Science.gov

Sample records for acetylcholine receptor channels

  1. Agonists block currents through acetylcholine receptor channels.

    PubMed Central

    Sine, S M; Steinbach, J H

    1984-01-01

    We have examined the effects of high concentrations of cholinergic agonists on currents through single acetylcholine receptor (AChR) channels on clonal BC3H1 cells. We find that raised concentrations of acetylcholine (ACh; above 300 microM) or carbamylcholine (Carb; above 1,000 microM) produce a voltage- and concentration-dependent reduction in the mean single-channel current. Raised concentrations of suberyldicholine (Sub; above 3 microM) produce a voltage- and concentration-dependent increase in the number of brief duration low-conductance interruptions of open-channel currents. These observations can be quantitatively described by a model in which agonist molecules enter and transiently occlude the ion-channel of the AChR. PMID:6478036

  2. Single acetylcholine receptor channel currents recorded at high hydrostatic pressures.

    PubMed Central

    Heinemann, S H; Stühmer, W; Conti, F

    1987-01-01

    A technique for performing patch-clamp experiments under high hydrostatic (oil) pressure is described. The method allows the transfer of whole cell or membrane patches in a recording configuration into a pressure vessel, where pressure can be increased up to 60 MPa (approximately equal to 600 bar). We have studied in this way the pressure dependence of single acetylcholine receptor channels in excised "outside-out" membrane patches from cultured rat muscle cells. In the range of 0.1 to 60 MPa the open channel conductance in 140 mM NaCl solutions did not vary by more than 2%, which implies that the translocation of sodium ions through the channel pore does not involve steps with significant activation volumes. At high acetylcholine concentrations (20 microM) bursts of single-channel activity allowed measurements of the mean open and mean closed times of the channel. Pressurization to 40 MPa increased both mean open and mean closed times giving apparent activation volumes of about 59 and 139 A3, respectively. This implies a net volume increase of 80 A3, associated with the transition from the agonist-free state to the open state of the channel, which may be partially associated with the agonist-binding step. All the observed pressure effects were reversible. The activation volumes for the gating of acetylcholine receptor channels are comparable to those of sodium and potassium channels in the squid giant axon, suggesting that there is some basic common mechanism in the operation of ion-channel proteins. Images PMID:2437577

  3. Slow permeation of organic cations in acetylcholine receptor channels

    PubMed Central

    1986-01-01

    Block, permeation, and agonist action of small organic amine compounds were studied in acetylcholine receptor (AChR) channels. Single channel conductances were calculated from fluctuation analysis at the frog neuromuscular junction and measured by patch clamp of cultured rat myotubes. The conductance was depressed by a few millimolar external dimethylammonium, arginine, dimethyldiethanolammonium, and Tris. Except with dimethylammonium, the block was intensified with hyperpolarization. A two-barrier Eyring model describes the slowed permeation and voltage dependence well for the three less permeant test cations. The cations were assumed to pause at a site halfway across the electric field of the channel while passing through it. For the voltage- independent action of highly permeant dimethylammonium, a more appropriate model might be a superficial binding site that did not prevent the flow of other ions, but depressed it. Solutions of several amine compounds were found to have agonist activity at millimolar concentrations, inducing brief openings of AChR channels on rat myotubes in the absence of ACh. PMID:2425045

  4. Mechanics of Channel Gating of the Nicotinic Acetylcholine Receptor

    PubMed Central

    Liu, Xinli; Xu, Yechun; Li, Honglin; Wang, Xicheng; Jiang, Hualiang; Barrantes, Francisco J

    2008-01-01

    The nicotinic acetylcholine receptor (nAChR) is a key molecule involved in the propagation of signals in the central nervous system and peripheral synapses. Although numerous computational and experimental studies have been performed on this receptor, the structural dynamics of the receptor underlying the gating mechanism is still unclear. To address the mechanical fundamentals of nAChR gating, both conventional molecular dynamics (CMD) and steered rotation molecular dynamics (SRMD) simulations have been conducted on the cryo-electron microscopy (cryo-EM) structure of nAChR embedded in a dipalmitoylphosphatidylcholine (DPPC) bilayer and water molecules. A 30-ns CMD simulation revealed a collective motion amongst C-loops, M1, and M2 helices. The inward movement of C-loops accompanying the shrinking of acetylcholine (ACh) binding pockets induced an inward and upward motion of the outer β-sheet composed of β9 and β10 strands, which in turn causes M1 and M2 to undergo anticlockwise motions around the pore axis. Rotational motion of the entire receptor around the pore axis and twisting motions among extracellular (EC), transmembrane (TM), and intracellular MA domains were also detected by the CMD simulation. Moreover, M2 helices undergo a local twisting motion synthesized by their bending vibration and rotation. The hinge of either twisting motion or bending vibration is located at the middle of M2, possibly the gate of the receptor. A complementary twisting-to-open motion throughout the receptor was detected by a normal mode analysis (NMA). To mimic the pulsive action of ACh binding, nonequilibrium MD simulations were performed by using the SRMD method developed in one of our laboratories. The result confirmed all the motions derived from the CMD simulation and NMA. In addition, the SRMD simulation indicated that the channel may undergo an open-close (O ↔ C) motion. The present MD simulations explore the structural dynamics of the receptor under its gating process

  5. Voltage dependence of acetylcholine receptor channel gating in rat myoballs

    PubMed Central

    1992-01-01

    Whole-cell currents from nicotinic acetylcholine receptor (AChR) channels were studied in rat myoballs using a light-activated agonist to determine the voltage dependence of the macroscopic opening and closing rate constants. Myoballs were bathed in a solution containing a low concentration of the inactive isomer of the photoisomerizable azobenzene derivative, cis-Bis-Q. A light flash was then presented to produce a known concentration jump of agonist, trans-Bis-Q, across a wide range of membrane potentials in symmetrical solutions (NaCl or CsCl on both sides) or asymmetrical solutions (NaCl in the bath and CsCl in the pipette). At the low agonist concentration used in this study, the reciprocal of the macroscopic time constants gives an unambiguous measure of the effective closing rate. It showed an exponential decrease with membrane hyperpolarization between +20 and - 100 mV, but tended to level off at more depolarized and at more hyperpolarized membrane potentials. The relative effective opening rate was derived from the steady-state conductance, the single-channel conductance, and the apparent closing rate; it decreased sharply in the depolarizing region and tended to level off and then turn up in the hyperpolarizing region. The two effective rate constants were shown to depend on the first, second, and third power of membrane potential. PMID:1460456

  6. Nicotinic acetylcholine receptors at the single-channel level.

    PubMed

    Bouzat, Cecilia; Sine, Steven M

    2017-03-05

    Over the past four decades, the patch clamp technique and nicotinic ACh (nACh) receptors have established an enduring partnership. Like all good partnerships, each partner has proven significant in its own right, while their union has spurred innumerable advances in life science research. A member and prototype of the superfamily of pentameric ligand-gated ion channels, the nACh receptor is a chemo-electric transducer, binding ACh released from nerves and rapidly opening its channel to cation flow to elicit cellular excitation. A subject of a Nobel Prize in Physiology or Medicine, the patch clamp technique provides unprecedented resolution of currents through single ion channels in their native cellular environments. Here, focusing on muscle and α7 nACh receptors, we describe the extraordinary contribution of the patch clamp technique towards understanding how they activate in response to neurotransmitter, how subtle structural and mechanistic differences among nACh receptor subtypes translate into significant physiological differences, and how nACh receptors are being exploited as therapeutic drug targets. © 2017 The British Pharmacological Society.

  7. Incorporation of acetylcholine receptors and Cl- channels in Xenopus oocytes injected with Torpedo electroplaque membranes.

    PubMed Central

    Marsal, J; Tigyi, G; Miledi, R

    1995-01-01

    A method was developed to transplant assembled nicotinic acetylcholine receptors (AcChoRs) and Cl- channels from the electric organ of Torpedo to the membrane of Xenopus oocytes. Membrane vesicles from Torpedo electroplaques were injected into the oocytes and, within a few hours, the oocyte membrane acquired AcChoRs and Cl- channels. The mechanism of expression of these receptors and channels is very different from that which follows the injection of mRNA, since the appearance of receptors after membrane injection does not require de novo protein synthesis or N-glycosylation. This, and other controls, indicate that the foreign receptor-bearing membranes fuse with the oocyte membrane and cause the appearance of functional receptors and channels. All this makes the Xenopus oocyte an even more powerful tool for studies of the structure and function of membrane proteins. PMID:7761478

  8. A model of the closed form of the nicotinic acetylcholine receptor m2 channel pore.

    PubMed

    Kim, Sanguk; Chamberlain, Aaron K; Bowie, James U

    2004-08-01

    The nicotinic acetylcholine receptor is a neurotransmitter-gated ion channel in the postsynaptic membrane. It is composed of five homologous subunits, each of which contributes one transmembrane helix--the M2 helix--to create the channel pore. The M2 helix from the delta subunit is capable of forming a channel by itself. Although a model of the receptor was recently proposed based on a low-resolution, cryo-electron microscopy density map, we found that the model does not explain much of the other available experimental data. Here we propose a new model of the M2 channel derived solely from helix packing and symmetry constraints. This model agrees well with experimental results from solid-state NMR, chemical reactivity, and mutagenesis experiments. The model depicts the channel pore, the channel gate, and the residues responsible for cation specificity.

  9. Reconstitution of Purified Acetylcholine Receptors with Functional Ion Channels in Planar Lipid Bilayers

    NASA Astrophysics Data System (ADS)

    Nelson, N.; Anholt, R.; Lindstrom, J.; Montal, M.

    1980-05-01

    Acetylcholine receptor, solubilized and purified from Torpedo californica electric organ under conditions that preserve the activity of its ion channel, was reconstituted into vesicles of soybean lipid by the cholate-dialysis technique. The reconstituted vesicles were then spread into monolayers at an air-water interface and planar bilayers were subsequently formed by apposition of two monolayers. Addition of carbamoylcholine caused an increase in membrane conductance that was transient and relaxed spontaneously to the base level (i.e., became desensitized). The response to carbamoylcholine was dose dependent and competitively inhibited by curare. Fluctuations of membrane conductance corresponding to the opening and closing of receptor channels were observed. Fluctuation analysis indicated a single-channel conductance of 16± 3 pS (in 0.1 M NaCl) with a mean channel open time estimated to be 35± 5 ms. Thus, purified acetylcholine receptor reconstituted into lipid bilayers exhibited the pharmacological specificity, activation, and desensitization properties expected of this receptor in native membranes.

  10. Vector-averaged gravity does not alter acetylcholine receptor single channel properties

    NASA Technical Reports Server (NTRS)

    Reitstetter, R.; Gruener, R.

    1994-01-01

    To examine the physiological sensitivity of membrane receptors to altered gravity, we examined the single channel properties of the acetylcholine receptor (AChR), in co-cultures of Xenopus myocytes and neurons, to vector-averaged gravity in the clinostat. This experimental paradigm produces an environment in which, from the cell's perspective, the gravitational vector is "nulled" by continuous averaging. In that respect, the clinostat simulates one aspect of space microgravity where the gravity force is greatly reduced. After clinorotation, the AChR channel mean open-time and conductance were statistically not different from control values but showed a rotation-dependent trend that suggests a process of cellular adaptation to clinorotation. These findings therefore suggest that the ACHR channel function may not be affected in the microgravity of space despite changes in the receptor's cellular organization.

  11. Vector-averaged gravity does not alter acetylcholine receptor single channel properties

    NASA Technical Reports Server (NTRS)

    Reitstetter, R.; Gruener, R.

    1994-01-01

    To examine the physiological sensitivity of membrane receptors to altered gravity, we examined the single channel properties of the acetylcholine receptor (AChR), in co-cultures of Xenopus myocytes and neurons, to vector-averaged gravity in the clinostat. This experimental paradigm produces an environment in which, from the cell's perspective, the gravitational vector is "nulled" by continuous averaging. In that respect, the clinostat simulates one aspect of space microgravity where the gravity force is greatly reduced. After clinorotation, the AChR channel mean open-time and conductance were statistically not different from control values but showed a rotation-dependent trend that suggests a process of cellular adaptation to clinorotation. These findings therefore suggest that the ACHR channel function may not be affected in the microgravity of space despite changes in the receptor's cellular organization.

  12. Acetylcholine receptor kinetics. A description from single-channel currents at snake neuromuscular junctions.

    PubMed Central

    Dionne, V E; Leibowitz, M D

    1982-01-01

    Single-channel currents from acetylcholine receptor channels of garter snake neuromuscular junctions were recorded using the patch-clamp technique. Low concentrations of acetylcholine or carbamylcholine induced populations of single current events whose amplitudes and durations had unimodal distributions. The probability with which channel opening transitions occurred was time dependent, so that it was more probable for channels to open during the several hundred microseconds following a closing transition than during any later equivalent interval. The time-dependent distributions of duration and opening-transition probability were fitted by a sequential, reversible kinetic model in which the agonist binding steps occur before, and separately from, channel activation. This description allowed estimates to be obtained of both the opening (approximately 750s-1) and closing (approximately 500s-1) transition rates of these channels and of the mean lifetimes of the open- (approximately 2 ms) and the closed-channel state (approximately 200 mus) to which the open state was reversibly related. PMID:6291654

  13. [Molecular dynamics simulations of migration of ions and molecules through the acetylcholine receptor channel].

    PubMed

    Shaĭtan, K V; Li, A; Tershkina, K B; Kirpichnikov, M P

    2007-01-01

    A dynamic model of the channel of an acetylcholine receptor in a closed state has been proposed. The channel is formed by five a-helices of subunit M2 and stabilized by the cyclic hydrocarbon (CH2)105. The migration of charged and unchanged van der Waals particles with a diameter of 7.72 A equivalent to the diameter of a hydrated sodium ion has been studied. The migration occurred by the action of external force applied to the complex along the channel axis. In the closed state, the inhibition of ions is due to two components: electrostatic interaction and steric constraints. The van der Waals channel gate is formed by residues 13'-A-Val255, B-Val261, C-Val269, D-Val255, and E-Ile264, and the negatively changed residues occurring in the upper part of the channel have a great effect on ion selectivity.

  14. Single-channel and structural foundations of neuronal α7 acetylcholine receptor potentiation

    PubMed Central

    daCosta, Corrie J.B.; Free, Chris R.; Corradi, Jeremías; Bouzat, Cecilia; Sine, Steven M.

    2011-01-01

    Potentiation of neuronal nicotinic acetylcholine receptors by exogenous ligands is a promising strategy for treatment of neurological disorders including Alzheimer's disease and Schizophrenia. To gain insight into molecular mechanisms underlying potentiation, we examined ACh-induced single-channel currents through the human neuronal α7 acetylcholine receptor in the presence of the α7-specific potentiator PNU-120596 (PNU). Compared to the unusually brief single-channel opening episodes elicited by agonist alone, channel opening episodes in the presence of agonist and PNU are dramatically prolonged. Dwell time analysis reveals that PNU introduces two novel components into open-time histograms, indicating at least two degrees of PNU-induced potentiation. Openings of the longest potentiated class coalesce into clusters whose frequency and duration change over a narrow range of PNU concentration. At PNU concentrations approaching saturation, these clusters last up to several minutes, prolonging the sub-millisecond α7 opening episodes by several orders of magnitude. Mutations known to reduce PNU potentiation at the whole-cell level still give rise to multi-second long single-channel clusters. However mutation of five residues lining a cavity within each subunit's transmembrane domain abolishes PNU potentiation, defining minimal structural determinants of PNU potentiation. PMID:21957249

  15. The Extracellular Linker of Muscle Acetylcholine Receptor Channels Is a Gating Control Element

    PubMed Central

    Grosman, Claudio; Salamone, Frank N.; Sine, Steven M.; Auerbach, Anthony

    2000-01-01

    We describe the functional consequences of mutations in the linker between the second and third transmembrane segments (M2–M3L) of muscle acetylcholine receptors at the single-channel level. Hydrophobic mutations (Ile, Cys, and Phe) placed near the middle of the linker of the α subunit (αS269) prolong apparent openings elicited by low concentrations of acetylcholine (ACh), whereas hydrophilic mutations (Asp, Lys, and Gln) are without effect. Because the gating kinetics of the αS269I receptor (a congenital myasthenic syndrome mutant) in the presence of ACh are too fast, choline was used as the agonist. This revealed an ∼92-fold increased gating equilibrium constant, which is consistent with an ∼10-fold decreased EC50 in the presence of ACh. With choline, this mutation accelerates channel opening ∼28-fold, slows channel closing ∼3-fold, but does not affect agonist binding to the closed state. These ratios suggest that, with ACh, αS269I acetylcholine receptors open at a rate of ∼1.4 × 106 s−1 and close at a rate of ∼760 s−1. These gating rate constants, together with the measured duration of apparent openings at low ACh concentrations, further suggest that ACh dissociates from the diliganded open receptor at a rate of ∼140 s−1. Ile mutations at positions flanking αS269 impair, rather than enhance, channel gating. Inserting or deleting one residue from this linker in the α subunit increased and decreased, respectively, the apparent open time approximately twofold. Contrary to the αS269I mutation, Ile mutations at equivalent positions of the β, ε, and δ subunits do not affect apparent open-channel lifetimes. However, in β and ε, shifting the mutation one residue to the NH2-terminal end enhances channel gating. The overall results indicate that this linker is a control element whose hydrophobicity determines channel gating in a position- and subunit-dependent manner. Characterization of the transition state of the gating reaction

  16. Spontaneous opening of the acetylcholine receptor channel in developing muscle cells from normal and dystrophic mice

    SciTech Connect

    Franco-Obregon, A.; Lansman, J.B.

    1995-12-31

    Single-channel activity was recorded from cell-attached patches on skeletal muscle cells isolated from wild-type mice and from mice carrying the dy or mdx mutations. Spontaneous openings of the nicotinic acetylcholine receptor channel (nAChR) were detected in virtually all recordings from either 4v/dy or dyl + myotubes. but only infrequently from wild-type or mdx myotubes. Spontaneous openings were also present in most recordings from undifferentiated myoblasts from all of the mouse strains studied. The biophysical properties of the spontaneous activity were similar to those of the embryonic form of the nAChR in the presence of acetylcholine (ACh). Examination of the single-channel currents evoked by low concentrations of ACh showed a reduced sensitivity to the agonist in the dystrophic dy and mdx myotubes. but not in wild- type myotubes. The results suggest that alterations in nAChR function are associated with the pathogenesis of muscular dystrophy in the dy mouse.

