siRNA abrogated the ACh-elicited the attenuation of ER stress in endothelial cells, indicating that the salutary effects of ACh were likely mediated by M3 AChR-AMPK signaling. Overall, ACh activated AMPK through M3 AChR, thereby inhibited H/R-induced ER stress and apoptosis in endothelial cells. We have suggested for the first time that AMPK may function as an essential intermediate step between M3 AChR stimulation and inhibition of ER stress-associated apoptotic pathway during H/R, which may help to develop novel therapeutic approaches targeting ER stress to prevent or alleviate ischemia/reperfusion injury.

  4. Functional Human α7 Nicotinic Acetylcholine Receptor (nAChR) Generated from Escherichia coli.

    PubMed

    Tillman, Tommy S; Alvarez, Frances J D; Reinert, Nathan J; Liu, Chuang; Wang, Dawei; Xu, Yan; Xiao, Kunhong; Zhang, Peijun; Tang, Pei

    2016-08-26

    Human Cys-loop receptors are important therapeutic targets. High-resolution structures are essential for rational drug design, but only a few are available due to difficulties in obtaining sufficient quantities of protein suitable for structural studies. Although expression of proteins in E. coli offers advantages of high yield, low cost, and fast turnover, this approach has not been thoroughly explored for full-length human Cys-loop receptors because of the conventional wisdom that E. coli lacks the specific chaperones and post-translational modifications potentially required for expression of human Cys-loop receptors. Here we report the successful production of full-length wild type human α7nAChR from E. coli Chemically induced chaperones promote high expression levels of well-folded proteins. The choice of detergents, lipids, and ligands during purification determines the final protein quality. The purified α7nAChR not only forms pentamers as imaged by negative-stain electron microscopy, but also retains pharmacological characteristics of native α7nAChR, including binding to bungarotoxin and positive allosteric modulators specific to α7nAChR. Moreover, the purified α7nAChR injected into Xenopus oocytes can be activated by acetylcholine, choline, and nicotine, inhibited by the channel blockers QX-222 and phencyclidine, and potentiated by the α7nAChR specific modulators PNU-120596 and TQS. The successful generation of functional human α7nAChR from E. coli opens a new avenue for producing mammalian Cys-loop receptors to facilitate structure-based rational drug design. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Parasympathomimetic effect of shilajit accounts for relaxation of rat corpus cavernosum.

    PubMed

    Kaur, Sarabjeet; Kumar, Pravin; Kumar, Deo; Kharya, M D; Singh, Nityanand

    2013-03-01

    Previous studies have reported an enhancement of central cholinergic signal cascade by shilajit. For the present study, it was hypothesized that parasympathomimetic effect of shilajit accounting for relaxation of rat corpus cavernosum may be one of the major mechanisms attributing to its traditional role as an aphrodisiac. To test this hypothesis, the acute peripheral effect of standard acetylcholine (ACh), shilajit, and their combination was evaluated on cardiorespiratory parameters such as mean arterial blood pressure (MABP), heart rate (HR), respiratory rate (RR), and neuromuscular transmission (NMT). Furthermore, in vitro effect of standard ACh, shilajit, and their combination was tested on the rat corpus cavernosum. Six groups were used for the in vivo study (N = 5): Group I (control-saline), Group II (ACh), Group III (Sh), Group IV (Sh followed by ACh), Group V (Atropine followed by ACh), and Group VI (Atropine followed by Sh). The in vitro study included four groups: Group I (control-saline), Group II (ACh), Group III (Sh), and Group IV (Sh followed by ACh). The results of the in vivo study confirmed the peripheral parasympathomimetic effect of shilajit (400 µg/mL). The in vitro results revealed that shilajit (400 and 800 µg/mL) relaxed cavernous strips' concentration dependently and enhanced ACh-mediated relaxations. The peripheral parasympathomimetic effects of shilajit were confirmed by blockade of shilajit-induced relaxations (in vitro) and shilajit-induced lowering of MABP and HR (in vivo) by atropine.

  6. The expression, localization and function of α7 nicotinic acetylcholine receptor in rat corpus cavernosum.

    PubMed

    Faghir-Ghanesefat, Hedyeh; Rahimi, Nastaran; Yarmohammadi, Fatemeh; Mokhtari, Tahmineh; Abdollahi, Ali Reza; Ejtemaei Mehr, Shahram; Dehpour, Ahmad R

    2017-12-01

    Alpha7 nicotinic acetylcholine receptor (α7-nAChR), an emerging pharmacological target for a variety of medical conditions, is expressed in the most mammalian tissues with different effects. So, this study was designed to investigate the expression, localization and effect of α7-nAChR in rat corpus cavernosum (CC). Reverse transcription polymerase chain reaction (RT-PCR) revealed that α7-nAChR was expressed in rat CC and double immunofluorescence studies demonstrated the presence of α7-nAChR in corporal neurons. The rat CC segments were mounted in organ bath chambers and contracted with phenylephrine (0.1 μm -300 μm) to investigate the relaxation effect of electrical field stimulation (EFS,10 Hz) assessed in the presence of guanethidine (adrenergic blocker, 5 μm) and atropine (muscarinic cholinergic blocker, 1 μm) to obtain non-adrenergic non-cholinergic (NANC) response. Cumulative administration of nicotine significantly potentiated the EFS-induced NANC relaxation (-log EC50 = 7.5 ± 0.057). Whereas, the potentiated NANC relaxation of nicotine was significantly inhibited with different concentrations of methyllycaconitine citrate (α7-nAChR antagonist, P < 0.05) in preincubated strips. L-NAME (non-specific nitric oxide synthase inhibitor, 1 μm) completely blocked the neurogenic relaxation induced by EFS plus nicotine. To conclude α7-nAChR is expressed in rat CC and modulates the neurogenic relaxation response to nicotine. © 2017 Royal Pharmaceutical Society.

  7. Subunit profiling and functional characteristics of acetylcholine receptors in GT1-7 cells.

    PubMed

    Arai, Yuki; Ishii, Hirotaka; Kobayashi, Makito; Ozawa, Hitoshi

    2017-03-01

    GnRH neurons form a final common pathway for the central regulation of reproduction. Although the involvement of acetylcholine in GnRH secretion has been reported, direct effects of acetylcholine and expression profiles of acetylcholine receptors (AChRs) still remain to be studied. Using immortalized GnRH neurons (GT1-7 cells), we analyzed molecular expression and functionality of AChRs. Expression of the mRNAs were identified in the order α7 > β2 = β1 ≧ α4 ≧ α5 = β4 = δ > α3 for nicotinic acetylcholine receptor (nAChR) subunits and m4 > m2 for muscarinic acetylcholine receptor (mAChR) subtypes. Furthermore, this study revealed that α7 nAChRs contributed to Ca 2+ influx and GnRH release and that m2 and m4 mAChRs inhibited forskolin-induced cAMP production and isobutylmethylxanthine-induced GnRH secretion. These findings demonstrate the molecular profiles of AChRs, which directly contribute to GnRH secretion in GT1-7 cells, and provide one possible regulatory action of acetylcholine in GnRH neurons.

  8. Inhibitory effects of psychotropic drugs on the acetylcholine receptor-operated potassium current (IK.ACh) in guinea-pig atrial myocytes.

    PubMed

    Okada, Muneyoshi; Watanabe, Shinya; Matada, Takashi; Asao, Yoko; Hamatani, Ramu; Yamawaki, Hideyuki; Hara, Yukio

    2013-01-01

    Influences of psychotropic drugs, six antipsychotics and three antidepressants, on acetylcholine receptor-operated potassium current (IK.ACh) were examined by a whole-cell patch clamp method in freshly isolated guinea-pig atrial myocyte. IK.ACh was induced by a superfusion of carbachol (CCh) or by an intracellular application of guanosine 5'-[thio] triphosphate (GTPγS). To elucidate mechanism for anticholinergic action, IC50 ratio, the ratio of IC50 for GTPγS-activated IK.ACh to CCh-induced IK.ACh, was calculated. Antipsychotics and antidepressants inhibited CCh-induced IK.ACh in a concentration-dependent manner. The IC50 values were as follows; chlorpromazine 0.53 μM, clozapine 0.06 μM, fluphenazine 2.69 μM, haloperidol 2.66 μM, sulpiride 42.3 μM, thioridazine 0.07 μM, amitriptyline 0.03 μM, imipramine 0.22 μM and maprotiline 1.81 μM. The drugs, except for sulpiride, inhibited GTPγS-activated IK.ACh with following IC50 values; chlorpromazine 1.71 μM, clozapine 14.9 μM, fluphenazine 3.55 μM, haloperidol 2.73 μM, thioridazine 1.90 μM, amitriptyline 7.55 μM, imipramine 7.09 μM and maprotiline 5.93 μM. The IC50 ratio for fluphenazine and haloperidol was close to unity. The IC50 ratio for chlorpromazine, clozapine, thioridazine, amitriptyline, imipramine and maprotiline was much higher than unity. The present findings suggest that the psychotropics studied suppress IK.ACh. Chlorpromazine, clozapine, thioridazine, amitriptyline, imipramine, maprotiline and sulpiride are preferentially acting on muscarinic receptor. Fluphenazine and haloperidol may act on G protein and/or potassium channel.

  9. Characterization of muscarinic receptors mediating relaxation and contraction in the rat iris dilator muscle.

    PubMed Central

    Masuda, Y; Yamahara, N S; Tanaka, M; Ryang, S; Kawai, T; Imaizumi, Y; Watanabe, M

    1995-01-01

    1. The characteristics of muscarinic receptors mediating relaxation and/or contraction in the rat iris dilator muscle were examined. 2. Relaxation was induced in a dilator muscle by application of acetylcholine (ACh) at low doses (3 microM or less) and contraction was induced by high doses. Methacholine and carbachol also showed biphasic effects similar to those of ACh; in contrast, bethanechol, arecoline, pilocarpine and McN-A-343 induced mainly relaxation but no substantial contraction. 3. After parasympathetic denervation by ciliary ganglionectomy, the relaxant response to muscarinic agonists disappeared upon nerve stimulation. Application of McN-A-343 and pilocarpine induced only small contractions in denervated dilator muscles, indicating that these are partial agonists for contraction. 4. pA2 values of pirenzepine, methoctramine, AF-DX 116, himbacine, and 4-DAMP for antagonism to pilocarpine-induced relaxation in normal dilator muscles and those for antagonism to ACh-induced contraction in denervated dilator muscles were determined. The pA2 values for antagonism to relaxation of all these antagonists were most similar to those for M3-type muscarinic receptors. 5. Although pA2 values for contraction of these antagonists, except for methoctramine, were very close to those for relaxation, contraction was not significantly antagonized by methoctramine. Contraction might be mediated by M3-like receptors which have a very low affinity for methoctramine. 6. In conclusion, ACh-induced biphasic responses in rat iris dilator muscles were clearly distinguished from each other by specific muscarinic agonists and parasympathetic denervation, whereas muscarinic receptors could not be subclassified according to the pA2 values of 5 specific antagonists only. PMID:7539696

  10. Enhancement effects of nicotine on neurogenic relaxation responses in the corpus cavernosum in rabbits: the role of nicotinic acetylcholine receptor subtypes.

    PubMed

    Ozturk Fincan, Gokce Sevim; Vural, Ismail Mert; Ercan, Zeynep Sevim; Sarioglu, Yusuf

    2010-02-10

    Nicotine acts as an agonist of nicotinic acetylcholine receptors, which belong to a superfamily of neurotransmitter-gated ion channels. We previously demonstrated that nicotine increases the electrical field stimulation (EFS)-evoked nitrergic relaxation responses via activation of nicotinic acetylcholine receptors. The aim of the present study is to investigate the subtypes of nicotinic acetylcholine receptors in rabbit corpus cavernosum. EFS-evoked relaxation responses were recorded from corpus cavernosum strips obtained from rabbits with an isometric force displacement transducers. Effects of nicotine on EFS-evoked relaxations were examined in pre-contracted tissues. Then the effect of nicotine on the EFS-evoked relaxations was examined in the presence of hexamethonium, dihydro-beta-erythroidine, mecamylamine or alpha-bungarotoxin. In our study, nicotine (3 x 10(-5), 10(-4)) transiently increased nitrergic relaxations induced by EFS in the rabbit isolated corpus cavernosum. While hexamethonium and mecamylamine near totally inhibited or abolished the neurorelaxation response to nicotine (3 x 10(-5)) on EFS, dihydro-beta-erythroidine and alpha-bungarotoxin partially inhibited these responses. These findings demonstrated that the alpha3-beta4, alpha4-beta2 and alpha7 subunits of nicotinic acetylcholine receptors play role on the nicotine-induced augmentation in EFS-evoked relaxation responses in rabbit corpus cavernosum. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  11. Negative inotropic effect of carbachol and interaction between acetylcholine receptor-operated potassium channel (K.ACh channel) and GTP binding protein in mouse isolated atrium--a novel methodological trial.

    PubMed

    Okada, Muneyoshi; Noma, Chihiro; Yamawaki, Hideyuki; Hara, Yukio

    2013-01-01

    Interaction between acetylcholine receptor-operated potassium channel (K.ACh channel) and GTP binding protein was examined by an immunoprecipitation-Western blotting system in mouse isolated atrium. The carbachol-induced negative inotropic action in indomethacin-pretreated mouse atrium was significantly inhibited by a K.ACh channel blocker, tertiapin or atropine. Kir3.1 K.ACh channel (Kir3.1) was immunoprecipitated with a mouse anti-Kir3.1 antibody. Coprecipitating Gβ with Kir3.1, detected by Western blotting, was significantly augmented by carbachol. Atropine, but not tertiapin, significantly inhibited the carbachol-induced coprecipitating Gβ with Kir3.1. The data indicate that immunoprecipitation with Kir3.1 and Western blotting of Gβ system is a useful method for assessing interaction between K.ACh channel and GTP binding protein in mouse atrium.

  12. Gou-teng (from Uncaria rhynchophylla Miquel)-induced endothelium-dependent and -independent relaxations in the isolated rat aorta.

    PubMed

    Kuramochi, T; Chu, J; Suga, T

    1994-01-01

    Gou-teng is a drug used for treatment of hypertension in Chinese medicine. Its antihypertensive action has been previously confirmed in the spontaneously hypertensive rat (SHR). Here, its vasorelaxing effect and the mechanisms of actions were studied in vitro. Gou-teng extract (GTE) relaxed the norepinephrine (NE)-precontracted aortic ring preparations isolated from Wistar Kyoto rats (WKY) with and without intact endothelium; the latter was significantly less sensitive than the former. The GTE-induced endothelium-dependent relaxation was significantly inhibited by NG-monomethyl-L-arginine (NMMA) in a dose-dependent manner while indomethacin did not affect the relaxation. Atropine inhibited the acetylcholine (ACh)-induced endothelium-dependent relaxation but did not the GTE-induced one. Furthermore, once GTE was applied, the following NE-induced contraction was significantly reduced even after repeated washout. NMMA effectively reduced and rather reversed this residual effect of GTE. From these results, it is concluded that GTE relaxes the NE-precontracted rat aorta through endothelium-dependent and, to lesser extent, -independent mechanisms. The endothelium-dependent component would be mediated by EDRF/NO pathway in which the muscarinic cholinoceptors were not involved. Thus, GTE appears to be a potent and long-lasting vasodilator mainly through EDRF/NO release.

  13. The Sophora flavescens flavonoid compound trifolirhizin inhibits acetylcholine induced airway smooth muscle contraction.

    PubMed

    Yang, Nan; Liang, Banghao; Srivastava, Kamal; Zeng, Jia; Zhan, Jixun; Brown, LaVerne; Sampson, Hugh; Goldfarb, Joseph; Emala, Charles; Li, Xiu-Min

    2013-11-01

    Asthma is a serious health problem worldwide, particularly in industrialized countries. Despite a better understanding of the pathophysiology of asthma, there are still considerable gaps in knowledge as well as a need for classes of drugs. ASHMI™ (Anti-asthma Herbal Medicine Intervention) is an aqueous extract of Ganoderma lucidum (Fr.) P. Karst (Ling Zhi), Sophora flavescens Aiton (Ku Shen) and Glycyrrhiza uralensis Fisch. ex DC (Gan Cao). It prevents allergic asthma airway hyper-reactivity in mice and inhibits acetylcholine (ACh) induced airway smooth muscle (ASM) contraction in tracheal rings from allergic asthmatic mice. The purpose of this research was to identify individual herb(s) and their active compound(s) that inhibit ASM contraction. It was found that S. flavescens, but not G. lucidum or G. uralensis aqueous extracts, inhibited ASM contraction in tracheal rings from asthmatic mice. Bioassay-guided isolation and identification of flavonoid fractions/compound(s) via methylene chloride extraction, preparative HPLC fractionation, and LC-MS and NMR spectroscopic analyses showed that trifolirhizin is an active constituent that inhibits acetylcholine mediated ASM contraction or directly relaxes pre-contracted ASM independent of β2-adrenoceptors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. The Sophora Flavescens flavonoid compound trifolirhizin inhibits acetylcholine induced airway smooth muscle contraction

    PubMed Central

    Zeng, Jia; Zhan, Jixun; Brown, LaVerne; Sampson, Hugh; Goldfarb, Joseph; Emala, Charles; Li, Xiu-Min

    2014-01-01

    Asthma is a serious health problem worldwide, particularly in industrialized countries. Despite a better understanding of the pathophysiology of asthma, there are still considerable gaps in knowledge as well as a need for new classes of drugs. ASHMI™ (Anti-asthma Herbal Medicine Intervention) is an aqueous extract of Ganoderma lucidum (Fr.) P. Karst (Ling Zhi), Sophora flavescens Aiton (Ku Shen) and Glycyrrhiza uralensis Fisch. ex DC (Gan Cao). It prevents allergic asthma airway hyper-reactivity in mice and inhibits acetylcholine (ACh) induced airway smooth muscle (ASM) contraction in tracheal rings from allergic asthmatic mice. The purpose of this research was to identify individual herb(s) and their active compound(s) that inhibit ASM contraction. It was found that Sophora flavescens (S. flavescens), but not Ganoderma lucidum (G. lucidum) or Glycyrrhiza uralensis (G. uralensis) aqueous extracts, inhibited ASM contraction in tracheal rings from asthmatic mice. Bioassay-guided isolation and identification of flavonoid fractions/compound(s) via methylene chloride extraction, preparative HPLC fractionation, and LC-MS and NMR spectroscopic analyses showed that trifolirhizin is an active constituent that inhibits acetylcholine mediated ASM contraction or directly relaxes pre-contracted ASM independent of β2-adrenoceptors. PMID:23993294

  15. Rivastigmine improves isolation rearing-induced prepulse inhibition deficits via muscarinic acetylcholine receptors in mice.

    PubMed

    Higashino, Kosuke; Ago, Yukio; Umeki, Takahiro; Hasebe, Shigeru; Onaka, Yusuke; Hashimoto, Hitoshi; Takuma, Kazuhiro; Matsuda, Toshio

    2016-02-01

    The acetylcholinesterase inhibitors donepezil, galantamine, and rivastigmine are used for the treatment of Alzheimer's disease. We previously demonstrated that donepezil and galantamine differentially affect isolation rearing-induced prepulse inhibition (PPI) deficits and that this might be due to differential effects on brain muscarinic acetylcholine (mACh) receptor function in mice. We examined the effects of rivastigmine on isolation rearing-induced PPI deficits, brain ACh levels, and mACh receptor function in mice. Acoustic startle responses were measured in a startle chamber. Microdialysis was performed, and the levels of dopamine and ACh in the prefrontal cortex were measured. Rivastigmine (0.3 mg/kg) improved PPI deficits, and this improvement was antagonized by the mACh receptor antagonist telenzepine but not by the nicotinic ACh receptor antagonist mecamylamine. Rivastigmine increased extracellular ACh levels by approximately 2-3-fold, less than the increase produced by galantamine. Rivastigmine enhanced the effect of the mACh receptor agonist N-desmethylclozapine on prefrontal dopamine release, a marker of mACh receptor function, and this increase was blocked by telenzepine. In contrast, galantamine did not affect N-desmethylclozapine-induced dopamine release. Furthermore, rivastigmine did not affect cortical dopamine release induced by the serotonin1A receptor agonist osemozotan, suggesting that the effect of rivastigmine has specificity for mACh receptors. Taken together with our previous finding that marked increases in ACh levels are required for the PPI deficit improvement induced by galantamine, our present results suggest that rivastigmine improves isolation rearing-induced PPI deficits by increasing ACh levels and by concomitantly enhancing mACh receptor function.

  16. Transient Receptor Potential Channel Opening Releases Endogenous Acetylcholine, which Contributes to Endothelium-Dependent Relaxation Induced by Mild Hypothermia in Spontaneously Hypertensive Rat but Not Wistar-Kyoto Rat Arteries.

    PubMed

    Zou, Q; Leung, S W S; Vanhoutte, P M

    2015-08-01

    Mild hypothermia causes endothelium-dependent relaxations, which are reduced by the muscarinic receptor antagonist atropine. The present study investigated whether endothelial endogenous acetylcholine contributes to these relaxations. Aortic rings of spontaneously hypertensive rats (SHRs) and normotensive Wistar-Kyoto (WKY) rats were contracted with prostaglandin F2 α and exposed to progressive mild hypothermia (from 37 to 31°C). Hypothermia induced endothelium-dependent, Nω-nitro-l-arginine methyl ester-sensitive relaxations, which were reduced by atropine, but not by mecamylamine, in SHR but not in WKY rat aortae. The responses in SHR aortae were also reduced by acetylcholinesterase (the enzyme responsible for acetylcholine degradation), bromoacetylcholine (inhibitor of acetylcholine synthesis), hemicholinium-3 (inhibitor of choline uptake), and vesamicol (inhibitor of acetylcholine release). The mild hypothermia-induced relaxations in both SHR and WKY rat aortae were inhibited by AMTB [N-(3-aminopropyl)-2-[(3-methylphenyl)methoxy]-N-(2-thienylmethyl)-benzamide; the transient receptor potential (TRP) M8 inhibitor]; only those in SHR aortae were inhibited by HC-067047 [2-methyl-1-[3-(4-morpholinyl)propyl]-5-phenyl-N-[3-(trifluoromethyl)phenyl]-1H-pyrrole-3-carboxamide; TRPV4 antagonist] while those in WKY rat aortae were reduced by HC-030031 [2-(1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7H-purin-7-yl)-N-(4-isopropylphenyl)acetamide; TRPA1 antagonist]. The endothelial uptake of extracellular choline and release of cyclic guanosine monophosphate was enhanced by mild hypothermia and inhibited by HC-067047 in SHR but not in WKY rat aortae. Compared with WKY rats, the SHR preparations expressed similar levels of acetylcholinesterase and choline acetyltransferase, but a lesser amount of vesicular acetylcholine transporter, located mainly in the endothelium. Thus, mild hypothermia causes nitric oxide-dependent relaxations by opening TRPA1 channels in WKY rat aortae

  17. Recombinant human acetylcholine receptor alpha-subunit induces chronic experimental autoimmune myasthenia gravis.

    PubMed

    Lennon, V A; Lambert, E H; Leiby, K R; Okarma, T B; Talib, S

    1991-04-01

    A synthetic gene encoding the 210 N-terminal residues of the alpha-subunit of the nicotinic acetylcholine receptor (AChR) of human skeletal muscle was cloned into an inducible expression plasmid to produce a fusion protein in high yield in Escherichia coli. Like native human AChR, the recombinant human alpha 1-210 protein induced AChR-binding, AChR-modulating, and AChR-blocking autoantibodies in rats when injected once intradermally as an emulsion in CFA, with Bordetella pertussis vaccine as supplementary adjuvant. The minimum dose of recombinant protein required to induce biochemical signs of experimental autoimmune myasthenia gravis (EAMG) with 100% incidence was 2.2 micrograms. With 6.6 to 22 micrograms, serum levels of autoantibodies were persistent, and clinically apparent EAMG lasted more than a month. Clinical, electrophysiological, and biochemical indices of EAMG induced by doses of 66 micrograms or more were more uniformly severe and persistent, with 33% fatality. Rats receiving a control extract of E. coli containing plasmid without the alpha 1-210 codon insert, with adjuvants, did not develop autoantibodies or signs of EAMG. This highly reproducible new model of EAMG induced by a recombinant human autoantigen should be valuable for testing Ag-specific immunotherapeutic strategies that might be applicable to treating acquired myasthenia gravis in humans.

  18. Competitive inhibition of the nondepolarizing muscle relaxant rocuronium on nicotinic acetylcholine receptor channels in the rat superior cervical ganglia.

    PubMed

    Zhang, Chengmi; Wang, Zhenmeng; Zhang, Jinmin; Qiu, Haibo; Sun, Yuming; Yang, Liqun; Wu, Feixiang; Zheng, Jijian; Yu, Weifeng

    2014-05-01

    A number of case reports now indicate that rocuronium can induce a number of serious side effects. We hypothesized that these side effects might be mediated by the inhibition of nicotinic acetylcholine receptors (nAChRs) at superior cervical ganglion (SCG) neurons. Conventional patch clamp recordings were used to study the effects of rocuronium on nAChR currents from enzymatically dissociated rat SCG neurons. We found that ACh induced a peak transient inward current in rat SCG neurons. Additionally, rocuronium suppressed the peak ACh-evoked currents in rat SCG neurons in a concentration-dependent and competitive manner, and it increased the extent of desensitization of nAChRs. The inhibitory rate of rocuronium on nAChR currents did not change significantly at membrane potentials between -70 and -20 mV, suggesting that this inhibition was voltage independent. Lastly, rocuronium preapplication enhanced its inhibitory effect, indicating that this drug might prefer to act on the closed state of nAChR channels. In conclusion, rocuronium, at clinically relevant concentrations, directly inhibits nAChRs at the SCG by interacting with both opened and closed states. This inhibition is competitive, dose dependent, and voltage independent. Blockade of synaptic transmission in the sympathetic ganglia by rocuronium might have potentially inhibitory effects on the cardiovascular system.

  19. Excess L-arginine restores endothelium-dependent relaxation impaired by monocrotaline pyrrole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng Wei; Oike, Masahiro; Hirakawa, Masakazu

    2005-09-15

    The pyrrolizidine alkaloid plant toxin monocrotaline pyrrole (MCTP) causes pulmonary hypertension in experimental animals. The present study aimed to examine the effects of MCTP on the endothelium-dependent relaxation. We constructed an in vitro disease model of pulmonary hypertension by overlaying MCTP-treated bovine pulmonary artery endothelial cells (CPAEs) onto pulmonary artery smooth muscle cell-embedded collagen gel lattice. Acetylcholine (Ach) induced a relaxation of the control CPAEs-overlaid gels that were pre-contracted with noradrenaline, and the relaxation was inhibited by L-NAME, an inhibitor of NO synthase (NOS). In contrast, when MCTP-treated CPAEs were overlaid, the pre-contracted gels did not show a relaxation inmore » response to Ach in the presence of 0.5 mM L-arginine. Expression of endothelial NOS protein, Ach-induced Ca{sup 2+} transients and cellular uptake of L-[{sup 3}H]arginine were significantly smaller in MCTP-treated CPAEs than in control cells, indicating that these changes were responsible for the impaired NO production in MCTP-treated CPAEs. Since cellular uptake of L-[{sup 3}H]arginine linearly increased according to its extracellular concentration, we hypothesized that the excess concentration of extracellular L-arginine might restore NO production in MCTP-treated CPAEs. As expected, in the presence of 10 mM L-arginine, Ach showed a relaxation of the MCTP-treated CPAEs-overlaid gels. These results indicate that the impaired NO production in damaged endothelial cells can be reversed by supplying excess L-arginine.« less

  20. Photolabeling a Nicotinic Acetylcholine Receptor (nAChR) with an (α4)3(β2)2 nAChR-Selective Positive Allosteric Modulator

    PubMed Central

    Deba, Farah; Wang, Ze-Jun; Cohen, Jonathan B.

    2016-01-01

    Positive allosteric modulators (PAMs) of nicotinic acetylcholine (ACh) receptors (nAChRs) have potential clinical applications in the treatment of nicotine dependence and many neuropsychiatric conditions associated with decreased brain cholinergic activity, and 3-(2-chlorophenyl)-5-(5-methyl-1-(piperidin-4-yl)-1H-pyrrazol-4-yl)isoxazole (CMPI) has been identified as a PAM selective for neuronal nAChRs containing the α4 subunit. In this report, we compare CMPI interactions with low-sensitivity (α4)3(β2)2 and high-sensitivity (α4)2(β2)3 nAChRs, and with muscle-type nAChRs. In addition, we use the intrinsic reactivity of [3H]CMPI upon photolysis at 312 nm to identify its binding sites in Torpedo nAChRs. Recording from Xenopus oocytes, we found that CMPI potentiated maximally the responses of (α4)3(β2)2 nAChR to 10 μM ACh (EC10) by 400% and with an EC50 of ∼1 µM. CMPI produced a left shift of the ACh concentration-response curve without altering ACh efficacy. In contrast, CMPI inhibited (∼35% at 10 µM) ACh responses of (α4)2(β2)3 nAChRs and fully inhibited human muscle and Torpedo nAChRs with IC50 values of ∼0.5 µM. Upon irradiation at 312 nm, [3H]CMPI photoincorporated into each Torpedo [(α1)2β1γδ] nAChR subunit. Sequencing of peptide fragments isolated from [3H]CMPI-photolabeled nAChR subunits established photolabeling of amino acids contributing to the ACh binding sites (αTyr190, αTyr198, γTrp55, γTyr111, γTyr117, δTrp57) that was fully inhibitable by agonist and lower-efficiency, state-dependent [3H]CMPI photolabeling within the ion channel. Our results establish that CMPI is a potent potentiator of nAChRs containing an α4:α4 subunit interface, and that its intrinsic photoreactivy makes it of potential use to identify its binding sites in the (α4)3(β2)2 nAChR. PMID:26976945

  1. Role of canonical transient receptor potential channel-3 in acetylcholine-induced mouse airway smooth muscle cell proliferation.

    PubMed

    Chen, Xiao-Xu; Zhang, Jia-Hua; Pan, Bin-Hua; Ren, Hui-Li; Feng, Xiu-Ling; Wang, Jia-Ling; Xiao, Jun-Hua

    2017-10-15

    Canonical transient receptor potential channel-3 (TRPC3)-encoded Ca 2+ -permeable nonselective cation channel (NSCC) has been proven to be an important native constitutively active channel in airway smooth muscle cell (ASMC), which plays significant roles in physiological and pathological conditions by controlling Ca 2+ homeostasis in ASMC. Acetylcholine (ACh) is generally accepted as a contractile parasympathetic neurotransmitter in the airway. Recently studies have revealed the pathological role of ACh in airway remodeling, however, the mechanisms remain unclear. Here, we investigated the role of TRPC3 in ACh-induced ASMC proliferation. Primary mouse ASMCs were cultured with or without ACh treatment, then cell viability, TRPC3 expression, NSCC currents and [Ca 2+ ] i changes were examined by MTT assay, cell counting, Western blotting, standard whole-cell patch clamp recording and calcium imaging, respectively. Small interfering RNA (siRNA) technology was used to confirm the contribution of TRPC3 to ACh-induced ASMC proliferation. TRPC3 blocker Gd 3+ , antibody or siRNA largely inhibited ACh-induced up-regulation of TRPC3 protein, enhancement of NSCC currents, resting [Ca 2+ ] i and KCl-induced changes in [Ca 2+ ] i , eventually inhibiting ACh-induced ASMC proliferation. Our data suggested ACh could induce ASMC proliferation, and TRPC3 may be involved in ACh-induced ASMC proliferation that occurs with airway remodeling. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Acetylcholine-induced seizure-like activity and modified cholinergic gene expression in chronically epileptic rats.

    PubMed

    Zimmerman, Gabriel; Njunting, Marleisje; Ivens, Sebastian; Tolner, Else A; Tolner, Elsa; Behrens, Christoph J; Gross, Miriam; Soreq, Hermona; Heinemann, Uwe; Friedman, Alon

    2008-02-01

    The entorhinal cortex (EC) plays an important role in temporal lobe epilepsy. Under normal conditions, the enriched cholinergic innervation of the EC modulates local synchronized oscillatory activity; however, its role in epilepsy is unknown. Enhanced neuronal activation has been shown to induce transcriptional changes of key cholinergic genes and thus alter cholinergic responses. To examine cholinergic modulations in epileptic tissue we studied molecular and electrophysiological cholinergic responses in the EC of chronically epileptic rats following exposure to pilocarpine or kainic acid. We confirmed that while the total activity of the acetylcholine (ACh)-hydrolysing enzyme, acetylcholinesterase (AChE) was not altered, epileptic rats showed alternative splicing of AChE pre-mRNA transcripts, accompanied by a shift from membrane-bound AChE tetramers to soluble monomers. This was associated with increased sensitivity to ACh application: thus, in control rats, ACh (10-100 microm) induced slow (< 1Hz), periodic events confined to the EC; however, in epileptic rats, ACh evoked seconds-long seizure-like events with initial appearance in the EC, and frequent propagation to neighbouring cortical regions. ACh-induced seizure-like events could be completely blocked by the non-specific muscarinic antagonist, atropine, and were partially blocked by the muscarinic-1 receptor antagonist, pirenzepine; but were not affected by the non-specific nicotinic antagonist, mecamylamine. Epileptic rats presented reduced transcript levels of muscarinic receptors with no evidence of mRNA editing or altered mRNA levels for nicotinic ACh receptors. Our findings suggest that altered cholinergic modulation may initiate seizure events in the epileptic temporal cortex.

  3. Acetylcholine-evoked currents in cultured neurones dissociated from rat parasympathetic cardiac ganglia.

    PubMed Central

    Fieber, L A; Adams, D J

    1991-01-01

    1. The properties of acetylcholine (ACh)-activated ion channels of parasympathetic neurones from neonatal rat cardiac ganglia grown in tissue culture were examined using patch clamp recording techniques. Membrane currents evoked by ACh were mimicked by nicotine, attenuated by neuronal bungarotoxin, and unaffected by atropine, suggesting that the ACh-induced currents are mediated by nicotinic receptor activation. 2. The current-voltage (I-V) relationship for whole-cell ACh-evoked currents exhibited strong inward rectification and a reversal (zero current) potential of -3 mV (NaCl outside, CsCl inside). The rectification was not alleviated by changing the main permeant cation or by removal of divalent cations from the intracellular or extracellular solutions. Unitary ACh-activated currents exhibited a linear I-V relationship with slope conductances of 32 pS in cell-attached membrane patches and 38 pS in excised membrane patches with symmetrical CsCl solutions. 3. Acetylcholine-induced currents were reversibly inhibited in a dose-dependent manner by the ganglionic antagonists, mecamylamine (Kd = 37 nM) and hexamethonium (IC50 approximately 1 microM), as well as by the neuromuscular relaxant, d-tubocurarine (Kd = 3 microM). Inhibition of ACh-evoked currents by hexamethonium could not be described by a simple blocking model for drug-receptor interaction. 4. The amplitude of the ionic current through the open channel was dependent on the extracellular Na+ concentration. The direction of the shift in reversal potential upon replacement of NaCl by mannitol indicates that the neuronal nicotinic receptor channel is cation selective and the magnitude suggests a high cation to anion permeability ratio. The cation permeability (PX/PNa) followed the ionic selectivity sequence Cs+ (1.06) greater than Na+ (1.0) greater than Ca2+ (0.93). Anion substitution experiments showed a relative anion permeability, PCl/PNa less than or equal to 0.05. 5. The nicotinic ACh-activated channels

  4. Nicotinic Acetylcholine Receptors in Sensory Cortex

    ERIC Educational Resources Information Center

    Metherate, Raju

    2004-01-01

    Acetylcholine release in sensory neocortex contributes to higher-order sensory function, in part by activating nicotinic acetylcholine receptors (nAChRs). Molecular studies have revealed a bewildering array of nAChR subtypes and cellular actions; however, there is some consensus emerging about the major nAChR subtypes and their functions in…

  5. Mechanisms of acetylcholine- and bradykinin-induced preconditioning.

    PubMed

    Critz, Stuart D; Cohen, Michael V; Downey, James M

    2005-01-01

    Acetylcholine (ACh) and bradykinin (BK) are potent pharmacological agents which mimic ischemic preconditioning (IPC) enabling hearts to resist infarction during a subsequent period of ischemia. The cardioprotective pathways activated by BK but not ACh may also protect when activated at reperfusion. ACh and BK stimulate Gi/o-linked receptors and ultimately mediate protection by opening mitochondrial ATP-sensitive potassium channels with the generation of reactive oxygen species that act as second messengers to activate protein kinase C (PKC). There appear to be key differences, however, in the pathways prior to potassium channel opening for these two receptors. This review aims to summarize what is currently known about pharmacological preconditioning by ACh and BK with an emphasis on differences that are seen in the signal transduction cascades. Understanding the cellular basis of protection by ACh and BK is a critical step towards developing pharmacological agents that will prevent infarction during ischemia resulting from coronary occlusion or heart attack.

  6. Postsynaptic activity reverses the sign of the acetylcholine-induced long-term plasticity of GABAA inhibition

    PubMed Central

    Domínguez, Soledad; Fernández de Sevilla, David; Buño, Washington

    2014-01-01

    Acetylcholine (ACh) regulates forms of plasticity that control cognitive functions but the underlying mechanisms remain largely unknown. ACh controls the intrinsic excitability, as well as the synaptic excitation and inhibition of CA1 hippocampal pyramidal cells (PCs), cells known to participate in circuits involved in cognition and spatial navigation. However, how ACh regulates inhibition in function of postsynaptic activity has not been well studied. Here we show that in rat PCs, a brief pulse of ACh or a brief stimulation of cholinergic septal fibers combined with repeated depolarization induces strong long-term enhancement of GABAA inhibition (GABAA-LTP). Indeed, this enhanced inhibition is due to the increased activation of α5βγ2 subunit-containing GABAA receptors by the GABA released. GABAA-LTP requires the activation of M1-muscarinic receptors and an increase in cytosolic Ca2+. In the absence of PC depolarization ACh triggered a presynaptic depolarization-induced suppression of inhibition (DSI), revealing that postsynaptic activity gates the effects of ACh from presynaptic DSI to postsynaptic LTP. These results provide key insights into mechanisms potentially linked with cognitive functions, spatial navigation, and the homeostatic control of abnormal hyperexcitable states. PMID:24938789

  7. Pancreatic and snake venom presynaptically active phospholipases A2 inhibit nicotinic acetylcholine receptors.

    PubMed

    Vulfius, Catherine A; Kasheverov, Igor E; Kryukova, Elena V; Spirova, Ekaterina N; Shelukhina, Irina V; Starkov, Vladislav G; Andreeva, Tatyana V; Faure, Grazyna; Zouridakis, Marios; Tsetlin, Victor I; Utkin, Yuri N

    2017-01-01

    Phospholipases A2 (PLA2s) are enzymes found throughout the animal kingdom. They hydrolyze phospholipids in the sn-2 position producing lysophospholipids and unsaturated fatty acids, agents that can damage membranes. PLA2s from snake venoms have numerous toxic effects, not all of which can be explained by phospholipid hydrolysis, and each enzyme has a specific effect. We have earlier demonstrated the capability of several snake venom PLA2s with different enzymatic, cytotoxic, anticoagulant and antiproliferative properties, to decrease acetylcholine-induced currents in Lymnaea stagnalis neurons, and to compete with α-bungarotoxin for binding to nicotinic acetylcholine receptors (nAChRs) and acetylcholine binding protein. Since nAChRs are implicated in postsynaptic and presynaptic activities, in this work we probe those PLA2s known to have strong presynaptic effects, namely β-bungarotoxin from Bungarus multicinctus and crotoxin from Crotalus durissus terrificus. We also wished to explore whether mammalian PLA2s interact with nAChRs, and have examined non-toxic PLA2 from porcine pancreas. It was found that porcine pancreatic PLA2 and presynaptic β-bungarotoxin blocked currents mediated by nAChRs in Lymnaea neurons with IC50s of 2.5 and 4.8 μM, respectively. Crotoxin competed with radioactive α-bungarotoxin for binding to Torpedo and human α7 nAChRs and to the acetylcholine binding protein. Pancreatic PLA2 interacted similarly with these targets; moreover, it inhibited radioactive α-bungarotoxin binding to the water-soluble extracellular domain of human α9 nAChR, and blocked acetylcholine induced currents in human α9α10 nAChRs heterologously expressed in Xenopus oocytes. These and our earlier results show that all snake PLA2s, including presynaptically active crotoxin and β-bungarotoxin, as well as mammalian pancreatic PLA2, interact with nAChRs. The data obtained suggest that this interaction may be a general property of all PLA2s, which should be proved by

  8. Beta3 subunits promote expression and nicotine-induced up-regulation of human nicotinic alpha6* nicotinic acetylcholine receptors expressed in transfected cell lines.

    PubMed

    Tumkosit, Prem; Kuryatov, Alexander; Luo, Jie; Lindstrom, Jon

    2006-10-01

    Nicotinic acetylcholine receptors (AChRs) containing alpha6 subunits are typically found at aminergic nerve endings where they play important roles in nicotine addiction and Parkinson's disease. alpha6* AChRs usually contain beta3 subunits. beta3 subunits are presumed to assemble only in the accessory subunit position within AChRs where they do not participate in forming acetylcholine binding sites. Assembly of subunits in the accessory position may be a critical final step in assembly of mature AChRs. Human alpha6 AChRs subtypes were permanently transfected into human tsA201 human embryonic kidney (HEK) cell lines. alpha6beta2beta3 and alpha6beta4beta3 cell lines were found to express much larger amounts of AChRs and were more sensitive to nicotine-induced increase in the amount of AChRs than were alpha6beta2 or alpha6beta4 cell lines. The increased sensitivity to nicotine-induced up-regulation was due not to a beta3-induced increase in affinity for nicotine but probably to a direct effect on assembly of AChR subunits. HEK cells express only a small amount of mature alpha6beta2 AChRs, but many of these subunits are on the cell surface. This contrasts with Xenopus laevis oocytes, which express a large amount of incorrectly assembled alpha6beta2 subunits that bind cholinergic ligands but form large amorphous intracellular aggregates. Monoclonal antibodies (mAbs) were made to the alpha6 and beta3 subunits to aid in the characterization of these AChRs. The alpha6 mAbs bind to epitopes C-terminal of the extracellular domain. These data demonstrate that both cell type and the accessory subunit beta3 can play important roles in alpha6* AChR expression, stability, and up-regulation by nicotine.

  9. Neonicotinoid insecticides differently modulate acetycholine-induced currents on mammalian α7 nicotinic acetylcholine receptors.

    PubMed

    Cartereau, Alison; Martin, Carine; Thany, Steeve H

    2018-06-01

    Neonicotinoid insecticides are described as poor agonists of mammalian nicotinic ACh receptors. In this paper, we show that their effects on mammalian nicotinic receptors differ between compounds. Two-electrode voltage-clamp electrophysiology was used to characterize the pharmacology of three neonicotinoid insecticides on nicotinic α7 receptors expressed in Xenopus oocytes. Single and combined application of clothianidin, acetamiprid and thiamethoxam were tested. Two neonicotinoid insecticides, clothianidin and acetamiprid, were partial agonists of mammalian neuronal α7 nicotinic receptors, whereas another neonicotinoid insecticide, thiamethoxam, which is converted to clothianidin in insect and plant tissues, had no effect. Pretreatment with clothianidin and acetamiprid (10 μM) ACh significantly enhanced the subsequent currents evoked by ACh (100 μM ) whereas pretreatment with thiamethoxam (10 μM) reduced ACh-induced current amplitudes.A combination of the three neonicotinoids decreased the ACh-evoked currents. The present findings suggest that neonicotinoid insecticides differ markedly in their direct effects on mammalian α7 nicotinic ACh receptors and can also modulate ACh-induced currents. Furthermore, our data indicate a previously unknown modulation of mammalian α7 nicotinic receptors by a combination of clothianidin, acetamiprid and thiamethoxam. This article is part of a themed section on Nicotinic Acetylcholine Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.11/issuetoc. © 2017 The British Pharmacological Society.

  10. Evidence for a role for α6* nAChRs in L-dopa-induced dyskinesias using parkinsonian α6* nAChR gain-of-function mice

    PubMed Central

    Bordia, Tanuja; McGregor, Matthew; McIntosh, J.M.; Drenan, Ryan M.; Quik, Maryka

    2015-01-01

    L-Dopa-induced dyskinesias (LIDs) are a serious side effect of dopamine replacement therapy for Parkinson's disease. The mechanisms that underlie LIDs are currently unclear. However, preclinical studies indicate that nicotinic acetylcholine receptors (nAChRs) play a role, suggesting that drugs targeting these receptors may be of therapeutic benefit. To further understand the involvement of α6β2* nAChRs in LIDs, we used gain-of-function α6* nAChR (α6L9S) mice that exhibit a 20-fold enhanced sensitivity to nAChR agonists. Wildtype (WT) and α6L9S mice were lesioned by unilateral injection of 6-hydroxydopamine (6-OHDA, 3 μg/ml) into the medial forebrain bundle. Three to 4 wk later, they were administered L-dopa (3 mg/kg) plus benserazide (15 mg/kg) until stably dyskinetic. L-dopa-induced abnormal involuntary movements (AIMs) were similar in α6L9S and WT mice. WT mice were then given nicotine in the drinking water in gradually increasing doses to a final 300 μg/ml, which resulted in a 40% decline AIMs. By contrast, there was no decrease in AIMs in α6L9S mice at a maximally tolerated nicotine dose of 20 μg/ml. However, the nAChR antagonist mecamylamine (1 mg/kg ip 30 min before L-dopa) reduced L-dopa-induced AIMs in both α6L9S and WT mice. Thus, both a nAChR agonist and antagonist decreased AIMs in WT mice, but only the antagonist was effective in α6L9S mice. Since nicotine appears to reduce LIDs via desensitization, hypersensitive α6β2* nAChRs may desensitize less readily. The present data show that α6β2* nAChRs are key regulators of LIDs, and may be useful therapeutic targets for their management in Parkinson's disease. PMID:25813704

  11. Effect of ketorolac and diclofenac on the impairment of endothelium-dependent relaxation induced by reactive oxygen species in rabbit abdominal aorta

    PubMed Central

    Lee, Seung Yoon; Choi, Jin Hwa; Jeon, Woo Jae; Cheong, Mi Ae

    2010-01-01

    Background Reactive oxygen species (ROS) induce lipid peroxidation and tissue damage in endothelium. We studied the influences of ketorolac and diclofenac on ROS effects using the endothelium of rabbit abdominal aorta. Methods Isolated rabbit aortic rings were suspended in an organ bath filled with Krebs-Henseleit (K-H) solution bubbled with 5% CO2 and 95% O2 at 37.5℃. After being stimulated to contract with phenylephrine (PE, 10-6 M), changes in arterial tension were recorded following the cumulative administration of acetylcholine (ACh, 3 × 10-8 to 10-6 M). The percentages of ACh-induced relaxation of aortic rings before and after exposure to ROS, generated by electrolysis of K-H solution, were used as the control and experimental values, respectively. The aortic rings were pretreated with ketorolac or diclofenac at the same concentrations (10-5 M to 3 × 10-4 M), and the effects of these agents were compared with the effects of ROS scavengers: catalase, mannitol, sodium salicylate and deferoxamine and the catalase inhibitor, 3-amino-1,2,4-triazole (3AT). Results Both ketorolac and diclofenac maintained endothlium-dependent relaxation induced by ACh in a dose-related manner inspite of ROS attack (P < 0.05 vs. control value). The 3AT pretreated ketorolac (3 × 10-3 M) group was decreased more significantly than un-pretreated ketorolac (P < 0.05). Conclusions These findings suggest that ketorlac and diclofenac preserve the endothelium-dependent vasorelaxation against the attack of ROS, in a concentration-related manner. One of the endothelial protection mechanisms of ketorolac may be hydrogen peroxide scavenging. PMID:20877705

  12. Modeling study of mecamylamine block of muscle type acetylcholine receptors.

    PubMed

    Ostroumov, Konstantin; Shaikhutdinova, Asya; Skorinkin, Andrey

    2008-04-01

    The blocking action of mecamylamine on different types of nicotinic acetylcholine receptors (nAChRs) has been extensively studied and used as a tool to characterize the nAChRs from different synapses. However, mechanism of mecamylamine action was not fully explored for all types of nAChRs. In the present study, we provide brief description of the mecamylamine action on muscle nAChRs expressed at the frog neuromuscular junction. In this preparation mecamylamine block of nAChRs was accompanied by a use-dependent block relief induced by membrane depolarization combined with the activation of nAChRs by endogenous agonist acetylcholine (ACh). Further, three kinetic models of possible mecamylamine interaction with nAChRs were analyzed including simple open channel block, symmetrical trapping block and asymmetrical trapping block. This analysis suggested that mecamylamine action could be described on the basis of trapping mechanism, when the antagonist remained inside the channel even in the absence of bound agonist. Such receptors with trapped mecamylamine inside were predicted to have a closing rate constant about three times faster than resting one and a fast voltage-dependent unblocking rate constant. Specific experimental conditions and morphological organization of the neuromuscular synapses were considered to simulate time course of the mecamylamine block development. Thus, likewise for the neuronal nAChRs, the trapping mechanism determined the action of mecamylamine on synaptic neuromuscular currents evoked by the endogenous agonist acetylcholine (ACh), however specific morphological organization of the synaptic transmission delayed time development of the currents block.

  13. Medial prefrontal cortex acetylcholine injection-induced hypotension: the role of hindlimb vasodilation

    NASA Technical Reports Server (NTRS)

    Crippa, G. E.; Lewis, S. J.; Johnson, A. K.; Correa, F. M.

    2000-01-01

    The injection of acetylcholine (ACh) into the cingulate region of the medial prefrontal cortex (MPFC) causes a marked fall in arterial blood pressure which is not accompanied by changes in heart rate. The purpose of the present study was to investigate the hemodynamic basis for this stimulus-induced hypotension in Sprague-Dawley rats. The study was designed to determine whether a change in the vascular resistance of hindlimb, renal or mesenteric vascular beds contributes to the fall in arterial pressure in response to ACh injection into the cingulate cortex. Miniature pulsed-Doppler flow probes were used to measure changes in regional blood flow and vascular resistance. The results indicated that the hypotensive response was largely due to a consistent and marked vasodilation in the hindlimb vascular bed. On this basis, an additional experiment was then undertaken to determine the mechanisms that contribute to hindlimb vasodilation. The effect of interrupting the autonomic innervation of one leg on the hindlimb vasodilator response was tested. Unilateral transection of the lumbar sympathetic chain attenuated the cingulate ACh-induced vasodilation in the ipsilateral, but not in the contralateral hindlimb. These results suggest that the hypotensive response to cingulate cortex-ACh injection is caused by skeletal muscle vasodilation mediated by a sympathetic chain-related vasodilator system.

  14. Reciprocal activation of α5-nAChR and STAT3 in nicotine-induced human lung cancer cell proliferation.

    PubMed

    Zhang, Yao; Jia, Yanfei; Li, Ping; Li, Huanjie; Xiao, Dongjie; Wang, Yunshan; Ma, Xiaoli

    2017-07-20

    Cigarette smoking is the top environmental risk factor for lung cancer. Nicotine, the addictive component of cigarettes, induces lung cancer cell proliferation, invasion and migration via the activation of nicotinic acetylcholine receptors (nAChRs). Genome-wide association studies (GWAS) show that CHRNA5 gene encoding α5-nAChR is especially relevant to lung cancer. However, the mechanism of this subunit in lung cancer is not clear. In the present study, we demonstrate that the expression of α5-nAChR is correlated with phosphorylated STAT3 (pSTAT3) expression, smoking history and lower survival of non-small cell lung cancer (NSCLC) samples. Nicotine increased the levels of α5-nAChR mRNA and protein in NSCLC cell lines and activated the JAK2/STAT3 signaling cascade. Nicotine-induced activation of JAK2/STAT3 signaling was inhibited by the silencing of α5-nAChR. Characterization of the CHRNA5 promoter revealed four STAT3-response elements. ChIP assays confirmed that the CHRNA5 promoter contains STAT3 binding sites. By silencing STAT3 expression, nicotine-induced upregulation of α5-nAChR was suppressed. Downregulation of α5-nAChR and/or STAT3 expression inhibited nicotine-induced lung cancer cell proliferation. These results suggest that there is a feedback loop between α5-nAChR and STAT3 that contributes to the nicotine-induced tumor cell proliferation, which indicates that α5-nAChR is an important therapeutic target involved in tobacco-associated lung carcinogenesis. Copyright © 2017 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.

  15. Pyridostigmine but not 3,4-diaminopyridine exacerbates ACh receptor loss and myasthenia induced in mice by muscle-specific kinase autoantibody.

    PubMed

    Morsch, Marco; Reddel, Stephen W; Ghazanfari, Nazanin; Toyka, Klaus V; Phillips, William D

    2013-05-15

    In myasthenia gravis, the neuromuscular junction is impaired by the antibody-mediated loss of postsynaptic acetylcholine receptors (AChRs). Muscle weakness can be improved upon treatment with pyridostigmine, a cholinesterase inhibitor, or with 3,4-diaminopyridine, which increases the release of ACh quanta. The clinical efficacy of pyridostigmine is in doubt for certain forms of myasthenia. Here we formally examined the effects of these compounds in the antibody-induced mouse model of anti-muscle-specific kinase (MuSK) myasthenia gravis. Mice received 14 daily injections of IgG from patients with anti-MuSK myasthenia gravis. This caused reductions in postsynaptic AChR densities and in endplate potential amplitudes. Systemic delivery of pyridostigmine at therapeutically relevant levels from days 7 to 14 exacerbated the anti-MuSK-induced structural alterations and functional impairment at motor endplates in the diaphragm muscle. No such effect of pyridostigmine was found in mice receiving control human IgG. Mice receiving smaller amounts of MuSK autoantibodies did not display overt weakness, but 9 days of pyridostigmine treatment precipitated generalised muscle weakness. In contrast, one week of treatment with 3,4-diaminopyridine enhanced neuromuscular transmission in the diaphragm muscle. Both pyridostigmine and 3,4-diaminopyridine increase ACh in the synaptic cleft yet only pyridostigmine potentiated the anti-MuSK-induced decline in endplate ACh receptor density. These results thus suggest that ongoing pyridostigmine treatment potentiates anti-MuSK-induced AChR loss by prolonging the activity of ACh in the synaptic cleft.

  16. Enhancement of acetylcholine-induced desensitization of guinea-pig ileal longitudinal muscle in Ca2+-free conditions.

    PubMed

    Horio, S; Nagare, T; Moritoki, H

    1999-10-01

    1. To determine the role of cellular Ca2+ in desensitization, acetylcholine(ACh)-induced desensitization was studied under Ca2+-free condition in guinea-pig ileal longitudinal muscle. 2. Pretreatment of the tissue with 10(-4) M ACh (desensitizing treatment) in normal Tyrode solution caused desensitization of the responses both to ACh and histamine. The desensitizing treatment performed in Ca2+-free solution enhanced desensitization of the responses to ACh and histamine significantly. 3. The desensitizing treatment with ACh caused suppression of the responses to high K+ (tonic component) and Bay K 8644. The desensitizing treatment performed in Ca2+-free solution potentiated the suppression of the responses to high K+ and Bay K 8644 significantly. 4. ACh-induced desensitization was enhanced significantly in the presence of a protein kinase C inhibitor, 1-(5-isoquinolinesulfonyl)-2-methylpiperazine(H-7, 10(-4) M) to a similar extent as desensitization obtained under Ca2+-free condition, but not in the presence of a non-specific and less potent kinase inhibitor, N-(2-guanidinoethyl)-5-isoquinolinesulfonamide hydrochloride (HA1004, 10(-4) M). 5. These results suggested that voltage-gated Ca2+ channels were involved in ACh-induced desensitization and that intracellular Ca2+, which was increased during the stimulation with ACh, inhibited desensitization through the activation of protein kinase C. This kinase could have activated or protected Ca2+ channels during the desensitization process to reduce desensitization.

  17. Monoamine uptake inhibitors block alpha7-nAChR-mediated cerebral nitrergic neurogenic vasodilation.

    PubMed

    Long, Cheng; Chen, Mei-Fang; Sarwinski, Susan J; Chen, Po-Yi; Si, Minliang; Hoffer, Barry J; Evans, M Steven; Lee, Tony J F

    2006-07-01

    We have proposed that activation of cerebral perivascular sympathetic alpha7-nicotinic acetylcholine receptors (alpha7-nAChRs) by nicotinic agonists releases norepinephrine, which then acts on parasympathetic nitrergic nerves, resulting in release of nitric oxide and vasodilation. Using patch-clamp electrophysiology, immunohistochemistry, and in vitro tissue bath myography, we tested this axo-axonal interaction hypothesis further by examining whether blocking norepinephrine reuptake enhanced alpha7-nAChR-mediated cerebral nitrergic neurogenic vasodilation. The results indicated that choline- and nicotine-induced alpha7-nAChR-mediated nitrergic neurogenic relaxation in endothelium-denuded isolated porcine basilar artery rings was enhanced by desipramine and imipramine at lower concentrations (0.03-0.1 microM) but inhibited at higher concentrations (0.3-10 microM). In cultured superior cervical ganglion (SCG) neurons of the pig and rat, choline (0.1-30 mM)-evoked inward currents were reversibly blocked by 1-30 microM mecamylamine, 1-30 microM methyllycaconitine, 10-300 nM alpha-bungarotoxin, and 0.1-10 microM desipramine and imipramine, providing electrophysiological evidence for the presence of similar functional alpha7-nAChRs in cerebral perivascular sympathetic neurons of pigs and rats. In alpha7-nAChR-expressing Xenopus oocytes, choline-elicited inward currents were attenuated by alpha-bungarotoxin, imipramine, and desipramine. These monoamine uptake inhibitors appeared to directly block the alpha7-nAChR, resulting in diminished nicotinic agonist-induced cerebral nitrergic vasodilation. The enhanced nitrergic vasodilation by lower concentrations of monoamine uptake inhibitors is likely due to a greater effect on monoamine uptake than on alpha7-nAChR blockade. These results further support the hypothesis of axo-axonal interaction in nitrergic regulation of cerebral vascular tone.

  18. Nicotine at clinically relevant concentrations affects atrial inward rectifier potassium current sensitive to acetylcholine.

    PubMed

    Bébarová, Markéta; Matejovič, Peter; Švecová, Olga; Kula, Roman; Šimurdová, Milena; Šimurda, Jiří

    2017-05-01

    Nicotine abuse is associated with variety of diseases including arrhythmias, most often atrial fibrillation (AF). Altered inward rectifier potassium currents including acetylcholine-sensitive current I K(Ach) are known to be related to AF pathogenesis. Since relevant data are missing, we aimed to investigate I K(Ach) changes at clinically relevant concentrations of nicotine. Experiments were performed by the whole cell patch clamp technique at 23 ± 1 °C on isolated rat atrial myocytes. Nicotine was applied at following concentrations: 4, 40 and 400 nM; ethanol at 20 mM (∼0.09%). Nicotine at 40 and 400 nM significantly activated constitutively active component of I K(Ach) with the maximum effect at 40 nM (an increase by ∼100%); similar effect was observed at -110 and -50 mV. Changes at 4 nM nicotine were negligible on average. Coapplication of 40 nM nicotine and 20 mM ethanol (which is also known to activate this current) did not show cumulative effect. In the case of acetylcholine-induced component of I K(Ach) , a dual effect of nicotine and its correlation with the current magnitude in control were apparent: the current was increased by nicotine in the cells showing small current in control and vice versa. The effect of 40 and 400 nM nicotine on acetylcholine-induced component of I K(Ach) was significantly different at -110 and -50 mV. We conclude that nicotine at clinically relevant concentrations significantly increased constitutively active component of I K(Ach) and showed a dual effect on its acetylcholine-induced component, similarly as ethanol. Synchronous application of nicotine and ethanol did not cause additive effect.

  19. Chronic social isolation in the prairie vole induces endothelial dysfunction: implications for depression and cardiovascular disease

    PubMed Central

    Peuler, Jacob D.; Scotti, Melissa-Ann L.; Phelps, Laura E.; McNeal, Neal; Grippo, Angela J.

    2012-01-01

    Humans with depression show impaired endothelium-dependent vasodilation, one recent demonstration of which was in the form of a reduced acetylcholine (ACh)-induced relaxation of adrenergically-precontracted small arteries biopsied from older depressed patients. Results from such uses of ACh in general have been validated as the most predictive marker of endothelium-related cardiovascular diseases. Accordingly, we examined vascular reactivity to ACh in the socially isolated prairie vole, a new animal model relevant to human depression and cardiovascular disease. Thoracic aortas were carefully dissected from female prairie voles after one month of social isolation (versus pairing with a sibling). Only aortas that contracted to the adrenergic agent phenylephrine (PE) and then relaxed to ACh were evaluated. Among those, ACh-induced relaxations were significantly reduced by social isolation (p<0.05), with maximum relaxation reaching only 30% (of PE-induced precontraction) compared to 47% in aortas from paired (control) animals. Experimental removal of the endothelium from an additional set of aortic tissues abolished all ACh relaxations including that difference. In these same tissues, maximally-effective concentrations of the nitric oxide-donor nitroprusside still completely relaxed all PE-induced precontraction of the endothelial-free smooth muscle, and to the same degree in tissues from isolated versus paired animals. Finally, in the absence of PE-induced precontraction ACh did not relax but rather contracted aortic tissues, and to a significantly greater extent in tissues from socially isolated animals if the endothelium was intact (p<0.05). Thus, social isolation in the prairie vole may 1) impair normal release of protective anti-atherosclerotic factors like nitric oxide from the vascular endothelium (without altering the inherent responsiveness of the vascular smooth muscle to such factors) and 2) cause the endothelium to release contracting factors. To our

  20. α7 Nicotinic Acetylcholine Receptor Signaling Inhibits Inflammasome Activation by Preventing Mitochondrial DNA Release

    PubMed Central

    Lu, Ben; Kwan, Kevin; Levine, Yaakov A; Olofsson, Peder S; Yang, Huan; Li, Jianhua; Joshi, Sonia; Wang, Haichao; Andersson, Ulf; Chavan, Sangeeta S; Tracey, Kevin J

    2014-01-01

    The mammalian immune system and the nervous system coevolved under the influence of cellular and environmental stress. Cellular stress is associated with changes in immunity and activation of the NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome, a key component of innate immunity. Here we show that α7 nicotinic acetylcholine receptor (α7 nAchR)-signaling inhibits inflammasome activation and prevents release of mitochondrial DNA, an NLRP3 ligand. Cholinergic receptor agonists or vagus nerve stimulation significantly inhibits inflammasome activation, whereas genetic deletion of α7 nAchR significantly enhances inflammasome activation. Acetylcholine accumulates in macrophage cytoplasm after adenosine triphosphate (ATP) stimulation in an α7 nAchR-independent manner. Acetylcholine significantly attenuated calcium or hydrogen oxide–induced mitochondrial damage and mitochondrial DNA release. Together, these findings reveal a novel neurotransmitter-mediated signaling pathway: acetylcholine translocates into the cytoplasm of immune cells during inflammation and inhibits NLRP3 inflammasome activation by preventing mitochondrial DNA release. PMID:24849809

  1. Nicotinic acetylcholine receptor alpha5 subunits modulate oxotremorine-induced salivation and tremor.

    PubMed

    Wang, Ningshan; Orr-Urtreger, Avi; Chapman, Joab; Rabinowitz, Ruth; Korczyn, Amos D

    2004-07-15

    Neuronal nicotinic acetylcholine receptors (nAChRs) are composed of 12 subunits (alpha2-alpha10 and beta2-beta4). alpha5 Subunits, expressed throughout the central nervous system (CNS) and the autonomic nervous system (ANS), possess unique pharmacological properties. The effects of oxotremorine (OXO) on autonomic functions and tremor were examined in mice lacking alpha5 nAChR subunits (alpha5-/-) and compared with those in wild-type (WT) control mice. The alpha5-/- mice showed significantly increased salivation and tremor responses to OXO. The hypothermia, bradycardia and defecation induced by OXO were of similar magnitudes in the two mouse strains. The enhanced OXO effects in alpha5-/- mice indicate inhibitory effects of alpha5 subunits in autonomic ganglia, and support the participation of these subunits in cholinergic transmission in autonomic ganglia.

  2. Pyridostigmine but not 3,4-diaminopyridine exacerbates ACh receptor loss and myasthenia induced in mice by muscle-specific kinase autoantibody

    PubMed Central

    Morsch, Marco; Reddel, Stephen W; Ghazanfari, Nazanin; Toyka, Klaus V; Phillips, William D

    2013-01-01

    In myasthenia gravis, the neuromuscular junction is impaired by the antibody-mediated loss of postsynaptic acetylcholine receptors (AChRs). Muscle weakness can be improved upon treatment with pyridostigmine, a cholinesterase inhibitor, or with 3,4-diaminopyridine, which increases the release of ACh quanta. The clinical efficacy of pyridostigmine is in doubt for certain forms of myasthenia. Here we formally examined the effects of these compounds in the antibody-induced mouse model of anti-muscle-specific kinase (MuSK) myasthenia gravis. Mice received 14 daily injections of IgG from patients with anti-MuSK myasthenia gravis. This caused reductions in postsynaptic AChR densities and in endplate potential amplitudes. Systemic delivery of pyridostigmine at therapeutically relevant levels from days 7 to 14 exacerbated the anti-MuSK-induced structural alterations and functional impairment at motor endplates in the diaphragm muscle. No such effect of pyridostigmine was found in mice receiving control human IgG. Mice receiving smaller amounts of MuSK autoantibodies did not display overt weakness, but 9 days of pyridostigmine treatment precipitated generalised muscle weakness. In contrast, one week of treatment with 3,4-diaminopyridine enhanced neuromuscular transmission in the diaphragm muscle. Both pyridostigmine and 3,4-diaminopyridine increase ACh in the synaptic cleft yet only pyridostigmine potentiated the anti-MuSK-induced decline in endplate ACh receptor density. These results thus suggest that ongoing pyridostigmine treatment potentiates anti-MuSK-induced AChR loss by prolonging the activity of ACh in the synaptic cleft. PMID:23440963

  3. Blockade of central nicotine acetylcholine receptor signaling attenuate ghrelin-induced food intake in rodents.

    PubMed

    Dickson, S L; Hrabovszky, E; Hansson, C; Jerlhag, E; Alvarez-Crespo, M; Skibicka, K P; Molnar, C S; Liposits, Z; Engel, J A; Egecioglu, E

    2010-12-29

    Here we sought to determine whether ghrelin's central effects on food intake can be interrupted by nicotine acetylcholine receptor (nAChR) blockade. Ghrelin regulates mesolimbic dopamine neurons projecting from the ventral tegmental area (VTA) to the nucleus accumbens, partly via cholinergic VTA afferents originating in the laterodorsal tegmental area (LDTg). Given that these cholinergic projections to the VTA have been implicated in natural as well as drug-induced reinforcement, we sought to investigate the role of cholinergic signaling in ghrelin-induced food intake as well as fasting-induced food intake, for which endogenous ghrelin has been implicated. We found that i.p. treatment with the non-selective centrally active nAChR antagonist, mecamylamine decreased fasting-induced food intake in both mice and rats. Moreover, central administration of mecamylamine decreased fasting-induced food intake in rats. I.c.v. ghrelin-induced food intake was suppressed by mecamylamine i.p. but not by hexamethonium i.p., a peripheral nAChR antagonist. Furthermore, mecamylamine i.p. blocked food intake following ghrelin injection into the VTA. Expression of the ghrelin receptor, the growth hormone secretagogue receptor 1A, was found to co-localize with choline acetyltransferase, a marker of cholinergic neurons, in the LDTg. Finally, mecamylamine treatment i.p. decreased the ability of palatable food to condition a place preference. These data suggest that ghrelin-induced food intake is partly mediated via nAChRs and that nicotinic blockade decreases the rewarding properties of food. Copyright © 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Acetylcholine is released from taste cells, enhancing taste signalling

    PubMed Central

    Dando, Robin; Roper, Stephen D

    2012-01-01

    Acetylcholine (ACh), a candidate neurotransmitter that has been implicated in taste buds, elicits calcium mobilization in Receptor (Type II) taste cells. Using RT-PCR analysis and pharmacological interventions, we demonstrate that the muscarinic acetylcholine receptor M3 mediates these actions. Applying ACh enhanced both taste-evoked Ca2+ responses and taste-evoked afferent neurotransmitter (ATP) secretion from taste Receptor cells. Blocking muscarinic receptors depressed taste-evoked responses in Receptor cells, suggesting that ACh is normally released from taste cells during taste stimulation. ACh biosensors confirmed that, indeed, taste Receptor cells secrete acetylcholine during gustatory stimulation. Genetic deletion of muscarinic receptors resulted in significantly diminished ATP secretion from taste buds. The data demonstrate a new role for acetylcholine as a taste bud transmitter. Our results imply specifically that ACh is an autocrine transmitter secreted by taste Receptor cells during gustatory stimulation, enhancing taste-evoked responses and afferent transmitter secretion. PMID:22570381

  5. Nicotine withdrawal-induced inattention is absent in alpha7 nAChR knockout mice

    PubMed Central

    Higa, K. K.; Grim, A.; Kamenski, M. E.; van Enkhuizen, J.; Zhou, X.; Li, K.; Naviaux, J. C.; Wang, L.; Naviaux, R. K.; Geyer, M. A.; Markou, A.; Young, J. W.

    2017-01-01

    Rationale Smoking is the leading cause of preventable death in the U.S., but quit attempts result in withdrawal-induced cognitive dysfunction and predicts relapse. Greater understanding of the neural mechanism(s) underlying these cognitive deficits is required to develop targeted treatments to aid quit attempts. Objectives We examined nicotine withdrawal-induced inattention in mice lacking the α7 nicotinic acetylcholine receptor (nAChR) using the 5-choice continuous performance test (5C-CPT). Methods Mice were trained in the 5C-CPT prior to osmotic minipump implantation containing saline or nicotine. Experiment 1 used 40 mg/kg/day nicotine treatment and tested C57BL/6 mice 4, 28, and 52 h after pump removal. Experiment 2 used 14 and 40 mg/kg/day nicotine treatment in α7 nAChR knockout (KO) and wildtype (WT) littermates tested 4 h after pump removal. Subsets of WT mice were sacrificed before and after pump removal to assess changes in receptor expression associated with nicotine administration and withdrawal. Results Nicotine withdrawal impaired attention in the 5C-CPT, driven by response inhibition and target detection deficits. The overall attentional deficit was absent in α7 nAChR KO mice despite response disinhibition in these mice. Synaptosomal glutamate mGluR5 and dopamine D4 receptor expression were reduced during chronic nicotine but increased during withdrawal, potentially contributing to cognitive deficits. Conclusions The α7 nAChR may underlie nicotine withdrawal-induced deficits in target detection but is not required for response disinhibition deficits. Alterations to the glutamatergic and dopaminergic pathways may also contribute to withdrawal-induced attentional deficits, providing novel targets to alleviate the cognitive symptoms of withdrawal during quit attempts. PMID:28243714

  6. Sesquiterpenes and a monoterpenoid with acetylcholinesterase (AchE) inhibitory activity from Valeriana officinalis var. latiofolia in vitro and in vivo.

    PubMed

    Chen, Heng-Wen; He, Xuan-Hui; Yuan, Rong; Wei, Ben-Jun; Chen, Zhong; Dong, Jun-Xing; Wang, Jie

    2016-04-01

    Acetylcholinesterase Inhibitor (AchEI) is the most extensive in all anti-dementia drugs. The extracts and isolated compounds from the Valeriana genus have shown anti-dementia bioactivity. Four new sesquiterpenoids (1-4) and a new monoterpenoid (5) were isolated from the root of Valeriana officinalis var. latiofolia. The acetylcholinesterase (AchE) inhibitory activity of isolates was evaluated by modified Ellman method in vitro. Learning and memory ability of compound 4 on mice was evaluated by the Morris water maze. The contents of acetylcholine (Ach), acetylcholine transferase (ChAT) and AchE in mice brains were determined by colorimetry. The results showed IC50 of compound 4 was 0.161 μM in vitro. Compared with the normal group, the learning and memory ability of mice and the contents of Ach and ChAT decreased in model group mice (P<0.01), while the AchE increased (P<0.01). Compared with the model group, Ach and ChAT in the positive control group, the high-dose group and the medium-dose group increased (P<0.01), while the AchE decreased (P<0.01). Compound 4 can improve the learning and memory abilities of APPswe/PSΔE9 double-transgenic mice, and the mechanism may be related to the regulation of the relative enzyme in the cholinergic system. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Peptides from puff adder Bitis arietans venom, novel inhibitors of nicotinic acetylcholine receptors.

    PubMed

    Vulfius, Catherine A; Spirova, Ekaterina N; Serebryakova, Marina V; Shelukhina, Irina V; Kudryavtsev, Denis S; Kryukova, Elena V; Starkov, Vladislav G; Kopylova, Nina V; Zhmak, Maxim N; Ivanov, Igor A; Kudryashova, Ksenia S; Andreeva, Tatyana V; Tsetlin, Victor I; Utkin, Yuri N

    2016-10-01

    Phospholipase A 2 (named bitanarin) possessing capability to block nicotinic acetylcholine receptors (nAChRs) was isolated earlier (Vulfius et al., 2011) from puff adder Bitis arietans venom. Further studies indicated that low molecular weight fractions of puff adder venom inhibit nAChRs as well. In this paper, we report on isolation from this venom and characterization of three novel peptides called baptides 1, 2 and 3 that reversibly block nAChRs. To isolate the peptides, the venom of B. arietans was fractionated by gel-filtration and reversed phase chromatography. The amino acid sequences of peptides were established by de novo sequencing using MALDI mass spectrometry. Baptide 1 comprised 7, baptides 2 and 3-10 amino acid residues, the latter being acetylated at the N-terminus. This is the first indication for the presence of such post-translational modification in snake venom proteins. None of the peptides contain cysteine residues. For biological activity studies the peptides were prepared by solid phase peptide synthesis. Baptide 3 and 2 blocked acetylcholine-elicited currents in isolated Lymnaea stagnalis neurons with IC 50 of about 50 μM and 250 μM, respectively. In addition baptide 2 blocked acetylcholine-induced currents in muscle nAChR heterologously expressed in Xenopus oocytes with IC 50 of about 3 μM. The peptides did not compete with radioactive α-bungarotoxin for binding to Torpedo and α7 nAChRs at concentration up to 200 μM that suggests non-competitive mode of inhibition. Calcium imaging studies on α7 and muscle nAChRs heterologously expressed in mouse neuroblastoma Neuro2a cells showed that on α7 receptor baptide 2 inhibited acetylcholine-induced increasing intracellular calcium concentration with IC 50 of 20.6 ± 3.93 μM. On both α7 and muscle nAChRs the suppression of maximal response to acetylcholine by about 50% was observed at baptide 2 concentration of 25 μM, the value being close to IC 50 on α7 nAChR. These data are

  8. Endogenous Acetylcholine Controls the Severity of Polymicrobial Sepsisassociated Inflammatory Response in Mice.

    PubMed

    Amaral, Flávio Almeida; Fagundes, Caio Tavares; Miranda, Aline Silva; Costa, Vivian Vasconceios; Resende, Livia; Gloria de Souza, Danielle da; Prado, Vania Ferreira; Teixeira, Mauro Martins; Maximo Prado, Marco Antonio; Teixeira, Antonio Lucio

    2016-01-01

    Acetylcholine (ACh) is the main mediator associated with the anti-inflammatory cholinergic pathway. ACh plays an inhibitory role in several inflammatory conditions. Sepsis is a severe clinical syndrome characterized by bacterial dissemination and overproduction of inflammatory mediators. The aim of the current study was to investigate the participation of endogenous ACh in the modulation of inflammatory response induced by a model of polymicrobial sepsis. Wild type (WT) and vesicular acetylcholine transporter knockdown (VAChT(KD)) mice were exposed to cecal ligation and perforation- induced sepsis. Levels of Tumor Necrosis Factor Alpha (TNF-α) and bacterial growth in peritoneal cavity and serum, and neutrophil recruitment into peritoneal cavity were assessed. The concentration of TNF-α in both compartments was higher in VAChT(KD) in comparison with WT mice. VAChT(KD) mice presented elevated burden of bacteria in peritoneum and blood, and impairment of neutrophil migration to peritoneal cavity. This phenotype was reversed by treatment with nicotine salt. These findings suggest that endogenous ACh plays a major role in the control of sepsis-associated inflammatory response.

  9. Calcium dobesilate potentiates endothelium-derived hyperpolarizing factor-mediated relaxation of human penile resistance arteries

    PubMed Central

    Angulo, Javier; Cuevas, Pedro; Fernández, Argentina; Gabancho, Sonia; Videla, Sebastián; Tejada, Iñigo Sáenz de

    2003-01-01

    We have evaluated the participation of endothelium-derived hyperpolarizing factor (EDHF) in the endothelium-dependent relaxation of isolated human penile resistance arteries (HPRA) and human corpus cavernosum (HCC) strips. In addition, the effect of the angioprotective agent, calcium dobesilate (DOBE), on the endothelium-dependent relaxation of these tissues was investigated. Combined inhibition of nitric oxide synthase (NOS) and cyclooxygenase (COX) nearly abolished the endothelium-dependent relaxation to acetylcholine (ACh) in HCC, while 60% relaxation of HPRA was observed under these conditions. Endothelium-dependent relaxation of HPRA resistant to NOS and COX inhibition was prevented by raising the extracellular concentration of K+ (35 mM) or by blocking Ca2+-activated K+ channels, with apamin (APA; 100 nM) and charybdotoxin (CTX; 100 nM), suggesting the involvement of EDHF in these responses. Endothelium-dependent relaxation to ACh was markedly enhanced by DOBE (10 μM) in HPRA but not in HCC. The potentiating effects of DOBE on ACh-induced responses in HPRA, remained after NOS and COX inhibition, were reduced by inhibition of cytochrome P450 oxygenase with miconazole (0.3 mM) and were abolished by high K+ or a combination of APA and CTX. In vivo, DOBE (10 mg kg−1 i.v.) significantly potentiated the erectile responses to cavernosal nerve stimulation in male rats. EDHF plays an important role in the endothelium-dependent relaxation of HPRA but not in HCC. DOBE significantly improves endothelium-dependent relaxation of HPRA mediated by EDHF and potentiates erectile responses in vivo. Thus, EDHF becomes a new therapeutic target for the treatment of erectile dysfunction (ED) and DOBE could be considered a candidate for oral therapy for ED. PMID:12813009

  10. Improvement of Acetylcholine-Induced Vasodilation by Acute Exercise in Ovariectomized Hypertensive Rats.

    PubMed

    Cheng, Tsung-Lin; Lin, Yi-Yuan; Su, Chia-Ting; Hu, Chun-Che; Yang, Ai-Lun

    2016-06-30

    Postmenopause is associated with the development of cardiovascular disease, such as hypertension. However, limited information is available regarding effects of exercise on cardiovascular responses and its underlying mechanisms in the simultaneous postmenopausal and hypertensive status. We aimed to investigate whether acute exercise could enhance vasodilation mediated by acetylcholine (ACh) and sodium nitroprusside (SNP) in ovariectomized hypertensive rats. The fifteen-week-old female spontaneously hypertensive rats (SHR) were bilaterally ovariectomized, at the age of twenty-four weeks, and randomly divided into sedentary (SHR-O) and acute exercise (SHR-OE) groups. Age-matched WKY rats were used as the normotensive control group. The SHR-OE group ran on a motor-driven treadmill at a speed of 24 m/min for one hour in a moderate-intensity program. Following a single bout of exercise, rat aortas were isolated for the evaluation of the endothelium-dependent (ACh-induced) and endothelium-independent (SNP-induced) vasodilation by the organ bath system. Also, the serum levels of oxidative stress and antioxidant activities, including malondialdehyde (MDA), superoxide dismutase (SOD), and catalase, were measured after acute exercise among the three groups. We found that acute exercise significantly enhanced the ACh-induced vasodilation, but not the SNP-induced vasodilation, in ovariectomized hypertensive rats. This increased vasodilation was eliminated after the inhibition of nitric oxide synthase (NOS). Also, the activities of SOD and catalase were significantly increased after acute exercise, whereas the level of MDA was comparable among the three groups. These results indicated that acute exercise improved the endothelium-dependent vasodilating response to ACh through the NOS-related pathway in ovariectomized hypertensive rats, which might be associated with increased serum antioxidant activities.

  11. Role of nicotinic receptors and acetylcholine in mucous cell metaplasia, hyperplasia and airway mucus formation in vitro and in vivo

    PubMed Central

    Gundavarapu, Sravanthi; Wilder, Julie A.; Mishra, Neerad C.; Rir-sima-ah, Jules; Langley, Raymond J.; Singh, Shashi P.; Saeed, Ali Imran; Jaramillo, Richard J.; Gott, Katherine M.; Peña-Philippides, Juan Carlos; Harrod, Kevin S.; McIntosh, J. Michael; Buch, Shilpa; Sopori, Mohan L.

    2012-01-01

    Background Airway mucus hypersecretion is a key pathophysiological feature in number of lung diseases. Cigarette smoke/nicotine and allergens are strong stimulators of airway mucus; however, the mechanism of mucus modulation is unclear. Objectives Characterize the pathway by which cigarette smoke/nicotine regulates airway mucus and identify agents that decrease airway mucus. Methods IL-13 and gamma-aminobutyric acid receptors (GABAARs) are implicated in airway mucus. We examined the role of IL-13 and GABAARs in nicotine-induced mucus formation in normal human bronchial epithelial (NHBE) and A549 cells, and secondhand cigarette smoke and/or ovalbumin-induced mucus formation in vivo. Results Nicotine promotes mucus formation in NHBE cells; however, the nicotine-induced mucus formation is independent of IL-13 but sensitive to the GABAAR antagonist picrotoxin (PIC). Airway epithelial cells express α7/α9/α10 nicotinic acetylcholine receptors (nAChRs) and specific inhibition or knockdown of α7- but not α9/α10-nAChRs abrogates mucus formation in response to nicotine and IL-13. Moreover, addition of acetylcholine or inhibition of its degradation increases mucus in NHBE cells. Nicotinic but not muscarinic receptor antagonists block allergen or nicotine/cigarette smoke-induced airway mucus formation in NHBE cells and/or in mouse airways. Conclusions Nicotine-induced airway mucus formation is independent of IL-13 and α7-nAChRs are critical in airway mucous cell metaplasia/hyperplasia and mucus production in response to various pro-mucoid agents, including IL-13. In the absence of nicotine, acetylcholine may be the biological ligand for α7-nAChRs to trigger airway mucus formation. α7-nAChRs are downstream of IL-13 but upstream of GABAARα2 in the MUC5AC pathway. Acetylcholine and α-7-nAChRs may serve as therapeutic targets to control airway mucus. PMID:22578901

  12. Identification of new allosteric sites and modulators of AChE through computational and experimental tools.

    PubMed

    Roca, Carlos; Requena, Carlos; Sebastián-Pérez, Víctor; Malhotra, Sony; Radoux, Chris; Pérez, Concepción; Martinez, Ana; Antonio Páez, Juan; Blundell, Tom L; Campillo, Nuria E

    2018-12-01

    Allosteric sites on proteins are targeted for designing more selective inhibitors of enzyme activity and to discover new functions. Acetylcholinesterase (AChE), which is most widely known for the hydrolysis of the neurotransmitter acetylcholine, has a peripheral allosteric subsite responsible for amyloidosis in Alzheimer's disease through interaction with amyloid β-peptide. However, AChE plays other non-hydrolytic functions. Here, we identify and characterise using computational tools two new allosteric sites in AChE, which have allowed us to identify allosteric inhibitors by virtual screening guided by structure-based and fragment hotspot strategies. The identified compounds were also screened for in vitro inhibition of AChE and three were observed to be active. Further experimental (kinetic) and computational (molecular dynamics) studies have been performed to verify the allosteric activity. These new compounds may be valuable pharmacological tools in the study of non-cholinergic functions of AChE.

  13. Visualization and functional testing of acetylcholine receptor-like molecules in cochlear outer hair cells.

    PubMed

    Plinkert, P K; Gitter, A H; Zimmermann, U; Kirchner, T; Tzartos, S; Zenner, H P

    1990-02-01

    The efferent nerve endings at outer hair cells (OHCs) have been suggested to regulate active mechanical processes in the cochlea. The discovery of acetylcholine (ACh)-producing and -degrading enzymes in these synapses gave rise to the speculation that ACh might be one of the efferent transmitters. However, there has as yet been no identification and characterization of any corresponding receptor in OHCs which is required for further clarification of this question. In the present paper existence, location and first characterization of acetylcholine receptors (AChRs) in OHCs are reported. Using two anti-AChR monoclonal antibodies, AChR epitopes were found forming a cup at the basal end of the OHCs opposite to the efferent nerve endings. Furthermore, the studied molecules could be shown to extend through the cell membrane. In addition, the denervated OHC AChR-epitopes seem to move by lateral diffusion. Application of Carbachol and ACh to the basal pole of OHCs induced a weak, reversible cell contraction. Pharmacological controls revealed, that hte motile responses were mediated by the AChRs.

  14. RgIA4 Potently Blocks Mouse α9α10 nAChRs and Provides Long Lasting Protection against Oxaliplatin-Induced Cold Allodynia.

    PubMed

    Christensen, Sean B; Hone, Arik J; Roux, Isabelle; Kniazeff, Julie; Pin, Jean-Philippe; Upert, Grégory; Servent, Denis; Glowatzki, Elisabeth; McIntosh, J Michael

    2017-01-01

    Transcripts for α9 and α10 nicotinic acetylcholine receptor (nAChR) subunits are found in diverse tissues. The function of α9α10 nAChRs is best known in mechanosensory cochlear hair cells, but elsewhere their roles are less well-understood. α9α10 nAChRs have been implicated as analgesic targets and α-conotoxins that block α9α10 nAChRs produce analgesia. However, some of these peptides show large potency differences between species. Additionally several studies have indicated that these conotoxins may also activate GABA B receptors (GABA B Rs). To further address these issues, we cloned the cDNAs of mouse α9 and α10 nAChR subunits. When heterologously expressed in Xenopus oocytes, the resulting α9α10 nAChRs had the expected pharmacology of being activated by acetylcholine and choline but not by nicotine. A conotoxin analog, RgIA4, potently, and selectively blocked mouse α9α10 nAChRs with low nanomolar affinity indicating that RgIA4 may be effectively used to study murine α9α10 nAChR function. Previous reports indicated that RgIA4 attenuates chemotherapy-induced cold allodynia. Here we demonstrate that RgIA4 analgesic effects following oxaliplatin treatment are sustained for 21 days after last RgIA4 administration indicating that RgIA4 may provide enduring protection against nerve damage. RgIA4 lacks activity at GABA B receptors; a bioluminescence resonance energy transfer assay was used to demonstrate that two other analgesic α-conotoxins, Vc1.1 and AuIB, also do not activate GABA B Rs expressed in HEK cells. Together these findings further support the targeting of α9α10 nAChRs in the treatment of pain.

  15. Effects of calcium dobesilate on the synthesis of endothelium-dependent relaxing factors in rabbit isolated aorta

    PubMed Central

    Ruiz, E; Lorente, R; Tejerina, T

    1997-01-01

    Some cardiovascular disturbances which occur in diabetics are a consequence of alterations in vascular contractility as well as in endothelium-dependent relaxation. Calcium dobesilate (DOBE) is a drug used in diabetic retinopathy and its mechanism of action is not yet understood. The aim of this study was to investigate the effects of DOBE on synthesis and release of endothelium-dependent relaxing factor (EDRF) and endothelium-dependent hyperpolarizing factor (EDHF) in rabbit isolated aorta. Endothelium-dependent relaxation induced by acetylcholine (ACh) (10−8–10−5 M) increased in the presence of DOBE 10−5 M only when vascular endothelium was kept intact. NG-nitro-L-arginine methyl ester (L-NAME; 10−8–10−4 M progressively decreased the enhancing effect of DOBE on endothelium-dependent relaxation whereas it was progressively increased by L-Arg. DOBE 10−5 M increased in a non-significant manner endothelium-dependent relaxation induced by ACh when the arteries were incubated with both L-NAME 10−4 M and indomethacin 10−6 M. DOBE (10−6 M and 10−5 M) was able to scavenge superoxide anion radicals generated by the hypoxanthine/xanthine oxidase reaction. These results provide evidence that DOBE is able to affect the vascular disorders associated with diabetes mellitus since it enhances the synthesis of endothelium-dependent relaxing factors. PMID:9208138

  16. Activated Rho Kinase Mediates Diabetes-Induced Elevation of Vascular Arginase Activation and Contributes to Impaired Corpora Cavernosa Relaxation: Possible Involvement of p38 MAPK Activation

    PubMed Central

    Nunes, Kenia P.; Yao, Lin; Liao, James K.; Webb, R. Clinton; Caldwell, Ruth B.; Caldwell, R. William

    2013-01-01

    Introduction Activated RhoA/Rho kinase (ROCK) has been implicated in diabetes-induced erectile dysfunction. Earlier studies have demonstrated involvement of ROCK pathway in the activation of arginase in endothelial cells. However, signaling pathways activated by ROCK in the penis remain unclear. Aim We tested whether ROCK and p38 MAPK are involved in the elevation of arginase activity and subsequent impairment of corpora cavernosal (CC) relaxation in diabetes. Methods Eight weeks after streptozotocin-induced diabetes, vascular functional studies, arginase activity assay, and protein expression of RhoA, ROCK, phospho-p38 MAPK, p38 MAPK, phospho-MYPT-1Thr850, MYPT-1 and arginase levels were assessed in CC tissues from nondiabetic wild type (WT), diabetic (D) WT (WT + D), partial ROCK 2+/− knockout (KO), and ROCK 2+/− KO + D mice. Main Outcome Measures The expression of RhoA, ROCK 1 and 2, phosphorylation of MYPT-1Thr850 and p38 MAPK, arginase activity/expression, endothelial- and nitrergic-dependent relaxation of CC was assayed. Results Diabetes significantly reduced maximum relaxation (Emax) to both endothelium-dependent acetylcholine (WT + D: Emax; 61 ± 4% vs. WT: Emax; 75 ± 2%) and nitrergic nerve stimulation. These effects were associated with increased expression of active RhoA, ROCK 2, phospho-MYPT-1Thr850, phospho-p38 MAPK, arginase II, and activity of corporal arginase (1.6-fold) in WT diabetic CC. However, this impairment in CC of WT + D mice was absent in heterozygous ROCK 2+/− KO + D mice for acetylcholine (Emax: 80 ± 5%) and attenuated for nitrergic nerve-induced relaxation. CC of ROCK 2+/− KO + D mice showed much less ROCK activity, did not exhibit p38 MAPK activation, and had reduced arginase activity and arginase II expression. These findings indicate that ROCK 2 mediates diabetes-induced elevation of arginase activity. Additionally, pretreatment of WT diabetic CC with inhibitors of arginase (ABH) or p38 MAPK (SB203580) partially prevented

  17. Role of the nicotinic acetylcholine receptor in Alzheimer's disease pathology and treatment.

    PubMed

    Lombardo, Sylvia; Maskos, Uwe

    2015-09-01

    Alzheimer's Disease (AD) is the major form of senile dementia, characterized by neuronal loss, extracellular deposits, and neurofibrillary tangles. It is accompanied by a loss of cholinergic tone, and acetylcholine (ACh) levels in the brain, which were hypothesized to be responsible for the cognitive decline observed in AD. Current medication is restricted to enhancing cholinergic signalling for symptomatic treatment of AD patients. The nicotinic acetylcholine receptor family (nAChR) and the muscarinic acetylcholine receptor family (mAChR) are the target of ACh in the brain. Both families of receptors are affected in AD. It was demonstrated that amyloid beta (Aβ) interacts with nAChRs. Here we discuss how Aβ activates or inhibits nAChRs, and how this interaction contributes to AD pathology. We will discuss the potential role of nAChRs as therapeutic targets. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Acotiamide Hydrochloride, a Therapeutic Agent for Functional Dyspepsia, Enhances Acetylcholine-induced Contraction via Inhibition of Acetylcholinesterase Activity in Circular Muscle Strips of Guinea Pig Stomach.

    PubMed

    Ito, K; Kawachi, M; Matsunaga, Y; Hori, Y; Ozaki, T; Nagahama, K; Hirayama, M; Kawabata, Y; Shiraishi, Y; Takei, M; Tanaka, T

    2016-04-01

    Acotiamide is a first-in-class prokinetic drug approved in Japan for the treatment of functional dyspepsia. Given that acotiamide enhances gastric motility in conscious dogs and rats, we assessed the in vitro effects of this drug on the contraction of guinea pig stomach strips and on acetylcholinesterase (AChE) activity in stomach homogenate following fundus removal. We also investigated the serotonin 5-HT4 receptor agonist mosapride, dopamine D2 receptor and AChE inhibitor itopride, and representative AChE inhibitor neostigmine. Acotiamide (0.3 and 1 μM) and itopride (1 and 3 μM) significantly enhanced the contraction of gastric body strips induced by electrical field stimulation (EFS), but mosapride (1 and 10 μM) did not. Acotiamide and itopride significantly enhanced the contraction of gastric body and antrum strips induced by acetylcholine (ACh), but not that induced by carbachol (CCh). Neostigmine also significantly enhanced the contraction of gastric body strips induced by ACh, but not that by CCh. In contrast, mosapride failed to enhance contractions induced by either ACh or CCh in gastric antrum strips. Acotiamide exerted mixed inhibition of AChE, and the percentage inhibition of acotiamide (100 μM) against AChE activity was markedly reduced after the reaction mixture was dialyzed. In contrast, itopride exerted noncompetitive inhibition on AChE activity. These results indicate that acotiamide enhances ACh-dependent contraction in gastric strips of guinea pigs via the inhibition of AChE activity, and that it exerts mixed and reversible inhibition of AChE derived from guinea pig stomach. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Natural AChE Inhibitors from Plants and their Contribution to Alzheimer’s Disease Therapy

    PubMed Central

    Murray, Ana Paula; Faraoni, María Belén; Castro, María Julia; Alza, Natalia Paola; Cavallaro, Valeria

    2013-01-01

    As acetylcholinesterase (AChE) inhibitors are an important therapeutic strategy in Alzheimer’s disease, efforts are being made in search of new molecules with anti-AChE activity. The fact that naturally-occurring compounds from plants are considered to be a potential source of new inhibitors has led to the discovery of an important number of secondary metabolites and plant extracts with the ability of inhibiting the enzyme AChE, which, according to the cholinergic hypothesis, increases the levels of the neurotransmitter acetylcholine in the brain, thus improving cholinergic functions in patients with Alzheimer’s disease and alleviating the symptoms of this neurological disorder. This review summarizes a total of 128 studies which correspond to the most relevant research work published during 2006-2012 (1st semester) on plant-derived compounds, plant extracts and essential oils found to elicit AChE inhibition. PMID:24381530

  20. Acetylcholine from the mesopontine tegmental nuclei differentially affects methamphetamine induced locomotor activity and neurotransmitter levels in the mesolimbic pathway

    PubMed Central

    Dobbs, Lauren K.; Mark, Gregory P.

