Science.gov

Sample records for acetylcholine receptor antagonist

  1. Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist

    SciTech Connect

    Haga, Kazuko; Kruse, Andrew C.; Asada, Hidetsugu; Yurugi-Kobayashi, Takami; Shiroishi, Mitsunori; Zhang, Cheng; Weis, William I.; Okada, Tetsuji; Kobilka, Brian K.; Haga, Tatsuya; Kobayashi, Takuya

    2012-03-15

    The parasympathetic branch of the autonomic nervous system regulates the activity of multiple organ systems. Muscarinic receptors are G-protein-coupled receptors that mediate the response to acetylcholine released from parasympathetic nerves. Their role in the unconscious regulation of organ and central nervous system function makes them potential therapeutic targets for a broad spectrum of diseases. The M2 muscarinic acetylcholine receptor (M2 receptor) is essential for the physiological control of cardiovascular function through activation of G-protein-coupled inwardly rectifying potassium channels, and is of particular interest because of its extensive pharmacological characterization with both orthosteric and allosteric ligands. Here we report the structure of the antagonist-bound human M2 receptor, the first human acetylcholine receptor to be characterized structurally, to our knowledge. The antagonist 3-quinuclidinyl-benzilate binds in the middle of a long aqueous channel extending approximately two-thirds through the membrane. The orthosteric binding pocket is formed by amino acids that are identical in all five muscarinic receptor subtypes, and shares structural homology with other functionally unrelated acetylcholine binding proteins from different species. A layer of tyrosine residues forms an aromatic cap restricting dissociation of the bound ligand. A binding site for allosteric ligands has been mapped to residues at the entrance to the binding pocket near this aromatic cap. The structure of the M2 receptor provides insights into the challenges of developing subtype-selective ligands for muscarinic receptors and their propensity for allosteric regulation.

  2. Facilitation of memory storage by the acetylcholine M2 muscarinic receptor antagonist AF-DX 116.

    PubMed

    Baratti, C M; Opezzo, J W; Kopf, S R

    1993-07-01

    Post-training administration of the acetylcholine muscarinic M2 presynaptic receptor antagonist AF-DX 116 (0.1-10.0 mg/kg, ip), facilitated 48 h retention, in male Swiss mice, of a one-trial step-through inhibitory avoidance task. The dose-response curve was an inverted U. AF-DX 116 did not increase the retention latencies of mice that had not received a footshock during training. The influence of AF-DX 116 (1 mg/kg, ip) on retention was time-dependent, which suggests that the drug facilitated memory storage. The memory facilitation induced by AF-DX 116 (1 mg/kg, ip) was prevented by atropine (0.5 mg/kg, ip) administered after training, but 10 min prior to AF-DX 116 treatment. In contrast, neither methylatropine (0.5 mg/kg, ip), a peripherally acting muscarinic receptor blocker, nor mecamylamine (5 mg/kg, ip) or hexamethonium (5 mg/kg, ip), two cholinergic nicotinic receptor antagonists, prevented the effects of post-training AF-DX 116 on retention. Low subeffective doses of the central acting anticholinesterase physostigmine (35 micrograms/kg, ip), administered immediately after training, and AF-DX 116 (0.1 mg/kg, ip), given 10 min after training, acted synergistically to improve retention. The effects of AF-DX 116 (0.1 mg/kg, ip) were not influenced by the peripherally acting anticholinesterase neostigmine (35 micrograms/kg, ip). Considered together, these findings suggest that the activation of a muscarinic cholinergic presynaptic inhibitory mechanism, probably by increasing brain acetylcholine release, may modulate the activity of post-training processes involved in memory storage. PMID:8216161

  3. Facilitation of memory storage by the acetylcholine M2 muscarinic receptor antagonist AF-DX 116.

    PubMed

    Baratti, C M; Opezzo, J W; Kopf, S R

    1993-07-01

    Post-training administration of the acetylcholine muscarinic M2 presynaptic receptor antagonist AF-DX 116 (0.1-10.0 mg/kg, ip), facilitated 48 h retention, in male Swiss mice, of a one-trial step-through inhibitory avoidance task. The dose-response curve was an inverted U. AF-DX 116 did not increase the retention latencies of mice that had not received a footshock during training. The influence of AF-DX 116 (1 mg/kg, ip) on retention was time-dependent, which suggests that the drug facilitated memory storage. The memory facilitation induced by AF-DX 116 (1 mg/kg, ip) was prevented by atropine (0.5 mg/kg, ip) administered after training, but 10 min prior to AF-DX 116 treatment. In contrast, neither methylatropine (0.5 mg/kg, ip), a peripherally acting muscarinic receptor blocker, nor mecamylamine (5 mg/kg, ip) or hexamethonium (5 mg/kg, ip), two cholinergic nicotinic receptor antagonists, prevented the effects of post-training AF-DX 116 on retention. Low subeffective doses of the central acting anticholinesterase physostigmine (35 micrograms/kg, ip), administered immediately after training, and AF-DX 116 (0.1 mg/kg, ip), given 10 min after training, acted synergistically to improve retention. The effects of AF-DX 116 (0.1 mg/kg, ip) were not influenced by the peripherally acting anticholinesterase neostigmine (35 micrograms/kg, ip). Considered together, these findings suggest that the activation of a muscarinic cholinergic presynaptic inhibitory mechanism, probably by increasing brain acetylcholine release, may modulate the activity of post-training processes involved in memory storage.

  4. Synthesis and Pharmacological Evaluation of DHβE Analogues as Neuronal Nicotinic Acetylcholine Receptor Antagonists

    PubMed Central

    2014-01-01

    Dihydro-β-erythroidine (DHβE) is a member of the Erythrina family of alkaloids and a potent competitive antagonist of the α4β2-subtype of the nicotinic acetylcholine receptors (nAChRs). Guided by an X-ray structure of DHβE in complex with an ACh binding protein, we detail the design, synthesis, and pharmacological characterization of a series of DHβE analogues in which two of the four rings in the natural product has been excluded. We found that the direct analogue of DHβE maintains affinity for the α4β2-subtype, but further modifications of the simplified analogues were detrimental to their activities on the nAChRs. PMID:25050162

  5. Effect of α₇ nicotinic acetylcholine receptor agonists and antagonists on motor function in mice.

    PubMed

    Welch, Kevin D; Pfister, James A; Lima, Flavia G; Green, Benedict T; Gardner, Dale R

    2013-02-01

    Nicotinic acetylcholine receptors (nAChRs) are ligand-gated cation channels found throughout the body, and serve to mediate diverse physiological functions. Muscle-type nAChRs located in the motor endplate region of muscle fibers play an integral role in muscle contraction and thus motor function. The toxicity and teratogenicity of many plants (which results in millions of dollars in losses annually to the livestock industry) are due to various toxins that bind to nAChRs including deltaline and methyllycaconitine (MLA) from larkspur (Delphinium) species, and nicotine and anabasine from tobacco (Nicotiana) species. The primary result of the actions of these alkaloids at nAChRs is neuromuscular paralysis and respiratory failure. The objective of this study was to further characterize the motor coordination deficiencies that occur upon exposure to a non-lethal dose of nAChR antagonists MLA and deltaline as well as nAChR agonists nicotine and anabasine. We evaluated the effect of nAChR agonists and antagonists on the motor function and coordination in mice using a balance beam, grip strength meter, rotarod, open field analysis and tremor monitor. These analyses demonstrated that within seconds after treatment the mice had significant loss of motor function and coordination that lasted up to 1 min, followed by a short period of quiescence. Recovery to normal muscle coordination was rapid, typically within approximately 10 min post-dosing. However, mice treated with the nAChR agonist nicotine and anabasine required a slightly longer time to recover some aspects of normal muscle function in comparison to mice treated with the nAChR antagonist MLA or deltaline.

  6. Effect of a nicotinic acetylcholine receptor agonists and antagonists on motor function in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nicotinic acetylcholine receptors (nAChR) are ligand-gated cation channels found throughout the body, and serve to mediate diverse physiological functions. Muscle-type nAChR located in the motor endplate region of muscle fibers play an integral role in muscle contraction and thus motor function. The...

  7. Molecular modeling of human pentameric alpha(7) neuronal nicotinic acetylcholine receptor and its interaction with its agonist and competitive antagonist.

    PubMed

    Parthiban, Marimuthu; Rajasekaran, Mohan Babu; Ramakumar, Suryanarayanarao; Shanmughavel, Piramanayagam

    2009-04-01

    The nicotinic Acetylcholine Receptor (nAChR) is the major class of neurotransmitter receptors that is involved in many neurodegenerative conditions such as schizophrenia, Alzheimer's and Parkinson's diseases. The N-terminal region or Ligand Binding Domain (LBD) of nAChR is located at pre- and post-synaptic nervous system, which mediates synaptic transmission. nAChR acts as the drug target for agonist and competitive antagonist molecules that modulate signal transmission at the nerve terminals. Based on Acetylcholine Binding Protein (AChBP) from Lymnea stagnalis as the structural template, the homology modeling approach was carried out to build three dimensional model of the N-terminal region of human alpha(7)nAChR. This theoretical model is an assembly of five alpha(7) subunits with 5 fold axis symmetry, constituting a channel, with the binding pocket present at the interface region of the subunits. alpha-neurotoxin is a potent nAChR competitive antagonist that readily blocks the channel resulting in paralysis. The molecular interaction of alpha-Bungarotoxin, a long chain alpha-neurotoxin from (Bungarus multicinctus) and human alpha(7)nAChR was studied. Agonists such as acetylcholine, nicotine, which are used in a diverse array of biological activities, such as enhancements of cognitive performances, were also docked with the theoretical model of human alpha(7)nAChR. These docked complexes were analyzed further for identifying the crucial residues involved in interaction. These results provide the details of interaction of agonists and competitive antagonists with three dimensional model of the N-terminal region of human alpha(7)nAChR and thereby point to the design of novel lead compounds.

  8. A Novel Selective Muscarinic Acetylcholine Receptor Subtype 1 Antagonist Reduces Seizures without Impairing Hippocampus-Dependent LearningS⃞

    PubMed Central

    Sheffler, Douglas J.; Williams, Richard; Bridges, Thomas M.; Xiang, Zixiu; Kane, Alexander S.; Byun, Nellie E.; Jadhav, Satyawan; Mock, Mathew M.; Zheng, Fang; Lewis, L. Michelle; Jones, Carrie K.; Niswender, Colleen M.; Weaver, Charles D.; Lindsley, Craig W.; Conn, P. Jeffrey

    2009-01-01

    Previous studies suggest that selective antagonists of specific subtypes of muscarinic acetylcholine receptors (mAChRs) may provide a novel approach for the treatment of certain central nervous system (CNS) disorders, including epileptic disorders, Parkinson's disease, and dystonia. Unfortunately, previously reported antagonists are not highly selective for specific mAChR subtypes, making it difficult to definitively establish the functional roles and therapeutic potential for individual subtypes of this receptor subfamily. The M1 mAChR is of particular interest as a potential target for treatment of CNS disorders. We now report the discovery of a novel selective antagonist of M1 mAChRs, termed VU0255035 [N-(3-oxo-3-(4-(pyridine-4-yl)piperazin-1-yl)propyl)-benzo[c][1,2,5]thiadiazole-4 sulfonamide]. Equilibrium radioligand binding and functional studies demonstrate a greater than 75-fold selectivity of VU0255035 for M1 mAChRs relative to M2-M5. Molecular pharmacology and mutagenesis studies indicate that VU0255035 is a competitive orthosteric antagonist of M1 mAChRs, a surprising finding given the high level of M1 mAChR selectivity relative to other orthosteric antagonists. Whole-cell patch-clamp recordings demonstrate that VU0255035 inhibits potentiation of N-methyl-d-aspartate receptor currents by the muscarinic agonist carbachol in hippocampal pyramidal cells. VU0255035 has excellent brain penetration in vivo and is efficacious in reducing pilocarpine-induced seizures in mice. We were surprised to find that doses of VU0255035 that reduce pilocarpine-induced seizures do not induce deficits in contextual freezing, a measure of hippocampus-dependent learning that is disrupted by nonselective mAChR antagonists. Taken together, these data suggest that selective antagonists of M1 mAChRs do not induce the severe cognitive deficits seen with nonselective mAChR antagonists and could provide a novel approach for the treatment certain of CNS disorders. PMID:19407080

  9. Structural heterogeneity of the alpha subunits of the nicotinic acetylcholine receptor in relation to agonist affinity alkylation and antagonist binding.

    PubMed

    Ratnam, M; Gullick, W; Spiess, J; Wan, K; Criado, M; Lindstrom, J

    1986-07-29

    The structural basis for the heterogeneity of the two agonist binding sites of the Torpedo californica acetylcholine receptor with respect to antagonist binding and reactivity toward affinity alkylating reagents was investigated. There is one agonist binding site on each of the two alpha subunits in a receptor monomer. One of these sites is easily affinity labeled with bromoacetylcholine, while more extreme conditions are required to label the other. Evidence is presented that the site which is easily labeled with bromoacetylcholine is the site with higher affinity for the antagonist d-tubocurarine. Digestion of purified alpha subunits with staphylococcal V8 protease gave two limit fragments with apparent molecular weights of 17K and 19K. Both of these fragments began at residue 46 of the alpha sequence, and both reacted with monoclonal antibodies specific for the sequence alpha 152-159 but not with antibodies specific for alpha 235-242. Their tryptic peptide maps and reactivity with a number of monoclonal antibodies were virtually identical. Only the 17-kilodalton (17-kDa) fragments stained heavily for sugars with Schiff's reagent. However, both fragments bound 125I-labeled concanavalin A. Complete removal of carbohydrate detectable with concanavalin A from V8 protease digests of alpha subunits resulted in two fragments of lower apparent molecular weights, indicating that these fragments differed not only in carbohydrate content but also in their C-termini or by another covalent modification. Covalent labeling of one of the two agonist sites of the intact receptor with bromo[3H]acetylcholine followed by digestion with V8 protease resulted in labeling of only the 19-kDa fragment.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Effects of the nicotinic acetylcholine receptor antagonist mecamylamine on the discriminative stimulus effects of cocaine in male rhesus monkeys.

    PubMed

    Banks, Matthew L

    2014-06-01

    Preclinical drug discrimination procedures have been useful in understanding the pharmacological mechanisms of the subjective-like effects of abused drugs. Converging lines of evidence from neurochemical and behavioral studies implicate a potential role of nicotinic acetylcholine (nACh) receptors in the abuse-related effects of cocaine. The aim of the present study was to determine the effects of the nACh receptor antagonist mecamylamine on the discriminative stimulus effects of cocaine in nonhuman primates. The effects of mecamylamine on the cocaine-like discriminative stimulus effects of nicotine were also examined. Male rhesus monkeys (n = 5) were trained to discriminate 0.32 mg/kg, IM cocaine from saline in a 2-key, food-reinforced discrimination procedure. Initially, potency and time course of cocaine-like discriminative stimulus effects were determined for nicotine and mecamylamine alone. Test sessions were then conducted examining the effects of mecamylamine on cocaine or the cocaine-like discriminative stimulus effects of nicotine. Curiously, mecamylamine produced partial cocaine-like discriminative stimulus effects. Mecamylamine did not significantly alter the discriminative stimulus effects of cocaine up to doses that significantly decreased rates of operant responding. Mecamylamine and nicotine combinations were not different than saline. These results confirm previous nonhuman primate studies of partial substitution with nicotine and extend these findings with mecamylamine. Furthermore, these results extend previous results in rats suggesting cocaine may have nACh receptor antagonist properties. PMID:24548245

  11. Alanine scan of α-conotoxin RegIIA reveals a selective α3β4 nicotinic acetylcholine receptor antagonist.

    PubMed

    Kompella, Shiva N; Hung, Andrew; Clark, Richard J; Marí, Frank; Adams, David J

    2015-01-01

    Activation of the α3β4 nicotinic acetylcholine receptor (nAChR) subtype has recently been implicated in the pathophysiology of various conditions, including development and progression of lung cancer and in nicotine addiction. As selective α3β4 nAChR antagonists, α-conotoxins are valuable tools to evaluate the functional roles of this receptor subtype. We previously reported the discovery of a new α4/7-conotoxin, RegIIA. RegIIA was isolated from Conus regius and inhibits acetylcholine (ACh)-evoked currents mediated by α3β4, α3β2, and α7 nAChR subtypes. The current study used alanine scanning mutagenesis to understand the selectivity profile of RegIIA at the α3β4 nAChR subtype. [N11A] and [N12A] RegIIA analogs exhibited 3-fold more selectivity for the α3β4 than the α3β2 nAChR subtype. We also report synthesis of [N11A,N12A]RegIIA, a selective α3β4 nAChR antagonist (IC50 of 370 nM) that could potentially be used in the treatment of lung cancer and nicotine addiction. Molecular dynamics simulations of RegIIA and [N11A,N12A]RegIIA bound to α3β4 and α3β2 suggest that destabilization of toxin contacts with residues at the principal and complementary faces of α3β2 (α3-Tyr(92), Ser(149), Tyr(189), Cys(192), and Tyr(196); β2-Trp(57), Arg(81), and Phe(119)) may form the molecular basis for the selectivity shift.

  12. Alanine scan of α-conotoxin RegIIA reveals a selective α3β4 nicotinic acetylcholine receptor antagonist.

    PubMed

    Kompella, Shiva N; Hung, Andrew; Clark, Richard J; Marí, Frank; Adams, David J

    2015-01-01

    Activation of the α3β4 nicotinic acetylcholine receptor (nAChR) subtype has recently been implicated in the pathophysiology of various conditions, including development and progression of lung cancer and in nicotine addiction. As selective α3β4 nAChR antagonists, α-conotoxins are valuable tools to evaluate the functional roles of this receptor subtype. We previously reported the discovery of a new α4/7-conotoxin, RegIIA. RegIIA was isolated from Conus regius and inhibits acetylcholine (ACh)-evoked currents mediated by α3β4, α3β2, and α7 nAChR subtypes. The current study used alanine scanning mutagenesis to understand the selectivity profile of RegIIA at the α3β4 nAChR subtype. [N11A] and [N12A] RegIIA analogs exhibited 3-fold more selectivity for the α3β4 than the α3β2 nAChR subtype. We also report synthesis of [N11A,N12A]RegIIA, a selective α3β4 nAChR antagonist (IC50 of 370 nM) that could potentially be used in the treatment of lung cancer and nicotine addiction. Molecular dynamics simulations of RegIIA and [N11A,N12A]RegIIA bound to α3β4 and α3β2 suggest that destabilization of toxin contacts with residues at the principal and complementary faces of α3β2 (α3-Tyr(92), Ser(149), Tyr(189), Cys(192), and Tyr(196); β2-Trp(57), Arg(81), and Phe(119)) may form the molecular basis for the selectivity shift. PMID:25411242

  13. Solution structure of {alpha}-conotoxin PIA, a novel antagonist of {alpha}6 subunit containing nicotinic acetylcholine receptors

    SciTech Connect

    Chi, Seung-Wook; Lee, Si-Hyung; Kim, Do-Hyoung; Kim, Jae-Sung; Olivera, Baldomero M.; McIntosh, J. Michael; Han, Kyou-Hoon . E-mail: khhan600@kribb.re.kr

    2005-12-30

    {alpha}-Conotoxin PIA is a novel nicotinic acetylcholine receptor (nAChR) antagonist isolated from Conus purpurascens that targets nAChR subtypes containing {alpha}6 and {alpha}3 subunits. {alpha}-conotoxin PIA displays 75-fold higher affinity for rat {alpha}6/{alpha}3{beta}2{beta}3 nAChRs than for rat {alpha}3{beta}2 nAChRs. We have determined the three-dimensional structure of {alpha}-conotoxin PIA by nuclear magnetic resonance spectroscopy. The {alpha}-conotoxin PIA has an '{omega}-shaped' overall topology as other {alpha}4/7 subfamily conotoxins. Yet, unlike other neuronally targeted {alpha}4/7-conotoxins, its N-terminal tail Arg{sup 1}-Asp{sup 2}-Pro{sup 3} protrudes out of its main molecular body because Asp{sup 2}-Pro{sup 3}-Cys{sup 4}-Cys{sup 5} forms a stable type I {beta}-turn. In addition, a kink introduced by Pro{sup 15} in the second loop of this toxin provides a distinct steric and electrostatic environment from those in {alpha}-conotoxins MII and GIC. By comparing the structure of {alpha}-conotoxin PIA with other functionally related {alpha}-conotoxins we suggest structural features in {alpha}-conotoxin PIA that may be associated with its unique receptor recognition profile.

  14. Characterization of V0162, a new long-acting antagonist at human M3 muscarinic acetylcholine receptors.

    PubMed

    Heusler, Peter; Cussac, Didier; Naline, Emmanuel; Tardif, Stéphanie; Clerc, Thierry; Devillier, Philippe

    2015-10-01

    The anticholinergic properties of the mequitazine enantiomer V0162 make it a drug candidate for the treatment of chronic obstructive airway diseases. Here, we compared V0162's in vitro pharmacological activity at recombinant human M3 muscarinic acetylcholine receptors (hM3Rs) with that of other anticholinergics, using (i) a radioligand binding assay, (ii) a functional reporter gene assay and (iii) a bronchoconstriction inhibition assay on human bronchial preparations. V0162 had high affinity for hM3Rs, with a pKi varying from 9.01 after a 2 h incubation to 9.21 after 23 h. The other mequitazine enantiomer (V0114) was less potent. V0162 displayed rapid off-kinetics and a biphasic time course of binding. V0162 was found to be an antagonist behaving as an inverse agonist for hM3R-mediated reporter gene activation, with much the same efficacy as atropine, ipratropium and tiotropium. However, in contrast to ipratropium and atropine, V0162's inhibitory potency was only slightly affected by compound washout. V0162 antagonized acetylcholine-mediated contractions in a human bronchial preparation; the pA2 values increased with the incubation time (up to 2 h). Moreover, there was a progressive increase in V0162's ability to inhibit electrically-induced contractions, which persisted after compound washout. In conclusion, V0162 is the most active mequitazine enantiomer at hM3Rs and shows a complex pattern of binding to the membrane compartment. These particular features may be of therapeutic value when persistent antagonism at hM3Rs is required. PMID:26241178

  15. Characterization of V0162, a new long-acting antagonist at human M3 muscarinic acetylcholine receptors.

    PubMed

    Heusler, Peter; Cussac, Didier; Naline, Emmanuel; Tardif, Stéphanie; Clerc, Thierry; Devillier, Philippe

    2015-10-01

    The anticholinergic properties of the mequitazine enantiomer V0162 make it a drug candidate for the treatment of chronic obstructive airway diseases. Here, we compared V0162's in vitro pharmacological activity at recombinant human M3 muscarinic acetylcholine receptors (hM3Rs) with that of other anticholinergics, using (i) a radioligand binding assay, (ii) a functional reporter gene assay and (iii) a bronchoconstriction inhibition assay on human bronchial preparations. V0162 had high affinity for hM3Rs, with a pKi varying from 9.01 after a 2 h incubation to 9.21 after 23 h. The other mequitazine enantiomer (V0114) was less potent. V0162 displayed rapid off-kinetics and a biphasic time course of binding. V0162 was found to be an antagonist behaving as an inverse agonist for hM3R-mediated reporter gene activation, with much the same efficacy as atropine, ipratropium and tiotropium. However, in contrast to ipratropium and atropine, V0162's inhibitory potency was only slightly affected by compound washout. V0162 antagonized acetylcholine-mediated contractions in a human bronchial preparation; the pA2 values increased with the incubation time (up to 2 h). Moreover, there was a progressive increase in V0162's ability to inhibit electrically-induced contractions, which persisted after compound washout. In conclusion, V0162 is the most active mequitazine enantiomer at hM3Rs and shows a complex pattern of binding to the membrane compartment. These particular features may be of therapeutic value when persistent antagonism at hM3Rs is required.

  16. Effect of α{sub 7} nicotinic acetylcholine receptor agonists and antagonists on motor function in mice

    SciTech Connect

    Welch, Kevin D.; Green, Benedict T.; Gardner, Dale R.

    2013-02-01

    Nicotinic acetylcholine receptors (nAChRs) are ligand-gated cation channels found throughout the body, and serve to mediate diverse physiological functions. Muscle-type nAChRs located in the motor endplate region of muscle fibers play an integral role in muscle contraction and thus motor function. The toxicity and teratogenicity of many plants (which results in millions of dollars in losses annually to the livestock industry) are due to various toxins that bind to nAChRs including deltaline and methyllycaconitine (MLA) from larkspur (Delphinium) species, and nicotine and anabasine from tobacco (Nicotiana) species. The primary result of the actions of these alkaloids at nAChRs is neuromuscular paralysis and respiratory failure. The objective of this study was to further characterize the motor coordination deficiencies that occur upon exposure to a non-lethal dose of nAChR antagonists MLA and deltaline as well as nAChR agonists nicotine and anabasine. We evaluated the effect of nAChR agonists and antagonists on the motor function and coordination in mice using a balance beam, grip strength meter, rotarod, open field analysis and tremor monitor. These analyses demonstrated that within seconds after treatment the mice had significant loss of motor function and coordination that lasted up to 1 min, followed by a short period of quiescence. Recovery to normal muscle coordination was rapid, typically within approximately 10 min post-dosing. However, mice treated with the nAChR agonist nicotine and anabasine required a slightly longer time to recover some aspects of normal muscle function in comparison to mice treated with the nAChR antagonist MLA or deltaline. -- Highlights: ► Mice treated with nAChR agonists and antagonists have a loss in motor function. ► These deficits are temporary as near normal motor function returns within 10 min. ► There are compound-specific differences in the effects on motor function.

  17. A Distinct Functional Site in Ω-Neurotoxins: Novel Antagonists of Nicotinic Acetylcholine Receptors from Snake Venom.

    PubMed

    Hassan-Puttaswamy, Varuna; Adams, David J; Kini, R Manjunatha

    2015-12-18

    Snake venom α-neurotoxins from the three-finger toxin (3FTx) family are competitive antagonists with nanomolar affinity and high selectivity for nicotinic acetylcholine receptors (nAChR). Here, we report the characterization of a new group of competitive nAChR antagonists: Ω-neurotoxins. Although they belong to the 3FTx family, the characteristic functional residues of α-neurotoxins are not conserved. We evaluated the subtype specificity and structure-function relationships of Oh9-1, an Ω-neurotoxin from Ophiophagus hannah venom. Recombinant Oh9-1 showed reversible postsynaptic neurotoxicity in the micromolar range. Experiments with different nAChR subtypes expressed in Xenopus oocytes indicated Oh9-1 is selective for rat muscle type α1β1εδ (adult) and α1β1γδ (fetal) and rat neuronal α3β2 subtypes. However, Oh9-1 showed low or no affinity for other human and rat neuronal subtypes. Twelve individual alanine-scan mutants encompassing all three loops of Oh9-1 were evaluated for binding to α1β1εδ and α3β2 subtypes. Oh9-1's loop-II residues (M25, F27) were the most critical for interactions and formed the common binding core. Mutations at T23 and F26 caused a significant loss in activity at α1β1εδ receptors but had no effect on the interaction with the α3β2 subtype. Similarly, mutations at loop-II (H7, K22, H30) and -III (K45) of Oh9-1 had a distinctly different impact on its activity with these subtypes. Thus, Oh9-1 interacts with these nAChRs via distinct residues. Unlike α-neurotoxins, the tip of loop-II is not involved. We reveal a novel mode of interaction, where both sides of the β-strand of Oh9-1's loop-II interact with α1β1εδ, but only one side interacts with α3β2. Phylogenetic analysis revealed functional organization of the Ω-neurotoxins independent of α-neurotoxins. Thus, Ω-neurotoxin: Oh9-1 may be a new, structurally distinct class of 3FTxs that, like α-neurotoxins, antagonize nAChRs. However, Oh9-1 binds to the ACh

  18. Desensitization of membrane-bound Torpedo acetylcholine receptor by amine noncompetitive antagonists and aliphatic alcohols: studies of (/sup 3/H)acetylcholine binding and /sup 22/Na/sup +/ ion fluxes

    SciTech Connect

    Boyd, N.D.; Cohen, J.B.

    1984-08-28

    Measurements of the kinetics of binding of (/sup 3/H)acetylcholine ((/sup 3/H)AcCh) to membrane-bound nicotinic AcCh receptors from Torpedo electric tissue have been used to characterize the effects of amine and alcohol noncompetitive antagonists on receptor conformational equilibria. The receptor exists in interconvertible conformations distinguished by agonist binding affinity. The high-affinity receptor conformation stabilized by noncompetitive antagonists was characterized by (1) the rate constant (k/sub rec/) for receptor reisomerization upon removal of stabilizing ligand and (2) the rate constant (k/sub dis/) for dissociation of (/sup 3/H)AcCh-receptor complexes. On the basis of these criteria, the high-affinity receptor conformation stabilized by amine and alcohol noncompetitive blockers is the same as that stabilized by agonist. Histrionicotoxin (HTX) and adiphenine antagonized the conformational perturbation caused by proadifen, while mixtures of HTX and 2-propanol produced additive effects. Exposure to proadifen in the absence of agonist produced a reversible inhibition (desensitization) of the flux response, and recovery from desensitization occurred at the same rate as the reisomerization from the high-affinity receptor state. HTX, which did not cause desensitization of the flux response, reduced the desensitization by proadifen. These results are compatible with the hypothesis that certain noncompetitive antagonists modify receptor function by stabilizing the same high-affinity (desensitized) conformation that is stabilized by agonists, either as a consequence of binding to the allosteric site or by an alternate mechanism.

  19. NSC23766, a widely used inhibitor of Rac1 activation, additionally acts as a competitive antagonist at muscarinic acetylcholine receptors.

    PubMed

    Levay, Magdolna; Krobert, Kurt Allen; Wittig, Karola; Voigt, Niels; Bermudez, Marcel; Wolber, Gerhard; Dobrev, Dobromir; Levy, Finn Olav; Wieland, Thomas

    2013-10-01

    Small molecules interfering with Rac1 activation are considered as potential drugs and are already studied in animal models. A widely used inhibitor without reported attenuation of RhoA activity is NSC23766 [(N(6)-[2-[[4-(diethylamino)-1-methylbutyl]amino]-6-methyl-4-pyrimidinyl]-2-methyl-4,6-quinolinediamine trihydrochloride]. We found that NSC23766 inhibits the M2 muscarinic acetylcholine receptor (M2 mAChR)-induced Rac1 activation in neonatal rat cardiac myocytes. Surprisingly, NSC27366 concomitantly suppressed the carbachol-induced RhoA activation and a M2 mAChR-induced inotropic response in isolated neonatal rat hearts requiring the activation of Rho-dependent kinases. We therefore aimed to identify the mechanisms by which NSC23766 interferes with the differentially mediated, M2 mAChR-induced responses. Interestingly, NSC23766 caused a rightward shift of the carbachol concentration response curve for the positive inotropic response without modifying carbachol efficacy. To analyze the specificity of NSC23766, we compared the carbachol and the similarly Giβγ-mediated, adenosine-induced activation of Gi protein-regulated potassium channel (GIRK) channels in human atrial myocytes. Application of NSC23766 blocked the carbachol-induced K(+) current but had no effect on the adenosine-induced GIRK current. Similarly, an adenosine A1 receptor-induced positive inotropic response in neonatal rat hearts was not attenuated by NSC23766. To investigate its specificity toward the different mAChR types, we studied the carbachol-induced elevation of intracellular Ca(2+) concentrations in human embryonic kidney 293 (HEK-293) cells expressing M1, M2, or M3 mAChRs. NSC23766 caused a concentration-dependent rightward shift of the carbachol concentration response curves at all mAChRs. Thus, NSC23766 is not only an inhibitor of Rac1 activation, but it is within the same concentration range a competitive antagonist at mAChRs. Molecular docking analysis at M2 and M3 mAChR crystal

  20. Solution conformation of alpha-conotoxin GIC, a novel potent antagonist of alpha3beta2 nicotinic acetylcholine receptors.

    PubMed Central

    Chi, Seung-Wook; Kim, Do-Hyoung; Olivera, Baldomero M; McIntosh, J Michael; Han, Kyou-Hoon

    2004-01-01

    Alpha-conotoxin GIC is a 16-residue peptide isolated from the venom of the cone snail Conus geographus. Alpha-conotoxin GIC potently blocks the alpha3beta2 subtype of human nicotinic acetylcholine receptor, showing a high selectivity for neuronal versus muscle subtype [McIntosh, Dowell, Watkins, Garrett, Yoshikami, and Olivera (2002) J. Biol. Chem. 277, 33610-33615]. We have now determined the three-dimensional solution structure of alpha-conotoxin GIC by NMR spectroscopy. The structure of alpha-conotoxin GIC is well defined with backbone and heavy atom root mean square deviations (residues 2-16) of 0.53 A and 0.96 A respectively. Structure and surface comparison of alpha-conotoxin GIC with the other alpha4/7 subfamily conotoxins reveals unique structural aspects of alpha-conotoxin GIC. In particular, the structural comparison between alpha-conotoxins GIC and MII indicates molecular features that may confer their similar receptor specificity profile, as well as those that provide the unique binding characteristics of alpha-conotoxin GIC. PMID:14992691

  1. Conformational states of the nicotinic acetylcholine receptor from Torpedo californica induced by the binding of agonists, antagonists, and local anesthetics. Equilibrium measurements using tritium-hydrogen exchange

    SciTech Connect

    McCarthy, M.P.; Stroud, R.M.

    1989-01-10

    The tritium-hydrogen exchange kinetics of Torpedo californica AChR, in native membrane vesicles at pH 7.4 and 0 degrees C, have been analyzed in the presence of agonists, partial agonists, local anesthetics, and competitive antagonists. The agonists carbamylcholine (10 microM-1 mM) and suberyldicholine (10 microM) and the partial agonists decamethonium (25 microM and 1 mM) and hexamethonium (1 mM) have no effect on the exchange kinetics, although at lower concentration carbamylcholine may slightly accelerate exchange. Nondesensitizing local anesthetics do affect the exchange behavior, dependent on concentration. Procaine at 500 microM moderately retards exchange while procaine at 10 mM and tetracaine at 5 mM slightly accelerate exchange. The competitive antagonist alpha-bungarotoxin retards exchange significantly, as does d-tubocurarine although to a lesser extent. These results suggest that the resting and desensitized conformations of the AChR are very similar in overall solvent accessibility and that at lower concentrations noncompetitive blockers such as procaine may stabilize a less solvent-accessible state of the AChR. The competitive antagonists alpha-bungarotoxin and d-tubocurare also stabilize a dynamically restricted, less solvent-accessible conformation of the acetylcholine receptor, demonstrating that a large conformational change accompanies binding of these toxins. Any change in conformation which may accompany desensitization is very different from these effects.

  2. Methadone is a non-competitive antagonist at the α4β2 and α3* nicotinic acetylcholine receptors and an agonist at the α7 nicotinic acetylcholine receptor.

    PubMed

    Talka, Reeta; Salminen, Outi; Tuominen, Raimo K

    2015-04-01

    Nicotine-methadone interactions have been studied in human beings and in various experimental settings regarding addiction, reward and pain. Most methadone maintenance treatment patients are smokers, and methadone administration has been shown to increase cigarette smoking. Previous in vitro studies have shown that methadone is a non-competitive antagonist at rat α3β4 nicotinic acetylcholine receptors (nAChR) and an agonist at human α7 nAChRs. In this study, we used cell lines expressing human α4β2, α7 and α3* nAChRs to compare the interactions of methadone at the various human nAChRs under the same experimental conditions. A [(3) H]epibatidine displacement assay was used to determine whether methadone binds to the nicotinic receptors, and (86) Rb(+) efflux and changes in intracellular calcium [Ca(2+) ]i were used to assess changes in the functional activity of the receptors. Methadone displaced [(3) H]epibatidine from nicotinic agonist-binding sites in SH-EP1-hα7 and SH-SY5Y cells, but not in SH-EP1-hα4β2 cells. The Ki values for methadone were 6.3 μM in SH-EP1-hα7 cells and 19.4 μM and 1008 μM in SH-SY5Y cells. Methadone increased [Ca(2+) ]i in all cell lines in a concentration-dependent manner, and in SH-EP1-hα7 cells, the effect was more pronounced than the effect of nicotine treatment. In SH-EP1-hα4β2 cells, the effect of methadone was negligible compared to that of nicotine. Methadone pre-treatment abolished the nicotine-induced response in [Ca(2+) ]i in all cell lines expressing nAChRs. In SH-EP1-hα4β2 and SH-SY5Y cells, methadone had no effect on the (86) Rb(+) efflux, but it antagonized the nicotine-induced (86) Rb(+) ion efflux in a non-competitive manner. These results suggest that methadone is an agonist at human α7 nAChRs and a non-competitive antagonist at human α4β2 and α3* nAChRs. This study adds further support to the previous findings that opioids interact with nAChRs, which may underlie their frequent co

  3. The non-competitive acetylcholinesterase inhibitor APS12-2 is a potent antagonist of skeletal muscle nicotinic acetylcholine receptors

    SciTech Connect

    Grandič, Marjana; Aráoz, Romulo; Molgó, Jordi; Turk, Tom; Sepčić, Kristina; Benoit, Evelyne; Frangež, Robert

    2012-12-01

    APS12-2, a non-competitive acetylcholinesterase inhibitor, is one of the synthetic analogs of polymeric alkylpyridinium salts (poly-APS) isolated from the marine sponge Reniera sarai. In the present work the effects of APS12-2 were studied on isolated mouse phrenic nerve–hemidiaphragm muscle preparations, using twitch tension measurements and electrophysiological recordings. APS12-2 in a concentration-dependent manner blocked nerve-evoked isometric muscle contraction (IC{sub 50} = 0.74 μM), without affecting directly-elicited twitch tension up to 2.72 μM. The compound (0.007–3.40 μM) decreased the amplitude of miniature endplate potentials until a complete block by concentrations higher than 0.68 μM, without affecting their frequency. Full size endplate potentials, recorded after blocking voltage-gated muscle sodium channels, were inhibited by APS12-2 in a concentration-dependent manner (IC{sub 50} = 0.36 μM) without significant change in the resting membrane potential of the muscle fibers up to 3.40 μM. The compound also blocked acetylcholine-evoked inward currents in Xenopus oocytes in which Torpedo (α1{sub 2}β1γδ) muscle-type nicotinic acetylcholine receptors (nAChRs) have been incorporated (IC{sub 50} = 0.0005 μM), indicating a higher affinity of the compound for Torpedo (α1{sub 2}β1γδ) than for the mouse (α1{sub 2}β1γε) nAChR. Our data show for the first time that APS12-2 blocks neuromuscular transmission by a non-depolarizing mechanism through an action on postsynaptic nAChRs of the skeletal neuromuscular junction. -- Highlights: ► APS12-2 produces concentration-dependent inhibition of nerve-evoked muscle contraction in vitro. ► APS12-2 blocks MEPPs and EPPs at the neuromuscular junction. APS12-2 blocks ACh-activated current in Xenopus oocytes incorporated with Torpedo nAChRs.

  4. Human Secreted Ly-6/uPAR Related Protein-1 (SLURP-1) Is a Selective Allosteric Antagonist of α7 Nicotinic Acetylcholine Receptor.

    PubMed

    Lyukmanova, Ekaterina N; Shulepko, Mikhail A; Kudryavtsev, Denis; Bychkov, Maxim L; Kulbatskii, Dmitrii S; Kasheverov, Igor E; Astapova, Maria V; Feofanov, Alexey V; Thomsen, Morten S; Mikkelsen, Jens D; Shenkarev, Zakhar O; Tsetlin, Victor I; Dolgikh, Dmitry A; Kirpichnikov, Mikhail P

    2016-01-01

    SLURP-1 is a secreted toxin-like Ly-6/uPAR protein found in epithelium, sensory neurons and immune cells. Point mutations in the slurp-1 gene cause the autosomal inflammation skin disease Mal de Meleda. SLURP-1 is considered an autocrine/paracrine hormone that regulates growth and differentiation of keratinocytes and controls inflammation and malignant cell transformation. The majority of previous studies of SLURP-1 have been made using fusion constructs containing, in addition to the native protein, extra polypeptide sequences. Here we describe the activity and pharmacological profile of a recombinant analogue of human SLURP-1 (rSLURP-1) differing from the native protein only by one additional N-terminal Met residue. rSLURP-1 significantly inhibited proliferation (up to ~ 40%, EC50 ~ 4 nM) of human oral keratinocytes (Het-1A cells). Application of mecamylamine and atropine,--non-selective inhibitors of nicotinic acetylcholine receptors (nAChRs) and muscarinic acetylcholine receptors, respectively, and anti-α7-nAChRs antibodies revealed α7 type nAChRs as an rSLURP-1 target in keratinocytes. Using affinity purification from human cortical extracts, we confirmed that rSLURP-1 binds selectively to the α7-nAChRs. Exposure of Xenopus oocytes expressing α7-nAChRs to rSLURP-1 caused a significant non-competitive inhibition of the response to acetylcholine (up to ~ 70%, IC50 ~ 1 μM). It was shown that rSLURP-1 binds to α7-nAChRs overexpressed in GH4Cl cells, but does not compete with 125I-α-bungarotoxin for binding to the receptor. These findings imply an allosteric antagonist-like mode of SLURP-1 interaction with α7-nAChRs outside the classical ligand-binding site. Contrary to rSLURP-1, other inhibitors of α7-nAChRs (mecamylamine, α-bungarotoxin and Lynx1) did not suppress the proliferation of keratinocytes. Moreover, the co-application of α-bungarotoxin with rSLURP-1 did not influence antiproliferative activity of the latter. This supports the hypothesis that

  5. Human Secreted Ly-6/uPAR Related Protein-1 (SLURP-1) Is a Selective Allosteric Antagonist of α7 Nicotinic Acetylcholine Receptor.

    PubMed

    Lyukmanova, Ekaterina N; Shulepko, Mikhail A; Kudryavtsev, Denis; Bychkov, Maxim L; Kulbatskii, Dmitrii S; Kasheverov, Igor E; Astapova, Maria V; Feofanov, Alexey V; Thomsen, Morten S; Mikkelsen, Jens D; Shenkarev, Zakhar O; Tsetlin, Victor I; Dolgikh, Dmitry A; Kirpichnikov, Mikhail P

    2016-01-01

    SLURP-1 is a secreted toxin-like Ly-6/uPAR protein found in epithelium, sensory neurons and immune cells. Point mutations in the slurp-1 gene cause the autosomal inflammation skin disease Mal de Meleda. SLURP-1 is considered an autocrine/paracrine hormone that regulates growth and differentiation of keratinocytes and controls inflammation and malignant cell transformation. The majority of previous studies of SLURP-1 have been made using fusion constructs containing, in addition to the native protein, extra polypeptide sequences. Here we describe the activity and pharmacological profile of a recombinant analogue of human SLURP-1 (rSLURP-1) differing from the native protein only by one additional N-terminal Met residue. rSLURP-1 significantly inhibited proliferation (up to ~ 40%, EC50 ~ 4 nM) of human oral keratinocytes (Het-1A cells). Application of mecamylamine and atropine,--non-selective inhibitors of nicotinic acetylcholine receptors (nAChRs) and muscarinic acetylcholine receptors, respectively, and anti-α7-nAChRs antibodies revealed α7 type nAChRs as an rSLURP-1 target in keratinocytes. Using affinity purification from human cortical extracts, we confirmed that rSLURP-1 binds selectively to the α7-nAChRs. Exposure of Xenopus oocytes expressing α7-nAChRs to rSLURP-1 caused a significant non-competitive inhibition of the response to acetylcholine (up to ~ 70%, IC50 ~ 1 μM). It was shown that rSLURP-1 binds to α7-nAChRs overexpressed in GH4Cl cells, but does not compete with 125I-α-bungarotoxin for binding to the receptor. These findings imply an allosteric antagonist-like mode of SLURP-1 interaction with α7-nAChRs outside the classical ligand-binding site. Contrary to rSLURP-1, other inhibitors of α7-nAChRs (mecamylamine, α-bungarotoxin and Lynx1) did not suppress the proliferation of keratinocytes. Moreover, the co-application of α-bungarotoxin with rSLURP-1 did not influence antiproliferative activity of the latter. This supports the hypothesis that

  6. Human Secreted Ly-6/uPAR Related Protein-1 (SLURP-1) Is a Selective Allosteric Antagonist of α7 Nicotinic Acetylcholine Receptor

    PubMed Central

    Kudryavtsev, Denis; Bychkov, Maxim L.; Kulbatskii, Dmitrii S.; Kasheverov, Igor E.; Astapova, Maria V.; Feofanov, Alexey V.; Thomsen, Morten S.; Mikkelsen, Jens D.; Shenkarev, Zakhar O.; Tsetlin, Victor I.; Dolgikh, Dmitry A.; Kirpichnikov, Mikhail P.

    2016-01-01

    SLURP-1 is a secreted toxin-like Ly-6/uPAR protein found in epithelium, sensory neurons and immune cells. Point mutations in the slurp-1 gene cause the autosomal inflammation skin disease Mal de Meleda. SLURP-1 is considered an autocrine/paracrine hormone that regulates growth and differentiation of keratinocytes and controls inflammation and malignant cell transformation. The majority of previous studies of SLURP-1 have been made using fusion constructs containing, in addition to the native protein, extra polypeptide sequences. Here we describe the activity and pharmacological profile of a recombinant analogue of human SLURP-1 (rSLURP-1) differing from the native protein only by one additional N-terminal Met residue. rSLURP-1 significantly inhibited proliferation (up to ~ 40%, EC50 ~ 4 nM) of human oral keratinocytes (Het-1A cells). Application of mecamylamine and atropine,—non-selective inhibitors of nicotinic acetylcholine receptors (nAChRs) and muscarinic acetylcholine receptors, respectively, and anti-α7-nAChRs antibodies revealed α7 type nAChRs as an rSLURP-1 target in keratinocytes. Using affinity purification from human cortical extracts, we confirmed that rSLURP-1 binds selectively to the α7-nAChRs. Exposure of Xenopus oocytes expressing α7-nAChRs to rSLURP-1 caused a significant non-competitive inhibition of the response to acetylcholine (up to ~ 70%, IC50 ~ 1 μM). It was shown that rSLURP-1 binds to α7-nAChRs overexpressed in GH4Cl cells, but does not compete with 125I-α-bungarotoxin for binding to the receptor. These findings imply an allosteric antagonist-like mode of SLURP-1 interaction with α7-nAChRs outside the classical ligand-binding site. Contrary to rSLURP-1, other inhibitors of α7-nAChRs (mecamylamine, α-bungarotoxin and Lynx1) did not suppress the proliferation of keratinocytes. Moreover, the co-application of α-bungarotoxin with rSLURP-1 did not influence antiproliferative activity of the latter. This supports the hypothesis that

  7. Positron labeled muscarinic acetylcholine receptor antagonist: 2- and 4-[18F]fluorodexetimide. Syntheses and biodistribution.

    PubMed

    Hwang, D R; Dence, C S; McKinnon, Z A; Mathias, C J; Welch, M J

    1991-01-01

    Two 18F-labeled analogues of dexetimides, 2-[18F]fluorodexetimide (2-FDEX) and 4-[18F]fluorodexetimide (4-FDEX), were prepared and evaluated in vivo as possible agents for the study of the muscarinic acetylcholine receptor (mAChR) with PET. Two synthetic approaches, a 2-step reductive alkylation procedure and a 4-step alkylation approach, were investigated. The alkylation approach with higher overall radiochemical yields was used to prepare 2- and 4-FDEX for biodistribution studies. The overall synthesis time for both compounds was 2.5 h and the overall radiochemical yield at end-of-synthesis was 12%. The specific activity was found to be greater than 600 mCi/mumol. Biodistribution studies of 2-FDEX in rats produced striatum-to-cerebellum and cortex-to-cerebellum ratios of 8.6 +/- 1.1 and 8.4 +/- 1.0 at 1 h after injection, and 12.1 +/- 2.1 and 10.7 +/- 2.2 at 3 h, respectively. Substantial radioactivity detected in bone indicated the in vivo defluorination of 2-FDEX. The striatum-to-cerebellum ratio for 4-FDEX was slightly lower at 1 h (5.9 +/- 0.9) but equally high at 3 h (12.3 +/- 2.0) when compared to 2-FDEX, and there was little bone uptake. The uptake of both 2-FDEX and 4-FDEX into mAChR rich brain regions (e.g. striatum, cortex) was blocked by a dose of dexetimide (5 mg/kg). Our results suggest 4-FDEX is a potential PET agent for study mAChR in vivo. PMID:2026502

  8. Lecozotan (SRA-333): a selective serotonin 1A receptor antagonist that enhances the stimulated release of glutamate and acetylcholine in the hippocampus and possesses cognitive-enhancing properties.

    PubMed

    Schechter, L E; Smith, D L; Rosenzweig-Lipson, S; Sukoff, S J; Dawson, L A; Marquis, K; Jones, D; Piesla, M; Andree, T; Nawoschik, S; Harder, J A; Womack, M D; Buccafusco, J; Terry, A V; Hoebel, B; Rada, P; Kelly, M; Abou-Gharbia, M; Barrett, J E; Childers, W

    2005-09-01

    Recent data has suggested that the 5-hydroxytryptamine (5-HT)(1A) receptor is involved in cognitive processing. A novel 5-HT(1A) receptor antagonist, 4-cyano-N-{2R-[4-(2,3-dihydrobenzo[1,4]-dioxin-5-yl)-piperazin-1-yl]-propyl}-N-pyridin-2-yl-benzamide HCl (lecozotan), which has been characterized in multiple in vitro and in vivo pharmacological assays as a drug to treat cognitive dysfunction, is reported. In vitro binding and intrinsic activity determinations demonstrated that lecozotan is a potent and selective 5-HT(1A) receptor antagonist. Using in vivo microdialysis, lecozotan (0.3 mg/kg s.c.) antagonized the decrease in hippocampal extracellular 5-HT induced by a challenge dose (0.3 mg/kg s.c.) of 8-hydroxy-2-dipropylaminotetralin (8-OH-DPAT) and had no effects alone at doses 10-fold higher. Lecozotan significantly potentiated the potassium chloride-stimulated release of glutamate and acetylcholine in the dentate gyrus of the hippocampus. Chronic administration of lecozotan did not induce 5-HT(1A) receptor tolerance or desensitization in a behavioral model indicative of 5-HT(1A) receptor function. In drug discrimination studies, lecozotan (0.01-1 mg/kg i.m.) did not substitute for 8-OH-DPAT and produced a dose-related blockade of the 5-HT(1A) agonist discriminative stimulus cue. In aged rhesus monkeys, lecozotan produced a significant improvement in task performance efficiency at an optimal dose (1 mg/kg p.o.). Learning deficits induced by the glutamatergic antagonist MK-801 [(-)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate] (assessed by perceptually complex and visual spatial discrimination) and by specific cholinergic lesions of the hippocampus (assessed by visual spatial discrimination) were reversed by lecozotan (2 mg/kg i.m.) in marmosets. The heterosynaptic nature of the effects of lecozotan imbues this compound with a novel mechanism of action directed at the biochemical pathologies underlying cognitive loss in Alzheimer's disease.

  9. Acetylcholine Receptor: An Allosteric Protein

    NASA Astrophysics Data System (ADS)

    Changeux, Jean-Pierre; Devillers-Thiery, Anne; Chemouilli, Phillippe

    1984-09-01

    The nicotine receptor for the neurotransmitter acetylcholine is an allosteric protein composed of four different subunits assembled in a transmembrane pentamer α 2β γ δ . The protein carries two acetylcholine sites at the level of the α subunits and contains the ion channel. The complete sequence of the four subunits is known. The membrane-bound protein undergoes conformational transitions that regulate the opening of the ion channel and are affected by various categories of pharmacologically active ligands.

  10. The melanin-concentrating hormone1 receptor antagonists, SNAP-7941 and GW3430, enhance social recognition and dialysate levels of acetylcholine in the frontal cortex of rats.

    PubMed

    Millan, Mark J; Gobert, Alain; Panayi, Fany; Rivet, Jean-Michel; Dekeyne, Anne; Brocco, Mauricette; Ortuno, Jean-Claude; Di Cara, Benjamin

    2008-12-01

    Melanin-concentrating hormone (MCH)1 receptors are widely expressed in limbic structures and cortex. Their inactivation is associated with anxiolytic and antidepressive properties but little information is available concerning cognition. This issue was addressed using the selective antagonists, SNAP-7941 and GW3430, in a social recognition paradigm in rats. The muscarinic blocker, scopolamine (1.25 mg/kg s.c.), reduced social recognition, an action dose-dependently blocked by SNAP-7941 and GW3430 (0.63-10.0 and 20.0-80.0 mg/kg i.p., respectively) which did not themselves display amnesic properties. Further, in a protocol where a spontaneous deficit was induced by a prolonged inter-session delay, SNAP-7941 and GW3430 dose-dependently enhanced social recognition. In dialysis studies, SNAP-7941 (0.63-40.0 mg/kg i.p.) and GW3430 (10.0-40.0 mg/kg i.p.) elevated extracellular levels of acetylcholine (ACh) in the frontal cortex (FCX) of freely moving rats. The SNAP-7941 effect was specific, as it did not increase levels of ACh in ventral and dorsal hippocampus: moreover, it did not modify levels of noradrenaline, dopamine, serotonin and glutamate in FCX. Active doses of SNAP-7941 and GW3430 corresponded to doses (2.5-40.0 and 10.0-80.0 mg/kg i.p., respectively) exerting anxiolytic properties in Vogel conflict and ultrasonic vocalization tests, and antidepressant actions in forced swim, isolation-induced aggression and marble-burying procedures. In contrast to SNAP-7941 and GW3430, the benzodiazepine, diazepam, decreased social recognition and dialysate levels of ACh, while the tricyclic, imipramine, reduced social recognition and failed to enhance cholinergic transmission. In conclusion, at anxiolytic and antidepressant doses, SNAP-7941 and GW3430 improve social recognition and elevate extracellular ACh levels in FCX. This profile differentiates MCH1 receptor antagonists from conventional anxiolytic and antidepressant agents.

  11. Pharmacological approaches to targeting muscarinic acetylcholine receptors.

    PubMed

    Matera, Carlo; Tata, Ada M

    2014-01-01

    The presence of cholinergic system markers and muscarinic receptor subtypes in several tissues also of nonneuronal type has been largely demonstrated. Acetylcholine, synthesized in the nervous system, can locally contribute to modulate cell proliferation, survival and apoptosis. Considering that the cholinergic system functions are impaired in a number of disorders, the identification of new drugs regulating these functions appears of great clinical relevance. The possible involvement of muscarinic acetylcholine receptors in different pathologies has been proposed in recent years and is becoming an important area of study. However, the lack of selective muscarinic receptor ligands has for long time limited the therapeutic treatment based on muscarinic receptors as targets. To date, some muscarinic ligands such as xanomeline (patent, US5980933) or cevimeline (patents US4855290, US5571918) have been developed for the treatment of several pathologies (Alzheimer's and Sjogren's diseases). The present review will be focused on the potential effects produced by muscarinic receptor activation in different pathologies, including tumors. In fact, the potential use of muscarinic ligands in therapeutic protocols in cancer therapy will be discussed, considering that several muscarinic antagonists, already used in the treatment of genitourinary diseases (e.g. darifenacin, patent, US5096890, US6106864), have also been demonstrated to arrest the tumor growth in vivo. Moreover, the contribution of muscarinic receptors to analgesia is also reviewed. Finally, some of the most significant achievements in the field of bitopic/dualsteric ligands will be discussed and the molecules patented so far will be presented.

  12. Homology modeling of human muscarinic acetylcholine receptors.

    PubMed

    Thomas, Trayder; McLean, Kimberley C; McRobb, Fiona M; Manallack, David T; Chalmers, David K; Yuriev, Elizabeth

    2014-01-27

    We have developed homology models of the acetylcholine muscarinic receptors M₁R-M₅R, based on the β₂-adrenergic receptor crystal as the template. This is the first report of homology modeling of all five subtypes of acetylcholine muscarinic receptors with binding sites optimized for ligand binding. The models were evaluated for their ability to discriminate between muscarinic antagonists and decoy compounds using virtual screening using enrichment factors, area under the ROC curve (AUC), and an early enrichment measure, LogAUC. The models produce rational binding modes of docked ligands as well as good enrichment capacity when tested against property-matched decoy libraries, which demonstrates their unbiased predictive ability. To test the relative effects of homology model template selection and the binding site optimization procedure, we generated and evaluated a naïve M₂R model, using the M₃R crystal structure as a template. Our results confirm previous findings that binding site optimization using ligand(s) active at a particular receptor, i.e. including functional knowledge into the model building process, has a more pronounced effect on model quality than target-template sequence similarity. The optimized M₁R-M₅R homology models are made available as part of the Supporting Information to allow researchers to use these structures, compare them to their own results, and thus advance the development of better modeling approaches.

  13. Leukotriene receptor antagonist therapy

    PubMed Central

    Dempsey, O

    2000-01-01

    Leukotriene receptor antagonists (LTRA) are a new class of drugs for asthma treatment, available in tablet form. Their unique mechanism of action results in a combination of both bronchodilator and anti-inflammatory effects. While their optimal place in asthma management is still under review, LTRA represent an important advance in asthma pharmacotherapy.


Keywords: leukotriene receptor antagonist; asthma; montelukast; zafirlukast PMID:11085767

  14. Nicotinic acetylcholine receptors and cancer

    PubMed Central

    DANG, NINGNING; MENG, XIANGUANG; SONG, HAIYAN

    2016-01-01

    Nicotine, the primary addictive constituent of cigarettes, is believed to contribute to cancer promotion and progression through the activation of nicotinic acetylcholine receptors (nAChRs), which are membrane ligand-gated cation channels. nAChRs activation can be triggered by the neurotransmitter Ach, or certain other biological compounds, such as nicotine. In recent years, genome-wide association studies have indicated that allelic variation in the α5-α3-β4 nAChR cluster on chromosome 15q24-15q25.1 is associated with lung cancer risk. The role of nAChRs in other types of cancer has also been reported. The present review highlights the role of nAChRs in types of human cancer. PMID:27123240

  15. Nicotinic Acetylcholine Receptors in Sensory Cortex

    ERIC Educational Resources Information Center

    Metherate, Raju

    2004-01-01

    Acetylcholine release in sensory neocortex contributes to higher-order sensory function, in part by activating nicotinic acetylcholine receptors (nAChRs). Molecular studies have revealed a bewildering array of nAChR subtypes and cellular actions; however, there is some consensus emerging about the major nAChR subtypes and their functions in…

  16. Vasopressin receptor antagonists.

    PubMed

    Palmer, Biff F

    2015-01-01

    Arginine vasopressin (AVP) is the principal hormone involved in regulating the tonicity of body fluids. Less appreciated is the role that AVP plays in a variety of other physiologic functions including glucose metabolism, cardiovascular homeostasis, bone metabolism, and cognitive behavior. AVP receptor antagonists are now available and currently approved to treat hyponatremia. There is a great deal of interest in exploring the potential benefits that these drugs may play in blocking AVP-mediated effects in other organ systems. The purpose of this report is to provide an update on the expanding role of AVP receptor antagonists and what disease states these drugs may eventually be used for.

  17. Vasopressin receptor antagonists.

    PubMed

    Palmer, Biff F

    2015-01-01

    Arginine vasopressin (AVP) is the principal hormone involved in regulating the tonicity of body fluids. Less appreciated is the role that AVP plays in a variety of other physiologic functions including glucose metabolism, cardiovascular homeostasis, bone metabolism, and cognitive behavior. AVP receptor antagonists are now available and currently approved to treat hyponatremia. There is a great deal of interest in exploring the potential benefits that these drugs may play in blocking AVP-mediated effects in other organ systems. The purpose of this report is to provide an update on the expanding role of AVP receptor antagonists and what disease states these drugs may eventually be used for. PMID:25604388

  18. Modulation of cerebral microvascular permeability by endothelial nicotinic acetylcholine receptors.

    PubMed

    Hawkins, Brian T; Egleton, Richard D; Davis, Thomas P

    2005-07-01

    Nicotine increases the permeability of the blood-brain barrier in vivo. This implies a possible role for nicotinic acetylcholine receptors in the regulation of cerebral microvascular permeability. Expression of nicotinic acetylcholine receptor subunits in cerebral microvessels was investigated with immunofluorescence microscopy. Positive immunoreactivity was found for receptor subunits alpha3, alpha5, alpha7, and beta2, but not subunits alpha4, beta3, or beta4. Blood-brain barrier permeability was assessed via in situ brain perfusion with [14C]sucrose. Nicotine increased the rate of sucrose entry into the brain from 0.3 +/- 0.1 to 1.1 +/- 0.2 microl.g(-1).min(-1), as previously described. This nicotine-induced increase in blood-brain barrier permeability was significantly attenuated by both the blood-brain barrier-permeant nicotinic antagonist mecamylamine and the blood-brain barrier-impermeant nicotinic antagonist hexamethonium to 0.5 +/- 0.2 and 0.3 +/- 0.2 microl.g(-1).min(-1), respectively. These data suggest that nicotinic acetylcholine receptors expressed on the cerebral microvascular endothelium mediate nicotine-induced changes in blood-brain barrier permeability.

  19. Optochemical control of genetically engineered neuronal nicotinic acetylcholine receptors

    NASA Astrophysics Data System (ADS)

    Tochitsky, Ivan; Banghart, Matthew R.; Mourot, Alexandre; Yao, Jennifer Z.; Gaub, Benjamin; Kramer, Richard H.; Trauner, Dirk

    2012-02-01

    Advances in synthetic chemistry, structural biology, molecular modelling and molecular cloning have enabled the systematic functional manipulation of transmembrane proteins. By combining genetically manipulated proteins with light-sensitive ligands, innately ‘blind’ neurobiological receptors can be converted into photoreceptors, which allows them to be photoregulated with high spatiotemporal precision. Here, we present the optochemical control of neuronal nicotinic acetylcholine receptors (nAChRs) with photoswitchable tethered agonists and antagonists. Using structure-based design, we produced heteromeric α3β4 and α4β2 nAChRs that can be activated or inhibited with deep-violet light, but respond normally to acetylcholine in the dark. The generation of these engineered receptors should facilitate investigation of the physiological and pathological functions of neuronal nAChRs and open a general pathway to photosensitizing pentameric ligand-gated ion channels.

  20. Histamine H3 receptors regulate acetylcholine release from the guinea pig ileum myenteric plexus

    SciTech Connect

    Poli, E.; Coruzzi, G.; Bertaccini, G. )

    1991-01-01

    The effect of selective histamine H3-receptor agonists and antagonists on the acetylcholine release from peripheral nerves was evaluated in the guinea pig longitudinal muscle-myenteric plexus preparations, preloaded with ({sup 3}H)choline. In the presence of H1 and H2 blockade, histamine and (R)-{alpha}-methylhistamine inhibited the electrically-evoked acetylcholine release, being (R)-{alpha}-methylhistamine more active than histamine, but behaving as a partial agonist. The effect of histamine was completely reversed by selective H3-blocking drugs, thioperamide and impromidine, while only submaximal doses of (R)-{alpha}-methylhistamine were antagonized. Furthermore, thioperamide and impromidine enhanced the electrically-evoked acetylcholine release. On the contrary, the new H3-blocker, HST-7, was found substantially ineffective, both as histamine antagonist and as acetylcholine overflow enhancer. These data suggest that histamine exerts an inhibitory control on the acetylcholine release from intestinal cholinergic nerves through the activation of H3 receptors.

  1. Donepezil, an acetylcholine esterase inhibitor, and ABT-239, a histamine H3 receptor antagonist/inverse agonist, require the integrity of brain histamine system to exert biochemical and procognitive effects in the mouse.

    PubMed

    Provensi, Gustavo; Costa, Alessia; Passani, M Beatrice; Blandina, Patrizio

    2016-10-01

    Histaminergic H3 receptors (H3R) antagonists enhance cognition in preclinical models and modulate neurotransmission, in particular acetylcholine (ACh) release in the cortex and hippocampus, two brain areas involved in memory processing. The cognitive deficits seen in aging and Alzheimer's disease have been associated with brain cholinergic deficits. Donepezil is one of the acetylcholinesterase (AChE) inhibitor approved for use across the full spectrum of these cognitive disorders. We addressed the question if H3R antagonists and donepezil require an intact histamine neuronal system to exert their procognitive effects. The effect of the H3R antagonist ABT-239 and donepezil were evaluated in the object recognition test (ORT), and on the level of glycogen synthase kinase 3 beta (GSK-3β) phosphorylation in normal and histamine-depleted mice. Systemic administration of ABT-239 or donepezil ameliorated the cognitive performance in the ORT. However, these compounds were ineffective in either genetically (histidine decarboxylase knock-out, HDC-KO) or pharmacologically, by means of intracerebroventricular (i.c.v.) injections of the HDC irreversible inhibitor a-fluoromethylhistidine (a-FMHis), histamine-deficient mice. Western blot analysis revealed that ABT-239 or donepezil systemic treatments increased GSK-3β phosphorylation in cortical and hippocampal homogenates of normal, but not of histamine-depleted mice. Furthermore, administration of the PI3K inhibitor LY294002 that blocks GSK-3β phosphorylation, prevented the procognitive effects of both drugs in normal mice. Our results indicate that both donepezil and ABT-239 require the integrity of the brain histaminergic system to exert their procognitive effects and strongly suggest that impairments of PI3K/AKT/GSK-3β intracellular pathway activation is responsible for the inefficacy of both drugs in histamine-deficient animals. PMID:27291828

  2. Molecular properties of muscarinic acetylcholine receptors

    PubMed Central

    HAGA, Tatsuya

    2013-01-01

    Muscarinic acetylcholine receptors, which comprise five subtypes (M1-M5 receptors), are expressed in both the CNS and PNS (particularly the target organs of parasympathetic neurons). M1-M5 receptors are integral membrane proteins with seven transmembrane segments, bind with acetylcholine (ACh) in the extracellular phase, and thereafter interact with and activate GTP-binding regulatory proteins (G proteins) in the intracellular phase: M1, M3, and M5 receptors interact with Gq-type G proteins, and M2 and M4 receptors with Gi/Go-type G proteins. Activated G proteins initiate a number of intracellular signal transduction systems. Agonist-bound muscarinic receptors are phosphorylated by G protein-coupled receptor kinases, which initiate their desensitization through uncoupling from G proteins, receptor internalization, and receptor breakdown (down regulation). Recently the crystal structures of M2 and M3 receptors were determined and are expected to contribute to the development of drugs targeted to muscarinic receptors. This paper summarizes the molecular properties of muscarinic receptors with reference to the historical background and bias to studies performed in our laboratories. PMID:23759942

  3. External Imaging of Cerebral Muscarinic Acetylcholine Receptors

    NASA Astrophysics Data System (ADS)

    Eckelman, William C.; Reba, Richard C.; Rzeszotarski, Waclaw J.; Gibson, Raymond E.; Hill, Thomas; Holman, B. Leonard; Budinger, Thomas; Conklin, James J.; Eng, Robert; Grissom, Michael P.

    1984-01-01

    A radioiodinated ligand that binds to muscarinic acetylcholine receptors was shown to distribute in the brain by a receptor-mediated process. With single-photon-emission imaging techniques, radioactivity was detected in the cerebrum but not in the cerebellum, whereas with a flow-limited radiotracer, radioactivity was detected in cerebrum and cerebellum. Single-photon-emission computed tomography showed good definition of the caudate putamen and cortex in man.

  4. External imaging of cerebral muscarinic acetylcholine receptors

    SciTech Connect

    Eckelman, W.C.; Reba, R.C.; Rzeszotarski, W.J.; Gibson, R.E.; Hill, T.; Holman, B.L.; Budinger, T.; Conklin, J.J.; Eng, R.; Grissom, M.P.

    1984-01-20

    A radioiodinated ligand that binds to muscarinic acetylcholine receptors was shown to distribute in the brain by a receptor-mediated process. With single-photon-emission imaging techniques, radioactivity was detected in the cerebrum but not in the cerebellum, whereas with a flow-limited radiotracer, radioactivity was detected in cerebrum and cerebellum. Single-photon-emission computed tomography showed good definition of the caudate putamen and cortex in man.

  5. Activation of muscarinic acetylcholine receptors via their allosteric binding sites.

    PubMed Central

    Jakubík, J; Bacáková, L; Lisá, V; el-Fakahany, E E; Tucek, S

    1996-01-01

    Ligands that bind to the allosteric-binding sites on muscarinic acetylcholine receptors alter the conformation of the classical-binding sites of these receptors and either diminish or increase their affinity for muscarinic agonists and classical antagonists. It is not known whether the resulting conformational change also affects the interaction between the receptors and the G proteins. We have now found that the muscarinic receptor allosteric modulators alcuronium, gallamine, and strychnine (acting in the absence of an agonist) alter the synthesis of cAMP in Chinese hamster ovary (CHO) cells expressing the M2 or the M4 subtype of muscarinic receptors in the same direction as the agonist carbachol. In addition, most of their effects on the production of inositol phosphates in CHO cells expressing the M1 or the M3 muscarinic receptor subtypes are also similar to (although much weaker than) those of carbachol. The agonist-like effects of the allosteric modulators are not observed in CHO cells that have not been transfected with the gene for any of the subtypes of muscarinic receptors. The effects of alcuronium on the formation of cAMP and inositol phosphates are not prevented by the classical muscarinic antagonist quinuclidinyl benzilate. These observations demonstrate for the first time that the G protein-mediated functional responses of muscarinic receptors can be evoked not only from their classical, but also from their allosteric, binding sites. This represents a new mechanism of receptor activation. PMID:8710935

  6. Influence of acetylcholine on binding of 4-[125I]iododexetimide to muscarinic brain receptors.

    PubMed

    Weckesser, M; Fixmann, A; Holschbach, M; Müller-Gärtner, H W

    1998-11-01

    The distribution of nicotinic and muscarinic cholinergic receptors in the human brain in vivo has been successfully characterized using radiolabeled tracers and emission tomography. The effect of acetylcholine release into the synaptic cleft on receptor binding of these tracers has not yet been investigated. The present study examined the influence of acetylcholine on binding of 4-[125I]iododexetimide to muscarinic cholinergic receptors of porcine brain synaptosomes in vitro. 4-Iododexetimide is a subtype-unspecific muscarinic receptor antagonist with high affinity. Acetylcholine competed with 4-[125I]iododexetimide in a dose-dependent manner. A concentration of 500 microM acetylcholine inhibited 50% of total specific 4-[125I]iododexetimide binding to synaptosomes when both substances were given simultaneously. An 800 microM acetylcholine solution reduced total specific 4-[125I]iododexetimide binding by about 35%, when acetylcholine was given 60 min after incubation of synaptosomes with 4-[125I]iododexetimide. Variations in the synaptic acetylcholine concentration might influence muscarinic cholinergic receptor imaging in vivo using 4-[123I]iododexetimide. Conversely, 4-[123I]iododexetimide might be an appropriate molecule to investigate alterations of acetylcholine release into the synaptic cleft in vivo using single photon emission computed tomography. PMID:9863566

  7. [Sites of synthesis of acetylcholine receptors in denervated muscles].

    PubMed

    Giacobini Robecchi, M G; Garelli, M; Filogamo, G

    1980-09-01

    Muscle fibres binding with 125I alpha-bungarotoxine from Bungarus Multicinctus, after treatment with saponine, shows (in electron microscope autoradiography) intracellular binding sites identifying sites of acetylcholine receptor synthesis. In innervated muscle, the acetylcholine receptor is located only at the neuromuscular junction. In denervated muscle the receptor is distributed along the whole sarcolemma; in this situation the acetylcholine receptor is synthesized "ex novo" in the membrane system over the whole length of the muscle fibre. PMID:7214035

  8. Nicotinic acetylcholine receptors mediate donepezil-induced oligodendrocyte differentiation.

    PubMed

    Imamura, Osamu; Arai, Masaaki; Dateki, Minori; Ogata, Toru; Uchida, Ryuji; Tomoda, Hiroshi; Takishima, Kunio

    2015-12-01

    Oligodendrocytes are the myelin-forming cells of the central nervous system (CNS). Failure of myelin development and oligodendrocyte loss results in serious human disorders, including multiple sclerosis. Here, we show that donepezil, an acetlycholinesterase inhibitor developed for the treatment of Alzheimer's disease, can stimulate oligodendrocyte differentiation and maturation of neural stem cell-derived oligodendrocyte progenitor cells without affecting proliferation or cell viability. Transcripts for essential myelin-associated genes, such as PLP, MAG, MBP, CNPase, and MOG, in addition to transcription factors that regulate oligodendrocyte differentiation and myelination, were rapidly increased after treatment with donepezil. Furthermore, luciferase assays confirmed that both MAG and MBP promoters display increased activity upon donepezil-induced oligodendrocytes differentiation, suggesting that donepezil increases myelin gene expression mainly through enhanced transcription. We also found that the increase in the number of oligodendrocytes observed following donepezil treatment was significantly inhibited by the nicotinic acetylcholine receptor (nAChR) antagonist mecamylamine, but not by the muscarinic acetylcholine receptor antagonist scopolamine. Moreover, donepezil-induced myelin-related gene expression was suppressed by mecamylamine at both the mRNA and protein level. These results suggest that donepezil stimulates oligodendrocyte differentiation and myelin-related gene expression via nAChRs in neural stem cell-derived oligodendrocyte progenitor cells. We show that donepezil, a drug for the treatment of Alzheimer disease, can stimulate oligodendrocyte differentiation and maturation of oligodendrocyte progenitor cells. Transcripts for essential myelin-associated genes, such as PLP, MAG, MBP, CNPase and MOG in addition to transcripton factors that regulate oligodendrocyte differentiation and myelination were rapidly increased after treatment with donepezil

  9. Acetylcholine receptors in the human retina

    SciTech Connect

    Hutchins, J.B.; Hollyfield, J.G.

    1985-11-01

    Evidence for a population of acetylcholine (ACh) receptors in the human retina is presented. The authors have used the irreversible ligand TH-propylbenzilylcholine mustard (TH-PrBCM) to label muscarinic receptors. TH- or SVI-alpha-bungarotoxin (alpha-BTx) was used to label putative nicotinic receptors. Muscarinic receptors are apparently present in the inner plexiform layer of the retina. Autoradiographic grain densities are reduced in the presence of saturating concentrations of atropine, quinuclidinyl benzilate or scopolamine; this indicates that TH-PrBCM binding is specific for a population of muscarinic receptors in the human retina. Binding sites for radiolabeled alpha-BTx are found predominantly in the inner plexiform layer of the retina. Grain densities are reduced in the presence of d-tubocurarine, indicating that alpha-BTx may bind to a pharmacologically relevant nicotinic ACh receptor. This study provides evidence for cholinergic neurotransmission in the human retina.

  10. Potentiation of the actions of acetylcholine, epibatidine, and nicotine by methyllycaconitine at fetal muscle-type nicotinic acetylcholine receptors.

    PubMed

    Green, Benedict T; Welch, Kevin D; Cook, Daniel; Gardner, Dale R

    2011-07-15

    Methyllycaconitine (MLA) is a norditerpenoid alkaloid found in high abundance in toxic Delphinium (larkspur) species. It is a potent and selective antagonist of α(7)-nicotinic acetylcholine receptors, but has not been well investigated for activity aside from receptor antagonism. The aim of this study was to investigate the effects of MLA alone and in combination with acetylcholine, epibatidine, nicotine, and neostigmine for actions other than receptor antagonism in TE-671 cells expressing (α(1))(2)β(1)γδ nicotinic acetylcholine receptors. Ligand activity was assessed through measurements of membrane potential changes in TE-671 cells using a fluorescent membrane potential-sensitive dye and normalized to the maximum response to epibatidine (10μM). MLA was ineffective in changing cell membrane potential in the absence of other receptor agonists. However at nanomolar concentrations, it acted as a co-agonist to potentiate TE-671 cell responses to acetylcholine, epibatidine, nicotine, and neostigmine. These results suggest that the poisoning of cattle by norditerpenoid alkaloids found in larkspur may be more complex than previously determined.

  11. Purification of muscarinic acetylcholine receptors by affinity chromatography.

    PubMed Central

    André, C; De Backer, J P; Guillet, J C; Vanderheyden, P; Vauquelin, G; Strosberg, A D

    1983-01-01

    Calf forebrain homogenates contain 2.8 pM muscarinic acetylcholine receptors per mg of protein. [3H]Antagonist saturation binding experiments under equilibrium conditions revealed a single class of sites with equilibrium dissociation constants of 0.82 nM for [3H]dexetimide and 0.095 nM for [3H]quinuclidinyl benzilate. Displacement binding studies with agonists revealed the presence of low and high affinity sites. Here we describe the solubilization of muscarinic acetylcholine receptors with digitonin and their purification by affinity chromatography using an affinity gel which consisted of dexetimide coupled to Affi-Gel 10 (i.e., carboxy N-hydroxysuccinimide esters linked via a 1 nm spacer arm to agarose beads). Purified proteins were obtained by specific elution with muscarinic drugs, i.e., the antagonist atropine and the irreversible ligand propylbenzilylcholine mustard. SDS-polyacrylamide gel electrophoresis of the radioiodinated purified preparations revealed a major 70-K protein. Images Fig. 3. PMID:6605245

  12. Cloning, synthesis, and characterization of αO-conotoxin GeXIVA, a potent α9α10 nicotinic acetylcholine receptor antagonist

    PubMed Central

    Luo, Sulan; Zhangsun, Dongting; Harvey, Peta J.; Kaas, Quentin; Wu, Yong; Zhu, Xiaopeng; Hu, Yuanyan; Li, Xiaodan; Tsetlin, Victor I.; Christensen, Sean; Romero, Haylie K.; McIntyre, Melissa; Dowell, Cheryl; Baxter, James C.; Elmslie, Keith S.; Craik, David J.; McIntosh, J. Michael

    2015-01-01

    We identified a previously unidentified conotoxin gene from Conus generalis whose precursor signal sequence has high similarity to the O1-gene conotoxin superfamily. The predicted mature peptide, αO-conotoxin GeXIVA (GeXIVA), has four Cys residues, and its three disulfide isomers were synthesized. Previously pharmacologically characterized O1-superfamily peptides, exemplified by the US Food and Drug Administration-approved pain medication, ziconotide, contain six Cys residues and are calcium, sodium, or potassium channel antagonists. However, GeXIVA did not inhibit calcium channels but antagonized nicotinic AChRs (nAChRs), most potently on the α9α10 nAChR subtype (IC50 = 4.6 nM). Toxin blockade was voltage-dependent, and kinetic analysis of toxin dissociation indicated that the binding site of GeXIVA does not overlap with the binding site of the competitive antagonist α-conotoxin RgIA. Surprisingly, the most active disulfide isomer of GeXIVA is the bead isomer, comprising, according to NMR analysis, two well-resolved but uncoupled disulfide-restrained loops. The ribbon isomer is almost as potent but has a more rigid structure built around a short 310-helix. In contrast to most α-conotoxins, the globular isomer is the least potent and has a flexible, multiconformational nature. GeXIVA reduced mechanical hyperalgesia in the rat chronic constriction injury model of neuropathic pain but had no effect on motor performance, warranting its further investigation as a possible therapeutic agent. PMID:26170295

  13. Evaluation of benzyltetrahydroisoquinolines as ligands for neuronal nicotinic acetylcholine receptors

    PubMed Central

    Exley, Richard; Iturriaga-Vásquez, Patricio; Lukas, Ronald J; Sher, Emanuele; Cassels, Bruce K; Bermudez, Isabel

    2005-01-01

    Effects of derivatives of coclaurine (C), which mimic the ‘eastern' or the nonquaternary halves of the alkaloids tetrandrine or d-tubocurarine, respectively, both of which are inhibitors of nicotinic acetylcholine receptors (nACh), were examined on recombinant, human α7, α4β2 and α4β4 nACh receptors expressed in Xenopus oocytes and clonal cell lines using two-electrode voltage clamping and radioligand binding techniques. In this limited series, Cs have higher affinity and are most potent at α4 subunit-containing-nACh receptors and least potent at homomeric α7 receptors, and this trend is very marked for the N-unsubstituted C and its O,O′-bisbenzyl derivative. 7-O-Benzyl-N-methylcoclaurine (BBCM) and its 12-O-methyl derivative showed the highest affinities and potencies at all three receptor subtypes, and this suggests that lipophilicity at C7 and/or C12 increases potency. Laudanosine and armepavine (A) were noncompetitive and voltage-dependent inhibitors of α7, α4β2 or α4β4 receptors, but the bulkier C7-benzylated 7BNMC (7-O-benzyl-N-methylcoclaurine) and 7B12MNMC (7-O-benzyl-N,12-O-dimethyl coclaurine) were voltage-independent, noncompetitive inhibitors of nACh receptors. Voltage-dependence was also lost on going from A to its N-ethyl analogue. These studies suggest that C derivatives may be useful tools for studies characterising the antagonist and ion channel sites on human α7, α4β2 or α4β4 nACh receptors and for revealing structure–function relationships for nACh receptor antagonists. PMID:15980871

  14. The conformation of acetylcholine at its target site in the membrane-embedded nicotinic acetylcholine receptor

    PubMed Central

    Williamson, P. T. F.; Verhoeven, A.; Miller, K. W.; Meier, B. H.; Watts, A.

    2007-01-01

    The conformation of the neurotransmitter acetylcholine bound to the fully functional nicotinic acetylcholine receptor embedded in its native membrane environment has been characterized by using frequency-selective recoupling solid-state NMR. Six dipolar couplings among five resolved 13C-labeled atoms of acetylcholine were measured. Bound acetylcholine adopts a bent conformation characterized with a quaternary ammonium-to-carbonyl distance of 5.1 Å. In this conformation, and with its orientation constrained to that previously determined by us, the acetylcholine could be docked satisfactorily in the agonist pocket of the agonist-bound, but not the agonist-free, crystal structure of a soluble acetylcholine-binding protein from Lymnaea stagnali. The quaternary ammonium group of the acetylcholine was determined to be within 3.9 Å of five aromatic residues and its acetyl group close to residues C187/188 of the principle and residue L112 of the complementary subunit. The observed >CO chemical shift is consistent with H bonding to the nicotinic acetylcholine receptor residues γY116 and δT119 that are homologous to L112 in the soluble acetylcholine-binding protein. PMID:17989232

  15. Purification of the muscarinic acetylcholine receptor from porcine atria.

    PubMed Central

    Peterson, G L; Herron, G S; Yamaki, M; Fullerton, D S; Schimerlik, M I

    1984-01-01

    The muscarinic acetylcholine receptor from porcine atria has been purified 100,000-fold to homogeneity by solubilization in digitonin/cholate and sequential chromatography on wheat germ agglutinin-agarose, diethylaminoethylagarose, hydroxylapatite, and 3-(2'-aminobenzhydryloxy)tropane-agarose. The yield of purified receptor was 4.3% of that found in the membrane fraction, and the purified receptor bound 11.1-12.8 nmol of L-[3H]quinuclidinyl benzilate per mg of protein, corresponding to a binding component Mr of 78,400-90,000. The purified receptor preparation consisted of two polypeptides in approximately equimolar amounts when examined on silver-stained sodium dodecyl sulfate/polyacrylamide gels. The larger polypeptide (Mr 78,000 on 8% polyacrylamide gels) was specifically alkylated with [3H]propylbenzilylcholine mustard, whereas the smaller polypeptide (Mr 14,800) was not labeled. The possibility that the small polypeptide is a contaminant fortuitously appearing in equimolar amounts with the large polypeptide cannot be ruled out at this time. The purified preparation was highly stable, with no measurable change in the number of ligand binding sites or the gel pattern after 1 month's storage on ice. Scatchard analysis showed a single class of binding sites for the antagonist L-[3H]quinuclidinyl benzilate with a dissociation constant of 61 +/- 4 pM. Equilibrium titration experiments demonstrated that the antagonist L-hyoscyamine displaced L-[3H]quinuclidinyl benzilate from a single class of sites (Kd = 475 +/- 30 pM), whereas the agonist carbamoylcholine interacted at two populations of sites (53% +/- 3% high affinity, Kd = 1.1 +/- 0.3 microM; 47% +/- 3% low affinity, Kd = 67 +/- 14 microM). The ligand binding data were very similar to that for the membrane-bound receptor, suggesting that the receptor has not been altered radically during purification. Images PMID:6589642

  16. Suitability of Nicotinic Acetylcholine Receptor α7 and Muscarinic Acetylcholine Receptor 3 Antibodies for Immune Detection

    PubMed Central

    Rommel, Frank R.; Raghavan, Badrinarayanan; Paddenberg, Renate; Kummer, Wolfgang; Tumala, Susanne; Lochnit, Günter; Gieler, Uwe

    2015-01-01

    Recent evidence reveals a crucial role for acetylcholine and its receptors in the regulation of inflammation, particularly of nicotinic acetylcholine receptor α7 (Chrna7) and muscarinic acetylcholine receptor 3 (Chrm3). Immunohistochemistry is a key tool for their cellular localization in functional tissues. We evaluated nine different commercially available antibodies on back skin tissue from wild-type (Wt) and gene-deficient (KO) mice. In the immunohistochemical analysis, we focused on key AChR-ligand sensitive skin cells (mast cells, nerve fibers and keratinocytes). All five antibodies tested for Chrm3 and the first three Chrna7 antibodies stained positive in both Wt and respective KO skin. With the 4th antibody (ab23832) nerve fibers were unlabeled in the KO mice. By western blot analysis, this antibody detected bands in both Wt and Chrna7 KO skin and brain. qRT-PCR revealed mRNA amplification with a primer set for the undeleted region in both Wt and KO mice, but none with a primer set for the deleted region in KO mice. By 2D electrophoresis, we found β-actin and β-enolase cross reactivity, which was confirmed by double immunolabeling. In view of the present results, the tested antibodies are not suitable for immunolocalization in skin and suggest thorough control of antibody specificity is required if histomorphometry is intended. PMID:25673288

  17. Conotoxins Targeting Nicotinic Acetylcholine Receptors: An Overview

    PubMed Central

    Lebbe, Eline K. M.; Peigneur, Steve; Wijesekara, Isuru; Tytgat, Jan

    2014-01-01

    Marine snails of the genus Conus are a large family of predatory gastropods with an unparalleled molecular diversity of pharmacologically active compounds in their venom. Cone snail venom comprises of a rich and diverse cocktail of peptide toxins which act on a wide variety of ion channels such as voltage-gated sodium- (NaV), potassium- (KV), and calcium- (CaV) channels as well as nicotinic acetylcholine receptors (nAChRs) which are classified as ligand-gated ion channels. The mode of action of several conotoxins has been the subject of investigation, while for many others this remains unknown. This review aims to give an overview of the knowledge we have today on the molecular pharmacology of conotoxins specifically interacting with nAChRs along with the structure–function relationship data. PMID:24857959

  18. Topographical studies of the nicotinic acetylcholine receptor. [Torpedo californica

    SciTech Connect

    Middlemas, D.S.