  17. Channel opening motion of alpha7 nicotinic acetylcholine receptor as suggested by normal mode analysis.

    PubMed

    Cheng, Xiaolin; Lu, Benzhuo; Grant, Barry; Law, Richard J; McCammon, J Andrew

    2006-01-13

    The gating motion of the human nicotinic acetylcholine receptor (nAChR) alpha7 was investigated with normal mode analysis (NMA) of two homology models. The first model, referred to as model I, was built from both the Lymnaea stagnalis acetylcholine binding protein (AChBP) and the transmembrane (TM) domain of the Torpedo marmorata nAChR. The second model, referred to as model C, was based solely on the recent electron microscopy structure of the T. marmorata nAChR. Despite structural differences, both models exhibit nearly identical patterns of flexibility and correlated motions. In addition, both models show a similar global twisting motion that may represent channel gating. The similar results obtained for the two models indicate that NMA is most sensitive to the contact topology of the structure rather than its finer detail. The major difference between the low-frequency motions sampled for the two models is that a symmetrical pore-breathing motion, favoring channel opening, is present as the second most dominant motion in model I, whilst largely absent from model C. The absence of this mode in model C can be attributed to its less symmetrical architecture. Finally, as a further goal of the present study, an approximate open channel model, consistent with many experimental findings, has been produced.

  18. Acetylcholine receptor: channel-opening kinetics evaluated by rapid chemical kinetic and single-channel current measurements.

    PubMed Central

    Udgaonkar, J. B.; Hess, G. P.

    1987-01-01

    A combination of rapid chemical kinetic (quench-flow) and single-channel current measurements was used to evaluate kinetic parameters governing the opening of acetylcholine-receptor channels in the electric organ (electroplax) of Electrophorus electricus. Chemical kinetic measurements made on membrane vesicles, prepared from the E. electricus electroplax, using carbamoylcholine (200 microM-20 mM) at 12 degrees C, pH 7.0, and in the absence of a transmembrane voltage, yielded values for K1 (dissociation constant for receptor activation), phi (channel closing equilibrium constant), J (specific reaction rate for ion flux), and alpha max (maximum inactivation rate constant) of 1 mM, 3.4, 4 x 10(7) M-1 s-1, and 12 s-1, respectively. The single-channel current recordings were made with cells also from the E. electricus electroplax, at the same temperature and pH as the chemical kinetic measurements, using carbamoylcholine (50 microM-2 mM), acetylcholine (500 nM), or suberyldicholine (20 nM). Single-channel current measurements indicated the presence of a single, unique open-channel state of the E. electricus receptor, in concurrence with previous, less extensive measurements. The rate constant for channel closing (kc) obtained from the mean open time of the receptor channel is 1,100 s-1 for carbamoylcholine, 1,200 s-1 for acetylcholine, and 360 s-1 for suberyldicholine at zero membrane potential; and it decreases e-fold for an 80 mV decrease in transmembrane voltage in each case. The decrease in mean open times of the receptor channel that is associated with increasing the carbamoylcholine concentration is interpreted to be due to carbamoylcholine binding to the regulatory (inhibitory) site on the receptor. An analysis of data obtained with carbamoylcholine showed that the closed times within a burst of channel activity fit a two-exponential distribution, with a concentration-independent time constant considered to be the time constant for carbamoylcholine to dissociate

  19. Allosteric modulation of Torpedo nicotinic acetylcholine receptor ion channel activity by noncompetitive agonists.

    PubMed

    Maelicke, A; Coban, T; Storch, A; Schrattenholz, A; Pereira, E F; Albuquerque, E X

    1997-01-01

    Similar to other neuroreceptors of the vertebrate central nervous system, the nicotinic acetylcholine receptor (nAChR) is subject to modulatory control by allosterically acting ligands. Of particular interest in this regard are allosteric ligands that enhance the sensitivity of the receptor to its natural agonist acetylcholine (ACh), as such ligands could be useful as drugs in diseases associated with impaired nicotinic neurotransmission. Here we discuss the action of a novel class of nAChR ligands which act as allosterically potentiating ligands (APL) on the nicotinic responses induced by ACh and competitive agonists. In addition, APLs also act as noncompetitive agonists of very low efficacy, and as direct blockers of ACh-activated channels. These actions are observed with nAChRs from brain, muscle and electric tissue, and they depend on the structure of the APL and the concentration range applied. We focus here on Torpedo nAChR because (i) the unusual pharmacology of these ligands was first discovered with this system, and (ii) large quantities of this receptor are readily available for biochemical studies.

  20. Phencyclidine interactions with the ionic channel of the acetylcholine receptor and electrogenic membrane

    PubMed Central

    Albuquerque, Edson X.; Tsai, Ming-Cheng; Aronstam, Robert S.; Witkop, Bernhard; Eldefrawi, Amira T.; Eldefrawi, Mohyee E.

    1980-01-01

    The effects of phencyclidine (PCP) were studied on the electrogenic and chemosensitive properties of the neuromuscular junction of skeletal muscle as well as on the binding sites on the acetylcholine (AcCho) receptor and its ionic channel in the electric organ membranes of the electric ray. The directly elicited muscle twitch was markedly potentiated by prolonging the falling phase of the muscle action potential and blocking delayed rectification. The indirectly elicited muscle twitch was transiently potentiated and then blocked by PCP at concentrations below 60 μM. PCP blocked miniature endplate potentials and AcCho sensitivities at the junctional region of innervated muscle, blocked the extrajunctional sensitivity of the chronically denervated muscle, and significantly depressed the peak amplitude of the endplate current (EPC) in a voltage- and time-dependent manner. PCP also caused acceleration of the time course of EPC decay and shortening of the mean life-time of the open ionic channel. The effects of PCP were not due to inhibition of AcCho receptor sites because PCP did not protect against the quasi-irreversible inhibition of receptor sites by α-bungarotoxin, nor did it inhibit binding of [3H]AcCho or [125I-labeled α-bungarotoxin to the receptor sites. On the other hand, PCP blocked the binding of [3H]perhydrohistrionicotoxin to the sites of the ionic channel of the AcCho receptor. The data suggest that PCP reacts with the electrogenic K+ channel and the ionic channel associated with the AcCho receptor in the open as well as the closed conformation. PMID:6928673

  1. Local anaesthetics transiently block currents through single acetylcholine-receptor channels.

    PubMed Central

    Neher, E; Steinbach, J H

    1978-01-01

    1. Single channel currents through acetylcholine receptor channels (ACh channels) were recorded at chronically denervated frog muscle extrajunctional membranes in the absence and presence of the lidocaine derivatives QX-222 and QX-314. 2. The current wave forms due to the opening and closing of single ACh channels (activated by suberyldicholine) normally are square pulses. These single pulses appear to be chopped into bursts of much shorter pulses, when the drug QX-222 is present in addition to the agonist. 3. The mean duration of the bursts is comparable to or longer than the normal channel open time, and increases with increasing drug concentration. 4. The duration of the short pulses within a burst decreases with increasing drug concentration. 5. It is concluded that drug molecules reversibly block open end-plate channels and that the flickering within a burst represents this fast, repeatedly occurring reaction. 6. The voltage dependence of the reaction rates involved, suggested that the site of the blocking reaction is in the centre of the membrane, probably inside the ionic channel. PMID:306437

  2. Acetylcholine receptor channels are present in undifferentiated satellite cells but not in embryonic myoblasts in culture.

    PubMed

    Cossu, G; Eusebi, F; Grassi, F; Wanke, E

    1987-09-01

    The expression and the physiological properties of acetylcholine receptors (AChRs) of mononucleated myogenic cells, isolated from either embryonic or adult muscle of the mouse, have been investigated using the gigaohm seal patch-clamp technique in combination with immunocytochemistry (with an anti-myosin antibody) and alpha-bungarotoxin binding techniques. Undifferentiated (myosin-negative) embryonic myoblasts, grown either in mass culture or under clonal conditions, were found to be unresponsive to ACh and did not bind alpha-bungarotoxin. On the contrary, undifferentiated satellite cells (from adult muscle) exhibited channels activated by ACh and alpha-bungarotoxin binding sites similar to those observed in differentiated (myosin-positive) embryonic myoblasts and myotubes. Two classes of ACh-activated channels with different opening frequencies were identified. The major class of channels had a conductance of about 42 pS and mean open time of 3.1-8.2 msec. The minor class of channels had smaller conductance (about 17 pS) and similar open time. During differentiation, the conductance of the two channels did not change significantly, while channel lifetime became shorter in myotubes derived from satellite cells but not in myotubes derived from embryonic myoblasts. The relative proportion of small over large channels was significantly larger in embryonic than in adult myogenic cells.

  3. Modelling and simulation of ion channels: applications to the nicotinic acetylcholine receptor.

    PubMed

    Sansom, M S; Adcock, C; Smith, G R

    1998-01-01

    Molecular dynamics simulations with experimentally derived restraints have been used to develop atomic models of M2 helix bundles forming the pore-lining domains of the nicotinic acetylcholine receptor and related ligand-gated ion channels. M2 helix bundles have been used in microscopic simulations of the dynamics and energetics of water and ions within an ion channel. Translational and rotational motion of water are restricted within the pore, and water dipoles are aligned relative to the pore axis by the surrounding helix dipoles. Potential energy profiles for translation of a Na+ ion along the pore suggest that the protein and water components of the interaction energy exert an opposing effect on the ion, resulting in a relatively flat profile which favors cation permeation. Empirical conductance calculations based on a pore radius profile suggest that the M2 helix model is consistent with a single channel conductance of ca. 50 pS. Continuum electrostatics calculations indicate that a ring of glutamate residues at the cytoplasmic mouth of the alpha 7 nicotinic receptor M2 helix bundle may not be fully ionized. A simplified model of the remainder of the channel protein when added to the M2 helix bundle plays a significant role in enhancing the ion selectivity of the channel.

  4. Activation of m1 muscarinic acetylcholine receptor induces surface transport of KCNQ channels through a CRMP-2-mediated pathway

    PubMed Central

    Jiang, Ling; Kosenko, Anastasia; Yu, Clinton; Huang, Lan; Li, Xuejun; Hoshi, Naoto

    2015-01-01

    ABSTRACT Neuronal excitability is strictly regulated by various mechanisms, including modulation of ion channel activity and trafficking. Stimulation of m1 muscarinic acetylcholine receptor (also known as CHRM1) increases neuronal excitability by suppressing the M-current generated by the Kv7/KCNQ channel family. We found that m1 muscarinic acetylcholine receptor stimulation also triggers surface transport of KCNQ subunits. This receptor-induced surface transport was observed with KCNQ2 as well as KCNQ3 homomeric channels, but not with Kv3.1 channels. Deletion analyses identified that a conserved domain in a proximal region of the N-terminal tail of KCNQ protein is crucial for this surface transport – the translocation domain. Proteins that bind to this domain were identified as α- and β-tubulin and collapsin response mediator protein 2 (CRMP-2; also known as DPYSL2). An inhibitor of casein kinase 2 (CK2) reduced tubulin binding to the translocation domain, whereas an inhibitor of glycogen synthase kinase 3 (GSK3) facilitated CRMP-2 binding to the translocation domain. Consistently, treatment with the GSK3 inhibitor enhanced receptor-induced KCNQ2 surface transport. M-current recordings from neurons showed that treatment with a GSK3 inhibitor shortened the duration of muscarinic suppression and led to over-recovery of the M-current. These results suggest that m1 muscarinic acetylcholine receptor stimulates surface transport of KCNQ channels through a CRMP-2-mediated pathway. PMID:26446259

  5. Activation of m1 muscarinic acetylcholine receptor induces surface transport of KCNQ channels through a CRMP-2-mediated pathway.

    PubMed

    Jiang, Ling; Kosenko, Anastasia; Yu, Clinton; Huang, Lan; Li, Xuejun; Hoshi, Naoto

    2015-11-15

    Neuronal excitability is strictly regulated by various mechanisms, including modulation of ion channel activity and trafficking. Stimulation of m1 muscarinic acetylcholine receptor (also known as CHRM1) increases neuronal excitability by suppressing the M-current generated by the Kv7/KCNQ channel family. We found that m1 muscarinic acetylcholine receptor stimulation also triggers surface transport of KCNQ subunits. This receptor-induced surface transport was observed with KCNQ2 as well as KCNQ3 homomeric channels, but not with Kv3.1 channels. Deletion analyses identified that a conserved domain in a proximal region of the N-terminal tail of KCNQ protein is crucial for this surface transport--the translocation domain. Proteins that bind to this domain were identified as α- and β-tubulin and collapsin response mediator protein 2 (CRMP-2; also known as DPYSL2). An inhibitor of casein kinase 2 (CK2) reduced tubulin binding to the translocation domain, whereas an inhibitor of glycogen synthase kinase 3 (GSK3) facilitated CRMP-2 binding to the translocation domain. Consistently, treatment with the GSK3 inhibitor enhanced receptor-induced KCNQ2 surface transport. M-current recordings from neurons showed that treatment with a GSK3 inhibitor shortened the duration of muscarinic suppression and led to over-recovery of the M-current. These results suggest that m1 muscarinic acetylcholine receptor stimulates surface transport of KCNQ channels through a CRMP-2-mediated pathway. © 2015. Published by The Company of Biologists Ltd.

  6. A hydrophobic gate in an ion channel: the closed state of the nicotinic acetylcholine receptor

    NASA Astrophysics Data System (ADS)

    Beckstein, Oliver; Sansom, Mark S. P.

    2006-06-01

    The nicotinic acetylcholine receptor (nAChR) is the prototypic member of the 'Cys-loop' superfamily of ligand-gated ion channels which mediate synaptic neurotransmission, and whose other members include receptors for glycine, γ-aminobutyric acid and serotonin. Cryo-electron microscopy has yielded a three-dimensional structure of the nAChR in its closed state. However, the exact nature and location of the channel gate remains uncertain. Although the transmembrane pore is constricted close to its center, it is not completely occluded. Rather, the pore has a central hydrophobic zone of radius about 3 Å. Model calculations suggest that such a constriction may form a hydrophobic gate, preventing movement of ions through a channel. We present a detailed and quantitative simulation study of the hydrophobic gating model of the nicotinic receptor, in order to fully evaluate this hypothesis. We demonstrate that the hydrophobic constriction of the nAChR pore indeed forms a closed gate. Potential of mean force (PMF) calculations reveal that the constriction presents a barrier of height about 10 kT to the permeation of sodium ions, placing an upper bound on the closed channel conductance of 0.3 pS. Thus, a 3 Å radius hydrophobic pore can form a functional barrier to the permeation of a 1 Å radius Na+ ion. Using a united-atom force field for the protein instead of an all-atom one retains the qualitative features but results in differing conductances, showing that the PMF is sensitive to the detailed molecular interactions.

  7. Acetylcholine regulation of nicotinic receptor channels through a putative G protein in chick myotubes.

    PubMed Central

    Eusebi, F; Grassi, F; Molinaro, M; Zani, B M

    1987-01-01

    1. Single-channel currents induced by acetylcholine (ACh) were recorded from unstriated and non-innervated embryonic chick myotubes using the cell-attached patch-clamp technique. 2. ACh applied to the non-patched membrane decreased both channel opening probability and conductance. These ACh-induced effects occurred also when the non-patched membrane was exposed to nominally Ca2+-free extracellular medium, but were absent when it was treated with curare. 3. ACh-induced membrane current recorded under whole-cell patch-clamp conditions decreased in amplitude and time course when myotubes were intracellularly loaded with guanosine-5'-O-(3-thiotriphosphate) GTP gamma S), but not with guanosine-5'-O-(2-thiodiphosphate) (GDP beta S) or cyclic adenosine-5'-monophosphate (cyclic AMP). Internal perfusion of GTP gamma S affected the ACh-induced openings in a similar manner to the non-patch ACh application. 4. These results suggest that ACh, in addition to its direct effect, acts indirectly on the nicotinic receptor channels by delivering an intracellular messenger and through the activation of a putative G protein. PMID:2451747

  8. A mutational analysis of the acetylcholine receptor channel transmitter binding site.

    PubMed Central

    Akk, G; Zhou, M; Auerbach, A

    1999-01-01

    Mutagenesis and single-channel kinetic analysis were used to investigate the roles of four acetylcholine receptor channel (AChR) residues that are candidates for interacting directly with the agonist. The EC50 of the ACh dose-response curve was increased following alpha-subunit mutations Y93F and Y198F and epsilon-subunit mutations D175N and E184Q. Single-channel kinetic modeling indicates that the increase was caused mainly by a reduced gating equilibrium constant (Theta) in alphaY198F and epsilonD175N, by an increase in the equilibrium dissociation constant for ACh (KD) and a reduction in Theta in alphaY93F, and only by a reduction in KD in epsilonE184Q. This mutation altered the affinity of only one of the two binding sites and was the only mutation that reduced competition by extracellular K+. Additional mutations of epsilonE184 showed that K+ competition was unaltered in epsilonE184D and was virtually eliminated in epsilonE184K, but that neither of these mutations altered the intrinsic affinity for ACh. Thus there is an apparent electrostatic interaction between the epsilonE184 side chain and K+ ( approximately 1.7kBT), but not ACh+. The results are discussed in terms of multisite and induced-fit models of ligand binding to the AChR. PMID:9876135

  9. Single-channel current recordings of acetylcholine receptors in electroplax isolated from the Electrophorus electricus Main and Sachs' electric organs.

    PubMed

    Pasquale, E B; Udgaonkar, J B; Hess, G P

    1986-01-01

    Extensive chemical kinetic measurements of acetylcholine receptor-controlled ion translocation in membrane vesicles isolated from the electroplax of Electrophorus electricus have led to the proposal of a minimum model which accounts for the activation, desensitization, and voltage-dependent inhibition of the receptor by acetylcholine, suberyldicholine, and carbamoylcholine. Comparison of chemical kinetic measurements of the dynamic properties of the acetylcholine receptor in vesicles with the properties of the receptor in cells obtained from the same organ and animal have been hampered by an inability to make the appropriate measurements with Electrophorus electricus electroplax cells. Here we report a method for exposing and cleaning the surface of electroplax cells obtained from both the Main electric organ and the organ of Sachs and the results of single-channel current recordings which have now become possible. The single-channel current recordings were made in the presence of either carbamoylcholine or suberyldicholine, as a function of temperature and transmembrane voltage. Both the channel open times and the single-channel conductance were measured. The data were found to be consistent with the model based on chemical kinetic measurements using receptor-rich membrane vesicles prepared from the Main electric organ of E. electricus.