    2012-01-01

    Methamphetamine (MA) increases dopamine (DA) levels within the mesolimbic pathway and acetylcholine (ACh), a neurotransmitter known to increase DA cell firing and release and mediate reinforcement, within the ventral tegmental area (VTA). The laterodorsal tegmental (LDT) and pedunculopontine tegmental (PPT) nuclei provide cholinergic input to the VTA; however, the contribution of LDT- and PPT-derived ACh to MA-induced DA and ACh levels and locomotor activation remains unknown. The first experiment examined the role of LDT-derived ACh in MA locomotor activation by reversibly inhibiting these neurons with bilateral intra-LDT microinjections of the M2 receptor agonist oxotremorine (OXO). Male C57BL/6 J mice were given a bilateral 0.1 µl OXO (0, 1, or 10 nM/side) microinjection immediately prior to IP saline or MA (2 mg/kg). The highest OXO concentration significantly inhibited both saline-and MA-primed locomotor activity. In a second set of experiments we characterized the individual contributions of ACh originating in the LDT or pedunculopontine tegmental nucleus (PPT) to MA-induced levels of ACh and DA by administering intra-LDT or PPT OXO and performing in vivo microdialysis in the VTA and NAc. Intra-LDT OXO dose-dependently attenuated the MA-induced increase in ACh within the VTA but had no effect on DA in NAc. Intra-PPT OXO had no effect on ACh or DA levels within the VTA or NAc, respectively. We conclude that LDT, but not PPT, ACh is important in locomotor behavior and the cholinergic, but not dopaminergic, response to systemic MA. PMID:21945297

  1. Functional characterization of mongoose nicotinic acetylcholine receptor alpha-subunit: resistance to alpha-bungarotoxin and high sensitivity to acetylcholine.

    PubMed

    Asher, O; Lupu-Meiri, M; Jensen, B S; Paperna, T; Fuchs, S; Oron, Y

    1998-07-24

    The mongoose is resistant to snake neurotoxins. The mongoose muscle nicotinic acetylcholine receptor (AChR) alpha-subunit contains a number of mutations in the ligand-binding domain and exhibits poor binding of alpha-bungarotoxin (alpha-BTX). We characterized the functional properties of a hybrid (alpha-mongoose/beta gamma delta-rat) AChR. Hybrid AChRs, expressed in Xenopus oocytes, respond to acetylcholine with depolarizing current, the mean maximal amplitude of which was greater than that mediated by the rat AChR. The IC50 of alpha-BTX to the hybrid AChR was 200-fold greater than that of the rat, suggesting much lower affinity for the toxin. Hybrid AChRs exhibited an apparent higher rate of desensitization and higher affinity for ACh (EC50 1.3 vs. 23.3 microM for the rat AChR). Hence, changes in the ligand-binding domain of AChR not only affect the binding properties of the receptor, but also result in marked changes in the characteristics of the current.

  2. a2* Nicotinic Acetylcholine Receptors Influence Hippocampus-Dependent Learning and Memory in Adolescent Mice

    ERIC Educational Resources Information Center

    Lotfipour, Shahrdad; Mojica, Celina; Nakauchi, Sakura; Lipovsek, Marcela; Silverstein, Sarah; Cushman, Jesse; Tirtorahardjo, James; Poulos, Andrew; Elgoyhen, Ana Belén; Sumikawa, Katumi; Fanselow, Michael S.; Boulter, Jim

    2017-01-01

    The absence of a2* nicotinic acetylcholine receptors (nAChRs) in oriens lacunosum moleculare (OLM) GABAergic interneurons ablate the facilitation of nicotine-induced hippocampal CA1 long-term potentiation and impair memory. The current study delineated whether genetic mutations of a2* nAChRs ("Chrna2"[superscript L9'S/L9'S] and…

  3. Impairment of endothelium-dependent relaxation of rat aortas by homocysteine thiolactone and attenuation by captopril.

    PubMed

    Liu, Yu-Hui; You, Yu; Song, Tao; Wu, Shu-Jing; Liu, Li-Ying

    2007-08-01

    To explore the effects of angiotensin-converting enzyme (ACE) inhibitors on endothelial dysfunction induced by homocysteine thiolactone (HTL). Both endothelium-dependent relaxation and nondependent relaxation of thoracic aortic rings in rats induced by acetylcholine (Ach) or sodium nitroprusside (SNP) and biochemical parameters including malondialdehyde (MDA) and nitric oxide (NO) were measured in rat isolated aorta. Exposure of aortic rings to HTL (3 to 30 mM) for 90 minutes made a significant inhibition of endothelium-dependent relaxation induced by Ach, decreased contents of NO, and increased MDA concentration in aortic tissue. After incubation of aortic rings with captopril (0.003 to 0.03 mM) attenuated the inhibition of endothelium-dependent relaxation (EDR) and significantly resisted the decrease of NO content and elevation of MDA concentration caused by HTL (30 mmol/L) in aortic tissues, a similarly protective effect was observed when the aortic rings were incubated with both N-acetylcysteine (0.05 mM). Treatment with enalaprilat (0.003 to 0.01 mM) made no significant difference with the HTL (30 mM) group regarding EDR, but enalaprilat (0.03 mM) and losartan (0.03 mM) could partly restore the EDR in response to HTL (30 mM). Captopril was more effective than enalaprilat and losartan in attenuation of the inhibition of on acetylcholine-stimulated aortic relaxation by HTL in the same concentration. Moreover, superoxide dismutase (SOD, 200 U/mL), which is a scavenger of superoxide anions, apocynin (0.03 mM), which is an inhibitor of NADPH oxidase, and l-Arginine (3 mmol/L), a precursor of nitric oxide (NO), could reduce HTL (30 mM)-induced inhibition of EDR. After pretreatment with not only the NO synthase inhibitor Nomega-nitro-l-arginine methyl ester (L-NAME, 0.01 mM) but also the free sulfhydryl group blocking agent p-hydroxymercurybenzoate (PHMB, 0.05 mM) could abolish the protection of captopril and N-acetylcysteine, respectively. These results suggest that

  4. Regulation of synaptic acetylcholine concentrations by acetylcholine transport in rat striatal cholinergic transmission.

    PubMed

    Muramatsu, Ikunobu; Uwada, Junsuke; Masuoka, Takayoshi; Yoshiki, Hatsumi; Sada, Kiyonao; Lee, Kung-Shing; Nishio, Matomo; Ishibashi, Takaharu; Taniguchi, Takanobu

    2017-10-01

    In addition to hydrolysis by acetylcholine esterase (AChE), acetylcholine (ACh) is also directly taken up into brain tissues. In this study, we examined whether the uptake of ACh is involved in the regulation of synaptic ACh concentrations. Superfusion experiments with rat striatal segments pre-incubated with [ 3 H]choline were performed using an ultra-mini superfusion vessel, which was developed to minimize superfusate retention within the vessel. Hemicholinium-3 (HC-3) at concentrations less than 1 μM, selectively inhibited the uptake of [ 3 H]choline by the high affinity-choline transporter 1 and had no effect on basal and electrically evoked [ 3 H]efflux in superfusion experiments. In contrast, HC-3 at higher concentrations, as well as tetraethylammonium (>10 μM), which inhibited the uptake of both [ 3 H]choline and [ 3 H]ACh, increased basal [ 3 H]overflow and potentiated electrically evoked [ 3 H]efflux. These effects of HC-3 and tetraethylammonium were also observed under conditions where tissue AChE was irreversibly inactivated by diisopropylfluorophosphate. Specifically, the potentiation of evoked [ 3 H]efflux was significantly higher in AChE-inactivated preparations and was attenuated by atropine. On the other hand, striatal segments pre-incubated with [ 3 H]ACh failed to increase [ 3 H]overflow in response to electrical stimulation. These results show that synaptic ACh concentrations are significantly regulated by the postsynaptic uptake of ACh, as well as by AChE hydrolysis and modulation of ACh release mediated through presynaptic muscarinic ACh receptors. In addition, these data suggest that the recycling of ACh-derived choline may be minor in cholinergic terminals. This study reveals a new mechanism of cholinergic transmission in the central nervous system. © 2017 International Society for Neurochemistry.

  5. Dietary soy modulates endothelium-dependent relaxation in aged male rats: Increased agonist-induced endothelium-derived hyperpolarising factor and basal nitric oxide activity

    PubMed Central

    Knock, Greg A.; Mahn, Katharina; Mann, Giovanni E.; Ward, Jeremy P.T.; Aaronson, Philip I.

    2018-01-01

    We examined the effects of dietary soy on the contributions of endothelium-derived hyperpolarising factor (EDHF), nitric oxide (NO), and oxidative stress to vascular tone in isolated aortic rings and small mesenteric and pulmonary arteries in vitro. Male Wistar rats were either continuously fed a soy-deficient diet (SD) or switched from a soy-deficient diet to a soy-rich one for 6 months (SW). Contractile responses were generally smaller in arteries from SW rats. In mesenteric arteries, this difference was blunted by L-NAME, but not by charybdotoxin and apamin. Preconstricted SW mesenteric arteries were more sensitive to acetylcholine (ACh) than SD ones. This difference was unaffected by L-NAME but was abolished by charybdotoxin and apamin. Exogenous superoxide dismutase (SOD) and catalase induced powerful relaxations in aortic rings, which were smaller in those from SW rats. In mesenteric and pulmonary arteries, however, they partially inhibited ACh-mediated relaxation, and enhanced PGF2α–mediated contraction, respectively. Our results suggest that feeding aging male rats a soy-rich diet results in improved agonist-mediated EDHF production and a generalized reduction in contractile force, which is partly due to elevated basal NO. Our data also suggest a prorelaxant role for endogenous H2O2 in small arteries, which is modulated by a soy diet. PMID:16895793

  6. Synthetic. cap alpha. subunit peptide 125-147 of human nicotinic acetylcholine receptor induces antibodies to native receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCormick, D.J.; Griesmann, G.E.; Huang, Z.

    1986-03-05

    A synthetic peptide corresponding to residues 125-147 of the Torpedo acetylcholine receptor (AChR) ..cap alpha.. subunit proved to be a major antigenic region of the AChR. Rats inoculated with 50 ..mu..g of peptide (T ..cap alpha.. 125-147) developed T cell immunity and antibodies to native AChR and signs of experimental autoimmune myasthenia gravis. They report the synthesis and preliminary testing of a disulfide-looped peptide comprising residues 125-147 of the human AChR ..cap alpha.. subunit. Peptide H ..cap alpha.. 125-147 differs from T ..cap alpha.. 125-147 at residues 139 (Glu for Gln) and 143 (Ser for Thr). In immunoprecipitation assays, antibodiesmore » to Torpedo AChR bound /sup 125/I-labelled H..cap alpha.. 125-147 antibody bound H..cap alpha.. 125-147, but monoclonal antibodies to an immunodominant region of native AChR bound neither H..cap alpha.. 125-147 nor T ..cap alpha.. 125-147. Rats immunized with H ..cap alpha.. 125-147 produced anti-mammalian muscle AChR antibodies that induced modulation of AChRs from cultured human myotubes. Thus, region 125-147 of the human AChR ..cap alpha.. subunit is extracellular in muscle, and is both antigenic and immunogenic. It remains to be determined whether or not autoantibodies to this region may in part cause the weakness or myasthenia gravis in man.« less

  7. EVP-6124, a novel and selective α7 nicotinic acetylcholine receptor partial agonist, improves memory performance by potentiating the acetylcholine response of α7 nicotinic acetylcholine receptors.

    PubMed

    Prickaerts, Jos; van Goethem, Nick P; Chesworth, Richard; Shapiro, Gideon; Boess, Frank G; Methfessel, Christoph; Reneerkens, Olga A H; Flood, Dorothy G; Hilt, Dana; Gawryl, Maria; Bertrand, Sonia; Bertrand, Daniel; König, Gerhard

    2012-02-01

    EVP-6124, (R)-7-chloro-N-quinuclidin-3-yl)benzo[b]thiophene-2-carboxamide, is a novel partial agonist of α7 neuronal nicotinic acetylcholine receptors (nAChRs) that was evaluated here in vitro and in vivo. In binding and functional experiments, EVP-6124 showed selectivity for α7 nAChRs and did not activate or inhibit heteromeric α4β2 nAChRs. EVP-6124 had good brain penetration and an adequate exposure time. EVP-6124 (0.3 mg/kg, p.o.) significantly restored memory function in scopolamine-treated rats (0.1 mg/kg, i.p.) in an object recognition task (ORT). Although donepezil at 0.1 mg/kg, p.o. or EVP-6124 at 0.03 mg/kg, p.o. did not improve memory in this task, co-administration of these sub-efficacious doses fully restored memory. In a natural forgetting test, an ORT with a 24 h retention time, EVP-6124 improved memory at 0.3 mg/kg, p.o. This improvement was blocked by the selective α7 nAChR antagonist methyllycaconitine (0.3 mg/kg, i.p. or 10 μg, i.c.v.). In co-application experiments of EVP-6124 with acetylcholine, sustained exposure to EVP-6124 in functional investigations in oocytes caused desensitization at concentrations greater than 3 nM, while lower concentrations (0.3-1 nM) caused an increase in the acetylcholine-evoked response. These actions were interpreted as representing a co-agonist activity of EVP-6124 with acetylcholine on α7 nAChRs. The concentrations of EVP-6124 that resulted in physiological potentiation were consistent with the free drug concentrations in brain that improved memory performance in the ORT. These data suggest that the selective partial agonist EVP-6124 improves memory performance by potentiating the acetylcholine response of α7 nAChRs and support new therapeutic strategies for the treatment of cognitive impairment. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Differential effects of lysophosphatidylcholine and ACh on muscarinic K(+),non-selective cation and Ca(2+) currents in guinea-pig atrial cells.

    PubMed

    Li, Libing; Matsuoka, Isao; Sakamoto, Kazuho; Kimura, Junko

    2016-06-08

    We compared the effects of lysophosphatidylcholine (LPC) and acetylcholine (ACh) on IK(ACh), ICa and a non-selective cation current (INSC) in guinea-pig atrial myocytes to clarify whether LPC and ACh activate similar Gi/o-coupled effector systems. IK(ACh), ICa and INSC were analyzed in single atrial myocytes by the whole cell patch-clamp. LPC induced INSC in a concentration-dependent manner in atrial cells. ACh activated IK(ACh), but failed to evoke INSC. LPC also activated IK(ACh) but with significantly less potency than ACh. The effects of both ligands on IK(ACh) were inhibited by intracellular loading of pre-activated PTX. This treatment also inhibited LPC-induced INSC, indicating that IK(ACh) and INSC induced by LPC are both mediated by Gi/o. LPC and ACh had similar potencies in inhibiting ICa, which was pre-augmented by forskolin, indicating that LPC and ACh activate similar amounts of α-subunits of Gi/o. The different effects of LPC and ACh on IK(ACh) and INSC may suggest that LPC and ACh activate Gi/o having different types of βγ subunits, and that LPC-induced INSC may be mediated by βγ subunits of Gi/o, which are less effective in inducing IK(ACh).

  9. Extracellular cyclic ADP-ribose potentiates ACh-induced contraction in bovine tracheal smooth muscle.

    PubMed

    Franco, L; Bruzzone, S; Song, P; Guida, L; Zocchi, E; Walseth, T F; Crimi, E; Usai, C; De Flora, A; Brusasco, V

    2001-01-01

    Cyclic ADP-ribose (cADPR), a universal calcium releaser, is generated from NAD(+) by an ADP-ribosyl cyclase and is degraded to ADP-ribose by a cADPR hydrolase. In mammals, both activities are expressed as ectoenzymes by the transmembrane glycoprotein CD38. CD38 was identified in both epithelial cells and smooth myocytes isolated from bovine trachea. Intact tracheal smooth myocytes (TSMs) responded to extracellular cADPR (100 microM) with an increase in intracellular calcium concentration ([Ca(2+)](i)) both at baseline and after acetylcholine (ACh) stimulation. The nonhydrolyzable analog 3-deaza-cADPR (10 nM) elicited the same effects as cADPR, whereas the cADPR antagonist 8-NH(2)-cADPR (10 microM) inhibited both basal and ACh-stimulated [Ca(2+)](i) levels. Extracellular cADPR or 3-deaza-cADPR caused a significant increase of ACh-induced contraction in tracheal smooth muscle strips, whereas 8-NH(2)-cADPR decreased it. Tracheal mucosa strips, by releasing NAD(+), enhanced [Ca(2+)](i) in isolated TSMs, and this increase was abrogated by either NAD(+)-ase or 8-NH(2)-cADPR. These data suggest the existence of a paracrine mechanism whereby mucosa-released extracellular NAD(+) plays a hormonelike function and cADPR behaves as second messenger regulating calcium-related contractility in TSMs.

  10. Deletion of muscarinic type 1 acetylcholine receptors alters splenic lymphocyte functions and splenic noradrenaline concentration.

    PubMed

    Hainke, Susanne; Wildmann, Johannes; Del Rey, Adriana

    2015-11-01

    The existence of interactions between the immune and the sympathetic nervous systems is well established. Noradrenaline can promote or inhibit the immune response, and conversely, the immune response itself can affect noradrenaline concentration in lymphoid organs, such as the spleen. It is also well known that acetylcholine released by pre-ganglionic neurons can modulate noradrenaline release by the postsynaptic neuron. The spleen does not receive cholinergic innervation, but it has been reported that lymphocytes themselves can produce acetylcholine, and express acetylcholine receptors and acetylcholinesterase. We found that the spleen of not overtly immunized mice in which muscarinic type 1 acetylcholine receptors have been knocked out (M1KO) has higher noradrenaline concentrations than that of the wildtype mice, without comparable alterations in the heart, in parallel to a decreased number of IgG-producing B cells. Splenic lymphocytes from M1KO mice displayed increased in vitro-induced cytotoxicity, and this was observed only when CD4(+) T cells were present. In contrast, heterozygous acetylcholinesterase (AChE+/-) mice, had no alterations in splenic noradrenaline concentration, but the in vitro proliferation of AChE+/- CD4(+) T cells was increased. It is theoretically conceivable that reciprocal effects between neuronally and non-neuronally derived acetylcholine and noradrenaline might contribute to the results reported. Our results emphasize the need to consider the balance between the effects of these mediators for the final immunoregulatory outcome. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Pancreatic acinar cells: ionic dependence of acetylcholine-induced membrane potential and resistance change.

    PubMed Central

    Nishiyama, A; Petersen, O H

    1975-01-01

    1. Intracellular recordings of membrane potential, input resistance and time constant have been made in vitro from the exocrine acinar cells of the mouse pancreas using glass micro-electrodes. The acinar cells were stimulated by acetylcholine (ACh). In some cases ACh was simply directly added to the tissue superfusion bath, in other experiments ACh was applied locally to pancreatic acini by micro-iontophoresis. 2. Current-voltage relations were investigated by injecting rectangular de- or hyperpolarizing current pulses through the recording micro-electrode. Within a relatively wide range (-20 to -70 mV) there was a linear relation between injected current and change in membrane potential. The slope of such linear curves corresponded to an input resistance of about 3-8 M omega. The membrane time constant was about 5-10 msec. 3. ACh depolarized the cell membrane and caused a marked reduction of input resistance and time constant. The minimum latency of the ACh-induced depolarization (microiontophoretic application) was 100-300 msec. Maximal depolarization was about 20 mV. The effect of this local ACh application was abolished by atropine (1-4 x 10-6 M). The blocking effect of atropine was fully reversible. 4. Stimulating with ACh during the passage of large depolarizing current pulses made it possible simultaneously to observe the effect of ACh at two different levels of resting potential (RP). At the spontaneous RP of about minus 40 mV ACh evoked a depolarization of usual magnitude (15-20 mV) while at the artificially displaced level of about -10 mV a small hyperpolarization (about 5 mV) was observed. It therefore appears that the reversal potential of the transmitter equilibrium potential is about -20 mV. 5. Replacement of the superfusion fluid C1 by sulphate or methylsulphate caused an initial short-lasting depolarization, thereafter the normal resting potential was reassumed... PMID:1142124

  12. Synthesis, biological evaluation, and computational studies of Tri- and tetracyclic nitrogen-bridgehead compounds as potent dual-acting AChE inhibitors and hH3 receptor antagonists.

    PubMed

    Darras, Fouad H; Pockes, Steffen; Huang, Guozheng; Wehle, Sarah; Strasser, Andrea; Wittmann, Hans-Joachim; Nimczick, Martin; Sotriffer, Christoph A; Decker, Michael

    2014-03-19

    Combination of AChE inhibiting and histamine H3 receptor antagonizing properties in a single molecule might show synergistic effects to improve cognitive deficits in Alzheimer's disease, since both pharmacological actions are able to enhance cholinergic neurotransmission in the cortex. However, whereas AChE inhibitors prevent hydrolysis of acetylcholine also peripherally, histamine H3 antagonists will raise acetylcholine levels mostly in the brain due to predominant occurrence of the receptor in the central nervous system. In this work, we designed and synthesized two novel classes of tri- and tetracyclic nitrogen-bridgehead compounds acting as dual AChE inhibitors and histamine H3 antagonists by combining the nitrogen-bridgehead moiety of novel AChE inhibitors with a second N-basic fragment based on the piperidinylpropoxy pharmacophore with different spacer lengths. Intensive structure-activity relationships (SARs) with regard to both biological targets led to compound 41 which showed balanced affinities as hAChE inhibitor with IC50 = 33.9 nM, and hH3R antagonism with Ki = 76.2 nM with greater than 200-fold selectivity over the other histamine receptor subtypes. Molecular docking studies were performed to explain the potent AChE inhibition of the target compounds and molecular dynamics studies to explain high affinity at the hH3R.

  13. α7 nAChR mediated Fas demethylation contributes to prenatal nicotine exposure-induced programmed thymocyte apoptosis in mice.

    PubMed

    Liu, Han-Xiao; Liu, Sha; Qu, Wen; Yan, Hui-Yi; Wen, Xiao; Chen, Ting; Hou, Li-Fang; Ping, Jie

    2017-11-07

    This study aimed to investigate the effects of prenatal nicotine exposure (PNE) on thymocyte apoptosis and postnatal immune impairments in vivo and further explore the epigenetic mechanisms of the pro-apoptotic effect of nicotine in vitro . The results showed that PNE caused immune impairments in offspring on postnatal day 49, manifested as increased IL-4 production and an increased IgG1/IgG2a ratio in serum. Enhanced apoptosis of total and CD4+SP thymocytes was observed both in fetus and in offspring. Further, by exposing thymocytes to 0-100 μM of nicotine in vitro for 48 h, we found that nicotine increased α7 nicotinic acetylcholine receptor (nAChR) expression, activated the Fas apoptotic pathway, and promoted thymocyte apoptosis in concentration-dependent manners. In addition, nicotine could induce Tet methylcytosine dioxygenase (TET) 2 expression and Fas promoter demethylation, which can be abolished by TET2 siRNA transfection. Moreover, the α7 nAChR specific antagonist α-bungarotoxin can abrogate nicotine-induced TET2 increase, and the following Fas demethylation and Fas-mediated apoptosis. In conclusion, our findings showed, for the first time, that α7 nAChR activation could induce TET2-mediated Fas demethylation in thymocytes and results in the upregulation of Fas apoptotic pathway, which provide evidence for elucidating the PNE-induced programmed thymocyte apoptosis.

  14. Polyester with Pendent Acetylcholine-Mimicking Functionalities Promotes Neurite Growth.

    PubMed

    Wang, Shaofei; Jeffries, Eric; Gao, Jin; Sun, Lijie; You, Zhengwei; Wang, Yadong

    2016-04-20

    Successful regeneration of nerves can benefit from biomaterials that provide a supportive biochemical and mechanical environment while also degrading with controlled inflammation and minimal scar formation. Herein, we report a neuroactive polymer functionalized by covalent attachment of the neurotransmitter acetylcholine (Ach). The polymer was readily synthesized in two steps from poly(sebacoyl diglyceride) (PSeD), which previously demonstrated biocompatibility and biodegradation in vivo. Distinct from prior acetylcholine-biomimetic polymers, PSeD-Ach contains both quaternary ammonium and free acetyl moieties, closely resembling native acetylcholine structure. The polymer structure was confirmed via (1)H nuclear magnetic resonance and Fourier-transform infrared spectroscopy. Hydrophilicity, charge, and thermal properties of PSeD-Ach were determined by tensiometer, zetasizer, differential scanning calorimetry, and thermal gravimetric analysis, respectively. PC12 cells exhibited the greatest proliferation and neurite outgrowth on PSeD-Ach and laminin substrates, with no significant difference between these groups. PSeD-Ach yielded much longer neurite outgrowth than the control polymer containing ammonium but no the acetyl group, confirming the importance of the entire acetylcholine-like moiety. Furthermore, PSeD-Ach supports adhesion of primary rat dorsal root ganglions and subsequent neurite sprouting and extension. The sprouting rate is comparable to the best conditions from previous report. Our findings are significant in that they were obtained with acetylcholine-like functionalities in 100% repeating units, a condition shown to yield significant toxicity in prior publications. Moreover, PSeD-Ach exhibited favorable mechanical and degradation properties for nerve tissue engineering application. Humidified PSeD-Ach had an elastic modulus of 76.9 kPa, close to native neural tissue, and could well recover from cyclic dynamic compression. PSeD-Ach showed a gradual in

  15. Vasoactive intestinal polypeptide provokes acetylcholine release from the myenteric plexus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kusunoki, M.; Tsai, L.H.; Taniyama, K.

    1986-07-01

    Effects of vasoactive intestinal polypeptide (VIP) on the release of acetylcholine (ACh) from longitudinal muscle strips with myenteric plexus (LM) preparations were examined in the guinea pig small intestine. VIP (10 to 10 W M) induced a concentration-dependent contraction of LM preparation. The VIP-induced contractions seem to be related to three components, the scopolamine-sensitive, the scopolamine-insensitive, the tetrodotoxin-sensitive, and the tetrodotoxin-insensitive contractions. VIP (10 to 10 W M) induced a concentration-dependent increase in the release of (TH)ACh from LM preparations preloaded with (TH)choline. The VIP-evoked (TH)ACh release was inhibited by removal of CaS from the perfusion medium and by treatmentmore » with tetrodotoxin but not by scopolamine and hexamethonium. The spontaneous and VIP-evoked (TH)ACh release was not affected by phentolamine, propranolol, methysergide, diphenhydramine, cimetidine, bicuculline, or (D-ProS, D-Trp/sup 7,9/)substance P. The result demonstrates that VIP induces contractions of longitudinal smooth muscle directly and indirectly by the stimulation of both cholinergic neurons and noncholinergic excitatory neurons.« less

  16. Cholinergic microvillous cells in the mouse main olfactory epithelium and effect of acetylcholine on olfactory sensory neurons and supporting cells

    PubMed Central

    Ogura, Tatsuya; Szebenyi, Steven A.; Krosnowski, Kurt; Sathyanesan, Aaron; Jackson, Jacqueline

    2011-01-01

    The mammalian olfactory epithelium is made up of ciliated olfactory sensory neurons (OSNs), supporting cells, basal cells, and microvillous cells. Previously, we reported that a population of nonneuronal microvillous cells expresses transient receptor potential channel M5 (TRPM5). Using transgenic mice and immunocytochemical labeling, we identify that these cells are cholinergic, expressing the signature markers of choline acetyltransferase (ChAT) and the vesicular acetylcholine transporter. This result suggests that acetylcholine (ACh) can be synthesized and released locally to modulate activities of neighboring supporting cells and OSNs. In Ca2+ imaging experiments, ACh induced increases in intracellular Ca2+ levels in 78% of isolated supporting cells tested in a concentration-dependent manner. Atropine, a muscarinic ACh receptor (mAChR) antagonist suppressed the ACh responses. In contrast, ACh did not induce or potentiate Ca2+ increases in OSNs. Instead ACh suppressed the Ca2+ increases induced by the adenylyl cyclase activator forskolin in some OSNs. Supporting these results, we found differential expression of mAChR subtypes in supporting cells and OSNs using subtype-specific antibodies against M1 through M5 mAChRs. Furthermore, we found that various chemicals, bacterial lysate, and cold saline induced Ca2+ increases in TRPM5/ChAT-expressing microvillous cells. Taken together, our data suggest that TRPM5/ChAT-expressing microvillous cells react to certain chemical or thermal stimuli and release ACh to modulate activities of neighboring supporting cells and OSNs via mAChRs. Our studies reveal an intrinsic and potentially potent mechanism linking external stimulation to cholinergic modulation of activities in the olfactory epithelium. PMID:21676931

  17. Acetylcholine causes rooting in leaf explants of in vitro raised tomato (Lycopersicon esculentum Miller) seedlings.

    PubMed

    Bamel, Kiran; Gupta, Shrish Chandra; Gupta, Rajendra

    2007-05-30

    The animal neurotransmitter acetylcholine (ACh) induces rooting and promotes secondary root formation in leaf explants of tomato (Lycopersicon esculentum Miller var. Pusa Ruby), cultured in vitro on Murashige and Skoog's medium. The roots originate from the midrib of leaf explants and resemble taproot. ACh at 10(-5) M was found to be the optimum over a wide range of effective concentrations between 10(-7) and 10(-3) M. The breakdown products, choline and acetate were ineffective even at 10(-3) M concentration. ACh appears to have a natural role in tomato rhizogenesis because exogenous application of neostigmine, an inhibitor of ACh hydrolysis, could mimic the effect of ACh. Neostigmine, if applied in combination with ACh, potentiated the ACh effect.

  18. Glial cell-derived neurotrophic factor alleviates sepsis-induced neuromuscular dysfunction by decreasing the expression of γ- and α7-nicotinic acetylcholine receptors in an experimental rat model of neuromyopathy.

    PubMed

    Wang, Xin; Min, Su; Xie, Fei; Yang, Jun; Li, Liang; Chen, Jingyuan

    2018-02-05

    Sepsis-induced neuromuscular dysfunction results from up-regulation of the expression of γ- and α7-nicotinic acetylcholine receptors (nAChR). Although glial cell derived neurotrophic factor (GDNF) has been implicated in repairing and supporting neurons, little is known about the effects of GDNF on demyelination of nerves in sepsis. In this study, we tested the hypothesis that GDNF could alleviate sepsis-induced neuromuscular dysfunction by decreasing the expression of γ- and α7-nAChR in an experimental rat model of neuromyopathy. Rats were randomly divided into a sham group and a sepsis group. Levels of inflammatory factors, muscle function, and nicotinic acetylcholine receptors were tested in rats after cecal ligation and puncture (CLP). At 24 h after CLP, GDNF was injected around the sciatic nerve of sepsis rats, cytokines were detected by enzyme-linked immunosorbent assay (ELISA), and immunofluorescence staining was used to detect the expression of nAChRs. GDNF and its downstream effector (Erk1/2 and GFR-α), neuregulin-1 (NRG-1) and γ- and α7-nAChR were measured using Western blot analysis. The expression of GDNF reached a minimum at 24 h after CLP. Compared with the sham group, the release of cytokines and the expression of γ- and α7-nAChR were significantly increased in the sepsis group. The administration of GDNF significantly alleviated sepsis-induced neuromuscular dysfunction, as well as reducing the expression of γ- and α7-nAChR. In addition, the expression of Erk1/2, GFR-α, NRG-1 were significantly increased after GDNF treatment. GDNF administration may improve patient outcomes by reducing the demyelination of nerves and the expression of γ- and α7-nAChR. Copyright © 2018. Published by Elsevier Inc.

  19. Blocking α4β2 and α7 nicotinic acetylcholine receptors inhibits the reinstatement of morphine-induced CPP by drug priming in mice.

    PubMed

    Feng, Bin; Xing, Jiang-hao; Jia, Dong; Liu, Shui-bing; Guo, Hong-ju; Li, Xiao-qiang; He, Xiao-sheng; Zhao, Ming-gao

    2011-06-20

    Investigating the interaction between nicotinic and opioid receptors is of great interest for both basic mechanistic and clinical reasons. Morphine and nicotine, two common drugs of abuse, share several behavioral and rewarding properties. However, little is known about the subtypes of nicotinic acetylcholine receptors (nAChR) in the reinstatement of morphine-induced conditioned place preference (CPP). In this study, we found that a non-specific nAChR agonist, nicotine (0.5mg/kg), had no effects on the reinstatement of morphine-induced CPP. However, we found that pretreatment with specific α(4)β(2) and α(7) nAChR subtype antagonists, dihydroxy-β-erithroidine (DHβE, 5mg/kg) and methyllycaconitine (MLA, 4 mg/kg), 20 min prior to administration of morphine, inhibited the reinstatement of morphine-induced CPP by drug priming in mice. Furthermore, depression of the reinstatement of morphine-induced CPP by a single DHβE or MLA treatment lasted at least three days later when the reinstatement was induced by morphine priming. The data suggest that specific nAChR subtypes, i.e., α(4)β(2) and α(7), may contribute to the reinstatement of morphine-induced CPP by drug priming in mice. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Thujone inhibits the function of α7-nicotinic acetylcholine receptors and impairs nicotine-induced memory enhancement in one-trial passive avoidance paradigm.

    PubMed

    Sultan, Ahmed; Yang, Keun-Hang Susan; Isaev, Dmitro; Nebrisi, Eslam El; Syed, Nurulain; Khan, Nadia; Howarth, Christopher F; Sadek, Bassem; Oz, Murat

    2017-06-01

    Effects of thujone, a major ingredient of absinthe, wormwood oil and some herbal medicines, were tested on the function of α 7 subunit of the human nicotinic acetylcholine (α 7 nACh) receptor expressed in Xenopus oocytes using the two-electrode voltage-clamp technique. Thujone reversibly inhibited ACh (100μM)-induced currents with an IC 50 value of 24.7μM. The effect of thujone was not dependent on the membrane potential and did not involve Ca 2+ -dependent Cl - channels expressed endogenously in oocytes. Inhibition by thujone was not reversed by increasing ACh concentrations. Moreover, specific binding of [ 125 I] α-bungarotoxin was not altered by thujone. Further experiments in SH-EP1 cells expressing human α 7 nACh receptor indicated that thujone suppressed choline induced Ca 2+ transients in a concentration-dependent manner. In rat hippocampal CA3-dentate gyrus synapses, nicotine-induced enhancement of long-term potentiation was also inhibited by thujone. Furthermore, the results observed in in-vivo one-trial passive avoidance paradigm show that thujone (1.25mg/kg, i.p.) significantly impaired nicotine-induced enhancement of learning and memory in Wistar rats. Collectively, our results indicate that thujone inhibits the function of the α7-nACh receptor and impairs cellular and behavioral correlates of cholinergic modulation of learning and memory. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Alpha5 nicotinic acetylcholine receptor mediates nicotine-induced HIF-1α and VEGF expression in non-small cell lung cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Xiaoli; Jia, Yanfei; Zu, Shanshan

    By binding to nicotinic acetylcholine receptors (nAChRs), nicotine induces the proliferation and apoptosis of non-small cell lung cancer (NSCLC). Previous studies have indicated that α5-nAChR is highly associated with lung cancer risk and nicotine dependence. However, the mechanisms through which α5-nAChRs may influence lung carcinogenesis are far from clear. In the present study, we investigated the roles of α5-nAChR in the nicotine-induced expression of hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF). Immunohistochemistry was used to detect the expression of α5-nAChR and HIF-1α in 60 specimens of lung cancer and para-carcinoma tissue. The correlations between the expression levels ofmore » α5-nAChR and HIF-1α and other clinicopathological data were analyzed. In a cell line that highly expressed α5-nAChR, the loss of α5-nAChR function by siRNA was used to study whether α5-nAChR is involved in the nicotine-induced expression of HIF-1α and VEGF through the activation of the ERK1/2 and PI3K/Akt signaling pathways. Cell growth was detected using the cell counting kit-8 (CCK-8). α5-nAChR (78.3%) and HIF-1α (88.3%) were both overexpressed in NSCLC, and their expression levels were found to be correlated with each other (P < 0.05). In the A549 cell line, α5-nAChR and HIF-1α were found to be expressed under normal conditions, and their expression levels were significantly increased in response to nicotine treatment. The silencing of α5-nAChR significantly inhibited the nicotine-induced cell proliferation compared with the control group and attenuated the nicotine-induced upregulation of HIF-1α and VEGF, and these effects required the cooperation of the ERK1/2 and PI3K/Akt signaling pathways. These results show that the α5-nAChR/HIF-1α/VEGF axis is involved in nicotine-induced tumor cell proliferation, which suggests that α5-nAChR may serve as a potential anticancer target in nicotine-associated lung cancer

  2. Characterization of Ganglionic Acetylcholine Receptor Autoantibodies

    PubMed Central

    Vernino, Steven; Lindstrom, Jon; Hopkins, Steve; Wang, Zhengbei; Low, Phillip A.

    2008-01-01

    In myasthenia gravis (MG), autoantibodies bind to the α1 subunit and other subunits of the muscle nicotinic acetylcholine receptor (AChR). Autoimmune autonomic ganglionopathy (AAG) is an antibody-mediated neurological disorder caused by antibodies against neuronal AChRs in autonomic ganglia. Subunits of muscle and neuronal AChR are homologous. We examined the specificity of AChR antibodies in patients with MG and AAG. Ganglionic AChR autoantibodies found in AAG patients are specific for AChRs containing the α3 subunit. Muscle and ganglionic AChR antibody specificities are distinct. Antibody crossreactivity between AChRs with different α subunits is uncommon but can occur. PMID:18485491

  3. Alternative splicing in nicotinic acetylcholine receptor subunits from Locusta migratoria and its influence on acetylcholine potencies.

    PubMed

    Zhang, Yixi; Liu, Yang; Bao, Haibo; Sun, Huahua; Liu, Zewen

    2017-01-18

    Due to the great abundance within insect central nervous system (CNS), nicotinic acetylcholine receptors (nAChRs) play key roles in insect CNS, which makes it to be the targets of several classes of insecticides, such as neonicotinoids. Insect nAChRs are pentameric complexes consisting of five subunits, and a dozen subunits in one insect species can theoretically comprise diverse nAChRs. The alternative splicing in insect nAChR subunits may increase the diversity of insect nAChRs. In the oriental migratory locust (Locusta migratoria manilensis Meyen), a model insect species with agricultural importance, the alternative splicing was found in six α subunits among nine α and two β subunits, such as missing conserved residues in Loop D from Locα1, Locα6 and Locα9, a 34-residue insertion in Locα8 cytoplasmic loop, and truncated transcripts for Locα4, Locα7 and Locα9. Hybrid nAChRs were successfully constructed in Xenopus oocytes through co-expression with rat β2 and one α subunit from L. migratoria, which included Locα1, Locα2, Locα3, Locα4, Locα5, Locα8 and Locα9. Influences of alternative splicing in Locα1, Locα8 and Locα9 on acetylcholine potency were tested on hybrid nAChRs. The alternative splicing in Locα1 and Locα9 could increase acetylcholine sensitivities on recombinant receptors, while the splicing in Locα8 showed significant influences on the current amplitudes of oocytes. The results revealed that the alternative splicing at or close to the ligand-binding sites, as well as at cytoplasmic regions away from the ligand-binding sites, in insect nAChR subunits would change the agonist potencies on the receptors, which consequently increased nAChR diversity in functional and pharmacological properties. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Opiate-induced constipation related to activation of small intestine opioid μ2-receptors.

    PubMed

    Chen, Wency; Chung, Hsien-Hui; Cheng, Juei-Tang

    2012-03-28

    To investigate the role of opioid μ-receptor subtype in opiate-induced constipation (OIC). The effect of loperamide on intestinal transit was investigated in mice. Ileum strips were isolated from 12-wk-old male BALB/c mice for identification of isometric tension. The ileum strips were precontracted with 1 μmol/L acetylcholine (ACh). Then, decrease in muscle tone (relaxation) was characterized after cumulative administration of 0.1-10 μmol/L loperamide into the organ bath, for a concentration-dependent study. Specific blockers or antagonists were used for pretreatment to compare the changes in loperamide-induced relaxation. In addition to the delay in intestinal transit, loperamide produced a marked relaxation in isolated ileum precontracted with ACh, in a dose-dependent manner. This relaxation was abolished by cyprodime, a selective opioid μ-receptor antagonist, but not modified by naloxonazine at a dose sufficient to block opioid μ-1 receptors. Also, treatment with opioid μ-1 receptor agonist failed to modify the muscle tone. Moreover, the relaxation by loperamide was attenuated by glibenclamide at a dose sufficient to block ATP-sensitive K+ (K(ATP)) channels, and by protein kinase A (PKA) inhibitor, but was enhanced by an inhibitor of phosphodiesterase for cyclic adenosine monophosphate (cAMP). Loperamide induces intestinal relaxation by activation of opioid μ-2 receptors via the cAMP-PKA pathway to open K(ATP) channels, relates to OIC.

  5. Mechanisms of the palmitoylcarnitine-induced response in vascular endothelial cells.

    PubMed

    Taki, H; Muraki, K; Imaizumi, Y; Watanabe, M

    1999-09-01

    The mechanisms of Ca2+ mobilization induced by palmitoylcarnitine (Palcar) in rabbit aortic endothelial cells (ETCs) were examined using electrophysiological techniques. The results obtained were compared with those induced by acetylcholine (ACh). When a rabbit aortic muscle preparation with an intact endothelium was treated with 10 microM Palcar, the ACh-induced relaxation was markedly attenuated, whereas endothelium-independent relaxation caused by sodium nitroprusside was not affected. Under perforated-patch whole-cell-clamp conditions, the application of Palcar over the concentration range 0.3 and 10 microM elicited a slowly activating outward current (IPalcar-out), whereas ACh induced a rapidly activating outward current (IACh). A potassium channel blocker, 4-aminopyridine, significantly inhibited both IPalcar-out and IACh. Removal of external Ca2+ almost abolished IPalcar-out. Under the same conditions, however, IACh remained transient. Addition of cation channel blockers SK&F96365 and La3+ inhibited IPalcar-out more effectively than IACh. Application of staurosporine, an inhibitor of protein kinase C, affected neither IACh nor IPalcar-out. In contrast, treatment of ETCs with pertussis toxin (PTX) reduced IACh and almost abolished IPalcar-out. These findings demonstrate that, in ETCs, Palcar induces Ca2+ influx via the activation of PTX-sensitive GTP-binding protein, leading to the activation of Ca(2+)-dependent K+ current and hyperpolarization of the cell.

  6. [Effect of acetylcholine and acetylcholinesterase on the activity of contractile vacuole of Amoeba proteus].

    PubMed

    Bagrov, Ia Iu; Manusova, N B

    2011-01-01

    Acetylcholine (ACh, 1 microM) stimulates activity of the contractile vacuole of proteus. The effect of ACh is not mimicked by its analogs which are not hydrolyzed by acetylcholinesterase (AChE), i. e., carbacholine and 5-methylfurmethide. The effect of ACh is not sensitive to the blocking action of M-cholinolytics, atropine and mytolone, but is suppressed by N-cholinolytic, tubocurarine. The inhibitors of AChE, eserine (0.01 microM) and armine (0.1 microM), suppress the effect of ACh on amoeba contractile vacuole. ACh does not affect activation of contractile vacuole induced by arginine-vasopressin (1 microM), but it blocks such effect of opiate receptors agonist, dynorphin A1-13 (0.01 microM). This effect of ACh is also suppressed by the inhibitors of AChE. These results suggest that, in the above-described effects of ACh, AChE acts not as an antagonist, but rather as a synergist.

  7. Dopamine D3 receptor antagonism contributes to blonanserin-induced cortical dopamine and acetylcholine efflux and cognitive improvement.

    PubMed

    Huang, Mei; Kwon, Sunoh; Oyamada, Yoshihiro; Rajagopal, Lakshmi; Miyauchi, Masanori; Meltzer, Herbert Y

    2015-11-01

    Blonanserin is a novel atypical antipsychotic drug (APD), which, unlike most atypical APDs, has a slightly higher affinity for dopamine (DA) D2 than serotonin (5-HT)2A receptors, and is an antagonist at both, as well as at D3 receptors. The effects of atypical APDs to enhance rodent cortical, hippocampal, limbic, and dorsal striatal (dSTR) DA and acetylcholine (ACh) release, contribute to their ability to improve novel object recognition (NOR) in rodents treated with sub-chronic (sc) phencyclidine (PCP) and cognitive impairment associated with schizophrenia (CIAS). Here we determined the ability of blonanserin, the D3 antagonist NGB 2904, and the typical APD, haloperidol, a D2 antagonist, to enhance neurotransmitter efflux in the medial prefrontal cortex (mPFC) and dSTR of mice, and to ameliorate the scPCP-induced deficit in NOR in rats. Blonanserin, 10mg/kg, i.p., increased DA, norepinephrine (NE), and ACh efflux in mPFC and dSTR. NGB 2904, 3mg/kg, increased DA and ACh, but not NE, efflux in mPFC, and DA, but not ACh, efflux in dSTR. Haloperidol increased DA and NE efflux in dSTR only. The selective D3 agonist PD 128907 partially blocked the blonanserin-induced cortical ACh, DA, NE and striatal DA efflux. NGB 2904, 3mg/kg, like blonanserin, 1mg/kg, and the combination of sub-effective doses of NGB 2904 and blonanserin (both 0.3mg/kg), ameliorated the scPCP-induced NOR deficit in rats. These results suggest that D3 receptor blockade may contribute to the ability of blonanserin to increase cortical DA and ACh efflux, as well as to restore NOR and improve CIAS. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Steroids induce acetylcholine receptors on cultured human muscle: Implications for myasthenia gravis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaplan, I.; Blakely, B.T.; Pavlath, G.K.

    1990-10-01

    Antibodies to the acetylcholine receptor (AChR), which are diagnostic of the human autoimmune disease myasthenia gravis, block AChR function and increase the rate of AChR degradation leading to impaired neuromuscular transmission. Steroids are frequently used to alleviate symptoms of muscle fatigue and weakness in patients with myasthenia gravis because of their well-documented immunosuppressive effects. The authors show here that the steroid dexamethasone significantly increases total surface AChRs on cultured human muscle exposed to myasthenia gravis sera. The results suggest that the clinical improvement observed in myasthenic patients treated with steroids is due not only to an effect on the immunemore » system but also a direct effect on muscle. They propose that the identification and development of pharmacologic agents that augment receptors and other proteins that are reduced by human genetic or autoimmune disease will have broad therapeutic applications.« less

  9. Intracoronary Acetylcholine Provocation Testing for Assessment of Coronary Vasomotor Disorders.

    PubMed

    Ong, Peter; Athanasiadis, Anastasios; Sechtem, Udo

    2016-08-18

    Intracoronary acetylcholine provocation testing (ACH-test) is an established method for assessment of epicardial coronary artery spasm in the catheterization laboratory which was introduced more than 30 years ago. Due to the short half-life of acetylcholine it can only be applied directly into the coronary arteries. Several studies have demonstrated the safety and clinical usefulness of this test. However, acetylcholine testing is only rarely applied in the U.S. or Europe. Nevertheless, it has been shown that 62% of Caucasian patients with stable angina and unobstructed coronary arteries on coronary angiography suffer from coronary vasomotor disorders that can be diagnosed with acetylcholine testing. In recent years it has been appreciated that the ACH-test not only assesses the presence of epicardial spasm but that it can also be useful for the detection of coronary microvascular spam. In such cases no epicardial spasm is seen after injection of acetylcholine but ischemic ECG shifts are present together with a reproduction of the patient's symptoms during the test. This article describes the experience with the ACH-test and its implementation in daily clinical routine.

  10. Task- and Treatment Length–Dependent Effects of Vortioxetine on Scopolamine-Induced Cognitive Dysfunction and Hippocampal Extracellular Acetylcholine in Rats

    PubMed Central

    Pehrson, Alan L.; Hillhouse, Todd M.; Haddjeri, Nasser; Rovera, Renaud; Porter, Joseph H.; Mørk, Arne; Smagin, Gennady; Song, Dekun; Budac, David; Cajina, Manuel

    2016-01-01

    Major depressive disorder (MDD) is a common psychiatric disorder that often features impairments in cognitive function, and these cognitive symptoms can be important determinants of functional ability. Vortioxetine is a multimodal antidepressant that may improve some aspects of cognitive function in patients with MDD, including attention, processing speed, executive function, and memory. However, the cause of these effects is unclear, and there are several competing theories on the underlying mechanism, notably including regionally-selective downstream enhancement of glutamate neurotransmission and increased acetylcholine (ACh) neurotransmission. The current work sought to evaluate the ACh hypothesis by examining vortioxetine’s ability to reverse scopolamine-induced impairments in rodent tests of memory and attention. Additionally, vortioxetine’s effects on hippocampal extracellular ACh levels were examined alongside studies of vortioxetine’s pharmacokinetic profile. We found that acute vortioxetine reversed scopolamine-induced impairments in social and object recognition memory, but did not alter scopolamine-induced impairments in attention. Acute vortioxetine also induced a modest and short-lived increase in hippocampal ACh levels. However, this short-term effect is at variance with vortioxetine’s moderately long brain half life (5.1 hours). Interestingly, subchronic vortioxetine treatment failed to reverse scopolamine-induced social recognition memory deficits and had no effects on basal hippocampal ACh levels. These data suggest that vortioxetine has some effects on memory that could be mediated through cholinergic neurotransmission, however these effects are modest and only seen under acute dosing conditions. These limitations may argue against cholinergic mechanisms being the primary mediator of vortioxetine′s cognitive effects, which are observed under chronic dosing conditions in patients with MDD. PMID:27402279

  11. Microinjection of acetylcholine into cerebellar fastigial nucleus induces blood depressor response in anesthetized rats.

    PubMed

    Zhang, Changzheng; Luo, Wen; Zhou, Peiling; Sun, Tingzhe

    2016-08-26

    It is well known that the cerebellar fastigial nucleus (FN) is involved in cardiovascular modulation, and has direct evidence of cholinergic activity; however, whether and how acetylcholine (ACh) in the FN modulates blood pressure has not been investigated. In this study, we analyzed mean arterial pressure, maximal change in mean arterial pressure, and the reaction time of blood pressure changes after microinjection of cholinergic reagents into the FN in anesthetized rats. The results showed that ACh evoked a concentration-dependent (10, 30 and 100mM) effect on blood pressure down-regulation. The muscarinic ACh (mACh) receptor antagonist atropine, but not the nicotinic ACh (nACh) receptor antagonist mecamylamine, blocked the ACh-mediated depressor response. The mACh receptor agonist oxotremorine M, rather than nACh receptor agonist nicotine, mimicked the ACh-mediated blood pressure decrease in a dose-dependent manner (10, 30 and 100mM). These results indicate that cholinergic input in the cerebellar FN exerts a depressor effect on systemic blood pressure regulation, and such effects are substantially contributed by mACh rather than nACh receptors, although the precise mechanism concerning the role of mACh receptor in FN-mediated blood pressure modulation remains to be elucidated. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Secreted Isoform of Human Lynx1 (SLURP-2): Spatial Structure and Pharmacology of Interactions with Different Types of Acetylcholine Receptors

    NASA Astrophysics Data System (ADS)

    Lyukmanova, E. N.; Shulepko, M. A.; Shenkarev, Z. O.; Bychkov, M. L.; Paramonov, A. S.; Chugunov, A. O.; Kulbatskii, D. S.; Arvaniti, M.; Dolejsi, Eva; Schaer, T.; Arseniev, A. S.; Efremov, R. G.; Thomsen, M. S.; Dolezal, V.; Bertrand, D.; Dolgikh, D. A.; Kirpichnikov, M. P.

    2016-08-01

    Human-secreted Ly-6/uPAR-related protein-2 (SLURP-2) regulates the growth and differentiation of epithelial cells. Previously, the auto/paracrine activity of SLURP-2 was considered to be mediated via its interaction with the α3β2 subtype of the nicotinic acetylcholine receptors (nAChRs). Here, we describe the structure and pharmacology of a recombinant analogue of SLURP-2. Nuclear magnetic resonance spectroscopy revealed a ‘three-finger’ fold of SLURP-2 with a conserved β-structural core and three protruding loops. Affinity purification using cortical extracts revealed that SLURP-2 could interact with the α3, α4, α5, α7, β2, and β4 nAChR subunits, revealing its broader pharmacological profile. SLURP-2 inhibits acetylcholine-evoked currents at α4β2 and α3β2-nAChRs (IC50 ~0.17 and >3 μM, respectively) expressed in Xenopus oocytes. In contrast, at α7-nAChRs, SLURP-2 significantly enhances acetylcholine-evoked currents at concentrations <1 μM but induces inhibition at higher concentrations. SLURP-2 allosterically interacts with human M1 and M3 muscarinic acetylcholine receptors (mAChRs) that are overexpressed in CHO cells. SLURP-2 was found to promote the proliferation of human oral keratinocytes via interactions with α3β2-nAChRs, while it inhibited cell growth via α7-nAChRs. SLURP-2/mAChRs interactions are also probably involved in the control of keratinocyte growth. Computer modeling revealed possible SLURP-2 binding to the ‘classical’ orthosteric agonist/antagonist binding sites at α7 and α3β2-nAChRs.

  13. Nicotine and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone induce cyclooxygenase-2 activity in human gastric cancer cells: Involvement of nicotinic acetylcholine receptor (nAChR) and {beta}-adrenergic receptor signaling pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Vivian Yvonne; Jin, H.C.; Ng, Enders K.O.

    Induction of cyclooxygenase-2 (COX-2) associates with cigarette smoke exposure in many malignancies. Nicotine and its derivative, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), are the two important components in cigarette smoke that contributes to cancer development. However, the molecular mechanism(s) by which nicotine or NNK promotes gastric carcinogenesis remains largely unknown. We found that nicotine and NNK significantly enhanced cell proliferation in AGS cells that expressed both alpha7 nicotinic acetylcholine receptor ({alpha}7 nAChR) and {beta}-adrenergic receptors. Treatment of cells with {alpha}-bungarotoxin ({alpha}-BTX, {alpha}7nAChR antagonist) or propranolol ({beta}-adrenergic receptor antagonist) blocked NNK-induced COX-2/PGE{sub 2} and cell proliferation, while nicotine-mediated cell growth and COX-2/PGE{sub 2} induction canmore » only be suppressed by propranolol, but not {alpha}-BTX. Moreover, in contrast to the dependence of growth promoting effect of nicotine on Erk activation, inhibitor of p38 mitogen-activated protein kinase (MAPK) repressed NNK-induced COX-2 upregulation and resulted in suppression of cell growth. In addition, nicotine and NNK mediated COX-2 induction via different receptors to modulate several G1/S transition regulatory proteins and promote gastric cancer cell growth. Selective COX-2 inhibitor (SC-236) caused G1 arrest and abrogated nicotine/NNK-induced cell proliferation. Aberrant expression of cyclin D1 and other G1 regulatory proteins are reversed by blockade of COX-2. These results pointed to the importance of adrenergic and nicotinic receptors in gastric tumor growth through MAPK/COX-2 activation, which may perhaps provide a chemoprevention strategy for cigarette smoke-related gastric carcinogenesis.« less

  14. α7 Nicotinic Acetylcholine Receptor (α7nAChR) Expression in Bone Marrow–Derived Non–T Cells Is Required for the Inflammatory Reflex

    PubMed Central

    Olofsson, Peder S; Katz, David A; Rosas-Ballina, Mauricio; Levine, Yaakov A; Ochani, Mahendar; Valdés-Ferrer, Sergio I; Pavlov, Valentin A; Tracey, Kevin J; Chavan, Sangeeta S

    2012-01-01

    The immune response to infection or injury coordinates host defense and tissue repair, but also has the capacity to damage host tissues. Recent advances in understanding protective mechanisms have found neural circuits that suppress release of damaging cytokines. Stimulation of the vagus nerve protects from excessive cytokine production and ameliorates experimental inflammatory disease. This mechanism, the inflammatory reflex, requires the α7 nicotinic acetylcholine receptor (α7nAChR), a ligand-gated ion channel expressed on macrophages, lymphocytes, neurons and other cells. To investigate cell-specific function of α7nAChR in the inflammatory reflex, we created chimeric mice by cross-transferring bone marrow between wild-type (WT) and α7nAChR-deficient mice. Deficiency of α7nAChR in bone marrow–derived cells significantly impaired vagus nerve–mediated regulation of tumor necrosis factor (TNF), whereas α7nAChR deficiency in neurons and other cells had no significant effect. In agreement with recent work, the inflammatory reflex was not functional in nude mice, because functional T cells are required for the integrity of the pathway. To investigate the role of T-cell α7nAChR, we adoptively transferred α7nAChR-deficient or WT T cells to nude mice. Transfer of WT and α7nAChR-deficient T cells restored function, indicating that α7nAChR expression on T cells is not necessary for this pathway. Together, these results indicate that α7nAChR expression in bone marrow–derived non–T cells is required for the integrity of the inflammatory reflex. PMID:22183893

  15. Functional acetylcholine muscarinic receptor subtypes in human brain microcirculation: identification and cellular localization.

    PubMed

    Elhusseiny, A; Cohen, Z; Olivier, A; Stanimirović, D B; Hamel, E

    1999-07-01

    Acetylcholine is an important regulator of local cerebral blood flow. There is, however, limited information available on the possible sites of action of this neurotransmitter on brain intraparenchymal microvessels. In this study, a combination of molecular and functional approaches was used to identify which of the five muscarinic acetylcholine receptors (mAChR) are present in human brain microvessels and their intimately associated astroglial cells. Microvessel and capillary fractions isolated from human cerebral cortex were found by reverse transcriptase-polymerase chain reaction to express m2, m3, and, occasionally, m1 and m5 receptor subtypes. To localize these receptors to a specific cellular compartment of the vessel wall, cultures of human brain microvascular endothelial and smooth muscle cells were used, together with cultured human brain astrocytes. Endothelial cells invariably expressed m2 and m5 receptors, and occasionally the m1 receptor; smooth muscle cells exhibited messages for all except the m4 mAChR subtypes, whereas messages for all five muscarinic receptors were identified in astrocytes. In all three cell types studied, acetylcholine induced a pirenzepine-sensitive increase (62% to 176%, P<0.05 to 0.01) in inositol trisphosphate, suggesting functional coupling of m1, m3, or m5 mAChR to a phospholipase C signaling cascade. Similarly, coupling of m2 or m4 mAChR to adenylate cyclase inhibition in endothelial cells and astrocytes, but not in smooth muscle cells, was demonstrated by the ability of carbachol to significantly reduce (44% to 50%, P<0.05 to 0.01) the forskolin-stimulated increase in cAMP levels. This effect was reversed by the mAChR antagonist AFDX 384. The results indicate that microvessels are able to respond to neurally released acetylcholine and that mAChR, distributed in different vascular and astroglial compartments, could regulate cortical perfusion and, possibly, blood-brain barrier permeability, functions that could become

  16. Effects of phenylpropanoid and iridoid glycosides on free radical-induced impairment of endothelium-dependent relaxation in rat aortic rings.

    PubMed

    Ismailoglu, U B; Saracoglu, I; Harput, U S; Sahin-Erdemli, I

    2002-02-01

    The protective effect of phenylpropanoid glycosides, forsythoside B and alyssonoside, and the iridoid glycoside lamiide, isolated from the aerial parts of Phlomis pungens var. pungens, against free radical-induced impairment of endothelium-dependent relaxation in isolated rat aorta was investigated. Aortic rings were exposed to free radicals by the electrolysis of the physiological bathing solution. Free radical-induced inhibition of the endothelium-dependent relaxation in response to acetylcholine was countered by incubation of the aortic rings before electrolysis with the aqueous extract (200 microg/ml), phenylpropanoid fraction (100 microg/ml) and iridoid fraction (150 microg/ml) of P. pungens var. pungens. Major components of the phenylpropanoid fraction forsythoside B and alyssonoside also prevented the inhibition of the acetylcholine response, at 10(-4) M concentration. However, the major component of iridoid fraction lamiide was found ineffective at the same concentration. The protective activity of phenylpropanoid glycosides against the free radical-induced impairment of endothelium-dependent relaxation may be related to their free radical scavenging property.

  17. Effects of the α subunit on imidacloprid sensitivity of recombinant nicotinic acetylcholine receptors

    PubMed Central

    Matsuda, K; Buckingham, S D; Freeman, J C; Squire, M D; Baylis, H A; Sattelle, D B

    1998-01-01

    Imidacloprid is a new insecticide with selective toxicity for insects over vertebrates. Recombinant (α4β2) chicken neuronal nicotinic acetylcholine receptors (AChRs) and a hybrid nicotinic AChR formed by co-expression of a Drosophila melanogaster neuronal α subunit (SAD) with the chicken β2 subunit were heterologously expressed in Xenopus oocytes by nuclear injection of cDNAs. The agonist actions of imidacloprid and other nicotinic AChR ligands ((+)-epibatidine, (−)-nicotine and acetylcholine) were compared on both recombinant nicotinic AChRs by use of two-electrode, voltage-clamp electrophysiology. Imidacloprid alone of the 4 agonists behaved as a partial agonist on the α4β2 receptor; (+)-epibatidine, (−)-nicotine and acetylcholine were all full, or near full, agonists. Imidacloprid was also a partial agonist of the hybrid Drosophila SAD chicken β2 receptor, as was (−)-nicotine, whereas (+)-epibatidine and acetylcholine were full agonists. The EC50 of imidacloprid was decreased by replacing the chicken α4 subunit with the Drosophila SAD α subunit. This α subunit substitution also resulted in an increase in the EC50 for (+)-epibatidine, (−)-nicotine and acetylcholine. Thus, the Drosophila (SAD) α subunit contributes to the greater apparent affinity of imidacloprid for recombinant insect/vertebrate nicotinic AChRs. Imidacloprid acted as a weak antagonist of ACh-mediated responses mediated by SADβ2 hybrid receptors and as a weak potentiator of ACh responses mediated by α4β2 receptors. This suggests that imidacloprid has complex effects upon these recombinant receptors, determined at least in part by the α subunit. PMID:9504393

  18. Agonist activation of α7 nicotinic acetylcholine receptors via an allosteric transmembrane site

    PubMed Central

    Gill, JasKiran K.; Savolainen, Mari; Young, Gareth T.; Zwart, Ruud; Sher, Emanuele; Millar, Neil S.

    2011-01-01

    Conventional nicotinic acetylcholine receptor (nAChR) agonists, such as acetylcholine, act at an extracellular “orthosteric” binding site located at the interface between two adjacent subunits. Here, we present evidence of potent activation of α7 nAChRs via an allosteric transmembrane site. Previous studies have identified a series of nAChR-positive allosteric modulators (PAMs) that lack agonist activity but are able to potentiate responses to orthosteric agonists, such as acetylcholine. It has been shown, for example, that TQS acts as a conventional α7 nAChR PAM. In contrast, we have found that a compound with close chemical similarity to TQS (4BP-TQS) is a potent allosteric agonist of α7 nAChRs. Whereas the α7 nAChR antagonist metyllycaconitine acts competitively with conventional nicotinic agonists, metyllycaconitine is a noncompetitive antagonist of 4BP-TQS. Mutation of an amino acid (M253L), located in a transmembrane cavity that has been proposed as being the binding site for PAMs, completely blocks agonist activation by 4BP-TQS. In contrast, this mutation had no significant effect on agonist activation by acetylcholine. Conversely, mutation of an amino acid located within the known orthosteric binding site (W148F) has a profound effect on agonist potency of acetylcholine (resulting in a shift of ∼200-fold in the acetylcholine dose-response curve), but had little effect on the agonist dose-response curve for 4BP-TQS. Computer docking studies with an α7 homology model provides evidence that both TQS and 4BP-TQS bind within an intrasubunit transmembrane cavity. Taken together, these findings provide evidence that agonist activation of nAChRs can occur via an allosteric transmembrane site. PMID:21436053

  19. Diabetes impairs endothelium-dependent relaxation of human penile vascular tissues mediated by NO and EDHF.

    PubMed

    Angulo, Javier; Cuevas, Pedro; Fernández, Argentina; Gabancho, Sonia; Allona, Antonio; Martín-Morales, Antonio; Moncada, Ignacio; Videla, Sebastián; Sáenz de Tejada, Iñigo

    2003-12-26

    Standard treatments for erectile dysfunction (ED) (i.e., PDE5 inhibitors) are less effective in diabetic patients for unknown reasons. Endothelium-dependent relaxation (EDR) of human corpus cavernosum (HCC) depends on nitric oxide (NO), while in human penile resistance arteries (HPRA) endothelium-derived hyperpolarizing factor (EDHF) and NO participate. Here we show that diabetes significantly reduced EDR induced by acetylcholine (ACh) in HCC and HPRA. Relaxation attributed to EDHF was also impaired in HPRA from diabetic patients. The PDE5 inhibitor, sildenafil (10nM), reversed diabetes-induced endothelial dysfunction in HCC, but not in HPRA. Calcium dobesilate (DOBE; 10 microM) fully reversed diabetes-induced endothelial dysfunction in HPRA by specifically potentiating the EDHF-mediated component of EDR. Impairment by diabetes of NO and EDHF-dependent responses precluded the complete recovery of endothelial function in HPRA by sildenafil. This could explain the poor clinical response to PDE5 inhibitors of diabetic men with ED and suggests that a pharmacological approach that combines enhancement of NO/cGMP and EDHF pathways could be necessary to treat ED in many diabetic men.

  20. Regulation of Neuronal Muscarinic Acetylcholine Receptors

    DTIC Science & Technology

    1989-01-01

    N1E - 115 cells with pertussis toxin blocks mAChR-mediated inhibition of adenylate cyclase but not mAChR-mediated stimulation of PI turnover...determine the effects of electrical depolarization on muscarinic acetylcholine receptors (mAChR) in the cultured neuroblastoma cell line, N E- 115 ...evidence that Gi and Go may differentially regulate cellular signaling mechanisms, these results suggest that depolarization may regulate specific

  1. Sympathetic α₃β₂-nAChRs mediate cerebral neurogenic nitrergic vasodilation in the swine.

    PubMed

    Lee, Reggie Hui-Chao; Liu, Yi-Qing; Chen, Po-Yi; Liu, Chin-Hung; Chen, Mei-Fang; Lin, Hung-Wen; Kuo, Jon-Son; Premkumar, Louis S; Lee, Tony Jer-Fu

    2011-08-01

    The α(7)-nicotinic ACh receptor (α(7)-nAChR) on sympathetic neurons innervating basilar arteries of pigs crossed bred between Landrace and Yorkshire (LY) is known to mediate nicotine-induced, β-amyloid (Aβ)-sensitive nitrergic neurogenic vasodilation. Preliminary studies, however, demonstrated that nicotine-induced cerebral vasodilation in pigs crossbred among Landrace, Yorkshire, and Duroc (LYD) was insensitive to Aβ and α-bungarotoxin (α-BGTX). We investigated nAChR subtype on sympathetic neurons innervating LYD basilar arteries. Nicotine-induced relaxation of porcine isolated basilar arteries was examined by tissue bath myography, inward currents on nAChR-expressing oocytes by two-electrode voltage recording, and mRNA and protein expression in the superior cervical ganglion (SCG) and middle cervical ganglion (MCG) by reverse transcription PCR and Western blotting. Nicotine-induced basilar arterial relaxation was not affected by Aβ, α-BGTX, and α-conotoxin IMI (α(7)-nAChR antagonists), or α-conotoxin AuIB (α(3)β(4)-nAChR antagonist) but was inhibited by tropinone and tropane (α(3)-containing nAChR antagonists) and α-conotoxin MII (selective α(3)β(2)-nAChR antagonist). Nicotine-induced inward currents in α(3)β(2)-nAChR-expressing oocytes were inhibited by α-conotoxin MII but not by α-BGTX, Aβ, or α-conotoxin AuIB. mRNAs of α(3)-, α(7)-, β(2)-, and β(4)-subunits were expressed in both SCGs and MCGs with significantly higher mRNAs of α(3)-, β(2)-, and β(4)-subunits than that of α(7)-subunit. The Aβ-insensitive sympathetic α(3)β(2)-nAChR mediates nicotine-induced cerebral nitrergic neurogenic vasodilation in LYD pigs. The different finding from Aβ-sensitive α(7)-nAChR in basilar arteries of LY pigs may offer a partial explanation for different sensitivities of individuals to Aβ in causing diminished cerebral nitrergic vasodilation in diseases involving Aβ.

  2. Ocular myasthenia gravis induced by human acetylcholine receptor ϵ subunit immunization in HLA DR3 transgenic mice.

    PubMed

    Wu, Xiaorong; Tuzun, Erdem; Saini, Shamsher S; Wang, Jun; Li, Jing; Aguilera-Aguirre, Leopoldo; Huda, Ruksana; Christadoss, Premkumar

    2015-12-01

    Extraocular muscles (EOM) are preferentially involved in myasthenia gravis (MG) and acetylcholine receptor (AChR) antibody positive MG patients may occasionally present with isolated ocular symptoms. Although experimental autoimmune myasthenia gravis (EAMG) induced by whole AChR immunization closely mimics clinical and immunopathological aspects of MG, EOM are usually not affected. We have previously developed an EAMG model, which imitates EOM symptoms of MG by immunization of human leukocyte antigen (HLA) transgenic mice with α or γ-subunits of human AChR (H-AChR). To investigate the significance of the ϵ-subunit in ocular MG, we immunized HLA-DR3 and HLA-DQ8 transgenic mice with recombinant H-AChR ϵ-subunit expressed in Escherichia coli. HLA-DR3 transgenic mice showed significantly higher clinical ocular and generalized MG severity scores and lower grip strength values than HLA-DQ8 mice. H-AChR ϵ-subunit-immunized HLA-DR3 transgenic mice had higher serum anti-AChR antibody (IgG, IgG1, IgG2b, IgG2c and IgM) levels, neuromuscular junction IgG and complement deposit percentages than ϵ-subunit-immunized HLA-DQ8 transgenic mice. Control mice immunized with E. coli extract or complete Freund adjuvant (CFA) did not show clinical and immunopathological features of ocular and generalized EAMG. Lymph node cells of ϵ-subunit-immunized HLA-DR3 mice showed significantly higher proliferative responses than those of ϵ-subunit-immunized HLA-DQ8 mice, crude E. coli extract-immunized and CFA-immunized transgenic mice. Our results indicate that the human AChR ϵ-subunit is capable of inducing myasthenic muscle weakness. Diversity of the autoimmune responses displayed by mice expressing different HLA class II molecules suggests that the interplay between HLA class II alleles and AChR subunits might have a profound impact on the clinical course of MG. Copyright © 2015 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  3. A first principle study on the interaction between acetylcholinesterase and acetylcholine, and also rivastigmine in alzheimer's disease case

    NASA Astrophysics Data System (ADS)

    Khoirunisa, V.; Rusydi, F.; Kasai, H.; Gandaryus, A. G.; Dipojono, H. K.

    2016-08-01

    The catalytic activity of acetylcholinesterase enzyme (AChE) relates to the symptom progress in Alzheimer's disease. Interaction of AChE with rivastigmine (from the medicine) can reduce its catalytic activity toward acetylcholine to decelerate the progression of Alzheimer's disease. This research attempts to study the interaction between AChE and rivastigmine, and also acetylcholine (without the presence of rivastigmine) using density functional theory by simplifying the reaction occurs in the active site, which is assumed to be C2H5OH, C3N2H3(Ch3), and CH3COO-. The results suggest that AChE interacts easier with acetylcholine than with rivastigmine, which implies that the medicine does not effectively reduce the catalytic activity of AChE. At this stage, no experimental data is available to be compared with the calculation results. Nonetheless, this study has shown a good prospect to understand the AChE-substrate interaction using a first-principles calculation.

  4. Metabotropic GABAB receptors mediate GABA inhibition of acetylcholine release in the rat neuromuscular junction.

    PubMed

    Malomouzh, Artem I; Petrov, Konstantin A; Nurullin, Leniz F; Nikolsky, Evgeny E

    2015-12-01

    Gamma-aminobutyric acid (GABA) is an amino acid which acts as a neurotransmitter in the central nervous system. Here, we studied the effects of GABA on non-quantal, spontaneous, and evoked quantal acetylcholine (ACh) release from motor nerve endings. We found that while the application of 10 μM of GABA had no effect on spontaneous quantal ACh release, as detected by the frequency of miniature endplate potentials, GABA reduced the non-quantal ACh release by 57%, as determined by the H-effect value. Finally, the evoked quantal ACh release, estimated by calculating the quantal content of full-sized endplate potentials (EPPs), was reduced by 34%. GABA's inhibitory effect remained unchanged after pre-incubation with picrotoxin, an ionotropic GABAA receptor blocker, but was attenuated following application of the GABAB receptor blocker CGP 55845, which itself had no effect on ACh release. An inhibitor of phospholipase C, U73122, completely prevented the GABA-induced decrease in ACh release. Immunofluorescence demonstrated the presence of both subunits of the GABAB receptor (GABAB R1 and GABAB R2) in the neuromuscular junction. These findings suggest that metabotropic GABAB receptors are expressed in the mammalian neuromuscular synapse and their activation results in a phospholipase C-mediated reduction in the intensity of non-quantal and evoked quantal ACh release. We investigated the effect of gamma-aminobutyric acid (GABA) on neuromuscular transmission. GABA reduced the non-quantal and evoked quantal release of acetylcholine. These effects are mediated by GABAB receptors and are implemented via phospholipase C (PLC) activation. Our findings suggest that in the mammalian neuromuscular synapse, metabotropic GABAB receptors are expressed and their activation results in a reduction in the intensity of acetylcholine release. © 2015 International Society for Neurochemistry.

  5. Endogenous γ-aminobutyric Acid Modulates Tonic Guinea Pig Airway Tone and Propofol-induced Airway Smooth Muscle Relaxation

    PubMed Central

    Gallos, George; Gleason, Neil R.; Virag, Laszlo; Zhang, Yi; Mizuta, Kentauro; Whittington, Robert A.; Emala, Charles W.

    2009-01-01

    Background Emerging evidence indicates that an endogenous autocrine/paracrine system involving γ-aminobutyric acid (GABA) is present in airways. GABAA channels, GABAB receptors and the enzyme that synthesizes GABA have been identified in airway epithelium and smooth muscle. However, the endogenous ligand itself, GABA, has not been measured in airway tissues. We sought to demonstrate that GABA is released in response to contractile agonists and tonically contributes a pro-relaxant component to contracted airway smooth muscle. Methods The amount and cellular localization of GABA in upper guinea pig airways under resting and contracted tone was determined by high pressure liquid chromatography and immunohistochemistry, respectively. The contribution that endogenous GABA imparts on the maintenance of airway smooth muscle acetylcholine-induced contraction was assessed in intact guinea pig airway tracheal rings using selective GABAA antagonism (gabazine) under resting or acetylcholine-contracted conditions. The ability of an allosteric agent (propofol) to relax a substance P-induced relaxation in an endogenous GABA-dependent manner was assessed. Results GABA levels increased and localized to airway smooth muscle following contractile stimuli in guinea pig upper airways. Acetylcholine-contracted guinea pig tracheal rings exhibited an increase in contracted force upon addition of the GABAA antagonist gabazine which was subsequently reversed by the addition of the GABAA agonist muscimol. Propofol dose-dependently relaxed a substance P contraction that was blocked by gabazine. Conclusion These studies demonstrate that GABA is endogenously present and increases following contractile stimuli in guinea pig upper airways and that endogenous GABA contributes a tonic pro-relaxant component in the maintenance of airway smooth muscle tone. PMID:19322939

  6. Electrophysiological investigation of the effect of structurally different bispyridinium non-oxime compounds on human α7-nicotinic acetylcholine receptor activity-An in vitro structure-activity analysis.

    PubMed

    Scheffel, Corinna; Niessen, Karin V; Rappenglück, Sebastian; Wanner, Klaus T; Thiermann, Horst; Worek, Franz; Seeger, Thomas

    2018-09-01

    Organophosphorus compounds, including nerve agents and pesticides, exert their toxicity through irreversible inhibition of acetylcholinesterase (AChE) resulting in an accumulation of acetylcholine and functional impairment of muscarinic and nicotinic acetylcholine receptors. Current therapy comprises oximes to reactivate AChE and atropine to antagonize effects induced by muscarinic acetylcholine receptors. Nicotinic malfunction leading to depression of the central and peripheral respiratory system is not directly treated calling for alternative therapeutic interventions. In the present study, we investigated the electrophysiological properties of the human nAChR subtype α7 (hα7-nAChR) and the functional effect of the 4-tert-butyl bispyridinium (BP) compound MB327 and of a series of novel substituted bispyridinium compounds on the receptors by an automated patch clamp technique. Activation of hα7-nAChRs was induced by nicotine and acetylcholine demonstrating rapid cationic influx up to 100μM. Agonist-induced currents decayed within a few milliseconds revealing fast desensitization of the receptors. Application of higher agonist concentrations led to a decline of current amplitudes which seemed to be due to increasing receptor desensitization. When 100μM of agonist was coapplied with low concentrations of the well characterized α7-specific positive allosteric modulator PNU-120596 (1μM-10μM), the maximum response and duration of nAChR activation were markedly augmented indicating an elongated mean open-time of receptors and prevention of receptor desensitization. However, co-application of increasing PNU-120596 concentrations (>10μM) with agonist induced a decline of potentiated current responses. Although less pronounced than PNU-120596, six of the twenty tested substituted BP compounds, in particular those with a substituent at 3-position and 4-position at the pyridinium moieties, were found to potentiate current responses of hα7-nAChRs, most pronounced MB

  7. Memantine Inhibits α3β2-nAChRs-Mediated Nitrergic Neurogenic Vasodilation in Porcine Basilar Arteries

    PubMed Central

    Wu, Celeste Yin-Chieh; Chen, Po-Yi; Chen, Mei-Fang; Kuo, Jon-Son; Lee, Tony Jer-Fu

    2012-01-01

    Memantine, an NMDA receptor antagonist used for treatment of Alzheimer’s disease (AD), is known to block the nicotinic acetylcholine receptors (nAChRs) in the central nervous system (CNS). In the present study, we examined by wire myography if memantine inhibited α3β2-nAChRs located on cerebral perivascular sympathetic nerve terminals originating in the superior cervical ganglion (SCG), thus, leading to inhibition of nicotine-induced nitrergic neurogenic dilation of isolated porcine basilar arteries. Memantine concentration-dependently blocked nicotine-induced neurogenic dilation of endothelium-denuded basilar arteries without affecting that induced by transmural nerve stimulation, sodium nitroprusside, or isoproterenol. Furthermore, memantine significantly inhibited nicotine-elicited inward currents in Xenopous oocytes expressing α3β2-, α7- or α4β2-nAChR, and nicotine-induced calcium influx in cultured rat SCG neurons. These results suggest that memantine is a non-specific antagonist for nAChR. By directly inhibiting α3β2-nAChRs located on the sympathetic nerve terminals, memantine blocks nicotine-induced neurogenic vasodilation of the porcine basilar arteries. This effect of memantine is expected to reduce the blood supply to the brain stem and possibly other brain regions, thus, decreasing its clinical efficacy in the treatment of Alzheimer’s disease. PMID:22792283

  8. ACh-induced hyperpolarization and decreased resistance in mammalian type II vestibular hair cells.

    PubMed

    Poppi, Lauren A; Tabatabaee, Hessam; Drury, Hannah R; Jobling, Phillip; Callister, Robert J; Migliaccio, Americo A; Jordan, Paivi M; Holt, Joseph C; Rabbitt, Richard D; Lim, Rebecca; Brichta, Alan M

    2018-01-01

    In the mammalian vestibular periphery, electrical activation of the efferent vestibular system (EVS) has two effects on afferent activity: 1) it increases background afferent discharge and 2) decreases afferent sensitivity to rotational stimuli. Although the cellular mechanisms underlying these two contrasting afferent responses remain obscure, we postulated that the reduction in afferent sensitivity was attributed, in part, to the activation of α9- containing nicotinic acetylcholine (ACh) receptors (α9*nAChRs) and small-conductance potassium channels (SK) in vestibular type II hair cells, as demonstrated in the peripheral vestibular system of other vertebrates. To test this hypothesis, we examined the effects of the predominant EVS neurotransmitter ACh on vestibular type II hair cells from wild-type (wt) and α9-subunit nAChR knockout (α9 -/- ) mice. Immunostaining for choline acetyltransferase revealed there were no obvious gross morphological differences in the peripheral EVS innervation among any of these strains. ACh application onto wt type II hair cells, at resting potentials, produced a fast inward current followed by a slower outward current, resulting in membrane hyperpolarization and decreased membrane resistance. Hyperpolarization and decreased resistance were due to gating of SK channels. Consistent with activation of α9*nAChRs and SK channels, these ACh-sensitive currents were antagonized by the α9*nAChR blocker strychnine and SK blockers apamin and tamapin. Type II hair cells from α9 -/- mice, however, failed to respond to ACh at all. These results confirm the critical importance of α9nAChRs in efferent modulation of mammalian type II vestibular hair cells. Application of exogenous ACh reduces electrical impedance, thereby decreasing type II hair cell sensitivity. NEW & NOTEWORTHY Expression of α9 nicotinic subunit was crucial for fast cholinergic modulation of mammalian vestibular type II hair cells. These findings show a multifaceted

  9. Acetylcholine but not adenosine triggers preconditioning through PI3-kinase and a tyrosine kinase.

    PubMed

    Qin, Qining; Downey, James M; Cohen, Michael V

    2003-02-01

    Adenosine and acetylcholine (ACh) trigger preconditioning by different signaling pathways. The involvement of phosphatidylinositol 3-kinase (PI3-kinase), a protein tyrosine kinase, and Src family tyrosine kinase in preconditioning was evaluated in isolated rabbit hearts. Either wortmannin (PI3-kinase blocker), genistein (tyrosine kinase blocker), lavendustin A (tyrosine kinase blocker), or 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolol[3,4-d]pyrimidine (PP2; Src family tyrosine kinase blocker) was given for 15 min to bracket a 5-min infusion of either adenosine or ACh (trigger phase). The hearts then underwent 30 min of regional ischemia. Infarct size for ACh alone was 9.3 +/- 3.5% of the risk zone versus 34.3 +/- 4.1% in controls. All four inhibitors blocked ACh-induced protection. When wortmannin or PP2 was infused only during the 30-min ischemic period (mediator phase), ACh-induced protection was not affected (7.4 +/- 2.1% and 9.7 +/- 1.7% infarction, respectively). Adenosine-triggered protection was not blocked by any of the inhibitors. Therefore, PI3-kinase and at least one protein tyrosine kinase, probably Src kinase, are involved in the trigger phase of ACh-induced, but not adenosine-induced, preconditioning. Neither PI3-kinase nor Src kinase is a mediator of the protection of ACh.

  10. Regulation of the substance P-induced contraction via the release of acetylcholine and gamma-aminobutyric acid in the guinea-pig urinary bladder.

    PubMed Central

    Shirakawa, J.; Nakanishi, T.; Taniyama, K.; Kamidono, S.; Tanaka, C.

    1989-01-01

    1. The action of substance P (SP) on the release of gamma-aminobutyric acid (GABA) and acetylcholine (ACh) and on contraction were studied in strips of the guinea-pig urinary bladder. Substance P induced a dose-dependent contraction of strips of guinea-pig urinary bladder (EC50 = 1.2 x 10(-9) M). This contraction was not altered by tetrodotoxin, but with a dose of 10(-9) M and less, there was a complete inhibition by 10(-6) M) atropine. Contractions initiated by 3 x 10(-9) M) SP or more were partly inhibited by atropine. The EC50 value of substance P in the presence of atropine was 7.0 x 10(-9) M. 2. Substance P induced a Ca2+-dependent and tetrodotoxin-resistant release of [3H]-acetylcholine (ACh) from strips of urinary bladder preloaded with [3H]-choline (EC50 = 4.9 x 10(-10) M), and this release was antagonized by [D-Pro2,D-Trp7,9] substance P. 3. Bicuculline increased the substance P-induced contraction and the release of [3H]-ACh from the strips. 4. Substance P induced a Ca2+-dependent and tetrodotoxin-sensitive release of [3H]-gamma-aminobutyric acid (GABA) from strips preloaded with [3H]-GABA (EC50 = 2.6 x 10(-9) M), and this release was antagonized by [D-Pro2,D-Trp7,9] substance P. 5. Therefore, substance P appears to exert excitatory effects on the contractility of urinary bladder predominantly by stimulating its own receptor located on the cholinergic nerve terminals. GABA released by substance P inhibits stimulation of the cholinergic neurone. However, the direct action of substance P on the cholinergic neurone is more potent that the indirect action via GABA release. PMID:2479440

  11. Opiate-induced constipation related to activation of small intestine opioid μ2-receptors

    PubMed Central

    Chen, Wency; Chung, Hsien-Hui; Cheng, Juei-Tang

    2012-01-01

    AIM: To investigate the role of opioid μ-receptor subtype in opiate-induced constipation (OIC). METHODS: The effect of loperamide on intestinal transit was investigated in mice. Ileum strips were isolated from 12-wk-old male BALB/c mice for identification of isometric tension. The ileum strips were precontracted with 1 μmol/L acetylcholine (ACh). Then, decrease in muscle tone (relaxation) was characterized after cumulative administration of 0.1-10 μmol/L loperamide into the organ bath, for a concentration-dependent study. Specific blockers or antagonists were used for pretreatment to compare the changes in loperamide-induced relaxation. RESULTS: In addition to the delay in intestinal transit, loperamide produced a marked relaxation in isolated ileum precontracted with ACh, in a dose-dependent manner. This relaxation was abolished by cyprodime, a selective opioid μ-receptor antagonist, but not modified by naloxonazine at a dose sufficient to block opioid μ-1 receptors. Also, treatment with opioid μ-1 receptor agonist failed to modify the muscle tone. Moreover, the relaxation by loperamide was attenuated by glibenclamide at a dose sufficient to block ATP-sensitive K+ (KATP) channels, and by protein kinase A (PKA) inhibitor, but was enhanced by an inhibitor of phosphodiesterase for cyclic adenosine monophosphate (cAMP). CONCLUSION: Loperamide induces intestinal relaxation by activation of opioid μ-2 receptors via the cAMP-PKA pathway to open KATP channels, relates to OIC. PMID:22493554

  12. Downregulated expression of microRNA-124 in pediatric intestinal failure patients modulates macrophages activation by inhibiting STAT3 and AChE

    PubMed Central

    Xiao, Yong-Tao; Wang, Jun; Lu, Wei; Cao, Yi; Cai, Wei

    2016-01-01

    Intestinal inflammation plays a critical role in the pathogenesis of intestinal failure (IF). The macrophages are essential to maintain the intestinal homeostasis. However, the underlying mechanisms of intestinal macrophages activation remain poorly understood. Since microRNAs (miRNAs) have pivotal roles in regulation of immune responses, here we aimed to investigate the role of miR-124 in the activation of intestinal macrophages. In this study, we showed that the intestinal macrophages increased in pediatric IF patients and resulted in the induction of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). The miRNA fluorescence in situ hybridization analysis showed that the expression of miR-124 significantly reduced in intestinal macrophages in IF patients. Overexpression of miR-124 was sufficient to inhibit intestinal macrophages activation by attenuating production of IL-6 and TNF-α. Further studies showed that miR-124 could directly target the 3′-untranslated region of both signal transducer and activator of transcription 3 (STAT3) and acetylcholinesterase (AChE) mRNAs, and suppress their protein expressions. The AChE potentially negates the cholinergic anti-inflammatory signal by hydrolyzing the acetylcholine. We here showed that intestinal macrophages increasingly expressed the AChE and STAT3 in IF patients when compared with controls. The inhibitors against to STAT3 and AChE significantly suppressed the lipopolysaccharides-induced IL-6 and TNF-α production in macrophages. Taken together, these findings highlight an important role for miR-124 in the regulation of intestinal macrophages activation, and suggest a potential application of miR-124 in pediatric IF treatment regarding as suppressing intestinal inflammation. PMID:27977009

  13. Inhibition of neutral endopeptidase increases airway responsiveness to ACh in nonsensitized normal rats.

    PubMed

    Chiba, Y; Misawa, M

    1995-02-01

    The effects of sensory neuropeptides on the airway responsiveness to acetylcholine (ACh) were investigated in normal nonsensitized rats. The airway responsiveness to inhaled ACh was significantly increased after treatment with neurokinin A (NKA; 0.001%) or substance P (SP; 0.01%) aerosol in the presence of the neutral endopeptidase (NEP) inhibitor. NKA had a more potent effect than SP. Interestingly, the intravenous treatment with NEP inhibitor alone also induced airway hyperresponsiveness (AHR) to inhaled ACh. This AHR was significantly attenuated by pretreatment with a nonselective NK-receptor antagonist, [D-Pro2,D-Trp7,9]SP, systemic capsaicin, or bilateral cervical vagotomy, indicating that decreased NEP activity results in accumulation of endogenous sensory neuropeptide(s) and enhancement of vagal reflex to cause AHR. The airway responsiveness to ACh of isolated left main bronchus was also increased after treatment with 10(-6) M NKA, but not SP, together with 10(-6) M phosphoramidon. This in vitro AHR to ACh induced by phosphoramidon plus NKA was significantly attenuated by pretreatment with 10(-6) M tetrodotoxin. These findings suggest that overaccumulated sensory neuropeptides, especially NKA, may enhance the probability of transmitter release, probably via NK2 receptors, and that the enhanced transmitter release might be involved in AHR in rats.

  14. Local induction of acetylcholine receptor clustering in myotube cultures using microfluidic application of agrin.

    PubMed

    Tourovskaia, Anna; Kosar, T Fettah; Folch, Albert

    2006-03-15

    During neuromuscular synaptogenesis, the exchange of spatially localized signals between nerve and muscle initiates the coordinated focal accumulation of the acetylcholine (ACh) release machinery and the ACh receptors (AChRs). One of the key first steps is the release of the proteoglycan agrin focalized at the axon tip, which induces the clustering of AChRs on the postsynaptic membrane at the neuromuscular junction. The lack of a suitable method for focal application of agrin in myotube cultures has limited the majority of in vitro studies to the application of agrin baths. We used a microfluidic device and surface microengineering to focally stimulate muscle cells with agrin at a small portion of their membrane and at a time and position chosen by the user. The device is used to verify the hypothesis that focal application of agrin to the muscle cell membrane induces local aggregation of AChRs in differentiated C2C12 myotubes.

  15. The effect of streptozotocin-induced diabetes on the EDHF-type relaxation and cardiac function in rats.

    PubMed

    Absi, Mais; Oso, Hani; Khattab, Marwan

    2013-07-01

    The endothelium-derived hyperpolarizing factor (EDHF) response is a critical for the functioning of small blood vessels. We investigated the effect of streptozotocin-induced diabetes on the EDHF response and its possible role in the regulation of cardiac function. The vasorelaxant response to ACh- or NS309- (direct opener endothelial small- (SKCa)- and intermediate-conductance (IKCa) calcium-activated potassium channels; main components of EDHF response) were measured in pressurized mesenteric arteries (diameter 300-350 μm). The response to 1 μM ACh was reduced in diabetes (84.8 ± 2.8% control vs 22.5 ± 5.8% diabetics; n ⩾ 8; P < 0.001). NS309 (1 μM) relaxations were also decreased in diabetic arteries (78.5 ± 8.7% control vs 32.1 ± 5.8% diabetics; n ⩾ 5; P < 0.001). SKCa and IKCa-mediated EDHF relaxations in response ACh or NS309 were also significantly reduced by diabetes. Ruthenium red, RuR, a blocker of TRP channels, strongly depress the response to ACh and NS309 in control and diabetic arteries. RuR decreased SKCa and IKCa-mediated EDHF vasodilatation in response to NS309 but not to ACh. An elevation in systolic blood pressure was observed in diabetic animals. ECG recording of control hearts showed shortening of PR interval. RuR reduced PR interval and R wave amplitude in diabetic hearts. In conclusion, the reduced EDHF-type relaxations in STZ-induced diabetes is due impairment of KCa channels function. TRP channels possibly contribute to EDHF vasodilatation via direct opening of endothelial KCa. It is possible that EDHF and TRP channels contribute to the regulation of cardiac function and therefore can be considered as therapeutic targets to improve cardiovascular complications of diabetes.

  16. The effect of streptozotocin-induced diabetes on the EDHF-type relaxation and cardiac function in rats

    PubMed Central

    Absi, Mais; Oso, Hani; Khattab, Marwan

    2012-01-01

    The endothelium-derived hyperpolarizing factor (EDHF) response is a critical for the functioning of small blood vessels. We investigated the effect of streptozotocin-induced diabetes on the EDHF response and its possible role in the regulation of cardiac function. The vasorelaxant response to ACh- or NS309- (direct opener endothelial small- (SKCa)- and intermediate-conductance (IKCa) calcium-activated potassium channels; main components of EDHF response) were measured in pressurized mesenteric arteries (diameter 300–350 μm). The response to 1 μM ACh was reduced in diabetes (84.8 ± 2.8% control vs 22.5 ± 5.8% diabetics; n ⩾ 8; P < 0.001). NS309 (1 μM) relaxations were also decreased in diabetic arteries (78.5 ± 8.7% control vs 32.1 ± 5.8% diabetics; n ⩾ 5; P < 0.001). SKCa and IKCa-mediated EDHF relaxations in response ACh or NS309 were also significantly reduced by diabetes. Ruthenium red, RuR, a blocker of TRP channels, strongly depress the response to ACh and NS309 in control and diabetic arteries. RuR decreased SKCa and IKCa-mediated EDHF vasodilatation in response to NS309 but not to ACh. An elevation in systolic blood pressure was observed in diabetic animals. ECG recording of control hearts showed shortening of PR interval. RuR reduced PR interval and R wave amplitude in diabetic hearts. In conclusion, the reduced EDHF-type relaxations in STZ-induced diabetes is due impairment of KCa channels function. TRP channels possibly contribute to EDHF vasodilatation via direct opening of endothelial KCa. It is possible that EDHF and TRP channels contribute to the regulation of cardiac function and therefore can be considered as therapeutic targets to improve cardiovascular complications of diabetes. PMID:25685443

  17. Nicotine induces fibrogenic changes in human liver via nicotinic acetylcholine receptors expressed on hepatic stellate cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soeda, Junpei; Morgan, Maelle; McKee, Chad

    Highlights: Black-Right-Pointing-Pointer Cigarette smoke may induce liver fibrosis via nicotine receptors. Black-Right-Pointing-Pointer Nicotine induces proliferation of hepatic stellate cells (HSCs). Black-Right-Pointing-Pointer Nicotine activates hepatic fibrogenic pathways. Black-Right-Pointing-Pointer Nicotine receptor antagonists attenuate HSC proliferation. Black-Right-Pointing-Pointer Nicotinic receptor antagonists may have utility as novel anti-fibrotic agents. -- Abstract: Background and aims: Cigarette smoke (CS) may cause liver fibrosis but possible involved mechanisms are unclear. Among the many chemicals in CS is nicotine - which affects cells through nicotinic acetylcholine receptors (nAChR). We studied the effects of nicotine, and involved pathways, on human primary hepatic stellate cells (hHSCs), the principal fibrogenic cells inmore » the liver. We then determined possible disease relevance by assaying nAChR in liver samples from human non-alcoholic steatohepatitis (NASH). Methods: hHSC were isolated from healthy human livers and nAChR expression analyzed - RT-PCR and Western blotting. Nicotine induction of hHSC proliferation, upregulation of collagen1-{alpha}2 and the pro-fibrogenic cytokine transforming growth factor beta 1 (TGF-{beta}1) was determined along with involved intracellular signaling pathways. nAChR mRNA expression was finally analyzed in whole liver biopsies obtained from patients diagnosed with non-alcoholic steatohepatitis (NASH). Results: hHSCs express muscle type ({alpha}1, {beta}1, delta and epsilon) and neuronal type ({alpha}3, {alpha}6, {alpha}7, {beta}2 and {beta}4) nAChR subunits at the mRNA level. Among these subunits, {alpha}3, {alpha}7, {beta}1 and {epsilon} were predominantly expressed as confirmed by Western blotting. Nicotine induced hHSC proliferation was attenuated by mecamylamine (p < 0.05). Additionally, collagen1-{alpha}2 and TGF-{beta}1 mRNA expression were significantly upregulated by nicotine and inhibited by

  18. Substituted 2-Aminopyrimidines Selective for α7-Nicotinic Acetylcholine Receptor Activation and Association with Acetylcholine Binding Proteins.