    1987-01-01

    All four subunits of the nicotinic acetylcholine receptor in membrane vesicles isolated from Torpedo californica have been labeled with the photoactivated hydrophobic probe, (/sup 3/H)adamantanediazirine, which selectively labels regions of integral membrane proteins in contact with the hydrocarbon core of the lipid bilayer. All four subunits of the acetylcholine receptor in membrane vesicles isolated from Torpedo californica have been labeled with (/sup 3/H)cholesteryl diazoacetate. As this probe incorporates into lipid bilayers analogously to cholesterol, this result indicates that acetylcholine receptor interacts with cholesterol. Since the photogenerated carbene is situated near the lipid-water interface, this probe has potential as a topographic tool for mapping membrane protein structure. The labeling studies with both (/sup 3/H)adamantanediazirine and (/sup 3/H)cholesteryl diazoacetate support the concept that the acetylcholine receptor is a pseudosymmetric complex of homologous subunits, all of which interact with and span the membrane. The synthesis of the fluorine-containing agonists for the Torpedo californica nicotinic acetylcholine receptor, fluoroacetylcholine bromide and p-fluorophenyltrimethylammonium iodide, are described. It is demonstrated that both are agonists using a cation flux assay with acetylcholine receptor enriched membrane vesicles. The affinity cleavage reagent, p-thiocyanophenyltrimethylammonium iodide, specifically cleaves a peptide bond of the nicotinic acetylcholine receptor in membrane vesicles isolated from Torpedo californica. It is demonstrated that this reagent is an agonist using a cation flux assay. The cleavage is blocked by stoichiometric quantities of ..cap alpha..-bungarotoxin.

  19. Pharmacological and biochemical characterization of the D-1 dopamine receptor mediating acetylcholine release in rabbit retina

    SciTech Connect

    Hensler, J.G.; Cotterell, D.J.; Dubocovich, M.L.

    1987-12-01

    Superfusion with dopamine (0.1 microM-10 mM) evokes calcium-dependent (/sup 3/H)acetylcholine release from rabbit retina labeled in vitro with (/sup 3/H)choline. This effect is antagonized by the D-1 dopamine receptor antagonist SCH 23390. Activation or blockade of D-2 dopamine, alpha-2 or beta receptors did not stimulate or attenuate the release of (/sup 3/H)acetylcholine from rabbit retina. Dopamine receptor agonists evoke the release of (/sup 3/H)acetylcholine with the following order of potency: apomorphine less than or equal to SKF(R)82526 < SKF 85174 < SKF(R)38393 less than or equal to pergolide less than or equal to dopamine (EC50 = 4.5 microM) < SKF(S)82526 less than or equal to SKF(S)38393. Dopamine receptor antagonists inhibited the dopamine-evoked release of (/sup 3/H)acetylcholine: SCH 23390 (IC50 = 1 nM) < (+)-butaclamol less than or equal to cis-flupenthixol < fluphenazine < perphenazine < trans-flupenthixol < R-sulpiride. The potencies of dopamine receptor agonists and antagonists at the dopamine receptor mediating (/sup 3/H)acetylcholine release is characteristic of the D-1 dopamine receptor. These potencies were correlated with the potencies of dopamine receptor agonists and antagonists at the D-1 dopamine receptor in rabbit retina as labeled by (/sup 3/H)SCH 23390, or as determined by adenylate cyclase activity. (/sup 3/H)SCH 23390 binding in rabbit retinal membranes was stable, saturable and reversible. Scatchard analysis of (/sup 3/H)SCH 23390 saturation data revealed a single high affinity binding site (Kd = 0.175 +/- 0.002 nM) with a maximum binding of 482 +/- 12 fmol/mg of protein. The potencies of dopamine receptor agonists to stimulate (/sup 3/H)acetylcholine release were correlated with their potencies to stimulate adenylate cyclase (r = 0.784, P less than .05, n = 7) and with their affinities at (/sup 3/H)SCH 23390 binding sites (r = 0.755, P < .05, n = 8).

  20. Serotoninergic dorsal raphe neurons possess functional postsynaptic nicotinic acetylcholine receptors.

    PubMed

    Galindo-Charles, Luis; Hernandez-Lopez, Salvador; Galarraga, Elvira; Tapia, Dagoberto; Bargas, José; Garduño, Julieta; Frías-Dominguez, Carmen; Drucker-Colin, René; Mihailescu, Stefan

    2008-08-01

    Very few neurons in the telencephalon have been shown to express functional postsynaptic nicotinic acetylcholine receptors (nAChRs), among them, the noradrenergic and dopaminergic neurons. However, there is no evidence for postsynaptic nAChRs on serotonergic neurons. In this study, we asked if functional nAChRs are present in serotonergic (5-HT) and nonserotonergic (non-5-HT) neurons of the dorsal raphe nucleus (DRN). In rat midbrain slices, field stimulation at the tegmental pedunculopontine (PPT) nucleus evoked postsynaptic currents (eEPSCs) with different components in DRN neurons. After blocking the glutamatergic and GABAergic components, the remaining eEPSCs were blocked by mecamylamine and reduced by either the selective alpha7 nAChR antagonist methyllycaconitine (MLA) or the selective alpha4beta2 nAChR antagonist dihydro-beta-eritroidine (DHbetaE). Simultaneous addition of MLA and DHbetaE blocked all eEPSCs. Integrity of the PPT-DRN pathway was assessed by both anterograde biocytin tracing and antidromic stimulation from the DRN. Inward currents evoked by the direct application of acetylcholine (ACh), in the presence of atropine and tetrodotoxin, consisted of two kinetically different currents: one was blocked by MLA and the other by DHbetaE; in both 5-HT and non-5-HT DR neurons. Analysis of spontaneous (sEPSCs) and evoked (eEPSCs) synaptic events led to the conclusion that nAChRs were located at the postsynaptic membrane. The possible implications of these newly described nAChRs in various physiological processes and behavioral events, such as the wake-sleep cycle, are discussed. PMID:18512214

  1. Activation of muscarinic receptors by non-neuronal acetylcholine.

    PubMed

    Wessler, Ignaz Karl; Kirkpatrick, Charles James

    2012-01-01

    The biological role of acetylcholine and the cholinergic system is revisited based particularly on scientific research early and late in the last century. On the one hand, acetylcholine represents the classical neurotransmitter, whereas on the other hand, acetylcholine and the pivotal components of the cholinergic system (high-affinity choline uptake, choline acetyltransferase and its end product acetylcholine, muscarinic and nicotinic receptors and esterase) are expressed by more or less all mammalian cells, i.e. by the majority of cells not innervated by neurons at all. Moreover, it has been demonstrated that acetylcholine and "cholinergic receptors" are expressed in non-neuronal organisms such as plants and protists. Acetylcholine is even synthesized by bacteria and algae representing an extremely old signalling molecule on the evolutionary timescale. The following article summarizes examples, in which non-neuronal acetylcholine is released from primitive organisms as well as from mammalian non-neuronal cells and binds to muscarinic receptors to modulate/regulate phenotypic cell functions via auto-/paracrine pathways. The examples demonstrate that non-neuronal acetylcholine and the non-neuronal cholinergic system are vital for various types of cells such as epithelial, endothelial and immune cells.

  2. [Probable mechanism of recognition of cholinergic ligands by acetylcholine receptors].

    PubMed

    Demushkin, V P; Kotelevtsev, Iu V; Pliashkevich, Iu G; Khramtsov, N V

    1982-01-01

    Dryding's models were used for the conformational analysis of compounds affecting muscarin-specific acetylcholine receptor and nicotin-specific acetylcholine receptor. Ammonium group and ether oxygen (3.6 A apart from the ammonium group) specifically oriented to each other were shown to be necessary structural elements to reveal muscarin-type cholinergic activity. Ammonium group along with carbonyl oxygen or its substituent (5 A distance) are the necessary structural units providing nicotin-type cholinergic activity. The presence of two hydrophobic substituents (one in the ammonium area and the other neighbouring the second active grouping) is the additional factor. The developed principles were justified by the use of a series of synthetic samples. The compounds were obtained likely favouring affinitive modification of acetylcholine receptor (dissociation constants of acetylcholine receptor complexes equalling to 10(-4)--10(-7) M-1). PMID:7070378

  3. Functional Characterization of a Novel Class of Morantel-Sensitive Acetylcholine Receptors in Nematodes.

    PubMed

    Courtot, Elise; Charvet, Claude L; Beech, Robin N; Harmache, Abdallah; Wolstenholme, Adrian J; Holden-Dye, Lindy; O'Connor, Vincent; Peineau, Nicolas; Woods, Debra J; Neveu, Cedric

    2015-12-01

    Acetylcholine receptors are pentameric ligand-gated channels involved in excitatory neuro-transmission in both vertebrates and invertebrates. In nematodes, they represent major targets for cholinergic agonist or antagonist anthelmintic drugs. Despite the large diversity of acetylcholine-receptor subunit genes present in nematodes, only a few receptor subtypes have been characterized so far. Interestingly, parasitic nematodes affecting human or animal health possess two closely related members of this gene family, acr-26 and acr-27 that are essentially absent in free-living or plant parasitic species. Using the pathogenic parasitic nematode of ruminants, Haemonchus contortus, as a model, we found that Hco-ACR-26 and Hco-ACR-27 are co-expressed in body muscle cells. We demonstrated that co-expression of Hco-ACR-26 and Hco-ACR-27 in Xenopus laevis oocytes led to the functional expression of an acetylcholine-receptor highly sensitive to the anthelmintics morantel and pyrantel. Importantly we also reported that ACR-26 and ACR-27, from the distantly related parasitic nematode of horses, Parascaris equorum, also formed a functional acetylcholine-receptor highly sensitive to these two drugs. In Caenorhabditis elegans, a free-living model nematode, we demonstrated that heterologous expression of the H. contortus and P. equorum receptors drastically increased its sensitivity to morantel and pyrantel, mirroring the pharmacological properties observed in Xenopus oocytes. Our results are the first to describe significant molecular determinants of a novel class of nematode body wall muscle AChR.

  4. Functional Characterization of a Novel Class of Morantel-Sensitive Acetylcholine Receptors in Nematodes

    PubMed Central

    Courtot, Elise; Charvet, Claude L.; Beech, Robin N.; Harmache, Abdallah; Wolstenholme, Adrian J.; Holden-Dye, Lindy; O’Connor, Vincent; Peineau, Nicolas; Woods, Debra J.; Neveu, Cedric

    2015-01-01

    Acetylcholine receptors are pentameric ligand–gated channels involved in excitatory neuro-transmission in both vertebrates and invertebrates. In nematodes, they represent major targets for cholinergic agonist or antagonist anthelmintic drugs. Despite the large diversity of acetylcholine-receptor subunit genes present in nematodes, only a few receptor subtypes have been characterized so far. Interestingly, parasitic nematodes affecting human or animal health possess two closely related members of this gene family, acr-26 and acr-27 that are essentially absent in free-living or plant parasitic species. Using the pathogenic parasitic nematode of ruminants, Haemonchus contortus, as a model, we found that Hco-ACR-26 and Hco-ACR-27 are co-expressed in body muscle cells. We demonstrated that co-expression of Hco-ACR-26 and Hco-ACR-27 in Xenopus laevis oocytes led to the functional expression of an acetylcholine-receptor highly sensitive to the anthelmintics morantel and pyrantel. Importantly we also reported that ACR-26 and ACR-27, from the distantly related parasitic nematode of horses, Parascaris equorum, also formed a functional acetylcholine-receptor highly sensitive to these two drugs. In Caenorhabditis elegans, a free-living model nematode, we demonstrated that heterologous expression of the H. contortus and P. equorum receptors drastically increased its sensitivity to morantel and pyrantel, mirroring the pharmacological properties observed in Xenopus oocytes. Our results are the first to describe significant molecular determinants of a novel class of nematode body wall muscle AChR. PMID:26625142

  5. Modal gating of muscle nicotinic acetylcholine receptors

    NASA Astrophysics Data System (ADS)

    Vij, Ridhima

    Many ion channels exhibit multiple patterns of kinetic activity in single-channel currents. This behavior is rare in WT mouse muscle nicotinic acetylcholine receptors (AChRs), where A2C↔A2O gating events are well-described by single exponentials. Also, single-channel open probability (PO) is essentially homogeneous at a given agonist concentration in the WT receptors. Here I report that perturbations of almost all the residues in loop C (alpha188-alpha199, at the agonist binding site) generate heterogeneity in PO ('modes'). Such unsettled activity was apparent with an alanine substitution at all positions in loop C (except alphaY190 and alphaY198) and with different side chain substitutions at alphaP197 for both adult- and fetal-type AChRs. I used single channel electrophysiology along with site-directed mutagenesis to study modal gating in AChRs consequent to mutations/deletions in loop C. The multiple patterns of kinetic activity arose from the difference in agonist affinity rather than in intrinsic AChR gating. Out of the four different agonists used to study the modal behavior, acetylcholine (ACh) showed a higher degree of kinetic heterogeneity compared to others. The time constant for switching between modes was long (~mins), suggesting that they arise from alternative, stable protein conformations. By studying AChRs having only 1 functional binding site, I attempted to find the source of the affinity difference, which was traced mainly to the alphadelta agonist site. Affinity at the neurotransmitter binding site is mainly determined by a core of five aromatic residues (alphaY93, alphaW149, alphaY190, alphaY198 and deltaW57). Phenylalanine substitutions at all aromatic residues except alphaY93 resulted in elimination of modes. Modes were also eliminated by alanine mutation at deltaW57 on the complementary side but not at other aromatics. Also, by substituting four gamma subunit residues into the delta subunit on the complementary beta sheet, I found that

  6. Non-NMDA receptor antagonist-induced drinking in rat

    NASA Technical Reports Server (NTRS)

    Xu, Z.; Johnson, A. K.

    1998-01-01

    Glutamate has been implicated in the central control of mechanisms that maintain body fluid homeostasis. The present studies demonstrate that intracerebroventricular (i.c.v.) injections of the non-N-methyl-d-aspartate (NMDA) receptor antagonists 6, 7-dinitroquinoxaline-2,3-dione (DNQX) and 6-cyano-7-nitroquinoxaline-2,3 dione (CNQX) induce drinking in rats. The dipsogenic effect of i.c.v. DNQX was antagonized by the non-NMDA receptor agonist alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA). The water intake induced by DNQX was also blocked by pretreatment with a NMDA receptor antagonist, MK-801, but not by angiotensin type 1 (AT1) or acetylcholine muscarinic receptor antagonists (losartan and atropine). The results indicate that non-NMDA receptors may exert a tonic inhibitory effect within brain circuits that control dipsogenic activity and that functional integrity of NMDA receptors may be required for the non-NMDA receptor antagonists to induce water intake. Copyright 1998 Published by Elsevier Science B.V.

  7. Nicotinic Acetylcholine Receptor (nAChR) Dependent Chorda Tympani Taste Nerve Responses to Nicotine, Ethanol and Acetylcholine.

    PubMed

    Ren, Zuo Jun; Mummalaneni, Shobha; Qian, Jie; Baumgarten, Clive M; DeSimone, John A; Lyall, Vijay

    2015-01-01

    Nicotine elicits bitter taste by activating TRPM5-dependent and TRPM5-independent but neuronal nAChR-dependent pathways. The nAChRs represent common targets at which acetylcholine, nicotine and ethanol functionally interact in the central nervous system. Here, we investigated if the nAChRs also represent a common pathway through which the bitter taste of nicotine, ethanol and acetylcholine is transduced. To this end, chorda tympani (CT) taste nerve responses were monitored in rats, wild-type mice and TRPM5 knockout (KO) mice following lingual stimulation with nicotine free base, ethanol, and acetylcholine, in the absence and presence of nAChR agonists and antagonists. The nAChR modulators: mecamylamine, dihydro-β-erythroidine, and CP-601932 (a partial agonist of the α3β4* nAChR), inhibited CT responses to nicotine, ethanol, and acetylcholine. CT responses to nicotine and ethanol were also inhibited by topical lingual application of 8-chlorophenylthio (CPT)-cAMP and loading taste cells with [Ca2+]i by topical lingual application of ionomycin + CaCl2. In contrast, CT responses to nicotine were enhanced when TRC [Ca2+]i was reduced by topical lingual application of BAPTA-AM. In patch-clamp experiments, only a subset of isolated rat fungiform taste cells exposed to nicotine responded with an increase in mecamylamine-sensitive inward currents. We conclude that nAChRs expressed in a subset of taste cells serve as common receptors for the detection of the TRPM5-independent bitter taste of nicotine, acetylcholine and ethanol.

  8. The Oncogenic Functions of Nicotinic Acetylcholine Receptors

    PubMed Central

    Zhao, Yue

    2016-01-01

    Nicotinic acetylcholine receptors (nAChRs) are ion channels that are expressed in the cell membrane of all mammalian cells, including cancer cells. Recent findings suggest that nAChRs not only mediate nicotine addiction in the brain but also contribute to the development and progression of cancers directly induced by nicotine and its derived carcinogenic nitrosamines whereas deregulation of the nAChRs is observed in many cancers, and genome-wide association studies (GWAS) indicate that SNPs nAChRs associate with risks of lung cancers and nicotine addiction. Emerging evidences suggest nAChRs are posited at the central regulatory loops of numerous cell growth and prosurvival signal pathways and also mediate the synthesis and release of stimulatory and inhibitory neurotransmitters induced by their agonists. Thus nAChRs mediated cell signaling plays an important role in stimulating the growth and angiogenic and neurogenic factors and mediating oncogenic signal transduction during cancer development in a cell type specific manner. In this review, we provide an integrated view of nAChRs signaling in cancer, heightening on the oncogenic properties of nAChRs that may be targeted for cancer treatment. PMID:26981122

  9. The Oncogenic Functions of Nicotinic Acetylcholine Receptors.

    PubMed

    Zhao, Yue

    2016-01-01

    Nicotinic acetylcholine receptors (nAChRs) are ion channels that are expressed in the cell membrane of all mammalian cells, including cancer cells. Recent findings suggest that nAChRs not only mediate nicotine addiction in the brain but also contribute to the development and progression of cancers directly induced by nicotine and its derived carcinogenic nitrosamines whereas deregulation of the nAChRs is observed in many cancers, and genome-wide association studies (GWAS) indicate that SNPs nAChRs associate with risks of lung cancers and nicotine addiction. Emerging evidences suggest nAChRs are posited at the central regulatory loops of numerous cell growth and prosurvival signal pathways and also mediate the synthesis and release of stimulatory and inhibitory neurotransmitters induced by their agonists. Thus nAChRs mediated cell signaling plays an important role in stimulating the growth and angiogenic and neurogenic factors and mediating oncogenic signal transduction during cancer development in a cell type specific manner. In this review, we provide an integrated view of nAChRs signaling in cancer, heightening on the oncogenic properties of nAChRs that may be targeted for cancer treatment. PMID:26981122

  10. Nicotine-morphine interactions at α4β2, α7 and α3(⁎) nicotinic acetylcholine receptors.

    PubMed

    Talka, Reeta; Salminen, Outi; Whiteaker, Paul; Lukas, Ronald J; Tuominen, Raimo K

    2013-02-15

    Nicotine and opioids share several behavioral and rewarding properties. Although both opioids and nicotine have their own specific mechanism of action, there is empirical and experimental evidence of interactions between these drugs. We studied receptor-level interactions of nicotine and morphine at α4β2, α7 and α3(⁎) nicotinic acetylcholine receptors. [(3)H]epibatidine displacement was used to determine if morphine binds competitively to nicotinic acetylcholine receptors. Functional interactions of morphine and nicotine were studied with calcium fluorometry and (86)Rb(+) efflux assays. Morphine displaced [(3)H]epibatidine from nicotinic agonist binding sites in all cell lines studied. The Ki values for morphine were 13.2μM in SH-EP1-hα4β2 cells, 0.16μM and 126μM in SH-SY5Y cells and 43.7μM in SH-EP1-hα7 cells. In SH-EP1-hα4β2 cells expressing α4β2 nicotinic acetylcholine receptors, morphine acted as a partial agonist of (86)Rb(+) efflux comparable to cytisine (with EC50 values of 53.3μM for morphine and 5.38μM for cytisine). The effect of morphine was attenuated concentration-dependently by the nicotinic antagonist mecamylamine. In the SH-SY5Y cell line expressing several subtypes of nicotinic acetylcholine receptors morphine had an inhibitory effect on nicotine induced (86)Rb(+) ion efflux mediated by α3(⁎) nicotinic acetylcholine receptors. These results suggest that morphine acts as a partial agonist at α4β2 nicotinic acetylcholine receptors and as a weak antagonist at α3(⁎) nicotinic acetylcholine receptors.

  11. Nicotine alters lung branching morphogenesis through the alpha7 nicotinic acetylcholine receptor.

    PubMed

    Wongtrakool, Cherry; Roser-Page, Susanne; Rivera, Hilda N; Roman, Jesse

    2007-09-01

    There is abundant epidemiological data linking prenatal environmental tobacco smoke with childhood asthma and wheezing, but the underlying molecular and physiological mechanisms that occur in utero to explain this link remain unelucidated. Several studies suggest that nicotine, which traverses the placenta, is a causative agent. Therefore, we studied the effects of nicotine on lung branching morphogenesis using embryonic murine lung explants. We found that the expression of alpha(7) nicotinic acetylcholine receptors, which mediate many of the biological effects of nicotine, is highest in pseudoglandular stage lungs compared with lungs at later stages. We then studied the effects of nicotine in the explant model and found that nicotine stimulated lung branching in a dose-dependent fashion. alpha-Bungarotoxin, an antagonist of alpha(7) nicotinic acetylcholine receptors, blocked the stimulatory effect of nicotine, whereas GTS-21, a specific agonist, stimulated branching, thereby mimicking the effects of nicotine. Explants deficient in alpha(7) nicotinic acetylcholine receptors did not respond to nicotine. Nicotine also stimulated the growth of the explant. Altogether, these studies suggest that nicotine stimulates lung branching morphogenesis through alpha(7) nicotinic acetylcholine receptors and may contribute to dysanaptic lung growth, which in turn may predispose the host to airway disease in the postnatal period.

  12. Acetylcholine receptor channel imaged in the open state

    NASA Astrophysics Data System (ADS)

    Unwin, Nigel

    1995-01-01

    The structure of the open-channel form of the acetylcholine receptor has been determined from electron images of Torpedo ray postsynaptic membranes activated by brief (<5ms) mixing with droplets containing acetylcholine. Comparison with the closed-channel form shows that acetylcholine initiates small rotations of the subunits in the extracellular domain, which trigger a change in configuration of α-helices lining the membrane-spanning pore. The open pore tapers towards the intracellular membrane face, where it is shaped by a 'barrel' of α-helices having a pronounced right-handed twist.

  13. Nicotine cue: lack of effect of the alpha 7 nicotinic receptor antagonist methyllycaconitine.

    PubMed

    Brioni, J D; Kim, D J; O'Neill, A B

    1996-04-22

    To assess the role of the alpha 7 neuronal nicotinic acetylcholine receptor in the discriminative stimulus properties of (-)-nicotine, this study investigated the ability of the alpha 7 receptor antagonist methyllycaconitine to modulate the nicotine cue. In rats trained to discriminate (-)-nicotine from saline, intraperitoneal injections of methyllycaconitine neither induced nor blocked the nicotine cue. Intracerebroventricular administration of methyllycaconitine, neither potentiated nor blocked the effect of (-)-nicotine. On the other hand, intracerebroventricular injections of mecamylamine blocked the nicotine cue. The available evidence indicate that the nicotinic acetylcholine receptors in the brain blocked by methyllycaconitine, those presumably containing alpha 7 subunits, do not participate in the expression of the discriminative stimulus properties of (-)-nicotine.

  14. Investigation of the presence and antinociceptive function of muscarinic acetylcholine receptors in the African naked mole-rat (Heterocephalus glaber).

    PubMed

    Jørgensen, Kristine B; Krogh-Jensen, Karen; Pickering, Darryl S; Kanui, Titus I; Abelson, Klas S P

    2016-01-01

    The present study investigated the cholinergic system in the African naked mole-rat (Heterocephalus glaber) with focus on the muscarinic acetylcholine receptor subtypes M1 and M4. The protein sequences for the subtypes m 1-5 of the naked mole-rat were compared to that of the house mouse (Mus musculus) using basic local alignment search tool (BLAST). The presence and function of M1 and M4 was investigated in vivo, using the formalin test with the muscarinic receptor agonists xanomeline and VU0152100. Spinal cord tissue from the naked mole-rat was used for receptor saturation binding studies with [(3)H]-N-methylscopolamine. The BLAST test revealed 95 % protein sequence homology showing the naked mole-rat to have the genetic potential to express all five muscarinic acetylcholine receptor subtypes. A significant reduction in pain behavior was demonstrated after administration of 8.4 mg/kg in the formalin test. Administration of 50 mg/kg VU0152100 resulted in a non-significant tendency towards antinociception. The antinociceptive effects were reversed by the muscarinic acetylcholine receptor antagonist atropine. Binding studies indicated presence of muscarinic acetylcholine receptors with a radioligand affinity comparable to that reported in mice. In conclusion, muscarinic acetylcholine receptor subtypes are present in the naked mole-rat and contribute to antinociception in the naked mole-rat.

  15. Inhibition of ionotropic neurotransmitter receptors by antagonists: strategy to estimate the association and the dissociation rate constant of antagonists with very strong affinity to the receptors.

    PubMed

    Aoshima, H; Inoue, Y; Hori, K

    1992-10-01

    Since binding of an agonist to an ionotropic neurotransmitter receptor causes not only channel opening, but also desensitization of the receptor, inhibition of the receptor by the antagonist sometimes becomes very complicated. The transient state kinetics of ligand association and dissociation, and desensitization of the receptor were considered on the basis of the minimal model proposed by Hess' group, and the following possibilities were proposed. 1) When an agonist is simultaneously applied to the receptor with an antagonist whose affinity to the receptor is extremely strong and different from that of the agonist, it is usually impossible to estimate the real inhibition constant exactly from the responses because desensitization of the receptor proceeds before the equilibrium of the ligand binding. Simultaneous addition of the antagonist with strong affinity to the receptor may apparently accelerate inactivation (desensitization) of the receptor. The association rate constant of the antagonist can be estimated by analyses of the rate of the inactivation in the presence and the absence of the antagonist. 2) A preincubated antagonist with a slow dissociation rate constant, i.e., a very effective inhibitor, may cause apparent noncompetitive inhibition of the receptor, since the receptor is desensitized by an agonist as soon as the antagonist dissociates from the receptor and the dissociation of the antagonist from the receptor becomes the rate-determining step. A nicotinic acetylcholine receptor (nAChR) was expressed in Xenopus oocytes by injecting mRNA prepared from Electrophorus electricus electroplax and used for the experiments on inhibition by an antagonist.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1337082

  16. Endoplasmic reticulum stress contributes to acetylcholine receptor degradation by promoting endocytosis in skeletal muscle cells.

    PubMed

    Du, Ailian; Huang, Shiqian; Zhao, Xiaonan; Zhang, Yun; Zhu, Lixun; Ding, Ji; Xu, Congfeng

    2016-01-15

    After binding by acetylcholine released from a motor neuron, a nicotinic acetylcholine receptor at the neuromuscular junction produces a localized end-plate potential, which leads to muscle contraction. Improper turnover and renewal of acetylcholine receptors contributes to the pathogenesis of myasthenia gravis. In the present study, we demonstrate that endoplasmic reticulum (ER) stress contributes to acetylcholine receptor degradation in C2C12 myocytes. We further show that ER stress promotes acetylcholine receptor endocytosis and lysosomal degradation, which was dampened by blocking endocytosis or treating with lysosome inhibitor. Knockdown of ER stress proteins inhibited acetylcholine receptor endocytosis and degradation, while rescue assay restored its endocytosis and degradation, confirming the effects of ER stress on promoting endocytosis-mediated degradation of junction acetylcholine receptors. Thus, our studies identify ER stress as a factor promoting acetylcholine receptor degradation through accelerating endocytosis in muscle cells. Blocking ER stress and/or endocytosis might provide a novel therapeutic approach for myasthenia gravis.

  17. Two types of muscarinic acetylcholine receptors in Drosophila and other arthropods.

    PubMed

    Collin, Caitlin; Hauser, Frank; Gonzalez de Valdivia, Ernesto; de Valdivia, Ernesto Gonzalez; Li, Shizhong; Reisenberger, Julia; Carlsen, Eva M M; Khan, Zaid; Hansen, Niels O; Puhm, Florian; Søndergaard, Leif; Niemiec, Justyna; Heninger, Magdalena; Ren, Guilin R; Grimmelikhuijzen, Cornelis J P

    2013-09-01

    Muscarinic acetylcholine receptors (mAChRs) play a central role in the mammalian nervous system. These receptors are G protein-coupled receptors (GPCRs), which are activated by the agonists acetylcholine and muscarine, and blocked by a variety of antagonists. Mammals have five mAChRs (m1-m5). In this study, we cloned two structurally related GPCRs from the fruit fly Drosophila melanogaster, which, after expression in Chinese hamster ovary cells, proved to be muscarinic acetylcholine receptors. One mAChR (the A-type; encoded by gene CG4356) is activated by acetylcholine (EC50, 5 × 10(-8) M) and muscarine (EC50, 6 × 10(-8) M) and blocked by the classical mAChR antagonists atropine, scopolamine, and 3-quinuclidinyl-benzilate (QNB), while the other (the B-type; encoded by gene CG7918) is also activated by acetylcholine, but has a 1,000-fold lower sensitivity to muscarine, and is not blocked by the antagonists. A- and B-type mAChRs were also cloned and functionally characterized from the red flour beetle Tribolium castaneum. Recently, Haga et al. (Nature 2012, 482: 547-551) published the crystal structure of the human m2 mAChR, revealing 14 amino acid residues forming the binding pocket for QNB. These residues are identical between the human m2 and the D. melanogaster and T. castaneum A-type mAChRs, while many of them are different between the human m2 and the B-type receptors. Using bioinformatics, one orthologue of the A-type and one of the B-type mAChRs could also be found in all other arthropods with a sequenced genome. Protostomes, such as arthropods, and deuterostomes, such as mammals and other vertebrates, belong to two evolutionarily distinct lineages of animal evolution that split about 700 million years ago. We found that animals that originated before this split, such as cnidarians (Hydra), had two A-type mAChRs. From these data we propose a model for the evolution of mAChRs.

  18. Nicotine evokes kinetic tremor by activating the inferior olive via α7 nicotinic acetylcholine receptors.

    PubMed

    Kunisawa, Naofumi; Iha, Higor A; Shimizu, Saki; Tokudome, Kentaro; Mukai, Takahiro; Kinboshi, Masato; Serikawa, Tadao; Ohno, Yukihiro

    2016-11-01

    Nicotinic acetylcholine (nACh) receptors are implicated in the pathogenesis of movement disorders (e.g., tremor) and epilepsy. Here, we performed behavioral and immunohistochemical studies using mice and rats to elucidate the mechanisms underlying nicotine-induced tremor. Treatments of animals with nicotine (0.5-2mg/kg, i.p.) elicited kinetic tremor, which was completely suppressed by the nACh receptor antagonist mecamylamine (MEC). The specific α7 nACh receptor antagonist methyllycaconitine (MLA) also inhibited nicotine-induced tremor, whereas the α4β2 nACh antagonist dihydro-β-erythroidine (DHβE) or the peripheral α3β4 nACh antagonist hexamethonium showed no effects. Mapping analysis of Fos protein expression, a biological marker of neural excitation, revealed that a tremorgenic dose (1mg/kg) of nicotine region-specifically elevated Fos expression in the piriform cortex (PirC), medial habenula, solitary nucleus and inferior olive (IO) among 44 brain regions examined. In addition, similarly to the tremor responses, nicotine-induced Fos expression in the PirC and IO was selectively antagonized by MLA, but not by DHβE. Furthermore, an electrical lesioning of the IO, but not the PirC, significantly suppressed the induction of nicotine tremor. The present results suggest that nicotine elicits kinetic tremor in rodents by activating the IO neurons via α7 nACh receptors.

  19. Nicotine evokes kinetic tremor by activating the inferior olive via α7 nicotinic acetylcholine receptors.

    PubMed

    Kunisawa, Naofumi; Iha, Higor A; Shimizu, Saki; Tokudome, Kentaro; Mukai, Takahiro; Kinboshi, Masato; Serikawa, Tadao; Ohno, Yukihiro

    2016-11-01

    Nicotinic acetylcholine (nACh) receptors are implicated in the pathogenesis of movement disorders (e.g., tremor) and epilepsy. Here, we performed behavioral and immunohistochemical studies using mice and rats to elucidate the mechanisms underlying nicotine-induced tremor. Treatments of animals with nicotine (0.5-2mg/kg, i.p.) elicited kinetic tremor, which was completely suppressed by the nACh receptor antagonist mecamylamine (MEC). The specific α7 nACh receptor antagonist methyllycaconitine (MLA) also inhibited nicotine-induced tremor, whereas the α4β2 nACh antagonist dihydro-β-erythroidine (DHβE) or the peripheral α3β4 nACh antagonist hexamethonium showed no effects. Mapping analysis of Fos protein expression, a biological marker of neural excitation, revealed that a tremorgenic dose (1mg/kg) of nicotine region-specifically elevated Fos expression in the piriform cortex (PirC), medial habenula, solitary nucleus and inferior olive (IO) among 44 brain regions examined. In addition, similarly to the tremor responses, nicotine-induced Fos expression in the PirC and IO was selectively antagonized by MLA, but not by DHβE. Furthermore, an electrical lesioning of the IO, but not the PirC, significantly suppressed the induction of nicotine tremor. The present results suggest that nicotine elicits kinetic tremor in rodents by activating the IO neurons via α7 nACh receptors. PMID:27506652

  20. Galantamine-induced amyloid-{beta} clearance mediated via stimulation of microglial nicotinic acetylcholine receptors.

    PubMed

    Takata, Kazuyuki; Kitamura, Yoshihisa; Saeki, Mana; Terada, Maki; Kagitani, Sachiko; Kitamura, Risa; Fujikawa, Yasuhiro; Maelicke, Alfred; Tomimoto, Hidekazu; Taniguchi, Takashi; Shimohama, Shun

    2010-12-17

    Reduction of brain amyloid-β (Aβ) has been proposed as a therapeutic target for Alzheimer disease (AD), and microglial Aβ phagocytosis is noted as an Aβ clearance system in brains. Galantamine is an acetylcholinesterase inhibitor approved for symptomatic treatment of AD. Galantamine also acts as an allosterically potentiating ligand (APL) for nicotinic acetylcholine receptors (nAChRs). APL-binding site is located close to but distinct from that for acetylcholine on nAChRs, and FK1 antibody specifically binds to the APL-binding site without interfering with the acetylcholine-binding site. We found that in human AD brain, microglia accumulated on Aβ deposits and expressed α7 nAChRs including the APL-binding site recognized with FK1 antibody. Treatment of rat microglia with galantamine significantly enhanced microglial Aβ phagocytosis, and acetylcholine competitive antagonists as well as FK1 antibody inhibited the enhancement. Thus, the galantamine-enhanced microglial Aβ phagocytosis required the combined actions of an acetylcholine competitive agonist and the APL for nAChRs. Indeed, depletion of choline, an acetylcholine-competitive α7 nAChR agonist, from the culture medium impeded the enhancement. Similarly, Ca(2+) depletion or inhibition of the calmodulin-dependent pathways for the actin reorganization abolished the enhancement. These results suggest that galantamine sensitizes microglial α7 nAChRs to choline and induces Ca(2+) influx into microglia. The Ca(2+)-induced intracellular signaling cascades may then stimulate Aβ phagocytosis through the actin reorganization. We further demonstrated that galantamine treatment facilitated Aβ clearance in brains of rodent AD models. In conclusion, we propose a further advantage of galantamine in clinical AD treatment and microglial nAChRs as a new therapeutic target. PMID:20947502

  1. Effects of dichlorobenzene on acetylcholine receptors in human neuroblastoma SH-SY5Y cells.

    PubMed

    Yan, Ren-Ming; Chiung, Yin-Mei; Pan, Chien-Yuan; Liu, Jenn-Hwa; Liu, Pei-Shan

    2008-11-20

    para-Dichlorobenzene (DCB), a deodorant and an industrial chemical, is a highly volatile compound and is known to be an indoor air contaminant. Because of its widespread use and volatility, the toxicity of DCB presents a concern to industrial workers and public. Some toxic aspects of DCB have already been focused but its effects on neuronal signal transduction have been hitherto unknown. The effects of DCB on the cytosolic calcium homeostasis are investigated in human neuroblastoma SH-SY5Y cells in this study. DCB, above 200 microM, was found to induce a rise in cytosolic calcium concentration that could not be counteracted by nicotinic acetylcholine receptor (nAChR) and muscarinic acetylcholine receptor (mAChR) antagonists but was partially inhibited by thapsigargin. To understand the actions of DCB on the acetylcholine receptors, we investigated its effects on the changes of cytosolic calcium concentration following nicotinic AChR stimulation with epibatidine and muscarinic AChR stimulation with methacholine in human neuroblastoma SH-SY5Y cells. DCB inhibited the cytosolic calcium concentration rise induced by epibatidine and methacholine with respective IC(50)s of 34 and 294 microM. The inhibitions of DCB were not the same as thapsigargin's inhibition. In the electrophysiological observations, DCB blocked the influx currents induced by epibatidine. Our findings suggest that DCB interferes with the functional activities of AChR, including its coupling influx currents and cytosolic calcium elevations.

  2. Contractions of the mouse prostate elicited by acetylcholine are mediated by M(3) muscarinic receptors.

    PubMed

    White, Carl W; Short, Jennifer L; Haynes, John M; Matsui, Minoru; Ventura, Sabatino

    2011-12-01

    Increased smooth muscle tone in the human prostate contributes to the symptoms associated with benign prostatic hyperplasia. In the mouse prostate gland, cholinergic innervation is responsible for a component of the nerve-mediated contractile response. This study investigates the muscarinic receptor subtype responsible for the cholinergic contractile response in the mouse prostate gland. To characterize the muscarinic receptor subtype, mouse prostates taken from wild-type or M(3) muscarinic receptor knockout mice were mounted in organ baths. The isometric force that tissues developed in response to electrical-field stimulation or exogenously applied cholinergic agonists in the presence or absence of a range of muscarinic receptor antagonists was evaluated. Carbachol elicited reproducible and concentration-dependent contractions of the isolated mouse prostate, which were antagonized by the presence of muscarinic receptor antagonists. Calculation of antagonist affinities (pA(2) values) indicated a rank order of antagonist potencies in the mouse prostate of: darifenacin (9.08) = atropine (9.07) = 1,1-dimethyl-4-diphenylacetoxypiperidinium iodide (9.02) > cyclohexyl-hydroxy-phenyl-(3-piperidin-1-ylpropyl)silane (7.85) > cyclohexyl-(4-fluorophenyl)-hydroxy-(3-piperidin-1-ylpropyl)silane (7.39) > himbacine (7.19) > pirenzipine (6.88) > methoctramine (6.20). Furthermore, genetic deletion of the M(3) muscarinic receptor inhibited prostatic contractions to electrical-field stimulation or exogenous administration of acetylcholine. In this study we identified that the cholinergic component of contraction in the mouse prostate is mediated by the M(3) muscarinic receptor subtype. Pharmacological antagonism of the M(3) muscarinic receptor may be a beneficial additional target for the treatment of benign prostatic hyperplasia in the human prostate gland.

  3. Role of dopamine receptor and muscarinic acetylcholine receptor blockade in the antiapomorphine action of neuroleptics

    SciTech Connect

    Zharkovskii, A.M.; Langel, Yu.L.; Chereshka, K.S.; Zharkovskaya, T.A.

    1987-08-01

    The authors analyze the role of dopamine and muscarinic acetylcholine receptor blocking components in the antistereotypic action of neuroleptics with different chemical structure. To determine dopamine-blocking activity in vitro, binding of /sup 3/H-spiperone with membranes of the rat striatum was measured. To study the blocking action of the substances on muscarinic acetylcholine receptors, binding of /sup 3/H-quinuclidinyl benzylate with brain membranes was chosen.

  4. END-PLATE ACETYLCHOLINE RECEPTOR: STRUCTURE, MECHANISM, PHARMACOLOGY, AND DISEASE

    PubMed Central

    Sine, Steven M.

    2012-01-01

    The synapse is a localized neurohumoral contact between a neuron and an effector cell and may be considered the quantum of fast intercellular communication. Analogously, the postsynaptic neurotransmitter receptor may be considered the quantum of fast chemical to electrical transduction. Our understanding of postsynaptic receptors began to develop about a hundred years ago with the demonstration that electrical stimulation of the vagus nerve released acetylcholine and slowed the heart beat. During the past 50 years, advances in understanding postsynaptic receptors increased at a rapid pace, owing largely to studies of the acetylcholine receptor (AChR) at the motor endplate. The endplate AChR belongs to a large superfamily of neurotransmitter receptors, called Cys-loop receptors, and has served as an exemplar receptor for probing fundamental structures and mechanisms that underlie fast synaptic transmission in the central and peripheral nervous systems. Recent studies provide an increasingly detailed picture of the structure of the AChR and the symphony of molecular motions that underpin its remarkably fast and efficient chemoelectrical transduction. PMID:22811427

  5. Immunochemical studies of the muscarinic acetylcholine receptor.

    PubMed

    André, C; Marullo, S; Guillet, J G; Convents, A; Lauwereys, M; Kaveri, S; Hoebeke, J; Strosberg, A D

    1987-01-01

    Muscarinic receptors have been purified from calf forebrain plasma cell membranes by affinity chromatography on a dexetimide-agarose gel. SDS-PAGE analysis showed a single 70 kDa band. Monoclonal antibodies have been prepared against these affinity purified 70 kDa protein(s). One antibody, M-35, immunoprecipitated up to 80% of digitonin-solubilized muscarinic receptors. M-35 had agonist-like effects on guinea-pig myometrium: it increased the intracellular cyclic GMP content, decreased prostaglandin-induced cyclic AMP accumulation and caused muscle contractions. The two first effects were inhibited by atropine. M-35 was used to visualize muscarinic receptors at the surface of human fibroblastic cells. In the particular cell line used, the receptors have a low affinity for pirenzepine, were negatively coupled to adenylate cyclase and mediated increase in the phosphatidyl-inositol breakdown. PMID:3040987

  6. Agonist mediated conformational changes of solubilized calf forebrain muscarinic acetylcholine receptors.

    PubMed

    Vanderheyden, P; Andre, C; de Backer, J P; Vauquelin, G

    1984-10-01

    Muscarinic receptors in calf forebrain membranes can be identified by the specific binding of the radiolabelled antagonist [3H]dexetimide. These receptors (2.8 pM/mg protein) comprise two non-interconvertible subpopulations with respectively high and low agonist affinity but with the same antagonist affinity. For all the agonists tested the low affinity sites represent 85 +/- 5% of the total receptor population. 0.5% Digitonin solubilized extracts contain 0.8 pM muscarinic receptor/mg protein. In contrast with the membranes, these extracts contain only sites with low agonist affinity. The alkylating reagent N-ethylmaleimide causes an increase of the acetylcholine affinity for the low affinity sites in membranes as well as for the solubilized sites. This effect is time dependent until a maximal 3-fold increase in affinity is attained. The rate of N-ethylmaleimide action is enhanced by the concomitant presence of agonists. In contrast, N-ethylmaleimide does not affect antagonist binding. This suggests that agonists mediate a conformational change of both the membrane bound low affinity muscarinic sites and of the solubilized sites, resulting in their increased susceptibility towards NEM alkylation. PMID:6487351

  7. The activation of the nicotinic acetylcholine receptor by the transmitter.

    PubMed

    Taylor, D B; Spivak, C E

    1985-02-01

    Experimental evidence has been published from isolated guinea pig muscle in vitro, and from direct ligand binding to receptors from T. californica, indicating that two agonist ions react with the nicotinic receptor by exchanging for one magnesium ion. It is the basis of the ion exchange receptor pair model, in which two acetylcholine ions exchange for one magnesium ion in contact with and between a pair of negatively charged receptor groups about 4 A apart. In the resting state the electrostatic attraction between the negatively charged receptor groups and the Mg2+ ion exerts a binding force. This binding force is opposed by the quantum mechanical repulsions of the electron clouds of the charged groups and ions in contact, together with the mutual repulsion of the pair of receptor oxyanions. When the Mg2+ ion is replaced by two acetylcholine ions the quaternary heads of the latter are positioned so that they form two mutually repelling ACh+ receptor group dipoles. As the Mg2+ ion leaves, its rehydration energy contributes to the sum of the electron cloud repulsions and the ACh+ receptor group dipole repulsions, causing the receptor groups to be forced apart activating the receptor macromolecule. The subsequent decrease in ACh+ concentration results in the reestablishment of the resting state. The coulombic electrostatic energy, the Born repulsion energy, the London attraction energy and the oxyanion ACh+ dipole repulsion energies have been calculated and shown to be consistent with the model. The displacement of the Mg2+ by two ACh+ ions makes several hundred kcals of energy available for receptor group separation and receptor activation.

  8. Muscarinic acetylcholine receptor M1 and M3 subtypes mediate acetylcholine-induced endothelium-independent vasodilatation in rat mesenteric arteries.

    PubMed

    Tangsucharit, Panot; Takatori, Shingo; Zamami, Yoshito; Goda, Mitsuhiro; Pakdeechote, Poungrat; Kawasaki, Hiromu; Takayama, Fusako

    2016-01-01

    The present study investigated pharmacological characterizations of muscarinic acetylcholine receptor (AChR) subtypes involving ACh-induced endothelium-independent vasodilatation in rat mesenteric arteries. Changes in perfusion pressure to periarterial nerve stimulation and ACh were measured before and after the perfusion of Krebs solution containing muscarinic receptor antagonists. Distributions of muscarinic AChR subtypes in mesenteric arteries with an intact endothelium were studied using Western blotting. The expression level of M1 and M3 was significantly greater than that of M2. Endothelium removal significantly decreased expression levels of M2 and M3, but not M1. In perfused mesenteric vascular beds with intact endothelium and active tone, exogenous ACh (1, 10, and 100 nmol) produced concentration-dependent and long-lasting vasodilatations. In endothelium-denuded preparations, relaxation to ACh (1 nmol) disappeared, but ACh at 10 and 100 nmol caused long-lasting vasodilatations, which were markedly blocked by the treatment of pirenzepine (M1 antagonist) or 4-DAMP (M1 and M3 antagonist) plus hexamethonium (nicotinic AChR antagonist), but not methoctramine (M2 and M4 antagonist). These results suggest that muscarinic AChR subtypes, mainly M1, distribute throughout the rat mesenteric arteries, and that activation of M1 and/or M3 which may be located on CGRPergic nerves releases CGRP, causing an endothelium-independent vasodilatation.

  9. Regulation of muscarinic acetylcholine receptor-mediated synaptic responses by adenosine receptors in the rat hippocampus.

    PubMed Central

    Morton, R A; Davies, C H

    1997-01-01

    1. Intracellular current clamp recordings were made from CA1 pyramidal neurones in rat hippocampal slices. Experiments were performed in the presence of ionotropic glutamate receptor antagonists and gamma-aminobutyric acid (GABA) receptor antagonists to block all fast excitatory and inhibitory synaptic transmission. A single stimulus, delivered extracellularly in the stratum oriens, caused a reduction in spike frequency adaptation in response to a depolarizing current step delivered 2 s after the stimulus. A 2- to 10-fold increase in stimulus intensity evoked a slow excitatory postsynaptic potential (EPSP) which was associated with a small increase in input resistance. The peak amplitude of the EPSP occurred approximately 2.5 s after the stimulus and its magnitude (up to 30 mV) and duration (10-50 s) increased with increasing stimulus intensity. 2. The slow EPSP was unaffected by the metabotropic glutamate receptor antagonist (+)-alpha-methyl-4-carboxyphenylglycine ((+)-MCPG; 1000 microM) but was greatly enhanced by the acetylcholinesterase inhibitor physostigmine (1-5 microM). Both the slow EPSP and the stimulus-evoked reduction in spike frequency adaptation were inhibited by the muscarinic acetylcholine receptor (mAChR) antagonist atropine (1-5 microM). These results are consistent with these effects being mediated by mAChRs. 3. Both the mAChR-mediated EPSP (EPSPm) and the associated reduction in spike frequency adaptation were reversibly depressed (up to 97%) by either adenosine (100 microM) or its non-hydrolysable analogue 2-chloroadenosine (CADO; 0.1-5.0 microM). These effects were often accompanied by postsynaptic hyperpolarization (up to 8 mV) and a reduction in input resistance (up to 11%). The selective adenosine A1 receptor agonists 2-chloro-N6-cyclopentyladenosine (CCPA; 0.1-0.4 microM) and R(-)N6-(2-phenylisopropyl)-adenosine (R-PIA; 1 microM) both depressed the EPSPm. In contrast, the adenosine A2A receptor agonist 2-p-(2-carboxyethyl)-phenethylamino-5

  10. Effects of selected muscarinic cholinergic antagonists on [3H]acetylcholine release from rat hippocampal slices.

    PubMed

    Pohorecki, R; Head, R; Domino, E F

    1988-01-01

    A number of cholinergic muscarinic (M) agonists and antagonists were studied for their ability to enhance tritiated acetylcholine ([3H]ACh) release from electrically field-stimulated rat hippocampal slices. A Ca++-free medium and carbachol, but not nicotine, inhibited [3H]ACh release. Atropine, methylatropine and dexetimide produced concentration-dependent increases in [3H]ACh release to a maximum of about 50% above control. Aprophen and benactyzine produced a maximal response 25 to 35% above control. The selective M1 antagonist pirenzepine had the least effect on [3H]ACh release. Of the nonspecific M1-M2 antagonists studied, benactyzine produced the least amount of [3H]ACh release. The order of potency of the M antagonists in promoting a 15% increase in [3H]ACh release was aprophen greater than benactyzine greater than methylatropine greater than dexetimide greater than pirenzepine greater than atropine. However, the order of promoting maximal release of [3H]ACh was atropine greater than dexetimide greater than methylatropine greater than aprophen greater than benactyzine greater than pirenzepine. PMID:3335998

  11. Reaction of (3H)meproadifen mustard with membrane-bound Torpedo acetylcholine receptor

    SciTech Connect

    Dreyer, E.B.; Hasan, F.; Cohen, S.G.; Cohen, J.B.

    1986-10-15

    The Torpedo nicotinic acetylcholine receptor (AChR) contains a binding site for aromatic amine noncompetitive antagonists that is distinct from the binding site for agonists and competitive antagonists. To characterize the location and function of this allosteric antagonist site, an alkylating analog of meproadifen has been synthesized, 2-(chloroethylmethylamino)-ethyl-2, 2-diphenylpentanoate HCl (meproadifen mustard). Reaction of (/sup 3/H)meproadifen mustard with AChR-rich membrane suspensions resulted in specific incorporation of label predominantly into the AChR alpha-subunit with minor incorporation into the beta-subunit. Specific labeling required the presence of high concentration of agonist and was inhibited by reversible noncompetitive antagonists including proadifen, meproadifen, perhydrohistrionicotoxin (HTX), and tetracaine when present at concentrations consistent with the binding affinity of these compounds for the allosteric antagonist site. No specific alkylation of the AChR alpha-subunit was detected in the absence of agonist, or in the presence of the partial agonist phenyltrimethylammonium or the competitive antagonists, d-tubocurarine, gallamine triethiodide, or decamethonium. Reaction with 35 microM meproadifen mustard for 70 min in the presence of carbamylcholine produced no alteration in the concentration of (/sup 3/H)ACh-binding sites, but decreased by 38 +/- 4% the number of allosteric antagonist sites as measured by (/sup 3/H)HTX binding. This decrease was not observed when the alkylation reaction was blocked by the presence of HTX. These results lead us to conclude that meproadifen mustard alkylates the allosteric antagonist site in the Torpedo AChR and that part of that site is associated with the AChR alpha-subunit.

  12. Suitability of Nicotinic Acetylcholine Receptor α7 and Muscarinic Acetylcholine Receptor 3 Antibodies for Immune Detection: Evaluation in Murine Skin.

    PubMed

    Rommel, Frank R; Raghavan, Badrinarayanan; Paddenberg, Renate; Kummer, Wolfgang; Tumala, Susanne; Lochnit, Günter; Gieler, Uwe; Peters, Eva M J

    2015-05-01

    Recent evidence reveals a crucial role for acetylcholine and its receptors in the regulation of inflammation, particularly of nicotinic acetylcholine receptor α7 (Chrna7) and muscarinic acetylcholine receptor 3 (Chrm3). Immunohistochemistry is a key tool for their cellular localization in functional tissues. We evaluated nine different commercially available antibodies on back skin tissue from wild-type (Wt) and gene-deficient (KO) mice. In the immunohistochemical analysis, we focused on key AChR-ligand sensitive skin cells (mast cells, nerve fibers and keratinocytes). All five antibodies tested for Chrm3 and the first three Chrna7 antibodies stained positive in both Wt and respective KO skin. With the 4th antibody (ab23832) nerve fibers were unlabeled in the KO mice. By western blot analysis, this antibody detected bands in both Wt and Chrna7 KO skin and brain. qRT-PCR revealed mRNA amplification with a primer set for the undeleted region in both Wt and KO mice, but none with a primer set for the deleted region in KO mice. By 2D electrophoresis, we found β-actin and β-enolase cross reactivity, which was confirmed by double immunolabeling. In view of the present results, the tested antibodies are not suitable for immunolocalization in skin and suggest thorough control of antibody specificity is required if histomorphometry is intended. PMID:25673288

  13. High-affinity neuropeptide Y receptor antagonists.

    PubMed Central

    Daniels, A J; Matthews, J E; Slepetis, R J; Jansen, M; Viveros, O H; Tadepalli, A; Harrington, W; Heyer, D; Landavazo, A; Leban, J J

    1995-01-01

    Neuropeptide Y (NPY) is one of the most abundant peptide transmitters in the mammalian brain. In the periphery it is costored and coreleased with norepinephrine from sympathetic nerve terminals. However, the physiological functions of this peptide remain unclear because of the absence of specific high-affinity receptor antagonists. Three potent NPY receptor antagonists were synthesized and tested for their biological activity in in vitro, ex vivo, and in vivo functional assays. We describe here the effects of these antagonists inhibiting specific radiolabeled NPY binding at Y1 and Y2 receptors and antagonizing the effects of NPY in human erythroleukemia cell intracellular calcium mobilization perfusion pressure in the isolated rat kidney, and mean arterial blood pressure in anesthetized rats. PMID:7568074

  14. Mapping of the acetylcholine binding site of the nicotinic acetylcholine receptor: ( sup 3 H)nicotine as an agonist photoaffinity label

    SciTech Connect

    Middleton, R.E.; Cohen, J.B. )

    1991-07-16

    The agonist ({sup 3}H)nicotine was used as a photoaffinity label for the acetylcholine binding sties on the Torpedo nicotinic acetylcholine receptor (AChR). ({sup 3}H)Nicotine binds at equilibrium with K{sub eq} = 0.6 {mu}M to the agonist binding sites. Irradiation with 254-nm light of AChR-rich membranes equilibrated with ({sup 3}H)nicotine resulted in covalent incorporation into the {alpha}- and {gamma}-subunits, which was inhibited by agonists and competitive antagonists but not by noncompetitive antagonists. Inhibition of labeling by d-tubocurarine demonstrated that the {alpha}-subunit was labeled via both agonist sites but the {gamma}-subunit was labeled only via the site that binds d-tubocurarine with high affinity. Chymotryptic digestion of the {alpha}-subunit confirmed that Try-198 was the principal amino acid labeled by ({sup 3}H)nicotine. This confirmation required a novel radiosequencing strategy employing o-phthalaldehyde ({sup 3}H)Nicotine, which is the first photoaffinity agonist used, labels primarily Tyr-198 in contrast to competitive antagonist affinity labels, which label primarily Tyr-190 and Cys-192/Cys-193.

  15. Pharmacological profile of zacopride and new quaternarized fluorobenzamide analogues on mammalian α7 nicotinic acetylcholine receptor.

    PubMed

    Bourdin, Céline M; Lebreton, Jacques; Mathé-Allainmat, Monique; Thany, Steeve H

    2015-08-15

    From quaternarization of quinuclidine enantiomers of 2-fluoro benzamide LMA10203 in dichloromethane, the corresponding N-chloromethyl derivatives LMA10227 and LMA10228 were obtained. Here, we compared the agonist action of known zacopride and its 2-fluoro benzamide analogues, LMA10203, LMA10227 and LMA10228 against mammalian homomeric α7 nicotinic acetylcholine receptor expressed in Xenopus oocytes. We found that LMA10203 was a partial agonist of α7 receptor with a pEC50 value of 4.25 ± 0.06 μM whereas LMA10227 and LMA10228 were poorly active on α7 homomeric nicotinic receptor. LMA10227 and LMA10228 were identified as antagonists of acetylcholine-induced currents with IC50 values of 28.4 μM and 39.3 μM whereas LMA10203 and zacopride possessed IC50 values of 8.07 μM and 7.04 μM, respectively. Moreover, despite their IC50 values, LMA10227 was the most potent inhibitor of nicotine-induced current amplitudes (65.7 ± 2.1% inhibition). LMA10203 and LMA10228 had the same inhibitory effects (26.5 ± 7.5% and 33.2 ± 4.1%, respectively), whereas zacopride had no significant inhibitory effect (4.37 ± 4%) on nicotine-induced responses. Our results revealed different pharmacological properties between the four compounds on acetylcholine and nicotine currents. The mode of action of benzamide compounds may need to be reinterpreted with respect to the potential role of α7 receptor.

  16. Structure and dynamics of the M3 muscarinic acetylcholine receptor

    SciTech Connect

    Kruse, Andrew C.; Hu, Jianxin; Pan, Albert C.; Arlow, Daniel H.; Rosenbaum, Daniel M.; Rosemond, Erica; Green, Hillary F.; Liu, Tong; Chae, Pil Seok; Dror, Ron O.; Shaw, David E.; Weis, William I.; Wess, Jürgen; Kobilka, Brian K.

    2012-03-01

    Acetylcholine, the first neurotransmitter to be identified, exerts many of its physiological actions via activation of a family of G-protein-coupled receptors (GPCRs) known as muscarinic acetylcholine receptors (mAChRs). Although the five mAChR subtypes (M1-M5) share a high degree of sequence homology, they show pronounced differences in G-protein coupling preference and the physiological responses they mediate. Unfortunately, despite decades of effort, no therapeutic agents endowed with clear mAChR subtype selectivity have been developed to exploit these differences. We describe here the structure of the G{sub q/11}-coupled M3 mAChR ('M3 receptor', from rat) bound to the bronchodilator drug tiotropium and identify the binding mode for this clinically important drug. This structure, together with that of the G{sub i/o}-coupled M2 receptor, offers possibilities for the design of mAChR subtype-selective ligands. Importantly, the M3 receptor structure allows a structural comparison between two members of a mammalian GPCR subfamily displaying different G-protein coupling selectivities. Furthermore, molecular dynamics simulations suggest that tiotropium binds transiently to an allosteric site en route to the binding pocket of both receptors. These simulations offer a structural view of an allosteric binding mode for an orthosteric GPCR ligand and provide additional opportunities for the design of ligands with different affinities or binding kinetics for different mAChR subtypes. Our findings not only offer insights into the structure and function of one of the most important GPCR families, but may also facilitate the design of improved therapeutics targeting these critical receptors.

  17. Cholinergic modulation of dopamine pathways through nicotinic acetylcholine receptors.

    PubMed

    de Kloet, Sybren F; Mansvelder, Huibert D; De Vries, Taco J

    2015-10-15

    Nicotine addiction is highly prevalent in current society and is often comorbid with other diseases. In the central nervous system, nicotine acts as an agonist for nicotinic acetylcholine receptors (nAChRs) and its effects depend on location and receptor composition. Although nicotinic receptors are found in most brain regions, many studies on addiction have focused on the mesolimbic system and its reported behavioral correlates such as reward processing and reinforcement learning. Profound modulatory cholinergic input from the pedunculopontine and laterodorsal tegmentum to dopaminergic midbrain nuclei as well as local cholinergic interneuron projections to dopamine neuron axons in the striatum may play a major role in the effects of nicotine. Moreover, an indirect mesocorticolimbic feedback loop involving the medial prefrontal cortex may be involved in behavioral characteristics of nicotine addiction. Therefore, this review will highlight current understanding of the effects of nicotine on the function of mesolimbic and mesocortical dopamine projections in the mesocorticolimbic circuit. PMID:26208783

  18. In silico point mutation and evolutionary trace analysis applied to nicotinic acetylcholine receptors in deciphering ligand-binding surfaces.

    PubMed

    Parthiban, Marimuthu; Shanmughavel, Piramanayagam; Sowdhamini, Ramanathan

    2010-10-01

    The nicotinic acetylcholine receptors (nAChRs) are members of the Cys-loop superfamily and contain ligand gated ion channels (LGIC). These receptors are located mostly in the central nervous system (CNS) and peripheral nervous system (PNS). nAChRs reside at pre-synaptic regions to mediate acetylcholine neurotransmission and in the post synaptic membrane to propagate nerve impulses through neurons via acetylcholine. Malfunction of this neurotransmitter receptor is believed to cause various neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease and schizophrenia, and nAChRs are thus important drug targets. In the present work, starting from an earlier model of pentameric alpha7nAChR, a considerable effort has been taken to investigate interaction with ligands by performing docking studies with a diverse array of agonists and antagonists. Analysis of these docking complexes reveals identification of possible ligand-interacting residues. Some of these residues, e.g. Ser34, Gln55, Ser146, and Tyr166, which are evolutionarily conserved, were specifically subjected to virtual mutations based on their amino acid properties and found to be highly sensitive in the presence of antagonists by docking. Further, the study was extended using evolutionary trace analysis, revealing conserved and class-specific residues close to the putative ligand-binding site, further supporting the results of docking experiments.

  19. Trigeminal antidromic vasodilatation and plasma extravasation in the rat: effects of acetylcholine antagonists and cholinesterase inhibitors.

    PubMed Central

    Couture, R.; Cuello, A. C.; Henry, J. L.

    1985-01-01

    Antidromic stimulation of sensory peripheral branches of the trigeminal system (mental nerve) leads to cutaneous vasodilatation and increases vascular permeability in the rat. Antidromic vasodilatation is observed only at high intensity stimulation (10 V, 15 Hz, 0.2 or 5 ms) supporting the participation of afferent C-fibres in cutaneous dilator responses. Both antidromic vasodilatation and neurogenic plasma extravasation are significantly reduced by muscarinic antagonists suggesting that a cholinergic component may be involved in these trigeminal neurogenic responses. Neurogenic plasma extravasation remains unchanged by hexamethonium while antidromic vasodilatation is reduced. This latter effect may be merely a consequence of the dramatic fall in arterial pressure produced by the ganglion blocker. Antidromic vasodilatation is increased or unaffected by acetylcholinesterase inhibitors. On the other hand, the reduction of the plasma extravasation observed with these drugs could be due to their known ability to decrease the amount of acetylcholine released. PMID:3986430

  20. P2Y2 receptor activation regulates the expression of acetylcholinesterase and acetylcholine receptor genes at vertebrate neuromuscular junctions.

    PubMed

    Tung, Edmund K K; Choi, Roy C Y; Siow, Nina L; Jiang, Joy X S; Ling, Karen K Y; Simon, Joseph; Barnard, Eric A; Tsim, Karl W K

    2004-10-01

    At the vertebrate neuromuscular junction (nmj), ATP is known to be coreleased with acetylcholine from the synaptic vesicles. We have previously shown that the P2Y1 receptor is localized at the nmj. Here, we extend the findings to show that another nucleotide receptor, P2Y2, is also localized there and with P2Y1 jointly mediates trophic responses to ATP. The P2Y2 receptor mRNA in rat muscle increased during development and peaked in adulthood. The P2Y2 receptor protein was shown to become restricted to the nmjs during embryonic development, in chick and in rat. In both rat and chick myotubes, P2Y1 and P2Y2 are expressed, increasing with differentiation, but P2Y4 is absent. The P2Y2 agonist UTP stimulated there inositol trisphosphate production and phosphorylation of extracellular signal-regulated kinases, in a dose-dependent manner. These UTP-induced responses were insensitive to the P2Y1-specific antagonist MRS 2179 (2'-deoxy-N6-methyl adenosine 3',5'-diphosphate diammonium salt). In differentiated myotubes, P2Y2 activation induced expression of acetylcholinesterase (AChE) protein (but not control alpha-tubulin). This was shown to arise from AChE promoter activation, mediated by activation of the transcription factor Elk-1. Two Elk-1-responsive elements, located in intron-1 of the AChE promoter, were found by mutation to act in this gene activation initiated at the P2Y2 receptor and also in that initiated at the P2Y1 receptor. Furthermore, the promoters of different acetylcholine receptor subunits were also stimulated by application of UTP to myotubes. These results indicate that ATP regulates postsynaptic gene expressions via a common pathway triggered by the activation of P2Y1 and P2Y2 receptors at the nmjs. PMID:15258260

  1. Acetylcholine receptors and cholinergic ligands: biochemical and genetic aspects in Torpedo californica and Drosophila melanogaster

    SciTech Connect

    Rosenthal, L.S.

    1987-01-01

    This study evaluates the biochemical and genetic aspects of the acetylcholine receptor proteins and cholinergic ligands in Drosophila melanogaster and Torpedo californica. Included are (1) a comparative study of nicotinic ligand-induced cation release from acetylcholine receptors isolated from Torpedo californica and from Drosophila melanogaster, (2) solution studies of the cholinergic ligands, nikethamide and ethamivan, aimed at measuring internal molecular rotational barriers in solvents of different polarity; and (3) the isolation and characterization of the gene(s) for the acetylcholine receptor in Drosophila melasogaster. Acetylcholine receptor proteins isolated from Drosphila melanogaster heads were found to behave kinetically similar (with regards to cholinergic ligand-induced /sup 155/Eu:/sup 3 +/ displacement from prelabeled proteins) to receptor proteins isolated from Torpedo californica electric tissue, providing additional biochemical evidence for the existence of a Drosophila acetylcholine receptor.

  2. α4 nicotinic acetylcholine receptor modulated by galantamine on nigrostriatal terminals regulates dopamine receptor-mediated rotational behavior.

    PubMed

    Inden, Masatoshi; Takata, Kazuyuki; Yanagisawa, Daijiro; Ashihara, Eishi; Tooyama, Ikuo; Shimohama, Shun; Kitamura, Yoshihisa

    2016-03-01

    Galantamine, an acetylcholine esterase (AChE) inhibitor used to treat dementia symptoms, also acts as an allosteric potentiating ligand (APL) at nicotinic acetylcholine receptors (nAChRs). This study was designed to evaluate the allosteric effect of galantamine on nAChR regulation of nigrostrial dopaminergic neuronal function in the hemiparkinsonian rat model established by unilateral nigral 6-hydroxydopamine (6-OHDA) injection. Methamphetamine, a dopamine releaser, induced ipsilateral rotation, whereas dopamine agonists apomorphine (a non-selective dopamine receptor agonist), SKF38393 (a selective dopamine D1 receptor agonist), and quinpirole (a selective dopamine D2 receptor agonist) induced contralateral rotation. When 6-OHDA-injected rats were co-treated with nomifensine, a dopamine transporter inhibitor, a more pronounced and a remarkable effect of nicotine and galantamine was observed. Under these conditions, the combination of nomifensine with nicotine or galantamine induced the ipsilateral rotation similar to the methamphetamine-induced rotational behavior, indicating that nicotine and galantamine also induce dopamine release from striatal terminals. Both nicotine- and galantamine-induced rotations were significantly blocked by flupenthixol (an antagonist of both D1 and D2 dopamine receptors) and mecamylamine (an antagonist of nAChRs), suggesting that galantamine modulation of nAChRs on striatal dopaminergic terminals regulates dopamine receptor-mediated movement. Immunohistochemical staining showed that α4 nAChRs were highly expressed on striatal dopaminergic terminals, while no α7 nAChRs were detected. Pretreatment with the α4 nAChR antagonist dihydroxy-β-erythroidine significantly inhibited nicotine- and galantamine-induced rotational behaviors, whereas pretreatment with the α7 nAChR antagonist methyllycaconitine was ineffective. Moreover, the α4 nAChR agonist ABT-418 induced ipsilateral rotation, while the α7 nAChR agonist PNU282987 had no

  3. Lixivaptan: a novel vasopressin receptor antagonist.

    PubMed

    Ku, Elaine; Nobakht, Niloofar; Campese, Vito M

    2009-05-01

    Arginine vasopressin, also known as antidiuretic hormone, is a neuropeptide that functions in the maintenance of body water homeostasis. Inappropriate secretion of vasopressin has been implicated in the pathophysiology of multiple diseases, including polycystic kidney disease, syndrome of inappropriate antidiuretic hormone (SIADH) secretion, and the hyponatremia commonly associated with cirrhosis and congestive heart failure. Vasopressin receptor antagonists are novel agents that block the physiologic actions of vasopressin. Lixivaptan is a vasopressin receptor antagonist with high V2 receptor affinity and is now undergoing Phase III clinical trials. Studies so far have demonstrated that lixivaptan is efficacious in the correction of hyponatremia in SIADH, heart failure and liver cirrhosis with ascites, and few adverse effects have been noted. Thus, lixivaptan remains a promising therapeutic modality for the treatment of multiple diseases and prevention of the associated morbidity and mortality associated with hyponatremia.

  4. Identification of subunits of acetylcholine receptor that interact with a cholesterol photoaffinity probe

    SciTech Connect

    Middlemas, D.S.; Raftery, M.A.

    1987-03-10

    All four subunits of the acetylcholine receptor in membrane vesicles isolated from Torpedo californica have been labeled with (/sup 3/H)cholesteryl diazoacetate. As this probe incorporates into lipid bilayers analogously to cholesterol, this result indicates that acetylcholine receptor interacts with cholesterol. This investigation also demonstrates that this probe is a useful reagent for studying the interaction of cholesterol with membrane proteins.

  5. Expression of cloned α6* nicotinic acetylcholine receptors.

    PubMed

    Wang, Jingyi; Kuryatov, Alexander; Lindstrom, Jon

    2015-09-01

    Nicotinic acetylcholine receptors (AChRs) are ACh-gated ion channels formed from five homologous subunits in subtypes defined by their subunit composition and stoichiometry. Some subtypes readily produce functional AChRs in Xenopus oocytes and transfected cell lines. α6β2β3* AChRs (subtypes formed from these subunits and perhaps others) are not easily expressed. This may be because the types of neurons in which they are expressed (typically dopaminergic neurons) have unique chaperones for assembling α6β2β3* AChRs, especially in the presence of the other AChR subtypes. Because these relatively minor brain AChR subtypes are of major importance in addiction to nicotine, it is important for drug development as well as investigation of their functional properties to be able to efficiently express human α6β2β3* AChRs. We review the issues and progress in expressing α6* AChRs. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'.

  6. Fluorescent staining of acetylcholine receptors in vertebrate skeletal muscle

    PubMed Central

    Anderson, M. J.; Cohen, M. W.

    1974-01-01

    1. α-Bungarotoxin was labelled with fluorescent dyes and used as a stain for visualizing the distribution of acetylcholine receptors in vertebrate skeletal muscle fibres. 2. Dye-toxin conjugates had the same pharmacological properties as native toxin, but their potencies were lower. 3. Fluorescent staining was examined in teased muscle fibres. The stain was found to be confined to the neuromuscular junction and associated with the subsynaptic membrane. 4. Staining intensity was reduced by curare and even more so by carbachol, but not by atropine or neostigmine. Pre-treatment of muscles with unlabelled α-bungarotoxin entirely prevented staining. 5. The staining at amphibian neuromuscular junctions was characterized by a pattern of intense transverse bands occurring at intervals of approximately 0·5-1 μm, with fluorescence of lower intensity between them. Fluorescent staining was not detected on adjacent, extrasynaptic, muscle membrane. In side views the staining appeared as a fine line with small protuberances occurring at the same intervals as the intense bands seen face-on. These results indicate that acetylcholine receptors are associated with the entire subsynaptic membrane, including the membrane of the junctional folds and that their density changes abruptly at the border between synaptic and extrasynaptic muscle membrane. ImagesPlate 3Plate 4Plate 1Plate 2 PMID:4133039

  7. Quinuclidine compounds differently act as agonists of Kenyon cell nicotinic acetylcholine receptors and induced distinct effect on insect ganglionic depolarizations.

    PubMed

    Mathé-Allainmat, Monique; Swale, Daniel; Leray, Xavier; Benzidane, Yassine; Lebreton, Jacques; Bloomquist, Jeffrey R; Thany, Steeve H

    2013-12-01

    We have recently demonstrated that a new quinuclidine benzamide compound named LMA10203 acted as an agonist of insect nicotinic acetylcholine receptors. Its specific pharmacological profile on cockroach dorsal unpaired median neurons (DUM) helped to identify alpha-bungarotoxin-insensitive nAChR2 receptors. In the present study, we tested its effect on cockroach Kenyon cells. We found that it induced an inward current demonstrating that it bounds to nicotinic acetylcholine receptors expressed on Kenyon cells. Interestingly, LMA10203-induced currents were completely blocked by the nicotinic antagonist α-bungarotoxin. We suggested that LMA10203 effect occurred through the activation of α-bungarotoxin-sensitive receptors and did not involve α-bungarotoxin-insensitive nAChR2, previously identified in DUM neurons. In addition, we have synthesized two new compounds, LMA10210 and LMA10211, and compared their effects on Kenyon cells. These compounds were members of the 3-quinuclidinyl benzamide or benzoate families. Interestingly, 1 mM LMA10210 was not able to induce an inward current on Kenyon cells compared to LMA10211. Similarly, we did not find any significant effect of LMA10210 on cockroach ganglionic depolarization, whereas these three compounds were able to induce an effect on the central nervous system of the third instar M. domestica larvae. Our data suggested that these three compounds could bind to distinct cockroach nicotinic acetylcholine receptors. PMID:23884575

  8. Antiplatelet therapy: thrombin receptor antagonists

    PubMed Central

    Tello-Montoliu, Antonio; Tomasello, Salvatore D; Ueno, Masafumi; Angiolillo, Dominick J

    2011-01-01

    Activated platelets stimulate thrombus formation in response to rupture of an atherosclerotic plaque or endothelial cell erosion, promoting atherothrombotic disease. Multiple pathways contribute to platelet activation. Aspirin, an irreversible inhibitor of thromboxane A2 synthesis, in combination with clopidogrel, an inhibitor of P2Y12 adenosine diphosphate platelet receptors, represent the current standard-of-care of antiplatelet therapy for patients with acute coronary syndrome and for those undergoing percutaneous coronary intervention. Although these agents have demonstrated significant clinical benefit, the increased risk of bleeding and the recurrence of thrombotic events represent substantial limitations. Thrombin is one of the most important platelet activators. The inhibition of protease-activated receptor 1 showed a good safety profile in preclinical studies. In fact, phase II studies with vorapaxar (SCH530348) and atopaxar (E5555) showed no increase of bleeding events in addition to the current standard-of-care of antiplatelet therapy. Although the results of phase III trials for both drugs are awaited, this family is a promising new addition to the current clinical practice for patients with atherothrombotic disease, not only as an alternative, but also as additional therapy. PMID:21906120

  9. Perfection of a synaptic receptor: kinetics and energetics of the acetylcholine receptor.

    PubMed

    Jackson, M B

    1989-04-01

    The energetics and kinetics of activation of the acetylcholine receptor are evaluated in the context of optimizing rapid synaptic transmission. Physiological needs are used as the basis for estimating optimal values for the closed-to-open channel equilibrium constants of the liganded and unliganded receptor. An estimate is made of the maximum energy that can be derived from the binding of acetylcholine to a perfectly designed receptor binding site. Application of the principle of detailed balance shows that with only one ligand binding site the receptor will not be able to derive enough energy from acetylcholine binding to drive a sufficiently large change in the channel conformational equilibrium. This then provides a rationale for the existence of a second binding site, rather than the often invoked advantage of cooperativity. With two binding sites there is a considerable excess of binding energy and consequently considerable flexibility in how binding energy can be utilized. It is shown that the receptor must have at least one binding site that binds acetylcholine weakly when the channel is closed. This is essential to rapid response termination. However, making the other binding site bind more tightly can enhance and accelerate the activation of the receptor. To optimize both response activation and termination the best solution is to make the two binding sites different in their binding affinities. This qualitatively reproduces an experimental observation. PMID:2538836

  10. Frizzled-9 impairs acetylcholine receptor clustering in skeletal muscle cells

    PubMed Central

    Avilés, Evelyn C.; Pinto, Cristina; Hanna, Patricia; Ojeda, Jorge; Pérez, Viviana; De Ferrari, Giancarlo V.; Zamorano, Pedro; Albistur, Miguel; Sandoval, Daniel; Henríquez, Juan P.

    2014-01-01

    Cumulative evidence indicates that Wnt pathways play crucial and diverse roles to assemble the neuromuscular junction (NMJ), a peripheral synapse characterized by the clustering of acetylcholine receptors (AChR) on postsynaptic densities. The molecular determinants of Wnt effects at the NMJ are still to be fully elucidated. We report here that the Wnt receptor Frizzled-9 (Fzd9) is expressed in developing skeletal muscles during NMJ synaptogenesis. In cultured myotubes, gain- and loss-of-function experiments revealed that Fzd9-mediated signaling impairs the AChR-clustering activity of agrin, an organizer of postsynaptic differentiation. Overexpression of Fzd9 induced the cytosolic accumulation of β-catenin, a key regulator of Wnt signaling. Consistently, Fzd9 and β-catenin localize in the postsynaptic domain of embryonic NMJs in vivo. Our findings represent the first evidence pointing to a crucial role of a Fzd-mediated, β-catenin-dependent signaling on the assembly of the vertebrate NMJ. PMID:24860427

  11. Heterogeneity of binding of muscarinic receptor antagonists in rat brain homogenates

    SciTech Connect

    Lee, J.H.; el-Fakahany, E.E.

    1985-06-01

    The binding properties of (-)-(/sup 3/H)quinuclidinyl benzilate and (/sup 3/H) N-methylscopolamine to muscarinic acetylcholine receptors have been investigated in rat brain homogenates. The binding of both antagonists demonstrated high affinity and saturability. Analysis of the binding data resulted in linear Scatchard plots. However, (-)-(/sup 3/H)quinuclidinyl benzilate showed a significantly higher maximal binding capacity than that of (/sup 3/H)N-methylscopolamine. Displacement of both ligands with several muscarinic receptor antagonists resulted in competition curves in accordance with the law of mass-action for quinuclidinyl benzilate, atropine and scopolamine. A similar profile was found for the quaternary ammonium analogs of atropine and scopolamine when (/sup 3/H)N-methylscopolamine was used to label the receptors. However, when these hydrophilic antagonists were used to displace (-)-(/sup 3/H) quinuclidinyl benzilate binding, they showed interaction with high- and low-affinity binding sites. On the other hand, the nonclassical muscarinic receptor antagonist, pirenzepine, was able to displace both ligands from two binding sites. The present data are discussed in terms of the relationship of this anomalous heterogenity of binding of these hydrophilic muscarinic receptor antagonists and the proposed M1 and M2 receptor subtypes.

  12. Differential effects of subtype-specific nicotinic acetylcholine receptor agonists on early and late hippocampal LTP.

    PubMed

    Kroker, Katja S; Rast, Georg; Rosenbrock, Holger

    2011-12-01

    Brain nicotinic acetylcholine receptors are involved in several neuropsychiatric disorders, e.g. Alzheimer's and Parkinson's diseases, Tourette's syndrome, schizophrenia, depression, autism, attention deficit hyperactivity disorder, and anxiety. Currently, approaches selectively targeting the activation of specific nicotinic acetylcholine receptors are in clinical development for treatment of memory impairment of Alzheimer's disease patients. These are α4β2 and α7 nicotinic acetylcholine receptor agonists which are believed to enhance cholinergic and glutamatergic neurotransmission, respectively. In order to gain a better insight into the mechanistic role of these two nicotinic acetylcholine receptors in learning and memory, we investigated the effects of the α4β2 nicotinic acetylcholine receptor agonist TC-1827 and the α7 nicotinic acetylcholine receptor partial agonist SSR180711 on hippocampal long-term potentiation (LTP), a widely accepted cellular experimental model of memory formation. Generally, LTP is distinguished in an early and a late form, the former being protein-synthesis independent and the latter being protein-synthesis dependent. TC-1827 was found to increase early LTP in a bell-shaped dose dependent manner, but did not affect late LTP. In contrast, the α7 nicotinic acetylcholine receptor partial agonist SSR180711 showed enhancing effects on both early and late LTP in a bell-shaped manner. Furthermore, SSR180711 not only increased early LTP, but also transformed it into late LTP, which was not observed with the α4β2 nicotinic acetylcholine receptor agonist. Therefore, based on these findings α7 nicotinic acetylcholine receptor (partial) agonists appear to exhibit stronger efficacy on memory improvement than α4β2 nicotinic acetylcholine receptor agonists. PMID:21968142

  13. The Drosophila Acetylcholine Receptor Subunit Dα5 Is Part of an α-Bungarotoxin Binding Acetylcholine Receptor*

    PubMed Central

    Wu, Peipei; Ma, Dongdong; Pierzchala, Marek; Wu, Jun; Yang, Lee-Chuan; Mai, Xiaoping; Chang, Xiaoying; Schmidt-Glenewinkel, Thomas

    2011-01-01

    The central nervous system of Drosophila melanogaster contains an α-bungarotoxin-binding protein with the properties expected of a nicotinic acetylcholine receptor. This protein was purified 5800-fold from membranes prepared from Drosophila heads. The protein was solubilized with 1% Triton X-100 and 0.5 m sodium chloride and then purified using an α-cobratoxin column followed by a lentil lectin affinity column. The purified protein had a specific activity of 3.9 μmol of 125I-α-bungarotoxin binding sites/g of protein. The subunit composition of the purified receptor was determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. This subunit profile was identical with that revealed by in situ labeling of the membrane-bound protein using the photolyzable methyl-4-azidobenzoimidate derivative of 125I-α-bungarotoxin. The purified receptor reveals two different protein bands with molecular masses of 42 and 57 kDa. From sedimentation analysis of the purified protein complex in H2O and D2O and gel filtration, a mass of 270 kDa was calculated. The receptor has a s20,w of 9.4 and a Stoke's radius of 7.4 nm. The frictional coefficient was calculated to be 1.7 indicating a highly asymmetric protein complex compatible with a transmembrane protein forming an ion channel. The sequence of a peptide obtained after tryptic digestion of the 42-kDa protein allowed the specific identification of the Drosophila Dα5 subunit by sequence comparison. A peptide-specific antibody raised against the Dα5 subunit provides further evidence that this subunit is a component of an α-bungarotoxin binding nicotinic acetylcholine receptor from the central nervous system of Drosophila. PMID:15781463

  14. α7 nicotinic acetylcholine receptor subunit in angiogenesis and epithelial to mesenchymal transition.