  10. Separate fractions of mRNA from Torpedo electric organ induce chloride channels and acetylcholine receptors in Xenopus oocytes.

    PubMed Central

    Sumikawa, K; Parker, I; Amano, T; Miledi, R

    1984-01-01

    Poly(A)+ mRNA extracted from the electric organ of Torpedo was fractionated by sucrose density gradient centrifugation. After injection into Xenopus oocytes one mRNA fraction induced the appearance of chloride channels in the oocyte membrane. Many of these channels were normally open, and the ensuing chloride current kept the resting potential of injected oocytes close to the chloride equilibrium potential. When the membrane was hyperpolarized, the chloride current was reduced. A separate fraction of mRNA induced the incorporation of acetylcholine receptors into the oocyte membrane. When translated in a cell-free system this fraction directed the synthesis of the alpha, beta, gamma, and delta subunits of the acetylcholine receptor. In contrast, the mRNA fraction that induced the chloride channels caused the synthesis of the delta subunit, a very small amount of alpha, and no detectable beta or gamma subunits. This suggests that the size of the mRNA coding for the chloride channel is similar to the preponderant species of mRNA coding for the delta subunit of the acetylcholine receptor. Images Fig. 1. PMID:6094179

  11. The Nicotinic Acetylcholine Receptor: The Founding Father of the Pentameric Ligand-gated Ion Channel Superfamily*

    PubMed Central

    Changeux, Jean-Pierre

    2012-01-01

    A critical event in the history of biological chemistry was the chemical identification of the first neurotransmitter receptor, the nicotinic acetylcholine receptor. Disciplines as diverse as electrophysiology, pharmacology, and biochemistry joined together in a unified and rational manner with the common goal of successfully identifying the molecular device that converts a chemical signal into an electrical one in the nervous system. The nicotinic receptor has become the founding father of a broad family of pentameric membrane receptors, paving the way for their identification, including that of the GABAA receptors. PMID:23038257

  12. Sources of energy for gating by neurotransmitters in acetylcholine receptor channels.

    PubMed

    Purohit, Prasad; Bruhova, Iva; Auerbach, Anthony

    2012-06-12

    Nicotinic acetylcholine receptors (AChRs) mediate signaling in the central and peripheral nervous systems. The AChR gating conformational change is powered by a low- to high-affinity change for neurotransmitters at two transmitter binding sites. We estimated (from single-channel currents) the components of energy for gating arising from binding site aromatic residues in the α-subunit. All mutations reduced the energy (TyrC1>TrpB≈TyrC2>TyrA), with TyrC1 providing ~40% of the total. Considered one at a time, the fractional energy contributions from the aromatic rings were TrpB ~35%, TyrC1 ~28%, TyrC2 ~28%, and TyrA ~10%. Together, TrpB, TyrC1, and TyrC2 comprise an "aromatic triad" that provides much of the total energy from the transmitter for gating. Analysis of mutant pairs suggests that the energy contributions from some residues are nearly independent. Mutations of TyrC1 cause particularly large energy reductions because they remove two favorable and approximately equal interactions between the aromatic ring and the quaternary amine of the agonist and between the hydroxyl and αLysβ7.

  13. Energy for wild-type acetylcholine receptor channel gating from different choline derivatives.

    PubMed

    Bruhova, Iva; Gregg, Timothy; Auerbach, Anthony

    2013-02-05

    Agonists, including the neurotransmitter acetylcholine (ACh), bind at two sites in the neuromuscular ACh receptor channel (AChR) to promote a reversible, global change in protein conformation that regulates the flow of ions across the muscle cell membrane. In the synaptic cleft, ACh is hydrolyzed to acetate and choline. Replacement of the transmitter's ester acetyl group with a hydroxyl (ACh→choline) results in a + 1.8 kcal/mol reduction in the energy for gating generated by each agonist molecule from a low- to high-affinity change of the transmitter binding site (ΔG(B)). To understand the distinct actions of structurally related agonist molecules, we measured ΔG(B) for 10 related choline derivatives. Replacing the hydroxyl group of choline with different substituents, such as hydrogen, chloride, methyl, or amine, increased the energy for gating (i.e., it made ΔG(B) more negative relative to choline). Extending the ethyl hydroxide tail of choline to propyl and butyl hydroxide also increased this energy. Our findings reveal the amount of energy that is available for the AChR conformational change provided by different, structurally related agonists. We speculate that a hydrogen bond between the choline hydroxyl and the backbone carbonyl of αW149 positions this agonist's quaternary ammonium group so as to reduce the cation-π interaction between this moiety and the aromatic groups at the binding site.

  14. Acetylcholine receptor δ subunit mutations underlie a fast-channel myasthenic syndrome and arthrogryposis multiplex congenita

    PubMed Central

    Brownlow, Sharon; Webster, Richard; Croxen, Rebecca; Brydson, Martin; Neville, Brian; Lin, Jean-Pierre; Vincent, Angela; Newsom-Davis, John; Beeson, David

    2001-01-01

    Limitation of movement during fetal development may lead to multiple joint contractures in the neonate, termed arthrogryposis multiplex congenita. Neuromuscular disorders are among the many different causes of reduced fetal movement. Many congenital myasthenic syndromes (CMSs) are due to mutations of the adult-specific ε subunit of the acetylcholine receptor (AChR), and, thus, functional deficits do not arise until late in gestation. However, an earlier effect on the fetus might be predicted with some defects of other AChR subunits. We studied a child who presented at birth with joint contractures and was subsequently found to have a CMS. Mutational screening revealed heteroallelic mutation within the AChR δ subunit gene, δ756ins2 and δE59K. Expression studies demonstrate that δ756ins2 is a null mutation. By contrast, both fetal and adult AChR containing δE59K have shorter than normal channel activations that predict fast decay of endplate currents. Thus, δE59K causes dysfunction of fetal as well as the adult AChR and would explain the presence of joint contractures on the basis of reduced fetal movement. This is the first report of the association of AChR gene mutations with arthrogryposis multiplex congenita. It is probable that mutations that severely disrupt function of fetal AChR will underlie additional cases. PMID:11435464

  15. Energy for Wild-Type Acetylcholine Receptor Channel Gating from Different Choline Derivatives

    PubMed Central

    Bruhova, Iva; Gregg, Timothy; Auerbach, Anthony

    2013-01-01

    Agonists, including the neurotransmitter acetylcholine (ACh), bind at two sites in the neuromuscular ACh receptor channel (AChR) to promote a reversible, global change in protein conformation that regulates the flow of ions across the muscle cell membrane. In the synaptic cleft, ACh is hydrolyzed to acetate and choline. Replacement of the transmitter’s ester acetyl group with a hydroxyl (ACh→choline) results in a +1.8 kcal/mol reduction in the energy for gating generated by each agonist molecule from a low- to high-affinity change of the transmitter binding site (ΔGB). To understand the distinct actions of structurally related agonist molecules, we measured ΔGB for 10 related choline derivatives. Replacing the hydroxyl group of choline with different substituents, such as hydrogen, chloride, methyl, or amine, increased the energy for gating (i.e., it made ΔGB more negative relative to choline). Extending the ethyl hydroxide tail of choline to propyl and butyl hydroxide also increased this energy. Our findings reveal the amount of energy that is available for the AChR conformational change provided by different, structurally related agonists. We speculate that a hydrogen bond between the choline hydroxyl and the backbone carbonyl of αW149 positions this agonist’s quaternary ammonium group so as to reduce the cation-π interaction between this moiety and the aromatic groups at the binding site. PMID:23442907

  16. Nicotinic Acetylcholine Receptor Channel Electrostatics Determined by Diffusion-Enhanced Luminescence Energy Transfer

    PubMed Central

    Meltzer, Robert H.; Lurtz, Monica M.; Wensel, Theodore G.; Pedersen, Steen E.

    2006-01-01

    The electrostatic potentials within the pore of the nicotinic acetylcholine receptor (nAChR) were determined using lanthanide-based diffusion-enhanced fluorescence energy transfer experiments. Freely diffusing Tb3+-chelates of varying charge constituted a set of energy transfer donors to the acceptor, crystal violet, a noncompetitive antagonist of the nAChR. Energy transfer from a neutral Tb3+-chelate to nAChR-bound crystal violet was reduced 95% relative to the energy transfer to free crystal violet. This result indicated that crystal violet was strongly shielded from solvent when bound to the nAChR. Comparison of energy transfer from positively and negatively charged chelates indicate negative electrostatic potentials of −25 mV in the channel, measured in low ionic strength, and −10 mV measured in physiological ionic strength. Debye-Hückel analyses of potentials determined at various ionic strengths were consistent with 1–2 negative charges within 8 Å of the crystal violet binding site. To complement the energy transfer experiments, the influence of pH and ionic strength on the binding of [3H]phencyclidine were determined. The ionic strength dependence of binding affinity was consistent with −3.3 charges within 8 Å of the binding site, according to Debye-Hückel analysis. The pH dependence of binding had an apparent pKa of 7.2, a value indicative of a potential near −170 mV if the titratable residues are constituted of aspartates and glutamates. It is concluded that long-range potentials are small and likely contribute little to selectivity or conductance whereas close interactions are more likely to contribute to electrostatic stabilization of ions and binding of noncompetitive antagonists within the channel. PMID:16751249

  17. α4β2 Nicotinic Acetylcholine Receptors: RELATIONSHIPS BETWEEN SUBUNIT STOICHIOMETRY AND FUNCTION AT THE SINGLE CHANNEL LEVEL.

    PubMed

    Mazzaferro, Simone; Bermudez, Isabel; Sine, Steven M

    2017-02-17

    Acetylcholine receptors comprising α4 and β2 subunits are the most abundant class of nicotinic acetylcholine receptor in the brain. They contribute to cognition, reward, mood, and nociception and are implicated in a range of neurological disorders. Previous measurements of whole-cell macroscopic currents showed that α4 and β2 subunits assemble in two predominant pentameric stoichiometries, which differ in their sensitivity to agonists, antagonists, and allosteric modulators. Here we compare agonist-elicited single channel currents from receptors assembled with an excess of either the α4 or β2 subunit, forming receptor populations biased toward one or the other stoichiometry, with currents from receptors composed of five concatemeric subunits in which the subunit stoichiometry is predetermined. Our results associate each subunit stoichiometry with a unique single channel conductance, mean open channel lifetime, and sensitivity to the allosteric potentiator 3-[3-(3-pyridinyl)-1,2,4-oxadiazol-5-yl]benzonitrile (NS-9283). Receptors with the composition (α4β2)2α4 exhibit high single channel conductance, brief mean open lifetime, and strong potentiation by NS-9283, whereas receptors with the composition (α4β2)2β2 exhibit low single channel conductance and long mean open lifetime and are not potentiated by NS-9283. Thus single channel current measurements reveal bases for the distinct functional and pharmacological properties endowed by different stoichiometries of α4 and β2 subunits and establish pentameric concatemers as a means to delineate interactions between subunits that confer these properties.

  18. Acetylcholine receptor (from Electrophorus electricus): a comparison of single-channel current recordings and chemical kinetic measurements.

    PubMed

    Hess, G P; Kolb, H A; Läuger, P; Schoffeniels, E; Schwarze, W

    1984-09-01

    We report a direct comparison between two types of measurements of the dynamic properties of the acetylcholine receptor: single-channel currents recorded using the patch-clamp technique and chemical kinetic measurements. Electrophorus electricus electroplax cells, and membrane vesicles prepared from these cells, were used. Such a comparison, and single-channel currents recorded from these cells, have not previously been reported. We first give the theoretical basis for the comparison and define the conditions under which the comparisons are elegantly simple. We relate (i) measurements of currents through receptor channels in the cell membranes to measurements of the rates of ion translocation through the receptor channels in vesicles and (ii) measurements of the lifetimes of receptor states (for instance, the lifetime of the active state of the receptor--i.e., the state in which it can form open channels) to rate coefficients obtained in chemical kinetic measurements (for instance, those for the interconversions between different states of the receptor). In eel Ringer's solution we have found the single-channel conductance (gamma) of the receptor in E. electricus electroplax cells to be 53 pS. From this value, a specific reaction rate for ion translocation, J, of 5 X 10(7) M-1 X sec-1 was calculated. When membrane vesicles prepared from the electroplax cells and the same solution compositions were used, chemical kinetic measurements gave a J value of 3 X 10(7) M-1 X sec-1. The agreement between the two measurements is important because (i) they reflect different experimental conditions, which require different assumptions in interpreting the results, and (ii) it indicates that the two techniques can be used to obtain complementary information: the methods have different time resolutions and can be used in different ranges of acetylcholine concentrations.

  19. Acetylcholine receptor (from Electrophorus electricus): a comparison of single-channel current recordings and chemical kinetic measurements.

    PubMed Central

    Hess, G P; Kolb, H A; Läuger, P; Schoffeniels, E; Schwarze, W

    1984-01-01

    We report a direct comparison between two types of measurements of the dynamic properties of the acetylcholine receptor: single-channel currents recorded using the patch-clamp technique and chemical kinetic measurements. Electrophorus electricus electroplax cells, and membrane vesicles prepared from these cells, were used. Such a comparison, and single-channel currents recorded from these cells, have not previously been reported. We first give the theoretical basis for the comparison and define the conditions under which the comparisons are elegantly simple. We relate (i) measurements of currents through receptor channels in the cell membranes to measurements of the rates of ion translocation through the receptor channels in vesicles and (ii) measurements of the lifetimes of receptor states (for instance, the lifetime of the active state of the receptor--i.e., the state in which it can form open channels) to rate coefficients obtained in chemical kinetic measurements (for instance, those for the interconversions between different states of the receptor). In eel Ringer's solution we have found the single-channel conductance (gamma) of the receptor in E. electricus electroplax cells to be 53 pS. From this value, a specific reaction rate for ion translocation, J, of 5 X 10(7) M-1 X sec-1 was calculated. When membrane vesicles prepared from the electroplax cells and the same solution compositions were used, chemical kinetic measurements gave a J value of 3 X 10(7) M-1 X sec-1. The agreement between the two measurements is important because (i) they reflect different experimental conditions, which require different assumptions in interpreting the results, and (ii) it indicates that the two techniques can be used to obtain complementary information: the methods have different time resolutions and can be used in different ranges of acetylcholine concentrations. PMID:6089188

  20. Delimiting the Binding Site for Quaternary Ammonium Lidocaine Derivatives in the Acetylcholine Receptor Channel

    PubMed Central

    Pascual, Juan M.; Karlin, Arthur

    1998-01-01

    The triethylammonium QX-314 and the trimethylammonium QX-222 are lidocaine derivatives that act as open-channel blockers of the acetylcholine (ACh) receptor. When bound, these blockers should occlude some of the residues lining the channel. Eight residues in the second membrane-spanning segment (M2) of the mouse-muscle α subunit were mutated one at a time to cysteine and expressed together with wild-type β, γ, and δ subunits in Xenopus oocytes. The rate constant for the reaction of each substituted cysteine with 2-aminoethyl methanethiosulfonate (MTSEA) was determined from the time course of the irreversible effect of MTSEA on the ACh-induced current. The reactions were carried out in the presence and absence of ACh and in the presence and absence of QX-314 and QX-222. These blockers had no effect on the reactions in the absence of ACh. In the presence of ACh, both blockers retarded the reaction of extracellularly applied MTSEA with cysteine substituted for residues from αVal255, one third of the distance in from the extracellular end of M2, to αGlu241, flanking the intracellular end of M2, but not with cysteine substituted for αLeu258 or αGlu262, at the extracellular end of M2. The reactions of MTSEA with cysteines substituted for αLeu258 and αGlu262 were considerably faster in the presence of ACh than in its absence. That QX-314 and QX-222 did not protect αL258C and αE262C against reaction with MTSEA in the presence of ACh implies that protection of the other residues was due to occlusion of the channel and not to the promotion of a less reactive state from a remote site. Given the 12-Å overall length of the blockers and the α-helical conformation of M2 in the open state, the binding site for both blockers extends from αVal255 down to αSer248. PMID:9806969

  1. Fast-channel congenital myasthenic syndrome with a novel acetylcholine receptor mutation at the α-ε subunit interface.

    PubMed

    Webster, Richard; Liu, Wei-Wei; Chaouch, Amina; Lochmüller, Hanns; Beeson, David

    2014-02-01

    Congenital myasthenic syndromes (CMS) result from the failure to achieve muscle depolarisation due to disorders in the structure and/or function of the neuromuscular synapse. Mutations of the nicotinic acetylcholine receptor (nAChR) form a major subset of CMS. We describe a patient who presented with recurrent apnoeic crises in the neonatal period requiring ventilator support. Electromyography revealed compound muscle action potential decrement upon repetitive stimulation. Sequencing of nAChR subunit genes revealed two missense mutations. One previously reported null mutation p.εTyr15His, and a second novel missense mutation, p.εThr38Lys, that is well expressed in mammalian cell culture and thus likely to exert its effect via alteration of ion channel kinetics. Functional analysis revealed abbreviated ion channel bursts characteristic of a fast channel CMS. The mutation p.εThr38Lys occurs at the interface between the α and ε subunits of the nAChR pentamer and leads to instability of the open channel. The effects of this mutation on channel function were investigated in relation to other fast channel mutants at an analogous subunit interface within the nAChR pentamer. Fast channel syndromes are frequently characterised by severe myasthenic weakness with apnoeic crises; knowledge of the underlying mutation and its functional consequences can be vital for appropriate therapy and patient management.