    PubMed

    Kaczanowska, Katarzyna; Camacho Hernandez, Gisela Andrea; Bendiks, Larissa; Kohs, Larissa; Cornejo-Bravo, Jose Manuel; Harel, Michal; Finn, M G; Taylor, Palmer

    2017-03-15

    Through studies with ligand binding to the acetylcholine binding protein (AChBP), we previously identified a series of 4,6-substituted 2-aminopyrimidines that associate with this soluble surrogate of the nicotinic acetylcholine receptor (nAChR) in a cooperative fashion, not seen for classical nicotinic agonists and antagonists. To examine receptor interactions of this structural family on ligand-gated ion channels, we employed HEK cells transfected with cDNAs encoding three requisite receptor subtypes: α7-nAChR, α4β2-nAChR, and a serotonin receptor (5-HT 3A R), along with a fluorescent reporter. Initial screening of a series of over 50 newly characterized 2-aminopyrimidines with affinity for AChBP showed only two to be agonists on the α7-nAChR below 10 μM concentration. Their unique structural features were incorporated into design of a second subset of 2-aminopyrimidines yielding several congeners that elicited α7 activation with EC 50 values of 70 nM and K d values for AChBP in a similar range. Several compounds within this series exhibit specificity for the α7-nAChR, showing no activation or antagonism of α4β2-nAChR or 5-HT3AR at concentrations up to 10 μM, while others were weaker antagonists (or partial agonists) on these receptors. Analysis following cocrystallization of four ligand complexes with AChBP show binding at the subunit interface, but with an orientation or binding pose that differs from classical nicotinic agonists and antagonists and from the previously analyzed set of 2-aminopyrimidines that displayed distinct cooperative interactions with AChBP. Orientations of aromatic side chains of these complexes are distinctive, suggesting new modes of binding at the agonist-antagonist site and perhaps an allosteric action for heteromeric nAChRs.

  19. Acetylcholine released by endothelial cells facilitates flow‐mediated dilatation

    PubMed Central

    Wilson, Calum; Lee, Matthew D.

    2016-01-01

    Key points The endothelium plays a pivotal role in the vascular response to chemical and mechanical stimuli.The endothelium is exquisitely sensitive to ACh, although the physiological significance of ACh‐induced activation of the endothelium is unknown.In the present study, we investigated the mechanisms of flow‐mediated endothelial calcium signalling.Our data establish that flow‐mediated endothelial calcium responses arise from the autocrine action of non‐neuronal ACh released by the endothelium. Abstract Circulating blood generates frictional forces (shear stress) on the walls of blood vessels. These frictional forces critically regulate vascular function. The endothelium senses these frictional forces and, in response, releases various vasodilators that relax smooth muscle cells in a process termed flow‐mediated dilatation. Although some elements of the signalling mechanisms have been identified, precisely how flow is sensed and transduced to cause the release of relaxing factors is poorly understood. By imaging signalling in large areas of the endothelium of intact arteries, we show that the endothelium responds to flow by releasing ACh. Once liberated, ACh acts to trigger calcium release from the internal store in endothelial cells, nitric oxide production and artery relaxation. Flow‐activated release of ACh from the endothelium is non‐vesicular and occurs via organic cation transporters. ACh is generated following mitochondrial production of acetylCoA. Thus, we show ACh is an autocrine signalling molecule released from endothelial cells, and identify a new role for the classical neurotransmitter in endothelial mechanotransduction. PMID:27730645

  20. Manifestation of J wave induced by acetylcholine applied for a coronary spasm provocation test in a patient with aborted sudden cardiac death.

    PubMed

    Kodama, Hiroyuki; Fujita, Kazumasa; Moriyama, Shouhei; Irie, Kei; Noda, Hirotaka; Yokoyama, Taku; Fukata, Mitsuhiro; Arita, Takeshi; Odashiro, Keita; Maruyama, Toru; Akashi, Koichi

    2017-06-01

    A 51-year-old man with a resuscitation episode was referred to our hospital. Coronary angiography revealed a focal spasm overlapped with organic stenosis where a bare metal stent was implanted. Acetylcholine (ACh) provocation test did not induce chest pain. It revealed no discernible ST-T changes but unmasked a J wave at the end of the QRS complex, which was associated with short-coupled repetitive premature ventricular beats. A J wave reportedly appears immediately before the onset of ventricular fibrillation caused by vasospastic angina. However, a J wave observed newly after a coronary spasm provocation test using ACh without ST-T changes is informative when considering the mechanisms of the J wave.

  1. Cigarette smoking during pregnancy regulates the expression of specific nicotinic acetylcholine receptor (nAChR) subunits in the human placenta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Machaalani, R., E-mail: rita.machaalani@sydney.edu.au; Bosch Institute, The University of Sydney, NSW 2006; The Children's Hospital at Westmead, NSW 2145

    Smoking during pregnancy is associated with low birth weight, premature delivery, and neonatal morbidity and mortality. Nicotine, a major pathogenic compound of cigarette smoke, binds to the nicotinic acetylcholine receptors (nAChRs). A total of 16 nAChR subunits have been identified in mammals (9 α, 4 β, and 1 δ, γ and ε subunits). The effect of cigarette smoking on the expression of these subunits in the placenta has not yet been determined, thus constituting the aim of this study. Using RT-qPCR and western blotting, this study investigated all 16 mammalian nAChR subunits in the normal healthy human placenta, and comparedmore » mRNA and protein expressions in the placentas from smokers (n = 8) to controls (n = 8). Our data show that all 16 subunit mRNAs are expressed in the normal, non-diseased human placenta and that the expression of α2, α3, α4, α9, β2 and β4 subunits is greater than the other subunits. For mRNA, cigarette smoke exposure was associated with increased expression of the α9 subunit, and decreased expression of the δ subunit. At the protein level, expression of both α9 and δ was increased. Thus, cigarette smoking in pregnancy is sufficient to regulate nAChR subunits in the placenta, specifically α9 and δ subunits, and could contribute to the adverse effects of vasoconstriction and decreased re-epithelialisation (α9), and increased calcification and apoptosis (δ), seen in the placentas of smoking women. - Highlights: • All 16 mammalian nAChR subunits are expressed in the human placenta. • Cigarette smoking increases α9 mRNA and protein in the placenta. • Cigarette smoking decreases δ mRNA but increases δ protein in the placenta.« less

  2. Muscarinic ACh Receptors Contribute to Aversive Olfactory Learning in Drosophila.

    PubMed

    Silva, Bryon; Molina-Fernández, Claudia; Ugalde, María Beatriz; Tognarelli, Eduardo I; Angel, Cristian; Campusano, Jorge M

    2015-01-01

    The most studied form of associative learning in Drosophila consists in pairing an odorant, the conditioned stimulus (CS), with an unconditioned stimulus (US). The timely arrival of the CS and US information to a specific Drosophila brain association region, the mushroom bodies (MB), can induce new olfactory memories. Thus, the MB is considered a coincidence detector. It has been shown that olfactory information is conveyed to the MB through cholinergic inputs that activate acetylcholine (ACh) receptors, while the US is encoded by biogenic amine (BA) systems. In recent years, we have advanced our understanding on the specific neural BA pathways and receptors involved in olfactory learning and memory. However, little information exists on the contribution of cholinergic receptors to this process. Here we evaluate for the first time the proposition that, as in mammals, muscarinic ACh receptors (mAChRs) contribute to memory formation in Drosophila. Our results show that pharmacological and genetic blockade of mAChRs in MB disrupts olfactory aversive memory in larvae. This effect is not explained by an alteration in the ability of animals to respond to odorants or to execute motor programs. These results show that mAChRs in MB contribute to generating olfactory memories in Drosophila.

  3. Muscarinic ACh Receptors Contribute to Aversive Olfactory Learning in Drosophila

    PubMed Central

    Silva, Bryon; Molina-Fernández, Claudia; Ugalde, María Beatriz; Tognarelli, Eduardo I.; Angel, Cristian; Campusano, Jorge M.

    2015-01-01

    The most studied form of associative learning in Drosophila consists in pairing an odorant, the conditioned stimulus (CS), with an unconditioned stimulus (US). The timely arrival of the CS and US information to a specific Drosophila brain association region, the mushroom bodies (MB), can induce new olfactory memories. Thus, the MB is considered a coincidence detector. It has been shown that olfactory information is conveyed to the MB through cholinergic inputs that activate acetylcholine (ACh) receptors, while the US is encoded by biogenic amine (BA) systems. In recent years, we have advanced our understanding on the specific neural BA pathways and receptors involved in olfactory learning and memory. However, little information exists on the contribution of cholinergic receptors to this process. Here we evaluate for the first time the proposition that, as in mammals, muscarinic ACh receptors (mAChRs) contribute to memory formation in Drosophila. Our results show that pharmacological and genetic blockade of mAChRs in MB disrupts olfactory aversive memory in larvae. This effect is not explained by an alteration in the ability of animals to respond to odorants or to execute motor programs. These results show that mAChRs in MB contribute to generating olfactory memories in Drosophila. PMID:26380118

  4. Nicotine Ameliorates NMDA Receptor Antagonist-Induced Deficits in Contextual Fear Conditioning through High Affinity Nicotinic Acetylcholine Receptors in the Hippocampus

    PubMed Central

    André, Jessica M.; Leach, Prescott T.; Gould, Thomas J.

    2011-01-01

    NMDA glutamate receptors (NMDARs) and nicotinic acetylcholine receptors (nAChRs) are both involved in learning and synaptic plasticity. Increasing evidence suggests processes mediated by these receptors may interact to modulate learning; however, little is known about the neural substrates involved in these interactive processes. The present studies investigated the effects of nicotine on MK-801 hydrogen maleate (MK-801) and DL-2-Amino-5-phosphonovaleric acid (APV) induced disruption of contextual fear conditioning in male C57BL/6J mice, using direct drug infusion and selective nAChR antagonists to define the brain regions and the nAChR subtypes involved. Mice treated with MK-801 showed a deficit in contextual fear conditioning that was ameliorated by nicotine. Direct drug infusion demonstrated that the NMDAR antagonists disrupted hippocampal function and that nicotine acted in the dorsal hippocampus to ameliorate the deficit in learning. The high-affinity nAChR antagonist Dihydro-β-erythroidine hydrobromide (DhβE) blocked the effects of nicotine on MK-801-induced deficits while the α7 nAChR antagonist methyllycaconitine citrate salt hydrate (MLA) did not. These results suggest that NMDARs and nAChRs may mediate similar hippocampal processes involved in contextual fear conditioning. Furthermore, these results may have implications for developing effective therapeutics for the cognitive deficits associated with schizophrenia because a large subset of patients with schizophrenia exhibit cognitive deficits that may be related to NMDAR dysfunction and smoke at much higher rates than the healthy population, which may be an attempt to ameliorate cognitive deficits. PMID:21167848

  5. The effects of postnatal alcohol exposure and galantamine on the context pre-exposure facilitation effect and acetylcholine efflux using in vivo microdialysis

    PubMed Central

    Perkins, Amy E.; Fadel, Jim R.; Kelly, Sandra J.

    2015-01-01

    Fetal alcohol spectrum disorders (FASD) affect 2–5% of children. FASD have been shown to cause damage to multiple brain regions, but damage to the hippocampus specifically may explain deficits in learning and memory that are hallmark symptoms of FASD. The acetylcholine neurotransmitter system is a major input to the hippocampus and is a possible target of developmental alcohol exposure. Alcohol (3.0 g/kg/day) was administered via intragastric intubation to developing male rat pups (postnatal day [PD] 2–10; ethanol-treated [ET]), with controls receiving a sham intubation (IC) or no treatment (NC). In Experiment 1, in vivo microdialysis was used to measure acetylcholine efflux in adolescents (PD 32–35). During microdialysis, the effects of a high K+/Ca2+ aCSF solution (PD 32–33) and an acute galantamine (acetylcholinesterase [AChE] inhibitor) injection (2.0 mg/kg; PD 34–35) on acetylcholine efflux were measured. Alcohol-exposed animals did not differ in acetylcholine efflux at baseline. However, alcohol-exposed animals had a decrease in K+/Ca2+-induced acetylcholine efflux compared to non-treated controls, and an enhanced acetylcholine response to galantamine compared to both control groups. Experiment 2 tested whether chronic administration of galantamine (2.0 mg/kg; PD 11–30) could attenuate alcohol-induced learning deficits in the context pre-exposure facilitation effect (CPFE; PD 30–32). Neither chronic galantamine nor postnatal alcohol exposure influenced performance in the CPFE task. Immunohistochemistry was used to measure expression of choline acetyltransferase (ChAT; medial septum), vesicular acetylcholine transporter (vAChT; ventral CA1), and the alpha7 nicotinic acetylcholine receptor (α7 nAChR; ventral CA1) following microdialysis (Exp. 1) or chronic galantamine and behavioral testing (Exp. 2). Neither alcohol exposure nor behavioral testing significantly altered the density of vAChT or α7 nAChRs in the ventral CA1 region of the

  6. Interaction of 18-methoxycoronaridine with nicotinic acetylcholine receptors in different conformational states

    PubMed Central

    Arias, Hugo R.; Rosenberg, Avraham; Feuerbach, Dominik; Targowska-Duda, Katarzyna M.; Maciejewski, Ryszard; Jozwiak, Krzysztof; Moaddel, Ruin; Glick, Stanley D.; Wainer, Irving W.

    2013-01-01

    The interaction of 18-methoxycoronaridine (18-MC) with nicotinic acetylcholine receptors (AChRs) was compared with that for ibogaine and phencyclidine (PCP). The results established that 18-MC: (a) is more potent than ibogaine and PCP inhibiting (±)-epibatidine-induced AChR Ca2+ influx. The potency of 18-MC is increased after longer pre-incubation periods, which is in agreement with the enhancement of [3H]cytisine binding to resting but activatable Torpedo AChRs, (b) binds to a single site in the Torpedo AChR with high affinity and inhibits [3H]TCP binding to desensitized AChRs in a steric fashion, suggesting the existence of overlapping sites. This is supported by our docking results indicating that 18-MC interacts with a domain located between the serine (position 6′) and valine (position 13′) rings, and (c) inhibits [3H]TCP, [3H] ibogaine, and [3H]18-MC binding to desensitized AChRs with higher affinity compared to resting AChRs. This can be partially attributed to a slower dissociation rate from the desensitized AChR compared to that from the resting AChR. The enthalpic contribution is more important than the entropic contribution when 18-MC binds to the desensitized AChR compared to that for the resting AChR, and vice versa. Ibogaine analogs inhibit the AChR by interacting with a luminal domain that is shared with PCP, and by inducing desensitization. PMID:20303928

  7. Crystal structures of Lymnaea stagnalis AChBP in complex with neonicotinoid insecticides imidacloprid and clothianidin

    PubMed Central

    Ihara, Makoto; Okajima, Toshihide; Yamashita, Atsuko; Oda, Takuma; Hirata, Koichi; Nishiwaki, Hisashi; Morimoto, Takako; Akamatsu, Miki; Ashikawa, Yuji; Kuroda, Shun’ichi; Mega, Ryosuke; Kuramitsu, Seiki; Sattelle, David B.

    2008-01-01

    Neonicotinoid insecticides, which act on nicotinic acetylcholine receptors (nAChRs) in a variety of ways, have extremely low mammalian toxicity, yet the molecular basis of such actions is poorly understood. To elucidate the molecular basis for nAChR–neonicotinoid interactions, a surrogate protein, acetylcholine binding protein from Lymnaea stagnalis (Ls-AChBP) was crystallized in complex with neonicotinoid insecticides imidacloprid (IMI) or clothianidin (CTD). The crystal structures suggested that the guanidine moiety of IMI and CTD stacks with Tyr185, while the nitro group of IMI but not of CTD makes a hydrogen bond with Gln55. IMI showed higher binding affinity for Ls-AChBP than that of CTD, consistent with weaker CH–π interactions in the Ls-AChBP–CTD complex than in the Ls-AChBP–IMI complex and the lack of the nitro group-Gln55 hydrogen bond in CTD. Yet, the NH at position 1 of CTD makes a hydrogen bond with the backbone carbonyl of Trp143, offering an explanation for the diverse actions of neonicotinoids on nAChRs. PMID:18338186

  8. Are linear AChR epitopes the real culprit in ocular myasthenia gravis?

    PubMed

    Wu, Xiaorong; Tüzün, Erdem

    2017-02-01

    Extraocular muscle weakness occurs in most of the myasthenia gravis (MG) patients and it is often the initial complaint. Approximately 10-20% of MG patients with extraocular muscle weakness display only ocular symptoms and rest of the patients subsequently develop generalized muscle weakness. It is not entirely clear why some MG patients develop only ocular symptoms and why extraocular muscle weakness almost always precedes generalized muscle weakness. These facts are often explained by increased susceptibility of extraocular muscles due to their reduced endplate safety factor and lower complement inhibitor expression. Findings of a recently developed animal model of ocular MG suggest that additional factors might be in play. While immunization of HLA transgenic and wild-type (WT) mice with the native acetylcholine receptor (AChR) pentamer carrying conformational epitopes generates severe generalized muscle weakness, immunization of the same mouse strains with recombinant unfolded AChR subunits containing linear epitopes induces ptosis with or without mild generalized muscle weakness. Notably, immunization of mice with deficient T helper cell-mediated antigen presentation with recombinant AChR subunits or whole native AChR pentamer also induces ocular symptoms, AChR-reactive B cells and AChR antibodies. Based on these findings, we hypothesize that ocular symptoms observed in the earlier stages of MG might be triggered by linear and non-conformational AChR epitopes expressed by thymic cells or invading microorganisms. This initial AChR autoimmunity might be managed by T cell-independent and B cell mediated mechanisms yielding low affinity AChR antibodies. These antibodies are putatively capable of inducing muscle weakness only in extraocular muscles which have increased vulnerability due to their inherent biological properties. After this initial attack, as AChR bearing immune complexes form and the immune system gains access to the native AChR expressed by muscle

  9. α7nAchR/NMDAR coupling affects NMDAR function and object recognition.

    PubMed

    Li, Shupeng; Nai, Qiang; Lipina, Tatiana V; Roder, John C; Liu, Fang

    2013-12-20

    The α7 nicotinic acetylcholine receptor (nAchR) and NMDA glutamate receptor (NMDAR) are both ligand-gated ion channels permeable to Ca2+ and Na+. Previous studies have demonstrated functional modulation of NMDARs by nAchRs, although the molecular mechanism remains largely unknown. We have previously reported that α7nAchR forms a protein complex with the NMDAR through a protein-protein interaction. We also developed an interfering peptide that is able to disrupt the α7nAchR-NMDAR complex and blocks cue-induced reinstatement of nicotine-seeking in rat models of relapse. In the present study, we investigated whether the α7nAchR-NMDAR interaction is responsible for the functional modulation of NMDAR by α7nAchR using both electrophysiological and behavioral tests. We have found that activation of α7nAchR upregulates NMDAR-mediated whole cell currents and LTP of mEPSC in cultured hippocampal neurons, which can be abolished by the interfering peptide that disrupts the α7nAchR-NMDAR interaction. Moreover, administration of the interfering peptide in mice impairs novel object recognition but not Morris water maze performance. Our results suggest that α7nAchR/NMDAR coupling may selectively affect some aspects of learning and memory.

  10. Rescue of Amyloid-Beta-Induced Inhibition of Nicotinic Acetylcholine Receptors by a Peptide Homologous to the Nicotine Binding Domain of the Alpha 7 Subtype

    PubMed Central

    Trujillo, Cleber A.; Sathler, Luciana B.; Juliano, Maria A.; Juliano, Luiz; Ulrich, Henning; Ferreira, Sergio T.

    2013-01-01

    Alzheimer's disease (AD) is characterized by brain accumulation of the neurotoxic amyloid-β peptide (Aβ) and by loss of cholinergic neurons and nicotinic acetylcholine receptors (nAChRs). Recent evidence indicates that memory loss and cognitive decline in AD correlate better with the amount of soluble Aβ than with the extent of amyloid plaque deposits in affected brains. Inhibition of nAChRs by soluble Aβ40 is suggested to contribute to early cholinergic dysfunction in AD. Using phage display screening, we have previously identified a heptapeptide, termed IQ, homologous to most nAChR subtypes, binding with nanomolar affinity to soluble Aβ40 and blocking Aβ-induced inhibition of carbamylcholine-induced currents in PC12 cells expressing α7 nAChRs. Using alanine scanning mutagenesis and whole-cell current recording, we have now defined the amino acids in IQ essential for reversal of Aβ40 inhibition of carbamylcholine-induced responses in PC12 cells, mediated by α7 subtypes and other endogenously expressed nAChRs. We further investigated the effects of soluble Aβ, IQ and analogues of IQ on α3β4 nAChRs recombinantly expressed in HEK293 cells. Results show that nanomolar concentrations of soluble Aβ40 potently inhibit the function of α3β4 nAChRs, and that subsequent addition of IQ or its analogues does not reverse this effect. However, co-application of IQ makes the inhibition of α3β4 nAChRs by Aβ40 reversible. These findings indicate that Aβ40 inhibits different subtypes of nAChRs by interacting with specific receptor domains homologous to the IQ peptide, suggesting that IQ may be a lead for novel drugs to block the inhibition of cholinergic function in AD. PMID:23894286

  11. Cocaine inhibition of nicotinic acetylcholine receptors influences dopamine release

    PubMed Central

    Acevedo-Rodriguez, Alexandra; Zhang, Lifen; Zhou, Fuwen; Gong, Suzhen; Gu, Howard; De Biasi, Mariella; Zhou, Fu-Ming; Dani, John A.

    2014-01-01

    Nicotinic acetylcholine receptors (nAChRs) potently regulate dopamine (DA) release in the striatum and alter cocaine's ability to reinforce behaviors. Since cocaine is a weak nAChR inhibitor, we hypothesized that cocaine may alter DA release by inhibiting the nAChRs in DA terminals in the striatum and thus contribute to cocaine's reinforcing properties primarily associated with the inhibition of DA transporters. We found that biologically relevant concentrations of cocaine can mildly inhibit nAChR-mediated currents in midbrain DA neurons and consequently alter DA release in the dorsal and ventral striatum. At very high concentrations, cocaine also inhibits voltage-gated Na channels in DA neurons. Furthermore, our results show that partial inhibition of nAChRs by cocaine reduces evoked DA release. This diminution of DA release via nAChR inhibition more strongly influences release evoked at low or tonic stimulation frequencies than at higher (phasic) stimulation frequencies, particularly in the dorsolateral striatum. This cocaine-induced shift favoring phasic DA release may contribute to the enhanced saliency and motivational value of cocaine-associated memories and behaviors. PMID:25237305

  12. Functional somato-dendritic α7-containing nicotinic acetylcholine receptors in the rat basolateral amygdala complex

    PubMed Central

    Klein, Rebecca C; Yakel, Jerrel L

    2006-01-01

    Multiple subtypes of nicotinic acetylcholine receptors (nAChRs) are expressed in the CNS. The amygdala complex, the limbic structure important for emotional memory formation, receives cholinergic innervation from the basal forebrain. Although cholinergic drugs have been shown to regulate passive avoidance performance via the amygdala, the neuronal subtypes and circuits involved in this regulation are unknown. In the present study, whole-cell patch-clamp electrophysiological techniques were used to identify and characterize the presence of functional somato-dendritic nAChRs within the basolateral complex of the amygdala. Pressure-application of acetylcholine (ACh; 2 mm) evoked inward current responses in a subset of neurons from both the lateral (49%) and basolateral nuclei (72%). All responses displayed rapid activation kinetics, and were blocked by the α7-selective antagonist methyllycaconitine. In addition, the α7-selective agonist choline induced inward current responses that were similar to ACh-evoked responses. Spiking patterns were consistent with pyramidal class I neurons (the major neuronal type in the basolateral complex); however, there was no correlation between firing frequency and the response to ACh. The local photolysis of caged carbachol demonstrated that the functional expression of nAChRs is located both on the soma and dendrites. This is the first report demonstrating the presence of functional nAChR-mediated current responses from rat amygdala slices, where they may be playing a significant role in fear and aversively motivated memory. PMID:16931547

  13. Effect of nitro-L-arginine on electrical and mechanical responses to acetylcholine in the superior mesenteric artery from stroke-prone hypertensive rat

    PubMed Central

    Ghisdal, Philippe; Godfraind, Théophile; Morel, Nicole

    1999-01-01

    High salt diet is known to aggravate the vascular pathology in spontaneously hypertensive stroke-prone rats (SHR-SP). The aim of the present study was to assess the involvement of endothelial dysfunction in this effect. Contractile tension and membrane potential were simultaneously recorded in superior mesenteric artery rings of untreated and NaCl-loaded (1% NaCl in the drinking water) SHR-SP and normotensive Wistar Kyoto rats (WKY).In unstimulated artery, hyperpolarization evoked by acetylcholine was not different in WKY and in NaCl-loaded WKY; it was reduced in SHR-SP and further reduced in NaCl-loaded SHR-SP. Hyperpolarization was unaffected by Nω-nitro-L-arginine (L-NA) but was abolished in high-KCl solution.In noradrenaline-stimulated artery, ACh-evoked hyperpolarization and relaxation were not different in WKY and in SHR-SP. NaCl-treatment did not affect the responses to ACh in WKY but decreased maximum relaxation in SHR-SP from 93±2% to 72±7% of the contraction. In WKY, in NaCl-loaded WKY and in SHR-SP, L-NA similarly shifted the concentration-relaxation curve to ACh to the right and depressed its maximum but L-NA did not affect the hyperpolarization to ACh. In NaCl-loaded SHR-SP, L-NA blunted the effects of ACh on membrane potential and on contraction.The NO donor SNAP abolished the depolarization and the contraction evoked by noradrenaline with the same potency in WKY and in untreated SHR-SP but was more potent in NaCl-loaded SHR-SP.In KCl-contracted arteries the relaxations to ACh were not different in WKY and SHR-SP but NaCl-loaded SHR-SP were more sensitive to ACh.The results showed that NaCl-rich diet markedly reduced the L-NA-resistant responses to ACh and increased the sensitivity to NO in SHR-SP. PMID:10602331

  14. The induction of nitric oxide-mediated relaxation of human isolated pulmonary arteries by PACAP

    PubMed Central

    Cardell, Lars Olaf; Hjert, Ola; Uddman, Rolf

    1997-01-01

    The effects of pituitary adenylate cyclase-activating peptide (PACAP) and vasoactive intestinal peptide (VIP) were analysed in human isolated circular segments of pulmonary arteries. Guinea-pig pulmonary arteries were used for comparison. The responses obtained were analysed in relation to the vascular endothelium and the nitric oxide (NO) synthase inhibitor NG-monomethyl L-arginine (L-NMMA).PACAP and VIP induced concentration-dependent relaxations of precontracted pulmonary arteries. The maximal dilator response (Imax,%) and the potency (pEC50 value) were the same for both peptides, and there were no differences in the effects obtained on human and guinea-pig segments. PACAP and VIP were both more potent that acetylcholine (ACh).Removal of the vascular endothelium abolished the PACAP induced dilator response in pulmonary arteries from both species. The VIP induced dilatation was unaffected, whereas the response to ACh was abolished. L-NMMA given before PACAP inhibited the dilatation. Furthermore, L-NMMA also reversed the dilatation already induced by PACAP and excess concentrations of L-arginine restored the dilator response of the L-NMMA treated arteries.PACAP is a potent dilator of human pulmonary arteries. Although the dilator effect seems to be similar in amplitude to the one induced by VIP, the present results suggest differences in the underlying mechanisms of action (endothelium-dependency) between the two peptides. PMID:9134222

  15. Diacylglycerol levels modulate the cellular distribution of the nicotinic acetylcholine receptor.

    PubMed

    Kamerbeek, Constanza B; Mateos, Melina V; Vallés, Ana S; Pediconi, María F; Barrantes, Francisco J; Borroni, Virginia

    2016-05-01

    Diacylglycerol (DAG), a second messenger involved in different cell signaling cascades, activates protein kinase C (PKC) and D (PKD), among other kinases. The present work analyzes the effects resulting from the alteration of DAG levels on neuronal and muscle nicotinic acetylcholine receptor (AChR) distribution. We employ CHO-K1/A5 cells, expressing adult muscle-type AChR in a stable manner, and hippocampal neurons, which endogenously express various subtypes of neuronal AChR. CHO-K1/A5 cells treated with dioctanoylglycerol (DOG) for different periods showed augmented AChR cell surface levels at short incubation times (30min-4h) whereas at longer times (18h) the AChR was shifted to intracellular compartments. Similarly, in cultured hippocampal neurons surface AChR levels increased as a result of DOG incubation for 4h. Inhibition of endogenous DAG catabolism produced changes in AChR distribution similar to those induced by DOG treatment. Specific enzyme inhibitors and Western blot assays revealed that DAGs exert their effect on AChR distribution through the modulation of the activity of classical PKC (cPKC), novel PKC (nPKC) and PKD activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Effect of ethanol at clinically relevant concentrations on atrial inward rectifier potassium current sensitive to acetylcholine.

    PubMed

    Bébarová, Markéta; Matejovič, Peter; Pásek, Michal; Hořáková, Zuzana; Hošek, Jan; Šimurdová, Milena; Šimurda, Jiří

    2016-10-01

    Alcohol intoxication tends to induce arrhythmias, most often the atrial fibrillation. To elucidate arrhythmogenic mechanisms related to alcohol consumption, the effect of ethanol on main components of the ionic membrane current is investigated step by step. Considering limited knowledge, we aimed to examine the effect of clinically relevant concentrations of ethanol (0.8-80 mM) on acetylcholine-sensitive inward rectifier potassium current I K(Ach). Experiments were performed by the whole-cell patch clamp technique at 23 ± 1 °C on isolated rat and guinea-pig atrial myocytes, and on expressed human Kir3.1/3.4 channels. Ethanol induced changes of I K(Ach) in the whole range of concentrations applied; the effect was not voltage dependent. The constitutively active component of I K(Ach) was significantly increased by ethanol with the maximum effect (an increase by ∼100 %) between 8 and 20 mM. The changes were comparable in rat and guinea-pig atrial myocytes and also in expressed human Kir3.1/3.4 channels (i.e., structural correlate of I K(Ach)). In the case of the acetylcholine-induced component of I K(Ach), a dual ethanol effect was apparent with a striking heterogeneity of changes in individual cells. The effect correlated with the current magnitude in control: the current was increased by eth-anol in the cells showing small current in control and vice versa. The average effect peaked at 20 mM ethanol (an increase of the current by ∼20 %). Observed changes of action potential duration agreed well with the voltage clamp data. Ethanol significantly affected both components of I K(Ach) even in concentrations corresponding to light alcohol consumption.

  17. [Role of acetylcholine in gelsenicine-induced death in mice].

    PubMed

    Lai, Zhou-Yi; Wang, Hai-Bo; Lv, Rui-Ling; Tan, Qiu-Chan; Deng, Zhi-Qin; Wang, Yuan; Sun, Xiao-Xue; Wu, Jia-Bao; Zhu, Lin-Yan; Wang, Lei; Chen, Li-Xin; Ye, Wen-Cai; Wang, Li-Wei

    2016-06-25

    The aim of this study was to investigate the relationship between the acetylcholine concentration in the blood and gelsenicine-induced death in mice. Kunming mice were given intraperitoneal injections of normal saline, gelsenicine or different doses of acetylcholine chloride. Atropine was given to the mice which received gelsenicine or medium dose acetylcholine chloride injection. The blood was sampled immediately when the mice died or survived for 20 min after injection. The acetylcholine concentration and acetylcholinesterase activity in the blood were measured by the testing kits, and the mortality was calculated and analyzed. The results showed that half lethal dose of gelsenicine (0.15 mg/kg) reduced the acetylcholinesterase activity and increased the blood acetylcholine concentration. The blood acetylcholine concentration of the dead mice in the gelsenicine group was increased to 43.0 μg/mL (from 31.1 μg/mL in the control), which was lower than that (53.9 μg/mL) of the dead mice in the medium dose acetylcholine chloride group, but almost equal to that (42.7 μg/mL) of the survival mice in the medium dose acetylcholine chloride group. Atropine could successfully rescue the mice from acetylcholine poisoning, but its efficiency of rescuing the mice from gelsenicine intoxication was weak. These results suggest that gelsenicine can inhibit acetylcholinesterase activity and increase blood acetylcholine concentration, but the accumulation of acetylcholine may not be the only or main cause of the death induced by gelsenicine in mice.

  18. Role of acetylcholine receptors in proliferation and differentiation of P19 embryonal carcinoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Resende, R.R.; Alves, A.S.; Britto, L.R.G

    2008-04-15

    Coordinated proliferation and differentiation of progenitor cells is the base for production of appropriate numbers of neurons and glia during neuronal development in order to establish normal brain functions. We have used murine embryonal carcinoma P19 cells as an in vitro model for early differentiation to study participation of nicotinic (nAChR) and muscarinic acetylcholine (mAChR) receptors in the proliferation of neural progenitor cells and their differentiation to neurons. We have previously shown that functional nicotinic acetylcholine receptors (nAChRs) already expressed in embryonic cells mediate elevations in cytosolic free calcium concentration ([Ca{sup 2+}]{sub i}) via calcium influx through nAChR channels whereasmore » intracellular stores contribute to nAChR- and mAChR-mediated calcium fluxes in differentiated cells [Resende et al., Cell Calcium 43 (2008) 107-121]. In the present study, we have demonstrated that nicotine provoked inhibition of proliferation in embryonic cells as determined by BrdU labeling. However, in neural progenitor cells nicotine stimulated proliferation which was reversed in the presence of inhibitors of calcium mobilization from intracellular stores, indicating that liberation of intracellular calcium contributed to this proliferation induction. Muscarine induced proliferation stimulation in progenitor cells by activation of G{alpha}{sub q/11}-coupled M{sub 1}, M{sub 3} and M{sub 5} receptors and intracellular calcium stores, whereas G{alpha}{sub i/o}-protein coupled M{sub 2} receptor activity mediated neuronal differentiation.« less

  19. Sodium ion transport participates in non-neuronal acetylcholine release in the renal cortex of anesthetized rabbits.

    PubMed

    Shimizu, Shuji; Akiyama, Tsuyoshi; Kawada, Toru; Sata, Yusuke; Turner, Michael James; Fukumitsu, Masafumi; Yamamoto, Hiromi; Kamiya, Atsunori; Shishido, Toshiaki; Sugimachi, Masaru

    2017-09-01

    This study examined the mechanism of release of endogenous acetylcholine (ACh) in rabbit renal cortex by applying a microdialysis technique. In anesthetized rabbits, a microdialysis probe was implanted into the renal cortex and perfused with Ringer's solution containing high potassium concentration, high sodium concentration, a Na + /K + -ATPase inhibitor (ouabain), or an epithelial Na + channel blocker (benzamil). Dialysate samples were collected at baseline and during exposure to each agent, and ACh concentrations in the samples were measured by high-performance liquid chromatography. High potassium had no effect on renal ACh release. High sodium increased dialysate ACh concentrations significantly. Ouabain increased dialysate ACh concentration significantly. Benzamil decreased dialysate ACh concentrations significantly both at baseline and under high sodium. The finding that high potassium-induced depolarization does not increase ACh release suggests that endogenous ACh is released in renal cortex mainly by non-neuronal mechanism. Sodium ion transport may be involved in the non-neuronal ACh release.

  20. AGE-RELATED EFFECTS OF CHLORPYRIFOS ON ACETYLCHOLINE RELEASE IN RAT BRAIN. (R825811)

    EPA Science Inventory

    Chlorpyrifos (CPF) is an organophosphorus insecticide that elicits toxicity through inhibition of acetylcholinesterase (AChE). Young animals are markedly more sensitive than adults to the acute toxicity of CPF. We evaluated acetylcholine (ACh) release and its muscarinic recept...

  1. Functional analysis of Torpedo californica nicotinic acetylcholine receptors in multiple activation states by SSM-based electrophysiology.

    PubMed

    Niessen, K V; Muschik, S; Langguth, F; Rappenglück, S; Seeger, T; Thiermann, H; Worek, F

    2016-04-15

    Organophosphorus compounds (OPC), i.e. nerve agents or pesticides, are highly toxic due to their strong inhibition potency against acetylcholinesterase (AChE). Inhibited AChE results in accumulation of acetylcholine in the synaptic cleft and thus the desensitisation of the nicotinic acetylcholine receptor (nAChR) in the postsynaptic membrane is provoked. Direct targeting of nAChR to reduce receptor desensitisation might be an alternative therapeutic approach. For drug discovery, functional properties of potent therapeutic candidates need to be investigated in addition to affinity properties. Solid supported membrane (SSM)-based electrophysiology is useful for functional characterisation of ligand-gated ion channels like nAChRs, as charge translocations via capacitive coupling of the supporting membrane can be measured. By varying the agonist (carbamoylcholine) concentration, different functional states of the nAChR were initiated. Using plasma membrane preparations obtained from Torpedo californica electric organ, functional properties of selected nAChR ligands and non-oxime bispyridinium compounds were investigated. Depending on overall-size, the bispyridinium compounds enhanced or inhibited cholinergic signals induced by 100 μM carbamoylcholine. Applying excessive concentrations of the agonist carbamoylcholine provoked desensitisation of the nAChRs, whereas addition of bispyridinium compounds bearing short alkyl linkers exhibited functional recovery of previously desensitised nAChRs. The results suggest that these non-oxime bispyridinium compounds possibly interacted with nAChR subtypes in a manner of a positive allosteric modulator (PAM). The described newly developed functional assay is a valuable tool for the assessment of functional properties of potential compounds such as nAChR modulating ligands, which might be a promising approach in the therapeutically treatment of OPC-poisonings. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Age-related changes in functional postsynaptic nicotinic acetylcholine receptor subunits in neurons of the laterodorsal tegmental nucleus, a nucleus important in drug addiction.

    PubMed

    Christensen, Mark H; Kohlmeier, Kristi A

    2016-03-01

    The earlier an individual initiates cigarette smoking, the higher the likelihood of development of dependency to nicotine, the addictive ingredient in cigarettes. One possible mechanism underlying this higher addiction liability is an ontogenetically differential cellular response induced by nicotine in neurons mediating the reinforcing or euphoric effects of this drug, which could arise from age-related differences in the composition of nicotinic acetylcholine receptor (nAChR) subunits. In the current study, we examined whether the subunit composition of nAChRs differed between neurons within the laterodorsal tegmentum (LDT), a nucleus importantly involved in drug addiction associated behaviours, across two periods of ontogeny in which nicotine-mediated excitatory responses were shown to depend on age. To this end, whole-cell patch-clamp recordings in mouse brain slices from identified LDT neurons, in combination with nAChR subunit-specific receptor antagonists, were conducted. Comparison of the contribution of different nAChR subunits to acetylcholine (ACh)-induced inward currents indicated that the contributions of the β2 and/or β4 and α7 nAChR subunits alter across age. Taken together, we conclude that across a limited ontogenetic period, there is plasticity in the subunit composition of nAChRs in LDT neurons. In addition, our data indicate, for the first time, functional presence of α6 nAChR subunits in LDT neurons within the age ranges studied. Changes in subunit composition of nAChRs across ontogeny could contribute to the age-related differential excitability induced by nicotine. Differences in the subunit composition of nAChRs within the LDT would be expected to contribute to ontogenetic-dependent outflow from the LDT to target regions, which include reward-related circuitry. © 2014 Society for the Study of Addiction.

  3. Modulation by acetylcholine of the electrically-evoked release of [3H]-acetylcholine from the ileum of the guinea-pig.

    PubMed Central

    Fosbraey, P.; Johnson, E. S.

    1980-01-01

    1 Acetylcholine (ACh) stores within neurones of the myenteric plexus of the guinea-pig were labelled with [3H]-choline and the influence of unlabelled ACh, atropine, or atropine and unlabelled ACh on the electrically-evoked output of [3H]-ACh was evaluated. 2 Electrical transmural stimulation (5 Hz) of the ileum led to an increase in the output of [3H]-ACh over that released spontaneously. Superfusion with unlabelled ACh (6.8 microM) caused a marked reduction in the release of [3H]-ACh which was reversed by atropine (3.5 microM). Atropine itself had no effect on the electrically-evoked [3H]-ACh. 3 These experiments provide further evidence for the existence in the guinea-pig ileum of neuronal muscarinic receptors for ACh subserving an inhibitory role on transmitter release. PMID:7378653

  4. AChR-specific immunosuppressive therapy of myasthenia gravis.

    PubMed

    Luo, Jie; Lindstrom, Jon

    2015-10-15

    Myasthenia gravis (MG) is an organ-specific autoimmune disease characterized by muscle fatigability. In most cases, it is mediated by autoantibodies targeting muscle nicotinic acetylcholine receptors (AChRs) at the neuromuscular junction. Experimental autoimmune myasthenia gravis (EAMG) is an animal model for MG, which is usually induced by immunization with AChR purified from fish electric organ. Pathological autoantibodies to AChRs are directed at the extracellular surface, especially the main immunogenic region (MIR). Current treatments for MG can help many but not all patients. Antigen-specific immunosuppressive therapy for MG that specifically suppresses the autoimmune response without affecting the entire immune system and avoids side effects of general immunosuppression is currently unavailable. Early attempts at antigen-specific immunosuppression for EAMG using AChR extracellular domain sequences that form epitopes for pathological autoantibodies risked provoking autoimmunity rather than suppressing it. We discovered a novel approach to specific immunosuppression of EAMG with a therapeutic vaccine consisting of bacterially-expressed human AChR cytoplasmic domains, which has the potential to specifically suppress MG without danger of causing exacerbation. This approach prevents development of chronic EAMG when initiated immediately after the acute phase of EAMG, and rapidly reverses established chronic EAMG when started during the chronic phase of EAMG. Successfully treated rats exhibited long-term resistance to re-induction of EAMG. In this review we also discuss the current understanding of the mechanisms by which the therapy works. Vaccination with AChR cytoplasmic domains in adjuvant is promising as a safe, antigen-specific, potent, effective, rapidly acting, and long lasting approach to therapy of MG. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Decreased contraction induced by endothelium-derived contracting factor in prolonged treatment of rat renal artery with endoplasmic reticulum stress inducer.

    PubMed

    Ando, Makoto; Matsumoto, Takayuki; Taguchi, Kumiko; Kobayashi, Tsuneo

    2018-05-04

    Recent evidence suggests that endoplasmic reticulum (ER) stress is involved in the regulation of various physiological functions, including those of the vascular system. However, the relationship between ER stress and vascular function is poorly understood. The endothelial cells control the vascular tone by releasing endothelium-derived relaxing factors and contracting factors (EDCFs). We hypothesized that tunicamycin, an inducer of ER stress, modifies endothelium-dependent contraction and prostaglandins (PGs), a major class of EDCFs, induced contractions in the rat renal artery in rats. An organ-culture technique was used to purely investigate the effects of ER stress on the vascular tissue. We observed that tunicamycin treatment (20 μg/mL for 23 ± 1 h) did not affect acetylcholine (ACh)-induced relaxation and decreased EDCF-mediated contractions under nitric oxide synthase (NOS) inhibition induced by ACh, ATP, or A23187 (a calcium ionophore) in the renal arteries. Under NOS inhibition, U46619 (a thromboxane A 2 mimetic)- and beraprost (a prostacyclin analog)-induced contractions were also decreased in the renal arteries of the tunicamycin-treated group (vs. vehicle), while PGE 2 - and PGF 2α -induced contractions were similar between the groups. Tunicamycin treatment slightly enhanced the contractions induced by phenylephrine, an α 1 adrenoceptor ligand. Isotonic high-K + -induced contractions were similar between the vehicle- and tunicamycin-treated groups. Another ER stress inducer, thapsigargin (4 μmol/L for 23 ± 1 h), also caused substantial reduction of ACh-induced EDCF-mediated contraction (vs. vehicle-treated group). In the cultured renal arteries, tunicamycin and thapsigargin increased the expression of binding immunoglobulin protein (BiP), an ER stress marker. In conclusion, ER stress induction directly affects renal arterial function, especially in reducing EDCF-mediated contractions.

  6. Nicotinic acetylcholine receptors in porcine hypophyseal intermediate lobe cells.

    PubMed Central

    Zhang, Z W; Feltz, P

    1990-01-01

    1. Acetylcholine (ACh) was found to depolarize isolated porcine intermediate lobe cells maintained in primary cells culture. We investigated the ACh-induced responses in both whole-cell and cell-attached configurations of the patch-clamp technique. 2. From noise analysis of ACh-evoked whole-cell currents, we estimated an elementary conductance of 20 pS and a channel open duration of about 1.7 ms at -60 mV. From single-channel recordings, we obtained a slope conductance of 26 pS and a mean open time of 1.8 ms at membrane potentials between -60 and -80 mV. 3. ACh-evoked responses were blocked by d-tubocurarine (d-TC), hexamethonium and mecamylamine, but were insensitive to alpha-bungarotoxin. These characteristics define a neuronal type of nicotinic receptors. 4. The whole-cell current induced by ACh showed a strong inward rectification with no outward current being obtained. This phenomenon was observed when the intracellular ion is either sodium or caesium, and even when Ca2+ and Mg2+ were totally removed from the intracellular medium. 5. ACh-gated channels in intermediate lobe cells were cation selective and were permeable to Na+ and Cs+. In Ca2(+)-free extracellular solution, single-channel conductances were much larger (46 pS) than in the presence of 2 mM-Ca2+ (26 pS). 6. The possibility of an excitatory cholinergic control of intermediate lobe cells is discussed. PMID:1693685

  7. Desensitization of the nicotinic acetylcholine receptor by diisopropylfluorophosphate.

    PubMed

    Eldefrawi, M E; Schweizer, G; Bakry, N M; Valdes, J J

    1988-01-01

    The interaction of diisopropylfluorophosphate (DFP) with the nicotinic acetylcholine (ACh) receptor of Torpedo electric organ was studied, using [3H]-phencyclidine ([3H]-PCP) as a reporter probe. Phencyclidine binds with different kinetics to resting, activated, and desensitized receptor conformations. Although DFP did not inhibit binding of [3H]-ACh or 125I-alpha-bungarotoxin (BGT) to the receptor recognition sites and potentiated in a time-dependent manner [3H]-PCP binding to the receptor's high-affinity allosteric site, it inhibited the ACh- or carbamylcholine-stimulated [3H]-PCP binding. This suggested that DFP bound to a third kind of site on the receptor and affected receptor conformation. Preincubation of the membranes with DFP increased the receptor's affinity for carbamylcholine by eightfold and raised the pseudo-first-order rate of [3H]-PCP binding to that of an agonist-desensitized receptor. Accordingly, it is suggested that DFP induces receptor desensitization by binding to a site that is distinct from the recognition or high-affinity noncompetitive sites.

  8. Decreased Spontaneous Electrical Activity and Acetylcholine at Myofascial Trigger Spots after Dry Needling Treatment: A Pilot Study.

    PubMed

    Liu, Qing-Guang; Liu, Lin; Huang, Qiang-Min; Nguyen, Thi-Tham; Ma, Yan-Tao; Zhao, Jia-Min

    2017-01-01

    The aims of this study are to investigate the changes in spontaneous electrical activities (SEAs) and in acetylcholine (ACh), acetylcholine receptor (AChR), and acetylcholine esterase (AChE) levels after dry needling at myofascial trigger spots in model rats. Forty-eight male Sprague-Dawley rats were divided into four groups. Thirty-six rats were assigned to three model groups, which underwent MTrSs modeling intervention. Twelve rats were assigned to the blank control (BC) group. After model construction, the 36 model rats were randomly subdivided into three groups according to treatment: MTrSs model control (MC) and two dry needling groups. One dry needling group received puncturing at MTrSs (DN-M), whereas the other underwent puncturing at non-MTrSs (DN-nM). Dry needling treatment will last for two weeks, once a week. SEAs and ACh, AChR, and AChE levels were measured after one-week rest of dry needling treatment. The amplitudes and frequencies of endplate noise (EPN) and endplate spike (EPS) significantly decreased after dry needling treatment in the DN-M group. Moreover, ACh and AChR levels significantly decreased, whereas AChE significantly increased after dry needling treatment in the DN-M group. Dry needling at the exact MTrSs is more effective than dry needling at non-MTrSs.

  9. Decreased Spontaneous Electrical Activity and Acetylcholine at Myofascial Trigger Spots after Dry Needling Treatment: A Pilot Study

    PubMed Central

    2017-01-01

    Objective The aims of this study are to investigate the changes in spontaneous electrical activities (SEAs) and in acetylcholine (ACh), acetylcholine receptor (AChR), and acetylcholine esterase (AChE) levels after dry needling at myofascial trigger spots in model rats. Materials and Methods Forty-eight male Sprague-Dawley rats were divided into four groups. Thirty-six rats were assigned to three model groups, which underwent MTrSs modeling intervention. Twelve rats were assigned to the blank control (BC) group. After model construction, the 36 model rats were randomly subdivided into three groups according to treatment: MTrSs model control (MC) and two dry needling groups. One dry needling group received puncturing at MTrSs (DN-M), whereas the other underwent puncturing at non-MTrSs (DN-nM). Dry needling treatment will last for two weeks, once a week. SEAs and ACh, AChR, and AChE levels were measured after one-week rest of dry needling treatment. Results The amplitudes and frequencies of endplate noise (EPN) and endplate spike (EPS) significantly decreased after dry needling treatment in the DN-M group. Moreover, ACh and AChR levels significantly decreased, whereas AChE significantly increased after dry needling treatment in the DN-M group. Conclusion Dry needling at the exact MTrSs is more effective than dry needling at non-MTrSs. PMID:28592980

  10. Synthesis of Selective Agonists for the α7 Nicotinic Acetylcholine Receptor with In Situ Click-Chemistry on Acetylcholine-Binding Protein Templates

    PubMed Central

    Yamauchi, John G.; Gomez, Kimberly; Grimster, Neil; Dufouil, Mikael; Nemecz, Ákos; Fotsing, Joseph R.; Ho, Kwok-Yiu; Talley, Todd T.; Sharpless, K. Barry; Fokin, Valery V.

    2012-01-01

    The acetylcholine-binding proteins (AChBPs), which serve as structural surrogates for the extracellular domain of nicotinic acetylcholine receptors (nAChRs), were used as reaction templates for in situ click-chemistry reactions to generate a congeneric series of triazoles from azide and alkyne building blocks. The catalysis of in situ azide-alkyne cycloaddition reactions at a dynamic subunit interface facilitated the synthesis of potentially selective compounds for nAChRs. We investigated compound sets generated in situ with soluble AChBP templates through pharmacological characterization with α7 and α4β2 nAChRs and 5-hydroxytryptamine type 3A receptors. Analysis of activity differences between the triazole 1,5-syn- and 1,4-anti-isomers showed a preference for the 1,4-anti-triazole regioisomers among nAChRs. To improve nAChR subtype selectivity, the highest-potency building block for α7 nAChRs, i.e., 3α-azido-N-methylammonium tropane, was used for additional in situ reactions with a mutated Aplysia californica AChBP that was made to resemble the ligand-binding domain of the α7 nAChR. Fourteen of 50 possible triazole products were identified, and their corresponding tertiary analogs were synthesized. Pharmacological assays revealed that the mutated binding protein template provided enhanced selectivity of ligands through in situ reactions. Discrete trends in pharmacological profiles were evident, with most compounds emerging as α7 nAChR agonists and α4β2 nAChR antagonists. Triazoles bearing quaternary tropanes and aromatic groups were most potent for α7 nAChRs. Pharmacological characterization of the in situ reaction products established that click-chemistry synthesis with surrogate receptor templates offered novel extensions of fragment-based drug design that were applicable to multisubunit ion channels. PMID:22784805

  11. Analysis of the negative inotropic effect of acetylcholine on frog atrial fibres.

    PubMed

    Nargeot, J; Garnier, D; Rougier, O

    1981-03-01

    Voltage-clamp experiments have been performed on frog atrial preparations in order to study the mechanism of the inotropic effect of acetylcholine (ACh) at various concentrations. The amplitude of the slow inward current (Is) is reduced even at low ACh concentrations; such low concentrations have little or no effect on potassium permeability. Dose-effect relationships for Is inhibition (Is/Is max) by ACh show a half amplitude dose (K0.5 around 8 X 10(-8) M ACh. The reduction of Is is attributed largely to a decrease of the maximal conductance of the slow channel (gs). Steady-state activation and inactivation parameters are not affected by ACh. Experiments in a Na-free solution (Na replaced by Li ions) or in a Ca-free solution (with EGTA) indicate that the "slow sodium current" is more sensitive to ACh than the "slow Ca current", although these two currents both seem to flow through the slow channel. The decrease of the phasic component of contraction observed in the presence of ACh is very well correlated with the decrease of Is (K0.5 = 8 X 10(-8) M ACh), while the increase of the tonic tension may be related to the outward potassium current induced by high concentrations of ACh. The significant difference between the half amplitude dose (K0.5) observed in the dose effect curves with ACh for Is inhibition (K0.5 = 8 X 10(-8) M) and for ACh-induced extra-current (K0.5 - 10(-6) M) may indicate the presence of two muscarinic receptors.

  12. Protective effect of prior physical conditioning on relaxing response of corpus cavernosum from rats made hypertensive by nitric oxide inhibition.

    PubMed

    Claudino, M A; Priviero, F B M; Camargo, E A; Teixeira, C E; De Nucci, G; Antunes, E; Zanesco, A

    2007-01-01

    The aim of this work was to evaluate the influence of run training on the responsiveness of corpus cavernosum (CC) from rats made hypertensive by treatment with nitric oxide (NO) synthesis inhibitor. Wistar rats were divided into sedentary control (C-SD), exercise training (C-TR), N(omega)-nitro-L-arginine methyl ester (L-NAME) sedentary (LN-SD) and L-NAME trained (LN-TR) groups. The run training program consisted in 8 weeks in a treadmill, 5 days/week, each session lasted 60 min. L-NAME treatment (2 and 10 mg/rat/day) started after 4 weeks of prior physical conditioning and lasted 4 weeks. Concentration-response curves were obtained for acetylcholine (ACh), sodium nitroprusside (SNP), sildenafil and BAY 41-2272. The effect of electrical field stimulation (EFS) on the relaxations responses of CC was evaluated. Run training prevented the arterial hypertension induced by L-NAME treatment (LN-SD: 135+/-2 and 141+/-2 mm Hg for both doses of L-NAME) compared to LN-SD groups (154+/-1 and 175+/-2 mm Hg, for 2 and 10 mg of L-NAME, respectively). Run training produced an increase in the maximal responses (E(max)) of CC for ACh (C-SD: 47+/-3; C-TR: 52+/-1; and LN-TR: 53+/-3%) and SNP (C-SD: 89+/-1; C-TR: 98+/-1; and LN-TR: 95+/-1%). Both potency and E(max) for ACh were reduced in a dose of 10 mg of L-NAME, and run training restored the reduction of E(max) for ACh. No changes were found for BAY 41-2271 and sildenafil. Relaxing responses to EFS was reduced by L-NAME treatment that was restored by prior physical conditioning. In conclusion, our study shows a beneficial effect of prior physical conditioning on the impaired CC relaxing responses in rats made hypertensive by chronic NO blockade.

  13. Muscarinic and nicotinic acetylcholine receptor agonists: current scenario in Alzheimer's disease therapy.

    PubMed

    Verma, Stuti; Kumar, Ashwini; Tripathi, Timir; Kumar, Awanish

    2018-04-16

    Alzheimer's disease (AD) has become the primary cause of dementia. It shows a progressive cognitive dysfunction with degenerating neurons. Acetylcholine receptors (AChRs) propagate the cognitive ability and it consists of two primary members namely muscarinic (mAChRs) and nicotinic receptors (nAChRs). Where mAChRs is G-protein coupled receptor, (nAChRs) are ligand-gated ion channels. The conventional therapeutic regimen for AD consists of three acetylcholinestearse inhibitors while a single NMDA receptor antagonist. Researchers around the globe are developing new and modifying the existing AChRs agonists to develop lead candidates with lower risk to benefit ratio where benefits clearly outweigh the adverse events. We have searched PubMed, MEDLINE, Google scholar, Science Direct and, Web of Science with keywords "Muscarinic/Nicotinic acetylcholine receptor, agonists and, AD". The literature search included articles written in English. Scientific relevance for clinical studies, basic science studies is eligibility criteria for articles referred in this paper. M1 is the primary muscarinic subtype while α7 is the primary nAChR subtype that is responsible for cognition and memory and these two have been the major recent experimental targets for mAChR agonist strategy. The last cholinergic receptor agonist to enter phase 3 trial was EVP-6124 (Enceniclin) but was withdrawn due to severe gastrointestinal adverse effects. We aim to present an overview of the efforts and achievements in targeting Muscarinic and Nicotinic acetylcholine receptor in the current review for development of better AD therapeutics. © 2018 Royal Pharmaceutical Society.

  14. Menthol Alone Upregulates Midbrain nAChRs, Alters nAChR Subtype Stoichiometry, Alters Dopamine Neuron Firing Frequency, and Prevents Nicotine Reward

    PubMed Central

    Henderson, Brandon J.; Wall, Teagan R.; Henley, Beverley M.; Kim, Charlene H.; Nichols, Weston A.; Moaddel, Ruin; Xiao, Cheng

    2016-01-01

    Upregulation of β2 subunit-containing (β2*) nicotinic acetylcholine receptors (nAChRs) is implicated in several aspects of nicotine addiction, and menthol cigarette smokers tend to upregulate β2* nAChRs more than nonmenthol cigarette smokers. We investigated the effect of long-term menthol alone on midbrain neurons containing nAChRs. In midbrain dopaminergic (DA) neurons from mice containing fluorescent nAChR subunits, menthol alone increased the number of α4 and α6 nAChR subunits, but this upregulation did not occur in midbrain GABAergic neurons. Thus, chronic menthol produces a cell-type-selective upregulation of α4* nAChRs, complementing that of chronic nicotine alone, which upregulates α4 subunit-containing (α4*) nAChRs in GABAergic but not DA neurons. In mouse brain slices and cultured midbrain neurons, menthol reduced DA neuron firing frequency and altered DA neuron excitability following nAChR activation. Furthermore, menthol exposure before nicotine abolished nicotine reward-related behavior in mice. In neuroblastoma cells transfected with fluorescent nAChR subunits, exposure to 500 nm menthol alone also increased nAChR number and favored the formation of (α4)3(β2)2 nAChRs; this contrasts with the action of nicotine itself, which favors (α4)2(β2)3 nAChRs. Menthol alone also increases the number of α6β2 receptors that exclude the β3 subunit. Thus, menthol stabilizes lower-sensitivity α4* and α6 subunit-containing nAChRs, possibly by acting as a chemical chaperone. The abolition of nicotine reward-related behavior may be mediated through menthol's ability to stabilize lower-sensitivity nAChRs and alter DA neuron excitability. We conclude that menthol is more than a tobacco flavorant: administered alone chronically, it alters midbrain DA neurons of the nicotine reward-related pathway. SIGNIFICANCE STATEMENT Menthol, the most popular flavorant for tobacco products, has been considered simply a benign flavor additive. However, as we show here

  15. Menthol Enhances the Desensitization of Human α3β4 Nicotinic Acetylcholine Receptors

    PubMed Central

    Ton, Hoai T.; Smart, Amanda E.; Aguilar, Brittany L.; Olson, Thao T.

    2015-01-01

    The α3β4 nicotinic acetylcholine receptor (nAChR) subtype is widely expressed in the peripheral and central nervous systems, including in airway sensory nerves. The nAChR subtype transduces the irritant effects of nicotine in tobacco smoke and, in certain brain areas, may be involved in nicotine addiction and/or withdrawal. Menthol, a widely used additive in cigarettes, is a potential analgesic and/or counterirritant at sensory nerves and may also influence nicotine’s actions in the brain. We examined menthol’s effects on recombinant human α3β4 nAChRs and native nAChRs in mouse sensory neurons. Menthol markedly decreased nAChR activity as assessed by Ca2+ imaging, 86Rb+ efflux, and voltage-clamp measurements. Coapplication of menthol with acetylcholine or nicotine increased desensitization, demonstrated by an increase in the rate and magnitude of the current decay and a reduction of the current integral. These effects increased with agonist concentration. Pretreatment with menthol followed by its washout did not affect agonist-induced desensitization, suggesting that menthol must be present during the application of agonist to augment desensitization. Notably, menthol acted in a voltage-independent manner and reduced the mean open time of single channels without affecting their conductance, arguing against a simple channel-blocking effect. Further, menthol slowed or prevented the recovery of nAChRs from desensitization, indicating that it probably stabilizes a desensitized state. Moreover, menthol at concentrations up to 1 mM did not compete for the orthosteric nAChR binding site labeled by [3H]epibatidine. Taken together, these data indicate that menthol promotes desensitization of α3β4 nAChRs by an allosteric action. PMID:25964258

  16. NMR structure and action on nicotinic acetylcholine receptors of water-soluble domain of human LYNX1.

    PubMed

    Lyukmanova, Ekaterina N; Shenkarev, Zakhar O; Shulepko, Mikhail A; Mineev, Konstantin S; D'Hoedt, Dieter; Kasheverov, Igor E; Filkin, Sergey Yu; Krivolapova, Alexandra P; Janickova, Helena; Dolezal, Vladimir; Dolgikh, Dmitry A; Arseniev, Alexander S; Bertrand, Daniel; Tsetlin, Victor I; Kirpichnikov, Mikhail P

    2011-03-25

    Discovery of proteins expressed in the central nervous system sharing the three-finger structure with snake α-neurotoxins provoked much interest to their role in brain functions. Prototoxin LYNX1, having homology both to Ly6 proteins and three-finger neurotoxins, is the first identified member of this family membrane-tethered by a GPI anchor, which considerably complicates in vitro studies. We report for the first time the NMR spatial structure for the water-soluble domain of human LYNX1 lacking a GPI anchor (ws-LYNX1) and its concentration-dependent activity on nicotinic acetylcholine receptors (nAChRs). At 5-30 μM, ws-LYNX1 competed with (125)I-α-bungarotoxin for binding to the acetylcholine-binding proteins (AChBPs) and to Torpedo nAChR. Exposure of Xenopus oocytes expressing α7 nAChRs to 1 μM ws-LYNX1 enhanced the response to acetylcholine, but no effect was detected on α4β2 and α3β2 nAChRs. Increasing ws-LYNX1 concentration to 10 μM caused a modest inhibition of these three nAChR subtypes. A common feature for ws-LYNX1 and LYNX1 is a decrease of nAChR sensitivity to high concentrations of acetylcholine. NMR and functional analysis both demonstrate that ws-LYNX1 is an appropriate model to shed light on the mechanism of LYNX1 action. Computer modeling, based on ws-LYNX1 NMR structure and AChBP x-ray structure, revealed a possible mode of ws-LYNX1 binding.

  17. Extracts and constituents of Leontopodium alpinum enhance cholinergic transmission: Brain ACh increasing and memory improving properties

    PubMed Central

    Hornick, Ariane; Schwaiger, Stefan; Rollinger, Judith M.; Vo, Nguyen Phung; Prast, Helmut; Stuppner, Hermann

    2012-01-01

    Leontopodium alpinum (‘Edelweiss’) was phytochemically investigated for constituents that might enhance cholinergic neurotransmission. The potency to increase synaptic availability of acetylcholine (ACh) in rat brain served as key property for the bioguided isolation of cholinergically active compounds using different chromatographic techniques. The dichlormethane (DCM) extract of the root, fractions and isolated constituents were injected i.c.v. and the effect on brain ACh was detected via the push–pull technique. The DCM extract enhanced extracellular ACh concentration in rat brain and inhibited acetylcholinesterase (AChE) in vitro. The extracellular level of brain ACh was significantly increased by the isolated sesquiterpenes, isocomene and 14-acetoxyisocomene, while silphiperfolene acetate and silphinene caused a small increasing tendency. Only silphiperfolene acetate showed in vitro AChE inhibitory activity, thus suggesting the other sesquiterpenes to stimulate cholinergic transmission by an alternative mechanism of action. Isocomene was further investigated with behavioural tasks in mice. It restored object recognition in scopolamine-impaired mice and showed nootropic effects in the T-maze alternation task in normal and scopolamine-treated mice. Additionally, this sesquiterpene reduced locomotor activity of untreated mice in the open field task, while the activity induced by scopolamine was abolished. The enhancement of synaptic availability of ACh, the promotion of alternation, and the amelioration of scopolamine-induced deficit are in accordance with a substance that amplifies cholinergic transmission. Whether the mechanism of action is inhibition of AChE or another pro-cholinergic property remains to be elucidated. Taken together, isocomene and related constituents of L. alpinum deserve further interest as potential antidementia agents in brain diseases associated with cholinergic deficits. PMID:18541221

  18. Neuronal nicotinic acetylcholine receptors: neuroplastic changes underlying alcohol and nicotine addictions

    PubMed Central

    Feduccia, Allison A.; Chatterjee, Susmita; Bartlett, Selena E.

    2012-01-01

    Addictive drugs can activate systems involved in normal reward-related learning, creating long-lasting memories of the drug's reinforcing effects and the environmental cues surrounding the experience. These memories significantly contribute to the maintenance of compulsive drug use as well as cue-induced relapse which can occur even after long periods of abstinence. Synaptic plasticity is thought to be a prominent molecular mechanism underlying drug-induced learning and memories. Ethanol and nicotine are both widely abused drugs that share a common molecular target in the brain, the neuronal nicotinic acetylcholine receptors (nAChRs). The nAChRs are ligand-gated ion channels that are vastly distributed throughout the brain and play a key role in synaptic neurotransmission. In this review, we will delineate the role of nAChRs in the development of ethanol and nicotine addiction. We will characterize both ethanol and nicotine's effects on nAChR-mediated synaptic transmission and plasticity in several key brain areas that are important for addiction. Finally, we will discuss some of the behavioral outcomes of drug-induced synaptic plasticity in animal models. An understanding of the molecular and cellular changes that occur following administration of ethanol and nicotine will lead to better therapeutic strategies. PMID:22876217

  19. The Role of Cholesterol in the Activation of Nicotinic Acetylcholine Receptors.

    PubMed

    Baenziger, John E; Domville, Jaimee A; Therien, J P Daniel

    2017-01-01

    Cholesterol is a potent modulator of the nicotinic acetylcholine receptor (nAChR) from Torpedo. Here, we review current understanding of the mechanisms underlying cholesterol-nAChR interactions in the context of increasingly available high-resolution structural and functional data. Cholesterol and other lipids influence function by conformational selection and kinetic mechanisms, stabilizing varying proportions of activatable vs nonactivatable conformations, as well as influencing the rates of transitions between conformational states. In the absence of cholesterol and anionic lipids, the nAChR adopts an uncoupled conformation that binds agonist but does not undergo agonist-induced conformational transitions-unless the nAChR is located in a relatively thick lipid bilayer, such as that found in cholesterol-rich lipid rafts. We highlight different sites of cholesterol action, including the lipid-exposed M4 transmembrane α-helix. Cholesterol and other lipids likely alter function by modulating interactions between M4 and the adjacent transmembrane α-helices, M1 and M3. These same interactions have been implicated in both the folding and trafficking of nAChRs to the cell surface. We evaluate the nature of cholesterol-nAChR interactions, considering the evidence supporting the roles of both direct binding to allosteric sites and cholesterol-induced changes in bulk membrane physical properties. © 2017 Elsevier Inc. All rights reserved.

  20. Inflammation-induced increase in nicotinic acetylcholine receptor current in cutaneous nociceptive DRG neurons from the adult rat.

    PubMed

    Zhang, X-L; Albers, K M; Gold, M S

    2015-01-22

    The goals of the present study were to determine (1) the properties of the nicotinic acetylcholine receptor (nAChR) currents in rat cutaneous dorsal root ganglion (DRG) neurons; (2) the impact of nAChR activation on the excitability of cutaneous DRG neurons; and (3) the impact of inflammation on the density and distribution of nAChR currents among cutaneous DRG neurons. Whole-cell patch-clamp techniques were used to study retrogradely labeled DRG neurons from naïve and complete Freund's adjuvant inflamed rats. Nicotine-evoked currents were detectable in ∼70% of the cutaneous DRG neurons, where only one of two current types, fast or slow currents based on rates of activation and inactivation, was present in each neuron. The biophysical and pharmacological properties of the fast current were consistent with nAChRs containing an α7 subunit while those of the slow current were consistent with nAChRs containing α3/β4 subunits. The majority of small diameter neurons with fast current were IB4- while the majority of small diameter neurons with slow current were IB4+. Preincubation with nicotine (1 μM) produced a transient (1 min) depolarization and increase in the excitability of neurons with fast current and a decrease in the amplitude of capsaicin-evoked current in neurons with slow current. Inflammation increased the current density of both slow and fast currents in small diameter neurons and increased the percentage of neurons with the fast current. With the relatively selective distribution of nAChR currents in putative nociceptive cutaneous DRG neurons, our results suggest that the role of these receptors in inflammatory hyperalgesia is likely to be complex and dependent on the concentration and timing of acetylcholine release in the periphery. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. The role of acetylcholine in cocaine addiction.

    PubMed

    Williams, Mark J; Adinoff, Bryon

    2008-07-01

    Central nervous system cholinergic neurons arise from several discrete sources, project to multiple brain regions, and exert specific effects on reward, learning, and memory. These processes are critical for the development and persistence of addictive disorders. Although other neurotransmitters, including dopamine, glutamate, and serotonin, have been the primary focus of drug research to date, a growing preclinical literature reveals a critical role of acetylcholine (ACh) in the experience and progression of drug use. This review will present and integrate the findings regarding the role of ACh in drug dependence, with a primary focus on cocaine and the muscarinic ACh system. Mesostriatal ACh appears to mediate reinforcement through its effect on reward, satiation, and aversion, and chronic cocaine administration produces neuroadaptive changes in the striatum. ACh is further involved in the acquisition of conditional associations that underlie cocaine self-administration and context-dependent sensitization, the acquisition of associations in conditioned learning, and drug procurement through its effects on arousal and attention. Long-term cocaine use may induce neuronal alterations in the brain that affect the ACh system and impair executive function, possibly contributing to the disruptions in decision making that characterize this population. These primarily preclinical studies suggest that ACh exerts a myriad of effects on the addictive process and that persistent changes to the ACh system following chronic drug use may exacerbate the risk of relapse during recovery. Ultimately, ACh modulation may be a potential target for pharmacological treatment interventions in cocaine-addicted subjects. However, the complicated neurocircuitry of the cholinergic system, the multiple ACh receptor subtypes, the confluence of excitatory and inhibitory ACh inputs, and the unique properties of the striatal cholinergic interneurons suggest that a precise target of cholinergic

  2. Suppression of ongoing experimental myasthenia by oral treatment with an acetylcholine receptor recombinant fragment

    PubMed Central

    Im, Sin-Hyeog; Barchan, Dora; Fuchs, Sara; Souroujon, Miriam C.

    1999-01-01

    Myasthenia gravis (MG) is an autoimmune disorder in which the nicotinic acetylcholine receptor (AChR) is the major autoantigen. In an attempt to develop an antigen-specific therapy for MG, we administered a nonmyasthenogenic recombinant fragment of AChR orally to rats. This fragment, corresponding to the extracellular domain of the human AChR α-subunit (Hα1-205), protected rats from subsequently induced experimental autoimmune myasthenia gravis (EAMG) and suppressed ongoing EAMG when treatment was initiated during either the acute or chronic phases of disease. Prevention and suppression of EAMG were accompanied by a significant decrease in AChR-specific humoral and cellular responses. The underlying mechanism for the Hα1-205–induced oral tolerance seems to be active suppression, mediated by a shift from a T-helper 1 (Th1) to a Th2/Th3 response. This shift was assessed by changes in the cytokine profile, a deviation of anti-AChR IgG isotypes from IgG2 to IgG1, and a suppressed AChR-specific delayed-type hypersensitivity response. Our results in experimental myasthenia suggest that oral administration of AChR-specific recombinant fragments may be considered for antigen-specific immunotherapy of myasthenia gravis. J. Clin. Invest. 104:1723–1730 (1999). PMID:10606626

  3. Unorthodox Acetylcholine Binding Sites Formed by α5 and β3 Accessory Subunits in α4β2* Nicotinic Acetylcholine Receptors.

    PubMed

    Jain, Akansha; Kuryatov, Alexander; Wang, Jingyi; Kamenecka, Theodore M; Lindstrom, Jon

    2016-11-04

    All nicotinic acetylcholine receptors (nAChRs) evolved from homomeric nAChRs in which all five subunits are involved in forming acetylcholine (ACh) binding sites at their interfaces. Heteromeric α4β2* nAChRs typically have two ACh binding sites at α4/β2 interfaces and a fifth accessory subunit surrounding the central cation channel. β2 accessory subunits do not form ACh binding sites, but α4 accessory subunits do at the α4/α4 interface in (α4β2) 2 α4 nAChRs. α5 and β3 are closely related subunits that had been thought to act only as accessory subunits and not take part in forming ACh binding sites. The effect of agonists at various subunit interfaces was determined by blocking homologous sites at these interfaces using the thioreactive agent 2-((trimethylammonium)ethyl) methanethiosulfonate (MTSET). We found that α5/α4 and β3/α4 interfaces formed ACh binding sites in (α4β2) 2 α5 and (α4β2) 2 β3 nAChRs. The α4/α5 interface in (β2α4) 2 α5 nAChRs also formed an ACh binding site. Blocking of these sites with MTSET reduced the maximal ACh evoked responses of these nAChRs by 30-50%. However, site-selective agonists NS9283 (for the α4/α4 site) and sazetidine-A (for the α4/β2 site) did not act on the ACh sites formed by the α5/α4 or β3/α4 interfaces. This suggests that unorthodox sites formed by α5 and β3 subunits have unique ligand selectivity. Agonists or antagonists for these unorthodox sites might be selective and effective drugs for modulating nAChR function to treat nicotine addiction and other disorders. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Effects of cannabinoids on tension induced by acetylcholine and choline in slow skeletal muscle fibers of the frog.

    PubMed

    Trujillo, Xóchitl; Sánchez-Pastor, Enrique; Andrade, Felipa; Huerta, Miguel

    2014-01-01

    We investigated the effects of cannabinoids on acetylcholine (ACh) or choline contractures in slow skeletal muscle fibers from Rana pipiens. Bundles of cruralis muscle fibers were incubated with the cannabinoid receptor 1 (CB1) agonist, arachidonylcyclopropylamide (ACPA), which diminished the maximum isometric tension by 10 % and the total tension by 5 % of the ACh contracture, and 40 and 22 % of the choline contracture, respectively. Preincubation with the CB1 antagonist, AM281, or with pertussis toxin (PTX) completely blocked the effect of ACPA on the ACh contracture. On the other hand, the decrease in choline contracture by ACPA was only partially blocked by AM281 (~16 % decrease), PTX (20 %), or by dantrolene (~46 %). Our results show that ACPA modulates ACh and choline contractures, and suggest that this effect involves the participation of CB1, the ACh receptor, and -RyR in ACh contractures. For choline contractures, ACPA may also be acting through cannabinoid receptor-independent mechanisms.

  5. Phosphocholine - an agonist of metabotropic but not of ionotropic functions of α9-containing nicotinic acetylcholine receptors.

    PubMed

    Richter, K; Mathes, V; Fronius, M; Althaus, M; Hecker, A; Krasteva-Christ, G; Padberg, W; Hone, A J; McIntosh, J M; Zakrzewicz, A; Grau, V

    2016-06-28

    We demonstrated previously that phosphocholine and phosphocholine-modified macromolecules efficiently inhibit ATP-dependent release of interleukin-1β from human and murine monocytes by a mechanism involving nicotinic acetylcholine receptors (nAChR). Interleukin-1β is a potent pro-inflammatory cytokine of innate immunity that plays pivotal roles in host defence. Control of interleukin-1β release is vital as excessively high systemic levels cause life threatening inflammatory diseases. In spite of its structural similarity to acetylcholine, there are no other reports on interactions of phosphocholine with nAChR. In this study, we demonstrate that phosphocholine inhibits ion-channel function of ATP receptor P2X7 in monocytic cells via nAChR containing α9 and α10 subunits. In stark contrast to choline, phosphocholine does not evoke ion current responses in Xenopus laevis oocytes, which heterologously express functional homomeric nAChR composed of α9 subunits or heteromeric receptors containing α9 and α10 subunits. Preincubation of these oocytes with phosphocholine, however, attenuated choline-induced ion current changes, suggesting that phosphocholine may act as a silent agonist. We conclude that phophocholine activates immuno-modulatory nAChR expressed by monocytes but does not stimulate canonical ionotropic receptor functions.

  6. Selective activation of α7 nicotinic acetylcholine receptor by PHA-543613 improves Aβ25-35-mediated cognitive deficits in mice.

    PubMed

    Sadigh-Eteghad, S; Talebi, M; Mahmoudi, J; Babri, S; Shanehbandi, D

    2015-07-09

    Agonists of α7 nicotinic acetylcholine receptors (nAChRs) are currently being considered as therapeutic approaches for managing cognitive deficits in Alzheimer's disease (AD). Present study was designed to evaluate the effect of α7 nAChR selective activation by PHA-543613 (PHA) on beta-amyloid (Aβ)25-35-mediated cognitive deficits in mice. For this purpose, PHA (1mg/kg, i.p.), a selective α7 nAChR agonist, and galantamine (Gal) (3mg/kg, s.c.), an acetylcholine-esterase inhibitor (AChEI) effects on α7 nAChR were tested in Aβ25-35-received (intracerebroventricular, 10 nmol) mice model of AD. Methyllycaconitine (MLA) (1mg/kg, i.p.), a α7 nAChR antagonist, was used for receptor blockage effects evaluation. Working and reference memory in animals was assessed by the Morris water maze (MWM) task. The mRNA and protein levels of α7 subunit were analyzed by real-time PCR and Western blotting, respectively. PHA and Gal, ameliorate Aβ-impaired working and reference memory. However, Gal had less effect than PHA in this regard. Pretreatment with MLA reverses both Gal and PHA effects in MWM. PHA and Gal treatment prevent Aβ-induced α7 subunit protein reduction, but Gal has lesser effect than PHA. This effect blocked by pretreatment with MLA. In neither the pretreatment nor treatment group, the mRNA levels of nAChR α7 subunit were significantly changed. Therefore, α7 nAChR activation, reduces Aβ-induced cognitive deficits and increases the α7 protein level and subsequent neuron survival. However, blockage of receptor, increases Aβ toxicity and cognitive impairment and reduces the α7 nAChR protein level and flowing neuroprotection. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Acute but not chronic metabolic acidosis potentiates the acetylcholine-induced reduction in blood pressure: an endothelium-dependent effect

    PubMed Central

    Celotto, A.C.; Ferreira, L.G.; Capellini, V.K.; Albuquerque, A.A.S.; Rodrigues, A.J.; Evora, P.R.B.

    2015-01-01

    Metabolic acidosis has profound effects on vascular tone. This study investigated the in vivo effects of acute metabolic acidosis (AMA) and chronic metabolic acidosis (CMA) on hemodynamic parameters and endothelial function. CMA was induced by ad libitum intake of 1% NH4Cl for 7 days, and AMA was induced by a 3-h infusion of 6 M NH4Cl (1 mL/kg, diluted 1:10). Phenylephrine (Phe) and acetylcholine (Ach) dose-response curves were performed by venous infusion with simultaneous venous and arterial blood pressure monitoring. Plasma nitrite/nitrate (NOx) was measured by chemiluminescence. The CMA group had a blood pH of 7.15±0.03, which was associated with reduced bicarbonate (13.8±0.98 mmol/L) and no change in the partial pressure of arterial carbon dioxide (PaCO2). The AMA group had a pH of 7.20±0.01, which was associated with decreases in bicarbonate (10.8±0.54 mmol/L) and PaCO2 (47.8±2.54 to 23.2±0.74 mmHg) and accompanied by hyperventilation. Phe or ACh infusion did not affect arterial or venous blood pressure in the CMA group. However, the ACh infusion decreased the arterial blood pressure (ΔBP: -28.0±2.35 mm Hg [AMA] to -4.5±2.89 mmHg [control]) in the AMA group. Plasma NOx was normal after CMA but increased after AMA (25.3±0.88 to 31.3±0.54 μM). These results indicate that AMA, but not CMA, potentiated the Ach-induced decrease in blood pressure and led to an increase in plasma NOx, reinforcing the effect of pH imbalance on vascular tone and blood pressure control. PMID:26648089

  8. Changes in vascular reactivity induced by acute hyperthyroidism in isolated rat aortae.

    PubMed

    Honda, H; Iwata, T; Mochizuki, T; Kogo, H

    2000-06-01

    Hyperthyroidism was induced by subcutaneous injections of L-thyroxine (T(4)) (500 mg/kg/day) for 3 days in order to study whether adrenergic and muscarinic receptor-mediated vascular responses alter at an early stage of the disease. T(4) treatment was sufficient to induce a significant degree of thyroid weight loss, tachycardia, cardiac hypertrophy, and an elevation in serum T(4) levels. The tension of aortic ring preparations isolated from rats was measured isometrically to investigate the influence of acute hyperthyroidism. The contractions induced by norepinephrine (NE) were significantly suppressed in aortic rings from rats treated with T(4) compared with control rats. N(G)-nitro-L-arginine (L-NOARG), an inhibitor of nitric oxide synthase (NOS), significantly enhanced NE-induced contraction in aortic rings from both control and T(4)-treated rats, and the enhancement was greater in rats treated with T(4) than control rats. The relaxations induced by either acetylcholine (ACh) or sodium nitroprusside (SNP) were also significantly enhanced by T(4) treatment. L-NOARG abolished the relaxation induced by ACh in aortic rings from both control and T(4)-treated rats. L-NOARG shifted SNP-induced relaxation curves of aortic rings from those of control rats to the left, but not with rats treated with T(4). T(4) treatment showed no influence on the amount of endothelial NOS (eNOS) protein. These results suggest that vascular responses alter at an early stage of hyperthyroidism and that it may be due to a modification in the NO system which is independent from the amount of eNOS protein.

  9. Muscarinic acetylcholine receptor in cerebellar cortex participates in acetylcholine-mediated blood depressor response in rats.

    PubMed

    Zhou, Peiling; Zhu, Qingfeng; Liu, Ming; Li, Jing; Wang, Yong; Zhang, Changzheng; Hua, Tianmiao

    2015-04-23

    Our previous investigations have revealed that cerebellar cholinergic innervation is involved in cardiovascular regulation. This study was performed to examine the effects of the muscarinic cholinergic receptor (mAChR) in the cerebellar cortex on blood pressure (BP) modulation in rats. Acetylcholine (ACh, 100mM), nonselective mAChR agonist (oxotremorine M; Oxo-M, 10, 30 and 100mM) and 100mM ACh mixed with nonselective mAChR antagonist atropine (1, 3 and 10mM) were microinjected into the cerebellar cortex of anesthetized rats. Mean arterial pressure (MAP), maximal decreased MAP (MDMAP), and reaction time (duration required for BP to return to basal values) were measured and analyzed. The results showed that Oxo-M dose-dependently decreased MAP, increased MDMAP, and prolonged reaction time, which displayed a homodromous effect of ACh-mediated blood depressor response; meanwhile, atropine concentration-dependently blocked the effect of ACh on the BP regulation. In conclusion, the present study showed for the first time that mAChRs in cerebellar cortex could modulate somatic BP by participation in ACh-mediated depressor response. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Acetylcholine receptor (AChR) clustering is regulated both by glycogen synthase kinase 3β (GSK3β)-dependent phosphorylation and the level of CLIP-associated protein 2 (CLASP2) mediating the capture of microtubule plus-ends.

    PubMed

    Basu, Sreya; Sladecek, Stefan; Pemble, Hayley; Wittmann, Torsten; Slotman, Johan A; van Cappellen, Wiggert; Brenner, Hans-Rudolf; Galjart, Niels

    2014-10-31

    The postsynaptic apparatus of the neuromuscular junction (NMJ) traps and anchors acetylcholine receptors (AChRs) at high density at the synapse. We have previously shown that microtubule (MT) capture by CLASP2, a MT plus-end-tracking protein (+TIP), increases the size and receptor density of AChR clusters at the NMJ through the delivery of AChRs and that this is regulated by a pathway involving neuronal agrin and several postsynaptic kinases, including GSK3. Phosphorylation by GSK3 has been shown to cause CLASP2 dissociation from MT ends, and nine potential phosphorylation sites for GSK3 have been mapped on CLASP2. How CLASP2 phosphorylation regulates MT capture at the NMJ and how this controls the size of AChR clusters are not yet understood. To examine this, we used myotubes cultured on agrin patches that induce AChR clustering in a two-dimensional manner. We show that expression of a CLASP2 mutant, in which the nine GSK3 target serines are mutated to alanine (CLASP2-9XS/9XA) and are resistant to GSK3β-dependent phosphorylation, promotes MT capture at clusters and increases AChR cluster size, compared with myotubes that express similar levels of wild type CLASP2 or that are noninfected. Conversely, myotubes expressing a phosphomimetic form of CLASP2 (CLASP2-8XS/D) show enrichment of immobile mutant CLASP2 in clusters, but MT capture and AChR cluster size are reduced. Taken together, our data suggest that both GSK3β-dependent phosphorylation and the level of CLASP2 play a role in the maintenance of AChR cluster size through the regulated capture and release of MT plus-ends. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Comparative functional expression of nAChR subtypes in rodent DRG neurons.

    PubMed

    Smith, Nathan J; Hone, Arik J; Memon, Tosifa; Bossi, Simon; Smith, Thomas E; McIntosh, J Michael; Olivera, Baldomero M; Teichert, Russell W

    2013-01-01

    We investigated the functional expression of nicotinic acetylcholine receptors (nAChRs) in heterogeneous populations of dissociated rat and mouse lumbar dorsal root ganglion (DRG) neurons by calcium imaging. By this experimental approach, it is possible to investigate the functional expression of multiple receptor and ion-channel subtypes across more than 100 neuronal and glial cells simultaneously. Based on nAChR expression, DRG neurons could be divided into four subclasses: (1) neurons that express predominantly α3β4 and α6β4 nAChRs; (2) neurons that express predominantly α7 nAChRs; (3) neurons that express a combination of α3β4/α6β4 and α7 nAChRs; and (4) neurons that do not express nAChRs. In this comparative study, the same four neuronal subclasses were observed in mouse and rat DRG. However, the expression frequency differed between species: substantially more rat DRG neurons were in the first three subclasses than mouse DRG neurons, at all developmental time points tested in our study. Approximately 70-80% of rat DRG neurons expressed functional nAChRs, in contrast to only ~15-30% of mouse DRG neurons. Our study also demonstrated functional coupling between nAChRs, voltage-gated calcium channels, and mitochondrial Ca(2) (+) transport in discrete subsets of DRG neurons. In contrast to the expression of nAChRs in DRG neurons, we demonstrated that a subset of non-neuronal DRG cells expressed muscarinic acetylcholine receptors and not nAChRs. The general approach to comparative cellular neurobiology outlined in this paper has the potential to better integrate molecular and systems neuroscience by uncovering the spectrum of neuronal subclasses present in a given cell population and the functionally integrated signaling components expressed in each subclass.

  12. Endogenous gamma-aminobutyric acid modulates tonic guinea pig airway tone and propofol-induced airway smooth muscle relaxation.

    PubMed

    Gallos, George; Gleason, Neil R; Virag, Laszlo; Zhang, Yi; Mizuta, Kentaro; Whittington, Robert A; Emala, Charles W

    2009-04-01

    Emerging evidence indicates that an endogenous autocrine/paracrine system involving gamma-aminobutyric acid (GABA) is present in airways. GABAA channels, GABAB receptors, and the enzyme that synthesizes GABA have been identified in airway epithelium and smooth muscle. However, the endogenous ligand itself, GABA, has not been measured in airway tissues. The authors sought to demonstrate that GABA is released in response to contractile agonists and tonically contributes a prorelaxant component to contracted airway smooth muscle. The amount and cellular localization of GABA in upper guinea pig airways under resting and contracted tone was determined by high pressure liquid chromatography and immunohistochemistry, respectively. The contribution that endogenous GABA imparts on the maintenance of airway smooth muscle acetylcholine-induced contraction was assessed in intact guinea pig airway tracheal rings using selective GABAA antagonism (gabazine) under resting or acetylcholine-contracted conditions. The ability of an allosteric agent (propofol) to relax a substance P-induced relaxation in an endogenous GABA-dependent manner was assessed. GABA levels increased and localized to airway smooth muscle after contractile stimuli in guinea pig upper airways. Acetylcholine-contracted guinea pig tracheal rings exhibited an increase in contracted force upon addition of the GABAA antagonist gabazine that was subsequently reversed by the addition of the GABAA agonist muscimol. Propofol dose-dependently relaxed a substance P contraction that was blocked by gabazine. These studies demonstrate that GABA is endogenously present and increases after contractile stimuli in guinea pig upper airways and that endogenous GABA contributes a tonic prorelaxant component in the maintenance of airway smooth muscle tone.

  13. Ergothioneine prevents endothelial dysfunction induced by mercury chloride.

    PubMed

    Gökçe, Göksel; Arun, Mehmet Zuhuri; Ertuna, Elif

    2018-06-01

    Exposure to mercury has detrimental effects on the cardiovascular system, particularly the vascular endothelium. The present study aimed to investigate the effects of ergothioneine (EGT) on endothelial dysfunction induced by low-dose mercury chloride (HgCl 2 ). Agonist-induced contractions and relaxations were evaluated in isolated aortic rings from 3-month-old male Wistar rats treated by intra-muscular injection to caudal hind leg muscle with HgCl 2 (first dose, 4.6 µg/kg; subsequent doses, 0.07 µg/kg/day for 15 days) and optionally with EGT (2 µg/kg for 30 days). Reactive oxygen species (ROS) in aortic rings were measured by means of lucigenin- and luminol-enhanced chemiluminescence. The protein level of endothelial nitric oxide synthase was evaluated by ELISA. Blood glutathione (GSH) and catalase levels, lipid peroxidation and total nitrite were measured spectrophotometrically. The results indicated that low-dose HgCl 2 administration impaired acetylcholine (ACh)-induced relaxation and potentiated phenylephrine- and serotonin-induced contractions in rat aortas. In addition, HgCl 2 significantly increased the levels of ROS in the aortic tissue. EGT prevented the loss of ACh-induced relaxations and the increase in contractile responses. These effects were accompanied by a significant decrease in ROS levels. EGT also improved the ratio of reduced GSH to oxidized GSH and catalase levels with a concomitant decrease in lipid peroxidation. In conclusion, to the best of our knowledge, the present study was the first to report that EGT prevents endothelial dysfunction induced by low-dose HgCl 2 administration. EGT may serve as a therapeutic tool to reduce mercury-associated cardiovascular complications via improving the antioxidant status.

  14. Ikarisoside A inhibits acetylcholine-induced catecholamine secretion and synthesis by suppressing nicotinic acetylcholine receptor-ion channels in cultured bovine adrenal medullary cells.

    PubMed

    Li, Xiaojia; Toyohira, Yumiko; Horisita, Takafumi; Satoh, Noriaki; Takahashi, Keita; Zhang, Han; Iinuma, Munekazu; Yoshinaga, Yukari; Ueno, Susumu; Tsutsui, Masato; Sata, Takeyoshi; Yanagihara, Nobuyuki

    2015-12-01

    Ikarisoside A is a natural flavonol glycoside derived from plants of the genus Epimedium, which have been used in Traditional Chinese Medicine as tonics, antirheumatics, and aphrodisiacs. Here, we report the effects of ikarisoside A and three other flavonol glycosides on catecholamine secretion and synthesis in cultured bovine adrenal medullary cells. We found that ikarisoside A (1-100 μM), but not icariin, epimedin C, or epimedoside A, concentration-dependently inhibited the secretion of catecholamines induced by acetylcholine, a physiological secretagogue and agonist of nicotinic acetylcholine receptors. Ikarisoside A had little effect on catecholamine secretion induced by veratridine and 56 mM K(+). Ikarisoside A (1-100 μM) also inhibited (22)Na(+) influx and (45)Ca(2+) influx induced by acetylcholine in a concentration-dependent manner similar to that of catecholamine secretion. In Xenopus oocytes expressing α3β4 nicotinic acetylcholine receptors, ikarisoside A (0.1-100 μM) directly inhibited the current evoked by acetylcholine. It also suppressed (14)C-catecholamine synthesis and tyrosine hydroxylase activity induced by acetylcholine at 1-100 μM and 10-100 μM, respectively. The present findings suggest that ikarisoside A inhibits acetylcholine-induced catecholamine secretion and synthesis by suppression of nicotinic acetylcholine receptor-ion channels in bovine adrenal medullary cells.

  15. In smokers, Sonic hedgehog modulates pulmonary endothelial function through vascular endothelial growth factor.

    PubMed

    Henno, Priscilla; Grassin-Delyle, Stanislas; Belle, Emeline; Brollo, Marion; Naline, Emmanuel; Sage, Edouard; Devillier, Philippe; Israël-Biet, Dominique

    2017-05-23

    Tobacco-induced pulmonary vascular disease is partly driven by endothelial dysfunction. The Sonic hedgehog (SHH) pathway is involved in vascular physiology. We sought to establish whether the SHH pathway has a role in pulmonary endothelial dysfunction in smokers. The ex vivo endothelium-dependent relaxation of pulmonary artery rings in response to acetylcholine (Ach) was compared in 34 current or ex-smokers and 8 never-smokers. The results were expressed as a percentage of the contraction with phenylephrine. We tested the effects of SHH inhibitors (GANT61 and cyclopamine), an SHH activator (SAG) and recombinant VEGF on the Ach-induced relaxation. The level of VEGF protein in the pulmonary artery ring was measured in an ELISA. SHH pathway gene expression was quantified in reverse transcriptase-quantitative polymerase chain reactions. Ach-induced relaxation was much less intense in smokers than in never-smokers (respectively 24 ± 6% and 50 ± 7% with 10 -4 M Ach; p = 0.028). All SHH pathway genes were expressed in pulmonary artery rings from smokers. SHH inhibition by GANT61 reduced Ach-induced relaxation and VEGF gene expression in the pulmonary artery ring. Recombinant VEGF restored the ring's endothelial function. VEGF gene and protein expression levels in the pulmonary artery rings were positively correlated with the degree of Ach-induced relaxation and negatively correlated with the number of pack-years. SHH pathway genes and proteins are expressed in pulmonary artery rings from smokers, where they modulate endothelial function through VEGF.

  16. Specific α7 nicotinic acetylcholine receptor agonist ameliorates isoproterenol-induced cardiac remodelling in mice through TGF-β1/Smad3 pathway.