    PubMed

    Pillai, Smitha; Chellappan, Srikumar

    2012-05-01

    Cigarette smoking is strongly correlated with many diseases like cancer, cardiovascular disease and macular degeneration. Nicotine, the main active and addictive component of tobacco smoke has recently been shown to enhance angiogenesis in many experimental systems and animal models. The pro-angiogenic activity of nicotine is mediated by nicotinic acetylcholine receptors, particularly the alpha 7 subunit, that are expressed on a variety of non-neuronal cells including those in the vasculature such as endothelial cells and smooth muscle cells. The present review focuses on the role of α7nAChR in mediating the pro-angiogenic effects of nicotine and describes the molecular mechanisms involved in nicotine-induced angiogenesis as well as epithelial to mesenchymal transition. These observations on nicotine function highlight the therapeutic potential of α7nAChR agonists and antagonists for combating angiogenesis related diseases.

  15. High Throughput Random Mutagenesis and Single Molecule Real Time Sequencing of the Muscle Nicotinic Acetylcholine Receptor

    PubMed Central

    Groot-Kormelink, Paul J.; Ferrand, Sandrine; Kelley, Nicholas; Bill, Anke; Freuler, Felix; Imbert, Pierre-Eloi; Marelli, Anthony; Gerwin, Nicole; Sivilotti, Lucia G.; Miraglia, Loren; Orth, Anthony P.; Oakeley, Edward J.; Schopfer, Ulrich; Siehler, Sandra

    2016-01-01

    High throughput random mutagenesis is a powerful tool to identify which residues are important for the function of a protein, and gain insight into its structure-function relation. The human muscle nicotinic acetylcholine receptor was used to test whether this technique previously used for monomeric receptors can be applied to a pentameric ligand-gated ion channel. A mutant library for the α1 subunit of the channel was generated by error-prone PCR, and full length sequences of all 2816 mutants were retrieved using single molecule real time sequencing. Each α1 mutant was co-transfected with wildtype β1, δ, and ε subunits, and the channel function characterized by an ion flux assay. To test whether the strategy could map the structure-function relation of this receptor, we attempted to identify mutations that conferred resistance to competitive antagonists. Mutant hits were defined as receptors that responded to the nicotinic agonist epibatidine, but were not inhibited by either α-bungarotoxin or tubocurarine. Eight α1 subunit mutant hits were identified, six of which contained mutations at position Y233 or V275 in the transmembrane domain. Three single point mutations (Y233N, Y233H, and V275M) were studied further, and found to enhance the potencies of five channel agonists tested. This suggests that the mutations made the channel resistant to the antagonists, not by impairing antagonist binding, but rather by producing a gain-of-function phenotype, e.g. increased agonist sensitivity. Our data show that random high throughput mutagenesis is applicable to multimeric proteins to discover novel functional mutants, and outlines the benefits of using single molecule real time sequencing with regards to quality control of the mutant library as well as downstream mutant data interpretation. PMID:27649498

  16. High Throughput Random Mutagenesis and Single Molecule Real Time Sequencing of the Muscle Nicotinic Acetylcholine Receptor.

    PubMed

    Groot-Kormelink, Paul J; Ferrand, Sandrine; Kelley, Nicholas; Bill, Anke; Freuler, Felix; Imbert, Pierre-Eloi; Marelli, Anthony; Gerwin, Nicole; Sivilotti, Lucia G; Miraglia, Loren; Orth, Anthony P; Oakeley, Edward J; Schopfer, Ulrich; Siehler, Sandra

    2016-01-01

    High throughput random mutagenesis is a powerful tool to identify which residues are important for the function of a protein, and gain insight into its structure-function relation. The human muscle nicotinic acetylcholine receptor was used to test whether this technique previously used for monomeric receptors can be applied to a pentameric ligand-gated ion channel. A mutant library for the α1 subunit of the channel was generated by error-prone PCR, and full length sequences of all 2816 mutants were retrieved using single molecule real time sequencing. Each α1 mutant was co-transfected with wildtype β1, δ, and ε subunits, and the channel function characterized by an ion flux assay. To test whether the strategy could map the structure-function relation of this receptor, we attempted to identify mutations that conferred resistance to competitive antagonists. Mutant hits were defined as receptors that responded to the nicotinic agonist epibatidine, but were not inhibited by either α-bungarotoxin or tubocurarine. Eight α1 subunit mutant hits were identified, six of which contained mutations at position Y233 or V275 in the transmembrane domain. Three single point mutations (Y233N, Y233H, and V275M) were studied further, and found to enhance the potencies of five channel agonists tested. This suggests that the mutations made the channel resistant to the antagonists, not by impairing antagonist binding, but rather by producing a gain-of-function phenotype, e.g. increased agonist sensitivity. Our data show that random high throughput mutagenesis is applicable to multimeric proteins to discover novel functional mutants, and outlines the benefits of using single molecule real time sequencing with regards to quality control of the mutant library as well as downstream mutant data interpretation. PMID:27649498

  17. Muscarinic Acetylcholine Receptor M3 Modulates Odorant Receptor Activity via Inhibition of β-Arrestin-2 Recruitment

    PubMed Central

    Jiang, Yue; Li, Yun Rose; Tian, Huikai; Ma, Minghong; Matsunami, Hiroaki

    2015-01-01

    The olfactory system in rodents serves a critical function in social, reproductive, and survival behaviors. Processing of chemosensory signals in the brain is dynamically regulated in part by an animal's physiological state. We previously reported that type 3 muscarinic acetylcholine receptors (M3-Rs) physically interact with odorant receptors (ORs) to promote odor-induced responses in a heterologous expression system. However, it is not known how M3-Rs affect the ability of olfactory sensory neurons (OSNs) to respond to odors. Here, we show that an M3-R antagonist attenuates odor-induced responses in OSNs from wild-type, but not M3-R-null mice. Using a novel molecular assay, we demonstrate that the activation of M3-Rs inhibits the recruitment of β-arrestin-2 to ORs, resulting in a potentiation of odor-induced response in OSNs. These results suggest a role for acetylcholine in modulating olfactory processing at the initial stages of signal transduction in the olfactory system. PMID:25800153

  18. N-Benzylpiperidine Derivatives as α7 Nicotinic Receptor Antagonists.

    PubMed

    Criado, Manuel; Mulet, José; Sala, Francisco; Sala, Salvador; Colmena, Inés; Gandía, Luis; Bautista-Aguilera, Oscar M; Samadi, Abdelouahid; Chioua, Mourad; Marco-Contelles, José

    2016-08-17

    A series of multitarget directed propargylamines, as well as other differently susbstituted piperidines have been screened as potential modulators of neuronal nicotinic acetylcholine receptors (nAChRs). Most of them showed antagonist actions on α7 nAChRs. Especially, compounds 13, 26, and 38 displayed submicromolar IC50 values on homomeric α7 nAChRs, whereas they were less effective on heteromeric α3β4 and α4β2 nAChRs (up to 20-fold higher IC50 values in the case of 13). Antagonism was concentration dependent and noncompetitive, suggesting that these compounds behave as negative allosteric modulators of nAChRs. Upon the study of a series of less complex derivatives, the N-benzylpiperidine motif, common to these compounds, was found to be the main pharmacophoric group. Thus, 2-(1-benzylpiperidin-4-yl)-ethylamine (48) showed an inhibitory potency comparable to the one of the previous compounds and also a clear preference for α7 nAChRs. In a neuroblastoma cell line, representative compounds 13 and 48 also inhibited, in a concentration-dependent manner, cytosolic Ca(2+) signals mediated by nAChRs. Finally, compounds 38 and 13 inhibited 5-HT3A serotonin receptors whereas they had no effect on α1 glycine receptors. Given the multifactorial nature of many pathologies in which nAChRs are involved, these piperidine antagonists could have a therapeutic potential in cases where cholinergic activity has to be negatively modulated. PMID:27254782

  19. Caenorhabditis elegans nicotinic acetylcholine receptors are required for nociception

    PubMed Central

    Cohen, Emiliano; Chatzigeorgiou, Marios; Husson, Steven J.; Steuer-Costa, Wagner; Gottschalk, Alexander; Schafer, William R.; Treinin, Millet

    2014-01-01

    Polymodal nociceptors sense and integrate information on injurious mechanical, thermal, and chemical stimuli. Chemical signals either activate nociceptors or modulate their responses to other stimuli. One chemical known to activate or modulate responses of nociceptors is acetylcholine (ACh). Across evolution nociceptors express subunits of the nicotinic acetylcholine receptor (nAChR) family, a family of ACh-gated ion channels. The roles of ACh and nAChRs in nociceptor function are, however, poorly understood. Caenorhabditis elegans polymodal nociceptors, PVD, express nAChR subunits on their sensory arbor. Here we show that mutations reducing ACh synthesis and mutations in nAChR subunits lead to defects in PVD function and morphology. A likely cause for these defects is a reduction in cytosolic calcium measured in ACh and nAChR mutants. Indeed, overexpression of a calcium pump in PVD mimics defects in PVD function and morphology found in nAChR mutants. Our results demonstrate, for the first time, a central role for nAChRs and ACh in nociceptor function and suggest that calcium permeating via nAChRs facilitates activity of several signaling pathways within this neuron. PMID:24518198

  20. Identification of Receptor Ligands and Receptor Subtypes Using Antagonists in a Capillary Electrophoresis Single-Cell Biosensor Separation System

    NASA Astrophysics Data System (ADS)

    Fishman, Harvey A.; Orwar, Owe; Scheller, Richard H.; Zare, Richard N.

    1995-08-01

    A capillary electrophoresis system with single-cell biosensors as a detector has been used to separate and identify ligands in complex biological samples. The power of this procedure was significantly increased by introducing antagonists that inhibited the cellular response from selected ligand-receptor interactions. The single-cell biosensor was based on the ligand-receptor binding and G-protein-mediated signal transduction pathways in PC12 and NG108-15 cell lines. Receptor activation was measured as increases in cytosolic free calcium ion concentration by using fluorescence microscopy with the intracellular calcium ion indicator fluo-3 acetoxymethyl ester. Specifically, a mixture of bradykinin (BK) and acetylcholine (ACh) was fractionated and the components were identified by inhibiting the cellular response with icatibant (HOE 140), a selective antagonist to the BK B_2 receptor subtype (B_2BK), and atropine, an antagonist to muscarinic ACh receptor subtypes. Structurally related forms of BK were also identified based on inhibiting B_2BK receptors. Applications of this technique include identification of endogenous BK in a lysate of human hepatocellular carcinoma cells (Hep G2) and screening for bioactivity of BK degradation products in human blood plasma. The data demonstrate that the use of antagonists with a single-cell biosensor separation system aids identification of separated components and receptor subtypes.

  1. Bispyridinium Compounds Inhibit Both Muscle and Neuronal Nicotinic Acetylcholine Receptors in Human Cell Lines

    PubMed Central

    Ring, Avi; Strom, Bjorn Oddvar; Turner, Simon R.; Timperley, Christopher M.; Bird, Michael; Green, A. Christopher; Chad, John E.; Worek, Franz; Tattersall, John E. H.

    2015-01-01

    Standard treatment of poisoning by organophosphorus anticholinesterases uses atropine to reduce the muscarinic effects of acetylcholine accumulation and oximes to reactivate acetylcholinesterase (the effectiveness of which depends on the specific anticholinesterase), but does not directly address the nicotinic effects of poisoning. Bispyridinium molecules which act as noncompetitive antagonists at nicotinic acetylcholine receptors have been identified as promising compounds and one has been shown to improve survival following organophosphorus poisoning in guinea-pigs. Here, we have investigated the structural requirements for antagonism and compared inhibitory potency of these compounds at muscle and neuronal nicotinic receptors and acetylcholinesterase. A series of compounds was synthesised, in which the length of the polymethylene linker between the two pyridinium moieties was increased sequentially from one to ten carbon atoms. Their effects on nicotinic receptor-mediated calcium responses were tested in muscle-derived (CN21) and neuronal (SH-SY5Y) cells. Their ability to inhibit acetylcholinesterase activity was tested using human erythrocyte ghosts. In both cell lines, the nicotinic response was inhibited in a dose-dependent manner and the inhibitory potency of the compounds increased with greater linker length between the two pyridinium moieties, as did their inhibitory potency for human acetylcholinesterase activity in vitro. These results demonstrate that bispyridinium compounds inhibit both neuronal and muscle nicotinic receptors and that their potency depends on the length of the hydrocarbon chain linking the two pyridinium moieties. Knowledge of structure-activity relationships will aid the optimisation of molecular structures for therapeutic use against the nicotinic effects of organophosphorus poisoning. PMID:26274808

  2. Bispyridinium Compounds Inhibit Both Muscle and Neuronal Nicotinic Acetylcholine Receptors in Human Cell Lines.

    PubMed

    Ring, Avi; Strom, Bjorn Oddvar; Turner, Simon R; Timperley, Christopher M; Bird, Michael; Green, A Christopher; Chad, John E; Worek, Franz; Tattersall, John E H

    2015-01-01

    Standard treatment of poisoning by organophosphorus anticholinesterases uses atropine to reduce the muscarinic effects of acetylcholine accumulation and oximes to reactivate acetylcholinesterase (the effectiveness of which depends on the specific anticholinesterase), but does not directly address the nicotinic effects of poisoning. Bispyridinium molecules which act as noncompetitive antagonists at nicotinic acetylcholine receptors have been identified as promising compounds and one has been shown to improve survival following organophosphorus poisoning in guinea-pigs. Here, we have investigated the structural requirements for antagonism and compared inhibitory potency of these compounds at muscle and neuronal nicotinic receptors and acetylcholinesterase. A series of compounds was synthesised, in which the length of the polymethylene linker between the two pyridinium moieties was increased sequentially from one to ten carbon atoms. Their effects on nicotinic receptor-mediated calcium responses were tested in muscle-derived (CN21) and neuronal (SH-SY5Y) cells. Their ability to inhibit acetylcholinesterase activity was tested using human erythrocyte ghosts. In both cell lines, the nicotinic response was inhibited in a dose-dependent manner and the inhibitory potency of the compounds increased with greater linker length between the two pyridinium moieties, as did their inhibitory potency for human acetylcholinesterase activity in vitro. These results demonstrate that bispyridinium compounds inhibit both neuronal and muscle nicotinic receptors and that their potency depends on the length of the hydrocarbon chain linking the two pyridinium moieties. Knowledge of structure-activity relationships will aid the optimisation of molecular structures for therapeutic use against the nicotinic effects of organophosphorus poisoning.

  3. Menthol Binding and Inhibition of α7-Nicotinic Acetylcholine Receptors

    PubMed Central

    Ashoor, Abrar; Nordman, Jacob C.; Veltri, Daniel; Yang, Keun-Hang Susan; Al Kury, Lina; Shuba, Yaroslav; Mahgoub, Mohamed; Howarth, Frank C.; Sadek, Bassem; Shehu, Amarda; Kabbani, Nadine; Oz, Murat

    2013-01-01

    Menthol is a common compound in pharmaceutical and commercial products and a popular additive to cigarettes. The molecular targets of menthol remain poorly defined. In this study we show an effect of menthol on the α7 subunit of the nicotinic acetylcholine (nACh) receptor function. Using a two-electrode voltage-clamp technique, menthol was found to reversibly inhibit α7-nACh receptors heterologously expressed in Xenopus oocytes. Inhibition by menthol was not dependent on the membrane potential and did not involve endogenous Ca2+-dependent Cl− channels, since menthol inhibition remained unchanged by intracellular injection of the Ca2+ chelator BAPTA and perfusion with Ca2+-free bathing solution containing Ba2+. Furthermore, increasing ACh concentrations did not reverse menthol inhibition and the specific binding of [125I] α-bungarotoxin was not attenuated by menthol. Studies of α7- nACh receptors endogenously expressed in neural cells demonstrate that menthol attenuates α7 mediated Ca2+ transients in the cell body and neurite. In conclusion, our results suggest that menthol inhibits α7-nACh receptors in a noncompetitive manner. PMID:23935840

  4. Schizophrenia and the alpha7 nicotinic acetylcholine receptor.

    PubMed

    Martin, Laura F; Freedman, Robert

    2007-01-01

    In addition to the devastating symptoms of psychosis, many people with schizophrenia also suffer from cognitive impairment. These cognitive symptoms lead to marked dysfunction and can impact employability, treatment adherence, and social skills. Deficits in P50 auditory gating are associated with attentional impairment and may contribute to cognitive symptoms and perceptual disturbances. This nicotinic cholinergic-mediated inhibitory process represents a potential new target for therapeutic intervention in schizophrenia. This chapter will review evidence implicating the nicotinic cholinergic, and specifically, the alpha7 nicotinic receptor system in the pathology of schizophrenia. Impaired auditory sensory gating has been linked to the alpha7 nicotinic receptor gene on the chromosome 15q14 locus. A majority of persons with schizophrenia are heavy smokers. Although nicotine can acutely reverse diminished auditory sensory gating in people with schizophrenia, this effect is lost on a chronic basis due to receptor desensitization. The alpha7 nicotinic agonist 3-(2,4 dimethoxy)benzylidene-anabaseine (DMXBA) can also enhance auditory sensory gating in animal models. DMXBA is well tolerated in humans and a new study in persons with schizophrenia has found that DMXBA enhances both P50 auditory gating and cognition. alpha7 Nicotinic acetylcholine receptor agonists appear to be viable candidates for the treatment of cognitive disturbances in schizophrenia.

  5. Endogenous inhibition of the trigeminally evoked neurotransmission to cardiac vagal neurons by muscarinic acetylcholine receptors.

    PubMed

    Gorini, C; Philbin, K; Bateman, R; Mendelowitz, D

    2010-10-01

    Stimulation of the nasal mucosa by airborne irritants or water evokes a pronounced bradycardia accompanied by peripheral vasoconstriction and apnea. The dive response, which includes the trigeminocardiac reflex, is among the most powerful autonomic responses. These responses slow the heart rate and reduce myocardial oxygen consumption. Although normally cardioprotective, exaggeration of this reflex can be detrimental and has been implicated in cardiorespiratory diseases, including sudden infant death syndrome (SIDS). An essential component of the diving response and trigeminocardiac reflex is activation of the parasympathetic cardiac vagal neurons (CVNs) in the nucleus ambiguus that control heart rate. This study examined the involvement of cholinergic receptors in trigeminally evoked excitatory postsynaptic currents in CVNs in an in vitro preparation from rats. CVNs were identified using a retrograde tracer injected into the fat pads at the base of the heart. Application of the acetylcholinesterase inhibitor neostigmine significantly decreased the amplitude of glutamatergic neurotransmission to CVNs on stimulation of trigeminal fibers. Whereas nicotine did not have any effect on the glutamatergic responses, the muscarinic acetylcholine receptor (mAChR) agonist bethanechol significantly decreased the excitatory neurotransmission. Atropine, an mAChR antagonist, facilitated these responses indicating this trigeminally evoked brain stem pathway in vitro is endogenously inhibited by mAChRs. Tropicamide, an m4 mAChR antagonist, prevented the inhibitory action of the muscarinic agonist bethanechol. These results indicate that the glutamatergic synaptic neurotransmission in the trigeminally evoked pathway to CVNs is endogenously inhibited in vitro by m4 mAChRs.

  6. Modulation of acetylcholine release from rat striatal slices by the GABA/benzodiazepine receptor complex

    SciTech Connect

    Supavilai, P.; Karobath, M.

    1985-02-04

    GABA, THIP and muscimol enhance spontaneous and inhibit electrically induced release of tritium labelled compounds from rat striatal slices which have been pre-labelled with /sup 3/H-choline. Baclofen is inactive in this model. Muscimol can inhibit electrically induced release of tritiated material by approximately 75% with half maximal effects at 2 ..mu..M. The response to muscimol can be blocked by the GABA antagonists bicuculline methobromide, picrotoxin, anisatin, R 5135 and CPTBO (cyclopentylbicyclophosphate). Drugs which act on the benzodiazepine receptor (BR) require the presence of muscimol to be effective and they modulate the effects of muscimol in a bidirectional manner. Thus BR agonists enhance and inverse BR agonists attenuate the inhibitory effects of muscimol on electrically induced release. Ro15-1788, a BR antagonist, does not modulate the inhibitory effects of muscimol but antagonizes the actions of clonazepam, a BR agonist, and of DMCM, an inverse BR agonist. These results demonstrate that a GABA/benzodiazepine receptor complex can modulate acetylcholine release from rat striatal slices in vitro. 24 references, 3 figures, 5 table.

  7. Keratinocyte nicotinic acetylcholine receptor activation modulates early TLR2-mediated wound healing responses.

    PubMed

    Kishibe, Mari; Griffin, Tina M; Radek, Katherine A

    2015-11-01

    The cholinergic anti-inflammatory pathway spans several macro- and micro-environments to control inflammation via α7 nicotinic acetylcholine receptors (nAChRs). Physiologic inflammation is necessary for normal wound repair and is triggered, in part, via Toll-like receptors (TLRs). Here, we demonstrate that keratinocyte nAChR activation dampens TLR2-mediated migration and pro-inflammatory cytokine and antimicrobial peptide (AMP) production, which is restored by a α7-selective nAChR antagonist. The mechanism of this response occurs by blocking the NF-κB and Erk1/2 pathway during early and late wound healing. In a mouse model of Staphylococcus aureus wound infection, topical nAChR activation reduces wound AMP and TLR2 production to augment bacterial survival in wild-type mice. These findings suggest that aberrant α7 nAChR activation may impair normal wound healing responses, and that pharmacologic administration of topical nAChR antagonists may improve wound healing outcomes in wounds necessitating a more robust inflammatory response.

  8. Rapid synthesis of acetylcholine receptors at neuromuscular junctions.

    PubMed

    Ramsay, D A; Drachman, D B; Pestronk, A

    1988-10-11

    The rate of acetylcholine receptor (AChR) degradation in mature, innervated mammalian neuromuscular junctions has recently been shown to be biphasic; up to 20% are rapidly turned over (RTOs; half life less than 1 day) whereas the remainder are lost more slowly ('stable' AChRs; half life 10-12 days). In order to maintain normal junctional receptor density, synthesis and insertion of AChRs should presumably be sufficiently rapid to replace both the RTOs and the stable receptors. We have tested this prediction by blocking pre-existing AChRs in the mouse sternomastoid muscle with alpha-bungarotoxin (alpha-BuTx), and monitoring the subsequent appearance of 'new' junctional AChRs at intervals of 3 h to 20 days by labeling them with 125I-alpha-BuTx. The results show that new receptors were initially inserted rapidly (16% at 24 h and 28% at 48 h). The rate of increase of 'new' 125I-alpha-BuTx binding sites gradually slowed down during the remainder of the time period studied. Control observations excluded possible artifacts of the experimental procedure including incomplete blockade of AChRs, dissociation of toxin-receptor complexes, or experimentally induced alteration of receptor synthesis. The present demonstration of rapid synthesis and incorporation of AChRs at innervated neuromuscular junctions provides support for the concept of a subpopulation of rapidly turned over AChRs. The RTOs may serve as precursors for the larger population of stable receptors and have an important role in the metabolism of the neuromuscular synapse.

  9. Activation of α7 nicotinic acetylcholine receptors persistently enhances hippocampal synaptic transmission and prevents Aß-mediated inhibition of LTP in the rat hippocampus.

    PubMed

    Ondrejcak, Tomas; Wang, Qinwen; Kew, James N C; Virley, David J; Upton, Neil; Anwyl, Roger; Rowan, Michael J

    2012-02-29

    Nicotinic acetylcholine receptors mediate fast cholinergic modulation of glutamatergic transmission and synaptic plasticity. Here we investigated the effects of subtype selective activation of the α7 nicotinic acetylcholine receptors on hippocampal transmission and the inhibition of synaptic long-term potentiation by the Alzheimer's disease associated amyloid ß-protein (Aß). The α7 nicotinic acetylcholine receptor agonist "compound A" ((R)-N-(1-azabicyclo[2.2.2]oct-3-yl)(5-(2-pyridyl))thiophene-2-carboxamide) induced a rapid-onset persistent enhancement of synaptic transmission in the dentate gyrus in vitro. Consistent with a requirement for activation of α7 nicotinic acetylcholine receptors, the type II α7-selective positive allosteric modulator PheTQS ((3aR, 4S, 9bS)-4-(4-methylphenyl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline-8-sulfonamide) potentiated, and the antagonist methyllycaconitine (MLA) prevented the persistent enhancement. Systemic injection of the agonist also induced a similar MLA-sensitive persistent enhancement of synaptic transmission in the CA1 area in vivo. Remarkably, although compound A did not affect control long-term potentiation (LTP) in vitro, it prevented the inhibition of LTP by Aß1-42 and this effect was inhibited by MLA. These findings strongly indicate that activation of α7 nicotinic acetylcholine receptors is sufficient to persistently enhance hippocampal synaptic transmission and to overcome the inhibition of LTP by Aß.

  10. Nicotinic acetylcholine receptor ligands; a patent review (2006-2011)

    PubMed Central

    Gündisch, Daniela; Eibl, Christoph

    2012-01-01

    Introduction Nicotinic acetylcholine receptors (nAChRs), pentameric ligand-gated cation channels, are potential targets for the development of therapeutics for a variety of disease states. Areas covered This article is reviewing recent advances in the development of small molecule ligands for diverse nAChR subtypes and is a continuation of an earlier review in this journal. Expert opinion The development of nAChR ligands with preference for α4β2 or α7 subtypes for the treatment of CNS disorders are in the most advanced developmental stage. In addition, there is a fast growing interest to generate so-called PAMs, positive allosteric modulators, to influence the channels’ functionalities. PMID:22098319

  11. Rational discovery of novel nuclear hormone receptor antagonists

    NASA Astrophysics Data System (ADS)

    Schapira, Matthieu; Raaka, Bruce M.; Samuels, Herbert H.; Abagyan, Ruben

    2000-02-01

    Nuclear hormone receptors (NRs) are potential targets for therapeutic approaches to many clinical conditions, including cancer, diabetes, and neurological diseases. The crystal structure of the ligand binding domain of agonist-bound NRs enables the design of compounds with agonist activity. However, with the exception of the human estrogen receptor-, the lack of antagonist-bound "inactive" receptor structures hinders the rational design of receptor antagonists. In this study, we present a strategy for designing such antagonists. We constructed a model of the inactive conformation of human retinoic acid receptor- by using information derived from antagonist-bound estrogen receptor-α and applied a computer-based virtual screening algorithm to identify retinoic acid receptor antagonists. Thus, the currently available crystal structures of NRs may be used for the rational design of antagonists, which could lead to the development of novel drugs for a variety of diseases.

  12. Mechanisms of acetylcholine receptor loss in myasthenia gravis.

    PubMed Central

    Drachman, D B; Adams, R N; Stanley, E F; Pestronk, A

    1980-01-01

    The fundamental abnormality affecting the neuromuscular junctions of myasthenic patients is a reduction of available AChRs, due to an autoimmune attack directed against the receptors. Antibodies to AChR are present in most patients, and there is evidence that they have a predominant pathogenic role in the disease, aided by complement. The mechanism of antibody action involves acceleration of the rate of degradation of AChRs, attributable to cross-linking of the receptors. In addition, antibodies may block AChRs, and may participate in producing destructive changes, perhaps in conjunction with complement. The possibility that cell-mediated mechanisms may play a role in the autoimmune responses of some myasthenic patients remains to be explored. Although the target of the autoimmune attack in myasthenic patients is probably always the acetylcholine receptors, it is not yet clear which of these immune mechanisms are most important. It is likely that the relative role of each mechanism varies from patient to patient. One of the goals of future research will be to identify the relative importance of each of these mechanisms in the individual patient, and to tailor specific immunotherapeutic measures to the abnormalities found. PMID:6249894

  13. Neural regulation of acetylcholine receptors in rat neonatal muscle.

    PubMed Central

    Bambrick, L L; Gordon, T

    1992-01-01

    1. The neuronal regulation of the developmental decline in skeletal muscle acetylcholine (ACh) receptors was studied by comparing the effects of sciatic nerve section or of neuromuscular blockade with botulinum toxin (BoTX) on this decline in neonatal and adult rats, using 125I-alpha-bungarotoxin (125I-BTX) as a ligand for the receptor alpha-subunit. 2. The decline in 125I-BTX binding site concentration in neonatal rat triceps surae muscle homogenates towards low, adult levels followed a simple exponential with a time constant of 8 days. This decline occurred while the muscle is still rapidly growing, before the postnatal increase in numbers of sodium channels. It also preceded the decline in muscle ACh receptor alpha-subunit mRNA, reported in other studies, suggesting that subunit levels are not regulated only by mRNA availability. 3. Muscle denervation in the first two weeks of life prevented this developmental decline. Denervation increased the concentration of 125I-BTX binding sites but the magnitude of this increase became progressively smaller as the muscle matured, showing that removal of innervation during adult life does not revert the muscle, in toto, to its pre-innervation state. 4. Blockade of neuromuscular activity with BoTX increased 125I-BTX binding sites to a lesser extent than muscle denervation during neonatal life. This lesser effect of BoTX blockade contrasts with the equal effects of BoTX blockade and denervation in the adult. PMID:1522519

  14. Tramadol state-dependent memory: involvement of dorsal hippocampal muscarinic acetylcholine receptors.

    PubMed

    Jafari-Sabet, Majid; Jafari-Sabet, Ali-Reza; Dizaji-Ghadim, Ali

    2016-08-01

    The effects on tramadol state-dependent memory of bilateral intradorsal hippocampal (intra-CA1) injections of physostigmine, an acetylcholinesterase inhibitor, and atropine, a muscarinic acetylcholine receptor antagonist, were examined in adult male NMRI mice. A single-trial step-down passive avoidance task was used for the assessment of memory retention. Post-training intra-CA1 administration of an atypical μ-opioid receptor agonist, tramadol (0.5 and 1 μg/mouse), dose dependently impaired memory retention. Pretest injection of tramadol (0.5 and 1 μg/mouse, intra-CA1) induced state-dependent retrieval of the memory acquired under the influence of post-training tramadol (1 μg/mouse, intra-CA1). A pretest intra-CA1 injection of physostigmine (1 μg/mouse) reversed the memory impairment induced by post-training administration of tramadol (1 μg/mouse, intra-CA1). Moreover, pretest administration of physostigmine (0.5 and 1 μg/mouse, intra-CA1) with an ineffective dose of tramadol (0.25 μg/mouse, intra-CA1) also significantly restored retrieval. Pretest administration of physostigmine (0.25, 0.5, and 1 μg/mouse, intra-CA1) by itself did not affect memory retention. A pretest intra-CA1 injection of the atropine (1 and 2 μg/mouse) 5 min before the administration of tramadol (1 μg/mouse, intra-CA1) dose dependently inhibited tramadol state-dependent memory. Pretest administration of atropine (0.5, 1, and 2 μg/mouse, intra-CA1) by itself did not affect memory retention. It can be concluded that dorsal hippocampal muscarinic acetylcholine receptor mechanisms play an important role in the modulation of tramadol state-dependent memory.

  15. Electrophysiology-Based Assays to Detect Subtype-Selective Modulation of Human Nicotinic Acetylcholine Receptors

    PubMed Central

    Kirsch, Glenn E.; Fedorov, Nikolai B.; Kuryshev, Yuri A.; Liu, Zhiqi; Orr, Michael S.

    2016-01-01

    Abstract The Family Smoking Prevention and Tobacco Control Act of 2009 (Public Law 111-31) gave the US Food and Drug Administration (FDA) the responsibility for regulating tobacco products. Nicotine is the primary addictive component of tobacco and its effects can be modulated by additional ingredients in manufactured products. Nicotine acts by mimicking the neurotransmitter acetylcholine on neuronal nicotinic acetylcholine receptors (nAChRs), which function as ion channels in cholinergic modulation of neurotransmission. Subtypes within the family of neuronal nAChRs are defined by their α- and β-subunit composition. The subtype-selective profiles of tobacco constituents are largely unknown, but could be essential for understanding the physiological effects of tobacco products. In this report, we report the development and validation of electrophysiology-based high-throughput screens (e-HTS) for human nicotinic subtypes, α3β4, α3β4α5, α4β2, and α7 stably expressed in Chinese Hamster Ovary cells. Assessment of agonist sensitivity and acute desensitization gave results comparable to those obtained by conventional manual patch clamp electrophysiology assays. The potency of reference antagonists for inhibition of the receptor channels and selectivity of positive allosteric modulators also were very similar between e-HTS and conventional manual patch voltage clamp data. Further validation was obtained in pilot screening of a library of FDA-approved drugs that identified α7 subtype-selective positive allosteric modulation by novel compounds. These assays provide new tools for profiling of nicotinic receptor selectivity. PMID:27505073

  16. Electrophysiology-Based Assays to Detect Subtype-Selective Modulation of Human Nicotinic Acetylcholine Receptors.

    PubMed

    Kirsch, Glenn E; Fedorov, Nikolai B; Kuryshev, Yuri A; Liu, Zhiqi; Armstrong, Lucas C; Orr, Michael S

    2016-08-01

    The Family Smoking Prevention and Tobacco Control Act of 2009 (Public Law 111-31) gave the US Food and Drug Administration (FDA) the responsibility for regulating tobacco products. Nicotine is the primary addictive component of tobacco and its effects can be modulated by additional ingredients in manufactured products. Nicotine acts by mimicking the neurotransmitter acetylcholine on neuronal nicotinic acetylcholine receptors (nAChRs), which function as ion channels in cholinergic modulation of neurotransmission. Subtypes within the family of neuronal nAChRs are defined by their α- and β-subunit composition. The subtype-selective profiles of tobacco constituents are largely unknown, but could be essential for understanding the physiological effects of tobacco products. In this report, we report the development and validation of electrophysiology-based high-throughput screens (e-HTS) for human nicotinic subtypes, α3β4, α3β4α5, α4β2, and α7 stably expressed in Chinese Hamster Ovary cells. Assessment of agonist sensitivity and acute desensitization gave results comparable to those obtained by conventional manual patch clamp electrophysiology assays. The potency of reference antagonists for inhibition of the receptor channels and selectivity of positive allosteric modulators also were very similar between e-HTS and conventional manual patch voltage clamp data. Further validation was obtained in pilot screening of a library of FDA-approved drugs that identified α7 subtype-selective positive allosteric modulation by novel compounds. These assays provide new tools for profiling of nicotinic receptor selectivity. PMID:27505073

  17. Activation of endplate nicotinic acetylcholine receptors by agonists.

    PubMed

    Auerbach, Anthony

    2015-10-15

    The interaction of a small molecule made in one cell with a large receptor made in another is the signature event of cell signaling. Understanding the structure and energy changes associated with agonist activation is important for engineering drugs, receptors and synapses. The nicotinic acetylcholine receptor (AChR) is a ∼300kD ion channel that binds the neurotransmitter acetylcholine (ACh) and other cholinergic agonists to elicit electrical responses in the central and peripheral nervous systems. This mini-review is in two sections. First, general concepts of skeletal muscle AChR operation are discussed in terms of energy landscapes for conformational change. Second, adult vs. fetal AChRs are compared with regard to interaction energies between ACh and agonist-site side chains, measured by single-channel electrophysiology and molecular dynamics simulations. The five aromatic residues that form the core of each agonist binding site can be divided into two working groups, a triad (led by αY190) that behaves similarly at all sites and a coupled pair (led by γW55) that has a large influence on affinity only in fetal AChRs. Each endplate AChR has 5 homologous subunits, two of α(1) and one each of β, δ, and either γ (fetal) or ϵ (adult). These nicotinic AChRs have only 2 functional agonist binding sites located in the extracellular domain, at αδ and either αγ or αϵ subunit interfaces. The receptor undergoes a reversible, global isomerization between structures called C and O. The C shape does not conduct ions and has a relatively low affinity for ACh, whereas O conducts cations and has a higher affinity. When both agonist sites are empty (filled only with water) the probability of taking on the O conformation (PO) is low, <10(-6). When ACh molecules occupy the agonist sites the C→O opening rate constant and C↔O gating equilibrium constant increase dramatically. Following a pulse of ACh at the nerve-muscle synapse, the endplate current rises rapidly

  18. Mineralocorticoid receptor antagonists and endothelial function

    PubMed Central

    Maron, Bradley A.; Leopold, Jane A.

    2010-01-01

    Hyperaldosteronism has been associated with endothelial dysfunction and impaired vascular reactivity in patients with hypertension or congestive heart failure. The mineralocorticoid receptor (MR) antagonists spironolactone and eplerenone have been shown to reduce morbidity and mortality, in part, by ameliorating the adverse effects of aldosterone on vascular function. Although spironolactone and eplerenone are increasingly utilized in patients with cardiovascular disease, widespread clinical use is limited by the development of gynecomastia with spironolactone and hyperkalemia with both agents. This suggests that the development of newer agents with favorable side effect profiles is warranted. PMID:18729003

  19. Circulating antibodies against nicotinic acetylcholine receptors in chagasic patients

    PubMed Central

    GOIN, J C; VENERA, G; BONINO, M BISCOGLIO DE JIMÉNEZ; STERIN-BORDA, L

    1997-01-01

    Human and experimental Chagas' disease causes peripheral nervous system damage involving neuromuscular transmission alterations at the neuromuscular junction. Additionally, autoantibodies directed to peripheral nerves and sarcolemmal proteins of skeletal muscle have been described. In this work, we analyse the ability of serum immunoglobulin factors associated with human chagasic infection to bind the affinity-purified nicotinic acetylcholine receptor (nAChR) from electric organs of Discopyge tschudii and to identify the receptor subunits involved in the interaction. The frequency of serum anti-nAChR reactivity assayed by dot-blot was higher in seropositive chagasic patients than in uninfected subjects. Purified IgG obtained from chagasic patients immunoprecipitated a significantly higher fraction of the solubilized nAChR than normal IgG. Furthermore, immunoblotting assays indicated that α and β are the main subunits involved in the interaction. Chagasic IgG was able to inhibit the binding of α-bungarotoxin to the receptor in a concentration-dependent manner, confirming the contribution of the α-subunit in the autoantibody-receptor interaction. The presence of anti-nAChR antibodies was detected in 73% of chagasic patients with impairment of neuromuscular transmission in conventional electromyographical studies, indicating a strong association between seropositive reactivity against nAChR and electromyographical abnormalities in chagasic patients. The chronic binding of these autoantibodies to the nAChR could induce a decrease in the population of functional nAChRs at the neuromuscular junction and consequently contribute to the electrophysiological neuromuscular alterations described in the course of chronic Chagas' disease. PMID:9367405

  20. Crosslinking-induced endocytosis of acetylcholine receptors by quantum dots.

    PubMed

    Lee, Chi Wai; Zhang, Hailong; Geng, Lin; Peng, H Benjamin

    2014-01-01

    In a majority of patients with myasthenia gravis (MG), anti-acetylcholine receptor (AChR) antibodies target postsynaptic AChR clusters and thus compromise the membrane integrity of neuromuscular junctions (NMJs) and lead to muscle weakness. Antibody-induced endocytosis of AChRs in the postsynaptic membrane represents the initial step in the pathogenesis of MG; however, the molecular mechanisms underlying AChR endocytosis remain largely unknown. Here, we developed an approach to mimic the pathogenic antibodies for inducing the crosslinking and internalization of AChRs from the postsynaptic membrane. Using biotin-α-bungarotoxin and quantum dot (QD)-streptavidin, cell-surface and internalized AChRs could be readily distinguished by comparing the size, fluorescence intensity, trajectory, and subcellular localization of the QD signals. QD-induced AChR endocytosis was mediated by clathrin-dependent and caveolin-independent mechanisms, and the trafficking of internalized AChRs in the early endosomes required the integrity of microtubule structures. Furthermore, activation of the agrin/MuSK (muscle-specific kinase) signaling pathway strongly suppressed QD-induced internalization of AChRs. Lastly, QD-induced AChR crosslinking potentiated the dispersal of aneural AChR clusters upon synaptic induction. Taken together, our results identify a novel approach to study the mechanisms of AChR trafficking upon receptor crosslinking and endocytosis, and demonstrate that agrin-MuSK signaling pathways protect against crosslinking-induced endocytosis of AChRs. PMID:24587270

  1. Effects of two oxadiazolidinones on cholinesterases and acetylcholine receptors

    SciTech Connect

    Bakry, N.; Lockyer, S.; Sherby, S.; Eldefrawi, A.; Eldefrawi, M.

    1986-03-05

    Inhibition of acetylcholinesterase (AChE) and butyryl cholinesterase (BuChE) by 3-(2,3-dihydro-2,2-dimethyl-benzofuran-'7-yl)-5-methoxy-1,3,4-oxadiazol-2(/sup 3/H)-one (DBOX) and 3-(2-methoxyphenyl)-5-methoxy-1,3,4-oxadiazol-2(/sup 3/H)-one (MPOX) was measured by the Ellmann spectrophotometric method. Inhibition was quasi first order and irreversible. DBOX was 2-3 orders of magnitude more potent than MPOX. Housefly brain AChE and horse serum BuChE were more sensitive than AChEs of red blood cells or eel and Torpedo electric organs. It is suggested that the nonesteratic oxadiazolidinones are activated to carbanillates on the surface of the enzyme and produce a carbanillated enzyme which ages rapidly. Carbamate anticholinesterases protected AChE against carbanillation as they did against phosphorylation. At higher concentrations, the two oxadiazolidinones also affected binding of (/sup 125/I) ..cap alpha.. bungarotoxin and (/sup 3/H)perhydrohistrionicotoxin to Torpedo nicotinic acetylcholine receptors, but did not affect binding of (/sup 3/H)quinuclidinyl benzilate to rat brain muscarinic receptors.

  2. Genetics of nicotinic acetylcholine receptors: relevance to nicotine addiction

    PubMed Central

    Mineur, Yann S.; Picciotto, Marina R.

    2008-01-01

    Human twin studies have suggested that there is a substantial genetic component underlying nicotine dependence, ongoing smoking and ability to quit. Similarly, animal studies have identified a number of genes and gene products that are critical for behaviors related to nicotine addiction. Classical genetic approaches, gene association studies and genetic engineering techniques have been used to identify the gene products involved in nicotine dependence. One class of genes involved in nicotine-related behavior is the family of nicotinic acetylcholine receptors (nAChRs). These receptors are the primary targets for nicotine in the brain. Genetic engineering studies in mice have identified a number of subunits that are critical for the ability of nicotine to activate the reward system in the brain, consisting of the dopaminergic cell bodies in the ventral tegmental area and their terminals in the nucleus accumbens and other portions of the mesolimbic system. In this review we will discuss the various lines of evidence suggesting that nAChRs may be involved in smoking behavior, and will review the human and animal studies that have been performed to date examining the genetic basis for nicotine dependence and smoking. PMID:17632086

  3. Crosslinking-Induced Endocytosis of Acetylcholine Receptors by Quantum Dots

    PubMed Central

    Geng, Lin; Peng, H. Benjamin

    2014-01-01

    In a majority of patients with myasthenia gravis (MG), anti-acetylcholine receptor (AChR) antibodies target postsynaptic AChR clusters and thus compromise the membrane integrity of neuromuscular junctions (NMJs) and lead to muscle weakness. Antibody-induced endocytosis of AChRs in the postsynaptic membrane represents the initial step in the pathogenesis of MG; however, the molecular mechanisms underlying AChR endocytosis remain largely unknown. Here, we developed an approach to mimic the pathogenic antibodies for inducing the crosslinking and internalization of AChRs from the postsynaptic membrane. Using biotin-α-bungarotoxin and quantum dot (QD)-streptavidin, cell-surface and internalized AChRs could be readily distinguished by comparing the size, fluorescence intensity, trajectory, and subcellular localization of the QD signals. QD-induced AChR endocytosis was mediated by clathrin-dependent and caveolin-independent mechanisms, and the trafficking of internalized AChRs in the early endosomes required the integrity of microtubule structures. Furthermore, activation of the agrin/MuSK (muscle-specific kinase) signaling pathway strongly suppressed QD-induced internalization of AChRs. Lastly, QD-induced AChR crosslinking potentiated the dispersal of aneural AChR clusters upon synaptic induction. Taken together, our results identify a novel approach to study the mechanisms of AChR trafficking upon receptor crosslinking and endocytosis, and demonstrate that agrin-MuSK signaling pathways protect against crosslinking-induced endocytosis of AChRs. PMID:24587270

  4. Molecular Modeling of the M3 Acetylcholine Muscarinic Receptor and Its Binding Site

    PubMed Central

    Martinez-Archundia, Marlet; Cordomi, Arnau; Garriga, Pere; Perez, Juan J.

    2012-01-01

    The present study reports the results of a combined computational and site mutagenesis study designed to provide new insights into the orthosteric binding site of the human M3 muscarinic acetylcholine receptor. For this purpose a three-dimensional structure of the receptor at atomic resolution was built by homology modeling, using the crystallographic structure of bovine rhodopsin as a template. Then, the antagonist N-methylscopolamine was docked in the model and subsequently embedded in a lipid bilayer for its refinement using molecular dynamics simulations. Two different lipid bilayer compositions were studied: one component palmitoyl-oleyl phosphatidylcholine (POPC) and two-component palmitoyl-oleyl phosphatidylcholine/palmitoyl-oleyl phosphatidylserine (POPC-POPS). Analysis of the results suggested that residues F222 and T235 may contribute to the ligand-receptor recognition. Accordingly, alanine mutants at positions 222 and 235 were constructed, expressed, and their binding properties determined. The results confirmed the role of these residues in modulating the binding affinity of the ligand. PMID:22500107

  5. Alpha7 nicotinic acetylcholine receptor is a target in pharmacology and toxicology.

    PubMed

    Pohanka, Miroslav

    2012-01-01

    Alpha7 nicotinic acetylcholine receptor (α7 nAChR) is an important part of the cholinergic nerve system in the brain. Moreover, it is associated with a cholinergic anti-inflammatory pathway in the termination of the parasympathetic nervous system. Antagonists of α7 nAChR are a wide group represented by conotoxin and bungarotoxin. Even Alzheimer's disease drug memantine acting as an antagonist in its side pathway belongs in this group. Agonists of α7 nAChR are suitable for treatment of multiple cognitive dysfunctions such as Alzheimer's disease or schizophrenia. Inflammation or even sepsis can be ameliorated by the agonistic acting compounds. Preparations RG3487, SEN34625/WYE-103914, SEN12333, ABT-107, Clozapine, GTS-21, CNI-1493, and AR-R17779 are representative examples of the novel compounds with affinity toward the α7 nAChR. Pharmacological, toxicological, and medicinal significance of α7 nAChR are discussed throughout this paper.

  6. H1 receptor antagonist treatment of chronic rhinitis.

    PubMed

    Simons, F E; Simons, K J

    1988-05-01

    In patients with chronic rhinitis, H1 receptor antagonists play an important role in relieving the symptoms of sneezing, itching, and rhinorrhea. New information about the pharmacokinetics and pharmacodynamics of first-generation H1 receptor antagonists such as chlorpheniramine has become available in the past few years. Comprehensive pharmacokinetic and pharmacodynamic studies of new relatively nonsedating H1 receptor antagonists such as terfenadine, astemizole, loratadine, and cetirizine are appearing. An understanding of the differences in pharmacokinetics and pharmacodynamics among H1 receptor antagonists is required for optimal use of these drugs.

  7. Endocannabinoids Mediate Muscarinic Acetylcholine Receptor-Dependent Long-Term Depression in the Adult Medial Prefrontal Cortex

    PubMed Central

    Martin, Henry G. S.; Bernabeu, Axel; Lassalle, Olivier; Bouille, Clément; Beurrier, Corinne; Pelissier-Alicot, Anne-Laure; Manzoni, Olivier J.

    2015-01-01

    Cholinergic inputs into the prefrontal cortex (PFC) are associated with attention and cognition; however there is evidence that acetylcholine also has a role in PFC dependent learning and memory. Muscarinic acetylcholine receptors (mAChR) in the PFC can induce synaptic plasticity, but the underlying mechanisms remain either opaque or unresolved. We have characterized a form of mAChR mediated long-term depression (LTD) at glutamatergic synapses of layer 5 principal neurons in the adult medial PFC. This mAChR LTD is induced with the mAChR agonist carbachol and inhibited by selective M1 mAChR antagonists. In contrast to other cortical regions, we find that this M1 mAChR mediated LTD is coupled to endogenous cannabinoid (eCB) signaling. Inhibition of the principal eCB CB1 receptor blocked carbachol induced LTD in both rats and mice. Furthermore, when challenged with a sub-threshold carbachol application, LTD was induced in slices pretreated with the monoacylglycerol lipase (MAGL) inhibitor JZL184, suggesting that the eCB 2-arachidonylglyerol (2-AG) mediates M1 mAChR LTD. Yet, when endogenous acetylcholine was released from local cholinergic afferents in the PFC using optogenetics, it failed to trigger eCB-LTD. However coupling patterned optical and electrical stimulation to generate local synaptic signaling allowed the reliable induction of LTD. The light—electrical pairing induced LTD was M1 mAChR and CB1 receptor mediated. This shows for the first time that connecting excitatory synaptic activity with coincident endogenously released acetylcholine controls synaptic gain via eCB signaling. Together these results shed new light on the mechanisms of synaptic plasticity in the adult PFC and expand on the actions of endogenous cholinergic signaling. PMID:26648844

  8. Endocannabinoids Mediate Muscarinic Acetylcholine Receptor-Dependent Long-Term Depression in the Adult Medial Prefrontal Cortex.

    PubMed

    Martin, Henry G S; Bernabeu, Axel; Lassalle, Olivier; Bouille, Clément; Beurrier, Corinne; Pelissier-Alicot, Anne-Laure; Manzoni, Olivier J

    2015-01-01

    Cholinergic inputs into the prefrontal cortex (PFC) are associated with attention and cognition; however there is evidence that acetylcholine also has a role in PFC dependent learning and memory. Muscarinic acetylcholine receptors (mAChR) in the PFC can induce synaptic plasticity, but the underlying mechanisms remain either opaque or unresolved. We have characterized a form of mAChR mediated long-term depression (LTD) at glutamatergic synapses of layer 5 principal neurons in the adult medial PFC. This mAChR LTD is induced with the mAChR agonist carbachol and inhibited by selective M1 mAChR antagonists. In contrast to other cortical regions, we find that this M1 mAChR mediated LTD is coupled to endogenous cannabinoid (eCB) signaling. Inhibition of the principal eCB CB1 receptor blocked carbachol induced LTD in both rats and mice. Furthermore, when challenged with a sub-threshold carbachol application, LTD was induced in slices pretreated with the monoacylglycerol lipase (MAGL) inhibitor JZL184, suggesting that the eCB 2-arachidonylglyerol (2-AG) mediates M1 mAChR LTD. Yet, when endogenous acetylcholine was released from local cholinergic afferents in the PFC using optogenetics, it failed to trigger eCB-LTD. However coupling patterned optical and electrical stimulation to generate local synaptic signaling allowed the reliable induction of LTD. The light-electrical pairing induced LTD was M1 mAChR and CB1 receptor mediated. This shows for the first time that connecting excitatory synaptic activity with coincident endogenously released acetylcholine controls synaptic gain via eCB signaling. Together these results shed new light on the mechanisms of synaptic plasticity in the adult PFC and expand on the actions of endogenous cholinergic signaling.

  9. High affinity retinoic acid receptor antagonists: analogs of AGN 193109.

    PubMed

    Johnson, A T; Wang, L; Gillett, S J; Chandraratna, R A

    1999-02-22

    A series of high affinity retinoic acid receptor (RAR) antagonists were prepared based upon the known antagonist AGN 193109 (2). Introduction of various phenyl groups revealed a preference for substitution at the para-position relative to the meta-site. Antagonists with the highest affinities for the RARs possessed hydrophobic groups, however, the presence of polar functionality was also well tolerated.

  10. The antiparkinsonian drugs budipine and biperiden are use-dependent (uncompetitive) NMDA receptor antagonists.

    PubMed

    Jackisch, R; Kruchen, A; Sauermann, W; Hertting, G; Feuerstein, T J

    1994-10-24

    N-Methyl-D-aspartate- (NMDA-) evoked [3H]acetylcholine release in rabbit caudate nucleus slices was inhibited by the antiparkinsonian drugs budipine (1-tert-butyl-4,4-diphenylpiperidine) and biperiden (1-bicyclo[2.2.1.]hept-5-en-2-yl-1-phenyl-3-piperidino propanol) yielding functional Ki values of 4.6 and 8.8 microM. In contrast to the competitive antagonist 2-amino-5-phosphonopentaonate, budipine and biperidene significantly reduced both the apparent KD and the Emax value of NMDA. Moreover, they displaced [3H]MK-801 specifically bound to membranes of the same tissue, although with low affinity (IC50: 38 and 92 microM). It is concluded that budipine and biperiden are use-dependent (uncompetitive) antagonists at the NMDA receptor, binding to the receptor-linked ion channel, but probably not to the MK-801 binding site. NMDA antagonism may contribute to the antiparkinsonian effects of budipine.

  11. Nicotine induces fibrogenic changes in human liver via nicotinic acetylcholine receptors expressed on hepatic stellate cells

    SciTech Connect

    Soeda, Junpei; Morgan, Maelle; McKee, Chad; Mouralidarane, Angelina; Lin, ChingI; Roskams, Tania; Oben, Jude A.

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Cigarette smoke may induce liver fibrosis via nicotine receptors. Black-Right-Pointing-Pointer Nicotine induces proliferation of hepatic stellate cells (HSCs). Black-Right-Pointing-Pointer Nicotine activates hepatic fibrogenic pathways. Black-Right-Pointing-Pointer Nicotine receptor antagonists attenuate HSC proliferation. Black-Right-Pointing-Pointer Nicotinic receptor antagonists may have utility as novel anti-fibrotic agents. -- Abstract: Background and aims: Cigarette smoke (CS) may cause liver fibrosis but possible involved mechanisms are unclear. Among the many chemicals in CS is nicotine - which affects cells through nicotinic acetylcholine receptors (nAChR). We studied the effects of nicotine, and involved pathways, on human primary hepatic stellate cells (hHSCs), the principal fibrogenic cells in the liver. We then determined possible disease relevance by assaying nAChR in liver samples from human non-alcoholic steatohepatitis (NASH). Methods: hHSC were isolated from healthy human livers and nAChR expression analyzed - RT-PCR and Western blotting. Nicotine induction of hHSC proliferation, upregulation of collagen1-{alpha}2 and the pro-fibrogenic cytokine transforming growth factor beta 1 (TGF-{beta}1) was determined along with involved intracellular signaling pathways. nAChR mRNA expression was finally analyzed in whole liver biopsies obtained from patients diagnosed with non-alcoholic steatohepatitis (NASH). Results: hHSCs express muscle type ({alpha}1, {beta}1, delta and epsilon) and neuronal type ({alpha}3, {alpha}6, {alpha}7, {beta}2 and {beta}4) nAChR subunits at the mRNA level. Among these subunits, {alpha}3, {alpha}7, {beta}1 and {epsilon} were predominantly expressed as confirmed by Western blotting. Nicotine induced hHSC proliferation was attenuated by mecamylamine (p < 0.05). Additionally, collagen1-{alpha}2 and TGF-{beta}1 mRNA expression were significantly upregulated by nicotine and inhibited by

  12. Modulation of AMPA receptor mediated current by nicotinic acetylcholine receptor in layer I neurons of rat prefrontal cortex

    PubMed Central

    Tang, Bo; Luo, Dong; Yang, Jie; Xu, Xiao-Yan; Zhu, Bing-Lin; Wang, Xue-Feng; Yan, Zhen; Chen, Guo-Jun

    2015-01-01

    Layer I neurons in the prefrontal cortex (PFC) exhibit extensive synaptic connections with deep layer neurons, implying their important role in the neural circuit. Study demonstrates that activation of nicotinic acetylcholine receptors (nAChRs) increases excitatory neurotransmission in this layer. Here we found that nicotine selectively increased the amplitude of AMPA receptor (AMPAR)-mediated current and AMPA/NMDA ratio, while without effect on NMDA receptor-mediated current. The augmentation of AMPAR current by nicotine was inhibited by a selective α7-nAChR antagonist methyllycaconitine (MLA) and intracellular calcium chelator BAPTA. In addition, nicotinic effect on mEPSC or paired-pulse ratio was also prevented by MLA. Moreover, an enhanced inward rectification of AMPAR current by nicotine suggested a functional role of calcium permeable and GluA1 containing AMPAR. Consistently, nicotine enhancement of AMPAR current was inhibited by a selective calcium-permeable AMPAR inhibitor IEM-1460. Finally, the intracellular inclusion of synthetic peptide designed to block GluA1 subunit of AMPAR at CAMKII, PKC or PKA phosphorylation site, as well as corresponding kinase inhibitor, blocked nicotinic augmentation of AMPA/NMDA ratio. These results have revealed that nicotine increases AMPAR current by modulating the phosphorylation state of GluA1 which is dependent on α7-nAChR and intracellular calcium. PMID:26370265

  13. Neuronal Nicotinic Acetylcholine Receptor Modulators Reduce Sugar Intake.

    PubMed

    Shariff, Masroor; Quik, Maryka; Holgate, Joan; Morgan, Michael; Patkar, Omkar L; Tam, Vincent; Belmer, Arnauld; Bartlett, Selena E

    2016-01-01

    Excess sugar consumption has been shown to contribute directly to weight gain, thus contributing to the growing worldwide obesity epidemic. Interestingly, increased sugar consumption has been shown to repeatedly elevate dopamine levels in the nucleus accumbens (NAc), in the mesolimbic reward pathway of the brain similar to many drugs of abuse. We report that varenicline, an FDA-approved nicotinic acetylcholine receptor (nAChR) partial agonist that modulates dopamine in the mesolimbic reward pathway of the brain, significantly reduces sucrose consumption, especially in a long-term consumption paradigm. Similar results were observed with other nAChR drugs, namely mecamylamine and cytisine. Furthermore, we show that long-term sucrose consumption increases α4β2 * and decreases α6β2* nAChRs in the nucleus accumbens, a key brain region associated with reward. Taken together, our results suggest that nAChR drugs such as varenicline may represent a novel treatment strategy for reducing sugar consumption. PMID:27028298

  14. Nicotinic acetylcholine receptor agonist attenuates ILC2-dependent airway hyperreactivity

    PubMed Central

    Galle-Treger, Lauriane; Suzuki, Yuzo; Patel, Nisheel; Sankaranarayanan, Ishwarya; Aron, Jennifer L.; Maazi, Hadi; Chen, Lin; Akbari, Omid

    2016-01-01

    Allergic asthma is a complex and chronic inflammatory disorder that is associated with airway hyperreactivity (AHR) and driven by Th2 cytokine secretion. Type 2 innate lymphoid cells (ILC2s) produce large amounts of Th2 cytokines and contribute to the development of AHR. Here, we show that ILC2s express the α7-nicotinic acetylcholine receptor (α7nAChR), which is thought to have an anti-inflammatory role in several inflammatory diseases. We show that engagement of a specific agonist with α7nAChR on ILC2s reduces ILC2 effector function and represses ILC2-dependent AHR, while decreasing expression of ILC2 key transcription factor GATA-3 and critical inflammatory modulator NF-κB, and reducing phosphorylation of upstream kinase IKKα/β. Additionally, the specific α7nAChR agonist reduces cytokine production and AHR in a humanized ILC2 mouse model. Collectively, our data suggest that α7nAChR expressed by ILC2s is a potential therapeutic target for the treatment of ILC2-mediated asthma. PMID:27752043

  15. Neuronal Nicotinic Acetylcholine Receptor Modulators Reduce Sugar Intake

    PubMed Central

    Shariff, Masroor; Quik, Maryka; Holgate, Joan; Morgan, Michael; Patkar, Omkar L.; Tam, Vincent; Belmer, Arnauld; Bartlett, Selena E.

    2016-01-01

    Excess sugar consumption has been shown to contribute directly to weight gain, thus contributing to the growing worldwide obesity epidemic. Interestingly, increased sugar consumption has been shown to repeatedly elevate dopamine levels in the nucleus accumbens (NAc), in the mesolimbic reward pathway of the brain similar to many drugs of abuse. We report that varenicline, an FDA-approved nicotinic acetylcholine receptor (nAChR) partial agonist that modulates dopamine in the mesolimbic reward pathway of the brain, significantly reduces sucrose consumption, especially in a long-term consumption paradigm. Similar results were observed with other nAChR drugs, namely mecamylamine and cytisine. Furthermore, we show that long-term sucrose consumption increases α4β2 * and decreases α6β2* nAChRs in the nucleus accumbens, a key brain region associated with reward. Taken together, our results suggest that nAChR drugs such as varenicline may represent a novel treatment strategy for reducing sugar consumption. PMID:27028298

  16. Cocaine inhibition of nicotinic acetylcholine receptors influences dopamine release

    PubMed Central

    Acevedo-Rodriguez, Alexandra; Zhang, Lifen; Zhou, Fuwen; Gong, Suzhen; Gu, Howard; De Biasi, Mariella; Zhou, Fu-Ming; Dani, John A.

    2014-01-01

    Nicotinic acetylcholine receptors (nAChRs) potently regulate dopamine (DA) release in the striatum and alter cocaine's ability to reinforce behaviors. Since cocaine is a weak nAChR inhibitor, we hypothesized that cocaine may alter DA release by inhibiting the nAChRs in DA terminals in the striatum and thus contribute to cocaine's reinforcing properties primarily associated with the inhibition of DA transporters. We found that biologically relevant concentrations of cocaine can mildly inhibit nAChR-mediated currents in midbrain DA neurons and consequently alter DA release in the dorsal and ventral striatum. At very high concentrations, cocaine also inhibits voltage-gated Na channels in DA neurons. Furthermore, our results show that partial inhibition of nAChRs by cocaine reduces evoked DA release. This diminution of DA release via nAChR inhibition more strongly influences release evoked at low or tonic stimulation frequencies than at higher (phasic) stimulation frequencies, particularly in the dorsolateral striatum. This cocaine-induced shift favoring phasic DA release may contribute to the enhanced saliency and motivational value of cocaine-associated memories and behaviors. PMID:25237305

  17. Cocaine inhibition of nicotinic acetylcholine receptors influences dopamine release.

    PubMed

    Acevedo-Rodriguez, Alexandra; Zhang, Lifen; Zhou, Fuwen; Gong, Suzhen; Gu, Howard; De Biasi, Mariella; Zhou, Fu-Ming; Dani, John A

    2014-01-01

    Nicotinic acetylcholine receptors (nAChRs) potently regulate dopamine (DA) release in the striatum and alter cocaine's ability to reinforce behaviors. Since cocaine is a weak nAChR inhibitor, we hypothesized that cocaine may alter DA release by inhibiting the nAChRs in DA terminals in the striatum and thus contribute to cocaine's reinforcing properties primarily associated with the inhibition of DA transporters. We found that biologically relevant concentrations of cocaine can mildly inhibit nAChR-mediated currents in midbrain DA neurons and consequently alter DA release in the dorsal and ventral striatum. At very high concentrations, cocaine also inhibits voltage-gated Na channels in DA neurons. Furthermore, our results show that partial inhibition of nAChRs by cocaine reduces evoked DA release. This diminution of DA release via nAChR inhibition more strongly influences release evoked at low or tonic stimulation frequencies than at higher (phasic) stimulation frequencies, particularly in the dorsolateral striatum. This cocaine-induced shift favoring phasic DA release may contribute to the enhanced saliency and motivational value of cocaine-associated memories and behaviors. PMID:25237305

  18. Gating Movement of Acetylcholine Receptor Caught by Plunge-Freezing

    PubMed Central

    Unwin, Nigel; Fujiyoshi, Yoshinori

    2012-01-01

    The nicotinic acetylcholine (ACh) receptor converts transiently to an open-channel form when activated by ACh released into the synaptic cleft. We describe here the conformational change underlying this event, determined by electron microscopy of ACh-sprayed and freeze-trapped postsynaptic membranes. ACh binding to the α subunits triggers a concerted rearrangement in the ligand-binding domain, involving an ~ 1‐Å outward displacement of the extracellular portion of the β subunit where it interacts with the juxtaposed ends of α-helices shaping the narrow membrane-spanning pore. The β-subunit helices tilt outward to accommodate this displacement, destabilising the arrangement of pore-lining helices, which in the closed channel bend inward symmetrically to form a central hydrophobic gate. Straightening and tangential motion of the pore-lining helices effect channel opening by widening the pore asymmetrically and increasing its polarity in the region of the gate. The pore-lining helices of the αγ and δ subunits, by flexing between alternative bent and straight conformations, undergo the greatest movements. This coupled allosteric transition shifts the structure from a tense (closed) state toward a more relaxed (open) state. PMID:22841691

  19. Looking below the surface of nicotinic acetylcholine receptors.

    PubMed

    Stokes, Clare; Treinin, Millet; Papke, Roger L

    2015-08-01

    The amino acid sequences of nicotinic acetylcholine receptors (nAChRs) from diverse species can be compared across extracellular, transmembrane, and intracellular domains. The intracellular domains are most divergent among subtypes, yet relatively consistent among species. The diversity indicates that each nAChR subtype has a unique language for communication with its host cell. The conservation across species also suggests that the intracellular domains have defining functional roles for each subtype. Secondary structure prediction indicates two relatively conserved alpha helices within the intracellular domains of all nAChRs. Among all subtypes, the intracellular domain of α7 nAChR is one of the most well conserved, and α7 nAChRs have effects in non-neuronal cells independent of generating ion currents, making it likely that the α7 intracellular domain directly mediates signal transduction. There are potential phosphorylation and protein-binding sites in the α7 intracellular domain, which are conserved and may be the basis for α7-mediated signal transduction.

  20. An unusual beta-spectrin associated with clustered acetylcholine receptors

    PubMed Central

    1989-01-01

    The clustering of acetylcholine receptors (AChR) in the postsynaptic membrane is an early event in the formation of the neuromuscular junction. The mechanism of clustering is still unknown, but is generally believed to be mediated by the postsynaptic cytoskeleton. We have identified an unusual isoform of beta-spectrin which colocalizes with AChR in AChR clusters isolated from rat myotubes in vitro. A related antigen is present postsynaptically at the neuromuscular junction of the rat. Immunoprecipitation, peptide mapping and immunofluorescence show that the beta-spectrin in AChR clusters resembles but is distinct from the beta-spectrin of human erythrocytes. alpha-Spectrin appears to be absent from AChR clusters. Semiquantitative immunofluorescence techniques indicate that there are from two to seven beta-spectrin molecules present for every clustered AChR, the higher values being obtained from rapidly prepared clusters, the lower values from clusters that require several minutes or more for isolation. Upon incubation of isolated AChR clusters for 1 h at room temperature, beta-spectrin is slowly depleted and the AChR redistribute into microaggregates. The beta-spectrin that remains associated with the myotube membrane is concentrated at these microaggregates. beta- Spectrin is quantitatively lost from clusters upon digestion with chymotrypsin, which causes AChR to redistribute in the plane of the membrane. These results suggest that AChR in clusters is closely linked to an unusual isoform of beta-spectrin. PMID:2645300

  1. Acetylcholine receptor and behavioral deficits in mice lacking apolipoprotein E

    PubMed Central

    Siegel, Jessica A; Benice, Theodore S; Van Meer, Peter; Park, Byung S; Raber, Jacob

    2011-01-01

    Apolipoprotein E (apoE) is involved in the risk to develop sporadic Alzheimer’s disease (AD). Since impaired central acetylcholine (ACh) function is a hallmark of AD, apoE may influence ACh function by modulating muscarinic ACh receptors (mAChRs). To test this hypothesis, mAChR binding was measured in mice lacking apoE and wild type C57BL/6J mice. Mice were also tested on the pre-pulse inhibition, delay eyeblink classical conditioning, and 5-choice serial reaction time tasks, which are all modulated by ACh transmission. Mice were also given scopolamine to challenge central mAChR function. Compared to wild type mice, mice lacking apoE had reduced number of cortical and hippocampal mAChRs. Scopolamine had a small effect on delay eyeblink classical conditioning in wild type mice but a large effect in mice lacking apoE. Mice lacking apoE were also unable to acquire performance on the 5-choice serial reaction time task. These results support a role for apoE in ACh function and suggest that modulation of cortical and hippocampal mAChRs might contribute to genotype differences in scopolamine sensitivity and task acquisition. Impaired apoE functioning may result in cholinergic deficits that contribute to the cognitive impairments seen in AD. PMID:19178986

  2. Regional circadian variation of acetylcholine muscarinic receptors in the rat brain

    SciTech Connect

    Por, S.B.; Bondy, S.C.

    1981-01-01

    The level of binding of a labeled acetylcholine muscarinic antagonist (quinuclidinyl benzilate) to different cerebral membranes has been measured. Of the regions examined, circadian rhythmicity of binding could only be detected significantly in the hippocampus and the hypothalamus and not in the cerebral cortex, striatum, or cerebellum.

  3. Aldosterone receptor antagonists: current perspectives and therapies

    PubMed Central

    Guichard, Jason L; Clark, Donald; Calhoun, David A; Ahmed, Mustafa I

    2013-01-01

    Aldosterone is a downstream effector of angiotensin II in the renin–angiotensin–aldosterone system and binds to the mineralocorticoid receptor. The classical view of aldosterone primarily acting at the level of the kidneys to regulate plasma potassium and intravascular volume status is being supplemented by evidence of new “off-target” effects of aldosterone in other organ systems. The genomic effects of aldosterone are well known, but there is also evidence for non-genomic effects and these recently identified effects of aldosterone have required a revision in the traditional view of aldosterone’s role in human health and disease. The aim of this article is to review the biological action of aldosterone and the mineralocorticoid receptor leading to subsequent physiologic and pathophysiologic effects involving the vasculature, central nervous system, heart, and kidneys. Furthermore, we outline current evidence evaluating the use of mineralocorticoid receptor antagonists in the treatment of primary aldosteronism, primary hypertension, resistant hypertension, obstructive sleep apnea, heart failure, and chronic kidney disease. PMID:23836977

  4. Functional interaction between Lypd6 and nicotinic acetylcholine receptors.

    PubMed

    Arvaniti, Maria; Jensen, Majbrit M; Soni, Neeraj; Wang, Hong; Klein, Anders B; Thiriet, Nathalie; Pinborg, Lars H; Muldoon, Pretal P; Wienecke, Jacob; Imad Damaj, M; Kohlmeier, Kristi A; Gondré-Lewis, Marjorie C; Mikkelsen, Jens D; Thomsen, Morten S

    2016-09-01

    Nicotinic acetylcholine receptors (nAChRs) affect multiple physiological functions in the brain and their functions are modulated by regulatory proteins of the Lynx family. Here, we report for the first time a direct interaction of the Lynx protein LY6/PLAUR domain-containing 6 (Lypd6) with nAChRs in human brain extracts, identifying Lypd6 as a novel regulator of nAChR function. Using protein cross-linking and affinity purification from human temporal cortical extracts, we demonstrate that Lypd6 is a synaptically enriched membrane-bound protein that binds to multiple nAChR subtypes in the human brain. Additionally, soluble recombinant Lypd6 protein attenuates nicotine-induced hippocampal inward currents in rat brain slices and decreases nicotine-induced extracellular signal-regulated kinase phosphorylation in PC12 cells, suggesting that binding of Lypd6 is sufficient to inhibit nAChR-mediated intracellular signaling. We further show that perinatal nicotine exposure in rats (4 mg/kg/day through minipumps to dams from embryonic day 7 to post-natal day 21) significantly increases Lypd6 protein levels in the hippocampus in adulthood, which did not occur after exposure to nicotine in adulthood only. Our findings suggest that Lypd6 is a versatile inhibitor of cholinergic signaling in the brain, and that Lypd6 is dysregulated by nicotine exposure during early development. Regulatory proteins of the Lynx family modulate the function of nicotinic receptors (nAChRs). We report for the first time that the Lynx protein Lypd6 binds to nAChRs in human brain extracts, and that recombinant Lypd6 decreases nicotine-induced ERK phosphorylation and attenuates nicotine-induced hippocampal inward currents. Our findings suggest that Lypd6 is a versatile inhibitor of cholinergic signaling in the brain. PMID:27344019

  5. Functional differences between neurotransmitter binding sites of muscle acetylcholine receptors.

    PubMed

    Nayak, Tapan K; Bruhova, Iva; Chakraborty, Srirupa; Gupta, Shaweta; Zheng, Wenjun; Auerbach, Anthony

    2014-12-01

    A muscle acetylcholine receptor (AChR) has two neurotransmitter binding sites located in the extracellular domain, at αδ and either αε (adult) or αγ (fetal) subunit interfaces. We used single-channel electrophysiology to measure the effects of mutations of five conserved aromatic residues at each site with regard to their contribution to the difference in free energy of agonist binding to active versus resting receptors (ΔGB1). The two binding sites behave independently in both adult and fetal AChRs. For four different agonists, including ACh and choline, ΔGB1 is ∼-2 kcal/mol more favorable at αγ compared with at αε and αδ. Only three of the aromatics contribute significantly to ΔGB1 at the adult sites (αY190, αY198, and αW149), but all five do so at αγ (as well as αY93 and γW55). γW55 makes a particularly large contribution only at αγ that is coupled energetically to those contributions of some of the α-subunit aromatics. The hydroxyl and benzene groups of loop C residues αY190 and αY198 behave similarly with regard to ΔGB1 at all three kinds of site. ACh binding energies estimated from molecular dynamics simulations are consistent with experimental values from electrophysiology and suggest that the αγ site is more compact, better organized, and less dynamic than αε and αδ. We speculate that the different sensitivities of the fetal αγ site versus the adult αε and αδ sites to choline and ACh are important for the proper maturation and function of the neuromuscular synapse. PMID:25422413

  6. Roles of nicotinic acetylcholine receptor β subunits in function of human α4-containing nicotinic receptors

    PubMed Central

    Wu, Jie; Liu, Qiang; Yu, Kewei; Hu, Jun; Kuo, Yen-Ping; Segerberg, Marsha; St John, Paul A; Lukas, Ronald J

    2006-01-01

    Naturally expressed nicotinic acetylcholine receptors (nAChR) containing α4 subunits (α4*-nAChR) in combination with β2 subunits (α4β2-nAChR) are among the most abundant, high-affinity nicotine binding sites in the mammalian brain. β4 subunits are also richly expressed and colocalize with α4 subunits in several brain regions implicated in behavioural responses to nicotine and nicotine dependence. Thus, α4β4-nAChR also may exist and play important functional roles. In this study, properties were determined of human α4β2- and α4β4-nAChR heterologously expressed de novo in human SH-EP1 epithelial cells. Whole-cell currents mediated via human α4β4-nAChR have ∼4-fold higher amplitude than those mediated via human α4β2-nAChR and exhibit much slower acute desensitization and functional rundown. Nicotinic agonists induce peak whole-cell current responses typically with higher functional potency at α4β4-nAChR than at α4β2-nAChR. Cytisine and lobeline serve as full agonists at α4β4-nAChR but are only partial agonists at α4β2-nAChR. However, nicotinic antagonists, except hexamethonium, have comparable affinities for functional α4β2- and α4β4-nAChR. Whole-cell current responses show stronger inward rectification for α4β2-nAChR than for α4β4-nAChR at a positive holding potential. Collectively, these findings demonstrate that human nAChR β2 or β4 subunits can combine with α4 subunits to generate two forms of α4*-nAChR with distinctive physiological and pharmacological features. Diversity in α4*-nAChR is of potential relevance to nervous system function, disease, and nicotine dependence. PMID:16825297

  7. Endogenous Inhibition of the Trigeminally Evoked Neurotransmission to Cardiac Vagal Neurons by Muscarinic Acetylcholine Receptors

    PubMed Central

    Gorini, C.; Philbin, K.; Bateman, R.

    2010-01-01

    Stimulation of the nasal mucosa by airborne irritants or water evokes a pronounced bradycardia accompanied by peripheral vasoconstriction and apnea. The dive response, which includes the trigeminocardiac reflex, is among the most powerful autonomic responses. These responses slow the heart rate and reduce myocardial oxygen consumption. Although normally cardioprotective, exaggeration of this reflex can be detrimental and has been implicated in cardiorespiratory diseases, including sudden infant death syndrome (SIDS). An essential component of the diving response and trigeminocardiac reflex is activation of the parasympathetic cardiac vagal neurons (CVNs) in the nucleus ambiguus that control heart rate. This study examined the involvement of cholinergic receptors in trigeminally evoked excitatory postsynaptic currents in CVNs in an in vitro preparation from rats. CVNs were identified using a retrograde tracer injected into the fat pads at the base of the heart. Application of the acetylcholinesterase inhibitor neostigmine significantly decreased the amplitude of glutamatergic neurotransmission to CVNs on stimulation of trigeminal fibers. Whereas nicotine did not have any effect on the glutamatergic responses, the muscarinic acetylcholine receptor (mAChR) agonist bethanechol significantly decreased the excitatory neurotransmission. Atropine, an mAChR antagonist, facilitated these responses indicating this trigeminally evoked brain stem pathway in vitro is endogenously inhibited by mAChRs. Tropicamide, an m4 mAChR antagonist, prevented the inhibitory action of the muscarinic agonist bethanechol. These results indicate that the glutamatergic synaptic neurotransmission in the trigeminally evoked pathway to CVNs is endogenously inhibited in vitro by m4 mAChRs. PMID:20719927

  8. Secreted Isoform of Human Lynx1 (SLURP-2): Spatial Structure and Pharmacology of Interactions with Different Types of Acetylcholine Receptors

    PubMed Central

    Lyukmanova, E. N.; Shulepko, M. A.; Shenkarev, Z. O.; Bychkov, M. L.; Paramonov, A. S.; Chugunov, A. O.; Kulbatskii, D. S.; Arvaniti, M.; Dolejsi, Eva; Schaer, T.; Arseniev, A. S.; Efremov, R. G.; Thomsen, M. S.; Dolezal, V.; Bertrand, D.; Dolgikh, D. A.; Kirpichnikov, M. P.

    2016-01-01

    Human-secreted Ly-6/uPAR-related protein-2 (SLURP-2) regulates the growth and differentiation of epithelial cells. Previously, the auto/paracrine activity of SLURP-2 was considered to be mediated via its interaction with the α3β2 subtype of the nicotinic acetylcholine receptors (nAChRs). Here, we describe the structure and pharmacology of a recombinant analogue of SLURP-2. Nuclear magnetic resonance spectroscopy revealed a ‘three-finger’ fold of SLURP-2 with a conserved β-structural core and three protruding loops. Affinity purification using cortical extracts revealed that SLURP-2 could interact with the α3, α4, α5, α7, β2, and β4 nAChR subunits, revealing its broader pharmacological profile. SLURP-2 inhibits acetylcholine-evoked currents at α4β2 and α3β2-nAChRs (IC50 ~0.17 and >3 μM, respectively) expressed in Xenopus oocytes. In contrast, at α7-nAChRs, SLURP-2 significantly enhances acetylcholine-evoked currents at concentrations <1 μM but induces inhibition at higher concentrations. SLURP-2 allosterically interacts with human M1 and M3 muscarinic acetylcholine receptors (mAChRs) that are overexpressed in CHO cells. SLURP-2 was found to promote the proliferation of human oral keratinocytes via interactions with α3β2-nAChRs, while it inhibited cell growth via α7-nAChRs. SLURP-2/mAChRs interactions are also probably involved in the control of keratinocyte growth. Computer modeling revealed possible SLURP-2 binding to the ‘classical’ orthosteric agonist/antagonist binding sites at α7 and α3β2-nAChRs. PMID:27485575

  9. Secreted Isoform of Human Lynx1 (SLURP-2): Spatial Structure and Pharmacology of Interactions with Different Types of Acetylcholine Receptors

    NASA Astrophysics Data System (ADS)

    Lyukmanova, E. N.; Shulepko, M. A.; Shenkarev, Z. O.; Bychkov, M. L.; Paramonov, A. S.; Chugunov, A. O.; Kulbatskii, D. S.; Arvaniti, M.; Dolejsi, Eva; Schaer, T.; Arseniev, A. S.; Efremov, R. G.; Thomsen, M. S.; Dolezal, V.; Bertrand, D.; Dolgikh, D. A.; Kirpichnikov, M. P.

    2016-08-01

    Human-secreted Ly-6/uPAR-related protein-2 (SLURP-2) regulates the growth and differentiation of epithelial cells. Previously, the auto/paracrine activity of SLURP-2 was considered to be mediated via its interaction with the α3β2 subtype of the nicotinic acetylcholine receptors (nAChRs). Here, we describe the structure and pharmacology of a recombinant analogue of SLURP-2. Nuclear magnetic resonance spectroscopy revealed a ‘three-finger’ fold of SLURP-2 with a conserved β-structural core and three protruding loops. Affinity purification using cortical extracts revealed that SLURP-2 could interact with the α3, α4, α5, α7, β2, and β4 nAChR subunits, revealing its broader pharmacological profile. SLURP-2 inhibits acetylcholine-evoked currents at α4β2 and α3β2-nAChRs (IC50 ~0.17 and >3 μM, respectively) expressed in Xenopus oocytes. In contrast, at α7-nAChRs, SLURP-2 significantly enhances acetylcholine-evoked currents at concentrations <1 μM but induces inhibition at higher concentrations. SLURP-2 allosterically interacts with human M1 and M3 muscarinic acetylcholine receptors (mAChRs) that are overexpressed in CHO cells. SLURP-2 was found to promote the proliferation of human oral keratinocytes via interactions with α3β2-nAChRs, while it inhibited cell growth via α7-nAChRs. SLURP-2/mAChRs interactions are also probably involved in the control of keratinocyte growth. Computer modeling revealed possible SLURP-2 binding to the ‘classical’ orthosteric agonist/antagonist binding sites at α7 and α3β2-nAChRs.