  2. Cross-reactivity of acid-sensing ion channel and Na+–H+ exchanger antagonists with nicotinic acetylcholine receptors

    PubMed Central

    Santos-Torres, Julio; Ślimak, Marta A; Auer, Sebastian; Ibañez-Tallon, Inés

    2011-01-01

    Abstract Nicotinic acetylcholine receptors (nAChRs) are widely distributed throughout the mammalian central and peripheral nervous systems, where they contribute to neuronal excitability and synaptic communication. It has been reported that nAChRs are modulated by BK channels and that BK channels, in turn, are inhibited by acid-sensing ion channels (ASICs). Here we investigate the possible functional interaction between these channels in medial habenula (MHb) neurones. We report that selective antagonists of large-conductance calcium-activated potassium channels and ASIC1a channels, paxilline and psalmotoxin 1, respectively, did not induce detectable changes in nicotine-evoked currents. In contrast, the non-selective ASIC and Na+–H+ exchanger (NHE1) antagonists, amiloride and its analogues, suppressed nicotine-evoked responses in MHb neurones of wild-type and ASIC2 null mice, excluding a possible involvement of ASIC2 in the nAChR inhibition by amiloride. Zoniporide, a more selective inhibitor of NHE1, reversibly inhibited α3β4-, α7- and α4-containing (*) nAChRs in Xenopus oocytes and in brain slices, as well as in PS120 cells deficient in NHE1 and virally transduced with nAChRs, suggesting a generalized effect of zoniporide in most neuronal nAChR subtypes. Independently from nAChR antagonism, zoniporide profoundly blocked synaptic transmission onto MHb neurones without affecting glutamatergic and GABA receptors. Taken together, these results indicate that amiloride and zoniporide, which are clinically used to treat hypertension and cardiovascular disease, have an inhibitory effect on neuronal nAChRs when used experimentally at high doses. The possible cross-reactivity of these compounds with nAChRs in vivo will require further investigation. PMID:21911609

  3. Subunit-selective role of the M3 transmembrane domain of the nicotinic acetylcholine receptor in channel gating.

    PubMed

    De Rosa, María José; Corradi, Jeremías; Bouzat, Cecilia

    2008-02-01

    The nicotinic acetylcholine receptor (AChR) can be either hetero-pentameric, composed of alpha and non-alpha subunits, or homo-pentameric, composed of alpha7 subunits. To explore the subunit-selective contributions of transmembrane domains to channel gating we analyzed single-channel activity of chimeric muscle AChRs. We exchanged M3 between alpha1 and epsilon or alpha7 subunits. The replacement of M3 in alpha1 by epsilonM3 significantly alters activation properties. Channel activity appears as bursts of openings whose durations are 20-fold longer than those of wild-type AChRs. In contrast, 7-fold briefer openings are observed in AChRs containing the reverse epsilon chimeric subunit. The duration of the open state decreases with the increase in the number of alpha1M3 segments, indicating additive contributions of M3 of all subunits to channel closing. Each alpha1M3 segment decreases the energy barrier of the closing process by approximately 0.8 kcal/mol. Partial chimeric subunits show that small stretches of the M3 segment contribute additively to the open duration. The replacement of alpha1 sequence by alpha7 in M3 leads to 3-fold briefer openings whereas in M1 it leads to 10-fold prolonged openings, revealing that the subunit-selective role is unique to each transmembrane segment.

  4. Progesterone Modulates a Neuronal Nicotinic Acetylcholine Receptor

    NASA Astrophysics Data System (ADS)

    Valera, S.; Ballivet, M.; Bertrand, D.

    1992-10-01

    The major brain nicotinic acetylcholine receptor is assembled from two subunits termed α 4 and nα 1. When expressed in Xenopus oocytes, these subunits reconstitute a functional acetylcholine receptor that is inhibited by progesterone levels similar to those found in serum. In this report, we show that the steroid interacts with a site located on the extracellular part of the protein, thus confirming that inhibition by progesterone is not due to a nonspecific perturbation of the membrane bilayer or to the activation of second messengers. Because inhibition by progesterone does not require the presence of agonist, is voltage-independent, and does not alter receptor desensitization, we conclude that the steroid is not an open channel blocker. In addition, we show that progesterone is not a competitive inhibitor but may interact with the acetylcholine binding site and that its effect is independent of the ionic permeability of the receptor.

  5. Effect of channel geometry on the electrostatic potential in acetylcholine channels.

    PubMed

    Aidoo, Anthony Y

    2003-12-01

    We study the effect of channel geometry on the potential barrier encountered by ions as they permeate the acetylcholine receptor channel. Among the various channel geometries which have been used to represent the acetylcholine receptor channel include the cylinder and the toroidal catenary. The main reasons for those choices appear to be the facilitation of separation of the Poisson equation, rather than biological considerations. We consider a novel and realistic acetylcholine channel geometry, and calculate the electrostatic potential profiles within it, and compare our results with results from other channel geometries.

  6. Neuronal Nicotinic Acetylcholine Receptors and Epilepsy

    PubMed Central

    Bertrand, Daniel

    2002-01-01

    The identification of a genetically transmissible form of epilepsy that is associated with a mutation in CHRNA4, the gene that encodes the α4 subunit of the high-affinity nicotinic acetylcholine receptor, was the first demonstration that an alteration in a ligand-gated ion channel can cause seizures. Since then, nine mutations have been found, and analysis of their physiologic properties has revealed that all of them enhance receptor function. PMID:15309115

  7. Competitive inhibition of the nondepolarizing muscle relaxant rocuronium on nicotinic acetylcholine receptor channels in the rat superior cervical ganglia.

    PubMed

    Zhang, Chengmi; Wang, Zhenmeng; Zhang, Jinmin; Qiu, Haibo; Sun, Yuming; Yang, Liqun; Wu, Feixiang; Zheng, Jijian; Yu, Weifeng

    2014-05-01

    A number of case reports now indicate that rocuronium can induce a number of serious side effects. We hypothesized that these side effects might be mediated by the inhibition of nicotinic acetylcholine receptors (nAChRs) at superior cervical ganglion (SCG) neurons. Conventional patch clamp recordings were used to study the effects of rocuronium on nAChR currents from enzymatically dissociated rat SCG neurons. We found that ACh induced a peak transient inward current in rat SCG neurons. Additionally, rocuronium suppressed the peak ACh-evoked currents in rat SCG neurons in a concentration-dependent and competitive manner, and it increased the extent of desensitization of nAChRs. The inhibitory rate of rocuronium on nAChR currents did not change significantly at membrane potentials between -70 and -20 mV, suggesting that this inhibition was voltage independent. Lastly, rocuronium preapplication enhanced its inhibitory effect, indicating that this drug might prefer to act on the closed state of nAChR channels. In conclusion, rocuronium, at clinically relevant concentrations, directly inhibits nAChRs at the SCG by interacting with both opened and closed states. This inhibition is competitive, dose dependent, and voltage independent. Blockade of synaptic transmission in the sympathetic ganglia by rocuronium might have potentially inhibitory effects on the cardiovascular system.

  8. Biophysical and ion channel functional characterization of the Torpedo californica nicotinic acetylcholine receptor in varying detergent-lipid environments

    PubMed Central

    Asmar-Rovira, Guillermo A.; Asseo-García, Aloysha M.; Quesada, Orestes; Hanson, Michael A.; Nogueras, Carlos; Lasalde-Dominicci, José A.; Stevens, Raymond C.

    2009-01-01

    The nicotinic acetylcholine receptor (nAChR) of Torpedo electric rays has been extensively characterized over the last three decades. However, the molecular mechanisms by which detergents influence membrane protein stability and function remain poorly understood, and elucidation of the dynamic detergent-lipid-protein interactions of solubilized membrane proteins is a largely unexplored research field. This study examined nine detergents upon nAChR solubilization and purification, to assess receptor lipid composition using GC (Gas Chromatography)-FID (Flame Ionization) and/or GC-MSD (Mass Selective Detectors), stability and aggregation state using A-SEC (Analytical Size-Exclusion Chromatography) and EM (Electron Microscopy), and planar lipid bilayers to measure ion channel function. Detergent solubilization of nAChR-enriched membranes did not result in significant native lipid depletion or destabilization. Upon purification, native lipid depletion occurred in all detergents, with lipid-analog detergents [CHAPS (3-[(3-Cholamidopropyl)-dimethylammonio]-1-propane sulfonate), FC-12 (n-Dodecylphosphocholine) and sodium cholate (3α,7α,12α-Trihydroxy-5β-cholan-24-oic acid)] maintaining stability and supporting ion channel function, while non-lipid analog detergents [Cymal-6 (6-Cyclohexyl-1-hexyl-β-d-maltoside), DDM (n-Dodecyl-β-d-maltopyranoside), LDAO (Lauryldimethylamine-N-oxide) and OG (n-Octyl-β-d-glucopyranoside)] showed decreased stability and significant reduction or loss of ion channel function. Anapoe-C12E9 (Polyoxyethylene-(9)-dodecyl ether) and BigCHAP (N,N′-bis-(3-d-Gluconamidopropyl) cholamide) retained residual amounts of native lipid, maintaining moderate stability and ion channel function when compared to lipid-analog detergents. Overall, these results show that the nAChR can be stable and functional in lipid-analog detergents or in detergents that retain moderate amounts of residual native lipids, while the opposite is true about non-lipid analog

  9. Palmitoylation of Nicotinic Acetylcholine Receptors

    PubMed Central

    Alexander, J. K.; Govind, A. P.; Drisdel, R. C.; Blanton, M. P.; Vallejo, Y.; Lam, T. T.

    2012-01-01

    It is well established that nicotinic acetylcholine receptors (nAChRs) undergo a number of different post-translational modifications, such as disulfide bond formation, glycosylation, and phosphorylation. Recently, our laboratory has developed more sensitive assays of protein palmitoylation that have allowed us and others to detect the palmitoylation of relatively low abundant proteins such as ligand-gated ion channels. Here, we present evidence that palmitoylation is prevalent on many subunits of different nAChR subtypes, both muscle-type nAChRs and the neuronal “α4β2” and “α7” subtypes most abundant in brain. The loss of ligand binding sites that occurs when palmitoylation is blocked with the inhibitor bromopalmitate suggests that palmitoylation of α4β2 and α7 subtypes occurs during subunit assembly and regulates the formation of ligand binding sites. However, additional experiments are needed to test whether nAChR subunit palmitoylation is involved in other aspects of nAChR trafficking or whether palmitoylation regulates nAChR function. Further investigation would be aided by identifying the sites of palmitoylation on the subunits, and here we propose a mass spectrometry strategy for identification of these sites. PMID:19693711

  10. [Desensitization of the nicotinic acetylcholine receptor].

    PubMed

    Quiñonez, M; Rojas, L

    1994-01-01

    In biological membranes, ionic channels act speeding up ion movements. Each ionic channel is excited by a specific stimulus (i.e. electric, mechanical, chemical, etc.). Chemically activated ionic channels (CAIC), such as the nicotinic acetylcholine receptor (nAChR), suffer desensitization when the receptor site is still occupied by the agonist molecule. The desensitized CAIC is a non functional channel state regarded as a particular case of receptors rundown. CAIC desensitization only involve reduced activity and not their membrane elimination. Desensitization is important to control synaptic transmission and the development of the nervous system. In this review we discuss results related to its production, modulation and some aspects associated to models that consider it. Finally, an approach combining molecular biology and electrophysiology techniques to understand desensitization and its importance in biological systems is presented.

  11. Alpha2-adrenoceptor-independent inhibition of acetylcholine receptor channel and sodium channel by dexmedetomidine in rat superior cervical ganglion neurons.

    PubMed

    Yang, L; Tang, J; Dong, J; Zheng, J

    2015-03-19

    Both central and peripheral sympathetic nervous systems contribute to the cardiovascular effects of dexmedetomidine (DMED), a highly selective and widely used a2-adrenoceptor agonist for sedation, analgesia, and stress management. The central sympatholytic effects are augmented by peripheral inhibition of sympathetic ganglion transmission. The mechanism is not clear. In this research, using conventional patch-clamp recordings we investigated the direct effects of DMED on sodium (Na(+)) channel currents (INa) and nicotinic acetylcholine (ACh) receptor (nAChRs) channel currents (IACh) in rat superior cervical ganglion (SCG) neurons to explore the possible mechanisms of sympathetic ganglion transmission inhibition by DMED. DMED voltage-dependently suppressed INa with half maximal inhibitory concentration (IC50) values of 67.2±9.6μM and 26.1±5.3μM at holding potentials of -80mV and -60mV, respectively. The inhibition of Na(+) channels by DMED was also frequency dependent. 100μM DMED shifted the Na(+) channel inactivation curves to the hyperpolarizing direction by 9.8mV (P<0.01) and slowed the recovery from inactivation by 8.9ms (P<0.01), but no effects were seen on the shape of the current-voltage relationship or Na(+) channels activation curves. DMED dose-dependently inhibited IACh with an IC50 value of 5.5±2.4μM in SCG neurons, and this inhibition was voltage-independent. DMED pretreatment followed by fast co-application of DMED and ACh produced a significantly larger IACh inhibition than without DMED pretreatment. Yohimbine, phentolamine, and atropine pretreatment did not alter the inhibitory effects of DMED on INa and IACh. In conclusion, DMED dose-dependently inhibits INa and IACh in rat SCG neurons by preferential binding to the inactivated state of the Na(+) channels and the closed state (resting) of nAChR channels respectively. Both inhibitions are a2-adrenoceptor independent. Furthermore, the nAChR channels in rat SCG neurons are much more sensitive to

  12. Structure-activity relationship of reversible cholinesterase inhibitors: activation, channel blockade and stereospecificity of the nicotinic acetylcholine receptor-ion channel complex.

    PubMed

    Albuquerque, E X; Aracava, Y; Cintra, W M; Brossi, A; Schönenberger, B; Deshpande, S S

    1988-01-01

    1. We have shown that all cholinesterase (ChE) inhibitors, in addition to their well-known anti-ChE activity, have multiple effects on the nicotinic acetylcholine receptor-ion channel (AChR) macromolecule resulting from interactions with the agonist recognition site and with sites located at the ion channel component. Activation, competitive antagonism and different types of noncompetitive blockade occurring at similar concentration ranges and contributing in different proportions result in complex and somewhat unpredictable alterations in AChR function. The question is now raised as to how each effect of these compounds contributes to their antidotal property against organophosphorus (OP) poisoning, and what set of actions makes one reversible ChE inhibitor a better antidote. Many lines of evidence support the importance of direct interactions with various sites on the AChR: 1) morphological and toxicological studies with (+) physostigmine showed that anti-ChE activity is not essential to protect animals against toxicity by irreversible ChE inhibitors; 2) (-)physostigmine is far more effective against OP poisoning; 3) open channel blockers such as mecamylamine with no significant anti-ChE activity enhance the protective action of (-)physostigmine; 4) neostigmine, pyridostigmine, (-)physostigmine and (+)physostigmine showed qualitatively and quantitatively distinct toxicity and damage to endplate morphology and function. 2. In prophylaxis and during the very early phase of OP poisoning, carbamates, especially (-)physostigmine combined with mecamylamine and atropine, could protect almost 100% of the animals exposed to multiple lethal doses of OPs. Electrophysiological data showed that (-)physostigmine, among several reversible ChE inhibitors, showed greater potency in depressing both endplate current (EPC) peak amplitude and tau EPC. Therefore, concerning neuromuscular transmission, it seems that the higher the potency of a drug in reducing endplate permeability

  13. Single nucleotide polymorphisms and genotypes of transient receptor potential ion channel and acetylcholine receptor genes from isolated B lymphocytes in myalgic encephalomyelitis/chronic fatigue syndrome patients.

    PubMed

    Marshall-Gradisnik, Sonya; Johnston, Samantha; Chacko, Anu; Nguyen, Thao; Smith, Peter; Staines, Donald

    2016-12-01

    Objective The pathomechanism of chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) is unknown; however, a small subgroup of patients has shown muscarinic antibody positivity and reduced symptom presentation following anti-CD20 intervention. Given the important roles of calcium (Ca(2+)) and acetylcholine (ACh) signalling in B cell activation and potential antibody development, we aimed to identify relevant single nucleotide polymorphisms (SNPs) and genotypes in isolated B cells from CFS/ME patients. Methods A total of 11 CFS/ME patients (aged 31.82 ± 5.50 years) and 11 non-fatigued controls (aged 33.91 ± 5.06 years) were included. Flow cytometric protocols were used to determine B cell purity, followed by SNP and genotype analysis for 21 mammalian TRP ion channel genes and nine mammalian ACh receptor genes. SNP association and genotyping analysis were performed using ANOVA and PLINK analysis software. Results Seventy-eight SNPs were identified in nicotinic and muscarinic acetylcholine receptor genes in the CFS/ME group, of which 35 were in mAChM3. The remaining SNPs were identified in nAChR delta (n = 12), nAChR alpha 9 (n = 5), TRPV2 (n = 7), TRPM3 (n = 4), TRPM4 (n = 1) mAChRM3 2 (n = 2), and mAChRM5 (n = 3) genes. Nine genotypes were identified from SNPs in TRPM3 (n = 1), TRPC6 (n = 1), mAChRM3 (n = 2), nAChR alpha 4 (n = 1), and nAChR beta 1 (n = 4) genes, and were located in introns and 3' untranslated regions. Odds ratios for these specific genotypes ranged between 7.11 and 26.67 for CFS/ME compared with the non-fatigued control group. Conclusion This preliminary investigation identified a number of SNPs and genotypes in genes encoding TRP ion channels and AChRs from B cells in patients with CFS/ME. These may be involved in B cell functional changes, and suggest a role for Ca(2+) dysregulation in AChR and TRP ion channel signalling in the pathomechanism of CFS/ME.

  14. Rebuilding a macromolecular membrane complex at the atomic scale: case of the Kir6.2 potassium channel coupled to the muscarinic acetylcholine receptor M2.

    PubMed

    Sapay, Nicolas; Estrada-Mondragon, Argel; Moreau, Christophe; Vivaudou, Michel; Crouzy, Serge

    2014-09-01

    Ion channel-coupled receptors (ICCR) are artificial proteins built from a G protein-coupled receptor and an ion channel. Their use as molecular biosensors is promising in diagnosis and high-throughput drug screening. The concept of ICCR was initially validated with the combination of the muscarinic receptor M2 with the inwardly rectifying potassium channel Kir6.2. A long protein engineering phase has led to the biochemical characterization of the M2-Kir6.2 construct. However, its molecular mechanism remains to be elucidated. In particular, it is important to determine how the activation of M2 by its agonist acetylcholine triggers the modulation of the Kir6.2 channel via the M2-Kir6.2 linkage. In the present study, we have developed and validated a computational approach to rebuild models of the M2-Kir6.2 chimera from the molecular structure of M2 and Kir6.2. The protocol was first validated on the known protein complexes of the μ-opioid Receptor, the CXCR4 receptor and the Kv1.2 potassium channel. When applied to M2-Kir6.2, our protocol produced two possible models corresponding to two different orientations of M2. Both models highlights the role of the M2 helices I and VIII in the interaction with Kir6.2, as well as the role of the Kir6.2 N-terminus in the channel opening. Those two hypotheses will be explored in a future experimental study of the M2-Kir6.2 construct.