    PubMed

    Yang, Yong-Hua; Fang, Huan-Le; Zhao, Ming; Wei, Xiang-Lan; Zhang, Ning; Wang, Shun; Lu, Yi; Yu, Xiao-Jiang; Sun, Lei; He, Xi; Li, Dong-Ling; Liu, Jin-Jun; Zang, Wei-Jin

    2017-12-01

    It is well-accepted that inflammation plays an important role in the development of cardiac remodelling and that therapeutic approaches targeting inflammation can inhibit cardiac remodelling. Although a large amount of evidence indicates that activation of α7 nicotinic acetylcholine receptor (α7nAChR) causes an anti-inflammatory effect, the role of α7nAChR in cardiac remodelling and the underlying mechanism have not been established. To investigate the effect of the specific α7nAChR agonist, PNU282987, on cardiac remodelling induced by isoproterenol (ISO 60 mg/kg per day) in mice, the cardiomyocyte cross-sectional area (CSA) and collagen volume fraction were evaluated by hematoxylin and eosin (HE) and Masson staining, respectively. Cardiac function and ventricular wall thickness were measured by echocardiography. The protein expressions of collagen I, matrix metalloproteinase 9 (MMP-9), transforming growth factor β1 (TGF-β1), and Smad3 were analyzed by Western blot. ISO-induced cardiac hypertrophy, characterized by an increase in the heart weight/body weight ratio, CSA and ventricular wall thickness. Moreover, cardiac fibrosis indices, such as collagen volume fraction, MMP-9 and collagen I protein expression, were also increased by ISO. PNU282987 not only attenuated cardiac hypertrophy but also decreased the cardiac fibrosis induced by ISO. Furthermore, PNU282987 suppressed TGF-β1 protein expression and the phosphorylation of Smad3 induced by ISO. In conclusion, PNU282987 ameliorated the cardiac remodelling induced by ISO, which may be related to the TGF-β1/Smad3 pathway. These data imply that the α7nAChR may represent a novel therapeutic target for cardiac remodelling in many cardiovascular diseases. © 2017 John Wiley & Sons Australia, Ltd.

  17. Monkey Adrenal Chromaffin Cells Express α6β4* Nicotinic Acetylcholine Receptors

    PubMed Central

    Scadden, Mick´l; Carmona-Hidalgo, Beatriz; McIntosh, J. Michael; Albillos, Almudena

    2014-01-01

    Nicotinic acetylcholine receptors (nAChRs) that contain α6 and β4 subunits have been demonstrated functionally in human adrenal chromaffin cells, rat dorsal root ganglion neurons, and on noradrenergic terminals in the hippocampus of adolescent mice. In human adrenal chromaffin cells, α6β4* nAChRs (the asterisk denotes the possible presence of additional subunits) are the predominant subtype whereas in rodents, the predominant nAChR is the α3β4* subtype. Here we present molecular and pharmacological evidence that chromaffin cells from monkey (Macaca mulatta) also express α6β4* receptors. PCR was used to show the presence of transcripts for α6 and β4 subunits and pharmacological characterization was performed using patch-clamp electrophysiology in combination with α-conotoxins that target the α6β4* subtype. Acetylcholine-evoked currents were sensitive to inhibition by BuIA[T5A,P6O] and MII[H9A,L15A]; α-conotoxins that inhibit α6-containing nAChRs. Two additional agonists were used to probe for the expression of α7 and β2-containing nAChRs. Cells with currents evoked by acetylcholine were relatively unresponsive to the α7-selctive agonist choline but responded to the agonist 5-I-A-85380. These studies provide further insights into the properties of natively expressed α6β4* nAChRs. PMID:24727685

  18. Rapid synthesis of acetylcholine receptors at neuromuscular junctions.

    PubMed

    Ramsay, D A; Drachman, D B; Pestronk, A

    1988-10-11

    The rate of acetylcholine receptor (AChR) degradation in mature, innervated mammalian neuromuscular junctions has recently been shown to be biphasic; up to 20% are rapidly turned over (RTOs; half life less than 1 day) whereas the remainder are lost more slowly ('stable' AChRs; half life 10-12 days). In order to maintain normal junctional receptor density, synthesis and insertion of AChRs should presumably be sufficiently rapid to replace both the RTOs and the stable receptors. We have tested this prediction by blocking pre-existing AChRs in the mouse sternomastoid muscle with alpha-bungarotoxin (alpha-BuTx), and monitoring the subsequent appearance of 'new' junctional AChRs at intervals of 3 h to 20 days by labeling them with 125I-alpha-BuTx. The results show that new receptors were initially inserted rapidly (16% at 24 h and 28% at 48 h). The rate of increase of 'new' 125I-alpha-BuTx binding sites gradually slowed down during the remainder of the time period studied. Control observations excluded possible artifacts of the experimental procedure including incomplete blockade of AChRs, dissociation of toxin-receptor complexes, or experimentally induced alteration of receptor synthesis. The present demonstration of rapid synthesis and incorporation of AChRs at innervated neuromuscular junctions provides support for the concept of a subpopulation of rapidly turned over AChRs. The RTOs may serve as precursors for the larger population of stable receptors and have an important role in the metabolism of the neuromuscular synapse.

  19. Canonical and Novel Non-Canonical Cholinergic Agonists Inhibit ATP-Induced Release of Monocytic Interleukin-1β via Different Combinations of Nicotinic Acetylcholine Receptor Subunits α7, α9 and α10

    PubMed Central

    Zakrzewicz, Anna; Richter, Katrin; Agné, Alisa; Wilker, Sigrid; Siebers, Kathrin; Fink, Bijan; Krasteva-Christ, Gabriela; Althaus, Mike; Padberg, Winfried; Hone, Arik J.; McIntosh, J. Michael; Grau, Veronika

    2017-01-01

    Recently, we discovered a cholinergic mechanism that inhibits the adenosine triphosphate (ATP)-dependent release of interleukin-1β (IL-1β) by human monocytes via nicotinic acetylcholine receptors (nAChRs) composed of α7, α9 and/or α10 subunits. Furthermore, we identified phosphocholine (PC) and dipalmitoylphosphatidylcholine (DPPC) as novel nicotinic agonists that elicit metabotropic activity at monocytic nAChR. Interestingly, PC does not provoke ion channel responses at conventional nAChRs composed of subunits α9 and α10. The purpose of this study is to determine the composition of nAChRs necessary for nicotinic signaling in monocytic cells and to test the hypothesis that common metabolites of phosphatidylcholines, lysophosphatidylcholine (LPC) and glycerophosphocholine (G-PC), function as nAChR agonists. In peripheral blood mononuclear cells from nAChR gene-deficient mice, we demonstrated that inhibition of ATP-dependent release of IL-1β by acetylcholine (ACh), nicotine and PC depends on subunits α7, α9 and α10. Using a panel of nAChR antagonists and siRNA technology, we confirmed the involvement of these subunits in the control of IL-1β release in the human monocytic cell line U937. Furthermore, we showed that LPC (C16:0) and G-PC efficiently inhibit ATP-dependent release of IL-1β. Of note, the inhibitory effects mediated by LPC and G-PC depend on nAChR subunits α9 and α10, but only to a small degree on α7. In Xenopus laevis oocytes heterologously expressing different combinations of human α7, α9 or α10 subunits, ACh induced canonical ion channel activity, whereas LPC, G-PC and PC did not. In conclusion, we demonstrate that canonical nicotinic agonists and PC elicit metabotropic nAChR activity in monocytes via interaction of nAChR subunits α7, α9 and α10. For the metabotropic signaling of LPC and G-PC, nAChR subunits α9 and α10 are needed, whereas α7 is virtually dispensable. Furthermore, molecules bearing a PC group in general seem to

  20. Cognitive Deficits in Schizophrenia: Focus on Neuronal Nicotinic Acetylcholine Receptors and Smoking

    PubMed Central

    Lasalde-Dominicci, Jose

    2015-01-01

    Patients with schizophrenia present with deficits in specific areas of cognition. These are quantifiable by neuropsychological testing and can be clinically observable as negative signs. Concomitantly, they self-administer nicotine in the form of cigarette smoking. Nicotine dependence is more prevalent in this patient population when compared to other psychiatric conditions or to non-mentally ill people. The target for nicotine is the neuronal nicotinic acetylcholine receptor (nAChR). There is ample evidence that these receptors are involved in normal cognitive operations within the brain. This review describes neuronal nAChR structure and function, focusing on both cholinergic agonist-induced nAChR desensitization and nAChR up-regulation. The several mechanisms proposed for the nAChR up-regulation are examined in detail. Desensitization and up-regulation of nAChRs may be relevant to the physiopathology of schizophrenia. The participation of several subtypes of neuronal nAChRs in the cognitive processing of non-mentally ill persons and schizophrenic patients is reviewed. The role of smoking is then examined as a possible cognitive remediator in this psychiatric condition. Finally, pharmacological strategies focused on neuronal nAChRs are discussed as possible therapeutic avenues that may ameliorate the cognitive deficits of schizophrenia. PMID:17554626

  1. Amperometric determination of acetylcholine-A neurotransmitter, by chitosan/gold-coated ferric oxide nanoparticles modified gold electrode.

    PubMed

    Chauhan, Nidhi; Pundir, C S

    2014-11-15

    An amperometric acetylcholine biosensor was constructed by co-immobilizing covalently, a mixture of acetylcholinesterase (AChE) and choline oxidase (ChO) onto nanocomposite of chitosan (CHIT)/gold-coated ferric oxide nanoparticles (Fe@AuNPs) electrodeposited onto surface of a Au electrode and using it as a working electrode, Ag/AgCl as reference electrode and Pt wire as auxiliary electrode connected through potentiostat. The biosensor is based on electrochemical measurement of H2O2 generated from oxidation of choline by immobilized ChO, which in turn is produced from hydrolysis of acetylcholine by immobilized AChE. The biosensor exhibited optimum response within 3s at +0.2V, pH 7.0 and 30°C. The enzyme electrode had a linear working range of 0.005-400 µM, with a detection limit of 0.005 µM for acetylcholine. The biosensor measured plasma acetylcholine in apparently healthy and persons suffering from Alzheimer's disease. The enzyme electrode was unaffected by a number of serum substances but lost 50% of its initial activity after its 100 uses over a period of 3 months, when stored at 4°C. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Nicotinic ACh Receptors as Therapeutic Targets in CNS Disorders

    PubMed Central

    Dineley, Kelly T.; Pandya, Anshul A.; Yakel, Jerrel L.

    2015-01-01

    The neurotransmitter acetylcholine (ACh) can regulate neuronal excitability by acting on the cys-loop cation-conducting ligand-gated nicotinic ACh receptor channels (nAChRs). These receptors are widely distributed throughout the central nervous system, being expressed on neurons and non-neuronal cells, where they participate in a variety of physiological responses such as anxiety, the central processing of pain, food intake, nicotine seeking behavior, and cognitive functions. In the mammalian brain, nine different subunits have been found thus far, which assemble into pentameric complexes with much subunit diversity; however the α7 and α4β2 subtypes predominate in the CNS. Neuronal nAChR dysfunction is involved in the pathophysiology of many neurological disorders. Here we will briefly discuss the functional makeup and expression of the nAChRs in the mammalian brain, and their role as targets in neurodegenerative diseases (in particular Alzheimer’s disease), neurodevelopmental disorders (in particular autism and schizophrenia), and neuropathic pain. PMID:25639674

  3. Nicotinic ACh receptors as therapeutic targets in CNS disorders.

    PubMed

    Dineley, Kelly T; Pandya, Anshul A; Yakel, Jerrel L

    2015-02-01

    The neurotransmitter acetylcholine (ACh) can regulate neuronal excitability by acting on the cys-loop cation-conducting ligand-gated nicotinic ACh receptor (nAChR) channels. These receptors are widely distributed throughout the central nervous system (CNS), being expressed on neurons and non-neuronal cells, where they participate in a variety of physiological responses such as anxiety, the central processing of pain, food intake, nicotine seeking behavior, and cognitive functions. In the mammalian brain, nine different subunits have been found thus far, which assemble into pentameric complexes with much subunit diversity; however, the α7 and α4β2 subtypes predominate in the CNS. Neuronal nAChR dysfunction is involved in the pathophysiology of many neurological disorders. Here we will briefly discuss the functional makeup and expression of the nAChRs in mammalian brain, and their role as targets in neurodegenerative diseases (in particular Alzheimer's disease, AD), neurodevelopmental disorders (in particular autism and schizophrenia), and neuropathic pain. Published by Elsevier Ltd.

  4. Nicotine-Induced Airway Smooth Muscle Cell Proliferation Involves TRPC6-Dependent Calcium Influx Via α7 nAChR.

    PubMed

    Hong, Wei; Peng, Gongyong; Hao, Binwei; Liao, Baoling; Zhao, Zhuxiang; Zhou, Yumin; Peng, Fang; Ye, Xiuqin; Huang, Lingmei; Zheng, Mengning; Pu, Jinding; Liang, Chunxiao; Yi, Erkang; Peng, Huanhuan; Li, Bing; Ran, Pixin

    2017-01-01

    The proliferation of human bronchial smooth muscle cells (HBSMCs) is a key pathophysiological component of airway remodeling in chronic obstructive pulmonary disease (COPD) for which pharmacotherapy is limited, and only slight improvements in survival have been achieved in recent decades. Cigarette smoke is a well-recognized risk factor for COPD; however, the pathogenesis of cigarette smoke-induced COPD remains incompletely understood. This study aimed to investigate the mechanisms by which nicotine affects HBSMC proliferation. Cell viability was assessed with a CCK-8 assay. Proliferation was measured by cell counting and EdU immunostaining. Fluorescence calcium imaging was performed to measure intracellular Ca2+ concentration ([Ca2+]i). The results showed that nicotine promotes HBSMC proliferation, which is accompanied by elevated store-operated calcium entry (SOCE), receptor-operated calcium entry (ROCE) and basal [Ca2+]i in HBSMCs. Moreover, we also confirmed that canonical transient receptor potential protein 6 (TRPC6) and α7 nicotinic acetylcholine receptor (α7 nAChR) are involved in nicotine-induced upregulation of cell proliferation. Furthermore, we verified that activation of the PI3K/Akt signaling pathway plays a pivotal role in nicotine-enhanced proliferation and calcium influx in HBSMCs. Inhibition of α7 nAChR significantly decreased Akt phosphorylation levels, and LY294002 inhibited the protein expression levels of TRPC6. Herein, these data provide compelling evidence that calcium entry via the α7 nAChR-PI3K/Akt-TRPC6 signaling pathway plays an important role in the physiological regulation of airway smooth muscle cell proliferation, representing an important target for augmenting airway remodeling. © 2017 The Author(s). Published by S. Karger AG, Basel.

  5. Activation of endogenous GABAA channels on airway smooth muscle potentiates isoproterenol-mediated relaxation.

    PubMed

    Gallos, George; Gleason, Neil R; Zhang, Yi; Pak, Sang-Woo; Sonett, J R; Yang, Jay; Emala, Charles W

    2008-12-01

    Reactive airway disease predisposes patients to episodes of acute smooth muscle mediated bronchoconstriction. We have for the first time recently demonstrated the expression and function of endogenous ionotropic GABA(A) channels on airway smooth muscle cells. We questioned whether endogenous GABA(A) channels on airway smooth muscle could augment beta-agonist-mediated relaxation. Guinea pig tracheal rings or human bronchial airway smooth muscles were equilibrated in organ baths with continuous digital tension recordings. After pretreatment with or without the selective GABA(A) antagonist gabazine (100 muM), airway muscle was contracted with acetylcholine or beta-ala neurokinin A, followed by relaxation induced by cumulatively increasing concentrations of isoproterenol (1 nM to 1 muM) in the absence or presence of the selective GABA(A) agonist muscimol (10-100 muM). In separate experiments, guinea pig tracheal rings were pretreated with the large conductance K(Ca) channel blocker iberiotoxin (100 nM) after an EC(50) contraction with acetylcholine but before cumulatively increasing concentrations of isoproterenol (1 nM to 1 uM) in the absence or presence of muscimol (100 uM). GABA(A) activation potentiated the relaxant effects of isoproterenol after an acetylcholine or tachykinin-induced contraction in guinea pig tracheal rings or an acetylcholine-induced contraction in human endobronchial smooth muscle. This muscimol-induced potentiation of relaxation was abolished by gabazine pretreatment but persisted after blockade of the maxi K(Ca) channel. Selective activation of endogenous GABA(A) receptors significantly augments beta-agonist-mediated relaxation of guinea pig and human airway smooth muscle, which may have important therapeutic implications for patients in severe bronchospasm.

  6. PACAP/PAC1R signaling modulates acetylcholine release at neuronal nicotinic synapses

    PubMed Central

    Pugh, Phyllis C.; Jayakar, Selwyn S.; Margiotta, Joseph F.

    2009-01-01

    Neuropeptides collaborate with conventional neurotransmitters to regulate synaptic output. Pituitary adenylate cyclase-activating polypeptide (PACAP) co-localizes with acetylcholine in presynaptic nerve terminals, is released by stimulation, and enhances nicotinic acetylcholine receptor- (nAChR-) mediated responses. Such findings implicate PACAP in modulating nicotinic neurotransmission, but relevant synaptic mechanisms have not been explored. We show here that PACAP acts via selective high-affinity G-protein coupled receptors (PAC1Rs) to enhance transmission at nicotinic synapses on parasympathetic ciliary ganglion (CG) neurons by rapidly and persistently increasing the frequency and amplitude of spontaneous, impulse-dependent nicotinic excitatory postsynaptic currents (sEPSCs). Of the canonical adenylate cyclase (AC) and phospholipase-C (PLC) transduction cascades stimulated by PACAP/PAC1R signaling, only AC-generated signals are critical for synaptic modulation since the increases in sEPSC frequency and amplitude were mimicked by 8-Bromo-cAMP, blocked by inhibiting AC or cAMP-dependent protein kinase (PKA), and unaffected by inhibiting PLC. Despite its ability to increase agonist-induced nAChR currents, PACAP failed to influence nAChR-mediated impulse-independent miniature EPSC amplitudes (quantal size). Instead, evoked transmission assays reveal that PACAP/PAC1R signaling increased quantal content, indicating it modulates synaptic function by increasing vesicular ACh release from presynaptic terminals. Lastly, signals generated by the retrograde messenger, nitric oxide- (NO-) are critical for the synaptic modulation since the PACAP-induced increases in spontaneous EPSC frequency, amplitude and quantal content were mimicked by NO donor and absent after inhibiting NO synthase (NOS). These results indicate that PACAP/PAC1R activation recruits AC-dependent signaling that stimulates NOS to increase NO production and control presynaptic transmitter output at neuronal

  7. Highly Selective and Sensitive Detection of Acetylcholine Using Receptor-Modified Single-Walled Carbon Nanotube Sensors

    NASA Astrophysics Data System (ADS)

    Xu, Shihong; Kim, Byeongju; Song, Hyun Seok; Jin, Hye Jun; Park, Eun Jin; Lee, Sang Hun; Lee, Byung Yang; Park, Tai Hyun; Hong, Seunghun

    2015-03-01

    Acetylcholine (ACh) is a neurotransmitter in a human central nervous system and is related to various neural functions such as memory, learning and muscle contractions. Dysfunctional ACh regulations in a brain can induce several neuropsychiatric diseases such as Alzheimer's disease, Parkinson's disease and myasthenia gravis. In researching such diseases, it is important to measure the concentration of ACh in the extracellular fluid of the brain. Herein, we developed a highly sensitive and selective ACh sensor based on single-walled carbon nanotube-field effect transistors (swCNT-FETs). In our work, M1 mAChR protein, an ACh receptor, was expressed in E.coli and coated on swCNT-FETs with lipid membranes. Here, the binding of ACh onto the receptors could be detected by monitoring the change of electrical currents in the underlying swCNT-FETs, allowing the real-time detection of ACh at a 100 pM concentration. Furthermore, our sensor could selectively detect ACh from other neurotransmitters. This is the first report of the real-time sensing of ACh utilizing specific binding between the ACh and M1 mAChR, and it may lead to breakthroughs in various biomedical applications such as drug screening and disease diagnosis.

  8. Nicotine evokes kinetic tremor by activating the inferior olive via α7 nicotinic acetylcholine receptors.

    PubMed

    Kunisawa, Naofumi; Iha, Higor A; Shimizu, Saki; Tokudome, Kentaro; Mukai, Takahiro; Kinboshi, Masato; Serikawa, Tadao; Ohno, Yukihiro

    2016-11-01

    Nicotinic acetylcholine (nACh) receptors are implicated in the pathogenesis of movement disorders (e.g., tremor) and epilepsy. Here, we performed behavioral and immunohistochemical studies using mice and rats to elucidate the mechanisms underlying nicotine-induced tremor. Treatments of animals with nicotine (0.5-2mg/kg, i.p.) elicited kinetic tremor, which was completely suppressed by the nACh receptor antagonist mecamylamine (MEC). The specific α7 nACh receptor antagonist methyllycaconitine (MLA) also inhibited nicotine-induced tremor, whereas the α4β2 nACh antagonist dihydro-β-erythroidine (DHβE) or the peripheral α3β4 nACh antagonist hexamethonium showed no effects. Mapping analysis of Fos protein expression, a biological marker of neural excitation, revealed that a tremorgenic dose (1mg/kg) of nicotine region-specifically elevated Fos expression in the piriform cortex (PirC), medial habenula, solitary nucleus and inferior olive (IO) among 44 brain regions examined. In addition, similarly to the tremor responses, nicotine-induced Fos expression in the PirC and IO was selectively antagonized by MLA, but not by DHβE. Furthermore, an electrical lesioning of the IO, but not the PirC, significantly suppressed the induction of nicotine tremor. The present results suggest that nicotine elicits kinetic tremor in rodents by activating the IO neurons via α7 nACh receptors. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Antioxidant effect of lidocaine and procaine on reactive oxygen species-induced endothelial dysfunction in the rabbit abdominal aorta

    PubMed Central

    Lee, Jae Myeong; Jeong, Ji Seon; Cho, Sang Yun; Kim, Dong Won

    2010-01-01

    Background Reactive oxygen species (ROS) induce lipid peroxidation and tissue damage in the endothelium. We tested the antioxidant effect of lidocaine and procaine on ROS-induced endothelial damage in the rabbit aorta. Methods Aortic rings isolated from rabbits were suspended in an organ bath filled with Krebs-Henseleit (K-H) solution bubbled with 5% CO2 and 95% O2 at 37.5℃. After precontraction with phenylephrine (PE, 10-6 M), changes in tension were recorded following a cumulative administration of acetylcholine (ACh 3 × 10-8 to 10-6 M). Differences were measured as percentages of ACh-induced relaxation of aortic rings before and after exposure to ROS as generated by electrolysis of the K-H solution. The aortic rings were pretreated with lidocaine or procaine (10-5 M to 3 × 10-3 M) to compare their effects, as well as ROS scavengers, catalase, mannitol, sodium salicylate, and deferoxamine, and a catalase inhibitor, 3-amino-1,2,4-triazole (3AT). Results Lidocaine and procaine dose-dependently maintained endothelium-dependent relaxation induced by ACh despite ROS activity (P < 0.05 vs control value). The 3AT pretreated procaine (3 × 10-3 M) group decreased more significantly than the un-pretreated procaine group (P < 0.05). Conclusions These findings suggest that lidocaine and procaine dose-dependently preserve endothelium-dependent vasorelaxation against ROS attack, potentially via hydrogen peroxide scavenging. PMID:20740215

  10. N-(4-Trifluoromethylphenyl)amide group of the synthetic histamine receptor agonist inhibits nicotinic acetylcholine receptor-mediated catecholamine secretion.

    PubMed

    Kim, Dong-Chan; Park, Yong-Soo; Jun, Dong-Jae; Hur, Eun-Mi; Kim, Sun-Hee; Choi, Bo-Hwa; Kim, Kyong-Tai

    2006-02-28

    The therapeutic targeting of nicotinic receptors requires the identification of drugs that selectively activate or inhibit a limited range of nicotine acetylcholine receptors (nAChRs). In this study, we identified N-(4-trifluoromethylphenyl)amide group of the synthetic histamine receptor ligands, histamine-trifluoromethyltoluide, that act as potent inhibitors of nAChRs in bovine adrenal chromaffin cells. Catecholamine secretion induced by the nAChRs agonist, 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP), was significantly inhibited by histamine-trifluoromethyltoluide. Real time carbon-fiber amperometry confirmed the ability of histamine-trifluoromethyltoluide to inhibit DMPP-induced exocytosis in single chromaffin cells. We also found that histamine-trifluoromethyltoluide inhibited DMPP-induced [Ca(2+)](i) and [Na(+)](i) increases, as well as DMPP-induced inward currents in the absence of extracellular calcium. Histamine-trifluoromethyltoluide had no effect on [(3)H]nicotine binding or on calcium increases induced by high K(+), bradykinin, veratridine, histamine, and benzoylbenzoyl ATP. Among the synthetic histamine receptor ligands, clobenpropit exhibited similarity. In addition, 4'-nitroacetanilide also significantly attenuated nAChR-mediated catecholamine secretion. In conclusion, the N-(4-trifluoromethylphenyl)amide group of the histamine-trifluoromethyltoluide might be the critical moiety in the inhibition of nAChR-mediated CA secretion.

  11. Improved methodology to obtain large quantities of correctly folded recombinant N-terminal extracellular domain of the human muscle acetylcholine receptor for inducing experimental autoimmune myasthenia gravis in rats

    PubMed Central

    Sun, Chenjing; Zhang, Hongliang; Xu, Jiang; Gao, Jie

    2013-01-01

    Introduction Human myasthenia gravis (MG) is an autoimmune disorder of the neuromuscular system. Experimental autoimmune myasthenia gravis (EAMG) is a well-established animal model for MG that can be induced by active immunization with the Torpedo californica-derived acetylcholine receptor (AChR). Due to the expensive cost of purifying AChR from Torpedo californica, the development of an easier and more economical way of inducing EAMG remains critically needed. Material and methods Full-length cDNA of the human skeletal muscle AChR α1 subunit was obtained from TE671 cells. The DNA fragment encoding the extracellular domain (ECD) was then amplified by polymerase chain reaction (PCR) and inserted into pET-16b. The reconstructed plasmid was transformed into the host strain BL21(DE3)pLysS, which was derived from Escherichia coli. Isopropyl-β-D-thiogalactopyranoside (IPTG) was used to induce the expression of the N-terminal ECD. The produced protein was purified with immobilized Ni2+ affinity chromatography and refolded by dialysis. Results The recombinant protein was efficiently refolded to soluble active protein, which was verified by ELISA. After immunization with the recombinant ECD, all rats acquired clinical signs of EAMG. The titer of AChR antibodies in the serum was significantly higher in the EAMG group than in the control group, indicating successful induction of EAMG. Conclusions We describe an improved procedure for refolding recombinant ECD of human muscle AChR. This improvement allows for the generation of large quantities of correctly folded recombinant ECD of human muscle AChR, which provides for an easier and more economical way of inducing the animal model of MG. PMID:24904677

  12. Vesicular acetylcholine transporter knock down-mice are more susceptible to inflammation, c-Fos expression and sickness behavior induced by lipopolysaccharide.

    PubMed

    Leite, Hércules Ribeiro; Oliveira-Lima, Onésia Cristina de; Pereira, Luciana de Melo; Oliveira, Vinícius Elias de Moura; Prado, Vania Ferreira; Prado, Marco Antônio Máximo; Pereira, Grace Schenatto; Massensini, André Ricardo

    2016-10-01

    In addition to the well-known functions as a neurotransmitter, acetylcholine (ACh) can modulate of the immune system. Nonetheless, how endogenous ACh release inflammatory responses is still not clear. To address this question, we took advantage of an animal model with a decreased ACh release due a reduction (knockdown) in vesicular acetylcholine transporter (VAChT) expression (VAChT-KD(HOM)). These animals were challenged with lipopolysaccharide (LPS). Afterwards, we evaluated sickness behavior and quantified systemic and cerebral inflammation as well as neuronal activation in the dorsal vagal complex (DVC). VAChT-KD(HOM) mice that were injected with LPS (10mg/kg) showed increased mortality rate as compared to control mice. In line with this result, a low dose of LPS (0.1mg/kg) increased the levels of pro-inflammatory (TNF-α, IL-1β, and IL-6) and anti-inflammatory (IL-10) cytokines in the spleen and brain of VAChT-KD(HOM) mice in comparison with controls. Similarly, serum levels of TNF-α and IL-6 were increased in VAChT-KD(HOM) mice. This excessive cytokine production was completely prevented by administration of a nicotinic receptor agonist (0.4mg/kg) prior to the LPS injection. Three hours after the LPS injection, c-Fos expression increased in the DVC region of VAChT-KD(HOM) mice compared to controls. In addition, VAChT-KD(HOM) mice showed behavioral changes such as lowered locomotor and exploratory activity and reduced social interaction after the LPS challenge, when compared to control mice. Taken together, our results show that the decreased ability to release ACh exacerbates systemic and cerebral inflammation and promotes neural activation and behavioral changes induced by LPS. In conclusion, our findings support the notion that activity of cholinergic pathways, which can be modulated by VAChT expression, controls inflammatory and neural responses to LPS challenge. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Septohippocampal Acetylcholine: Involved in but Not Necessary for Learning and Memory?

    ERIC Educational Resources Information Center

    Parent, Marise B.; Baxter, Mark G.

    2004-01-01

    The neurotransmitter acetylcholine (ACh) has been accorded an important role in supporting learning and memory processes in the hippocampus. Cholinergic activity in the hippocampus is correlated with memory, and restoration of ACh in the hippocampus after disruption of the septohippocampal pathway is sufficient to rescue memory. However, selective…

  14. The release of acetylcholine from post-ganglionic cell bodies in response to depolarization.

    PubMed Central

    Johnson, D A; Pilar, G

    1980-01-01

    1. Acetylcholine (Ach) release from parasympathetic ganglia cell somata was investigated in denervated avian ciliary ganglia. Three days after the input to the ganglion (the oculomotor nerve) was sectioned, all presynaptic nerve terminals had degenerated. 2. Denervated ganglia were shown to contain endogenous ACh and to be capable of synthesizing [3H]ACh from [3H]choline added to the incubation medium. 3. In response to depolarization induced by incubation in 50 mM-[K+]o, denervated ganglia released [3H]ACh into bath effluents in amounts approximately 15% of the non-denervated contralateral control. This release was shown to be Ca2+ dependent in both intact and denervated ganglia. 4. Antidromic electrical stimulation of ciliary nerves also elicited [3H]ACh release. Nicotine (1 microgram/microliter.) depolarized denervated ciliary ganglion cells and evoked release of the transmitter and this release was antagonized by curare. 5. It is concluded that the ganglionic cell bodies sysnthesized ACh and released the transmitter in response to K+ depolarization, antidromic stimulation and cholinergic agonists, despite the lack of morphological specializations usually associated with stimulus-induced release of neurotransmitter. The evidence suggests the existence of a mechanism of transmitter release which is Ca2+ dependent, probably from a cytoplasmic pool and therefore distinct from the usual vesicular release at the nerve terminal. Images Plate 1 Plate 2 PMID:6247485

  15. Effect of rocuronium on the level and mode of pre-synaptic acetylcholine release by facial and somatic nerves, and changes following facial nerve injury in rabbits.

    PubMed

    Tan, Jinghua; Xu, Jing; Xing, Yian; Chen, Lianhua; Li, Shitong

    2015-01-01

    Muscles innervated by the facial nerve show differential sensitivities to muscle relaxants than muscles innervated by somatic nerves. The evoked electromyography (EEMG) response is also proportionally reduced after facial nerve injury. This forms the theoretical basis for proper utilization of muscle relaxants to balance EEMG monitoring and immobility under general anesthesia. (1) To observe the relationships between the level and mode of acetylcholine (ACh) release and the duration of facial nerve injury, and the influence of rocuronium in an in vitro rabbit model. (2) To explore the pre-synaptic mechanisms of discrepant responses to a muscle relaxant. Quantal and non-quantal ACh release were measured by using intracellular microelectrode recording in the orbicularis oris 1 to 42 days after graded facial nerve injury and in the gastrocnemius with/without rocuronium. Quantal ACh release was significantly decreased by rocuronium in the orbicularis oris and gastrocnemius, but significantly more so in gastrocnemius. Quantal release was reduced after facial nerve injury, which was significantly correlated with the severity of nerve injury in the absence but not in the presence of rocuronium. Non-quantal ACh release was reduced after facial nerve injury, with many relationships observed depending on the extent of the injury. The extent of inhibition of non-quantal release by rocuronium correlated with the grade of facial nerve injury. These findings may explain why EEMG amplitude might be diminished after acute facial nerve injury but relatively preserved after chronic injury and differential responses in sensitivity to rocuronium.

  16. Effect of rocuronium on the level and mode of pre-synaptic acetylcholine release by facial and somatic nerves, and changes following facial nerve injury in rabbits

    PubMed Central

    Tan, Jinghua; Xu, Jing; Xing, Yian; Chen, Lianhua; Li, Shitong

    2015-01-01

    Muscles innervated by the facial nerve show differential sensitivities to muscle relaxants than muscles innervated by somatic nerves. The evoked electromyography (EEMG) response is also proportionally reduced after facial nerve injury. This forms the theoretical basis for proper utilization of muscle relaxants to balance EEMG monitoring and immobility under general anesthesia. (1) To observe the relationships between the level and mode of acetylcholine (ACh) release and the duration of facial nerve injury, and the influence of rocuronium in an in vitro rabbit model. (2) To explore the pre-synaptic mechanisms of discrepant responses to a muscle relaxant. Quantal and non-quantal ACh release were measured by using intracellular microelectrode recording in the orbicularis oris 1 to 42 days after graded facial nerve injury and in the gastrocnemius with/without rocuronium. Quantal ACh release was significantly decreased by rocuronium in the orbicularis oris and gastrocnemius, but significantly more so in gastrocnemius. Quantal release was reduced after facial nerve injury, which was significantly correlated with the severity of nerve injury in the absence but not in the presence of rocuronium. Non-quantal ACh release was reduced after facial nerve injury, with many relationships observed depending on the extent of the injury. The extent of inhibition of non-quantal release by rocuronium correlated with the grade of facial nerve injury. These findings may explain why EEMG amplitude might be diminished after acute facial nerve injury but relatively preserved after chronic injury and differential responses in sensitivity to rocuronium. PMID:25973033

  17. Searching for putative binding sites of the bispyridinium compound MB327 in the nicotinic acetylcholine receptor.

    PubMed

    Wein, Thomas; Höfner, Georg; Rappenglück, Sebastian; Sichler, Sonja; Niessen, Karin V; Seeger, Thomas; Worek, Franz; Thiermann, Horst; Wanner, Klaus T

    2018-09-01

    Irreversible inhibition of the acetylcholine esterase upon intoxication with organophosphorus compounds leads to an accumulation of acetylcholine in the synaptic cleft and a subsequent desensitization of nicotinic acetylcholine receptors which may ultimately result in respiratory failure. The bispyridinium compound MB327 has been found to restore functional activity of nAChR thus representing a promising starting point for the development of new drugs for the treatment of organophosphate poisoning. In order to optimize the resensitizing effect of MB327 on nAChR, it would be very helpful to know the MB327 specific binding site to apply structure based molecular modeling. The binding site for MB327 at the nAChR is not known and so far goal of speculations, but it has been shown that MB327 does not bind to the orthosteric acetylcholine binding site. We have used docking calculations to screen the surface of nAChR for possible binding sites of MB327. The results indicate that at least two potential binding sites for MB327 at nAChR are present inside the channel pore. In these binding sites, MB327 intercalates between the γ-α and β-δ subunits of nAChR, respectively. Both putative MB327 binding sites show an unsymmetrical distribution of surrounding hydrophilic and lipophilic amino acids. This suggests that substitution of MB327-related bispyridinium compounds on one of the two pyridinium rings with polar substituents should have a favorable effect on the pharmacological function. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Effects of neuronal nicotinic acetylcholine receptor allosteric modulators in animal behavior studies

    PubMed Central

    Pandya, Anshul. A.; Yakel, Jerrel L.

    2013-01-01

    Nicotinic acetylcholine receptors (nAChRs) are ligand-gated cation-conducting transmembrane channels from the cys-loop receptor superfamily. The neuronal subtypes of these receptors (e.g. the α7 and α4β2 subtypes) are involved in neurobehavioral processes such as anxiety, the central processing of pain, food intake, nicotine seeking behavior, and a number of cognitive functions like learning and memory. Neuronal nAChR dysfunction is involved in the pathophysiology of many neurological disorders, and behavioral studies in animals are useful models to assess the effects of compounds that act on these receptors. Allosteric modulators are ligands that bind to the receptors at sites other than the orthosteric site where acetylcholine, the endogenous agonist for the nAChRs, binds. While conventional ligands for the neuronal nAChRs have been studied for their behavioral effects in animals, allosteric modulators for these receptors have only recently gained attention, and research on their behavioral effects is growing rapidly. Here we will discuss the behavioral effects of allosteric modulators of the neuronal nAChRs. PMID:23732296

  19. Impairment of the vascular relaxation and differential expression of caveolin-1 of the aorta of diabetic +db/+db mice.

    PubMed

    Lam, Tze Yan; Seto, Sai Wang; Lau, Yee Man; Au, Lai Shan; Kwan, Yiu Wa; Ngai, Sai Ming; Tsui, Kwong Wing

    2006-09-28

    In this study, we compared the endothelium-dependent and -independent relaxation of the isolated thoracic aorta of control (+db/+m) and diabetic (+db/+db) (C57BL/KsJ) mice. The gene expression (mRNA and protein) level of the muscarinic M(3) receptors, endothelial nitric oxide synthase (eNOS) and caveolin-1 of the aorta was also evaluated. Acetylcholine caused a concentration-dependent, N(G)-nitro-L-arginine methyl-ester (20 microM)-sensitive relaxation, with approximately 100% relaxation at 10 microM, in +db/+m mice. In +db/+db mice, the acetylcholine-induced relaxation was significantly smaller (maximum relaxation: approximately 80%). The sodium nitroprusside-mediated relaxation was slightly diminished in +db/+db mice, compared to +db/+m mice. However, there was no significant difference in the isoprenaline- and cromakalim-induced relaxation observed in both species. The mRNA and protein expression levels of caveolin-1 were significantly higher in the aorta of +db/+db mice. In contrast, there was no difference in the mRNA and protein expression levels of eNOS and muscarinic M(3) receptors between these mice. Our results demonstrate that the impairment of the acetylcholine-induced, endothelium-dependent aortic relaxation observed in +db/+db mice was probably associated with an enhanced expression of caveolin-1 mRNA and protein.

  20. Effects of inhibitors of acetylcholine synthesis on brain acetylcholine and survival in soman-intoxicated animals.

    PubMed

    Harris, L W; Stitcher, D L; Hey, W C

    1982-05-31

    The effects of hemicholinium-3 (HC-3) or 4-(l-naphthylvinyl)pyridine (4-NVP) alone and together with cholinolytics and/or cholinesterase inhibitors on brain acetylcholine (ACh) levels and survival were studied. Intracerebroventricular (ICVT) injection of 10 micrograms HC-3 280 min before euthanasia by microwave irradiation reduced rat cerebral ACh levels from 28.4 to 5.4 nmoles ACh/g wet tissue. In rats pretreated with HC-3 alone or with other pretreatment drugs prior to giving up to 2.7 LD50 of soman, iv, cerebral ACh levels increased very little, but in animals not receiving HC-3, brain ACh levels increased to 67.1 nmoles. Treatment of unpoisoned rats with 4-NVP resulted in a significant (26%) reduction in ACh. The inclusion of atropine with 4-NVP caused sign-free doses of physostigmine to produce toxic signs in rabbits and did not enhance the efficacy of carbamate pretreatment against soman. Pretreatment of rabbits with pyridostigmine and atropine methyl nitrate (AMN) failed to provide any protection against soman, but when HC-3, ICVT, was included with those drugs, the protective ratio (PR), against soman was increased excess ACh is a primary lesion in organophosphorus anticholinesterase intoxication and that the central nervous system is quite sensitive to excesses of ACh.

  1. Zingiberis Siccatum Rhizoma, the active component of the Kampo formula Daikenchuto, induces anti-inflammatory actions through α7 nicotinic acetylcholine receptor activation.

    PubMed

    Endo, M; Hori, M; Mihara, T; Ozaki, H; Oikawa, T; Odaguchi, H; Hanawa, T

    2017-12-01

    We previously reported that Daikenchuto (DKT), a gastrointestinal prokinetic Japanese herbal (Kampo) medicine used for the treatment of postoperative ileus (POI), has characteristic potent anti-inflammatory activity. This effect may be partly mediated by the activation of α7 nicotinic acetylcholine receptor (nAChR). In this study, we identified the specific herbs in DKT that induce anti-inflammatory action. The herbal components of DKT were individually administered orally to each mouse four times before and after intestinal manipulation (IM) was carried out on the distal ileum. The anti-inflammatory activity of each crude drug was subsequently evaluated using immunohistochemical analyses of relevant molecules. Treatment with Zingiberis Siccatum Rhizoma (ZSR) but not the other components inhibited the infiltration of cluster of differentiation 68 (CD68)-positive macrophages as effectively as DKT treatment. Selective α7nAChR antagonists, such as methyllycaconitine citrate, or transient receptor potential ankyrin 1 (TRPA1) antagonists, such as HC-030031, significantly inhibited the amelioration of macrophage infiltration by ZSR. The inhibition of macrophage infiltration by ZSR was abolished in both α7nAChR and 5-hydroxytryptamine 4 receptor (5-HT 4 R) knockout mice. Daikenchuto-induced anti-inflammatory activity, which was mediated by inhibiting macrophage infiltration in POI, is dependent on the effects of ZSR. Zingiberis Siccatum Rhizoma activates TRPA1 channels possibly in enterochromaffin (EC) cells to release 5-HT, which stimulates 5-HT 4 R in the myenteric plexus neurons to release ACh, which in turn activates α7nAChR on macrophages to inhibit inflammation in POI. © 2017 John Wiley & Sons Ltd.

  2. The α3β4 nAChR partial agonist AT-1001 attenuates stress-induced reinstatement of nicotine seeking in a rat model of relapse and induces minimal withdrawal in dependent rats.

    PubMed

    Yuan, Menglu; Malagon, Ariana M; Yasuda, Dennis; Belluzzi, James D; Leslie, Frances M; Zaveri, Nurulain T

    2017-08-30

    The strong reinforcing effects of nicotine and the negative symptoms such as anxiety experienced during a quit attempt often lead to relapse and low success rates for smoking cessation. Treatments that not only block the reinforcing effects of nicotine but also attenuate the motivation to relapse are needed to improve cessation rates. Recent genetic and preclinical studies have highlighted the involvement of the α3, β4, and α5 nicotinic acetylcholine receptor (nAChR) subunits and the α3β4 nAChR subtype in nicotine dependence and withdrawal. However, the involvement of these nAChR in relapse is not fully understood. We previously reported that the α3β4 nAChR partial agonist AT-1001 selectively decreases nicotine self-administration in rats without affecting food responding. In the present experiments, we examined the efficacy of AT-1001 in attenuating reinstatement of nicotine-seeking behavior in a model of stress-induced relapse. Rats extinguished from nicotine self-administration were treated with the pharmacological stressor yohimbine prior to AT-1001 treatment and reinstatement testing. We also examined whether AT-1001 produced any withdrawal-related effects when administered to nicotine-dependent rats. We found that AT-1001 dose-dependently reduced yohimbine stress-induced reinstatement of nicotine seeking. When administered to nicotine-dependent rats at the dose that significantly blocked nicotine reinstatement, AT-1001 elicited minimal somatic withdrawal signs in comparison to the nicotinic antagonist mecamylamine, which is known to produce robust withdrawal. Our data suggest that α3β4 nAChR-targeted compounds may be a promising approach for nicotine addiction treatment because they can not only block nicotine's reinforcing effects, but also decrease motivation to relapse without producing significant withdrawal effects. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Neuronal control of localized inflammation through expressed nicotinic acetylcholine receptors: a study carried out in mice.

    PubMed

    Thayabaran, M; Yasawardene, S G

    2015-12-01

    Although the local inflammatory reactions are known to be regulated through cholinergic anti-inflammatory pathways, the exact subtypes of nicotinic acetylcholine receptors involved in neuroimmune modulation are not well identified. Immunohistochemical localisation of a1 subunit of nicotinic acetylcholine receptors (a1nAChR) in sites of localised inflammation induced by injecting turpentine to the hind limbs of Balb/C mice. Localised inflammation and subsequent development of sterile abscesses was induced by injecting sterile turpentine subcutaneously into thighs of Balb/C mice. Sterile saline was used in the control.. Skin and muscle tissues of inflammatory sites were recovered from the animals after 48 hours and were stained with hematoxylin and eosin. Indirect immunohistochemistry was done using anti-a1nAChR as the primary antibody and biotinylated anti-rat IgG as the secondary antibody. Labeled streptavidin biotin (LSAB) technique was used with diaminobenzedene to detect the immunoreactivity (IR). Intensity of immunostaining was determined based upon a score of 0 - 3+ by qualitative computerised image analysis using FSX 100 Olympus microscope. H and E stained slides showed polymorphonuclear leukocytes (PNL) infiltration at the abscess sites while the saline injected control tissue sections did not show PNL infiltration. A 2+ immunoreactivity (IR) of a1nAChRs was visible at peripheral zones of sterile abscesses where PNL infiltrations were high while the central area with necrotic tissue did not show IR. A subcutaneous lymph node found within the inflammatory region expressed IR of a1nAChR in its capsular sinuses, subcapsular sinuses and trabecular regions. The findings suggest the possible role of controlling localised inflammatory response by parasympathetic cholinergic nerves through a1nAChRs of inflammation sites.

  4. In-vivo measurements of regional acetylcholine esterase activity in degenerative dementia: comparison with blood flow and glucose metabolism.

    PubMed

    Herholz, K; Bauer, B; Wienhard, K; Kracht, L; Mielke, R; Lenz, M O; Strotmann, T; Heiss, W D

    2000-01-01

    Memory and attention are cognitive functions that depend heavily on the cholinergic system. Local activity of acetylcholine esterase (AChE) is an indicator of its integrity. Using a recently developed tracer for positron emission tomography (PET), C-11-labeled N-methyl-4-piperidyl-acetate (C11-MP4A), we measured regional AChE activity in 4 non-demented subjects, 4 patients with dementia of Alzheimer type (DAT) and 1 patient with senile dementia of Lewy body type (SDLT), and compared the findings with measurements of blood flow (CBF) and glucose metabolism (CMRGlc). Initial tracer extraction was closely related to CBF. AChE activity was reduced significantly in all brain regions in demented subjects, whereas reduction of CMRGlc and CBF was more limited to temporo-parietal association areas. AChE activity in SDLT was in the lower range of values in DAT. Our results indicate that, compared to non-demented controls, there is a global reduction of cortical AChE activity in dementia. Dementia, cholinergic system, acetylcholine esterase, positron emission tomography, cerebral blood flow, cerebral glucose metabolism.

  5. The Long-Lasting Enhancing Effect of Distigmine on Acetylcholine-Induced Contraction of Guinea Pig Detrusor Smooth Muscle Correlates with Its Anticholinesterase Activity.

    PubMed

    Obara, Keisuke; Ogawa, Tsukasa; Chino, Daisuke; Tanaka, Yoshio

    2017-01-01

    Distigmine bromide (distigmine), a reversible, long-lasting cholinesterase (ChE) inhibitor, is used for the treatment of underactive bladder in Japan and has been shown to potentiate urinary bladder (UB) contractility. We studied the duration of distigmine's potentiating effects on acetylcholine (ACh)-induced UB contraction and its inhibitory effects on ChE activity, and compared that with those of other ChE inhibitors (neostigmine, pyridostigmine, and ambenonium). The duration of potentiating/inhibitory effects of ChE inhibitors, including distigmine, on ACh-induced guinea pig UB contraction/ChE activity was evaluated for 12 h following washout. Dissociation rate constants (k) of the inhibitors were also tentatively calculated based on the time courses of their ChE inhibitory effects. The potentiating effect of distigmine (10 -6  M) on ACh-induced UB contraction and its inhibitory effect on ChE activity were significantly sustained 12 h after washout. The potentiating effect of other ChE inhibitors on ACh-induced UB contraction, however, was sustained only until 3 h after washout. The ChE inhibitory effects of these inhibitors dissipated in a time-dependent manner after washout, with more than 75% of ChE activity restored by 4 h after washout. The k values of ChE inhibitors approached 0.50 h -1 , except for distigmine, where k could not be determined. Compared with that of other ChE inhibitors, the potentiating effect of distigmine on UB contractile function was significantly more sustainable following washout, which was likely associated with its corresponding long-lasting ChE inhibitory effect. Distigmine may associate more strongly with UB ChE than other ChE inhibitors, which would partly explain its sustained effects.

  6. Impulsive behavior and nicotinic acetylcholine receptors.

    PubMed

    Ohmura, Yu; Tsutsui-Kimura, Iku; Yoshioka, Mitsuhiro

    2012-01-01

    Higher impulsivity is thought to be a risk factor for drug addiction, criminal involvement, and suicide. Excessive levels of impulsivity are often observed in several psychiatric disorders including attention-deficit/hyperactivity disorder and schizophrenia. Previous studies have demonstrated that nicotinic acetylcholine receptors (nAChRs) are involved in impulsive behavior. Here, we introduce recent advances in this field and describe the role of the following nAChR-related brain mechanisms in modulating impulsive behavior: dopamine release in the ventral striatum; α4β2 nAChRs in the infralimbic cortex, which is a ventral part of the medial prefrontal cortex (mPFC); and dopamine release in the mPFC. We also suggest several potential therapeutic drugs to address these mechanisms in impulsivity-related disorders and explore future directions to further elucidate the roles of central nAChRs in impulsive behavior.

  7. Alpha6-Containing Nicotinic Acetylcholine Receptors Mediate Nicotine-Induced Structural Plasticity in Mouse and Human iPSC-Derived Dopaminergic Neurons.

    PubMed

    Collo, Ginetta; Cavalleri, Laura; Zoli, Michele; Maskos, Uwe; Ratti, Emiliangelo; Merlo Pich, Emilio

    2018-01-01

    Midbrain dopamine (DA) neurons are considered a critical substrate for the reinforcing and sensitizing effects of nicotine and tobacco dependence. While the role of the α4 and β2 subunit containing nicotinic acetylcholine receptors (α4β2 ∗ nAChRs) in mediating nicotine effects on DA release and DA neuron activity has been widely explored, less information is available on their role in the morphological adaptation of the DA system to nicotine, eventually leading to dysfunctional behaviors observed in nicotine dependence. In particular, no information is available on the role of α6 ∗ nAChRs in nicotine-induced structural plasticity in rodents and no direct evidence exists regarding the occurrence of structural plasticity in human DA neurons exposed to nicotine. To approach this problem, we used two parallel in vitro systems, mouse primary DA neuron cultures from E12.5 embryos and human DA neurons differentiated from induced pluripotent stem cells (iPSCs) of healthy donors, identified using TH + immunoreactivity. In both systems, nicotine 1-10 μM produced a dose-dependent increase of maximal dendrite length, number of primary dendrites, and soma size when measured after 3 days in culture. These effects were blocked by pretreatments with the α6 ∗ nAChR antagonists α-conotoxin MII and α-conotoxin PIA, as well as by the α4β2nAChR antagonist dihydro-β-erythroidine (DHβE) in both mouse and human DA neurons. Nicotine was also ineffective when the primary DA neurons were obtained from null mutant mice for either the α6 subunit or both the α4 and α6 subunits of nAChR. When pregnant mice were exposed to nicotine from gestational day 15, structural plasticity was also observed in the midbrain DA neurons of postnatal day 1 offspring only in wild-type mice and not in both null mutant mice. This study confirmed the critical role of α4α6 ∗ nAChRs in mediating nicotine-induced structural plasticity in both mouse and human DA neurons, supporting the

  8. Congo red modulates ACh-induced Ca2+ oscillations in single pancreatic acinar cells of mice

    PubMed Central

    Huang, Ze-bing; Wang, Hai-yan; Sun, Na-na; Wang, Jing-ke; Zhao, Meng-qin; Shen, Jian-xin; Gao, Ming; Hammer, Ronald P; Fan, Xue-gong; Wu, Jie

    2014-01-01

    Aim: Congo red, a secondary diazo dye, is usually used as an indicator for the presence of amyloid fibrils. Recent studies show that congo red exerts neuroprotective effects in a variety of models of neurodegenerative diseases. However, its pharmacological profile remains unknown. In this study, we investigated the effects of congo red on ACh-induced Ca2+ oscillations in mouse pancreatic acinar cells in vitro. Methods: Acutely dissociated pancreatic acinar cells of mice were prepared. A U-tube drug application system was used to deliver drugs into the bath. Intracellular Ca2+ oscillations were monitored by whole-cell recording of Ca2+-activated Cl− currents and by using confocal Ca2+ imaging. For intracellular drug application, the drug was added in pipette solution and diffused into cell after the whole-cell configuration was established. Results: Bath application of ACh (10 nmol/L) induced typical Ca2+ oscillations in dissociated pancreatic acinar cells. Addition of congo red (1, 10, 100 μmol/L) dose-dependently enhanced Ach-induced Ca2+ oscillations, but congo red alone did not induce any detectable response. Furthermore, this enhancement depended on the concentrations of ACh: congo red markedly enhanced the Ca2+ oscillations induced by ACh (10–30 nmol/L), but did not alter the Ca2+ oscillations induced by ACh (100–10000 nmol/L). Congo red also enhanced the Ca2+ oscillations induced by bath application of IP3 (30 μmol/L). Intracellular application of congo red failed to alter ACh-induced Ca2+ oscillations. Conclusion: Congo red significantly modulates intracellular Ca2+ signaling in pancreatic acinar cells, and this pharmacological effect should be fully considered when developing congo red as a novel therapeutic drug. PMID:25345744

  9. Activation of the α7 nicotinic ACh receptor induces anxiogenic effects in rats which is blocked by a 5-HT1a receptor antagonist

    PubMed Central

    Pandya, Anshul A.; Yakel, Jerrel L.

    2013-01-01

    The α7 nicotinic acetylcholine receptor (nAChR) is highly expressed in different regions of the brain and is associated with cognitive function as well as anxiety. Agonists and positive allosteric modulators (PAMs) of the α7 subtype of nAChRs have been shown to improve cognition. Previously nicotine, which activates both α7 and non-α7 subtypes of nAChRs, has been shown to have an anxiogenic effect in behavioral tests. In this study, we compared the effects of the α7-selective agonist (PNU-282987) and PAM (PNU-120596) in a variety of behavioral tests in Sprague Dawley rats to look at their effects on learning and memory as well as anxiety. We found that neither PNU-282987 nor PNU-120596 improved spatial-learning or episodic memory by themselves. However when cognitive impairment was induced in the rats with scopolamine (1 mg/kg), both PNU-120596 and PNU-282987 were able to reverse this memory impairment and restore it back to normal levels. While PNU-120596 reversed the scopolamine-induced cognitive impairment, it did not have any adverse effect on anxiety. PNU-282987 on the other hand displayed an increase in anxiety-like behavior at a higher dose (10 mg/kg) that was significantly reduced by the serotonin 5-HT1a receptor antagonist WAY-100135. However the α7 receptor antagonist methyllycaconitine was unable to reverse these anxiety-like effects seen with PNU-282987. These results suggest that α7 nAChR PAMs are pharmacologically advantageous over agonists, and should be considered for further development as therapeutic drugs targeting the α7 receptors. PMID:23321689

  10. Synthesis of poly(ester-carbonate) with a pendant acetylcholine analog for promoting neurite growth.

    PubMed

    Xing, Dongming; Ma, Lie; Gao, Changyou

    2014-10-01

    The modification of biodegradable polyesters with bioactive molecules has become an important strategy for controlling neuron adhesion and neurite outgrowth in nerve regeneration. In this study we report a biodegradable poly(ester-carbonate) with a pendant acetylcholine analog, which a neurotransmitter for the enhancement of neuron adhesion and outgrowth. The acetylcholine-functionalized poly(ester-carbonate) (Ach-P(LA-ClTMC)) was prepared by copolymerizing l-lactide (LA) and 5-methyl-5-chloroethoxycarbonyl trimethylene carbonate (ClTMC), followed by quaternization with trimethylamine. The acetylcholine analog content could be modulated by changing the molar feeding fraction of ClTMC. The incorporation of the acetylcholine analog improved the hydrophilicity of the films, but the acetylcholine analog content did not significantly influence the surface morphology of the acetylcholine-functionalized films. The results of PC12 cell culture showed that the acetylcholine analog promoted cell viability and neurite outgrowth in a concentration-dependent manner. The longest length of neurite and the percentage of cells bearing neurites were obtained on the Ach-P(LA-ClTMC)-10 film. All the results indicate that the integration of the acetylcholine analog at an appropriate fraction could be an effective strategy for optimizing the existing biodegradable polyesters for nerve regeneration applications. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. Roles for N-terminal Extracellular Domains of Nicotinic Acetylcholine Receptor (nAChR) β3 Subunits in Enhanced Functional Expression of Mouse α6β2β3- and α6β4β3-nAChRs*

    PubMed Central

    Dash, Bhagirathi; Li, Ming D.; Lukas, Ronald J.

    2014-01-01

    Functional heterologous expression of naturally expressed mouse α6*-nicotinic acetylcholine receptors (mα6*-nAChRs; where “*” indicates the presence of additional subunits) has been difficult. Here we expressed and characterized wild-type (WT), gain-of-function, chimeric, or gain-of-function chimeric nAChR subunits, sometimes as hybrid nAChRs containing both human (h) and mouse (m) subunits, in Xenopus oocytes. Hybrid mα6mβ4hβ3- (∼5–8-fold) or WT mα6mβ4mβ3-nAChRs (∼2-fold) yielded higher function than mα6mβ4-nAChRs. Function was not detected when mα6 and mβ2 subunits were expressed together or in the additional presence of hβ3 or mβ3 subunits. However, function emerged upon expression of mα6mβ2mβ3V9′S-nAChRs containing β3 subunits having gain-of-function V9′S (valine to serine at the 9′-position) mutations in transmembrane domain II and was further elevated 9-fold when hβ3V9′S subunits were substituted for mβ3V9′S subunits. Studies involving WT or gain-of-function chimeric mouse/human β3 subunits narrowed the search for domains that influence functional expression of mα6*-nAChRs. Using hβ3 subunits as templates for site-directed mutagenesis studies, substitution with mβ3 subunit residues in extracellular N-terminal domain loops “C” (Glu221 and Phe223), “E” (Ser144 and Ser148), and “β2-β3” (Gln94 and Glu101) increased function of mα6mβ2*- (∼2–3-fold) or mα6mβ4* (∼2–4-fold)-nAChRs. EC50 values for nicotine acting at mα6mβ4*-nAChR were unaffected by β3 subunit residue substitutions in loop C or E. Thus, amino acid residues located in primary (loop C) or complementary (loops β2-β3 and E) interfaces of β3 subunits are some of the molecular impediments for functional expression of mα6mβ2β3- or mα6mβ4β3-nAChRs. PMID:25028511

  12. Electrophysiological and mechanical effects of substance P and acetylcholine on rabbit aorta.

    PubMed Central

    Bény, J L; Brunet, P C

    1988-01-01

    1. The mechanical and electrical properties of smooth muscle cells of the rabbit aorta were recorded simultaneously using respectively a force transducer and a 3 M-KCl-filled glass microelectrode. 2. Acetylcholine had two effects depending on concentration. At low concentration, it caused a persistent endothelium-dependent relaxation and hyperpolarization. At higher concentrations the acetylcholine endothelium-dependent relaxation summed with an endothelium-independent contraction. 3. Substance P caused a transient endothelium-dependent relaxation and hyperpolarization. 4. Acetylcholine and substance P depolarized and contracted de-endothelialized smooth muscle. When the de-endothelialized strip was pre-contracted by noradrenaline, acetylcholine depolarized the muscle but substance P did not. 5. In a 'cascade' experiment, the perfusate from an upstream intact aorta passed over a downstream de-endothelialized strip. Acetylcholine and substance P relaxed the downstream strip showing that they released an endothelial humoral factor which relaxes smooth muscle. 6. The results suggest a constant release of a factor from the endothelial cells which hyperpolarizes the smooth muscle cells in the media. Activation of acetylcholine and substance P receptors on the endothelium accelerates the release of this factor and causes vasodilatation. PMID:2455799

  13. Effects of the 5-HT6 receptor antagonist idalopirdine on extracellular levels of monoamines, glutamate and acetylcholine in the rat medial prefrontal cortex.

    PubMed

    Mørk, Arne; Russell, Rasmus Vinther; de Jong, Inge E M; Smagin, Gennady

    2017-03-15

    Idalopirdine (Lu AE58054) is a high affinity and selective antagonist for the human serotonin 5-HT 6 receptor (K i 0.83nM) in phase III development for mild-to-moderate Alzheimer's disease as an adjunct therapy to acetylcholinesterase inhibitors (AChEIs). We have studied the effects of idalopirdine on extracellular levels of monoamines, glutamate and acetylcholine in the medial prefrontal cortex (mPFC) of freely-moving rats using microdialysis. Idalopirdine (10mg/kg p.o.) increased extracellular levels of dopamine, noradrenaline and glutamate in the mPFC and showed a trend to increase serotonin levels. No effect was observed on acetylcholine levels. The AChEI donepezil (1.3mg/kg s.c.) significantly increased the levels of acetylcholine. Pretreatment with idalopirdine 2h prior to donepezil administration potentiated the effect of donepezil on extracellular acetylcholine levels. The idalopirdine potentiation of donepezil-induced increase in acetylcholine levels was also observed during local infusion of idalopirdine (6µg/ml) into the mPFC by reverse dialysis. The data from the current study may provide a mechanistic model for the pro-cognitive effects observed with administration of idalopirdine in donepezil-treated patients with Alzheimer's disease observed in the phase 2 studies (Wilkinson et al. 2014). Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Decreased acetylcholine release delays the consolidation of object recognition memory.

    PubMed

    De Jaeger, Xavier; Cammarota, Martín; Prado, Marco A M; Izquierdo, Iván; Prado, Vania F; Pereira, Grace S

    2013-02-01

    Acetylcholine (ACh) is important for different cognitive functions such as learning, memory and attention. The release of ACh depends on its vesicular loading by the vesicular acetylcholine transporter (VAChT). It has been demonstrated that VAChT expression can modulate object recognition memory. However, the role of VAChT expression on object recognition memory persistence still remains to be understood. To address this question we used distinct mouse lines with reduced expression of VAChT, as well as pharmacological manipulations of the cholinergic system. We showed that reduction of cholinergic tone impairs object recognition memory measured at 24h. Surprisingly, object recognition memory, measured at 4 days after training, was impaired by substantial, but not moderate, reduction in VAChT expression. Our results suggest that levels of acetylcholine release strongly modulate object recognition memory consolidation and appear to be of particular importance for memory persistence 4 days after training. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. The thrombin inhibitor argatroban does not influence the endothelium-dependent relaxant and contractile responses of isolated rabbit carotid arteries.

    PubMed

    Schrödter, Hans-Martin; Glusa, Erika

    2003-06-01

    Atherosclerotic endothelial dysfunctions are associated with a reduced NO production, which is probably due to impaired NO synthase (eNOS) activity or a deficiency of the substrate L-arginine. In the present studies, the influence of argatroban on isolated rabbit carotid arteries was investigated to determine whether the arginine derivative argatroban can improve the endothelium-dependent relaxation. Rings from rabbit carotid arteries were placed in 10 ml organ baths for isometric tension recording. Endothelial integrity was assessed by the acetylcholine-induced relaxation of PGF2alpha-precontracted rings; after mechanical removal of the endothelium the relaxation was abolished. Preincubation of the vessels in vitro with L-NAME, an inhibitor of the eNOS, diminished significantly the acetylcholine-induced relaxation by more than 50%. After i.v. application of L-NAME (100 mg/kg) in rabbits, relaxation in response to acetylcholine was significantly reduced compared to the control when the vessels were studied ex vivo in an organ bath. The contractile effects of phenylephrine and 5-HT were slightly enhanced. Argatroban is a selective, potent, synthetic thrombin inhibitor; after i.v. application at doses of 0.5 and 1.0 mg/kg, a significant prolongation of the plasma coagulation time (measured as thrombin time and a PTT) of up to 60 min was found in rabbits. In vitro argatroban did not affect the acetylcholine-induced relaxation or the contractile response to phenylephrine and 5-HT. After i.v. application, the ex vivo experiments in the organ bath showed that after 30 min the relaxant responses of the carotid arteries to acetylcholine and the contractile effects of phenylephrine and 5-HT were not influenced by pretreatment with argatroban. The present studies suggest that argatroban has no vascular effects in vitro and ex vivo in normal rabbits.

  16. Computational determination of the binding mode of α-conotoxin to nicotinic acetylcholine receptor

    NASA Astrophysics Data System (ADS)

    Tabassum, Nargis; Yu, Rilei; Jiang, Tao

    2016-12-01

    Conotoxins belong to the large families of disulfide-rich peptide toxins from cone snail venom, and can act on a broad spectrum of ion channels and receptors. They are classified into different subtypes based on their targets. The α-conotoxins selectively inhibit the current of the nicotinic acetylcholine receptors. Because of their unique selectivity towards distinct nAChR subtypes, α-conotoxins become valuable tools in nAChR study. In addition to the X-ray structures of α-conotoxins in complex with acetylcholine-binding protein, a homolog of the nAChR ligand-binding domain, the high-resolution crystal structures of the extracellular domain of the α1 and α9 subunits are also obtained. Such structures not only revealed the details of the configuration of nAChR, but also provided higher sequence identity templates for modeling the binding modes of α-conotoxins to nAChR. This mini-review summarizes recent modeling studies for the determination of the binding modes of α-conotoxins to nAChR. As there are not crystal structures of the nAChR in complex with conotoxins, computational modeling in combination of mutagenesis data is expected to reveal the molecular recognition mechanisms that govern the interactions between α-conotoxins and nAChR at molecular level. An accurate determination of the binding modes of α-conotoxins on AChRs allows rational design of α-conotoxin analogues with improved potency or selectivity to nAChRs.

  17. Modes of Action, Resistance and Toxicity of Insecticides Targeting Nicotinic Acetylcholine Receptors.

    PubMed

    Ihara, Makoto; Buckingham, Steven D; Matsuda, Kazuhiko; Sattelle, David B

    2017-01-01

    Nicotinic acetylcholine receptors (nAChRs) of insects play a key role in fast excitatory neurotransmission. Several classes of insecticides target insect nAChRs, which are composed of subunit members of a family of multiple subunit encoding genes. Alternative splicing and RNA A-to-I editing can add further to receptor diversity. Native and recombinant receptors have been explored as sites of insecticide action using radioligands, electrophysiology and site-directed mutagenesis. We have reviewed the properties of native and recombinant insect nAChRs, the challenges of functional recombinant insect nAChR expression, nAChR interactions with ligands acting at orthosteric and allosteric sites and in particular their interactions with insecticides. Actions on insect nAChRs of cartap, neonicotinoids, spinosyns, sulfoxamines, butenolides and mesoionic insecticides are reviewed and current knowledge of their modes of action are addressed. Mutations that add to our understanding of insecticide action and those leading to resistance are discussed. Co-crystallisation of neonicotinoids with the acetylcholine binding protein (AChBP), a surrogate for the nAChR ligand binding domain, has proved instructive. Toxicity issues relating to insecticides targeting nAChRs are also considered. An overview of insecticide classes targeting insect nAChRs has enhanced our understanding of these important receptors and their insecticide binding sites. However, the subunit composition of native nAChRs remains poorly understood and functional expression still presents difficulties. These topics together with improved understanding of the precise sites of insecticide actions on insect nAChRs will be the subject of future research. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Theoretical investigation of interaction between the set of ligands and α7 nicotinic acetylcholine receptor

    NASA Astrophysics Data System (ADS)

    Glukhova, O. E.; Prytkova, T. R.; Shmygin, D. S.

    2016-03-01

    Nicotinic acetylcholine receptors (nAChRs) are neuron receptor proteins that provide a transmission of nerve impulse through the synapses. They are composed of a pentametric assembly of five homologous subunits (5 α7 subunits for α7nAChR, for example), oriented around the central pore. These receptors might be found in the chemical synapses of central and peripheral nervous system, and also in the neuromuscular synapses. Transmembrane domain of the one of such receptors constitutes ion channel. The conductive properties of ion channel strongly depend on the receptor conformation changes in the response of binding with some molecule, f.e. acetylcholine. Investigation of interaction between ligands and acetylcholine receptor is important for drug design. In this work we investigate theoretically the interaction between the set of different ligands (such as vanillin, thymoquinone, etc.) and the nicotinic acetylcholine receptor (primarily with subunit of the α7nAChR) by different methods and packages (AutodockVina, GROMACS, KVAZAR, HARLEM, VMD). We calculate interaction energy between different ligands in the subunit using molecular dynamics. On the base of obtained calculation results and using molecular docking we found an optimal location of different ligands in the subunit.

  19. Neurotoxicity fingerprinting of venoms using on-line microfluidic AChBP profiling.

    PubMed

    Slagboom, Julien; Otvos, Reka A; Cardoso, Fernanda C; Iyer, Janaki; Visser, Jeroen C; van Doodewaerd, Bjorn R; McCleary, Ryan J R; Niessen, Wilfried M A; Somsen, Govert W; Lewis, Richard J; Kini, R Manjunatha; Smit, August B; Casewell, Nicholas R; Kool, Jeroen

    2018-06-15

    Venoms from snakes are rich sources of highly active proteins with potent affinity towards a variety of enzymes and receptors. Of the many distinct toxicities caused by envenomation, neurotoxicity plays an important role in the paralysis of prey by snakes as well as by venomous sea snails and insects. In order to improve the analytical discovery component of venom toxicity profiling, this paper describes the implementation of microfluidic high-resolution screening (HRS) to obtain neurotoxicity fingerprints from venoms that facilitates identification of the neurotoxic components of envenomation. To demonstrate this workflow, 47 snake venoms were profiled using the acetylcholine binding protein (AChBP) to mimic the target of neurotoxic proteins, in particular nicotinic acetylcholine receptors (nAChRs). In the microfluidic HRS system, nanoliquid chromatographic (nanoLC) separations were on-line connected to both AChBP profiling and parallel mass spectrometry (MS). For virtually all neurotoxic elapid snake venoms tested, we obtained bioactivity fingerprints showing major and minor bioactive zones containing masses consistent with three-finger toxins (3FTxs), whereas, viperid and colubrid venoms showed little or no detectable bioactivity. Our findings demonstrate that venom interactions with AChBP correlate with the severity of neurotoxicity observed following human envenoming by different snake species. We further, as proof of principle, characterized bioactive venom peptides from a viperid (Daboia russelli) and an elapid (Aspidelaps scutatus scutatus) snake by nanoLC-MS/MS, revealing that different toxin classes interact with the AChBP, and that this binding correlates with the inhibition of α7-nAChR in calcium-flux cell-based assays. The on-line post-column binding assay and subsequent toxin characterization methodologies described here provide a new in vitro analytic platform for rapidly investigating neurotoxic snake venom proteins. Copyright © 2018 The Author

  20. Acetylcholine suppresses shoot formation and callusing in leaf explants of in vitro raised seedlings of tomato, Lycopersicon esculentum Miller var. Pusa Ruby.

    PubMed

    Bamel, Kiran; Gupta, Rajendra; Gupta, Shirish C

    2016-06-02

    We present experimental evidence to show that acetylcholine (ACh) causes decrease in shoot formation in leaf explants of tomato (Lycopersicon esculentum Miller var Pusa Ruby) when cultured on shoot regeneration medium. The optimum response was obtained at 10(-4) M ACh-enriched medium. ACh also causes decrease in percentage of cultures forming callus and reduces the callus mass. Inhibitors of enzymatic hydrolysis of ACh, neostigmine and physostigmine, also suppresses callogenesis and caulogenesis. On the other hand, the breakdown products of Ach, choline and acetate, do not alter the morphogenic response induced on the shoot regeneration medium. Neostigmine showed optimal reduction in shoot formation at 10(-5) M. The explants cultured on neostigmine augmented medium showed decline in the activity of ACh hydrolyzing enzyme acetylcholinesterase. ACh and neostigmine added together showed marked reduction in callus mass. These results strongly support the role of ACh as a natural regulator of morphogenesis in tomato plants.

  1. Acetylcholine suppresses shoot formation and callusing in leaf explants of in vitro raised seedlings of tomato, Lycopersicon esculentum Miller var. Pusa Ruby

    PubMed Central

    Bamel, Kiran; Gupta, Rajendra; Gupta, Shirish C.

    2016-01-01

    ABSTRACT We present experimental evidence to show that acetylcholine (ACh) causes decrease in shoot formation in leaf explants of tomato (Lycopersicon esculentum Miller var Pusa Ruby) when cultured on shoot regeneration medium. The optimum response was obtained at 10−4 M ACh-enriched medium. ACh also causes decrease in percentage of cultures forming callus and reduces the callus mass. Inhibitors of enzymatic hydrolysis of ACh, neostigmine and physostigmine, also suppresses callogenesis and caulogenesis. On the other hand, the breakdown products of Ach, choline and acetate, do not alter the morphogenic response induced on the shoot regeneration medium. Neostigmine showed optimal reduction in shoot formation at 10−5 M. The explants cultured on neostigmine augmented medium showed decline in the activity of ACh hydrolyzing enzyme acetylcholinesterase. ACh and neostigmine added together showed marked reduction in callus mass. These results strongly support the role of ACh as a natural regulator of morphogenesis in tomato plants. PMID:27348536

  2. Radiosynthesis and evaluation of novel acetylcholine receptor radioligands

    NASA Astrophysics Data System (ADS)

    Pimlott, Sally L.

    Neuroreceptor single photon emission computed tomography (SPECT) imaging provides a powerful tool for the evaluation of the function of a neurotransmitter system in normal and or disease states in the living human brain. The cholinergic system is involved in the control of a variety of complex functions including learning, memory and modulation of behaviour. Deficits in the cholinergic system have been found in a number of neurological diseases, such as Alzheimer's disease, dementia with Lewy bodies, Parkinson's disease and Epilepsy. Acetylcholine receptors (AChRs) are divided into two classes, muscarinic and nicotinic. The aim of this project was to develop two novel SPECT AChR ligands: (R,R)[123I]I-QNB, a M1 subtype selective muscarinic acetylcholine receptor (mAChR) ligand, and 5-[123I]-A-85380, a alpha4beta2 subtype selective nicotinic receptor (nAChR) ligand, for use in human SPECT imaging studies. The calculation of the binding potential of a ligand can be used to obtain quantitative information from a SPECT scan, enabling comparisons to be made between studies. Methodological issues involved in the calculation of binding potential are therefore crucial for the accuracy of results. A particularly important parameter is the amount of authentic radioligand available to cross the blood brain barrier. This was characterised in the research performed for this thesis. The radiosynthesis of two novel neuroreceptor radioligands has been optimised for use in humans. (R, R)[123I]I-QNB has been used in human studies to provide useful information on the human mAChR function in disease. Pre-clinical evaluation of 5-[123I]-A-85380 provided useful information for in vivo human studies. Both radioligands are concluded to successfully provide novel information on the function of the acetylcholine system. Methodological issues involved in the blood metabolite analysis and measurement of plasma protein binding have been investigated and discussed, with particular reference made

  3. Endothelial relaxation mechanisms and nitrative stress are partly restored by Vitamin D3 therapy in a rat model of polycystic ovary syndrome.

    PubMed

    Masszi, Gabriella; Benko, Rita; Csibi, Noemi; Horvath, Eszter M; Tokes, Anna-Maria; Novak, Agnes; Beres, Nora Judit; Tarszabo, Robert; Buday, Anna; Repas, Csaba; Bekesi, Gabor; Patocs, Attila; Nadasy, Gyorgy L; Hamar, Peter; Benyo, Zoltan; Varbiro, Szabolcs

    2013-08-06

    In polycystic ovary syndrome (PCOS), metabolic and cardiovascular dysfunction is related to hyperandrogenic status and insulin resistance, however, Vitamin D3 has a beneficial effect partly due to its anti-oxidant capacity. Nitrative stress is a major factor in the development of cardiovascular dysfunction and insulin resistance in various diseases. Our aim was to determine the effects of vitamin D3 in a rat model of PCOS, particularly the pathogenic role of nitrative stress. Female Wistar rats weighing 100-140g were administered vehicle (C), dihydrotestosterone (DHT) or dihydrotestosterone plus vitamin D3 (DHT+D) (n=10 per group). On the 10th week, acetylcholine (Ach) induced relaxation ability of the isolated thoracic aorta rings was determined. In order to examine the possible role of endothelial nitric oxide synthase (eNOS) and cyclooxygenase-2 (COX-2) pathways in the impaired endothelial function, immunohistochemical labeling of aortas with anti-eNOS and anti-COX-2 antibodies was performed. Leukocyte smears, aorta and ovary tissue sections were also immunostained with anti-nitrotyrosine antibody to determine nitrative stress. Relaxation ability of aorta was reduced in group DHT, and vitamin D3 partly restored Ach induced relaxation. eNOS labeling was significantly lower in DHT rats compared to the other two groups, however COX-2 staining showed an increment. Nitrative stress showed a significant increase in response to dihydrotestosterone, while vitamin D3 treatment, in case of the ovaries, was able to reverse this effect. Nitrative stress may play a role in the pathogenesis of PCOS and in the development of the therapeutic effect of vitamin D3. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Tropisetron sensitizes α7 containing nicotinic receptors to low levels of acetylcholine in vitro and improves memory-related task performance in young and aged animals.

    PubMed

    Callahan, Patrick M; Bertrand, Daniel; Bertrand, Sonia; Plagenhoef, Marc R; Terry, Alvin V

    2017-05-01

    Tropisetron, a 5-HT 3 receptor antagonist commonly prescribed for chemotherapy-induced nausea and vomiting also exhibits high affinity, partial agonist activity at α7 nicotinic acetylcholine receptors (α7 nAChRs). α7 nAChRs are considered viable therapeutic targets for neuropsychiatric disorders such as Alzheimer's disease (AD). Here we further explored the nAChR pharmacology of tropisetron to include the homomeric α7 nAChR and recently characterized heteromeric α7β2 nAChR (1:10 ratio) and we evaluated its cognitive effects in young and aged animals. Electrophysiological studies on human nAChRs expressed in Xenopus oocytes confirmed the partial agonist activity of tropisetron at α7 nAChRs (EC 50 ∼2.4 μM) with a similar effect at α7β2 nAChRs (EC 50 ∼1.5 μM). Moreover, currents evoked by irregular pulses of acetylcholine (40 μM) at α7 and α7β2 nAChRs were enhanced during sustained exposure to low concentrations of tropisetron (10 and 30 nM) indicative of a "priming" or co-agonist effect. Tropisetron (0.1-10 mg/kg) improved novel object recognition performance in young Sprague-Dawley rats and in aged Fischer rats. In aged male and female rhesus monkeys, tropisetron (0.03-1 mg/kg) produced a 17% increase from baseline levels in delayed match to sample long delay accuracy while combination of non-effective doses of donepezil (0.1 mg/kg) and tropisetron (0.03 and 0.1 mg/kg) produced a 24% change in accuracy. Collectively, these animal experiments indicate that tropisetron enhances cognition and has the ability to improve the effective dose range of currently prescribed AD therapy (donepezil). Moreover, these effects may be explained by tropisetron's ability to sensitize α7 containing nAChRs to low levels of acetylcholine. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Tissue Vibration Induces Carotid Artery Endothelial Dysfunction: A Mechanism Linking Snoring and Carotid Atherosclerosis?

    PubMed Central

    Cho, Jin-Gun; Witting, Paul K.; Verma, Manisha; Wu, Ben J.; Shanu, Anu; Kairaitis, Kristina; Amis, Terence C.; Wheatley, John R.

    2011-01-01

    Study Objectives: We have previously identified heavy snoring as an independent risk factor for carotid atherosclerosis. In order to explore the hypothesis that snoring-associated vibration of the carotid artery induces endothelial dysfunction (an established atherogenic precursor), we utilized an animal model to examine direct effects of peri-carotid tissue vibration on carotid artery endothelial function and structure. Design: In supine anesthetized, ventilated rabbits, the right carotid artery (RCA) was directly exposed to vibrations for 6 h (peak frequency 60 Hz, energy matched to that of induced snoring in rabbits). Similarly instrumented unvibrated rabbits served as controls. Features of OSA such as hypoxemia, large intra-pleural swings and blood pressure volatility were prevented. Carotid endothelial function was then examined: (1) biochemically by measurement of tissue cyclic guanosine monophosphate (cGMP) to acetylcholine (ACh) and sodium nitroprusside (SNP); and (2) functionally by monitoring vessel relaxation with acetylcholine in a myobath. Measurement and Results: Vessel cGMP after stimulation with ACh was reduced in vibrated RCA compared with unvibrated (control) arteries in a vibration energy dose-dependent manner. Vibrated RCA also showed decreased vasorelaxation to ACh compared with control arteries. Notably, after addition of SNP (nitric oxide donor), cGMP levels did not differ between vibrated and control arteries, thereby isolating vibration-induced dysfunction to the endothelium alone. This dysfunction occurred in the presence of a morphologically intact endothelium without increased apoptosis. Conclusions: Carotid arteries subjected to 6 h of continuous peri-carotid tissue vibration displayed endothelial dysfunction, suggesting a direct plausible mechanism linking heavy snoring to the development of carotid atherosclerosis. Citation: Cho JG; Witting PK; Verma M; Wu BJ; Shanu A; Kairaitis K; Amis TC; Wheatley JR. Tissue vibration induces

  6. Molecular modeling and structural analysis of nAChR variants uncovers the mechanism of resistance to snake toxins.

    PubMed

    Gunasekaran, D; Sridhar, J; Suryanarayanan, V; Manimaran, N C; Singh, Sanjeev Kumar

    2017-06-01

    Nicotinic acetylcholine receptors (nAChRs) are neuromuscular proteins responsible for muscle contraction upon binding with chemical stimulant acetylcholine (ACh). The α-neurotoxins of snake mimic the structure of ACh and attacks nAChRs, which block the flow of ACh and leads to numbness and paralysis. The toxin-binding site of alpha subunit in the nAChRs is highly conserved throughout chordate lineages with few exceptions in resistance organisms. In this study, we have analyzed the sequence and structures of toxin-binding/resistant nAChRs and their interaction stability with toxins through molecular docking and molecular dynamics simulation (MDS). We have reported the potential glycosylation residues within the toxin-binding cleft adding sugar moieties through N-linked glycosylation in resistant organisms. Residue variations at key positions alter the secondary structure of binding cleft, which might interfere with toxin binding and it could be one of the possible explanations for the resistance to snake venoms. Analysis of nAChR-α-neurotoxin complexes has confirmed the key interacting residues. In addition, drastic variation in the binding stability of Mongoose nAChR-α-Bungarotoxin (α-BTX) and human nAChR-α-BTX complexes were found at specific phase of MDS. Our findings suggest that specific mutations in the binding site of toxin are potentially preventing the formation of stable complex of receptor-toxin, which might lead to mechanism of resistance. This in silico study on the binding cleft of nAChR and the findings of interacting residues will assist in designing potential inhibitors as therapeutic targets.

  7. END-PLATE ACETYLCHOLINE RECEPTOR: STRUCTURE, MECHANISM, PHARMACOLOGY, AND DISEASE

    PubMed Central

    Sine, Steven M.

    2012-01-01

    The synapse is a localized neurohumoral contact between a neuron and an effector cell and may be considered the quantum of fast intercellular communication. Analogously, the postsynaptic neurotransmitter receptor may be considered the quantum of fast chemical to electrical transduction. Our understanding of postsynaptic receptors began to develop about a hundred years ago with the demonstration that electrical stimulation of the vagus nerve released acetylcholine and slowed the heart beat. During the past 50 years, advances in understanding postsynaptic receptors increased at a rapid pace, owing largely to studies of the acetylcholine receptor (AChR) at the motor endplate. The endplate AChR belongs to a large superfamily of neurotransmitter receptors, called Cys-loop receptors, and has served as an exemplar receptor for probing fundamental structures and mechanisms that underlie fast synaptic transmission in the central and peripheral nervous systems. Recent studies provide an increasingly detailed picture of the structure of the AChR and the symphony of molecular motions that underpin its remarkably fast and efficient chemoelectrical transduction. PMID:22811427

  8. Modulation of TNF Release by Choline Requires α7 Subunit Nicotinic Acetylcholine Receptor-Mediated Signaling

    PubMed Central

    Parrish, William R; Rosas-Ballina, Mauricio; Gallowitsch-Puerta, Margot; Ochani, Mahendar; Ochani, Kanta; Yang, Li-Hong; Hudson, LaQueta; Lin, Xinchun; Patel, Nirav; Johnson, Sarah M; Chavan, Sangeeta; Goldstein, Richard S; Czura, Christopher J; Miller, Edmund J; Al-Abed, Yousef; Tracey, Kevin J; Pavlov, Valentin A

    2008-01-01

    The α7 subunit-containing nicotinic acetylcholine receptor (α7nAChR) is an essential component in the vagus nerve-based cholinergic anti-inflammatory pathway that regulates the levels of TNF, high mobility group box 1 (HMGB1), and other cytokines during inflammation. Choline is an essential nutrient, a cell membrane constituent, a precursor in the biosynthesis of acetylcholine, and a selective natural α7nAChR agonist. Here, we studied the anti-inflammatory potential of choline in murine endotoxemia and sepsis, and the role of the α7nAChR in mediating the suppressive effect of choline on TNF release. Choline (0.1–50 mM) dose-dependently suppressed TNF release from endotoxin-activated RAW macrophage-like cells, and this effect was associated with significant inhibition of NF-κB activation. Choline (50 mg/kg, intraperitoneally [i.p.]) treatment prior to endotoxin administration in mice significantly reduced systemic TNF levels. In contrast to its TNF suppressive effect in wild type mice, choline (50 mg/kg, i.p.) failed to inhibit systemic TNF levels in α7nAChR knockout mice during endotoxemia. Choline also failed to suppress TNF release from endotoxin-activated peritoneal macrophages isolated from α7nAChR knockout mice. Choline treatment prior to endotoxin resulted in a significantly improved survival rate as compared with saline-treated endotoxemic controls. Choline also suppressed HMGB1 release in vitro and in vivo, and choline treatment initiated 24 h after cecal ligation and puncture (CLP)-induced polymicrobial sepsis significantly improved survival in mice. In addition, choline suppressed TNF release from endotoxin-activated human whole blood and macrophages. Collectively, these data characterize the anti-inflammatory efficacy of choline and demonstrate that the modulation of TNF release by choline requires α7nAChR-mediated signaling. PMID:18584048

  9. Molecular recognition of thiaclopride by Aplysia californica AChBP: new insights from a computational investigation

    NASA Astrophysics Data System (ADS)

    Alamiddine, Zakaria; Selvam, Balaji; Cerón-Carrasco, José P.; Mathé-Allainmat, Monique; Lebreton, Jacques; Thany, Steeve H.; Laurent, Adèle D.; Graton, Jérôme; Le Questel, Jean-Yves

    2015-12-01

    The binding of thiaclopride (THI), a neonicotinoid insecticide, with Aplysia californica acetylcholine binding protein ( Ac-AChBP), the surrogate of the extracellular domain of insects nicotinic acetylcholine receptors, has been studied with a QM/QM' hybrid methodology using the ONIOM approach (M06-2X/6-311G(d):PM6). The contributions of Ac-AChBP key residues for THI binding are accurately quantified from a structural and energetic point of view. The importance of water mediated hydrogen-bond (H-bond) interactions involving two water molecules and Tyr55 and Ser189 residues in the vicinity of the THI nitrile group, is specially highlighted. A larger stabilization energy is obtained with the THI- Ac-AChBP complex compared to imidacloprid (IMI), the forerunner of neonicotinoid insecticides. Pairwise interaction energy calculations rationalize this result with, in particular, a significantly more important contribution of the pivotal aromatic residues Trp147 and Tyr188 with THI through CH···π/CH···O and π-π stacking interactions, respectively. These trends are confirmed through a complementary non-covalent interaction (NCI) analysis of selected THI- Ac-AChBP amino acid pairs.

  10. Guidelines for pre-clinical assessment of the acetylcholine receptor-specific passive transfer myasthenia gravis model - recommendations for methods and experimental designs

    PubMed Central

    Kusner, Linda L.; Losen, Mario; Vincent, Angela; Lindstrom, Jon; Tzartos, Socrates; Lazaridis, Konstantinos; Martinez-Martinez, Pilar

    2015-01-01

    Antibodies against the muscle acetylcholine receptor (AChR) are the most common cause of myasthenia gravis (MG). Passive transfer of AChR antibodies from MG patients into animals reproduces key features of human disease, including antigenic modulation of the AChR, complement-mediated damage of the neuromuscular junction, and muscle weakness. Similarly, AChR antibodies generated by active immunization in experimental autoimmune MG models can subsequently be passively transferred to other animals and induce weakness. The passive transfer model is useful to test therapeutic strategies aimed at the effector mechanism of the autoantibodies. Here we summarize published and unpublished experience using the AChR passive transfer MG model in mice, rats and rhesus monkeys, and give recommendations for the design of preclinical studies in order to facilitate translation of positive and negative results to improve MG therapies. PMID:25743217

  11. Nicotinic acetylcholine receptor properties are modulated by surrounding lipids: an in vivo study.

    PubMed

    Morales, Andrés; de Juan, Emilio; Fernández-Carvajal, Asia M; Martinez-Pinna, José; Poveda, Juan Antonio; Encinar, José A; Ivorra, Isabel; González-Ros, José Manuel

    2006-01-01

    In vitro studies carried out on liposomes of defined composition showed that nicotinic acetylcholine receptors (nAChRs) are fully functional when they are reconstituted in a heterogeneous lipid matrix, such as that provided by crude soybean (asolectin [R-Aso]) lipids. However, when they are reconstituted in plain phosphatidylcholine (R-PC) lipids, their functional activity is completely lost (Fong and McNamee, 1986). This kind of study also pointed out that phosphatidic acid (PA) and cholesterol (Chol) play an important role in preserving the ability of this protein to exhibit an optimal channel activity (Fong and McNamee, 1986). Furthermore, it has been shown recently that nAChR, itself, induces the formation of specific PA-rich lipid domains (Poveda et al., 2002). Because Xenopus oocytes incorporate functionally into their plasma membrane nAChRs after intracellular injection of liposomes bearing this protein (Morales et al., 1995), the aim of this work was to determine the effect of the reconstitution lipid matrix on the functional properties of the transplanted nAChRs.

  12. Contributions of Torpedo nicotinic acetylcholine receptor gamma Trp-55 and delta Trp-57 to agonist and competitive antagonist function.

    PubMed

    Xie, Y; Cohen, J B

    2001-01-26

    Results of affinity-labeling studies and mutational analyses provide evidence that the agonist binding sites of the nicotinic acetylcholine receptor (nAChR) are located at the alpha-gamma and alpha-delta subunit interfaces. For Torpedo nAChR, photoaffinity-labeling studies with the competitive antagonist d-[(3)H]tubocurarine (dTC) identified two tryptophans, gammaTrp-55 and deltaTrp-57, as the primary sites of photolabeling in the non-alpha subunits. To characterize the importance of gammaTrp-55 and deltaTrp-57 to the interactions of agonists and antagonists, Torpedo nAChRs were expressed in Xenopus oocytes, and equilibrium binding assays and electrophysiological recordings were used to examine the functional consequences when either or both tryptophans were mutated to leucine. Neither substitution altered the equilibrium binding of dTC. However, the deltaW57L and gammaW55L mutations decreased acetylcholine (ACh) binding affinity by 20- and 7,000-fold respectively. For the wild-type, gammaW55L, and deltaW57L nAChRs, the concentration dependence of channel activation was characterized by Hill coefficients of 1.8, 1.1, and 1.7. For the gammaW55L mutant, dTC binding at the alpha-gamma site acts not as a competitive antagonist but as a coactivator or partial agonist. These results establish that interactions with gamma Trp-55 of the Torpedo nAChR play a crucial role in agonist binding and in the agonist-induced conformational changes that lead to channel opening.

  13. Distribution of efferent cholinergic terminals and alpha-bungarotoxin binding to putative nicotinic acetylcholine receptors in the human vestibular end-organs.

    PubMed

    Ishiyama, A; Lopez, I; Wackym, P A

    1995-11-01

    Although acetylcholine (ACh) has been identified as the primary neurotransmitter of the efferent vestibular system in most animals studied, no direct evidence exists that ACh is the efferent neurotransmitter of the human vestibular system. Choline acetyltransferase immunohistochemistry (ChATi), acetylcholinesterase (AChE) histochemistry, and alpha-bungarotoxin binding were used in human vestibular end-organs to address this question. ChATi and AChE activity was found in numerous bouton-type terminals contacting the basal area of type II vestibular hair cells and the afferent chalices surrounding type I hair cells; alpha-bungarotoxin binding suggested the presence of nicotinic acetylcholine receptors on type II vestibular hair cells and on the afferent chalices surrounding type I hair cells. This study provides evidence that the human efferent vestibular axons and terminals are cholinergic and that the receptors receiving this innervation may be nicotinic.

  14. Mechanisms underlying the losartan treatment-induced improvement in the endothelial dysfunction seen in mesenteric arteries from type 2 diabetic rats.

    PubMed

    Matsumoto, Takayuki; Ishida, Keiko; Nakayama, Naoaki; Taguchi, Kumiko; Kobayashi, Tsuneo; Kamata, Katsuo

    2010-09-01

    It is well known that type 2 diabetes mellitus is frequently associated with vascular dysfunction and an elevated systemic blood pressure, yet the underlying mechanisms are not completely understood. We previously reported that in mesenteric arteries from established type 2 diabetic Otsuka Long-Evans Tokushima fatty (OLETF) rats, which exhibit endothelial dysfunction, there is an imbalance between endothelium-derived vasodilators [namely, nitric oxide (NO) and hyperpolarizing factor (EDHF)] and vasoconstrictors [contracting factors (EDCFs) such as cyclooxygenase (COX)-derived prostanoids]. Here, we investigated whether the angiotensin II receptor antagonist losartan might improve endothelial dysfunction in OLETF rats at the established stage of diabetes. In mesenteric arteries isolated from OLETF rats [vs. those from age-matched control Long-Evans Tokushima Otsuka (LETO) rats]: (1) the acetylcholine (ACh)-induced relaxation was impaired, (2) the NO- and EDHF-mediated relaxations were reduced, (3) the ACh-induced EDCF-mediated contraction and the production of prostanoids were increased, and (4) superoxide generation was increased. After such OLETF rats had received losartan (25 mg/kg/day p.o. for 4 weeks), their isolated mesenteric arteries exhibited: (1) improvements in ACh-induced NO- and EDHF-mediated relaxations, (2) reduced EDCF- and arachidonic acid-induced contractions, (3) suppressed production of prostanoids, (4) reduced PGE(2)-mediated contraction, and (5) reduced superoxide generation. Within the timescale studied here, losartan did not change the protein expressions of endothelial NO synthase, COX1, or COX2 in mesenteric arteries from either OLETF or LETO rats. Losartan thus normalizes vascular dysfunction in this type 2 diabetic model, and the above effects may contribute to the reduction of adverse cardiovascular events seen in diabetic patients treated with angiotensin II receptor blockers. Copyright 2010 Elsevier Ltd. All rights reserved.