  10. Multiple Targeting Approaches on Histamine H3 Receptor Antagonists

    PubMed Central

    Khanfar, Mohammad A.; Affini, Anna; Lutsenko, Kiril; Nikolic, Katarina; Butini, Stefania; Stark, Holger

    2016-01-01

    With the very recent market approval of pitolisant (Wakix®), the interest in clinical applications of novel multifunctional histamine H3 receptor antagonists has clearly increased. Since histamine H3 receptor antagonists in clinical development have been tested for a variety of different indications, the combination of pharmacological properties in one molecule for improved pharmacological effects and reduced unwanted side-effects is rationally based on the increasing knowledge on the complex neurotransmitter regulations. The polypharmacological approaches on histamine H3 receptor antagonists on different G-protein coupled receptors, transporters, enzymes as well as on NO-signaling mechanism are described, supported with some lead structures. PMID:27303254

  11. Multiple Targeting Approaches on Histamine H3 Receptor Antagonists.

    PubMed

    Khanfar, Mohammad A; Affini, Anna; Lutsenko, Kiril; Nikolic, Katarina; Butini, Stefania; Stark, Holger

    2016-01-01

    With the very recent market approval of pitolisant (Wakix®), the interest in clinical applications of novel multifunctional histamine H3 receptor antagonists has clearly increased. Since histamine H3 receptor antagonists in clinical development have been tested for a variety of different indications, the combination of pharmacological properties in one molecule for improved pharmacological effects and reduced unwanted side-effects is rationally based on the increasing knowledge on the complex neurotransmitter regulations. The polypharmacological approaches on histamine H3 receptor antagonists on different G-protein coupled receptors, transporters, enzymes as well as on NO-signaling mechanism are described, supported with some lead structures. PMID:27303254

  12. The search for calcium receptor antagonists (calcilytics).

    PubMed

    Nemeth, E F

    2002-08-01

    The Ca(2+) receptor on the surface of parathyroid cells is the primary molecular entity regulating secretion of parathyroid hormone (PTH). Because of this, it is a particularly appealing target for new drugs intended to increase or decrease circulating levels of PTH. Calcilytic compounds are Ca(2+) receptor antagonists which increase the secretion of PTH. The first reported calcilytic compound was NPS 2143, an orally active molecule which elicits rapid, 3- to 4-fold increases in circulating levels of PTH. These rapid changes in plasma PTH levels are sufficient to increase bone turnover in ovariectomized, osteopenic rats. When administered together with an antiresorptive agent (estradiol), NPS 2143 causes an increase in trabecular bone volume and bone mineral density in osteopenic rats. The magnitude of these changes are far in excess of those caused by estradiol alone and are comparable with those achieved by daily administration of PTH or a peptide analog. These anabolic effects of NPS 2143 on bone are not associated with hyperplasia of the parathyroid glands. Calcilytic compounds can increase endogenous levels of circulating PTH to an extent that stimulates new bone formation. Such compounds could replace the use of exogenous PTH or its peptide fragments in treating osteoporosis. PMID:12200226

  13. Physiological and biochemical studies of newly synthesized muscarinic acetylcholine receptors in embryonic chicken heart

    SciTech Connect

    Hunter, D.D.

    1986-01-01

    Exposure of either chicken embryos in ovo or cultured embryonic chicken cardiac cells in vitro to the muscarinic agonist carbachol results in a 70-90% decrease in the number of muscarinic acetylcholine receptors (mAChR) expressed in cardiac cells. Block of agonist-receptor interactions in ovo with the antagonist atropine or removal of the agonist in vitro results in a gradual increase in mAChR number, reaching the control level in 14 hr. Measurements of physiological sensitivity of atria or cultured cells show that, even after the complete recovery of receptor number, the sensitivity to agonist is reduced. The sensitivity of the mAChR-mediated inhibition of adenylate cyclase is also decreased at this time. Newly synthesized mAChR which appear following affinity alkylation in cultured cells are also poorly coupled to the stimulation of /sup 86/Rb/sup +/ efflux, indicating that decreased physiological sensitivity is not due to an unknown effect of long-term agonist exposure on general cellular function, but rather reflects an intrinsic property of newly synthesized mAChR. This increase in sensitivity is also not blocked by cycloheximide. The increase in sensitivity of the mAChR-mediated responses is due neither to a lack of expression of newly synthesized mAChR on the surface nor to reduced agonist affinity of the mAChR. The diminished sensitivity and subsequent maturation observed in cells containing newly synthesized receptors is due either to a small change in mAChR, or to a change in an as-yet-undefined component of the mAChR transduction system; this alteration represents a novel locus for modulation of cholinergic signals in the heart.

  14. β1-adrenergic receptor antagonists signal via PDE4 translocation.

    PubMed

    Richter, Wito; Mika, Delphine; Blanchard, Elise; Day, Peter; Conti, Marco

    2013-03-01

    It is generally assumed that antagonists of Gs-coupled receptors do not activate cAMP signalling, because they do not stimulate cAMP production via Gs-protein/adenylyl cyclase activation. Here, we report a new signalling pathway whereby antagonists of β1-adrenergic receptors (β1ARs) increase cAMP levels locally without stimulating cAMP production directly. Binding of antagonists causes dissociation of a preformed complex between β1ARs and Type-4 cyclic nucleotide phosphodiesterases (PDE4s). This reduces the local concentration of cAMP-hydrolytic activity, thereby increasing submembrane cAMP and PKA activity. Our study identifies receptor/PDE4 complex dissociation as a novel mechanism of antagonist action that contributes to the pharmacological properties of β1AR antagonists and might be shared by other receptor subtypes.

  15. (/sup 14/C)chloroacetylcholine as an advantageous affinity label of the acetylcholine receptor

    SciTech Connect

    Bodmer, D.M.; Sin-Ren, A.C.; Waser, P.G.

    1987-01-01

    The alkylating agent (/sup 14/C)chloroacetylcholine perchlorate ((/sup 14/C) ClACh) was synthesized and used for affinity labelling of the nicotinic acetylcholine receptor from Torpedo marmorata. Solubilized and affinity-purified receptor proteins were reduced and alkylated according to the bromoacetylcholine-method. Covalent binding of (/sup 14/C) ClACh to the cholinergic receptor proved to be specific and saturable, and occurred exclusively to the alpha-subunit. Halogen substitution of acetylcholine by chlorine and insertion of a /sup 14/C-isotope instead of the widely used /sup 3/H resulted in favorable properties of the affinity label.

  16. Pharmacology of JB-9315, a new selective histamine H2-receptor antagonist.

    PubMed

    Palacios, B; Montero, M J; Sevilla, M A; San Román, L

    1998-02-01

    1. The histamine H2-receptor antagonistic activity and antisecretory and antiulcer effects of JB-9315 were studied in comparison with the standard H2 blocker ranitidine. 2. In vitro, JB-9315 is a competitive antagonist of histamine H2 receptors in the isolated, spontaneously beating guinea-pig right atrium, with a pA2 value of 7.30 relative to a value of 7.36 for ranitidine. JB-9315 was specific for the histamine H2 receptor because, at high concentration, it did not affect histamine- or acetylcholine-induced contractions in guinea-pig isolated ileum or rat isolated duodenum, respectively. 3. JB-9315 dose dependently inhibited histamine-, pentagastrin- or carbachol-stimulated acid secretion and basal secretion in the perfused stomach preparation of the anesthetized rat. In the pylorus-ligated rat after intraperitoneal administration, total acid output over 4 h was inhibited by JB-9315 with an ID50 of 32.8 mg/kg, confirming its H2-receptor antagonist properties. 4. JB-9315 showed antiulcer activity against cold stress plus indomethacin-induced lesions with an ID50 of 6.8 mg/kg. 5. JB-9315, 50 and 100 mg/kg, inhibited macroscopic gastric hemorrhagic lesions induced by ethanol. In contrast, ranitidine (50 mg/kg) failed to reduce these lesions. 6. These results indicate that JB-9315 is a new antiulcer drug that exerts a cytoprotective effect in addition to its gastric antisecretory activity.

  17. [Nicotine effects on mitochondria membrane potential: participation of nicotinic acetylcholine receptors].

    PubMed

    Gergalova, G L; Skok, M V

    2011-01-01

    The effect of nicotine on the mouse liver mitochondria was studied by fluorescent flow cytometry. Mice consumed nicotine during 65 days; alternatively, nicotine was added to isolated mitochondria. Mitochondria of nicotine-treated mice had significantly lower basic levels of membrane potential and granularity as compared to those of the control group. Pre-incubation of the isolated mitochondria with nicotine prevented from dissipation of their membrane potential stimulated with 0.8 microM CaCl2 depending on the dose, and this effect was strengthened by the antagonist of alpha7 nicotinic receptors (alpha7 nAChR) methyllicaconitine. Mitochondria of mice intravenously injected with the antibodies against alpha7 nAChR demonstrated lower levels of membrane potential. Introduction of nicotine, choline, acetylcholine or synthetic alpha7 nAChR agonist PNU 282987 into the incubation medium inhibited Ca2+ accumulation in mitochondria, although the doses of agonists were too low to activate the alpha7 nAChR ion channel. It is concluded that nicotine consumption worsens the functional state of mitochondria by affecting their membrane potential and granularity, and this effect, at least in part, is mediated by alpha7 nAChR desensitization.

  18. Neuronal Acetylcholine Nicotinic Receptors as New Targets for Lung Cancer Treatment.

    PubMed

    Mucchietto, Vanessa; Crespi, Arianna; Fasoli, Francesca; Clementi, Francesco; Gotti, Cecilia

    2016-01-01

    Lung cancer is the leading cause of cancer-related deaths worldwide. Smoking accounts for approximately 70% of the cases of non- small cell lung cancer (NSCLC) and 90% of the cases of small-cell lung cancer (SCLC), although some patients develop lung cancer without a history of smoking. Nicotine is the most active addictive component of tobacco smoke. It does not initiate tumorigenesis in humans and rodents, but it alters the pathophysiology of lung cells by inducing the secretion of growth factors, neurotransmitters and cytokines, and promotes tumour growth and metastases by inducing cell cycle progression, migration, invasion, angiogenesis and the evasion of apoptosis. Most of these effects are a result of nicotine binding and activation of cell-surface neuronal nicotinic acetylcholine receptors (nAChRs) and downstream intracellular signalling cascades, and many are blocked by nAChR subtype-selective antagonists. Recent genome-wide association studies have revealed single nucleotide polymorphisms of nAChR subunits that influence nicotine dependence and lung cancer. This review describes the molecular basis of nAChR structural and functional diversity in normal and cancer lung cells, and the genetic alterations facilitating smoking-induced lung cancers. It also summarises current knowledge concerning the intracellular pathways activated by nicotine and other compounds present in tobacco smoke. PMID:26845123

  19. Interaction between Antagonist of Cannabinoid Receptor and Antagonist of Adrenergic Receptor on Anxiety in Male Rat

    PubMed Central

    Komaki, Alireza; Abdollahzadeh, Fatemeh; Sarihi, Abdolrahman; Shahidi, Siamak; Salehi, Iraj

    2014-01-01

    Introduction Anxiety is among the most common and treatable mental disorders. Adrenergic and cannabinoid systems have an important role in the neurobiology of anxiety. The elevated plus-maze (EPM) has broadly been used to investigate anxiolytic and anxiogenic compounds. The present study investigated the effects of intraperitoneal (IP) injection of cannabinoid CB1 receptor antagonist (AM251) in the presence of alpha-1 adrenergic antagonist (Prazosin) on rat behavior in the EPM. Methods In this study, the data were obtained from male Wistar rat, which weighing 200- 250 g. Animal behavior in EPM were videotaped and saved in computer for 10 min after IP injection of saline, AM251 (0.3 mg/kg), Prazosin (0.3 mg/kg) and AM251 + Prazosin, subsequently scored for conventional indices of anxiety. During the test period, the number of open and closed arms entries, the percentage of entries into the open arms of the EPM, and the spent time in open and closed arms were recorded. Diazepam was considered as a positive control drug with anxiolytic effect (0.3, 0.6, 1.2 mg/kg). Results Diazepam increased the number of open arm entries and the percentage of spent time on the open arms. IP injection of AM251 before EPM trial decreased open arms exploration and open arm entry. Whereas, Prazosin increased open arms exploration and open arm entry. This study showed that both substances in simultaneous injection have conflicting effects on the responses of each of these two compounds in a single injection. Discussion Injection of CB1 receptor antagonist may have an anxiogenic profile in rat, whereas adrenergic antagonist has an anxiolytic effect. Further investigations are essential for better understanding of anxiolytic and anxiogenic properties and neurobiological mechanisms of action and probable interactions of the two systems. PMID:25337383

  20. Positive allosteric modulators as an approach to nicotinic acetylcholine receptor-targeted therapeutics: advantages and limitations.

    PubMed

    Williams, Dustin K; Wang, Jingyi; Papke, Roger L

    2011-10-15

    Neuronal nicotinic acetylcholine receptors (nAChR), recognized targets for drug development in cognitive and neuro-degenerative disorders, are allosteric proteins with dynamic interconversions between multiple functional states. Activation of the nAChR ion channel is primarily controlled by the binding of ligands (agonists, partial agonists, competitive antagonists) at conventional agonist binding sites, but is also regulated in either negative or positive ways by the binding of ligands to other modulatory sites. In this review, we discuss models for the activation and desensitization of nAChR, and the discovery of multiple types of ligands that influence those processes in both heteromeric nAChR, such as the high-affinity nicotine receptors of the brain, and homomeric α7-type receptors. In recent years, α7 nAChRs have been identified as a potential target for therapeutic indications leading to the development of α7-selective agonists and partial agonists. However, unique properties of α7 nAChR, including low probability of channel opening and rapid desensitization, may limit the therapeutic usefulness of ligands binding exclusively to conventional agonist binding sites. New enthusiasm for the therapeutic targeting of α7 has come from the identification of α7-selective positive allosteric modulators (PAMs) that work effectively on the intrinsic factors that limit α7 ion channel activation. While these new drugs appear promising for therapeutic development, we also consider potential caveats and possible limitations for their use, including PAM-insensitive forms of desensitization and cytotoxicity issues.

  1. Targeting brain α7 nicotinic acetylcholine receptors in Alzheimer's disease: rationale and current status.

    PubMed

    Vallés, Ana Sofía; Borroni, María Virginia; Barrantes, Francisco J

    2014-11-01

    Alzheimer's disease (AD) is the most common form of dementia among older persons. Pathognomonic hallmarks of the disease include the development of amyloid senile plaques and deposits of neurofibrillary tangles. These changes occur in the brain long before the clinical manifestations of AD (cognitive impairment in particular) become apparent. Nicotinic acetylcholine receptors (AChRs), particularly the α7 subtype, are highly expressed in brain regions relevant to cognitive and memory functions and involved in the processing of sensory information. There is strong evidence that implicates the participation of AChRs in AD. This review briefly introduces current strategies addressing the pathophysiologic findings (amyloid-β-peptide plaques, neurofibrillary tangles) and then focuses on more recent efforts of pharmacologic intervention in AD, specifically targeted to the α7 AChR. Whereas cholinesterase inhibitors such as donepezil, galantamine, or rivastigmine, together with the non-competitive N-methyl-D-aspartate receptor antagonist memantine are at the forefront of present-day clinical intervention for AD, new insights into AChR molecular pharmacology are bringing other drugs, directed at AChRs, to center stage. Among these are the positive allosteric modulators that selectively target α7 AChRs and are aimed at unleashing the factors that hinder agonist-mediated, α7 AChR channel activation. This calls for more detailed knowledge of the distribution, functional properties, and involvement of AChRs in various signaling cascades-together with the corresponding abnormalities in all these properties-to be able to engineer strategies in drug design and evaluate the therapeutic possibilities of new compounds targeting this class of neurotransmitter receptors. PMID:25248971

  2. Oseltamivir produces hypothermic and neuromuscular effects by inhibition of nicotinic acetylcholine receptor functions: comparison to procaine and bupropion.

    PubMed

    Fukushima, Akihiro; Chazono, Kaori; Hashimoto, Yuichi; Iwajima, Yui; Yamamoto, Shohei; Maeda, Yasuhiro; Ohsawa, Masahiro; Ono, Hideki

    2015-09-01

    Oseltamivir, an anti-influenza virus drug, induces marked hypothermia in normal mice. We have proposed that the hypothermic effect arises from inhibition of the nicotinic acetylcholine receptor function of sympathetic ganglion neurons which innervate the brown adipose tissue (a heat generator). It has been reported that local anesthetics inhibit nicotinic acetylcholine receptor function by acting on its ionic channels, and that bupropion, a nicotinic antagonist, induces hypothermia. In this study, we compared the effects of oseltamivir, procaine and bupropion on body temperature, cardiovascular function and neuromuscular transmission. Intraperitoneal administration of oseltamivir (100mg/kg), procaine (86.6mg/kg) and bupropion (86.7mg/kg) lowered the core body temperature of normal mice. At lower doses (10-30mg/kg oseltamivir, 8.7-26mg/kg procaine and bupropion), when administered subcutaneously, the three drugs antagonized the hypothermia induced by intraperitoneal injection of nicotine (1mg/kg). In anesthetized rats, intravenous oseltamivir (30-100mg/kg), procaine (10mg/kg) and bupropion (10mg/kg) induced hypotension and bradycardia. Oseltamivir alone (100mg/kg) did not inhibit neuromuscular twitch contraction of rats, but at 3-30mg/kg it augmented the muscle-relaxing effect of d-tubocurarine. Similar effects were observed when lower doses of procaine (10-30mg/kg) and bupropion (3-10mg/kg) were administered, suggesting that systemic administration of oseltamivir inhibits muscular nicotinic acetylcholine receptors. These results support the idea that the hypothermic effect of oseltamivir is due to its effects on sympathetic ganglia which innervate the brown adipose tissue, and suggest that oseltamivir may exert non-selective ion channel blocking effects like those of ester-type local anesthetics.

  3. Oseltamivir produces hypothermic and neuromuscular effects by inhibition of nicotinic acetylcholine receptor functions: comparison to procaine and bupropion.

    PubMed

    Fukushima, Akihiro; Chazono, Kaori; Hashimoto, Yuichi; Iwajima, Yui; Yamamoto, Shohei; Maeda, Yasuhiro; Ohsawa, Masahiro; Ono, Hideki

    2015-09-01

    Oseltamivir, an anti-influenza virus drug, induces marked hypothermia in normal mice. We have proposed that the hypothermic effect arises from inhibition of the nicotinic acetylcholine receptor function of sympathetic ganglion neurons which innervate the brown adipose tissue (a heat generator). It has been reported that local anesthetics inhibit nicotinic acetylcholine receptor function by acting on its ionic channels, and that bupropion, a nicotinic antagonist, induces hypothermia. In this study, we compared the effects of oseltamivir, procaine and bupropion on body temperature, cardiovascular function and neuromuscular transmission. Intraperitoneal administration of oseltamivir (100mg/kg), procaine (86.6mg/kg) and bupropion (86.7mg/kg) lowered the core body temperature of normal mice. At lower doses (10-30mg/kg oseltamivir, 8.7-26mg/kg procaine and bupropion), when administered subcutaneously, the three drugs antagonized the hypothermia induced by intraperitoneal injection of nicotine (1mg/kg). In anesthetized rats, intravenous oseltamivir (30-100mg/kg), procaine (10mg/kg) and bupropion (10mg/kg) induced hypotension and bradycardia. Oseltamivir alone (100mg/kg) did not inhibit neuromuscular twitch contraction of rats, but at 3-30mg/kg it augmented the muscle-relaxing effect of d-tubocurarine. Similar effects were observed when lower doses of procaine (10-30mg/kg) and bupropion (3-10mg/kg) were administered, suggesting that systemic administration of oseltamivir inhibits muscular nicotinic acetylcholine receptors. These results support the idea that the hypothermic effect of oseltamivir is due to its effects on sympathetic ganglia which innervate the brown adipose tissue, and suggest that oseltamivir may exert non-selective ion channel blocking effects like those of ester-type local anesthetics. PMID:26049014

  4. Monoclonal antibodies against the native or denatured forms of muscarinic acetylcholine receptors.

    PubMed Central

    André, C; Guillet, J G; De Backer, J P; Vanderheyden, P; Hoebeke, J; Strosberg, A D

    1984-01-01

    BALB/c mice were immunized with affinity-purified muscarinic acetylcholine receptors from calf brain and their splenocytes fused with NS1 myeloma cells. Hybrid cultures were grown and selected for production of antibodies on the basis of enzyme immunoassays on calf and rat forebrain membrane preparations. Thirty-four clones were retained and six of them further subcloned. Two of these subclones produced antibodies that selectively recognized muscarinic acetylcholine receptor-bearing membranes. The M-35b antibodies interacted only with native digitonin-solubilized receptors, and not with denatured receptors. The M-23c antibodies did not react with active digitonin-solubilized receptors but recognized the denatured form. The M-23c antibodies should thus be useful in the purification of the receptor and its precursor translation products, while the M-35b antibodies could be used for the immunocytochemical localization of the receptor in cells and tissues of different species. Images Fig. 2. Fig. 3. PMID:6200320

  5. Theoretical investigation of interaction between the set of ligands and α7 nicotinic acetylcholine receptor

    NASA Astrophysics Data System (ADS)

    Glukhova, O. E.; Prytkova, T. R.; Shmygin, D. S.

    2016-03-01

    Nicotinic acetylcholine receptors (nAChRs) are neuron receptor proteins that provide a transmission of nerve impulse through the synapses. They are composed of a pentametric assembly of five homologous subunits (5 α7 subunits for α7nAChR, for example), oriented around the central pore. These receptors might be found in the chemical synapses of central and peripheral nervous system, and also in the neuromuscular synapses. Transmembrane domain of the one of such receptors constitutes ion channel. The conductive properties of ion channel strongly depend on the receptor conformation changes in the response of binding with some molecule, f.e. acetylcholine. Investigation of interaction between ligands and acetylcholine receptor is important for drug design. In this work we investigate theoretically the interaction between the set of different ligands (such as vanillin, thymoquinone, etc.) and the nicotinic acetylcholine receptor (primarily with subunit of the α7nAChR) by different methods and packages (AutodockVina, GROMACS, KVAZAR, HARLEM, VMD). We calculate interaction energy between different ligands in the subunit using molecular dynamics. On the base of obtained calculation results and using molecular docking we found an optimal location of different ligands in the subunit.

  6. Identification of a molecular weight 43,000 protein kinase in acetylcholine receptor-enriched membranes.

    PubMed Central

    Gordon, A S; Milfay, D; Diamond, I

    1983-01-01

    A photoaffinity ATP ligand is used to identify the protein kinase present in acetylcholine receptor-enriched membranes from Torpedo californica. Incubation of these membranes with 8-azido-[alpha-32P]ATP and subsequent irradiation with UV light resulted in covalent labeling of a major band of Mr 43,000. Alkali-stripped membranes that show a selective reduction in the Mr 43,000 polypeptide also show a corresponding reduction in incorporation of photoaffinity label. In addition, the neutralized alkaline extract also showed one band at Mr 43,000 when labeled with the photoaffinity ligand. After alkali extraction, endogenous protein kinase activity decreased in the membranes in proportion to the loss of Mr 43,000 peptide. Moreover, the alkaline extract was able to phosphorylate casein in an exogenous assay system. These results suggest that a Mr 43,000 polypeptide in acetylcholine receptor-enriched membranes is the acetylcholine receptor kinase. Images PMID:6577458

  7. Stimulation of brain muscarinic acetylcholine receptors acutely reverses radiogenic hypodipsia

    SciTech Connect

    Mickley, G.A.; Stevens, K.E.

    1986-03-01

    A sufficiently large dose of ionizing radiation produces changes in water consumption. However, the direction, durations, and physiological substrates of these alterations remain in question. Here we report a 5-d hypodipsia in rats exposed to 600 rads /sup 60/Co but a more transient, albeit larger, reduction in drinking after 1000 /sup 60/Co. Brain cholinergic neurons have been implicated as mediators of thirst. Therefore, we explored the role of hypothalamic muscarinic receptors in the production of radiation-induced hypodipsia. This was accomplished through the intrahypothalamic injection of carbachol (a muscarinic agonist) or atropine (a muscarinic antagonist) in irradiated rats. Intracranial carbachol produced acute reversal of radiogenic hypodipsia while atropine potentiated the hypodipsia. These post-irradiation drug-induced behaviors were similar to those observed after the same drug treatments before irradiation. Since cholinergic neuronal functions persist and are labile (can be pharmacologically stimulated and blocked) after irradiation, this suggests that other neuronal systems and/or neurochemicals may be more prominently involved in radiogenic hypodipsia.

  8. Recent Duplication and Functional Divergence in Parasitic Nematode Levamisole-Sensitive Acetylcholine Receptors

    PubMed Central

    Duguet, Thomas B.; Charvet, Claude L.; Forrester, Sean G.; Wever, Claudia M.; Dent, Joseph A.; Neveu, Cedric; Beech, Robin N.

    2016-01-01

    Helminth parasites rely on fast-synaptic transmission in their neuromusculature to experience the outside world and respond to it. Acetylcholine plays a pivotal role in this and its receptors are targeted by a wide variety of both natural and synthetic compounds used in human health and for the control of parasitic disease. The model, Caenorhabditis elegans is characterized by a large number of acetylcholine receptor subunit genes, a feature shared across the nematodes. This dynamic family is characterized by both gene duplication and loss between species. The pentameric levamisole-sensitive acetylcholine receptor has been characterized from C. elegans, comprised of five different subunits. More recently, cognate receptors have been reconstituted from multiple parasitic nematodes that are found to vary in subunit composition. In order to understand the implications of receptor composition change and the origins of potentially novel drug targets, we investigated a specific example of subunit duplication based on analysis of genome data for 25 species from the 50 helminth genome initiative. We found multiple independent duplications of the unc-29, acetylcholine receptor subunit, where codon substitution rate analysis identified positive, directional selection acting on amino acid positions associated with subunit assembly. Characterization of four gene copies from a model parasitic nematode, Haemonchus contortus, demonstrated that each copy has acquired unique functional characteristics based on phenotype rescue of transgenic C. elegans and electrophysiology of receptors reconstituted in Xenopus oocytes. We found evidence that a specific incompatibility has evolved for two subunits co-expressed in muscle. We demonstrated that functional divergence of acetylcholine receptors, driven by directional selection, can occur more rapidly than previously thought and may be mediated by alteration of receptor assembly. This phenomenon is common among the clade V parasitic

  9. Recent Duplication and Functional Divergence in Parasitic Nematode Levamisole-Sensitive Acetylcholine Receptors.

    PubMed

    Duguet, Thomas B; Charvet, Claude L; Forrester, Sean G; Wever, Claudia M; Dent, Joseph A; Neveu, Cedric; Beech, Robin N

    2016-07-01

    Helminth parasites rely on fast-synaptic transmission in their neuromusculature to experience the outside world and respond to it. Acetylcholine plays a pivotal role in this and its receptors are targeted by a wide variety of both natural and synthetic compounds used in human health and for the control of parasitic disease. The model, Caenorhabditis elegans is characterized by a large number of acetylcholine receptor subunit genes, a feature shared across the nematodes. This dynamic family is characterized by both gene duplication and loss between species. The pentameric levamisole-sensitive acetylcholine receptor has been characterized from C. elegans, comprised of five different subunits. More recently, cognate receptors have been reconstituted from multiple parasitic nematodes that are found to vary in subunit composition. In order to understand the implications of receptor composition change and the origins of potentially novel drug targets, we investigated a specific example of subunit duplication based on analysis of genome data for 25 species from the 50 helminth genome initiative. We found multiple independent duplications of the unc-29, acetylcholine receptor subunit, where codon substitution rate analysis identified positive, directional selection acting on amino acid positions associated with subunit assembly. Characterization of four gene copies from a model parasitic nematode, Haemonchus contortus, demonstrated that each copy has acquired unique functional characteristics based on phenotype rescue of transgenic C. elegans and electrophysiology of receptors reconstituted in Xenopus oocytes. We found evidence that a specific incompatibility has evolved for two subunits co-expressed in muscle. We demonstrated that functional divergence of acetylcholine receptors, driven by directional selection, can occur more rapidly than previously thought and may be mediated by alteration of receptor assembly. This phenomenon is common among the clade V parasitic

  10. Prediction of drug-induced catalepsy based on dopamine D1, D2, and muscarinic acetylcholine receptor occupancies.

    PubMed

    Haraguchi, K; Ito, K; Kotaki, H; Sawada, Y; Iga, T

    1997-06-01

    It is known that catalepsy serves as an experimental animal model of parkinsonism. In this study, the relationship between in vivo dopamine D1 and D2 receptor occupancies and catalepsy was investigated to predict the intensity of catalepsy induced by drugs that bind to D1 and D2 receptors nonselectively. 3H-SCH23390 and 3H-raclopride were used for the labeling of D1 and D2 receptors, respectively. The ternary complex model consisting of agonist or antagonist, receptor, and transducer was developed, and the dynamic parameters were determined. After coadministration of SCH23390 and nemonapride, catalepsy was stronger than sum of the values predicted by single administration of each drug, and it was intensified synergistically. This finding suggested the existence of interaction between D1 and D2 receptors, and the necessity for constructing the model including this interaction. To examine the validity of this model, catalepsy and in vivo dopamine receptor occupancy were measured after administration of drugs that induce or have a possibility to induce parkinsonism (haloperidol, flunarizine, manidipine, oxatomide, hydroxyzine, meclizine, and homochlorcycilzine). All of the tested drugs blocked both dopamine D1 and D2 receptors. Intensity of catalepsy was predicted with this dynamic model and was compared with the observed values. In contrast with haloperidol, flunarizine, manidipine, and oxatomide (which induced catalepsy), hydroxyzine, meclizine, and homochlorcyclizine failed to induce catalepsy. Intensities of catalepsy predicted with this dynamic model considering the interaction between D1 and D2 receptors overestimated the observed values, suggesting that these drugs have catalepsy-reducing properties as well. Because muscarinic acetylcholine (mACh) receptor antagonists inhibit the induction of catalepsy, the anticholinergic activities of the drugs were investigated. After SCH23390, nemonapride and scopolamine were administered simultaneously; catalepsy and in

  11. Cellular approaches to the interaction between cannabinoid receptor ligands and nicotinic acetylcholine receptors.

    PubMed

    Oz, Murat; Al Kury, Lina; Keun-Hang, Susan Yang; Mahgoub, Mohamed; Galadari, Sehamuddin

    2014-05-15

    Cannabinoids are among the earliest known drugs to humanity. Cannabis plant contains various phytochemicals that bind to cannabinoid receptors. In addition, synthetic and endogenously produced cannabinoids (endocannabinoids) constitute other classes of cannabinoid receptor ligands. Although many pharmacological effects of these cannabinoids are mediated by the activation of cannabinoid receptors, recent studies indicate that cannabinoids also modulate the functions of various integral membrane proteins including ion channels, receptors, neurotransmitter transporters, and enzymes by mechanism(s) not involving the activation of known cannabinoid receptors. Currently, the mechanisms of these effects were not fully understood. However, it is likely that direct actions of cannabinoids are closely linked to their lipophilic structures. This report will focus on the actions of cannabinoids on nicotinic acetylcholine receptors and will examine the results of recent studies in this field. In addition some mechanistic approaches will be provided. The results discussed in this review indicate that, besides cannabinoid receptors, further molecular targets for cannabinoids exist and that these targets may represent important novel sites to alter neuronal excitability.

  12. Functional Expression of Two Neuronal Nicotinic Acetylcholine Receptors from cDNA Clones Identifies a Gene Family

    NASA Astrophysics Data System (ADS)

    Boulter, Jim; Connolly, John; Deneris, Evan; Goldman, Dan; Heinemann, Steven; Patrick, Jim

    1987-11-01

    A family of genes coding for proteins homologous to the α subunit of the muscle nicotinic acetylcholine receptor has been identified in the rat genome. These genes are transcribed in the central and peripheral nervous systems in areas known to contain functional nicotinic receptors. In this paper, we demonstrate that three of these genes, which we call alpha3, alpha4, and beta2, encode proteins that form functional nicotinic acetylcholine receptors when expressed in Xenopus oocytes. Oocytes expressing either alpha3 or alpha4 protein in combination with the beta2 protein produced a strong response to acetylcholine. Oocytes expressing only the alpha4 protein gave a weak response to acetylcholine. These receptors are activated by acetylcholine and nicotine and are blocked by Bungarus toxin 3.1. They are not blocked by α -bungarotoxin, which blocks the muscle nicotinic acetylcholine receptor. Thus, the receptors formed by the alpha3, alpha4, and beta2 subunits are pharmacologically similar to the ganglionic-type neuronal nicotinic acetylcholine receptor. These results indicate that the alpha3, alpha4, and beta2 genes encode functional nicotinic acetylcholine receptor subunits that are expressed in the brain and peripheral nervous system.

  13. Methanandamide allosterically inhibits in vivo the function of peripheral nicotinic acetylcholine receptors containing the alpha 7-subunit.

    PubMed

    Baranowska, Urszula; Göthert, Manfred; Rudz, Radoslaw; Malinowska, Barbara

    2008-09-01

    Methanandamide (MAEA), the stable analog of the endocannabinoid anandamide, has been proven in Xenopus oocytes to allosterically inhibit the function of the alpha7-nicotinic acetylcholine receptors (nAChRs) in a cannabinoid (CB) receptor-independent manner. The present study aimed at demonstrating that this mechanism can be activated in vivo. In anesthetized and vagotomized pithed rats treated with atropine, we determined the tachycardic response to electrical stimulation of preganglionic sympathetic nerves via the pithing rod or to i.v. nicotine (0.7 micromol/kg) activating nAChRs on the cardiac postganglionic sympathetic neurons. MAEA (3 and 10 micromol/kg) inhibited the electrically induced tachycardia (maximally by 15-20%; abolished by the CB(1) receptor antagonist AM 251 [N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide]; 3 micromol/kg) in pentobarbitone-anesthetized pithed rats, but not in urethane-anesthetized pithed rats, which, thus, are suitable to study the CB(1) receptor-independent inhibition of nicotine-evoked tachycardia. The subunit-nonselective nAChR antagonist hexamethonium (100 micromol/kg) and the selective alpha7-subunit antagonist methyllycaconitine (MLA; 3 and 10 micromol/kg) decreased the nicotine-induced tachycardia by 100 and 40%, respectively (maximal effects), suggesting that nAChRs containing the alpha7-subunit account for 40% of the nicotine-induced tachycardia. MAEA (3 micromol/kg) produced an AM 251-insensitive inhibition (maximum again by 40%) of the nicotine-induced tachycardia. Simultaneous or sequential coadministration of MLA and MAEA inhibited the nicotine-induced tachycardia to the same extent (maximally by 40%) as each of the drugs alone. In conclusion, according to nonadditivity of the effects, MAEA mediates in vivo inhibition by the same receptors as MLA, namely alpha7-subunit-containing nAChRs, although at an allosteric instead of the orthosteric site.

  14. Comparative study of muscarinic acetylcholine receptors of human and rat cortical glial cells

    SciTech Connect

    Demushkin, V.P.; Burbaeva, G.S.; Dzhaliashvili, T.A.; Plyashkevich, Y.G.

    1985-04-01

    The aim of the present investigation was a comparative studyof muscarinic acetylcholine receptors in human and rat glial cells. (/sup 3/H)Quinuclidinyl-benzylate ((/sup 3/H)-QB), atropine, platiphylline, decamethonium, carbamylcholine, tubocurarine, and nicotine were used. The glial cell fraction was obtained from the cerebral cortex of rats weighing 130-140 g and from the frontal pole of the postmortem brain from men aged 60-70 years. The use of the method of radioimmune binding of (/sup 3/H)-QB with human and rat glial cell membranes demonstrated the presence of a muscarinic acetylcholine receptor in the glial cells.

  15. Computer modeling of the neurotoxin binding site of acetylcholine receptor spanning residues 185 through 196

    NASA Technical Reports Server (NTRS)

    Garduno-Juarez, R.; Shibata, M.; Zielinski, T. J.; Rein, R.

    1987-01-01

    A model of the complex between the acetylcholine receptor and the snake neurotoxin, cobratoxin, was built by molecular model building and energy optimization techniques. The experimentally identified functionally important residues of cobratoxin and the dodecapeptide corresponding to the residues 185-196 of acetylcholine receptor alpha subunit were used to build the model. Both cis and trans conformers of cyclic L-cystine portion of the dodecapeptide were examined. Binding residues independently identified on cobratoxin are shown to interact with the dodecapeptide AChR model.

  16. Colorimetric microtiter plate receptor-binding assay for the detection of freshwater and marine neurotoxins targeting the nicotinic acetylcholine receptors

    USGS Publications Warehouse

    Rubio, Fernando; Kamp, Lisa; Carpino, Justin; Faltin, Erin; Loftin, Keith A.; Molgó, Jordi; Aráoz, Rómulo

    2014-01-01

    Anatoxin-a and homoanatoxin-a, produced by cyanobacteria, are agonists of nicotinic acetylcholine receptors (nAChRs). Pinnatoxins, spirolides, and gymnodimines, produced by dinoflagellates, are antagonists of nAChRs. In this study we describe the development and validation of a competitive colorimetric, high throughput functional assay based on the mechanism of action of freshwater and marine toxins against nAChRs. Torpedo electrocyte membranes (rich in muscle-type nAChR) were immobilized and stabilized on the surface of 96-well microtiter plates. Biotinylated α-bungarotoxin (the tracer) and streptavidin-horseradish peroxidase (the detector) enabled the detection and quantitation of anatoxin-a in surface waters and cyclic imine toxins in shellfish extracts that were obtained from different locations across the US. The method compares favorably to LC/MS/MS and provides accurate results for anatoxin-a and cyclic imine toxins monitoring. Study of common constituents at the concentrations normally found in drinking and environmental waters, as well as the tolerance to pH, salt, solvents, organic and inorganic compounds did not significantly affect toxin detection. The assay allowed the simultaneous analysis of up to 25 samples within 3.5 h and it is well suited for on-site or laboratory monitoring of low levels of toxins in drinking, surface, and ground water as well as in shellfish extracts.

  17. Rhesus monkey alpha7 nicotinic acetylcholine receptors: comparisons to human alpha7 receptors expressed in Xenopus oocytes.

    PubMed

    Papke, Roger L; McCormack, Thomas J; Jack, Brian A; Wang, Daguang; Bugaj-Gaweda, Bozena; Schiff, Hillary C; Buhr, Joshua D; Waber, Amanda J; Stokes, Clare

    2005-11-01

    An alpha7 nicotinic acetylcholine receptor sequence was cloned from Rhesus monkey (Macaca mulatta). This clone differs from the mature human alpha7 nicotinic acetylcholine receptor in only four amino acids, two of which are in the extracellular domain. The monkey alpha7 nicotinic receptor was characterized in regard to its functional responses to acetylcholine, choline, cytisine, and the experimental alpha7-selective agonists 4OH-GTS-21, TC-1698, and AR-R17779. For all of these agonists, the EC(50) for activation of monkey receptors was uniformly higher than for human receptors. In contrast, the potencies of mecamylamine and MLA for inhibiting monkey and human alpha7 were comparable. Acetylcholine and 4OH-GTS-21 were used to probe the significance of the single point differences in the extracellular domain. Mutants with the two different amino acids in the extracellular domain of the monkey receptor changed to the corresponding sequence of the human receptor had responses to these agonists that were not significantly different in EC(50) from wild-type human alpha7 nicotinic receptors. Monkey alpha7 nicotinic receptors have a serine at residue 171, while the human receptors have an asparagine at this site. Monkey S171N mutants were more like human alpha7 nicotinic receptors, while mutations at the other site (K186R) had relatively little effect. These experiments point toward the basic utility of the monkey receptor as a model for the human alpha7 nicotinic receptor, albeit with the caveat that these receptors will vary in their agonist concentration dependency. They also point to the potential importance of a newly identified sequence element for modeling the specific amino acids involved with receptor activation. PMID:16266703

  18. A comparison of the effects of three substance P antagonists on tachykinin-stimulated [3H]-acetylcholine release in the guinea-pig ileum.

    PubMed Central

    Featherstone, R. L.; Fosbraey, P.; Morton, I. K.

    1986-01-01

    The potencies of three tachykinin antagonists [D-Pro4,D-Trp7,9,10]SP(4-11), [D-Arg1,D-Pro2,D-Trp7,9,Leu11]SP(1-11) and [D-Arg1,D-Trp7,9,Leu11]SP(1-11) (spantide) against eledoisin were examined in the guinea-pig ileum myenteric plexus, where a continuous superfusion system was employed to examine evoked release of [3H]-acetylcholine [( 3H]-ACh]); effects on mechanical activity of the preparations were also measured. Eledoisin was chosen as the standard tachykinin agonist since the rank order of potency observed in evoking release was eledoisin, kassinin, substance P, physalaemin; on this basis is may be presumed that an 'SP-E' type receptor was involved in the release process. The two undecapeptide antagonists both significantly reduced the response to eledoisin (10 nM) as assessed by both [3H]-ACh release and mechanical activity which under these conditions was largely dependent on ACh release, and the response levels could be restored by increasing the concentration of eledoisin to 100 nM. The pA2 values for the two antagonists were estimated as 5.3 for [D-Arg1,D-Pro2,D-Trp7,9,Leu11]SP(1-11) and 5.2 for [D-Arg1,D-Trp7,9,Leu11]SP(1-11). [D-Pro4,D-Trp7,9,10]SP(4-11) was markedly less potent with a pA2 value of less than 4.8. All three antagonists possessed considerable inherent stimulatory activity as measured both by [3H]-ACh release and mechanical activity, [D-Pro4,D-Trp7,9,10]SP(4-11) being the most active in this respect, a 10 microM concentration producing 50% of the response seen with 10 nM eledoisin. These findings are discussed both in relation to tachykinin receptor classifications and limitations in the use of such antagonists in the study of the role of tachykinins in neurotransmission. PMID:2420402

  19. Characterization of opioid receptor types modulating acetylcholine release in septal regions of the rat brain.

    PubMed

    Gazyakan, E; Hennegriff, M; Haaf, A; Landwehrmeyer, G B; Feuerstein, T J; Jackisch, R

    2000-07-01

    Presynaptic opioid receptors of the delta- and mu-types have been shown to inhibit the release of acetylcholine (ACh) in the rat striatum and hippocampus, respectively, but it is unknown whether opioid receptors modulate the release of ACh also in the region of origin of the hippocampal cholinergic innervation, the septum. To answer this question, slices (350 microm) of the medial septal area and of the diagonal band of Broca, as well as (for comparison) of the hippocampus, were prepared from adult male Wistar rats. The slices were incubated with [3H]choline, superfused in the presence of hemicholinium-3 (10 microM) and stimulated twice (S1, S2) by electrical fields (360 pulses, 3 Hz, 2 ms, 60 mA); opioid receptor agonists were present during S2. The preferential mu-agonist [D-Ala2,N-Me-Phe4,Gly-ol5]enkephalin (DAMGO) inhibited the evoked ACh release by maximally about 40% in hippocampal slices and acted even more strongly in the medial septal area, or the diagonal band of Broca (about 60% or 75% maximal inhibition, respectively). These effects were reduced or abolished by the preferential mu-antagonist naloxone, which showed no effects when given alone. Using naloxone in the presence of a cocktail of peptidase inhibitors, no evidence for an endogenous tone of opioid peptides was found in the medial septal area, diagonal band of Broca or the hippocampus. Using the preferential delta-agonist [D-Pen2, D-Pen5]enkephalin (DPDPE) and the delta-antagonist naltrindole, a delta-opioid receptor inhibiting evoked ACh release was clearly detectable both in the medial septal area and the diagonal band of Broca, but not in the hippocampus, whereas the preferential kappa-agonist trans-3,4-dichloro-N-methyl-N-[2(1-pyrrolidinyl)cyclo-hexyl] benzeneacetamide (U50,488H) had only weak or no effects. In addition to the functional experiments, double in-situ hybridization studies were performed, in which cells containing mRNA for choline acetyltransferase (ChAT) were labeled by an

  20. Identification of a novel conformationally constrained glucagon receptor antagonist.

    PubMed

    Lee, Esther C Y; Tu, Meihua; Stevens, Benjamin D; Bian, Jianwei; Aspnes, Gary; Perreault, Christian; Sammons, Matthew F; Wright, Stephen W; Litchfield, John; Kalgutkar, Amit S; Sharma, Raman; Didiuk, Mary T; Ebner, David C; Filipski, Kevin J; Brown, Janice; Atkinson, Karen; Pfefferkorn, Jeffrey A; Guzman-Perez, Angel

    2014-02-01

    Identification of orally active, small molecule antagonists of the glucagon receptor represents a novel treatment paradigm for the management of type 2 diabetes mellitus. The present work discloses novel glucagon receptor antagonists, identified via conformational constraint of current existing literature antagonists. Optimization of lipophilic ligand efficiency (LLE or LipE) culminated in enantiomers (+)-trans-26 and (-)-trans-27 which exhibit good physicochemical and in vitro drug metabolism profiles. In vivo, significant pharmacokinetic differences were noted with the two enantiomers, which were primarily driven through differences in clearance rates. Enantioselective oxidation by cytochrome P450 was ruled out as a causative factor for pharmacokinetic differences.

  1. Inhibition of Ebola and Marburg Virus Entry by G Protein-Coupled Receptor Antagonists

    PubMed Central

    Cheng, Han; Lear-Rooney, Calli M.; Johansen, Lisa; Varhegyi, Elizabeth; Chen, Zheng W.; Olinger, Gene G.

    2015-01-01

    ABSTRACT Filoviruses, consisting of Ebola virus (EBOV) and Marburg virus (MARV), are among the most lethal infectious threats to mankind. Infections by these viruses can cause severe hemorrhagic fevers in humans and nonhuman primates with high mortality rates. Since there is currently no vaccine or antiviral therapy approved for humans, there is an urgent need to develop prophylactic and therapeutic options for use during filoviral outbreaks and bioterrorist attacks. One of the ideal targets against filoviral infection and diseases is at the entry step, which is mediated by the filoviral glycoprotein (GP). In this report, we screened a chemical library of small molecules and identified numerous inhibitors, which are known G protein-coupled receptor (GPCR) antagonists targeting different GPCRs, including histamine receptors, 5-HT (serotonin) receptors, muscarinic acetylcholine receptor, and adrenergic receptor. These inhibitors can effectively block replication of both infectious EBOV and MARV, indicating a broad antiviral activity of the GPCR antagonists. The time-of-addition experiment and microscopic studies suggest that GPCR antagonists block filoviral entry at a step following the initial attachment but prior to viral/cell membrane fusion. These results strongly suggest that GPCRs play a critical role in filoviral entry and GPCR antagonists can be developed as an effective anti-EBOV/MARV therapy. IMPORTANCE Infection of Ebola virus and Marburg virus can cause severe illness in humans with a high mortality rate, and currently there is no FDA-approved vaccine or therapeutic treatment available. The 2013-2015 epidemic in West Africa underscores a lack of our understanding in the infection and pathogenesis of these viruses and the urgency of drug discovery and development. In this study, we have identified numerous inhibitors that are known G protein-coupled receptor (GPCR) antagonists targeting different GPCRs. These inhibitors can effectively block replication of

  2. Approaches to the rational design of selective melanocortin receptor antagonists

    PubMed Central

    Hruby, Victor J; Cai, Minying; Nyberg, Joel; Muthu, Dhanasekaran

    2015-01-01

    Introduction When establishing the physiological roles of specific receptors in normal and disease states, it is critical to have selective antagonist ligands for each receptor in a receptor system with several subtypes. The melanocortin receptors have five subtypes referred to as the melanocortin 1 receptor, melanocortin 2 receptor, melanocortin 3 receptor, melanocortin 4 receptor and melanocortin 5 receptor, and they are of critical importance for many aspects of human health and disease. Areas covered This article reviews the current efforts to design selective antagonistic ligands for the five human melanocortin receptors summarizing the currently published orthosteric and allosteric antagonists for each of these receptors. Expert opinion Though there has been progress, there are still few drugs available that address the many significant biological activities and diseases that are associated with these receptors, which is possibly due to the lack of receptor selectivity that these designed ligands are currently showing. The authors believe that further studies into the antagonists’ 3D conformational and topographical properties in addition to future mutagenesis studies will provide greater insight into these ligands which could play a role in the treatment of various diseases in the future. PMID:22646078

  3. A constitutively active G protein-coupled acetylcholine receptor regulates motility of larval Schistosoma mansoni.

    PubMed

    MacDonald, Kevin; Kimber, Michael J; Day, Tim A; Ribeiro, Paula

    2015-07-01

    The neuromuscular system of helminths controls a variety of essential biological processes and therefore represents a good source of novel drug targets. The neuroactive substance, acetylcholine controls movement of Schistosoma mansoni but the mode of action is poorly understood. Here, we present first evidence of a functional G protein-coupled acetylcholine receptor in S. mansoni, which we have named SmGAR. A bioinformatics analysis indicated that SmGAR belongs to a clade of invertebrate GAR-like receptors and is related to vertebrate muscarinic acetylcholine receptors. Functional expression studies in yeast showed that SmGAR is constitutively active but can be further activated by acetylcholine and, to a lesser extent, the cholinergic agonist, carbachol. Anti-cholinergic drugs, atropine and promethazine, were found to have inverse agonist activity towards SmGAR, causing a significant decrease in the receptor's basal activity. An RNAi phenotypic assay revealed that suppression of SmGAR activity in early-stage larval schistosomulae leads to a drastic reduction in larval motility. In sum, our results provide the first molecular evidence that cholinergic GAR-like receptors are present in schistosomes and are required for proper motor control in the larvae. The results further identify SmGAR as a possible candidate for antiparasitic drug targeting.

  4. Chemical modification and reactivity of sulfhydryls and disulfides of rat brain nicotinic-like acetylcholine receptors

    SciTech Connect

    Lukas, R.J.; Bennett, E.L.

    1980-06-25

    Rat central nervous system binding sites for ..cap alpha..-bungarotoxin display considerable biochemical homology with characterized nicotinic acetylcholine receptors from the periphery. They possess a critical disulfide residue(s), which is susceptible to chemical modification and consequent specific alteration in the affinity of the binding site for cholinergic agonists. After reaction with Na/sub 2/S/sub 2/O/sub 5/, as with reaction with dithiothreitol and 5,5'-dithiobis(2-nitrobenzoic acid), the binding site is frozen in a high affinity state toward acetylcholine. After reduction with dithiothreitol and alkylation with a variety of compounds of different molecular configuration or electrical charge, or both, the binding site is frozen in a low affinity state toward acetylcholine. Thus, effects of disulfide/sulfhydryl modification on agonist binding affinity appear to be attributable to the nature of the covalent modification rather than charge or steric alteration at the receptor active site brought about by chemical modification.

  5. Antagonists of the kappa opioid receptor.

    PubMed

    Urbano, Mariangela; Guerrero, Miguel; Rosen, Hugh; Roberts, Edward

    2014-05-01

    The research community has increasingly focused on the development of OPRK antagonists as pharmacotherapies for the treatment of depression, anxiety, addictive disorders and other psychiatric conditions produced or exacerbated by stress. Short-acting OPRK antagonists have been recently developed as a potential improvement over long-acting prototypic ligands including nor-BNI and JDTic. Remarkably the short-acting LY2456302 is undergoing phase II clinical trials for the augmentation of the antidepressant therapy in treatment-resistant depression. This Letter reviews relevant chemical and pharmacological advances in the identification and development of OPRK antagonists.

  6. [Development of physical dependence on nicotine and endogenous opioid system--participation of α7 nicotinic acetylcholine receptor].

    PubMed

    Kishioka, Shiroh; Kiguchi, Norikazu; Kobayashi, Yuka; Saika, Fumihiro; Yamamoto, Chizuko

    2014-10-01

    Nicotine (NIC) regulates various cellular functions acting on the nicotinic acetylcholine receptor (nAChR). And nAChR consists of ligand-gated cation channels with pentameric structure and composed of α and β subunits. In the central nervous system, α 4 β 2 and α 7 nAChRs are the most abundantly expressed as nAChR subtypes. There are several lines of evidence indicating that systemic administration of NIC elicits the release of endogenous opioids, such as, endorphins, enkephalins and dynorphins, in the brain. NIC exerts numerous acute effects, for example, antinociceptive effects and the activating effects of the hypothalamic-pituitary-adrenal (HPA) axis. In these effects, NIC-induced antinociception, but not HPA axis activation, was inhibited by opioid receptor antagonist, naloxone (NLX), and was also suppressed in morphine tolerated mice, indicating the participation of the endogenous opioid system in NIC-induced antinociception, but not HPA axis activation. Moreover, NIC-induced antinociception was antagonized by both α 4 β 2 and α 7 nAChR antagonists, while NIC-induced HPA axis activation was antagonized by α 4 β 2 nAChR antagonist, but not by α 7 nAChR antagonist. These results suggest that the endogenous opioid system may not be located on the downstream of α 4 β 2 nAChR. On the other hand, NIC has substantial physical dependence liability. NLX elicits NIC withdrawal after repeated NIC administration evaluated by corticosterone increase as a withdrawal sign, and NLX-precipitated NIC withdrawal is inhibited by concomitant administration of other opioid receptor antagonist, naltrexone, indicating the participation of endogenous opioid system in the development of physical dependence on NIC. NLX-precipitated NIC withdrawal was also inhibited by concomitant administration of an α 7 nAChR antagonist, but not an α 4 β 2 nAChR antagonist. Taken together, these findings suggest that the endogenous opioid system may be located on the downstream of α 7

  7. [Development of physical dependence on nicotine and endogenous opioid system--participation of α7 nicotinic acetylcholine receptor].

    PubMed

    Kishioka, Shiroh; Kiguchi, Norikazu; Kobayashi, Yuka; Saika, Fumihiro; Yamamoto, Chizuko

    2014-10-01

    Nicotine (NIC) regulates various cellular functions acting on the nicotinic acetylcholine receptor (nAChR). And nAChR consists of ligand-gated cation channels with pentameric structure and composed of α and β subunits. In the central nervous system, α 4 β 2 and α 7 nAChRs are the most abundantly expressed as nAChR subtypes. There are several lines of evidence indicating that systemic administration of NIC elicits the release of endogenous opioids, such as, endorphins, enkephalins and dynorphins, in the brain. NIC exerts numerous acute effects, for example, antinociceptive effects and the activating effects of the hypothalamic-pituitary-adrenal (HPA) axis. In these effects, NIC-induced antinociception, but not HPA axis activation, was inhibited by opioid receptor antagonist, naloxone (NLX), and was also suppressed in morphine tolerated mice, indicating the participation of the endogenous opioid system in NIC-induced antinociception, but not HPA axis activation. Moreover, NIC-induced antinociception was antagonized by both α 4 β 2 and α 7 nAChR antagonists, while NIC-induced HPA axis activation was antagonized by α 4 β 2 nAChR antagonist, but not by α 7 nAChR antagonist. These results suggest that the endogenous opioid system may not be located on the downstream of α 4 β 2 nAChR. On the other hand, NIC has substantial physical dependence liability. NLX elicits NIC withdrawal after repeated NIC administration evaluated by corticosterone increase as a withdrawal sign, and NLX-precipitated NIC withdrawal is inhibited by concomitant administration of other opioid receptor antagonist, naltrexone, indicating the participation of endogenous opioid system in the development of physical dependence on NIC. NLX-precipitated NIC withdrawal was also inhibited by concomitant administration of an α 7 nAChR antagonist, but not an α 4 β 2 nAChR antagonist. Taken together, these findings suggest that the endogenous opioid system may be located on the downstream of α 7

  8. Cholinergic ligand interactions with acetylcholine receptor proteins and solvent interactions with N,N-dialkylnicotinamides

    SciTech Connect

    Bean, J.W.

    1987-01-01

    A dual-chambered flow dialysis nuclear counting apparatus was used to monitor cholinergic ligand induced displacement of {sup 155}Eu{sup 3+} from acetylcholine receptor proteins. Acetylcholine, nicotine and carbamylcholine induced similar rates of displacement of {sup 155}Eu{sup 3+} probes of calcium binding sites in receptor proteins from wild type Drosophila melanogaster and Torpedo californica. The receptor isolated from a nicotine resistant strain of Drosophila melanogaster displayed an altered dependency of cholinergic ligand induced cation displacement with respect to the other two receptor proteins. Both Drosophila strains' solubilized receptor proteins migrated as three bands of molecular weights 68,000, 66,000, and 60,000 on denaturing polyacrylamide gels. Carbon-13 NMR techniques were employed to examine the effects of solvent environment on rotational energy barriers in a series of molecules related to the analeptic, nikethamide: N,N-dimethylnicotinamide, 1-nicotinoyl piperidine, and N,N-dipropylnicotinamide.

  9. Agonist self-inhibition at the nicotinic acetylcholine receptor a nonspecific action

    SciTech Connect

    Forman, S.A.; Firestone, L.L.; Miller, K.W.

    1987-05-19

    Agonist concentration-response relationships at nicotinic postsynaptic receptors were established by measuring /sup 86/Rb/sup +/ efflux from acetylcholine receptor rich native Torpedo membrane vesicles under three different conditions: (1) integrated net ion efflux (in 10 s) from untreated vesicles, (2) integrated net efflux from vesicles in which most acetylcholine sites were irreversibly blocked with ..cap alpha..-bungarotoxin, and (3) initial rates of efflux (5-100 ms) from vesicles that were partially blocked with ..cap alpha..-bungarotoxin. Exposure to acetylcholine, carbamylcholine, suberyldicholine, phenyltrimethylammonium, or (-)-nicotine over 10/sup 8/-fold concentration ranges results in bell-shaped ion flux response curves due to stimulation of acetylcholine receptor channel opening at low concentrations and inhibition of channel function at 60-2000 times higher concentrations. Concentrations of agonists that inhibit their own maximum /sup 86/Rb/sup +/ efflux by 50% (K/sub B/ values) are 110, 211, 3.0, 39, and 8.9 mM, respectively, for the agonists listed above. For acetylcholine and carbamylcholine, K/sub B/ values determined from both 10-s and 15-ms efflux measurements are the same, indicating that the rate of agonist-induced desensitization increases to maximum at concentrations lower than those causing self-inhibition. For all partial and full agonists studied, Hill coefficients for self-inhibition are close to 1.0. Concentrations of agonists up to 8 times K/sub B/ did not change the order parameter reported by a spin-labeled fatty acid incorporated in Torpedo membranes. The authors conclude that agonist self-inhibition cannot be attributed to a general nonspecific membrane perturbation. Instead, these results are consistent with a saturable site of action either at the lipid-protein interface or on the acetylcholine receptor protein itself.

  10. Inhibition of Nicotinic Acetylcholine Receptors, a Novel Facet in the Pleiotropic Activities of Snake Venom Phospholipases A2

    PubMed Central

    Vulfius, Catherine A.; Kasheverov, Igor E.; Starkov, Vladislav G.; Osipov, Alexey V.; Andreeva, Tatyana V.; Filkin, Sergey Yu.; Gorbacheva, Elena V.; Astashev, Maxim E.; Tsetlin, Victor I.; Utkin, Yuri N.

    2014-01-01

    Phospholipases A2 represent the most abundant family of snake venom proteins. They manifest an array of biological activities, which is constantly expanding. We have recently shown that a protein bitanarin, isolated from the venom of the puff adder Bitis arietans and possessing high phospholipolytic activity, interacts with different types of nicotinic acetylcholine receptors and with the acetylcholine-binding protein. To check if this property is characteristic to all venom phospholipases A2, we have studied the capability of these enzymes from other snakes to block the responses of Lymnaea stagnalis neurons to acetylcholine or cytisine and to inhibit α-bungarotoxin binding to nicotinic acetylcholine receptors and acetylcholine-binding proteins. Here we present the evidence that phospholipases A2 from venoms of vipers Vipera ursinii and V. nikolskii, cobra Naja kaouthia, and krait Bungarus fasciatus from different snake families suppress the acetylcholine- or cytisine-elicited currents in L. stagnalis neurons and compete with α-bungarotoxin for binding to muscle- and neuronal α7-types of nicotinic acetylcholine receptor, as well as to acetylcholine-binding proteins. As the phospholipase A2 content in venoms is quite high, under some conditions the activity found may contribute to the deleterious venom effects. The results obtained suggest that the ability to interact with nicotinic acetylcholine receptors may be a general property of snake venom phospholipases A2, which add a new target to the numerous activities of these enzymes. PMID:25522251

  11. P2Y13 receptors mediate presynaptic inhibition of acetylcholine release induced by adenine nucleotides at the mouse neuromuscular junction.

    PubMed

    Guarracino, Juan F; Cinalli, Alejandro R; Fernández, Verónica; Roquel, Liliana I; Losavio, Adriana S

    2016-06-21

    It is known that adenosine 5'-triphosphate (ATP) is released along with the neurotransmitter acetylcholine (ACh) from motor nerve terminals. At mammalian neuromuscular junctions (NMJs), we have previously demonstrated that ATP is able to decrease ACh secretion by activation of P2Y receptors coupled to pertussis toxin-sensitive Gi/o protein. In this group, the receptor subtypes activated by adenine nucleotides are P2Y12 and P2Y13. Here, we investigated, by means of pharmacological and immunohistochemical assays, the P2Y receptor subtype that mediates the modulation of spontaneous and evoked ACh release in mouse phrenic nerve-diaphragm preparations. First, we confirmed that the preferential agonist for P2Y12-13 receptors, 2-methylthioadenosine 5'-diphosphate trisodium salt hydrate (2-MeSADP), reduced MEPP frequency without affecting MEPP amplitude as well as the amplitude and quantal content of end-plate potentials (EPPs). The effect on spontaneous secretion disappeared after the application of the selective P2Y12-13 antagonists AR-C69931MX or 2-methylthioadenosine 5'-monophosphate triethylammonium salt hydrate (2-MeSAMP). 2-MeSADP was more potent than ADP and ATP in reducing MEPP frequency. Then we demonstrated that the selective P2Y13 antagonist MRS-2211 completely prevented the inhibitory effect of 2-MeSADP on MEPP frequency and EPP amplitude, whereas the P2Y12 antagonist MRS-2395 failed to do this. The preferential agonist for P2Y13 receptors inosine 5'-diphosphate sodium salt (IDP) reduced spontaneous and evoked ACh secretion and MRS-2211 abolished IDP-mediated modulation. Immunohistochemical studies confirmed the presence of P2Y13 but not P2Y12 receptors at the end-plate region. Disappearance of P2Y13 receptors after denervation suggests the presynaptic localization of the receptors. We conclude that, at motor nerve terminals, the Gi/o protein-coupled P2Y receptors implicated in presynaptic inhibition of spontaneous and evoked ACh release are of the subtype P2Y

  12. P2Y13 receptors mediate presynaptic inhibition of acetylcholine release induced by adenine nucleotides at the mouse neuromuscular junction.

    PubMed

    Guarracino, Juan F; Cinalli, Alejandro R; Fernández, Verónica; Roquel, Liliana I; Losavio, Adriana S

    2016-06-21

    It is known that adenosine 5'-triphosphate (ATP) is released along with the neurotransmitter acetylcholine (ACh) from motor nerve terminals. At mammalian neuromuscular junctions (NMJs), we have previously demonstrated that ATP is able to decrease ACh secretion by activation of P2Y receptors coupled to pertussis toxin-sensitive Gi/o protein. In this group, the receptor subtypes activated by adenine nucleotides are P2Y12 and P2Y13. Here, we investigated, by means of pharmacological and immunohistochemical assays, the P2Y receptor subtype that mediates the modulation of spontaneous and evoked ACh release in mouse phrenic nerve-diaphragm preparations. First, we confirmed that the preferential agonist for P2Y12-13 receptors, 2-methylthioadenosine 5'-diphosphate trisodium salt hydrate (2-MeSADP), reduced MEPP frequency without affecting MEPP amplitude as well as the amplitude and quantal content of end-plate potentials (EPPs). The effect on spontaneous secretion disappeared after the application of the selective P2Y12-13 antagonists AR-C69931MX or 2-methylthioadenosine 5'-monophosphate triethylammonium salt hydrate (2-MeSAMP). 2-MeSADP was more potent than ADP and ATP in reducing MEPP frequency. Then we demonstrated that the selective P2Y13 antagonist MRS-2211 completely prevented the inhibitory effect of 2-MeSADP on MEPP frequency and EPP amplitude, whereas the P2Y12 antagonist MRS-2395 failed to do this. The preferential agonist for P2Y13 receptors inosine 5'-diphosphate sodium salt (IDP) reduced spontaneous and evoked ACh secretion and MRS-2211 abolished IDP-mediated modulation. Immunohistochemical studies confirmed the presence of P2Y13 but not P2Y12 receptors at the end-plate region. Disappearance of P2Y13 receptors after denervation suggests the presynaptic localization of the receptors. We conclude that, at motor nerve terminals, the Gi/o protein-coupled P2Y receptors implicated in presynaptic inhibition of spontaneous and evoked ACh release are of the subtype P2Y

  13. Null mutation of the β2 nicotinic acetylcholine receptor subunit attenuates nicotine withdrawal-induced anhedonia in mice.

    PubMed

    Stoker, Astrid K; Marks, Michael J; Markou, Athina

    2015-04-15

    The anhedonic signs of nicotine withdrawal are predictive of smoking relapse rates in humans. Identification of the neurobiological substrates that mediate anhedonia will provide insights into the genetic variations that underlie individual responses to smoking cessation and relapse. The present study assessed the role of β2 nicotinic acetylcholine receptor (nACh receptor) subunits in nicotine withdrawal-induced anhedonia using β2 nACh receptor subunit knockout (β2(-/-)) and wildtype (β2(+/+)) mice. Anhedonia was assessed with brain reward thresholds, defined as the current intensity that supports operant behavior in the discrete-trial current-intensity intracranial self-stimulation procedure. Nicotine was delivered chronically through osmotic minipumps for 28 days (40 mg/kg/day, base), and withdrawal was induced by either administering the broad-spectrum nicotinic receptor antagonist mecamylamine (i.e., antagonist-precipitated withdrawal) in mice chronically treated with nicotine or terminating chronic nicotine administration (i.e., spontaneous withdrawal). Mecamylamine (6 mg/kg, salt) significantly elevated brain reward thresholds in nicotine-treated β2(+/+) mice compared with saline-treated β2(+/+) mice and nicotine-treated β2(-/-) mice. Spontaneous nicotine withdrawal similarly resulted in significant elevations in thresholds in nicotine-withdrawing β2(+/+) mice compared with saline-treated β2(+/+) and nicotine-treated β2(-/-) mice, which remained at baseline levels. These results showed that precipitated and spontaneous nicotine withdrawal-induced anhedonia was attenuated in β2(-/-) mice. The reduced expression of anhedonic signs during nicotine withdrawal in β2(-/-) mice may have resulted from the lack of neuroadaptations in β2 nACh receptor subunit expression and function that may have occurred during either nicotine exposure or nicotine withdrawal in wildtype mice. In conclusion, individuals with genetic variations that result in diminished

  14. Monoclonal antibodies specific for each of the two toxin-binding sites of Torpedo acetylcholine receptor

    SciTech Connect

    Dowding, A.J.; Hall, Z.W.

    1987-10-06

    The authors have isolated and characterized 12 monoclonal antibodies (mAbs) that block the binding of ..cap alpha..-bungarotoxin (..cap alpha..-BuTx) to the acetylcholine receptor (AChR) of Torpedo californica. Two of the mAbs block ..cap alpha..-BuTx binding completely; the other 10 inhibit only about 50% of the binding. The mAbs that partially inhibit ..cap alpha..-BuTx binding can be divided into two groups by examination of the additive effect of pairs of mAbs on toxin binding, and by analysis of competition between mAbs for binding to the AChR. These two groups of mAbs, which we have termed A and B, appear to recognize different toxin-binding sites on the same receptor. A and B mAbs were used to determine the kinetic and pharmacological properties of the two sites. The site recognized by A mAbs binds ..cap alpha..-BuTx with a forward rate constant of 0.98 x 10/sup 5/ M/sup -1/ s/sup -1/, d-tubocurarine (dTC) with a K/sub D/ of (6.8 +/- 0.3) x 10/sup -8/ M, and pancuronium with a K/sub D/ of (1.9 +/- 1.0) x 10/sup -9/ M. The site recognized by B mAbs binds ..cap alpha..-BuTx with a forward rate constant of 9.3 x 10/sup 5/ M/sup -1/ s/sup -1/, dTC with a K/sub D/ of (4.6 +/- 0.3) x 10/sup -6/ M, and pancurionium with a K/sub D/ of (9.3 +/- 0.8) x 10/sup -6/ M. Binding of A and B mAbs to the AChR was variably inhibited by nicotinic cholinergic agonists and antagonists, and by ..cap alpha..-conotoxin. The observed pattern of inhibition is consistent with the relative affinity of the two sites for antagonists as given above but also indicates that the mAbs recognize a diversity of epitopes within each site.

  15. Trophic factor-induced excitatory synaptogenesis involves postsynaptic modulation of nicotinic acetylcholine receptors.

    PubMed

    Woodin, Melanie A; Munno, David W; Syed, Naweed I

    2002-01-15

    Neurotrophic factors have well established roles in neuronal development, although their precise involvement in synapse formation and plasticity is yet to be fully determined. Using soma-soma synapses between identified Lymnaea neurons, we have shown recently that trophic factors are required for excitatory but not inhibitory synapse formation. However, neither the precise site (presynaptic versus postsynaptic cell) nor the underlying mechanisms have yet been defined. In the present study, synapse formation between the presynaptic cell visceral dorsal 4 (VD4) and its postsynaptic partner right pedal dorsal 1 (RPeD1) was examined to define the cellular mechanisms mediating trophic factor-induced excitatory synaptogenesis in cell culture. When paired in a soma-soma configuration in the presence of defined media (DM, nonproteinacious), mutually inhibitory synapses were appropriately reconstructed between VD4 and RPeD1. However, when cells were paired in the presence of increasing concentrations of Lymnaea brain-conditioned medium (CM), a biphasic synapse (initial excitatory synaptic component followed by inhibition) developed. The CM-induced excitatory synapse formation required trophic factor-mediated activation of receptor tyrosine kinases in the postsynaptic cell, RPeD1, and a concomitant modulation of existing postsynaptic nicotinic acetylcholine receptors (nAChRs). Specifically, when RPeD1 was isolated in DM, exogenously applied ACh induced a hyperpolarizing response that was sensitive to the AChR antagonist methyllycaconitine (MLA). In contrast, a single RPeD1 isolated in CM exhibited a biphasic response to exogenously applied ACh. The initial depolarizing phase of the biphasic response was sensitive to both mecamylamine and hexamethonium chloride, whereas the hyperpolarizing phase was blocked by MLA. In soma-soma-paired neurons, the VD4-induced synaptic responses in RPeD1 were sensitive to the cholinergic antagonists in a concentration range similar to that

  16. Role of the nicotinic acetylcholine receptor in Alzheimer's disease pathology and treatment.

    PubMed

    Lombardo, Sylvia; Maskos, Uwe

    2015-09-01

    Alzheimer's Disease (AD) is the major form of senile dementia, characterized by neuronal loss, extracellular deposits, and neurofibrillary tangles. It is accompanied by a loss of cholinergic tone, and acetylcholine (ACh) levels in the brain, which were hypothesized to be responsible for the cognitive decline observed in AD. Current medication is restricted to enhancing cholinergic signalling for symptomatic treatment of AD patients. The nicotinic acetylcholine receptor family (nAChR) and the muscarinic acetylcholine receptor family (mAChR) are the target of ACh in the brain. Both families of receptors are affected in AD. It was demonstrated that amyloid beta (Aβ) interacts with nAChRs. Here we discuss how Aβ activates or inhibits nAChRs, and how this interaction contributes to AD pathology. We will discuss the potential role of nAChRs as therapeutic targets. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'. PMID:25514383

  17. Structure, oligosaccharide structures, and posttranslationally modified sites of the nicotinic acetylcholine receptor.

    PubMed Central

    Poulter, L; Earnest, J P; Stroud, R M; Burlingame, A L

    1989-01-01

    Using mass spectrometry, we have examined the transmembrane topography of the nicotinic acetylcholine receptor, a five-subunit glycosylated protein complex that forms a gated ion channel in the neuromuscular junction. The primary sequences of the four polypeptide chains making up the acetylcholine receptor from Torpedo californica contain many possible sites for glycosylation or phosphorylation. We have used liquid secondary ion mass spectrometry to identify posttranslationally modified residues and to determine the intact oligosaccharide structures of the carbohydrate present on the acetylcholine receptor. Asparagine-143 of the alpha subunit (in consensus numbering) is shown to be glycosylated with high-mannose oligosaccharide. Asparagine-453 of the gamma subunit is not glycosylated, a fact that bears on the question of the orientations of putative transmembranous helices M3, MA, and M4. The structures of the six major acetylcholine receptor oligosaccharides are determined: the major components (70%) are of the high-mannose type, with bi-, tri-, and tetraantennary complex oligosaccharides making up approximately equal to 22 mol% of the total carbohydrate. This application of a multichannel array detector mass spectrometer provided a breakthrough in sensitivity that allowed us to identify the site of attachment of, and the sequence of, oligosaccharides on a 300-kDa membrane protein from only 5 pmol of the isolated oligosaccharide. Images PMID:2771948

  18. INHIBITORY EFFECTS OF VOLATILE ORGANIC COMPOUNDS ON NEURONAL NICOTINIC ACETYLCHOLINE RECEPTORS.

    EPA Science Inventory

    INHIBITORY EFFECTS OF VOLATILE ORGANIC COMPOUNDS ON NEURONAL NICOTINIC ACETYLCHOLINE RECEPTORS.
    A.S. Bale*; P.J. Bushnell; C.A. Meacham; T.J. Shafer
    Neurotoxicology Division, NHEERL, ORD, US Environmental Protection Agency, Research Triangle Park, NC, USA
    Toluene (TOL...

  19. Agonist actions of clothianidin on synaptic and extrasynaptic nicotinic acetylcholine receptors expressed on cockroach sixth abdominal ganglion.

    PubMed

    Thany, Steeve H

    2009-11-01

    Clothianidin is new neonicotinoid insecticide acting selectively on insect nicotinic acetylcholine receptors (nAChRs). Its effects on nAChRs expressed on cercal afferent/giant interneuron synapses and DUM neurons have been studied using mannitol-gap and whole-cell patch-clamp techniques, respectively. Bath-application of clothianidin-induced dose-dependent depolarizations of cockroach cercal afferent/giant interneuron synapses which were not reversed after wash-out suggesting a strong desensitization of postsynaptic interneurons at the 6th abdominal ganglion (A6). Clothinidin activity on the nerve preparation was characterized by an increased firing rate of action potentials which then ceased when the depolarization reached a peak. Clothianidin responses were insensitive to all muscarinic antagonists tested but were blocked by co-application of specific nicotinic antagonists methyllicaconitine, alpha-bungarotoxin and d-tubocurarine. In a second round of experiment, clothianidin actions were tested on DUM neurons isolated from the A6. There was a strong desensitization of nAChRs which was not affected by muscarinic antagonists, pirenzepine and atropine, but was reduced with nicotinic antagonist alpha-bungarotoxin. In addition, clothianidin-induced currents were completely blocked by methyllicaconitine suggesting that (1) clothianidin acted as a specific agonist of nAChR subtypes and (2) a small proportion of receptors blocked by MLA was insensitive to alpha-bungarotoxin. Moreover, because clothianidin currents were blocked by d-tubocurarine and mecamylamine, we provided that clothianidin was an agonist of both nAChRs: imidacloprid-sensitive nAChR1 and -insensitive nAChR2 subtypes. PMID:19583978

  20. Measuring relative acetylcholine receptor agonist binding by selective proton nuclear magnetic resonance relaxation experiments.

    PubMed Central

    Behling, R W; Yamane, T; Navon, G; Sammon, M J; Jelinski, L W

    1988-01-01

    A method is presented that uses selective proton Nuclear Magnetic Resonance (NMR) relaxation measurements of nicotine in the presence of the acetylcholine receptor to obtain relative binding constants for acetylcholine, carbamylcholine, and muscarine. For receptors from Torpedo californica the results show that (a) the binding constants are in the order acetylcholine greater than nicotine greater than carbamylcholine greater than muscarine; (b) selective NMR measurements provide a rapid and direct method for monitoring both the specific and nonspecific binding of agonists to these receptors and to the lipid; (c) alpha-bungarotoxin can be used to distinguish between specific and nonspecific binding to the receptor; (d) the receptor--substrate interaction causes a large change in the selective relaxation time of the agonists even at concentrations 100x greater than that of the receptor. This last observation means that these measurements provide a rapid method to monitor drug binding when only small amounts of receptor are available. Furthermore, the binding strategies presented here may be useful for the NMR determination of the conformation of the ligand in its bound state. Images FIGURE 1 PMID:3395661

  1. Discovery of cannabinoid-1 receptor antagonists by virtual screening.

    PubMed

    Lee, Gil Nam; Kim, Kwang Rok; Ahn, Sung-Hoon; Bae, Myung Ae; Kang, Nam Sook

    2010-09-01

    In this work, we tried to find a new scaffold for a CB1 receptor antagonist using virtual screening. We first analyzed structural features for the known cannabinoid-1 receptor antagonists and, then, we built pharmacophore models using the HipHop concept and carried out a docking study based on our homology CB1 receptor 3D structure. The most active compound, including thiazole-4-one moiety, showed an activity value of 125 nM IC(50), with a good PK profile. PMID:20667724

  2. Discovery of cannabinoid-1 receptor antagonists by virtual screening.

    PubMed

    Lee, Gil Nam; Kim, Kwang Rok; Ahn, Sung-Hoon; Bae, Myung Ae; Kang, Nam Sook

    2010-09-01

    In this work, we tried to find a new scaffold for a CB1 receptor antagonist using virtual screening. We first analyzed structural features for the known cannabinoid-1 receptor antagonists and, then, we built pharmacophore models using the HipHop concept and carried out a docking study based on our homology CB1 receptor 3D structure. The most active compound, including thiazole-4-one moiety, showed an activity value of 125 nM IC(50), with a good PK profile.

  3. Long-acting muscarinic receptor antagonists for the treatment of chronic airway diseases

    PubMed Central

    Palot, Alain; Sofalvi, Tunde; Pahus, Laurie; Gouitaa, Marion; Tummino, Celine; Martinez, Stephanie; Charpin, Denis; Bourdin, Arnaud; Chanez, Pascal

    2014-01-01

    Acetylcholine (neuronal and non-neuronal origin) regulates bronchoconstriction, and mucus secretion. It has an inflammatory effect by inducing attraction, survival and cytokine release from inflammatory cells. Muscarinic receptors throughout the bronchial tree are mainly restricted to muscarinic M1, M2 and M3 receptors. Three long-acting muscarinic receptor antagonists (LAMAs) were approved for the treatment of chronic obstructive pulmonary disease (COPD) in Europe: once-daily tiotropium bromide; once-daily glycopyrronium bromide; and twice-daily aclidinium bromide. All have higher selectivity for M3 receptors than for M2 receptors, and dissociate more slowly from the M3 receptors than they do from the M2 receptors. Some LAMAs showed anti-inflammatory effects [inhibition of neutrophil chemotactic activity and migration of alveolar neutrophils, decrease of several cytokines in the bronchoalveolar lavage (BAL) including interleukin (IL)-6, tumor necrosis factor (TNF)-α and leukotriene (LT)B4] and antiremodeling effects (inhibition of mucus gland hypertrophy and decrease in MUC5AC-positive goblet cell number, decrease in MUC5AC overexpression). In the clinic, LAMAs showed a significant improvement of forced expiratory volume in 1 second (FEV1), quality of life, dyspnea and reduced the number of exacerbations in COPD and more recently in asthma. This review will focus on the three LAMAs approved in Europe in the treatment of chronic airway diseases. PMID:24587893

  4. Ameliorating effects of tropisetron on dopaminergic disruption of prepulse inhibition via the alpha(7) nicotinic acetylcholine receptor in Wistar rats.

    PubMed

    Kohnomi, Shuntaro; Suemaru, Katsuya; Goda, Mitsunori; Choshi, Tominari; Hibino, Satoshi; Kawasaki, Hiromu; Araki, Hiroaki

    2010-09-24

    Nicotine has ameliorating effects on sensorimotor gating deficits in schizophrenia. We have shown that nicotine ameliorated disruption of prepulse inhibition (PPI) via the alpha(7) nicotinic acetylcholine receptor (nAChR) in Wistar rats. The 5-HT(3) receptor antagonist tropisetron was recently found to be an alpha(7) nAChR partial agonist. We initially investigated the effects of tropisetron on disruption of PPI induced by phencyclidine (PCP) (2mg/kg) or apomorphine (1mg/kg). Tropisetron had no effect on the disruption of PPI induced by PCP, but ameliorated the disruption by apomorphine. The ameliorating effect of tropisetron was antagonized by methyllycaconitine (2 or 5mg/kg), a partially selective alpha(7) nAChR antagonist. Next, to find the action site of tropisetron, we examined c-Fos protein expression in the nucleus accumbens (NAc), dorsolateral striatum (DLst) and ventral tegmental area (VTA). Tropisetron alone did not change the number of c-Fos-positive cells, whereas apomorphine increased the number of positive cells in the NAc and DLst. Tropisetron administration followed by apomorphine administration decreased the number of positive cells in the VTA compared with the apomorphine-alone group. These results suggest that tropisetron has an ameliorating effect on the sensorimotor gating deficits via the alpha(7) nAChR, and that one possible site of its action is the VTA.

  5. Muscarinic acetylcholine receptor subtypes which selectively couple to phospholipase C: Pharmacological and biochemical properties

    SciTech Connect

    Buck, M.A.; Fraser, C.M. )

    1990-12-14

    The pharmacological and biochemical properties of rat m1 and m3 muscarinic acetylcholine receptors (mAChR) stably transfected into Chinese hamster ovary-K1 (CHO) cells were characterized with ligand binding, affinity labeling and biochemical assays. Both mAChR subtypes display saturable, high affinity binding of (3H)-quinuclidinyl benzilate (QNB) and a rank order of antagonist potency of QNB greater than atropine greater than pirenzepine greater than AF-DX 116. Carbachol displacement of (3H)-QNB binding to the m3 mAChR revealed an approximate 17-fold higher affinity than observed with the m1 mAChR. (3H)-propylbenzilylcholine mustard (PrBCM) labeling of mAChR revealed that m1 and m3 mAChR migrated on SDS-polyacrylamide gels with apparent molecular masses of 80,000 and 94,000 daltons, respectively, consistent with the known differences in their molecular sizes. Both m1 and m3 mAChR elicited dose-dependent increases in the hydrolysis of phosphoinositides; however, the maximal increase in total inositol phosphates elicited with the m1 mAChR was approximately 2-fold greater than that observed in cells expressing similar densities of m3 mAChR. Agonist activation of the m1 mAChR also elicited increases in basal and forskolin-stimulated cAMP, whereas the m3 mAChR had no effect on intracellular cAMP levels. These data suggest that although m1 and m3 mAChR display a considerable degree of structural homology, they exhibit distinct pharmacological and biochemical properties.

  6. Nicotinic acetylcholine receptor alpha 7 regulates cAMP signal within lipid rafts.

    PubMed

    Oshikawa, Jin; Toya, Yoshiyuki; Fujita, Takayuki; Egawa, Masato; Kawabe, Junichi; Umemura, Satoshi; Ishikawa, Yoshihiro

    2003-09-01

    Neuronal nicotinic acetylcholine receptors (nAChRs) are made of multiple subunits with diversified functions. The nAChR alpha 7-subunit has a property of high Ca2+ permeability and may have specific functions and localization within the plasma membrane as a signal transduction molecule. In PC-12 cells, fractionation by sucrose gradient centrifugation revealed that nAChR alpha 7 existed in low-density, cholesterol-enriched plasma membrane microdomains known as lipid rafts where flotillin also exists. In contrast, nAChR alpha 5- and beta2-subunits were located in high-density fractions, out of the lipid rafts. Type 6 adenylyl cyclase (AC6), a calcium-inhibitable isoform, was also found in lipid rafts and was coimmunoprecipitated with nAChR alpha 7. Cholesterol depletion from plasma membranes with methyl-beta-cyclodextrin redistributed nAChR alpha 7 and AC6 diffusely within plasma membranes. Nicotine stimulation reduced forskolin-stimulated AC activity by 35%, and this inhibition was negated by either treatment with alpha-bungarotoxin, a specific antagonist of nAChR alpha 7, or cholesterol depletion from plasma membranes. The effect of cholesterol depletion was negated by the addition of cholesterol. These data suggest that nAChR alpha 7 has a specific membrane localization relative to other nAChR subunits and that lipid rafts are necessary to localize nAChR alpha 7 with AC within plasma membranes. In addition, nAChR alpha 7 may regulate the AC activity via Ca2+ within lipid rafts.