  15. Conotoxins Targeting Nicotinic Acetylcholine Receptors: An Overview

    PubMed Central

    Lebbe, Eline K. M.; Peigneur, Steve; Wijesekara, Isuru; Tytgat, Jan

    2014-01-01

    Marine snails of the genus Conus are a large family of predatory gastropods with an unparalleled molecular diversity of pharmacologically active compounds in their venom. Cone snail venom comprises of a rich and diverse cocktail of peptide toxins which act on a wide variety of ion channels such as voltage-gated sodium- (NaV), potassium- (KV), and calcium- (CaV) channels as well as nicotinic acetylcholine receptors (nAChRs) which are classified as ligand-gated ion channels. The mode of action of several conotoxins has been the subject of investigation, while for many others this remains unknown. This review aims to give an overview of the knowledge we have today on the molecular pharmacology of conotoxins specifically interacting with nAChRs along with the structure–function relationship data. PMID:24857959

  16. Non-charged amino acids from three different domains contribute to link agonist binding to channel gating in alpha7 nicotinic acetylcholine receptors.

    PubMed

    Aldea, Marcos; Mulet, José; Sala, Salvador; Sala, Francisco; Criado, Manuel

    2007-10-01

    Binding of agonists to nicotinic acetylcholine receptors results in channel opening. Previously, we have shown that several charged residues at three different domains of the alpha7 nicotinic receptor are involved in coupling binding and gating, probably through a network of electrostatic interactions. This network, however, could also be integrated by other residues. To test this hypothesis, non-charged amino acids were mutated and expression levels and electrophysiological responses of mutant receptors were determined. Mutants at positions Asn47 and Gln48 (loop 2), Ile130, Trp134, and Gln140 (loop 7), and Thr264 (M2-M3 linker) showed poor or null functional responses, despite significant membrane expression. By contrast, mutants F137A and S265A exhibited a gain of function effect. In all cases, changes in dose-response relationships were small, EC(50) values being between threefold smaller and fivefold larger, arguing against large modifications of agonist binding. Peak currents decayed at the same rate in all receptors except two, excluding large effects on desensitization. Thus, the observed changes could be mostly caused by alterations of the gating characteristics. Moreover, analysis of double mutants showed an interconnection between some residues in these domains, especially Gln48 with Ile130, suggesting a potential coupling between agonist binding and channel gating through these amino acids.

  17. The single-channel properties of human acetylcholine α7 receptors are altered by fusing α7 to the green fluorescent protein

    PubMed Central

    Fucile, Sergio; Palma, Eleonora; Martínez-Torres, Ataúlfo; Miledi, Ricardo; Eusebi, Fabrizio

    2002-01-01

    Neuronal nicotinic acetylcholine (AcCho) receptors composed of α7-subunits (α7-AcChoRs) are involved in many physiological activities. Nevertheless, very little is known about their single-channel characteristics. By using outside-out patch-clamp recordings from Xenopus oocytes expressing wild-type (wt) α7-AcChoRs, we identified two classes of channel conductance: a low conductance (γL) of 72 pS and a high one (γH) of 87 pS, with mean open-times (τop) of 0.6 ms. The same classes of conductances, but longer τop (3 ms), were seen in experiments with chimeric α7 receptors in which the wtα7 extracellular C terminus was fused to the green fluorescent protein (wtα7-GFP AcChoRs). In contrast, channels with three different conductances were gated by AcCho in oocytes expressing α7 receptors carrying a Leu-to-Thr 248 mutation (mutα7) or oocytes expressing chimeric mutα7-GFP receptors. These conductance levels were significantly smaller, and their mean open-times were larger, than those of wtα7-AcChoRs. Interestingly, in the absence of AcCho, these oocytes showed single-channel openings of the same conductances, but shorter τop, than those activated by AcCho. Accordingly, human homomeric wtα7 receptors open channels of high conductance and brief lifetime, and fusion to GFP lengthens their lifetime. In contrast, mutα7 receptors open channels of lower conductance and longer lifetime than those gated by wtα7-AcChoRs, and these parameters are not greatly altered by fusing the mutα7 to GFP. All this evidence shows that GFP-tagging can alter importantly receptor kinetics, a fact that has to be taken into account whenever tagged proteins are used to study their function. PMID:11891309

  18. Modulation of nicotinic acetylcholine receptors by strychnine

    PubMed Central

    García-Colunga, Jesús; Miledi, Ricardo

    1999-01-01

    Strychnine, a potent and selective antagonist at glycine receptors, was found to inhibit muscle (α1β1γδ, α1β1γ, and α1β1δ) and neuronal (α2β2 and α2β4) nicotinic acetylcholine receptors (AcChoRs) expressed in Xenopus oocytes. Strychnine alone (up to 500 μM) did not elicit membrane currents in oocytes expressing AcChoRs, but, when applied before, concomitantly, or during superfusion of acetylcholine (AcCho), it rapidly and reversibly inhibited the current elicited by AcCho (AcCho-current). Although in the three cases the AcCho-current was reduced to the same level, its recovery was slower when the oocytes were preincubated with strychnine. The amount of AcCho-current inhibition depended on the receptor subtype, and the order of blocking potency by strychnine was α1β1γδ > α2β4 > α2β2. With the three forms of drug application, the Hill coefficient was close to one, suggesting a single site for the receptor interaction with strychnine, and this interaction appears to be noncompetitive. The inhibitory effects on muscle AcChoRs were voltage-independent, and the apparent dissociation constant for AcCho was not appreciably changed by strychnine. In contrast, the inhibitory effects on neuronal AcChoRs were voltage-dependent, with an electrical distance of ≈0.35. We conclude that strychnine regulates reversibly and noncompetitively the embryonic type of muscle AcChoR and some forms of neuronal AcChoRs. In the former case, strychnine presumably inhibits allosterically the receptor by binding at an external domain whereas, in the latter case, it blocks the open receptor-channel complex. PMID:10097172

  19. Nicotinic Acetylcholine Receptors in Sensory Cortex

    ERIC Educational Resources Information Center

    Metherate, Raju

    2004-01-01

    Acetylcholine release in sensory neocortex contributes to higher-order sensory function, in part by activating nicotinic acetylcholine receptors (nAChRs). Molecular studies have revealed a bewildering array of nAChR subtypes and cellular actions; however, there is some consensus emerging about the major nAChR subtypes and their functions in…

  20. Cross-reactivity of acid-sensing ion channel and Na⁺-H⁺ exchanger antagonists with nicotinic acetylcholine receptors.

    PubMed

    Santos-Torres, Julio; Ślimak, Marta A; Auer, Sebastian; Ibañez-Tallon, Inés

    2011-11-01

    Nicotinic acetylcholine receptors (nAChRs) are widely distributed throughout the mammalian central and peripheral nervous systems, where they contribute to neuronal excitability and synaptic communication. It has been reported that nAChRs are modulated by BK channels and that BK channels, in turn, are inhibited by acid-sensing ion channels (ASICs). Here we investigate the possible functional interaction between these channels in medial habenula (MHb) neurones. We report that selective antagonists of large-conductance calcium-activated potassium channels and ASIC1a channels, paxilline and psalmotoxin 1, respectively, did not induce detectable changes in nicotine-evoked currents. In contrast, the non-selective ASIC and Na(+)-H(+) exchanger (NHE1) antagonists, amiloride and its analogues, suppressed nicotine-evoked responses in MHb neurones of wild-type and ASIC2 null mice, excluding a possible involvement of ASIC2 in the nAChR inhibition by amiloride. Zoniporide, a more selective inhibitor of NHE1, reversibly inhibited α3β4-, α7- and α4-containing (*) nAChRs in Xenopus oocytes and in brain slices, as well as in PS120 cells deficient in NHE1 and virally transduced with nAChRs, suggesting a generalized effect of zoniporide in most neuronal nAChR subtypes. Independently from nAChR antagonism, zoniporide profoundly blocked synaptic transmission onto MHb neurones without affecting glutamatergic and GABA receptors. Taken together, these results indicate that amiloride and zoniporide, which are clinically used to treat hypertension and cardiovascular disease, have an inhibitory effect on neuronal nAChRs when used experimentally at high doses. The possible cross-reactivity of these compounds with nAChRs in vivo will require further investigation.

  1. The anthelmintic pyrantel acts as a low efficacious agonist and an open-channel blocker of mammalian acetylcholine receptors.

    PubMed

    Rayes, D; De Rosa, M J; Spitzmaul, G; Bouzat, C

    2001-08-01

    Pyrantel is an anthelmintic which acts as an agonist of nicotinic receptors (AChRs) of nematodes and exerts its therapeutic effects by depolarizing their muscle membranes. Here we explore at the single-channel level the action of pyrantel at mammalian muscle AChR. AChR currents are elicited by pyrantel. However, openings do not appear in clearly identifiable clusters over a range of pyrantel concentrations (1-300 microM). The mean open time decreases as a function of concentration, indicating an additional open-channel block. Single-channel recordings in the presence of high ACh concentrations and pyrantel demonstrate that the anthelmintic acts as a high-affinity open-channel blocker. When analyzed in terms of a sequential blocking scheme, the calculated forward rate constant for the blocking process is 8x10(7) M(-1) x s(-1), the apparent dissociation constant is 8 microM at a membrane potential of -70 mV and the process is voltage dependent. Pyrantel displaces alpha-bungarotoxin binding but the concentration dependence of equilibrium binding is shifted towards higher concentrations with respect to that of ACh binding. Thus, by acting at the binding site pyrantel activates mammalian AChRs with low efficacy, and by sterical blockade of the pore, the activated channels are then rapidly inhibited.

  2. Structural Analysis and Deletion Mutagenesis Define Regions of QUIVER/SLEEPLESS that Are Responsible for Interactions with Shaker-Type Potassium Channels and Nicotinic Acetylcholine Receptors

    PubMed Central

    Wu, Meilin; Liu, Clifford Z.; Joiner, William J.

    2016-01-01

    Ly6 proteins are endogenous prototoxins found in most animals. They show striking structural and functional parallels to snake α-neurotoxins, including regulation of ion channels and cholinergic signaling. However, the structural contributions of Ly6 proteins to regulation of effector molecules is poorly understood. This question is particularly relevant to the Ly6 protein QUIVER/SLEEPLESS (QVR/SSS), which has previously been shown to suppress excitability and synaptic transmission by upregulating potassium (K) channels and downregulating nicotinic acetylcholine receptors (nAChRs) in wake-promoting neurons to facilitate sleep in Drosophila. Using deletion mutagenesis, co-immunoprecipitations, ion flux assays, surface labeling and confocal microscopy, we demonstrate that only loop 2 is required for many of the previously described properties of SSS in transfected cells, including interactions with K channels and nAChRs. Collectively our data suggest that QVR/SSS, and by extension perhaps other Ly6 proteins, target effector molecules using limited protein motifs. Mapping these motifs may be useful in rational design of drugs that mimic or suppress Ly6-effector interactions to modulate nervous system function. PMID:26828958

  3. CRAC channels are required for [Ca(2+)]i oscillations and c-fos gene expression after muscarinic acetylcholine receptor activation in leukemic T cells.

    PubMed

    Mashimo, Masato; Yurie, Yukako; Kawashima, Koichiro; Fujii, Takeshi

    2016-09-15

    T lymphocytes express muscarinic acetylcholine receptors (mAChRs) involved in regulating their proliferation, differentiation and cytokine release. Activation of M1, M3 or M5 mAChRs increases the intracellular Ca(2+) concentration ([Ca(2+)]i) through inositol-1,4,5-phosphate (IP3)-mediated Ca(2+) release from endoplasmic reticulum Ca(2+) stores. In addition, T lymphocytes express Ca(2+)-release activated Ca(2+) (CRAC) channels to induce Ca(2+) influx and to regulate diverse immune functions. Our aim in the present study was to assess the role of CRAC channels during mAChR activation in the Ca(2+)-dependent transduction that contributes to the regulation of T cell function. Changes in [Ca(2+)]i following mAChR activation on human leukemic T cells, CCRF-CEM (CEM), were monitored using fura-2, based on the ratio of 510nm fluorescences elicited by excitation at 340nm and 380nm (R340/380). We demonstrate that CEM cells express mainly M3 and M5 mAChRs, but little the M1 subtype, and that oxotremorine-M (Oxo-M), an mAChR agonist, induces an initial transient increase in [Ca(2+)]i followed by repetitive [Ca(2+)]i oscillations. Removing extracellular Ca(2+) or pharmacological blockade of CRAC channels abolished the [Ca(2+)]i oscillations without affecting the initial [Ca(2+)]i transient induced by Oxo-M. Moreover, CRAC channel blockade also suppressed Oxo-M-induced c-fos and interleukin-2 expression. These results suggest that upon M3 or M5 mAChR activation, IP3-mediated Ca(2+) release induces extracellular Ca(2+) influx through CRAC channels, which generates repetitive [Ca(2+)]i oscillations and, in turn, enhances c-fos gene expression in T lymphocytes. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. A model for the nicotinic acetylcholine receptor ion channel: structure of the transmembrane M2 segments as a pentameric assembly in a lipid bilayer

    NASA Astrophysics Data System (ADS)

    Saiz, Leonor; Klein, Michael L.

    2003-03-01

    The nicotinic acetylcholine receptor (nAChR) is the neurotransmitter gated ion channel responsible for the fast propagation of electrical signals between cells at the nerve-muscle synapse and neurons. The current model for the pore region of the nAChR consists of a bundle of five M2 alpha helices, which is supported by recent solution and solid-state NMR spectroscopy experiments on micelle samples and oriented (DMPC) bilayers. In order to investigate the structure and properties of pore forming region of a simple model for the nAChR, we have performed a molecular dynamics simulation study of the homo-pentameric bundle of M2 peptides in a DMPC lipid bilayer at similar conditions to those of the NMR experiments. During the nanosecond time scale investigated, the peptide bundle adopts a left-handed supercoil structure and the calculated average tilt of the helices agrees well with the recent NMR data. The water filled bundle displays a funnel-like structure. We focuss on those aspects of the structure and dynamics relevant to the function of the channel.

  5. Modal gating of muscle nicotinic acetylcholine receptors

    NASA Astrophysics Data System (ADS)

    Vij, Ridhima

    Many ion channels exhibit multiple patterns of kinetic activity in single-channel currents. This behavior is rare in WT mouse muscle nicotinic acetylcholine receptors (AChRs), where A2C↔A2O gating events are well-described by single exponentials. Also, single-channel open probability (PO) is essentially homogeneous at a given agonist concentration in the WT receptors. Here I report that perturbations of almost all the residues in loop C (alpha188-alpha199, at the agonist binding site) generate heterogeneity in PO ('modes'). Such unsettled activity was apparent with an alanine substitution at all positions in loop C (except alphaY190 and alphaY198) and with different side chain substitutions at alphaP197 for both adult- and fetal-type AChRs. I used single channel electrophysiology along with site-directed mutagenesis to study modal gating in AChRs consequent to mutations/deletions in loop C. The multiple patterns of kinetic activity arose from the difference in agonist affinity rather than in intrinsic AChR gating. Out of the four different agonists used to study the modal behavior, acetylcholine (ACh) showed a higher degree of kinetic heterogeneity compared to others. The time constant for switching between modes was long (~mins), suggesting that they arise from alternative, stable protein conformations. By studying AChRs having only 1 functional binding site, I attempted to find the source of the affinity difference, which was traced mainly to the alphadelta agonist site. Affinity at the neurotransmitter binding site is mainly determined by a core of five aromatic residues (alphaY93, alphaW149, alphaY190, alphaY198 and deltaW57). Phenylalanine substitutions at all aromatic residues except alphaY93 resulted in elimination of modes. Modes were also eliminated by alanine mutation at deltaW57 on the complementary side but not at other aromatics. Also, by substituting four gamma subunit residues into the delta subunit on the complementary beta sheet, I found that

  6. Primary Structure of Nicotinic Acetylcholine Receptor

    DTIC Science & Technology

    1986-08-01

    quantities of starting material (for reviews of receptor, see Popot and Changeux, 1984; Stroud and Finer-Moore, 1985). This work led to the...Cloning of the Acetylcholine Receptor. Cold Spring Harbor Symp. on Quant. Biol. XLVIH: 71-78. 15. Popot , J-L. and Changeux, J-P. (1984) The

  7. TRUSS, TNF-R1, and TRPC Ion Channels Synergistically Reverse Endoplasmic Reticulum Ca2+ Storage Reduction in Response to m1 Muscarinic Acetylcholine Receptor Signaling

    PubMed Central

    Mace, Kimberly E.; Lussier, Marc P.; Boulay, Guylain; Terry-Powers, Jennifer L.; Parfrey, Helen; Perraud, Anne-Laure; Riches, David W.H.

    2015-01-01

    Although most signaling responses initiated by tumor necrosis factor-α (TNF-α) occur in a Ca2+-independent fashion, TNF-α receptor signaling augments Ca2+ entry induced by Gαq/11 G-protein coupled receptors (GPCRs) in endothelial cells and increases transendothelial permeability. The signaling events involved in GPCR-induced Ca2+ influx have been characterized and involve store-operated Ca2+ entry facilitated by the Ca2+ permeable ion channel, transient receptor potential canonical 4 (TRPC4). Little is known about the mechanisms by which TNF-α receptor signaling augments GPCR-induced Ca2+ entry. T NF-α R eceptor U biquitous S ignaling and S caffolding protein (TRUSS) is a tumor necrosis factor receptor-1 (TNF-R1)-associated protein whose gene name is TRPC4-associated protein (TRPC4AP). The goal of our study was to test the hypothesis that TRUSS serves to link TNF-R1 and GPCR-signaling pathways at the level of TRPC4 by: (i) determining if TRUSS and TNF-R1 interact with TRPC4, and (ii) investigating the role of TRUSS, TNF-R1, and TRPC4 in GPCR-induced Ca2+ signaling. Here, we show that TRUSS and TNF-R1 interact with a sub-family of TRPC channels (TRPC1, 4, and 5). In addition, we show that TRUSS and TNF-R1 function together with TRPC4 to elevate endoplasmic reticulum Ca2+ filling in the context of reduced endoplasmic reticulum Ca2+ storage initiated by G-protein coupled m1 muscarinic acetylcholine receptor (m1AchR) signaling. Together, these findings suggest that TNF-R1, TRUSS, and TRPC4 augment Ca2+ loading of endoplasmic reticulum Ca2+ stores in the context of m1AchR stimulation and provide new insights into the mechanisms that connect TNF-R1 to GPCR-induced Ca2+ signaling. PMID:20458742

  8. Is the acetylcholine receptor a rabies virus receptor?

    PubMed

    Lentz, T L; Burrage, T G; Smith, A L; Crick, J; Tignor, G H

    1982-01-08

    Rabies virus was found on mouse diaphragms and on cultured chick myotubes in a distribution coinciding with that of the acetylcholine receptor. Treatment of the myotubes with alpha-bungarotoxin and d-tubocurarine before the addition of the virus reduced the number of myotubes that became infected with rabies virus. These findings together suggest that acetylcholine receptors may serve as receptors for rabies virus. The binding of virus to acetylcholine receptors, which are present in high density at the neuromuscular junction, would provide a mechanism whereby the virus could be locally concentrated at sites in proximity to peripheral nerves facilitating subsequent uptake and transfer to the central nervous system.