  15. Acetylcholine molecular arrays enable quantum information processing

    NASA Astrophysics Data System (ADS)

    Tamulis, Arvydas; Majauskaite, Kristina; Talaikis, Martynas; Zborowski, Krzysztof; Kairys, Visvaldas

    2017-09-01

    We have found self-assembly of four neurotransmitter acetylcholine (ACh) molecular complexes in a water molecules environment by using geometry optimization with DFT B97d method. These complexes organizes to regular arrays of ACh molecules possessing electronic spins, i.e. quantum information bits. These spin arrays could potentially be controlled by the application of a non-uniform external magnetic field. The proper sequence of resonant electromagnetic pulses would then drive all the spin groups into the 3-spin entangled state and proceed large scale quantum information bits.

  16. Study of the Peripheral Nerve Fibers Myelin Structure Changes during Activation of Schwann Cell Acetylcholine Receptors

    PubMed Central

    Verdiyan, Ekaterina E.; Allakhverdiev, Elvin S.; Maksimov, Georgy V.

    2016-01-01

    In the present paper we consider a new type of mechanism by which neurotransmitter acetylcholine (ACh) regulates the properties of peripheral nerve fibers myelin. Our data show the importance of the relationship between the changes in the number of Schwann cell (SC) acetylcholine receptors (AChRs) and the axon excitation (different intervals between action potentials (APs)). Using Raman spectroscopy, an effect of activation of SC AChRs on the myelin membrane fluidity was investigated. It was found, that ACh stimulates an increase in lipid ordering degree of the myelin lipids, thus providing evidence for specific role of the “axon-SC” interactions at the axon excitation. It was proposed, that during the axon excitation, the SC membrane K+- depolarization and the Ca2+—influx led to phospholipase activation or exocytosis of intracellular membrane vesicles and myelin structure reorganization. PMID:27455410

  17. Mechanisms of flow and ACh-induced dilation in rat soleus arterioles are altered by hindlimb unweighting

    NASA Technical Reports Server (NTRS)

    Schrage, William G.; Woodman, Christopher R.; Laughlin, M. Harold

    2002-01-01

    The purpose of this study was to test the hypothesis that endothelium-dependent dilation (flow-induced dilation and ACh-induced dilation) in rat soleus muscle arterioles is impaired by hindlimb unweighting (HLU). Male Sprague-Dawley rats (approximately 300 g) were exposed to HLU or weight-bearing control (Con) conditions for 14 days. Soleus first-order (1A) and second-order (2A) arterioles were isolated, cannulated, and exposed to step increases in luminal flow at constant pressure. Flow-induced dilation was not impaired by HLU in 1A or 2A arterioles. The cyclooxygenase inhibitor indomethacin (Indo; 50 microM) did not alter flow-induced dilation in 1As or 2As. Inhibition of nitric oxide synthase (NOS) with N(omega)-nitro-L-arginine (L-NNA; 300 microM) reduced flow-induced dilation by 65-70% in Con and HLU 1As. In contrast, L-NNA abolished flow-induced dilation in 2As from Con rats but had no effect in HLU 2As. Combined treatment with L-NNA + Indo reduced tone in 1As and 2As from Con rats, but flow-induced dilation in the presence of L-NNA + Indo was not different from responses without inhibitors in either Con or HLU 1As or 2As. HLU also did not impair ACh-induced dilation (10(-9)-10(-4) M) in soleus 2As. L-NNA reduced ACh-induced dilation by approximately 40% in Con 2As but abolished dilation in HLU 2As. Indo did not alter ACh-induced dilation in Con or HLU 2As, whereas combined treatment with L-NNA + Indo abolished ACh-induced dilation in 2As from both groups. We conclude that flow-induced dilation (1As and 2As) was preserved after 2 wk HLU, but HLU decreased the contribution of NOS in mediating flow-induced dilation and increased the contribution of a NOS- and cyclooxygenase-independent mechanism (possibly endothelium-derived hyperpolarizing factor). In soleus 2As, ACh-induced dilation was preserved after 2-wk HLU but the contribution of NOS in mediating ACh-induced dilation was increased.

  18. Regular exercise enhances blood pressure lowering effect of acetylcholine by increased contribution of nitric oxide.

    PubMed

    Dörnyei, G; Monos, E; Kaley, G; Koller, A

    2000-01-01

    This study is aimed to test the hypothesis, that short-term daily bouts of exercise alter the endothelial regulation of peripheral vascular resistance by nitric oxide. Rats ran on a treadmill once a day, 5 days a week, for an average of three weeks with gradually increasing intensity (EX), while a control group remained sedentary (SED). Dose dependent reductions in mean arterial blood pressure (resting MABP; SED: 120.0 +/- 3.4 and EX: 127.8 +/- 4.0 mm Hg) of pentobarbital anesthetized rats to intravenous endothelium independent dilator sodium nitropmsside (SNP; 0.6-3.0 microg/kg) were not different in EX and SED animals. In contrast, dose dependent reductions in MABP to endothelium dependent dilator acetylcholine (ACh) were significantly enhanced in EX compared to those in SED rats (at 0.5 and 1.0 microg/kg ACh: 60.3 +/- 2.4 and 66.5 +/- 1.8 vs 52.8 +/- 2.0 and 59.8 +/- 1.7 mmHg, respectively, p<0.01). There was no significant difference in the heart rate (HR) response to ACh and SNP in the two groups of rats. Intravenous administration of 20 mg/kg Nomega-nitro-L-arginine (L-NNA, a nitric oxide synthase inhibitor) elicited a similar increase (approximately 30%) in the MABP in the two groups and eliminated the difference between ACh-induced blood pressure lowering responses in EX and SED rats (at 0.5 and 1.0 microg/kg ACh: 44.6 +/- 4.7 and 56.3 +/- 4.4 vs 50.9 +/- 4.5 and 59.4 +/- 3.6 mm Hg, respectively). Thus, we suggest that the enhanced acetylcholine-induced decrease in systemic blood pressure following regular daily exercise is primarily due to the augmented synthesis of nitric oxide in the endothelium of peripheral vasculature. This change in the function of endothelium could be important in the adaptation of circulation to exercise training.

  19. A Novel α2/α4 Subtype-selective Positive Allosteric Modulator of Nicotinic Acetylcholine Receptors Acting from the C-tail of an α Subunit*

    PubMed Central

    Wang, Jingyi; Kuryatov, Alexander; Jin, Zhuang; Norleans, Jack; Kamenecka, Theodore M.; Kenny, Paul J.; Lindstrom, Jon

    2015-01-01

    Positive allosteric modulators (PAMs) of nicotinic acetylcholine receptors (nAChR) are important therapeutic candidates as well as valuable research tools. We identified a novel type II PAM, (R)-7-bromo-N-(piperidin-3-yl)benzo[b]thiophene-2-carboxamide (Br-PBTC), which both increases activation and reactivates desensitized nAChRs. This compound increases acetylcholine-evoked responses of α2* and α4* nAChRs but is without effect on α3* or α6* nAChRs (* indicates the presence of other nAChR subunits). Br-BPTC acts from the C-terminal extracellular sequences of α4 subunits, which is also a PAM site for steroid hormone estrogens such as 17β-estradiol. Br-PBTC is much more potent than estrogens. Like 17β-estradiol, the non-steroid Br-PBTC only requires one α4 subunit to potentiate nAChR function, and its potentiation is stronger with more α4 subunits. This feature enables Br-BPTC to potentiate activation of (α4β2)(α6β2)β3 but not (α6β2)2β3 nAChRs. Therefore, this compound is potentially useful in vivo for determining functions of different α6* nAChR subtypes. Besides activation, Br-BPTC affects desensitization of nAChRs induced by sustained exposure to agonists. After minutes of exposure to agonists, Br-PBTC reactivated short term desensitized nAChRs that have at least two α4 subunits but not those with only one. Three α4 subunits were required for Br-BPTC to reactivate long term desensitized nAChRs. These data suggest that higher PAM occupancy promotes channel opening more efficiently and overcomes short and long term desensitization. This C-terminal extracellular domain could be a target for developing subtype or state-selective drugs for nAChRs. PMID:26432642

  20. Bilirubin Modulates Acetylcholine Receptors In Rat Superior Cervical Ganglionic Neurons In a Bidirectional Manner

    PubMed Central

    Zhang, Chengmi; Wang, Zhenmeng; Dong, Jing; Pan, Ruirui; Qiu, Haibo; Zhang, Jinmin; Zhang, Peng; Zheng, Jijian; Yu, Weifeng

    2014-01-01

    Autonomic dysfunction as a partial contributing factor to cardiovascular instability in jaundiced patients is often associated with increased serum bilirubin levels. Whether increased serum bilirubin levels could directly inhibit sympathetic ganglion transmission by blocking neuronal nicotinic acetylcholine receptors (nAChRs) remains to be elucidated. Conventional patch-clamp recordings were used to study the effect of bilirubin on nAChRs currents from enzymatically dissociated rat superior cervical ganglia (SCG) neurons. The results showed that low concnetrations (0.5 and 2 μM) of bilirubin enhanced the peak ACh-evoked currents, while high concentrations (3 to 5.5 µM) of bilirubin suppressed the currents with an IC50 of 4 ± 0.5 μM. In addition, bilirubin decreased the extent of desensitization of nAChRs in a concentration-dependent manner. This inhibitory effect of bilirubin on nAChRs channel currents was non-competitive and voltage independent. Bilirubin partly improved the inhibitory effect of forskolin on ACh-induced currents without affecting the action of H-89. These data suggest that the dual effects of enhancement and suppression of bilirubin on nAChR function may be ascribed to the action mechanism of positive allosteric modulation and direct blockade. Thus, suppression of sympathetic ganglionic transmission through postganglionic nAChRs inhibition may partially contribute to the adverse cardiovascular effects in jaundiced patients. PMID:25503810

  1. K(Ca)3.1 channel downregulation and impaired endothelium-derived hyperpolarization-type relaxation in pulmonary arteries from chronically hypoxic rats.

    PubMed

    Kroigaard, Christel; Kudryavtseva, Olga; Dalsgaard, Thomas; Wandall-Frostholm, Christine; Olesen, Søren-Peter; Simonsen, Ulf

    2013-04-01

    Calcium-activated potassium channels of small (K(Ca)2, SK) and intermediate (K(Ca)3.1, IK) conductance are involved in endothelium-dependent relaxation of pulmonary arteries. We hypothesized that the function and expression of K(Ca)2 and K(Ca)3.1 increase as a compensatory mechanism to counteract hypoxia-induced pulmonary hypertension in rats. For functional studies, pulmonary arteries were mounted in microvascular myographs for isometric tension recordings. The K(Ca) channel expression was evaluated by immunoblotting and quantitative PCR. Although ACh induced similar relaxations, the ACh-induced relaxations were abolished by the combined inhibition of nitric oxide synthase (by L-nitro-arginine, L-NOARG), cyclo-oxygenase (by indomethacin) and soluble guanylate cyclase (by ODQ) in pulmonary arteries from hypoxic rats, whereas 20 ± 6% (n = 8) maximal relaxation in response to ACh persisted in arteries from normoxic rats. Inhibiting Na(+),K(+)-ATPase with ouabain or blocking K(Ca)2 and K(Ca)3.1 channels reduced the persisting ACh-induced relaxation. In the presence of L-NOARG and indomethacin, a novel K(Ca)2 and K(Ca)3.1 channel activator, NS4591, induced concentration- and endothelium-dependent relaxations, which were markedly reduced in arteries from chronically hypoxic rats compared with arteries from normoxic rats. The mRNA levels of K(Ca)2.3 and K(Ca)3.1 were unaltered, whereas K(Ca)2.3 protein expression was upregulated and K(Ca)3.1 protein expression downregulated in pulmonary arteries from rats exposed to hypoxia. In conclusion, endothelium-dependent relaxation was conserved in pulmonary arteries from chronically hypoxic rats, while endothelium-derived hyperpolarization (EDH)-type relaxation was impaired in chronically hypoxic pulmonary small arteries despite upregulation of K(Ca)2.3 channels. Since impaired EDH-type relaxation was accompanied by K(Ca)3.1 channel protein downregulation, these findings suggest that K(Ca)3.1 channels are important for the

  2. Induced formation and maturation of acetylcholine receptor clusters in a defined 3D bio-artificial muscle.

    PubMed

    Wang, Lin; Shansky, Janet; Vandenburgh, Herman

    2013-12-01

    Dysfunction of the neuromuscular junction is involved in a wide range of muscular diseases. The development of neuromuscular junction through which skeletal muscle is innervated requires the functional modulation of acetylcholine receptor (AchR) clustering on myofibers. However, studies on AchR clustering in vitro are mostly done on monolayer muscle cell culture, which lacks a three-dimensional (3D) structure, a prominent limitation of the two-dimensional (2D) system. To enable a better understanding on the structure-function correlation underlying skeletal muscle innervation, a muscle system with a well-defined geometry mimicking the in vivo muscular setting is needed. Here, we report a 3D bio-artificial muscle (BAM) bioengineered from green fluorescent protein-transduced C3H murine myoblasts as a novel in vitro tissue-based model for muscle innervation studies. Our cell biological and molecular analysis showed that this BAM is structurally similar to in vivo muscle tissue and can reach the perinatal differentiation stage, higher than does 2D culture. Effective clustering and morphological maturation of AchRs on BAMs induced by agrin and laminin indicate the functional activity and plasticity of this BAM system toward innervation. Taken together, our results show that the BAM provides a favorable 3D environment that at least partially recapitulates real physiological skeletal muscle with regard to innervation. With a convenience of fabrication and manipulation, this 3D in vitro system offers a novel model for studying mechanisms underlying skeletal muscle innervation and testing therapeutic strategies for relevant nervous and muscular diseases.

  3. Endothelial dysfunction and metabolic control in streptozotocin-induced diabetic rats

    PubMed Central

    Rodríguez-Mañas, Leocadio; Angulo, Javier; Peiró, Concepción; Llergo, José L; Sánchez-Ferrer, Alberto; López-Dóriga, Pedro; Sánchez-Ferrer, Carlos F

    1998-01-01

    The aim of this work was to study the influence of the metabolic control, estimated by the levels of glycosylated haemoglobin in total blood samples (HbA1c), in developing vascular endothelial dysfunction in streptozotocin-induced diabetic rats. Four groups of animals with different levels of insulin treatment were established, by determining HbA1c values in 5.5 to 7.4%, 7.5 to 9.4%, 9.5 to 12% and >12%, respectively.The parameters analysed were: (1) the endothelium-dependent relaxations to acetylcholine (ACh) in isolated aorta and mesenteric microvessels; (2) the vasodilator responses to exogenous nitric oxide (NO) in aorta; and (3) the existence of oxidative stress by studying the influence of the free radical scavenger superoxide dismutase (SOD) on the vasodilator responses to both ACh and NO.In both isolated aortic segments and mesenteric microvessels, the endothelium-mediated concentration-dependent relaxant responses elicited by ACh were significantly decreased when the vessels were obtained from diabetic animals but only with HbA1c values higher than 7.5%. There was a high correlation between HbA1c levels and the impairment of ACh-induced relaxations, measured by pD2 values.The concentration-dependent vasorelaxant responses to NO in endothelium-denuded aortic segments were significantly reduced only in vessels from diabetic animals with HbA1c values higher than 7.5%. Again, a very high correlation was found between the HbA1c values and pD2 for NO-evoked responses.In the presence of SOD, the responses to ACh or NO were only increased in the segments from diabetic rats with HbA1c levels higher than 7.5%, but not in those from non-diabetic or diabetic rats with a good metabolic control (HbA1c levels <7.5%).These results suggest the existence of: (1) a close relation between the degree of endothelial dysfunction and the metabolic control of diabetes, estimated by the levels of HbA1c; and (2) an increased production of superoxide anions in the vascular wall of

  4. Acetylcholine released from T cells regulates intracellular Ca2+, IL-2 secretion and T cell proliferation through nicotinic acetylcholine receptor.

    PubMed

    Mashimo, Masato; Iwasaki, Yukari; Inoue, Shoko; Saito, Shoko; Kawashima, Koichiro; Fujii, Takeshi

    2017-03-01

    T lymphocytes synthesize acetylcholine (ACh) and express muscarinic and nicotinic ACh receptors (mAChR and nAChR, respectively) responsible for increases in the intracellular Ca 2+ concentration ([Ca 2+ ] i ). Our aim in the present study was to assess whether autocrine ACh released from T lymphocytes regulates their physiological functions. MOLT-3 human leukemic cell line and murine splenocytes were loaded with fura-2 to monitor [Ca 2+ ] i changes in the absence or presence of several AChR antagonists, including mecamylamine, methyllycaconitine and scopolamine. Real-time PCR and ELISA were performed to measure interleukin-2 (IL-2) mRNA and protein levels. T lymphocytes constitutively produce sufficient amounts of ACh to elicit autocrine changes in [Ca 2+ ] i . These autocrine ACh-evoked [Ca 2+ ] i transients were mediated by nAChRs and then influx of extracellular Ca 2+ . Mecamylamine, a nAChR inhibitor, suppressed not only these [Ca 2+ ] i transients, but also IL-2 release and T cell proliferation. Here, we confirmed that T lymphocytes utilize ACh as a tool to interact with each other and that autocrine ACh-activated nAChRs are involved in cytokine release and cell proliferation. These findings suggest the possibility that nAChR agonists and antagonists and smoking are able to modulate immune function, which in turn suggests the therapeutic potential of immune activation or suppression using nAChR agonists or antagonists. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Effect of a nicotinic acetylcholine receptor agonists and antagonists on motor function in mice

    USDA-ARS?s Scientific Manuscript database

    Nicotinic acetylcholine receptors (nAChR) are ligand-gated cation channels found throughout the body, and serve to mediate diverse physiological functions. Muscle-type nAChR located in the motor endplate region of muscle fibers play an integral role in muscle contraction and thus motor function. The...

  6. Constitutively Active Acetylcholine-Dependent Potassium Current Increases Atrial Defibrillation Threshold by Favoring Post-Shock Re-Initiation

    PubMed Central

    Bingen, Brian O.; Askar, Saïd F. A.; Neshati, Zeinab; Feola, Iolanda; Panfilov, Alexander V.; de Vries, Antoine A. F.; Pijnappels, Daniël A.

    2015-01-01

    Electrical cardioversion (ECV), a mainstay in atrial fibrillation (AF) treatment, is unsuccessful in up to 10–20% of patients. An important aspect of the remodeling process caused by AF is the constitutive activition of the atrium-specific acetylcholine-dependent potassium current (IK,ACh → IK,ACh-c), which is associated with ECV failure. This study investigated the role of IK,ACh-c in ECV failure and setting the atrial defibrillation threshold (aDFT) in optically mapped neonatal rat cardiomyocyte monolayers. AF was induced by burst pacing followed by application of biphasic shocks of 25–100 V to determine aDFT. Blocking IK,ACh-c by tertiapin significantly decreased DFT, which correlated with a significant increase in wavelength during reentry. Genetic knockdown experiments, using lentiviral vectors encoding a Kcnj5-specific shRNA to modulate IK,ACh-c, yielded similar results. Mechanistically, failed ECV was attributed to incomplete phase singularity (PS) removal or reemergence of PSs (i.e. re-initiation) through unidirectional propagation of shock-induced action potentials. Re-initiation occurred at significantly higher voltages than incomplete PS-removal and was inhibited by IK,ACh-c blockade. Whole-heart mapping confirmed our findings showing a 60% increase in ECV success rate after IK,ACh-c blockade. This study provides new mechanistic insight into failing ECV of AF and identifies IK,ACh-c as possible atrium-specific target to increase ECV effectiveness, while decreasing its harmfulness. PMID:26487066

  7. Natural compounds interacting with nicotinic acetylcholine receptors: from low-molecular weight ones to peptides and proteins.

    PubMed

    Kudryavtsev, Denis; Shelukhina, Irina; Vulfius, Catherine; Makarieva, Tatyana; Stonik, Valentin; Zhmak, Maxim; Ivanov, Igor; Kasheverov, Igor; Utkin, Yuri; Tsetlin, Victor

    2015-05-14

    Nicotinic acetylcholine receptors (nAChRs) fulfill a variety of functions making identification and analysis of nAChR subtypes a challenging task. Traditional instruments for nAChR research are d-tubocurarine, snake venom protein α-bungarotoxin (α-Bgt), and α-conotoxins, neurotoxic peptides from Conus snails. Various new compounds of different structural classes also interacting with nAChRs have been recently identified. Among the low-molecular weight compounds are alkaloids pibocin, varacin and makaluvamines C and G. 6-Bromohypaphorine from the mollusk Hermissenda crassicornis does not bind to Torpedo nAChR but behaves as an agonist on human α7 nAChR. To get more selective α-conotoxins, computer modeling of their complexes with acetylcholine-binding proteins and distinct nAChRs was used. Several novel three-finger neurotoxins targeting nAChRs were described and α-Bgt inhibition of GABA-A receptors was discovered. Information on the mechanisms of nAChR interactions with the three-finger proteins of the Ly6 family was found. Snake venom phospholipases A2 were recently found to inhibit different nAChR subtypes. Blocking of nAChRs in Lymnaea stagnalis neurons was shown for venom C-type lectin-like proteins, appearing to be the largest molecules capable to interact with the receptor. A huge nAChR molecule sensible to conformational rearrangements accommodates diverse binding sites recognizable by structurally very different compounds.

  8. Natural Compounds Interacting with Nicotinic Acetylcholine Receptors: From Low-Molecular Weight Ones to Peptides and Proteins

    PubMed Central

    Kudryavtsev, Denis; Shelukhina, Irina; Vulfius, Catherine; Makarieva, Tatyana; Stonik, Valentin; Zhmak, Maxim; Ivanov, Igor; Kasheverov, Igor; Utkin, Yuri; Tsetlin, Victor

    2015-01-01

    Nicotinic acetylcholine receptors (nAChRs) fulfill a variety of functions making identification and analysis of nAChR subtypes a challenging task. Traditional instruments for nAChR research are d-tubocurarine, snake venom protein α-bungarotoxin (α-Bgt), and α-conotoxins, neurotoxic peptides from Conus snails. Various new compounds of different structural classes also interacting with nAChRs have been recently identified. Among the low-molecular weight compounds are alkaloids pibocin, varacin and makaluvamines C and G. 6-Bromohypaphorine from the mollusk Hermissenda crassicornis does not bind to Torpedo nAChR but behaves as an agonist on human α7 nAChR. To get more selective α-conotoxins, computer modeling of their complexes with acetylcholine-binding proteins and distinct nAChRs was used. Several novel three-finger neurotoxins targeting nAChRs were described and α-Bgt inhibition of GABA-A receptors was discovered. Information on the mechanisms of nAChR interactions with the three-finger proteins of the Ly6 family was found. Snake venom phospholipases A2 were recently found to inhibit different nAChR subtypes. Blocking of nAChRs in Lymnaea stagnalis neurons was shown for venom C-type lectin-like proteins, appearing to be the largest molecules capable to interact with the receptor. A huge nAChR molecule sensible to conformational rearrangements accommodates diverse binding sites recognizable by structurally very different compounds. PMID:26008231

  9. Prior nicotine self-administration attenuates subsequent dopaminergic deficits of methamphetamine in rats: Role of nicotinic acetylcholine receptors

    PubMed Central

    Baladi, Michelle G; Nielsen, Shannon M; McIntosh, J. Michael; Hanson, Glen R; Fleckenstein, Annette E

    2015-01-01

    Preclinical studies have demonstrated that oral nicotine exposure attenuates long-term dopaminergic damage induced by toxins, including repeated, high doses of methamphetamine. It is suggested that alterations in nicotinic acetylcholine receptor (nAChR) expression, including α4β2* and α6β2* subtypes, likely contribute to this protection. The current study extended these findings by investigating whether nicotine self-administration in male, Sprague-Dawley rats 1): attenuates short-term dopaminergic damage induced by methamphetamine and 2) causes alterations in levels of α4β2* and α6β2* nAChR subtypes. The findings indicate that nicotine self-administration (0.032 mg/kg/infusion for 14 days) per se did not alter α4β2* and α6β2* nAChR expression or dopamine transporter (DAT) expression and function. Interestingly, prior nicotine self-administration attenuated methamphetamine-induced decreases in DAT function when assessed 24 h, but not 1 h, after methamphetamine treatment (4 × 7.5 mg/kg/injection). The ability of nicotine to attenuate the effects of methamphetamine on DAT function corresponded with increases in α4β2*, but not α6β2*, nAChR binding density. Understanding the role of nAChRs in methamphetamine-induced damage has the potential to elucidate mechanisms underlying the etiology of disorders involving dopaminergic dysfunction, as well as to highlight potential new therapeutic strategies for prevention or reduction of dopaminergic neurodegeneration. PMID:26871405

  10. Prior nicotine self-administration attenuates subsequent dopaminergic deficits of methamphetamine in rats: role of nicotinic acetylcholine receptors.

    PubMed

    Baladi, Michelle G; Nielsen, Shannon M; McIntosh, J Michael; Hanson, Glen R; Fleckenstein, Annette E

    2016-08-01

    Preclinical studies have demonstrated that oral nicotine exposure attenuates long-term dopaminergic damage induced by toxins, including repeated, high doses of methamphetamine. It is suggested that alterations in nicotinic acetylcholine receptor (nAChR) expression, including α4β2* and α6β2* subtypes, likely contribute to this protection. The current study extended these findings by investigating whether nicotine self-administration in male, Sprague-Dawley rats (a) attenuates short-term dopaminergic damage induced by methamphetamine and (b) causes alterations in levels of α4β2* and α6β2* nAChR subtypes. The findings indicate that nicotine self-administration (0.032 mg/kg/infusion for 14 days) per se did not alter α4β2* and α6β2* nAChR expression or dopamine transporter (DAT) expression and function. Interestingly, prior nicotine self-administration attenuated methamphetamine-induced decreases in DAT function when assessed 24 h, but not 1 h, after methamphetamine treatment (4×7.5 mg/kg/injection). The ability of nicotine to attenuate the effects of methamphetamine on DAT function corresponded with increases in α4β2*, but not α6β2*, nAChR binding density. Understanding the role of nAChRs in methamphetamine-induced damage has the potential to elucidate mechanisms underlying the etiology of disorders involving dopaminergic dysfunction, as well as to highlight potential new therapeutic strategies for prevention or reduction of dopaminergic neurodegeneration.

  11. Guidelines for pre-clinical assessment of the acetylcholine receptor--specific passive transfer myasthenia gravis model-Recommendations for methods and experimental designs.

    PubMed

    Kusner, Linda L; Losen, Mario; Vincent, Angela; Lindstrom, Jon; Tzartos, Socrates; Lazaridis, Konstantinos; Martinez-Martinez, Pilar

    2015-08-01

    Antibodies against the muscle acetylcholine receptor (AChR) are the most common cause of myasthenia gravis (MG). Passive transfer of AChR antibodies from MG patients into animals reproduces key features of human disease, including antigenic modulation of the AChR, complement-mediated damage of the neuromuscular junction, and muscle weakness. Similarly, AChR antibodies generated by active immunization in experimental autoimmune MG models can subsequently be passively transferred to other animals and induce weakness. The passive transfer model is useful to test therapeutic strategies aimed at the effector mechanism of the autoantibodies. Here we summarize published and unpublished experience using the AChR passive transfer MG model in mice, rats and rhesus monkeys, and give recommendations for the design of preclinical studies in order to facilitate translation of positive and negative results to improve MG therapies. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Pharmacological and immunochemical characterization of α2* nicotinic acetylcholine receptors (nAChRs) in mouse brain

    PubMed Central

    Whiteaker, Paul; Wilking, Jennifer A; Brown, Robert WB; Brennan, Robert J; Collins, Allan C; Lindstrom, Jon M; Boulter, Jim

    2009-01-01

    Aim: α2 nAChR subunit mRNA expression in mice is most intense in the olfactory bulbs and interpeduncular nucleus. We aimed to investigate the properties of α2* nAChRs in these mouse brain regions. Methods: α2 nAChR subunit-null mutant mice were engineered. Pharmacological and immunoprecipitation studies were used to determine the composition of α2 subunit-containing (α2*) nAChRs in these two regions. Results: [125I]Epibatidine (200 pmol/L) autoradiography and saturation binding demonstrated that α2 deletion reduces nAChR expression in both olfactory bulbs and interpeduncular nucleus (by 4.8±1.7 and 92±26 fmol̇mg-1 protein, respectively). Pharmacological characterization using the β2-selective drug A85380 to inhibit [125I]epibatidine binding proved inconclusive, so immunoprecipitation methods were used to further characterize α2* nAChRs. Protocols were established to immunoprecipitate β2 and β4 nAChRs. Immunoprecipitation specificity was ascertained using tissue from β2- and β4-null mutant mice, and efficacy was good (>90% of β2* and >80% of β4* nAChRs were routinely recovered). Conclusion: Immunoprecipitation experiments indicated that interpeduncular nucleus α2* nAChRs predominantly contain β2 subunits, while those in olfactory bulbs contain mainly β4 subunits. In addition, the immunoprecipitation evidence indicated that both nuclei, but especially the interpeduncular nucleus, express nAChR complexes containing both β2 and β4 subunits. PMID:19498420

  13. Relaxation-Induced Anxiety: Paradoxical Anxiety Enhancement Due to Relaxation Training.

    ERIC Educational Resources Information Center

    Heide, Frederick J.; Borkovec, T. D.

    1983-01-01

    Documented relaxation-induced anxiety in 14 subjects suffering from tension who were given training in progressive relaxation and mantra meditation. Four of the subjects displayed clinical evidence of an anxiety reaction during a preliminary practice period. Progressive relaxation produced less evidence of relaxation-induced anxiety. (Author/JAC)

  14. Menthol Alone Upregulates Midbrain nAChRs, Alters nAChR Subtype Stoichiometry, Alters Dopamine Neuron Firing Frequency, and Prevents Nicotine Reward.

    PubMed

    Henderson, Brandon J; Wall, Teagan R; Henley, Beverley M; Kim, Charlene H; Nichols, Weston A; Moaddel, Ruin; Xiao, Cheng; Lester, Henry A

    2016-03-09

    Upregulation of β2 subunit-containing (β2*) nicotinic acetylcholine receptors (nAChRs) is implicated in several aspects of nicotine addiction, and menthol cigarette smokers tend to upregulate β2* nAChRs more than nonmenthol cigarette smokers. We investigated the effect of long-term menthol alone on midbrain neurons containing nAChRs. In midbrain dopaminergic (DA) neurons from mice containing fluorescent nAChR subunits, menthol alone increased the number of α4 and α6 nAChR subunits, but this upregulation did not occur in midbrain GABAergic neurons. Thus, chronic menthol produces a cell-type-selective upregulation of α4* nAChRs, complementing that of chronic nicotine alone, which upregulates α4 subunit-containing (α4*) nAChRs in GABAergic but not DA neurons. In mouse brain slices and cultured midbrain neurons, menthol reduced DA neuron firing frequency and altered DA neuron excitability following nAChR activation. Furthermore, menthol exposure before nicotine abolished nicotine reward-related behavior in mice. In neuroblastoma cells transfected with fluorescent nAChR subunits, exposure to 500 nm menthol alone also increased nAChR number and favored the formation of (α4)3(β2)2 nAChRs; this contrasts with the action of nicotine itself, which favors (α4)2(β2)3 nAChRs. Menthol alone also increases the number of α6β2 receptors that exclude the β3 subunit. Thus, menthol stabilizes lower-sensitivity α4* and α6 subunit-containing nAChRs, possibly by acting as a chemical chaperone. The abolition of nicotine reward-related behavior may be mediated through menthol's ability to stabilize lower-sensitivity nAChRs and alter DA neuron excitability. We conclude that menthol is more than a tobacco flavorant: administered alone chronically, it alters midbrain DA neurons of the nicotine reward-related pathway. Copyright © 2016 the authors 0270-6474/16/362957-18$15.00/0.

  15. Effects of Chronic Nitric Oxide Synthase Inhibition on Endothelium-Dependent and -Independent Relaxation in Arteries that Perfuse Skeletal Muscle of Swine

    PubMed Central

    Newcomer, S.C.; Taylor, J.C.; McAllister, R.M.; Laughlin, M.H.

    2012-01-01

    The purpose of this investigation was to test the hypothesis that chronic L-NAME treatment produces differential effects on conduit artery and resistance arteriole relaxation responses to endothelium-dependent and –independent vasodilators in arteries that perfuse skeletal muscle of swine. To test this hypothesis conduit skeletal muscle arteries and second order skeletal muscle arterioles were harvested from 14 Yucatan swine that were chronically administered L-NAME and 16 controls. In vitro assessments of vasorelaxation to increasing doses of acetylcholine (ACH), bradykinin (BK), and sodium nitroprusside (SNP) were performed in both conduit and 2A arterioles. L-NAME treatment produced a significant reduction in both BK and ACH relaxation responses in the conduit arteries. In contrast, the relaxation response and/or sensitivity to SNP were significantly greater in the intact, but not denuded, conduit arterial rings from chronically L-NAME treated swine. There were no significant effects of chronic L-NAME treatment on vasodilation of skeletal muscle arterioles. These findings suggest: (1) that unlike arterioles, skeletal muscle conduit arteries do not functionally compensate for a lack of NO through the upregulation of alternative vasodilator pathways. (2) that the greater relaxation response in conduit arteries of chronically L-NAME treated swine to SNP can be explained by alterations to the endothelium. PMID:18568942

  16. Identification and Functional Characterization of a Novel Acetylcholine-binding Protein from the Marine Annelid Capitella teleta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCormack, T.; Petrovich,; Mercier, K

    2010-01-01

    We identified a homologue of the molluscan acetylcholine-binding protein (AChBP) in the marine polychaete Capitella teleta, from the annelid phylum. The amino acid sequence of C. teleta AChBP (ct-AChBP) is 21-30% identical with those of known molluscan AChBPs. Sequence alignments indicate that ct-AChBP has a shortened Cys loop compared to other Cys loop receptors, and a variation on a conserved Cys loop triad, which is associated with ligand binding in other AChBPs and nicotinic ACh receptor (nAChR) {alpha} subunits. Within the D loop of ct-AChBP, a conserved aromatic residue (Tyr or Trp) in nAChRs and molluscan AChBPs, which has beenmore » implicated directly in ligand binding, is substituted with an isoleucine. Mass spectrometry results indicate that Asn122 and Asn216 of ct-AChBP are glycosylated when expressed using HEK293 cells. Small-angle X-ray scattering data suggest that the overall shape of ct-AChBP in the apo or unliganded state is similar to that of homologues with known pentameric crystal structures. NMR experiments show that acetylcholine, nicotine, and {alpha}-bungarotoxin bind to ct-AChBP with high affinity, with KD values of 28.7 {micro}M, 209 nM, and 110 nM, respectively. Choline bound with a lower affinity (K{sub D} = 163 {micro}M). Our finding of a functional AChBP in a marine annelid demonstrates that AChBPs may exhibit variations in hallmark motifs such as ligand-binding residues and Cys loop length and shows conclusively that this neurotransmitter binding protein is not limited to the phylum Mollusca.« less

  17. APS8, a Polymeric Alkylpyridinium Salt Blocks α7 nAChR and Induces Apoptosis in Non-Small Cell Lung Carcinoma

    PubMed Central

    Zovko, Ana; Viktorsson, Kristina; Lewensohn, Rolf; Kološa, Katja; Filipič, Metka; Xing, Hong; Kem, William R.; Paleari, Laura; Turk, Tom

    2013-01-01

    Naturally occurring 3-alkylpyridinium polymers (poly-APS) from the marine sponge Reniera sarai, consisting of monomers containing polar pyridinium and nonpolar alkyl chain moieties, have been demonstrated to exert a wide range of biological activities, including a selective cytotoxicity against non-small cell lung cancer (NSCLC) cells. APS8, an analog of poly-APS with defined alkyl chain length and molecular size, non-competitively inhibits α7 nicotinic acetylcholine receptors (nAChRs) at nanomolar concentrations that are too low to be acetylcholinesterase (AChE) inhibitory or generally cytotoxic. In the present study we show that APS8 inhibits NSCLC tumor cell growth and activates apoptotic pathways. APS8 was not toxic for normal lung fibroblasts. Furthermore, in NSCLC cells, APS8 reduced the adverse anti-apoptotic, proliferative effects of nicotine. Our results suggest that APS8 or similar compounds might be considered as lead compounds to develop antitumor therapeutic agents for at least certain types of lung cancer. PMID:23880932

  18. Intravenous anaesthetics inhibit nicotinic acetylcholine receptor-mediated currents and Ca2+ transients in rat intracardiac ganglion neurons

    PubMed Central

    Weber, Martin; Motin, Leonid; Gaul, Simon; Beker, Friederike; Fink, Rainer H A; Adams, David J

    2004-01-01

    The effects of intravenous (i.v.) anaesthetics on nicotinic acetylcholine receptor (nAChR)-induced transients in intracellular free Ca2+ concentration ([Ca2+]i) and membrane currents were investigated in neonatal rat intracardiac neurons. In fura-2-loaded neurons, nAChR activation evoked a transient increase in [Ca2+]I, which was inhibited reversibly and selectively by clinically relevant concentrations of thiopental. The half-maximal concentration for thiopental inhibition of nAChR-induced [Ca2+]i transients was 28 μM, close to the estimated clinical EC50 (clinically relevant (half-maximal) effective concentration) of thiopental. In fura-2-loaded neurons, voltage clamped at −60 mV to eliminate any contribution of voltage-gated Ca2+ channels, thiopental (25 μM) simultaneously inhibited nAChR-induced increases in [Ca2+]i and peak current amplitudes. Thiopental inhibited nAChR-induced peak current amplitudes in dialysed whole-cell recordings by ∼ 40% at −120, −80 and −40 mV holding potential, indicating that the inhibition is voltage independent. The barbiturate, pentobarbital and the dissociative anaesthetic, ketamine, used at clinical EC50 were also shown to inhibit nAChR-induced increases in [Ca2+]i by ∼40%. Thiopental (25 μM) did not inhibit caffeine-, muscarine- or ATP-evoked increases in [Ca2+]i, indicating that inhibition of Ca2+ release from internal stores via either ryanodine receptor or inositol-1,4,5-trisphosphate receptor channels is unlikely. Depolarization-activated Ca2+ channel currents were unaffected in the presence of thiopental (25 μM), pentobarbital (50 μM) and ketamine (10 μM). In conclusion, i.v. anaesthetics inhibit nAChR-induced currents and [Ca2+]i transients in intracardiac neurons by binding to nAChRs and thereby may contribute to changes in heart rate and cardiac output under clinical conditions. PMID:15644873

  19. Effects of chronic administration of ethanolic extract of kolanut (Cola nitida) and caffeine on vascular function.

    PubMed

    Salahdeen, H M; Omoaghe, A O; Isehunwa, G O; Murtala, B A; Alada, A R A

    2014-03-01

    Kolanut (Cola nitida) is consumed in virtually every part of the world. The caffeine content of kolanut is scarce and the number of investigations studying the health benefits of kolanut is negligible compared to coffee. The present study was designed to identify the caffeine content of kolanut and evaluate the effect of its chronic consumption on cardiovascular functions in rats. The caffeine content of kolanut was determined by Gas chromatography-mass spectrometry (GC-MS). Wistar albino rats were divided into four groups (10 Rats/group). Kolanut extract (11.9 mg/kg), caffeine extracted from kolanut (7.5 mg/kg), decaffeinated of kolanut extract (6 mg/kg) and distilled water (control) was administered orally to each group for six-weeks. Effect of treatment on body weight, blood pressure and relaxation response to acetylcholine (ACh) and sodium nitroprusside (SNP) of the aortic rings was assessed. The total caffeine content of kolanut extract was found to be 51% and it was 96% pure from GC-MS analysis. Chronic consumption of kolanut and caffeine significantly (p < 0.05) decreased body weight. Similarly, kolanut extract decaffeinated kolanut and caffeine significantly (p < 0.05) reduced the contractile response to noradrenaline and higher potassium solution. Kolanut extract and caffeine also significantly (p < 0.05) increased the mean arterial blood pressure. Caffeine and kolanut consumption reduced the relaxation response to both acetylcholine and sodium nitroprusside. Atropine and L-NAME considerably inhibit the ACh-induced relaxation of the rat aortic ring suggesting the involvement of cholinergic mechanism. However, indomethacin (10(-4)M) also attenuated the ACh response indicating involvement of protanoids. The results suggest that treatment with both kolanut extract and caffeine had similar characteristics between the two groups with no significant differences in the ACh-induced relaxation of thering suggesting that the action of kolanut extract is due to its

  20. Protein kinase C involvement in the acetylcholine release reduction induced by amyloid-beta(25-35) aggregates on neuromuscular synapses.

    PubMed

    Tomàs, Marta; Garcia, Neus; Santafé, Manuel M; Lanuza, Maria; Tomàs, Josep

    2009-01-01

    Using intracellular recording of the diaphragm muscle of adult rats, we have investigated the short-term functional effects of amyloid-beta (Abeta(25-35) peptide aggregates on the modulation of acetylcholine (ACh) release and the involvement of protein kinase C (PKC). The non-aggregated form of this peptide does not change the evoked and spontaneous transmitter release parameters on the neuromuscular synapse. However, the aggregated form of Abeta(25-35) acutely interferes with evoked quantal ACh release (approximately 40% reduction) when synaptic activity in the ex vivo neuromuscular preparation is maintained by low frequency (1 Hz) electrical stimulation. This effect is partially dependent on the activity of PKC that may have a permissive action. The end result of Abeta(25-35) is in opposition to the PKC-dependent maintenance effect on ACh release manifested in active synapses.

  1. Changes in Acetylcholine Extracellular Levels during Cognitive Processes

    ERIC Educational Resources Information Center

    Pepeu, Giancarlo; Giovannini, Maria Grazia

    2004-01-01

    Measuring the changes in neurotransmitter extracellular levels in discrete brain areas is considered a tool for identifying the neuronal systems involved in specific behavioral responses or cognitive processes. Acetylcholine (ACh) is the first neurotransmitter whose diffusion from the central nervous system was investigated and whose extracellular…

  2. Stimulation of nicotinic acetylcholine alpha7 receptors rescue schizophrenia-like cognitive impairments in rats.

    PubMed

    Potasiewicz, Agnieszka; Nikiforuk, Agnieszka; Hołuj, Małgorzata; Popik, Piotr

    2017-02-01

    Alpha7 nicotinic acetylcholine receptor (α7 nAChR) dysfunction plays an important role in schizophrenia. Positive allosteric modulators of α7 nAChR have emerged as a promising therapeutic approach to manage cognitive deficits that are inadequately treated in schizophrenic patients. The aim of the present study was to evaluate the ability of type I (CCMI) and type II (PNU120596) α7 nAChR positive allosteric modulators to counteract MK-801-induced cognitive and sensorimotor gating deficits. The activity of these compounds was compared with the action of the α7 nAChR agonist A582941. CCMI, PNU120596 and A582941 reversed the sensorimotor gating impairment evoked by MK-801 based on the prepulse inhibition of the startle response. Additionally, no MK-801-evoked working memory deficits were observed with α7 nAChR ligand pretreatment as assessed in a discrete paired-trial delayed alternation task. However, these compounds did not affect the rats' attentional performances in the five-choice serial reaction time test. The α7 nAChR agents demonstrated a beneficial effect on sensorimotor gating and some aspects of cognition tested in a rat model of schizophrenia. Therefore, these results support the use of α7 nAChR positive allosteric modulators as a potential treatment strategy in schizophrenia.

  3. Hyoscine butylbromide potently blocks human nicotinic acetylcholine receptors in SH-SY5Y cells.

    PubMed

    Weiser, Thomas; Just, Stefan

    2009-02-06

    Hyoscine butylbromide (HBB; tradenames: Buscopan/Buscapina is an antispasmodic drug for the treatment of abdominal pain associated with gastrointestinal cramping. As a hyoscine derivative, this compound competitively inhibits muscarinic acetylcholine (ACh) receptors on smooth muscle cells in the gastrointestinal tract. Preliminary investigations suggested that it might also inhibit nicotinic ACh receptors. This study investigated the effect of HBB on nicotinic ACh receptor-mediated membrane currents in SH-SY5Y cells. ACh and nicotine application-induced comparable membrane currents with EC(50) values of 25.9+/-0.6 and 40.1+/-0.4microM, respectively. When coapplied with 100microM ACh, HBB concentration-dependently suppressed currents with an IC(50) value of 0.19+/-0.04microM, and was approximately seven-times more potent than the ganglionic blocker, hexamethonium (IC(50)=1.3+/-0.3microM). Increasing the agonist concentration to 5mM did not affect the amount of block by HBB, which suggests a non-competitive mode of action. These functional in vitro data demonstrate for the first time that HBB blocks neuronal nicotinic ACh receptors in the same concentration range as it inhibits muscarinic ACh receptors. If one hypothesizes that HBB might also affect nicotinic receptors in autonomic neurons in vivo (e. g. in the enteric nervous system), this effect could contribute to its spasmolytic activity.

  4. Alteration in cellular acetylcholine influences dauer formation in Caenorhabditis elegans.

    PubMed

    Lee, Jeeyong; Kim, Kwang-Youl; Paik, Young-Ki

    2014-02-01

    Altered acetylcholine (Ach) homeostasis is associated with loss of viability in flies, developmental defects in mice, and cognitive deficits in human. Here, we assessed the importance of Ach in Caenorhabditis elegans development, focusing on the role of Ach during dauer formation. We found that dauer formation was disturbed in choline acetyltransferase (cha-1) and acetylcholinesterase (ace) mutants defective in Ach biosynthesis and degradation, respectively. When examined the potential role of G-proteins in dauer formation, goa-1 and egl-30 mutant worms, expressing mutated versions of mammalian G(o) and G(q) homolog, respectively, showed some abnormalities in dauer formation. Using quantitative mass spectrometry, we also found that dauer larvae had lower Ach content than did reproductively grown larvae. In addition, a proteomic analysis of acetylcholinesterase mutant worms, which have excessive levels of Ach, showed differential expression of metabolic genes. Collectively, these results indicate that alterations in Ach release may influence dauer formation in C. elegans.

  5. Selective Activation of M4 Muscarinic Acetylcholine Receptors Reverses MK-801-Induced Behavioral Impairments and Enhances Associative Learning in Rodents

    PubMed Central

    2015-01-01

    Positive allosteric modulators (PAMs) of the M4 muscarinic acetylcholine receptor (mAChR) represent a novel approach for the treatment of psychotic symptoms associated with schizophrenia and other neuropsychiatric disorders. We recently reported that the selective M4 PAM VU0152100 produced an antipsychotic drug-like profile in rodents after amphetamine challenge. Previous studies suggest that enhanced cholinergic activity may also improve cognitive function and reverse deficits observed with reduced signaling through the N-methyl-d-aspartate subtype of the glutamate receptor (NMDAR) in the central nervous system. Prior to this study, the M1 mAChR subtype was viewed as the primary candidate for these actions relative to the other mAChR subtypes. Here we describe the discovery of a novel M4 PAM, VU0467154, with enhanced in vitro potency and improved pharmacokinetic properties relative to other M4 PAMs, enabling a more extensive characterization of M4 actions in rodent models. We used VU0467154 to test the hypothesis that selective potentiation of M4 receptor signaling could ameliorate the behavioral, cognitive, and neurochemical impairments induced by the noncompetitive NMDAR antagonist MK-801. VU0467154 produced a robust dose-dependent reversal of MK-801-induced hyperlocomotion and deficits in preclinical models of associative learning and memory functions, including the touchscreen pairwise visual discrimination task in wild-type mice, but failed to reverse these stimulant-induced deficits in M4 KO mice. VU0467154 also enhanced the acquisition of both contextual and cue-mediated fear conditioning when administered alone in wild-type mice. These novel findings suggest that M4 PAMs may provide a strategy for addressing the more complex affective and cognitive disruptions associated with schizophrenia and other neuropsychiatric disorders. PMID:25137629

  6. Impact of vasomotion type on prognosis of coronary artery spasm induced by acetylcholine provocation test of left coronary artery.

    PubMed

    Lee, Eun Mi; Choi, Man Ho; Seo, Hong Seog; Kim, Hyun Ki; Kim, Nam-Ho; Choi, Cheol Ung; Kim, Jin Won; Lim, Hong Euy; Kim, Eung Ju; Rha, Seung-Woon; Park, Chang Gyu; Oh, Dong Joo

    2017-02-01

    The impact of vasomotion types on long-term clinical outcomes in patients with coronary artery spasm (CAS) induced by the acetylcholine provocation test (ACH-test) remains unclear. We evaluated 4644 consecutive patients with typical resting chest pain (CP), but no angiographically significant coronary artery lesion (<50% stenosis), who underwent an ACH-test. According to their vasomotor response, patients were categorized into four types: normal vasomotion (no CP, no ischemic electrocardiographic changes, and no vasoconstriction), microvascular spasm (CP with <75% vasoconstriction but with CP relief after nitroglycerin infusion), epicardial spasm (CP with ≥75% vasoconstriction), and ACH-test inconclusive (vasoconstriction and/or electrocardiographic changes, but no CP). We investigated CP recurrence requiring follow-up angiography and major adverse cardiovascular events (MACEs) during 5 years. CP recurred in 7.9% of patients and was more frequent in abnormal vasomotion types (normal vasomotion, microvascular spasm, epicardial spasm, and inconclusive type: 5.4%, 9.8%, 10.9%, and 8.2%, respectively, log-rank p = 0.009). In multivariate analysis adjusted for medication use after the ACH-test, vasomotion subtype was not an independent predictor, whereas male sex, fixed lesion on baseline angiography, and medications including calcium channel blockers (CCBs), nitrates, and statins were independent positive predictors for recurrent CP. Alcohol consumption at the initial interview was a negative predictor. MACEs were observed in 1.6%, and the incidence was similar among subtypes (p = 0.421). Recurrent CP and long-term outcomes are independent of vasomotion subtypes, but long-term use of CCBs, nitrates, and statins is a significant predictor for recurrent CP. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Restitution of defective glucose-stimulated insulin secretion in diabetic GK rat by acetylcholine uncovers paradoxical stimulatory effect of beta-cell muscarinic receptor activation on cAMP production.

    PubMed

    Dolz, Manuel; Bailbé, Danielle; Giroix, Marie-Hélène; Calderari, Sophie; Gangnerau, Marie-Noelle; Serradas, Patricia; Rickenbach, Katharina; Irminger, Jean-Claude; Portha, Bernard

    2005-11-01

    Because acetylcholine (ACh) is a recognized potentiator of glucose-stimulated insulin release in the normal beta-cell, we have studied ACh's effect on islets of the Goto-Kakizaki (GK) rat, a spontaneous model of type 2 diabetes. We first verified that ACh was able to restore the insulin secretory glucose competence of the GK beta-cell. Then, we demonstrated that in GK islets 1) ACh elicited a first-phase insulin release at low glucose, whereas it had no effect in Wistar; 2) total phospholipase C activity, ACh-induced inositol phosphate production, and intracellular free calcium concentration ([Ca2+]i) elevation were normal; 3) ACh triggered insulin release, even in the presence of thapsigargin, which induced a reduction of the ACh-induced [Ca2+]i response (suggesting that ACh produces amplification signals that augment the efficacy of elevated [Ca2+]i on GK exocytosis); 4) inhibition of protein kinase C did not affect [Ca2+]i nor the insulin release responses to ACh; and 5) inhibition of cAMP-dependent protein kinases (PKAs), adenylyl cyclases, or cAMP generation, while not affecting the [Ca2+]i response, significantly lowered the insulinotropic response to ACh (at low and high glucose). In conclusion, ACh acts mainly through activation of the cAMP/PKA pathway to potently enhance Ca2+-stimulated insulin release in the GK beta-cell and, in doing so, normalizes its defective glucose responsiveness.

  8. Septohippocampal Acetylcholine: Involved in but not Necessary for Learning and Memory?

    PubMed Central

    Parent, Marise B.; Baxter, Mark G.

    2006-01-01

    The neurotransmitter acetylcholine (ACh) has been accorded an important role in supporting learning and memory processes in the hippocampus. Cholinergic activity in the hippocampus is correlated with memory, and restoration of ACh in the hippocampus after disruption of the septohippocampal pathway is sufficient to rescue memory. However, selective ablation of cholinergic septohippocampal projections is largely without effect on hippocampal-dependent learning and memory processes. We consider the evidence underlying each of these statements, and the contradictions they pose for understanding the functional role of hippocampal ACh in memory. We suggest that although hippocampal ACh is involved in memory in the intact brain, it is not necessary for many aspects of hippocampal memory function. PMID:14747512

  9. Impaired muscarinic endothelium-dependent relaxation and cyclic guanosine 5'-monophosphate formation in atherosclerotic human coronary artery and rabbit aorta.

    PubMed Central

    Bossaller, C; Habib, G B; Yamamoto, H; Williams, C; Wells, S; Henry, P D

    1987-01-01

    The dependence of vascular relaxation on an intact endothelium and the relationship between relaxation and cyclic GMP accumulation were determined in coronary arteries isolated from cardiac transplantation patients with or without coronary atherosclerosis. In nonatherosclerotic arteries, the endothelium-dependent agent acetylcholine produced concentration-related relaxations. In atherosclerotic arteries, endothelium-dependent relaxations were abolished with acetylcholine, partly suppressed with substance P and histamine, and completely preserved with the ionophore A23187. In these arteries, the endothelium-independent agent nitroglycerin remained fully active. Accumulation of cyclic GMP in atherosclerotic strips was suppressed with acetylcholine but unattenuated with A23187 and nitroglycerin. In aortas from rabbits with diet-induced atherosclerosis, there was likewise an impaired cholinergic relaxation and cyclic GMP accumulation in the presence of preserved responses to A23187 and nitroglycerin. The results demonstrate that impaired cholinergic responses in atherosclerotic arteries reflect a muscarinic defect and not an inability of endothelium to release endothelial factor or smooth muscle to respond to it. PMID:2432088

  10. Structure and dynamics of the M3 muscarinic acetylcholine receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruse, Andrew C.; Hu, Jianxin; Pan, Albert C.

    2012-03-01

    Acetylcholine, the first neurotransmitter to be identified, exerts many of its physiological actions via activation of a family of G-protein-coupled receptors (GPCRs) known as muscarinic acetylcholine receptors (mAChRs). Although the five mAChR subtypes (M1-M5) share a high degree of sequence homology, they show pronounced differences in G-protein coupling preference and the physiological responses they mediate. Unfortunately, despite decades of effort, no therapeutic agents endowed with clear mAChR subtype selectivity have been developed to exploit these differences. We describe here the structure of the G{sub q/11}-coupled M3 mAChR ('M3 receptor', from rat) bound to the bronchodilator drug tiotropium and identify themore » binding mode for this clinically important drug. This structure, together with that of the G{sub i/o}-coupled M2 receptor, offers possibilities for the design of mAChR subtype-selective ligands. Importantly, the M3 receptor structure allows a structural comparison between two members of a mammalian GPCR subfamily displaying different G-protein coupling selectivities. Furthermore, molecular dynamics simulations suggest that tiotropium binds transiently to an allosteric site en route to the binding pocket of both receptors. These simulations offer a structural view of an allosteric binding mode for an orthosteric GPCR ligand and provide additional opportunities for the design of ligands with different affinities or binding kinetics for different mAChR subtypes. Our findings not only offer insights into the structure and function of one of the most important GPCR families, but may also facilitate the design of improved therapeutics targeting these critical receptors.« less

  11. The 3,7-diazabicyclo[3.3.1]nonane scaffold for subtype selective nicotinic acetylcholine receptor (nAChR) ligands. Part 1: the influence of different hydrogen bond acceptor systems on alkyl and (hetero)aryl substituents.

    PubMed

    Eibl, Christoph; Tomassoli, Isabelle; Munoz, Lenka; Stokes, Clare; Papke, Roger L; Gündisch, Daniela

    2013-12-01

    3,7-Diazabicyclo[3.3.1]nonane is a naturally occurring scaffold interacting with nicotinic acetylcholine receptors (nAChRs). When one nitrogen of the 3,7-diazabicyclo[3.3.1]nonane scaffold was implemented in a carboxamide motif displaying a hydrogen bond acceptor (HBA) functionality, compounds with higher affinities and subtype selectivity for α4β2(∗) were obtained. The nature of the HBA system (carboxamide, sulfonamide, urea) had a strong impact on nAChR interaction. High affinity ligands for α4β2(∗) possessed small alkyl chains, small un-substituted hetero-aryl groups or para-substituted phenyl ring systems along with a carboxamide group. Electrophysiological responses of selected 3,7-diazabicyclo[3.3.1]nonane derivatives to Xenopus oocytes expressing various nAChR subtypes showed diverse activation profiles. Compounds with strongest agonistic profiles were obtained with small alkyl groups whereas a shift to partial agonism/antagonism was observed for aryl substituents. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Ca2+ permeability through rat cloned alpha9-containing nicotinic acetylcholine receptors.

    PubMed

    Fucile, Sergio; Sucapane, Antonietta; Eusebi, Fabrizio

    2006-04-01

    We investigated the functional properties of rat alpha9 and alpha9alpha10 nicotinic acetylcholine receptors (nAChRs) expressed by transient transfection in the rat GH4C1 cell line, using both Ca(2+) imaging and whole-cell recording. Acute applications of ACh generated short-delay fast-rising and quick-decaying Ca(2+) transients, suppressed in Ca(2+)-free medium and invariably accompanied by the activation of whole-cell inward currents. The mean amplitude of ACh-induced currents was as small as -16 pA in alpha9 subunit cDNA-transfected GH4C1 cells (alpha9-GH4C1), while they were much larger (range: -150 to -300 pA) in alpha9alpha10 subunit cDNAs-transfected GH4C1 cells (alpha9alpha10-GH4C1). Currents were not activated by nicotine, were blocked by methyllycaconitine and were ACh concentration-dependent. Because the Ca(2+) permeability of alpha9-containing nAChRs has been estimated in immortalized cochlear UB/OC-2 mouse cells, we also characterized the ACh-induced responses in these cells. Unlike alpha9- and alpha9alpha10-GH4C1 cells, UB/OC-2 cells responded to ACh with both long-delay methyllycaconitine-insensitive whole-cell currents and long-lasting Ca(2+) transients, the latter being detected in the absence of Ca(2+) in the extracellular medium and being suppressed by the Ca(2+)-ATPase inhibitor thapsigargin, known to deplete IP(3)-sensitive stores. These results indicated the involvement of muscarinic nAChRs and the lack of functional ACh-gated receptor channels in UB/OC-2 cells. Thus, we measured the fractional Ca(2+) current (P(f), i.e. the percentage of total current carried by Ca(2+) ions) in alpha9alpha10-GH4C1, obtaining a P(f) value of 22 +/- 4%; this is the largest value estimated to date for a ligand-gated receptor channel. The physiological role played by Ca(2+) entry through alpha9-containing nAChRs gated by ACh is discussed.

  13. Nicotinic acetylcholine receptor ligands; a patent review (2006-2011)

    PubMed Central

    Gündisch, Daniela; Eibl, Christoph

    2012-01-01

    Introduction Nicotinic acetylcholine receptors (nAChRs), pentameric ligand-gated cation channels, are potential targets for the development of therapeutics for a variety of disease states. Areas covered This article is reviewing recent advances in the development of small molecule ligands for diverse nAChR subtypes and is a continuation of an earlier review in this journal. Expert opinion The development of nAChR ligands with preference for α4β2 or α7 subtypes for the treatment of CNS disorders are in the most advanced developmental stage. In addition, there is a fast growing interest to generate so-called PAMs, positive allosteric modulators, to influence the channels’ functionalities. PMID:22098319

  14. Presynaptic Type III Neuregulin1-ErbB signaling targets α7 nicotinic acetylcholine receptors to axons

    PubMed Central

    Hancock, Melissa L.; Canetta, Sarah E.; Role, Lorna W.; Talmage, David A.

    2008-01-01

    Type III Neuregulin1 (Nrg1) isoforms are membrane-tethered proteins capable of participating in bidirectional juxtacrine signaling. Neuronal nicotinic acetylcholine receptors (nAChRs), which can modulate the release of a rich array of neurotransmitters, are differentially targeted to presynaptic sites. We demonstrate that Type III Nrg1 back signaling regulates the surface expression of α7 nAChRs along axons of sensory neurons. Stimulation of Type III Nrg1 back signaling induces an increase in axonal surface α7 nAChRs, which results from a redistribution of preexisting intracellular pools of α7 rather than from increased protein synthesis. We also demonstrate that Type III Nrg1 back signaling activates a phosphatidylinositol 3-kinase signaling pathway and that activation of this pathway is required for the insertion of preexisting α7 nAChRs into the axonal plasma membrane. These findings, in conjunction with prior results establishing that Type III Nrg1 back signaling controls gene transcription, demonstrate that Type III Nrg1 back signaling can regulate both short-and long-term changes in neuronal function. PMID:18458158

  15. Presynaptic type III neuregulin1-ErbB signaling targets {alpha}7 nicotinic acetylcholine receptors to axons.

    PubMed

    Hancock, Melissa L; Canetta, Sarah E; Role, Lorna W; Talmage, David A

    2008-05-05

    Type III Neuregulin1 (Nrg1) isoforms are membrane-tethered proteins capable of participating in bidirectional juxtacrine signaling. Neuronal nicotinic acetylcholine receptors (nAChRs), which can modulate the release of a rich array of neurotransmitters, are differentially targeted to presynaptic sites. We demonstrate that Type III Nrg1 back signaling regulates the surface expression of alpha7 nAChRs along axons of sensory neurons. Stimulation of Type III Nrg1 back signaling induces an increase in axonal surface alpha7 nAChRs, which results from a redistribution of preexisting intracellular pools of alpha7 rather than from increased protein synthesis. We also demonstrate that Type III Nrg1 back signaling activates a phosphatidylinositol 3-kinase signaling pathway and that activation of this pathway is required for the insertion of preexisting alpha7 nAChRs into the axonal plasma membrane. These findings, in conjunction with prior results establishing that Type III Nrg1 back signaling controls gene transcription, demonstrate that Type III Nrg1 back signaling can regulate both short-and long-term changes in neuronal function.

  16. Presynaptic type III neuregulin1-ErbB signaling targets alpha7 nicotinic acetylcholine receptors to axons.

    PubMed

    Hancock, Melissa L; Canetta, Sarah E; Role, Lorna W; Talmage, David A

    2008-06-01

    Type III Neuregulin1 (Nrg1) isoforms are membrane-tethered proteins capable of participating in bidirectional juxtacrine signaling. Neuronal nicotinic acetylcholine receptors (nAChRs), which can modulate the release of a rich array of neurotransmitters, are differentially targeted to presynaptic sites. We demonstrate that Type III Nrg1 back signaling regulates the surface expression of alpha7 nAChRs along axons of sensory neurons. Stimulation of Type III Nrg1 back signaling induces an increase in axonal surface alpha7 nAChRs, which results from a redistribution of preexisting intracellular pools of alpha7 rather than from increased protein synthesis. We also demonstrate that Type III Nrg1 back signaling activates a phosphatidylinositol 3-kinase signaling pathway and that activation of this pathway is required for the insertion of preexisting alpha7 nAChRs into the axonal plasma membrane. These findings, in conjunction with prior results establishing that Type III Nrg1 back signaling controls gene transcription, demonstrate that Type III Nrg1 back signaling can regulate both short-and long-term changes in neuronal function.

  17. Acetylcholine and the alpha 7 nicotinic receptor: a potential therapeutic target for the treatment of periodontal disease?

    PubMed Central

    2013-01-01

    Objectives The aim of this review is to examine the evidence for a functional cholinergic system operating within the periodontium and determine the evidence for its role in periodontal immunity. Introduction Acetylcholine can influence the immune system via the ‘cholinergic anti-inflammatory pathway’. This pathway is mediated by the vagus nerve which releases acetylcholine to interact with the α7 subunit of the nicotinic acetylcholine receptor (α7nAChR) on proximate immuno-regulatory cells. Activation of the α7nAChR on these cells leads to down-regulated expression of pro-inflammatory mediators and thus regulates localised inflammatory responses. The role of the vagus nerve in periodontal pathophysiology is currently unknown. However, non-neuronal cells can also release acetylcholine and express the α7nAChR; these include keratinocytes, fibroblasts, T cells, B cells and macrophages. Therefore, by both autocrine and paracrine methods non-neuronal acetylcholine can also be hypothesised to modulate the localised immune response. Methods A Pubmed database search was performed for studies providing evidence for a functional cholinergic system operating in the periodontium. In addition, literature on the role of the ‘cholinergic anti-inflammatory pathway’ in modulating the immune response was extrapolated to hypothesise that similar mechanisms of immune regulation occur within the periodontium. Conclusion The evidence suggests a functional nonneuronal ‘cholinergic anti-inflammatory pathway’ may operate in the periodontium and that this may be targeted therapeutically to treat periodontal disease. PMID:22777144

  18. Solution conformation of a neuronal nicotinic acetylcholine receptor antagonist {alpha}-conotoxin OmIA that discriminates {alpha}3 vs. {alpha}6 nAChR subtypes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chi, Seung-Wook; Kim, Do-Hyoung; Olivera, Baldomero M.

    2006-06-23

    {alpha}-Conotoxin OmIA from Conus omaria is the only {alpha}-conotoxin that shows a {approx}20-fold higher affinity to the {alpha}3{beta}2 over the {alpha}6{beta}2 subtype of nicotinic acetylcholine receptor. We have determined a three-dimensional structure of {alpha}-conotoxin OmIA by nuclear magnetic resonance spectroscopy. {alpha}-Conotoxin OmIA has an '{omega}-shaped' overall topology with His{sup 5}-Asn{sup 12} forming an {alpha}-helix. Structural features of {alpha}-conotoxin OmIA responsible for its selectivity are suggested by comparing its surface characteristics with other functionally related {alpha}4/7 subfamily conotoxins. Reduced size of the hydrophilic area in {alpha}-conotoxin OmIA seems to be associated with the reduced affinity towards the {alpha}6{beta}2 nAChR subtype.

  19. Synthesis and Nicotinic Acetylcholine Receptor In Vitro and In Vivo Pharmacological Properties of 2'-Fluoro-3'-(substituted phenyl)deschloroepibatidine Analogues of 2'-Fluoro-3'-(4-nitrophenyl)deschloroepibatidine (4-Nitro-PFEB or RTI-7527-102)

    PubMed Central

    Ondachi, Pauline; Castro, Ana; Luetje, Charles W.; Damaj, M. Imad; Mascarella, S. Wayne; Navarro, Hernán A.; Carroll, F. Ivy

    2012-01-01

    Herein, we report the synthesis and nicotinic acetylcholine receptor (nAChR) in vitro and in vivo pharmacological properties of 2'-fluoro-3'-(substituted phenyl)deschloroepibatidines 5b–g, analogues of 3'-(4-nitrophenyl) compound 5a. All compounds had high affinity for the α4β2-nAChR and low affinity for α7-nAChR. Initial electrophysiological studies showed that all analogues were antagonists at α4β2-, α3β4-, and α7-nAChRs. The 4-carbamoylphenyl analogue 5g was highly selective for α4β2-nAChR over α3β4- and α7-nAChRs. All the analogues were antagonists of nicotine-induced antinociception in the tail-flick test. Molecular modeling docking studies using agonist-bound form of the X-ray crystal structure of the acetylcholine binding protein suggested several different binding modes for epibatidine, varenicline, and 5a–5g. In particular, a unique binding mode for 5g was suggested by these docking simulations. The high binding affinity, in vitro efficacy, and selectivity of 5g for α4β2-nAChR combined with its nAChR functional antagonist properties suggest that 5g will be a valuable pharmacological tool for studying the nAChR and may have potential as a pharmacotherapy for addiction and other CNS disorders. PMID:22742586

  20. Ciguatoxin extracted from poisonous moray eels Gymnothorax javanicus triggers acetylcholine release from Torpedo cholinergic synaptosomes via reversed Na(+)-Ca2+ exchange.

    PubMed

    Molgó, J; Gaudry-Talarmain, Y M; Legrand, A M; Moulian, N

    1993-09-17

    Ciguatoxin (CTX) (0.1 pM to 10 nM) added to a suspension of Torpedo synaptosomes incubated in Ca(2+)-free medium caused no detectable acetylcholine (ACh) release. However, subsequent addition of Ca2+ caused a large ACh release that depended on time of exposure, dose of CTX and on [Ca2+]. Tetrodotoxin completely prevented CTX-induced Ca(2+)-dependent ACh release. Simultaneous blockade of Ca2+ channel subtypes by FTX, a toxin extracted from the venom of the spider Agelenopsis aperta, omega-conotoxin and Gd3+ did not prevent ACh release caused by CTX, upon addition of Ca2+. These results suggest that CTX activates the reversed operation of the Na+/Ca2+ exchange system allowing the entry of Ca2+ in exchange for Na+. It is concluded that Torpedo synaptosomes are endowed with Na+ channels sensitive to pico- to nanomolar concentrations of CTX.

  1. Effects of vasoactive intestinal peptide, helodermin and galanin on responses of guinea-pig lung parenchyma to histamine, acetylcholine and leukotriene D4.

    PubMed Central

    Conroy, D. M.; Samhoun, M. N.; Piper, P. J.

    1991-01-01

    1. The effect of vasoactive intestinal peptide (VIP) was studied on the contractile response of guinea-pig lung parenchymal strips (GPP) induced by bronchoconstrictor agonists, such as leukotriene D4 (LTD4), histamine and acetylcholine (ACh). This effect of VIP was compared with helodermin, a peptide that is structurally related to VIP, and galanin, another neuropeptide that is thought to co-exist with VIP. 2. VIP (10 nM) induced a potent and reversible inhibition of the contractions of GPP induced by LTD4 (1-30 pmol) but did not affect those due to ACh (1-100 nmol) or histamine (1-30 nmol). A ten fold higher concentration of VIP (100 nM) did not further inhibit LTD4-induced responses or reduce those induced by histamine or ACh. 3. Helodermin (10 nM) had a similar inhibitory effect on contractions of GPP induced by LTD4 (3-30 pmol) but did not affect contractions induced by histamine (1-10 nmol). 4. Indomethacin (2.8 microM) and salbutamol (10 nM) significantly reduced responses elicited by LTD4 and histamine but not those due to ACh. A ten fold higher concentration of salbutamol (100 nM) further inhibited the contractions due to LTD4 and histamine and at this concentration responses induced by ACh were inhibited. 5. VIP (10 nM) and helodermin (10 nM) significantly reduced the LTD4-induced release of thromboxane A2 (TXA2), measured as TxB2 by radioimmunoassay, from GPP. The smaller release of TxA2 induced by histamine was not significantly reduced in the presence of VIP. 6. In comparative studies, galanin (10-100 nM) did not affect contractions of GPP induced by either LTD4, histamine or ACh.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1725762

  2. Scutellarin protects against Aβ-induced learning and memory deficits in rats: involvement of nicotinic acetylcholine receptors and cholinesterase

    PubMed Central

    Guo, Li-li; Guan, Zhi-zhong; Wang, Yong-lin

    2011-01-01

    Aim: To examine the protective effects of scutellarin (Scu) on rats with learning and memory deficit induced by β-amyloid peptide (Aβ). Methods: Fifty male Wistar rats were randomly divided into 5 groups: control, sham operation, Aβ, Aβ+Scu, and Aβ+piracetam groups. Aβ25–35 was injected into the lateral ventricle (10 μg each side). Scu (10 mg/2 mL) or piracetam (10 mg/2 mL was intragastrically administered per day for 20 consecutive days following Aβ treatment. Learning and memory was assessed with Morris water maze test. The protein and mRNA levels of nicotinic acetylcholine receptor (nAChR) α4, α7, and β2 subunits in the brain were examined using Western blotting and real-time PCR, respectively. The activities of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) in the brain and plasma were measured using Ellman's colorimetric method. Results: In Aβ group, the escape latency period and first platform cross was significantly increased, and the total number of platform crossings was significantly decreased, as compared with the control and the sham operation groups. Both Scu and piracetam treatment significantly reduced the escape latency period and time to cross platform, and increased the number of platform crosses, but there were no significant differences between Aβ+Scu and Aβ+piracetam groups. In Aβ group, the protein levels of nAChR α4 and α7 subunits in the cerebral cortex were significantly decreased by 42%–47% and 58%–61%, respectively, as compared to the control and the sham operation groups. Scu treatment caused upregulation of α4 and α7 subunit proteins by around 24% and 30%, respectively, as compared to Aβ group, but there were no significant differences between Aβ+Scu and Aβ+piracetam groups. The protein level of nAChR β2 subunit had no significant difference among different groups. The mRNA levels of nAChR α4, α7, and β2 subunits were not significantly changed. In Aβ group, the activities of AChE and Bu

  3. Relaxant effect of the ethanol extract of Helichrysum plicatum (Asteraceae) on isolated rat ileum contractions.

    PubMed

    Bigovic, Dubravka; Brankovic, Suzana; Kitic, Dusanka; Radenkovic, Mirjana; Jankovic, Teodora; Savikin, Katarina; Zivanovic, Slavoljub

    2010-05-10

    Helichrysum plicatum (Turkish Helichrysum) has been used in folk medicine for the treatment of gastric and hepatic disorders. The aim of the present study was to examine the relaxant activity of an extract of H. plicatum flowers on isolated rat ileum. Segments of ileum of rats were suspended in an organ bath. Cumulative concentrations of H. plicatum ethanol extract induced a relaxant effect on spontaneous rat ileum contractions. H. plicatum extract caused a mean contractile response of 81.68 +/- 6.17% (at a dose of 0.01 mg/mL) and 30.08 +/- 9.07% (at a dose of 1 mg/mL). A similar effect was observed with papaverine (0.01-3 microg/mL). H. plicatum extract (0.01-1 mg/mL) relaxed high K+ (80 mM) precontractions, an effect similar to that caused by papaverine (0.01-3 microg/mL). The plant extract (0.03-0.3 mg/mL) also induced a significant depression of the cumulative concentration response curve for acetylcholine (5-1500 nM) (p < 0.01). Atropine (140 nM) abolished the acetylcholine effect. The extract (0.03-0.3 mg/mL) reduced the histamine (1-300 nM) and BaCl2 (3-900 microM) induced contractions (p < 0.01). Our results showed the relaxant effect of the ethanol extract of Helichrysum plicatum flowers on the isolated rat intestine Extract of H. plicatum can inhibit the spontaneous ileum contractions and contractions induced by acetylcholine, histamine, barium and potassium ions.

  4. Caffeine potentiates the enhancement by choline of striatal acetylcholine release

    NASA Technical Reports Server (NTRS)

    Johnson, D. A.; Ulus, I. H.; Wurtman, R. J.

    1992-01-01

    We investigated the effect of peripherally administered caffeine (50 mg/kg), choline (30, 60, or 120 mg/kg) or combinations of both drugs on the spontaneous release of acetylcholine (ACh) from the corpus striatum of anesthetized rats using in vivo microdialysis. Caffeine alone or choline in the 30 or 60 mg/kg dose failed to increase ACh in microdialysis samples; the 120 mg/kg choline dose significantly enhanced ACh during the 80 min following drug administration. Coadministration of caffeine with choline significantly increased ACh release after each of the choline doses tested. Peak microdialysate levels with the 120 mg/kg dose were increased 112% when caffeine was additionally administered, as compared with 54% without caffeine. These results indicate that choline administration can enhance spontaneous ACh release from neurons, and that caffeine, a drug known to block adenosine receptors on these neurons, can amplify the choline effect.

  5. Atomic interactions of neonicotinoid agonists with AChBP: Molecular recognition of the distinctive electronegative pharmacophore

    PubMed Central

    Talley, Todd T.; Harel, Michal; Hibbs, Ryan E.; Radić, Zoran; Tomizawa, Motohiro; Casida, John E.; Taylor, Palmer

    2008-01-01

    Acetylcholine-binding proteins (AChBPs) from mollusks are suitable structural and functional surrogates of the nicotinic acetylcholine receptors when combined with transmembrane spans of the nicotinic receptor. These proteins assemble as a pentamer with identical ACh binding sites at the subunit interfaces and show ligand specificities resembling those of the nicotinic receptor for agonists and antagonists. A subset of ligands, termed the neonicotinoids, exhibit specificity for insect nicotinic receptors and selective toxicity as insecticides. AChBPs are of neither mammalian nor insect origin and exhibit a distinctive pattern of selectivity for the neonicotinoid ligands. We define here the binding orientation and determinants of differential molecular recognition for the neonicotinoids and classical nicotinoids by estimates of kinetic and equilibrium binding parameters and crystallographic analysis. Neonicotinoid complex formation is rapid and accompanied by quenching of the AChBP tryptophan fluorescence. Comparisons of the neonicotinoids imidacloprid and thiacloprid in the binding site from Aplysia californica AChBP at 2.48 and 1.94 Å in resolution reveal a single conformation of the bound ligands with four of the five sites occupied in the pentameric crystal structure. The neonicotinoid electronegative pharmacophore is nestled in an inverted direction compared with the nicotinoid cationic functionality at the subunit interfacial binding pocket. Characteristic of several agonists, loop C largely envelops the ligand, positioning aromatic side chains to interact optimally with conjugated and hydrophobic regions of the neonicotinoid. This template defines the association of interacting amino acids and their energetic contributions to the distinctive interactions of neonicotinoids. PMID:18477694

  6. Effect of prolonged incubation with copper on endothelium-dependent relaxation in rat isolated aorta

    PubMed Central

    Chiarugi, Alberto; Pitari, Giovanni Mario; Costa, Rosa; Ferrante, Margherita; Villari, Loredana; Amico-Roxas, Matilde; Godfraind, Théophile; Bianchi, Alfredo; Salomone, Salvatore

    2002-01-01

    We investigated the effects of prolonged exposure to copper (Cu2+) on vascular functioning of isolated rat aorta. Aortic rings were exposed to CuSO4 (3–24 h) in Dulbecco's modified Eagle medium with or without 10% foetal bovine serum (FBS) and then challenged with vasoconstrictors or vasodilators in the absence of Cu2+. Exposure to 2 μM Cu2+ in the absence of FBS did not modify the response to phenylephrine (PE) or acetylcholine (ACh) in aortic rings incubated for 24 h. Identical exposure in the presence of FBS increased the contractile response to 1 μM PE by 30% (P<0.05) and impaired the relaxant response to 3 μM ACh or 1 μM A23187 (ACh, from 65.7±7.1 to 6.2±1.1%, n=8; A23187, from 74.6±8.2 to 12.0±0.8%, n=6; P<0.01 for both). Cu2+ exposure did not affect the relaxant response to NO-donors. Impairment of vasorelaxation appeared 3 h after incubation with 2 μM Cu2+ and required 12 h to attain a steady state. Vasorelaxation to ACh was partially restored by 1 mM tiron (intracellular scavenger of superoxide ions; maximum relaxation 34.2±6.4%, n=10, P<0.01 vs Cu2+ alone), whereas catalase, superoxide dismutase or cycloheximide were ineffective. Twenty-four hour-exposure to 2 μM Cu2+ did not affect endothelium integrity or eNOS expression, and increased the Cu content in arterial rings from 6.8±1.1 to 18.9±2.9 ng mg−1 wet weight, n=8; P<0.01. Our results show that, in the presence of FBS, prolonged exposure to submicromolar concentrations of Cu2+ impaired endothelium-dependent vasorelaxation in aortic rings, probably through an intracellular generation of superoxide ions. PMID:12163352

  7. Apolipoprotein E4 reduces evoked hippocampal acetylcholine release in adult mice.

    PubMed

    Dolejší, Eva; Liraz, Ori; Rudajev, Vladimír; Zimčík, Pavel; Doležal, Vladimír; Michaelson, Daniel M

    2016-02-01

    Apolipoprotein E4 (apoE4) is the most prevalent genetic risk factor for Alzheimer's disease. We utilized apoE4-targeted replacement mice (approved by the Tel Aviv University Animal Care Committee) to investigate whether cholinergic dysfunction, which increases during aging and is a hallmark of Alzheimer's disease, is accentuated by apoE4. This revealed that levels of the pre-synaptic cholinergic marker, vesicular acetylcholine transporter in the hippocampus and the corresponding electrically evoked release of acetylcholine, are similar in 4-month-old apoE4 and apolipoprotein E3 (apoE3) mice. Both parameters decrease with age. This decrease is, however, significantly more pronounced in the apoE4 mice. The levels of cholinacetyltransferase (ChAT), acetylcholinesterase (AChE), and butyrylcholinesterase (BuChE) were similar in the hippocampus of young apoE4 and apoE3 mice and decreased during aging. For ChAT, this decrease was similar in the apoE4 and apoE3 mice, whereas it was more pronounced in the apoE4 mice, regarding their corresponding AChE and BuChE levels. The level of muscarinic receptors was higher in the apoE4 than in the apoE3 mice at 4 months and increased to similar levels with age. However, the relative representation of the M1 receptor subtype decreased during aging in apoE4 mice. These results demonstrate impairment of the evoked release of acetylcholine in hippocampus by apoE4 in 12-month-old mice but not in 4-month-old mice. The levels of ChAT and the extent of the M2 receptor-mediated autoregulation of ACh release were similar in the adult mice, suggesting that the apoE4-related inhibition of hippocampal ACh release in these mice is not driven by these parameters. Evoked ACh release from hippocampal and cortical slices is similar in 4-month-old apoE4 and apoE3 mice but is specifically and significantly reduced in hippocampus, but not cortex, of 12-month-old apoE4 mice. This effect is accompanied by decreased VAChT levels. These findings show that

  8. Detection of Ca2+-induced acetylcholine released from leukemic T-cells using an amperometric microfluidic sensor.

    PubMed

    Akhtar, Mahmood H; Hussain, Khalil K; Gurudatt, N G; Shim, Yoon-Bo

    2017-12-15

    A microfluidic structured-dual electrodes sensor comprising of a pair of screen printed carbon electrodes was fabricated to detect acetylcholine, where one of them was used for an enzyme reaction and another for a detection electrode. The former was coated with gold nanoparticles and the latter with a porous gold layer, followed by electropolymerization of 2, 2:5,2-terthiophene-3-(p-benzoic acid) (pTTBA) on both the electrodes. Then, acetylcholinesterase was covalently attached onto the reaction electrode, and hydrazine and choline oxidase were co-immobilized on the detection electrode. The layers of both modified electrodes were characterized employing voltammetry, field emission scanning electron microscopy, X-ray photoelectron spectroscopy, and quartz crystal microscopy. After the modifications of both electrode surfaces, they were precisely faced each other to form a microfluidic channel structure, where H 2 O 2 produced from the sequential enzymatic reactions was reduced by hydrazine to obtain the analytical signal which was analyzed by the detection electrode. The microfluidic sensor at the optimized experimental conditions exhibited a wide dynamic range from 0.7nM to 1500μM with the detection limit of 0.6 ± 0.1nM based on 3s (S/N = 3). The biomedical application of the proposed sensor was evaluated by detecting acetylcholine in human plasma samples. Moreover, the Ca 2+ -induced acetylcholine released in leukemic T-cells was also investigated to show the in vitro detection ability of the designed microfluidic sensor. Interference due to the real component matrix were also studied and long term stability of the designed sensor was evaluated. The analytical performance of the designed sensor was also compared with commercially available ACh detection kit. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Blocking GABA-A receptors in the Medial Septum Enhances Hippocampal Acetylcholine Release and Behavior in a Rat Model of Diencephalic Amnesia

    PubMed Central

    Roland, Jessica J.; Savage, Lisa M.

    2009-01-01

    Wernicke-Korsakoff syndrome (WKS), a form of diencephalic amnesia caused by thiamine deficiency, results in severe anterograde memory loss. Pyrithiamine-induced thiamine deficiency (PTD), an animal model of WKS, produces cholinergic abnormalities including decreased functional hippocampal acetylcholine (ACh) release and poor spatial memory. Increasing hippocampal ACh levels has increased performance in PTD animals. Intraseptal bicuculline (GABAA antagonist) augments hippocampal ACh release in normal animals and we found it (0.50μg/μl & 0.75μg/μl) also increased in-vivo hippocampal ACh release in PTD animals. However, the 0.75 μg/μl dose produced a greater change in hippocampal ACh release in control animals. The 0.50μg/μl dose of bicuculline was then selected to determine if it could enhance spontaneous alternation performance in PTD animals. This dose of bicuculline significantly increased hippocampal ACh levels above baseline in both PTD and control rats and resulted in complete behavioral recovery in PTD animals, without altering performance in control rats. This suggests that balancing ACh-GABA interactions in the septohippocampal circuit may be an effective therapeutic approach in certain amnestic syndromes. PMID:19463263

  10. Effect of oxotremorine, physostigmine, and scopolamine on brain acetylcholine synthesis: a study using HPLC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertrand, N.; Beley, A.

    The synthesis rate of brain acetylcholine (ACh) was estimated in mice following i.v. administration of ({sup 3}H)choline (Ch). The measurements were performed 1 min after the tracer injection, using the ({sup 3}H)ACh/({sup 3}H)Ch specific radioactivity ratio as an index of ACh synthesis rate. Endogenous and labeled Ch and ACh were quantified using HPLC methodology. Oxotremorine and physostigmine (0.5 mg/kg, i.p.) increased the steady state concentration of brain ACh by + 130% and 84%, respectively and of Ch by + 60% (oxotremorine); they decreased ACh synthesis by 62 and 55%, respectively. By contrast, scopolamine (0.7 mg/kg, i.p.) decreased the cerebral contentmore » of Ch by - 26% and of ACh by - 23% without enhancing the synthesis of ACh. The results show the utility of HPLC methodology in the investigation of ACh turnover.« less

  11. Guidelines for standard preclinical experiments in the mouse model of myasthenia gravis induced by acetylcholine receptor immunization.

    PubMed

    Tuzun, Erdem; Berrih-Aknin, Sonia; Brenner, Talma; Kusner, Linda L; Le Panse, Rozen; Yang, Huan; Tzartos, Socrates; Christadoss, Premkumar

    2015-08-01

    Myasthenia gravis (MG) is an autoimmune disorder characterized by generalized muscle weakness due to neuromuscular junction (NMJ) dysfunction brought by acetylcholine receptor (AChR) antibodies in most cases. Although steroids and other immunosuppressants are effectively used for treatment of MG, these medications often cause severe side effects and a complete remission cannot be obtained in many cases. For pre-clinical evaluation of more effective and less toxic treatment methods for MG, the experimental autoimmune myasthenia gravis (EAMG) induced by Torpedo AChR immunization has become one of the standard animal models. Although numerous compounds have been recently proposed for MG mostly by using the active immunization EAMG model, only a few have been proven to be effective in MG patients. The variability in the experimental design, immunization methods and outcome measurements of pre-clinical EAMG studies make it difficult to interpret the published reports and assess the potential for application to MG patients. In an effort to standardize the active immunization EAMG model, we propose standard procedures for animal care conditions, sampling and randomization of mice, experimental design and outcome measures. Utilization of these standard procedures might improve the power of pre-clinical EAMG experiments and increase the chances for identifying promising novel treatment methods that can be effectively translated into clinical trials for MG. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Imaging of cerebral α4β2* nicotinic acetylcholine receptors with (-)-[(18)F]Flubatine PET: Implementation of bolus plus constant infusion and sensitivity to acetylcholine in human brain.

    PubMed

    Hillmer, A T; Esterlis, I; Gallezot, J D; Bois, F; Zheng, M Q; Nabulsi, N; Lin, S F; Papke, R L; Huang, Y; Sabri, O; Carson, R E; Cosgrove, K P

    2016-11-01

    The positron emission tomography (PET) radioligand (-)-[(18)F]flubatine is specific to α4β2(⁎) nicotinic acetylcholine receptors (nAChRs) and has promise for future investigation of the acetylcholine system in neuropathologies such as Alzheimer's disease, schizophrenia, and substance use disorders. The two goals of this work were to develop a simplified method for α4β2(⁎) nAChR quantification with bolus plus constant infusion (B/I) (-)-[(18)F]flubatine administration, and to assess the radioligand's sensitivity to acetylcholine fluctuations in humans. Healthy human subjects were imaged following either bolus injection (n=8) or B/I (n=4) administration of (-)-[(18)F]flubatine. The metabolite-corrected input function in arterial blood was measured. Free-fraction corrected distribution volumes (VT/fP) were estimated with modeling and graphical analysis techniques. Next, sensitivity to acetylcholine was assessed in two ways: 1. A bolus injection paradigm with two scans (n=6), baseline (scan 1) and physostigmine challenge (scan 2; 1.5mg over 60min beginning 5min prior to radiotracer injection); 2. A single scan B/I paradigm (n=7) lasting up to 240min with 1.5mg physostigmine administered over 60min beginning at 125min of radiotracer infusion. Changes in VT/fP were measured. Baseline VT/fP values were 33.8±3.3mL/cm(3) in thalamus, 12.9±1.6mL/cm(3) in cerebellum, and ranged from 9.8 to 12.5mL/cm(3) in other gray matter regions. The B/I paradigm with equilibrium analysis at 120min yielded comparable VT/fP values with compartment modeling analysis of bolus data in extrathalamic gray matter regions (regional means <4% different). Changes in VT/fP following physostigmine administration were small and most pronounced in cortical regions, ranging from 0.8 to 4.6% in the two-scan paradigm and 2.8 to 6.5% with the B/I paradigm. These results demonstrate the use of B/I administration for accurate quantification of (-)-[(18)F]flubatine VT/fP in 120min, and suggest

  13. Resistin impairs endothelium-dependent dilation to bradykinin, but not acetylcholine, in the coronary circulation.

    PubMed

    Dick, Gregory M; Katz, Paige S; Farias, Martin; Morris, Michael; James, Jeremy; Knudson, Jarrod D; Tune, Johnathan D

    2006-12-01

    Elevated plasma levels of fat-derived signaling molecules are associated with obesity, vascular endothelial dysfunction, and coronary heart disease; however, little is known about their direct coronary vascular effects. Accordingly, we examined mechanisms by which one adipokine, resistin, affects coronary vascular tone and endothelial function. Studies were conducted in anesthetized dogs and isolated coronary artery rings. Resistin did not change coronary blood flow, mean arterial pressure, or heart rate. Resistin had no effect on acetylcholine-induced relaxation of artery rings; however, resistin did impair bradykinin-induced relaxation. Selective impairment was also observed in vivo, as resistin attenuated vasodilation to bradykinin but not to acetylcholine. Resistin had no effect on dihydroethidium fluorescence, an indicator of superoxide (O(2)(-)) production, and the inhibitory effect of resistin on bradykinin-induced relaxation persisted in the presence of Tempol, a superoxide dismutase mimetic. To determine whether resistin impaired production of and/or responses to nitric oxide (NO) or prostaglandins (e.g., prostacyclin; PGI(2)), we performed experiments with N(omega)-nitro-L-arginine methyl ester (L-NAME) and indomethacin. The effect of resistin to attenuate bradykinin-induced vasodilation persisted in the presence of L-NAME or indomethacin, suggesting resistin may act at a cell signaling point upstream of NO or PGI(2) production. Resistin-induced endothelial dysfunction is not generalized, and it is not consistent with effects mediated by O(2)(-) or interference with NO or PGI(2) signaling. The site of the resistin-induced impairment is unknown but may be at the bradykinin receptor or a closely associated signal transduction machinery proximal to NO synthase or cyclooxygenase.

  14. Acetylcholine, carbachol, and GABA induce no detectable change in the length of isolated outer hair cells.

    PubMed

    Bobbin, R P; Fallon, M; Puel, J L; Bryant, G; Bledsoe, S C; Zajic, G; Schacht, J

    1990-08-01

    The mechanical and electrical properties of cochlear outer hair cells (OHCs) are suggested to modulate transduction by inner hair cells. These properties of OHCs are presumably regulated by efferent neurons which use several transmitters including acetylcholine (Ach) and gamma aminobutyric acid (GABA). Since it had been suggested that Ach causes isolated OHCs to shorten visibly, this study was designed to investigate whether GABA also alters the length of OHCs. OHCs were isolated from the guinea pig cochlea by mechanical dispersion after collagenase treatment. Cells were initially selected by strict morphological criteria. In addition they were only included in further studies if they attained a constant length during 10 min of superfusion with buffer solution. Neither GABA (20 microM: 100 microM), Ach (5 mM; 10 microM with 10 microM eserine) or carbachol (10 microM; 100 microM) altered OHC length when applied in iso-osmotic Hank's balanced salt solution (total number of cells tested, 72). If a change in length occurred it must have been smaller than 0.3 microns, our detection ability. In contrast, high potassium and variations in osmolarity changed hair cell length by 3-10% in agreement with other reports.

  15. Identification and Characterization of a G Protein-binding Cluster in α7 Nicotinic Acetylcholine Receptors.

    PubMed

    King, Justin R; Nordman, Jacob C; Bridges, Samuel P; Lin, Ming-Kuan; Kabbani, Nadine

    2015-08-14

    α7 nicotinic acetylcholine receptors (nAChRs) play an important role in synaptic transmission and inflammation. In response to ligands, this receptor channel opens to conduct cations into the cell but desensitizes rapidly. In recent studies we show that α7 nAChRs bind signaling proteins such as heterotrimeric GTP-binding proteins (G proteins). Here, we demonstrate that direct coupling of α7 nAChRs to G proteins enables a downstream calcium signaling response that can persist beyond the expected time course of channel activation. This process depends on a G protein-binding cluster (GPBC) in the M3-M4 loop of the receptor. A mutation of the GPBC in the α7 nAChR (α7345-348A) abolishes interaction with Gαq as well as Gβγ while having no effect on receptor synthesis, cell-surface trafficking, or α-bungarotoxin binding. Expression of α7345-348A, however, did significantly attenuate the α7 nAChR-induced Gαq calcium signaling response as evidenced by a decrease in PLC-β activation and IP3R-mediated calcium store release in the presence of the α7 selective agonist choline. Taken together, the data provides new evidence for the existence of a GPBC in nAChRs serving to promote intracellular signaling. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Chitooligosaccharides suppress the level of protein expression and acetylcholinesterase activity induced by Abeta25-35 in PC12 cells.

    PubMed

    Lee, Sang-Hoon; Park, Jin-Sook; Kim, Se-Kwon; Ahn, Chang-Bum; Je, Jae-Young

    2009-02-01

    Clinical applications of acetylcholinesterase (AChE) inhibitors are widespread in Alzheimer's sufferers in order to activate central cholinergic system and alleviate cognitive deficits by inhibiting the hydrolysis of acetylcholine. In this study, six kinds of chitooligosaccharides (COSs) with different molecular weight and degree of deacetylation were examined for their inhibitory effects against AChE. The 90-COSs exhibited potent AChE inhibitory activities compared to 50-COSs, while 90-MMWCOS (1000-5000 Da) in the 90-COSs showed the highest activity. Cell culture experiment revealed that 90-MMWCOS suppressed the level of AChE protein expression and AChE activity induced by Abeta(25-35) in PC12 cell lines.

  17. Acetylcholinesterase Regulates Skeletal In Ovo Development of Chicken Limbs by ACh-Dependent and -Independent Mechanisms

    PubMed Central

    Spieker, Janine; Ackermann, Anica; Salfelder, Anika; Vogel-Höpker, Astrid; Layer, Paul G.