  7. Nicotine activates and up-regulates nicotinic acetylcholine receptors in bronchial epithelial cells.

    PubMed

    Fu, Xiao Wen; Lindstrom, Jon; Spindel, Eliot R

    2009-07-01

    Prenatal nicotine exposure impairs normal lung development and leads to diminished pulmonary function after birth. Previous work from our laboratory has demonstrated that nicotine alters lung development by affecting a nonneuronal cholinergic autocrine loop that is expressed in lung. Bronchial epithelial cells (BECs) express choline acetyltransferase, the choline high-affinity transporter and nicotinic acetylcholine (ACh) receptor (nAChR) subunits. We now demonstrate through a combination of morphological and electrophysiological techniques that nicotine affects this autocrine loop by up-regulating and activating cholinergic signaling. RT-PCR showed the expression of alpha 3, alpha 4, alpha 7, alpha 9, alpha 10, beta2, and beta 4 nAChR mRNAs in rhesus monkey lung and cultured BECs. The expression of alpha 7, alpha 4, and beta2 nAChR was confirmed by immunofluorescence in the cultured BECs and lung. The electrophysiological characteristics of nAChR in BECs were determined using whole-cell patch-clamp on cultured BECs. Both ACh and nicotine evoked an inward current, with a rapid desensitizing current. Nicotine induced inward currents in a concentration-dependent manner, with an EC(50) of 26.7 microM. Nicotine-induced currents were reversibly blocked by the nicotinic antagonists, mecamylamine, dihydro-beta-erythroidine, and methyllcaconitine. Incubation of BECs with 1 microM nicotine for 48 hours enhanced nicotine-induced currents by roughly 26%. The protein tyrosine phosphorylation inhibitor, genistein, increased nicotine-induced currents by 58% and enhanced methyllcaconitine-sensitive currents (alpha 7 nAChR activities) 2.3-fold, whereas the protein tyrosine phosphatase inhibitor, pervanadate, decreased the effects of nicotine. These results demonstrate that chronic nicotine exposure up-regulates nAChR activity in developing lung, and that nAChR activity can be further modified by tyrosine phosphorylation.

  8. The cholinergic immune regulation mediated by a novel muscarinic acetylcholine receptor through TNF pathway in oyster Crassostrea gigas.

    PubMed

    Liu, Zhaoqun; Zhou, Zhi; Wang, Lingling; Dong, Wenjing; Qiu, Limei; Song, Linsheng

    2016-12-01

    Muscarinic receptors, which selectively take muscarine as their ligand, are critical for the immunological and physiological processes in animals. In the present study, the open region frame (ORF) of a homologue of muscarinic acetylcholine (ACh) receptor (mAChR) was amplified from oyster Crassostrea gigas (named as CgmAChR-1), whose full length was 1983 bp and the protein it encoded contained 660 amino acids with a seven transmembrane region. Phylogeny analysis suggested that CgmAChR-1 shared homology with M5 muscarinic receptor found in invertebrates including Habropoda laboriosa, Acromyrmex echinatior and Echinococcus granulosus. After cell transfection of CgmAChR-1 into HEK293T cells and ACh incubation, the level of intracellular Ca(2+) and cAMP increased significantly (p < 0.05). Such trend could be reverted with the addition of M3 and M5 muscarinic receptor antagonists DAMP and DAR. The CgmAChR-1 transcripts were ubiquitously detectable in seven different tissues with the maximal expression level in adductor muscle. When the oysters received LPS stimulation, CgmAChR-1 mRNA expression in haemocyte was increased to the highest level (6.05-fold, p < 0.05) at 24 h, while blocking CgmAChR-1 using receptor antagonists before LPS stimulation promoted the expression of oyster TNF, resulting in the increase of haemocyte apoptosis index. These results suggested that CgmAChR-1 was the key molecule in cholinergic neuroendocrine-immune system contributing to the regulation of TNF expression and apoptosis process. PMID:27394930

  9. Primary structure of nicotinic acetylcholine receptor. Final report, 9 April 1989-6 April 1992

    SciTech Connect

    Patrick, J.W.

    1992-05-06

    Signals are transmitted between cells in the brain using neurotransmitters and neurotransmitter receptors. Poisons that interfere with this process stop normal brain function and often kill nerve cells. One of the neurotransmitters used in the mammalian brain is acetylcholine. We discovered that there is a large number of different nicotinic receptors for the neurotransmitter acetylcholine, each with its different properties. We used recombinant DNA technology to clone and sequence the gene transcripts that encode the subunits of these receptors. From these sequences we deduced the primary structures of the nicotinic receptor subunits. We also used the cDNA clones to determine which brain loci express the respective genes. We have expressed the clones in the Xenopus oocyte and have demonstrated that each functional combination of subunits has a unique pharmacology Unlike their homologs at the neuromuscular junction, the nicotinic acetylcholine receptors in the brain are exceptionally permeable to calcium. This property suggests that these receptors may play an important role in regulating calcium-dependent cytoplasmic processes and that they may be important contributors to use-dependent cell death.

  10. Dynamic Regulation of Quaternary Organization of the M1 Muscarinic Receptor by Subtype-selective Antagonist Drugs*

    PubMed Central

    Pediani, John D.; Ward, Richard J.; Godin, Antoine G.; Marsango, Sara

    2016-01-01

    Although rhodopsin-like G protein-coupled receptors can exist as both monomers and non-covalently associated dimers/oligomers, the steady-state proportion of each form and whether this is regulated by receptor ligands are unknown. Herein we address these topics for the M1 muscarinic acetylcholine receptor, a key molecular target for novel cognition enhancers, by using spatial intensity distribution analysis. This method can measure fluorescent particle concentration and assess oligomerization states of proteins within defined regions of living cells. Imaging and analysis of the basolateral surface of cells expressing some 50 molecules·μm−2 human muscarinic M1 receptor identified a ∼75:25 mixture of receptor monomers and dimers/oligomers. Both sustained and shorter term treatment with the selective M1 antagonist pirenzepine resulted in a large shift in the distribution of receptor species to favor the dimeric/oligomeric state. Although sustained treatment with pirenzepine also resulted in marked up-regulation of the receptor, simple mass action effects were not the basis for ligand-induced stabilization of receptor dimers/oligomers. The related antagonist telenzepine also produced stabilization and enrichment of the M1 receptor dimer population, but the receptor subtype non-selective antagonists atropine and N-methylscopolamine did not. In contrast, neither pirenzepine nor telenzepine altered the quaternary organization of the related M3 muscarinic receptor. These data provide unique insights into the selective capacity of receptor ligands to promote and/or stabilize receptor dimers/oligomers and demonstrate that the dynamics of ligand regulation of the quaternary organization of G protein-coupled receptors is markedly more complex than previously appreciated. This may have major implications for receptor function and behavior. PMID:27080256

  11. Dynamic Regulation of Quaternary Organization of the M1 Muscarinic Receptor by Subtype-selective Antagonist Drugs.

    PubMed

    Pediani, John D; Ward, Richard J; Godin, Antoine G; Marsango, Sara; Milligan, Graeme

    2016-06-17

    Although rhodopsin-like G protein-coupled receptors can exist as both monomers and non-covalently associated dimers/oligomers, the steady-state proportion of each form and whether this is regulated by receptor ligands are unknown. Herein we address these topics for the M1 muscarinic acetylcholine receptor, a key molecular target for novel cognition enhancers, by using spatial intensity distribution analysis. This method can measure fluorescent particle concentration and assess oligomerization states of proteins within defined regions of living cells. Imaging and analysis of the basolateral surface of cells expressing some 50 molecules·μm(-2) human muscarinic M1 receptor identified a ∼75:25 mixture of receptor monomers and dimers/oligomers. Both sustained and shorter term treatment with the selective M1 antagonist pirenzepine resulted in a large shift in the distribution of receptor species to favor the dimeric/oligomeric state. Although sustained treatment with pirenzepine also resulted in marked up-regulation of the receptor, simple mass action effects were not the basis for ligand-induced stabilization of receptor dimers/oligomers. The related antagonist telenzepine also produced stabilization and enrichment of the M1 receptor dimer population, but the receptor subtype non-selective antagonists atropine and N-methylscopolamine did not. In contrast, neither pirenzepine nor telenzepine altered the quaternary organization of the related M3 muscarinic receptor. These data provide unique insights into the selective capacity of receptor ligands to promote and/or stabilize receptor dimers/oligomers and demonstrate that the dynamics of ligand regulation of the quaternary organization of G protein-coupled receptors is markedly more complex than previously appreciated. This may have major implications for receptor function and behavior. PMID:27080256

  12. Nicotine-motivated behavior in Caenorhabditis elegans requires the nicotinic acetylcholine receptor subunits acr-5 and acr-15.

    PubMed

    Sellings, Laurie; Pereira, Schreiber; Qian, Cheng; Dixon-McDougall, Thomas; Nowak, Christina; Zhao, Bin; Tyndale, Rachel F; van der Kooy, Derek

    2013-03-01

    Signaling at nicotinic acetylcholine receptors in Caenorhabditis elegans controls many behaviors, including egg-laying and locomotor activity. Here, we show that C. elegans approaches a point source of nicotine in a time-, concentration- and age-dependent manner. Additionally, nicotine paired with butanone under starvation conditions prevented the reduced approach to butanone that is observed when butanone is paired with starvation alone and pairing with nicotine generates a preference for the tastes of either sodium or chloride over baseline. These results suggest nicotine acts as a rewarding substance in C. elegans. Furthermore, the nicotinic receptor antagonist mecamylamine, the smoking cessation pharmacotherapy varenicline, mutation of the dop-1 and dop-2 dopamine receptors, and mutations of either acr-5 or acr-15, two nicotinic receptor subunit genes with sequence homology to the mammalian α7 subunit, all reduced the nicotine approach behavior. These two mutants also were defective at associating the presence of nicotine with butanone under starvation conditions and acr-5 mutation could obviate the effect of pairing nicotine with salts. Furthermore, the approach deficit in acr-15 mutants was rescued by selective re-expression in a subset of neurons, but not in muscle. Caenorhabditis elegans may therefore serve as a useful model organism for nicotine-motivated behaviors that could aid in the identification of novel nicotine motivational molecular pathways and consequently the development of novel cessation aids.

  13. Direct Spectroscopic Studies of Cation Translocation by Torpedo Acetylcholine Receptor on a Time Scale of Physiological Relevance

    NASA Astrophysics Data System (ADS)

    Moore, Hsiao-Ping H.; Raftery, Michael A.

    1980-08-01

    The kinetics of carbamoylcholine-mediated cation transport across the membrane of vesicles containing acetylcholine receptor have been measured on the physiologically relevant time scale of a few milliseconds. The stopped-flow spectroscopic approach utilizes thallium(I) as the cation transported into sealed vesicles containing a water-soluble fluorophore. Upon entry of thallium(I), fluorescence quenching occurs by a heavy atom effect. Rapid thallium translocation into the vesicles is mediated by cholinergic agonists and is blocked by antagonists and neurotoxins and by desensitization. The kinetics of thallium transport are used to demonstrate that the four polypeptides known to comprise the receptor are the only protein components necessary for cation translocation. The kinetics of thallium(I) transport at saturating agonist concentrations are also used to calculate the apparent ion transport rate for a single receptor. The minimal value obtained is close to that for a single activated channel determined in vivo. This demonstrates that the physiological receptor has been isolated in intact form.

  14. Azogabazine; a photochromic antagonist of the GABAA receptor.

    PubMed

    Huckvale, Rosemary; Mortensen, Martin; Pryde, David; Smart, Trevor G; Baker, James R

    2016-07-12

    The design and synthesis of azogabazine is described, which represents a highly potent (IC50 = 23 nM) photoswitchable antagonist of the GABAA receptor. An azologization strategy is adopted, in which a benzyl phenyl ether in a high affinity gabazine analogue is replaced by an azobenzene, with resultant retention of antagonist potency. We show that cycling from blue to UV light, switching between trans and cis isomeric forms, leads to photochemically controlled antagonism of the GABA ion channel. PMID:27327397

  15. PAF receptor and "Cache-oreilles" effect. Simple PAF antagonists.

    PubMed

    Lamotte-Brasseur, J; Heymans, F; Dive, G; Lamouri, A; Batt, J P; Redeuilh, C; Hosford, D; Braquet, P; Godfroid, J J

    1991-12-01

    Nine simple and structurally flexible PAF antagonists were synthesized and their inhibitory effects on PAF induced platelet aggregation were measured. Compounds with PAF antagonistic activity exhibited a negative electrostatic potential generated by two trimethoxyphenyl groups (isocontour at -10 Kcal/mole) at various distances between the negative clouds. The optimal distance between the atoms generating the "cache-oreilles" system for exhibiting potent PAF antagonistic activity is estimated to be 11-13 A. In the flexible molecules studied, the dispersion of the electronic distribution is not necessarily favorable for anti-PAF activity. The data support the simple bipolarized model for the PAF receptor that has been proposed by the authors.

  16. Muscarinic acetylcholine receptor subtype 4 is essential for cholinergic stimulation of duodenal bicarbonate secretion in mice - relationship to D cell/somatostatin.

    PubMed

    Takeuchi, K; Kita, K; Takahashi, K; Aihara, E; Hayashi, S

    2015-06-01

    We investigated the roles of muscarinic (M) acetylcholine receptor subtype in the cholinergic stimulation of duodenal HCO3(-) secretion using knockout (KO) mice. Wild-type and M1-M5 KO C57BL/6J mice were used. The duodenal mucosa was mounted on an Ussing chamber, and HCO3(-) secretion was measured at pH 7.0 using a pH-stat method in vitro. Carbachol (CCh) or other agents were added to the serosal side. CCh dose-dependently stimulated HCO3(-) secretion in wild-type mice, and this effect was completely inhibited in the presence of atropine. The HCO3(-) response to CCh in wild-type mice was also inhibited by pirenzepine (M1 antagonist), 4DAMP (M3 antagonist), and tropicamide (M4 antagonist), but not by methoctramine (M2 antagonist). CCh stimulated HCO3(-) secretion in M2 and M5 KO animals as effectively as in WT mice; however, this stimulatory effect was significantly attenuated in M1, M3, and M4 KO mice. The decrease observed in the CCh-stimulated HCO3(-) response in M4 KO mice was reversed by the co-application of CYN154806, a somatostatin receptor type 2 (SST2) antagonist. Octreotide (a somatostatin analogue) decreased the basal and CCh-stimulated secretion of HCO3(-) in wild-type mice. The co-localized expression of somatostatin and M4 receptors was confirmed immunohistologically in the duodenum. We concluded that the duodenal HCO3(-) response to CCh was directly mediated by M1/M3 receptors and indirectly modified by M4 receptors. The activation of M4 receptors was assumed to inhibit the release of somatostatin from D cells and potentiate the HCO3(-) response by removing the negative influence of somatostatin via the activation of SST2 receptors.

  17. Expression of somatostatin receptor genes and acetylcholine receptor development in rat skeletal muscle during postnatal development.

    PubMed

    Peng, M; Conforti, L; Millhorn, D E

    1998-05-01

    Our laboratory reported previously that somatostatin (SST) is transiently expressed in rat motoneurons during the first 14 days after birth. We investigated the possibility that the SST receptor (SSTR) is expressed in skeletal muscle. We found that two of the five subtypes of SSTR (SSTR3 and SSTR4) are expressed in skeletal muscle with a time course that correlates with the transient expression of SST in motoneurons. In addition, SSTR2A is expressed from birth to adulthood in skeletal muscle. Both SSTR2A and SSTR4 are also expressed in L6 cells, a skeletal muscle cell line. Somatostatin acting through its receptors has been shown to stimulate tyrosine phosphatase activity in a number of different tissues. We found that several proteins (50, 65, 90, 140, 180 and 200 kDa) exhibited a reduced degree of tyrosine phosphorylation following SST treatment. Inhibition of tyrosine phosphatase activity with sodium orthovanadate increased expression of the nicotinic acetyl-choline receptor (nAChR) epsilon subunit mRNA by three fold. Somatostatin reversed the elevated epsilon mRNA following orthovanadate treatment. These findings show that SSTR is expressed in skeletal muscle and that SST acting via the SSTR regulates tyrosine phosphorylation and expression of the epsilon subunit of the AChR in the rat skeletal muscle. PMID:9852305

  18. Chimeric, mutant orexin receptors show key interactions between orexin receptors, peptides and antagonists.

    PubMed

    Tran, Da-Thao; Bonaventure, Pascal; Hack, Michael; Mirzadegan, Taraneh; Dvorak, Curt; Letavic, Michael; Carruthers, Nicholas; Lovenberg, Timothy; Sutton, Steven W

    2011-09-30

    Orexin receptor antagonists are being investigated as therapeutic agents for insomnia and addictive disorders. In this study the interactions between the orexin receptors (orexin 1 receptor and orexin 2 receptor), orexin peptides, and small molecule orexin antagonists were explored. To study these phenomena, a variety of mutant orexin receptors was made and tested using receptor binding and functional assays. Domains of the two orexin receptors were exchanged to show the critical ligand binding domains for orexin peptides and representative selective orexin receptor antagonists. Results from domain exchanges between the orexin receptors suggest that transmembrane domain 3 is crucially important for receptor interactions with small molecule antagonists. These data also suggest that the orexin peptides occupy a larger footprint, interacting with transmembrane domain 1, the amino terminus and transmembrane domain 5 as well as transmembrane domain 3. Transmembrane domain 3 has been shown to be an important part of the small molecule binding pocket common to rhodopsin and β2-adrenergic receptors. Additional orexin receptor 2 point mutations were made based on the common arrangement of receptor transmembrane domains shown in the G-protein coupled receptor crystal structure literature and the impact of orexin 2 receptor residue threonine 135 on the ligand selectivity of the 2 orexin receptors. These data support a model of the orexin receptor binding pocket in which transmembrane domains 3 and 5 are prominent contributors to ligand binding and functional activity. The data also illustrate key contact points for ligand interactions in the consensus small molecule pocket of these receptors.

  19. Thinking in cycles: MWC is a good model for acetylcholine receptor-channels

    PubMed Central

    Auerbach, Anthony

    2012-01-01

    Abstract Neuromuscular acetylcholine receptors have long been a model system for understanding the mechanisms of operation of ligand-gated ion channels and fast chemical synapses. These five subunit membrane proteins have two allosteric (transmitter) binding sites and a distant ion channel domain. Occupation of the binding sites by agonist molecules transiently increases the probability that the channel is ion-permeable. Recent experiments show that the Monod, Wyman and Changeux formalism for allosteric proteins, originally developed for haemoglobin, is an excellent model for acetylcholine receptors. By using mutations and single-channel electrophysiology, the gating equilibrium constants for receptors with zero, one or two bound agonist molecules, and the agonist association and dissociation rate constants from both the closed- and open-channel conformations, have been estimated experimentally. The change in affinity for each transmitter molecule between closed and open conformations provides ∼–5.1 kcal mol−1 towards the global gating isomerization of the protein. PMID:21807612

  20. Pharmacologically Distinct Nicotinic Acetylcholine Receptors Drive Efferent-Mediated Excitation in Calyx-Bearing Vestibular Afferents

    PubMed Central

    Kewin, Kevin; Jordan, Paivi M.; Cameron, Peter; Klapczynski, Marcin; McIntosh, J. Michael; Crooks, Peter A.; Dwoskin, Linda P.; Lysakowski, Anna

    2015-01-01

    Electrical stimulation of vestibular efferent neurons rapidly excites the resting discharge of calyx/dimorphic (CD) afferents. In turtle, this excitation arises when acetylcholine (ACh), released from efferent terminals, directly depolarizes calyceal endings by activating nicotinic ACh receptors (nAChRs). Although molecular biological data from the peripheral vestibular system implicate most of the known nAChR subunits, specific information about those contributing to efferent-mediated excitation of CD afferents is lacking. We sought to identify the nAChR subunits that underlie the rapid excitation of CD afferents and whether they differ from α9α10 nAChRs on type II hair cells that drive efferent-mediated inhibition in adjacent bouton afferents. We recorded from CD and bouton afferents innervating the turtle posterior crista during electrical stimulation of vestibular efferents while applying several subtype-selective nAChR agonists and antagonists. The α9α10 nAChR antagonists, α-bungarotoxin and α-conotoxin RgIA, blocked efferent-mediated inhibition in bouton afferents while leaving efferent-mediated excitation in CD units largely intact. Conversely, 5-iodo-A-85380, sazetidine-A, varenicline, α-conotoxin MII, and bPiDDB (N,N-dodecane-1,12-diyl-bis-3-picolinium dibromide) blocked efferent-mediated excitation in CD afferents without affecting efferent-mediated inhibition in bouton afferents. This pharmacological profile suggested that calyceal nAChRs contain α6 and β2, but not α9, nAChR subunits. Selective blockade of efferent-mediated excitation in CD afferents distinguished dimorphic from calyx afferents by revealing type II hair cell input. Dimorphic afferents differed in having higher mean discharge rates and a mean efferent-mediated excitation that was smaller in amplitude yet longer in duration. Molecular biological data demonstrated the expression of α9 in turtle hair cells and α4 and β2 in associated vestibular ganglia. PMID:25716861

  1. The neuromedin B receptor antagonist, BIM-23127, is a potent antagonist at human and rat urotensin-II receptors.

    PubMed

    Herold, Christopher L; Behm, David J; Buckley, Peter T; Foley, James J; Wixted, William E; Sarau, Henry M; Douglas, Stephen A

    2003-05-01

    The functional activity of the peptidic neuromedin B receptor antagonist BIM-23127 was investigated at recombinant and native urotensin-II receptors (UT receptors). Human urotensin-II (hU-II) promoted intracellular calcium mobilization in HEK293 cells expressing the human UT (hUT) or rat UT (rUT) receptors with pEC(50) values of 9.80+/-0.34 (n=6) and 9.06+/-0.32 (n=4), respectively. While BIM-23127 alone had no effect on calcium responses in either cell line, it was a potent and competitive antagonist at both hUT (pA(2)=7.54+/-0.14; n=3) and rUT (pA(2)=7.70+/-0.05; n=3) receptors. Furthermore, BIM-23127 reversed hU-II-induced contractile tone in the rat-isolated aorta with a pIC(50) of 6.66+/-0.04 (n=4). In conclusion, BIM- 23127 is the first hUT receptor antagonist identified to date and should not be considered as a selective neuromedin B receptor antagonist. PMID:12770925

  2. Are CB1 Receptor Antagonists Nootropic or Cognitive Impairing Agents?

    PubMed Central

    Varvel, Stephen A.; Wise, Laura E.; Lichtman, Aron H.

    2010-01-01

    For more than a decade, a considerable amount of research has examined the effects of rimonabant (SR 141716) and other CB1 receptor antagonists in both in vivo and in vitro models of learning and memory. In addition to its utility in determining whether the effects of drugs are mediated though a CB1 receptor mechanism of action, these antagonists are useful in providing insight into the physiological function of the endogenous cannabinoid system. Several groups have reported that CB1 receptor antagonists enhance memory duration in a variety of spatial and operant paradigms, but not in all paradigms. Conversely, disruption of CB1 receptor signaling also impairs extinction learning in which the animal actively suppresses a learned response when reinforcement has been withheld. These extinction deficits occur in aversively motivated tasks, such as in fear conditioning or escape behavior in the Morris water maze task, but not in appetitively motivated tasks. Similarly, in electrophysiological models, CB1 receptor antagonists elicit a variety of effects, including enhancement of long-term potentiation (LTP), while disrupting long-term depression (LTD) and interfering with transient forms of plasticity, including depolarization-induced suppression of inhibition (DSI) and depolarization-induced suppression of excitation (DSE). The collective results of the in vivo and in vitro studies employing CB1 receptor antagonists, demonstrate that these receptors play integral roles in different components of cognitive processing. Functionally, pharmacological blockade of CB1 receptors may strengthen memory duration, but interferes with extinction of learned behaviors that are associated with traumatic or aversive memories. PMID:20539824

  3. Expression of muscarinic acetylcholine and dopamine receptor mRNAs in rat basal ganglia

    SciTech Connect

    Weiner, D.M. Howard Hughes Medical Inst., Bethesda, MD ); Levey, A.I. Johns Hopkins Univ., Baltimore, MD ); Brann, M.R. )

    1990-09-01

    Within the basal ganglia, acetylcholine and dopamine play a central role in the extrapyramidal control of motor function. The physiologic effects of these neurotransmitters are mediated by a diversity of receptor subtypes, several of which have now been cloned. Muscarinic acetylcholine receptors are encoded by five genes (m1-m5), and of the two known dopamine receptor subtypes (D1 and D2) the D2 receptor gene has been characterized. To gain insight into the physiological roles of each of these receptor subtypes, the authors prepared oligodeoxynucleotide probes to localize receptor subtype mRNAs within the rat striatum and substantia nigra by in situ hybridization histochemistry. Within the striatum, three muscarinic (m1, m2, m4) receptor mRNAs and the D2 receptor mRNA were detected. The m1 mRNA was expressed in most neurons; the m2 mRNA, in neurons which were both very large and rare; and the m4 and D2 mRNAs, in 40-50% of the neurons, one-third of which express both mRNAs. Within the substantia nigra, pars compacta, only the m5 and D2 mRNAs were detected, and most neurons expressed both mRNAs. These data provide anatomical evidence for the identity of the receptor subtypes which mediate the diverse effects of muscarinic and dopaminergic drugs on basal ganglia function.

  4. Discovery of Tertiary Sulfonamides as Potent Liver X Receptor Antagonists

    SciTech Connect

    Zuercher, William J.; Buckholz†, Richard G.; Campobasso, Nino; Collins, Jon L.; Galardi, Cristin M.; Gampe, Robert T.; Hyatt, Stephen M.; Merrihew, Susan L.; Moore, John T.; Oplinger, Jeffrey A.; Reid, Paul R.; Spearing, Paul K.; Stanley, Thomas B.; Stewart, Eugene L.; Willson, Timothy M.

    2010-08-12

    Tertiary sulfonamides were identified in a HTS as dual liver X receptor (LXR, NR1H2, and NR1H3) ligands, and the binding affinity of the series was increased through iterative analogue synthesis. A ligand-bound cocrystal structure was determined which elucidated key interactions for high binding affinity. Further characterization of the tertiary sulfonamide series led to the identification of high affinity LXR antagonists. GSK2033 (17) is the first potent cell-active LXR antagonist described to date. 17 may be a useful chemical probe to explore the cell biology of this orphan nuclear receptor.

  5. Histamine 2 Receptor Antagonists and Proton Pump Inhibitors.

    PubMed

    Brinkworth, Megan D; Aouthmany, Mouhammad; Sheehan, Michael

    2016-01-01

    Within the last 50 years, the pharmacologic market for gastric disease has grown exponentially. Currently, medical management with histamine 2 receptor antagonist and proton pump inhibitors are the mainstay of therapy over surgical intervention. These are generally regarded as safe medications, but there are growing numbers of cases documenting adverse effects, especially those manifesting in the skin. Here we review the pharmacology, common clinical applications, and adverse reactions of both histamine 2 receptor antagonists and proton pump inhibitors with a particular focus on the potential for allergic reactions including allergic contact dermatitis. PMID:27172303

  6. Acetylcholine receptor-inducing factor from chicken brain increases the level of mRNA encoding the receptor. alpha. subunit

    SciTech Connect

    Harris, D.A.; Falls, D.L.; Dill-Devor, R.M.; Fischbach, G.D. )

    1988-03-01

    A 42-kDa glycoprotein isolated from chicken brain, referred to as acetylcholine receptor-inducing activity (ARIA), that stimulates the rate of incorporation of acetylcholine receptors into the surface of chicken myotubes may play a role in the nerve-induced accumulation of receptors at developing neuromuscular synapses. Using nuclease-protection assays, the authors have found that ARIA causes a 2- to 16-fold increase in the level of mRNA encoding the {alpha} subunit of the receptor, with little or no change in the levels of {gamma}- and {delta}-subunit messengers. ARIA also increases the amount of a putative nuclear precursor of {alpha}-subunit mRNA, consistent with an activation of gene transcription. These results suggest that the concentration of {alpha} subunit may limit the rate of biosynthesis of the acetylcholine receptors in chicken myotubes. They also indicate that neuronal factors can regulate the expression of receptor subunit genes in a selective manner. Tetrodotoxin, 8-bromo-cAMP, and forskolin also increase the amount of {alpha}-subunit mRNA, with little change in the amount of {gamma}- and {delta}-subunit mRNAs. Unlike ARIA, however, these agents have little effect on the concentration of the {alpha}-subunit nuclear precursor.

  7. Procognitive and neuroprotective activity of a novel alpha7 nicotinic acetylcholine receptor agonist for treatment of neurodegenerative and cognitive disorders.

    PubMed

    Roncarati, Renza; Scali, Carla; Comery, Thomas A; Grauer, Steven M; Aschmi, Suzan; Bothmann, Hendrick; Jow, Brian; Kowal, Dianne; Gianfriddo, Marco; Kelley, Cody; Zanelli, Ugo; Ghiron, Chiara; Haydar, Simon; Dunlop, John; Terstappen, Georg C

    2009-05-01

    The alpha7 nicotinic acetylcholine receptor (nAChR) is a promising target for treatment of cognitive dysfunction associated with Alzheimer's disease and schizophrenia. Here, we report the pharmacological properties of 5-morpholin-4-yl-pentanoic acid (4-pyridin-3-yl-phenyl)-amide [SEN12333 (WAY-317538)], a novel selective agonist of alpha7 nAChR. SEN12333 shows high affinity for the rat alpha7 receptor expressed in GH4C1 cells (K(i) = 260 nM) and acts as full agonist in functional Ca(2+) flux studies (EC(50) = 1.6 microM). In whole-cell patch-clamp recordings, SEN12333 activated peak currents and maximal total charges similar to acetylcholine (EC(50) = 12 microM). The compound did not show agonist activity at other nicotinic receptors tested and acted as a weak antagonist at alpha3-containing receptors. SEN12333 treatment (3 mg/kg i.p.) improved episodic memory in a novel object recognition task in rats in conditions of spontaneous forgetting as well as cognitive disruptions induced via glutamatergic [5H-dibenzo[a,d]cyclohepten-5,10-imine (dizocilpine maleate); MK-801] or cholinergic (scopolamine) mechanisms. This improvement was blocked by the alpha7-selective antagonist methyllycaconitine, indicating that it is mediated by alpha7 activation. SEN12333 also prevented a scopolamine-induced deficit in a passive avoidance task. In models targeting other cognitive domains, including attention and perceptual processing, SEN12333 normalized the apomorphine-induced deficit of prepulse inhibition. Neuroprotection of SEN12333 was demonstrated in quisqualate-lesioned animals in which treatment with SEN12333 (3 mg/kg/day i.p.) resulted in a significant protection of choline acetyltransferase-positive neurons in the lesioned hemisphere. Cumulatively, our results demonstrate that the novel alpha7 nAChR agonist SEN12333 has procognitive and neuroprotective properties, further demonstrating utility of alpha7 agonists for treatment of neurodegenerative and cognitive disorders.

  8. Neuroprotection by NMDA receptor antagonists in a variety of neuropathologies.

    PubMed

    Palmer, G C

    2001-09-01

    Because of adverse reactions, early efforts to introduce high affinity competitive or use-dependent NMDA receptor antagonists into patients suffering from stroke, head trauma or epilepsy met with failure. Later it was discovered that both low affinity use-dependent NMDA receptor antagonists and compounds with selective affinity for the NR2B receptor subunit met the criteria for safe administration into patients. Furthermore, these low affinity antagonists exhibit significant mechanistic differences from their higher affinity counterparts. Success of the latter is attested to the ability of the following low affinity compounds to be marketed: 1) Cough suppressant-dextromethorphan (available for decades); 2) Parkinson's disease--amantadine, memantine and budipine; 3) Dementia--memantine; and 4) Epilepsy--felbamate. Moreover, Phase III clinical trials are ongoing with remacemide for epilepsy and Huntington's disease and head trauma for HU-211. A host of compounds are or were under evaluation for the possible treatment of stroke, head trauma, hyperalgesia and various neurodegenerative disorders. Despite the fact that other drugs with associated NMDA receptor mechanisms have reached clinical status, this review focuses only on those competitive and use-dependent NMDA receptor antagonists that reached clinical trails. The ensuing discussions link the in vivo pharmacological investigations that led to the success/mistakes/ failures for eventual testing of promising compounds in the clinic. PMID:11554551

  9. Possible involvement of endogenous opioid system located downstream of α7 nicotinic acetylcholine receptor in mice with physical dependence on nicotine.

    PubMed

    Ueno, Keiko; Kiguchi, Norikazu; Kobayashi, Yuka; Saika, Fumihiro; Wakida, Naoki; Yamamoto, Chizuko; Maeda, Takehiko; Ozaki, Masanobu; Kishioka, Shiroh

    2014-01-01

    We previously reported that nicotine (NIC)-induced analgesia was elicited in part by activation of the endogenous opioid system. Moreover, it is well known that NIC has physical-dependence liability, but its mechanism is unclear. Therefore, we examined whether physical dependence on NIC was mediated by activation of the endogenous opioid system in ICR mice. We evaluated increased serum corticosterone (SCS) as an indicator of NIC withdrawal, as it is a quantitative indicator of naloxone (opioid receptor antagonist, NLX)-precipitated morphine withdrawal in mice. In this study, NLX precipitated an SCS increase in mice receiving repeated NIC, by a dose-dependent mechanism, and correlated with the dose and number of days of repeated NIC administration. When an opioid receptor antagonist (naltrexone) was concomitantly administered with repeated NIC, the NLX-precipitated SCS increase was not elicited. Concomitant administration of the α7 nicotinic acetylcholine receptor (nAChR) antagonist (methyllycaconitine) with repeated NIC, but not the α4β2 nAChR antagonist (dihydro-β-erythroidine), did not elicit an SCS increase by NLX. Thus, a physical dependence on NIC was in part mediated by the activation of the endogenous opioid system, located downstream of α7 nAChR.

  10. Nicotinic acetylcholine receptors: upregulation, age-related effects and associations with drug use

    PubMed Central

    Melroy-Greif, W. E.; Stitzel, J. A.; Ehringer, M. A.

    2016-01-01

    Nicotinic acetylcholine receptors are ligand-gated ion channels that exogenously bind nicotine. Nicotine produces rewarding effects by interacting with these receptors in the brain’s reward system. Unlike other receptors, chronic stimulation by an agonist induces an upregulation of receptor number that is not due to increased gene expression in adults; while upregulation also occurs during development and adolescence there have been some opposing findings regarding a change in corresponding gene expression. These receptors have also been well studied with regard to human genetic associations and, based on evidence suggesting shared genetic liabilities between substance use disorders, numerous studies have pointed to a role for this system in comorbid drug use. This review will focus on upregulation of these receptors in adulthood, adolescence and development, as well as the findings from human genetic association studies which point to different roles for these receptors in risk for initiation and continuation of drug use. PMID:26351737

  11. Novel alkoxy-oxazolyl-tetrahydropyridine muscarinic cholinergic receptor antagonists.

    PubMed

    Shannon, H E; Bymaster, F P; Hendrix, J C; Quimby, S J; Mitch, C H

    1995-01-01

    The purpose of the present studies was to compare a novel series of alkoxy-oxazolyl-tetrahydropyridines (A-OXTPs) as muscarinic receptor antagonists. The affinity of these compounds for muscarinic receptors was determined by inhibition of [3H]pirenzepine to M1 receptors in hippocampus, [3H]QNB to M2 receptors in brainstem, and [3H]oxotremorine-M to high affinity muscarinic agonist binding sites in cortex. All of the compounds had higher affinity for [3H]pirenzepine than for [3H]QNB or [3H]oxotremorine-M labeled receptors, consistent with an interpretation that they are relatively selective M1 receptor antagonists, although none were as selective as pirenzepine. In addition, dose-response curves were determined for antagonism of oxotremorine-induced salivation (mediated by M3 receptors) and tremor (mediated by non-M1 receptors) in mice. In general, the A-OXTPs were equipotent and equieffective in antagonizing both salivation and tremor, although there were modest differences for some compounds. Dose-response curves also were determined on behavior maintained under a spatial-alternation schedule of food presentation in rats as a measure of effects on working memory. The A-OXTPs produced dose-related decreases in percent correct responding at doses three- to ten-fold lower than those which decreased rates of responding. However, only one compound, MB-OXTP, produced effects on percent correct responding consistent with a selective effect on memory as opposed to non-memory variables. The present results provide evidence that these alkoxy-oxazolyl-tetrahydropyridines are a novel series of modestly M1-selective muscarinic receptor antagonists, and that one member of the series, MB-OXTP, appears to be more selective in its effects on memory than previously studies muscarinic antagonists. PMID:7753969

  12. Crystal structures of the M1 and M4 muscarinic acetylcholine receptors.

    PubMed

    Thal, David M; Sun, Bingfa; Feng, Dan; Nawaratne, Vindhya; Leach, Katie; Felder, Christian C; Bures, Mark G; Evans, David A; Weis, William I; Bachhawat, Priti; Kobilka, Tong Sun; Sexton, Patrick M; Kobilka, Brian K; Christopoulos, Arthur

    2016-03-17

    Muscarinic M1-M5 acetylcholine receptors are G-protein-coupled receptors that regulate many vital functions of the central and peripheral nervous systems. In particular, the M1 and M4 receptor subtypes have emerged as attractive drug targets for treatments of neurological disorders, such as Alzheimer's disease and schizophrenia, but the high conservation of the acetylcholine-binding pocket has spurred current research into targeting allosteric sites on these receptors. Here we report the crystal structures of the M1 and M4 muscarinic receptors bound to the inverse agonist, tiotropium. Comparison of these structures with each other, as well as with the previously reported M2 and M3 receptor structures, reveals differences in the orthosteric and allosteric binding sites that contribute to a role in drug selectivity at this important receptor family. We also report identification of a cluster of residues that form a network linking the orthosteric and allosteric sites of the M4 receptor, which provides new insight into how allosteric modulation may be transmitted between the two spatially distinct domains. PMID:26958838

  13. Neonicotinoid Binding, Toxicity and Expression of Nicotinic Acetylcholine Receptor Subunits in the Aphid Acyrthosiphon pisum

    PubMed Central

    Taillebois, Emiliane; Beloula, Abdelhamid; Quinchard, Sophie; Jaubert-Possamai, Stéphanie; Daguin, Antoine; Servent, Denis; Tagu, Denis

    2014-01-01

    Neonicotinoid insecticides act on nicotinic acetylcholine receptor and are particularly effective against sucking pests. They are widely used in crops protection to fight against aphids, which cause severe damage. In the present study we evaluated the susceptibility of the pea aphid Acyrthosiphon pisum to the commonly used neonicotinoid insecticides imidacloprid (IMI), thiamethoxam (TMX) and clothianidin (CLT). Binding studies on aphid membrane preparations revealed the existence of high and low-affinity binding sites for [3H]-IMI (Kd of 0.16±0.04 nM and 41.7±5.9 nM) and for the nicotinic antagonist [125I]-α-bungarotoxin (Kd of 0.008±0.002 nM and 1.135±0.213 nM). Competitive binding experiments demonstrated that TMX displayed a higher affinity than IMI for [125I]-α-bungarotoxin binding sites while CLT affinity was similar for both [125I]-α-bungarotoxin and [3H]-IMI binding sites. Interestingly, toxicological studies revealed that at 48 h, IMI (LC50 = 0.038 µg/ml) and TMX (LC50 = 0.034 µg/ml) were more toxic than CLT (LC50 = 0.118 µg/ml). The effect of TMX could be associated to its metabolite CLT as demonstrated by HPLC/MS analysis. In addition, we found that aphid larvae treated either with IMI, TMX or CLT showed a strong variation of nAChR subunit expression. Using semi-quantitative PCR experiments, we detected for all insecticides an increase of Apisumα10 and Apisumβ1 expressions levels, whereas Apisumβ2 expression decreased. Moreover, some other receptor subunits seemed to be differently regulated according to the insecticide used. Finally, we also demonstrated that nAChR subunit expression differed during pea aphid development. Altogether these results highlight species specificity that should be taken into account in pest management strategies. PMID:24801634

  14. Central role of fibroblast alpha3 nicotinic acetylcholine receptor in mediating cutaneous effects of nicotine.

    PubMed

    Arredondo, Juan; Hall, Leon L; Ndoye, Assane; Nguyen, Vu Thuong; Chernyavsky, Alexander I; Bercovich, Dani; Orr-Urtreger, Avi; Beaudet, Arthur L; Grando, Sergei A

    2003-02-01

    Smoking is associated with aberrant cutaneous tissue remodeling, such as precocious skin aging and impaired wound healing. The mechanism is not fully understood. Dermal fibroblasts (DF) are the primary cellular component of the dermis and may provide a target for pathobiologic effects of tobacco products. The purpose of this study was to characterize a mechanism of nicotine (Nic) effects on the growth and tissue remodeling function of DF. We hypothesized that the effects of Nic on DF result from its binding to specific nicotinic acetylcholine receptors (nAChRs) expressed by these cells and that downstream signaling from the receptors alters normal cell functioning, leading to changes in skin homeostasis. Using RT-PCR and Western blotting, we found that a 24-hour exposure of human DF to 10 micro M Nic causes a 1.9- to 28-fold increase of the mRNA and protein levels of the cell cycle regulators p21, cyclin D1, Ki-67, and PCNA and a 1.7- to 2-fold increase of the apoptosis regulators Bcl-2 and caspase 3. Nic exposure also up-regulated expression of the dermal matrix proteins collagen type Ialpha1 and elastin as well as matrix metalloproteinase-1. Mecamylamine (Mec), the specific antagonist of nAChRs, abolished Nic-induced alterations, indicating that they resulted from a pharmacologic stimulation of nAChRs expressed by DF. To establish the relevance of these findings to a specific nicotinergic pathway, we studied human DF transfected with anti-alpha3 antisense oligonucleotides and murine DF from alpha3 nAChR knockout mice. In both cases, lack of alpha3 was associated with alterations in fibroblast growth and function that were opposite to those observed in DF treated with Nic, suggesting that the nicotinic effects on DF were mostly mediated by alpha3 nAChR. In addition to alpha3, the nAChR subunits detected in human DF were alpha5, alpha7, beta2, and beta4. The exposure of DF to Nic altered the relative amounts of each of these subunits, leading to reciprocal changes

  15. Turnover of acetylcholine receptors: Mechanisms of regulation. Final report, 1 August 1985-30 November 1990

    SciTech Connect

    Drachman, D.B.

    1990-12-31

    The synthesis, insertion and degradation of acetylcholine receptors (AChRs) of skeletal muscle cells as closely regulated both by the muscle cells and by the motor nerves that supply them. The goal of this project is to elucidate the mechanisms of regulation of the AChRs, both at the neuromuscular junctional and at extrajunctional regions. The results of our studies on junctional AChRs have shown that: Both stable and rapidly turned over (RTO) AChRs are present at normally innervated neuromuscular junctions` Synthesis and insertion of AChRs at neuromuscular junctions occurs rapidly, at a rate consistent with the rapid rate of turnover of RTOs. RTOs serve as precursors of stable AChRs. Acetylcholine receptors, RA5 Neuromuscular junctions, Motor nerves.

  16. Anomalous interaction of the acetylcholine receptor protein with the nonionic detergent Triton X-114.

    PubMed

    Maher, P A; Singer, S J

    1985-02-01

    Integral membrane proteins that form water-filled channels through membranes often exist as aggregates of similar or identical subunits spanning the membrane. It has been suggested that the insertion into the membrane of the channel-forming domains of the subunits may impart unusual structural features to the membrane-intercalated portions of the protein. To test this proposal, we have investigated the interaction of a multisubunit channel-forming integral membrane protein, the acetylcholine receptor protein, with the nonionic detergent Triton X-114. Whereas non-channel-forming integral membrane proteins that have heretofore been studied form mixed micelles with the detergent, the acetylcholine receptor was excluded from the Triton X-114 micelles. The structural implications of this result are discussed.

  17. Anomalous Interaction of the Acetylcholine Receptor Protein with the Nonionic Detergent Triton X-114

    NASA Astrophysics Data System (ADS)

    Maher, Pamela A.; Singer, S. J.

    1985-02-01

    Integral membrane proteins that form water-filled channels through membranes often exist as aggregates of similar or identical subunits spanning the membrane. It has been suggested that the insertion into the membrane of the channel-forming domains of the subunits may impart unusual structural features to the membrane-intercalated portions of the protein. To test this proposal, we have investigated the interaction of a multisubunit channel-forming integral membrane protein, the acetylcholine receptor protein, with the nonionic detergent Triton X-114. Whereas non-channel-forming integral membrane proteins that have heretofore been studied from mixed micelles with the detergent, the acetylcholine receptor was excluded from the Triton X-114 micelles. The structural implications of this result are discussed.

  18. A human embryonic lung fibroblast with a high density of muscarinic acetylcholine receptors.

    PubMed

    André, C; Marullo, S; Convents, A; Lü, B Z; Guillet, J G; Hoebeke, J; Strosberg, D A

    1988-01-15

    Binding studies with the radiolabeled muscarinic antagonists dexetimide, quinuclidinyl benzilate and N-methylscopolamine showed that the human embryonic lung fibroblast CCL137 possesses approximately 2 X 10(5) muscarinic receptors/cell, i.e. 2.1 pmol/mg membrane protein. These receptors showed a marked stereoselectivity towards dexetimide and levetimide and only low affinity for another antagonist, pirenzepine. The muscarinic agonist carbamylcholine inhibited forskolin-stimulated adenylate cyclase and induced phosphatidylinositide turnover in the intact cells. Both effects were inhibited by the muscarinic antagonist atropine. Affinity labeling with tritiated propylbenzylcholine mustard revealed a protein of 72 kDa. Finally, down-regulation of the membrane receptors following prolonged treatment with the agonist carbamylcholine was assessed by means of the hydrophilic antagonist N-methylscopolamine. PMID:2828056

  19. Disubstituted piperidines as potent Orexin (hypocretin) receptor antagonists

    PubMed Central

    Jiang, Rong; Song, Xinyi; Bali, Purva; Smith, Anthony; Bayona, Claudia Ruiz; Lin, Li; Cameron, Michael D.; McDonald, Patricia H.; Kenny, Paul J.

    2012-01-01

    A series of orexin receptor antagonists was synthesized based on a substituted piperidine scaffold. Through traditional medicinal chemistry structure activity relationships (SAR), installation of various groups at the 3–6-positions of the piperidine led to modest enhancement in receptor selectivity. Compounds were profiled in vivo for plasma and brain levels in order to identify candidates suitable for efficacy in a model of drug addiction. PMID:22617492

  20. The distribution of cerebral muscarinic acetylcholine receptors in vivo in patients with dementia. A controlled study with 123IQNB and single photon emission computed tomography

    SciTech Connect

    Weinberger, D.R.; Gibson, R.; Coppola, R.; Jones, D.W.; Molchan, S.; Sunderland, T.; Berman, K.F.; Reba, R.C. )

    1991-02-01

    A high-affinity muscarinic receptor antagonist, 123IQNB (3-quinuclidinyl-4-iodobenzilate labeled with iodine 123), was used with single photon emission computed tomography to image muscarinic acetylcholine receptors in 14 patients with dementia and in 11 healthy controls. High-resolution single photon emission computed tomographic scanning was performed 21 hours after the intravenous administration of approximately 5 mCi of IQNB. In normal subjects, the images of retained ligand showed a consistent regional pattern that correlated with postmortem studies of the relative distribution of muscarinic receptors in the normal human brain, having high radioactivity counts in the basal ganglia, occipital cortex, and insular cortex, low counts in the thalamus, and virtually no counts in the cerebellum. Eight of 12 patients with a clinical diagnosis of Alzheimer's disease had obvious focal cortical defects in either frontal or posterior temporal cortex. Both patients with a clinical diagnosis of Pick's disease had obvious frontal and anterior temporal defects. A region of interest statistical analysis of relative regional activity revealed a significant reduction bilaterally in the posterior temporal cortex of the patients with Alzheimer's disease compared with controls. This study demonstrates the practicability of acetylcholine receptor imaging with 123IQNB and single photon emission computed tomography. The data suggest that focal abnormalities in muscarinic binding in vivo may characterize some patients with Alzheimer's disease and Pick's disease, but further studies are needed to address questions about partial volume artifacts and receptor quantification.

  1. In vivo Therapy with Monoclonal Anti-I-A Antibody Suppresses Immune Responses to Acetylcholine Receptor

    NASA Astrophysics Data System (ADS)

    Waldor, Matthew K.; Sriram, Subramaniam; McDevitt, Hugh O.; Steinman, Lawrence

    1983-05-01

    A monoclonal antibody to I-A gene products of the immune response gene complex attenuates both humoral and cellular responses to acetylcholine receptor and appears to suppress clinical manifestations of experimental autoimmune myasthenia gravis. This demonstrates that use of antibodies against immune response gene products that are associated with susceptibility to disease may be feasible for therapy in autoimmune conditions such as myasthenia gravis.

  2. Electron microscopic evidence for nucleation and growth of 3D acetylcholine receptor microcrystals in structured lipid-detergent matrices.

    PubMed

    Paas, Yoav; Cartaud, Jean; Recouvreur, Michel; Grailhe, Regis; Dufresne, Virginie; Pebay-Peyroula, Eva; Landau, Ehud M; Changeux, Jean-Pierre

    2003-09-30

    Nicotinic acetylcholine receptors (AChRs) belong to a superfamily of oligomeric proteins that transduce electric signals across the cell membrane on binding of neurotransmitters. These receptors harbor a large extracellular ligand-binding domain directly linked to an ion-conducting channel-forming domain that spans the cell membrane 20 times and considerably extends into the cytoplasm. Thus far, none of these receptor channels has been crystallized in three dimensions. The crystallization of the AChR from Torpedo marmorata electric organs is challenged here in lipidic-detergent matrices. Detergent-soluble AChR complexed with alpha-bungarotoxin (alphaBTx), a polypeptidic competitive antagonist, was purified. The AChR-alphaBTx complex was reconstituted in a lipidic matrix composed of monoolein bilayers that are structured in three dimensions. The alphaBTx was conjugated to a photo-stable fluorophore, enabling us to monitor the physical behavior of the receptor-toxin complex in the lipidic matrix under light stereomicroscope, and to freeze fracture regions containing the receptor-toxin complex for visualization under a transmission electron microscope. Conditions were established for forming 2D receptor-toxin lattices that are stacked in the third dimension. 3D AChR nanocrystals were thereby grown inside the highly viscous lipidic 3D matrix. Slow emulsification of the lipidic matrix converted these nanocrystals into 3D elongated thin crystal plates of micrometer size. The latter are stable in detergent-containing aqueous solutions and can currently be used for seeding and epitaxial growth, en route to crystals of appropriate dimensions for x-ray diffraction studies.

  3. Actin at receptor-rich domains of isolated acetylcholine receptor clusters.

    PubMed

    Bloch, R J

    1986-04-01

    Acetylcholine receptor (AChR) clusters of cultured rat myotubes, isolated by extraction with saponin (Bloch, R. J., 1984, J. Cell Biol. 99:984-993), contain a polypeptide that co-electrophoreses with purified muscle actins. A monoclonal antibody against actin reacts in immunoblots with this polypeptide and with purified actins. In indirect immunofluorescence, the antibody stains isolated AChR clusters only at AChR domains, strips of membrane within clusters that are rich in receptor. It also stains the postsynaptic region of the neuromuscular junction of adult rat skeletal muscle. Semiquantitative immunofluorescence analyses show that labeling by antiactin of isolated analyses show that labeling by antiactin of isolated AChR clusters is specific and saturable and that it varies linearly with the amount of AChR in the cluster. Filaments of purified gizzard myosin also bind preferentially at AChR-rich regions, and this binding is inhibited by MgATP. These experiments suggest that actin is associated with AChR-rich regions of receptor clusters. Depletion of actin by extraction of isolated clusters at low ionic strength selectively releases the actin-like polypeptide from the preparation. Simultaneously, AChRs redistribute within the plane of the membrane of the isolated clusters. Similarly, brief digestion with chymotrypsin reduces immunofluorescence staining and causes AChR redistribution. Treatments that deplete AChR from clusters in intact cells also reduce immunofluorescent staining for actin in isolated muscle membrane fragments. Upon reversal of these treatments, cluster reformation occurs in regions of the membrane that also stain for actin. I conclude that actin is associated with AChR domains and that changes in this association are accompanied by changes in the organization of isolated AChR clusters.

  4. Role for M5 muscarinic acetylcholine receptors in cocaine addiction.

    PubMed

    Fink-Jensen, Anders; Fedorova, Irina; Wörtwein, Gitta; Woldbye, David P D; Rasmussen, Thøger; Thomsen, Morgane; Bolwig, Tom G; Knitowski, Karen M; McKinzie, David L; Yamada, Masahisa; Wess, Jürgen; Basile, Anthony

    2003-10-01

    Muscarinic cholinergic receptors of the M5 subtype are expressed by dopamine-containing neurons of the ventral tegmentum. These M5 receptors modulate the activity of midbrain dopaminergic neurons, which play an important role in mediating reinforcing properties of abused psychostimulants like cocaine. The potential role of M5 receptors in the reinforcing effects of cocaine was investigated using M5 receptor-deficient mice in a model of acute cocaine self-administration. The M5-deficient mice self-administered cocaine at a significantly lower rate than wild-type controls. In the conditioned place preference procedure, a classic test for evaluating the rewarding properties of drugs, M5-deficient mice spent significantly less time in the cocaine-paired compartment than control mice. Moreover, the severity of the cocaine withdrawal syndrome (withdrawal-associated anxiety measured in the elevated plus-maze) was significantly attenuated in mice lacking the M5 receptor. These results demonstrate that M5 receptors play an important role in mediating both cocaine-associated reinforcement and withdrawal.

  5. Expression of a Drosophila melanogaster acetylcholine receptor-related gene in the central nervous system

    SciTech Connect

    Wadsworth, S.C.; Rosenthal, L.S.; Kammermeyer, K.L.; Potter, M.B.; Nelson, D.J.

    1988-02-01

    The authors isolated Drosophila melanogaster genomic sequences with nucleotide and amino acid sequence homology to subunits of vertebrate acetylcholine receptor by hybridization with a Torpedo acetylcholine receptor subunit cDNA probe. Five introns are present in the portion of the Drosophila gene encoding the unprocessed protein and are positionally conserved relative to the human acetylcholine receptor alpha-subunit gene. The Drosophila genomic clone hybridized to salivary gland polytene chromosome 3L within region 64B and was termed AChR64B. A 3-kilobasae poly(A)-containing transcript complementary to the AChR64B clone was readily detectable by RNA blot hybridizations during midembryogenesis, during metamorphosis, and in newly enclosed adults. AChR64B transcripts were localized to the cellular regions of the central nervous system during embryonic, larval, pupal, and adult stages of development. During metamorphosis, a temporal relationship between the morphogenesis of the optic lobe and expression of AChR64B transcripts was observed.

  6. The comparative pharmacokinetics of H1-receptor antagonists.

    PubMed

    Simons, F E; Simons, K J; Chung, M; Yeh, J

    1987-12-01

    H1-receptor antagonists appear to be absorbed rapidly after oral administration, with peak serum concentrations being reached one to three hours after a dose. For most of these drugs, the absolute bioavailability is unknown because no intravenous formulations are available for comparative purposes. The serum elimination half-life values of these agents are variable: a few hours for terfenadine and triprolidine; about 9 hours for cetirizine, azatadine, and loratadine; from 20 to 25 hours for hydroxyzine, chlorpheniramine, and brompheniramine; and from 5 to 14 days for astemizole. Few pharmacokinetic studies of H1-receptor antagonists in children have been reported. However, it is known that chlorpheniramine, hydroxyzine, cetirizine, and terfenadine have shorter elimination half-life values in children than in adults. Regardless of the age of patients, for most of the H1-receptor antagonists the apparent volumes of distribution and total body clearances appear to be large (3.4 to 18.5 L/kg and 4.4 to 32.1 mL/min/kg, respectively). Cetirizine is an exception, with values of 0.8 L/kg and 0.5 mL/min/kg. Urinary excretion of unchanged antihistamine is higher after cetirizine (60% of dose) than any other H1 blocker. For H1-receptor antagonists with long half-life values, steady state may not be reached for several days (chlorpheniramine and brompheniramine) or several weeks (astemizole), and significant accumulation of drug occurs if the dosing interval is more frequent than every half-life. There is no evidence for the introduction of metabolism of H1-receptor antagonists, even after months of treatment.

  7. Extra-helical binding site of a glucagon receptor antagonist.

    PubMed

    Jazayeri, Ali; Doré, Andrew S; Lamb, Daniel; Krishnamurthy, Harini; Southall, Stacey M; Baig, Asma H; Bortolato, Andrea; Koglin, Markus; Robertson, Nathan J; Errey, James C; Andrews, Stephen P; Teobald, Iryna; Brown, Alastair J H; Cooke, Robert M; Weir, Malcolm; Marshall, Fiona H

    2016-05-12

    Glucagon is a 29-amino-acid peptide released from the α-cells of the islet of Langerhans, which has a key role in glucose homeostasis. Glucagon action is transduced by the class B G-protein-coupled glucagon receptor (GCGR), which is located on liver, kidney, intestinal smooth muscle, brain, adipose tissue, heart and pancreas cells, and this receptor has been considered an important drug target in the treatment of diabetes. Administration of recently identified small-molecule GCGR antagonists in patients with type 2 diabetes results in a substantial reduction of fasting and postprandial glucose concentrations. Although an X-ray structure of the transmembrane domain of the GCGR has previously been solved, the ligand (NNC0640) was not resolved. Here we report the 2.5 Å structure of human GCGR in complex with the antagonist MK-0893 (ref. 4), which is found to bind to an allosteric site outside the seven transmembrane (7TM) helical bundle in a position between TM6 and TM7 extending into the lipid bilayer. Mutagenesis of key residues identified in the X-ray structure confirms their role in the binding of MK-0893 to the receptor. The unexpected position of the binding site for MK-0893, which is structurally similar to other GCGR antagonists, suggests that glucagon activation of the receptor is prevented by restriction of the outward helical movement of TM6 required for G-protein coupling. Structural knowledge of class B receptors is limited, with only one other ligand-binding site defined--for the corticotropin-releasing hormone receptor 1 (CRF1R)--which was located deep within the 7TM bundle. We describe a completely novel allosteric binding site for class B receptors, providing an opportunity for structure-based drug design for this receptor class and furthering our understanding of the mechanisms of activation of these receptors. PMID:27111510

  8. Mode of action of the positive modulator PNU-120596 on α7 nicotinic acetylcholine receptors.

    PubMed

    Szabo, Anett K; Pesti, Krisztina; Mike, Arpad; Vizi, E Sylvester

    2014-06-01

    We investigated the mode of action of PNU-120596, a type II positive allosteric modulator of the rat α7 nicotinic acetylcholine receptor expressed by GH4C1 cells, using patch-clamp and fast solution exchange. We made two important observations: first, while PNU-120596 rapidly associated to desensitized receptors, it had at least hundredfold lower affinity to resting conformation, therefore at 10 μM concentration it dissociated from resting receptors; and second, binding of PNU-120596 slowed down dissociation of choline molecules from the receptor radically. We propose that when agonist concentration is transiently elevated in the continuous presence of the modulator (as upon the neuronal release of acetylcholine in a modulator-treated animal) these two elements together cause occurrence of a cycle of events: Binding of the modulator is limited in the absence of the agonist. When the agonist is released, it binds to the receptor, and induces desensitization, thereby enabling modulator binding. Modulator binding in turn traps the agonist within its binding site for a prolonged period of time. Once the agonist finally dissociated, the modulator can also dissociate without re-binding, and the receptor assumes its original resting conformation. In kinetic simulations this "trapped agonist cycle" mechanism did not require that the orthosteric and allosteric ligands symmetrically modify each other's affinity, only the modulator must decrease agonist accessibility, and the agonist must induce a conformation that is accessible to the modulator. This mechanism effectively prolongs and amplifies the effect of the agonist. PMID:24486377

  9. Clinical pharmacokinetics and pharmacodynamics of the endothelin receptor antagonist macitentan.

    PubMed

    Sidharta, P N; Treiber, A; Dingemanse, J

    2015-05-01

    Pulmonary arterial hypertension (PAH) is a progressive disease of the lung vascular system, which leads to right-sided heart failure and ultimately death if untreated. Treatments to regulate the pulmonary vascular pressure target the prostacyclin, nitric oxide, and endothelin (ET) pathways. Macitentan, an oral, once-daily, dual ETA and ETB receptor antagonist with high affinity and sustained receptor binding is the first ET receptor antagonist to show significant reduction of the risk of morbidity and mortality in PAH patients in a large-scale phase III study with a long-term outcome. Here we present a review of the available clinical pharmacokinetic, pharmacodynamic, pharmacokinetic/pharmacodynamic relationship, and drug-drug interaction data of macitentan in healthy subjects, patients with PAH, and in special populations.

  10. Differences in muscarinic acetylcholine receptor subtypes in the central nervous system of long sleep and short sleep mice. [Ethanol effects

    SciTech Connect

    Watson, M.; Ming, X.; McArdle, J.J. )

    1989-02-09

    Differences in voluntary ethanol consumption have been noted in various inbred strains of mice and pharmacogenetic approaches have been used to study the mechanisms of action of many drugs such as ethanol. Long-sleep (LS) and short-sleep (SS) mice, selectively bred for differences in ethanol induced narcosis, provide a method by which a relationship between the differential responsiveness of these geno-types and muscarinic acetylcholine receptors (mAChR) may be evaluated. Sleep times after injection of 3ml ethanol/kg (i.p.) verified the higher sensitivity of LS vs. SS. Mean body weights of LS (26.5g) vs. SS (22g) were also significantly (p<.01) greater. Binding assays for ({sup 3}H)(-) quinuclidinylbenzilate (({sup 3}H)(-)QNB), a specific but nonsubtype selective mAChR antagonist, ({sup 3}H)pirenzepine (({sup 3}H)PZ), a specific M1 mAChR antagonist and ({sup 3}H)11-2-((2-((diethylamino) methyl)-1-piperidinyl) acetyl)-5,11-dihydro-6H-pyrido (2,3-b) (1,4) benzodiazepine-6-one, (({sup 3}H)AF-DX 116), an M2 selective antagonist were performed to determine mAChR affinity (K{sub d}) and density (B{sub max}) in CNS regions such as the cerebral cortex, hippocampus, corpus striatum and other areas. Significantly lower (30-40%) ({sup 3}H)(-)QNB binding suggests that SS have fewer mAChR's than LS in many areas. These differences may relate to their differential ethanol sensitivity.

  11. Hyperglycemia of Diabetic Rats Decreased by a Glucagon Receptor Antagonist

    NASA Astrophysics Data System (ADS)

    Johnson, David G.; Ulichny Goebel, Camy; Hruby, Victor J.; Bregman, Marvin D.; Trivedi, Dev

    1982-02-01

    The glucagon analog [l-Nα-trinitrophenylhistidine, 12-homoarginine]-glucagon (THG) was examined for its ability to lower blood glucose concentrations in rats made diabetic with streptozotocin. In vitro, THG is a potent antagonist of glucagon activation of the hepatic adenylate cyclase assay system. Intravenous bolus injections of THG caused rapid decreases (20 to 35 percent) of short duration in blood glucose. Continuous infusion of low concentrations of the inhibitor led to larger sustained decreases in blood glucose (30 to 65 percent). These studies demonstrate that a glucagon receptor antagonist can substantially reduce blood glucose levels in diabetic animals without addition of exogenous insulin.

  12. Effects of narcotic analgesics and antagonists on the in vivo release of acetylcholine from the cerebral cortex of the cat

    PubMed Central

    Jhamandas, K.; Phillis, J. W.; Pinsky, C.

    1971-01-01

    1. In cats under light allobarbitone anaesthesia, the effects of intravenous injections of narcotic and non-narcotic analgesics, of a general depressant, and of narcotic antagonists were investigated on the spontaneous release of acetylcholine (ACh) from the surface of the sensorimotor cortex. 2. The narcotic analgesics morphine (0·1, 1·0 and 5 mg/kg), meperidine (1·0 and 2·0 mg/kg), methadone (1·0 mg/kg) and codeine (5·0 and 10·0 mg/kg) greatly reduced ACh release. 3. The non-narcotic analgesics pentazocine (1·0 and 2·0 mg/kg) and propoxyphene (5·0 and 10·0 mg/kg) as well as the depressant chlorpromazine (0·25, 0·5 and 1·0 mg/kg) also greatly reduced ACh release. 4. Two of the three narcotic antagonists examined, levallorphan (0·1, 1·0 and 5 mg/kg) and nalorphine (1·0 mg/kg) had the property of reducing ACh release. They were thus partial agonists. With levallorphan the greatest reduction occurred with the smallest dose injected and the effect was regularly obtained, whereas with nalorphine a reduction was obtained in some experiments only. The third, naloxone, was a specific narcotic antagonist and did not reduce the ACh release in any dose (0·01, 0·1, 0·5 and 1·0 mg/kg) examined. In a dose of 1·0 mg/kg it actually produced a small increase in Ach release. 5. Naloxone (0·1-1·0 mg/kg) restored the reduction in ACh release produced by the narcotic analgesics and by the partial agonist levallorphan. It partially restored the reduction produced by the non-narcotic analgesics and by nalorphine, but had no effect on the reduction produced by chlorpromazine. 6. The relevance of these results with regard to analgesia and to the narcotic abstinence syndrome is discussed. PMID:5136464

  13. Crystallization scale purification of α7 nicotinic acetylcholine receptor from mammalian cells using a BacMam expression system

    PubMed Central

    Cheng, Hao; Fan, Chen; Zhang, Si-wei; Wu, Zhong-shan; Cui, Zhi-cheng; Melcher, Karsten; Zhang, Cheng-hai; Jiang, Yi; Cong, Yao; Xu, H Eric

    2015-01-01

    Aim: To report our methods for expression and purification of α7 nicotinic acetylcholine receptor (α7-nAChR), a ligand-gated pentameric ion channel and an important drug target. Methods: α7-nAChRs of 10 different species were cloned into an inducible BacMam vector with an N-terminal tag of a tandem maltose-binding protein (MBP) and a TEV cleavage site. This α7-nAChR fusion receptor was expressed in mammalian HEK293F cells and detected by Western blot. The expression was scaled up to liters. The receptor was purified using amylose resin and size-exclusion chromatography. The quality of the purified receptor was assessed using SDS-PAGE gels, thermal stability analysis, and negative stain electron microscopy (EM). The expression construct was optimized through terminal truncations and site-directed mutagenesis. Results: Expression screening revealed that α7-nAChR from Taeniopygia guttata had the highest expression levels. The fusion receptor was expressed mostly on the cell surface, and it could be efficiently purified using one-step amylose affinity chromatography. One to two milligrams of the optimized α7-nAChR expression construct were purified from one liter of cell culture. The purified α7-nAChR samples displayed high thermal stability with a Tm of 60 °C, which was further enhanced by antagonist binding but decreased in the presence of agonist. EM analysis revealed ring-like structures with a central hydrophilic hole, which was consistent with the pentameric assembly of the α7-nAChR channel. Conclusion: We have established methods for crystallization scale expression and purification of α7-nAChR, which lays a foundation for high-resolution structural studies using X-ray crystallography or single particle cryo-EM analysis. PMID:26073323

  14. α7 nicotinic acetylcholine receptors: a therapeutic target in the structure era.

    PubMed

    Taly, Antoine; Charon, Sebastien

    2012-05-01

    The nicotinic acetylcholine receptors (nAChR) are ligand-gated ion channels involved in cognitive processes and are associated with brain disorders which makes them interesting drug targets. This article presents a general overview of the receptor to introduce the α7 nAChR as a drug target. The advances in understanding of the structure/function properties of the nAChR produced during the last decade are detailed as they are crucial for rational drug design. The allosteric properties of the nAChR will also be described because they also have important consequences for drug design.

  15. Muscarinic acetylcholine receptor modulation of mu (mu) opioid receptors in adult rat sphenopalatine ganglion neurons.

    PubMed

    Margas, Wojciech; Mahmoud, Saifeldin; Ruiz-Velasco, Victor

    2010-01-01

    The sphenopalatine ganglion (SPG) neurons represent the parasympathetic branch of the autonomic nervous system involved in controlling cerebral blood flow. In the present study, we examined the coupling mechanism between mu (mu) opioid receptors (MOR) and muscarinic acetylcholine receptors (mAChR) with Ca(2+) channels in acutely dissociated adult rat SPG neurons. Successful MOR activation was recorded in approximately 40-45% of SPG neurons employing the whole cell variant of the patch-clamp technique. In addition, immunofluorescence assays indicated that MOR are not expressed in all SPG neurons while M(2) mAChR staining was evident in all neurons. The concentration-response relationships generated with morphine and [d-Ala2-N-Me-Phe4-Glycol5]-enkephalin (DAMGO) showed IC(50) values of 15.2 and 56.1 nM and maximal Ca(2+) current inhibition of 26.0 and 38.7%, respectively. Activation of MOR or M(2) mAChR with morphine or oxotremorine-methiodide (Oxo-M), respectively, resulted in voltage-dependent inhibition of Ca(2+) currents via coupling with Galpha(i/o) protein subunits. The acute prolonged exposure (10 min) of neurons to morphine or Oxo-M led to the homologous desensitization of MOR and M(2) mAChR, respectively. The prolonged stimulation of M(2) mAChR with Oxo-M resulted in heterologous desensitization of morphine-mediated Ca(2+) current inhibition, and was sensitive to the M(2) mAChR blocker methoctramine. On the other hand, when the neurons were exposed to morphine or DAMGO for 10 min, heterologous desensitization of M(2) mAChR was not observed. These results suggest that in rat SPG neurons activation of M(2) mAChR likely modulates opioid transmission in the brain vasculature to adequately maintain cerebral blood flow. PMID:19889856

  16. Megakaryocytes and platelets express nicotinic acetylcholine receptors but nicotine does not affect megakaryopoiesis or platelet function.

    PubMed

    Schedel, Angelika; Kaiser, Kerstin; Uhlig, Stefanie; Lorenz, Florian; Sarin, Anip; Starigk, Julian; Hassmann, Dennis; Bieback, Karen; Bugert, Peter

    2016-01-01

    In our previous investigations we have shown that platelets and their precursors express nicotinic α7 acetylcholine receptors (nAChRα7) that are involved in platelet function and in vitro differentiation of the megakaryoblastic cell line MEG-01. In this study, we were interested in the expression analysis of additional nAChR and the effects of nicotine in an ex vivo model using megakaryocytic cells differentiated from cord blood derived CD34(+) cells (CBMK) and an in vivo model using blood samples from smokers. CBMK were differentiated with thrombopoietin (TPO) for up to 17 days. Quantitative real-time PCR (QRT-PCR), Western blot analysis and flow cytometry were used to investigate nAChR expression (nAChRα7, nAChRα4, nAChRβ2) and nicotine effects. In blood samples of 15 nonsmokers and 16 smokers platelet parameters (count, mean platelet volume--MPV and platelet distribution width--PDW) were determined as indicators for changes of in vivo megakaryopoiesis. Platelet function was determined by the use of whole blood aggregometry and flow cytometry. The functional role of nAChR was evaluated using specific antagonists in aggregometry. CHRNA7, CHRNA4 and CHRNB2 gene transcripts and the corresponding proteins could be identified in CBMK during all stages of differentiation. Platelets contain nAChRα7 and nAChRβ2 but not nAChRα4. Nicotine had no effect on TPO-induced differentiation of CBMK. There was no significant difference in all platelet parameters of the smokers compared to the nonsmokers. In line with this, cholinergic gene transcripts as well as the encoded proteins were equally expressed in both the study groups. Despite our observation of nAChR expression in megakaryopoiesis and platelets, we were not able to detect effects of nicotine in our ex vivo and in vivo models. Thus, the functional role of the nAChR in these cells remains open.

  17. Acetylcholine receptor clustering is triggered by a change in the density of a nonreceptor molecule

    PubMed Central

    1990-01-01

    Acetylcholine receptors become clustered at the neuromuscular junction during synaptogenesis, at least in part via lateral migration of diffusely expressed receptors. We have shown previously that electric fields initiate a specific receptor clustering event which is dependent on lateral migration in aneural muscle cell cultures (Stollberg, J., and S. E. Fraser. 1988. J. Cell Biol. 107:1397-1408). Subsequent work with this model system ruled out the possibility that the clustering event was triggered by increasing the receptor density beyond a critical threshold (Stollberg, J., and S. E. Fraser. 1990. J. Neurosci. 10:247-255). This leaves two possibilities: the clustering event could be triggered by the field-induced change in the density of some other molecule, or by a membrane voltage-sensitive mechanism (e.g., a voltage- gated calcium signal). Electromigration is a slow, linear process, while voltage-sensitive mechanisms respond in a rapid, nonlinear fashion. Because of this the two possibilities make different predictions about receptor clustering behavior in response to pulsed or alternating electric fields. In the present work we have studied subcellular calcium distributions, as well as receptor clustering, in response to such fields. Subcellular calcium distributions were quantified and found to be consistent with the predicted nonlinear response. Receptor clustering, however, behaves in accordance with the predictions of a linear response, consistent with the electromigration hypothesis. The experiments demonstrate that a local increase in calcium, or, more generally, a voltage-sensitive mechanism, is not sufficient and probably not necessary to trigger receptor clustering. Experiments with slowly alternating electric fields confirm the view that the clustering of acetylcholine receptors is initiated by a local change in the density of some non-receptor molecule. PMID:2229185

  18. Monkey adrenal chromaffin cells express α6β4* nicotinic acetylcholine receptors.

    PubMed

    Hernández-Vivanco, Alicia; Hone, Arik J; Scadden, Mick L; Carmona-Hidalgo, Beatriz; McIntosh, J Michael; Albillos, Almudena

    2014-01-01

    Nicotinic acetylcholine receptors (nAChRs) that contain α6 and β4 subunits have been demonstrated functionally in human adrenal chromaffin cells, rat dorsal root ganglion neurons, and on noradrenergic terminals in the hippocampus of adolescent mice. In human adrenal chromaffin cells, α6β4* nAChRs (the asterisk denotes the possible presence of additional subunits) are the predominant subtype whereas in rodents, the predominant nAChR is the α3β4* subtype. Here we present molecular and pharmacological evidence that chromaffin cells from monkey (Macaca mulatta) also express α6β4* receptors. PCR was used to show the presence of transcripts for α6 and β4 subunits and pharmacological characterization was performed using patch-clamp electrophysiology in combination with α-conotoxins that target the α6β4* subtype. Acetylcholine-evoked currents were sensitive to inhibition by BuIA[T5A,P6O] and MII[H9A,L15A]; α-conotoxins that inhibit α6-containing nAChRs. Two additional agonists were used to probe for the expression of α7 and β2-containing nAChRs. Cells with currents evoked by acetylcholine were relatively unresponsive to the α7-selctive agonist choline but responded to the agonist 5-I-A-85380. These studies provide further insights into the properties of natively expressed α6β4* nAChRs.

  19. Monkey Adrenal Chromaffin Cells Express α6β4* Nicotinic Acetylcholine Receptors

    PubMed Central

    Scadden, Mick´l; Carmona-Hidalgo, Beatriz; McIntosh, J. Michael; Albillos, Almudena

    2014-01-01

    Nicotinic acetylcholine receptors (nAChRs) that contain α6 and β4 subunits have been demonstrated functionally in human adrenal chromaffin cells, rat dorsal root ganglion neurons, and on noradrenergic terminals in the hippocampus of adolescent mice. In human adrenal chromaffin cells, α6β4* nAChRs (the asterisk denotes the possible presence of additional subunits) are the predominant subtype whereas in rodents, the predominant nAChR is the α3β4* subtype. Here we present molecular and pharmacological evidence that chromaffin cells from monkey (Macaca mulatta) also express α6β4* receptors. PCR was used to show the presence of transcripts for α6 and β4 subunits and pharmacological characterization was performed using patch-clamp electrophysiology in combination with α-conotoxins that target the α6β4* subtype. Acetylcholine-evoked currents were sensitive to inhibition by BuIA[T5A,P6O] and MII[H9A,L15A]; α-conotoxins that inhibit α6-containing nAChRs. Two additional agonists were used to probe for the expression of α7 and β2-containing nAChRs. Cells with currents evoked by acetylcholine were relatively unresponsive to the α7-selctive agonist choline but responded to the agonist 5-I-A-85380. These studies provide further insights into the properties of natively expressed α6β4* nAChRs. PMID:24727685

  20. Characterization of a putative acetylcholine receptor in chick ciliary ganglion neurons

    SciTech Connect

    Stollberg, J.

    1985-01-01

    Monoclonal antibodies to the main immunogenic region on the alpha subunit of acetylcholine receptors in muscle and electric organ recognize membrane components in chick brain and ciliary ganglia that are candidates for the neuronal receptor. The component in chick brain has been purified by immunoaffinity chromatography. It specifically binds nicotine but not alpha-bungarotoxin, and can be affinity labeled with (/sup 3/H)bromoacetylcholine. The cross-reacting component in ciliary ganglion neurons is concentrated in synaptic membrane, and can be modulated by exposure of the cells to cholinergic ligands in culture. The cross-reacting component in ciliary ganglion neurons is an integral membrane component that binds concanavalin A, and it is distinct from the alpha-bungarotoxin binding component. The acetylcholine receptor function in these neurons can be locked by affinity alkylation with bromoacetylcholine, indicating similarity in this respect to receptors from muscle and electric organ. Antisera raised against the partially purified component from chick brain also block receptor function on ciliary ganglion neurons. The subcellular distribution of the ganglion component in culture is assessed, and it is shown that approximately 2/3 of the cross-reacting components are intracellular; the majority of these seem not to be destined for insertion into the plasma membrane.

  1. μ Opioid receptor: novel antagonists and structural modeling

    NASA Astrophysics Data System (ADS)

    Kaserer, Teresa; Lantero, Aquilino; Schmidhammer, Helmut; Spetea, Mariana; Schuster, Daniela

    2016-02-01

    The μ opioid receptor (MOR) is a prominent member of the G protein-coupled receptor family and the molecular target of morphine and other opioid drugs. Despite the long tradition of MOR-targeting drugs, still little is known about the ligand-receptor interactions and structure-function relationships underlying the distinct biological effects upon receptor activation or inhibition. With the resolved crystal structure of the β-funaltrexamine-MOR complex, we aimed at the discovery of novel agonists and antagonists using virtual screening tools, i.e. docking, pharmacophore- and shape-based modeling. We suggest important molecular interactions, which active molecules share and distinguish agonists and antagonists. These results allowed for the generation of theoretically validated in silico workflows that were employed for prospective virtual screening. Out of 18 virtual hits evaluated in in vitro pharmacological assays, three displayed antagonist activity and the most active compound significantly inhibited morphine-induced antinociception. The new identified chemotypes hold promise for further development into neurochemical tools for studying the MOR or as potential therapeutic lead candidates.

  2. Presynaptic α4β2 nicotinic acetylcholine receptors increase glutamate release and serotonin neuron excitability in the dorsal raphe nucleus.

    PubMed

    Garduño, Julieta; Galindo-Charles, Luis; Jiménez-Rodríguez, Javier; Galarraga, Elvira; Tapia, Dagoberto; Mihailescu, Stefan; Hernandez-Lopez, Salvador

    2012-10-24

    Several behavioral effects of nicotine are mediated by changes in serotonin (5-HT) release in brain areas that receive serotonergic afferents from the dorsal raphe nucleus (DRN). In vitro experiments have demonstrated that nicotine increases the firing activity in the majority of DRN 5-HT neurons and that DRN contains nicotinic acetylcholine receptors (nAChRs) located at both somata and presynaptic elements. One of the most common presynaptic effects of nicotine is to increase glutamate release. Although DRN receives profuse glutamatergic afferents, the effect of nicotine on glutamate release in the DRN has not been studied in detail. Using whole-cell recording techniques, we investigated the effects of nicotine on the glutamatergic input to 5-HT DRN neurons in rat midbrain slices. Low nicotine concentrations, in the presence of bicuculline and tetrodotoxin (TTX), increased the frequency but did not change the amplitude of glutamate-induced EPSCs, recorded from identified 5-HT neurons. Nicotine-induced increase of glutamatergic EPSC frequency persisted 10-20 min after drug withdrawal. This nicotinic effect was mimicked by exogenous administration of acetylcholine (ACh) or inhibition of ACh metabolism. In addition, the nicotine-induced increase in EPSC frequency was abolished by blockade of α4β2 nAChRs, voltage-gated calcium channels, or intracellular calcium signaling but not by α7 nAChR antagonists. These data suggest that both nicotine and endogenous ACh can increase glutamate release through activation of presynaptic α4β2 but not α7 nAChRs in the DRN. The effect involves long-term changes in synaptic function, and it is dependent on voltage-gated calcium channels and presynaptic calcium stores. PMID:23100436

  3. Study of the Peripheral Nerve Fibers Myelin Structure Changes during Activation of Schwann Cell Acetylcholine Receptors

    PubMed Central

    Verdiyan, Ekaterina E.; Allakhverdiev, Elvin S.; Maksimov, Georgy V.

    2016-01-01

    In the present paper we consider a new type of mechanism by which neurotransmitter acetylcholine (ACh) regulates the properties of peripheral nerve fibers myelin. Our data show the importance of the relationship between the changes in the number of Schwann cell (SC) acetylcholine receptors (AChRs) and the axon excitation (different intervals between action potentials (APs)). Using Raman spectroscopy, an effect of activation of SC AChRs on the myelin membrane fluidity was investigated. It was found, that ACh stimulates an increase in lipid ordering degree of the myelin lipids, thus providing evidence for specific role of the “axon-SC” interactions at the axon excitation. It was proposed, that during the axon excitation, the SC membrane K+- depolarization and the Ca2+—influx led to phospholipase activation or exocytosis of intracellular membrane vesicles and myelin structure reorganization. PMID:27455410

  4. Structure-activity studies with ring E analogues of methyllycaconitine. Synthesis and evaluation of enantiopure isomers of selective antagonist at the alpha3 nicotinic receptor.

    PubMed

    Ismail, K A; Bergmeier, S C

    2002-06-01

    The four diastereomers 4a-d of methyllycaconitine (MLA) analogue 3 ( R =(CH(2))(3)Ph, R'=CH(3)) have been synthesized in enantiomerically pure form by coupling both (S)- and (R)-2-(methylsuccinimido)benzoic acid (5a and 5b) with both (S)- and (R)-3-hydroxymethyl-N-(3-phenyl) propylpiperidine (6a and 6b) using TBTU. These compounds were assayed for potency as nicotinic acetylcholine receptor (nAChRs) antagonist. All the four diastereomers showed the same potency at both the alpha3 and alpha7 receptors as racemic compound 3. This indicates that the binding at nicotine acetylcholine receptors (nAchRs) is probably non-stereospecific. PMID:12204473

  5. Critical metabolic roles of β-cell M3 muscarinic acetylcholine receptors

    PubMed Central

    de Azua, Inigo Ruiz; Gautam, Dinesh; Jain, Shalini; Guettier, Jean-Marc; Wess, Jürgen

    2013-01-01

    Muscarinic acetylcholine (ACh) receptors (mAChRs; M1–M5) regulate the activity of an extraordinarily large number of important physiological processes. We and others previously demonstrated that pancreatic β-cells are endowed with M3 mAChRs which are linked to G proteins of the Gq family. The activation of these receptors by ACh or other muscarinic agonists leads to the augmentation of glucose-induced insulin release via multiple mechanisms. Interestingly, in humans, ACh acting on human β-cell mAChRs is released from adjacent α-cells which express both choline acetyltransferase (ChAT) and the vesicular acetylcholine transporter (vAChT), indicative of the presence of a non-neuronal cholinergic system in human pancreatic islets. In order to shed light on the physiological roles of β-cell M3 receptors, we recently generated and analyzed various mutant mouse models. Specifically, we carried out studies with mice which overexpressed M3 receptors or mutant M3 receptors in pancreatic β-cells or which selectively lacked M3 receptors or M3-receptor-associated proteins in pancreatic β-cells. Our findings indicate that β-cell M3 receptors play a key role in maintaining proper insulin release and whole body glucose homeostasis and that strategies aimed at enhancing signaling through β-cell M3 receptors may prove useful to improve β-cell function for the treatment of type 2 diabetes (T2D). PMID:22525375

  6. Effects of histamine H3 receptor agonists and antagonists on cognitive performance and scopolamine-induced amnesia.

    PubMed

    Giovannini, M G; Bartolini, L; Bacciottini, L; Greco, L; Blandina, P

    1999-10-01

    In previous research we found that pre-training administration of histamine H3 receptor agonists such as (R)-alpha-methylhistamine and imetit impaired rat performance in object recognition and a passive avoidance response at the same doses at which they inhibited the release of cortical acetylcholine in vivo. Conversely, in the present study we report that the post-training administration of (R)-alpha-methylhistamine and imetit failed to affect rat performance in object recognition and a passive avoidance response, suggesting that H3 receptor influences the acquisition and not the recall processes. We also investigated the effects of two H3 receptor antagonists, thioperamide and clobenpropit, in the same behavioral tasks. Pre-training administration of thioperamide and clobenpropit failed to exhibit any procognitive effects in normal animals but prevented scopolamine-induced amnesia. However, also post-training administration of thioperamide prevented scopolamine-induced amnesia. Hence, the ameliorating effects of scopolamine-induced amnesia by H3 receptor antagonism are not only mediated by relieving the inhibitory action of cortical H3 receptors, but other mechanisms are also involved. Nevertheless, H3 receptor antagonists may have implications for the treatment of degenerative disorders associated with impaired cholinergic function.