  9. Diversity of insect nicotinic acetylcholine receptor subunits.

    PubMed

    Jones, Andrew K; Sattelle, David B

    2010-01-01

    Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that mediate fast synaptic transmission in the insect nervous system and are targets of a major group of insecticides, the neonicotinoids. They consist of five subunits arranged around a central ion channeL Since the subunit composition determines the functional and pharmacological properties of the receptor the presence of nAChR families comprising several subunit-encodinggenes provides a molecular basis for broad functional diversity. Analyses of genome sequences have shown that nAChR gene families remain compact in diverse insect species, when compared to their nematode andvertebrate counterparts. Thus, the fruit fly (Drosophila melanogaster), malaria mosquito (Anopheles gambiae), honey bee (Apis mellifera), silk worm (Bombyx mon) and the red flour beetle (Tribolium castaneum) possess 10-12 nAChR genes while human and the nematode Caenorhabditis elegans have 16 and 29 respectively. Although insect nAChRgene families are amongst the smallest known, receptor diversity can be considerably increased by the posttranscriptional processes alternative splicing and mRNA A-to-I editingwhich can potentially generate protein products which far outnumber the nAChR genes. These two processes can also generate species-specific subunit isoforms. In addition, each insect possesses at least one highly divergent nAChR subunit which may perform species-specific functions. Species-specific subunit diversification may offer promising targets for future rational design of insecticides that target specific pest insects while sparing beneficial species.

  10. Microtransplantation of acetylcholine receptors from normal or denervated rat skeletal muscles to frog oocytes

    PubMed Central

    Bernareggi, Annalisa; Reyes-Ruiz, Jorge Mauricio; Lorenzon, Paola; Ruzzier, Fabio; Miledi, Ricardo

    2011-01-01

    Cell membranes, carrying neurotransmitter receptors and ion channels, can be ‘microtransplanted’ into frog oocytes. This technique allows a direct functional characterization of the original membrane proteins, together with any associated molecules they may have, still embedded in their natural lipid environment. This approach has been previously demonstrated to be very useful to study neurotransmitter receptors and ion channels contained in cell membranes isolated from human brains. Here, we examined the possibility of using the microtransplantation method to study acetylcholine receptors from normal and denervated rat skeletal muscles. We found that the muscle membranes, carrying their fetal or adult acetylcholine receptor isoforms, could be efficiently microtransplanted to the oocyte membrane, making the oocytes become sensitive to acetylcholine. These results show that oocytes injected with skeletal muscle membranes efficiently incorporate functional acetylcholine receptors, thus making the microtransplantation approach a valuable tool to further investigate receptors and ion channels of human muscle diseases. PMID:21224230

  11. Turnover of Acetylcholine Receptors: Mechanisms of Regulation

    DTIC Science & Technology

    1988-12-01

    ME, Whittingham S, and Duane DD (1976) Antibody to acetylcholine receptor in myasthenia gravis : prevalance, clinical correlates and diagnostic value...transferred to nitorcellulose. Proc Natl Acad Sci 77:5201-5205. Weinberg CB and Hall ZW (1979) Antibodies from patients with myasthenia gravis recognize

  12. Nicotinic acetylcholine receptor from chick optic lobe.

    PubMed Central

    Norman, R I; Mehraban, F; Barnard, E A; Dolly, J O

    1982-01-01

    An alpha-bungarotoxin-sensitive nicotinic cholinergic receptor from chick optic lobe has been completely purified. Its standard sedimentation coefficient is 9.1 S. The value near 12 S reported for the related component from other brain regions can be reproduced when the initial extraction is by Triton X-100 (rather than Lubrol PX), but other protein is then complexed with it. A single subunit of apparent molecular weight 54,000 is detected, and this subunit is specifically labeled by bromo-[3H]acetylcholine, but only after disulfide reduction. The same size subunit likewise is labeled in the protein (purified similarly) from the rest of the chick brain which can also bind alpha-bungarotoxin and nicotinic ligands. Immunological crossreactivity is demonstrated between both of these proteins with an antiserum to pure acetylcholine receptor from skeletal muscle. The acetylcholine receptor from chick optic lobe and the alpha-bungarotoxin-binding protein from the rest of the brain appear similar or identical by a series of criteria and are related to (but with differences from) peripheral acetylcholine receptors. Images PMID:6175967

  13. Optochemical control of genetically engineered neuronal nicotinic acetylcholine receptors

    NASA Astrophysics Data System (ADS)

    Tochitsky, Ivan; Banghart, Matthew R.; Mourot, Alexandre; Yao, Jennifer Z.; Gaub, Benjamin; Kramer, Richard H.; Trauner, Dirk

    2012-02-01

    Advances in synthetic chemistry, structural biology, molecular modelling and molecular cloning have enabled the systematic functional manipulation of transmembrane proteins. By combining genetically manipulated proteins with light-sensitive ligands, innately ‘blind’ neurobiological receptors can be converted into photoreceptors, which allows them to be photoregulated with high spatiotemporal precision. Here, we present the optochemical control of neuronal nicotinic acetylcholine receptors (nAChRs) with photoswitchable tethered agonists and antagonists. Using structure-based design, we produced heteromeric α3β4 and α4β2 nAChRs that can be activated or inhibited with deep-violet light, but respond normally to acetylcholine in the dark. The generation of these engineered receptors should facilitate investigation of the physiological and pathological functions of neuronal nAChRs and open a general pathway to photosensitizing pentameric ligand-gated ion channels.

  14. External imaging of cerebral muscarinic acetylcholine receptors

    SciTech Connect

    Eckelman, W.C.; Reba, R.C.; Rzeszotarski, W.J.; Gibson, R.E.; Hill, T.; Holman, B.L.; Budinger, T.; Conklin, J.J.; Eng, R.; Grissom, M.P.

    1984-01-20

    A radioiodinated ligand that binds to muscarinic acetylcholine receptors was shown to distribute in the brain by a receptor-mediated process. With single-photon-emission imaging techniques, radioactivity was detected in the cerebrum but not in the cerebellum, whereas with a flow-limited radiotracer, radioactivity was detected in cerebrum and cerebellum. Single-photon-emission computed tomography showed good definition of the caudate putamen and cortex in man.

  15. External Imaging of Cerebral Muscarinic Acetylcholine Receptors

    NASA Astrophysics Data System (ADS)

    Eckelman, William C.; Reba, Richard C.; Rzeszotarski, Waclaw J.; Gibson, Raymond E.; Hill, Thomas; Holman, B. Leonard; Budinger, Thomas; Conklin, James J.; Eng, Robert; Grissom, Michael P.

    1984-01-01

    A radioiodinated ligand that binds to muscarinic acetylcholine receptors was shown to distribute in the brain by a receptor-mediated process. With single-photon-emission imaging techniques, radioactivity was detected in the cerebrum but not in the cerebellum, whereas with a flow-limited radiotracer, radioactivity was detected in cerebrum and cerebellum. Single-photon-emission computed tomography showed good definition of the caudate putamen and cortex in man.

  16. Salmon lice (Lepeophtheirus salmonis) showing varying emamectin benzoate susceptibilities differ in neuronal acetylcholine receptor and GABA-gated chloride channel mRNA expression

    PubMed Central

    2013-01-01

    Background Caligid copepods, also called sea lice, are fish ectoparasites, some species of which cause significant problems in the mariculture of salmon, where the annual cost of infection is in excess of €300 million globally. At present, caligid control on farms is mainly achieved using medicinal treatments. However, the continued use of a restricted number of medicine actives potentially favours the development of drug resistance. Here, we report transcriptional changes in a laboratory strain of the caligid Lepeophtheirus salmonis (Krøyer, 1837) that is moderately (~7-fold) resistant to the avermectin compound emamectin benzoate (EMB), a component of the anti-salmon louse agent SLICE® (Merck Animal Health). Results Suppression subtractive hybridisation (SSH) was used to enrich transcripts differentially expressed between EMB-resistant (PT) and drug-susceptible (S) laboratory strains of L. salmonis. SSH libraries were subjected to 454 sequencing. Further L. salmonis transcript sequences were available as expressed sequence tags (EST) from GenBank. Contiguous sequences were generated from both SSH and EST sequences and annotated. Transcriptional responses in PT and S salmon lice were investigated using custom 15 K oligonucleotide microarrays designed using the above sequence resources. In the absence of EMB exposure, 359 targets differed in transcript abundance between the two strains, these genes being enriched for functions such as calcium ion binding, chitin metabolism and muscle structure. γ-aminobutyric acid (GABA)-gated chloride channel (GABA-Cl) and neuronal acetylcholine receptor (nAChR) subunits showed significantly lower transcript levels in PT lice compared to S lice. Using RT-qPCR, the decrease in mRNA levels was estimated at ~1.4-fold for GABA-Cl and ~2.8-fold for nAChR. Salmon lice from the PT strain showed few transcriptional responses following acute exposure (1 or 3 h) to 200 μg L-1 of EMB, a drug concentration tolerated by PT lice, but

  17. Salmon lice (Lepeophtheirus salmonis) showing varying emamectin benzoate susceptibilities differ in neuronal acetylcholine receptor and GABA-gated chloride channel mRNA expression.

    PubMed

    Carmichael, Stephen N; Bron, James E; Taggart, John B; Ireland, Jacqueline H; Bekaert, Michaël; Burgess, Stewart Tg; Skuce, Philip J; Nisbet, Alasdair J; Gharbi, Karim; Sturm, Armin

    2013-06-18

    Caligid copepods, also called sea lice, are fish ectoparasites, some species of which cause significant problems in the mariculture of salmon, where the annual cost of infection is in excess of €300 million globally. At present, caligid control on farms is mainly achieved using medicinal treatments. However, the continued use of a restricted number of medicine actives potentially favours the development of drug resistance. Here, we report transcriptional changes in a laboratory strain of the caligid Lepeophtheirus salmonis (Krøyer, 1837) that is moderately (~7-fold) resistant to the avermectin compound emamectin benzoate (EMB), a component of the anti-salmon louse agent SLICE® (Merck Animal Health). Suppression subtractive hybridisation (SSH) was used to enrich transcripts differentially expressed between EMB-resistant (PT) and drug-susceptible (S) laboratory strains of L. salmonis. SSH libraries were subjected to 454 sequencing. Further L. salmonis transcript sequences were available as expressed sequence tags (EST) from GenBank. Contiguous sequences were generated from both SSH and EST sequences and annotated. Transcriptional responses in PT and S salmon lice were investigated using custom 15 K oligonucleotide microarrays designed using the above sequence resources. In the absence of EMB exposure, 359 targets differed in transcript abundance between the two strains, these genes being enriched for functions such as calcium ion binding, chitin metabolism and muscle structure. γ-aminobutyric acid (GABA)-gated chloride channel (GABA-Cl) and neuronal acetylcholine receptor (nAChR) subunits showed significantly lower transcript levels in PT lice compared to S lice. Using RT-qPCR, the decrease in mRNA levels was estimated at ~1.4-fold for GABA-Cl and ~2.8-fold for nAChR. Salmon lice from the PT strain showed few transcriptional responses following acute exposure (1 or 3 h) to 200 μg L-1 of EMB, a drug concentration tolerated by PT lice, but toxic for S lice

  18. [Sites of synthesis of acetylcholine receptors in denervated muscles].

    PubMed

    Giacobini Robecchi, M G; Garelli, M; Filogamo, G

    1980-09-01

    Muscle fibres binding with 125I alpha-bungarotoxine from Bungarus Multicinctus, after treatment with saponine, shows (in electron microscope autoradiography) intracellular binding sites identifying sites of acetylcholine receptor synthesis. In innervated muscle, the acetylcholine receptor is located only at the neuromuscular junction. In denervated muscle the receptor is distributed along the whole sarcolemma; in this situation the acetylcholine receptor is synthesized "ex novo" in the membrane system over the whole length of the muscle fibre.

  19. Acetylcholine receptors in the human retina

    SciTech Connect

    Hutchins, J.B.; Hollyfield, J.G.

    1985-11-01

    Evidence for a population of acetylcholine (ACh) receptors in the human retina is presented. The authors have used the irreversible ligand TH-propylbenzilylcholine mustard (TH-PrBCM) to label muscarinic receptors. TH- or SVI-alpha-bungarotoxin (alpha-BTx) was used to label putative nicotinic receptors. Muscarinic receptors are apparently present in the inner plexiform layer of the retina. Autoradiographic grain densities are reduced in the presence of saturating concentrations of atropine, quinuclidinyl benzilate or scopolamine; this indicates that TH-PrBCM binding is specific for a population of muscarinic receptors in the human retina. Binding sites for radiolabeled alpha-BTx are found predominantly in the inner plexiform layer of the retina. Grain densities are reduced in the presence of d-tubocurarine, indicating that alpha-BTx may bind to a pharmacologically relevant nicotinic ACh receptor. This study provides evidence for cholinergic neurotransmission in the human retina.

  20. Nicotinic acetylcholine receptors: from basic science to therapeutics.

    PubMed

    Hurst, Raymond; Rollema, Hans; Bertrand, Daniel

    2013-01-01

    Substantial progress in the identification of genes encoding for a large number of proteins responsible for various aspects of neurotransmitter release, postsynaptic detection and downstream signaling, has advanced our understanding of the mechanisms by which neurons communicate and interact. Nicotinic acetylcholine receptors represent a large and well-characterized family of ligand-gated ion channels that is expressed broadly throughout the central and peripheral nervous system, and in non-neuronal cells. With 16 mammalian genes identified that encode for nicotinic receptors and the ability of the subunits to form heteromeric or homomeric receptors, the repertoire of conceivable receptor subtype combinations is enormous and offers unique possibilities for the design and development of new therapeutics that target nicotinic acetylcholine receptors. The aim of this review is to provide the reader with recent insights in nicotinic acetylcholine receptors from genes, structure and function to diseases, and with the latest findings on the pharmacology of these receptors. Although so far only a few nicotinic drugs have been marketed or are in late stage development, much progress has been made in the design of novel chemical entities that are being explored for the treatment of various diseases, including addiction, depression, ADHD, cognitive deficits in schizophrenia and Alzheimer's disease, pain and inflammation. A pharmacological analysis of these compounds, including those that were discontinued, can improve our understanding of the pharmacodynamic and pharmacokinetic requirements for nicotinic 'drug-like' molecules and will reveal if hypotheses on therapies based on targeting specific nicotinic receptor subtypes have been adequately tested in the clinic.

  1. Binding of rabies virus to purified Torpedo acetylcholine receptor.

    PubMed

    Lentz, T L; Benson, R J; Klimowicz, D; Wilson, P T; Hawrot, E

    1986-12-01

    The binding of 125I- and 35S-labeled rabies virus (CVS strain) to affinity-purified acetylcholine receptor from Torpedo electric organ was demonstrated. The binding of rabies virus to the acetylcholine receptor increased with increasing receptor concentration, was dependent on the pH of the incubation medium, and was saturable with increasing virus concentration. Binding of radioactively labeled virus was effectively competed by unlabeled homologous virus particles. Binding of 35S-labeled rabies virus to the AChR was inhibited up to 50% by alpha-bungarotoxin and up to 30% by (+)-tubocurarine but was not affected by atropine. These results demonstrate direct binding of rabies virus to a well-defined neurotransmitter receptor, namely the acetylcholine receptor and indicate that at least a portion of the virus interaction occurs near the acetylcholine binding site on the receptor. These findings support the hypothesis that the acetylcholine receptor may serve as a rabies virus receptor in vivo.

  2. Homology modeling of human muscarinic acetylcholine receptors.

    PubMed

    Thomas, Trayder; McLean, Kimberley C; McRobb, Fiona M; Manallack, David T; Chalmers, David K; Yuriev, Elizabeth

    2014-01-27

    We have developed homology models of the acetylcholine muscarinic receptors M₁R-M₅R, based on the β₂-adrenergic receptor crystal as the template. This is the first report of homology modeling of all five subtypes of acetylcholine muscarinic receptors with binding sites optimized for ligand binding. The models were evaluated for their ability to discriminate between muscarinic antagonists and decoy compounds using virtual screening using enrichment factors, area under the ROC curve (AUC), and an early enrichment measure, LogAUC. The models produce rational binding modes of docked ligands as well as good enrichment capacity when tested against property-matched decoy libraries, which demonstrates their unbiased predictive ability. To test the relative effects of homology model template selection and the binding site optimization procedure, we generated and evaluated a naïve M₂R model, using the M₃R crystal structure as a template. Our results confirm previous findings that binding site optimization using ligand(s) active at a particular receptor, i.e. including functional knowledge into the model building process, has a more pronounced effect on model quality than target-template sequence similarity. The optimized M₁R-M₅R homology models are made available as part of the Supporting Information to allow researchers to use these structures, compare them to their own results, and thus advance the development of better modeling approaches.

  3. Bimodal concentration-response of nicotine involves the nicotinic acetylcholine receptor, transient receptor potential vanilloid type 1, and transient receptor potential ankyrin 1 channels in mouse trachea and sensory neurons.

    PubMed

    Kichko, Tatjana I; Lennerz, Jochen; Eberhardt, Mirjam; Babes, Ramona M; Neuhuber, Winfried; Kobal, Gerd; Reeh, Peter W

    2013-11-01

    High concentrations of nicotine, as in the saliva of oral tobacco consumers or in smoking cessation aids, have been shown to sensitize/activate recombinant transient receptor potential vanilloid type 1 (rTRPV1) and mouse TRPA1 (mTRPA1) channels. By measuring stimulated calcitonin gene-related peptide (CGRP) release from the isolated mouse trachea, we established a bimodal concentration-response relationship with a threshold below 10 µM (-)-nicotine, a maximum at 100 µM, an apparent nadir between 0.5 and 10 mM, and a renewed increase at 20 mM. The first peak was unchanged in TRPV1/A1 double-null mutants as compared with wild-types and was abolished by specific nicotinic acetylcholine receptor (nAChR) inhibitors and by camphor, discovered to act as nicotinic antagonist. The nicotine response at 20 mM was strongly pHe-dependent, - five times greater at pH 9.0 than 7.4, indicating that intracellular permeation of the (uncharged) alkaloid was required to reach the TRPV1/A1 binding sites. The response was strongly reduced in both null mutants, and more so in double-null mutants. Upon measuring calcium transients in nodose/jugular and dorsal root ganglion neurons in response to 100 µM nicotine, 48% of the vagal (but only 14% of the somatic) sensory neurons were activated, the latter very weakly. However, nicotine 20 mM at pH 9.0 repeatedly activated almost every single cultured neuron, partly by releasing intracellular calcium and independent of TRPV1/A1 and nAChRs. In conclusion, in mouse tracheal sensory nerves nAChRs are 200-fold more sensitive to nicotine than TRPV1/A1; they are widely coexpressed with the capsaicin receptor among vagal sensory neurons and twice as abundant as TRPA1. Nicotine is the major stimulant in tobacco, and its sensory impact through nAChRs should not be disregarded.