    2016-01-01

    Formation of the vertebrate limb presents an excellent model to analyze a non-neuronal cholinergic system (NNCS). Here, we first analyzed the expression of acetylcholinesterase (AChE) by IHC and of choline acetyltransferase (ChAT) by ISH in developing embryonic chicken limbs (stages HH17-37). AChE outlined formation of bones, being strongest at their distal tips, and later also marked areas of cell death. At onset, AChE and ChAT were elevated in two organizing centers of the limb anlage, the apical ectodermal ridge (AER) and zone of polarizing activity (ZPA), respectively. Thereby ChAT was expressed shortly after AChE, thus strongly supporting a leading role of AChE in limb formation. Then, we conducted loss-of-function studies via unilateral implantation of beads into chicken limb anlagen, which were soaked in cholinergic components. After varying periods, the formation of cartilage matrix and of mineralizing bones was followed by Alcian blue (AB) and Alizarin red (AR) stainings, respectively. Both acetylcholine (ACh)- and ChAT-soaked beads accelerated bone formation in ovo. Notably, inhibition of AChE by BW284c51, or by the monoclonal antibody MAB304 delayed cartilage formation. Since bead inhibition of BChE was mostly ineffective, an ACh-independent action during BW284c51 and MAB304 inhibition was indicated, which possibly could be due to an enzymatic side activity of AChE. In conclusion, skeletogenesis in chick is regulated by an ACh-dependent cholinergic system, but to some extent also by an ACh-independent aspect of the AChE protein. PMID:27574787

  18. Acetylcholinesterase Regulates Skeletal In Ovo Development of Chicken Limbs by ACh-Dependent and -Independent Mechanisms.

    PubMed

    Spieker, Janine; Ackermann, Anica; Salfelder, Anika; Vogel-Höpker, Astrid; Layer, Paul G

    2016-01-01

    Formation of the vertebrate limb presents an excellent model to analyze a non-neuronal cholinergic system (NNCS). Here, we first analyzed the expression of acetylcholinesterase (AChE) by IHC and of choline acetyltransferase (ChAT) by ISH in developing embryonic chicken limbs (stages HH17-37). AChE outlined formation of bones, being strongest at their distal tips, and later also marked areas of cell death. At onset, AChE and ChAT were elevated in two organizing centers of the limb anlage, the apical ectodermal ridge (AER) and zone of polarizing activity (ZPA), respectively. Thereby ChAT was expressed shortly after AChE, thus strongly supporting a leading role of AChE in limb formation. Then, we conducted loss-of-function studies via unilateral implantation of beads into chicken limb anlagen, which were soaked in cholinergic components. After varying periods, the formation of cartilage matrix and of mineralizing bones was followed by Alcian blue (AB) and Alizarin red (AR) stainings, respectively. Both acetylcholine (ACh)- and ChAT-soaked beads accelerated bone formation in ovo. Notably, inhibition of AChE by BW284c51, or by the monoclonal antibody MAB304 delayed cartilage formation. Since bead inhibition of BChE was mostly ineffective, an ACh-independent action during BW284c51 and MAB304 inhibition was indicated, which possibly could be due to an enzymatic side activity of AChE. In conclusion, skeletogenesis in chick is regulated by an ACh-dependent cholinergic system, but to some extent also by an ACh-independent aspect of the AChE protein.

  19. Nanosensors for the Chemical Imaging of Acetylcholine Using Magnetic Resonance Imaging.

    PubMed

    Luo, Yi; Kim, Eric H; Flask, Chris A; Clark, Heather A

    2018-06-06

    A suite of imaging tools for detecting specific chemicals in the central nervous system could accelerate the understanding of neural signaling events critical to brain function and disease. Here, we introduce a class of nanoparticle sensors for the highly specific detection of acetylcholine in the living brain using magnetic resonance imaging. The nanosensor is composed of acetylcholine-catalyzing enzymes and pH-sensitive gadolinium contrast agents co-localized onto the surface of polymer nanoparticles, which leads to changes in T 1 relaxation rate (1/ T 1 ). The mechanism of the sensor involves the enzymatic hydrolysis of acetylcholine leading to a localized decrease in pH which is detected by the pH-sensitive gadolinium chelate. The concomitant change in 1/ T 1 in vitro measured a 20% increase from 0 to 10 μM acetylcholine concentration. The applicability of the nanosensors in vivo was demonstrated in the rat medial prefrontal cortex showing distinct changes in 1/ T 1 induced by pharmacological stimuli. The highly specific acetylcholine nanosensor we present here offers a promising strategy for detection of cholinergic neurotransmission and will facilitate our understanding of brain function through chemical imaging.

  20. Role of substance P and neurokinin A in toluene diisocyanate-induced increased airway responsiveness in rabbits.

    PubMed

    Marek, W; Potthast, J J; Marcynski, B; Baur, X

    1996-01-01

    The aim of the present study was to examine the role of neuropeptides, especially substance P (SP) and neurokinin A (NKA), in toluene diisocyanate (TDI)-induced airway hyperresponsiveness (AHR) to acetylcholine aerosols. Thirty parts per billion of TDI in air administered over 4 hours caused a significant increase in the airway constrictive response to acetylcholine (ACH) aerosols in rabbits (DeltaRI: 245 +/- 30%, p < 0.005) without altering basic values of respiratory, cardiovascular or blood gas parameters. Inhalation of the aerosolized neuropeptides SP and NKA resulted in a similar increase in airway responsiveness (AR) to ACH as exposure to 30 ppb TDI. To determine whether neuropeptides contribute to TDI-induced AHR, we studied their effects after systemic treatment with capsaicin as well as after infusion of specific synthetic antagonists for SP and NK2 (NKA) receptors. CAPS treatment performed on 4 consecutive days as well as antagonists' infusion only moderately (p > 0.05) decreased airway responses to ACH. CAPS application prevented the TDI-induced increase in AR to ACH in all rabbits. The increase in airway resistance to ACH did not significantly change after TDI exposure (98 +/- 22% of the control response before TDI, p > 0.05). Simultaneous infusion of specific synthetic SP and NK2 receptor antagonists also abolished the TDI-induced increase in airway responses to ACH in all animals investigated (p > 0.05). The results of this study demonstrate that neuropeptides, especially the tachykinins SP and NKA, are important mediators in TDI-induced AHR in rabbits.

  1. Nonconventional three-finger toxin BMLCL from krait Bungarus multicinctus venom with high affinity interacts with nicotinic acetylcholine receptors.

    PubMed

    Utkin, Yu N; Kasheverov, I E; Kudryavtsev, D S; Andreeva, T V; Starkov, V G; Ziganshin, R H; Kuznetsov, D V; Anh, Hoang Ngoc; Thao, Nguyen Thi Thanh; Khoa, Nguyen Cuu; Tsetlin, V I

    2015-01-01

    Nonconventional three-finger toxin BMLCL was isolated from B. multicinctus venom, and its interaction with different subtypes of nicotinic acetylcholine receptor (nAChR) was studied. It was found that BMLCL is able to interact with high efficiency with both α7 and muscle type nAChRs.

  2. Decrease of airway smooth muscle contractility induced by simulated breathing maneuvers is not simply proportional to strain.

    PubMed

    Pascoe, Chris D; Seow, Chun Y; Paré, Peter D; Bossé, Ynuk

    2013-02-01

    The lung is a dynamic organ and the oscillating stress applied to the airway wall during breathing maneuvers can decrease airway smooth muscle (ASM) contractility. However, it is unclear whether it is the stress or the attendant strain that is responsible for the decline of ASM force associated with breathing maneuvers, and whether tone can prevent the decline of force by attenuating the strain. To investigate these questions, ovine tracheal strips were subjected to oscillating stress that simulates breathing maneuvers, and the resulting strain and decline of force were measured in the absence or presence of different levels of tone elicited by acetylcholine. In relaxed ASM, high stress simulating 20 cm H(2)O-transpulmonary pressure excursions strained ASM strips by 20.7% and decreased force by 17.1%. When stress oscillations were initiated during measurement of ACh concentration-response curves, tone almost abrogated strain at an ACh concentration of 10(-6) M (1.1%) but the decline of force was not affected (18.9%). When stress oscillations were initiated after ACh-induced contraction had reached its maximal force, strain was almost abrogated at an ACh concentration of 10(-6) M (0.9%) and the decline of force was attenuated (10.1%). However, even at the highest ACh concentration (10(-4) M), substantial decline of force (6.1%) was still observed despite very small strain (0.7%). As expected, the results indicate that tone attenuated the strain experienced by ASM during breathing maneuver simulations. More surprisingly, the reduction of strain induced by tone was not proportional to its effect on the decline of force induced by simulated breathing maneuvers.

  3. Enhanced synthesis and release of dopamine in transgenic mice with gain-of-function α6* nAChRs.

    PubMed

    Wang, Yuexiang; Lee, Jang-Won; Oh, Gyeon; Grady, Sharon R; McIntosh, J Michael; Brunzell, Darlene H; Cannon, Jason R; Drenan, Ryan M

    2014-04-01

    α6β2* nicotinic acetylcholine receptors (nAChRs)s in the ventral tegmental area to nucleus accumbens (NAc) pathway are implicated in the response to nicotine, and recent work suggests these receptors play a role in the rewarding action of ethanol. Here, we studied mice expressing gain-of-function α6β2* nAChRs (α6L9'S mice) that are hypersensitive to nicotine and endogenous acetylcholine. Evoked extracellular dopamine (DA) levels were enhanced in α6L9'S NAc slices compared to control, non-transgenic (non-Tg) slices. Extracellular DA levels in both non-Tg and α6L9'S slices were further enhanced in the presence of GBR12909, suggesting intact DA transporter function in both mouse strains. Ongoing α6β2* nAChR activation by acetylcholine plays a role in enhancing DA levels, as α-conotoxin MII completely abolished evoked DA release in α6L9'S slices and decreased spontaneous DA release from striatal synaptosomes. In HPLC experiments, α6L9'S NAc tissue contained significantly more DA, 3,4-dihydroxyphenylacetic acid, and homovanillic acid compared to non-Tg NAc tissue. Serotonin (5-HT), 5-hydroxyindoleacetic acid, and norepinephrine (NE) were unchanged in α6L9'S compared to non-Tg tissue. Western blot analysis revealed increased tyrosine hydroxylase expression in α6L9'S NAc. Overall, these results show that enhanced α6β2* nAChR activity in NAc can stimulate DA production and lead to increased extracellular DA levels. © 2013 International Society for Neurochemistry.

  4. Imaging of cerebral α4β2* nicotinic acetylcholine receptors with (−)-[18F]Flubatine PET: Implementation of bolus plus constant infusion and sensitivity to acetylcholine in human brain☆

    PubMed Central

    Hillmer, A.T.; Esterlis, I.; Gallezot, J.D.; Bois, F.; Zheng, M.Q.; Nabulsi, N.; Lin, S.F.; Papke, R.L.; Huang, Y.; Sabri, O.; Carson, R.E.; Cosgrove, K.P.

    2016-01-01

    The positron emission tomography (PET) radioligand (−)-[18F]flubatine is specific to α4β2∗ nicotinic acetylcholine receptors (nAChRs) and has promise for future investigation of the acetylcholine system in neuropathologies such as Alzheimer's disease, schizophrenia, and substance use disorders. The two goals of this work were to develop a simplified method for α4β2∗ nAChR quantification with bolus plus constant infusion (B/I) (−)-[18F]flubatine administration, and to assess the radioligand's sensitivity to acetylcholine fluctuations in humans. Healthy human subjects were imaged following either bolus injection (n = 8) or B/I (n = 4) administration of (−)-[18F]flubatine. The metabolite-corrected input function in arterial blood was measured. Free-fraction corrected distribution volumes (VT/fP) were estimated with modeling and graphical analysis techniques. Next, sensitivity to acetylcholine was assessed in two ways: 1. A bolus injection paradigm with two scans (n = 6), baseline (scan 1) and physostigmine challenge (scan 2; 1.5 mg over 60 min beginning 5 min prior to radiotracer injection); 2. A single scan B/I paradigm (n = 7) lasting up to 240 min with 1.5 mg physostigmine administered over 60 min beginning at 125 min of radiotracer infusion. Changes in VT/fP were measured. Baseline VT/fP values were 33.8 ± 3.3 mL/cm3 in thalamus, 12.9 ± 1.6 mL/cm3 in cerebellum, and ranged from 9.8 to 12.5 mL/cm3 in other gray matter regions. The B/I paradigm with equilibrium analysis at 120 min yielded comparable VT/fP values with compartment modeling analysis of bolus data in extrathalamic gray matter regions (regional means <4% different). Changes in VT/fP following physostigmine administration were small and most pronounced in cortical regions, ranging from 0.8 to 4.6% in the two-scan paradigm and 2.8 to 6.5% with the B/I paradigm. These results demonstrate the use of B/I administration for accurate quantification of (−)-[18F]flubatine VT/fP in 120 min, and

  5. Electrophysiological Perspectives on the Therapeutic Use of Nicotinic Acetylcholine Receptor Partial AgonistsS⃞

    PubMed Central

    Trocmé-Thibierge, Caryn; Guendisch, Daniela; Al Rubaiy, Shehd Abdullah Abbas; Bloom, Stephen A.

    2011-01-01

    Partial agonist therapies rely variously on two hypotheses: the partial agonists have their effects through chronic low-level receptor activation or the partial agonists work by decreasing the effects of endogenous or exogenous full agonists. The relative significance of these activities probably depends on whether acute or chronic effects are considered. We studied nicotinic acetylcholine receptors (nAChRs) expressed in Xenopus laevis oocytes to test a model for the acute interactions between acetylcholine (ACh) and weak partial agonists. Data were best-fit to a basic competition model that included an additional factor for noncompetitive inhibition. Partial agonist effects were compared with the nAChR antagonist bupropion in prolonged bath application experiments that were designed to mimic prolonged drug exposure typical of therapeutic drug delivery. A primary effect of prolonged application of nicotine was to decrease the response of all nAChR subtypes to acute applications of ACh. In addition, nicotine, cytisine, and varenicline produced detectable steady-state activation of α4β2* [(α4)2(β2)3, (α4)3(β2)2, and (α4)2(β2)2α5)] receptor subtypes that was not seen with other test compounds. Partial agonists produced no detectable steady-state activation of α7 nAChR, but seemed to show small potentiation of ACh-evoked responses; however, “run-up” of α7 ACh responses was also sometimes observed under control conditions. Potential off-target effects of the partial agonists therefore included the modulation of α7 responses by α4β2 partial agonists and decreases in α4β2* responses by α7-selective agonists. These data indicate the dual effects expected for α4β2* partial agonists and provide models and insights for utility of partial agonists in therapeutic development. PMID:21285282

  6. Acetylcholine-Binding Protein in the Hemolymph of the Planorbid Snail Biomphalaria glabrata Is a Pentagonal Dodecahedron (60 Subunits)

    PubMed Central

    Kapetanopoulos, Katharina; Braukmann, Sandra; Gebauer, Wolfgang; Tenzer, Stefan; Markl, Jürgen

    2012-01-01

    Nicotinic acetylcholine receptors (nAChR) play important neurophysiological roles and are of considerable medical relevance. They have been studied extensively, greatly facilitated by the gastropod acetylcholine-binding proteins (AChBP) which represent soluble structural and functional homologues of the ligand-binding domain of nAChR. All these proteins are ring-like pentamers. Here we report that AChBP exists in the hemolymph of the planorbid snail Biomphalaria glabrata (vector of the schistosomiasis parasite) as a regular pentagonal dodecahedron, 22 nm in diameter (12 pentamers, 60 active sites). We sequenced and recombinantly expressed two ∼25 kDa polypeptides (BgAChBP1 and BgAChBP2) with a specific active site, N-glycan site and disulfide bridge variation. We also provide the exon/intron structures. Recombinant BgAChBP1 formed pentamers and dodecahedra, recombinant BgAChBP2 formed pentamers and probably disulfide-bridged di-pentamers, but not dodecahedra. Three-dimensional electron cryo-microscopy (3D-EM) yielded a 3D reconstruction of the dodecahedron with a resolution of 6 Å. Homology models of the pentamers docked to the 6 Å structure revealed opportunities for chemical bonding at the inter-pentamer interfaces. Definition of the ligand-binding pocket and the gating C-loop in the 6 Å structure suggests that 3D-EM might lead to the identification of functional states in the BgAChBP dodecahedron. PMID:22916297

  7. α5 nAChR modulation of the prefrontal cortex makes attention resilient.

    PubMed

    Howe, William M; Brooks, Julie L; Tierney, Patrick L; Pang, Jincheng; Rossi, Amie; Young, Damon; Dlugolenski, Keith; Guillmette, Ed; Roy, Marc; Hales, Katherine; Kozak, Rouba

    2018-03-01

    A loss-of-function polymorphism in the α5 nicotinic acetylcholine receptor (nAChR) subunit gene has been linked to both drug abuse and schizophrenia. The α5 nAChR subunit is strategically positioned in the prefrontal cortex (PFC), where a loss-of-function in this subunit may contribute to cognitive disruptions in both disorders. However, the specific contribution of α5 to PFC-dependent cognitive functions has yet to be illustrated. In the present studies, we used RNA interference to knockdown the α5 nAChR subunit in the PFC of adult rats. We provide evidence that through its contribution to cholinergic modulation of cholinergic modulation of neurons in the PFC, the α5 nAChR plays a specific role in the recovery of attention task performance following distraction. Our combined data reveal the potent ability of this subunit to modulate the PFC and cognitive functions controlled by this brain region that are impaired in disease.

  8. Changes of neuronal acetylcholine receptor alpha 7 of peritoneal macrophage in experimental acute pancreatitis treated by Chaiqin Chengqi Decoction ().

    PubMed

    Xue, Ping; Guo, Jia; Yang, Xiao-nan; Huang, Wei; Xia, Qing

    2014-10-01

    To investigate effect of Chaiqin Chengqi Decoction (, CQCQD) on changes of neuronal acetylcholine receptor alpha 7 (nAChRα7) of peritoneal macrophages in acute pancreatitis (AP). Eighteen Kunming mice were equally randomized into the control group, AP group and CQCQD treatment group. AP was induced by two intraperitoneal injections of 4 g/kg L-arginine at 1 h apart, while control mice received saline injections. At 72 h after the first injection of L-arginine, mice in the treatment group were intragastrically administered 0.1 mL/10 g CQCQD every 2 h for 3 times, whilst mice in the other two groups received the same amount of saline feeding. Mice were sacrificed by cervical dislocation 2 h after the last feeding of either CQCQD or saline. Peritoneal macrophages were collected for determination of nAChRα7 mRNA and protein expression. Serum was collected for detection of interleukin-6 (IL-6), IL-10 and acetylcholine (ACh) levels, and pancreas was for histopathology analysis. The CQCQD treatment significantly ameliorated the severity of AP as evidenced by reducing the pancreatic histopathology score (4.5±0.5 vs. 6.2±1.7, P<0.05) and the serum IL-6 levels (1228.3±419.2 pg/mL vs. 1589.6±337.3 pg/mL, P<0.05). The mRNA and protein expression of nAChRα7 of the peritoneal macrophages in the AP group were similar to the control group (P>0.05), but were significantly up-regulated after the CQCQD treatment (P<0.05). The serum ACh levels in the AP group were significantly lower than those in the control group (3.1±0.6 μg/mL vs 4.8±0.7 μg/mL P<0.05), but were significantly increased after the CQCQD treatment (5.6±1.5 μg/mL vs 3.1±0.6 μg/mL, P<0.05). CQCQD is protective against L-arginine-induced AP through mechanisms involving nAChRα7 of peritoneal macrophages.

  9. A New Role for Attentional Corticopetal Acetylcholine in Cortical Memory Dynamics

    NASA Astrophysics Data System (ADS)

    Fujii, Hiroshi; Kanamaru, Takashi; Aihara, Kazuyuki; Tsuda, Ichiro

    2011-09-01

    Although the role of corticopetal acetylcholine (ACh) in higher cognitive functions is increasingly recognized, the questions as (1) how ACh works in attention(s), memory dynamics and cortical state transitions, and also (2) why and how loss of ACh is involved in dysfunctions such as visual hallucinations in dementia with Lewy bodies and deficit of attention(s), are not well understood. From the perspective of a dynamical systems viewpoint, we hypothesize that transient ACh released under top-down attention serves to temporarily invoke attractor-like memories, while a background level of ACh reverses this process returning the dynamical nature of the memory structure back to attractor ruins (quasi-attractors). In fact, transient ACh loosens inhibitions of py ramidal neurons (PYRs) by P V+ fas t spiking (FS) i nterneurons, while a baseline ACh recovers inhibitory actions of P V+ FS. Attentional A Ch thus dynamically modifies brain's connectivity. Th e core of this process is in the depression of GABAergic inhibitory currents in PYRs due to muscarinic (probably M2 subtype) presyn aptic effects on GABAergic synapses of PV+ FS neurons

  10. Developmental changes in endothelium-dependent pulmonary vasodilatation in pigs.

    PubMed Central

    Liu, S. F.; Hislop, A. A.; Haworth, S. G.; Barnes, P. J.

    1992-01-01

    1. We compared in vitro endothelium-dependent vasorelaxant responses to acetylcholine (ACh) and the endothelium-independent vasodilator response to sodium nitroprusside (SNP) in prostaglandin F2 alpha (PGF2 alpha)-precontracted muscular pulmonary arteries (PA) from pigs aged 5 min to 2 h (neonatal), 3-10 days, 3-8 weeks and adults. 2. In the pulmonary artery (PA) rings from neonatal animals, the vasodilator response to ACh was negligible. However, responses to ACh were present in all PA rings from older animals, being greatest at 3-10 days and then decreasing with age (P less than 0.001, ANOVA). ACh (30 microM) induced a 1 +/- 1%, 92 +/- 9%, 62 +/- 5% and 51 +/- 6% reduction of the PGF2 alpha-generated tension in neonatal, 3-10 days, 3-8 weeks and adult groups, respectively. 3. The relaxant response to SNP was present in the PA rings from all age groups and increased with age (P less than 0.001, ANOVA). SNP (1 microM)-induced relaxation was 55 +/- 9%, 73 +/- 7%, 97 +/- 5% and 93 +/- 6% in neonatal, 3-10 days, 3-8 week and adult groups, respectively. 4. Removal of the vascular endothelium abolished the relaxant response to ACh but had no effect on the response to SNP in any groups. 5. NG-monomethyl-L-arginine (30 microM), a nitric oxide synthesis inhibitor, inhibited the response to ACh but not to SNP. The lipoxygenase inhibitor, nordihydroguaiaretic acid, had no significant effect on responses to ACh or SNP in any group.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 1 PMID:1393265

  11. Interaction of carvacrol with the Ascaris suum nicotinic acetylcholine receptors and gamma-aminobutyric acid receptors, potential mechanism of antinematodal action

    PubMed Central

    Marjanović, Djordje S.; Trailović, Jelena Nedeljković; Robertson, Alan P.; Martin, Richard J.

    2015-01-01

    Essential plant oils (or their active principles) are safe to use and a potentially attractive alternative to current antiparasitic drugs. In the present study, we tested the effects of carvacrol on the isolated tissues of Ascaris suum and investigated potential interactions with other antiparasitic drugs. We used somatic muscle flaps for contraction assays, as well as for electrophysiological investigations. Carvacrol 300 μM highly significantly inhibited contractions caused by 1, 3, 10, 30, and 100 μM of ACh (p=0.0023, p=0.0002, p=0.0002, p<0.0001, and p<0.0001). The control EC50 for acetylcholine was 8.87 μM (log EC50=0.95±0.26), while Rmax was 2.53±0.24 g. The EC50 of acetylcholine in the presence of 300 μM of carvacrol was 27.71 μM (log EC50=1.44±0.28) and the Rmax decreased to 1.63±0.32 g. Furthermore, carvacrol highly significant potentiates inhibitory effect of GABA and piperazine on the contractions induced by ACh. However, carvacrol (100 and 300 μM), did not produce any changes in the membrane potential or conductance of the A. suum muscle cell. While, 300 μM of carvacrol showed a significant inhibitory effect on ACh-induced depolarization response. The mean control depolarization was 13.58±0.66 mV and decreased in presence of carvacrol to 4.50±1.02 mV (p<0.0001). Mean control Δg was 0.168±0.017 μS, while in the presence of 300 μM of carvacrol, Δg significantly decreased to 0.060±0.018 ΔS (p=0.0017). The inhibitory effect on contractions may be the explanation of the antinematodal potential of carvacrol. Moreover, inhibition of depolarizations caused by ACh and reduction of conductance changes directly points to an interaction with the nAChR in A. suum. PMID:25944741

  12. Synthesis and pharmacology of alkanediguanidinium compounds that block the neuronal nicotinic acetylcholine receptor.

    PubMed

    Villarroya, M; Gandía, L; López, M G; García, A G; Cueto, S; García-Navio, J L; Alvarez-Builla, J

    1996-08-01

    Taking as models the polyamine toxin fraction FTX from the funnel-web spider venom, and the guanidinium moiety of guanethidine, a series of azaalkane-1, omega-diguanidinium salts were obtained. Some of them blocked ion fluxes through the neuronal nicotinic receptors for acetylcholine (nAChR). The blockade was exerted at submicromolar concentrations, suggesting a highly selective interaction with the nAChR. In fact, the active compounds on the nAChR ion channel did not recognize the voltage-dependent Na+ or Ca2+ channels of bovine adrenal chromaffin cells. Therefore, these compounds may be useful tools to clarify the functions of nAChR receptors in the central and peripheral nervous systems.

  13. Molecular-Dynamics Simulations of ELIC a Prokaryotic Homologue of the Nicotinic Acetylcholine Receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Xiaolin; Ivanov, Ivaylo N; Wang, Hailong

    2009-01-01

    The ligand-gated ion channel from Erwinia chrysanthemi (ELIC) is a prokaryotic homolog of the eukaryotic nicotinic acetylcholine receptor (nAChR) that responds to the binding of neurotransmitter acetylcholine and mediates fast signal transmission. ELIC is similar to the nAChR in its primary sequence and overall subunit organization, but despite their structural similarity, it is not clear whether these two ligand-gated ion channels operate in a similar manner. Further, it is not known to what extent mechanistic insights gleaned from the ELIC structure translate to eukaryotic counterparts such as the nAChR. Here we use molecular-dynamics simulations to probe the conformational dynamics andmore » hydration of the transmembrane pore of ELIC. The results are compared with those from our previous simulation of the human ?7 nAChR. Overall, ELIC displays increased stability compared to the nAChR, whereas the two proteins exhibit remarkable similarity in their global motion and flexibility patterns. The majority of the increased stability of ELIC does not stem from the deficiency of the models used in the simulations, and but rather seems to have a structural basis. Slightly altered dynamical correlation features are also observed among several loops within the membrane region. In sharp contrast to the nAChR, ELIC is completely dehydrated from the pore center to the extracellular end throughout the simulation. Finally, the simulation of an ELIC mutant substantiates the important role of F246 on the stability, hydration and possibly function of the ELIC channel.« less

  14. The role of the a7 subunit of the nicotinic acetylcholine receptor on motor coordination in mice treated with methyllcaconitine and anabasine

    USDA-ARS?s Scientific Manuscript database

    The adverse effects of methyllycaconitine (MLA) have been attributed to competitive antagonism of nicotinic acetylcholine receptors (nAChR). Research has indicated a correlation between the LD50 of MLA and the amount of a7 nAChR in various mouse strains, suggesting that mice with more a7 nAChR requi...

  15. [The role of N-acetylcysteine against the injury of pulmonary artery induced by LPS].

    PubMed

    Huang, Xin-li; Ling, Yi-ling; Zhu, Tie-nian

    2002-11-01

    To investigate the alleviating effect of N-acetylcysteine (NAC) on lung injury induced by lipopolysaccharides (LPS) and its mechanism. The effects of NAC on changes of the pulmonary arterial reactivity and the ultrastructure of pulmonary arterial endothelium induced by LPS were observed with the isolated artery ring technique and scanning electron microscope (SEM). Malondialdehyde (MDA), nitric oxide (NO) contents and superoxide dismutase (SOD) activity of pulmonary artery tissues were detected. The exposure of pulmonary artery to LPS (4 microg/ml, 7 h) led to reduction of endothelium-dependent relaxation response to acetylcholine (ACh), which was reversed by the concomitant exposure to NAC (0.5 mmol/L, 7 h), whereas NAC itself had no effect on the response. Significant structural injury were observed under SEM in LPS group and alleviated the changes in LPS + NAC group. The MDA, NO contents increased but SOD activity decreased in LPS group, which were reversed by the concomitant exposure to NAC. NAC protects pulmonary artery endothelium and enhances endothelium-dependent relaxation response of pulmonary artery by antioxidation effect, which may be one of the mechanisms of its reversing pulmonary artery hypertension and following lung injury induced by LPS.

  16. Acyl Chain-Dependent Effect of Lysophosphatidylcholine on Endothelium-Dependent Vasorelaxation

    PubMed Central

    Rao, Shailaja P.; Riederer, Monika; Lechleitner, Margarete; Hermansson, Martin; Desoye, Gernot; Hallström, Seth; Graier, Wolfgang F.; Frank, Saša

    2013-01-01

    Previously we identified palmitoyl-, oleoyl-, linoleoyl-, and arachidonoyl-lysophosphatidylcholine (LPC 16:0, 18:1, 18:2 and 20:4) as the most prominent LPC species generated by endothelial lipase (EL). In the present study, we examined the impact of those LPC on acetylcholine (ACh)- induced vascular relaxation. All tested LPC attenuated ACh-induced relaxation, measured ex vivo, using mouse aortic rings and wire myography. The rank order of potency was as follows: 18:2>20:4>16:0>18:1. The attenuating effect of LPC 16:0 on relaxation was augmented by indomethacin-mediated cyclooxygenase (COX)-inhibition and CAY10441, a prostacyclin (PGI2)- receptor (IP) antagonist. Relaxation attenuated by LPC 20:4 and 18:2 was improved by indomethacin and SQ29548, a thromboxane A2 (TXA2)- receptor antagonist. The effect of LPC 20:4 could also be improved by TXA2- and PGI2-synthase inhibitors. As determined by EIA assays, the tested LPC promoted secretion of PGI2, TXA2, PGF2α, and PGE2, however, with markedly different potencies. LPC 16:0 was the most potent inducer of superoxide anion production by mouse aortic rings, followed by LPC 18:2, 20:4 and 18:1, respectively. The strong antioxidant tempol recovered relaxation impairment caused by LPC 18:2, 18:1 and 20:4, but not by LPC 16:0. The tested LPC attenuate ACh-induced relaxation through induction of proconstricting prostanoids and superoxide anions. The potency of attenuating relaxation and the relative contribution of underlying mechanisms are strongly related to LPC acyl-chain length and degree of saturation. PMID:23741477

  17. Mapping of the acetylcholine binding site of the nicotinic acetylcholine receptor: ( sup 3 H)nicotine as an agonist photoaffinity label

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Middleton, R.E.; Cohen, J.B.

    1991-07-16

    The agonist ({sup 3}H)nicotine was used as a photoaffinity label for the acetylcholine binding sties on the Torpedo nicotinic acetylcholine receptor (AChR). ({sup 3}H)Nicotine binds at equilibrium with K{sub eq} = 0.6 {mu}M to the agonist binding sites. Irradiation with 254-nm light of AChR-rich membranes equilibrated with ({sup 3}H)nicotine resulted in covalent incorporation into the {alpha}- and {gamma}-subunits, which was inhibited by agonists and competitive antagonists but not by noncompetitive antagonists. Inhibition of labeling by d-tubocurarine demonstrated that the {alpha}-subunit was labeled via both agonist sites but the {gamma}-subunit was labeled only via the site that binds d-tubocurarine with highmore » affinity. Chymotryptic digestion of the {alpha}-subunit confirmed that Try-198 was the principal amino acid labeled by ({sup 3}H)nicotine. This confirmation required a novel radiosequencing strategy employing o-phthalaldehyde ({sup 3}H)Nicotine, which is the first photoaffinity agonist used, labels primarily Tyr-198 in contrast to competitive antagonist affinity labels, which label primarily Tyr-190 and Cys-192/Cys-193.« less

  18. Activation and modulation of human α4β2 nicotinic acetylcholine receptors by the neonicotinoids clothianidin and imidacloprid

    PubMed Central

    Li, Ping; Ann, Jason; Akk, Gustav

    2013-01-01

    Neonicotinoids are synthetic, nicotine-derived insecticides used for agricultural and household pest control. While highly effective at activating insect nicotinic receptors, many neonicotinoids are also capable of directly activating and/or modulating the activation of vertebrate nicotinic receptors. In this study, we have investigated the actions of the neonicotinoids clothianidin (CTD) and imidacloprid (IMI) on human neuronal α4β2 nicotinic acetylcholine receptors. The data demonstrate that the compounds are weak agonists of the human receptors with relative peak currents of 1–4 % of the response to 1 mM acetylcholine (ACh). Coapplication of IMI strongly inhibited currents elicited by ACh. From Schild plot analysis, we estimate that the affinity of IMI to the human α4β2 receptor is 18 µM. The application of low concentrations of CTD potentiated responses to low concentrations of ACh, suggesting that receptors occupied by one ACh and one CTD molecule have a higher gating efficacy than receptors with one ACh bound. Interestingly, subunit stoichiometry affected inhibition by CTD, with (α4)2(β2)3 receptors significantly more strongly inhibited than the (α4)3(β2)2 receptors. PMID:21538459

  19. Modulation of release of [3H]acetylcholine in the major pelvic ganglion of the rat.

    PubMed

    Somogyi, G T; de Groat, W C

    1993-06-01

    Cholinergic modulation of [3H]acetylcholine release evoked by electrical stimulation was studied in the rat major pelvic ganglion, which was prelabeled with [3H]choline. Acetylcholine (ACh) release was independent of the frequency of stimulation; 0.3 Hz produced the same volley output as 10 Hz. Tetrodotoxin (1 microM) or omission of Ca2+ from the medium abolished ACh release. The M1 receptor agonist (4-hydroxy-2-butynyl)-1-trimethylammonium m-chlorocarbanilate chloride (McN-A 343, 50 microM) increased release (by 136%), whereas the M2 muscarinic agonist oxotremorine (1 microM) decreased ACh release (by 22%). The muscarinic antagonists, atropine (1 microM) or pirenzepine (M1 selective, 1 microM), did not change ACh release. However, pirenzepine (1 microM) blocked the facilitatory effect of McN-A 343, and atropine (1 microM) blocked the inhibitory effect of oxotremorine. The cholinesterase inhibitor physostigmine (1-5 microM), the nicotinic agonist 1,1-dimethyl-4-phenylpiperazinium (DMPP, 10 microM), and the nicotinic antagonist D-tubocurarine (50 microM) did not change ACh release. 4-Aminopyridine, a K+ channel blocker, significantly increased the release (by 146%). Seven days after decentralization of the major pelvic ganglion, the evoked release of ACh was abolished. It is concluded that release of ACh occurs from the preganglionic nerve terminals rather than from the cholinergic cell bodies and is not modulated by actions of endogenous ACh on either muscarinic or nicotinic autoreceptors. These data confirm and extend previous electrophysiological findings indicating that synapses in the major pelvic ganglion have primarily a relay function.

  20. The novel protein kinase C epsilon isoform modulates acetylcholine release in the rat neuromuscular junction.

    PubMed

    Obis, Teresa; Hurtado, Erica; Nadal, Laura; Tomàs, Marta; Priego, Mercedes; Simon, Anna; Garcia, Neus; Santafe, Manel M; Lanuza, Maria A; Tomàs, Josep

    2015-12-01

    Various protein kinase C (PKC) isoforms contribute to the phosphorylating activity that modulates neurotransmitter release. In previous studies we showed that nPKCε is confined in the presynaptic site of the neuromuscular junction and its presynaptic function is activity-dependent. Furthermore, nPKCε regulates phorbol ester-induced acetylcholine release potentiation, which further indicates that nPKCε is involved in neurotransmission. The present study is designed to examine the nPKCε involvement in transmitter release at the neuromuscular junction. We use the specific nPKCε translocation inhibitor peptide εV1-2 and electrophysiological experiments to investigate the involvement of this isoform in acetylcholine release. We observed that nPKCε membrane translocation is key to the synaptic potentiation of NMJ, being involved in several conditions that upregulate PKC isoforms coupling to acetylcholine (ACh) release (incubation with high Ca(2+), stimulation with phorbol esters and protein kinase A, stimulation with adenosine 3',5'-cyclic monophosphorothioate, 8-Bromo-, Rp-isomer, sodium salt -Sp-8-BrcAMP-). In all these conditions, preincubation with the nPKCε translocation inhibitor peptide (εV1-2) impairs PKC coupling to acetylcholine release potentiation. In addition, the inhibition of nPKCε translocation and therefore its activity impedes that presynaptic muscarinic autoreceptors and adenosine autoreceptors modulate transmitter secretion. Together, these results point to the importance of nPKCε isoform in the control of acetylcholine release in the neuromuscular junction.

  1. IPPA08 allosterically enhances the action of imidacloprid on nicotinic acetylcholine receptors.

    PubMed

    Bao, Haibo; Shao, Xusheng; Zhang, Yixi; Cheng, Jiagao; Wang, Yunchao; Xu, Xiaoyong; Fang, Jichao; Liu, Zewen; Li, Zhong

    2016-12-01

    Our previous study showed that IPPA08, a cis-configuration neonicotinoid compound with unique oxabridged substructure, acted as a specific synergist to neonicotinoid insecticides targeting nicotinic acetylcholine receptors (nAChRs). Heteropentamer nAChRs have diverse characteristics and can form canonical and noncanonical subunit interfaces. While canonical interfaces have been exploited as targets of many drugs, noncanonical interfaces have received less attention. In this study, the mechanism of IPPA08 synergism was evaluated on hybrid nAChRs consisting of three α1 subunits from the brown planthopper and two rat β1 subunits (Nlα1/rβ2) expressed in Xenopus oocytes. IPPA08 alone evoked inward currents, but only at very high concentrations, greater than 1 mM. However, at concentrations below 200 μM, IPPA08 slowed the decay of inward currents evoked by imidacloprid, but not by acetylcholine, and also increased the sensitivity of Nlα1/rβ2 to imidacloprid. Both modulations by IPPA08 were concentration-dependent in the same concentration range of 10-150 μM. Experimentally induced mutations in canonical (α+/β-) and noncanonical (β+/α-) interfaces of Nlα1/rβ2 receptors were also examined to evaluate the presence of possible binding sites for IPPA08 on the receptors. Our results showed that mutations in the canonical interfaces affected only the potency of IPPA08 as an agonist, while mutations in the noncanonical interfaces affected only the synergistic action of IPPA08. Based on these results, we propose that at low concentrations IPPA08 can act as a positive allosteric modulator of noncanonical interfaces, and likely slow the decay of currents through stabilizing the open-channel state caused by the action of imidacloprid on canonical interfaces. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Functional nicotinic acetylcholine receptor reconstitution in Au(111)-supported thiolipid monolayers

    NASA Astrophysics Data System (ADS)

    Pissinis, Diego E.; Diaz, Carolina; Maza, Eliana; Bonini, Ida C.; Barrantes, Francisco J.; Salvarezza, Roberto C.; Schilardi, Patricia L.

    2015-09-01

    The insertion and function of the muscle-type nicotinic acetylcholine receptor (nAChR) in Au(111)-supported thiolipid self-assembled monolayers have been studied by atomic force microscopy (AFM), surface plasmon resonance (SPR), and electrochemical techniques. It was possible for the first time to resolve the supramolecular arrangement of the protein spontaneously inserted in a thiolipid monolayer in an aqueous solution. Geometric supramolecular arrays of nAChRs were observed, most commonly in a triangular form compatible with three nAChR dimers of ~20 nm each. Addition of the full agonist carbamoylcholine activated and opened the nAChR ion channel, as revealed by the increase in capacitance relative to that of the nAChR-thiolipid system under basal conditions. Thus, the self-assembled system appears to be a viable biomimetic model to measure ionic conductance mediated by ion-gated ion channels under different experimental conditions, with potential applications in biotechnology and pharmacology.

  3. Effect of myasthenic patient sera on the number and distribution of acetylcholine receptors in muscle and nerve-muscle cultures from rat. Correlations with clinical state.

    PubMed

    Eymard, B; de la Porte, S; Pannier, C; Berrih-Aknin, S; Morel, E; Fardeau, M; Bach, J F; Koenig, J

    1988-08-01

    We studied the functional activities (FA) of sera obtained from 83 myasthenic patients on rat muscle cultures. Using the same sets of cultures, two parameters were evaluated after exposure to sera: residual fraction (RF) of acetylcholine receptors (AChR) coupled to 125I-labelled alpha-bungarotoxin (alpha Bgt) (81 sera) and the number of rhodamine labelled clusters (56 sera). Two types of culture were assayed: muscle alone and nerve-muscle cocultures (12 cases). In all combinations (fluorescence, radiolabelling, muscle alone and nerve-muscle cocultures), we found a significant correlation between FA and antibody (Ab) titre, and no correlation between FA and clinical severity: only sera with a high or intermediate Ab titre were effective, whatever the clinical severity of disease. With active sera, AChR loss was about 50% whereas the disappearance of AChR clusters was quite complete, which suggests AChR redistribution induced by MG sera.

  4. Functional evidence for the inflammatory reflex in teleosts: A novel α7 nicotinic acetylcholine receptor modulates the macrophage response to dsRNA.

    PubMed

    Torrealba, Débora; Balasch, Joan Carles; Criado, Manuel; Tort, Lluís; Mackenzie, Simon; Roher, Nerea

    2018-07-01

    The inflammatory reflex modulates the innate immune system, keeping in check the detrimental consequences of overstimulation. A key player controlling the inflammatory reflex is the alpha 7 acetylcholine receptor (α7nAChR). This receptor is one of the signalling molecules regulating cytokine expression in macrophages. In this study, we characterize a novel teleost α7nAChR. Protein sequence analysis shows a high degree of conservation with mammalian orthologs and trout α7nAChR has all the features and essential amino acids to form a fully functional receptor. We demonstrate that trout macrophages can bind α-bungarotoxin (α-BTX), a competitive antagonist for α7nAChRs. Moreover, nicotine stimulation produces a decrease in pro-inflammatory cytokine expression after stimulation with poly(I:C). These results suggest the presence of a functional α7nAChR in the macrophage plasma membrane. Further, in vivo injection of poly(I:C) induced an increase in serum ACh levels in rainbow trout. Our results manifest for the first time the functional conservation of the inflammatory reflex in teleosts. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Acetylcholine promotes the emergence and elongation of lateral roots of Raphanus sativus

    PubMed Central

    Sugiyama, Kou-ichi

    2011-01-01

    Radish (Raphanus sativus L.) was grown on four layers of paper towel moistened with distilled water with and without acetylcholine (ACh) for five days in the dark after sowing. ACh at 1 nM promoted the growth (emergence and elongation) of lateral roots of radish plants, but had no effect on the stems and main roots. Moreover, ACh enhanced the dry weight of roots [main (primary) + lateral roots]. Neostigmine, an inhibitor of acetylcholinesterase (AChE) also promoted the emergence and elongation of lateral roots, and atropine, a competitive inhibitor of ACh receptor, suppressed the emergence and elongation. ACh promoted the activities of glyceraldehyde-3-phosephate dehydrogenase (G-3-PD), nicotinamide adenine dinucleotide-specific isocitrate dehydrogenase (NAD-ICDH), succinate dehydrogenase (SDH) and cytochrome-c oxidase (Cyt-c OD) in seedlings. Moreover, ACh suppressed the activity of AChE and increased the amount of proteins and pyridine nucleotides (NAD and NADH) in the roots of the seedlings. It also increased the activities of NAD-forming enzymes [NAD synthetase and ATP-nicotinamide mononucleotide (ATP-NMN) adenyltransferase], and enhanced the amount of DNA in the roots of the seedlings. The relationship between ACh and the emergence and growth of lateral roots was discussed from a biochemical viewpoint. PMID:21900743

  6. (-)-Phenserine Attenuates Soman-Induced Neuropathology

    PubMed Central

    Chen, Jun; Pan, Hongna; Chen, Cynthia; Wu, Wei; Iskandar, Kevin; He, Jeffrey; Piermartiri, Tetsade; Jacobowitz, David M.; Yu, Qian-Sheng; McDonough, John H.; Greig, Nigel H.; Marini, Ann M.

    2014-01-01

    Organophosphorus (OP) nerve agents are deadly chemical weapons that pose an alarming threat to military and civilian populations. The irreversible inhibition of the critical cholinergic degradative enzyme acetylcholinesterase (AChE) by OP nerve agents leads to cholinergic crisis. Resulting excessive synaptic acetylcholine levels leads to status epilepticus that, in turn, results in brain damage. Current countermeasures are only modestly effective in protecting against OP-induced brain damage, supporting interest for evaluation of new ones. (-)-Phenserine is a reversible AChE inhibitor possessing neuroprotective and amyloid precursor protein lowering actions that reached Phase III clinical trials for Alzheimer's Disease where it exhibited a wide safety margin. This compound preferentially enters the CNS and has potential to impede soman binding to the active site of AChE to, thereby, serve in a protective capacity. Herein, we demonstrate that (-)-phenserine protects neurons against soman-induced neuronal cell death in rats when administered either as a pretreatment or post-treatment paradigm, improves motoric movement in soman-exposed animals and reduces mortality when given as a pretreatment. Gene expression analysis, undertaken to elucidate mechanism, showed that (-)-phenserine pretreatment increased select neuroprotective genes and reversed a Homer1expression elevation induced by soman exposure. These studies suggest that (-)-phenserine warrants further evaluation as an OP nerve agent protective strategy. PMID:24955574

  7. Acute resistance exercise reduces blood pressure and vascular reactivity, and increases endothelium-dependent relaxation in spontaneously hypertensive rats.

    PubMed

    Faria, Thaís de Oliveira; Targueta, Gabriel Pelegrineti; Angeli, Jhuli Keli; Almeida, Edna Aparecida Silveira; Stefanon, Ivanita; Vassallo, Dalton Valentim; Lizardo, Juliana Hott de Fúcio

    2010-09-01

    The aim of the present study was to assess the effects of acute dynamic resistance exercise on resting blood pressure (BP) and on endothelial function of vascular bed of spontaneously hypertensive rats. Hemodynamic measurements were performed before and after acute dynamic resistance exercise in conscious animals. After exercise, the tail artery was cannulated for mean perfusion pressure with constant flow measurement and for performing concentration-response curves to acetylcholine (ACh) and sodium nitroprusside (SNP) and dose-response curves to phenylephrine (PHE). PHE protocol was also repeated with damaged endothelium and after L-NAME and indomethacin perfusion on the tail. The maximal response (E(max)) and sensitivity (pD(2)) were evaluated to these drugs. Exercise reduced resting systolic and diastolic BP (Delta -79 +/- 1.8; -23 +/- 2.3 mmHg, respectively; P < 0.05). ACh-induced relaxation increased in the exercise group (pD(2) = 9.8 +/- 0.06, P < 0.05) when compared with control rats (pD(2) = 8.7 +/- 0.1). The E(max) to PHE with intact endothelium decreased following exercise condition (439 +/- 18 mmHg, P < 0.05) when compared with control rats (276 +/- 22 mmHg). This response was abolished after L-NAME and indomethacin administration. After damage of the endothelium, PHE responses were not significantly different between the groups; however, E(max) and pD(2) increased when compared with responses obtained with intact endothelium. The results demonstrated that acute dynamic resistance exercise decreased resting BP and reactivity to PHE and increased endothelium-dependent relaxation. Nitric oxide and vasodilators prostanoids appear to be involved in post-exercise endothelial and pressor responses.

  8. Neuroimmune Interactions in Schizophrenia: Focus on Vagus Nerve Stimulation and Activation of the Alpha-7 Nicotinic Acetylcholine Receptor

    PubMed Central

    Corsi-Zuelli, Fabiana Maria das Graças; Brognara, Fernanda; Quirino, Gustavo Fernando da Silva; Hiroki, Carlos Hiroji; Fais, Rafael Sobrano; Del-Ben, Cristina Marta; Ulloa, Luis; Salgado, Helio Cesar; Kanashiro, Alexandre; Loureiro, Camila Marcelino

    2017-01-01

    Schizophrenia is one of the most debilitating mental disorders and is aggravated by the lack of efficacious treatment. Although its etiology is unclear, epidemiological studies indicate that infection and inflammation during development induces behavioral, morphological, neurochemical, and cognitive impairments, increasing the risk of developing schizophrenia. The inflammatory hypothesis of schizophrenia is also supported by clinical studies demonstrating systemic inflammation and microglia activation in schizophrenic patients. Although elucidating the mechanism that induces this inflammatory profile remains a challenge, mounting evidence suggests that neuroimmune interactions may provide therapeutic advantages to control inflammation and hence schizophrenia. Recent studies have indicated that vagus nerve stimulation controls both peripheral and central inflammation via alpha-7 nicotinic acetylcholine receptor (α7nAChR). Other findings have indicated that vagal stimulation and α7nAChR-agonists can provide therapeutic advantages for neuropsychiatric disorders, such as depression and epilepsy. This review analyzes the latest results regarding: (I) the immune-to-brain pathogenesis of schizophrenia; (II) the regulation of inflammation by the autonomic nervous system in psychiatric disorders; and (III) the role of the vagus nerve and α7nAChR in schizophrenia. PMID:28620379

  9. The role of the a7 subunit of the nicotinic acetylcholine receptor in the acute toxicosis of methyllycaconitine in mice.

    USDA-ARS?s Scientific Manuscript database

    The adverse physiological effects of methyllycaconitine (MLA) have been attributed to its competitive antagonism of nicotinic acetylcholine receptors (nAChRs). Recent research demonstrated a correlation between the LD50 of MLA and the amount of a7 nAChR in various mouse strains, suggesting that mice...

  10. Immunological studies on the structure and function of the nicotinic acetylcholine receptor in mammalian muscle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Y.

    1989-01-01

    The specificity of the antibodies in the serum of a patient with myasthenia gravis for a the {alpha}-bungarotoxin binding sites of the acetylcholine receptor (AChR) was examined using AChRs in the C2 mouse muscle cell line as a model. The antibodies were shown to be specific for one of the two toxin-binding sites. The effect of the antibodies in this myasthenic serum on the functional response of the receptor to cholinergic agonists was also examined using carbamylcholine-induced {sup 22}Na uptake into C2 myotubes as a measured of the receptor function. Antibodies specific for the {gamma}, {delta}, and {epsilon} subunit, respectively,more » of mammalian muscle AChRs were developed using subunit-specific synthetic peptides as antigens. Using these antibodies and monoclonal antibodies for other subunits as probes, I have identified four ({alpha}, {beta}, {gamma}, and {delta}) subunits of mammalian muscle AChRs on immunoblots. When AChRs from embryonic, neonatal, normal and denervated adult muscles were compared on immunoblots, the {alpha}, {beta}, and {delta} subunits were identical in all four receptor preparations, with or without endoglycosidase digestion. The spatial and temporal distribution of the {gamma}- and {epsilon}- AChRs in developing and in denervated muscles corresponds to the distribution of AChRs with slow and fast channels, respectively, and that the development changes in the channel properties of the receptor arise from a change in the subunit composition of the receptor, in which the {gamma} is replaced by {epsilon}.« less

  11. Atorvastatin restores arsenic-induced vascular dysfunction in rats: Modulation of nitric oxide signaling and inflammatory mediators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kesavan, Manickam; Sarath, Thengumpallil Sasindran; Kannan, Kandasamy

    We evaluated whether atorvastatin, an extensively prescribed statin for reducing the risks of cardiovascular diseases, can reduce the risk of arsenic-induced vascular dysfunction and inflammation in rats and whether the modulation could be linked to improvement in vascular NO signaling. Rats were exposed to sodium arsenite (100 ppm) through drinking water for 90 consecutive days. Atorvastatin (10 mg/kg bw, orally) was administered once daily during the last 30 days of arsenic exposure. On the 91{sup st} day, blood was collected for measuring serum C-reactive protein. Thoracic aorta was isolated for assessing reactivity to phenylephrine, sodium nitroprusside and acetylcholine; evaluating eNOSmore » and iNOS mRNA expression and measuring NO production, while abdominal aorta was used for ELISA of cytokines, chemokine and vascular cell adhesion molecules. Histopathology was done in aortic arches. Arsenic did not alter phenylephrine-elicited contraction. Atorvastatin inhibited E{sub max} of phenylephrine, but it augmented the contractile response in aortic rings from arsenic-exposed animals. Sodium nitroprusside-induced relaxation was not altered with any treatment. However, arsenic reduced acetylcholine-induced relaxation and affected aortic eNOS at the levels of mRNA expression, protein concentration, phosphorylation and NO production. Further, it increased aortic iNOS mRNA expression, iNOS-derived NO synthesis, production of pro-inflammatory mediators (IL-1β, IL-6, MCP-1, VCAM, sICAM) and serum C-reactive protein and aortic vasculopathic lesions. Atorvastatin attenuated these arsenic-mediated functional, biochemical and structural alterations. Results show that atorvastatin has the potential to ameliorate arsenic-induced vascular dysfunction and inflammation by restoring endothelial function with improvement in NO signaling and attenuating production of pro-inflammatory mediators and cell adhesion molecules. - Highlights: • We evaluated if atorvastatin reduce

  12. AzoCholine Enables Optical Control of Alpha 7 Nicotinic Acetylcholine Receptors in Neural Networks.

    PubMed

    Damijonaitis, Arunas; Broichhagen, Johannes; Urushima, Tatsuya; Hüll, Katharina; Nagpal, Jatin; Laprell, Laura; Schönberger, Matthias; Woodmansee, David H; Rafiq, Amir; Sumser, Martin P; Kummer, Wolfgang; Gottschalk, Alexander; Trauner, Dirk

    2015-05-20

    Nicotinic acetylcholine receptors (nAChRs) are essential for cellular communication in higher organisms. Even though a vast pharmacological toolset to study cholinergic systems has been developed, control of endogenous neuronal nAChRs with high spatiotemporal precision has been lacking. To address this issue, we have generated photoswitchable nAChR agonists and re-evaluated the known photochromic ligand, BisQ. Using electrophysiology, we found that one of our new compounds, AzoCholine, is an excellent photoswitchable agonist for neuronal α7 nAChRs, whereas BisQ was confirmed to be an agonist for the muscle-type nAChR. AzoCholine could be used to modulate cholinergic activity in a brain slice and in dorsal root ganglion neurons. In addition, we demonstrate light-dependent perturbation of behavior in the nematode, Caenorhabditis elegans.

  13. AT–1001: a high-affinity α3β4 nAChR ligand with novel nicotine-suppressive pharmacology

    PubMed Central

    Cippitelli, Andrea; Wu, Jinhua; Gaiolini, Kelly A; Mercatelli, Daniela; Schoch, Jennifer; Gorman, Michelle; Ramirez, Alejandra; Ciccocioppo, Roberto; Khroyan, Taline V; Yasuda, Dennis; Zaveri, Nurulain T; Pascual, Conrado; Xie, Xinmin (Simon); Toll, Lawrence

    2015-01-01

    Background and Purpose The α3β4 subtype of nicotinic acetylcholine receptors (nAChRs) has been implicated in mediating nicotine reinforcement processes. AT-1001 has been recently described as a high-affinity and selective α3β4 nAChR antagonist that blocks nicotine self-administration in rats. The aim of this study was to investigate the mechanism of action underlying the nicotine-suppressive effects of AT-1001. Experimental Approach Effects of AT-1001 were determined using in vitro assays and rat models of nicotine addiction, and compared with varenicline. Key Results AT-1001 and its analogue AT-1012 were functionally selective as antagonists for α3β4 over α4β2 nAChRs, but not to the same extent as the binding selectivity, and had partial agonist activity at α3β4 nAChRs. In contrast, varenicline was a partial agonist at α4β2, a weak agonist at α3β4 and inhibited α4β2 at a much lower concentration than it inhibited α3β4 nAChRs. AT-1001 and varenicline also had very different in vivo properties. Firstly, AT-1001 did not exhibit reinforcing properties per se while varenicline was self-administered. Secondly, systemic treatment with AT-1001 did not induce reinstatement of nicotine seeking but rather attenuated reinstatement induced by varenicline, as well as nicotine. Finally, unlike varenicline, AT-1001 selectively blocked nicotine self-administration without altering alcohol lever pressing as assessed in an operant co-administration paradigm. Conclusions and Implications These findings describe a more complex AT-1001 in vitro profile than previously appreciated and provide further support for the potential of AT-1001 and congeners as clinically useful compounds for smoking cessation, with a mechanism of action distinct from currently available medications. PMID:25440006

  14. Inhibition of oxotremorine-induced desensitization of guinea-pig ileal longitudinal muscle in Ca2+-free conditions.

    PubMed

    Horio, S; Fukui, H

    2001-02-01

    The aim of this study was to investigate the differences between oxotremorine-induced and acetylcholine (ACh)-induced desensitization, particularly under Ca2+-free conditions, in guinea-pig ileal longitudinal muscle, and to elucidate the different mechanisms of desensitization that might exist between these two muscarinic agonists. Pretreatment of the tissue with 10(-7)-10(-5) M oxotremorine (desensitizing treatment) in normal Tyrode solution caused desensitization of the responses to ACh, as did the desensitizing treatment with ACh. However, Ca2+-free conditions significantly reduced oxotremorine-induced desensitization, contrary to the previous findings that Ca2+-free conditions enhanced ACh-induced desensitization. The desensitizing treatment with oxotremorine caused suppression of the responses to high K+ (tonic phase), as did the ACh treatment. Ca2+-free conditions removed this suppression, whereasthis condition enhanced ACh-induced suppression of the K+ response. A protein kinase C inhibitor, 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (10(-4) M) had no effect on oxotremorine-induced desensitization of the ACh response. The results suggest that a voltage-gated Ca2+ channel was involved in oxotremorine-induced desensitization, as in ACh-induced desensitization, but that the process of inactivation of Ca2+ channels was different between oxotremorine and ACh, and that oxotremorine-induced desensitization was due not only to Ca2+ channel, but also to other unknown factors. Protein kinase C did not participate in oxotremorine-induced desensitization.

  15. In vitro functional interactions of acetylcholine esterase inhibitors and muscarinic receptor antagonists in the urinary bladder of the rat.

    PubMed

    Killi, Uday K; Wsol, Vladimir; Soukup, Ondrej; Kuca, Kamil; Winder, Michael; Tobin, Gunnar

    2014-02-01

    Obidoxime, a weak acetylcholine-esterase (AChE) inhibitor, exerts muscarinic receptor antagonism with a significant muscarinic M2 receptor selective profile. The current examinations aimed to determine the functional significance of muscarinic M2 receptors in the state of AChE inhibition, elucidating muscarinic M2 and M3 receptor interaction. In the in vitro examinations, methacholine evoked concentration-dependent bladder contractile and atrial frequency inhibitory responses. Although atropine abolished both, methoctramine (1 μmol/L) only affected the cholinergic response in the atrial preparations. However, in the presence of methoctramine, physostigmine, an AChE inhibitor, increased the basal tension of the bladder strip preparations (+68%), as well as the contractile responses to low concentrations of methacholine (< 5 μmol/L; +90-290%). In contrast to physostigmine, obidoxime alone raised the basal tension (+58%) and the responses to low concentrations of methacholine (< 5 μmol/L; +80-450%). Physostigmine concentration-dependently increased methacholine-evoked responses, similarly to obidoxime at low concentrations. However, at large concentrations (> 5 μmol/L), obidoxime, because of its unselective muscarinic receptor antagonism, inhibited the methacholine bladder responses. In conclusion, the current results show that muscarinic M2 receptors inhibit muscarinic M3 receptor-evoked contractile responses to low concentrations of acetylcholine in the synaptic cleft. The muscarinic M2 and M3 receptor crosstalk could be a counteracting mechanism in the treatment of AChE inhibition when using reactivators, such as obidoxime. © 2013 Wiley Publishing Asia Pty Ltd.

  16. Effects of nicergoline on age-related decrements in radial maze performance and acetylcholine levels.

    PubMed

    McArthur, R A; Carfagna, N; Banfi, L; Cavanus, S; Cervini, M A; Fariello, R; Post, C

    1997-01-01

    The effects of chronic oral administration of nicergoline (5.0 mg/kg; bid) on locomotor activity, eight-arm radial maze performance plus striatal, cortical, and hippocampal acetylcholine (ACh) levels were examined in young and aged Wistar rats. Chronic nicergoline administration did not modify either the locomotor activity or radial maze learning in young rats. Young rats learned the radial maze procedure rapidly and improved their performance throughout the successive training sessions. Radial maze performance in young rats was characterised by very few arm reentries. Aged rats were hypoactive and did not explore or enter the radial maze arms, and consequently performed poorly in the radial maze throughout the training sessions. Nicergoline treatment did not significantly modify locomotor activity in aged rats. Aged rats treated with nicergoline also performed poorly initially but improved with repeated training in the radial maze. This improvement was associated with an increasing number of arms being entered and very few arm reentries. Reduced acetylcholine (ACh) levels were also associated with age. Aged rats had significantly reduced levels of ACh in the straitum and cortex, but not the hippocampus as compared to young rats. Nicergoline treatment did not change ACh levels in young rats, but substantially restored the reduced ACh levels in aged rats. These results indicate that nicergoline is an effective cognitive enhancer in a learning model of age-related deficits and that these results may be related to changes in the cholinergic system.

  17. An essential role of acetylcholine-glutamate synergy at habenular synapses in nicotine dependence

    PubMed Central

    Frahm, Silke; Antolin-Fontes, Beatriz; Görlich, Andreas; Zander, Johannes-Friedrich; Ahnert-Hilger, Gudrun; Ibañez-Tallon, Ines

    2015-01-01

    A great deal of interest has been focused recently on the habenula and its critical role in aversion, negative-reward and drug dependence. Using a conditional mouse model of the ACh-synthesizing enzyme choline acetyltransferase (Chat), we report that local elimination of acetylcholine (ACh) in medial habenula (MHb) neurons alters glutamate corelease and presynaptic facilitation. Electron microscopy and immuno-isolation analyses revealed colocalization of ACh and glutamate vesicular transporters in synaptic vesicles (SVs) in the central IPN. Glutamate reuptake in SVs prepared from the IPN was increased by ACh, indicating vesicular synergy. Mice lacking CHAT in habenular neurons were insensitive to nicotine-conditioned reward and withdrawal. These data demonstrate that ACh controls the quantal size and release frequency of glutamate at habenular synapses, and suggest that the synergistic functions of ACh and glutamate may be generally important for modulation of cholinergic circuit function and behavior. DOI: http://dx.doi.org/10.7554/eLife.11396.001 PMID:26623516

  18. Developmental trajectory of contextual learning and 24-h acetylcholine release in the hippocampus

    PubMed Central

    Takase, Kenkichi; Sakimoto, Yuya; Kimura, Fukuko; Mitsushima, Dai

    2014-01-01

    To determine the developmental trajectory of hippocampal function in rats, we examined 24-h changes in extracellular acetylcholine (ACh) levels and contextual learning performance. Extracellular ACh significantly correlated with spontaneous behavior, exhibiting a 24-h rhythm in juvenile (4-week-old), pubertal (6-week-old), and adult (9- to 12-week-old) rats. Although juveniles of both sexes exhibited low ACh levels, adult males had higher ACh levels than adult females. Moreover, juveniles exhibited much more spontaneous activity than adults when they showed equivalent ACh levels. Similarly, juveniles of both sexes exhibited relatively low contextual learning performance. Because contextual learning performance was significantly increased only in males, adult males exhibited better performance than adult females. We also observed a developmental relationship between contextual learning and ACh levels. Scopolamine pretreatment blocked contextual learning and interrupted the correlation. Since long-term scopolamine treatment after weaning impaired contextual learning in juveniles, the cholinergic input may participate in the development of hippocampus. PMID:24435246

  19. The combination of memantine and galantamine improves cognition in rats: The synergistic role of the α7 nicotinic acetylcholine and NMDA receptors.

    PubMed

    Nikiforuk, Agnieszka; Potasiewicz, Agnieszka; Kos, Tomasz; Popik, Piotr

    2016-10-15

    The combination of memantine and acetylcholinesterase inhibitors (AChEIs) is used as a therapeutic strategy to improve cognition in Alzheimer's disease. Among AChEIs, galantamine, which is also a positive allosteric modulator (PAM) of nicotinic acetylcholine receptors (nAChRs), including α7-nAChRs, may be particularly beneficial. The α7-nAChR is involved in interactions between the cholinergic and glutamatergic systems. In the present study, we investigated the potential role of α7-nAChRs in the pro-cognitive effects of this drug combination. To this aim, cognitive performance in rats was assessed using the attentional set shifting task (ASST) and novel object recognition task (NORT). Co-administration of inactive doses of memantine with galantamine facilitated the rats' set-shifting performance and reversed delay-induced deficits in object recognition. These effects were blocked by the α7-nAChR antagonist methyllycaconitine, suggesting that the observed cognitive enhancement is α7-nAChR dependent. Moreover, combined administration of memantine with inactive doses of selective α7-nAChRs PAMs, CCMI and PNU-120596, also improved ASST and NORT performance in a methyllycaconitine-dependent manner. Stimulation of α7-nAChRs may underlie the pro-cognitive effects of combining memantine and galantamine. Our results suggest that memantine, when given with enhancers of α7-nAChRs, may represent an effective strategy for cognitive improvement. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. α6β2 nicotinic acetylcholine receptors influence locomotor activity and ethanol consumption.

    PubMed

    Kamens, Helen M; Peck, Colette; Garrity, Caitlin; Gechlik, Alex; Jenkins, Brenita C; Rajan, Akshat

    2017-06-01

    Nicotinic acetylcholine receptors (nAChRs) in the mesolimbic dopamine system have been implicated in ethanol behaviors. In particular, work in genetically engineered mice has demonstrated that α6-containing nAChRs are involved in ethanol consumption and sedation. A limitation of these studies is that the alteration in the receptor was present throughout development. The recently described α6β2 antagonist, N,N-decane-1,10-diyl-bis-3-picolinium diiodide (bPiDI), now makes it possible to test for the involvement of these receptors using a pharmacological approach. The aim of this study was to examine the role of α6β2 nAChRs in ethanol behaviors using a pharmacological approach. Adolescent C57BL/6J mice were treated with bPiDI 30 min prior to testing the mice for binge-like ethanol consumption in the drinking-in-the-dark (DID) test, ethanol-induced motor incoordination using the balance beam, and ethanol-induced sedation using the Loss of Righting Reflex (LORR) paradigm. Adolescent animals were chosen because they express a high amount of α6 mRNA relative to adult animals. Control studies were also performed to determine the effect of bPiDI on locomotor activity and ethanol metabolism. Female mice treated with 20 mg/kg bPiDI had reduced locomotor activity compared to saline-treated animals during the first 30 min following an acute injection. Pretreatment with the α6β2 antagonist reduced adolescent ethanol consumption but also reduced saccharin consumption. No significant effects were observed on ethanol-induced ataxia, sedation, or metabolism. This study provides evidence that α6β2 nAChRs are involved in locomotor activity as well as ethanol and saccharin consumption in adolescent animals. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. ACh-induced endothelial NO synthase translocation, NO release and vasodilatation in the hamster microcirculation in vivo

    PubMed Central

    Figueroa, Xavier F; González, Daniel R; Martínez, Agustín D; Durán, Walter N; Boric, Mauricio P

    2002-01-01

    Studies in cultured cells show that activation of endothelial nitric oxide (NO) synthase (eNOS) requires the dissociation of this enzyme from its inhibitory association with caveolin-1 (Cav-1), and perhaps its translocation from plasma membrane caveolae to other cellular compartments. We investigated the hypothesis that in vivo NO-dependent vasodilatation is associated with the translocation of eNOS from the cell membrane. To this end, we applied ACh topically (10-100 μm for 10 min) to the hamster cheek pouch microcirculation and measured NO production, blood flow and vessel diameter, and assessed subcellular eNOS distribution by Western blotting. Baseline NO production was 54.4 ± 5.2 pmol min−1 (n = 16). ACh increased NO release, caused arteriolar and venular dilatation and elevated microvascular flow. These responses were inhibited by NG-nitro-L-arginine (30 μm). The maximal increase in NO production induced by 10 μm and 100 μm ACh was 45 ± 20 % and 111 ± 33 %, respectively; the corresponding blood flow increases were 50 ± 10 % and 130 ± 24 %, respectively (n = 4-6). Both responses followed a similar time course, although increases in NO preceded flow changes. In non-stimulated tissues, eNOS was distributed mainly in the microsomal fraction. ACh-induced vasodilatation was associated with eNOS translocation to the cytosolic and Golgi-enriched fractions. After 1.5, 3.0 or 6.0 min of application, 10 μm ACh decreased the level of membrane-bound eNOS by -13 ± 4 %, -60 ± 4 % and -19 ± 17 %, respectively; at the same time points, 100 μm ACh reduced microsomal eNOS content by -38 ± 9 %, -61 ± 16 % and -40 ± 18 %, respectively (n = 4-5). In all cases, microsomal Cav-1 content did not change. The close ACh concentration dependence and the concomitance between eNOS subcellular redistribution and NO release support the concept that eNOS translocation from the plasma membrane is part of an activation mechanism that induces NO-dependent vasodilatation in

  2. Novel approaches to study the involvement of α7-nAChR in human diseases.

    PubMed

    Palma, Eleonora; Conti, Luca; Roseti, Cristina; Limatola, Cristina

    2012-05-01

    The alpha7 nicotinic acetylcholine receptor (α7 nAChR) is widely distributed in the human brain and has been implicated in a number of human central nervous system (CNS) diseases, including Alzheimer's and Parkinson's disease, schizophrenia and autism. Recently, new roles for α7 nAChRs in lung cancer and heart disease have been elucidated. Despite the importance of this receptor in human pathology, many technical difficulties are still encountered when investigating the role of α7 nAChRs. Electrophysiological analysis of the receptor upon heterologous expression or in human tissues was limited by the fast desensitization of α7-mediated nicotinic currents and by tissue availability. In addition, animal models for the human diseases related to α7 nAChRs have long been unavailable. The recent development of new imaging and analysis approaches such as PET and receptor microtransplantation have rendered the study of α7 nAChRs increasingly feasible, paving new roads to the design of therapeutic drugs. This review summarizes the current knowledge and recent findings obtained by these novel approaches.

  3. Sulforaphane alleviates scopolamine-induced memory impairment in mice.

    PubMed

    Lee, Siyoung; Kim, Jisung; Seo, Sang Gwon; Choi, Bo-Ryoung; Han, Jung-Soo; Lee, Ki Won; Kim, Jiyoung

    2014-07-01

    Sulforaphane, an organosulfur compound present in cruciferous vegetables, has been shown to exert neuroprotective effects in experimental in vitro and in vivo models of neurodegeneration. To determine whether sulforaphane can preserve cognitive function, we examined its effects on scopolamine-induced memory impairment in mice using the Morris water maze test. Sulforaphane (10 or 50mg/kg) was administered to C57BL/6 mice by oral gavage for 14 days (days 1-14), and memory impairment was induced by intraperitoneal injection of scopolamine (1mg/kg) for 7 days (days 8-14). Mice that received scopolamine alone showed impaired learning and memory retention and considerably decreased cholinergic system reactivity in the hippocampus and frontal cortex, as indicated by a decreased acetylcholine (ACh) level and an increased acetylcholinesterase (AChE) activity. Sulforaphane significantly attenuated the scopolamine-induced memory impairment and improved cholinergic system reactivity, as indicated by an increased ACh level, decreased AChE activity, and increased choline acetyltransferase (ChAT) expression in the hippocampus and frontal cortex. These effects of sulforaphane on cholinergic system reactivity were confirmed in vitro. Sulforaphane (10 or 20μM) increased the ACh level, decreased the AChE activity, and increased ChAT expression in scopolamine-treated primary cortical neurons. These observations suggest that sulforaphane might exert a significant neuroprotective effect on cholinergic deficit and cognitive impairment. Copyright © 2014. Published by Elsevier Ltd.

  4. Muscarinic Acetylcholine Receptors Act in Synergy to Facilitate Learning and Memory

    ERIC Educational Resources Information Center

    Leaderbrand, Katherine; Chen, Helen J.; Corcoran, Kevin A.; Guedea, Anita L.; Jovasevic, Vladimir; Wess, Jurgen; Radulovic, Jelena

    2016-01-01

    Understanding how episodic memories are formed and retrieved is necessary if we are to treat disorders in which they malfunction. Muscarinic acetylcholine receptors (mAChR) in the hippocampus and cortex underlie memory formation, but there is conflicting evidence regarding their role in memory retrieval. Additionally, there is no consensus on…

  5. GM-CSF-Induced Regulatory T cells Selectively Inhibit Anti-Acetylcholine Receptor-Specific Immune Responses in Experimental Myasthenia Gravis

    PubMed Central

    Sheng, Jian Rong; Muthusamy, Thiruppathi; Prabahakar, Bellur S.; Meriggioli, Matthew N.

    2011-01-01

    We and others have demonstrated the ability of granulocyte-macrophage colony-stimulating factor (GM-CSF) to suppress autoimmunity by increasing the number of CD4+CD25+ regulatory T cells (Tregs). In the current study, we have explored the critical role of induced antigen specific Tregs in the therapeutic effects of GM-CSF in murine experimental autoimmune myasthenia gravis (EAMG). Specifically, we show that Tregs from GM-CSF treated EAMG mice (GM-CSF/AChR-induced-Tregs) adoptively transferred into animals with EAMG suppressed clinical disease more potently than equal numbers of Tregs from either GM-CSF untreated EAMG mice or healthy mice treated with GM-CSF. In addition, GM-CSF/AChR-induced-Tregs selectively suppressed antigen specific T cell proliferation induced by AChR relative to that induced by an irrelevant self antigen, (thyroglobulin) and failed to significantly alter T cell proliferation in response to an exogenous antigen (ovalbumin). These results are consistent with the hypothesized mechanism of action of GM-CSF involving the mobilization of tolerogenic dendritic cell precursors which, upon antigen (AChR) capture, suppress the anti-AChR immune response through the induction/expansion of AChR-specific Tregs. PMID:22099723

  6. Inactivation of JAK2/STAT3 Signaling Axis and Downregulation of M1 mAChR Cause Cognitive Impairment in klotho Mutant Mice, a Genetic Model of Aging

    PubMed Central

    Park, Seok-Joo; Shin, Eun-Joo; Min, Sun Seek; An, Jihua; Li, Zhengyi; Hee Chung, Yoon; Hoon Jeong, Ji; Bach, Jae-Hyung; Nah, Seung-Yeol; Kim, Won-Ki; Jang, Choon-Gon; Kim, Yong-Sun; Nabeshima, Yo-ichi; Nabeshima, Toshitaka; Kim, Hyoung-Chun

    2013-01-01

    We previously reported cognitive dysfunction in klotho mutant mice. In the present study, we further examined novel mechanisms involved in cognitive impairment in these mice. Significantly decreased janus kinase 2 (JAK2) and signal transducer and activator of transcription3 (STAT3) phosphorylation were observed in the hippocampus of klotho mutant mice. A selective decrease in protein expression and binding density of the M1 muscarinic cholinergic receptor (M1 mAChR) was observed in these mice. Cholinergic parameters (ie, acetylcholine (ACh), choline acetyltransferase (ChAT), and acetylcholinesterase (AChE)) and NMDAR-dependent long-term potentiation (LTP) were significantly impaired in klotho mutant mice. McN-A-343 (McN), an M1 mAChR agonist, significantly attenuated these impairments. AG490 (AG), a JAK2 inhibitor, counteracted the attenuating effects of McN, although AG did not significantly alter the McN-induced effect on AChE. Furthermore, AG significantly inhibited the attenuating effects of McN on decreased NMDAR-dependent LTP, protein kinase C βII, p-ERK, p-CREB, BDNF, and p-JAK2/p-STAT3-expression in klotho mutant mice. In addition, k252a, a BDNF receptor tyrosine kinase B (TrkB) inhibitor, significantly counteracted McN effects on decreased ChAT, ACh, and M1 mAChR and p-JAK2/p-STAT3 expression. McN-induced effects on cognitive impairment in klotho mutant mice were consistently counteracted by either AG or k252a. Our results suggest that inactivation of the JAK2/STAT3 signaling axis and M1 mAChR downregulation play a critical role in cognitive impairment observed in klotho mutant mice. PMID:23389690

  7. Acetylcholine attenuated TNF-α-induced intracellular Ca2+ overload by inhibiting the formation of the NCX1-TRPC3-IP3R1 complex in human umbilical vein endothelial cells.

    PubMed

    Zhao, Ming; Jia, Hang-Huan; Liu, Long-Zhu; Bi, Xue-Yuan; Xu, Man; Yu, Xiao-Jiang; He, Xi; Zang, Wei-Jin

    2017-06-01

    The endoplasmic reticulum (ER) forms discrete junctions with the plasma membrane (PM) that play a critical role in the regulation of Ca 2+ signaling during cellular bioenergetics, apoptosis and autophagy. We have previously confirmed that acetylcholine can inhibit ER stress and apoptosis after inflammatory injury. However, limited research has focused on the effects of acetylcholine on ER-PM junctions. In this work, we evaluated the structure and function of the supramolecular sodium-calcium exchanger 1 (NCX1)-transient receptor potential canonical 3 (TRPC3)-inositol 1,4,5-trisphosphate receptor 1 (IP3R1) complex, which is involved in regulating Ca 2+ homeostasis during inflammatory injury. The width of the ER-PM junctions of human umbilical vein endothelial cells (HUVECs) was measured in nanometres using transmission electron microscopy and a fluorescent probe for Ca 2+ . Protein-protein interactions were assessed by immunoprecipitation. Ca 2+ concentration was measured using a confocal microscope. An siRNA assay was employed to silence specific proteins. Our results demonstrated that the peripheral ER was translocated to PM junction sites when induced by tumour necrosis factor-alpha (TNF-α) and that NCX1-TRPC3-IP3R1 complexes formed at these sites. After down-regulating the protein expression of NCX1 or IP3R1, we found that the NCX1-mediated inflow of Ca 2+ and the release of intracellular Ca 2+ stores were reduced in TNF-α-treated cells. We also observed that acetylcholine attenuated the formation of NCX1-TRPC3-IP3R1 complexes and maintained calcium homeostasis in cells treated with TNF-α. Interestingly, the positive effects of acetylcholine were abolished by the selective M3AChR antagonist darifenacin and by AMPK siRNAs. These results indicate that acetylcholine protects endothelial cells from TNF-alpha-induced injury, [Ca 2+ ] cyt overload and ER-PM interactions, which depend on the muscarinic 3 receptor/AMPK pathway, and that acetylcholine may be a new

  8. Mode of action of triflumezopyrim: A novel mesoionic insecticide which inhibits the nicotinic acetylcholine receptor.

    PubMed

    Cordova, Daniel; Benner, Eric A; Schroeder, Mark E; Holyoke, Caleb W; Zhang, Wenming; Pahutski, Thomas F; Leighty, Robert M; Vincent, Daniel R; Hamm, Jason C

    2016-07-01

    Triflumezopyrim, a newly commercialized molecule from DuPont Crop Protection, belongs to the novel class of mesoionic insecticides. This study characterizes the biochemical and physiological action of this novel insecticide. Using membranes from the aphid, Myzus persicae, triflumezopyrim was found to displace (3)H-imidacloprid with a Ki value of 43 nM with competitive binding results indicating that triflumezopyrim binds to the orthosteric site of the nicotinic acetylcholine receptor (nAChR). In voltage clamp studies using dissociated Periplaneta americana neurons, triflumezopyrim inhibits nAChR currents with an IC50 of 0.6 nM. Activation of nAChR currents was minimal and required concentrations ≥100 μM. Xenopus oocytes expressing chimeric nAChRs (Drosophila α2/chick β2) showed similar inhibitory effects from triflumezopyrim. In P. americana neurons, co-application experiments with acetylcholine reveal the inhibitory action of triflumezopyrim to be rapid and prolonged in nature. Such physiological action is distinct from other insecticides in IRAC Group 4 in which the toxicological mode of action is attributed to nAChR agonism. Mesoionic insecticides act via inhibition of the orthosteric binding site of the nAChR despite previous beliefs that such action would translate to poor insect control. Triflumezopyrim is the first commercialized insecticide from this class and provides outstanding control of hoppers, including the brown planthopper, Nilaparvata lugens, which is already displaying strong resistance to neonicotinoids such as imidacloprid. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Enhancement of Attentional Performance by Selective Stimulation of α4β2* nAChRs: Underlying Cholinergic Mechanisms

    PubMed Central

    Howe, William M; Ji, Jinzhao; Parikh, Vinay; Williams, Sarah; Mocaër, Elisabeth; Trocmé-Thibierge, Caryn; Sarter, Martin

    2010-01-01

    Impairments in attention are a major component of the cognitive symptoms of neuropsychiatric and neurodegenerative disorders. Using an operant sustained attention task (SAT), including a distractor condition (dSAT), we assessed the putative pro-attentional effects of the selective α4β2* nicotinic acetylcholine receptor (nAChR) agonist S 38232 in comparison with the non-selective agonist nicotine. Neither drug benefited SAT performance. However, in interaction with the increased task demands implemented by distractor presentation, the selective agonist, but not nicotine, enhanced the detection of signals during the post-distractor recovery period. This effect is consistent with the hypothesis that second-long increases in cholinergic activity (‘transients') mediate the detection of cues and that nAChR agonists augment such transients. Electrochemical recordings of prefrontal cholinergic transients evoked by S 38232 and nicotine indicated that the α4β2* nAChR agonist evoked cholinergic transients that were characterized by a faster rise time and more rapid decay than those evoked by nicotine. Blockade of the α7 nAChR ‘sharpens' nicotine-evoked transients; therefore, we determined the effects of co-administration of nicotine and the α7 nAChR antagonist methyllycaconitine on dSAT performance. Compared with vehicle and nicotine alone, this combined treatment significantly enhanced the detection of signals. These results indicate that compared with nicotine, α4β2* nAChR agonists significantly enhance attentional performance and that the dSAT represents a useful behavioral screening tool. The combined behavioral and electrochemical evidence supports the hypothesis that nAChR agonist-evoked cholinergic transients, which are characterized by rapid rise time and fast decay, predict robust drug-induced enhancement of attentional performance. PMID:20147893

  10. Wheel running during chronic nicotine exposure is protective against mecamylamine-precipitated withdrawal and up-regulates hippocampal α7 nACh receptors in mice.

    PubMed

    Keyworth, Helen; Georgiou, Polymnia; Zanos, Panos; Rueda, André Veloso; Chen, Ying; Kitchen, Ian; Camarini, Rosana; Cropley, Mark; Bailey, Alexis

    2018-06-01

    Evidence suggests that exercise decreases nicotine withdrawal symptoms in humans; however, the mechanisms mediating this effect are unclear. We investigated, in a mouse model, the effect of exercise intensity during chronic nicotine exposure on nicotine withdrawal severity, binding of α4β2*, α7 nicotinic acetylcholine (nAChR), μ-opioid (μ receptors) and D 2 dopamine receptors and on brain-derived neurotrophic factor (BDNF) and plasma corticosterone levels. Male C57Bl/6J mice treated with nicotine (minipump, 24 mg·kg -1 ·day -1 ) or saline for 14 days underwent one of three concurrent exercise regimes: 24, 2 or 0 h·day -1 voluntary wheel running. Mecamylamine-precipitated withdrawal symptoms were assessed on day 14. Quantitative autoradiography of α4β2*, α7 nAChRs, μ receptors and D 2 receptor binding was performed in brain sections of these mice. Plasma corticosterone and brain BDNF levels were also measured. Nicotine-treated mice undertaking 2 or 24 h·day -1 wheel running displayed a significant reduction in withdrawal symptom severity compared with the sedentary group. Wheel running induced a significant up-regulation of α7 nAChR binding in the CA2/3 area of the hippocampus of nicotine-treated mice. Neither exercise nor nicotine treatment affected μ or D 2 receptor binding or BDNF levels. Nicotine withdrawal increased plasma corticosterone levels and α4β2* nAChR binding, irrespective of exercise regimen. We demonstrated for the first time a profound effect of exercise on α7 nAChRs in nicotine-dependent animals, irrespective of exercise intensity. These findings shed light onto the mechanism underlining the protective effect of exercise on the development of nicotine dependence. This article is part of a themed section on Nicotinic Acetylcholine Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.11/issuetoc. © 2017 The British Pharmacological Society.

  11. Acetylcholine and choline in cerebrospinal fluid of patients with Parkinson's disease and Huntington's chorea.

    PubMed Central

    Welch, M J; Markham, C H; Jenden, D J

    1976-01-01

    Lumbar cerebrospinal fluid (CSF) acetylcholine (ACh) and choline (Ch) levels were measured in patients with Huntington's chorea (N=11), Parkinson's disease (N=8), and subjects at risk for Huntington's chorea (N=4), and all three groups were found not to differ significantly from normal controls (N=10). The values found for lumbar CSF ACh and Ch levels in the normal subjects were comparable with previously reported values. The use of physostigmine, a cholinesterase inhibitor, in collecting the CSF samples did not appear to make a difference with regard to ACh and Ch concentrations. Evidence suggesting a ventricular-lumbar gradient, with lumbar CSF Ch concentration being less than ventricular CSF Ch concentration, was found. Finally, ACh levels in CSF did not correlate with corresponding Ch levels. PMID:132512

  12. Inhibitors of soluble epoxide hydrolase minimize ischemia-reperfusion-induced cardiac damage in normal, hypertensive, and diabetic rats.

    PubMed

    Islam, Oliul; Patil, Prashanth; Goswami, Sumanta K; Razdan, Rema; Inamdar, Mohammed N; Rizwan, Mohammed; Mathew, Jubin; Inceoglu, Bora; Stephen Lee, Kin S; Hwang, Sung H; Hammock, Bruce D

    2017-06-01

    We designed a study to evaluate the cardioprotective effect of two soluble epoxide hydrolase (sEH) inhibitors, 1-(1-propanoylpiperidin-4-yl)-3-(4-trifluoromethoxy)phenyl)urea (TPPU) and trans-4-{4-[3-(4-trifluoromethoxyphenyl)-ureido]cyclohexyloxy}benzoic acid (t-TUCB), in ischemia-reperfusion (IR) model. Cardioprotective effects of the sEH inhibitors were evaluated against IR-induced myocardial damage in hearts from normal, hypertensive, and diabetic rats using Langendorff's apparatus. In addition, the effect of sEH inhibitors on endothelial function was evaluated in vitro and ex vivo using isolated rat thoracic aorta. Ischemia-reperfusion (IR) increased the myocardial damage in hearts from normal rats. IR-induced myocardial damage was augmented in hearts isolated from hypertensive and diabetic rats. Myocardial damage as evident from increase in the activities of lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB) in heart perfusate was associated with significant decrease in the heart rate and developed tension, and increase in the resting tension in isolated heart. Both sEH inhibitors protected the heart in normal, hypertensive, and diabetic rats subjected to IR injury. The sEH inhibitor t-TUCB relaxed phenylephrine precontracted aorta from normal rats. Relaxant effect of acetylcholine (ACh) was reduced in aortas from diabetic and hypertensive rats compared to normal rats. Pretreatment of sEH inhibitors to diabetic and hypertensive rats increased relaxant effect of ACh on aortas isolated from these rats. Prophylactic treatment with sEH inhibitors decreased myocardial damage due to IR, hypertension and diabetes, and decreased endothelial dysfunction created by diabetes and hypertension. Therefore, inhibitors of sEH are useful probes to study cardiovascular pathology, and inhibition of the sEH is a potential approach in the management of IR-induced cardiac damage and endothelial dysfunction-related cardiovascular disorders. © 2017 John Wiley & Sons Ltd.

  13. Metabolic roles of the M3 muscarinic acetylcholine receptor studied with M3 receptor mutant mice: a review.

    PubMed

    Gautam, Dinesh; Jeon, Jongrye; Li, Jian Hua; Han, Sung-Jun; Hamdan, Fadi F; Cui, Yinghong; Lu, Huiyan; Deng, Chuxia; Gavrilova, Oksana; Wess, Jürgen

    2008-01-01

    The M(3) muscarinic acetylcholine (ACh) receptor (M(3) mAChR) is expressed in many central and peripheral tissues. It is a prototypic member of the superfamily of G protein-coupled receptors and preferentially activates G proteins of the G(q) family. Recent studies involving the use of newly generated mAChR mutant mice have revealed that the M(3) mAChR plays a key role in regulating many important metabolic functions. Phenotypic analyses of mutant mice that either selectively lacked or overexpressed M(3) receptors in pancreatic beta -cells indicated that beta -cell M(3) mAChRs are essential for maintaining proper insulin release and glucose homeostasis. The experimental data also suggested that strategies aimed at enhancing signaling through beta -cell M(3) mAChRs might be beneficial for the treatment of type 2 diabetes. Recent studies with whole body M(3) mAChR knockout mice showed that the absence of M(3) receptors protected mice against various forms of experimentally or genetically induced obesity and obesity-associated metabolic deficits. Under all experimental conditions tested, M(3) receptor-deficient mice showed greatly ameliorated impairments in glucose homeostasis and insulin sensitivity, reduced food intake, and a significant elevation in basal and total energy expenditure, most likely due to increased central sympathetic outflow and increased rate of fatty acid oxidation. These findings are of potential interest for the development of novel therapeutic approaches for the treatment of obesity and associated metabolic disorders.

  14. Honeybees Produce Millimolar Concentrations of Non-Neuronal Acetylcholine for Breeding: Possible Adverse Effects of Neonicotinoids.

    PubMed

    Wessler, Ignaz; Gärtner, Hedwig-Annabel; Michel-Schmidt, Rosmarie; Brochhausen, Christoph; Schmitz, Luise; Anspach, Laura; Grünewald, Bernd; Kirkpatrick, Charles James

    2016-01-01

    The worldwide use of neonicotinoid pesticides has caused concern on account of their involvement in the decline of bee populations, which are key pollinators in most ecosystems. Here we describe a role of non-neuronal acetylcholine (ACh) for breeding of Apis mellifera carnica and a so far unknown effect of neonicotinoids on non-target insects. Royal jelly or larval food are produced by the hypopharyngeal gland of nursing bees and contain unusually high ACh concentrations (4-8 mM). ACh is extremely well conserved in royal jelly or brood food because of the acidic pH of 4.0. This condition protects ACh from degradation thus ensuring delivery of intact ACh to larvae. Raising the pH to ≥5.5 and applying cholinesterase reduced the content of ACh substantially (by 75-90%) in larval food. When this manipulated brood was tested in artificial larval breeding experiments, the survival rate was higher with food supplemented by 100% with ACh (6 mM) than with food not supplemented with ACh. ACh release from the hypopharyngeal gland and its content in brood food declined by 80%, when honeybee colonies were exposed for 4 weeks to high concentrations of the neonicotinoids clothianidin (100 parts per billion [ppb]) or thiacloprid (8,800 ppb). Under these conditions the secretory cells of the gland were markedly damaged and brood development was severely compromised. Even field-relevant low concentrations of thiacloprid (200 ppb) or clothianidin (1 and 10 ppb) reduced ACh level in the brood food and showed initial adverse effects on brood development. Our findings indicate a hitherto unknown target of neonicotinoids to induce adverse effects on non-neuronal ACh which should be considered when re-assessing the environmental risks of these compounds. To our knowledge this is a new biological mechanism, and we suggest that, in addition to their well documented neurotoxic effects, neonicotinoids may contribute to honeybee colony losses consecutive to a reduction of the ACh content in

  15. Muscarinic acetylcholine receptors control baseline activity and Hebbian stimulus timing-dependent plasticity in fusiform cells of the dorsal cochlear nucleus.

    PubMed

    Stefanescu, Roxana A; Shore, Susan E

    2017-03-01

    Cholinergic modulation contributes to adaptive sensory processing by controlling spontaneous and stimulus-evoked neural activity and long-term synaptic plasticity. In the dorsal cochlear nucleus (DCN), in vitro activation of muscarinic acetylcholine receptors (mAChRs) alters the spontaneous activity of DCN neurons and interacts with N -methyl-d-aspartate (NMDA) and endocannabinoid receptors to modulate the plasticity of parallel fiber synapses onto fusiform cells by converting Hebbian long-term potentiation to anti-Hebbian long-term depression. Because noise exposure and tinnitus are known to increase spontaneous activity in fusiform cells as well as alter stimulus timing-dependent plasticity (StTDP), it is important to understand the contribution of mAChRs to in vivo spontaneous activity and plasticity in fusiform cells. In the present study, we blocked mAChRs actions by infusing atropine, a mAChR antagonist, into the DCN fusiform cell layer in normal hearing guinea pigs. Atropine delivery leads to decreased spontaneous firing rates and increased synchronization of fusiform cell spiking activity. Consistent with StTDP alterations observed in tinnitus animals, atropine infusion induced a dominant pattern of inversion of StTDP mean population learning rule from a Hebbian to an anti-Hebbian profile. Units preserving their initial Hebbian learning rules shifted toward more excitatory changes in StTDP, whereas units with initial suppressive learning rules transitioned toward a Hebbian profile. Together, these results implicate muscarinic cholinergic modulation as a factor in controlling in vivo fusiform cell baseline activity and plasticity, suggesting a central role in the maladaptive plasticity associated with tinnitus pathology. NEW & NOTEWORTHY This study is the first to use a novel method of atropine infusion directly into the fusiform cell layer of the dorsal cochlear nucleus coupled with simultaneous recordings of neural activity to clarify the contribution of

  16. Activation of muscle nicotinic acetylcholine receptor channels by nicotinic and muscarinic agonists

    PubMed Central

    Akk, Gustav; Auerbach, Anthony

    1999-01-01

    The dose-response parameters of recombinant mouse adult neuromuscular acetylcholine receptor channels (nAChR) activated by carbamylcholine, nicotine, muscarine and oxotremorine were measured. Rate constants for agonist association and dissociation, and channel opening and closing, were estimated from single-channel kinetic analysis.The dissociation equilibrium constants were (mM): ACh (0.16)ACh (45)>carbamylcholine (5.1)>oxotremorine M (0.6)>nicotine (0.5)>muscarine (0.15).Rat neuronal α4β2 nAChR can be activated by all of the agonists. However, detailed kinetic analysis was impossible because the recordings lacked clusters representing the activity of a single receptor complex. Thus, the number of channels in the patch was unknown and the activation rate constants could not be determined.Considering both receptor affinity and agonist efficacy, muscarine and oxotremorine are significant agonists of muscle-type nAChR. The results are discussed in terms of structure-function relationships at the nAChR transmitter binding site. PMID:10602325

  17. Transgenic overexpression of uncoupling protein 2 attenuates salt-induced vascular dysfunction by inhibition of oxidative stress.

    PubMed

    Ma, Shuangtao; Wang, Qiang; Zhang, Yan; Yang, Dachun; Li, De; Tang, Bing; Yang, Yongjian

    2014-03-01

    Ablation of uncoupling protein 2 (UCP2) has been involved in the enhancement of salt sensitivity associated with increased superoxide level and decreased nitric oxide (NO) bioavailability. However, the role of overexpression of UCP2 in salt-induced vascular dysfunction remains elusive. UCP2 transgenic (TG) and wild-type (WT) mice were placed on either a normal-salt (NS, 0.5%) or a high-salt (HS, 8%) diet for 12 weeks. Blood pressure (BP) and hypotensive responses were measured, and the vascular tone, superoxide level, and NO bioavailability in aortas were measured in each group. The TG mice had increased expression and function of UCP2 in vascular smooth muscle cells. The acetylcholine (ACh)- and nitroglycerin (NTG)-induced hypotensive responses and aortic relaxations were significantly blunted in WT mice fed with an HS diet compared with an NS diet. These harmful effects were prevented in UCP2 TG mice. The impairments of ACh- and NTG-induced relaxation in aorta were inhibited by the endothelial NO synthase (eNOS) inhibitor L-NAME and mitochondrial antioxidant MitoQ, respectively. The HS intake led to a significant increase in superoxide production and a comparable decrease in NO bioavailability in aortas, and these effects were blunted in UCP2 TG mice. The expression of UCP2 was slightly increased in the HS group. However, the expression and phosphorylation of eNOS were not affected by an HS diet and overexpression of UCP2. These findings suggest that overexpression of UCP2 can ameliorate salt-induced vascular dysfunction. This beneficial effect of UCP2 is mediated by decreased superoxide and reserved NO bioavailability.