  7. Mammalian Nicotinic Acetylcholine Receptors: From Structure to Function

    PubMed Central

    Albuquerque, Edson X.; Pereira, Edna F. R.; Alkondon, Manickavasagom; Rogers, Scott W.

    2009-01-01

    The classical studies of nicotine by Langley at the turn of the 20th century introduced the concept of a “receptive substance,” from which the idea of a “receptor” came to light. Subsequent studies aided by the Torpedo electric organ, a rich source of muscle-type nicotinic receptors (nAChRs), and the discovery of α-bungarotoxin, a snake toxin that binds pseudo-irreversibly to the muscle nAChR, resulted in the muscle nAChR being the best characterized ligand-gated ion channel hitherto. With the advancement of functional and genetic studies in the late 1980s, the existence of nAChRs in the mammalian brain was confirmed and the realization that the numerous nAChR subtypes contribute to the psychoactive properties of nicotine and other drugs of abuse and to the neuropathology of various diseases, including Alzheimer’s, Parkinson’s, and schizophrenia, has since emerged. This review provides a comprehensive overview of these findings and the more recent revelations of the impact that the rich diversity in function and expression of this receptor family has on neuronal and nonneuronal cells throughout the body. Despite these numerous developments, our understanding of the contributions of specific neuronal nAChR subtypes to the many facets of physiology throughout the body remains in its infancy. PMID:19126755

  8. Fractional vesamicol receptor occupancy and acetylcholine active transport inhibition in synaptic vesicles.

    PubMed

    Kaufman, R; Rogers, G A; Fehlmann, C; Parsons, S M

    1989-09-01

    Vesamicol [(-)-(trans)-2-(4-phenylpiperidino)cyclohexanol] receptor binding and inhibition of acetylcholine (AcCh) active transport by cholinergic synaptic vesicles that were isolated from Torpedo electric organ were studied for 23 vesamicol enantiomers, analogues, and other drugs. Use of trace [3H]vesamicol and [14C]AcCh allowed simultaneous determination of the concentrations of enantiomer, analogue, or drug required to half-saturate the vesamicol receptor (Ki) and to half-inhibit transport (IC50), respectively. Throughout a wide range of potencies for different compounds, the Ki/IC50 ratios varied from 1.5 to 24. Compounds representative of the diverse structures studied, namely deoxyvesamicol, chloroquine, and levorphanol, were competitive inhibitors of vesamicol binding. It is concluded that many drugs can bind to the vesamicol receptor and binding to only a small fraction of the receptors can result in AcCh active transport inhibition. Possible mechanisms for this effect are discussed. PMID:2550778

  9. Incorporation of Reconstituted Acetylcholine Receptors from Torpedo Into the Xenopus Oocyte Membrane

    NASA Astrophysics Data System (ADS)

    Morales, A.; Aleu, J.; Ivorra, I.; Ferragut, J. A.; Gonzalez-Ros, J. M.; Miledi, R.

    1995-08-01

    Xenopus oocytes are a valuable aid for studying the molecular structure and function of ionic channels and neurotransmitter receptors. Their use has recently been extended by the demonstration that oocytes can incorporate foreign membranes carrying preassembled receptors and channels. Here we show that when reconstituted in an artificial lipid matrix and injected into Xenopus oocytes, purified nicotinic acetylcholine receptors are efficiently inserted into the plasma membrane, where they form "clusters" of receptors that retain their native properties. This constitutes an innovative approach that, besides allowing the analyses of membrane fusion processes, is also a powerful technique for studying the characteristics and regulation of many membrane proteins (with their native stoichiometry and configuration) upon reinsertion into the membrane of a very convenient host cell system.

  10. Incorporation of reconstituted acetylcholine receptors from Torpedo into the Xenopus oocyte membrane.

    PubMed Central

    Morales, A; Aleu, J; Ivorra, I; Ferragut, J A; Gonzalez-Ros, J M; Miledi, R

    1995-01-01

    Xenopus oocytes are a valuable aid for studying the molecular structure and function of ionic channels and neurotransmitter receptors. Their use has recently been extended by the demonstration that oocytes can incorporate foreign membranes carrying preassembled receptors and channels. Here we show that when reconstituted in an artificial lipid matrix and injected into Xenopus oocytes, purified nicotinic acetylcholine receptors are efficiently inserted into the plasma membrane, where they form "clusters" of receptors that retain their native properties. This constitutes an innovative approach that, besides allowing the analyses of membrane fusion processes, is also a powerful technique for studying the characteristics and regulation of many membrane proteins (with their native stoichiometry and configuration) upon reinsertion into the membrane of a very convenient host cell system. Images Fig. 1 PMID:7667313

  11. Subcellular localization of creatine kinase in Torpedo electrocytes: association with acetylcholine receptor-rich membranes

    PubMed Central

    1985-01-01

    Creatine kinase (CK, EC 2.7.3.2) has recently been identified as the intermediate isoelectric point species (pl 6.5-6.8) of the Mr 40,000- 43,000 nonreceptor, peripheral v-proteins in Torpedo marmorata acetylcholine receptor-rich membranes (Barrantes, F. J., G. Mieskes, and T. Wallimann, 1983, Proc. Natl. Acad. Sci. USA, 80: 5440-5444). In the present study, this finding is substantiated at the cellular and subcellular level of the T. marmorata electric organ by immunofluorescence and by protein A-gold labeling of either ultrathin cryosections of electrocytes or purified receptor-membrane vesicles that use subunit-specific anti-chicken creatine kinase antibodies. The muscle form of the kinase, on the one hand, is present throughout the entire T. marmorata electrocyte except in the nuclei. The brain form of the kinase, on the other hand, is predominantly located on the ventral, innervated face of the electrocyte, where it is closely associated with both surfaces of the postsynaptic membrane, and secondarily in the synaptic vesicles at the presynaptic terminal. Labeling of the noninnervated dorsal membrane is observed at the invaginated sac system. In the case of purified acetylcholine receptor-rich membranes, antibodies specific for chicken B-CK label only one face of the isolated vesicles. No immunoreaction is observed with anti-chicken M-CK antibodies. A discussion follows on the possible implications of these localizations of creatine kinase in connection with the function of the acetylcholine receptor at the postsynaptic membrane, the Na/K ATPase at the dorsal electrocyte membrane, and the ATP-dependent transmitter release at the nerve ending. PMID:3884630

  12. Reconstitution of Purified Acetylcholine Receptors with Functional Ion Channels in Planar Lipid Bilayers

    NASA Astrophysics Data System (ADS)

    Nelson, N.; Anholt, R.; Lindstrom, J.; Montal, M.

    1980-05-01

    Acetylcholine receptor, solubilized and purified from Torpedo californica electric organ under conditions that preserve the activity of its ion channel, was reconstituted into vesicles of soybean lipid by the cholate-dialysis technique. The reconstituted vesicles were then spread into monolayers at an air-water interface and planar bilayers were subsequently formed by apposition of two monolayers. Addition of carbamoylcholine caused an increase in membrane conductance that was transient and relaxed spontaneously to the base level (i.e., became desensitized). The response to carbamoylcholine was dose dependent and competitively inhibited by curare. Fluctuations of membrane conductance corresponding to the opening and closing of receptor channels were observed. Fluctuation analysis indicated a single-channel conductance of 16± 3 pS (in 0.1 M NaCl) with a mean channel open time estimated to be 35± 5 ms. Thus, purified acetylcholine receptor reconstituted into lipid bilayers exhibited the pharmacological specificity, activation, and desensitization properties expected of this receptor in native membranes.

  13. Role of acetylcholine receptors in proliferation and differentiation of P19 embryonal carcinoma cells

    SciTech Connect

    Resende, R.R.; Alves, A.S.; Britto, L.R.G; Ulrich, H.

    2008-04-15

    Coordinated proliferation and differentiation of progenitor cells is the base for production of appropriate numbers of neurons and glia during neuronal development in order to establish normal brain functions. We have used murine embryonal carcinoma P19 cells as an in vitro model for early differentiation to study participation of nicotinic (nAChR) and muscarinic acetylcholine (mAChR) receptors in the proliferation of neural progenitor cells and their differentiation to neurons. We have previously shown that functional nicotinic acetylcholine receptors (nAChRs) already expressed in embryonic cells mediate elevations in cytosolic free calcium concentration ([Ca{sup 2+}]{sub i}) via calcium influx through nAChR channels whereas intracellular stores contribute to nAChR- and mAChR-mediated calcium fluxes in differentiated cells [Resende et al., Cell Calcium 43 (2008) 107-121]. In the present study, we have demonstrated that nicotine provoked inhibition of proliferation in embryonic cells as determined by BrdU labeling. However, in neural progenitor cells nicotine stimulated proliferation which was reversed in the presence of inhibitors of calcium mobilization from intracellular stores, indicating that liberation of intracellular calcium contributed to this proliferation induction. Muscarine induced proliferation stimulation in progenitor cells by activation of G{alpha}{sub q/11}-coupled M{sub 1}, M{sub 3} and M{sub 5} receptors and intracellular calcium stores, whereas G{alpha}{sub i/o}-protein coupled M{sub 2} receptor activity mediated neuronal differentiation.

  14. Amino acids of the Torpedo marmorata acetylcholine receptor. cap alpha. subunit labeled by a photoaffinity ligand for the acetylcholine binding site

    SciTech Connect

    Dennis, M.; Giraudat, J.; Kotzyba-Hibert, F.; Goeldner, M.; Hirth, C.; Chang, J.Y.; Lazure, C.; Chretien, M.; Changeux, J.P.

    1988-04-05

    The acetylcholine-binding sites on the native, membrane-bound acetylcholine receptor from Torpedo marmorata were covalently labeled with the photoaffinity reagent (/sup 3/H)-p-(dimethylamino)-benzenediazonium fluoroborate (DDF) in the presence of phencyclidine by employing an energy-transfer photolysis procedure. The ..cap alpha..-chains isolated from receptor-rich membranes photolabeled in the absence or presence of carbamoylcholine were cleaved with CNBr and the radiolabeled fragments purified by high-performance liquid chromatography. Amino acid and/or sequence analysis demonstrated that the ..cap alpha..-chain residues Trp-149, Tyr-190, Cys-192, and Cys-193 and an unidentified residue(s) in the segment ..cap alpha.. 31-105 were all labeled by the photoaffinity reagent in an agonist-protectable manner. The labeled amino acids are located within three distinct regions of the large amino-terminal hydrophilic domain of the ..cap alpha..-subunit primary structure and plausibly lie in proximity to one another at the level of the acetylcholine-binding sites in the native receptor. These findings are in accord with models proposed for the transmembrane topology of the ..cap alpha..-chain that assign the amino-terminal segment ..cap alpha.. 1-210 to the synaptic cleft. Furthermore, the results suggest that the four identified (/sup 3/H)DDF-labeled resides, which are conserved in muscle and neuronal ..cap alpha..-chains but not in the other subunits, may be directly involved in agonist binding.

  15. Estrogen Receptor Agonists and Antagonists in the Yeast Estrogen Bioassay.

    PubMed

    Wang, Si; Bovee, Toine F H

    2016-01-01

    Cell-based bioassays can be used to predict the eventual biological activity of a substance on a living organism. In vitro reporter gene bioassays are based on recombinant vertebrate cell lines or yeast strains and especially the latter are easy-to-handle, cheap, and fast. Moreover, yeast cells do not express estrogen, androgen, progesterone or glucocorticoid receptors, and are thus powerful tools in the development of specific reporter gene systems that are devoid of crosstalk from other hormone pathways. This chapter describes our experience with an in-house developed RIKILT yeast estrogen bioassay for testing estrogen receptor agonists and antagonists, focusing on the applicability of the latter. PMID:26585147

  16. Effects of H1 and H2 receptor antagonists on Tetrahymena.

    PubMed

    Csaba, G; László, V; Darvas, Z

    1978-01-01

    In Tetrahymena pyriformis the phagocytotic rate increases in response to histamine, but neither the H1 antagonist phenindamine nor the H2 antagonist metiamide stimulate phagocytosis. The H1 antagonist counteracts the effect of histamine, whereas the H2 antagonist does not. The histamine receptor of Tetrahymena is of H1-type, since it cannot distinguish between histamine and antagonists which are closely related to it chemically. It does, however, distinguish between histamine and the chemically unrelated H1 antagonist, phenindamine. The H2 antagonist does not interact with the receptor.

  17. Effects of alpha-7 nicotinic acetylcholine receptor positive allosteric modulator on lipopolysaccharide-induced neuroinflammatory pain in mice.

    PubMed

    Abbas, Muzaffar; Rahman, Shafiqur

    2016-07-15

    Evidence indicates that microglial activation contributes to the pathophysiology and maintenance of neuroinflammatory pain involving central nervous system alpha-7 nicotinic acetylcholine receptors. The objective of the present study was to determine the effects of 3a,4,5,9b-Tetrahydro-4-(1-naphthalenyl)-3H-cyclopentan[c]quinoline-8-sulfonamide (TQS), an alpha-7 nicotinic acetylcholine receptor positive allosteric modulator (PAM), on tactile allodynia and thermal hyperalgesia following lipopolysaccharide (LPS)-induced microglial activation in hippocampus, a neuroinflammatory pain model in mice. In addition, we examined the effects of TQS on microglial activation marker, an ionized calcium-binding adapter molecule 1 (Iba-1), in the hippocampus may be associated with neuroinflammatory pain. Pretreatment of TQS (4mg/kg) significantly reduced LPS (1mg/kg)-induced tactile allodynia and thermal hyperalgesia. Moreover, pretreatment of methyllycaconitine (3mg/kg) significantly reversed TQS-induced antiallodynic and antihyperalgesic responses indicating the involvement of alpha-7 nicotinic acetylcholine receptor. Pretreatment of TQS significantly decreased LPS-induced increased in hippocampal Iba-1 expression. Overall, these results suggest that TQS reduces LPS-induced neuroinflammatory pain like symptoms via modulating microglial activation likely in the hippocampus and/or other brain region by targeting alpha-7 nicotinic acetylcholine receptor. Therefore, alpha-7 nicotinic acetylcholine receptor PAM such as TQS could be a potential drug candidate for the treatment of neuroinflammatory pain.

  18. Acetylcholine as a mitogen: muscarinic receptor-mediated proliferation of rat astrocytes and human astrocytoma cells.

    PubMed

    Guizzetti, M; Costa, P; Peters, J; Costa, L G

    1996-02-22

    The mitogenic effect of muscarinic receptor agonists in glial cells has been characterized in rat cortical astrocytes and human 132 1N1 astrocytoma cells. The muscarinic receptor agonist carbachol caused a dose- and time-dependent increase in proliferation, as measured by [3H]thymidine incorporation. The mitogenic effect was mimicked by several muscarinic, but not nicotinic receptor agonists, and was blocked by muscarinic receptor antagonists. Reverse transcription-polymerase chain reaction (RT-PCR) experiments indicated the presence of m2, m3 and to a lesser degree, m5 muscarinic receptor mRNA in both astrocytes and astrocytoma cells. Proliferation experiments with subtype-specific muscarinic receptor antagonists suggest that carbachol-induced proliferation is due to activation of muscarinic M3 receptors. The phorbol ester 12-O-tetradecanoyl-phorbol 13-acetate (TPA) also stimulated glial cell proliferation. Down-regulation of protein kinase C, or the protein kinase C antagonist 1,5-(isoquinolynsulfanyl)-2-methylpiperazine dihydrochloride (H7) blocked proliferation induced by either TPA or carbachol. Of other neurotransmitters tested, histamine caused glial cell proliferation, norepinephrine and gamma-aminobutyric acid were ineffective, while serotonin and glutamate inhibited basal or serum-stimulated proliferation. PMID:8666059

  19. Nicotinic acetylcholine receptors controlling attention: behavior, circuits and sensitivity to disruption by nicotine.

    PubMed

    Poorthuis, Rogier B; Mansvelder, Huibert D

    2013-10-15

    Attention is a central cognitive function that enables long-term engagement in a task and suppression of irrelevant information to obtain future goals. The prefrontal cortex (PFC) is the main link in integrating emotional and motivational state of an animal to regulate top-down attentional processes. Acetylcholine modulates PFC neuronal networks by activating nicotinic acetylcholine receptors (nAChRs) to support attention. However, how neuronal activity changes in the PFC during attention and which nAChR subtypes mediate this is only rudimentarily understood, but progress is being made. Recently, exciting new insights were obtained in the dynamics of cholinergic signaling in the PFC and modes of acetylcholine transmission via nAChRs in the cortex. In addition, mechanisms are uncovered on how the PFC circuitry is regulated by nAChRs. Novel studies show that endogenous activation of nAChRs in the PFC plays a central role in controlling attention. Here, we review current insights into how different subtypes of nAChRs expressed by distinct types of neurons in the PFC circuitry shape attention. In addition we discuss the impact of nicotine on the cholinergic system and prefrontal cortical circuits. Low concentrations of nicotine, as experienced by smokers, interfere with cholinergic signaling. In the long-term exposure to nicotine during adolescence leads to maladaptive adaptations of the PFC circuitry, which ultimately leads to a decrement in attention performance, again emphasizing the importance of nAChRs in attention.

  20. Photolabeling of membrane-bound Torpedo nicotinic acetylcholine receptor with the hydrophobic probe 3-trifluoromethyl-3-(m-(/sup 125/I)iodophenyl)diazirine

    SciTech Connect

    White, B.J.; Cohen, J.B.

    1988-11-29

    The hydrophobic, photoactivatable probe 3-trifluoromethyl-3-(m-(/sup 125/I)iodophenyl)diazirine ((/sup 125/I)TID) was used to label acetylcholine receptor rich membranes purified from Torpedo californica electric organ. All four subunits of the acetylcholine receptor (AChR) were found to incorporate label, with the ..gamma..-subunit incorporating approximately 4 times as much as each of the other subunits. Carbamylcholine, an agonist, and histrionicotoxin, a noncompetitive antagonist, both strongly inhibited labeling of all AChR subunits in a specific and dose-dependent manner. In contrast, the competitive antagonist ..cap alpha..-bungarotoxin and the noncompetitive antagonist phencyclidine had only modest effect on (/sup 125/I)TID labeling of the AChR. The regions of the AChR ..cap alpha..-subunit that incorporate (/sup 125/)TID were mapped by Staphylococcus aureus V8 protest digestion. The carbamylcholine-sensitive site of labeling was localized to a 20-kDa V8 cleavage fragment that begins at Ser-173 and is of sufficient length to contain the three hydrophobic regions M1, M2, and M3. A 10-kDa fragment beginning at Asn-339 and containing the hydrophobic region M4 also incorporated (/sup 125/I)TID but in a carbamylcholine-insensitive manner. Two further cleavage fragments, which together span about one-third of the ..cap alpha..-subunit amino terminus, incorporated no detectable (/sup 125/I)TID. The mapping results place constraints on suggested models of AChR subunit topology.

  1. Targeting a family B GPCR/RAMP receptor complex: CGRP receptor antagonists and migraine

    PubMed Central

    Moore, Eric L; Salvatore, Christopher A

    2012-01-01

    The clinical effectiveness of antagonizing the calcitonin gene-related peptide (CGRP) receptor for relief of migraine pain has been clearly demonstrated, but the road to the development of these small molecule antagonists has been daunting. The key hurdle that needed to be overcome was the CGRP receptor itself. The vast majority of the current antagonists recognize similar epitopes on the calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein 1 (RAMP1). RAMP1 is a relatively small, single, transmembrane-spanning protein and along with the G-protein-coupled receptor CLR comprise a functional CGRP receptor. The tri-helical extracellular domain of RAMP1 plays a key role in the high affinity binding of CGRP receptor antagonists and drives their species-selective pharmacology. Over the years, a significant amount of mutagenesis data has been generated to identify specific amino acids or regions within CLR and RAMP1 that are critical to antagonist binding and has directed attention to the CLR/RAMP1 extracellular domain (ECD) complex. Recently, the crystal structure of the CGRP receptor ECD has been elucidated and not only reinforces the early mutagenesis data, but provides critical insight into the molecular mechanism of CGRP receptor antagonism. This review will highlight the drug design hurdles that must be overcome to meet the desired potency, selectivity and pharmacokinetic profile while retaining drug-like properties. Although the development of these antagonists has proved challenging, blocking the CGRP receptor may one day represent a new way to manage migraine and offer hope to migraine sufferers. LINKED ARTICLES This article is part of a themed section on Secretin Family (Class B) G Protein-Coupled Receptors. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.166.issue-1 PMID:21871019

  2. Selective actions of Lynx proteins on different nicotinic acetylcholine receptors in the locust, Locusta migratoria manilensis.

    PubMed

    Wang, Xin; Bao, Haibo; Sun, Huahua; Zhang, Yixi; Fang, Jichao; Liu, Qinghong; Liu, Zewen

    2015-08-01

    Nicotinic acetylcholine receptors (nAChRs) are major neurotransmitter receptors and targets of neonicotinoid insecticides in the insect nervous system. The full function of nAChRs is often dependent on associated proteins, such as chaperones, regulators and modulators. Here, three Lynx (Ly-6/neurotoxin) proteins, Loc-lynx1, Loc-lynx2 and Loc-lynx3, were identified in the locust, Locusta migratoria manilensis. Co-expression with Lynx resulted in a dramatic increase in agonist-evoked macroscopic currents on nAChRs Locα1/β2 and Locα2/β2 in Xenopus oocytes, but no changes in agonist sensitivity. Loc-lynx1 and Loc-lynx3 only modulated nAChRs Locα1/β2 while Loc-lynx2 modulated Locα2/β2 specifically. Meanwhile, Loc-lynx1 induced a more significant increase in currents evoked by imidacloprid and epibatidine than Loc-lynx3, and the effects of Loc-lynx1 on imidacloprid and epibatidine were significantly higher than those on acetylcholine. Among three lynx proteins, only Loc-lynx1 significantly increased [(3) H]epibatidine binding on Locα1/β2. The results indicated that Loc-lynx1 had different modulation patterns in nAChRs compared to Loc-lynx2 and Loc-lynx3. Taken together, these findings indicated that three Lynx proteins were nAChR modulators and had selective activities in different nAChRs. Lynx proteins might display their selectivities from three aspects: nAChR subtypes, various agonists and different modulation patterns. Insect Lynx (Ly-6/neurotoxin) proteins act as the allosteric modulators on insect nicotinic acetylcholine receptors (nAChRs), the important targets of insecticides. We found that insect lynx proteins showed their selectivities from at least three aspects: nAChR subtypes, various agonists and different modulation patterns.

  3. Assay of muscarinic acetylcholine receptor function in cultured cardiac cells by stimulation of /sup 86/Rb+ efflux

    SciTech Connect

    Hunter, D.D.; Nathanson, N.M.

    1985-09-01

    An assay for the increase in potassium permeability mediated by muscarinic acetylcholine receptors (mAChR) in cultured cardiac cells is described, using the K+ ion substitute /sup 86/Rb+ as the tracer ion. Cardiac cells accumulate /sup 86/Rb+ from the extracellular medium in a Na+/K+ ATPase-dependent manner. Subsequent efflux of /sup 86/Rb+ in the absence and presence of muscarinic agonists follows kinetics similar to those previously reported for /sup 42/K+. The mAChR agonist carbamylcholine (carbachol) stimulated /sup 86/Rb+ efflux with an EC50 of 50 nM. The half-time for efflux is reduced by greater than 40% at maximally effective concentrations of agonist. Stimulation of /sup 86/Rb+ efflux by carbachol is blocked by the mAChR antagonist atropine with an IC50 of 15 nM. The stimulation of 86Rb+ efflux by carbachol is not affected by the presence of the Na+/K+ ATPase inhibitor ouabain. This assay provides a method for quantitating the mAChR-mediated increase in K+ permeability in cardiac cells without the use of /sup 42/K+.

  4. α4β2 nicotinic acetylcholine receptor partial agonists with low intrinsic efficacy have antidepressant-like properties

    PubMed Central

    Mineur, Yann S.; Einstein, Emily B.; Seymour, Patricia A.; Coe, Jotham W.; O’Neill, Brian T.; Rollema, Hans

    2011-01-01

    Previous studies have suggested that treatment with antagonists or partial agonists of nicotinic acetylcholine receptors containing the β2 subunit (β2* nAChRs) results in antidepressant-like effects. In the current study we tested 3 novel compounds with different affinity and functional efficacy at α4β2* nAChRs, which were synthesized as part of nAChR discovery projects at Pfizer in the tail suspension, forced swim and novelty-suppressed feeding tests of antidepressant efficacy. All compounds tested reduced immobility in the forced swim test and one of the compounds also reduced immobility in the tail suspension test. All the compounds appeared to affect food intake on their own, with 2 compounds reducing feeding significantly in the home cage, precluding a clear interpretation of the results in the novelty-suppressed feeding test. None of the compounds altered locomotor activity at the doses and time points used here. Therefore, a subset of these compounds has pharmacological and behavioral properties that demonstrate the potential of nicotinic compounds as a treatment of mood disorders. Further development of nicotinic-based antidepressants should focus on increasing nAChR subtype selectivity to obtain consistent antidepressant properties with an acceptable side effect profile. PMID:21566524

  5. Stable expression and pharmacological properties of the human alpha 7 nicotinic acetylcholine receptor.

    PubMed

    Gopalakrishnan, M; Buisson, B; Touma, E; Giordano, T; Campbell, J E; Hu, I C; Donnelly-Roberts, D; Arneric, S P; Bertrand, D; Sullivan, J P

    1995-08-15

    The alpha 7 neuronal nicotinic acetylcholine receptor subtype forms a Ca(2+)-permeable homooligomeric ion channel sensitive to alpha-bungarotoxin in Xenopus oocytes. In this study, we have stably and functionally expressed the human alpha 7 cDNA in a mammalian cell line, HEK-293 and examined its pharmacologic properties. [125I] alpha-Bungarotoxin bound to transfected cells with a Kd value of 0.7 nM and a Bmax value of 973 pmoL/mg protein. No specific binding was detected in untransfected cells. Specific binding could be displaced by unlabeled alpha-bungarotoxin (Ki = 0.5 nM) and an excellent correlation was observed between binding affinities of a series of nicotinic cholinergic ligands in transfected cells and those in the human neuroblastoma IMR-32 cell line. Additionally, cell surface expression of alpha 7 receptors was detected by fluorescein isothiocyanate-conjugated alpha-bungarotoxin in transfected cells. Whole cell currents sensitive to blockade by alpha-bungarotoxin, and with fast kinetics of activation and inactivation, were recorded from transfected cells upon rapid application of (-)-nicotine or acetylcholine with EC50 values of 49 microM and 155 microM respectively. We conclude that the human alpha 7 subunit when expressed alone can form functional ion channels and that the stably transfected HEK-293 cell line serves as a unique system for studying human alpha 7 nicotinic receptor function and regulation, and for examining ligand interactions.

  6. The nicotinic acetylcholine receptor and its prokaryotic homologues: Structure, conformational transitions & allosteric modulation.

    PubMed

    Cecchini, Marco; Changeux, Jean-Pierre

    2015-09-01

    Pentameric ligand-gated ion channels (pLGICs) play a central role in intercellular communications in the nervous system by converting the binding of a chemical messenger - a neurotransmitter - into an ion flux through the postsynaptic membrane. Here, we present an overview of the most recent advances on the signal transduction mechanism boosted by X-ray crystallography of both prokaryotic and eukaryotic homologues of the nicotinic acetylcholine receptor (nAChR) in conjunction with time-resolved analyses based on single-channel electrophysiology and Molecular Dynamics simulations. The available data consistently point to a global mechanism of gating that involves a large reorganization of the receptor mediated by two distinct quaternary transitions: a global twisting and a radial expansion/contraction of the extracellular domain. These transitions profoundly modify the organization of the interface between subunits, which host several sites for orthosteric and allosteric modulatory ligands. The same mechanism may thus mediate both positive and negative allosteric modulations of pLGICs ligand binding at topographically distinct sites. The emerging picture of signal transduction is expected to pave the way to new pharmacological strategies for the development of allosteric modulators of nAChR and pLGICs in general. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'.

  7. Selective ligand behaviors provide new insights into agonist activation of nicotinic acetylcholine receptors.

    PubMed

    Marotta, Christopher B; Rreza, Iva; Lester, Henry A; Dougherty, Dennis A

    2014-05-16

    Nicotinic acetylcholine receptors are a diverse set of ion channels that are essential to everyday brain function. Contemporary research studies selective activation of individual subtypes of receptors, with the hope of increasing our understanding of behavioral responses and neurodegenerative diseases. Here, we aim to expand current binding models to help explain the specificity seen among three activators of α4β2 receptors: sazetidine-A, cytisine, and NS9283. Through mutational analysis, we can interchange the activation profiles of the stoichiometry-selective compounds sazetidine-A and cytisine. In addition, mutations render NS9283--currently identified as a positive allosteric modulator--into an agonist. These results lead to two conclusions: (1) occupation at each primary face of an α subunit is needed to activate the channel and (2) the complementary face of the adjacent subunit dictates the binding ability of the agonist.

  8. Vector-averaged gravity does not alter acetylcholine receptor single channel properties

    NASA Technical Reports Server (NTRS)

    Reitstetter, R.; Gruener, R.

    1994-01-01

    To examine the physiological sensitivity of membrane receptors to altered gravity, we examined the single channel properties of the acetylcholine receptor (AChR), in co-cultures of Xenopus myocytes and neurons, to vector-averaged gravity in the clinostat. This experimental paradigm produces an environment in which, from the cell's perspective, the gravitational vector is "nulled" by continuous averaging. In that respect, the clinostat simulates one aspect of space microgravity where the gravity force is greatly reduced. After clinorotation, the AChR channel mean open-time and conductance were statistically not different from control values but showed a rotation-dependent trend that suggests a process of cellular adaptation to clinorotation. These findings therefore suggest that the ACHR channel function may not be affected in the microgravity of space despite changes in the receptor's cellular organization.

  9. Some properties of human neuronal alpha 7 nicotinic acetylcholine receptors fused to the green fluorescent protein.

    PubMed

    Palma, Eleonora; Mileo, Anna M; Martinez-Torres, Ataulfo; Eusebi, Fabrizio; Miledi, Ricardo

    2002-03-19

    The functional properties and cellular localization of the human neuronal alpha7 nicotinic acetylcholine (AcCho) receptor (alpha7 AcChoR) and its L248T mutated (mut) form were investigated by expressing them alone or as gene fusions with the enhanced version of the green fluorescent protein (GFP). Xenopus oocytes injected with wild-type (wt), mutalpha7, or the chimeric subunit cDNAs expressed receptors that gated membrane currents when exposed to AcCho. As already known, AcCho currents generated by wtalpha7 receptors decay much faster than those elicited by the mutalpha7 receptors. Unexpectedly, the fusion of GFP to the wt and mutated alpha7 receptors led to opposite results: the AcCho-current decay of the wt receptors became slower, whereas that of the mutated receptors was accelerated. Furthermore, repetitive applications of AcCho led to a considerable "run-down" of the AcCho currents generated by mutalpha7-GFP receptors, whereas those of the wtalpha7-GFP receptors remained stable or increased in amplitude. The AcCho-current run-down of mutalpha7-GFP oocytes was accompanied by a marked decrease of alpha-bungarotoxin binding activity. Fluorescence, caused by the chimeric receptors expressed, was seen over the whole oocyte surface but was more intense and abundant in the animal hemisphere, whereas it was much weaker in the vegetal hemisphere. We conclude that fusion of GFP to wtalpha7 and mutalpha7 receptors provides powerful tools to study the distribution and function of alpha7 receptors. We also conclude that fused genes do not necessarily recapitulate all of the properties of the original receptors. This fact must be borne close in mind whenever reporter genes are attached to proteins.

  10. Selective Activation of M4 Muscarinic Acetylcholine Receptors Reverses MK-801-Induced Behavioral Impairments and Enhances Associative Learning in Rodents

    PubMed Central

    2015-01-01

    Positive allosteric modulators (PAMs) of the M4 muscarinic acetylcholine receptor (mAChR) represent a novel approach for the treatment of psychotic symptoms associated with schizophrenia and other neuropsychiatric disorders. We recently reported that the selective M4 PAM VU0152100 produced an antipsychotic drug-like profile in rodents after amphetamine challenge. Previous studies suggest that enhanced cholinergic activity may also improve cognitive function and reverse deficits observed with reduced signaling through the N-methyl-d-aspartate subtype of the glutamate receptor (NMDAR) in the central nervous system. Prior to this study, the M1 mAChR subtype was viewed as the primary candidate for these actions relative to the other mAChR subtypes. Here we describe the discovery of a novel M4 PAM, VU0467154, with enhanced in vitro potency and improved pharmacokinetic properties relative to other M4 PAMs, enabling a more extensive characterization of M4 actions in rodent models. We used VU0467154 to test the hypothesis that selective potentiation of M4 receptor signaling could ameliorate the behavioral, cognitive, and neurochemical impairments induced by the noncompetitive NMDAR antagonist MK-801. VU0467154 produced a robust dose-dependent reversal of MK-801-induced hyperlocomotion and deficits in preclinical models of associative learning and memory functions, including the touchscreen pairwise visual discrimination task in wild-type mice, but failed to reverse these stimulant-induced deficits in M4 KO mice. VU0467154 also enhanced the acquisition of both contextual and cue-mediated fear conditioning when administered alone in wild-type mice. These novel findings suggest that M4 PAMs may provide a strategy for addressing the more complex affective and cognitive disruptions associated with schizophrenia and other neuropsychiatric disorders. PMID:25137629

  11. Acetylcholine induces GABA release onto rod bipolar cells through heteromeric nicotinic receptors expressed in A17 amacrine cells

    PubMed Central

    Elgueta, Claudio; Vielma, Alex H.; Palacios, Adrian G.; Schmachtenberg, Oliver

    2015-01-01

    Acetylcholine (ACh) is a major retinal neurotransmitter that modulates visual processing through a large repertoire of cholinergic receptors expressed on different retinal cell types. ACh is released from starburst amacrine cells (SACs) under scotopic conditions, but its effects on cells of the rod pathway have not been investigated. Using whole-cell patch clamp recordings in slices of rat retina, we found that ACh application triggers GABA release onto rod bipolar (RB) cells. GABA was released from A17 amacrine cells and activated postsynaptic GABAA and GABAC receptors in RB cells. The sensitivity of ACh-induced currents to nicotinic ACh receptor (nAChR) antagonists (TMPH ~ mecamylamine > erysodine > DhβE > MLA) together with the differential potency of specific agonists to mimic ACh responses (cytisine >> RJR2403 ~ choline), suggest that A17 cells express heteromeric nAChRs containing the β4 subunit. Activation of nAChRs induced GABA release after Ca2+ accumulation in A17 cell dendrites and varicosities mediated by L-type voltage-gated calcium channels (VGCCs) and intracellular Ca2+ stores. Inhibition of acetylcholinesterase depolarized A17 cells and increased spontaneous inhibitory postsynaptic currents in RB cells, indicating that endogenous ACh enhances GABAergic inhibition of RB cells. Moreover, injection of neostigmine or cytisine reduced the b-wave of the scotopic flash electroretinogram (ERG), suggesting that cholinergic modulation of GABA release controls RB cell activity in vivo. These results describe a novel regulatory mechanism of RB cell inhibition and complement our understanding of the neuromodulatory control of retinal signal processing. PMID:25709566

  12. Functionalized Congeners of P2Y1 Receptor Antagonists:

    SciTech Connect

    de Castro, Sonia; Maruoka, Hiroshi; Hong, Kunlun; Kilbey, II, S Michael; Costanzi, Stefano; Hechler, Béatrice; Gachet, Christian; Harden, T. Kendall; Jacobson, Kenneth A.

    2010-01-01

    The P2Y{sub 1} receptor is a prothrombotic G protein-coupled receptor (GPCR) activated by ADP. Preference for the North (N) ring conformation of the ribose moiety of adenine nucleotide 3',5'-bisphosphate antagonists of the P2Y{sub 1} receptor was established by using a ring-constrained methanocarba (a bicyclo[3.1.0]hexane) ring as a ribose substitute. A series of covalently linkable N{sup 6}-methyl-(N)-methanocarba-2'-deoxyadenosine-3',5'-bisphosphates containing extended 2-alkynyl chains was designed, and binding affinity at the human (h) P2Y{sub 1} receptor determined. The chain of these functionalized congeners contained hydrophilic moieties, a reactive substituent, or biotin, linked via an amide. Variation of the chain length and position of an intermediate amide group revealed high affinity of carboxylic congener 8 (K{sub i} 23 nM) and extended amine congener 15 (K{sub i} 132 nM), both having a 2-(1-pentynoyl) group. A biotin conjugate 18 containing an extended {epsilon}-aminocaproyl spacer chain exhibited higher affinity than a shorter biotinylated analogue. Alternatively, click coupling of terminal alkynes of homologous 2-dialkynyl nucleotide derivatives to alkyl azido groups produced triazole derivatives that bound to the P2Y{sub 1} receptor following deprotection of the bisphosphate groups. The preservation of receptor affinity of the functionalized congeners was consistent with new P2Y{sub 1} receptor modeling and ligand docking. Attempted P2Y{sub 1} antagonist conjugation to PAMAM dendrimer carriers by amide formation or palladium-catalyzed reaction between an alkyne on the dendrimer and a 2-iodopurine-derivatized nucleotide was unsuccessful. A dialkynyl intermediate containing the chain length favored in receptor binding was conjugated to an azide-derivatized dendrimer, and the conjugate inhibited ADP-promoted human platelet aggregation. This is the first example of attaching a strategically functionalized P2Y receptor antagonist to a PAMAM dendrimer to

  13. Counting Bungarotoxin Binding Sites of Nicotinic Acetylcholine Receptors in Mammalian Cells with High Signal/Noise Ratios

    PubMed Central

    Simonson, Paul D.; DeBerg, Hannah A.; Ge, Pinghua; Alexander, John K.; Jeyifous, Okunola; Green, William N.; Selvin, Paul R.

    2010-01-01

    Nicotinic acetylcholine receptors are some of the most studied synaptic proteins; however, many questions remain that can only be answered using single molecule approaches. Here we report our results from single α7 and neuromuscular junction type nicotinic acetylcholine receptors in mammalian cell membranes. By labeling the receptors with fluorophore-labeled bungarotoxin, we can image individual receptors and count the number of bungarotoxin-binding sites in receptors expressed in HEK 293 cells. Our results indicate that there are two bungarotoxin-binding sites in neuromuscular junction receptors, as expected, and five in α7 receptors, clarifying previous uncertainty. This demonstrates a valuable technique for counting subunits in membrane-bound proteins at the single molecule level, with nonspecialized optics and with higher signal/noise ratios than previous fluorescent protein-based techniques. PMID:21081055

  14. Characterization of a novel non-steroidal glucocorticoid receptor antagonist

    SciTech Connect

    Li, Qun-Yi; Zhang, Meng; Hallis, Tina M.; DeRosier, Therese A.; Yue, Jian-Min; Ye, Yang; Mais, Dale E.; Wang, Ming-Wei

    2010-01-15

    Selective antagonists of the glucocorticoid receptor (GR) are desirable for the treatment of hypercortisolemia associated with Cushing's syndrome, psychic depression, obesity, diabetes, neurodegenerative diseases, and glaucoma. NC3327, a non-steroidal small molecule with potent binding affinity to GR (K{sub i} = 13.2 nM), was identified in a high-throughput screening effort. As a full GR antagonist, NC3327 greatly inhibits the dexamethasone (Dex) induction of marker genes involved in hepatic gluconeogenesis, but has a minimal effect on matrix metalloproteinase 9 (MMP-9), a GR responsive pro-inflammatory gene. Interestingly, the compound recruits neither coactivators nor corepressors to the GR complex but competes with glucocorticoids for the interaction between GR and a coactivator peptide. Moreover, NC3327 does not trigger GR nuclear translocation, but significantly blocks Dex-induced GR transportation to the nucleus, and thus appears to be a 'competitive' GR antagonist. Therefore, the non-steroidal compound, NC3327, may represent a new class of GR antagonists as potential therapeutics for a variety of cortisol-related endocrine disorders.

  15. NMDA receptor antagonists extend the sensitive period for imprinting.

    PubMed

    Parsons, C H; Rogers, L J

    2000-03-01

    Filial imprinting in the domestic chick occurs during a sensitive period of development. The exact timing of this period can vary according to the methods used to measure imprinting. Using our imprinting paradigm, we have shown that normal, dark-reared chicks lose the ability to imprint after the second day post-hatching. Further, we reported that chicks treated 10 h after hatching with a mixture of the noncompetitive NMDA receptor antagonist ketamine (55 mg/kg) and the alpha(2)-adrenergic receptor agonist xylazine (6 mg/kg) were able to imprint on day 8 after hatching, whereas controls treated with saline did not imprint. We now show that the effect of the ketamine-xylazine mixture can be mimicked by treating chicks with ketamine alone or with another noncompetitive NMDA receptor antagonist, MK-801 (5 mg/kg). Treating chicks with a single dose of ketamine (55 mg/kg) or with a single dose of xylazine (6 mg/kg) failed to produce the effect on the sensitive period. However, prolonging the action of ketamine by treating chicks with two doses of ketamine (at 10 and 12 h after hatching) did allow imprinting on day 8. In contrast, prolonging the action of xylazine had no effect on the sensitive period for imprinting. Chicks treated with MK-801 were also able to imprint on day 8. Thus, we have evidence that the NMDA receptor system is involved in the mechanisms that control the sensitive period for imprinting.

  16. NMDA receptor antagonists extend the sensitive period for imprinting.

    PubMed

    Parsons, C H; Rogers, L J

    2000-03-01

    Filial imprinting in the domestic chick occurs during a sensitive period of development. The exact timing of this period can vary according to the methods used to measure imprinting. Using our imprinting paradigm, we have shown that normal, dark-reared chicks lose the ability to imprint after the second day post-hatching. Further, we reported that chicks treated 10 h after hatching with a mixture of the noncompetitive NMDA receptor antagonist ketamine (55 mg/kg) and the alpha(2)-adrenergic receptor agonist xylazine (6 mg/kg) were able to imprint on day 8 after hatching, whereas controls treated with saline did not imprint. We now show that the effect of the ketamine-xylazine mixture can be mimicked by treating chicks with ketamine alone or with another noncompetitive NMDA receptor antagonist, MK-801 (5 mg/kg). Treating chicks with a single dose of ketamine (55 mg/kg) or with a single dose of xylazine (6 mg/kg) failed to produce the effect on the sensitive period. However, prolonging the action of ketamine by treating chicks with two doses of ketamine (at 10 and 12 h after hatching) did allow imprinting on day 8. In contrast, prolonging the action of xylazine had no effect on the sensitive period for imprinting. Chicks treated with MK-801 were also able to imprint on day 8. Thus, we have evidence that the NMDA receptor system is involved in the mechanisms that control the sensitive period for imprinting. PMID:10764906

  17. Adenosine receptor antagonists alter the stability of human epileptic GABAA receptors

    PubMed Central

    Roseti, Cristina; Martinello, Katiuscia; Fucile, Sergio; Piccari, Vanessa; Mascia, Addolorata; Di Gennaro, Giancarlo; Quarato, Pier Paolo; Manfredi, Mario; Esposito, Vincenzo; Cantore, Gianpaolo; Arcella, Antonella; Simonato, Michele; Fredholm, Bertil B.; Limatola, Cristina; Miledi, Ricardo; Eusebi, Fabrizio

    2008-01-01

    We examined how the endogenous anticonvulsant adenosine might influence γ-aminobutyric acid type A (GABAA) receptor stability and which adenosine receptors (ARs) were involved. Upon repetitive activation (GABA 500 μM), GABAA receptors, microtransplanted into Xenopus oocytes from neurosurgically resected epileptic human nervous tissues, exhibited an obvious GABAA-current (IGABA) run-down, which was consistently and significantly reduced by treatment with the nonselective adenosine receptor antagonist CGS15943 (100 nM) or with adenosine deaminase (ADA) (1 units/ml), that inactivates adenosine. It was also found that selective antagonists of A2B (MRS1706, 10 nM) or A3 (MRS1334, 30 nM) receptors reduced IGABA run-down, whereas treatment with the specific A1 receptor antagonist DPCPX (10 nM) was ineffective. The selective A2A receptor antagonist SCH58261 (10 nM) reduced or potentiated IGABA run-down in ≈40% and ≈20% of tested oocytes, respectively. The ADA-resistant, AR agonist 2-chloroadenosine (2-CA) (10 μM) potentiated IGABA run-down but only in ≈20% of tested oocytes. CGS15943 administration again decreased IGABA run-down in patch-clamped neurons from either human or rat neocortex slices. IGABA run-down in pyramidal neurons was equivalent in A1 receptor-deficient and wt neurons but much larger in neurons from A2A receptor-deficient mice, indicating that, in mouse cortex, GABAA-receptor stability is tonically influenced by A2A but not by A1 receptors. IGABA run-down from wt mice was not affected by 2-CA, suggesting maximal ARs activity by endogenous adenosine. Our findings strongly suggest that cortical A2–A3 receptors alter the stability of GABAA receptors, which could offer therapeutic opportunities. PMID:18809912

  18. Effects of extracellular acetylcholine on muscarinic receptor binding assessed by [125I]dexetimide and a simple probe.

    PubMed

    Sánchez-Roa, P M; Wagner, H N; Villemagne, V L; London, E D; Lever, J R

    1998-10-01

    New pharmacologic approaches to enhance brain cholinergic function focus on increasing intrasynaptic acetylcholine. We examined the usefulness of a simple probe and [125I]dexetimide to evaluate in vivo the effects of extracellular acetylcholine on muscarinic receptor binding in the mouse brain. After radiotracer injection continuous time/activity curves were generated over 330 min. [125I]Dexetimide reached a plateau at 90 min post-injection. To increase extracellular acetylcholine, the anticholinesterase physostigmine was administered at 120 min, producing a reversible decrease in [125I]dexetimide specific binding (23%) for 30 min. These findings demonstrate that dynamic changes in extracellular acetylcholine can be evaluated by displacement of [125I]dexetimide binding in vivo using a simple probe system. PMID:9822886

  19. Rare human nicotinic acetylcholine receptor α4 subunit (CHRNA4) variants affect expression and function of high-affinity nicotinic acetylcholine receptors.

    PubMed

    McClure-Begley, T D; Papke, R L; Stone, K L; Stokes, C; Levy, A D; Gelernter, J; Xie, P; Lindstrom, J; Picciotto, M R

    2014-03-01

    Nicotine, the primary psychoactive component in tobacco smoke, produces its behavioral effects through interactions with neuronal nicotinic acetylcholine receptors (nAChRs). α4β2 nAChRs are the most abundant in mammalian brain, and converging evidence shows that this subtype mediates the rewarding and reinforcing effects of nicotine. A number of rare variants in the CHRNA4 gene that encode the α4 nAChR subunit have been identified in human subjects and appear to be underrepresented in a cohort of smokers. We compared three of these variants (α4R336C, α4P451L, and α4R487Q) to the common variant to determine their effects on α4β2 nAChR pharmacology. We examined [(3)H]epibatidine binding, interacting proteins, and phosphorylation of the α4 nAChR subunit with liquid chromatography and tandem mass spectrometry (LC-MS/MS) in HEK 293 cells and voltage-clamp electrophysiology in Xenopus laevis oocytes. We observed significant effects of the α4 variants on nAChR expression, subcellular distribution, and sensitivity to nicotine-induced receptor upregulation. Proteomic analysis of immunopurified α4β2 nAChRs incorporating the rare variants identified considerable differences in the intracellular interactomes due to these single amino acid substitutions. Electrophysiological characterization in X. laevis oocytes revealed alterations in the functional parameters of activation by nAChR agonists conferred by these α4 rare variants, as well as shifts in receptor function after incubation with nicotine. Taken together, these experiments suggest that genetic variation at CHRNA4 alters the assembly and expression of human α4β2 nAChRs, resulting in receptors that are more sensitive to nicotine exposure than those assembled with the common α4 variant. The changes in nAChR pharmacology could contribute to differences in responses to smoked nicotine in individuals harboring these rare variants.

  20. Rapid synthesis of acetylcholine receptors at neuromuscular junctions. (Reannouncement with new availability information)

    SciTech Connect

    Ramsay, D.A.; Drachman, D.B.; Pestronk, A.

    1988-12-31

    The rate of acetylcholine receptor (AChR) degradation in mature, innervated mammalian neuromuscular junctions has recently been shown to be biphasic; up to 20% are rapidly turned over whereas the remainder are lost more slowly. In order to maintain normal junctional receptor density, synthesis and insertion of AChRs should presumably be sufficiently rapid to replace both the RTOs and the stable receptors. The authors have tested this prediction by blocking pre-existing AChRs in the mouse sternomastoid muscle with alpha bungarotoxin and monitoring the subsequent appearance of new junctional AChRs at intervals of 3 h to 20 days by labelling them. The results show that new receptors were initially inserted rapidly. The rate of increase of new binding sites gradually slowed down during the remainder of the time period studied. Control observations excluded possible artifacts of the experimental procedure including incomplete blockade of AChRs, dissociation of toxin receptor complexes, or experimentally induced alteration of receptor synthesis. The present demonstration of rapid synthesis and incorporation of AChRs at innervated neuromuscular junctions provides support for the concept of a subpopulation of rapidly turned over AChRs. The RTOs may serve as precursors for the large population of stable receptors and have an important role in the metabolism of the neuromuscular synapse.

  1. R-spondin 2 promotes acetylcholine receptor clustering at the neuromuscular junction via Lgr5

    PubMed Central

    Nakashima, Hiroaki; Ohkawara, Bisei; Ishigaki, Shinsuke; Fukudome, Takayasu; Ito, Kenyu; Tsushima, Mikito; Konishi, Hiroyuki; Okuno, Tatsuya; Yoshimura, Toshiro; Ito, Mikako; Masuda, Akio; Sobue, Gen; Kiyama, Hiroshi; Ishiguro, Naoki; Ohno, Kinji

    2016-01-01

    At the neuromuscular junction (NMJ), acetylcholine receptor (AChR) clustering is mediated by spinal motor neuron (SMN)-derived agrin and its receptors on the muscle, the low-density lipoprotein receptor-related protein 4 (LRP4) and muscle-specific receptor tyrosine kinase (MuSK). Additionally, AChR clustering is mediated by the components of the Wnt pathway. Laser capture microdissection of SMNs revealed that a secreted activator of Wnt signaling, R-spondin 2 (Rspo2), is highly expressed in SMNs. We found that Rspo2 is enriched at the NMJ, and that Rspo2 induces MuSK phosphorylation and AChR clustering. Rspo2 requires Wnt ligands, but not agrin, for promoting AChR clustering in cultured myotubes. Leucine-rich repeat-containing G-protein coupled receptor 5 (Lgr5), an Rspo2 receptor, is also accumulated at the NMJ, and is associated with MuSK via LRP4. Lgr5 is required for Rspo2-mediated AChR clustering in myotubes. In Rspo2-knockout mice, the number and density of AChRs at the NMJ are reduced. The Rspo2-knockout diaphragm has an altered ultrastructure with widened synaptic clefts and sparse synaptic vesicles. Frequency of miniature endplate currents is markedly reduced in Rspo2-knockout mice. To conclude, we demonstrate that Rspo2 and its receptor Lgr5 are Wnt-dependent and agrin-independent regulators of AChR clustering at the NMJ. PMID:27328992

  2. R-spondin 2 promotes acetylcholine receptor clustering at the neuromuscular junction via Lgr5.

    PubMed

    Nakashima, Hiroaki; Ohkawara, Bisei; Ishigaki, Shinsuke; Fukudome, Takayasu; Ito, Kenyu; Tsushima, Mikito; Konishi, Hiroyuki; Okuno, Tatsuya; Yoshimura, Toshiro; Ito, Mikako; Masuda, Akio; Sobue, Gen; Kiyama, Hiroshi; Ishiguro, Naoki; Ohno, Kinji

    2016-01-01

    At the neuromuscular junction (NMJ), acetylcholine receptor (AChR) clustering is mediated by spinal motor neuron (SMN)-derived agrin and its receptors on the muscle, the low-density lipoprotein receptor-related protein 4 (LRP4) and muscle-specific receptor tyrosine kinase (MuSK). Additionally, AChR clustering is mediated by the components of the Wnt pathway. Laser capture microdissection of SMNs revealed that a secreted activator of Wnt signaling, R-spondin 2 (Rspo2), is highly expressed in SMNs. We found that Rspo2 is enriched at the NMJ, and that Rspo2 induces MuSK phosphorylation and AChR clustering. Rspo2 requires Wnt ligands, but not agrin, for promoting AChR clustering in cultured myotubes. Leucine-rich repeat-containing G-protein coupled receptor 5 (Lgr5), an Rspo2 receptor, is also accumulated at the NMJ, and is associated with MuSK via LRP4. Lgr5 is required for Rspo2-mediated AChR clustering in myotubes. In Rspo2-knockout mice, the number and density of AChRs at the NMJ are reduced. The Rspo2-knockout diaphragm has an altered ultrastructure with widened synaptic clefts and sparse synaptic vesicles. Frequency of miniature endplate currents is markedly reduced in Rspo2-knockout mice. To conclude, we demonstrate that Rspo2 and its receptor Lgr5 are Wnt-dependent and agrin-independent regulators of AChR clustering at the NMJ. PMID:27328992

  3. Vasopressin receptor antagonists, heart failure, and polycystic kidney disease.

    PubMed

    Torres, Vicente E

    2015-01-01

    The synthesis of nonpeptide orally bioavailable vasopressin antagonists devoid of agonistic activity (vaptans) has made possible the selective blockade of vasopressin receptor subtypes for therapeutic purposes. Vaptans acting on the vasopressin V2 receptors (aquaretics) have attracted attention as a possible therapy for heart failure and polycystic kidney disease. Despite a solid rationale and encouraging preclinical testing, aquaretics have not improved clinical outcomes in randomized clinical trials for heart failure. Additional clinical trials with select population targets, more flexible dosing schedules, and possibly a different drug type or combination (balanced V1a/V2 receptor antagonism) may be warranted. Aquaretics are promising for the treatment of autosomal dominant polycystic kidney disease and have been approved in Japan for this indication. More studies are needed to better define their long-term safety and efficacy and optimize their utilization.

  4. Suvorexant: The first orexin receptor antagonist to treat insomnia

    PubMed Central

    Dubey, Ashok K.; Handu, Shailendra S.; Mediratta, Pramod K.

    2015-01-01

    Primary insomnia is mainly treated with drugs acting on benzodiazepine receptors and a few other classes of drugs used for different co-morbidities. A novel approach to treat insomnia has been introduced recently, with the approval of suvorexant, the first in a new class of orexin receptor antagonists. Orexin receptors in the brain have been found to play an important role in the regulation of various aspects of arousal and motivation. The drugs commonly used for insomnia therapy to date, have often been associated with adverse effects, such as, day-time somnolence, amnesia, confusion, and gait disturbance, apart from the risk of dependence on chronic use. Suvorexant has not shown these adverse effects because of its unique mechanism of action. It also appears to be suitable as a chronic therapy for insomnia, because of minimal physical dependence. The availability of this new drug as an effective and safe alternative is an important and welcome development in insomnia management. PMID:25969666

  5. Topological dispositions of lysine. alpha. 380 and lysine. gamma. 486 in the acetylcholine receptor from Torpedo californica

    SciTech Connect

    Dwyer, B.P. )

    1991-04-23

    The locations have been determined, with respect to the plasma membrane, of lysine {alpha}380 and lysine {gamma}486 in the {alpha} subunit and the {gamma} subunit, respectively, of the nicotinic acetylcholine receptor from Torpedo californica. Immunoadsorbents were constructed that recognize the carboxy terminus of the peptide GVKYIAE released by proteolytic digestion from positions 378-384 in the amino acid sequence of the {alpha} subunit of the acetylcholine receptor and the carboxy terminus of the peptide KYVP released by proteolytic digestion from positions 486-489 in the amino acid sequence of the {gamma} subunit. They were used to isolate these peptides from proteolytic digests of polypeptides from the acetylcholine receptor. Sealed vesicles containing the native acetylcholine receptor were labeled with pyridoxal phosphate and sodium ({sup 3}H)-borohydride. The effect of saponin on the incorporation of pyridoxamine phosphate into lysine {alpha}380 and lysine {gamma}486 from the acetylcholine receptor in these vesicles was assessed with the immunoadsorbents. The conclusions that follow from these results are that lysine {alpha}380 is on the inside surface of a vesicle and lysine {gamma}486 is on the outside surface. Because a majority (85%) of the total binding sites for {alpha}-bungarotoxin bind the toxin in the absence of saponin, the majority of the vesicles are right side out with the inside of the vesicle corresponding to the cytoplasmic surface and the outside of the vesicle corresponding to the extracytoplasmic, synaptic surface. Because lysine {alpha}380 and lysine {gamma}486 lie on opposite sides of the membrane, a membrane-spanning segment must be located between the two positions occupied by these two amino acids in the common sequence of a polypeptide of the acetylcholine receptor.

  6. Subtype-selective nicotinic acetylcholine receptor agonists enhance the responsiveness to citalopram and reboxetine in the mouse forced swim test.

    PubMed

    Andreasen, Jesper T; Nielsen, Elsebet Ø; Christensen, Jeppe K; Olsen, Gunnar M; Peters, Dan; Mirza, Naheed R; Redrobe, John P

    2011-10-01

    Nicotine increases serotonergic and noradrenergic neuronal activity and facilitates serotonin and noradrenaline release. Accordingly, nicotine enhances antidepressant-like actions of reuptake inhibitors selective for serotonin or noradrenaline in the mouse forced swim test and the mouse tail suspension test. Both high-affinity α4β2 and low-affinity α7 nicotinic acetylcholine receptor subtypes are implicated in nicotine-mediated release of serotonin and noradrenaline. The present study therefore investigated whether selective agonism of α4β2 or α7 nicotinic acetylcholine receptors would affect the mouse forced swim test activity of two antidepressants with distinct mechanisms of action, namely the selective serotonin reuptake inhibitor citalopram and the noradrenaline reuptake inhibitor reboxetine. Subthreshold and threshold doses of citalopram (3 and 10 mg/kg) or reboxetine (10 and 20 mg/kg) were tested alone and in combination with the novel α4β2-selective partial nicotinic acetylcholine receptor agonist, NS3956 (0.3 and 1.0 mg/kg) or the α7-selective nicotinic acetylcholine receptor agonist, PNU-282987 (10 and 30 mg/kg). Alone, NS3956 and PNU-282987 were devoid of activity in the mouse forced swim test, but both 1.0 mg/kg NS3956 and 30 mg/kg PNU-282987 enhanced the effect of citalopram and also reboxetine. The data suggest that the activity of citalopram and reboxetine in the mouse forced swim test can be enhanced by agonists at either α4β2 or α7 nicotinic acetylcholine receptors, suggesting that both nicotinic acetylcholine receptor subtypes may be involved in the nicotine-enhanced action of antidepressants.

  7. 86Rb+ Efflux Mediated by α4β2*-Nicotinic Acetylcholine Receptors with High and Low Sensitivity to Stimulation by Acetylcholine Display Similar Agonist-Induced Desensitization

    PubMed Central

    Marks, Michael J.; Meinerz, Natalie M.; Brown, Robert W. B.; Collins, Allan C.

    2010-01-01

    The nicotinic acetylcholine receptors (nAChR) assembled from α4 and β2 subunits are the most densely expressed subtype in the brain. Concentration-effect curves for agonist activation of α4β2*-nAChR are biphasic. This biphasic agonist sensitivity is ascribed to differences in subunit stoichiometry. The studies described here evaluated desensitization elicited by low concentrations of epibatidine, nicotine, cytisine or methylcarbachol of brain α4β2-nAChR function measured with acetylcholine stimulated 86Rb+ efflux from mouse thalamic synaptosomes. Each agonist elicited concentration-dependent desensitization. The agonists differed in potency. However, IC50 values for each agonist for desensitization of 86Rb+ efflux both with high (EC50≈3 μM) and low (EC50≈ 150 μM) acetylcholine sensitivity were not significantly different. Concentrations required to elicit desensitization were higher that their respective KD values for receptor binding. Even though the two components of α4β2*-nAChR mediated 86Rb+ efflux from mouse brain differ markedly in EC50 values for agonist activation, they are equally sensitive to desensitization by exposure to low agonist concentrations. Mice were also chronically treated with nicotine by continuous infusion of 0, 0.5 or 4.0 mg/kg/hr and desensitization induced by nicotine was evaluated. Consistent with previous results, chronic nicotine treatment increased the density of epibatidine binding sites. Acute exposure to nicotine also elicited concentration-dependent desensitization of both high sensitivity and low sensitivity acetylcholine-stimulated 86Rb+ efflux from cortical and thalamic synaptosomes. Although chronic nicotine treatment reduced maximal 86Rb+ efflux from thalamus, IC50 values in both brain regions were unaffected by chronic nicotine treatment. PMID:20599770

  8. Mineralocorticoid receptor antagonists: emerging roles in cardiovascular medicine

    PubMed Central

    Funder, John W

    2013-01-01

    Spironolactone was first developed over 50 years ago as a potent mineralocorticoid receptor (MR) antagonist with undesirable side effects; it was followed a decade ago by eplerenone, which is less potent but much more MR-specific. From a marginal role as a potassium-sparing diuretic, spironolactone was shown to be an extraordinarily effective adjunctive agent in the treatment of progressive heart failure, as was eplerenone in subsequent heart failure trials. Neither acts as an aldosterone antagonist in the heart as the cardiac MR are occupied by cortisol, which becomes an aldosterone mimic in conditions of tissue damage. The accepted term “MR antagonist”, (as opposed to “aldosterone antagonist” or, worse, “aldosterone blocker”), should be retained, despite the demonstration that they act not to deny agonist access but as inverse agonists. The prevalence of primary aldosteronism is now recognized as accounting for about 10% of hypertension, with recent evidence suggesting that this figure may be considerably higher: in over two thirds of cases of primary aldosteronism therapy including MR antagonists is standard of care. MR antagonists are safe and vasoprotective in uncomplicated essential hypertension, even in diabetics, and at low doses they also specifically lower blood pressure in patients with so-called resistant hypertension. Nowhere are more than 1% of patients with primary aldosteronism ever diagnosed and specifically treated. Given the higher risk profile in patients with primary aldosteronism than that of age, sex, and blood pressure matched essential hypertension, on public health grounds alone the guidelines for first-line treatment of all hypertension should mandate inclusion of a low-dose MR antagonist. PMID:24133375

  9. Regulation of the neuronal nicotinic acetylcholine receptor by SRC family tyrosine kinases.

    PubMed

    Wang, Kan; Hackett, John T; Cox, Michael E; Van Hoek, Monique; Lindstrom, Jon M; Parsons, Sarah J

    2004-03-01

    Src family kinases (SFKs) are abundant in chromaffin cells that reside in the adrenal medulla and respond to cholinergic stimulation by secreting catecholamines. Our previous work indicated that SFKs regulate acetylcholine- or nicotine-induced secretion, but the site of modulatory action was unclear. Using whole cell recordings, we found that inhibition of SFK tyrosine kinase activity by PP2 (4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo(3,4-d)pyrimidine) treatment or expression of a kinase-defective c-Src reduced the peak amplitude of nicotine-induced currents in chromaffin cells or in human embryonic kidney cells ectopically expressing functional neuronal alpha3beta4alpha5 acetylcholine receptors (AChRs). Conversely, the phosphotyrosine phosphatase inhibitor, sodium vanadate, or expression of mutationally activated c-Src resulted in enhanced current amplitudes. These results suggest that SFKs and putative phosphotyrosine phosphatases regulate the activity of AChRs by opposing actions. This proposed model was supported further by the findings that SFKs physically associate with the receptor and that the AChR is tyrosine-phosphorylated.

  10. Activation of Muscarinic M1 Acetylcholine Receptors Induces Long-Term Potentiation in the Hippocampus.

    PubMed

    Dennis, Siobhan H; Pasqui, Francesca; Colvin, Ellen M; Sanger, Helen; Mogg, Adrian J; Felder, Christian C; Broad, Lisa M; Fitzjohn, Steve M; Isaac, John T R; Mellor, Jack R

    2016-01-01

    Muscarinic M1 acetylcholine receptors (M1Rs) are highly expressed in the hippocampus, and their inhibition or ablation disrupts the encoding of spatial memory. It has been hypothesized that the principal mechanism by which M1Rs influence spatial memory is by the regulation of hippocampal synaptic plasticity. Here, we use a combination of recently developed, well characterized, selective M1R agonists and M1R knock-out mice to define the roles of M1Rs in the regulation of hippocampal neuronal and synaptic function. We confirm that M1R activation increases input resistance and depolarizes hippocampal CA1 pyramidal neurons and show that this profoundly increases excitatory postsynaptic potential-spike coupling. Consistent with a critical role for M1Rs in synaptic plasticity, we now show that M1R activation produces a robust potentiation of glutamatergic synaptic transmission onto CA1 pyramidal neurons that has all the hallmarks of long-term potentiation (LTP): The potentiation requires NMDA receptor activity and bi-directionally occludes with synaptically induced LTP. Thus, we describe synergistic mechanisms by which acetylcholine acting through M1Rs excites CA1 pyramidal neurons and induces LTP, to profoundly increase activation of CA1 pyramidal neurons. These features are predicted to make a major contribution to the pro-cognitive effects of cholinergic transmission in rodents and humans. PMID:26472558

  11. Carbobenzoxy amino acids: Structural requirements for cholecystokinin receptor antagonist activity

    SciTech Connect

    Maton, P.N.; Sutliff, V.E.; Jensen, R.T.; Gardner, J.D.

    1985-04-01

    The authors used dispersed acini prepared from guinea pig pancreas to examine 28 carbobenzoxy (CBZ) amino acids for their abilities to function as cholecystokinin receptor antagonists. All amino acid derivatives tested, except for CBZ-alanine, CBZ-glycine, and N alpha-CBZ- lysine, were able to inhibit the stimulation of amylase secretion caused by the C-terminal octapeptide of cholecystokinin. In general, there was a good correlation between the ability of a carbobenzoxy amino acid to inhibit stimulated amylase secretion and the ability of the amino acid derivative to inhibit binding of /sup 125/I-cholecystokinin. The inhibition of cholecystokinin-stimulated amylase secretion was competitive, fully reversible, and specific for those secretagogues that interact with the cholecystokinin receptor. The potencies with which the various carbobenzoxy amino acids inhibited the action of cholecystokinin varied 100-fold and CBZ-cystine was the most potent cholecystokinin receptor antagonist. This variation in potency was primarily but not exclusively a function of the hydrophobicity of the amino acid side chain.

  12. Safety profile of mineralocorticoid receptor antagonists: Spironolactone and eplerenone.

    PubMed

    Lainscak, Mitja; Pelliccia, Francesco; Rosano, Giuseppe; Vitale, Cristiana; Schiariti, Michele; Greco, Cesare; Speziale, Giuseppe; Gaudio, Carlo

    2015-12-01

    Spironolactone was first developed over 50 years ago as a potent mineralocorticoid receptor antagonist with undesirable side effects; it was followed a decade ago by eplerenone, which is less potent but much more mineralocorticoid receptor-specific. From a marginal role as a potassium-sparing diuretic, spironolactone has been shown to be an extraordinarily effective adjunctive agent in the treatment of progressive heart failure. Also, spironolactone is safe and protective in arterial hypertension, particularly in patients with so-called resistant hypertension. Eplerenone is the second oral aldosterone antagonist available for the treatment of arterial hypertension and heart failure. Treatment with eplerenone has been associated with decreased blood pressure and improved survival for patients with heart failure and reduced left ventricular ejection fraction. Due to the selectivity of eplerenone for the aldosterone receptor, severe adverse effects such as gynecomastia and vaginal bleeding seem to be less likely in patients who take eplerenone than in those who take spironolactone. The most common and potentially dangerous side effect of spironolactone--hyperkalemia--is also observed with eplerenone but the findings from clinical trials do not indicate more hyperkalemia induced drug withdrawals. Treatment with eplerenone should be initiated at a dosage of 25mg once daily and titrated to a target dosage of 50mg once daily preferably within 4 weeks. Serum potassium levels and renal function should be assessed prior to initiating eplerenone therapy, and periodic monitoring is recommended, especially in patients at high risk of developing hyperkalemia.

  13. [Growth hormone receptor antagonist in the treatment of acromegaly].

    PubMed

    Hubina, Erika; Tóth, Agnes; Kovács, Gábor László; Dénes, Judit; Kovács, László; Góth, Miklós

    2011-05-01

    Exploration of construction, function and interaction of human growth hormone and growth hormone receptor in details resulted in the innovation of the new growth hormone receptor antagonist, pegvisomant. Pegvisomant with different mechanism of action extended the tools of medical management of acromegaly. Importance of the novel treatment modality is high. In one hand the necessity of the strict control of growth hormone/insulin-like growth factor-I axis has been proven regarding the mortality of the disease. On the other hand, despite the use of all current modes of treatment (surgery, radiotherapy, dopamine agonists, somatostatin analogs), a significant cohort of patients with acromegaly remains inadequately controlled. Pegvisomant has been registered in 2004. Since 2006, it has been used in Hungary for the treatment of acromegaly in patients who have had an inadequate response to surgery and/or radiation therapy and/or other medical therapies, or for whom these therapies are not appropriate. Clinical use of pegvisomant in the treatment of acromegaly is effective, well tolerated, and safe, based on international Acrostudy database. In order to improve the efficacy of therapy clinical trials started with pegvisomant and somatostatin analog combination treatment. Evidence of several further effects of the growth hormone/insulin-like growth factor-I axis suggests other potential uses of growth hormone receptor antagonists. PMID:21498159

  14. Crystal structure of acetylcholine-binding protein from Bulinus truncatus reveals the conserved structural scaffold and sites of variation in nicotinic acetylcholine receptors.

    PubMed

    Celie, Patrick H N; Klaassen, Remco V; van Rossum-Fikkert, Sarah E; van Elk, René; van Nierop, Pim; Smit, August B; Sixma, Titia K

    2005-07-15

    The crystal structure of acetylcholine-binding protein (AChBP) from the mollusk Lymnaea stagnalis is the established model for the ligand binding domains of the ligand-gated ion channel family, which includes nicotinic acetylcholine, 5-hydroxytryptamine (5-HT3), gamma-aminobutyric acid (GABA), types A and C, and glycine receptors. Here we present the crystal structure of a remote homolog, AChBP from Bulinus truncatus, which reveals both the conserved structural scaffold and the sites of variation in this receptor family. These include rigid body movements of loops that are close to the transmembrane interface in the receptors and changes in the intermonomer contacts, which alter the pentamer stability drastically. Structural, pharmacological and mutational analysis of both AChBPs shows how 3 amino acid changes in the binding site contribute to a 5-10-fold difference in affinity for nicotinic ligands. Comparison of these structures will be valuable for improving structure-function studies of ligand-gated ion channel receptors, including signal transduction, homology modeling, and drug design. PMID:15899893

  15. Minimum number of lipids are required to support the functional properties of the nicotinic acetylcholine receptor

    SciTech Connect

    Jones, O.T.; Eubanks, J.H.; Earnest, J.P.; McNamee, M.G.

    1988-05-17

    The detergent sodium cholate was used to both solubilize and partially delipidate the nicotinic acetylcholine receptor from Torpedo californica. Using both native membranes and reconstituted membranes, it is shown that the detergent to lipid molar ratio is the most important parameter in determining the effect of the detergent on the functional properties of the receptor. Receptor-lipid complexes were quantitatively separated from detergent and excess lipids by centrifugation through detergent-free sucrose gradients. The lipid to protein molar ratio of the complexes could be precisely controlled by adjusting the cholate and lipid concentrations of the starting membranes. Analyses of both ion influx activity and ligand binding revealed that a minimum of 45 lipids per receptor was required for stabilization of the receptor in a fully functional state. Progressive irreversible inactivation occurred as the lipid to protein mole ratio was decreased below 45, and complete inactivation occurred below a ratio of 20. The results are consistent with a functional requirement for a single shell of lipids around the perimeter of the receptor.

  16. Immunological studies on the structure and function of the nicotinic acetylcholine receptor in mammalian muscle

    SciTech Connect

    Gu, Y.

    1989-01-01

    The specificity of the antibodies in the serum of a patient with myasthenia gravis for a the {alpha}-bungarotoxin binding sites of the acetylcholine receptor (AChR) was examined using AChRs in the C2 mouse muscle cell line as a model. The antibodies were shown to be specific for one of the two toxin-binding sites. The effect of the antibodies in this myasthenic serum on the functional response of the receptor to cholinergic agonists was also examined using carbamylcholine-induced {sup 22}Na uptake into C2 myotubes as a measured of the receptor function. Antibodies specific for the {gamma}, {delta}, and {epsilon} subunit, respectively, of mammalian muscle AChRs were developed using subunit-specific synthetic peptides as antigens. Using these antibodies and monoclonal antibodies for other subunits as probes, I have identified four ({alpha}, {beta}, {gamma}, and {delta}) subunits of mammalian muscle AChRs on immunoblots. When AChRs from embryonic, neonatal, normal and denervated adult muscles were compared on immunoblots, the {alpha}, {beta}, and {delta} subunits were identical in all four receptor preparations, with or without endoglycosidase digestion. The spatial and temporal distribution of the {gamma}- and {epsilon}- AChRs in developing and in denervated muscles corresponds to the distribution of AChRs with slow and fast channels, respectively, and that the development changes in the channel properties of the receptor arise from a change in the subunit composition of the receptor, in which the {gamma} is replaced by {epsilon}.

  17. Steroids induce acetylcholine receptors on cultured human muscle: implications for myasthenia gravis.

    PubMed Central

    Kaplan, I; Blakely, B T; Pavlath, G K; Travis, M; Blau, H M

    1990-01-01

    Antibodies to the acetylcholine receptor (AChR), which are diagnostic of the human autoimmune disease myasthenia gravis, block AChR function and increase the rate of AChR degradation leading to impaired neuromuscular transmission. Steroids are frequently used to alleviate symptoms of muscle fatigue and weakness in patients with myasthenia gravis because of their well-documented immunosuppressive effects. We show here that the steroid dexamethasone significantly increases total surface AChRs on cultured human muscle exposed to myasthenia gravis sera. Our results suggest that the clinical improvement observed in myasthenic patients treated with steroids is due not only to an effect on the immune system but also to a direct effect on muscle. We propose that the identification and development of pharmacologic agents that augment receptors and other proteins that are reduced by human genetic or autoimmune disease will have broad therapeutic applications. Images PMID:2236023

  18. Steroids induce acetylcholine receptors on cultured human muscle: Implications for myasthenia gravis

    SciTech Connect

    Kaplan, I.; Blakely, B.T.; Pavlath, G.K.; Travis, M.; Blau, H.M. )

    1990-10-01

    Antibodies to the acetylcholine receptor (AChR), which are diagnostic of the human autoimmune disease myasthenia gravis, block AChR function and increase the rate of AChR degradation leading to impaired neuromuscular transmission. Steroids are frequently used to alleviate symptoms of muscle fatigue and weakness in patients with myasthenia gravis because of their well-documented immunosuppressive effects. The authors show here that the steroid dexamethasone significantly increases total surface AChRs on cultured human muscle exposed to myasthenia gravis sera. The results suggest that the clinical improvement observed in myasthenic patients treated with steroids is due not only to an effect on the immune system but also a direct effect on muscle. They propose that the identification and development of pharmacologic agents that augment receptors and other proteins that are reduced by human genetic or autoimmune disease will have broad therapeutic applications.

  19. Development of prolactin receptor antagonists with reduced pH-dependence of receptor binding.

    PubMed

    Hansen, Mathilde J Kaas; Olsen, Johan G; Bernichtein, Sophie; O'Shea, Charlotte; Sigurskjold, Bent W; Goffin, Vincent; Kragelund, Birthe B

    2011-01-01

    The cytokine hormone prolactin has a vast number of diverse functions. Unfortunately, it also exhibits tumor growth promoting properties, which makes the development of prolactin receptor antagonists a priority. Prolactin binds to its cognate receptor with much lower affinity at low pH than at physiological pH and since the extracellular environment around solid tumors often is acidic, it is desirable to develop antagonists that have improved binding affinity at low pH. The pK(a) value of a histidine side chain is ∼6.8 making histidine residues obvious candidates for examination. From evaluation of known molecular structures of human prolactin, of the prolactin receptor and of different complexes of the two, three histidine residues in the hormone-receptor binding site 1 were selected for mutational studies. We analyzed 10 variants by circular dichroism spectroscopy, affinity and thermodynamic characterization of receptor binding by isothermal titration calorimetry combined with in vitro bioactivity in living cells. Histidine residue 27 was recognized as a central hot spot for pH sensitivity and conservative substitutions at this site resulted in strong receptor binding at low pH. Pure antagonists were developed earlier and the histidine mutations were introduced within such background. The antagonistic properties were maintained and the high affinity at low pH conserved. The implications of these findings may open new areas of research in the field of prolactin cancer biology.

  20. Substituted Tetrahydroisoquinolines as Selective Antagonists for the Orexin 1 Receptor

    PubMed Central

    Perrey, David A.; German, Nadezhda A.; Gilmour, Brian P.; Li, Jun-Xu; Harris, Danni L.; Thomas, Brian F.; Zhang, Yanan

    2013-01-01

    Increasing evidence implicates the orexin 1 (OX1) receptor in reward processes, suggesting OX1 antagonism could be therapeutic in drug addiction. In a program to develop an OX1 selective antagonist, we designed and synthesized a series of substituted tetrahydroisoquinolines and determined their potency in OX1 and OX2 calcium mobilization assays. Structure-activity relationship (SAR) studies revealed limited steric tolerance and preference for electron deficiency at the 7-position. Pyridylmethyl groups were shown to be optimal for activity at the acetamide position. Computational studies resulted in a pharmacophore model and confirmed the SAR results. Compound 72 significantly attenuated the development of place preference for cocaine in rats. PMID:23941044

  1. A Novel Inhibitor of α9α10 Nicotinic Acetylcholine Receptors from Conus vexillum Delineates a New Conotoxin Superfamily

    PubMed Central

    Luo, Sulan; Christensen, Sean; Zhangsun, Dongting; Wu, Yong; Hu, Yuanyan; Zhu, Xiaopeng; Chhabra, Sandeep; Norton, Raymond S.; McIntosh, J. Michael

    2013-01-01

    Conotoxins (CTxs) selectively target a range of ion channels and receptors, making them widely used tools for probing nervous system function. Conotoxins have been previously grouped into superfamilies according to signal sequence and into families based on their cysteine framework and biological target. Here we describe the cloning and characterization of a new conotoxin, from Conus vexillum, named αB-conotoxin VxXXIVA. The peptide does not belong to any previously described conotoxin superfamily and its arrangement of Cys residues is unique among conopeptides. Moreover, in contrast to previously characterized conopeptide toxins, which are expressed initially as prepropeptide precursors with a signal sequence, a ‘‘pro’’ region, and the toxin-encoding region, the precursor sequence of αB-VxXXIVA lacks a ‘‘pro’’ region. The predicted 40-residue mature peptide, which contains four Cys, was synthesized in each of the three possible disulfide arrangements. Investigation of the mechanism of action of αB-VxXXIVA revealed that the peptide is a nicotinic acetylcholine receptor (nAChR) antagonist with greatest potency against the α9α10 subtype. 1H nuclear magnetic resonance (NMR) spectra indicated that all three αB-VxXXIVA isomers were poorly structured in aqueous solution. This was consistent with circular dichroism (CD) results which showed that the peptides were unstructured in buffer, but adopted partially helical conformations in aqueous trifluoroethanol (TFE) solution. The α9α10 nAChR is an important target for the development of analgesics and cancer chemotherapeutics, and αB-VxXXIVA represents a novel ligand with which to probe the structure and function of this protein. PMID:23382933

  2. Activation of the recombinant human alpha 7 nicotinic acetylcholine receptor significantly raises intracellular free calcium.

    PubMed

    Delbono, O; Gopalakrishnan, M; Renganathan, M; Monteggia, L M; Messi, M L; Sullivan, J P

    1997-01-01

    The alpha 7 nicotinic acetylcholine receptor (nAChR) subtype, unlike other neuronal nicotinic receptors, exhibits a relatively high permeability to Ca++ ions. Although Ca++ entry through this receptor subtype has been implicated in various Ca(++)-dependent processes in the central nervous system, little is known about how this receptor modulates mammalian intracellular Ca++ dynamics. Intracellular Ca++ responses evoked by activation of the human alpha 7 nAChRs stably expressed in HEK-293 (human embryonic kidney) cells were studied. Inward current and intracellular Ca++ transients were recorded simultaneously in response to a fast drug application system. Current recordings under whole-cell voltage-clamp and fast ratiometric intracellular Ca++ imaging acquisition were synchronized to drug pulses. The mean peak [Ca++]i observed with 100 microM (-)-nicotine was 356 +/- 48 nM (n = 8). The magnitude of the intracellular Ca++ elevation corresponds to a 20% fractional current carried by Ca++ ions. The EC50 of the intracellular Ca++ responses for (-)-nicotine, (+/-)-epibatidine, 1,1 dimethyl-4-phenyl-piperazinium and acetylcholine were 51, 3.5, 75 and 108 microM, respectively. These EC50 values strongly correlate with those recorded for the cationic inward current through alpha 7 nAChR. alpha-Bungarotoxin, methyllcaconitine or extracellular Ca++ chelation ablated (-)-nicotine-evoked increase in intracellular Ca++ concentration. This study provides evidence that cation influx through the human alpha 7 nAChR is sufficient to mediate a significant, transient, rise in intracellular Ca++ concentration.

  3. Nicotine is a selective pharmacological chaperone of acetylcholine receptor number and stoichiometry. Implications for drug discovery.

    PubMed

    Lester, Henry A; Xiao, Cheng; Srinivasan, Rahul; Son, Cagdas D; Miwa, Julie; Pantoja, Rigo; Banghart, Matthew R; Dougherty, Dennis A; Goate, Alison M; Wang, Jen C

    2009-03-01

    The acronym SePhaChARNS, for "selective pharmacological chaperoning of acetylcholine receptor number and stoichiometry," is introduced. We hypothesize that SePhaChARNS underlies classical observations that chronic exposure to nicotine causes "upregulation" of nicotinic receptors (nAChRs). If the hypothesis is proven, (1) SePhaChARNS is the molecular mechanism of the first step in neuroadaptation to chronic nicotine; and (2) nicotine addiction is partially a disease of excessive chaperoning. The chaperone is a pharmacological one, nicotine; and the chaperoned molecules are alpha4beta2* nAChRs. SePhaChARNS may also underlie two inadvertent therapeutic effects of tobacco use: (1) the inverse correlation between tobacco use and Parkinson's disease; and (2) the suppression of seizures by nicotine in autosomal dominant nocturnal frontal lobe epilepsy. SePhaChARNS arises from the thermodynamics of pharmacological chaperoning: ligand binding, especially at subunit interfaces, stabilizes AChRs during assembly and maturation, and this stabilization is most pronounced for the highest-affinity subunit compositions, stoichiometries, and functional states of receptors. Several chemical and pharmacokinetic characteristics render exogenous nicotine a more potent pharmacological chaperone than endogenous acetylcholine. SePhaChARNS is modified by desensitized states of nAChRs, by acid trapping of nicotine in organelles, and by other aspects of proteostasis. SePhaChARNS is selective at the cellular, and possibly subcellular, levels because of variations in the detailed nAChR subunit composition, as well as in expression of auxiliary proteins such as lynx. One important implication of the SePhaChARNS hypothesis is that therapeutically relevant nicotinic receptor drugs could be discovered by studying events in intracellular compartments rather than exclusively at the surface membrane.