  4. Alcohol's actions on neuronal nicotinic acetylcholine receptors.

    PubMed

    Davis, Tiffany J; de Fiebre, Christopher M

    2006-01-01

    Although it has been known for many years that alcoholism and tobacco addiction often co-occur, relatively little information is available on the biological factors that regulate the co-use and abuse of nicotine and alcohol. In the brain, nicotine acts at several different types of receptors collectively known as nicotinic acetylcholine receptors (nAChRs). Alcohol also acts on at least some of these receptors, enhancing the function of some nAChR subtypes and inhibiting the activity of others. Chronic alcohol and nicotine administration also lead to changes in the numbers of nAChRs. Natural variations (i.e., polymorphisms) in the genes encoding different nAChR subunits may be associated with individual differences in the sensitivity to some of alcohol's and nicotine's effects. Finally, at least one subtype of nAChR may help protect cells against alcohol-induced neurotoxicity.

  5. Acetylcholine receptors in the retinas of the α7 nicotinic acetylcholine receptor knockout mouse

    PubMed Central

    Souza, Fred G. Oliveira; Bruce, Kady S.; Strang, Christianne E.; Morley, Barbara J.; Keyser, Kent T.

    2014-01-01

    Purpose The α7 nicotinic acetylcholine receptor (nAChR) is widely expressed in the nervous system, including in the inner retinal neurons in all species studied to date. Although reductions in the expression of α7 nAChRs are thought to contribute to the memory and visual deficits reported in Alzheimer’s disease (AD) and schizophrenia , the α7 nAChR knockout (KO) mouse is viable and has only slight visual dysfunction. The absence of a major phenotypic abnormality may be attributable to developmental mechanisms that serve to compensate for α7 nAChR loss. We hypothesized that the upregulation of genes encoding other nAChR subunits or muscarinic acetylcholine receptor (mAChR) subtypes during development partially accounts for the absence of major deficiencies in the α7 nAChR KO mouse. The purpose of this study was to determine whether the deletion of the α7 nAChR subunit in a mouse model resulted in changes in the regulation of other cholinergic receptors or other ion channels in an α7 nAChR KO mouse when compared to a wild-type (WT) mouse. Methods To examine gene expression changes, we employed a quantitative real-time polymerase chain reaction (qPCR) using whole retina RNA extracts as well as RNA extracted from selected regions of the retina. These extracts were collected using laser capture microdissection (LCM). The presence of acetylcholine receptor (AChR) subunit and subtype proteins was determined via western blotting. To determine any differences in the number and distribution of choline acetyltransferase (ChAT) amacrine cells, we employed wholemount and vertical immunohistochemistry (IHC) and cell counting. Additionally, in both WT and α7 nAChR KO mouse retinas, the distribution of the nAChR subunit and mAChR subtype proteins were determined via IHC for those KO mice that experienced mRNA changes. Results In the whole retina, there was a statistically significant upregulation of α2, α9, α10, β4, nAChR subunit, and m1 and m4 mAChR subtype

  6. Recent Structural and Mechanistic Insights into Endplate Acetylcholine Receptors

    PubMed Central

    Sine, Steven M.; Gao, Fan; Lee, Won Yong; Mukhtasimova, Nuriya; Wang, Hai-Long; Engel, Andrew G.

    2012-01-01

    Voluntary movement mediated by skeletal muscle relies on endplate acetylcholine receptors (AChR) to detect nerve-released ACh and depolarize themuscle fiber. Recent structural and mechanistic studies of the endplate AChR have catalyzed a leap in our understanding of the molecular steps in this chemical-to-electrical transduction process. Studies of acetylcholine binding protein (AChBP) give insight into ACh recognition, the first step in activation of the AChR. An atomic structural model of the Torpedo AChR at a resolution of 0.4 nm, together with single-ion channel recording methods, allow tracing of the link between the agonist binding event and gating of the ion channel, as well as determination of how the channel moves when it opens to allow flow of cations. Structural models of the human AChR enable precise mapping of disease-causing mutations, while studies of the speed with which single AChR channels open and close cast light on pathogenic mechanisms. PMID:18567853

  7. The conformation of acetylcholine at its target site in the membrane-embedded nicotinic acetylcholine receptor

    PubMed Central

    Williamson, P. T. F.; Verhoeven, A.; Miller, K. W.; Meier, B. H.; Watts, A.

    2007-01-01

    The conformation of the neurotransmitter acetylcholine bound to the fully functional nicotinic acetylcholine receptor embedded in its native membrane environment has been characterized by using frequency-selective recoupling solid-state NMR. Six dipolar couplings among five resolved 13C-labeled atoms of acetylcholine were measured. Bound acetylcholine adopts a bent conformation characterized with a quaternary ammonium-to-carbonyl distance of 5.1 Å. In this conformation, and with its orientation constrained to that previously determined by us, the acetylcholine could be docked satisfactorily in the agonist pocket of the agonist-bound, but not the agonist-free, crystal structure of a soluble acetylcholine-binding protein from Lymnaea stagnali. The quaternary ammonium group of the acetylcholine was determined to be within 3.9 Å of five aromatic residues and its acetyl group close to residues C187/188 of the principle and residue L112 of the complementary subunit. The observed >CO chemical shift is consistent with H bonding to the nicotinic acetylcholine receptor residues γY116 and δT119 that are homologous to L112 in the soluble acetylcholine-binding protein. PMID:17989232

  8. Acetylcholine Promotes Binding of α-Conotoxin MII for α3β2 Nicotinic Acetylcholine Receptors

    PubMed Central

    Sambasivarao, Somisetti V.; Roberts, Jessica; Bharadwaj, Vivek S.; Slingsby, Jason G.; Rohleder, Conrad; Mallory, Chris; Groome, James R.

    2014-01-01

    α-Conotoxin MII (α-CTxMII) is a 16 amino acid peptide with the sequence GCCSNPVCHLEHSNLC containing disulfide bonds between Cys2-Cys8 and Cys3-Cys16. This peptide, isolated from the venom of the marine cone snail Conus magus, is a potent and selective antagonist of neuronal nicotinic acetylcholine receptors (nAChRs). To evaluate the impact of channel-ligand interactions on ligand binding affinity, homology models of the heteropentameric α3β2-nAChR were constructed. The models were created in MODELLER using crystal structures of the Torpedo marmorata-nAChR (Tm-nAChR, PDB ID: 2BG9) and the Aplysia californica-acetylcholine binding protein (Ac-AChBP, PDB ID: 2BR8) as templates for the α3 and β2 subunit isoforms derived from rat neuronal nAChR primary amino acid sequences. Molecular docking calculations were performed with AutoDock to evaluate interactions of the heteropentameric nAChR homology models with the ligands acetylcholine (ACh) and α-CTxMII. The nAChR homology models described here bind ACh with commensurate binding energies to previously reported systems, and identify critical interactions that facilitate both ACh and α-CTxMII ligand binding. The docking calculations revealed an increased binding affinity of the α3β2-nAChR for α-CTxMII with ACh bound to the receptor, which was confirmed through two-electrode voltage clamp experiments on oocytes from Xenopus laevis. These findings provide insights into the inhibition and mechanism of electrostatically driven antagonist properties of the α-CTxMIIs on nAChRs. PMID:24420650

  9. Acetylcholine promotes binding of α-conotoxin MII at α3 β2 nicotinic acetylcholine receptors.

    PubMed

    Sambasivarao, Somisetti V; Roberts, Jessica; Bharadwaj, Vivek S; Slingsby, Jason G; Rohleder, Conrad; Mallory, Chris; Groome, James R; McDougal, Owen M; Maupin, C Mark

    2014-02-10

    α-Conotoxin MII (α-CTxMII) is a 16-residue peptide with the sequence GCCSNPVCHLEHSNLC, containing Cys2-Cys8 and Cys3-Cys16 disulfide bonds. This peptide, isolated from the venom of the marine cone snail Conus magus, is a potent and selective antagonist of neuronal nicotinic acetylcholine receptors (nAChRs). To evaluate the impact of channel-ligand interactions on ligand-binding affinity, homology models of the heteropentameric α3β2-nAChR were constructed. The models were created in MODELLER with the aid of experimentally characterized structures of the Torpedo marmorata-nAChR (Tm-nAChR, PDB ID: 2BG9) and the Aplysia californica-acetylcholine binding protein (Ac-AChBP, PDB ID: 2BR8) as templates for the α3- and β2-subunit isoforms derived from rat neuronal nAChR primary amino acid sequences. Molecular docking calculations were performed with AutoDock to evaluate interactions of the heteropentameric nAChR homology models with the ligands acetylcholine (ACh) and α-CTxMII. The nAChR homology models described here bind ACh with binding energies commensurate with those of previously reported systems, and identify critical interactions that facilitate both ACh and α-CTxMII ligand binding. The docking calculations revealed an increased binding affinity of the α3β2-nAChR for α-CTxMII with ACh bound to the receptor, and this was confirmed through two-electrode voltage clamp experiments on oocytes from Xenopus laevis. These findings provide insights into the inhibition and mechanism of electrostatically driven antagonist properties of the α-CTxMIIs on nAChRs. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Anesthetics Target Interfacial Transmembrane Sites in Nicotinic Acetylcholine Receptors

    PubMed Central

    Forman, Stuart A.; Chiara, David C.; Miller, Keith W.

    2014-01-01

    General anesthetics are a heterogeneous group of small amphiphilic ligands that interact weakly at multiple allosteric sites on many pentameric ligand gated ion channels (pLGICs), resulting in either inhibition, potentiation of channel activity, or both. Allosteric principles imply that modulator sites must change configuration and ligand affinity during receptor state transitions. Thus, general anesthetics and related compounds are useful both as state-dependent probes of receptor structure and as potentially selective modulators of pLGIC functions. This review focuses on general anesthetic sites in nicotinic acetylcholine receptors, which were among the first anesthetic-sensitive pLGIC experimental models studied, with particular focus on sites formed by transmembrane domain elements. Structural models place many of these sites at interfaces between two or more pLGIC transmembrane helices both within subunits and between adjacent subunits, and between transmembrane helices and either lipids (the lipid-protein interface) or water (i.e. the ion channel). A single general anesthetic may bind at multiple allosteric sites in pLGICs, producing a net effect of either inhibition (e.g. blocking the ion channel) or enhanced channel gating (e.g. inter-subunit sites). Other general anesthetic sites identified by photolabeling or crystallography are tentatively linked to functional effects, including intra-subunit helix bundle sites and the lipid-protein interface. PMID:25316107

  11. Non-Neuronal Functions of the M2 Muscarinic Acetylcholine Receptor

    PubMed Central

    Ockenga, Wymke; Kühne, Sina; Bocksberger, Simone; Banning, Antje; Tikkanen, Ritva

    2013-01-01

    Acetylcholine is an important neurotransmitter whose effects are mediated by two classes of receptors. The nicotinic acetylcholine receptors are ion channels, whereas the muscarinic receptors belong to the large family of G protein coupled seven transmembrane helix receptors. Beyond its function in neuronal systems, it has become evident that acetylcholine also plays an important role in non-neuronal cells such as epithelial and immune cells. Furthermore, many cell types in the periphery are capable of synthesizing acetylcholine and express at least some of the receptors. In this review, we summarize the non-neuronal functions of the muscarinic acetylcholine receptors, especially those of the M2 muscarinic receptor in epithelial cells. We will review the mechanisms of signaling by the M2 receptor but also the cellular trafficking and ARF6 mediated endocytosis of this receptor, which play an important role in the regulation of signaling events. In addition, we provide an overview of the M2 receptor in human pathological conditions such as autoimmune diseases and cancer. PMID:24705159

  12. Modulators of nicotinic acetylcholine receptors as analgesics.

    PubMed

    Jain, Kewal K

    2004-01-01

    The analgesic properties of nicotine have prompted attempts to develop compounds that specifically target nicotinic acetylcholine receptors (nAChRs) in the nervous system, with the beneficial effects of nicotine but without its side effects. Thus far, only nAChR agonists have been reported as being in development for pain, although nAChR antagonists could also have a potentially analgesic action. Various problems associated with the use of nAChR agonists as analgesics have been identified and measures suggested to overcome some of them. This review describes the nAChR agonists A-85380, tebanicline, ABT-366833, ABT-202, ABT-894, epibatidine analogs and SIB-1663, of which ABT-366833, ABT-202 and ABT-894 are currently undergoing development as pain therapeutics. In vivo studies of the pathomechanism of neuropathic pain indicate that targeting alpha3beta4 does not have a specific action on neuropathic pain, and that alpha3beta4 ligands cause side effects. On the other hand, alpha4beta2 receptors are specific for neuropathic pain, and ligands that bind preferentially to these receptors both effectively relieve pain and do not cause many adverse effects. This is the basis of the difference between the action of tebanicline, which binds with greater specificity to alpha3beta4 receptors, and ABT-366833, which binds more specifically to alpha4beta2 receptors.

  13. The noncompetitive blocker ( sup 3 H)chlorpromazine labels three amino acids of the acetylcholine receptor gamma subunit: Implications for the alpha-helical organization of regions MII and for the structure of the ion channel

    SciTech Connect

    Revah, F.; Galzi, J.L.; Giraudat, J.; Haumont, P.Y.; Lederer, F.; Changeux, J.P. )

    1990-06-01

    Labeling studies of Torpedo marmorata nicotinic acetylcholine receptor with the noncompetitive channel blocker ({sup 3}H)chlorpromazine have led to the initial identification of amino acids plausibly participating to the walls of the ion channel on the alpha, beta, and delta subunits. We report here results obtained with the gamma subunit, which bring additional information on the structure of the channel. After photolabeling of the membrane-bound receptor under equilibrium conditions in the presence of agonist and with or without phencyclidine (a specific ligand for the high-affinity site for noncompetitive blockers), the purified labeled gamma subunit was digested with trypsin, and the resulting fragments were fractionated by HPLC. Sequence analysis of peptide mixtures containing various amounts of highly hydrophobic fragments showed that three amino acids are labeled by ({sup 3}H)chlorpromazine in a phencyclidine-sensitive manner: Thr-253, Ser-257, and Leu-260. These residues all belong to the hydrophobic and putative transmembrane region MII of the gamma subunit. Their distribution along the sequence is consistent with an alpha-helical organization of this segment. The ({sup 3}H)chlorpromazine-labeled amino acids are conserved at homologous positions in the known sequences of other ligand-gated ion channels and may, thus, play a critical role in ion-transport mechanisms.

  14. Characterization of Ganglionic Acetylcholine Receptor Autoantibodies

    PubMed Central

    Vernino, Steven; Lindstrom, Jon; Hopkins, Steve; Wang, Zhengbei; Low, Phillip A.

    2008-01-01

    In myasthenia gravis (MG), autoantibodies bind to the α1 subunit and other subunits of the muscle nicotinic acetylcholine receptor (AChR). Autoimmune autonomic ganglionopathy (AAG) is an antibody-mediated neurological disorder caused by antibodies against neuronal AChRs in autonomic ganglia. Subunits of muscle and neuronal AChR are homologous. We examined the specificity of AChR antibodies in patients with MG and AAG. Ganglionic AChR autoantibodies found in AAG patients are specific for AChRs containing the α3 subunit. Muscle and ganglionic AChR antibody specificities are distinct. Antibody crossreactivity between AChRs with different α subunits is uncommon but can occur. PMID:18485491

  15. Impulsive behavior and nicotinic acetylcholine receptors.

    PubMed

    Ohmura, Yu; Tsutsui-Kimura, Iku; Yoshioka, Mitsuhiro

    2012-01-01

    Higher impulsivity is thought to be a risk factor for drug addiction, criminal involvement, and suicide. Excessive levels of impulsivity are often observed in several psychiatric disorders including attention-deficit/hyperactivity disorder and schizophrenia. Previous studies have demonstrated that nicotinic acetylcholine receptors (nAChRs) are involved in impulsive behavior. Here, we introduce recent advances in this field and describe the role of the following nAChR-related brain mechanisms in modulating impulsive behavior: dopamine release in the ventral striatum; α4β2 nAChRs in the infralimbic cortex, which is a ventral part of the medial prefrontal cortex (mPFC); and dopamine release in the mPFC. We also suggest several potential therapeutic drugs to address these mechanisms in impulsivity-related disorders and explore future directions to further elucidate the roles of central nAChRs in impulsive behavior.

  16. Suitability of Nicotinic Acetylcholine Receptor α7 and Muscarinic Acetylcholine Receptor 3 Antibodies for Immune Detection

    PubMed Central

    Rommel, Frank R.; Raghavan, Badrinarayanan; Paddenberg, Renate; Kummer, Wolfgang; Tumala, Susanne; Lochnit, Günter; Gieler, Uwe

    2015-01-01

    Recent evidence reveals a crucial role for acetylcholine and its receptors in the regulation of inflammation, particularly of nicotinic acetylcholine receptor α7 (Chrna7) and muscarinic acetylcholine receptor 3 (Chrm3). Immunohistochemistry is a key tool for their cellular localization in functional tissues. We evaluated nine different commercially available antibodies on back skin tissue from wild-type (Wt) and gene-deficient (KO) mice. In the immunohistochemical analysis, we focused on key AChR-ligand sensitive skin cells (mast cells, nerve fibers and keratinocytes). All five antibodies tested for Chrm3 and the first three Chrna7 antibodies stained positive in both Wt and respective KO skin. With the 4th antibody (ab23832) nerve fibers were unlabeled in the KO mice. By western blot analysis, this antibody detected bands in both Wt and Chrna7 KO skin and brain. qRT-PCR revealed mRNA amplification with a primer set for the undeleted region in both Wt and KO mice, but none with a primer set for the deleted region in KO mice. By 2D electrophoresis, we found β-actin and β-enolase cross reactivity, which was confirmed by double immunolabeling. In view of the present results, the tested antibodies are not suitable for immunolocalization in skin and suggest thorough control of antibody specificity is required if histomorphometry is intended. PMID:25673288

  17. Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist.