  18. Anticonvulsants Based on the α-Substituted Amide Group Pharmacophore Bind to and Inhibit Function of Neuronal Nicotinic Acetylcholine Receptors.

    PubMed

    Krivoshein, Arcadius V

    2016-03-16

    Although the antiepileptic properties of α-substituted lactams, acetamides, and cyclic imides have been known for over 60 years, the mechanism by which they act remains unclear. I report here that these compounds bind to the nicotinic acetylcholine receptor (nAChR) and inhibit its function. Using transient kinetic measurements with functionally active, nondesensitized receptors, I have discovered that (i) α-substituted lactams and cyclic imides are noncompetitive inhibitors of heteromeric subtypes (such as α4β2 and α3β4) of neuronal nAChRs and (ii) the binding affinity of these compounds toward the nAChR correlates with their potency in preventing maximal electroshock (MES)-induced convulsions in mice. Based on the hypothesis that α-substituted amide group is the essential pharmacophore of these drugs, I found and tested a simple compound, 2-phenylbutyramide. This compound indeed inhibits nAChR and shows good anticonvulsant activity in mice. Molecular docking simulations suggest that α-substituted lactams, acetamides, and cyclic imides bind to the same sites on the extracellular domain of the receptor. These new findings indicate that inhibition of brain nAChRs may play an important role in the action of these antiepileptic drugs, a role that has not been previously recognized.

  19. Dental resin curing blue light induces vasoconstriction through release of hydrogen peroxide.

    PubMed

    Oktay, Elif Aybala; Tort, Huseyin; Yıldız, Oguzhan; Ulusoy, Kemal Gokhan; Topcu, Fulya Toksoy; Ozer, Cigdem

    2018-05-26

    Dental resin curing blue light (BL) is frequently used during treatments in dental clinics. However, little is known about the influence of BL irradiation on pulpal blood vessels. The aim of the present study was to investigate the mechanism of effect of BL irradiation on vascular tone. Rat aorta (RA) rings were irradiated with a BL source in organ baths, and the responses were recorded isometrically. Effect of BL irradiation on phenylephrine (PE) -precontraction and acetylcholine (ACh) -induced relaxation after PE -precontraction were obtained and compared in BL -irradiated and control RA rings. Effect of 20 min preincubation with catalase (enzyme that breaks down hydrogene peroxide, 1200 u/ml) on PE -precontraced and BL-irradiated rings was also evaluated. Total oxidative stress (TOS) and total antioxidant capacity (TAC) in BL-irradiated and control RA preparations were measured with special assay kits and spectrophotometry. BL slightly decreased ACh -induced endothelium -dependent relaxations in PE (1 μM) -precontracted RA rings (n = 6, p > 0.05 vs. control). BL induced marked contraction 23.88 + 3.10% of PE (maximum contraction) in isolated RA ring segments precontracted with PE (p < 0.05 vs. control). The contractile effect of BL was inhibited by 1200 u/ml catalase (n = 6, p < 0.05 vs. control). BL irradiation increased the level of TOS in RA rings (n = 6, p < 0.05 vs. control). TAC levels were similar in BL-irradiated and control preparations. These results suggest that BL induces contraction in RA, and the mechanism of this effect may to be through release of hydrogen peroxide. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. B6eGFPChAT mice overexpressing the vesicular acetylcholine transporter exhibit spontaneous hypoactivity and enhanced exploration in novel environments

    PubMed Central

    Nagy, Paul M; Aubert, Isabelle

    2013-01-01

    Cholinergic innervation is extensive throughout the central and peripheral nervous systems. Among its many roles, the neurotransmitter acetylcholine (ACh) contributes to the regulation of motor function, locomotion, and exploration. Cholinergic deficits and replacement strategies have been investigated in neurodegenerative disorders, particularly in cases of Alzheimer's disease (AD). Focus has been on blocking acetylcholinesterase (AChE) and enhancing ACh synthesis to improve cholinergic neurotransmission. As a first step in evaluating the physiological effects of enhanced cholinergic function through the upregulation of the vesicular acetylcholine transporter (VAChT), we used the hypercholinergic B6eGFPChAT congenic mouse model that has been shown to contain multiple VAChT gene copies. Analysis of biochemical and behavioral paradigms suggest that modest increases in VAChT expression can have a significant effect on spontaneous locomotion, reaction to novel stimuli, and the adaptation to novel environments. These observations support the potential of VAChT as a therapeutic target to enhance cholinergic tone, thereby decreasing spontaneous hyperactivity and increasing exploration in novel environments. PMID:24381809

  1. The p38 mitogen activated protein kinase regulates β-amyloid protein internalization through the α7 nicotinic acetylcholine receptor in mouse brain.

    PubMed

    Ma, Kai-Ge; Lv, Jia; Yang, Wei-Na; Chang, Ke-Wei; Hu, Xiao-Dan; Shi, Li-Li; Zhai, Wan-Ying; Zong, Hang-Fan; Qian, Yi-Hua

    2018-03-01

    Alzheimer's disease (AD) is one of the most devastating neurodegenerative disorders. Intracellular β-amyloid protein (Aβ) is an early event in AD. It induces the formation of amyloid plaques and neuron damage. The α7 nicotinic acetylcholine receptor (α7nAChR) has been suggested to play an important role in Aβ caused cognition. It has high affinity with Aβ and could mediate Aβ internalization in vitro. However, whether in mouse brain the p38 MAPK signaling pathway is involved in the regulation of the α7nAChR mediated Aβ internalization and their role in mitochondria remains little known. Therefore, in this study, we revealed that Aβ is internalized by cholinergic and GABAergic neurons. The internalized Aβ were found deposits in lysosomes/endosomes and mitochondria. Aβ could form Aβ-α7nAChR complex with α7nAChR, activates the p38 mitogen activated protein kinase (MAPK). And the increasing of α7nAChR could in return mediate Aβ internalization in the cortex and hippocampus. In addition, by using the α7nAChR agonist PNU282987, the p38 phosphorylation level decreases, rescues the biochemical changes which are tightly associated with Aβ-induced apoptosis, such as Bcl2/Bax level, cytochrome c (Cyt c) release. Collectively, the p38 MAPK signaling pathway could regulate the α7nAChR-mediated internalization of Aβ. The activation of α7nAChR or the inhibition of p38 MAPK signaling pathway may be a beneficial therapy to AD. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Formononetin upregulates nitric oxide synthase in arterial endothelium through estrogen receptors and MAPK pathways.

    PubMed

    Sun, Tao; Cao, Lei; Ping, Na-Na; Wu, Yue; Liu, Dong-Zheng; Cao, Yong-Xiao

    2016-03-01

    Formononetin, a phytoestrogen, can improve arterial endothelial cell function by upregulating endothelial nitric oxide synthase (eNOS). The estrogen receptor plays an important role in the regulation of eNOS. This study investigated the hypothesis that formononetin upregulates eNOS through estrogen receptors and MAPK pathways. The rat superior mesenteric arteries were cultured with formononetin or formononetin plus inhibitors for 24 h. The isometric tension of the arteries was measured using a myograph system. The mRNA and protein expression levels of eNOS were determined by real-time PCR and immunohistochemistry, respectively. Acetylcholine (ACh) relaxed the mesenteric arteries precontracted with 5-hydroxytryptamine. This relaxation could be enhanced by formononetin. The removal of endothelium or incubation with l-NAME (a NOS inhibitor) completely abolished the formononetin-enhanced relaxation induced by ACh, suggesting that the formononetin-enhanced vasodilatation is dependent on endothelium and NO pathway. The estrogen receptor inhibitor ICI 182780 attenuated the formononetin-enhanced vasodilatation induced by ACh, suggesting that the formononetin-enhanced arterial relaxation is mediated by the estrogen receptor. Formononetin increased the mRNA and protein expression levels of eNOS. ICI 182780, U0126 (an ERK1/2 inhibitor) and SP600125 (a JNK inhibitor) prevented the increases in arterial relaxation and eNOS levels. Formononetin upregulates eNOS expression in mesenteric arteries via estrogen receptors, ERK1/2 and JNK pathways. © 2016 Royal Pharmaceutical Society, Journal of Pharmacy and Pharmacology.

  3. α7 Nicotinic acetylcholine receptors and temporal memory: Synergistic effects of combining prenatal choline and nicotine on reinforcement-induced resetting of an interval clock

    PubMed Central

    Cheng, Ruey-Kuang; Meck, Warren H.; Williams, Christina L.

    2006-01-01

    We previously showed that prenatal choline supplementation could increase the precision of timing and temporal memory and facilitate simultaneous temporal processing in mature and aged rats. In the present study, we investigated the ability of adult rats to selectively control the reinforcement-induced resetting of an internal clock as a function of prenatal drug treatments designed to affect the α7 nicotinic acetylcholine receptor (α7 nAChR). Male Sprague-Dawley rats were exposed to prenatal choline (CHO), nicotine (NIC), methyllycaconitine (MLA), choline + nicotine (CHO + NIC), choline + nicotine + methyllycaconitine (CHO + NIC + MLA), or a control treatment (CON). Beginning at 4-mo-of-age, rats were trained on a peak-interval timing procedure in which food was available at 10-, 30-, and 90-sec criterion durations. At steady-state performance there were no differences in timing accuracy, precision, or resetting among the CON, MLA, and CHO + NIC + MLA treatments. It was observed that the CHO and NIC treatments produced a small, but significant increase in timing precision, but no change in accuracy or resetting. In contrast, the CHO + NIC prenatal treatment produced a dramatic increase in timing precision and selective control of the resetting mechanism with no change in overall timing accuracy. The synergistic effect of combining prenatal CHO and NIC treatments suggests an organizational change in α7 nAChR function that is dependent upon a combination of selective and nonselective nAChR stimulation during early development. PMID:16547161

  4. IRAP inhibition using HFI419 prevents moderate to severe acetylcholine mediated vasoconstriction in a rabbit model.

    PubMed

    El-Hawli, Aisha; Qaradakhi, Tawar; Hayes, Alan; Rybalka, Emma; Smith, Renee; Caprnda, Martin; Opatrilova, Radka; Gazdikova, Katarina; Benckova, Maria; Kruzliak, Peter; Zulli, Anthony

    2017-02-01

    Coronary artery vasospasm (constriction) caused by reduced nitric oxide bioavailability leads to myocardial infarction. Reduced endothelial release of nitric oxide by the neurotransmitter acetylcholine, leads to paradoxical vasoconstriction as it binds to smooth muscle cell M3 receptors. Thus, inhibition of coronary artery vasospasm will improve clinical outcomes. Inhibition of insulin regulated aminopeptidase has been shown to improve vessel function, thus we tested the hypothesis that HFI419, an inhibitor of insulin regulated aminopeptidase, could reduce blood vessel constriction to acetylcholine. The abdominal aorta was excised from New Zealand white rabbits (n=15) and incubated with 3mM Hcy to induce vascular dysfunction in vitro for 1h. HFI419 was added 5min prior to assessment of vascular function by cumulative doses of acetylcholine. In some rings, vasoconstriction to acetylcholine was observed in aortic rings after pre-incubation with 3mM homocysteine. Incubation with HFI419 inhibited the vasoconstrictive response to acetylcholine, thus improving, but not normalizing, vascular function (11.5±8.9% relaxation vs 79.2±37% constriction, p<0.05). Similarly, in another group with mild vasoconstriction, HFI419 inhibited this effect (34.9±4.6% relaxation vs 11.1±5.2%, constriction, p<0.05). HFI419 had no effect on control aorta or aorta with mild aortic dysfunction. The present study shows that HFI419 prevents acetylcholine mediated vasoconstriction in dysfunctional blood vessels. HFI419 had no effect on normal vasodilation. Our results indicate a therapeutic potential of HFI419 in reducing coronary artery vasospasm. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. Dysregulated Homeostasis of Acetylcholine Levels in Immune Cells of RR-Multiple Sclerosis Patients.

    PubMed

    Di Bari, Maria; Reale, Marcella; Di Nicola, Marta; Orlando, Viviana; Galizia, Sabrina; Porfilio, Italo; Costantini, Erica; D'Angelo, Chiara; Ruggieri, Serena; Biagioni, Stefano; Gasperini, Claudio; Tata, Ada Maria

    2016-11-30

    Multiple sclerosis (MS) is characterized by pro-inflammatory cytokine production. Acetylcholine (ACh) contributes to the modulation of central and peripheral inflammation. We studied the homeostasis of the cholinergic system in relation to cytokine levels in immune cells and sera of relapsing remitting-MS (RR-MS) patients. We demonstrated that lower ACh levels in serum of RR-MS patients were inversely correlated with the increased activity of the hydrolyzing enzymes acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). Interestingly, the expression of the ACh biosynthetic enzyme and the protein carriers involved in non-vesicular ACh release were found overexpressed in peripheral blood mononuclear cells of MS patients. The inflammatory state of the MS patients was confirmed by increased levels of TNFα, IL-12/IL-23p40, IL-18. The lower circulating ACh levels in sera of MS patients are dependent on the higher activity of cholinergic hydrolyzing enzymes. The smaller ratio of ACh to TNFα, IL-12/IL-23p40 and IL-18 in MS patients, with respect to healthy donors (HD), is indicative of an inflammatory environment probably related to the alteration of cholinergic system homeostasis.

  6. Dysregulated Homeostasis of Acetylcholine Levels in Immune Cells of RR-Multiple Sclerosis Patients

    PubMed Central

    Di Bari, Maria; Reale, Marcella; Di Nicola, Marta; Orlando, Viviana; Galizia, Sabrina; Porfilio, Italo; Costantini, Erica; D’Angelo, Chiara; Ruggieri, Serena; Biagioni, Stefano; Gasperini, Claudio; Tata, Ada Maria

    2016-01-01

    Multiple sclerosis (MS) is characterized by pro-inflammatory cytokine production. Acetylcholine (ACh) contributes to the modulation of central and peripheral inflammation. We studied the homeostasis of the cholinergic system in relation to cytokine levels in immune cells and sera of relapsing remitting-MS (RR-MS) patients. We demonstrated that lower ACh levels in serum of RR-MS patients were inversely correlated with the increased activity of the hydrolyzing enzymes acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). Interestingly, the expression of the ACh biosynthetic enzyme and the protein carriers involved in non-vesicular ACh release were found overexpressed in peripheral blood mononuclear cells of MS patients. The inflammatory state of the MS patients was confirmed by increased levels of TNFα, IL-12/IL-23p40, IL-18. The lower circulating ACh levels in sera of MS patients are dependent on the higher activity of cholinergic hydrolyzing enzymes. The smaller ratio of ACh to TNFα, IL-12/IL-23p40 and IL-18 in MS patients, with respect to healthy donors (HD), is indicative of an inflammatory environment probably related to the alteration of cholinergic system homeostasis. PMID:27916909

  7. A novel mode-of-action mediated by the fetal muscle nicotinic acetylcholine receptor resulting in developmental toxicity in rats.

    PubMed

    Rasoulpour, Reza J; Ellis-Hutchings, Robert G; Terry, Claire; Millar, Neil S; Zablotny, Carol L; Gibb, Alasdair; Marshall, Valerie; Collins, Toby; Carney, Edward W; Billington, Richard

    2012-06-01

    Sulfoxaflor (X11422208), a novel agricultural molecule, induced fetal effects (forelimb flexure, hindlimb rotation, and bent clavicle) and neonatal death in rats at high doses (≥ 400 ppm in diet); however, no such effects occurred in rabbit dietary studies despite achieving similar maternal and fetal plasma exposure levels. Mode-of-action (MoA) studies were conducted to test the hypothesis that the effects in rats had a single MoA induced by sulfoxaflor agonism on the fetal rat muscle nicotinic acetylcholine receptor (nAChR). The studies included cross-fostering and critical windows of exposure studies in rats, fetal ((α1)(2)β1γδ) and adult ((α1)(2)β1δε) rat and human muscle nAChR in vitro agonism experiments, and neonatal rat phrenic nerve-hemidiaphragm contracture studies. The weight of evidence from these studies supported a novel MoA where sulfoxaflor is an agonist to the fetal, but not adult, rat muscle nAChR and that prolonged agonism on this receptor in fetal/neonatal rats causes sustained striated muscle contracture resulting in concomitant reduction in muscle responsiveness to physiological nerve stimulation. Fetal effects were inducible with as little as 1 day of exposure at the end of gestation, but were rapidly reversible after birth, consistent with a pharmacological MoA. With respect to human relevance, sulfoxaflor was shown to have no agonism on human fetal or adult muscle nAChRs. Taken together, the data support the hypothesis that the developmental effects of sulfoxaflor in rats are mediated via sustained agonism on the fetal muscle nAChR during late fetal development and are considered not relevant to humans.

  8. Myasthenia Gravis and the Tops and Bottoms of AChRs Antigenic Structure of the MIR and Specific Immunosuppression of EAMG Using AChR Cytoplasmic Domains

    PubMed Central

    Lindstrom, Jon; Luo, Jie; Kuryatov, Alexander

    2009-01-01

    The main immunogenic region (MIR), against which half or more of the autoantibodies to acetylcholine receptors (AChRs) in myasthenia gravis (MG) or experimental autoimmune MG (EAMG) are directed, is located at the extracellular end of α1 subunits. Rat monoclonal antibodies (mAbs) to the MIR efficiently compete with MG patient autoantibodies for binding to human muscle AChRs. Antibodies bound to the MIR do not interfere with cholinergic ligand binding or AChR function, but target complement and trigger antigenic modulation. Rat mAbs to the MIR also bind to human ganglionic AChR α3 subunits, but MG patient antibodies do not. By making chimeras of α1 subunits with α7 subunits or ACh binding protein, the structure of the MIR and its functional effects are being investigated. Many mAbs to the MIR bind only to the native conformation of α1 subunits because they bind to sequences that are adjacent only in the native structure. The MIR epitopes recognized by these mAbs are not recognized by most patient antibodies whose epitopes must be nearby. The presence of the MIR epitopes in α1/α7 chimeras greatly promotes AChR expression and sensitivity to activation. EAMG can be suppressed by treatment with denatured, bacterially expressed mixtures of extracellular and cytoplasmic domains of human α1, β1, γ, δ, and ε subunits. A mixture of only the cytoplasmic domains not only avoids the potential liability of provoking formation antibodies to pathologically significant epitopes on the extracellular surface, but also potently suppresses the development of EAMG. PMID:18567851

  9. Acetylcholine-induced activation of M3 muscarinic receptors stimulates robust matrix metalloproteinase gene expression in human colon cancer cells.

    PubMed

    Xie, Guofeng; Cheng, Kunrong; Shant, Jasleen; Raufman, Jean-Pierre

    2009-04-01

    Previously, we showed that ACh-induced proliferation of human colon cancer cells is mediated by transactivation of epidermal growth factor (EGF) receptors (EGFRs). In the present study, we elucidate the molecular mechanism underlying this action. ACh-induced proliferation of H508 colon cancer cells, which express exclusively M3 muscarinic receptors (M3Rs), was attenuated by anti-EGFR ligand binding domain antibody, a broad-spectrum matrix metalloproteinase (MMP) inhibitor, anti-MMP7 antibody, a diphtheria toxin analog that blocks release of an EGFR ligand [heparin-binding EGF-like growth factor (HBEGF)], and anti-HBEGF antibody. Conditioned media from ACh-treated H508 cells induced proliferation of SNU-C4 colon cancer cells that express EGFR but not M3R. These actions were attenuated by an EGFR inhibitor and by anti-EGFR and anti-HBEGF antibodies. In H508, but not SNU-C4, colon cancer cells, ACh caused a striking dose- and time-dependent increase in levels of MMP7 mRNA and MMP7 protein. Similarly, ACh induced robust MMP1 and MMP10 gene transcription. ACh-induced MMP1, MMP7, and MMP10 gene transcription was attenuated by atropine, anti-EGFR antibody, and chemical inhibitors of EGFR and ERK activation. In contrast, inhibitors of phosphatidylinositol 3-kinase and NF-kappaB activation did not alter MMP gene transcription. Collectively, these findings indicate that MMP7-catalyzed release of HBEGF mediates ACh-induced transactivation of EGFR and consequent proliferation of colon cancer cells. ACh-induced activation of EGFR and downstream ERK signaling also regulates transcriptional activation of MMP7, thereby identifying a novel feed-forward mechanism for neoplastic cell proliferation.

  10. Acetylcholine-induced activation of M3 muscarinic receptors stimulates robust matrix metalloproteinase gene expression in human colon cancer cells

    PubMed Central

    Xie, Guofeng; Cheng, Kunrong; Shant, Jasleen; Raufman, Jean-Pierre

    2009-01-01

    Previously, we showed that ACh-induced proliferation of human colon cancer cells is mediated by transactivation of epidermal growth factor (EGF) receptors (EGFRs). In the present study, we elucidate the molecular mechanism underlying this action. ACh-induced proliferation of H508 colon cancer cells, which express exclusively M3 muscarinic receptors (M3Rs), was attenuated by anti-EGFR ligand binding domain antibody, a broad-spectrum matrix metalloproteinase (MMP) inhibitor, anti-MMP7 antibody, a diphtheria toxin analog that blocks release of an EGFR ligand [heparin-binding EGF-like growth factor (HBEGF)], and anti-HBEGF antibody. Conditioned media from ACh-treated H508 cells induced proliferation of SNU-C4 colon cancer cells that express EGFR but not M3R. These actions were attenuated by an EGFR inhibitor and by anti-EGFR and anti-HBEGF antibodies. In H508, but not SNU-C4, colon cancer cells, ACh caused a striking dose- and time-dependent increase in levels of MMP7 mRNA and MMP7 protein. Similarly, ACh induced robust MMP1 and MMP10 gene transcription. ACh-induced MMP1, MMP7, and MMP10 gene transcription was attenuated by atropine, anti-EGFR antibody, and chemical inhibitors of EGFR and ERK activation. In contrast, inhibitors of phosphatidylinositol 3-kinase and NF-κB activation did not alter MMP gene transcription. Collectively, these findings indicate that MMP7-catalyzed release of HBEGF mediates ACh-induced transactivation of EGFR and consequent proliferation of colon cancer cells. ACh-induced activation of EGFR and downstream ERK signaling also regulates transcriptional activation of MMP7, thereby identifying a novel feed-forward mechanism for neoplastic cell proliferation. PMID:19221016

  11. Widespread Decrease of Nicotinic Acetylcholine Receptors in Parkinson's Disease

    PubMed Central

    Ichise, Masanori; Zoghbi, Sami S; Liow, Jeih-San; Ghose, Subroto; Vines, Douglass C; Sangare, Janet; Lu, Jian-Qiang; Cropley, Vanessa L; Iida, Hidehiro; Kim, Kyeong Min; Cohen, Robert M; Bara-Jimenez, William; Ravina, Bernard; Innis, Robert B

    2005-01-01

    Nicotinic acetylcholine receptors (nAChRs) have close interactions with the dopaminergic system and play critical roles in cognitive function. nAChRs were imaged in 10 non-demented Parkinson's disease (PD) patients and 15 age-matched healthy subjects using a single photon emission computed tomography ligand [123I]5-iodo-3-[2(S)-2-azetidinylmethoxy]pyridine. Using an arterial input function, we measured the total distribution volume (V; specific plus non-displaceable) as well as the delivery (K1). PD showed a widespread significant decrease (∼10%) of V in both cortical and subcortical regions without a significant change in K1. These results indicate the importance of extending the study to demented patients. PMID:16374823

  12. The quantal release at a neuro-neuronal synapse is regulated by the content of acetylcholine in the presynaptic cell.

    PubMed

    Poulain, B; Baux, G; Tauc, L

    1986-01-01

    Transmitter release was studied with respect to the presynaptic acetylcholine (ACh) content at a central identified inhibitory synapse (Cl- conductance) of Aplysia californica. Statistical analysis of the synaptic noise evoked by sustained depolarization of the presynaptic neuron allowed us to calculate the quantal parameters of the postsynaptic responses. Loading of the presynaptic neurone with injected ACh led to an increase in the postsynaptic responses whereas the calculated miniature postsynaptic current (MPSC) was unmodified. Destruction of choline by choline oxidase either applied extracellularly and coupled to intense stimulations of the presynaptic cell or injected into the presynaptic neuron induced a depression of the postsynaptic response although the amplitude of the calculated MPSC remained constant. As the size of the MPSC, i.e. the size of the quantum, did not change in these experiments, it was concluded that the presynaptic ACh content controls the number of quanta released by a given presynaptic depolarization. As additional evidence, effects of abrupt increase in tonicity of the external medium were studied. The observed transient enhancement of the quantal content of the postsynaptic response could be attributed to an increase in the presynaptic concentration of ACh, resulting from the reduction in cellular volume.

  13. Structure-activity relationship of ibogaine analogs interacting with nicotinic acetylcholine receptors in different conformational states.

    PubMed

    Arias, Hugo R; Feuerbach, Dominik; Targowska-Duda, Katarzyna M; Jozwiak, Krzysztof

    2011-09-01

    The interaction of ibogaine analogs with nicotinic acetylcholine receptors (AChRs) in different conformational states was studied by functional and structural approaches. The results established that ibogaine analogs: (a) inhibit (±)-epibatidine-induced Ca²⁺ influx in human embryonic muscle AChRs with the following potency sequence (IC(50) in μM): (±)-18-methylaminocoronaridine (5.9±0.3)∼(±)-18-methoxycoronaridine (18-MC) (6.8±0.8)>(-)-ibogaine (17±3)∼(+)-catharanthine (20±1)>(±)-albifloranine (46±13), (b) bind to the [³H]TCP binding site with higher affinity when the Torpedo AChR is in the desensitized state compared to that in the resting state. Similar results were obtained using [³H]18-MC. These and docking results suggest a steric interaction between TCP and ibogaine analogs for the same site, (c) enhance [³H]cytisine binding to resting but not to desensitized AChRs, with desensitizing potencies (apparent EC₅₀) that correlate very well with the pK(i) values in the desensitized state, and (d) there are good bilinear correlations between the ligand molecular volumes and their affinities in the desensitized and resting states, with an optimal volume of ∼345 ų for the ibogaine site. These results indicate that the size of the binding sites for ibogaine analogs, located between the serine and nonpolar rings and shared with TCP, is an important structural feature for binding and for inducing desensitization. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. The Ionic Permeability Changes during Acetylcholine-Induced Responses of Aplysia Ganglion Cells

    PubMed Central

    Sato, Makoto; Austin, George; Yai, Hideko; Maruhashi, Juro

    1968-01-01

    ACh-induced depolarization (D response) in D cells markedly decreases as the external Na+ is reduced. However, when Na+ is completely replaced with Mg++, the D response remains unchanged. When Na+ is replaced with Tris(hydroxymethyl)aminomethane, the D response completely disappears, except for a slight decrease in membrane resistance. ACh-induced hyperpolarization (H response) in H cells is markedly depressed as the external Cl- is reduced. Frequently, the reversal of the H response; i.e., depolarization, is observed during perfusion with Cl--free media. In cells which show both D and H responses superimposed, it was possible to separate these responses from each other by perfusing the cells with either Na+-free or Cl--free Ringer's solution. High [K+]0 often caused a marked hyperpolarization in either D or H cells. This is due to the primary effect of high [K+]0 on the presynaptic inhibitory fibers. The removal of this inhibitory afferent interference by applying Nembutal readily disclosed the predicted K+ depolarization. In perfusates containing normal [Na+]0, the effects of Ca++ and Mg++ on the activities of postsynaptic membrane were minimal, supporting the current theory that the effects of these ions on the synaptic transmission are mainly presynaptic. The possible mechanism of the hyperpolarization produced by simultaneous perfusion with both high [K+]0 and ACh in certain H cells is explained quantitatively under the assumption that ACh induces exclusively an increase in Cl- permeability of the H membrane. PMID:5648831

  15. Muscarinic acetylcholine receptor subtype expression in avian vestibular hair cells, nerve terminals and ganglion cells.

    PubMed

    Li, G Q; Kevetter, G A; Leonard, R B; Prusak, D J; Wood, T G; Correia, M J

    2007-04-25

    Muscarinic acetylcholine receptors (mAChRs) are widely expressed in the CNS and peripheral nervous system and play an important role in modulating the cell activity and function. We have shown that the cholinergic agonist carbachol reduces the pigeon's inwardly rectifying potassium channel (pKir2.1) ionic currents in native vestibular hair cells. We have cloned and sequenced pigeon mAChR subtypes M2-M5 and we have studied the expression of all five mAChR subtypes (M1-M5) in the pigeon vestibular end organs (semicircular canal ampullary cristae and utricular maculae), vestibular nerve fibers and the vestibular (Scarpa's) ganglion using tissue immunohistochemistry (IH), dissociated single cell immunocytochemistry (IC) and Western blotting (WB). We found that vestibular hair cells, nerve fibers and ganglion cells each expressed all five (M1-M5) mAChR subtypes. Two of the three odd-numbered mAChRs (M1, M5) were present on the hair cell cilia, supporting cells and nerve terminals. And all three odd numbered mAChRs (M1, M3 and M5) were expressed on cuticular plates, myelin sheaths and Schwann cells. Even-numbered mAChRs were seen on the nerve terminals. M2 was also shown on the cuticular plates and supporting cells. Vestibular efferent fibers and terminals were not identified in our studies. Results from WB of the dissociated vestibular epithelia, nerve fibers and vestibular ganglia were consistent with the results from IH and IC. Our findings suggest that there is considerable co-expression of the subtypes on the neural elements of the labyrinth. Further electrophysiological and pharmacological studies should delineate the mechanisms of action of muscarinic acetylcholine receptors on structures in the labyrinth.

  16. β-adrenergic Receptor Blocker ICI 118,551 Selectively Increases Intermediate-Conductance Calcium-Activated Potassium Channel (IKCa )-Mediated Relaxations in Rat Main Mesenteric Artery.

    PubMed

    Ozkan, Melike Hacer; Uma, Serdar

    2018-06-01

    Endothelial IK C a and/or SK C a channels play an important role in the control of vascular tone by participating in endothelium-dependent relaxation. Whether β-AR antagonists, mainly used in hypertension, affect endothelial K C a channel function is unknown. In this study, we examined the effect of the β2-AR antagonist and inverse agonist ICI 118,551 on the IK C a /SK C a channel activity by assessing functional relaxation responses to several agonists that stimulate these channels. Mesenteric arterial rings isolated from male Sprague Dawley mounted to organ baths. Acetylcholine elicited IK C a - and SK C a -mediated relaxations that were abolished by TRAM-34 and apamin, respectively. ICI 118,551, which did not dilate the arteries per se, increased the IK C a -mediated relaxations, whereas SK C a -mediated relaxations remained unaltered. Same potentiating effect was also detected on the IK C a -mediated relaxations to carbachol and A23187, but not to NS309. Neither acetylcholine-induced nitric oxide-mediated relaxations nor SNP relaxations changed with ICI 118,551. The PKA inhibitor KT-5720, the selective β2-AR agonist salbutamol, the selective β2-AR antagonist butoxamine, the non-selective β-AR antagonist propranolol, and the inverse agonists carvedilol or nadolol failed to affect the IK C a -mediated relaxations. ICI 118,551-induced increase was not reversed by salbutamol or propranolol as well. Besides, low potassium-induced relaxations in endothelium-removed arteries remained the same in the presence of ICI 118,551. These data demonstrate a previously unrecognized action of ICI 118,551, the ability to potentiate endothelial IK C a channel-mediated vasodilation, through a mechanism independent of β2-AR antagonistic or inverse agonistic action. Instead, the enhancement of acetylcholine relaxation seems likely to occur by a mechanism secondary to endothelial calcium increase. © 2017 Nordic Association for the Publication of BCPT (former Nordic

  17. Existence of muscarinic acetylcholine receptor (mAChR) and fibroblast growth factor receptor (FGFR) heteroreceptor complexes and their enhancement of neurite outgrowth in neural hippocampal cultures.

    PubMed

    Di Liberto, V; Borroto-Escuela, D O; Frinchi, M; Verdi, V; Fuxe, K; Belluardo, N; Mudò, G

    2017-02-01

    Recently, it was demonstrated that G-protein-coupled receptors (GPCRs) can transactivate tyrosine kinase receptors in absence of their ligands. In this work, driven by the observation that mAChRs and fibroblast growth factor receptors (FGFRs) share signalling pathways and regulation of brain functions, it was decided to explore whether mAChRs activation may transactivate FGFRs and, if so, to characterize the related trophic effects in cultured hippocampal neurons. Oxotremorine-M transactivation of FGFRs and related trophic effects were tested in primary hippocampal neurons. Western blotting and in situ proximity ligation assay (PLA) were used to detect FGFR phosphorylation (pFGFR) levels and M 1 R-FGFR1 heteroreceptor complexes, respectively. Oxotremorine-M, a non-selective mAChRs agonist, was able to transactivate FGFR and this transactivation was blocked by Src inhibitors. Oxotremorine-M treatment produced a significant increase in the primary neurite outgrowth that was blocked by pre-treatment with the pFGFR inhibitor SU5402 and Src inhibitors. This trophic effect was almost similar to that induced by fibroblast growth factor-2 (FGF-2). By using atropine as nonselective mAChRs or pirenzepine as selective antagonist for M 1 receptor (M 1 R) we could show that mAChRs are involved in modulating the pFGFRs. Using PLA, M 1 R-FGFR1 heteroreceptor complexes were identified in the hippocampus and cerebral cortex. The current findings, by showing functional mAChR-FGFR interactions, will contribute to advance the understanding of the mechanisms involved in the actions of cholinergic drugs on neuronal plasticity. Data may help to develop novel therapeutic strategies not only for neurodegenerative diseases but also for depression-induced atrophy of hippocampal neurons. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Imaging changes in synaptic acetylcholine availability in living human subjects

    PubMed Central

    Esterlis, Irina; Hannestad, Jonas O.; Bois, Frederic; Sewell, R. Andrew; Tyndale, Rachel; Seibyl, John P.; Picciotto, Marina R.; Laruelle, Marc; Carson, Richard E.; Cosgrove, Kelly P.

    2013-01-01

    Introduction In vivo estimation of beta2-nicotinic acetylcholine receptor (β2*-nAChR) availability with molecular neuroimaging is complicated by competition between the endogenous neurotransmitter ACh and the radioligand [123I]5-IA-85380 ([123I]5-IA). We examined whether binding of [123I]5-IA is sensitive to increases in extracellular levels of ACh in humans, as suggested in non-human primates (1). Methods Six healthy subjects (31±4yrs) participated in one [123I]5-IA SPECT study. After baseline scans, physostigmine (1–1.5mg) was administered IV over 60 min, and additional scans were collected (8–14h). Results We observed a significant reduction in VT/fp (total volume of distribution) after physostigmine (29±17% cortex, 19±15% thalamus, 19±15% striatum, and 36±30% cerebellum; p<.05). This reflected a combination of a region-specific 7–16% decrease in tissue concentration of tracer and 9% increase in plasma parent concentration. Conclusion These data suggest that increases in ACh compete with [123I]5-IA for binding to β2*-nAChRs. Additional validation of this paradigm is warranted, but it may be used to interrogate changes in extracellular ACh. PMID:23160789

  19. Counteracting desensitization of human α7-nicotinic acetylcholine receptors with bispyridinium compounds as an approach against organophosphorus poisoning.

    PubMed

    Scheffel, Corinna; Niessen, Karin V; Rappenglück, Sebastian; Wanner, Klaus T; Thiermann, Horst; Worek, Franz; Seeger, Thomas

    2018-09-01

    Irreversible inhibition of acetylcholinesterase (AChE) resulting in accumulation of acetylcholine and overstimulation of muscarinic and nicotinic receptors accounts for the acute toxicity of organophosphorus compounds (OP). Accordingly, the mainstay pharmacotherapy against poisoning by OP comprises the competitive muscarinic acetylcholine receptor antagonist atropine to treat muscarinic effects and, in addition, oximes to reactivate inhibited AChE. A therapeutic gap still remains in the treatment of desensitized nicotinic acetylcholine receptors following OP exposure. Hereby, nicotinic effects result in paralysis of the central and peripheral respiratory system if untreated. Thus, these receptors pose an essential target for therapeutic indication to address these life-threatening nicotinic symptoms of the cholinergic crisis. Identification of ligands regulating dynamic transitions between functional states by binding to modulatory sites appears to be a promising strategy for therapeutic intervention. In this patch clamp study, the ability of differently substituted bispyridinium non-oximes to "resensitize" i.e. to recover the activity of desensitized human homomeric α7-type nAChRs stably transfected in CHO cells was investigated and compared to the already described α7-specific positive allosteric modulator PNU-120596. The structures of these bispyridinium analogues were based on the lead structure of the tert-butyl-substituted bispyridinium propane MB327, which has been shown to have a positive therapeutic effect due to a non-competitive antagonistic action at muscle-type nAChRs in vivo and has been found to have a positive allosteric activity at neuronal receptors in vitro. Prior to test compounds, desensitization of hα7-nAChRs was verified by applying an excess of nicotine revealing activation at low, and desensitization at high concentrations. Thereby, desensitization could be reduced by modulation with PNU-120596. Desensitization was further verified by

  20. The relaxant actions of ethanolic extract of Tridax procumbens (Linn.) on rat corpus cavernosum smooth muscle contraction.

    PubMed

    Salahdeen, Hussein M; Idowu, Gbolahan O; Yemitan, Omoniyi K; Murtala, Babatunde A; Alada, Abdul Rasak A

    2015-03-01

    The effect of Tridax procumbens aqueous ethanolic extract on the rat corpus cavernosum smooth muscles was evaluated in the present study. Corpus cavernosum strips obtained from healthy, young, adult male Wistar albino rats (250-300 g) were precontracted with phenylephrine (10-7 M) or KCl (60 mM) and then treated with various concentrations of T. procumbens extract (0.15-1.05 mg/mL). The change in corpus cavernosum strip tension was recorded. The interactions between T. procumbens extract with acetylcholine and with sodium nitroprusside were also evaluated. The results indicated that corpus cavernosum strips relaxation induced by T. procumbens extract was concentration-dependent and this was significant (p<0.5). Pre-treatment with a nitric oxide synthase (NOS) inhibitor (N(1) nitro-L-arginine-methyl ester, l-NAME), did not completely inhibit the relaxation. However, T. procumbens extract (0.6 mg/mL) significantly (p<0.5) enhanced both acetylcholine- and sodium nitroprusside-induced corpus cavernosum strips relaxation. RESULTS suggest that T. procumbens extract has a concentration-dependent relaxant effect on the isolated rat corpus cavernosum. The mechanism of action of T. procumbens extract is complex. A part of its relaxing effect is mediated directly by the release of NO from endothelium which may improve erectile dysfunction.

  1. Menthol Binding and Inhibition of α7-Nicotinic Acetylcholine Receptors

    PubMed Central

    Ashoor, Abrar; Nordman, Jacob C.; Veltri, Daniel; Yang, Keun-Hang Susan; Al Kury, Lina; Shuba, Yaroslav; Mahgoub, Mohamed; Howarth, Frank C.; Sadek, Bassem; Shehu, Amarda; Kabbani, Nadine; Oz, Murat

    2013-01-01

    Menthol is a common compound in pharmaceutical and commercial products and a popular additive to cigarettes. The molecular targets of menthol remain poorly defined. In this study we show an effect of menthol on the α7 subunit of the nicotinic acetylcholine (nACh) receptor function. Using a two-electrode voltage-clamp technique, menthol was found to reversibly inhibit α7-nACh receptors heterologously expressed in Xenopus oocytes. Inhibition by menthol was not dependent on the membrane potential and did not involve endogenous Ca2+-dependent Cl− channels, since menthol inhibition remained unchanged by intracellular injection of the Ca2+ chelator BAPTA and perfusion with Ca2+-free bathing solution containing Ba2+. Furthermore, increasing ACh concentrations did not reverse menthol inhibition and the specific binding of [125I] α-bungarotoxin was not attenuated by menthol. Studies of α7- nACh receptors endogenously expressed in neural cells demonstrate that menthol attenuates α7 mediated Ca2+ transients in the cell body and neurite. In conclusion, our results suggest that menthol inhibits α7-nACh receptors in a noncompetitive manner. PMID:23935840

  2. Recruitment of α7 nicotinic acetylcholine receptor to caveolin-1-enriched lipid rafts is required for nicotine-enhanced Escherichia coli K1 entry into brain endothelial cells.

    PubMed

    Chi, Feng; Wang, Lin; Zheng, Xueye; Jong, Ambrose; Huang, Sheng-He

    2011-08-01

    We investigate how the α7 nicotinic acetylcholine receptor (α7 nAChR), an essential regulator of inflammation, contributes to the α7 agonist nicotine-enhanced Escherichia coli K1 invasion of human brain microvascular endothelial cells (HBMECs) through lipid rafts/caveolae-mediated signaling. α7 nAChR-mediated signaling and bacterial invasion were defined by lipid raft fractionation, immunofluorescence microscopy and siRNA knockdown. Nicotine-enhanced bacterial invasion was dose-dependently inhibited by two raft-disrupting agents, nystatin and filipin. Significant accumulation of the lipid raft marker GM3 was observed in HBMEC induced by E. coli K1 and nicotine. The recruitment of α7 nAChR and related signaling molecules, including vimentin, and Erk1/2, to caveolin-1 enriched lipid rafts was increased upon treatment with E44 or E44 plus nicotine. Erk1/2 activation (phosphorylation), which is required for α7 nAChR-mediated signaling and E44 invasion, was associated with lipid rafts and nicotine-enhanced bacterial infection. Furthermore, E44 invasion, E44/nicotine-induced activation of Erk1/2 and clustering of α7 nAChR and caveolin-1 was specifically blocked by both siRNAs. α7 nAChR-mediated signaling through lipid rafts/caveolae is required for nicotine-enhanced E. coli K1 invasion of HBMEC.

  3. Acetylcholine receptors in the human retina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutchins, J.B.; Hollyfield, J.G.

    1985-11-01

    Evidence for a population of acetylcholine (ACh) receptors in the human retina is presented. The authors have used the irreversible ligand TH-propylbenzilylcholine mustard (TH-PrBCM) to label muscarinic receptors. TH- or SVI-alpha-bungarotoxin (alpha-BTx) was used to label putative nicotinic receptors. Muscarinic receptors are apparently present in the inner plexiform layer of the retina. Autoradiographic grain densities are reduced in the presence of saturating concentrations of atropine, quinuclidinyl benzilate or scopolamine; this indicates that TH-PrBCM binding is specific for a population of muscarinic receptors in the human retina. Binding sites for radiolabeled alpha-BTx are found predominantly in the inner plexiform layer ofmore » the retina. Grain densities are reduced in the presence of d-tubocurarine, indicating that alpha-BTx may bind to a pharmacologically relevant nicotinic ACh receptor. This study provides evidence for cholinergic neurotransmission in the human retina.« less

  4. Acetylcholine esterase inhibitors and melanin synthesis inhibitors from Salvia officinalis.

    PubMed

    Sallam, Amal; Mira, Amira; Ashour, Ahmed; Shimizu, Kuniyoshi

    2016-09-15

    Salvia officinalis is a traditionally used herb with a wide range of medicinal applications. Many phytoconstituents have been isolated from S. officinalis, mainly phenolic diterpenes, which possess many biological activities. This study aimed to evaluate the ability of the phenolic diterpenes of S. officinalis to inhibit acetylcholine esterase (AChE) as well as their ability to inhibit melanin biosynthesis in B16 melanoma cells. The phenolic diterpenes isolated from the aerial parts of S. officinalis were tested for their effect on melanin biosynthesis in B16 melanoma cell lines. They were also tested for their ability to inhibit AChE using Ellman's method. Moreover, a molecular docking experiment was used to investigate the binding affinity of the isolated phenolic diterpenes to the amino acid residues at the active sites of AChE. Seven phenolic diterpenes-sageone, 12-methylcarnosol, carnosol, 7b-methoxyrosmanol, 7a-methoxyrosmanol, isorosmanol and epirosmanol-were isolated from the methanolic extract of the aerial parts of S. officinalis. Isorosmanol showed a melanin-inhibiting activity as potent as that of arbutin. Compounds 7a-methoxyrosmanol and isorosmanol inhibited AChE activity by 50% and 65%, respectively, at a concentration of 500 µM. The results suggest that isorosmanol is a promising natural compound for further studies on development of new medications which might be useful in ageing disorders such as the declining of cognitive functions and hyperpigmentation. Copyright © 2016 Elsevier GmbH. All rights reserved.

  5. Metrifonate, like acetylcholine, up-regulates neurotrophic activity of cultured rat astrocytes.

    PubMed

    Mele, Tina; Jurič, Damijana Mojca

    2014-08-01

    Metrifonate is an inhibitor of acetylcholinesterase (AChE). Several studies confirmed its positive effects on cognitive impairment in Alzheimer's disease but it was due to adverse events withdrawn from clinical trials. Based on the importance of astrocytes in physiological and pathological brain activities we investigated the impact of metrifonate and, for comparison, acetylcholine on intrinsic neurotrophic activity in these cells. Metabolic activity, intracellular adenosine 5'-triphosphate (ATP) levels and lactate dehydrogenase (LDH) release was measured to examine the impact of metrifonate on viability and integrity of cultured rat cortical astrocytes. The influence of metrifonate, acetylcholine and selective cholinergic ligands on nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) synthesis and secretion was determined by specific two-site enzyme immunoassays. Exposure of cultured astrocytes to metrifonate displayed no toxic effects on cell viability. Metrifonate and acetylcholine potently and transiently elevated NGF and BDNF, but not NT-3, protein levels and secretion with different intensity and time frame of their maximal response. Stimulatory effect on NGF was mimicked by selective nicotinic receptor agonist nicotine and completely blocked by nicotinic antagonist mecamylamine. The impact on BDNF synthesis was mimicked by muscarinic receptor agonist pilocarpine and abolished by selective muscarinic antagonist scopolamine. Metrifonate up-regulates astrocytic NGF and BDNF synthesis in the same manner as acetylcholine, their effect depends on different cholinergic pathways. These results suggest a trophic role of metrifonate, based on a well-known neurotrophic activity of NGF and BDNF in vivo. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  6. The interaction between maternal immune activation and alpha 7 nicotinic acetylcholine receptor in regulating behaviors in the offspring

    PubMed Central

    Wu, Wei-Li; Adams, Catherine E.; Stevens, Karen E.; Chow, Ke-Huan; Freedman, Robert; Patterson, Paul H.

    2015-01-01

    Mutation of human chromosome 15q13.3 increases the risk for autism and schizophrenia. One of the noteworthy genes in 15q13.3 is CHRNA7, which encodes the nicotinic acetylcholine receptor alpha 7 subunit (α7nAChR) associated with schizophrenia in clinical studies and rodent models. This study investigates the role of α7nAChR in maternal immune activation (MIA) mice model, a murine model of environmental risk factor for autism and schizophrenia. We provided choline, a selective α7nAChR agonist among its several developmental roles, in the diet of C57BL/6N wild-type dams throughout the gestation and lactation period and induced MIA at mid-gestation. The adult offspring behavior and gene expression profile in the maternal spleen-placenta-fetal brain axis at mid-gestation were investigated. We found that choline supplementation prevented several MIA-induced behavioral abnormalities in the wild-type offspring. Pro-inflammatory cytokine interleukin-6 (IL-6) and Chrna7 gene expression in the wild-type fetal brain were elevated by poly(I:C) injection and were suppressed by gestational choline supplementation. We further investigated the gene expression level of IL-6 in Chrna7 mutant mice. We found that the basal level of IL-6 was higher in Chrna7 mutant fetal brain, which suggests that α7nAChR may serve an anti-inflammatory role in the fetal brain during development. Lastly, we induced MIA in Chrna7+/− offspring. The Chrna7+/− offspring were more vulnerable to MIA, with increased behavioral abnormalities. Our study shows that α7nAChR modulates inflammatory response affecting the fetal brain and demonstrates its effects on offspring behavior development after MIA. PMID:25683697

  7. The interaction between maternal immune activation and alpha 7 nicotinic acetylcholine receptor in regulating behaviors in the offspring.

    PubMed

    Wu, Wei-Li; Adams, Catherine E; Stevens, Karen E; Chow, Ke-Huan; Freedman, Robert; Patterson, Paul H

    2015-05-01

    Mutation of human chromosome 15q13.3 increases the risk for autism and schizophrenia. One of the noteworthy genes in 15q13.3 is CHRNA7, which encodes the nicotinic acetylcholine receptor alpha 7 subunit (α7nAChR) associated with schizophrenia in clinical studies and rodent models. This study investigates the role of α7nAChR in maternal immune activation (MIA) mice model, a murine model of environmental risk factor for autism and schizophrenia. We provided choline, a selective α7nAChR agonist among its several developmental roles, in the diet of C57BL/6N wild-type dams throughout the gestation and lactation period and induced MIA at mid-gestation. The adult offspring behavior and gene expression profile in the maternal-placental-fetal axis at mid-gestation were investigated. We found that choline supplementation prevented several MIA-induced behavioral abnormalities in the wild-type offspring. Pro-inflammatory cytokine interleukin-6 (Il6) and Chrna7 gene expression in the wild-type fetal brain were elevated by poly(I:C) injection and were suppressed by gestational choline supplementation. We further investigated the gene expression level of Il6 in Chrna7 mutant mice. We found that the basal level of Il6 was higher in Chrna7 mutant fetal brain, which suggests that α7nAChR may serve an anti-inflammatory role in the fetal brain during development. Lastly, we induced MIA in Chrna7(+/-) offspring. The Chrna7(+/-) offspring were more vulnerable to MIA, with increased behavioral abnormalities. Our study shows that α7nAChR modulates inflammatory response affecting the fetal brain and demonstrates its effects on offspring behavior development after MIA. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Evaluation of the rat bladder-derived relaxant factor by coaxial bioassay system.

    PubMed

    Bozkurt, Turgut Emrah; Sahin-Erdemli, Inci

    2004-07-14

    The release of bladder-derived relaxant factor in a coaxial bioassay system and the effects of reactive oxygen species were studied. After precontraction with phenylephrine (10(-6)-3x10(-6)) or 50 mM K+, acetylcholine (10(-8)-10(-3) M) induced relaxation in rat anococcygeus muscle mounted within rat bladder in a tissue bath. This relaxation was not altered by the removal of the urothelium or incubation with tetrodotoxin (10(-6) M). However, bupivacaine (10(-4) M) and lidocaine (3 x 10(-4) M) inhibited this response after raising the pH of the nutrient solution to 7.8, and oxybuprocaine (10(-4) M) exerted inhibitory effect at both physiological pH (7.4) and at pH 7.8. Exposure to electrolysis-generated reactive oxygen species or incubation with hydrogen peroxide and pyrogallol did not alter the acetylcholine response. Present results indicate that the bladder-derived relaxant factor does not behave like endothelium-derived hyperpolarizing factor, but its release may be associated with tetrodotoxin-resistant Na+ channels, which are probably in the neurons of the bladder rather than in the urothelium or detrusor muscle. Furthermore, reactive oxygen species do not interact with this relaxing factor, the exact nature and the physiological importance of which, however, remains to be established.

  9. Repeated acetylcholine receptor antibody-concentrations and association to clinical myasthenia gravis development.

    PubMed

    Heldal, Anne Taraldsen; Eide, Geir Egil; Romi, Fredrik; Owe, Jone Furlund; Gilhus, Nils Erik

    2014-01-01

    We aimed to examine the longitudinal association between Myasthenia Gravis (MG) clinical severity and concentration of acetylcholine receptor (AChR)-antibodies to evaluate if AChR-antibody variations correlate to disease severity. A positive AChR-antibody test is specific for MG. All patients from western Norway who had two or more AChR- antibody tests in the period 1983-2013 were identified. The Myasthenia Gravis Foundation of America (MGFA) Clinical Classification was used to grade disease development. Multiple ordinal logistic regression analysis was used to estimate a possible predictive effect for AChR-antibody concentration on MGFA classification result. In 67 patients two or more AChR-antibody tests with a corresponding MGFA-score were performed, with a total of 309 tests. 56 patients were treated with immunosuppressive drugs and 11 by pyridostigmine only. There was a positive association between concentration of AChR-antibodies and longitudinal MGFA-score for the subgroup with immunosuppressive treatment, but not for those treated with pyridostigmine only. This association between AChR-antibody concentration and MGFA score declined with increasing time since onset (p = 0.005 for the interaction of group×time×concentration). For MG patients with immunosuppressive treatment, repeated AChR-antibody measurements give information about clinical development, and can therefore be of support in therapeutic decisions.

  10. Modal gating of muscle nicotinic acetylcholine receptors

    NASA Astrophysics Data System (ADS)

    Vij, Ridhima

    Many ion channels exhibit multiple patterns of kinetic activity in single-channel currents. This behavior is rare in WT mouse muscle nicotinic acetylcholine receptors (AChRs), where A2C↔A2O gating events are well-described by single exponentials. Also, single-channel open probability (PO) is essentially homogeneous at a given agonist concentration in the WT receptors. Here I report that perturbations of almost all the residues in loop C (alpha188-alpha199, at the agonist binding site) generate heterogeneity in PO ('modes'). Such unsettled activity was apparent with an alanine substitution at all positions in loop C (except alphaY190 and alphaY198) and with different side chain substitutions at alphaP197 for both adult- and fetal-type AChRs. I used single channel electrophysiology along with site-directed mutagenesis to study modal gating in AChRs consequent to mutations/deletions in loop C. The multiple patterns of kinetic activity arose from the difference in agonist affinity rather than in intrinsic AChR gating. Out of the four different agonists used to study the modal behavior, acetylcholine (ACh) showed a higher degree of kinetic heterogeneity compared to others. The time constant for switching between modes was long (~mins), suggesting that they arise from alternative, stable protein conformations. By studying AChRs having only 1 functional binding site, I attempted to find the source of the affinity difference, which was traced mainly to the alphadelta agonist site. Affinity at the neurotransmitter binding site is mainly determined by a core of five aromatic residues (alphaY93, alphaW149, alphaY190, alphaY198 and deltaW57). Phenylalanine substitutions at all aromatic residues except alphaY93 resulted in elimination of modes. Modes were also eliminated by alanine mutation at deltaW57 on the complementary side but not at other aromatics. Also, by substituting four gamma subunit residues into the delta subunit on the complementary beta sheet, I found that

  11. Nicotine Deteriorates the Osteogenic Differentiation of Periodontal Ligament Stem Cells through α7 Nicotinic Acetylcholine Receptor Regulating wnt Pathway

    PubMed Central

    Dong, Zhiwei; Liu, Fen; Zhang, Yu; Yu, Yang; Shang, Fengqing; Wu, Lizheng; Wang, Xiaojing; Jin, Yan

    2013-01-01

    Aims Cigarette smoking is one of the high risk factors of adult chronic periodontitis and nicotine is the well established toxic substance in cigarette. However, the mechanism of nicotine induced periodontitis is still unknown. Here we studied whether nicotine impaired the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) through activating α7 nicotinic acetylcholine receptor (α7 nAChR). Methods hPDLSCs with multi differentiation potential and surface makers for mesenchymal stem cells were harvested by limiting dilution technique. The level of mineralized nodule formation was assessed by alizarin red S staining. Expression level of ostegenic related genes and proteins were detected by real-time PCR and western blot analysis. The expression of α7 nAChR and its downstream signaling pathway were examined by western blot. The role of the receptor and related signaling pathway in nicotine impairing the osteogenic potential of hPDLSCs were also studied in different levels. Results Nicotine deteriorated the ostegenic differentiation of hPDLSCs in a dose dependent manner. Activation of α7 nAChR by nicotine treatment activated wnt/β-catenin signaling pathway, leading to osteogenic deficiency of hPDLSCs. Blockage of α7 nAChR and wnt pathway inhibitor treatment rescued nicotine induced osteogenic differentiation deficiency. Conclusions These data suggested that nicotine activated α7 nAChR expressed on PDLSCs and further activated wnt signaling downstream, thus deteriorating the osteogenic potential of PDLSCs. The impairment of osteogenic differentiation of PDLSCs by nicotine might lead to cigarette smoking related periodontitis. PMID:24376645

  12. Computer modeling of the neurotoxin binding site of acetylcholine receptor spanning residues 185 through 196

    NASA Technical Reports Server (NTRS)

    Garduno-Juarez, R.; Shibata, M.; Zielinski, T. J.; Rein, R.

    1987-01-01

    A model of the complex between the acetylcholine receptor and the snake neurotoxin, cobratoxin, was built by molecular model building and energy optimization techniques. The experimentally identified functionally important residues of cobratoxin and the dodecapeptide corresponding to the residues 185-196 of acetylcholine receptor alpha subunit were used to build the model. Both cis and trans conformers of cyclic L-cystine portion of the dodecapeptide were examined. Binding residues independently identified on cobratoxin are shown to interact with the dodecapeptide AChR model.

  13. Foccα6, a truncated nAChR subunit, positively correlates with spinosad resistance in the western flower thrips, Frankliniella occidentalis (Pergande).

    PubMed

    Wan, Yanran; Yuan, Guangdi; He, Bingqing; Xu, Baoyun; Xie, Wen; Wang, Shaoli; Zhang, Youjun; Wu, Qingjun; Zhou, Xuguo

    2018-08-01

    Nicotinic acetylcholine receptors (nAChRs), a molecular target for spinosyns and neonicotinoids, mediate rapid cholinergic transmission in insect central nervous system by binding acetylcholine. Previous studies have shown that mutations in nAChRs contribute to the high level of resistance to these two classes of insecticides. In this study, we identified nine nAChR subunits from a transcriptome of the western flower thrips, Frankliniella occidentalis, including α1-7, β1, and β2. Exon 4 of α4 and exons 3 and 8 of α6 each have two splicing variants, respectively. In addition, altered or incorrect splicing leads to truncated forms of α3, α5, and α6 subunits. The abundance of every nAChRs in both spinosad susceptible and resistant strains was highest in the 1st instar nymph. Significantly more truncated forms of α6 subunit were detected in spinosad resistant strains, whereas, hardly any full-length form was found in the two highly resistant F. occidentalis strains (resistance ratio >10 4 -fold). Under laboratory conditions, spinosad resistance was positively correlated with truncated α6 transcripts. The correlation was later confirmed under the field conditions using five field strains. As the molecular target of spinosad, the percentage of truncated nAChR α6 subunits can be used as a diagnostic tool to detect and quantify spinosad resistance in the field. Copyright © 2018. Published by Elsevier Ltd.

  14. Kynurenic acid as an Antagonist of α7 Nicotinic Acetylcholine Receptors in the Brain: Facts and Challenges

    PubMed Central

    Albuquerque, Edson X.; Schwarcz, Robert

    2013-01-01

    Kynurenic acid (KYNA), a major tryptophan metabolite, is a glutamate receptor antagonist, which is also reported to inhibit α7 nicotinic acetylcholine receptors (α7nAChRs). Due to variations in experimental approaches, controversy has arisen regarding the ability of KYNA to directly influence α7nAChR function. Here we summarize current concepts of KYNA neurobiology and review evidence pertaining to the proposed role of KYNA as an endogenous modulator of α7nAChRs and synaptic transmission. As dysfunction of α7nAChRs plays a major role in the pathophysiology of central nervous system disorders, elucidation of KYNA's action on this receptor subtype has significant therapeutic implications. PMID:23270993

  15. Elemental maps in human allantochorial placental vessels cells: 1. High K + and acetylcholine effects

    NASA Astrophysics Data System (ADS)

    Michelet-Habchi, C.; Barberet, Ph.; Dutta, R. K.; Guiet-Bara, A.; Bara, M.; Moretto, Ph.

    2003-09-01

    Regulation of vascular tone in the fetal extracorporeal circulation most likely depends on circulating hormones, local paracrine mechanisms and changes in membrane potential of vascular smooth muscle cells (VSMCs) and of vascular endothelial cells (VECs). The membrane potential is a function of the physiological activities of ionic channels (particularly, K + and Ca 2+ channels in these cells). These channels regulate the ionic distribution into these cells. Micro-particle induced X-ray emission (PIXE) analysis was applied to determine the ionic composition of VSMC and of VEC in the placental human allantochorial vessels in a physiological survival medium (Hanks' solution) modified by the addition of acetylcholine (ACh: which opens the calcium-sensitive K + channels, K Ca) and of high concentration of K + (which blocks the voltage-sensitive K + channels, K df). In VSMC (media layer), the addition of ACh induced no modification of the Na, K, Cl, P, S, Mg and Ca concentrations and high K + medium increased significantly the Cl and K concentrations, the other ion concentrations remaining constant. In endothelium (VEC), ACh addition implicated a significant increase of Na and K concentration, and high K + medium, a significant increase in Cl and K concentration. These results indicated the importance of K df, K Ca and K ATP channels in the regulation of K + intracellular distribution in VSMC and VEC and the possible intervention of a Na-K-2Cl cotransport and corroborated the previous electrophysiological data.

  16. [Effect of twirling-reinforcing-reducing needling manipulations on contents of serum acetylcholine and arterial NOS and cGMP in stress-induced hypertension rats].

    PubMed

    Liu, Wei; Zhu, Ling-Qun; Chen, Si-Si; Lu, Shu-Chao; Tang, Jie; Liu, Qing-Guo

    2015-04-01

    To observe the effect of twirling-reinforcing or reducing needling manipulations on plasma acetylcholine (Ach) content and expression of nitric oxide synthetase (NOS) and cyclic guanosine monophosphate (cGMP) in thoracic artery tissue in stress-induced hypertension rats. A total of 60 male rats were randomly divided into blank control, model, acupuncture (no-needle-manipulation) , twirling-reinforcing needling and twirling-reducing needling groups (n = 12 in each group). The stress hypertension model was established by giving the animals with noise and electric shock stimulation (paw), twice a day for 15 days. Acupuncture stimulation was applied to bilateral "Taichong" (LR 3) for 1 min, followed by retaining the needles for 20 min. The treatment was conducted once daily for 7 days. Systolic blood pressure of the rat's tail was detected with non-invasive method and plasma Ach, and NOS and cGMP contents in the thoracic artery tissue were measured using ELISA method. Compared with the control group, the systolic blood pressure was significantly higher in the model group after 15 days' stress stimulation (P < 0.01), while the contents of plasma Ach, arterial NOS and cGMP were markedly down-regulated (P < 0.01). Following 7 days' acupuncture interventions, the increased blood pressure was down-regulated in the no-needle-manipulation, twirling-reinforcing needling and twirling-reducing needling groups (P < 0.05, P < 0.01); and the decreased Ach and NOS in the 3 treatment groups, and cGMP levels in the twirling-reinforcing and twirling-reducing needling groups were remarkably up-regulated (P < 0.01, P < 0.05). No significant change of arterial cGMP content was found in the no-needle-manipulation group (P > 0.05). The effect of the twirling-reducing needling was superior to that of no-needle-manipulation and twirling-reinforcing needling in lowering blood pressure and raising plasma Ach content (P < 0.05, P < 0.01). The twirling-reducing needling of acupuncture has a

  17. Brain nicotinic acetylcholine receptors are involved in stress-induced potentiation of nicotine reward in rats.

    PubMed

    Javadi, Parastoo; Rezayof, Ameneh; Sardari, Maryam; Ghasemzadeh, Zahra

    2017-07-01

    The aim of the present study was to examine the possible role of nicotinic acetylcholine receptors of the dorsal hippocampus (CA1 regions), the medial prefrontal cortex or the basolateral amygdala in the effect of acute or sub-chronic stress on nicotine-induced conditioned place preference. Our results indicated that subcutaneous administration of nicotine (0.2 mg/kg) induced significant conditioned place preference. Exposure to acute or sub-chronic elevated platform stress potentiated the response of an ineffective dose of nicotine. Pre-conditioning intra-CA1 (0.5-4 µg/rat) or intra-medial prefrontal cortex (0.2-0.3 µg/rat) microinjection of mecamylamine (a non-selective nicotinic acetylcholine receptor antagonist) reversed acute stress-induced potentiation of nicotine reward as measured in the conditioned place preference paradigm. By contrast, pre-conditioning intra-basolateral amygdala microinjection of mecamylamine (4 µg/rat) potentiated the effects of acute stress on nicotine reward. Our findings also showed that intra-CA1 or intra-medial prefrontal cortex, but not intra-basolateral amygdala, microinjection of mecamylamine (4 µg/rat) prevented the effect of sub-chronic stress on nicotine reward. These findings suggest that exposure to elevated platform stress potentiates the rewarding effect of nicotine which may be associated with the involvement of nicotinic acetylcholine receptors. It seems that there is a different contribution of the basolateral amygdala, the medial prefrontal cortex or the CA1 nicotinic acetylcholine receptors in stress-induced potentiation of nicotine-induced conditioned place preference.

  18. Calcium Influx and Release Cooperatively Regulate AChR Patterning and Motor Axon Outgrowth during Neuromuscular Junction Formation.

    PubMed

    Kaplan, Mehmet Mahsum; Sultana, Nasreen; Benedetti, Ariane; Obermair, Gerald J; Linde, Nina F; Papadopoulos, Symeon; Dayal, Anamika; Grabner, Manfred; Flucher, Bernhard E

    2018-06-26

    Formation of synapses between motor neurons and muscles is initiated by clustering of acetylcholine receptors (AChRs) in the center of muscle fibers prior to nerve arrival. This AChR patterning is considered to be critically dependent on calcium influx through L-type channels (Ca V 1.1). Using a genetic approach in mice, we demonstrate here that either the L-type calcium currents (LTCCs) or sarcoplasmic reticulum (SR) calcium release is necessary and sufficient to regulate AChR clustering at the onset of neuromuscular junction (NMJ) development. The combined lack of both calcium signals results in loss of AChR patterning and excessive nerve branching. In the absence of SR calcium release, the severity of synapse formation defects inversely correlates with the magnitude of LTCCs. These findings highlight the importance of activity-dependent calcium signaling in early neuromuscular junction formation and indicate that both LTCC and SR calcium release individually support proper innervation of muscle by regulating AChR patterning and motor axon outgrowth. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Interaction of ibogaine with human α3β4-nicotinic acetylcholine receptors in different conformational states

    PubMed Central

    Arias, Hugo R.; Rosenberg, Avraham; Targowska-Duda, Katarzyna M.; Feuerbach, Dominik; Yuan, Xiao Juan; Jozwiak, Krzysztof; Moaddel, Ruin; Wainer, Irving W.

    2015-01-01

    The interaction of ibogaine and phencyclidine (PCP) with human (h) α3β4-nicotinic acetylcholine receptors (AChRs) in different conformational states was determined by functional and structural approaches including, radioligand binding assays, Ca2+ influx detections, and thermodynamic and kinetics measurements. The results established that (a) ibogaine inhibits (±)-epibatidine-induced Ca2+ influx in hα3β4 AChRs with ~9-fold higher potency than that for PCP, (b) [3H]ibogaine binds to a single site in the hα3β4 AChR ion channel with relatively high affinity (Kd = 0.46 ± 0.06 µM), and ibogaine inhibits [3H]ibogaine binding to the desensitized hα3β4 AChR with slightly higher affinity compared to the resting AChR. This is explained by a slower dissociation rate from the desensitized ion channel compared to the resting ion channel, and (c) PCP inhibits [3H]ibogaine binding to the hα3β4 AChR, suggesting overlapping sites. The experimental results correlate with the docking simulations suggesting that ibogaine and PCP interact with a binding domain located between the serine (position 6′) and valine/phenylalanine (position 13′) rings. This interaction is mediated mainly by van der Waals contacts, which is in agreement with the observed enthalpic contribution determined by non-linear chromatography. However, the calculated entropic contribution also indicates local conformational changes. Collectively our data suggest that ibogaine and PCP bind to overlapping sites located between the serine and valine/phenylalanine rings, to finally block the AChR ion channel, and in the case of ibogaine, to probably maintain the AChR in the desensitized state for longer time. PMID:20684041

  20. Interaction of ibogaine with human alpha3beta4-nicotinic acetylcholine receptors in different conformational states.

    PubMed

    Arias, Hugo R; Rosenberg, Avraham; Targowska-Duda, Katarzyna M; Feuerbach, Dominik; Yuan, Xiao Juan; Jozwiak, Krzysztof; Moaddel, Ruin; Wainer, Irving W

    2010-09-01

    The interaction of ibogaine and phencyclidine (PCP) with human (h) alpha3beta4-nicotinic acetylcholine receptors (AChRs) in different conformational states was determined by functional and structural approaches including, radioligand binding assays, Ca2+ influx detections, and thermodynamic and kinetics measurements. The results established that (a) ibogaine inhibits (+/-)-epibatidine-induced Ca2+ influx in h(alpha)3beta4 AChRs with approximately 9-fold higher potency than that for PCP, (b) [3H]ibogaine binds to a single site in the h(alpha)3beta4 AChR ion channel with relatively high affinity (Kd = 0.46 +/- 0.06 microM), and ibogaine inhibits [3H]ibogaine binding to the desensitized h(alpha)3beta4 AChR with slightly higher affinity compared to the resting AChR. This is explained by a slower dissociation rate from the desensitized ion channel compared to the resting ion channel, and (c) PCP inhibits [3H]ibogaine binding to the h(alpha)3beta4 AChR, suggesting overlapping sites. The experimental results correlate with the docking simulations suggesting that ibogaine and PCP interact with a binding domain located between the serine (position 6') and valine/phenylalanine (position 13') rings. This interaction is mediated mainly by van der Waals contacts, which is in agreement with the observed enthalpic contribution determined by non-linear chromatography. However, the calculated entropic contribution also indicates local conformational changes. Collectively our data suggest that ibogaine and PCP bind to overlapping sites located between the serine and valine/phenylalanine rings, to finally block the AChR ion channel, and in the case of ibogaine, to probably maintain the AChR in the desensitized state for longer time.

  1. Menthol Suppresses Nicotinic Acetylcholine Receptor Functioning in Sensory Neurons via Allosteric Modulation

    PubMed Central

    Wilhelm, M.; Swandulla, D.

    2012-01-01

    In this study, we have investigated how the function of native and recombinant nicotinic acetylcholine receptors (nAChRs) is modulated by the monoterpenoid alcohol from peppermint (−) menthol. In trigeminal neurons (TG), we found that nicotine (75 μM)-activated whole-cell currents through nAChRs were reversibly reduced by menthol in a concentration-dependent manner with an IC50 of 111 μM. To analyze the mechanism underlying menthol's action in more detail, we used single channel and whole-cell recordings from recombinant human α4β2 nAChR expressed in HEK tsA201 cells. Here, we found a shortening of channel open time and a prolongation of channel closed time, and an increase in single channel amplitude leading in summary to a reduction in single channel current. Furthermore, menthol did not affect nicotine's EC50 value for currents through recombinant human α4β2 nAChRs but caused a significant reduction in nicotine's efficacy. Taken together, these findings indicate that menthol is a negative allosteric modulator of nAChRs. PMID:22281529

  2. A novel gel based vehicle for the delivery of acetylcholine in quantitative sudomotor axon reflex testing.

    PubMed

    Sletten, David M; Kimpinski, Kurt; Weigand, Stephen D; Low, Phillip A

    2009-10-05

    This study describes a novel gel based vehicle for the delivery of acetylcholine (ACh) during quantitative sudomotor axon reflex testing (QSART). A dose and current response study were undertaken on 20 healthy control participants to characterize the efficiency of a gel based vehicle for the delivery of ACh. Values obtained for total sweat volume and latency to sweat onset with gel iontophoresis of ACh during QSART were comparable to previously published normative data using solution based vehicles. Patient discomfort, utilizing the gel based vehicle during the QSART procedure, was minimal. Improvement in iontophoresis using the gel formulation as a vehicle for ACh delivery has the potential to lower the voltage required to overcome skin resistance during QSART and may result in improved patient comfort during the procedure.

  3. Choline transporter-like protein 4 (CTL4) links to non-neuronal acetylcholine synthesis

    PubMed Central

    Song, Pingfang; Rekow, Stephen S.; Singleton, Corey-Ayne; Sekhon, Harmanjatinder S.; Dissen, Gregory A.; Zhou, Minerva; Campling, Barbara; Lindstrom, Jon; Spindel, Eliot R.

    2013-01-01

    Synthesis of acetylcholine (ACh) by non-neuronal cells is now well established and plays diverse physiologic roles. In neurons, the Na+-dependent, high affinity choline transporter (CHT1) is absolutely required for ACh synthesis. By contrast, some non-neuronal cells synthesize ACh in the absence of CHT1 indicating a fundamental difference in ACh synthesis compared to neurons. The aim of this study was to identify choline transporters, other than CHT1, that play a role in non-neuronal ACh synthesis. ACh synthesis was studied in lung and colon cancer cell lines focusing on the choline transporter-like proteins, a five gene family (CTL1-5). Supporting a role for CTLs in choline transport in lung cancer cells, choline transport was Na+-independent and CTL1-5 were expressed in all cells examined. CTL1,2,&5 were expressed at highest levels and knockdown of CTL1,2&5 decreased choline transport in H82 lung cancer cells. Knockdowns of CTL1,2,3&5 had no effect on ACh synthesis in H82 cells. By contrast, knockdown of CTL4 significantly decreased ACh secretion by both lung and colon cancer cells. Conversely, increasing expression of CTL4 increased ACh secretion. These results indicate that CTL4 mediates ACh synthesis in non-neuronal cell lines and presents a mechanism to target non-neuronal ACh synthesis without affecting neuronal ACh synthesis. PMID:23651124

  4. Skin blood flow responses to the iontophoresis of acetylcholine and sodium nitroprusside in man: possible mechanisms.

    PubMed

    Morris, S J; Shore, A C

    1996-10-15

    1. The mechanisms involved in the human skin blood flow responses to iontophoretic application of acetylcholine (ACH; delivered using an anodal charge) or sodium nitroprusside (SNP; administered with a cathodal charge) are unclear. The aims of this study were to investigate possible contributions of prostaglandin production to the increase in skin blood flow induced following the iontophoresis of ACh and to investigate possible contributions from local sensory nerves to the perfusion responses induced by ACh, SNP and their vehicles. 2. The contribution of prostaglandins to the ACh response was determined in a randomized double-blind study of eight healthy subjects, who were studied on two occasions. Basal responses to ACh were measured before the oral administration of 600 mg soluble aspirin in diluted orange juice (1 occasion or orange juice (1 occasion) and again 30 min after the drink. The contribution of local sensory nerve activation to the responses to ACh and ACh vehicle (8 subjects) and to SNP and SNP vehicle (7 subjects) was assessed. EMLA (5%) (a eutectic mixture of lignocaine and prilocaine) and placebo cream were applied to two separate areas on the forearm in a double-blind randomized manner 2 h before drug responses were measured. In all studies the skin microcirculation responses to iontophoretically applied drug vehicle (1 site) and drug (2 sites) were recorded by laser Doppler perfusion imaging. 3. The increase in forearm skin perfusion (P < 0.001) in response to the iontophoresis of ACh minus the response to ACh vehicle was not significantly different following placebo or aspirin administration. The increase in forearm skin red blood cell flux (P < 0.001) in response to the iontophoresis of ACh minus the response to ACh vehicle was not significantly different at the placebo-compared with the EMLA-treated site. THe small increase in perfusion (P < 0.001) in response to the iontophoresis of ACh vehicle was significantly inhibited at the EMLA

  5. Deficits in acetylcholine homeostasis, receptors and behaviors in choline transporter heterozygous mice.

    PubMed

    Bazalakova, M H; Wright, J; Schneble, E J; McDonald, M P; Heilman, C J; Levey, A I; Blakely, R D

    2007-07-01

    Cholinergic neurons elaborate a hemicholinium-3 (HC-3) sensitive choline transporter (CHT) that mediates presynaptic, high-affinity choline uptake (HACU) in support of acetylcholine (ACh) synthesis and release. Homozygous deletion of CHT (-/-) is lethal shortly after birth (Ferguson et al. 2004), consistent with CHT as an essential component of cholinergic signaling, but precluding functional analyses of CHT contributions in adult animals. In contrast, CHT+/- mice are viable, fertile and display normal levels of synaptosomal HACU, yet demonstrate reduced CHT protein and increased sensitivity to HC-3, suggestive of underlying cholinergic hypofunction. We find that CHT+/- mice are equivalent to CHT+/+ siblings on measures of motor co-ordination (rotarod), general activity (open field), anxiety (elevated plus maze, light/dark paradigms) and spatial learning and memory (Morris water maze). However, CHT+/- mice display impaired performance as a result of physical challenge in the treadmill paradigm, as well as reduced sensitivity to challenge with the muscarinic receptor antagonist scopolamine in the open field paradigm. These behavioral alterations are accompanied by significantly reduced brain ACh levels, elevated choline levels and brain region-specific decreased expression of M1 and M2 muscarinic acetylcholine receptors. Our studies suggest that CHT hemizygosity results in adequate baseline ACh stores, sufficient to sustain many phenotypes, but normal sensitivities to physical and/or pharmacological challenge require full cholinergic signaling capacity.

  6. Action of hypo- and hyperthyroidism on the postmortal decay of acetylcholine in the rat spinal cord.

    PubMed

    Molinengo, L; Cassone, M C; Oggero, L

    1986-01-01

    The postmortal decay of acetylcholine (Ach) was studied in the cervical spinal cords of rats in conditions of hyper- and hypothyroidism. The modifications of thyroid function were achieved either by chronic (20-25 days) administration of l-thyroxine or of methimazole. The basal metabolic rate and plasma T4 concentration were measured to estimate the degree of modification of thyroid activity. The levels of Ach at the start of postmortal decay were evaluated by extrapolation to time 0 of the curves of the postmortal decay of Ach and the levels of Ach at stabilization were estimated from the means of all the measures made at lapses of time over 100-200 s from death. In low and high hypothyroidism a reduction (53 and 72%, respectively) of the levels of Ach was found. A similar effect was found in hyperthyroidism: a 73 and 63% reduction of Ach levels in high and low hyperthyroidism, respectively. The level of Ach at stabilization of the postmortal decay increased only in hyperthyroid rats. The process by which Ach is destroyed is not modified in hyper- or hypothyroidism.

  7. Impact of species variability and 'probe-dependence' on the detection and in vivo validation of allosteric modulation at the M4 muscarinic acetylcholine receptor.

    PubMed

    Suratman, S; Leach, K; Sexton, Pm; Felder, Cc; Loiacono, Re; Christopoulos, A

    2011-04-01

    We recently characterized LY2033298 as a novel allosteric modulator and agonist at M(4) muscarinic acetylcholine receptors (mAChRs). Evidence also suggested a difference in the potency of LY2033298 at rodent relative to human M(4) mAChRs. The current study investigated the basis for the species difference of this modulator and used this knowledge to rationalize its in vivo actions. LY2033298 was investigated in vitro in CHO cells stably expressing human or mouse M(4) mAChRs, using assays of agonist-induced ERK1/2 or GSK-3α phosphorylation, [(35) S]-GTPγS binding, or effects on equilibrium binding of [(3) H]-NMS and ACh. The in vivo actions of LY2033298 were investigated in a mouse model of amphetamine-induced locomotor activity. The function of LY2033298 was examined in combination with ACh, oxotremorine or xanomeline. LY2033298 had similar affinities for the human and mouse M(4) mAChRs. However, LY2033298 had a lower positive co-operativity with ACh at the mouse relative to the human M(4) mAChR. At the mouse M(4) mAChR, LY2033298 showed higher co-operativity with oxotremorine than with ACh or xanomeline. The different degrees of co-operativity between LY2033298 and each agonist at the mouse relative to the human M(4) mAChR necessitated the co-administration of LY2033298 with oxotremorine in order to show in vivo efficacy of LY2033298. These results provide evidence for species variability when comparing the allosteric interaction between LY2033298 and ACh at the M(4) mAChR, and also highlight how the interaction between LY2033298 and different orthosteric ligands is subject to 'probe dependence'. This has implications for the validation of allosteric modulator actions in vivo. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  8. Synthesis, in vitro and in vivo studies, and molecular modeling of N-alkylated dextromethorphan derivatives as non-competitive inhibitors of α3β4 nicotinic acetylcholine receptor.

    PubMed

    Jozwiak, Krzysztof; Targowska-Duda, Katarzyna M; Kaczor, Agnieszka A; Kozak, Joanna; Ligeza, Agnieszka; Szacon, Elzbieta; Wrobel, Tomasz M; Budzynska, Barbara; Biala, Grazyna; Fornal, Emilia; Poso, Antti; Wainer, Irving W; Matosiuk, Dariusz

    2014-12-15

    9 N-alkylated derivatives of dextromethorphan are synthesized and studied as non-competitive inhibitors of α3β4 nicotinic acetylcholine receptors (nAChRs). In vitro activity towards α3β4 nicotinic acetylcholine receptor is determined using a patch-clamp technique and is in the micromolar range. Homology modeling, molecular docking and molecular dynamics of ligand-receptor complexes in POPC membrane are used to find the mode of interactions of N-alkylated dextromethorphan derivatives with α3β4 nAChR. The compounds, similarly as dextromethorphan, interact with the middle portion of α3β4 nAChR ion channel. Finally, behavioral tests confirmed potential application of the studied compounds for the treatment of addiction. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Effects of pyridostigmine and cholinolytics on cholinesterase and acetylcholine in Soman poisoned rats.

    PubMed

    Stitcher, D L; Harris, L W; Heyl, W C; Alter, S C

    1978-01-01

    Soman reduced blood and brain cholinesterase (ChE) activity to less than 15% and increased cerebral acetylcholine (ACh) levels to 137.4% of control. When pyridostigmine (P) was used as a prophylactic adjunct, it reduced blood ChE activity to 31.6% of control, failed to significantly alter brain ChE activity, and protected more than 70% of the blood (but not brain enzyme) from phosphonylation by soman. Benactyzine (B) was more effective than atropine (A) in reducing cerebral ACh concentrations, while a combination of the two was more effective than either alone. A prophylaxis of P + A + B was effective in controlling ACh levels in rats poisoned with one LD50 dose of Soman. Since P did not diminish the effects of the cholinolytics on cerebral ACh, this (together with the enzyme data) suggests that the two cholinolytics alone provided the central protection.

  10. An electrochemical acetylcholine sensor based on lichen-like nickel oxide nanostructure.

    PubMed

    Sattarahmady, N; Heli, H; Vais, R Dehdari

    2013-10-15

    Lichen-like nickel oxide nanostructure was synthesized by a simple method and characterized. The nanostructure was then applied to modify a carbon paste electrode and for the fabrication of a sensor, and the electrocatalytic oxidation of acetylcholine (ACh) on the modified electrode was investigated. The electrocatalytic efficiency of the nickel oxide nanostructure was compared with nickel micro- and nanoparticles, and the lichen-like nickel oxide nanostructure showed the highest efficiency. The mechanism and kinetics of the electrooxidation process were investigated by cyclic voltammetry, steady-state polarization curve and chronoamperometry. The catalytic rate constant and the charge transfer coefficient of ACh electrooxidation by the active nickel species, and the diffusion coefficient of ACh were reported. A sensitive and time-saving hydrodynamic amperometry method was developed for the determination of ACh. ACh was determined with a sensitivity of 392.4 mA M⁻¹ cm⁻² and a limit of detection of 26.7 μM. The sensor had the advantages of simple fabrication method without using any enzyme or reagent and immobilization step, high electrocatalytic activity, very high sensitivity, long-term stability, and antifouling surface property toward ACh and its oxidation product. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Dimeric arrangement and structure of the membrane-bound acetylcholine receptor studied by electron microscopy.

    PubMed Central

    Zingsheim, H P; Neugebauer, D C; Frank, J; Hänicke, W; Barrantes, F J

    1982-01-01

    The acetylcholine receptor protein (AChR) from the electric organ of Torpedo marmorata is studied in its membrane-bound form by electron microscopy and single-particle image averaging. About half the molecule protrudes from the membrane surface by approximately 5 nm. The low-resolution 3-D structure of this hydrated portion, including its handedness, can be deduced from averaged axial and lateral projections and from freeze-etched membrane surfaces. In native membrane fragments, a dimeric form of the AChR is observed and the relative orientation of the AChR monomers within the dimer is established. The dimers disappear upon disulfide reduction of the membrane preparations, whereas the average axial projections of the AChR monomer remain unaffected. Since the existence of disulfide bonds linking AChR monomers between their respective delta-subunits is well documented, the approximate position of the delta-subunit within the low-resolution structure of the AChR molecule can be deduced from the structure of the dimers. Images Fig. 1. Fig. 2. Fig. 3. PMID:7188351

  12. Enzyme-Controlled Nanodevice for Acetylcholine-Triggered Cargo Delivery Based on Janus Au-Mesoporous Silica Nanoparticles.

    PubMed

    Llopis-Lorente, Antoni; Díez, Paula; de la Torre, Cristina; Sánchez, Alfredo; Sancenón, Félix; Aznar, Elena; Marcos, María D; Martínez-Ruíz, Paloma; Martínez-Máñez, Ramón; Villalonga, Reynaldo

    2017-03-28

    This work reports a new gated nanodevice for acetylcholine-triggered cargo delivery. We prepared and characterized Janus Au-mesoporous silica nanoparticles functionalized with acetylcholinesterase on the Au face and with supramolecular β-cyclodextrin:benzimidazole inclusion complexes as caps on the mesoporous silica face. The nanodevice is able to selectively deliver the cargo in the presence of acetylcholine via enzyme-mediated acetylcholine hydrolysis, locally lowering the pH and opening the supramolecular gate. Given the key role played by ACh and its relation with Parkinson's disease and other nervous system diseases, we believe that these findings could help design new therapeutic strategies. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Mean field model of acetylcholine mediated dynamics in the cerebral cortex.

    PubMed

    Clearwater, J M; Rennie, C J; Robinson, P A

    2007-12-01

    A recent continuum model of the large scale electrical activity of the cerebral cortex is generalized to include cholinergic modulation. In this model, dynamic modulation of synaptic strength acts over the time scales of nicotinic and muscarinic receptor action. The cortical model is analyzed to determine the effect of acetylcholine (ACh) on its steady states, linear stability, spectrum, and temporal responses to changes in subcortical input. ACh increases the firing rate in steady states of the system. Changing ACh concentration does not introduce oscillatory behavior into the system, but increases the overall spectral power. Model responses to pulses in subcortical input are affected by the tonic level of ACh concentration, with higher levels of ACh increasing the magnitude firing rate response of excitatory cortical neurons to pulses of subcortical input. Numerical simulations are used to explore the temporal dynamics of the model in response to changes in ACh concentration. Evidence is seen of a transition from a state in which intracortical inputs are emphasized to a state where thalamic afferents have enhanced influence. Perturbations in ACh concentration cause changes in the firing rate of cortical neurons, with rapid responses due to fast acting facilitatory effects of nicotinic receptors on subcortical afferents, and slower responses due to muscarinic suppression of intracortical connections. Together, these numerical simulations demonstrate that the actions of ACh could be a significant factor modulating early components of evoked response potentials.

  14. Relaxation effect of abacavir on rat basilar arteries.

    PubMed

    Li, Rachel Wai Sum; Yang, Cui; Chan, Shun Wan; Hoi, Maggie Pui Man; Lee, Simon Ming Yuen; Kwan, Yiu Wa; Leung, George Pak Heng

    2015-01-01

    The use of abacavir has been linked with increased cardiovascular risk in patients with human immunodeficiency virus infection; however, the mechanism involved remains unclear. We hypothesize that abacavir may impair endothelial function. In addition, based on the structural similarity between abacavir and adenosine, we propose that abacavir may affect vascular contractility through endogenous adenosine release or adenosine receptors in blood vessels. The relaxation effect of abacavir on rat basilar arteries was studied using the myograph technique. Cyclic GMP and AMP levels were measured by immunoassay. The effects of abacavir on nucleoside transporters were studied using radiolabeled nucleoside uptake experiments. Ecto-5' nucleotidase activity was determined by measuring the generation of inorganic phosphate using adenosine monophosphate as the substrate. Abacavir induced the relaxation of rat basilar arteries in a concentration-dependent manner. This relaxation was abolished when endothelium was removed. In addition, the relaxation was diminished by the nitric oxide synthase inhibitor, L-NAME, the guanylyl cyclase inhibitor, ODQ, and the protein kinase G inhibitor, KT5820. Abacavir also increased the cGMP level in rat basilar arteries. Abacavir-induced relaxation was also abolished by adenosine A2 receptor blockers. However, abacavir had no effect on ecto-5' nucleotidase and nucleoside transporters. Short-term and long-term treatment of abacavir did not affect acetylcholine-induced relaxation in rat basilar arteries. Abacavir induces acute endothelium-dependent relaxation of rat basilar arteries, probably through the activation of adenosine A2 receptors in endothelial cells, which subsequently leads to the release of nitric oxide, resulting in activation of the cyclic guanosine monophosphate/protein kinase G-dependent pathway in vascular smooth muscle cells. It is speculated that abacavir-induced cardiovascular risk may not be related to endothelial dysfunction

  15. The influence of allosteric modulators and transmembrane mutations on desensitisation and activation of α7 nicotinic acetylcholine receptors

    PubMed Central

    Chatzidaki, Anna; D'Oyley, Jarryl M.; Gill-Thind, JasKiran K.; Sheppard, Tom D.; Millar, Neil S.

    2015-01-01

    Acetylcholine activates nicotinic acetylcholine receptors (nAChRs) by binding at an extracellular orthosteric site. Previous studies have described several positive allosteric modulators (PAMs) that are selective for homomeric α7 nAChRs. These include type I PAMs, which exert little or no effect on the rate of receptor desensitisation, and type II PAMs, which cause a dramatic loss of agonist-induced desensitisation. Here we report evidence that transmembrane mutations in α7 nAChRs have diverse effects on receptor activation and desensitisation by allosteric ligands. It has been reported previously that the L247T mutation, located toward the middle of the second transmembrane domain (at the 9′ position), confers reduced levels of desensitisation. In contrast, the M260L mutation, located higher up in the TM2 domain (at the 22′ position), does not show any difference in desensitisation compared to wild-type receptors. We have found that in receptors containing the L247T mutation, both type I PAMs and type II PAMs are converted into non-desensitising agonists. In contrast, in receptors containing the M260L mutation, this effect is seen only with type II PAMs. These findings, indicating that the M260L mutation has a selective effect on type II PAMs, have been confirmed both with previously described PAMs and also with a series of novel α7-selective PAMs. The novel PAMs examined in this study have close chemical similarity but diverse pharmacological properties. For example, they include compounds displaying effects on receptor desensitisation that are typical of classical type I and type II PAMs but, in addition, they include compounds with intermediate properties. PMID:25998276

  16. An Antibody Biosensor Establishes the Activation of the M1 Muscarinic Acetylcholine Receptor during Learning and Memory.

    PubMed

    Butcher, Adrian J; Bradley, Sophie J; Prihandoko, Rudi; Brooke, Simon M; Mogg, Adrian; Bourgognon, Julie-Myrtille; Macedo-Hatch, Timothy; Edwards, Jennifer M; Bottrill, Andrew R; Challiss, R A John; Broad, Lisa M; Felder, Christian C; Tobin, Andrew B

    2016-04-22

    Establishing the in vivo activation status of G protein-coupled receptors would not only indicate physiological roles of G protein-coupled receptors but would also aid drug discovery by establishing drug/receptor engagement. Here, we develop a phospho-specific antibody-based biosensor to detect activation of the M1 muscarinic acetylcholine receptor (M1 mAChR) in vitro and in vivo Mass spectrometry phosphoproteomics identified 14 sites of phosphorylation on the M1 mAChR. Phospho-specific antibodies to four of these sites established that serine at position 228 (Ser(228)) on the M1 mAChR showed extremely low levels of basal phosphorylation that were significantly up-regulated by orthosteric agonist stimulation. In addition, the M1 mAChR-positive allosteric modulator, 1-(4-methoxybenzyl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid, enhanced acetylcholine-mediated phosphorylation at Ser(228) These data supported the hypothesis that phosphorylation at Ser(228) was an indicator of M1 mAChR activation. This was further supported in vivo by the identification of phosphorylated Ser(228) on the M1 mAChR in the hippocampus of mice following administration of the muscarinic ligands xanomeline and 1-(4-methoxybenzyl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid. Finally, Ser(228) phosphorylation was seen to increase in the CA1 region of the hippocampus following memory acquisition, a response that correlated closely with up-regulation of CA1 neuronal activity. Thus, determining the phosphorylation status of the M1 mAChR at Ser(228) not only provides a means of establishing receptor activation following drug treatment both in vitro and in vivo but also allows for the mapping of the activation status of the M1 mAChR in the hippocampus following memory acquisition thereby establishing a link between M1 mAChR activation and hippocampus-based memory and learning. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Impact of species variability and ‘probe-dependence’ on the detection and in vivo validation of allosteric modulation at the M4 muscarinic acetylcholine receptor

    PubMed Central

    Suratman, S; Leach, K; Sexton, PM; Felder, CC; Loiacono, RE; Christopoulos, A

    2011-01-01

    BACKGROUND AND PURPOSE We recently characterized LY2033298 as a novel allosteric modulator and agonist at M4 muscarinic acetylcholine receptors (mAChRs). Evidence also suggested a difference in the potency of LY2033298 at rodent relative to human M4 mAChRs. The current study investigated the basis for the species difference of this modulator and used this knowledge to rationalize its in vivo actions. EXPERIMENTAL APPROACH LY2033298 was investigated in vitro in CHO cells stably expressing human or mouse M4 mAChRs, using assays of agonist-induced ERK1/2 or GSK-3α phosphorylation, [35S]-GTPγS binding, or effects on equilibrium binding of [3H]-NMS and ACh. The in vivo actions of LY2033298 were investigated in a mouse model of amphetamine-induced locomotor activity. The function of LY2033298 was examined in combination with ACh, oxotremorine or xanomeline. KEY RESULTS LY2033298 had similar affinities for the human and mouse M4 mAChRs. However, LY2033298 had a lower positive co-operativity with ACh at the mouse relative to the human M4 mAChR. At the mouse M4 mAChR, LY2033298 showed higher co-operativity with oxotremorine than with ACh or xanomeline. The different degrees of co-operativity between LY2033298 and each agonist at the mouse relative to the human M4 mAChR necessitated the co-administration of LY2033298 with oxotremorine in order to show in vivo efficacy of LY2033298. CONCLUSIONS AND IMPLICATIONS These results provide evidence for species variability when comparing the allosteric interaction between LY2033298 and ACh at the M4 mAChR, and also highlight how the interaction between LY2033298 and different orthosteric ligands is subject to ‘probe dependence’. This has implications for the validation of allosteric modulator actions in vivo. PMID:21198541

  18. The relaxant effect induced by Allium sativum L. bulb aqueous extract on rat isolated trachea

    PubMed Central

    Fehri, Badreddine; Ahmed, Mueen K.K.; Aiache, Jean-Marc

    2011-01-01

    Background: Garlic plays an important role in complementary and alternative medicine. Most people believe in and use herbal products even when they have not been as thoroughly researched as garlic. Garlic is also known for its beneficial effects on the cardiovascular system. Materials and Methods: The relaxant effect of Allium sativum L. bulb aqueous extract (ASBAE) containing 0.06%-0.10% of allicin was studied on isolated smooth muscle of trachea of rats precontracted using acetylcholine (10−5 M). Results: It was found that ASBAE induced a dose-dependent relaxation with recorded EC 50 values of 71.87 ± 5.90 µg/mL (n = 7). Pretreatments with mepyramine (10−7 M), methysergide (10−7 M), caffeine (10−6 M), theophylline (10−6 M), nifedipine (10−6 M), and dipyridamole (10−6 M) did not alter ASBAE concentration-response curves. In turn, concentration-response curves to ASBAE were significantly shifted toward right in the presence of aspirin (3.10−3 M), indomethacin (10−6 M), prazosin (10−6 M), and propranolol (10−7 M). Conclusion: It is suggested that the recorded relaxation results are due to the release of prostaglandins E 1 and E 2 consecutively to α- and β-adrenoreceptor stimulation. PMID:21472073

  19. Modulatory effects of α7 nAChRs on the immune system and its relevance for CNS disorders.

    PubMed

    Kalkman, Hans O; Feuerbach, Dominik

    2016-07-01

    The clinical development of selective alpha-7 nicotinic acetylcholine receptor (α7 nAChR) agonists has hitherto been focused on disorders characterized by cognitive deficits (e.g., Alzheimer's disease, schizophrenia). However, α7 nAChRs are also widely expressed by cells of the immune system and by cells with a secondary role in pathogen defense. Activation of α7 nAChRs leads to an anti-inflammatory effect. Since sterile inflammation is a frequently observed phenomenon in both psychiatric disorders (e.g., schizophrenia, melancholic and bipolar depression) and neurological disorders (e.g., Alzheimer's disease, Parkinson's disease, and multiple sclerosis), α7 nAChR agonists might show beneficial effects in these central nervous system disorders. In the current review, we summarize information on receptor expression, the intracellular signaling pathways they modulate and reasons for receptor dysfunction. Information from tobacco smoking, vagus nerve stimulation, and cholinesterase inhibition is used to evaluate the therapeutic potential of selective α7 nAChR agonists in these inflammation-related disorders.