  4. Plasma protein extravasation induced by mammalian tachykinins in rat skin: influence of anaesthetic agents and an acetylcholine antagonist.

    PubMed Central

    Couture, R.; Kérouac, R.

    1987-01-01

    The effect of mammalian tachykinins on plasma protein extravasation was assessed in the rat dorsal skin. Substance P (SP), neurokinin A (NKA) and neurokinin B (NKB) increased vascular permeability in a dose-related manner with a threshold dose of about 0.07 pmol in sodium pentobarbitone-anaesthetized animals. Plasma protein extravasation induced by the tachykinins was 100-500 times less in magnitude in animals anaesthetized with urethane. Plasma protein extravasation induced by SP (66 pmol) was significantly reduced (63%; P less than 0.001) by atropine (a muscarinic inhibitor) while that induced by NKA or NKB was unaffected by the inhibitor suggesting that a cholinergic component might only be involved in the vascular permeability elicited by SP. The rank order of potency for the tachykinins on plasma protein extravasation was: NKB greater than SP greater than NKA (in absence of atropine) and NKB greater than NKA greater than SP (in presence of atropine), suggesting that this vascular response is mediated by a SP-E receptor type. The amplitudes of the plasma protein extravasation induced by NKB and its hydrophilic analogue [Arg degrees]NKB were similar, indicating that the lipophilic features of the native peptide cannot account for its potent biological activity. Plasma protein extravasation was enhanced by the SP analogue [D-Pro4,Lys6,D-Trp7,9,10,Phe11]SP (4-11), thus showing the limitation of such SP analogues (antagonists) for characterizing the tachykinin receptors involved in vascular permeability. PMID:3475146

  5. Plasma protein extravasation induced by mammalian tachykinins in rat skin: influence of anaesthetic agents and an acetylcholine antagonist.

    PubMed

    Couture, R; Kérouac, R

    1987-06-01

    The effect of mammalian tachykinins on plasma protein extravasation was assessed in the rat dorsal skin. Substance P (SP), neurokinin A (NKA) and neurokinin B (NKB) increased vascular permeability in a dose-related manner with a threshold dose of about 0.07 pmol in sodium pentobarbitone-anaesthetized animals. Plasma protein extravasation induced by the tachykinins was 100-500 times less in magnitude in animals anaesthetized with urethane. Plasma protein extravasation induced by SP (66 pmol) was significantly reduced (63%; P less than 0.001) by atropine (a muscarinic inhibitor) while that induced by NKA or NKB was unaffected by the inhibitor suggesting that a cholinergic component might only be involved in the vascular permeability elicited by SP. The rank order of potency for the tachykinins on plasma protein extravasation was: NKB greater than SP greater than NKA (in absence of atropine) and NKB greater than NKA greater than SP (in presence of atropine), suggesting that this vascular response is mediated by a SP-E receptor type. The amplitudes of the plasma protein extravasation induced by NKB and its hydrophilic analogue [Arg degrees]NKB were similar, indicating that the lipophilic features of the native peptide cannot account for its potent biological activity. Plasma protein extravasation was enhanced by the SP analogue [D-Pro4,Lys6,D-Trp7,9,10,Phe11]SP (4-11), thus showing the limitation of such SP analogues (antagonists) for characterizing the tachykinin receptors involved in vascular permeability.

  6. Toxicological Differences Between NMDA Receptor Antagonists and Cholinesterase Inhibitors.

    PubMed

    Shi, Xiaodong; Lin, Xiaotian; Hu, Rui; Sun, Nan; Hao, Jingru; Gao, Can

    2016-08-01

    Cholinesterase inhibitors (ChEIs), represented by donepezil, rivastigmine, and galantamine, used to be the only approved class of drugs for the treatment of Alzheimer's disease. After the approval of memantine by the Food and Drug Administration (FDA), N-methyl-d-aspartic acid (NMDA) receptor antagonists have been recognized by authorities and broadly used in the treatment of Alzheimer's disease. Along with complementary mechanisms of action, NMDA antagonists and ChEIs differ not only in therapeutic effects but also in adverse reactions, which is an important consideration in clinical drug use. And the number of patients using NMDA antagonists and ChEIs concomitantly has increased, making the matter more complicated. Here we used the FDA Adverse Event Reporting System for statistical analysis , in order to compare the adverse events of memantine and ChEIs. In general, the clinical evidence confirmed the safety advantages of memantine over ChEIs, reiterating the precautions of clinical drug use and the future direction of antidementia drug development. PMID:26769920

  7. Transient Receptor Potential Channel Opening Releases Endogenous Acetylcholine, which Contributes to Endothelium-Dependent Relaxation Induced by Mild Hypothermia in Spontaneously Hypertensive Rat but Not Wistar-Kyoto Rat Arteries.

    PubMed

    Zou, Q; Leung, S W S; Vanhoutte, P M

    2015-08-01

    Mild hypothermia causes endothelium-dependent relaxations, which are reduced by the muscarinic receptor antagonist atropine. The present study investigated whether endothelial endogenous acetylcholine contributes to these relaxations. Aortic rings of spontaneously hypertensive rats (SHRs) and normotensive Wistar-Kyoto (WKY) rats were contracted with prostaglandin F2 α and exposed to progressive mild hypothermia (from 37 to 31°C). Hypothermia induced endothelium-dependent, Nω-nitro-l-arginine methyl ester-sensitive relaxations, which were reduced by atropine, but not by mecamylamine, in SHR but not in WKY rat aortae. The responses in SHR aortae were also reduced by acetylcholinesterase (the enzyme responsible for acetylcholine degradation), bromoacetylcholine (inhibitor of acetylcholine synthesis), hemicholinium-3 (inhibitor of choline uptake), and vesamicol (inhibitor of acetylcholine release). The mild hypothermia-induced relaxations in both SHR and WKY rat aortae were inhibited by AMTB [N-(3-aminopropyl)-2-[(3-methylphenyl)methoxy]-N-(2-thienylmethyl)-benzamide; the transient receptor potential (TRP) M8 inhibitor]; only those in SHR aortae were inhibited by HC-067047 [2-methyl-1-[3-(4-morpholinyl)propyl]-5-phenyl-N-[3-(trifluoromethyl)phenyl]-1H-pyrrole-3-carboxamide; TRPV4 antagonist] while those in WKY rat aortae were reduced by HC-030031 [2-(1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7H-purin-7-yl)-N-(4-isopropylphenyl)acetamide; TRPA1 antagonist]. The endothelial uptake of extracellular choline and release of cyclic guanosine monophosphate was enhanced by mild hypothermia and inhibited by HC-067047 in SHR but not in WKY rat aortae. Compared with WKY rats, the SHR preparations expressed similar levels of acetylcholinesterase and choline acetyltransferase, but a lesser amount of vesicular acetylcholine transporter, located mainly in the endothelium. Thus, mild hypothermia causes nitric oxide-dependent relaxations by opening TRPA1 channels in WKY rat aortae

  8. Ligand binding and functional characterization of muscarinic acetylcholine receptors on the TE671/RD human cell line

    SciTech Connect

    Bencherif, M.; Lukas, R.J. )

    1991-06-01

    Cells of the TE671/RD human clonal line express a finite number ((Bmax) of about 350 fmol/mg of membrane protein) of apparently noninteracting, high-affinity binding sites (KD of 0.07 nM and a Hill coefficient close to unity, nH = 0.94) for the muscarinic acetylcholine receptor (mAChR) radio antagonist, tritium-labeled quinuclidinyl benzilate ({sup 3}H-QNB). The rank order potency of selective antagonists that inhibit specific {sup 3}HQNB binding is: atropine greater than 4-DAMP (4-diphenylacetoxy-N-methylpiperidine methiodide) greater than pirenzepine greater than methoctramine greater than AFDx-116 (11-2(2-((diethylamino)methyl)-1-(piperidinyl) acetyl)-5,11-dihydro-6H-pyrido(2,3-b)(1,4)benzodiazepin-6-one). Functional studies indicate that phosphoinositide (PIns) hydrolysis in TE671/RD cells is increased by carbachol (EC50 of 10 microM), but not by nicotine (to concentrations as high as 1 mM). Agonist-stimulated PIns metabolism is inhibited by antagonists with the same rank order potency as for inhibition of {sup 3}HQNB binding. Functional responses are augmented in the presence of a nonhydrolyzable GTP analog, are strongly inhibited after 24-hr exposure to cholera toxin, but are only slightly inhibited after long-term exposure to pertussis toxin or forskolin. These studies identify a pharmacologically-defined M3-subtype of mAChR strongly coupled via a cholera toxin-sensitive mechanism to PIns hydrolysis in these cells. Within 1 hr of treatment of TE671/RD cells with 1 mM dibutyryl cyclic AMP or with 10 microM phorbol-12-myristate-13-acetate (PMA), there is a 30 to 50% decrease in carbachol-stimulated PIns responsiveness that recovers to control values after 5 days of continued drug treatment. However, a comparable and more persistent inhibition of mAChR function is observed on cell treatment with 20 nM PMA.

  9. Spatial and intracellular relationships between the α7 nicotinic acetylcholine receptor and the vesicular acetylcholine transporter in the prefrontal cortex of rat and mouse

    PubMed Central

    Duffy, Aine M.; Zhou, Ping; Milner, Teresa A.; Pickel, Virginia M.

    2009-01-01

    The alpha-7 subunit of the nicotinic acetylcholine receptor (α7nAChR) is expressed in the prefrontal cortex (PFC), a brain region where these receptors are implicated in cognitive function and in the pathophysiology of schizophrenia. Activation of this receptor is dependent on release of acetylcholine (ACh) from axon terminals that contain the vesicular acetylcholine transporter (VAChT). Since rat and mouse models are widely used for studies of specific abnormalities in schizophrenia, we sought to determine the subcellular location of the α7nAChR with respect to VAChT storage vesicles in axon terminals in the PFC in both species. For this, we used dual electron microscopic immunogold and immunoperoxidase labeling of antisera raised against the α7nAChR and VAChT. In both species, the α7nAChR-immunoreactivity (-ir) was principally identified within dendrites and dendritic spines, receptive to axon terminals forming asymmetric excitatory-type synapses, but lacking detectable α7nAChR or VAChT-ir. Quantitative analysis of the rat PFC revealed that of α7nAChR labeled neuronal profiles, 65% (299/463) were postsynaptic structures (dendrites and dendritic spine) and only 22% (104/463) were axon terminals or small unmyelinated axons. In contrast, VAChT was principally localized to varicose vesicle-filled axonal profiles, without recognized synaptic specializations (n = 240). Of the α7nAChR-labeled axons, 47% (37/79) also contained VAChT, suggesting that ACh release is autoregulated through the presynaptic α7nAChR. The VAChT-labeled terminals rarely formed synapses, but frequently apposed α7nAChR-containing neuronal profiles. These results suggest that in rodent PFC, the α7nAChR plays a major role in modulation of the postsynaptic excitation in spiny dendrites in contact with VAChT containing axons. PMID:19374941

  10. Nucleus accumbens neurotransmission and effort-related choice behavior in food motivation: effects of drugs acting on dopamine, adenosine, and muscarinic acetylcholine receptors.

    PubMed

    Nunes, Eric J; Randall, Patrick A; Podurgiel, Samantha; Correa, Mercè; Salamone, John D

    2013-11-01

    Mesolimbic dopamine (DA) is a critical component of the brain circuitry regulating behavioral activation and effort-related processes. Although nucleus accumbens (NAc) DA depletions or antagonism leave aspects of appetite and primary food motivation intact, rats with impaired DA transmission reallocate their instrumental behavior away from food-reinforced tasks with high response requirements, and instead select less effortful food-seeking behaviors. Previous work showed that adenosine A2A antagonists can reverse the effects of DA D2 antagonists on effort-related choice, and that stimulation of adenosine A2A receptors produces behavioral effects that are similar to those induced by DA antagonism. The present review summarizes the literature on the role of NAc DA and adenosine in effort-related processes, and also presents original data on the effects of local stimulation of muscarinic acetylcholine receptors in NAc core. Local injections of the muscarinic agonist pilocarpine directly into NAc core produces shifts in effort-related choice behavior similar to those induced by DA antagonism or A2A receptor stimulation, decreasing lever pressing but increasing chow intake in rats responding on a concurrent fixed ratio/chow feeding choice task. In contrast, injections into a neostriatal control site dorsal to the NAc were ineffective. The actions of pilocarpine on this task were attenuated by co-administration of the muscarinic antagonist scopolamine. Thus, drugs that act on DA, adenosine A2A, and muscarinic receptors regulate effort-related choice behavior, which may have implications for the treatment of psychiatric symptoms such as psychomotor slowing, fatigue or anergia that can be observed in depression and other disorders.

  11. Multiple binding sites in the nicotinic acetylcholine receptors: An opportunity for polypharmacolgy.

    PubMed

    Iturriaga-Vásquez, Patricio; Alzate-Morales, Jans; Bermudez, Isabel; Varas, Rodrigo; Reyes-Parada, Miguel

    2015-11-01

    For decades, the development of selective compounds has been the main goal for chemists and biologists involved in drug discovery. However, diverse lines of evidence indicate that polypharmacological agents, i.e. those that act simultaneously at various protein targets, might show better profiles than selective ligands, regarding both efficacy and side effects. On the other hand, the availability of the crystal structure of different receptors allows a detailed analysis of the main interactions between drugs and receptors in a specific binding site. Neuronal nicotinic acetylcholine receptors (nAChRs) constitute a large and diverse family of ligand-gated ion channels (LGICs) that, as a product of its modulation, regulate neurotransmitter release, which in turns produce a global neuromodulation of the central nervous system. nAChRs are pentameric protein complexes in such a way that expression of compatible subunits can lead to various receptor assemblies or subtypes. The agonist binding site, located at the extracellular region, exhibits different properties depending on the subunits that conform the receptor. In the last years, it has been recognized that nAChRs could also contain one or more allosteric sites which could bind non-classical nicotinic ligands including several therapeutically useful drugs. The presence of multiple binding sites in nAChRs offers an interesting possibility for the development of novel polypharmacological agents with a wide spectrum of actions. PMID:26318763

  12. Neurokinin-1 Receptor Antagonists in Preventing Postoperative Nausea and Vomiting

    PubMed Central

    Liu, Meng; Zhang, Hao; Du, Bo-Xiang; Xu, Feng-Ying; Zou, Zui; Sui, Bo; Shi, Xue-Yin

    2015-01-01

    Abstract Newly developed neurokinin-1 receptor (NK-1R) antagonists have been recently tried in the prevention of postoperative nausea and vomiting (PONV). This systematic review and meta-analysis was conducted to explore whether NK-1R antagonists were effective in preventing PONV. The PRISMA statement guidelines were followed. Randomized clinical trials (RCTs) that tested the preventive effects of NK-1R antagonists on PONV were identified by searching EMBASE, CINAHL, PubMed, and the Cochrane Library databases followed by screening. Data extraction was performed using a predefined form and trial quality was assessed using a modified Jadad scale. The primary outcome measure was the incidence of PONV. Meta-analysis was performed for studies using similar interventions. Network meta-analysis (NMA) was conducted to compare the anti-vomiting effects of placebo, ondansetron, and aprepitant at different doses. Fourteen RCTs were included. Meta-analysis found that 80 mg of aprepitant could reduce the incidences of nausea (3 RCTs with 224 patients, pooled risk ratio (RR) = 0.60, 95% confidence interval (CI) = 0.47 to 0.75), and vomiting (3 RCTs with 224 patients, pooled RR = 0.13, 95% CI = 0.04 to 0.37) compared with placebo. Neither 40 mg (3 RCTs with 1171 patients, RR = 0.47, 95% CI = 0.37 to 0.60) nor 125 mg (2 RCTs with 1058 patients, RR = 0.32, 95% CI = 0.13 to 0.78) of aprepitant showed superiority over 4 mg of ondansetron in preventing postoperative vomiting. NMA did not find a dose-dependent effect of aprepitant on preventing postoperative vomiting. Limited data suggested that NK-1R antagonists, especially aprepitant were effective in preventing PONV compared with placebo. More large-sampled high-quality RCTs are needed. PMID:25984662

  13. Avian Imc-tectal projection is mediated by acetylcholine and glutamate.

    PubMed

    Wang, S R; Wu, G Y; Felix, D

    1995-03-27

    In the bird, biochemical and histochemical data suggest that the neurotransmitter between nucleus isthmi pars magnocellularis (Imc) and tectum is either acetylcholine or glutamate. There are, however, discrepancies regarding the functional role of acetylcholine. In the present study we investigated the action of acetylcholine and glutamate and their specific antagonists on excitatory isthmo-tectal synaptic transmission using electrophysiological and microiontophoretic techniques. The results show two different population of cells: (1) excitatory cholinergic input, blocked by atropine sulphate but not by glutamate antagonist; (2) excitatory glutamatergic input of NMDA or non-NMDA receptor type, which is blocked or reduced by CPP or CNQX but not by atropine sulphate.

  14. Interleukin-6 (IL-6) Receptor Antagonist Protects Against Rheumatoid Arthritis.

    PubMed

    Li, Songsong; Wu, Zhenzhou; Li, Ling; Liu, Xuehua

    2016-01-01

    BACKGROUND The aim of this study was to investigate the protective effect of interleukin-6 (IL-6) receptor antagonist tocilizumab (TCZ) on rheumatoid arthritis (RA) and its related mechanism. MATERIAL AND METHODS Thirty RA patients receiving long-term methotrexate therapy at moderate and severe active stages were selected and treated with TCZ 8 mg/kg/time iv gtt intravenously guttae every 4 weeks. Peripheral blood was extracted before and 24 weeks after TCZ treatment. Peripheral blood mononuclear cells (PBMC) were collected by density gradient centrifugation. Flow cytometry was used to detect the ratio of CD4 naïve T cells and CD4 memory T cells, Th17 cells, and Treg cells in PBMC. DAS28 score, CRP, RF, and CCP levels in patients were evaluated. RESULTS Compared with before treatment, IL-6 receptor antagonist TCZ significantly improved patients' condition, including DAS28 score, CRP, RF, and CCP levels (P<0.01). Furthermore, TCZ obviously upregulated CD4 naïve T cells proportion and decreased CD4 memory T cells ratio (P<0.01). TCZ also markedly reduced the proportion of Th17 cells and increased the proportion of Treg cells (P<0.01). CONCLUSIONS TCZ can treat RA patients through regulating the ratio of CD4 naïve T cells, CD4 memory T cells, Th17 cells, and Treg cells in PBMC. PMID:27322646

  15. Interleukin-6 (IL-6) Receptor Antagonist Protects Against Rheumatoid Arthritis

    PubMed Central

    Li, Songsong; Wu, Zhenzhou; Li, Ling; Liu, Xuehua

    2016-01-01

    Background The aim of this study was to investigate the protective effect of interleukin-6 (IL-6) receptor antagonist tocilizumab (TCZ) on rheumatoid arthritis (RA) and its related mechanism. Material/Methods Thirty RA patients receiving long-term methotrexate therapy at moderate and severe active stages were selected and treated with TCZ 8 mg/kg/time iv gtt intravenously guttae every 4 weeks. Peripheral blood was extracted before and 24 weeks after TCZ treatment. Peripheral blood mononuclear cells (PBMC) were collected by density gradient centrifugation. Flow cytometry was used to detect the ratio of CD4 naïve T cells and CD4 memory T cells, Th17 cells, and Treg cells in PBMC. DAS28 score, CRP, RF, and CCP levels in patients were evaluated. Results Compared with before treatment, IL-6 receptor antagonist TCZ significantly improved patients’ condition, including DAS28 score, CRP, RF, and CCP levels (P<0.01). Furthermore, TCZ obviously upregulated CD4 naïve T cells proportion and decreased CD4 memory T cells ratio (P<0.01). TCZ also markedly reduced the proportion of Th17 cells and increased the proportion of Treg cells (P<0.01). Conclusions TCZ can treat RA patients through regulating the ratio of CD4 naïve T cells, CD4 memory T cells, Th17 cells, and Treg cells in PBMC. PMID:27322646

  16. Evodiamine as a novel antagonist of aryl hydrocarbon receptor

    SciTech Connect

    Yu, Hui; Tu, Yongjiu; Zhang, Chun; Fan, Xia; Wang, Xi; Wang, Zhanli; Liang, Huaping

    2010-11-05

    Research highlights: {yields} Evodiamine interacted with the AhR. {yields} Evodiamine inhibited the specific binding of [{sup 3}H]-TCDD to the AhR. {yields} Evodiamine acts as an antagonist of the AhR. -- Abstract: Evodiamine, the major bioactive alkaloid isolated from Wu-Chu-Yu, has been shown to interact with a wide variety of proteins and modify their expression and activities. In this study, we investigated the interaction between evodiamine and the aryl hydrocarbon receptor (AhR). Molecular modeling results revealed that evodiamine directly interacted with the AhR. Cytosolic receptor binding assay also provided the evidence that evodiamine could interact with the AhR with the K{sub i} value of 28.4 {+-} 4.9 nM. In addition, we observed that evodiamine suppressed the 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induced nuclear translocation of the AhR and the expression of CYP1A1 dose-dependently. These results suggested that evodiamine was able to bind to the AhR as ligand and exhibit antagonistic effects.

  17. 3D pharmacophore models for thromboxane A(2) receptor antagonists.

    PubMed

    Wei, Jing; Liu, Yixi; Wang, Songqing

    2009-10-01

    Thromboxane A(2) (TXA(2)) is an endogenous arachidonic acid derivative closely correlated to thrombosis and other cardiovascular diseases. The action of TXA(2) can be effectively inhibited with TXA(2) receptor antagonists (TXRAs). Previous studies have attempted to describe the interactions between the TXA(2) receptor and its ligands, but their conclusions are still controversial. In this study, ligand-based computational drug design is used as a new and effective way to investigate the structure-activity relationship of TXRAs. Three-dimensional pharmacophore models of TXRAs were built with HypoGenRefine and HipHop modules in CATALYST software. The optimal HypoGenRefine model was developed on the basis of 25 TXRAs. It consists of two hydrophobic groups, one aromatic ring, one hydrogen-bond acceptor and four excluded volumes. The optimal HipHop model contains two hydrophobic groups and two hydrogen-bond acceptors. These models describe the key structure-activity relationship of TXRAs, can predict their activities, and can thus be used to design novel antagonists. PMID:19263096

  18. 3D pharmacophore models for thromboxane A(2) receptor antagonists.

    PubMed

    Wei, Jing; Liu, Yixi; Wang, Songqing

    2009-10-01

    Thromboxane A(2) (TXA(2)) is an endogenous arachidonic acid derivative closely correlated to thrombosis and other cardiovascular diseases. The action of TXA(2) can be effectively inhibited with TXA(2) receptor antagonists (TXRAs). Previous studies have attempted to describe the interactions between the TXA(2) receptor and its ligands, but their conclusions are still controversial. In this study, ligand-based computational drug design is used as a new and effective way to investigate the structure-activity relationship of TXRAs. Three-dimensional pharmacophore models of TXRAs were built with HypoGenRefine and HipHop modules in CATALYST software. The optimal HypoGenRefine model was developed on the basis of 25 TXRAs. It consists of two hydrophobic groups, one aromatic ring, one hydrogen-bond acceptor and four excluded volumes. The optimal HipHop model contains two hydrophobic groups and two hydrogen-bond acceptors. These models describe the key structure-activity relationship of TXRAs, can predict their activities, and can thus be used to design novel antagonists.

  19. Classification and virtual screening of androgen receptor antagonists.

    PubMed

    Li, Jiazhong; Gramatica, Paola

    2010-05-24

    Computational tools, such as quantitative structure-activity relationship (QSAR), are highly useful as screening support for prioritization of substances of very high concern (SVHC). From the practical point of view, QSAR models should be effective to pick out more active rather than inactive compounds, expressed as sensitivity in classification works. This research investigates the classification of a big data set of endocrine-disrupting chemicals (EDCs)-androgen receptor (AR) antagonists, mainly aiming to improve the external sensitivity and to screen for potential AR binders. The kNN, lazy IB1, and ADTree methods and the consensus approach were used to build different models, which improve the sensitivity on external chemicals from 57.1% (literature) to 76.4%. Additionally, the models' predictive abilities were further validated on a blind collected data set (sensitivity: 85.7%). Then the proposed classifiers were used: (i) to distinguish a set of AR binders into antagonists and agonists; (ii) to screen a combined estrogen receptor binder database to find out possible chemicals that can bind to both AR and ER; and (iii) to virtually screen our in-house environmental chemical database. The in silico screening results suggest: (i) that some compounds can affect the normal endocrine system through a complex mechanism binding both to ER and AR; (ii) new EDCs, which are nonER binders, but can in silico bind to AR, are recognized; and (iii) about 20% of compounds in a big data set of environmental chemicals are predicted as new AR antagonists. The priority should be given to them to experimentally test the binding activities with AR.

  20. AT(2) receptor stimulation enhances antihypertensive effect of AT(1) receptor antagonist in hypertensive rats.

    PubMed

    Barber, M N; Sampey, D B; Widdop, R E

    1999-11-01

    In the present study, we investigated the role of the angiotensin type 2 (AT(2)) receptor in the regulation of blood pressure in spontaneously hypertensive rats (SHR) and Wistar-Kyoto rats (WKY). We tested the hypothesis that AT(2) receptor activation may contribute to the antihypertensive effects of angiotensin type 1 (AT(1)) receptor antagonists. Mean arterial pressure (MAP) and heart rate were measured over a 4-day protocol in various groups of rats that received the following drug combinations: the AT(1) receptor antagonist candesartan (0.01 or 0.1 mg/kg IV) alone, the AT(2) receptor agonist CGP42112 (1 microg/kg per minute) alone, and candesartan plus CGP42112. In both SHR and WKY, 4-hour infusions of saline and CGP42112 alone did not alter MAP. In WKY, both doses of candesartan alone caused small decreases in MAP, which were similar when combined with CGP42112. In SHR, candesartan (0.1 mg/kg) caused an immediate, marked decrease in MAP, which was unaffected when combined with CGP42112. By contrast, in separate SHR, a 10-fold lower dose of candesartan (0.01 mg/kg) caused a slower-onset depressor response, which was enhanced when combined with CGP42112. The involvement of AT(2) receptors was confirmed in another group of SHR, since this facilitation of the antihypertensive effect of candesartan by CGP42112 was abolished by the coinfusion of the AT(2) receptor antagonist PD123319 (50 microg/kg per minute) with the candesartan/CGP42112 combination. Collectively, these data suggest that in SHR, AT(2) receptor activation can facilitate the initial depressor response caused by an AT(1) receptor antagonist.

  1. Structurally Similar Allosteric Modulators of α7 Nicotinic Acetylcholine Receptors Exhibit Five Distinct Pharmacological Effects*

    PubMed Central

    Gill-Thind, JasKiran K.; Dhankher, Persis; D'Oyley, Jarryl M.; Sheppard, Tom D.; Millar, Neil S.

    2015-01-01

    Activation of nicotinic acetylcholine receptors (nAChRs) is associated with the binding of agonists such as acetylcholine to an extracellular site that is located at the interface between two adjacent receptor subunits. More recently, there has been considerable interest in compounds, such as positive and negative allosteric modulators (PAMs and NAMs), that are able to modulate nAChR function by binding to distinct allosteric sites. Here we examined a series of compounds differing only in methyl substitution of a single aromatic ring. This series of compounds includes a previously described α7-selective allosteric agonist, cis-cis-4-p-tolyl-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline-8-sulfonamide (4MP-TQS), together with all other possible combinations of methyl substitution at a phenyl ring (18 additional compounds). Studies conducted with this series of compounds have revealed five distinct pharmacological effects on α7 nAChRs. These five effects can be summarized as: 1) nondesensitizing activation (allosteric agonists), 2) potentiation associated with minimal effects on receptor desensitization (type I PAMs), 3) potentiation associated with reduced desensitization (type II PAMs), 4) noncompetitive antagonism (NAMs), and 5) compounds that have no effect on orthosteric agonist responses but block allosteric modulation (silent allosteric modulators (SAMs)). Several lines of experimental evidence are consistent with all of these compounds acting at a common, transmembrane allosteric site. Notably, all of these chemically similar compounds that have been classified as nondesensitizing allosteric agonists or as nondesensitizing (type II) PAMs are cis-cis-diastereoisomers, whereas all of the NAMs, SAMs, and type I PAMs are cis-trans-diastereoisomers. Our data illustrate the remarkable pharmacological diversity of allosteric modulators acting on nAChRs. PMID:25516597

  2. Neuronal nicotinic acetylcholine receptors are important targets for alcohol reward and dependence.

    PubMed

    Wu, Jie; Gao, Ming; Taylor, Devin H

    2014-03-01

    Neuronal nicotinic acetylcholine receptors are important targets for alcohol reward and dependence. Alcoholism is a serious public health problem and has been identified as the third major cause of preventable mortality in the world. Worldwide, about 2 billion people consume alcohol, with 76.3 million having diagnosable alcohol use disorders. Alcohol is currently responsible for the death of 4% of adults worldwide (about 2.5 million deaths each year), and this number will be significantly increased by 2020 unless effective action is taken. Alcohol is the most commonly abused substance by humans. Ethanol (EtOH) is the intoxicating agent in alcoholic drinks that can lead to abuse and dependence. Although it has been extensively studied, the mechanisms of alcohol reward and dependence are still poorly understood. The major reason is that, unlike other addictive drugs (eg, morphine, cocaine or nicotine) that have specific molecular targets, EtOH affects much wider neuronal functions. These functions include phospholipid membranes, various ion channels and receptors, synaptic and network functions, and intracellular signaling molecules. The major targets in the brain that mediate EtOH's effects remain unclear. This knowledge gap results in a therapeutic barrier in the treatment of alcoholism. Interestingly, alcohol and nicotine are often co-abused, which suggests that neuronal nicotinic acetylcholine receptors (nAChRs), the molecular targets for nicotine, may also contribute to alcohol's abusive properties. Here, we briefly summarize recent lines of evidence showing how EtOH modulates nAChRs in the mesolimbic pathway, which provides a perspective that nAChRs are important targets mediating alcohol abuse.

  3. Acetylcholine and muscarinic receptor function in cerebral cortex of diabetic young and old male Wistar rats and the role of muscarinic receptors in calcium release from pancreatic islets.

    PubMed

    Savitha, Balakrishnan; Joseph, Binoy; Peeyush Kumar, T; Paulose, C S

    2010-04-01

    We investigated acetylcholine esterase (AChE) activity, acetylcholine and muscarinic M1, M3 receptors kinetics in the cerebral cortex of young and old streptozotocin induced and insulin treated diabetic rats. The role of muscarinic receptors in intracellular calcium release from pancreatic islets was studied in vitro. Wistar rats of 7 and 90-weeks old were used. All studies were done in cerebral cortex. AChE assay was done by spectrophotometric method. Radioreceptor binding assays were done for Acetylcholine, Muscarinic M1 and M3 receptors using specific ligands. Calcium imaging was done using fluo4-AM in pancreatic cells. Ninety-weeks old control rats showed significantly decreased Vmax and increased Km for AChE compared to 7-weeks old control rats. An increased Vmax observed in both 7 and 90-weeks old diabetic groups with significant decrease in Km. Scatchard analysis using specific agonists showed significant decrease in the B (max) and K (d) of acetylcholine and muscarinic M1 receptors in 90-weeks old control rats compared to 7-weeks old control. Binding studies for M3 receptors showed no significant change compared to 7-weeks old control. Acetylcholine, muscarinic M1 and M3 receptor number significantly increased in 90-weeks old diabetic rat groups compared to their respective controls. Insulin treatment significantly reversed the binding parameters to near control compared to diabetic group. In vitro studies showed that acetylcholine through muscarinic M1 and M3 receptors' stimulated calcium release from the pancreatic islets. Thus our studies suggest that Insulin signaling play an important part in differentially regulating pancreatic cholinergic activity, and the diabetes mediated cortical dysfunctions with age.

  4. Autocrine activation of nicotinic acetylcholine receptors contributes to Ca2+ spikes in mouse myotubes during myogenesis

    PubMed Central

    Bandi, Elena; Bernareggi, Annalisa; Grandolfo, Micaela; Mozzetta, Chiara; Augusti-Tocco, Gabriella; Ruzzier, Fabio; Lorenzon, Paola

    2005-01-01

    It is widely accepted that nicotinic acetylcholine receptor (nAChR) channel activity controls myoblast fusion into myotubes during myogenesis. In this study we explored the possible role of nAChR channels after cell fusion in a murine cell model. Using videoimaging techniques we showed that embryonic muscle nAChR channel openings contribute to the spontaneous transients of intracellular concentration of Ca2+ ([Ca2+]i) and to twitches characteristic of developing myotubes before innervation. Moreover, we observed a choline acetyltransferase immunoreactivity in the myotubes and we detected an acetylcholine-like compound in the extracellular solution. Therefore, we suggest that the autocrine activation of nAChR channels gives rise to [Ca2+]i spikes and contractions. Spontaneous openings of the nAChR channels may be an alternative, although less efficient, mechanism. We report also that blocking the nAChRs causes a significant reduction in cell survival, detectable as a decreased number of myotubes in culture. This led us to hypothesize a possible functional role for the autocrine activation of the nAChRs. By triggering mechanical activity, such activation could represent a strategy to ensure the trophism of myotubes in the absence of nerves. PMID:16037088

  5. Extrasynaptic Muscarinic Acetylcholine Receptors on Neuronal Cell Bodies Regulate Presynaptic Function in Caenorhabditis elegans

    PubMed Central

    Chan, Jason P.; Staab, Trisha A.; Wang, Han; Mazzasette, Chiara; Butte, Zara

    2013-01-01

    Acetylcholine (ACh) is a potent neuromodulator in the brain, and its effects on cognition and memory formation are largely performed through muscarinic acetylcholine receptors (mAChRs). mAChRs are often preferentially distributed on specialized membrane regions in neurons, but the significance of mAChR localization in modulating neuronal function is not known. Here we show that the Caenorhabditis elegans homolog of the M1/M3/M5 family of mAChRs, gar-3, is expressed in cholinergic motor neurons, and GAR-3-GFP fusion proteins localize to cell bodies where they are enriched at extrasynaptic regions that are in contact with the basal lamina. The GAR-3 N-terminal extracellular domain is necessary and sufficient for this asymmetric distribution, and mutation of a predicted N-linked glycosylation site within the N-terminus disrupts GAR-3-GFP localization. In transgenic animals expressing GAR-3 variants that are no longer asymmetrically localized, synaptic transmission at neuromuscular junctions is impaired and there is a reduction in the abundance of the presynaptic protein sphingosine kinase at release sites. Finally, GAR-3 can be activated by endogenously produced ACh released from neurons that do not directly contact cholinergic motor neurons. Together, our results suggest that humoral activation of asymmetrically localized mAChRs by ACh is an evolutionarily conserved mechanism by which ACh modulates neuronal function. PMID:23986249

  6. Procaine rapidly inactivates acetylcholine receptors from Torpedo and competes with agonist for inhibition sites

    SciTech Connect

    Forman, S.A.; Miller, K.W. )

    1989-02-21

    The relationship between the high-affinity procaine channel inhibition site and the agonist self-inhibition site on acetylcholine receptors (AChRs) from Torpedo electroplaque was investigated by using rapid {sup 86}Rb{sup +} quenched-flux assays at 4 {degree}C in native AChR-rich vesicles on which 50-60% of ACh activation sites were blocked with {alpha}-bungarotoxin ({alpha}-BTX). In the presence of channel-activating acetylcholine (ACh) concentrations alone, AChR undergoes one phase of inactivation in under a second. Addition of procaine produces two-phase inactivation similar to that seen with self-inhibiting ACh concentrations rapid inactivation complete in 30-75 ms is followed by fast desensitization at the same k{sub d} observed without procaine. The dependence of k{sub r} on (procaine) is consistent with a bimolecular association between procaine and its AChR site. Inhibition of AChR function by mixtures of procaine plus self-inhibiting concentrations of ACh or suberyldicholine was studied by reducing the level of {alpha}-BTX block in vesicles. The data support a mechanism where procaine binds preferentially to the open-channel AChR state, since no procaine-induced inactivation is observed without agonist and k{sub r}'s dependence on (ACh) in channel-activating range closely parallels that of {sup 86}Rb{sup +} flux response to ACh.

  7. A motif present in the main cytoplasmic loop of nicotinic acetylcholine receptors and catalases.

    PubMed

    Morgado-Valle, C; García-Colunga, J; Miledi, R; Díaz-Muñoz, M

    2001-05-01

    A motif containing five conserved amino acids (RXPXTH(X)14P) was detected in 111 proteins, including 82 nicotinic acetylcholine receptor (nAChR) subunits and 20 catalases. To explore possible functional roles of this motif in nAChRs two approaches were used: first, the motif sequences in nAChR subunits and catalases were analysed and compared; and, second, deletions in the rat alpha2 and beta4 nAChR subunits expressed in Xenopus oocytes were analysed. Compared to the three-dimensional structure of bovine hepatic catalase, structural coincidences were found in the motif of catalases and nAChRs. On the other hand, partial deletions of the motif in the alpha2 or beta4 subunits and injection of the mutants into oocytes was followed by a very weak expression of functional nAChRs; oocytes injected with alpha2 and beta4 subunits in which the entire motif had been deleted failed to elicit any acetylcholine currents. The results suggest that the motif may play a role in the activation of nAChRs. PMID:11370971

  8. Mode of action of triflumezopyrim: A novel mesoionic insecticide which inhibits the nicotinic acetylcholine receptor.

    PubMed

    Cordova, Daniel; Benner, Eric A; Schroeder, Mark E; Holyoke, Caleb W; Zhang, Wenming; Pahutski, Thomas F; Leighty, Robert M; Vincent, Daniel R; Hamm, Jason C

    2016-07-01

    Triflumezopyrim, a newly commercialized molecule from DuPont Crop Protection, belongs to the novel class of mesoionic insecticides. This study characterizes the biochemical and physiological action of this novel insecticide. Using membranes from the aphid, Myzus persicae, triflumezopyrim was found to displace (3)H-imidacloprid with a Ki value of 43 nM with competitive binding results indicating that triflumezopyrim binds to the orthosteric site of the nicotinic acetylcholine receptor (nAChR). In voltage clamp studies using dissociated Periplaneta americana neurons, triflumezopyrim inhibits nAChR currents with an IC50 of 0.6 nM. Activation of nAChR currents was minimal and required concentrations ≥100 μM. Xenopus oocytes expressing chimeric nAChRs (Drosophila α2/chick β2) showed similar inhibitory effects from triflumezopyrim. In P. americana neurons, co-application experiments with acetylcholine reveal the inhibitory action of triflumezopyrim to be rapid and prolonged in nature. Such physiological action is distinct from other insecticides in IRAC Group 4 in which the toxicological mode of action is attributed to nAChR agonism. Mesoionic insecticides act via inhibition of the orthosteric binding site of the nAChR despite previous beliefs that such action would translate to poor insect control. Triflumezopyrim is the first commercialized insecticide from this class and provides outstanding control of hoppers, including the brown planthopper, Nilaparvata lugens, which is already displaying strong resistance to neonicotinoids such as imidacloprid.

  9. Spontaneous opening of the acetylcholine receptor channel in developing muscle cells from normal and dystrophic mice

    SciTech Connect

    Franco-Obregon, A.; Lansman, J.B.

    1995-12-31

    Single-channel activity was recorded from cell-attached patches on skeletal muscle cells isolated from wild-type mice and from mice carrying the dy or mdx mutations. Spontaneous openings of the nicotinic acetylcholine receptor channel (nAChR) were detected in virtually all recordings from either 4v/dy or dyl + myotubes. but only infrequently from wild-type or mdx myotubes. Spontaneous openings were also present in most recordings from undifferentiated myoblasts from all of the mouse strains studied. The biophysical properties of the spontaneous activity were similar to those of the embryonic form of the nAChR in the presence of acetylcholine (ACh). Examination of the single-channel currents evoked by low concentrations of ACh showed a reduced sensitivity to the agonist in the dystrophic dy and mdx myotubes. but not in wild- type myotubes. The results suggest that alterations in nAChR function are associated with the pathogenesis of muscular dystrophy in the dy mouse.

  10. The role of the a7 subunit of the nicotinic acetylcholine receptor in the acute toxicosis of methyllycaconitine in mice.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The adverse physiological effects of methyllycaconitine (MLA) have been attributed to its competitive antagonism of nicotinic acetylcholine receptors (nAChRs). Recent research demonstrated a correlation between the LD50 of MLA and the amount of a7 nAChR in various mouse strains, suggesting that mice...

  11. Activation and desensitization of peripheral muscle and neuronal nicotinic acetylcholine receptors by selected, naturally-occurring pyridine alkaloids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Teratogenic alkaloids can cause developmental defects due to inhibition of fetal movement that results from desensitization of fetal muscletype nicotinic acetylcholine receptors (nAChRs). We investigated the ability of two known teratogens, the piperidinyl-pyridine anabasine and its 1,2-dehydropiper...

  12. Selective actions of Lynx proteins on different nicotinic acetylcholine receptors in the locust, Locusta migratoria manilensis.

    PubMed

    Wang, Xin; Bao, Haibo; Sun, Huahua; Zhang, Yixi; Fang, Jichao; Liu, Qinghong; Liu, Zewen

    2015-08-01

    Nicotinic acetylcholine receptors (nAChRs) are major neurotransmitter receptors and targets of neonicotinoid insecticides in the insect nervous system. The full function of nAChRs is often dependent on associated proteins, such as chaperones, regulators and modulators. Here, three Lynx (Ly-6/neurotoxin) proteins, Loc-lynx1, Loc-lynx2 and Loc-lynx3, were identified in the locust, Locusta migratoria manilensis. Co-expression with Lynx resulted in a dramatic increase in agonist-evoked macroscopic currents on nAChRs Locα1/β2 and Locα2/β2 in Xenopus oocytes, but no changes in agonist sensitivity. Loc-lynx1 and Loc-lynx3 only modulated nAChRs Locα1/β2 while Loc-lynx2 modulated Locα2/β2 specifically. Meanwhile, Loc-lynx1 induced a more significant increase in currents evoked by imidacloprid and epibatidine than Loc-lynx3, and the effects of Loc-lynx1 on imidacloprid and epibatidine were significantly higher than those on acetylcholine. Among three lynx proteins, only Loc-lynx1 significantly increased [(3) H]epibatidine binding on Locα1/β2. The results indicated that Loc-lynx1 had different modulation patterns in nAChRs compared to Loc-lynx2 and Loc-lynx3. Taken together, these findings indicated that three Lynx proteins were nAChR modulators and had selective activities in different nAChRs. Lynx proteins might display their selectivities from three aspects: nAChR subtypes, various agonists and different modulation patterns. Insect Lynx (Ly-6/neurotoxin) proteins act as the allosteric modulators on insect nicotinic acetylcholine receptors (nAChRs), the important targets of insecticides. We found that insect lynx proteins showed their selectivities from at least three aspects: nAChR subtypes, various agonists and different modulation patterns. PMID:25951893

  13. THE CANNABINOID RECEPTOR ANTAGONIST AM251 INCREASES PARAOXON AND CHLORPYRIFOS OXON TOXICITY IN RATS

    PubMed Central

    Liu, Jing; Pope, Carey

    2014-01-01

    Organophosphorus anticholinesterases (OPs) elicit acute toxicity by inhibiting acetylcholinesterase (AChE), leading to acetylcholine accumulation and overstimulation of cholinergic receptors. Endocannabinoids (eCBs, e.g., arachidonoyl ethanolamide [AEA] and 2-arachidonoyl glycerol [2-AG]) are neuromodulators that regulate neurotransmission by reducing neurotransmitter release. The eCBs are degraded by the enzymes fatty acid amide hydrolase (FAAH, primarily involved in hydrolysis of AEA) and monoacylglycerol lipase (MAGL, primarily responsible for metabolism of 2-AG). We previously reported that the cannabinoid receptor agonist WIN 55,212-2 reduced cholinergic toxicity after paraoxon exposure. This study compared the effects of the cannabinoid receptor antagonist AM251 on acute toxicity following either paraoxon (PO) or chlorpyrifos oxon (CPO). CPO was more potent in vitro than PO at inhibiting AChE (≈ 2 fold), FAAH (≈ 8 fold), and MAGL (≈ 19 fold). Rats were treated with vehicle, PO (0.3 and 0.6 mg/kg, sc.) or CPO (6 and 12 mg/kg, sc.) and subsets treated with AM251 (3 mg/kg, ip; 30 min after OP). Signs of toxicity were recorded for four hours and rats were then sacrificed. OP-treated rats showed dose-related involuntary movements, with AM251 increasing signs of toxicity with the lower dosages. PO and CPO elicited excessive secretions, but AM251 had no apparent effect with either OP. Lethality was increased by AM251 with the higher dosage of PO, but no lethality was noted with either dosage of CPO, with or without AM251. Both OPs caused extensive inhibition of hippocampal AChE and FAAH (>80–90%), but only CPO inhibited MAGL (37–50%). These results provide further evidence that eCB signaling can influence acute OP toxicity. The selective in vivo inhibition of MAGL by CPO may be important in the differential lethality noted between PO and CPO with AM251 co-administration. PMID:25447325

  14. Dihydromunduletone Is a Small-Molecule Selective Adhesion G Protein-Coupled Receptor Antagonist.

    PubMed

    Stoveken, Hannah M; Bahr, Laura L; Anders, M W; Wojtovich, Andrew P; Smrcka, Alan V; Tall, Gregory G

    2016-09-01

    Adhesion G protein-coupled receptors (aGPCRs) have emerging roles in development and tissue maintenance and is the most prevalent GPCR subclass mutated in human cancers, but to date, no drugs have been developed to target them in any disease. aGPCR extracellular domains contain a conserved subdomain that mediates self-cleavage proximal to the start of the 7-transmembrane domain (7TM). The two receptor protomers, extracellular domain and amino terminal fragment (NTF), and the 7TM or C-terminal fragment remain noncovalently bound at the plasma membrane in a low-activity state. We recently demonstrated that NTF dissociation liberates the 7TM N-terminal stalk, which acts as a tethered-peptide agonist permitting receptor-dependent heterotrimeric G protein activation. In many cases, natural aGPCR ligands are extracellular matrix proteins that dissociate the NTF to reveal the tethered agonist. Given the perceived difficulty in modifying extracellular matrix proteins to create aGPCR probes, we developed a serum response element (SRE)-luciferase-based screening approach to identify GPR56/ADGRG1 small-molecule inhibitors. A 2000-compound library comprising known drugs and natural products was screened for GPR56-dependent SRE activation inhibitors that did not inhibit constitutively active Gα13-dependent SRE activation. Dihydromunduletone (DHM), a rotenoid derivative, was validated using cell-free aGPCR/heterotrimeric G protein guanosine 5'-3-O-(thio)triphosphate binding reconstitution assays. DHM inhibited GPR56 and GPR114/ADGRG5, which have similar tethered agonists, but not the aGPCR GPR110/ADGRF1, M3 muscarinic acetylcholine, or β2 adrenergic GPCRs. DHM inhibited tethered peptide agonist-stimulated and synthetic peptide agonist-stimulated GPR56 but did not inhibit basal activity, demonstrating that it antagonizes the peptide agonist. DHM is a novel aGPCR antagonist and potentially useful chemical probe that may be developed as a future aGPCR therapeutic. PMID:27338081

  15. Similarities between the Binding Sites of SB-206553 at Serotonin Type 2 and Alpha7 Acetylcholine Nicotinic Receptors: Rationale for Its Polypharmacological Profile

    PubMed Central

    Möller-Acuña, Patricia; Contreras-Riquelme, J. Sebastián; Rojas-Fuentes, Cecilia; Nuñez-Vivanco, Gabriel; Alzate-Morales, Jans; Iturriaga-Vásquez, Patricio; Arias, Hugo R.; Reyes-Parada, Miguel

    2015-01-01

    Evidence from systems biology indicates that promiscuous drugs, i.e. those that act simultaneously at various protein targets, are clinically better in terms of efficacy, than those that act in a more selective fashion. This has generated a new trend in drug development called polypharmacology. However, the rational design of promiscuous compounds is a difficult task, particularly when the drugs are aimed to act at receptors with diverse structure, function and endogenous ligand. In the present work, using docking and molecular dynamics methodologies, we established the most probable binding sites of SB-206553, a drug originally described as a competitive antagonist of serotonin type 2B/2C metabotropic receptors (5-HT2B/2CRs) and more recently as a positive allosteric modulator of the ionotropic α7 nicotinic acetylcholine receptor (nAChR). To this end, we employed the crystal structures of the 5-HT2BR and acetylcholine binding protein as templates to build homology models of the 5-HT2CR and α7 nAChR, respectively. Then, using a statistical algorithm, the similarity between these binding sites was determined. Our analysis showed that the most plausible binding sites for SB-206553 at 5-HT2Rs and α7 nAChR are remarkably similar, both in size and chemical nature of the amino acid residues lining these pockets, thus providing a rationale to explain its affinity towards both receptor types. Finally, using a computational tool for multiple binding site alignment, we determined a consensus binding site, which should be useful for the rational design of novel compounds acting simultaneously at these two types of highly different protein targets. PMID:26244344

  16. Similarities between the Binding Sites of SB-206553 at Serotonin Type 2 and Alpha7 Acetylcholine Nicotinic Receptors: Rationale for Its Polypharmacological Profile.

    PubMed

    Möller-Acuña, Patricia; Contreras-Riquelme, J Sebastián; Rojas-Fuentes, Cecilia; Nuñez-Vivanco, Gabriel; Alzate-Morales, Jans; Iturriaga-Vásquez, Patricio; Arias, Hugo R; Reyes-Parada, Miguel

    2015-01-01

    Evidence from systems biology indicates that promiscuous drugs, i.e. those that act simultaneously at various protein targets, are clinically better in terms of efficacy, than those that act in a more selective fashion. This has generated a new trend in drug development called polypharmacology. However, the rational design of promiscuous compounds is a difficult task, particularly when the drugs are aimed to act at receptors with diverse structure, function and endogenous ligand. In the present work, using docking and molecular dynamics methodologies, we established the most probable binding sites of SB-206553, a drug originally described as a competitive antagonist of serotonin type 2B/2C metabotropic receptors (5-HT2B/2CRs) and more recently as a positive allosteric modulator of the ionotropic α7 nicotinic acetylcholine receptor (nAChR). To this end, we employed the crystal structures of the 5-HT2BR and acetylcholine binding protein as templates to build homology models of the 5-HT2CR and α7 nAChR, respectively. Then, using a statistical algorithm, the similarity between these binding sites was determined. Our analysis showed that the most plausible binding sites for SB-206553 at 5-HT2Rs and α7 nAChR are remarkably similar, both in size and chemical nature of the amino acid residues lining these pockets, thus providing a rationale to explain its affinity towards both receptor types. Finally, using a computational tool for multiple binding site alignment, we determined a consensus binding site, which should be useful for the rational design of novel compounds acting simultaneously at these two types of highly different protein targets. PMID:26244344

  17. Snake neurotoxin α-bungarotoxin is an antagonist at native GABAA receptors

    PubMed Central

    Hannan, Saad; Mortensen, Martin; Smart, Trevor G.

    2015-01-01

    The snake neurotoxin α-bungarotoxin (α-Bgtx) is a competitive antagonist at nicotinic acetylcholine receptors (nAChRs) and is widely used to study their function and cell-surface expression. Increasingly, α-Bgtx is also used as an imaging tool for fluorophore-labelling studies, and given the structural conservation within the pentameric ligand-gated ion channel family, we assessed whether α-Bgtx could bind to recombinant and native γ-aminobutyric type-A receptors (GABAARs). Applying fluorophore-linked α-Bgtx to recombinant αxβ1/2γ2 GABAARs expressed in HEK-293 cells enabled clear cell-surface labelling of α2β1/2γ2 contrasting with the weaker staining of α1/4β1/2γ2, and no labelling for α3/5/6β1/2γ2. The labelling of α2β2γ2 was abolished by bicuculline, a competitive antagonist at GABAARs, and by d-tubocurarine (d-Tc), which acts in a similar manner at nAChRs and GABAARs. Labelling by α-Bgtx was also reduced by GABA, suggesting that the GABA binding site at the receptor β–α subunit interface forms part of the α-Bgtx binding site. Using whole-cell recording, high concentrations of α-Bgtx (20 μM) inhibited GABA-activated currents at all αxβ2γ2 receptors examined, but at lower concentrations (5 μM), α-Bgtx was selective for α2β2γ2. Using α-Bgtx, at low concentrations, permitted the selective inhibition of α2 subunit-containing GABAARs in hippocampal dentate gyrus granule cells, reducing synaptic current amplitudes without affecting the GABA-mediated tonic current. In conclusion, α-Bgtx can act as an inhibitor at recombinant and native GABAARs and may be used as a selective tool to inhibit phasic but not tonic currents in the hippocampus. PMID:25634239

  18. Neuronal Nicotinic Acetylcholine Receptor Structure and Function and Response to Nicotine

    PubMed Central

    Dani, John A.

    2016-01-01

    Nicotinic acetylcholine receptors (nAChRs) belong to the “Cys-loop” superfamily of ligand-gated ion channels that includes GABAA, glycine, and serotonin (5-HT3) receptors. There are 16 homologous mammalian nAChR subunits encoded by a multigene family. These subunits combine to form many different nAChR subtypes with various expression patterns, diverse functional properties, and differing pharmacological characteristics. Because cholinergic innervation is pervasive and nAChR expression is extremely broad, practically every area of the brain is impinged upon by nicotinic mechanisms. This review briefly examines the structural and functional properties of the receptor/channel complex itself. The review also summarizes activation and desensitization of nAChRs by the low nicotine concentrations obtained from tobacco. Knowledge of the three-dimensional structure and the structural characteristics of channel gating has reached an advanced stage. Likewise, the basic functional properties of the channel also are reasonably well understood. It is these receptor/channel properties that underlie the participation of nAChRs in nearly every anatomical region of the mammalian brain. PMID:26472524

  19. ACR-12 ionotropic acetylcholine receptor complexes regulate inhibitory motor neuron activity in Caenorhabditis elegans.

    PubMed

    Petrash, Hilary A; Philbrook, Alison; Haburcak, Marian; Barbagallo, Belinda; Francis, Michael M

    2013-03-27

    Heterogeneity in the composition of neurotransmitter receptors is thought to provide functional diversity that may be important in patterning neural activity and shaping behavior (Dani and Bertrand, 2007; Sassoè-Pognetto, 2011). However, this idea has remained difficult to evaluate directly because of the complexity of neuronal connectivity patterns and uncertainty about the molecular composition of specific receptor types in vivo. Here we dissect how molecular diversity across receptor types contributes to the coordinated activity of excitatory and inhibitory motor neurons in the nematode Caenorhabditis elegans. We show that excitatory and inhibitory motor neurons express distinct populations of ionotropic acetylcholine receptors (iAChRs) requiring the ACR-12 subunit. The activity level of excitatory motor neurons is influenced through activation of nonsynaptic iAChRs (Jospin et al., 2009; Barbagallo et al., 2010). In contrast, synaptic coupling of excitatory and inhibitory motor neurons is achieved through a second population of iAChRs specifically localized at postsynaptic sites on inhibitory motor neurons. Loss of ACR-12 iAChRs from inhibitory motor neurons leads to reduced synaptic drive, decreased inhibitory neuromuscular signaling, and variability in the sinusoidal motor pattern. Our results provide new insights into mechanisms that establish appropriately balanced excitation and inhibition in the generation of a rhythmic motor behavior and reveal functionally diverse roles for iAChR-mediated signaling in this process. PMID:23536067

  20. Neuronal Nicotinic Acetylcholine Receptor Structure and Function and Response to Nicotine.

    PubMed

    Dani, John A

    2015-01-01

    Nicotinic acetylcholine receptors (nAChRs) belong to the "Cys-loop" superfamily of ligand-gated ion channels that includes GABAA, glycine, and serotonin (5-HT3) receptors. There are 16 homologous mammalian nAChR subunits encoded by a multigene family. These subunits combine to form many different nAChR subtypes with various expression patterns, diverse functional properties, and differing pharmacological characteristics. Because cholinergic innervation is pervasive and nAChR expression is extremely broad, practically every area of the brain is impinged upon by nicotinic mechanisms. This review briefly examines the structural and functional properties of the receptor/channel complex itself. The review also summarizes activation and desensitization of nAChRs by the low nicotine concentrations obtained from tobacco. Knowledge of the three-dimensional structure and the structural characteristics of channel gating has reached an advanced stage. Likewise, the basic functional properties of the channel also are reasonably well understood. It is these receptor/channel properties that underlie the participation of nAChRs in nearly every anatomical region of the mammalian brain.

  1. Structure of acetylcholine receptor dimer determined by neutron scattering and electron microscopy

    SciTech Connect

    Wise, D.S.; Schoenborn, B.P.; Karlin, A.

    1981-04-10

    Previous work has shown that the predominant native form of the acetylcholine receptor from the electric tissue of Torpedo californica is a dimer of M/sub r/ = 500,000, cross-linked by a disulfide bond between the largest (delta) of the five chains (..cap alpha../sub 2/..beta gamma..delta) that comprise the monomer. Small-angle neutron scattering of purified receptor dimer in Triton X-100 solution containing 18% D/sub 2/O, in which the Triton X-100 is contrast-matched, yields a radius of gyration of the dimer of 66 A. Based on the assumptions that the dimer is symmetrical and that the radius of gyration of the monomer does not change in forming dimer, this value, together with the radius of gyration of the receptor monomer (46 A), determined previously, allows the calculation of the distance separating the centers of neutron scattering density of monomers in a dimer; the result is 96 A. Electron microscopy of negatively stained dimers permits an independent measurement of the distance between the apparent centers of mass of the monomers; the average is 96 A, in agreement with the result of the neutron scattering analysis. The electron micrographs of dimer also permit the location of the delta chains at the region of contact of the monomers. A model for the receptor dimer consistent with all available structural information is presented.

  2. α7-Nicotinic Acetylcholine Receptor: Role in Early Odor Learning Preference in Mice

    PubMed Central

    Hellier, Jennifer L.; Arevalo, Nicole L.; Smith, Lynelle; Xiong, Ka-Na; Restrepo, Diego

    2012-01-01

    Recently, we have shown that mice with decreased expression of α7-nicotinic acetylcholine receptors (α7) in the olfactory bulb were associated with a deficit in odor discrimination compared to wild-type mice. However, it is unknown if mice with decreased α7-receptor expression also show a deficit in early odor learning preference (ELP), an enhanced behavioral response to odors with attractive value observed in rats. In this study, we modified ELP methods performed in rats and implemented similar conditions in mice. From post-natal days 5–18, wild-type mice were stroked simultaneously with an odor presentation (conditioned odor) for 90 s daily. Control mice were only stroked, exposed to odor, or neither. On the day of testing (P21), mice that were stroked in concert with a conditioned odor significantly investigated the conditioned odor compared to a novel odor, as observed similarly in rats. However, mice with a decrease in α7-receptor expression that were stroked during a conditioned odor did not show a behavioral response to that odorant. These results suggest that decreased α7-receptor expression has a role in associative learning, olfactory preference, and/or sensory processing deficits. PMID:22514723

  3. Identification and Characterization of a G Protein-binding Cluster in α7 Nicotinic Acetylcholine Receptors*

    PubMed Central

    King, Justin R.; Nordman, Jacob C.; Bridges, Samuel P.; Lin, Ming-Kuan; Kabbani, Nadine

    2015-01-01

    α7 nicotinic acetylcholine receptors (nAChRs) play an important role in synaptic transmission and inflammation. In response to ligands, this receptor channel opens to conduct cations into the cell but desensitizes rapidly. In recent studies we show that α7 nAChRs bind signaling proteins such as heterotrimeric GTP-binding proteins (G proteins). Here, we demonstrate that direct coupling of α7 nAChRs to G proteins enables a downstream calcium signaling response that can persist beyond the expected time course of channel activation. This process depends on a G protein-binding cluster (GPBC) in the M3-M4 loop of the receptor. A mutation of the GPBC in the α7 nAChR (α7345–348A) abolishes interaction with Gαq as well as Gβγ while having no effect on receptor synthesis, cell-surface trafficking, or α-bungarotoxin binding. Expression of α7345–348A, however, did significantly attenuate the α7 nAChR-induced Gαq calcium signaling response as evidenced by a decrease in PLC-β activation and IP3R-mediated calcium store release in the presence of the α7 selective agonist choline. Taken together, the data provides new evidence for the existence of a GPBC in nAChRs serving to promote intracellular signaling. PMID:26088141

  4. Dynamic heterogeneity and non-Gaussian statistics for acetylcholine receptors on live cell membrane

    PubMed Central

    He, W.; Song, H.; Su, Y.; Geng, L.; Ackerson, B. J.; Peng, H. B.; Tong, P.

    2016-01-01

    The Brownian motion of molecules at thermal equilibrium usually has a finite correlation time and will eventually be randomized after a long delay time, so that their displacement follows the Gaussian statistics. This is true even when the molecules have experienced a complex environment with a finite correlation time. Here, we report that the lateral motion of the acetylcholine receptors on live muscle cell membranes does not follow the Gaussian statistics for normal Brownian diffusion. From a careful analysis of a large volume of the protein trajectories obtained over a wide range of sampling rates and long durations, we find that the normalized histogram of the protein displacements shows an exponential tail, which is robust and universal for cells under different conditions. The experiment indicates that the observed non-Gaussian statistics and dynamic heterogeneity are inherently linked to the slow-active remodelling of the underlying cortical actin network. PMID:27226072

  5. Dynamic heterogeneity and non-Gaussian statistics for acetylcholine receptors on live cell membrane.

    PubMed

    He, W; Song, H; Su, Y; Geng, L; Ackerson, B J; Peng, H B; Tong, P

    2016-01-01

    The Brownian motion of molecules at thermal equilibrium usually has a finite correlation time and will eventually be randomized after a long delay time, so that their displacement follows the Gaussian statistics. This is true even when the molecules have experienced a complex environment with a finite correlation time. Here, we report that the lateral motion of the acetylcholine receptors on live muscle cell membranes does not follow the Gaussian statistics for normal Brownian diffusion. From a careful analysis of a large volume of the protein trajectories obtained over a wide range of sampling rates and long durations, we find that the normalized histogram of the protein displacements shows an exponential tail, which is robust and universal for cells under different conditions. The experiment indicates that the observed non-Gaussian statistics and dynamic heterogeneity are inherently linked to the slow-active remodelling of the underlying cortical actin network.

  6. Allosteric modifiers of neuronal nicotinic acetylcholine receptors: new methods, new opportunities.

    PubMed

    Moaddel, Ruin; Jozwiak, Krzysztof; Wainer, Irving W

    2007-09-01

    Allosteric, non-competitive inhibitors (NCIs) of neuronal nicotinic acetylcholine receptors (nAChRs) have been shown to produce a wide variety of clinically relevant responses. Many of the observed effects are desired as the nAChR is the therapeutic target, while others are undesired consequences due to off-target binding at the nAChR. Thus, the determination of whether or not a lead drug candidate is an NCI should play an important role in drug discovery programs. However, the current experimental techniques used to identify NCIs are challenging, expensive, and time consuming. This review focuses on an alternative approach to the investigation of interactions between test compounds and nAChRs based upon liquid chromatographic stationary phases containing cellular fragments from cell lines expressing nAChRs. The development and validation of these phases as well as their use in drug discovery and pharmacophore modeling are discussed. PMID:17238157

  7. Exon-intron structure of the human neuronal nicotinic acetylcholine receptor {alpha}4 subunit (CHRNA4)

    SciTech Connect

    Steinlein, O.; Weiland, S.; Stoodt, J.; Propping, P.

    1996-03-01

    The human neuronal nicotinic acetylcholine receptor {alpha}4 subunit gene (CHRNA4) is located in the candidate region for three different phenotypes: benign familial neonatal convulsions, autosomal dominant nocturnal frontal lobe epilepsy, and low-voltage EEG. Recently, a missense mutation in transmembrane domain 2 of CHRNA4 was found to be associated with autosomal dominant nocturnal frontal lobe epilepsy in one extended pedigree. We have determined the genomic organization of CHRNA4, which consists of six exons distributed over approximately 17 kb of genomic DNA. The nucleotide sequence obtained from the genomic regions adjacent to the exon boundaries enabled us to develop a set of primer pairs for PCR amplification of the complete coding region. The sequence analysis provides the basis for a comprehensive mutation screening of CHRNA4 in the above-mentioned phenotypes and possibly in other types of idopathic epilepsies. 29 refs., 3 figs., 1 tab.

  8. Dynamic heterogeneity and non-Gaussian statistics for acetylcholine receptors on live cell membrane

    NASA Astrophysics Data System (ADS)

    He, W.; Song, H.; Su, Y.; Geng, L.; Ackerson, B. J.; Peng, H. B.; Tong, P.

    2016-05-01

    The Brownian motion of molecules at thermal equilibrium usually has a finite correlation time and will eventually be randomized after a long delay time, so that their displacement follows the Gaussian statistics. This is true even when the molecules have experienced a complex environment with a finite correlation time. Here, we report that the lateral motion of the acetylcholine receptors on live muscle cell membranes does not follow the Gaussian statistics for normal Brownian diffusion. From a careful analysis of a large volume of the protein trajectories obtained over a wide range of sampling rates and long durations, we find that the normalized histogram of the protein displacements shows an exponential tail, which is robust and universal for cells under different conditions. The experiment indicates that the observed non-Gaussian statistics and dynamic heterogeneity are inherently linked to the slow-active remodelling of the underlying cortical actin network.

  9. Dynamic heterogeneity and non-Gaussian statistics for acetylcholine receptors on live cell membrane.

    PubMed

    He, W; Song, H; Su, Y; Geng, L; Ackerson, B J; Peng, H B; Tong, P

    2016-01-01

    The Brownian motion of molecules at thermal equilibrium usually has a finite correlation time and will eventually be randomized after a long delay time, so that their displacement follows the Gaussian statistics. This is true even when the molecules have experienced a complex environment with a finite correlation time. Here, we report that the lateral motion of the acetylcholine receptors on live muscle cell membranes does not follow the Gaussian statistics for normal Brownian diffusion. From a careful analysis of a large volume of the protein trajectories obtained over a wide range of sampling rates and long durations, we find that the normalized histogram of the protein displacements shows an exponential tail, which is robust and universal for cells under different conditions. The experiment indicates that the observed non-Gaussian statistics and dynamic heterogeneity are inherently linked to the slow-active remodelling of the underlying cortical actin network. PMID:27226072

  10. Characterization of alpha-conotoxin interactions with the nicotinic acetylcholine receptor and monoclonal antibodies.

    PubMed Central

    Ashcom, J D; Stiles, B G

    1997-01-01

    The venoms of predatory marine cone snails, Conus species, contain numerous peptides and proteins with remarkably diverse pharmacological properties. One group of peptides are the alpha-conotoxins, which consist of 13-19 amino acids constrained by two disulphide bonds. A biologically active fluorescein derivative of Conus geographus alpha-conotoxin GI (FGI) was used in novel solution-phase-binding assays with purified Torpedo californica nicotinic acetylcholine receptor (nAchR) and monoclonal antibodies developed against the toxin. The binding of FGI to nAchR or antibody had apparent dissociation constants of 10-100 nM. Structure-function studies with alpha-conotoxin GI analogues composed of a single disulphide loop revealed that different conformational restraints are necessary for effective toxin interactions with nAchR or antibodies. PMID:9359860

  11. AzoCholine Enables Optical Control of Alpha 7 Nicotinic Acetylcholine Receptors in Neural Networks.

    PubMed

    Damijonaitis, Arunas; Broichhagen, Johannes; Urushima, Tatsuya; Hüll, Katharina; Nagpal, Jatin; Laprell, Laura; Schönberger, Matthias; Woodmansee, David H; Rafiq, Amir; Sumser, Martin P; Kummer, Wolfgang; Gottschalk, Alexander; Trauner, Dirk

    2015-05-20

    Nicotinic acetylcholine receptors (nAChRs) are essential for cellular communication in higher organisms. Even though a vast pharmacological toolset to study cholinergic systems has been developed, control of endogenous neuronal nAChRs with high spatiotemporal precision has been lacking. To address this issue, we have generated photoswitchable nAChR agonists and re-evaluated the known photochromic ligand, BisQ. Using electrophysiology, we found that one of our new compounds, AzoCholine, is an excellent photoswitchable agonist for neuronal α7 nAChRs, whereas BisQ was confirmed to be an agonist for the muscle-type nAChR. AzoCholine could be used to modulate cholinergic activity in a brain slice and in dorsal root ganglion neurons. In addition, we demonstrate light-dependent perturbation of behavior in the nematode, Caenorhabditis elegans. PMID:25741856

  12. Binding sites for. alpha. -bungarotoxin and the noncompetitive inhibitor phencyclidine on a synthetic peptide comprising residues 172-227 of the. alpha. -subunit of the nicotinic acetylcholine receptor

    SciTech Connect

    Donnelly-Roberts, D.L.; Lentz, T.L. )

    1991-07-30

    The binding of the competitive antagonist {alpha}-bungarotoxin ({alpha}-Btx) and the noncompetitive inhibitor phencyclidine (PCP) to a synthetic peptide comprising residues 172-227 of the {alpha}-subunit of the Torpedo acetylcholine receptor has been characterized. {sup 125}I-{alpha}-Btx bound to the 172-227 peptide in a solid-phase assay and was competed by {alpha}-Btx d-tubocurarine and NaCl. In the presence of 0.02% sodium dodecyl sulfate, {sup 125}I-{alpha}-Btx bound to the 56-residue peptide with a K{sub D} of 3.5 nM, as determined by equilibrium saturation binding studies. Because {alpha}Btx binds to a peptide comprising residues 173-204 with the same affinity and does not bind to a peptide comprising residues 205-227, the competitive antagonist and hence agonist binding site lies between residues 173 and 204. After photoaffinity labeling, ({sup 3}H)PCP was bound to the 172-227 peptide. ({sup 3}H)PCP binding was inhibited by chlorpromazine, tetracaine, and dibucaine. It is concluded that a high-affinity binding site for PCP is located between residues 205 and 227, which includes the first 18 residues of transmembrane segment M1, and that a low-affinity site is located in the competitive antagonist binding site between residues 173 and 204. These results show that a synthetic peptide comprising residues 172-227 of the {alpha} subunit contains three binding sites, one for {alpha}-Btx and two for PCP. Previous studies on the intact receptor indicate high-affinity PCP binding occurs in the receptor channel.

  13. Purification and reconstitution of the calcium antagonist receptor of the voltage-sensitive calcium channel

    SciTech Connect

    Curtis, B.M.

    1986-01-01

    Treatment with digitonin solubilized the calcium antagonist receptor as a stable complex with (/sup 3/H)nitrendipine from rat brain membranes. The solubilized complex retains allosteric coupling to binding sites for diltiazem, verapamil, and inorganic calcium antagonist sites. The calcium antagonist receptor from cardiac sarcolemma and the transverse-tubule membrane of skeletal muscle is also efficiently solubilized with digitonin and the receptor in all three tissues is a large glycoprotein with a sedimentation coefficient of 20 S. The T-tubule calcium antagonist receptor complex was extensively purified by a combination of chromatography on WGA-Sepharose, ion exchange chromatography, and sedimentation on sucrose gradients to yield preparations estimated to be 41% homogeneous by specific activity and 63% homogeneous by SDS gel electrophoresis. Analysis of SDS gels detect three polypeptides termed ..cap alpha..(Mr 135,000), ..beta..(Mr 50,000), and ..gamma..(Mr 32,000) as noncovalently associated subunits of the calcium antagonist receptor. The ..cap alpha.. and ..gamma.. subunits are glycosylated polypeptides, and the molecular weight of the core polypeptides are 108,000 and 24,000 respectively. The calcium antagonist receptor was reconstituted into a phospholipid bilayer by adding CHAPS and exogeneous lipid to the purified receptor followed by rapid detergent removal. This procedure resulted in the incorporation of 45% of the calcium antagonist receptor into closed phospholipid vesicles. Data suggests that the ..cap alpha.., ..beta.., and ..gamma.. subunits of the T-tubule calcium antagonist receptor are sufficient to form a functional calcium channel.

  14. Natural genetic variability of the neuronal nicotinic acetylcholine receptor subunit genes in mice: Consequences and confounds.

    PubMed

    Wilking, Jennifer A; Stitzel, Jerry A

    2015-09-01

    Recent human genetic studies have identified genetic variants in multiple nicotinic acetylcholine receptor (nAChR) subunit genes that are associated with risk for nicotine dependence and other smoking-related measures. Genetic variability also exists in the nAChR subunit genes in mice. Most studies on mouse nAChR subunit gene variability to date have focused on Chrna4, the gene that encodes the α4 nAChR subunit and Chrna7, the gene that encodes the α7 nAChR subunit. However, genetic variability exists for all nAChR genes in mice. In this review, we will describe what is known about nAChR subunit gene polymorphisms in mice and how it relates to variability in nAChR expression and function in brain. The relationship between nAChR genetic variability in mice and the effects of nicotine on several behavioral and physiological measures also will be discussed. In addition, an overview of the contribution of other genetic variation to nicotine sensitivity in mice will be provided. Finally, the potential for natural genetic variability to confound and/or modify the results of studies that utilize genetically engineered mice will be considered. As an example of the ability of a natural genetic variant to modify the effect of an engineered mutation, data will be presented that demonstrate that the effect of Chrna5 deletion on oral nicotine intake is dependent upon naturally occurring variant alleles of Chrna4. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'. PMID:25498233

  15. Mechanistic insights into allosteric structure-function relationships at the M1 muscarinic acetylcholine receptor.

    PubMed

    Abdul-Ridha, Alaa; Lane, J Robert; Mistry, Shailesh N; López, Laura; Sexton, Patrick M; Scammells, Peter J; Christopoulos, Arthur; Canals, Meritxell

    2014-11-28

    Benzylquinolone carboxylic acid (BQCA) is the first highly selective positive allosteric modulator (PAM) for the M1 muscarinic acetylcholine receptor (mAChR), but it possesses low affinity for the allosteric site on the receptor. More recent drug discovery efforts identified 3-((1S,2S)-2-hydroxycyclohexyl)-6-((6-(1-methyl-1H-pyrazol-4-yl)pyridin-3-yl)methyl)benzo[h]quinazolin-4(3H)-one (referred to herein as benzoquinazolinone 12) as a more potent M1 mAChR PAM with a structural ancestry originating from BQCA and related compounds. In the current study, we optimized the synthesis of and fully characterized the pharmacology of benzoquinazolinone 12, finding that its improved potency derived from a 50-fold increase in allosteric site affinity as compared with BQCA, while retaining a similar level of positive cooperativity with acetylcholine. We then utilized site-directed mutagenesis and molecular modeling to validate the allosteric binding pocket we previously described for BQCA as a shared site for benzoquinazolinone 12 and provide a molecular basis for its improved activity at the M1 mAChR. This includes a key role for hydrophobic and polar interactions with residues Tyr-179, in the second extracellular loop (ECL2) and Trp-400(7.35) in transmembrane domain (TM) 7. Collectively, this study highlights how the properties of affinity and cooperativity can be differentially modified on a common structural scaffold and identifies molecular features that can be exploited to tailor the development of M1 mAChR-targeting PAMs. PMID:25326383

  16. Mechanistic Insights into Allosteric Structure-Function Relationships at the M1 Muscarinic Acetylcholine Receptor*

    PubMed Central

    Abdul-Ridha, Alaa; Lane, J. Robert; Mistry, Shailesh N.; López, Laura; Sexton, Patrick M.; Scammells, Peter J.; Christopoulos, Arthur; Canals, Meritxell

    2014-01-01

    Benzylquinolone carboxylic acid (BQCA) is the first highly selective positive allosteric modulator (PAM) for the M1 muscarinic acetylcholine receptor (mAChR), but it possesses low affinity for the allosteric site on the receptor. More recent drug discovery efforts identified 3-((1S,2S)-2-hydroxycyclohexyl)-6-((6-(1-methyl-1H-pyrazol-4-yl)pyridin-3-yl)methyl)benzo[h]quinazolin-4(3H)-one (referred to herein as benzoquinazolinone 12) as a more potent M1 mAChR PAM with a structural ancestry originating from BQCA and related compounds. In the current study, we optimized the synthesis of and fully characterized the pharmacology of benzoquinazolinone 12, finding that its improved potency derived from a 50-fold increase in allosteric site affinity as compared with BQCA, while retaining a similar level of positive cooperativity with acetylcholine. We then utilized site-directed mutagenesis and molecular modeling to validate the allosteric binding pocket we previously described for BQCA as a shared site for benzoquinazolinone 12 and provide a molecular basis for its improved activity at the M1 mAChR. This includes a key role for hydrophobic and polar interactions with residues Tyr-179, in the second extracellular loop (ECL2) and Trp-4007.35 in transmembrane domain (TM) 7. Collectively, this study highlights how the properties of affinity and cooperativity can be differentially modified on a common structural scaffold and identifies molecular features that can be exploited to tailor the development of M1 mAChR-targeting PAMs. PMID:25326383

  17. The relationship of the postsynaptic 43K protein to acetylcholine receptors in receptor clusters isolated from cultured rat myotubes.

    PubMed

    Bloch, R J; Froehner, S C

    1987-03-01

    We have examined the relationship of acetylcholine receptors (AChR) to the Mr 43,000 receptor-associated protein (43K) in the AChR clusters of cultured rat myotubes. Indirect immunofluorescence revealed that the 43K protein was concentrated at the AChR domains of the receptor clusters in intact rat myotubes, in myotube fragments, and in clusters that had been purified approximately 100-fold by extraction with saponin. The association of the 43K protein with clustered AChR was not affected by buffers of high or low ionic strength, by alkaline pHs up to 10, or by chymotrypsin at 10 micrograms/ml. However, the 43K protein was removed from clusters with lithium diiodosalicylate or at alkaline pH (greater than 10). Upon extraction of 43K, several changes were observed in the AChR population. Receptors redistributed in the plane of the muscle membrane in alkali-extracted samples. The number of binding sites accessible to an anti-AChR monoclonal antibody directed against cytoplasmic epitopes (88B) doubled. Receptors became more susceptible to digestion by chymotrypsin, which destroyed the binding sites for the 88B antibody only after 43K was extracted. These results suggest that in isolated AChR clusters the 43K protein covers part of the cytoplasmic domain of AChR and may contribute to the unique distribution of this membrane protein.

  18. Pb2+ inhibition of sympathetic alpha 7-nicotinic acetylcholine receptor-mediated nitrergic neurogenic dilation in porcine basilar arteries.

    PubMed

    Si, Min-Liang; Lee, Tony Jer-Fu

    2003-06-01

    Chronic exposure to inorganic lead (Pb2+) has been shown to facilitate peripheral vasoconstriction causing hypertension. Effect of lead on cerebral vascular function has not been reported. We have suggested in isolated porcine cerebral arteries that alpha 7-nicotinic acetylcholine receptors (alpha 7-nAChRs) on perivascular sympathetic nerves mediate calcium influx in these neurons, resulting in release of norepinephrine. The released norepinephrine then acts on presynaptic beta2-adrenoceptors located on the neighboring nitrergic nerve terminals, causing nitric oxide (NO) release and vasodilation. Because Pb2+ has been shown to inhibit alpha 7-nAChR-mediated responses in the central nervous system, effects of Pb2+ on alpha 7-nAChR-mediated nitrergic neurogenic dilation in isolated porcine basilar arteries and calcium influx in cultured superior cervical ganglion (SCG) cells of the pig were examined using in vitro tissue bath and confocal microscopic techniques. The results indicated that Pb2+ (but not Cd2+, Zn2+, or Al3+) in a concentration-dependent manner blocked relaxation of endothelium-denuded basilar arterial rings induced by nicotine (100 microM) and choline (1 mM) without affecting relaxation induced by sodium nitroprusside or isoproterenol. Furthermore, significant calcium influx in cultured SCG cells induced by choline and nicotine was attenuated specifically by Pb2+ with IC50 values comparable with those from tissue bath study. These results provide evidence supporting that lead is a likely antagonist for alpha 7-nAChRs that are found on postganglionic sympathetic adrenergic nerve terminals of SCG origin. Furthermore, these results indicate that lead can attenuate dilation of cerebral arteries by blocking sympathetic nerve-mediated release of NO from the perivascular nitrergic nerves.

  19. Functional expression of alpha 7 nicotinic acetylcholine receptors in human periodontal ligament fibroblasts and rat periodontal tissues.

    PubMed

    Wang, Xiao-Jing; Liu, Ying-Feng; Wang, Qing-Yu; Tsuruoka, Morito; Ohta, Kazumasa; Wu, Sheng-Xi; Yakushiji, Masashi; Inoue, Takashi

    2010-05-01

    Tobacco smoking is the main risk factor associated with chronic periodontitis, but the mechanisms that underlie this relationship are largely unknown. Recent reports proposed that nicotine plays an important role in tobacco-related morbidity by acting through the nicotinic acetylcholine receptors (nAChRs) expressed by non-neuronal cells. The aim of this study was to investigate whether alpha 7 nAChR was expressed in periodontal tissues and whether it functions by regulating IL-1 beta in the process of periodontitis. In vitro, human periodontal ligament (PDL) cells were cultured with 10(-12) M of nicotine and/or 10(-9) M of alpha-bungarotoxin (alpha-Btx), a alpha 7 nAChR antagonist. The expression of alpha 7 nAChR and IL-1 beta in PDL cells and the effects of nicotine/alpha-Btx administration on their expression were explored. In vivo, an experimental periodontitis rat model was established, and the effects of nicotine/alpha-Btx administration on expression of alpha 7 nAChR and development of periodontitis were evaluated. We found that alpha 7 nAChR was present in human PDL cells and rat periodontal tissues. The expressions of alpha 7 nAChR and IL-1 beta were significantly increased by nicotine administration, whereas alpha-Btx treatment partially suppressed these effects. This study was the first to demonstrate the functional expression of alpha 7 nAChR in human PDL cells and rat periodontal tissues. Our results may be pertinent to a better understanding of the relationships among smoking, nicotine, and periodontitis.

  20. Involvement of alpha 7 nicotinic acetylcholine receptors in gene expression of dopamine biosynthetic enzymes in rat brain.

    PubMed

    Serova, Lidia; Sabban, Esther L

    2002-12-01

    Brain dopaminergic systems are critical in mediating the physiological responses to nicotine. The effects of several concentrations of nicotine (0.08, 0.17, or 0.33 mg/kg body weight) and involvement of alpha7 nicotinic acetylcholine receptors (nAChRs) in gene expression of key enzymes in dopamine biosynthesis were evaluated in the ventral tegmental area (VTA) and substantia nigra (SN), cell bodies of the mesocorticolimbic and nigrostriatal pathways. Nicotine elicited a dose-dependent elevation of mRNA for tyrosine hydroxylase (TH), the rate-limiting enzyme in dopamine biosynthesis in VTA and SN. The VTA was more sensitive to lower concentrations of nicotine with maximal response observed with the lowest dose of nicotine. Nicotine also elevated mRNA levels of GTP cyclohydrolase I (GTPCH), rate limiting in biosynthesis of TH's essential cofactor tetrahydrobiopterin in both dopaminergic locations. The changes in TH and GTPCH mRNAs were correlated. Pretreatment with the alpha7 nAChR antagonist methyllycaconitine prevented the nicotine-induced rise in TH or GTPCH mRNA in VTA and SN. Administration of alpha7 nAChR agonist 3-[2,4-dimethoxybenzilidene]anabaseine at 1 to 10 mg/kg or (E,E-3-(cinnamylidene)anabaseine at 0.3 to 1 mg/kg increased TH mRNA in VTA and SN, but not in peripheral catecholaminergic cells. Thus, agonists of alpha7 nAChRs have therapeutic potential for increasing TH gene expression in dopaminergic regions without some of nicotine's disadvantages, such as its harmful effects on the cardiovascular system. The findings indicate that nicotine may regulate dopamine biosynthesis by alterations in gene expression of TH and its cofactor. The alpha7 nAChRs are involved in mediating these effects of nicotine.