  20. Spintronic characteristics of self-assembled neurotransmitter acetylcholine molecular complexes enable quantum information processing in neural networks and brain

    NASA Astrophysics Data System (ADS)

    Tamulis, Arvydas; Majauskaite, Kristina; Kairys, Visvaldas; Zborowski, Krzysztof; Adhikari, Kapil; Krisciukaitis, Sarunas

    2016-09-01

    Implementation of liquid state quantum information processing based on spatially localized electronic spin in the neurotransmitter stable acetylcholine (ACh) neutral molecular radical is discussed. Using DFT quantum calculations we proved that this molecule possesses stable localized electron spin, which may represent a qubit in quantum information processing. The necessary operating conditions for ACh molecule are formulated in self-assembled dimer and more complex systems. The main quantum mechanical research result of this paper is that the neurotransmitter ACh systems, which were proposed, include the use of quantum molecular spintronics arrays to control the neurotransmission in neural networks.

  1. Intravenously administered oxotremorine and atropine, in doses known to affect pain threshold, affect the intraspinal release of acetylcholine in rats.

    PubMed

    Abelson, Klas S P; Höglund, A Urban

    2002-04-01

    Both systemically and intrathecally administered cholinergic agonists produce antinociception while cholinergic antagonists decrease pain threshold. The mechanism and the site of action of these substances are not known. In the present study it was hypothesized that systemically administered muscarinic agonists and antagonists modify nociceptive threshold by affecting intraspinal release of acetylcholine (ACh). Catheters were inserted into the femoral vein in rats maintained on isoflurane anaesthesia for administration of oxotremorine (10-300 microg/kg) and atropine (0.1, 10, 5000 microg/kg). Spinal microdialysis probes were placed intraspinally at approximately the C2-C5 spinal level for sampling of acetylcholine and dialysis delivery of atropine (0.1, 1, 10 nM). Additionally, the tail-flick behaviour was tested on conscious rats injected intraperitoneally with saline, atropine (10, 100 and 5000 microg/kg), or subcutaneously with oxotremorine (30, 100, 300 microg/kg). Subcutaneous administration of oxotremorine (30, 100, 300 microg/kg) significantly increased the tail-flick latency. These doses of oxotremorine dose-dependently increased the intraspinal release of acetylcholine. Intravenously administered atropine, in a dose that produced hyperalgesia (5000 microg/kg) in the tail-flick test, significantly decreased the intraspinal release of acetylcholine. Our results suggest an association between pain threshold and acetylcholine release in spinal cord. It is also suggested that an approximately 30% increase in basal ACh release produces antinociception and that a 30% decrease in basal release produces hyperalgesia.

  2. NMR resolved multiple anesthetic binding sites in the TM domains of the α4β2 nAChR

    PubMed Central

    Bondarenko, Vasyl; Mowrey, David; Liu, Lu Tian; Xu, Yan; Tang, Pei

    2012-01-01

    The α4β2 nicotinic acetylcholine receptor (nAChR) has significant roles in nervous system function and disease. It is also a molecular target of general anesthetics. Anesthetics inhibit the α4β2 nAChR at clinically relevant concentrations, but their binding sites in α4β2 remain unclear. The recently determined NMR structures of the α4β2 nAChR transmembrane (TM) domains provide valuable frameworks for identifying the binding sites. In this study, we performed solution NMR experiments on the α4β2 TM domains in the absence and presence of halothane and ketamine. Both anesthetics were found in an intra-subunit cavity near the extracellular end of the 2 transmembrane helices, homologous to a common anesthetic binding site observed in X-ray structures of anesthetic-bound GLIC (Nury, et. al. 2011). Halothane, but not ketamine, was also found in cavities adjacent to the common anesthetic site at the interface of α4 and β2. In addition, both anesthetics bound to cavities near the ion selectivity filter at the intracellular end of the TM domains. Anesthetic binding induced profound changes in protein conformational exchanges. A number of residues, close to or remote from the binding sites, showed resonance signal splitting from single to double peaks, signifying that anesthetics decreased conformation exchange rates. It was also evident that anesthetics shifted population of two conformations. Altogether, the study comprehensively resolved anesthetic binding sites in the α4β2 nAChR. Furthermore, the study provided compelling experimental evidence of anesthetic-induced changes in protein dynamics, especially near regions of the hydrophobic gate and ion selectivity filter that directly regulate channel functions. PMID:23000369

  3. NMR resolved multiple anesthetic binding sites in the TM domains of the α4β2 nAChR.

    PubMed

    Bondarenko, Vasyl; Mowrey, David; Liu, Lu Tian; Xu, Yan; Tang, Pei

    2013-02-01

    The α4β2 nicotinic acetylcholine receptor (nAChR) has significant roles in nervous system function and disease. It is also a molecular target of general anesthetics. Anesthetics inhibit the α4β2 nAChR at clinically relevant concentrations, but their binding sites in α4β2 remain unclear. The recently determined NMR structures of the α4β2 nAChR transmembrane (TM) domains provide valuable frameworks for identifying the binding sites. In this study, we performed solution NMR experiments on the α4β2 TM domains in the absence and presence of halothane and ketamine. Both anesthetics were found in an intra-subunit cavity near the extracellular end of the β2 transmembrane helices, homologous to a common anesthetic binding site observed in X-ray structures of anesthetic-bound GLIC (Nury et al., [32]). Halothane, but not ketamine, was also found in cavities adjacent to the common anesthetic site at the interface of α4 and β2. In addition, both anesthetics bound to cavities near the ion selectivity filter at the intracellular end of the TM domains. Anesthetic binding induced profound changes in protein conformational exchanges. A number of residues, close to or remote from the binding sites, showed resonance signal splitting from single to double peaks, signifying that anesthetics decreased conformation exchange rates. It was also evident that anesthetics shifted population of two conformations. Altogether, the study comprehensively resolved anesthetic binding sites in the α4β2 nAChR. Furthermore, the study provided compelling experimental evidence of anesthetic-induced changes in protein dynamics, especially near regions of the hydrophobic gate and ion selectivity filter that directly regulate channel functions. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Propofol preferentially relaxes neurokinin receptor-2-induced airway smooth muscle contraction in guinea pig trachea.

    PubMed

    Gleason, Neil R; Gallos, George; Zhang, Yi; Emala, Charles W

    2010-06-01

    Propofol is the anesthetic of choice for patients with reactive airway disease and is thought to reduce intubation- or irritant-induced bronchoconstriction by decreasing the cholinergic component of vagal nerve activation. However, additional neurotransmitters, including neurokinins, play a role in irritant-induced bronchoconstriction. We questioned the mechanistic assumption that the clinically recognized protective effect of propofol against irritant-induced bronchoconstriction during intubation was due to attenuation of airway cholinergic reflexes. Muscle force was continuously recorded from isolated guinea pig tracheal rings in organ baths. Rings were subjected to exogenous contractile agonists (acetylcholine, histamine, endothelin-1, substance P, acetyl-substance P, and neurokinin A) or to electrical field stimulation (EFS) to differentiate cholinergic or nonadrenergic, noncholinergic nerve-mediated contraction with or without cumulatively increasing concentrations of propofol, thiopental, etomidate, or ketamine. Propofol did not attenuate the cholinergic component of EFS-induced contraction at clinically relevant concentrations. In contrast, propofol relaxed nonadrenergic, noncholinergic-mediated EFS contraction at concentrations within the clinical range (20-100 mum, n = 9; P < 0.05), and propofol was more potent against an exogenous selective neurokinin-2 receptor versus neurokinin-1 receptor agonist contraction (n = 6, P < 0.001). Propofol, at clinically relevant concentrations, relaxes airway smooth muscle contracted by nonadrenergic, noncholinergic-mediated EFS and exogenous neurokinins but not contractions elicited by the cholinergic component of EFS. These findings suggest that the mechanism of protective effects of propofol against irritant-induced bronchoconstriction involves attenuation of tachykinins released from nonadrenergic, noncholinergic nerves acting at neurokinin-2 receptors on airway smooth muscle.

  5. Spinal activation of alpha7-nicotinic acetylcholine receptor attenuates posttraumatic stress disorder-related chronic pain via suppression of glial activation.

    PubMed

    Sun, Rao; Zhang, Wei; Bo, Jinhua; Zhang, Zuoxia; Lei, Yishan; Huo, Wenwen; Liu, Yue; Ma, Zhengliang; Gu, Xiaoping

    2017-03-06

    The high prevalence of chronic pain in posttraumatic stress disorder (PTSD) individuals has been widely reported by clinical studies, which emphasized an urgent need to uncover the underlying mechanisms and identify potential therapeutic targets. Recent studies suggested that targeting activated glia and their pro-inflammatory products may provide a novel and effective therapy for the stress-related pain. In this study, we investigated whether activation of alpha-7 nicotinic acetylcholine receptor (α7 nAChR), a novel anti-inflammatory target, could attenuate PTSD-related chronic pain. The experiments were conducted in a rat model of single prolonged stress (SPS), an established model of PTSD-pain comorbidity. We found that SPS exposure produced persistent mechanical allodynia. Immunohistochemical and enzyme-linked immuno sorbent assay analysis showed that SPS also induced elevated activation of glia cells (including microglia and astrocytes) and accumulation of pro-inflammatory cytokines in spinal cord. In another experiment, we found that intrathecal injection of PHA-543613, a selective α7 nAchR agonist, attenuated the SPS-evoked allodynia in a dose dependent manner. However, this anti-hyperalgesic effect was blocked by pretreatment with methyllycaconitine (MLA), a selective α7 nAchR antagonist. Further analyses showed that PHA-543613 suppressed SPS-induced spinal glial activation and SPS-elevated spinal pro-inflammatory cytokines, and these were abolished by MLA. Taken together, the present study showed that spinal activation of α7 nAChR by PHA-543613 attenuated mechanical allodynia induced by PTSD-like stress, and the suppression of spinal glial activation may underlie this anti-hyperalgesic effect. Our study demonstrated the therapeutic potential of targeting α7 nAChR in the treatment of PTSD-related chronic pain. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Vascular activation of K+ channels and Na+-K+ ATPase activity of estrogen-deficient female rats.

    PubMed

    Ribeiro Junior, Rogério Faustino; Fiorim, Jonaina; Marques, Vinicius Bermond; de Sousa Ronconi, Karoline; Botelho, Tatiani; Grando, Marcella D; Bendhack, Lusiane M; Vassallo, Dalton Valentim; Stefanon, Ivanita

    2017-12-01

    The goal of the present study was to evaluate vascular potassium channels and Na + -K + -ATPase activity in estrogen deficient female rats. Female rats that underwent ovariectomy were assigned to receive daily treatment with placebo (OVX) or estrogen replacement (OVX+E2, 1mg/kg, once a week, i.m.). Aortic rings were used to examine the involvement of K + channels and Na + -K + -ATPase in vascular reactivity. Acetylcholine (ACh)-induced relaxation was analyzed in the presence of L-NAME (100μM) and K + channels blockers: tetraethylammonium (TEA, 5mM), 4-aminopyridine (4-AP, 5mM), iberiotoxin (IbTX, 30nM), apamin (0.5mM), charybdotoxin (ChTX, 0.1mM) and iberiotoxin plus apamin. When aortic rings were pre-contracted with KCl (60mM) or pre-incubated with TEA (5mM), 4-aminopyridine (4-AP, 5mM) and iberiotoxin (IbTX, 30nM) plus apamin (0.5μM), the ACh-induced relaxation was less effective in the ovariectomized group. Additionally, 4-AP and IbTX decreased the relaxation by sodium nitroprusside in all groups but this reduction was greater in the ovariectomized group. Estrogen deficiency also increased aortic functional Na + -K + ATPase activity evaluated by K + -induced relaxation. L-NAME or endothelium removal were not able to block the increase in aortic functional Na + -K + ATPase activity, however, TEA (5mM) restored this increase to the control level. We also found that estrogen deficiency increased superoxide anion production and reduced nitric oxide release in aortic ring from ovariectomized animals. In summary, our results emphasize that the process underlying ACh-induced relaxation is preserved in ovariectomized animals due to the activation of K + channels and increased Na + -K + ATPase activity. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Impairment of contextual fear extinction by chronic nicotine and withdrawal from chronic nicotine is associated with hippocampal nAChR upregulation

    PubMed Central

    Kutlu, Munir Gunes; Oliver, Chicora; Huang, Peng; Liu-Chen, Lee-Yuan; Gould, Thomas J.

    2017-01-01

    Chronic nicotine and withdrawal from chronic nicotine have been shown to be major modulators of fear learning behavior. Moreover, recent studies from our laboratory have shown that acute nicotine impaired fear extinction and safety learning in mice. However, the effects of chronic nicotine and withdrawal on fear extinction are unknown. Therefore, the current experiments were conducted to investigate the effects of chronic nicotine as well as withdrawal from chronic nicotine on contextual fear extinction in mice. C57BL6/J mice were given contextual fear conditioning training and retention testing during chronic nicotine administration. Mice then received contextual fear extinction either during chronic nicotine or during withdrawal from chronic nicotine. Our results showed that contextual fear extinction was impaired both during chronic nicotine administration and subsequent withdrawal. However, it was also observed that the effects of prior chronic nicotine disappeared after 72 h in withdrawal, a timeline that closely matches with the timing of the chronic nicotine-induced upregulation of hippocampal nicotinic acetylcholine receptor (nAChR) density. Additional experiments found that 4 days, but not 1 day, of continuous nicotine administration upregulated hippocampal nAChRs and impaired contextual fear extinction. These effects disappeared following 72 h withdrawal. Overall, these experiments provide a potential link between nicotine-induced upregulation of hippocampal nAChRs and fear extinction deficits observed in patients with anxiety disorders, which may lead to advancements in the pharmacological treatment methods for this disorder. PMID:27378334

  8. Intracellular calcium dynamics and acetylcholine-induced triggered activity in the pulmonary veins of dogs with pacing-induced heart failure

    PubMed Central

    Chou, Chung-Chuan; Nguyen, Bich Lien; Tan, Alex Y.; Chang, Po-Cheng; Lee, Hui-Ling; Lin, Fun-Chung; Yeh, San-Jou; Fishbein, Michael C.; Lin, Shien-Fong; Wu, Delon; Wen, Ming-Shien; Chen, Peng-Sheng

    2009-01-01

    BACKGROUND Heart failure increases autonomic nerve activities and changes intracellular calcium (Cai) dynamics. OBJECTIVE The purpose of this study was to investigate the hypothesis that abnormal Cai dynamics are responsible for triggered activity in the pulmonary veins (PVs) during acetylcholine infusion in a canine model of heart failure. METHODS Simultaneous optical mapping of and membrane Cai potential was performed in isolated Langendorff-perfused PV–left atrial (LA) preparations from nine dogs with ventricular pacing-induced heart failure. Mapping was performed at baseline, during acetylcholine (1 μmol/L) infusion (N = 9), and during thapsigargin and ryanodine infusion (N = 6). RESULTS Acetylcholine abbreviated the action potential. In four tissues, long pauses were followed by elevated diastolic Cai, late phase 3 early afterdepolarizations, and atrial fibrillation (AF). The incidence of PV focal discharges during AF was increased by acetylcholine from 2.4 ± 0.6 beats/s (N = 4) to 6.5 ± 2.2 beats/s (N = 8; P = .003). PV focal discharge and PV–LA microreentry coexisted in 6 of 9 preparations. The spatial distribution of dominant frequency demonstrated a focal source pattern, with the highest dominant frequency areas colocalized with PV focal discharge sites in 35 (95%) of 37 cholinergic AF episodes (N = 8). Thapsigargin and ryanodine infusion eliminated focal discharges in 6 of 6 preparations and suppressed the inducibility of AF in 4 of 6 preparations. PVs with focal discharge have higher densities of parasympathetic nerves than do PVs without focal discharges (P = .01), and periodic acid–Schiff (PAS)-positive cells were present at the focal discharge sites. CONCLUSION Cai dynamics are important in promoting triggered activity during acetylcholine infusion in PVs from pacing-induced heart failure. PV focal discharge sites have PAS-positive cells and high densities of parasympathetic nerves. PMID:18554987

  9. Structural characterization of agonist and antagonist-bound acetylcholine-binding protein from Aplysia californica.

    PubMed

    Hansen, Scott B; Sulzenbacher, Gerlind; Huxford, Tom; Marchot, Pascale; Bourne, Yves; Taylor, Palmer

    2006-01-01

    Nicotinic acetylcholine receptors (nAChRs) are well-characterized allosteric transmembrane proteins involved in the rapid gating of ions elicited by ACh. These receptors belong to the Cys-loop superfamily of ligand-gated ion channels, which also includes GABAA and GABAC, 5-HT3, and glycine receptors. The nAChRs are homo- or heteromeric pentamers of structurally related subunits that encompass an extracellular N-terminal ligand-binding domain, four transmembrane-spanning regions that form the ion channel, and an extended intracellular region between spans 3 and 4. Ligand binding triggers conformational changes that are transmitted to the transmembrane-spanning region, leading to gating and changes in membrane potential. The four transmembrane spans on each of the five subunits create a substantial region of hydrophobicity that precludes facile crystallization of this protein. However the freshwater snail, Lymnaea stagnalis, produces a soluble homopentameric protein, termed the ACh-binding protein (AChBP), which binds ACh (Smit et al., 2001). Its structure was determined recently (Brejc et al., 2001) at high resolution, revealing the structural scaffold for nAChR, and has become a functional and structural surrogate of the nAChR ligand-binding domain. We have characterized an AChBP from Aplysia californica and determined distinct ligand-binding properties when compared to those of L. stagnalis, including ligand specificity for the nAChR alpha7 subtype-specific alpha-conotoxin ImI (Hansen et al., 2004).

  10. Design of ligands for the nicotinic acetylcholine receptors: the quest for selectivity.

    PubMed

    Bunnelle, William H; Dart, Michael J; Schrimpf, Michael R

    2004-01-01

    In the last decade, nicotinic acetylcholine receptors (nAChRs) have emerged as important targets for drug discovery. The therapeutic potential of nicotinic agonists depends substantially on the ability to selectively activate certain receptor subtypes that mediate beneficial effects. The design of such compounds has proceeded in spite of a general shortage of data pertaining to subtype selectivity. Medicinal chemistry efforts have been guided principally by binding affinities to the alpha4beta2 and/or alpha7 subtypes, even though these are not predictive of agonist activity at either subtype. Nevertheless, a diverse family of nAChR ligands has been developed, and several analogs with promising therapeutic potential have now advanced to human clinical trials. This paper provides an overview of the structure-affinity relationships that continue to drive development of new nAChR ligands.

  11. Novel bis-(−)-nor-meptazinol derivatives act as dual binding site AChE inhibitors with metal-complexing property

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Wei; NPFPC Key Laboratory of Contraceptives and Devices, Shanghai Institute of Planned Parenthood Research, 2140 Xietu Road, Shanghai 200032; Li, Juan

    The strategy of dual binding site acetylcholinesterase (AChE) inhibition along with metal chelation may represent a promising direction for multi-targeted interventions in the pathophysiological processes of Alzheimer's disease (AD). In the present study, two derivatives (ZLA and ZLB) of a potent dual binding site AChE inhibitor bis-(−)-nor-meptazinol (bis-MEP) were designed and synthesized by introducing metal chelating pharmacophores into the middle chain of bis-MEP. They could inhibit human AChE activity with IC{sub 50} values of 9.63 μM (for ZLA) and 8.64 μM (for ZLB), and prevent AChE-induced amyloid-β (Aβ) aggregation with IC{sub 50} values of 49.1 μM (for ZLA) and 55.3more » μM (for ZLB). In parallel, molecular docking analysis showed that they are capable of interacting with both the catalytic and peripheral anionic sites of AChE. Furthermore, they exhibited abilities to complex metal ions such as Cu(II) and Zn(II), and inhibit Aβ aggregation triggered by these metals. Collectively, these results suggest that ZLA and ZLB may act as dual binding site AChEIs with metal-chelating potency, and may be potential leads of value for further study on disease-modifying treatment of AD. -- Highlights: ► Two novel bis-(−)-nor-meptazinol derivatives are designed and synthesized. ► ZLA and ZLB may act as dual binding site AChEIs with metal-chelating potency. ► They are potential leads for disease-modifying treatment of Alzheimer's disease.« less

  12. Activation and inhibition of mouse muscle and neuronal nicotinic acetylcholine receptors expressed in Xenopus oocytes.

    PubMed

    Papke, Roger L; Wecker, Lynn; Stitzel, Jerry A

    2010-05-01

    Transgenic mouse models with nicotinic acetylcholine receptor (nAChR) knockouts and knockins have provided important insights into the molecular substrates of addiction and disease. However, most studies of heterologously expressed neuronal nAChR have used clones obtained from other species, usually human or rat. In this work, we use mouse clones expressed in Xenopus oocytes to provide a relatively comprehensive characterization of the three primary classes of nAChR: muscle-type receptors, heteromeric neuronal receptors, and homomeric alpha7-type receptors. We evaluated the activation of these receptor subtypes with acetylcholine and cytisine-related compounds, including varenicline. We also characterized the activity of classic nAChR antagonists, confirming the utility of mecamylamine and dihydro-beta-erythroidine as selective antagonists in mouse models of alpha3beta4 and alpha4beta2 receptors, respectively. We also conducted an in-depth analysis of decamethonium and hexamethonium on muscle and neuronal receptor subtypes. Our data indicate that, as with receptors cloned from other species, pairwise expression of neuronal alpha and beta subunits in oocytes generates heterogeneous populations of receptors, most likely caused by variations in subunit stoichiometry. Coexpression of the mouse alpha5 subunit had varying effects, depending on the other subunits expressed. The properties of cytisine-related compounds are similar for mouse, rat, and human nAChR, except that varenicline produced greater residual inhibition of mouse alpha4beta2 receptors than with human receptors. We confirm that decamethonium is a partial agonist, selective for muscle-type receptors, but also note that it is a nondepolarizing antagonist for neuronal-type receptors. Hexamethonium was a relatively nonselective antagonist with mixed competitive and noncompetitive activity.

  13. Activation and Inhibition of Mouse Muscle and Neuronal Nicotinic Acetylcholine Receptors Expressed in Xenopus Oocytes

    PubMed Central

    Wecker, Lynn; Stitzel, Jerry A.

    2010-01-01

    Transgenic mouse models with nicotinic acetylcholine receptor (nAChR) knockouts and knockins have provided important insights into the molecular substrates of addiction and disease. However, most studies of heterologously expressed neuronal nAChR have used clones obtained from other species, usually human or rat. In this work, we use mouse clones expressed in Xenopus oocytes to provide a relatively comprehensive characterization of the three primary classes of nAChR: muscle-type receptors, heteromeric neuronal receptors, and homomeric α7-type receptors. We evaluated the activation of these receptor subtypes with acetylcholine and cytisine-related compounds, including varenicline. We also characterized the activity of classic nAChR antagonists, confirming the utility of mecamylamine and dihydro-β-erythroidine as selective antagonists in mouse models of α3β4 and α4β2 receptors, respectively. We also conducted an in-depth analysis of decamethonium and hexamethonium on muscle and neuronal receptor subtypes. Our data indicate that, as with receptors cloned from other species, pairwise expression of neuronal α and β subunits in oocytes generates heterogeneous populations of receptors, most likely caused by variations in subunit stoichiometry. Coexpression of the mouse α5 subunit had varying effects, depending on the other subunits expressed. The properties of cytisine-related compounds are similar for mouse, rat, and human nAChR, except that varenicline produced greater residual inhibition of mouse α4β2 receptors than with human receptors. We confirm that decamethonium is a partial agonist, selective for muscle-type receptors, but also note that it is a nondepolarizing antagonist for neuronal-type receptors. Hexamethonium was a relatively nonselective antagonist with mixed competitive and noncompetitive activity. PMID:20100906

  14. Relaxations of the isolated portal vein of the rabbit induced by nicotine and electrical stimulation

    PubMed Central

    Hughes, J.; Vane, J. R.

    1970-01-01

    1. A pharmacological analysis of the inhibitory innervation of the isolated portal vein of the rabbit has been made. 2. In untreated preparations, transmural stimulation elicited a long-lasting relaxation at low frequencies (0·2-1 Hz); at higher frequencies a contraction followed by a prolonged after-relaxation occurred. Tetrodotoxin abolished the contractions but a higher dose was required to abolish the relaxations. Veratrine lowered the threshold of stimulation for producing relaxations in the untreated vein. The relaxations were unaffected by hyoscine or hexamethonium. They were reduced or altered by antagonists of α-adrenoceptors for catecholamines and by adrenergic neurone blockade. They were sometimes slightly reduced by antagonists of β-adrenoceptors. 3. In the presence of antagonists of α-adrenoceptors, electrical stimulation elicited relaxations which increased with frequency of stimulation and became maximal at 20-30 Hz. These relaxations were partially reduced by antagonists of β-adrenoceptors, or by adrenergic neurone block; the antagonisms were more pronounced at the higher frequencies of stimulation. Noradrenaline also caused relaxations which were abolished by β-adrenoceptor blocking drugs. Cocaine increased the sensitivity to noradrenaline by 7-8 fold after α-adrenoceptor blockade but had little or no effect on the relaxations induced by electrical stimulation at high frequencies. 4. In the presence of antagonists of α- and β-adrenoceptors, or adrenergic neurone blocking agents, or in veins taken from rabbits pretreated with reserpine, electrical stimulation elicited rapid relaxations which were greatest at 20-30 Hz. These relaxations were increased by veratrine and abolished by tetrodotoxin or by storing the vein for 9 days at 4° C. They were unaffected by antagonists of acetylcholine, or by dipyridamole. 5. Prostaglandins E1, E2 and F2α inhibited contractions elicited by electrical stimulation and noradrenaline, but in higher doses

  15. Molecular blueprint of allosteric binding sites in a homologue of the agonist-binding domain of the α7 nicotinic acetylcholine receptor

    PubMed Central

    Spurny, Radovan; Debaveye, Sarah; Farinha, Ana; Veys, Ken; Vos, Ann M.; Gossas, Thomas; Atack, John; Bertrand, Sonia; Bertrand, Daniel; Danielson, U. Helena; Tresadern, Gary; Ulens, Chris

    2015-01-01

    The α7 nicotinic acetylcholine receptor (nAChR) belongs to the family of pentameric ligand-gated ion channels and is involved in fast synaptic signaling. In this study, we take advantage of a recently identified chimera of the extracellular domain of the native α7 nicotinic acetylcholine receptor and acetylcholine binding protein, termed α7-AChBP. This chimeric receptor was used to conduct an innovative fragment-library screening in combination with X-ray crystallography to identify allosteric binding sites. One allosteric site is surface-exposed and is located near the N-terminal α-helix of the extracellular domain. Ligand binding at this site causes a conformational change of the α-helix as the fragment wedges between the α-helix and a loop homologous to the main immunogenic region of the muscle α1 subunit. A second site is located in the vestibule of the receptor, in a preexisting intrasubunit pocket opposite the agonist binding site and corresponds to a previously identified site involved in positive allosteric modulation of the bacterial homolog ELIC. A third site is located at a pocket right below the agonist binding site. Using electrophysiological recordings on the human α7 nAChR we demonstrate that the identified fragments, which bind at these sites, can modulate receptor activation. This work presents a structural framework for different allosteric binding sites in the α7 nAChR and paves the way for future development of novel allosteric modulators with therapeutic potential. PMID:25918415

  16. Poly(ADP-ribose) polymerase-1 protects from oxidative stress induced endothelial dysfunction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gebhard, Catherine; Staehli, Barbara E.; Zurich Center for Integrative Human Physiology

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer The nuclear enzyme PARP-1 is a downstream effector of oxidative stress. Black-Right-Pointing-Pointer PARP-1 protects from oxidative stress induced endothelial dysfunction. Black-Right-Pointing-Pointer This effect is mediated through inhibition of vasoconstrictor prostanoid production. Black-Right-Pointing-Pointer Thus, PARP-1 may play a protective role as antioxidant defense mechanism. -- Abstract: Background: Generation of reactive oxygen species (ROS) is a key feature of vascular disease. Activation of the nuclear enzyme poly (adenosine diphosphate [ADP]-ribose) polymerase-1 (PARP-1) is a downstream effector of oxidative stress. Methods: PARP-1(-/-) and PARP-1(+/+) mice were injected with paraquat (PQ; 10 mg/kg i.p.) to induce intracellular oxidative stress. Aortic rings weremore » suspended in organ chambers for isometric tension recording to analyze vascular function. Results: PQ treatment markedly impaired endothelium-dependent relaxations to acetylcholine in PARP-1(-/-), but not PARP-1(+/+) mice (p < 0.0001). Maximal relaxation was 45% in PQ treated PARP-1(-/-) mice compared to 79% in PARP-1(+/+) mice. In contrast, endothelium-independent relaxations to sodium nitroprusside (SNP) were not altered. After PQ treatment, L-NAME enhanced contractions to norepinephrine by 2.0-fold in PARP-1(-/-) mice, and those to acetylcholine by 3.3-fold, respectively, as compared to PARP-1(+/+) mice. PEG-superoxide dismutase (SOD) and PEG-catalase prevented the effect of PQ on endothelium-dependent relaxations to acetylcholine in PARP-1(-/-) mice (p < 0.001 vs. PQ treated PARP-1(+/+) mice. Indomethacin restored endothelium-dependent relaxations to acetylcholine in PQ treated PARP-1(-/-) mice (p < 0.05 vs. PQ treated PARP-1(+/+). Conclusion: PARP-1 protects from acute intracellular oxidative stress induced endothelial dysfunction by inhibiting ROS induced production of vasoconstrictor prostanoids.« less

  17. Triiodothyronine Potentiates Vasorelaxation via PKG/VASP Signaling in Vascular Smooth Muscle Cells.

    PubMed

    Samuel, Sherin; Zhang, Kuo; Tang, Yi-Da; Gerdes, A Martin; Carrillo-Sepulveda, Maria Alicia

    2017-01-01

    Vascular relaxation caused by Triiodothyronine (T3) involves direct activation of endothelial cells (EC) and vascular smooth muscle cells (VSMC). Activation of protein kinase G (PKG) has risen as a novel contributor to the vasorelaxation mechanism triggered by numerous stimuli. We hypothesize that T3-induced vasorelaxation involves PKG/vasodilator-stimulated phosphoprotein (VASP) signaling pathway in VSMC. Human aortic endothelial cells (HAEC) and VSMC were treated with T3 for short (2 to 60 minutes) and long term (24 hours). Nitric oxide (NO) production was measured using DAF-FM. Expression of protein targets was determined using western blot. For functional studies, rat aortas were isolated and treated with T3 for 20 minutes and mounted in a wire myograph. Relaxation was measured by a concentration-dependent response to acetylcholine (ACh) and sodium nitroprusside (SNP). Aortas stimulated with T3 exhibited augmented sensitivity to ACh and SNP-induced relaxation, endothelium-dependent and endothelium-independent responses, respectively. T3 directly increased vasorelaxation, which was abolished in the presence of a PKG inhibitor. T3 markedly induced phosphorylation of Akt, eNOS and consequently increased NO production in EC. Likewise, T3 induced phosphorylation of VASP at serine 239 via the PKG pathway in VSMC. Our findings have uncovered a PKG/VASP signaling pathway in VSMC as a key molecular mechanism underlying T3-induced vascular relaxation. © 2017 The Author(s)Published by S. Karger AG, Basel.

  18. alpha7 and non-alpha7 nicotinic acetylcholine receptors modulate dopamine release in vitro and in vivo in the rat prefrontal cortex.

    PubMed

    Livingstone, Phil D; Srinivasan, Jayaraman; Kew, James N C; Dawson, Lee A; Gotti, Cecilia; Moretti, Milena; Shoaib, Mohammed; Wonnacott, Susan

    2009-02-01

    Nicotine enhances attentional and working memory aspects of executive function in the prefrontal cortex (PFC) where dopamine plays a major role. Here, we have determined the nicotinic acetylcholine receptor (nAChR) subtypes that can modulate dopamine release in rat PFC using subtype-selective drugs. Nicotine and 5-Iodo-A-85380 (beta2* selective) elicited [(3)H]dopamine release from both PFC and striatal prisms in vitro and dopamine overflow from medial PFC in vivo. Blockade by dihydro-beta-erythroidine supports the participation of beta2* nAChRs. However, insensitivity of nicotine-evoked [(3)H]dopamine release to alpha-conotoxin-MII in PFC prisms suggests no involvement of alpha6beta2* nAChRs, in contrast to the striatum, and this distinction is supported by immunoprecipitation of nAChR subunits from these tissues. The alpha7 nAChR-selective agonists choline and Compound A also promoted dopamine release from PFC in vitro and in vivo, and their effects were enhanced by the alpha7 nAChR-selective allosteric potentiator PNU-120596 and blocked by specific antagonists. DNQX and MK801 inhibited [(3)H]dopamine release evoked by choline and PNU-120596, suggesting crosstalk between alpha7 nAChRs, glutamate and dopamine in the PFC. In vivo, systemic (but not local) administration of PNU-120596, in the absence of agonist, facilitated dopamine overflow in the medial PFC, consistent with the activation of extracortical alpha7 nAChRs by endogenous acetylcholine or choline. These data establish that both beta2* and alpha7 nAChRs can modulate dopamine release in the PFC in vitro and in vivo. Through their distinct actions on dopamine release, these nAChR subtypes could contribute to executive function, making them specific therapeutic targets for conditions such as schizophrenia and attention deficit hyperactivity disorder.

  19. Carbachol inhibits basal and forskolin-evoked adult rat striatal acetylcholine release.

    PubMed

    Login, I S

    1997-05-27

    Acutely dissociated adult rat striatal cholinergic neurons labeled with [3H]choline were used in a perifusion system to study muscarinic regulation of basal and forskolin-stimulated fractional [3H]acetylcholine ([3H]-ACh) efflux in the absence of synaptic modulation. Carbachol inhibited basal (40% maximal inhibition; IC50 approximately 0.7 microM) and forskolin-evoked release (75% inhibition; IC50 approximately 0.05 microM) in a concentration-dependent manner, and both carbachol actions were abolished with atropine. Thus, activation of striatal muscarinic cholinergic autoreceptors potently inhibits basal and adenylate cyclase-stimulated ACh release. Tonic inhibitory control of cholinergic activity by functional striatal circuitry apparently prevents detection of these important physiological interactions in slices or in situ.

  20. Serelaxin treatment reverses vascular dysfunction and left ventricular hypertrophy in a mouse model of Type 1 diabetes

    PubMed Central

    Ng, Hooi Hooi; Leo, Chen Huei; Prakoso, Darnel; Qin, Chengxue; Ritchie, Rebecca H.; Parry, Laura J.

    2017-01-01

    Serelaxin prevents endothelial dysfunction in the mouse aorta ex vivo and inhibits apoptosis in cardiomyocytes under acute hyperglycaemia. Less is known about the effects of serelaxin in an in vivo mouse model of diabetes. Therefore, we tested the hypothesis in streptozotocin (STZ)-treated mice that serelaxin is able to reverse diabetes-induced vascular dysfunction and cardiac remodelling. Mice were divided into citrate buffer + placebo, STZ + placebo and STZ + serelaxin (0.5 mg/kg/d, 2 weeks) groups. After 12 weeks of diabetes, sensitivity to the endothelium-dependent agonist acetylcholine (ACh) was reduced in the mesenteric artery. This was accompanied by an enhanced vasoconstrictor prostanoid contribution and a decrease in endothelium-derived hyperpolarisation (EDH)-mediated relaxation. Serelaxin restored endothelial function by increasing nitric oxide (NO)-mediated relaxation but not EDH. It also normalised the contribution of vasoconstrictor prostanoids to endothelial dysfunction and suppressed diabetes-induced hyper-responsiveness of the mesenteric artery to angiotensin II. Similarly, diabetes reduced ACh-evoked NO-mediated relaxation in the aorta which was reversed by serelaxin. In the left ventricle, diabetes promoted apoptosis, hypertrophy and fibrosis; serelaxin treatment reversed this ventricular apoptosis and hypertrophy, but had no effect on fibrosis. In summary, serelaxin reversed diabetes-induced endothelial dysfunction by enhancing NO-mediated relaxation in the mouse vasculature and attenuating left ventricular hypertrophy and apoptosis. PMID:28067255

  1. An Antibody Biosensor Establishes the Activation of the M1 Muscarinic Acetylcholine Receptor during Learning and Memory*♦

    PubMed Central

    Butcher, Adrian J.; Bradley, Sophie J.; Prihandoko, Rudi; Brooke, Simon M.; Mogg, Adrian; Bourgognon, Julie-Myrtille; Macedo-Hatch, Timothy; Edwards, Jennifer M.; Bottrill, Andrew R.; Challiss, R. A. John; Broad, Lisa M.; Felder, Christian C.; Tobin, Andrew B.

    2016-01-01

    Establishing the in vivo activation status of G protein-coupled receptors would not only indicate physiological roles of G protein-coupled receptors but would also aid drug discovery by establishing drug/receptor engagement. Here, we develop a phospho-specific antibody-based biosensor to detect activation of the M1 muscarinic acetylcholine receptor (M1 mAChR) in vitro and in vivo. Mass spectrometry phosphoproteomics identified 14 sites of phosphorylation on the M1 mAChR. Phospho-specific antibodies to four of these sites established that serine at position 228 (Ser228) on the M1 mAChR showed extremely low levels of basal phosphorylation that were significantly up-regulated by orthosteric agonist stimulation. In addition, the M1 mAChR-positive allosteric modulator, 1-(4-methoxybenzyl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid, enhanced acetylcholine-mediated phosphorylation at Ser228. These data supported the hypothesis that phosphorylation at Ser228 was an indicator of M1 mAChR activation. This was further supported in vivo by the identification of phosphorylated Ser228 on the M1 mAChR in the hippocampus of mice following administration of the muscarinic ligands xanomeline and 1-(4-methoxybenzyl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid. Finally, Ser228 phosphorylation was seen to increase in the CA1 region of the hippocampus following memory acquisition, a response that correlated closely with up-regulation of CA1 neuronal activity. Thus, determining the phosphorylation status of the M1 mAChR at Ser228 not only provides a means of establishing receptor activation following drug treatment both in vitro and in vivo but also allows for the mapping of the activation status of the M1 mAChR in the hippocampus following memory acquisition thereby establishing a link between M1 mAChR activation and hippocampus-based memory and learning. PMID:26826123

  2. Actions of piperidine alkaloid teratogens at fetal nicotinic acetylcholine receptors.

    PubMed

    Green, Benedict T; Lee, Stephen T; Panter, Kip E; Welch, Kevin D; Cook, Daniel; Pfister, James A; Kem, William R

    2010-01-01

    Teratogenic alkaloids are found in many species of plants including Conium maculatum L., Nicotiana glauca, Nicotiana tabaccum, and multiple Lupinus spp. Fetal musculoskeletal defects produced by alkaloids from these plants include arthrogyropisis, scoliosis, torticollis, kyposis, lordosis, and cleft palate. A pharmacodynamic comparison of the alkaloids ammodendrine, anabasine, anabaseine, anagyrine, and coniine in SH-SY5Y cells and TE-671 cells was made. These alkaloids and their enantiomers were more effective in depolarizing TE-671 cells which express the human fetal-muscle type nicotinic acetylcholine receptor (nAChR) relative to SH-SY5Y cells which predominately express autonomic nAChRs. The rank order of potency in TE-671 cells was: anabaseine>(+)-anabasine>(-)-anabasine > (+/-)-anabasine>anagyrine>(-)-coniine > (+/-)-coniine>(+)-coniine>(+/-)-ammodendrine>(+)-ammodendrine. The rank order potency in SH-SY5Y cells was: anabaseine>(+)-anabasine>(-)-coniine>(+)-coniine>(+)-ammodendrine>anagyrine>(-)-anabasine>(+/-)-coniine>(+/-)-anabasine>(-)-ammodendrine. The actions of these alkaloids at nAChRs in both cell lines could be distinguished by their maximum effects in depolarizing cell membrane potential. The teratogenic action of these compounds may be related to their ability to activate and subsequently desensitize nAChRs.

  3. Proteomic Analysis of an α7 Nicotinic Acetylcholine Receptor Interactome

    PubMed Central

    Paulo, Joao A.; Brucker, William J.; Hawrot, Edward

    2009-01-01

    The α7 nicotinic acetylcholine receptor (nAChR) is well established as the principal high-affinity α-bungarotoxin-binding protein in the mammalian brain. We isolated carbachol-sensitive α-bungarotoxin-binding complexes from total mouse brain tissue by affinity immobilization followed by selective elution, and these proteins were fractionated by SDS-PAGE. The proteins in subdivided gel lane segments were tryptically digested, and the resulting peptides were analyzed by standard mass spectrometry. We identified 55 proteins in wild-type samples that were not present in comparable brain samples from α7 nAChR knockout mice that had been processed in a parallel fashion. Many of these 55 proteins are novel proteomic candidates for interaction partners of the α7 nAChR, and many are associated with multiple signaling pathways that may be implicated in α7 function in the central nervous system. The newly identified potential protein interactions, together with the general methodology that we introduce for α-bungarotoxin-binding protein complexes, form a new platform for many interesting follow-up studies aimed at elucidating the physiological role of neuronal α7 nAChRs. PMID:19714875

  4. The neuroinflammatory phenotype in a mouse model of Gulf War Illness is unrelated to brain regional levels of acetylcholine as measured by quantitative HILIC-UPLC-MS/MS.

    PubMed

    Miller, Julie V; LeBouf, Ryan F; Kelly, Kimberly A; Michalovicz, Lindsay T; Ranpara, Anand; Locker, Alicia R; Miller, Diane B; O'Callaghan, James P

    2018-05-28

    Many veterans of the 1991 Persian Gulf War (GW) returned with a chronic multisymptom illness that has been termed Gulf War Illness (GWI). Previous GWI studies have suggested that exposure to acetylcholinesterase inhibitors (AChEIs) in theater, such as sarin and/or pesticides, may have contributed to the symptomatology of GWI. Additionally, concomitant high physiological stress experienced during the war may have contributed to the initiation of the GWI phenotype. While inhibition of AChE leading to accumulation of acetylcholine (ACh) will activate the cholinergic anti-inflammatory pathway, the signature symptomatology of GWI has been shown to be associated with neuroinflammation. To investigate the relationship between ACh and neuroinflammation in discrete brain regions, we used our previously established mouse model of GWI, which combines an exposure to a high physiological stress mimic, corticosterone (CORT), with GW-relevant AChEIs. The AChEIs used in this study were diisopropyl fluorophosphate (DFP), chlorpyrifos oxon (CPO), and physostigmine (PHY). After AChEI exposure, ACh concentrations for cortex (CTX), hippocampus (HIP), and striatum (STR) were determined using hydrophilic interaction liquid chromatography (HILIC) with ultra-performance liquid chromatography (UPLC)-tandem-mass spectrometry (MS/MS). CORT pretreatment ameliorated the DFP-induced ACh increase in HIP and STR, but not CTX. CORT pretreatment did not significantly alter ACh levels for CPO and PHY. Further analysis of STR neuroinflammatory biomarkers revealed an exacerbated CORT+AChEI response, which does not correspond to measured brain ACh. By utilizing this new analytical method for discrete brain region analysis of ACh, this work suggests the exacerbated neuroinflammatory effects in our mouse model of GWI are not driven by the accumulation of brain region-specific ACh.

  5. The nicotinic acetylcholine receptor: Binding of nitroxide analogs of a local anesthetic and a photoactivatable analog of phosphatidylserine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanton, M.P.

    1989-01-01

    Electron spin resonance was used to contrast the accessibility of tertiary and quaternary amine local anesthetics to their high affinity binding site in the desensitized Torpedo californica acetylcholine receptor (AchR). Preincubation of AchR-rich membranes with agonist resulted in a substantial reduction in the initial association of the quaternary amine local anesthetic C6SLMEI with the receptor. The time-dependent reduction in association follows a biphasic exponential function having rate constants of 0.19 min{sup {minus}1} and 0.03 min{sup {minus}1}. In contrast, agonist preincubation did not produce a comparable decrease in the association of C6SL, a tertiary amine analog, with the AchR. The resultsmore » are modeled in two ways: (1) A charge gate near the channel mouth in the desensitized receptor limits access of the permanently charged cationic local anesthetic (C6SLMEI), but not for the uncharged form of the tertiary amine anesthetic C6SL. (2) A hydrophobic pathway, possibly through a corridor in the annular lipid surrounding receptor subunits, allows the uncharged form of C6SL to reach the high affinity binding site in the AchR. A photoactivatable analog of phosphatidylserine {sup 125}I 4-azido salicylic acid-phosphatidylserine ({sup 125}I ASA-PS) was use to label both Torpedo californica acetylcholine receptor-rich membranes and reconstituted AchR membranes. All four subunits of the AchR were found to incorporate label, with the {alpha} subunit incorporating approximately twice as much as each of the other subunits on a per mole basis. The regions of the AchR {alpha} subunit that incorporate {sup 125}I ASA-PS were mapped by Staphylococcus aureus V8 protease digestion. Eighty-one per cent of the incorporated label was localized to 11.7 and 10.1 kdal V8 cleavage fragments.« less

  6. Effects of EGCG and Chlorpyrifos on the Mortality, AChE and GSH of Adult Zebrafish: Independent and Combination

    NASA Astrophysics Data System (ADS)

    Zhang, Rong; Zhang, Jian; Gao, Qian; Guo, Nichun

    2018-01-01

    Chlorpyrifos is a neurotoxic agent and also causes oxidative stress in the body. EGCG is a typical strong antioxidant and has been reported to be neuroprotective. Our study investigated the mortality, the activity of acetylcholinesterase (AChE) in the brain and glutathione (GSH) in the liver of the adult Zebrafish in present of Chlorpyrifos and EGCG independent and combination. The results indicated that after the addition of EGCG, the mortality of zebrafish induced by Chlorpyrifos was reduced and the activity of AChE and glutathione (GSH) inhibited by Chlorpyrifos in zebrafish was significantly increased, which demonstrated that EGCG inhibited the toxicity Chlorpyrifos to zebrafish. The inhibition was dependent on the concentration of EGCG and Chlorpyrifos, which was not shown a gradual change trend but a complex situation.

  7. Systemic Injections of Cannabidiol Enhance Acetylcholine Levels from Basal Forebrain in Rats.

    PubMed

    Murillo-Rodríguez, Eric; Arankowsky-Sandoval, Gloria; Rocha, Nuno Barbosa; Peniche-Amante, Rodrigo; Veras, André Barciela; Machado, Sérgio; Budde, Henning

    2018-06-06

    Cannabis sativa is a plant that contains more than 500 components, of which the most studied are Δ 9 -tetrahydrocannabinol (Δ 9 -THC) and cannabidiol (CBD). Several studies have indicated that CBD displays neurobiological effects, including wake promotion. Moreover, experimental evidence has shown that injections of CBD enhance wake-related compounds, such as monoamines (dopamine, serotonin, epinephrine, and norepinephrine). However, no clear evidence is available regarding the effects of CBD on additional wake-related neurochemicals such as acetylcholine (ACh). Here, we demonstrate that systemic injections of CBD (0, 5, 10 or 30 mg/kg, i.p.) at the beginning of the lights-on period, increase the extracellular levels of ACh collected from the basal forebrain and measured by microdialysis and HPLC means. Moreover, the time course effects on the contents of ACh were present 5 h post-injection of CBD. Altogether, these data demonstrate that CBD increases ACh levels in a brain region related to wake control. This study is the first to show the effects of ACh levels in CBD-treated rats and suggests that the basal forebrain might be a site of action of CBD for wakefulness modulation.

  8. Muscarinic Acetylcholine Receptor Localization and Activation Effects on Ganglion Response Properties

    PubMed Central

    Renna, Jordan M.; Amthor, Franklin R.; Keyser, Kent T.

    2010-01-01

    Purpose. The activation and blockade of muscarinic acetylcholine receptors (mAChRs) affects retinal ganglion cell light responses and firing rates. This study was undertaken to identify the full complement of mAChRs expressed in the rabbit retina and to assess mAChR distribution and the functional effects of mAChR activation and blockade on retinal response properties. Methods. RT-PCR, Western blot analysis, and immunohistochemistry were used to identify the complement and distribution of mAChRs in the rabbit retina. Extracellular electrophysiology was used to determine the effects of the activation or blockade of mAChRs on ganglion cell response properties. Results. RT-PCR of whole neural retina resulted in the amplification of mRNA transcripts for the m1 to m5 mAChR subtypes. Western blot and immunohistochemical analyses confirmed that all five mAChR subtypes were expressed by subpopulations of bipolar, amacrine, and ganglion cells in the rabbit retina, including subsets of cells in cholinergic and glycinergic circuits. Nonspecific muscarinic activation and blockade resulted in the class-specific modulation of maintained ganglion cell firing rates and light responses. Conclusions. The expression of mAChR subtypes on subsets of bipolar, amacrine, and ganglion cells provides a substrate for both enhancement and suppression of retinal responses via activation by cholinergic agents. Thus, the muscarinic cholinergic system in the retina may contribute to the modulation of complex stimuli. Understanding the distribution and function of mAChRs in the retina has the potential to provide important insights into the visual changes that are caused by decreased ACh in the retinas of Alzheimer's patients and the potential visual effects of anticholinergic treatments for ocular diseases. PMID:20042645

  9. IL-1 receptor antagonist-mediated therapeutic effect in murine myasthenia gravis is associated with suppressed serum proinflammatory cytokines, C3, and anti-acetylcholine receptor IgG1.

    PubMed

    Yang, Huan; Tüzün, Erdem; Alagappan, Dhivyaa; Yu, Xiang; Scott, Benjamin G; Ischenko, Alexander; Christadoss, Premkumar

    2005-08-01

    In myasthenia gravis (MG), TNF and IL-1beta polymorphisms and high serum levels of these proinflammatory cytokines have been observed. Likewise, TNF and IL-1beta are critical for the activation of acetylcholine receptor (AChR)-specific T and B cells and for the development of experimental autoimmune myasthenia gravis (EAMG) induced by AChR immunization. We tested the therapeutic effect of human recombinant IL-1 receptor antagonist (IL-1ra) in C57BL/6 mice with EAMG. Multiple daily injections of 0.01 mg of IL-1ra administered for 2 wk following two AChR immunizations decreased the incidence and severity of clinical EAMG. Furthermore, IL-1ra treatment of mice with ongoing clinical EAMG reduced the clinical symptoms of disease. The IL-1ra-mediated suppression of clinical disease was associated with suppressed serum IFN-gamma, TNF-alpha, IL-1beta, IL-2, IL-6, C3, and anti-AChR IgG1 without influencing total serum IgG. Therefore, IL-1ra could be used as a nonsteroidal drug for the treatment of MG.

  10. Cholinergic Modulation of the Hippocampus during Encoding and Retrieval of Tone/Shock-Induced Fear Conditioning

    ERIC Educational Resources Information Center

    Rogers, Jason L.; Kesner, Raymond P.

    2004-01-01

    We investigated the role of acetylcholine (ACh) during encoding and retrieval of tone/shock-induced fear conditioning with the aim of testing Hasselmo's cholinergic modulation model of encoding and retrieval using a task sensitive to hippocampal disruption. Lesions of the hippocampus impair acquisition and retention of contextual conditioning with…

  11. Activation and desensitization of peripheral muscle and neuronal nicotinic acetylcholine receptors by selected, naturally-occurring pyridine alkaloids

    USDA-ARS?s Scientific Manuscript database

    Teratogenic alkaloids can cause developmental defects due to inhibition of fetal movement that results from desensitization of fetal muscletype nicotinic acetylcholine receptors (nAChRs). We investigated the ability of two known teratogens, the piperidinyl-pyridine anabasine and its 1,2-dehydropiper...

  12. Derivatives of dibenzothiophene for PET imaging of α7-Nicotinic Acetylcholine Receptors

    PubMed Central

    Gao, Yongjun; Kellar, Kenneth J.; Yasuda, Robert P.; Tran, Thao; Xiao, Yingxian; Dannals, Robert F.; Horti, Andrew G.

    2013-01-01

    A new series of derivatives of 3-(1,4-diazabicyclo[3.2.2]nonan-4-yl)dibenzo[b,d]thiophene 5,5-dioxide with high binding affinities and selectivity for α7-nicotinic acetylcholine receptors (α7-nAChRs) (Ki = 0.4 – 20 nM) has been synthesized for PET imaging of α7-nAChRs. Two radiolabeled members of the series [18F]7a (Ki = 0.4 nM) and [18F]7c (Ki = 1.3 nM) were synthesized. [18F]7a and [18F]7c readily entered the mouse brain and specifically labeled α7-nAChRs. The α7-nAChR selective ligand 1 (SSR180711) blocked the binding of [18F]7a in the mouse brain in a dose-dependent manner. The mouse blocking studies with non-α7-nAChR CNS drugs demonstrated that [18F]7a is highly α7-nAChR selective. In agreement with its binding affinity the binding potential of [18F]7a (BPND = 5.3 – 8.0) in control mice is superior to previous α7-nAChR PET radioligands. Thus, [18F]7a displays excellent imaging properties in mice and has been chosen for further evaluation as a potential PET radioligand for imaging of α7-nAChR in non-human primates. PMID:24050653

  13. Muscimol increases acetylcholine release by directly stimulating adult striatal cholinergic interneurons.

    PubMed

    Login, I S; Pal, S N; Adams, D T; Gold, P E

    1998-01-01

    Because GabaA ligands increase acetylcholine (ACh) release from adult striatal slices, we hypothesized that activation of GabaA receptors on striatal cholinergic interneurons directly stimulates ACh secretion. Fractional [3H]ACh release was recorded during perifusion of acutely dissociated, [3H]choline-labeled, adult male rat striata. The GabaA agonist, muscimol, immediately stimulated release maximally approximately 300% with EC50 = approximately 1 microM. This action was enhanced by the allosteric GabaA receptor modulators, diazepam and secobarbital, and inhibited by the GabaA antagonist, bicuculline, by ligands for D2 or muscarinic cholinergic receptors or by low calcium buffer, tetrodotoxin or vesamicol. Membrane depolarization inversely regulated muscimol-stimulated secretion. Release of endogenous and newly synthesized ACh was stimulated in parallel by muscimol without changing choline release. Muscimol pretreatment inhibited release evoked by K+ depolarization or by receptor-mediated stimulation with glutamate. Thus, GabaA receptors on adult striatal cholinergic interneurons directly stimulate voltage- and calcium-dependent exocytosis of ACh stored in vesamicol-sensitive synaptic vesicles. The action depends on the state of membrane polarization and apparently depolarizes the membrane in turn. This functional assay demonstrates that excitatory GabaA actions are not limited to neonatal tissues. GabaA-stimulated ACh release may be prevented in situ by normal tonic dopaminergic and muscarinic input to cholinergic neurons.

  14. In vivo blockade of acetylcholinesterase increases intraovarian acetylcholine and enhances follicular development and fertility in the rat.

    PubMed

    Urra, Javier; Blohberger, Jan; Tiszavari, Michelle; Mayerhofer, Artur; Lara, Hernan E

    2016-07-21

    Growth and differentiation of ovarian follicles are regulated by systemic and local factors, which may include acetylcholine (ACh). Granulosa cells (GCs) of growing follicles and luteal cells produce ACh and in cultured GCs it exerts trophic actions via muscarinic receptors. However, such actions were not studied in vivo. After having established that rat ovarian GCs and luteal cells express the ACh-metabolizing enzyme ACh esterase (AChE), we examined the consequences of local application of an AChE inhibitor, huperzine A (HupA), by osmotic minipump delivery into the ovarian bursa of hemiovariectomized rats. Saline was used in the control group. Local delivery of HupA for 4 weeks increased ovarian ACh content. Estrus cyclicity was not changed indicating a locally restricted range of HupA action. The number of primordial and primary follicles was unaffected, but small secondary follicles significantly increased in the HupA group. Furthermore, a significant increase in the number of corpora lutea suggested increased ovulatory events. In support, as shown upon mating, HupA-treated females had significantly increased implantation sites and more pups. Thus the data are in support of a trophic role of ACh in follicular development and ovulation and point to an important role of ACh in female fertility.

  15. In vivo blockade of acetylcholinesterase increases intraovarian acetylcholine and enhances follicular development and fertility in the rat

    PubMed Central

    Blohberger, Jan; Tiszavari, Michelle; Mayerhofer, Artur; Lara, Hernan E.

    2016-01-01

    Growth and differentiation of ovarian follicles are regulated by systemic and local factors, which may include acetylcholine (ACh). Granulosa cells (GCs) of growing follicles and luteal cells produce ACh and in cultured GCs it exerts trophic actions via muscarinic receptors. However, such actions were not studied in vivo. After having established that rat ovarian GCs and luteal cells express the ACh-metabolizing enzyme ACh esterase (AChE), we examined the consequences of local application of an AChE inhibitor, huperzine A (HupA), by osmotic minipump delivery into the ovarian bursa of hemiovariectomized rats. Saline was used in the control group. Local delivery of HupA for 4 weeks increased ovarian ACh content. Estrus cyclicity was not changed indicating a locally restricted range of HupA action. The number of primordial and primary follicles was unaffected, but small secondary follicles significantly increased in the HupA group. Furthermore, a significant increase in the number of corpora lutea suggested increased ovulatory events. In support, as shown upon mating, HupA-treated females had significantly increased implantation sites and more pups. Thus the data are in support of a trophic role of ACh in follicular development and ovulation and point to an important role of ACh in female fertility. PMID:27440195

  16. Structure and Dynamics of the M3 Muscarinic Acetylcholine Receptor

    PubMed Central

    Kruse, Andrew C.; Hu, Jianxin; Pan, Albert C.; Arlow, Daniel H.; Rosenbaum, Daniel M.; Rosemond, Erica; Green, Hillary F.; Liu, Tong; Chae, Pil Seok; Dror, Ron O.; Shaw, David E.; Weis, William I.; Wess, Jurgen; Kobilka, Brian

    2012-01-01

    Acetylcholine (ACh), the first neurotransmitter to be identified1, exerts many of its physiological actions via activation of a family of G protein-coupled receptors (GPCRs) known as muscarinic ACh receptors (mAChRs). Although the five mAChR subtypes (M1-M5) share a high degree of sequence homology, they show pronounced differences in G protein coupling preference and the physiological responses they mediate.2–4 Unfortunately, despite decades of effort, no therapeutic agents endowed with clear mAChR subtype selectivity have been developed to exploit these differences.5–6 We describe here the structure of the Gq/11-coupled M3 mAChR bound to the bronchodilator drug tiotropium and identify the binding mode for this clinically important drug. This structure, together with that of the Gi/o-coupled M2 receptor, offers new possibilities for the design of mAChR subtype-selective ligands. Importantly, the M3 receptor structure allows the first structural comparison between two members of a mammalian GPCR subfamily displaying different G-protein coupling selectivities. Furthermore, molecular dynamics simulations suggest that tiotropium binds transiently to an allosteric site en route to the binding pocket of both receptors. These simulations offer a structural view of an allosteric binding mode for an orthosteric GPCR ligand and raise additional opportunities for the design of ligands with different affinities or binding kinetics for different mAChR subtypes. Our findings not only offer new insights into the structure and function of one of the most important GPCR families, but may also facilitate the design of improved therapeutics targeting these critical receptors. PMID:22358844

  17. Models of Acetylcholine and Dopamine Signals Differentially Improve Neural Representations

    PubMed Central

    Holca-Lamarre, Raphaël; Lücke, Jörg; Obermayer, Klaus

    2017-01-01

    Biological and artificial neural networks (ANNs) represent input signals as patterns of neural activity. In biology, neuromodulators can trigger important reorganizations of these neural representations. For instance, pairing a stimulus with the release of either acetylcholine (ACh) or dopamine (DA) evokes long lasting increases in the responses of neurons to the paired stimulus. The functional roles of ACh and DA in rearranging representations remain largely unknown. Here, we address this question using a Hebbian-learning neural network model. Our aim is both to gain a functional understanding of ACh and DA transmission in shaping biological representations and to explore neuromodulator-inspired learning rules for ANNs. We model the effects of ACh and DA on synaptic plasticity and confirm that stimuli coinciding with greater neuromodulator activation are over represented in the network. We then simulate the physiological release schedules of ACh and DA. We measure the impact of neuromodulator release on the network's representation and on its performance on a classification task. We find that ACh and DA trigger distinct changes in neural representations that both improve performance. The putative ACh signal redistributes neural preferences so that more neurons encode stimulus classes that are challenging for the network. The putative DA signal adapts synaptic weights so that they better match the classes of the task at hand. Our model thus offers a functional explanation for the effects of ACh and DA on cortical representations. Additionally, our learning algorithm yields performances comparable to those of state-of-the-art optimisation methods in multi-layer perceptrons while requiring weaker supervision signals and interacting with synaptically-local weight updates. PMID:28690509

  18. Drug binding to the acetylcholine receptor: Nitroxide analogs of phencyclidine and a local anesthetic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palma, A.L.

    1988-01-01

    The interaction of noncompetitive inhibitors (NCIs) with Torpedo californica native nicotinic acetylcholine receptor (nAChR) membranes was examined primarily by the technique of electron paramagnetic resonance (EPR) spectroscopy. The goal of this work being to define some of the physical characteristics for the site(s) of association between an NCI and the nAChR membrane. A nitroxide labeled analog of a quaternary amine local anesthetic, 2-(N,N-dimethyl-N-4-(2,2,6,6-tetramethylpiperidinoxyl)amino)-ethyl 4-hexyloxybenzoate iodide (C6SLMeI), displays a strongly immobilized EPR component when added to nAChR membranes in the presence of carbamylcholine (carb). To further this work, a nitroxide labeled analog of phencyclidine (PCP), a potent NCI, was synthesized. 4-phenyl-4-(1-piperidinyl)-2,2,6,6-tetramethylpiperidinoxylmore » (PPT) exhibited one-third the potency of PCP in inhibiting nAChR mediated ion flux, and from competition binding studies with ({sup 3}H)PCP displayed a K{sub D} of 0.21 {mu}M towards a carb desensitized nAChR and a K{sub 0.5} of 18 {mu}M for a resting {alpha}-bungarotoxin treated nAChR.« less

  19. Role of cyclooxygenase in the vascular response to locally delivered acetylcholine in Caucasian and African descent individuals.

    PubMed

    Maley, Matthew J; House, James R; Tipton, Michael J; Eglin, Clare M

    2017-05-01

    Individuals of African descent (AFD) are more susceptible to non-freezing cold injury (NFCI) compared with Caucasian individuals (CAU). Vasodilatation to acetylcholine (ACh) is lower in AFD compared with CAU in the non-glabrous foot and finger skin sites; the reason for this is unknown. Prostanoids are responsible, in part, for the vasodilator response to ACh, however it is not known whether the contribution differs between ethnicities. 12 CAU and 12 AFD males received iontophoresis of ACh (1 w/v%) on non-glabrous foot and finger skin sites following placebo and then aspirin (600mg, single blinded). Aspirin was utilised to inhibit prostanoid production by inhibiting the cyclooxygenase (COX) enzyme. Laser Doppler flowmetry was utilised to measure changes in skin blood flow. Not all participants could receive iontophoresis charge due to high skin resistance; these participants were therefore excluded from the analyses. Foot: ACh elicited greater maximal vasodilatation in CAU than AFD following placebo (P=0.003) and COX inhibition (COXib) (P<0.001). COXib did not affect blood flow responses in AFD, but caused a reduction in the area under the curve for CAU (P=0.031). Finger: ACh elicited a greater maximal vasodilatation in CAU than AFD following placebo (P=0.013) and COXib (P=0.001). COXib tended to reduce the area under the curve in AFD (P=0.053), but did not affect CAU. CAU have a greater endothelial reactivity than AFD in both foot and finger skin sites irrespective of COXib. It is concluded that the lower ACh-induced vasodilatation in AFD is not due to a compromised COX pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Crosstalk between beta-2-adrenoceptor and muscarinic acetylcholine receptors in the airway.

    PubMed

    Pera, Tonio; Penn, Raymond B

    2014-06-01

    The M3 and M2 muscarinic acetylcholine receptors (mAChRs) and beta-2-adrenoceptors (β2ARs) are important regulators of airway cell function, and drugs targeting these receptors are among the first line drugs in the treatment of the obstructive lung diseases asthma and chronic obstructive lung disease (COPD). Cross-regulation or crosstalk between mAChRs and β2ARs in airway smooth muscle (ASM) helps determine the contractile state of the muscle, thus airway diameter and resistance to airflow. In this review we will detail mAChR and β2AR-signaling and crosstalk, focusing on events in the ASM cell but also addressing the function of these receptors in other cell types that impact airway physiology. We conclude by discussing how recent advances in GPCR pharmacology offer a unique opportunity to fine tune mAChR and β2AR signaling and their crosstalk, and thereby produce superior therapeutics for obstructive lung and other diseases. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. BEHAVIORAL AND NEUROCHEMICAL CHANGES IN RATS DOSED REPEATEDLY WITH DIISOPROPYLFLUOROPHOSPHATE (DFP)

    EPA Science Inventory

    Behavioral effects of organophosphates (OPs) typically decrease with repeated exposure, despite persistence of OP-induced inhibition of acetylcholinesterase (AChE) and downregulation of muscarinic acetylcholine (ACh) receptors. o characterize this tolerance phenomenon, rats were ...

  2. Pharmaco-mechanical coupling in the response to acetylcholine and substance P in the smooth muscle of the rat iris sphincter.

    PubMed Central

    Banno, H.; Imaizumi, Y.; Watanabe, M.

    1985-01-01

    In the rat iris sphincter muscle contractile responses to transmural stimulation consisted of two components, a fast cholinergic followed by a slow non-adrenergic, non-cholinergic (NANC) one. The magnitude of the latter varied widely and was on average 5% of that of the cholinergic component. Exogenous substance P (1 nM-1 microM) produced a concentration-dependent contraction, the maximum amplitude of which was as large as that produced by acetylcholine (ACh). Capsaicin (10 microM) induced a transient contraction only once in each preparation. After the treatment with capsaicin the NANC component disappeared. Neither nerve nor direct electrical stimulation with short pulses elicited any active change in the membrane potential under physiological conditions, but an action potential was triggered by direct stimulation when the extracellular Ca ion was totally replaced by Ba ion. Under the latter conditions spontaneous spike potentials occurred repetitively. ACh and substance P produced a large contraction without modifying the membrane potential. This was also the case in the presence of 5 mM Ba. These results suggest that substance P-ergic innervation may have a far lesser physiological significance than that which has been described in rabbits and that pure pharmaco-mechanical coupling is characteristic of the responses to acetylcholine, substance P, and nerve stimulation in the rat iris sphincter muscle. PMID:2412624

  3. The effect of anions on bound acetylcholine in frog sartorius muscle.

    PubMed Central

    Ceccarelli, B; Molenaar, P C; Oen, B S; Polak, R L; Torri-Tarelli, F; van Kempen, G T

    1989-01-01

    1. Frog sartorius muscles were treated with an irreversible cholinesterase inhibitor and then incubated in isotonic potassium propionate solution (isotonic KPr). Total and bound, presumably vesicular, acetylcholine (ACh) in the tissue and ACh in the medium were assayed by mass fragmentography, miniature end-plate potentials (MEPPs) were recorded and the end-plates were investigated by electron microscopy. 2. Incubation in isotonic KPr for 30 min stimulated ACh release and concomitantly decreased total and bound ACh. Nerve stimulation for 30 min by trains of impulses (0.1 s trains of 100 Hz, 1 train s-1) in normal-potassium propionate-containing solution had the same effects. 3. When the tissue was incubated in normal-K+ Ringer solution for 3 h, following chemical or electric stimulation, bound ACh recovered to about 75% of the initial value, provided that Cl- ions were present in the medium. In the presence of propionate instead of Cl- ions almost no recovery of bound ACh took place. There was also recovery of bound ACh in the presence of either NO3- or gluconate ions. In NO3- it was the same as in Cl-, but in gluconate it was less than found in Cl- -containing medium. 4. Recovery of total ACh, in contrast to bound ACh, took place even in the presence of propionate ions, showing that extracellular Cl- is not required for the synthesis of ACh. 5. In terminals recovered in normal Ringer solution, many synaptic vesicles were found, but terminals 'recovered' in propionate solution were depleted of vesicles. 6. From these and other results it is concluded that the recycling of synaptic vesicles normally requires the presence of extracellular chloride. Images Fig. 1 Fig. 2 PMID:2789283

  4. Onset of diabetes modulates the airway smooth muscle reactivity of guinea pigs: role of epithelial mediators.

    PubMed

    Saidullah, Bano; Muralidhar, Kambadur; Fahim, Mohammad

    2014-01-01

    Diabetes induces lung dysfunction, leading to alteration in the pulmonary functions. Our aim was to investigate whether the early stage of diabetes alters the epithelium-dependent bronchial responses and whether nitric oxide (NO), KATP channels and cyclooxygenase (COX) pathways contribute in this effect. Guinea pigs were treated with a single injection of streptozotocin (180 mg/kg, i.p.) for induction of diabetes. Airway conductivity was assessed by inhaled histamine, using a non-invasive body plethysmography. The contractile responses of tracheal rings induced by acetylcholine (ACh) and relaxant responses of precontracted rings, induced by isoproterenol (IP) were compared in the presence and absence of the epithelium. Effects of N(ω)-Nitro-L-arginine methyl ester (L-NAME, a nitric oxide synthase inhibitor), glybenclamide (a KATP channel inhibitor) and indomethacin (a COX inhibitor) were also assessed in diabetic guinea pigs. Early stage diabetes did not alter the airway conductivity. ACh-induced bronchoconstriction in epithelium intact tracheal rings was not affected by the onset of diabetes, however a reduction in the increased ACh responses due to epithelium removal, to L-NAME or to indomethacin was observed. The relaxation response to IP was impaired in trachea from guinea pigs in which diabetes had just developed. Early diabetes significantly reduced the IP response to glybenclamide and to indomethacin. Our results demonstrate that the early stage of diabetes, modulate the bronchial reactivity to both ACh and IP by disrupting the NO, KATP channels and COX pathways, without affecting the airway conductivity in guinea pigs.

  5. Molecular properties of muscarinic acetylcholine receptors

    PubMed Central

    HAGA, Tatsuya

    2013-01-01

    Muscarinic acetylcholine receptors, which comprise five subtypes (M1-M5 receptors), are expressed in both the CNS and PNS (particularly the target organs of parasympathetic neurons). M1-M5 receptors are integral membrane proteins with seven transmembrane segments, bind with acetylcholine (ACh) in the extracellular phase, and thereafter interact with and activate GTP-binding regulatory proteins (G proteins) in the intracellular phase: M1, M3, and M5 receptors interact with Gq-type G proteins, and M2 and M4 receptors with Gi/Go-type G proteins. Activated G proteins initiate a number of intracellular signal transduction systems. Agonist-bound muscarinic receptors are phosphorylated by G protein-coupled receptor kinases, which initiate their desensitization through uncoupling from G proteins, receptor internalization, and receptor breakdown (down regulation). Recently the crystal structures of M2 and M3 receptors were determined and are expected to contribute to the development of drugs targeted to muscarinic receptors. This paper summarizes the molecular properties of muscarinic receptors with reference to the historical background and bias to studies performed in our laboratories. PMID:23759942

  6. Claudin-4 is required for modulation of paracellular permeability by muscarinic acetylcholine receptor in epithelial cells.

    PubMed

    Cong, Xin; Zhang, Yan; Li, Jing; Mei, Mei; Ding, Chong; Xiang, Ruo-Lan; Zhang, Li-Wei; Wang, Yun; Wu, Li-Ling; Yu, Guang-Yan

    2015-06-15

    The epithelial cholinergic system plays an important role in water, ion and solute transport. Previous studies have shown that activation of muscarinic acetylcholine receptors (mAChRs) regulates paracellular transport of epithelial cells; however, the underlying mechanism is still largely unknown. Here, we found that mAChR activation by carbachol and cevimeline reduced the transepithelial electrical resistance (TER) and increased the permeability of paracellular tracers in rat salivary epithelial SMG-C6 cells. Carbachol induced downregulation and redistribution of claudin-4, but not occludin or ZO-1 (also known as TJP1). Small hairpin RNA (shRNA)-mediated claudin-4 knockdown suppressed, whereas claudin-4 overexpression retained, the TER response to carbachol. Mechanistically, the mAChR-modulated claudin-4 properties and paracellular permeability were triggered by claudin-4 phosphorylation through ERK1/2 (also known as MAPK3 and MAPK1, respectively). Mutagenesis assay demonstrated that S195, but not S199, S203 or S207, of claudin-4, was the target for carbachol. Subsequently, the phosphorylated claudin-4 interacted with β-arrestin2 and triggered claudin-4 internalization through the clathrin-dependent pathway. The internalized claudin-4 was further degraded by ubiquitylation. Taken together, these findings suggested that claudin-4 is required for mAChR-modulated paracellular permeability of epithelial cells through an ERK1/2, β-arrestin2, clathrin and ubiquitin-dependent signaling pathway. © 2015. Published by The Company of Biologists Ltd.

  7. The influence of allosteric modulators and transmembrane mutations on desensitisation and activation of α7 nicotinic acetylcholine receptors.

    PubMed

    Chatzidaki, Anna; D'Oyley, Jarryl M; Gill-Thind, JasKiran K; Sheppard, Tom D; Millar, Neil S

    2015-10-01

    Acetylcholine activates nicotinic acetylcholine receptors (nAChRs) by binding at an extracellular orthosteric site. Previous studies have described several positive allosteric modulators (PAMs) that are selective for homomeric α7 nAChRs. These include type I PAMs, which exert little or no effect on the rate of receptor desensitisation, and type II PAMs, which cause a dramatic loss of agonist-induced desensitisation. Here we report evidence that transmembrane mutations in α7 nAChRs have diverse effects on receptor activation and desensitisation by allosteric ligands. It has been reported previously that the L247T mutation, located toward the middle of the second transmembrane domain (at the 9' position), confers reduced levels of desensitisation. In contrast, the M260L mutation, located higher up in the TM2 domain (at the 22' position), does not show any difference in desensitisation compared to wild-type receptors. We have found that in receptors containing the L247T mutation, both type I PAMs and type II PAMs are converted into non-desensitising agonists. In contrast, in receptors containing the M260L mutation, this effect is seen only with type II PAMs. These findings, indicating that the M260L mutation has a selective effect on type II PAMs, have been confirmed both with previously described PAMs and also with a series of novel α7-selective PAMs. The novel PAMs examined in this study have close chemical similarity but diverse pharmacological properties. For example, they include compounds displaying effects on receptor desensitisation that are typical of classical type I and type II PAMs but, in addition, they include compounds with intermediate properties. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Going up in Smoke? A Review of nAChRs-based Treatment Strategies for Improving Cognition in Schizophrenia

    PubMed Central

    Boggs, Douglas L.; Carlson, Jon; Cortes-Briones, Jose; Krystal, John H.; D’Souza, D. Cyril

    2015-01-01

    Cognitive impairment is known to be a core deficit in schizophrenia. Existing treatments for schizophrenia have limited efficacy against cognitive impairment. The ubiquitous use of nicotine in this population is thought to reflect an attempt by patients to self-medicate certain symptoms associated with the illness. Concurrently there is evidence that nicotinic receptors that have lower affinity for nicotine are more important in cognition. Therefore, a number of medications that target nicotinic acetylcholine receptors (nAChRs) have been tested or are in development. In this article we summarize the clinical evidence of nAChRs dysfunction in schizophrenia and review clinical studies testing either nicotine or nicotinic medications for the treatment of cognitive impairment in schizophrenia. Some evidence suggests beneficial effects of nAChRs based treatments for the attentional deficits associated with schizophrenia. Standardized cognitive test batteries have failed to capture consistent improvements from drugs acting at nAChRs. However, more proximal measures of brain function, such as ERPs relevant to information processing impairments in schizophrenia, have shown some benefit. Further work is necessary to conclude that nAChRs based treatments are of clinical utility in the treatment of cognitive deficits of schizophrenia. PMID:24345265

  9. Binding of /sup 3/H-acetylcholine to cholinergic receptors in bovine cerebral arteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimohama, S.; Tsukahara, T.; Taniguchi, T.

    Cholinergic receptor sites in bovine cerebral arteries were analyzed using radioligand binding techniques with the cholinergic agonist, /sup 3/H-acetylcholine (ACh), as the ligand. Specific binding of /sup 3/H-ACh to membrane preparations of bovine cerebral arteries was saturable, of two binding sites, with dissociation constant (K/sub D/) values of 0.32 and 23.7 nM, and maximum binding capacity (Bmax) values of 67 and 252 fmol/mg protein, respectively. Specific binding of /sup 3/H-ACh was displaced effectively by muscarinic cholinergic agents and less effectively by nicotinic cholinergic agents. IC/sub 50/ values of cholinergic drugs for /sup 3/H-ACh binding were as follows: atropine, 38.5 nM;more » ACh, 59.8 nM; oxotremorine, 293 nM; scopolamine 474 nM; carbamylcholine, 990 nM. IC/sub 50/ values of nicotinic cholinergic agents such as nicotine, cytisine and ..cap alpha..-bungarotoxin exceeded 50 ..mu..M. Choline acetyltransferase activity was 1.09 nmol/mg protein/hour in the cerebral arteries. These findings suggest that the cholinergic nerves innervate the bovine cerebral arteries and that there are at least two classes of ACh binding sites of different affinities on muscarinic reporters in these arteries. 18 references, 2 figures, 2 tables.« less

  10. Wnt3a induces the expression of acetylcholinesterase during osteoblast differentiation via the Runx2 transcription factor.

    PubMed

    Xu, Miranda L; Bi, Cathy W C; Liu, Etta Y L; Dong, Tina T X; Tsim, Karl W K

    2017-07-28

    Acetylcholinesterase (AChE) hydrolyzes acetylcholine to terminate cholinergic transmission in neurons. Apart from this AChE activity, emerging evidence suggests that AChE could also function in other, non-neuronal cells. For instance, in bone, AChE exists as a proline-rich membrane anchor (PRiMA)-linked globular form in osteoblasts, in which it is proposed to play a noncholinergic role in differentiation. However, this hypothesis is untested. Here, we found that in cultured rat osteoblasts, AChE expression was increased in parallel with osteoblastic differentiation. Because several lines of evidence indicate that AChE activity in osteoblast could be triggered by Wnt/β-catenin signaling, we added recombinant human Wnt3a to cultured osteoblasts and found that this addition induced expression of the ACHE gene and protein product. This Wnt3a-induced AChE expression was blocked by the Wnt-signaling inhibitor Dickkopf protein-1 (DKK-1). We hypothesized that the Runt-related transcription factor 2 (Runx2), a downstream transcription factor in Wnt/β-catenin signaling, is involved in AChE regulation in osteoblasts, confirmed by the identification of a Runx2-binding site in the ACHE gene promoter, further corroborated by ChIP. Of note, Runx2 overexpression in osteoblasts induced AChE expression and activity of the ACHE promoter tagged with the luciferase gene. Moreover, deletion of the Runx2-binding site in the ACHE promoter reduced its activity during osteoblastic differentiation, and addition of 5-azacytidine and trichostatin A to differentiating osteoblasts affected AChE expression, suggesting epigenetic regulation of the ACHE gene. We conclude that AChE plays a role in osteoblastic differentiation and is regulated by both Wnt3a and Runx2. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Anterior Thalamic Lesions Alter Both Hippocampal-Dependent Behavior and Hippocampal Acetylcholine Release in the Rat

    ERIC Educational Resources Information Center

    Savage, Lisa M.; Hall, Joseph M.; Vetreno, Ryan P.

    2011-01-01

    The anterior thalamic nuclei (ATN) are important for learning and memory as damage to this region produces a persistent amnestic syndrome. Dense connections between the ATN and the hippocampus exist, and importantly, damage to the ATN can impair hippocampal functioning. Acetylcholine (ACh) is a key neurotransmitter in the hippocampus, and in vivo…

  12. Thimerosal blocks stimulated but not basal release of endothelium-derived relaxing factor (EDRF) in dog isolated coronary artery.

    PubMed Central

    Crack, P.; Cocks, T.

    1992-01-01

    1. The effect of an acetly-coA lysolecithin acyltransferase inhibitor, thimerosal, on the release of endothelium-derived relaxing factor (EDRF) was examined in the greyhound isolated coronary artery. 2. Thimerosal (1-10 microM) relaxed fully, ring segments of coronary artery which were contracted with the thromboxane A2-mimetic, U46619 (30 nM). The response was endothelium-dependent, slow in both onset and time to reach maximum. The maximum relaxation to the highest concentration of thimerosal (10 microM) was maintained for 10-20 min before the tissue slowly regained active force (1-2 h) to the same or higher level as that prior to the addition of thimerosal. At this time the endothelium-dependent relaxation responses to acetylcholine (ACh), substance P (SP), bradykinin (BK) and the calcium ionophores, ionomycin and A23187 were abolished. The endothelium-dependent contractions to the nitric oxide synthase inhibitors, NG-nitro-L-arginine (L-NNA; 10-100 microM) and NG-monomethyl-L-arginine (L-NMMA: 10-100 microM), however, were unaffected. 3. Thimerosal (10 microM) did not affect the relaxation curve to sodium nitroprusside (SNP) nor the contraction curve to the thromboxane A2-mimetic, U46619. 4. Both the relaxation response to thimerosal and the selective block of the relaxation responses to stimulated EDRF release were unaffected by either indomethacin (10 microM) or superoxide dismutase (150 u ml-1). 5. L-NNA (100 microM) significantly blocked the relaxation curves to thimerosal and A23187 but not that to SNP.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1384915

  13. Modulatory effect of neuropeptide Y on acetylcholine-induced oedema and vasoconstriction in isolated perfused lungs of rabbit.

    PubMed Central

    Delaunois, A; Gustin, P; Dessy-Doize, C; Ansay, M

    1994-01-01

    1. The modulatory role of neuropeptide Y (NPY) on pulmonary oedema induced by acetylcholine and capsaicin was investigated. The effects of NPY on the haemodynamic response to acetylcholine, phenylephrine and substance P were also investigated. 2. Isolated, ventilated, exsanguinated lungs of the rabbit were perfused with a constant flow of recirculating blood-free perfusate. The double/arterial/venous occlusion method was used to partition the total pressure gradient (delta Pt) into four components: the arterial gradient (delta Pa), the pre- and post-capillary gradients (respectively delta Pa' and delta Pv') and the venous pressure gradient (delta Pv). Endothelial permeability was evaluated by measuring the capillary filtration coefficient (Kf,c). 3. Acetylcholine (10(-8) M to 10(-4) M) and substance P (SP, 10(-10) M to 10(-6) M) induced a concentration-dependent increase in the Kf,c. Capsaicin (10(-4) M) and 5-hydroxytryptamine (5-HT) (10(-4) M) also increased this parameter. NPY (10(-8) M) completely inhibited the effects of acetylcholine and capsaicin on the Kf,c, without preventing the effects of substance P and 5-HT. 4. Acetylcholine induced concentration-dependent vasoconstriction in the precapillary segment. The effect was inhibited by NPY and aspirin, an inhibitor of cyclo-oxygenase, while ketanserin, a 5-HT2 receptor antagonist, and SR140333, a new NK1 antagonist, had no protective effect. Phenylephrine increased delta Pa at high concentration, an effect also inhibited by NPY and aspirin. Substance P had no significant haemodynamic effect. When injected together with NPY, substance P (10(-6) M) induced a significant increase in the total pressure gradient.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 2 Figure 3 PMID:7532083

  14. Fetal-muscle type nicotinic acetylcholine receptor activation in TE-671 cells, and inhibition of fetal movement in a day 40 pregnant goat model by optical isomers of the piperidine alkaloid coniine

    USDA-ARS?s Scientific Manuscript database

    Coniine is an optically active toxic piperidine alkaloid and nicotinic acetylcholine receptor (nAChR) agonist found in poison hemlock (Conium maculatum L.). Coniine teratogenicity is hypothesized to be due to the binding, activation, and prolonged desensitization of fetal muscle-type nAChR which re...

  15. Nicotine-induced activation of soluble adenylyl cyclase participates in ion transport regulation in mouse tracheal epithelium.

    PubMed

    Hollenhorst, Monika I; Lips, Katrin S; Kummer, Wolfgang; Fronius, Martin

    2012-11-27

    Functional nicotinic acetylcholine receptors (nAChR) have been identified in airway epithelia and their location in the apical and basolateral membrane makes them targets for acetylcholine released from neuronal and non-neuronal sources. One function of nAChR in airway epithelia is their involvement in the regulation of transepithelial ion transport by activation of chloride and potassium channels. However, the mechanisms underlying this nicotine-induced activation of ion transport are not fully elucidated. Thus, the aim of this study was to investigate the involvement of adenylyl cyclases in the nicotine-induced ion current in mouse tracheal epithelium. To evaluate the nicotine-mediated changes of transepithelial ion transport processes electrophysiological Ussing chamber measurements were applied and nicotine-induced ion currents were recorded in the absence and presence of adenylyl cyclase inhibitors. The ion current changes induced by nicotine (100 μM, apical) were not altered in the presence of high doses of atropine (25 μM, apical and basolateral), underlining the involvement of nAChR. Experiments with the transmembrane adenylyl cyclase inhibitor 2'5'-dideoxyadenosine (50 μM, apical and basolateral) and the soluble adenylyl cyclase inhibitor KH7 (10 μM, apical and basolateral) both reduced the nicotine-mediated ion current to a similar extent. Yet, a statistically significant reduction was obtained only in the experiments with KH7. This study indicates that nicotine binding to nAChR in mouse tracheal epithelium activates transepithelial ion transport involving adenylyl cyclase activity. This might be important for novel therapeutic strategies targeting epithelial ion transport mediated by the non-neuronal cholinergic system. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Relaxation Effect of Abacavir on Rat Basilar Arteries

    PubMed Central

    Li, Rachel Wai Sum; Yang, Cui; Chan, Shun Wan; Hoi, Maggie Pui Man; Lee, Simon Ming Yuen; Kwan, Yiu Wa; Leung, George Pak Heng

    2015-01-01

    Background The use of abacavir has been linked with increased cardiovascular risk in patients with human immunodeficiency virus infection; however, the mechanism involved remains unclear. We hypothesize that abacavir may impair endothelial function. In addition, based on the structural similarity between abacavir and adenosine, we propose that abacavir may affect vascular contractility through endogenous adenosine release or adenosine receptors in blood vessels. Methods The relaxation effect of abacavir on rat basilar arteries was studied using the myograph technique. Cyclic GMP and AMP levels were measured by immunoassay. The effects of abacavir on nucleoside transporters were studied using radiolabeled nucleoside uptake experiments. Ecto-5′ nucleotidase activity was determined by measuring the generation of inorganic phosphate using adenosine monophosphate as the substrate. Results Abacavir induced the relaxation of rat basilar arteries in a concentration-dependent manner. This relaxation was abolished when endothelium was removed. In addition, the relaxation was diminished by the nitric oxide synthase inhibitor, L-NAME, the guanylyl cyclase inhibitor, ODQ, and the protein kinase G inhibitor, KT5820. Abacavir also increased the cGMP level in rat basilar arteries. Abacavir-induced relaxation was also abolished by adenosine A2 receptor blockers. However, abacavir had no effect on ecto-5’ nucleotidase and nucleoside transporters. Short-term and long-term treatment of abacavir did not affect acetylcholine-induced relaxation in rat basilar arteries. Conclusion Abacavir induces acute endothelium-dependent relaxation of rat basilar arteries, probably through the activation of adenosine A2 receptors in endothelial cells, which subsequently leads to the release of nitric oxide, resulting in activation of the cyclic guanosine monophosphate/protein kinase G-dependent pathway in vascular smooth muscle cells. It is speculated that abacavir-induced cardiovascular risk may

  17. Impairment of contextual fear extinction by chronic nicotine and withdrawal from chronic nicotine is associated with hippocampal nAChR upregulation.

    PubMed

    Kutlu, Munir Gunes; Oliver, Chicora; Huang, Peng; Liu-Chen, Lee-Yuan; Gould, Thomas J

    2016-10-01

    Chronic nicotine and withdrawal from chronic nicotine have been shown to be major modulators of fear learning behavior. Moreover, recent studies from our laboratory have shown that acute nicotine impaired fear extinction and safety learning in mice. However, the effects of chronic nicotine and withdrawal on fear extinction are unknown. Therefore, the current experiments were conducted to investigate the effects of chronic nicotine as well as withdrawal from chronic nicotine on contextual fear extinction in mice. C57BL6/J mice were given contextual fear conditioning training and retention testing during chronic nicotine administration. Mice then received contextual fear extinction either during chronic nicotine or during withdrawal from chronic nicotine. Our results showed that contextual fear extinction was impaired both during chronic nicotine administration and subsequent withdrawal. However, it was also observed that the effects of prior chronic nicotine disappeared after 72 h in withdrawal, a timeline that closely matches with the timing of the chronic nicotine-induced upregulation of hippocampal nicotinic acetylcholine receptor (nAChR) density. Additional experiments found that 4 days, but not 1 day, of continuous nicotine administration upregulated hippocampal nAChRs and impaired contextual fear extinction. These effects disappeared following 72 h withdrawal. Overall, these experiments provide a potential link between nicotine-induced upregulation of hippocampal nAChRs and fear extinction deficits observed in patients with anxiety disorders, which may lead to advancements in the pharmacological treatment methods for this disorder. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Highly sensitive and rapid detection of acetylcholine using an ITO plate modified with platinum-graphene nanoparticles.

    PubMed

    Chauhan, Nidhi; Narang, Jagriti; Jain, Utkarsh

    2015-03-21

    Determining the concentrations of acetylcholine (ACh) and choline (Ch) is clinically important. ACh is a neurotransmitter that acts as a key link in the communication between neurons in the spinal cord and in nerve skeletal junctions in vertebrates, and plays an important role in transmitting signals in the brain. A bienzymatic sensor for the detection of ACh was prepared by co-immobilizing choline oxidase (ChO) and acetylcholinesterase (AChE) on graphene matrix/platinum nanoparticles, and then electrodepositing them on an ITO-coated glass plate. Graphene nanoparticles were decorated with platinum nanoparticles and were electrodeposited on a modified ITO-coated glass plate to form a modified electrode. The modified electrode was characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) studies. The optimum response of the enzyme electrode was obtained at pH 7.0 and 35 °C. The response time of this ACh-sensing system was shown to be 4 s. The linear range of responses to ACh was 0.005-700 μM. This biosensor exhibits excellent anti-interferential abilities and good stability, retaining 50% of its original current even after 4 months. It has been applied for the detection of ACh levels in human serum samples.

  19. pH-Responsive Fluorescence Enhancement in Graphene Oxide-Naphthalimide Nanoconjugates: A Fluorescence Turn-On Sensor for Acetylcholine.

    PubMed

    Mangalath, Sreejith; Abraham, Silja; Joseph, Joshy

    2017-08-22

    A pH-sensitive, fluorescence "turn-on" sensor based on a graphene oxide-naphthalimide (GO-NI) nanoconjugate for the detection of acetylcholine (ACh) by monitoring the enzymatic activity of acetylcholinesterase (AChE) in aqueous solution is reported. These nanoconjugates were synthesized by covalently anchoring picolyl-substituted NI derivatives on the GO/reduced GO surface through a 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide/N-hydroxysuccinimide coupling strategy, and the morphological and photophysical properties were studied in detail. Synergistic effects of π-π interactions between GO and the NI chromophore, and efficient photoinduced electron- and energy-transfer processes, were responsible for the strong quenching of fluorescence of these nanoconjugates, which were perturbed under acidic pH conditions, leading to significant enhancement of fluorescence emission. This nanoconjugate was successfully employed for the efficient sensing of pH changes caused by the enzymatic activity of AChE, thereby demonstrating its utility as a fluorescence turn-on sensor for ACh in the neurophysiological range. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Orthosteric and allosteric potentiation of heteromeric neuronal nicotinic acetylcholine receptors.

    PubMed

    Wang, Jingyi; Lindstrom, Jon

    2018-06-01

    Heteromeric nicotinic ACh receptors (nAChRs) were thought to have two orthodox agonist-binding sites at two α/β subunit interfaces. Highly selective ligands are hard to develop by targeting orthodox agonist sites because of high sequence similarity of this binding pocket among different subunits. Recently, unorthodox ACh-binding sites have been discovered at some α/α and β/α subunit interfaces, such as α4/α4, α5/α4 and β3/α4. Targeting unorthodox sites may yield subtype-selective ligands, such as those for (α4β2) 2 α5, (α4β2) 2 β3 and (α6β2) 2 β3 nAChRs. The unorthodox sites have unique pharmacology. Agonist binding at one unorthodox site is not sufficient to activate nAChRs, but it increases activation from the orthodox sites. NS9283, a selective agonist for the unorthodox α4/α4 site, was initially thought to be a positive allosteric modulator (PAM). NS9283 activates nAChRs with three engineered α4/α4 sites. PAMs, on the other hand, act at allosteric sites where ACh cannot bind. Known PAM sites include the ACh-homologous non-canonical site (e.g. morantel at β/α), the C-terminus (e.g. Br-PBTC and 17β-estradiol), a transmembrane domain (e.g. LY2087101) or extracellular and transmembrane domain interfaces (e.g. NS206). Some of these PAMs, such as Br-PBTC and 17β-estradiol, require only one subunit to potentiate activation of nAChRs. In this review, we will discuss differences between activation from orthosteric and allosteric sites, their selective ligands and clinical implications. These studies have advanced understanding of the structure, assembly and pharmacology of heteromeric neuronal nAChRs. This article is part of a themed section on Nicotinic Acetylcholine Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.11/issuetoc. © 2017 The British Pharmacological Society.