  1. Taurolithocholic acid promotes intrahepatic cholangiocarcinoma cell growth via muscarinic acetylcholine receptor and EGFR/ERK1/2 signaling pathway.

    PubMed

    Amonyingcharoen, Sumet; Suriyo, Tawit; Thiantanawat, Apinya; Watcharasit, Piyajit; Satayavivad, Jutamaad

    2015-01-01

    Cholangiocarcinoma (CCA) is a malignant cancer of the biliary tract and its occurrence is associated with chronic cholestasis which causes an elevation of bile acids in the liver and bile duct. The present study aimed to investigate the role and mechanistic effect of bile acids on the CCA cell growth. Intrahepatic CCA cell lines, RMCCA-1 and HuCCA-1, were treated with bile acids and their metabolites to determine the growth promoting effect. Cell viability, cell cycle analysis, EdU incorporation assays were conducted. Intracellular signaling proteins were detected by western immunoblotting. Among eleven forms of bile acids and their metabolites, only taurolithocholic acid (TLCA) concentration dependently (1-40 µM) increased the cell viability of RMCCA-1, but not HuCCA-1 cells. The cell cycle analysis showed induction of cells in the S phase and the EdU incorporation assay revealed induction of DNA synthesis in the TLCA-treated RMCCA-1 cells. Moreover, TLCA increased the phosphorylation of EGFR, ERK 1/2 and also increased the expression of cyclin D1 in RMCCA-1 cells. Furthermore, TLCA-induced RMCCA-1 cell growth could be inhibited by atropine, a non-selective muscarinic acetylcholine receptor (mAChR) antagonist, AG 1478, a specific EGFR inhibitor, or U 0126, a specific MEK 1/2 inhibitor. These results suggest that TLCA induces CCA cell growth via mAChR and EGFR/EKR1/2 signaling pathway. Moreover, the functional presence of cholinergic system plays a certain role in TLCA-induced CCA cell growth.

  2. Cognitive improvements in a mouse model with substituted 1,2,3-triazole agonists for nicotinic acetylcholine receptors.

    PubMed

    Arunrungvichian, Kuntarat; Boonyarat, Chantana; Fokin, Valery V; Taylor, Palmer; Vajragupta, Opa

    2015-08-19

    The α7 nicotinic acetylcholine receptor (nAChR) is a recognized drug target for dementias of aging and certain developmental disorders. Two selective and potent α7-nAChR agonists, winnowed from a list of 43 compounds characterized in a companion article (DOI: 10.1021/acschemneuro.5b00058), 5-((quinuclid-3-yl)-1H-1,2,3-triazol-4-yl)-1H-indole (IND8) and 3-(4-hydroxyphenyl-1,2,3-triazol-1-yl) quinuclidine (QND8), were evaluated for cognitive improvement in both short- and long-term memory. Tacrine, a centrally active acetylcholinesterase inhibitor, and PNU-282987, a congeneric α7 nAChR agonist, were employed as reference standards. Three behavioral tests, modified Y-maze, object recognition test (ORT), and water maze, were performed in scopolamine-induced amnesic mice. Intraperitoneal injection of these two compounds significantly improved the cognitive impairment in a modified Y-maze test (5 μmol/kg for IND8 and 10 μmol/kg for QND8), ORT (10 μmol/kg), and water maze test (25 μmol/kg). For delay induced memory deficit or natural memory loss in mice, IND8 and QND8 at 10 μmol/kg were able to enhance memory comparable to PNU-282987 when evaluated using ORT time delay model. Cognitive enhancement of IND8 and QND8 was mediated through α7-nAChRs as evidenced by its complete abolition after pretreatment with a selective α7-nAChR antagonist, methyllycaconitine. These data demonstrate that IND8 and QND8 and their congeners are potential candidates for treatment of cognitive disorders, and the substituted triazole series formed by cycloaddition of alkynes and azides warrant further preclinical optimization. PMID:25978789

  3. The Dinoflagellate Toxin 20-Methyl Spirolide-G Potently Blocks Skeletal Muscle and Neuronal Nicotinic Acetylcholine Receptors.

    PubMed

    Couesnon, Aurélie; Aráoz, Rómulo; Iorga, Bogdan I; Benoit, Evelyne; Reynaud, Morgane; Servent, Denis; Molgó, Jordi

    2016-01-01

    The cyclic imine toxin 20-methyl spirolide G (20-meSPX-G), produced by the toxigenic dinoflagellate Alexandrium ostenfeldii/Alexandrium peruvianum, has been previously reported to contaminate shellfish in various European coastal locations, as revealed by mouse toxicity bioassay. The aim of the present study was to determine its toxicological profile and its molecular target selectivity. 20-meSPX-G blocked nerve-evoked isometric contractions in isolated mouse neuromuscular preparations, while it had no action on contractions elicited by direct electrical stimulation, and reduced reversibly nerve-evoked compound muscle action potential amplitudes in anesthetized mice. Voltage-clamp recordings in Xenopus oocytes revealed that 20-meSPX-G potently inhibited currents evoked by ACh on Torpedo muscle-type and human α7 nicotinic acetylcholine receptors (nAChR), whereas lower potency was observed in human α4β2 nAChR. Competition-binding assays showed that 20-meSPX-G fully displaced [³H]epibatidine binding to HEK-293 cells expressing the human α3β2 (Ki = 0.040 nM), whereas a 90-fold lower affinity was detected in human α4β2 nAChR. The spirolide displaced [(125)I]α-bungarotoxin binding to Torpedo membranes (Ki = 0.028 nM) and in HEK-293 cells expressing chick chimeric α7-5HT₃ nAChR (Ki = 0.11 nM). In conclusion, this is the first study to demonstrate that 20-meSPX-G is a potent antagonist of nAChRs, and its subtype selectivity is discussed on the basis of molecular docking models. PMID:27563924

  4. Selective activation of α7 nicotinic acetylcholine receptor (nAChRα7) inhibits muscular degeneration in mdx dystrophic mice.

    PubMed

    Leite, Paulo Emílio Correa; Gandía, Luís; de Pascual, Ricardo; Nanclares, Carmen; Colmena, Inés; Santos, Wilson C; Lagrota-Candido, Jussara; Quirico-Santos, Thereza

    2014-07-21

    Amount evidence indicates that α7 nicotinic acetylcholine receptor (nAChRα7) activation reduces production of inflammatory mediators. This work aimed to verify the influence of endogenous nAChRα7 activation on the regulation of full-blown muscular inflammation in mdx mouse with Duchenne muscular dystrophy. We used mdx mice with 3 weeks-old at the height myonecrosis, and C57 nAChRα7(+/+) wild-type and nAChRα7(-/-) knockout mice with muscular injury induced with 60µL 0.5% bupivacaine (bp) in the gastrocnemius muscle. Pharmacological treatment included selective nAChRα7 agonist PNU282987 (0.3mg/kg and 1.0mg/kg) and the antagonist methyllycaconitine (MLA at 1.0mg/kg) injected intraperitoneally for 7 days. Selective nAChRα7 activation of mdx mice with PNU282987 reduced circulating levels of lactate dehydrogenase (LDH, a marker of cell death by necrosis) and the area of perivascular inflammatory infiltrate, and production of inflammatory mediators TNFα and metalloprotease MMP-9 activity. Conversely, PNU282987 treatment increased MMP-2 activity, an indication of muscular tissue remodeling associated with regeneration, in both mdx mice and WTα7 mice with bp-induced muscular lesion. Treatment with PNU282987 had no effect on α7KO, and MLA abolished the nAChRα7 agonist-induced anti-inflammatory effect in both mdx and WT. In conclusion, nAChRα7 activation inhibits muscular inflammation and activates tissue remodeling by increasing muscular regeneration. These effects were not accompanied with fibrosis and/or deposition of non-functional collagen. The nAChRα7 activation may be considered as a potential target for pharmacological strategies to reduce inflammation and activate mechanisms of muscular regeneration. PMID:24833065

  5. Cognitive improvements in a mouse model with substituted 1,2,3-triazole agonists for nicotinic acetylcholine receptors.

    PubMed

    Arunrungvichian, Kuntarat; Boonyarat, Chantana; Fokin, Valery V; Taylor, Palmer; Vajragupta, Opa

    2015-08-19

    The α7 nicotinic acetylcholine receptor (nAChR) is a recognized drug target for dementias of aging and certain developmental disorders. Two selective and potent α7-nAChR agonists, winnowed from a list of 43 compounds characterized in a companion article (DOI: 10.1021/acschemneuro.5b00058), 5-((quinuclid-3-yl)-1H-1,2,3-triazol-4-yl)-1H-indole (IND8) and 3-(4-hydroxyphenyl-1,2,3-triazol-1-yl) quinuclidine (QND8), were evaluated for cognitive improvement in both short- and long-term memory. Tacrine, a centrally active acetylcholinesterase inhibitor, and PNU-282987, a congeneric α7 nAChR agonist, were employed as reference standards. Three behavioral tests, modified Y-maze, object recognition test (ORT), and water maze, were performed in scopolamine-induced amnesic mice. Intraperitoneal injection of these two compounds significantly improved the cognitive impairment in a modified Y-maze test (5 μmol/kg for IND8 and 10 μmol/kg for QND8), ORT (10 μmol/kg), and water maze test (25 μmol/kg). For delay induced memory deficit or natural memory loss in mice, IND8 and QND8 at 10 μmol/kg were able to enhance memory comparable to PNU-282987 when evaluated using ORT time delay model. Cognitive enhancement of IND8 and QND8 was mediated through α7-nAChRs as evidenced by its complete abolition after pretreatment with a selective α7-nAChR antagonist, methyllycaconitine. These data demonstrate that IND8 and QND8 and their congeners are potential candidates for treatment of cognitive disorders, and the substituted triazole series formed by cycloaddition of alkynes and azides warrant further preclinical optimization.

  6. Angiotensin II type 2 receptor- and acetylcholine-mediated relaxation: essential contribution of female sex hormones and chromosomes.

    PubMed

    Pessôa, Bruno Sevá; Slump, Denise E; Ibrahimi, Khatera; Grefhorst, Aldo; van Veghel, Richard; Garrelds, Ingrid M; Roks, Anton J M; Kushner, Steven A; Danser, A H Jan; van Esch, Joep H M

    2015-08-01

    Angiotensin-induced vasodilation, involving type 2 receptor (AT2R)-induced generation of nitric oxide (NO; by endothelial NO synthase) and endothelium-derived hyperpolarizing factors, may be limited to women. To distinguish the contribution of female sex hormones and chromosomes to AT2R function and endothelium-derived hyperpolarizing factor-mediated vasodilation, we made use of the four-core genotype model, where the testis-determining Sry gene has been deleted (Y(-)) from the Y chromosome, allowing XY(-) mice to develop a female gonadal phenotype. Simultaneously, by incorporating the Sry gene onto an autosome, XY(-)Sry and XXSry transgenic mice develop into gonadal male mice. Four-core genotype mice underwent a sham or gonadectomy (GDX) operation, and after 8 weeks, iliac arteries were collected to assess vascular function. XY(-)Sry male mice responded more strongly to angiotensin than XX female mice, and the AT2R antagonist PD123319 revealed that this was because of a dilator AT2R-mediated effect occurring exclusively in XX female mice. The latter could not be demonstrated in XXSry male and XY(-) female mice nor in XX female mice after GDX, suggesting that it depends on both sex hormones and chromosomes. Indeed, treating C57bl/6 GDX male mice with estrogen could not restore angiotensin-mediated, AT2R-dependent relaxation. To block acetylcholine-induced relaxation of iliac arteries obtained from four-core genotype XX mice, both endothelial NO synthase and endothelium-derived hyperpolarizing factor inhibition were required, whereas in four-core genotype XY animals, endothelial NO synthase inhibition alone was sufficient. These findings were independent of gonadal sex and unaltered after GDX. In conclusion, AT2R-induced relaxation requires both estrogen and the XX chromosome sex complement, whereas only the latter is required for endothelium-derived hyperpolarizing factors. PMID:26056343

  7. Role of Muscarinic Acetylcholine Receptors in Serial Feature-Positive Discrimination Task during Eyeblink Conditioning in Mice.

    PubMed

    Rahman, Md Ashrafur; Tanaka, Norifumi; Usui, Koji; Kawahara, Shigenori

    2016-01-01

    We investigated the role of muscarinic acetylcholine receptors (mAChRs) in eyeblink serial feature-positive discrimination learning in mice using the mAChR antagonist. A 2-s light cue was delivered 5 or 6 s before the presentation of a 350-ms tone paired with a 100-ms periorbital electrical shock (cued trial) but not before the tone-alone presentation (non-cued trial). Mice received 30 cued and 30 non-cued trials each day in a random order. We found that saline-injected control mice were successfully discriminating between cued and non-cued trials within a few days of conditioning. The mice responded more frequently to the tone in cued trials than in non-cued trials. Analysis of conditioned response (CR) dynamics revealed that the CR onset latency was shorter in cued trials than in non-cued trials, despite the CR peak amplitude not differing significantly between the two conditions. In contrast, scopolamine-injected mice developed an equal number of CRs with similar temporal patterns irrespective of the presence of the cue during the 7 days of conditioning, indicating in a failure to acquire conditional discrimination. In addition, the scopolamine administration to the control mice after they had successfully acquired discrimination did not impair the conditional discrimination and expression of pre-acquired CR. These results suggest that mAChRs may play a pivotal role in memory formation in the conditional brain state associated with the feature cue; however they are unlikely to be involved in the development of discrimination after conditional memory had formed in the serial feature-positive discrimination task during eyeblink conditioning. PMID:26808980

  8. Role of Muscarinic Acetylcholine Receptors in Serial Feature-Positive Discrimination Task during Eyeblink Conditioning in Mice

    PubMed Central

    Rahman, Md. Ashrafur; Tanaka, Norifumi; Usui, Koji; Kawahara, Shigenori

    2016-01-01

    We investigated the role of muscarinic acetylcholine receptors (mAChRs) in eyeblink serial feature-positive discrimination learning in mice using the mAChR antagonist. A 2-s light cue was delivered 5 or 6 s before the presentation of a 350-ms tone paired with a 100-ms periorbital electrical shock (cued trial) but not before the tone-alone presentation (non-cued trial). Mice received 30 cued and 30 non-cued trials each day in a random order. We found that saline-injected control mice were successfully discriminating between cued and non-cued trials within a few days of conditioning. The mice responded more frequently to the tone in cued trials than in non-cued trials. Analysis of conditioned response (CR) dynamics revealed that the CR onset latency was shorter in cued trials than in non-cued trials, despite the CR peak amplitude not differing significantly between the two conditions. In contrast, scopolamine-injected mice developed an equal number of CRs with similar temporal patterns irrespective of the presence of the cue during the 7 days of conditioning, indicating in a failure to acquire conditional discrimination. In addition, the scopolamine administration to the control mice after they had successfully acquired discrimination did not impair the conditional discrimination and expression of pre-acquired CR. These results suggest that mAChRs may play a pivotal role in memory formation in the conditional brain state associated with the feature cue; however they are unlikely to be involved in the development of discrimination after conditional memory had formed in the serial feature-positive discrimination task during eyeblink conditioning. PMID:26808980

  9. The Dinoflagellate Toxin 20-Methyl Spirolide-G Potently Blocks Skeletal Muscle and Neuronal Nicotinic Acetylcholine Receptors

    PubMed Central

    Couesnon, Aurélie; Aráoz, Rómulo; Iorga, Bogdan I.; Benoit, Evelyne; Reynaud, Morgane; Servent, Denis; Molgó, Jordi

    2016-01-01

    The cyclic imine toxin 20-methyl spirolide G (20-meSPX-G), produced by the toxigenic dinoflagellate Alexandrium ostenfeldii/Alexandrium peruvianum, has been previously reported to contaminate shellfish in various European coastal locations, as revealed by mouse toxicity bioassay. The aim of the present study was to determine its toxicological profile and its molecular target selectivity. 20-meSPX-G blocked nerve-evoked isometric contractions in isolated mouse neuromuscular preparations, while it had no action on contractions elicited by direct electrical stimulation, and reduced reversibly nerve-evoked compound muscle action potential amplitudes in anesthetized mice. Voltage-clamp recordings in Xenopus oocytes revealed that 20-meSPX-G potently inhibited currents evoked by ACh on Torpedo muscle-type and human α7 nicotinic acetylcholine receptors (nAChR), whereas lower potency was observed in human α4β2 nAChR. Competition-binding assays showed that 20-meSPX-G fully displaced [3H]epibatidine binding to HEK-293 cells expressing the human α3β2 (Ki = 0.040 nM), whereas a 90-fold lower affinity was detected in human α4β2 nAChR. The spirolide displaced [125I]α-bungarotoxin binding to Torpedo membranes (Ki = 0.028 nM) and in HEK-293 cells expressing chick chimeric α7-5HT3 nAChR (Ki = 0.11 nM). In conclusion, this is the first study to demonstrate that 20-meSPX-G is a potent antagonist of nAChRs, and its subtype selectivity is discussed on the basis of molecular docking models. PMID:27563924

  10. Activation of Muscarinic Acetylcholine Receptor Subtype 4 Is Essential for Cholinergic Stimulation of Gastric Acid Secretion: Relation to D Cell/Somatostatin

    PubMed Central

    Takeuchi, Koji; Endoh, Takuya; Hayashi, Shusaku; Aihara, Takeshi

    2016-01-01

    Background/Aim: Muscarinic acetylcholine receptors exist in five subtypes (M1∼M5), and they are widely expressed in various tissues to mediate diverse autonomic functions, including gastric secretion. In the present study, we demonstrated, using M1∼M5 KO mice, the importance of M4 receptors in carbachol (CCh) stimulation of acid secretion and investigated how the secretion is modulated by the activation of M4 receptors. Methods: C57BL/6J mice of wild-type (WT) and M1–M5 KO were used. Under urethane anesthesia, acid secretion was measured in the stomach equipped with an acute fistula. CCh (30 μg/kg) was given subcutaneously (s.c.) to stimulate acid secretion. Atropine or octreotide (a somatostatin analog) was given s.c. 20 min before the administration of CCh. CYN154806 (a somatostatin SST2 receptor antagonist) was given i.p. 20 min before the administration of octreotide or CCh. Results: CCh caused an increase of acid secretion in WT mice, and the effect was totally inhibited by prior administration of atropine. The effect of CCh was similarly observed in the animals lacking M1, M2 or M5 receptors but significantly decreased in M3 or M4 KO mice. CYN154806, the SST2 receptor antagonist, dose-dependently and significantly reversed the decreased acid response to CCh in M4 but not M3 KO mice. Octreotide, the somatostatin analog, inhibited the secretion of acid under CCh-stimulated conditions in WT mice. The immunohistochemical study showed the localization of M4 receptors on D cells in the stomach. Serum somatostatin levels in M4 KO mice were higher than WT mice under basal conditions, while those in WT mice were significantly decreased in response to CCh. Conclusions: These results suggest that under cholinergic stimulation the acid secretion is directly mediated by M3 receptors and indirectly modified by M4 receptors. It is assumed that the activation of M4 receptors inhibits the release of somatostatin from D cells and minimizes the acid inhibitory effect of

  11. Activation of Muscarinic Acetylcholine Receptor Subtype 4 Is Essential for Cholinergic Stimulation of Gastric Acid Secretion: Relation to D Cell/Somatostatin

    PubMed Central

    Takeuchi, Koji; Endoh, Takuya; Hayashi, Shusaku; Aihara, Takeshi

    2016-01-01

    Background/Aim: Muscarinic acetylcholine receptors exist in five subtypes (M1∼M5), and they are widely expressed in various tissues to mediate diverse autonomic functions, including gastric secretion. In the present study, we demonstrated, using M1∼M5 KO mice, the importance of M4 receptors in carbachol (CCh) stimulation of acid secretion and investigated how the secretion is modulated by the activation of M4 receptors. Methods: C57BL/6J mice of wild-type (WT) and M1–M5 KO were used. Under urethane anesthesia, acid secretion was measured in the stomach equipped with an acute fistula. CCh (30 μg/kg) was given subcutaneously (s.c.) to stimulate acid secretion. Atropine or octreotide (a somatostatin analog) was given s.c. 20 min before the administration of CCh. CYN154806 (a somatostatin SST2 receptor antagonist) was given i.p. 20 min before the administration of octreotide or CCh. Results: CCh caused an increase of acid secretion in WT mice, and the effect was totally inhibited by prior administration of atropine. The effect of CCh was similarly observed in the animals lacking M1, M2 or M5 receptors but significantly decreased in M3 or M4 KO mice. CYN154806, the SST2 receptor antagonist, dose-dependently and significantly reversed the decreased acid response to CCh in M4 but not M3 KO mice. Octreotide, the somatostatin analog, inhibited the secretion of acid under CCh-stimulated conditions in WT mice. The immunohistochemical study showed the localization of M4 receptors on D cells in the stomach. Serum somatostatin levels in M4 KO mice were higher than WT mice under basal conditions, while those in WT mice were significantly decreased in response to CCh. Conclusions: These results suggest that under cholinergic stimulation the acid secretion is directly mediated by M3 receptors and indirectly modified by M4 receptors. It is assumed that the activation of M4 receptors inhibits the release of somatostatin from D cells and minimizes the acid inhibitory effect of

  12. Curiouser and Curiouser: The Macrocyclic Lactone, Abamectin, Is also a Potent Inhibitor of Pyrantel/Tribendimidine Nicotinic Acetylcholine Receptors of Gastro-Intestinal Worms.

    PubMed

    Abongwa, Melanie; Buxton, Samuel K; Robertson, Alan P; Martin, Richard J

    2016-01-01

    Nematode parasites may be controlled with drugs, but their regular application has given rise to concerns about the development of resistance. Drug combinations may be more effective than single drugs and delay the onset of resistance. A combination of the nicotinic antagonist, derquantel, and the macrocyclic lactone, abamectin, has been found to have synergistic anthelmintic effects against gastro-intestinal nematode parasites. We have observed in previous contraction and electrophysiological experiments that derquantel is a potent selective antagonist of nematode parasite muscle nicotinic receptors; and that abamectin is an inhibitor of the same nicotinic receptors. To explore these inhibitory effects further, we expressed muscle nicotinic receptors of the nodular worm, Oesophagostomum dentatum (Ode-UNC-29:Ode-UNC-63:Ode-UNC-38), in Xenopus oocytes under voltage-clamp and tested effects of abamectin on pyrantel and acetylcholine responses. The receptors were antagonized by 0.03 μM abamectin in a non-competitive manner (reduced Rmax, no change in EC50). This antagonism increased when abamectin was increased to 0.1 μM. However, when we increased the concentration of abamectin further to 0.3 μM, 1 μM or 10 μM, we found that the antagonism decreased and was less than with 0.1 μM abamectin. The bi-phasic effects of abamectin suggest that abamectin acts at two allosteric sites: one high affinity negative allosteric (NAM) site causing antagonism, and another lower affinity positive allosteric (PAM) site causing a reduction in antagonism. We also tested the effects of 0.1 μM derquantel alone and in combination with 0.3 μM abamectin. We found that derquantel on these receptors, like abamectin, acted as a non-competitive antagonist, and that the combination of derquantel and abamectin produced greater inhibition. These observations confirm the antagonistic effects of abamectin on nematode nicotinic receptors in addition to GluCl effects, and illustrate more complex

  13. Curiouser and Curiouser: The Macrocyclic Lactone, Abamectin, Is also a Potent Inhibitor of Pyrantel/Tribendimidine Nicotinic Acetylcholine Receptors of Gastro-Intestinal Worms

    PubMed Central

    Abongwa, Melanie; Buxton, Samuel K.; Robertson, Alan P.; Martin, Richard J.

    2016-01-01

    Nematode parasites may be controlled with drugs, but their regular application has given rise to concerns about the development of resistance. Drug combinations may be more effective than single drugs and delay the onset of resistance. A combination of the nicotinic antagonist, derquantel, and the macrocyclic lactone, abamectin, has been found to have synergistic anthelmintic effects against gastro-intestinal nematode parasites. We have observed in previous contraction and electrophysiological experiments that derquantel is a potent selective antagonist of nematode parasite muscle nicotinic receptors; and that abamectin is an inhibitor of the same nicotinic receptors. To explore these inhibitory effects further, we expressed muscle nicotinic receptors of the nodular worm, Oesophagostomum dentatum (Ode-UNC-29:Ode-UNC-63:Ode-UNC-38), in Xenopus oocytes under voltage-clamp and tested effects of abamectin on pyrantel and acetylcholine responses. The receptors were antagonized by 0.03 μM abamectin in a non-competitive manner (reduced Rmax, no change in EC50). This antagonism increased when abamectin was increased to 0.1 μM. However, when we increased the concentration of abamectin further to 0.3 μM, 1 μM or 10 μM, we found that the antagonism decreased and was less than with 0.1 μM abamectin. The bi-phasic effects of abamectin suggest that abamectin acts at two allosteric sites: one high affinity negative allosteric (NAM) site causing antagonism, and another lower affinity positive allosteric (PAM) site causing a reduction in antagonism. We also tested the effects of 0.1 μM derquantel alone and in combination with 0.3 μM abamectin. We found that derquantel on these receptors, like abamectin, acted as a non-competitive antagonist, and that the combination of derquantel and abamectin produced greater inhibition. These observations confirm the antagonistic effects of abamectin on nematode nicotinic receptors in addition to GluCl effects, and illustrate more complex

  14. Curiouser and Curiouser: The Macrocyclic Lactone, Abamectin, Is also a Potent Inhibitor of Pyrantel/Tribendimidine Nicotinic Acetylcholine Receptors of Gastro-Intestinal Worms.

    PubMed

    Abongwa, Melanie; Buxton, Samuel K; Robertson, Alan P; Martin, Richard J

    2016-01-01

    Nematode parasites may be controlled with drugs, but their regular application has given rise to concerns about the development of resistance. Drug combinations may be more effective than single drugs and delay the onset of resistance. A combination of the nicotinic antagonist, derquantel, and the macrocyclic lactone, abamectin, has been found to have synergistic anthelmintic effects against gastro-intestinal nematode parasites. We have observed in previous contraction and electrophysiological experiments that derquantel is a potent selective antagonist of nematode parasite muscle nicotinic receptors; and that abamectin is an inhibitor of the same nicotinic receptors. To explore these inhibitory effects further, we expressed muscle nicotinic receptors of the nodular worm, Oesophagostomum dentatum (Ode-UNC-29:Ode-UNC-63:Ode-UNC-38), in Xenopus oocytes under voltage-clamp and tested effects of abamectin on pyrantel and acetylcholine responses. The receptors were antagonized by 0.03 μM abamectin in a non-competitive manner (reduced Rmax, no change in EC50). This antagonism increased when abamectin was increased to 0.1 μM. However, when we increased the concentration of abamectin further to 0.3 μM, 1 μM or 10 μM, we found that the antagonism decreased and was less than with 0.1 μM abamectin. The bi-phasic effects of abamectin suggest that abamectin acts at two allosteric sites: one high affinity negative allosteric (NAM) site causing antagonism, and another lower affinity positive allosteric (PAM) site causing a reduction in antagonism. We also tested the effects of 0.1 μM derquantel alone and in combination with 0.3 μM abamectin. We found that derquantel on these receptors, like abamectin, acted as a non-competitive antagonist, and that the combination of derquantel and abamectin produced greater inhibition. These observations confirm the antagonistic effects of abamectin on nematode nicotinic receptors in addition to GluCl effects, and illustrate more complex

  15. Pharmacological and ionic characterizations of the muscarinic receptors modulating (/sup 3/H)acetylcholine release from rat cortical synaptosomes

    SciTech Connect

    Meyer, E.M.; Otero, D.H.

    1985-05-01

    The muscarinic receptors that modulate acetylcholine release from rat cortical synaptosomes were characterized with respect to sensitivity to drugs that act selectively at M1 or M2 receptor subtypes, as well as to changes in ionic strength and membrane potential. The modulatory receptors appear to be of the M2 type, since they are activated by carbachol, acetylcholine, methacholine, oxotremorine, and bethanechol, but not by pilocarpine, and are blocked by atropine, scopolamine, and gallamine (at high concentrations), but not by pirenzepine or dicyclomine. The ED50S for carbachol, acetylcholine, and oxotremorine are less than 10 microM, suggesting that the high affinity state of the receptor is functional. High ionic strength induced by raising the NaCl concentration has no effect on agonist (oxotremorine) potency, but increases the efficacy of this compound, which disagrees with receptor-binding studies. On the other hand, depolarization with either KCl or with veratridine (20 microM) reduces agonist potencies by approximately an order of magnitude, suggesting a potential mechanism for receptor regulation.

  16. Phenylthiophenecarboxamide antagonists of the olfactory receptor co-receptor subunit from a mosquito.

    PubMed

    Chen, Sisi; Luetje, Charles W

    2013-01-01

    Insects detect environmental chemicals using chemosensory receptors, such as the ORs, a family of odorant-gated ion channels. Insect ORs are multimeric complexes of unknown stoichiometry, formed by a common subunit (the odorant receptor co-receptor subunit, Orco) and one of many variable subunits that confer odorant specificity. The recent discovery of Orco directed ligands, including both agonists and antagonists, suggests Orco as a promising target for chemical control of insects. In addition to competitively inhibiting OR activation by Orco agonists, several Orco antagonists have been shown to act through a non-competitive mechanism to inhibit OR activation by odorants. We previously identified a series of Orco antagonists, including N-(4-ethylphenyl)-2-thiophenecarboxamide (OX1a, previously referred to as OLC20). Here, we explore the chemical space around the OX1a structure to identify more potent Orco antagonists. Cqui\\Orco+Cqui\\Or21, an OR from Culex quinquefasciatus (the Southern House Mosquito) that responds to 3-methylindole (skatole) and is thought to mediate oviposition behavior, was expressed in Xenopus oocytes and receptor function assayed by two-electrode voltage clamp electrophysiology. 22 structural analogs of OX1a were screened for antagonism of OR activation by an Orco agonist. By varying the moieties decorating the phenyl and thiophene rings, and altering the distance between the rings, we were able to identify antagonists with improved potency. Detailed examination of three of these compounds (N-mesityl-2-thiophenecarboxamide, N-(4-methylbenzyl)-2-thiophenecarboxamide and N-(2-ethylphenyl)-3-(2-thienyl)-2-propenamide) demonstrated competitive inhibition of receptor activation by an Orco agonist and non-competitive inhibition of receptor activation by an odorant. The ability to inhibit OR activation by odorants may be a general property of this class of Orco antagonist, suggesting that odorant mediated behaviors can be manipulated through Orco

  17. Phenylthiophenecarboxamide Antagonists of the Olfactory Receptor Co-Receptor Subunit from a Mosquito

    PubMed Central

    Chen, Sisi; Luetje, Charles W.

    2013-01-01

    Insects detect environmental chemicals using chemosensory receptors, such as the ORs, a family of odorant-gated ion channels. Insect ORs are multimeric complexes of unknown stoichiometry, formed by a common subunit (the odorant receptor co-receptor subunit, Orco) and one of many variable subunits that confer odorant specificity. The recent discovery of Orco directed ligands, including both agonists and antagonists, suggests Orco as a promising target for chemical control of insects. In addition to competitively inhibiting OR activation by Orco agonists, several Orco antagonists have been shown to act through a non-competitive mechanism to inhibit OR activation by odorants. We previously identified a series of Orco antagonists, including N-(4-ethylphenyl)-2-thiophenecarboxamide (OX1a, previously referred to as OLC20). Here, we explore the chemical space around the OX1a structure to identify more potent Orco antagonists. Cqui\\Orco+Cqui\\Or21, an OR from Culex quinquefasciatus (the Southern House Mosquito) that responds to 3-methylindole (skatole) and is thought to mediate oviposition behavior, was expressed in Xenopus oocytes and receptor function assayed by two-electrode voltage clamp electrophysiology. 22 structural analogs of OX1a were screened for antagonism of OR activation by an Orco agonist. By varying the moieties decorating the phenyl and thiophene rings, and altering the distance between the rings, we were able to identify antagonists with improved potency. Detailed examination of three of these compounds (N-mesityl-2-thiophenecarboxamide, N-(4-methylbenzyl)-2-thiophenecarboxamide and N-(2-ethylphenyl)-3-(2-thienyl)-2-propenamide) demonstrated competitive inhibition of receptor activation by an Orco agonist and non-competitive inhibition of receptor activation by an odorant. The ability to inhibit OR activation by odorants may be a general property of this class of Orco antagonist, suggesting that odorant mediated behaviors can be manipulated through Orco

  18. Bovine pancreatic polypeptide as an antagonist of muscarinic cholinergic receptors

    SciTech Connect

    Pan, G.Z.; Lu, L.; Qian, J.; Xue, B.G.

    1987-03-01

    In dispersed acini from rat pancreas, it was found that bovine pancreatic polypeptide (BPP) and its C-fragment hexapeptide amide (PP-6), at concentrations of 0.1 and 30 ..mu..M, respectively, could significantly inhibit amylase secretion stimulated by carbachol, and this inhibition by BPP was dose dependent. /sup 45/Ca outflux induced by carbachol was also inhibited by BPP or PP-6, but they had no effect on cholecystokinin octapeptide- (CCK-8) or A23187-stimulated /sup 45/Ca outflux. BPP was also capable of displacing the specific binding of (/sup 3/H)-quinuclidinyl benzilate to its receptors, and it possessed a higher affinity (K/sub i/35nM) than carbachol (K/sub i/ 1.8 ..mu..M) in binding with M-receptors. It is concluded from this study that BPP acts as an antagonist of muscarinic cholinergic receptors in rat pancreatic acini. In addition, BPP inhibited the potentiation of amylase secretion caused by the combination of carbachol plus secretin or vasoactive intestinal peptide. This may be a possible explanation of the inhibitory effect of BPP on secretin-induced pancreatic enzyme secretion shown in vivo, since pancreatic enzyme secretion stimulated by secretin under experimental conditions may be the result of potentiation of enzyme release produced by the peptide in combination with a cholinergic stimulant.

  19. Orexin receptor antagonists as therapeutic agents for insomnia

    PubMed Central

    Equihua, Ana C.; De La Herrán-Arita, Alberto K.; Drucker-Colin, Rene

    2013-01-01

    Insomnia is a common clinical condition characterized by difficulty initiating or maintaining sleep, or non-restorative sleep with impairment of daytime functioning. Currently, treatment for insomnia involves a combination of cognitive behavioral therapy (CBTi) and pharmacological therapy. Among pharmacological interventions, the most evidence exists for benzodiazepine (BZD) receptor agonist drugs (GABAA receptor), although concerns persist regarding their safety and their limited efficacy. The use of these hypnotic medications must be carefully monitored for adverse effects. Orexin (hypocretin) neuropeptides have been shown to regulate transitions between wakefulness and sleep by promoting cholinergic/monoaminergic neural pathways. This has led to the development of a new class of pharmacological agents that antagonize the physiological effects of orexin. The development of these agents may lead to novel therapies for insomnia without the side effect profile of hypnotics (e.g., impaired cognition, disturbed arousal, and motor balance difficulties). However, antagonizing a system that regulates the sleep-wake cycle may create an entirely different side effect profile. In this review, we discuss the role of orexin and its receptors on the sleep-wake cycle and that of orexin antagonists in the treatment of insomnia. PMID:24416019

  20. NMDA receptor antagonist ketamine impairs feature integration in visual perception.

    PubMed

    Meuwese, Julia D I; van Loon, Anouk M; Scholte, H Steven; Lirk, Philipp B; Vulink, Nienke C C; Hollmann, Markus W; Lamme, Victor A F

    2013-01-01

    Recurrent interactions between neurons in the visual cortex are crucial for the integration of image elements into coherent objects, such as in figure-ground segregation of textured images. Blocking N-methyl-D-aspartate (NMDA) receptors in monkeys can abolish neural signals related to figure-ground segregation and feature integration. However, it is unknown whether this also affects perceptual integration itself. Therefore, we tested whether ketamine, a non-competitive NMDA receptor antagonist, reduces feature integration in humans. We administered a subanesthetic dose of ketamine to healthy subjects who performed a texture discrimination task in a placebo-controlled double blind within-subject design. We found that ketamine significantly impaired performance on the texture discrimination task compared to the placebo condition, while performance on a control fixation task was much less impaired. This effect is not merely due to task difficulty or a difference in sedation levels. We are the first to show a behavioral effect on feature integration by manipulating the NMDA receptor in humans. PMID:24223927

  1. NMDA Receptor Antagonist Ketamine Impairs Feature Integration in Visual Perception

    PubMed Central

    Meuwese, Julia D. I.; van Loon, Anouk M.; Scholte, H. Steven; Lirk, Philipp B.; Vulink, Nienke C. C.; Hollmann, Markus W.; Lamme, Victor A. F.

    2013-01-01

    Recurrent interactions between neurons in the visual cortex are crucial for the integration of image elements into coherent objects, such as in figure-ground segregation of textured images. Blocking N-methyl-D-aspartate (NMDA) receptors in monkeys can abolish neural signals related to figure-ground segregation and feature integration. However, it is unknown whether this also affects perceptual integration itself. Therefore, we tested whether ketamine, a non-competitive NMDA receptor antagonist, reduces feature integration in humans. We administered a subanesthetic dose of ketamine to healthy subjects who performed a texture discrimination task in a placebo-controlled double blind within-subject design. We found that ketamine significantly impaired performance on the texture discrimination task compared to the placebo condition, while performance on a control fixation task was much less impaired. This effect is not merely due to task difficulty or a difference in sedation levels. We are the first to show a behavioral effect on feature integration by manipulating the NMDA receptor in humans. PMID:24223927

  2. Preliminary investigations into triazole derived androgen receptor antagonists.

    PubMed

    Altimari, Jarrad M; Niranjan, Birunthi; Risbridger, Gail P; Schweiker, Stephanie S; Lohning, Anna E; Henderson, Luke C

    2014-05-01

    A range of 1,4-substituted-1,2,3-N-phenyltriazoles were synthesized and evaluated as non-steroidal androgen receptor (AR) antagonists. The motivation for this study was to replace the N-phenyl amide portion of small molecule antiandrogens with a 1,2,3-triazole and determine effects, if any, on biological activity. The synthetic methodology presented herein is robust, high yielding and extremely rapid. Using this methodology a series of 17 N-aryl triazoles were synthesized from commercially available starting materials in less than 3h. After preliminary biological screening at 20 and 40 μM, the most promising three compounds were found to display IC50 values of 40-50 μM against androgen dependent (LNCaP) cells and serve as a starting point for further structure-activity investigations. All compounds in this work were the focus of an in silico study to dock the compounds into the human androgen receptor ligand binding domain (hARLBD) and compare their predicted binding affinity with known antiandrogens. A comparison of receptor-ligand interactions for the wild type and T877A mutant AR revealed two novel polar interactions. One with Q738 of the wild type site and the second with the mutated A877 residue.

  3. Stoichiometry for α-bungarotoxin block of α7 acetylcholine receptors

    PubMed Central

    daCosta, Corrie J. B.; Free, Chris R.; Sine, Steven M.

    2015-01-01

    α-Bungarotoxin (α-Btx) binds to the five agonist binding sites on the homopentameric α7-acetylcholine receptor, yet the number of bound α-Btx molecules required to prevent agonist-induced channel opening remains unknown. To determine the stoichiometry for α-Btx blockade, we generate receptors comprised of wild-type and α-Btx-resistant subunits, tag one of the subunit types with conductance mutations to report subunit stoichiometry, and following incubation with α-Btx, monitor opening of individual receptor channels with defined subunit stoichiometry. We find that a single α-Btx-sensitive subunit confers nearly maximal suppression of channel opening, despite four binding sites remaining unoccupied by α-Btx and accessible to the agonist. Given structural evidence that α-Btx locks the agonist binding site in an inactive conformation, we conclude that the dominant mechanism of antagonism is non-competitive, originating from conformational arrest of the binding sites, and that the five α7 subunits are interdependent and maintain conformational symmetry in the open channel state. PMID:26282895

  4. Acetylcholine receptors and sodium channels in denervated and botulinum-toxin-treated adult rat muscle.

    PubMed Central

    Bambrick, L; Gordon, T

    1987-01-01

    1. The number of acetylcholine (ACh) receptors and Na channels was measured in adult rat hind-limb muscles after denervation or injection of botulinum toxin type A (BoTX), using specific binding of radiolabelled neurotoxins. 2. Denervation by sciatic nerve section increased the number of [125I]iodo-alpha-bungarotoxin ([125I]BTX) binding sites from low, unmeasurable levels to 39 +/- 3 fmol of toxin bound per milligram muscle protein at 21 days. 3. Subcutaneous injection of BoTX produced complete neuromuscular blockade for 11-14 days over which time the number of [125I]BTX binding sites increased with the same time course and to the same extent as following denervation. 4. Neither denervation nor BoTX treatment significantly altered the number of tritiated saxitoxin ([3H]STX) binding sites from normal values of 7.8 fmol/mg muscle weight or 57 +/- 3 fmol/mg homogenate protein. This may, however, correspond to a lower density of [3H]STX sites in the muscle membrane. 5. It was concluded that neuromuscular blockade with BoTX is equivalent to denervation in its effects on synthesis of ACh receptors. Numbers of Na channels are more stable than ACh receptors but may also be modulated by neuromuscular activity. PMID:2442368

  5. Identification, characterization, and regulation of a nicotinic acetylcholine receptor on bovine adrenal chromaffin cells in culture

    SciTech Connect

    Higgins, L.S.

    1988-01-01

    Synaptic input to bovine adrenal chromaffin cells is mediated by nicotinic acetylcholine receptors (AChRs) and results in secretion of catecholamines. Three probes previously shown to recognize AChRs on neurons were used to identify the AChR on bovine adrenal chromaffin cells in culture: monoclonal antibody mAb 35, a toxin that blocks receptor function, and the agonist nicotine. Competition for {sup 3}H-nicotine binding was used to measure the affinity of cholinergic ligands, and revealed the pharmacological profile expected for a neuronal-type AChR. At steady state the rate both of receptor insertion into and loss from the plasma membrane is about 3%/hour, resulting in a half-life in the surface of about 24 hours. Exposure to the anti-AChR antibody results in a loss of AChRs from the surface of the cells through a process that has the characteristics of antigenic modulation. The number of AChRs on the surface of the chromaffin cells can also be modulated by agonists and hormones, including glucocotricoids. Catecholamines, three peptides that may be secreted by chromaffin cells, and K{sup +}-induced secretion reduce agonist-induced catecholamine release by decreasing the number of AChRs, providing a mechanism for autoregulation.

  6. Stoichiometry for α-bungarotoxin block of α7 acetylcholine receptors

    NASA Astrophysics Data System (ADS)

    Dacosta, Corrie J. B.; Free, Chris R.; Sine, Steven M.

    2015-08-01

    α-Bungarotoxin (α-Btx) binds to the five agonist binding sites on the homopentameric α7-acetylcholine receptor, yet the number of bound α-Btx molecules required to prevent agonist-induced channel opening remains unknown. To determine the stoichiometry for α-Btx blockade, we generate receptors comprised of wild-type and α-Btx-resistant subunits, tag one of the subunit types with conductance mutations to report subunit stoichiometry, and following incubation with α-Btx, monitor opening of individual receptor channels with defined subunit stoichiometry. We find that a single α-Btx-sensitive subunit confers nearly maximal suppression of channel opening, despite four binding sites remaining unoccupied by α-Btx and accessible to the agonist. Given structural evidence that α-Btx locks the agonist binding site in an inactive conformation, we conclude that the dominant mechanism of antagonism is non-competitive, originating from conformational arrest of the binding sites, and that the five α7 subunits are interdependent and maintain conformational symmetry in the open channel state.

  7. Binding affinities of anti-acetylcholine receptor autoantibodies in myasthenia gravis

    SciTech Connect

    Bray, J.J.; Drachman, D.B.

    1982-01-01

    Antibodies directed against acetylcholine (ACh) receptors are present in the sera of nearly 90% of patients with myasthenia gravis (MG), and are involved in the pathogenesis of this autoimmune disease. However, the antibody titers measured by the standard radioimmunoassay correspond poorly with the clinical severity of the disease. To determine whether this disparity could be accounted for by differences in the binding affinities of anti-ACh receptor antibodies in different patients, we have measured the binding affinities of these autoantibodies in 15 sera from MG patients. The affinity constants (K/sub o/), as determined by Scatchard analysis, were all in the range of 10/sup 10/ M/sup -1/, comparable to the highest values reported in immunized animals. The affinity constants were truly representative of the population of autoantibodies detected by the radioimmunoassay, as shown by the remarkable linearity of the Scatchard plots (r/sup 2/>0.90) and the close correlation between the antibody titers determined by extrapolation of the Scatchard plots and by saturation analysis (r = 0.99; p < 0.001). There was only a 6-fold variation in affinity constants measured in this series of patients despite widely differing antibody titers and severity of the disease. Factors other than the titer and affinity of anti-ACh receptor antibodies may correlate better with the clinical manifestations of MG.

  8. Stoichiometry for α-bungarotoxin block of α7 acetylcholine receptors.

    PubMed

    daCosta, Corrie J B; Free, Chris R; Sine, Steven M

    2015-08-18

    α-Bungarotoxin (α-Btx) binds to the five agonist binding sites on the homopentameric α7-acetylcholine receptor, yet the number of bound α-Btx molecules required to prevent agonist-induced channel opening remains unknown. To determine the stoichiometry for α-Btx blockade, we generate receptors comprised of wild-type and α-Btx-resistant subunits, tag one of the subunit types with conductance mutations to report subunit stoichiometry, and following incubation with α-Btx, monitor opening of individual receptor channels with defined subunit stoichiometry. We find that a single α-Btx-sensitive subunit confers nearly maximal suppression of channel opening, despite four binding sites remaining unoccupied by α-Btx and accessible to the agonist. Given structural evidence that α-Btx locks the agonist binding site in an inactive conformation, we conclude that the dominant mechanism of antagonism is non-competitive, originating from conformational arrest of the binding sites, and that the five α7 subunits are interdependent and maintain conformational symmetry in the open channel state.

  9. Leukotriene receptor antagonists for the treatment of asthma.

    PubMed

    Kemp, J P

    2000-04-01

    Leukotriene receptor antagonists (LTRAs) are novel medications that provide symptom control in patients with persistent asthma. Current guidelines recommend the use of LTRAs as a treatment option for patients with mild-persistent asthma of at least 12 years of age. As illustrated by the results of controlled, multicenter clinical trials with zafirlukast and montelukast, as well as studies with pranlukast in Japan, LTRAs reduce daytime and night time asthma symptoms, improve pulmonary function, lower beta-adrenergic agonist use, and reduce asthma morbidity in patients with mild-intermittent to moderate-persistent asthma. Moreover, several recent clinical studies demonstrate that these agents are effective in preventing exercise-induced bronchoconstriction in children, and in improving disease control in symptomatic patients taking inhaled steroids. Based on clinical results to date, LTRAs appear to be safe and well tolerated in patients with mildto- moderate asthma. These agents represent an important addition to the drug armamentarium against asthma.

  10. Mineralocorticoid receptor antagonists-pharmacodynamics and pharmacokinetic differences.

    PubMed

    Yang, Jun; Young, Morag J

    2016-04-01

    Mineralocorticoid receptor antagonists (MRAs) are best known as potassium-sparing diuretics due to their blockade of aldosterone action in renal epithelial tissues. They are also beneficial for the treatment of heart failure, primarily due to effects in non-epithelial tissues. Currently there are only two steroidal MRAs that have been approved for use; spironolactone (and its active metabolite canrenone) and eplerenone. However, the search is on for novel generations of MRAs with increased potency and tissue selectivity. A number of novel non-steroidal compounds are in preclinical and early development, with one agent moving to phase III trials. The development of these agents and the mechanisms for their pharmacologic superiority compared to earlier generations of MRAs will be discussed in this review. PMID:26939027

  11. Implementation of a fluorescence-based screening assay identifies histamine H3 receptor antagonists clobenpropit and iodophenpropit as subunit-selective N-methyl-D-aspartate receptor antagonists.

    PubMed

    Hansen, Kasper B; Mullasseril, Praseeda; Dawit, Sara; Kurtkaya, Natalie L; Yuan, Hongjie; Vance, Katie M; Orr, Anna G; Kvist, Trine; Ogden, Kevin K; Le, Phuong; Vellano, Kimberly M; Lewis, Iestyn; Kurtkaya, Serdar; Du, Yuhong; Qui, Min; Murphy, T J; Snyder, James P; Bräuner-Osborne, Hans; Traynelis, Stephen F

    2010-06-01

    N-Methyl-D-aspartate (NMDA) receptors are ligand-gated ion channels that mediate a slow, Ca(2+)-permeable component of excitatory synaptic transmission in the central nervous system and play a pivotal role in synaptic plasticity, neuronal development, and several neurological diseases. We describe a fluorescence-based assay that measures NMDA receptor-mediated changes in intracellular calcium in a BHK-21 cell line stably expressing NMDA receptor NR2D with NR1 under the control of a tetracycline-inducible promoter (Tet-On). The assay selectively identifies allosteric modulators by using supramaximal concentrations of glutamate and glycine to minimize detection of competitive antagonists. The assay is validated by successfully identifying known noncompetitive, but not competitive NMDA receptor antagonists among 1800 screened compounds from two small focused libraries, including the commercially available library of pharmacologically active compounds. Hits from the primary screen are validated through a secondary screen that used two-electrode voltage-clamp recordings on recombinant NMDA receptors expressed in Xenopus laevis oocytes. This strategy identified several novel modulators of NMDA receptor function, including the histamine H3 receptor antagonists clobenpropit and iodophenpropit, as well as the vanilloid receptor transient receptor potential cation channel, subfamily V, member 1 (TRPV1) antagonist capsazepine. These compounds are noncompetitive antagonists and the histamine H3 receptor ligand showed submicromolar potency at NR1/NR2B NMDA receptors, which raises the possibility that compounds can be developed that act with high potency on both glutamate and histamine receptor systems simultaneously. Furthermore, it is possible that some actions attributed to histamine H3 receptor inhibition in vivo may also involve NMDA receptor antagonism.

  12. Implementation of a Fluorescence-Based Screening Assay Identifies Histamine H3 Receptor Antagonists Clobenpropit and Iodophenpropit as Subunit-Selective N-Methyl-d-Aspartate Receptor Antagonists

    PubMed Central

    Hansen, Kasper B.; Mullasseril, Praseeda; Dawit, Sara; Kurtkaya, Natalie L.; Yuan, Hongjie; Vance, Katie M.; Orr, Anna G.; Kvist, Trine; Ogden, Kevin K.; Le, Phuong; Vellano, Kimberly M.; Lewis, Iestyn; Kurtkaya, Serdar; Du, Yuhong; Qui, Min; Murphy, T. J.; Snyder, James P.; Bräuner-Osborne, Hans

    2010-01-01

    N-Methyl-d-aspartate (NMDA) receptors are ligand-gated ion channels that mediate a slow, Ca2+-permeable component of excitatory synaptic transmission in the central nervous system and play a pivotal role in synaptic plasticity, neuronal development, and several neurological diseases. We describe a fluorescence-based assay that measures NMDA receptor-mediated changes in intracellular calcium in a BHK-21 cell line stably expressing NMDA receptor NR2D with NR1 under the control of a tetracycline-inducible promoter (Tet-On). The assay selectively identifies allosteric modulators by using supramaximal concentrations of glutamate and glycine to minimize detection of competitive antagonists. The assay is validated by successfully identifying known noncompetitive, but not competitive NMDA receptor antagonists among 1800 screened compounds from two small focused libraries, including the commercially available library of pharmacologically active compounds. Hits from the primary screen are validated through a secondary screen that used two-electrode voltage-clamp recordings on recombinant NMDA receptors expressed in Xenopus laevis oocytes. This strategy identified several novel modulators of NMDA receptor function, including the histamine H3 receptor antagonists clobenpropit and iodophenpropit, as well as the vanilloid receptor transient receptor potential cation channel, subfamily V, member 1 (TRPV1) antagonist capsazepine. These compounds are noncompetitive antagonists and the histamine H3 receptor ligand showed submicromolar potency at NR1/NR2B NMDA receptors, which raises the possibility that compounds can be developed that act with high potency on both glutamate and histamine receptor systems simultaneously. Furthermore, it is possible that some actions attributed to histamine H3 receptor inhibition in vivo may also involve NMDA receptor antagonism. PMID:20197375

  13. Selective activation of α7 nicotinic acetylcholine receptor by PHA-543613 improves Aβ25-35-mediated cognitive deficits in mice.

    PubMed

    Sadigh-Eteghad, S; Talebi, M; Mahmoudi, J; Babri, S; Shanehbandi, D

    2015-07-01

    Agonists of α7 nicotinic acetylcholine receptors (nAChRs) are currently being considered as therapeutic approaches for managing cognitive deficits in Alzheimer's disease (AD). Present study was designed to evaluate the effect of α7 nAChR selective activation by PHA-543613 (PHA) on beta-amyloid (Aβ)25-35-mediated cognitive deficits in mice. For this purpose, PHA (1mg/kg, i.p.), a selective α7 nAChR agonist, and galantamine (Gal) (3mg/kg, s.c.), an acetylcholine-esterase inhibitor (AChEI) effects on α7 nAChR were tested in Aβ25-35-received (intracerebroventricular, 10 nmol) mice model of AD. Methyllycaconitine (MLA) (1mg/kg, i.p.), a α7 nAChR antagonist, was used for receptor blockage effects evaluation. Working and reference memory in animals was assessed by the Morris water maze (MWM) task. The mRNA and protein levels of α7 subunit were analyzed by real-time PCR and Western blotting, respectively. PHA and Gal, ameliorate Aβ-impaired working and reference memory. However, Gal had less effect than PHA in this regard. Pretreatment with MLA reverses both Gal and PHA effects in MWM. PHA and Gal treatment prevent Aβ-induced α7 subunit protein reduction, but Gal has lesser effect than PHA. This effect blocked by pretreatment with MLA. In neither the pretreatment nor treatment group, the mRNA levels of nAChR α7 subunit were significantly changed. Therefore, α7 nAChR activation, reduces Aβ-induced cognitive deficits and increases the α7 protein level and subsequent neuron survival. However, blockage of receptor, increases Aβ toxicity and cognitive impairment and reduces the α7 nAChR protein level and flowing neuroprotection. PMID:25881725

  14. Prostaglandins, H2-receptor antagonists and peptic ulcer disease.

    PubMed

    Bright-Asare, P; Habte, T; Yirgou, B; Benjamin, J

    1988-01-01

    Peptic ulcer develops when offensive factors overwhelm defensive processes in the gastroduodenal mucosa. Offensive factors include NSAIDs, hydrochloric acid-peptic activity, bile reflux, and some products of the lipoxygenase pathway such as leukotriene B4; whereas defensive processes are largely mediated by prostaglandins through poorly understood mechanisms uniformly termed cytoprotection. Cytoprotection, a physiological process working through the products of arachidonic acid metabolism, may result from the net effect of the protective actions of prostaglandins versus the damaging actions of leukotrienes. Some prostaglandins also have antisecretory effects. Therefore the peptic ulcer healing effects of prostaglandin analogues, all of which have significant antisecretory activity, may be more due to their antisecretory effects than primarily to their effects on mucosal defences. Certain drug-induced gastroduodenal lesions, e.g. NSAID-induced ulcers, which are often unresponsive to H2-receptor antagonists, have been healed and their recurrence prevented by the use of PGE1 and PGE2 analogues. All the prostaglandin analogues investigated to date in humans have the potential for inducing abortion, an important side effect which may limit their worldwide use. The optimal prostaglandin analogue for ulcer healing should not induce abortion and should be potently cytoprotective. The predominant damaging agent in the development of peptic ulcer disease is gastric hydrochloric acid. Thus, the worldwide established efficacy and safety of H2-receptor antagonists such as cimetidine, ranitidine, famotidine and most recently of roxatidine acetate suggest that these agents have become the standard by which other forms of anti-ulcer therapy should be judged. PMID:2905237

  15. Two Novel α7 Nicotinic Acetylcholine Receptor Ligands: In Vitro Properties and Their Efficacy in Collagen-Induced Arthritis in Mice

    PubMed Central

    van Maanen, Marjolein A.; Papke, Roger L.; Koopman, Frieda A.; Koepke, Jessica; Bevaart, Lisette; Clark, Roger; Lamppu, Diana; Elbaum, Daniel; LaRosa, Gregory J.; Tak, Paul P.; Vervoordeldonk, Margriet J.

    2015-01-01

    Introduction The cholinergic anti-inflammatory pathway can downregulate inflammation via the release of acetylcholine (ACh) by the vagus nerve. This neurotransmitter binds to the α7 subunit of nicotinic acetylcholine receptors (α7nAChR), expressed on macrophages and other immune cells. We tested the pharmacological and functional profile of two novel compounds, PMP-311 and PMP-072 and investigated their role in modulating collagen-induced arthritis (CIA) in mice. Methods Both compounds were characterized with binding, electrophysiological, and pharmacokinetic studies. For in vivo efficacy studies in the CIA model the compounds were administered daily by oral gavage from day 20 till sacrifice at day 34. Disease progression was monitored by visual clinical scoring and measurement of paw swelling. Inflammation and joint destruction were examined by histology and radiology. Results Treatment with PMP-311 was effective in preventing disease onset, reducing clinical signs of arthritis, and reducing synovial inflammation and bone destruction. PMP-072 also showed a trend in arthritis reduction at all concentrations tested. The data showed that while both compounds bind to α7nAChR with high affinity, PMP-311 acts like a classical agonist of ion channel activity, and PMP-072 can actually act as an ion channel antagonist. Moreover, PMP-072 was clearly distinct from typical competitive antagonists, since it was able to act as a silent agonist. It synergizes with the allosteric modulator PNU-120596, and subsequently activates desensitized α7nAChR. However, PMP-072 was less efficacious than PMP-311 at both channel activation and desensitization, suggesting that both conducting and non-conducting states maybe of importance in driving an anti-inflammatory response. Finally, we found that the anti-arthritic effect can be observed despite limited penetration of the central nervous system. Conclusions These data provide direct evidence that the α7nAChR in immune cells does not

  16. Tracking the molecular evolution of calcium permeability in a nicotinic acetylcholine receptor.

    PubMed

    Lipovsek, Marcela; Fierro, Angélica; Pérez, Edwin G; Boffi, Juan C; Millar, Neil S; Fuchs, Paul A; Katz, Eleonora; Elgoyhen, Ana Belén

    2014-12-01

    Nicotinic acetylcholine receptors are a family of ligand-gated nonselective cationic channels that participate in fundamental physiological processes at both the central and the peripheral nervous system. The extent of calcium entry through ligand-gated ion channels defines their distinct functions. The α9α10 nicotinic cholinergic receptor, expressed in cochlear hair cells, is a peculiar member of the family as it shows differences in the extent of calcium permeability across species. In particular, mammalian α9α10 receptors are among the ligand-gated ion channels which exhibit the highest calcium selectivity. This acquired differential property provides the unique opportunity of studying how protein function was shaped along evolutionary history, by tracking its evolutionary record and experimentally defining the amino acid changes involved. We have applied a molecular evolution approach of ancestral sequence reconstruction, together with molecular dynamics simulations and an evolutionary-based mutagenesis strategy, in order to trace the molecular events that yielded a high calcium permeable nicotinic α9α10 mammalian receptor. Only three specific amino acid substitutions in the α9 subunit were directly involved. These are located at the extracellular vestibule and at the exit of the channel pore and not at the transmembrane region 2 of the protein as previously thought. Moreover, we show that these three critical substitutions only increase calcium permeability in the context of the mammalian but not the avian receptor, stressing the relevance of overall protein structure on defining functional properties. These results highlight the importance of tracking evolutionarily acquired changes in protein sequence underlying fundamental functional properties of ligand-gated ion channels.

  17. Tracking the Molecular Evolution of Calcium Permeability in a Nicotinic Acetylcholine Receptor

    PubMed Central

    Lipovsek, Marcela; Fierro, Angélica; Pérez, Edwin G.; Boffi, Juan C.; Millar, Neil S.; Fuchs, Paul A.; Katz, Eleonora; Elgoyhen, Ana Belén

    2014-01-01

    Nicotinic acetylcholine receptors are a family of ligand-gated nonselective cationic channels that participate in fundamental physiological processes at both the central and the peripheral nervous system. The extent of calcium entry through ligand-gated ion channels defines their distinct functions. The α9α10 nicotinic cholinergic receptor, expressed in cochlear hair cells, is a peculiar member of the family as it shows differences in the extent of calcium permeability across species. In particular, mammalian α9α10 receptors are among the ligand-gated ion channels which exhibit the highest calcium selectivity. This acquired differential property provides the unique opportunity of studying how protein function was shaped along evolutionary history, by tracking its evolutionary record and experimentally defining the amino acid changes involved. We have applied a molecular evolution approach of ancestral sequence reconstruction, together with molecular dynamics simulations and an evolutionary-based mutagenesis strategy, in order to trace the molecular events that yielded a high calcium permeable nicotinic α9α10 mammalian receptor. Only three specific amino acid substitutions in the α9 subunit were directly involved. These are located at the extracellular vestibule and at the exit of the channel pore and not at the transmembrane region 2 of the protein as previously thought. Moreover, we show that these three critical substitutions only increase calcium permeability in the context of the mammalian but not the avian receptor, stressing the relevance of overall protein structure on defining functional properties. These results highlight the importance of tracking evolutionarily acquired changes in protein sequence underlying fundamental functional properties of ligand-gated ion channels. PMID:25193338

  18. Assessing the lipid requirements of the Torpedo californica nicotinic acetylcholine receptor.

    PubMed

    Hamouda, Ayman K; Sanghvi, Mitesh; Sauls, Daniel; Machu, Tina K; Blanton, Michael P

    2006-04-01

    The lipid requirements of the Torpedo californica nicotinic acetylcholine receptor (nAChR) were assessed by reconstituting purified receptors into lipid vesicles of defined composition and by using photolabeling with 3-trifluoromethyl-3-(m-[125I]iodophenyl)diazirine ([125I]TID) to determine functionality. Earlier studies demonstrated that nAChRs reconstituted into membranes containing phosphatidylcholine (PC), the anionic lipid phosphatidic acid (PA), and cholesterol (CH) are particularly effective at stabilizing the nAChR in the resting (closed) state that is capable of undergoing agonist-induced conformational transitions (i.e., functionality). The present studies demonstrate that (1) there is no obligatory requirement for PC, (2) increasing the CH content serves to increase the degree to which nAChRs are stabilized in the resting state, and this effect saturates at approximately 35 mol % (molar lipid percentage), and (3) the effect of increasing levels of PA saturates at approximately 12 mol % and in the absence of PA nAChRs are stabilized in the desensitized state (i.e., nonfunctional). Native Torpedo membranes contain approximately 35 mol % CH but less than 1 mol % PA, suggesting that other anionic lipids may substitute for PA. We report that (1) phosphatidylserine (PS) and phosphatidylinositol (PI), anionic lipids that are abundant in native Torpedo membranes, also stabilize the receptor in the resting state although with reduced efficacy (approximately 50-60%) compared to PA, and (2) for nAChRs reconstituted into PA/CH membranes at different lipid-protein molar ratios, receptor functionality decreases rapidly below approximately 65 lipids per receptor. Collectively, these results are consistent with a functional requirement of a single shell of lipids surrounding the nAChR and specific anionic lipid- and sterol (CH)-protein interactions.

  19. α6-Containing Nicotinic Acetylcholine Receptors in Midbrain Dopamine Neurons are Poised to Govern Dopamine-Mediated Behaviors and Synaptic Plasticity

    PubMed Central

    Berry, Jennifer N.; Engle, Staci E.; McIntosh, J. Michael; Drenan, Ryan M.

    2015-01-01

    Acetylcholine acts through nicotinic and muscarinic acetylcholine (ACh) receptors in ventral midbrain and striatal areas to influence dopamine (DA) transmission. This cholinergic control of DA transmission is important for processes such as attention and motivated behavior, and is manipulated by nicotine in tobacco products. Identifying and characterizing the key ACh receptors involved in cholinergic control of DA transmission could lead to small molecule therapeutics for treating disorders involving attention, addiction, Parkinson’s disease, and schizophrenia. α6-containing nicotinic acetylcholine receptors (nAChRs) are highly and specifically expressed in midbrain DA neurons, making them an attractive drug target. Here, we used genetic, pharmacological, behavioral, and biophysical approaches to study this nAChR subtype. For many experiments, we used mice expressing mutant α6 nAChRs (“α6L9S” mice) that increase the sensitivity of these receptors to agonists such as ACh and nicotine. Taking advantage of a simple behavioral phenotype exhibited by α6L9S mice, we compared the ability of full versus partial α6* nAChR agonists to activate α6* nAChRs in vivo. Using local infusions of both agonists and antagonists into brain, we demonstrate that neurons and nAChRs in the midbrain are sufficient to account for this behavioral response. To complement these behavioral studies, we studied the ability of in vivo α6* nAChR activation to support plasticity changes in midbrain DA neurons that are relevant to behavioral sensitization and addiction. By coupling local infusion of drugs and brain slice patch clamp electrophysiology, we show that activating α6* nAChRs in midbrain DA areas is sufficient to enhance glutamatergic transmission in VTA DA neurons. Together, these results from in vivo studies strongly suggest that α6* nAChRs expressed by VTA DA neurons are positioned to strongly influence both DA-mediated behaviors and the induction of synaptic plasticity by

  20. An Accessory Agonist Binding Site Promotes Activation of α4β2* Nicotinic Acetylcholine Receptors.

    PubMed

    Wang, Jingyi; Kuryatov, Alexander; Sriram, Aarati; Jin, Zhuang; Kamenecka, Theodore M; Kenny, Paul J; Lindstrom, Jon

    2015-05-29

    Neuronal nicotinic acetylcholine receptors containing α4, β2, and sometimes other subunits (α4β2* nAChRs) regulate addictive and other behavioral effects of nicotine. These nAChRs exist in several stoichiometries, typically with two high affinity acetylcholine (ACh) binding sites at the interface of α4 and β2 subunits and a fifth accessory subunit. A third low affinity ACh binding site is formed when this accessory subunit is α4 but not if it is β2. Agonists selective for the accessory ACh site, such as 3-[3-(3-pyridyl)-1,2,4-oxadiazol-5-yl]benzonitrile (NS9283), cannot alone activate a nAChR but can facilitate more efficient activation in combination with agonists at the canonical α4β2 sites. We therefore suggest categorizing agonists according to their site selectivity. NS9283 binds to the accessory ACh binding site; thus it is termed an accessory site-selective agonist. We expressed (α4β2)2 concatamers in Xenopus oocytes with free accessory subunits to obtain defined nAChR stoichiometries and α4/accessory subunit interfaces. We show that α2, α3, α4, and α6 accessory subunits can form binding sites for ACh and NS9283 at interfaces with α4 subunits, but β2 and β4 accessory subunits cannot. To permit selective blockage of the accessory site, α4 threonine 126 located on the minus side of α4 that contributes to the accessory site, but not the α4β2 sites, was mutated to cysteine. Alkylation of this cysteine with a thioreactive reagent blocked activity of ACh and NS9283 at the accessory site. Accessory agonist binding sites are promising drug targets.

  1. Acetylcholine receptors from human muscle as pharmacological targets for ALS therapy

    PubMed Central

    Palma, Eleonora; Reyes-Ruiz, Jorge Mauricio; Lopergolo, Diego; Roseti, Cristina; Bertollini, Cristina; Ruffolo, Gabriele; Cifelli, Pierangelo; Onesti, Emanuela; Limatola, Cristina; Miledi, Ricardo; Inghilleri, Maurizio

    2016-01-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease affecting motor neurons that leads to progressive paralysis of skeletal muscle. Studies of ALS have revealed defects in expression of acetylcholine receptors (AChRs) in skeletal muscle that occur even in the absence of motor neuron anomalies. The endocannabinoid palmitoylethanolamide (PEA) modified the clinical conditions in one ALS patient, improving muscle force and respiratory efficacy. By microtransplanting muscle membranes from selected ALS patients into Xenopus oocytes, we show that PEA reduces the desensitization of acetylcholine-evoked currents after repetitive neurotransmitter application (i.e., rundown). The same effect was observed using muscle samples from denervated (non-ALS) control patients. The expression of human recombinant α1β1γδ (γ-AChRs) and α1β1εδ AChRs (ε-AChRs) in Xenopus oocytes revealed that PEA selectively affected the rundown of ACh currents in ε-AChRs. A clear up-regulation of the α1 subunit in muscle from ALS patients compared with that from non-ALS patients was found by quantitative PCR, but no differential expression was found for other subunits. Clinically, ALS patients treated with PEA showed a lower decrease in their forced vital capacity (FVC) over time as compared with untreated ALS patients, suggesting that PEA can enhance pulmonary function in ALS. In the present work, data were collected from a cohort of 76 ALS patients and 17 denervated patients. Our results strengthen the evidence for the role of skeletal muscle in ALS pathogenesis and pave the way for the development of new drugs to hamper the clinical effects of the disease. PMID:26929355

  2. Dihydromorphine-peptide hybrids with delta receptor agonistic and mu receptor antagonistic actions

    SciTech Connect

    Smith, C.B.; Medzihradsky, F.; Woods, J.H.

    1986-03-05

    The actions of two morphine derivatives with short peptide side chains were evaluated upon the contraction of the isolated mouse vas deferens and upon displacement of /sup 3/H-etorphine from rat brain membranes. NIH-9833 (N-(6,14-endoetheno-7,8-dihydromorphine-7-alpha-carbonyl)-L-phenylalanyl-L-leucine ethyl ester HCl) was a potent agonist upon the vas deferens. Its EC50 for inhibition of the twitch was 1.2 +/- 0.1 nM. Both naltrexone (10/sup -7/ M) a relatively nonselective opioid antagonist, and ICI-174864 (10/sup -/' M) a highly selective delta receptor antagonist, blocked the actions of NIH-9833 which indicates that this drug is a delta receptor agonist. In contrast, NIH-9835 (N-(6,14-endoetheno-7,8-dihydromorphine-7-alpha-carbonyl)-L-glycyl-L-phenylalanyl-L-leucine ethyl ester HCl), which differs from NIH-9835 by the presence of a single amino acid residue, was devoid of opioid agonistic activity but was a potent antagonist of the inhibitory actions on the vas deferens of morphine and sufentanil. NIH-9833 and NIH-9835 were potent displacers of /sup 3/H-etorphine from rat cerebral membranes with EC50's of 0.58 nM and 1.7 nM, respectively. The observation that addition of a single glycyl group changes a dihydromorphine-peptide analog from a potent delta receptor agonist to an equally potent mu receptor antagonist suggests that the two receptor sites might be structurally quite similar.

  3. Functional selectivity of muscarinic receptor antagonists for inhibition of M3-mediated phosphoinositide responses in guinea pig urinary bladder and submandibular salivary gland.

    PubMed

    Nelson, Carl P; Gupta, Paul; Napier, Carolyn M; Nahorski, Stefan R; Challiss, R A John

    2004-09-01

    Binding and functional affinities of the muscarinic acetylcholine (mACh) receptor antagonists darifenacin, tolterodine, oxybutynin, and atropine were assessed in Chinese hamster ovary (CHO) cells expressing the human recombinant M2 (CHO-m2) or M3 (CHO-m3) receptors, and in guinea pig bladder and submandibular gland. In [N-methyl-3H]scopolamine methyl chloride binding studies in CHO cells, darifenacin displayed selectivity (14.8-fold) for the M3 versus M2 mACh receptor subtype. Oxybutynin was nonselective, whereas atropine and tolterodine were weakly M2-selective (5.1- and 6.6-fold, respectively). Antagonist functional affinity estimates were determined by the inhibition of agonist-induced [3H]inositol phosphate accumulation in CHO-m3 cells and antagonism of the agonist-induced inhibition of forskolin-stimulated cyclic AMP accumulation in CHO-m2 cells. Darifenacin was the most M3-selective antagonist (32.4-fold), whereas oxybutynin, atropine, and tolterodine exhibited lesser selectivity. Functional affinity estimates in guinea pig urinary bladder and submandibular salivary gland using indices of phosphoinositide turnover revealed that oxybutynin, darifenacin, and tolterodine each displayed selectivity for the response in the bladder, relative to that seen in the submandibular gland (9.3-, 7.9-, and 7.4-fold, respectively). In contrast, atropine displayed a similar affinity in both tissues. These data demonstrate that in bladder, compared with submandibular gland from a single species, the mACh receptor antagonists darifenacin, tolterodine, and oxybutynin display selectivity to inhibit agonist-mediated phosphoinositide responses. It is proposed that both responses are mediated via M3 mACh receptor activation and that differential functional affinities displayed by some, but not all, antagonists are indicative of the influence of cell background upon the pharmacology of the M3 mACh receptor. PMID:15140916

  4. A statistical analysis of acetylcholine receptor activation in Xenopus myocytes: stepwise versus concerted models of gating.

    PubMed Central

    Auerbach, A

    1993-01-01

    1. The kinetic properties of single channel currents from fetal-type acetylcholine receptors in embryonic Xenopus myocytes (60 h old) have been analysed by a maximum-likelihood method. 2. At very high acetylcholine (ACh) concentrations (up to 5 mM) the effective opening rate appears to saturate at approximately 30,000 s-1. 3. The kinetics were analysed according to the standard concerted scheme that postulates a single channel-opening conformational change after two agonists are bound, and a rarely invoked stepwise scheme that postulates semi-independent conformational changes in two distinct gating domains. Both models assume that agonist cannot escape from a channel (or domain) that is in its activated conformation. 4. With either activation scheme the kinetic analyses indicate that ACh binds at a rate of approximately 2 x 10(8) s-1 M-1 and dissociates from doubly liganded receptors at a rate of approximately 28,000 s-1, and that the activation process is asymmetric, i.e. the binding (concerted model) or gating (stepwise model) transitions are not equal and independent. 5. In eighteen of twenty-seven file-by-file comparisons, the likelihood of the stepwise model was greater than that of the concerted model. In seven such comparisons, the likelihood of the concerted model was greater than that of the stepwise model, and in two there was no difference. Log likelihood ratio distributions were obtained from three files (those with the most events) by multiple cycles of resampling and fitting. The means of these distributions were significantly greater than zero, indicating that the stepwise scheme was as good as, or better than, the concerted scheme in describing receptor activation. 6. According to the stepwise view, two binding sites must be occupied and two 'gates' activated for conduction to occur. Although equivalent binding is not an essential aspect of stepwise activation, the binding sites can be identical and have a low affinity for ACh (Kd approximately 130

  5. Drug-dependent behaviors and nicotinic acetylcholine receptor expressions in Caenorhabditis elegans following chronic nicotine exposure.

    PubMed

    Polli, Joseph R; Dobbins, Dorothy L; Kobet, Robert A; Farwell, Mary A; Zhang, Baohong; Lee, Myon-Hee; Pan, Xiaoping

    2015-03-01

    Nicotine, the major psychoactive compound in tobacco, targets nicotinic acetylcholine receptors (nAChRs) and results in drug dependence. The nematode Caenorhabditis elegans' (C. elegans) genome encodes conserved and extensive nicotinic receptor subunits, representing a useful system to investigate nicotine-induced nAChR expressions in the context of drug dependence. However, the in vivo expression pattern of nAChR genes under chronic nicotine exposure has not been fully investigated. To define the role of nAChR genes involved in nicotine-induced locomotion changes and the development of tolerance to these effects, we characterized the locomotion behavior combining the use of two systems: the Worm Tracker hardware and the WormLab software. Our results indicate that the combined system is an advantageous alternative to define drug-dependent locomotion behavior in C. elegans. Chronic (24-h dosing) nicotine exposure at 6.17 and 61.7μM induced nicotine-dependent behaviors, including drug stimulation, tolerance/adaption, and withdrawal responses. Specifically, the movement speed of naïve worms on nicotine-containing environments was significantly higher than on nicotine-free environments, suggesting locomotion stimulation by nicotine. In contrast, the 24-h 6.17μM nicotine-treated worms exhibited significantly higher speeds on nicotine-free plates than on nicotine-containing plates. Furthermore significantly increased locomotion behavior during nicotine cessation was observed in worms treated with a higher nicotine concentration of 61.7μM. The relatively low locomotion speed of nicotine-treated worms on nicotine-containing environments also indicates adaption/tolerance of worms to nicotine following chronic nicotine exposure. In addition, this study provides useful information regarding the comprehensive in vivo expression profile of the 28 "core" nAChRs following different dosages of chronic nicotine treatments. Eleven genes (lev-1, acr-6, acr-7, acr-11, lev-8, acr

  6. What is the effect of nicotinic acetylcholine receptor stimulation on osteoarthritis in a rodent animal model?

    PubMed Central

    Bock, Kilian; Plaass, Christian; Coger, Vincent; Peck, Claas-Tido; Reimers, Kerstin; Stukenborg-Colsman, Christina; Claassen, Leif

    2016-01-01

    Objectives: Despite the rising number of patients with osteoarthritis, no sufficient chondroprotective and prophylactic therapy for osteoarthritis has been established yet. The purpose of this study was to verify whether stimulation of the nicotinic acetylcholine receptor via nicotine has a beneficial effect on cartilage degeneration in the development of osteoarthritis and is capable of reducing the expression of proinflammatory cytokines and cartilage degrading enzymes in synovial membranes after osteoarthritis induction. Methods: Experimental osteoarthritis was induced in Lewis rats using a standardized osteoarthritis model with monoiodoacetate. A total of 16 Lewis rats were randomized into four groups: control, sham + nicotine application, osteoarthritis, and osteoarthritis + nicotine application. Nicotine (0.625 mg/kg twice daily) was administered intraperitoneally for 42 days. We analyzed histological sections, radiological images and the expression of the proinflammatory cytokines, such as interleukin-1β, tumor necrosis factor-α and interleukin-6, and of matrix metalloproteases 3, 9 and 13 and tissue inhibitors of metalloprotease-1 in synovial membranes via quantitative polymerase chain reaction. Results: Histological and x-ray examination revealed cartilage degeneration in the osteoarthritis group compared to control or sham + nicotine groups (histological control vs osteoarthritis: p = 0.002 and x-ray control vs osteoarthritis: p = 0.004). Nicotine treatment reduced the cartilage degeneration without significant differences. Osteoarthritis induction led to a higher expression of proinflammatory cytokines and matrix metalloproteases as compared to control groups. This effect was attenuated after nicotine administration. The differences of proinflammatory cytokines and matrix metalloproteases did not reach statistical significance. Conclusion: With the present small-scale study, we could not prove a positive effect of nicotinic

  7. Vasopressin receptor antagonists and their role in clinical medicine

    PubMed Central

    Narayen, Girish; Mandal, Surya Narayan

    2012-01-01

    Hyponatremia is the most common electrolyte abnormality in hospitalized patients. Its treatment is based not only on extracellular fluid volume status of patients but also on its pathogenetic mechanisms. Conventional treatment of hyponatremia like fluid restriction, which is useful in euvolemic and hypervolemic hyponatremia, has very poor patient compliance over long term. Vasopressin receptor antagonists (Vaptans) are a new group of nonpeptide drugs which have been used in various clinical conditions with limited success. Whereas conivaptan is to be administered intravenously, the other vaptans like tolvaptan, lixivaptan, and satavaptan are effective as oral medication. They produce aquaresis by their action on vasopressin type 2 (V2R) receptors in the collecting duct and thus increase solute free water excretion. Vaptans are being used as an alternative to fluid restriction in euvolemic and hypervolemic hyponatremic patients. Efficacy of vaptans is now well accepted for management of correction of hyponatremia over a short period. However, its efficacy in improving the long-term morbidity and mortality in patients with chronic hyponatremia due to cirrhosis and heart failure is yet to be established. Vaptans have not become the mainstay treatment of hyponatremia yet. PMID:22470853

  8. CGRP Receptor Antagonists in the Treatment of Migraine

    PubMed Central

    Durham, Paul L.; Vause, Carrie V.

    2011-01-01

    Based on preclinical and clinical studies, the neuropeptide calcitonin gene-related peptide (CGRP) is proposed to play a central role in the underlying pathology of migraine. CGRP and its receptor are widely expressed in both the peripheral and central nervous system by multiple cell types involved in the regulation of inflammatory and nociceptive responses. Peripheral release of CGRP from trigeminal nerve fibers within the dura and from the cell body of trigeminal ganglion neurons is likely to contribute to peripheral sensitization of trigeminal nociceptors. Similarly, the release of CGRP within the trigeminal nucleus caudalis can facilitate activation of nociceptive second order neurons and glial cells. Thus, CGRP is involved in the development and maintenance of persistent pain, central sensitization, and allodynia, events characteristic of migraine pathology. In contrast, CGRP release within the brain is likely to function in an anti-nociceptive capacity. This review will focus on the development and clinical data on CGRP receptor antagonists as well as discussing their potential roles in migraine therapy via modulation of multiple cell types within the peripheral and central nervous systems. PMID:20433208

  9. Transmembrane topography of nicotinic acetylcholine receptor: immunochemical tests contradict theoretical predictions based on hydrophobicity profiles.

    PubMed

    Ratnam, M; Nguyen, D L; Rivier, J; Sargent, P B; Lindstrom, J

    1986-05-01

    In our preceding paper [Ratnam, M., Sargent, P. B., Sarin, V., Fox, J. L., Le Nguyen, D., Rivier, J., Criado, M., & Lindstrom, J. (1986) Biochemistry (preceding paper in this issue)], we presented results from peptide mapping studies of purified subunits of the Torpedo acetylcholine receptor which suggested that the sequence beta 429-441 is on the cytoplasmic surface of the receptor. Since this finding contradicts earlier theoretical models of the transmembrane structure of the receptor, which placed this sequence of the beta subunit on the extracellular surface, we investigated the location of the corresponding sequence (389-408) and adjacent sequences of the alpha subunit by a more direct approach. We synthesized peptides including the sequences alpha 330-346, alpha 349-364, alpha 360-378, alpha 379-385, and alpha 389-408 and shorter parts of these peptides. These peptides corresponded to a highly immunogenic region, and by using 125I-labeled peptides as antigens, we were able to detect in our library of monoclonal antibodies to alpha subunits between two and six which bound specifically to each of these peptides, except alpha 389-408. We obtained antibodies specific for alpha 389-408 both from antisera against the denatured alpha subunit and from antisera made against the peptide. These antibodies were specific to alpha 389-396. In binding assays, antibodies specific for all of these five peptides bound to receptor-rich membrane vesicles only after permeabilization of the vesicles to permit access of the antibodies to the cytoplasmic surface of the receptors, suggesting that the receptor sequences which bound these antibodies were located on the intracellular side of the membrane. Electron microscopy using colloidal gold to visualize the bound antibodies was used to conclusively demonstrate that all of these sequences are exposed on the cytoplasmic surface of the receptor. These results, along with our previous demonstration that the C-terminal 10 amino acids of

  10. Effects of cannabidiol on the function of α7-nicotinic acetylcholine receptors.

    PubMed

    Mahgoub, Mohamed; Keun-Hang, Susan Yang; Sydorenko, Vadym; Ashoor, Abrar; Kabbani, Nadine; Al Kury, Lina; Sadek, Bassem; Howarth, Christopher F; Isaev, Dmytro; Galadari, Sehamuddin; Oz, Murat

    2013-11-15

    The effects of cannabidiol (CBD), a non-psychoactive ingredient of cannabis plant, on the function of the cloned α7 subunit of the human nicotinic acetylcholine (α7 nACh) receptor expressed in Xenopus oocytes were tested using the two-electrode voltage-clamp technique. CBD reversibly inhibited ACh (100 μM)-induced currents with an IC50 value of 11.3 µM. Other phytocannabinoids such as cannabinol and Δ(9)-tetrahydrocannabinol did not affect ACh-induced currents. CBD inhibition was not altered by pertussis toxin treatment. In addition, CBD did not change GTP-γ-S binding to the membranes of oocytes injected with α7 nACh receptor cRNA. The effect of CBD was not dependent on the membrane potential. CBD (10 µM) did not affect the activity of endogenous Ca(2+)-dependent Cl(-) channels, since the extent of inhibition by CBD was unaltered by intracellular injection of the Ca(2+) chelator BAPTA and perfusi