    PubMed

    Haga, Kazuko; Kruse, Andrew C; Asada, Hidetsugu; Yurugi-Kobayashi, Takami; Shiroishi, Mitsunori; Zhang, Cheng; Weis, William I; Okada, Tetsuji; Kobilka, Brian K; Haga, Tatsuya; Kobayashi, Takuya

    2012-01-25

    The parasympathetic branch of the autonomic nervous system regulates the activity of multiple organ systems. Muscarinic receptors are G-protein-coupled receptors that mediate the response to acetylcholine released from parasympathetic nerves. Their role in the unconscious regulation of organ and central nervous system function makes them potential therapeutic targets for a broad spectrum of diseases. The M2 muscarinic acetylcholine receptor (M2 receptor) is essential for the physiological control of cardiovascular function through activation of G-protein-coupled inwardly rectifying potassium channels, and is of particular interest because of its extensive pharmacological characterization with both orthosteric and allosteric ligands. Here we report the structure of the antagonist-bound human M2 receptor, the first human acetylcholine receptor to be characterized structurally, to our knowledge. The antagonist 3-quinuclidinyl-benzilate binds in the middle of a long aqueous channel extending approximately two-thirds through the membrane. The orthosteric binding pocket is formed by amino acids that are identical in all five muscarinic receptor subtypes, and shares structural homology with other functionally unrelated acetylcholine binding proteins from different species. A layer of tyrosine residues forms an aromatic cap restricting dissociation of the bound ligand. A binding site for allosteric ligands has been mapped to residues at the entrance to the binding pocket near this aromatic cap. The structure of the M2 receptor provides insights into the challenges of developing subtype-selective ligands for muscarinic receptors and their propensity for allosteric regulation.

  18. Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist

    SciTech Connect

    Haga, Kazuko; Kruse, Andrew C.; Asada, Hidetsugu; Yurugi-Kobayashi, Takami; Shiroishi, Mitsunori; Zhang, Cheng; Weis, William I.; Okada, Tetsuji; Kobilka, Brian K.; Haga, Tatsuya; Kobayashi, Takuya

    2012-03-15

    The parasympathetic branch of the autonomic nervous system regulates the activity of multiple organ systems. Muscarinic receptors are G-protein-coupled receptors that mediate the response to acetylcholine released from parasympathetic nerves. Their role in the unconscious regulation of organ and central nervous system function makes them potential therapeutic targets for a broad spectrum of diseases. The M2 muscarinic acetylcholine receptor (M2 receptor) is essential for the physiological control of cardiovascular function through activation of G-protein-coupled inwardly rectifying potassium channels, and is of particular interest because of its extensive pharmacological characterization with both orthosteric and allosteric ligands. Here we report the structure of the antagonist-bound human M2 receptor, the first human acetylcholine receptor to be characterized structurally, to our knowledge. The antagonist 3-quinuclidinyl-benzilate binds in the middle of a long aqueous channel extending approximately two-thirds through the membrane. The orthosteric binding pocket is formed by amino acids that are identical in all five muscarinic receptor subtypes, and shares structural homology with other functionally unrelated acetylcholine binding proteins from different species. A layer of tyrosine residues forms an aromatic cap restricting dissociation of the bound ligand. A binding site for allosteric ligands has been mapped to residues at the entrance to the binding pocket near this aromatic cap. The structure of the M2 receptor provides insights into the challenges of developing subtype-selective ligands for muscarinic receptors and their propensity for allosteric regulation.

  19. Brain α7 Nicotinic Acetylcholine Receptor Assembly Requires NACHO.

    PubMed

    Gu, Shenyan; Matta, Jose A; Lord, Brian; Harrington, Anthony W; Sutton, Steven W; Davini, Weston B; Bredt, David S

    2016-03-02

    Nicotine exerts its behavioral and additive actions through a family of brain nicotinic acetylcholine receptors (nAChRs). Enhancing α7-type nAChR signaling improves symptoms in Alzheimer's disease and schizophrenia. The pharmaceutical study of α7 receptors is hampered because these receptors do not form their functional pentameric structure in cell lines, and mechanisms that underlie α7 receptor assembly in neurons are not understood. Here, a genomic screening strategy solves this long-standing puzzle and identifies NACHO, a transmembrane protein of neuronal endoplasmic reticulum that mediates assembly of α7 receptors. NACHO promotes α7 protein folding, maturation through the Golgi complex, and expression at the cell surface. Knockdown of NACHO in cultured hippocampal neurons or knockout of NACHO in mice selectively and completely disrupts α7 receptor assembly and abolishes α7 channel function. This work identifies NACHO as an essential, client-specific chaperone for nAChRs and has implications for physiology and disease associated with these widely distributed neurotransmitter receptors. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Expression of cloned α6* nicotinic acetylcholine receptors.

    PubMed

    Wang, Jingyi; Kuryatov, Alexander; Lindstrom, Jon

    2015-09-01

    Nicotinic acetylcholine receptors (AChRs) are ACh-gated ion channels formed from five homologous subunits in subtypes defined by their subunit composition and stoichiometry. Some subtypes readily produce functional AChRs in Xenopus oocytes and transfected cell lines. α6β2β3* AChRs (subtypes formed from these subunits and perhaps others) are not easily expressed. This may be because the types of neurons in which they are expressed (typically dopaminergic neurons) have unique chaperones for assembling α6β2β3* AChRs, especially in the presence of the other AChR subtypes. Because these relatively minor brain AChR subtypes are of major importance in addiction to nicotine, it is important for drug development as well as investigation of their functional properties to be able to efficiently express human α6β2β3* AChRs. We review the issues and progress in expressing α6* AChRs. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'.

  1. Allosteric binding sites on muscarinic acetylcholine receptors.

    PubMed

    Wess, Jürgen

    2005-12-01

    In this issue of Molecular Pharmacology, Tränkle et al. (p. 1597) present new findings regarding the existence of a second allosteric site on the M2 muscarinic acetylcholine receptor (M2 mAChR). The M2 mAChR is a prototypic class A G protein-coupled receptor (GPCR) that has proven to be a very useful model system to study the molecular mechanisms involved in the binding of allosteric GPCR ligands. Previous studies have identified several allosteric muscarinic ligands, including the acetylcholinesterase inhibitor tacrine and the bis-pyridinium derivative 4,4'-bis-[(2,6-dichloro-benzyloxy-imino)-methyl]-1,1'-propane-1,3-diyl-bis-pyridinium dibromide (Duo3), which, in contrast to conventional allosteric muscarinic ligands, display concentration-effect curves with slope factors >1. By analyzing the interactions of tacrine and Duo3 with other allosteric muscarinic agents predicted to bind to the previously identified ;common' allosteric binding site, Tränkle et al. provide evidence suggesting that two allosteric agents and one orthosteric ligand may be able to bind to the M2 mAChR simultaneously. Moreover, studies with mutant mAChRs indicated that the M2 receptor epitopes involved in the binding of tacrine and Duo3 may not be identical. Molecular modeling and ligand docking studies suggested that the additional allosteric site probably represents a subdomain of the receptor's allosteric binding cleft. Because allosteric binding sites have been found on many other GPCRs and drugs interacting with these sites are thought to have great therapeutic potential, the study by Tränkle et al. should be of considerable general interest.

  2. [Probable mechanism of recognition of cholinergic ligands by acetylcholine receptors].

    PubMed

    Demushkin, V P; Kotelevtsev, Iu V; Pliashkevich, Iu G; Khramtsov, N V

    1982-01-01

    Dryding's models were used for the conformational analysis of compounds affecting muscarin-specific acetylcholine receptor and nicotin-specific acetylcholine receptor. Ammonium group and ether oxygen (3.6 A apart from the ammonium group) specifically oriented to each other were shown to be necessary structural elements to reveal muscarin-type cholinergic activity. Ammonium group along with carbonyl oxygen or its substituent (5 A distance) are the necessary structural units providing nicotin-type cholinergic activity. The presence of two hydrophobic substituents (one in the ammonium area and the other neighbouring the second active grouping) is the additional factor. The developed principles were justified by the use of a series of synthetic samples. The compounds were obtained likely favouring affinitive modification of acetylcholine receptor (dissociation constants of acetylcholine receptor complexes equalling to 10(-4)--10(-7) M-1).

  3. The acetylcholine receptor as a cellular receptor for rabies virus.

    PubMed

    Lentz, T L; Burrage, T G; Smith, A L; Tignor, G H

    1983-01-01

    Characterization of specific host cell receptors for enveloped viruses is a difficult problem because many enveloped viruses bind to a variety of substrates which are not obviously related to tissue tropisms in the intact host. Viruses with a limited cellular tropism in infected animals present useful models for studying the mechanisms by which virus attachment regulates the disease process. Rabies virus is a rhabdovirus which exhibits a marked neuronotropism in infected animals. Limited data suggest that spread occurs by transsynaptic transfer of virus. The results of recent experiments at Yale suggest that viral antigen is localized very soon after injection at neuromuscular junctions, the motor nerve endings on muscle tissue. On cultured muscle cells, similar co-localization with the acetylcholine receptor is seen both before and after virus multiplication. Pretreatment of these cells with some ligands of the acetylcholine receptor results in reduced viral infection. These findings suggest that a neurotransmitter receptor or a closely associated molecule may serve as a specific host cell receptor for rabies virus and thus may be responsible for the tissue tropism exhibited by this virus. In addition to clarifying aspects of rabies virus pathogenesis, these studies have broad implications regarding the mechanism by which other viruses or viral immunizations might mediate autoimmune diseases such as myasthenia gravis.

  4. Effect of a nicotinic acetylcholine receptor agonists and antagonists on motor function in mice

    USDA-ARS?s Scientific Manuscript database

    Nicotinic acetylcholine receptors (nAChR) are ligand-gated cation channels found throughout the body, and serve to mediate diverse physiological functions. Muscle-type nAChR located in the motor endplate region of muscle fibers play an integral role in muscle contraction and thus motor function. The...

  5. Theoretical investigation of interaction between the set of ligands and α7 nicotinic acetylcholine receptor

    NASA Astrophysics Data System (ADS)

    Glukhova, O. E.; Prytkova, T. R.; Shmygin, D. S.

    2016-03-01

    Nicotinic acetylcholine receptors (nAChRs) are neuron receptor proteins that provide a transmission of nerve impulse through the synapses. They are composed of a pentametric assembly of five homologous subunits (5 α7 subunits for α7nAChR, for example), oriented around the central pore. These receptors might be found in the chemical synapses of central and peripheral nervous system, and also in the neuromuscular synapses. Transmembrane domain of the one of such receptors constitutes ion channel. The conductive properties of ion channel strongly depend on the receptor conformation changes in the response of binding with some molecule, f.e. acetylcholine. Investigation of interaction between ligands and acetylcholine receptor is important for drug design. In this work we investigate theoretically the interaction between the set of different ligands (such as vanillin, thymoquinone, etc.) and the nicotinic acetylcholine receptor (primarily with subunit of the α7nAChR) by different methods and packages (AutodockVina, GROMACS, KVAZAR, HARLEM, VMD). We calculate interaction energy between different ligands in the subunit using molecular dynamics. On the base of obtained calculation results and using molecular docking we found an optimal location of different ligands in the subunit.

  6. Naturally occurring and synthetic peptides acting on nicotinic acetylcholine receptors.

    PubMed

    Kasheverov, Igor E; Utkin, Yuri N; Tsetlin, Victor I

    2009-01-01

    Nicotinic acetylcholine receptors (nAChRs) are pentameric membrane-bound proteins belonging to the large family of ligand-gated ion channels. nAChRs possess various binding sites which interact with compounds of different chemical nature, including peptides. Historically first peptides found to act on nAChR were synthetic fragments of snake alpha-neurotoxins, competitive receptor antagonists. Later it was shown that fragments of glycoprotein from rabies virus, having homology to alpha-neurotoxins, and polypeptide neurotoxins waglerins from the venom of Wagler's pit viper Trimeresurus (Tropidolaemus) wagleri bind in a similar way, waglerins being efficient blockers of muscle-type nAChRs. Neuropeptide substance P appears to interact with the channel moiety of nAChR. beta-Amyloid, a peptide forming senile plaques in Alzheimer's disease, also can bind to nAChR, although the mode of binding is still unclear. However, the most well-studied peptides interacting with the ligand-binding sites of nAChRs are so-called alpha-conotoxins, peptide neurotoxins from marine snails of Conus genus. First alpha-conotoxins were discovered in the late 1970s, and now it is a rapidly growing family due to isolation of peptides from multiple Conus species, as well as to cloning, and chemical synthesis of new analogues. Because of their unique selectivity towards distinct nAChR subtypes, alpha-conotoxins became valuable tools in nAChR research. Recent X-ray structures of alpha-conotoxin complexes with acetylcholine-binding protein, a model of nAChR ligand-binding domains, revealed the details of the nAChR ligand-binding sites and provided the basis for design of novel ligands.

  7. Physiological characterization of human muscle acetylcholine receptors from ALS patients.

    PubMed

    Palma, Eleonora; Inghilleri, Maurizio; Conti, Luca; Deflorio, Cristina; Frasca, Vittorio; Manteca, Alessia; Pichiorri, Floriana; Roseti, Cristina; Torchia, Gregorio; Limatola, Cristina; Grassi, Francesca; Miledi, Ricardo

    2011-12-13

    Amyotrophic lateral sclerosis (ALS) is characterized by progressive degeneration of motor neurons leading to muscle paralysis. Research in transgenic mice suggests that the muscle actively contributes to the disease onset, but such studies are difficult to pursue in humans and in vitro models would represent a good starting point. In this work we show that tiny amounts of muscle from ALS or from control denervated muscle, obtained by needle biopsy, are amenable to functional characterization by two different technical approaches: "microtransplantation" of muscle membranes into Xenopus oocytes and culture of myogenic satellite cells. Acetylcholine (ACh)-evoked currents and unitary events were characterized in oocytes and multinucleated myotubes. We found that ALS acetylcholine receptors (AChRs) retain their native physiological characteristics, being activated by ACh and nicotine and blocked by α-bungarotoxin (α-BuTX), d-tubocurarine (dTC), and galantamine. The reversal potential of ACh-evoked currents and the unitary channel behavior were also typical of normal muscle AChRs. Interestingly, in oocytes injected with muscle membranes derived from ALS patients, the AChRs showed a significant decrease in ACh affinity, compared with denervated controls. Finally, riluzole, the only drug currently used against ALS, reduced, in a dose-dependent manner, the ACh-evoked currents, indicating that its action remains to be fully characterized. The two methods described here will be important tools for elucidating the role of muscle in ALS pathogenesis and for developing drugs to counter the effects of this disease.

  8. Caenorhabditis elegans nicotinic acetylcholine receptors are required for nociception

    PubMed Central

    Cohen, Emiliano; Chatzigeorgiou, Marios; Husson, Steven J.; Steuer-Costa, Wagner; Gottschalk, Alexander; Schafer, William R.; Treinin, Millet

    2014-01-01

    Polymodal nociceptors sense and integrate information on injurious mechanical, thermal, and chemical stimuli. Chemical signals either activate nociceptors or modulate their responses to other stimuli. One chemical known to activate or modulate responses of nociceptors is acetylcholine (ACh). Across evolution nociceptors express subunits of the nicotinic acetylcholine receptor (nAChR) family, a family of ACh-gated ion channels. The roles of ACh and nAChRs in nociceptor function are, however, poorly understood. Caenorhabditis elegans polymodal nociceptors, PVD, express nAChR subunits on their sensory arbor. Here we show that mutations reducing ACh synthesis and mutations in nAChR subunits lead to defects in PVD function and morphology. A likely cause for these defects is a reduction in cytosolic calcium measured in ACh and nAChR mutants. Indeed, overexpression of a calcium pump in PVD mimics defects in PVD function and morphology found in nAChR mutants. Our results demonstrate, for the first time, a central role for nAChRs and ACh in nociceptor function and suggest that calcium permeating via nAChRs facilitates activity of several signaling pathways within this neuron. PMID:24518198

  9. Binding of quinolizidine alkaloids to nicotinic and muscarinic acetylcholine receptors.

    PubMed

    Schmeller, T; Sauerwein, M; Sporer, F; Wink, M; Müller, W E

    1994-09-01

    Fourteen quinolizidine alkaloids, isolated from Lupinus albus, L. mutabilis, and Anagyris foetida, were analyzed for their affinity for nicotinic and/or muscarinic acetylcholine receptors. Of the compounds tested, the alpha-pyridones, N-methylcytisine and cytisine, showed the highest affinities at the nicotinic receptor, while several quinolizidine alkaloid types were especially active at the muscarinic receptor.

  10. Menthol Binding and Inhibition of α7-Nicotinic Acetylcholine Receptors

    PubMed Central

    Ashoor, Abrar; Nordman, Jacob C.; Veltri, Daniel; Yang, Keun-Hang Susan; Al Kury, Lina; Shuba, Yaroslav; Mahgoub, Mohamed; Howarth, Frank C.; Sadek, Bassem; Shehu, Amarda; Kabbani, Nadine; Oz, Murat

    2013-01-01

    Menthol is a common compound in pharmaceutical and commercial products and a popular additive to cigarettes. The molecular targets of menthol remain poorly defined. In this study we show an effect of menthol on the α7 subunit of the nicotinic acetylcholine (nACh) receptor function. Using a two-electrode voltage-clamp technique, menthol was found to reversibly inhibit α7-nACh receptors heterologously expressed in Xenopus oocytes. Inhibition by menthol was not dependent on the membrane potential and did not involve endogenous Ca2+-dependent Cl− channels, since menthol inhibition remained unchanged by intracellular injection of the Ca2+ chelator BAPTA and perfusion with Ca2+-free bathing solution containing Ba2+. Furthermore, increasing ACh concentrations did not reverse menthol inhibition and the specific binding of [125I] α-bungarotoxin was not attenuated by menthol. Studies of α7- nACh receptors endogenously expressed in neural cells demonstrate that menthol attenuates α7 mediated Ca2+ transients in the cell body and neurite. In conclusion, our results suggest that menthol inhibits α7-nACh receptors in a noncompetitive manner. PMID:23935840

  11. The nicotinic acetylcholine receptor CHRNA5/A3/B4 gene cluster: Dual role in nicotine addiction and lung cancer

    PubMed Central

    Improgo, Ma. Reina D.; Scofield, Michael D.; Tapper, Andrew R.; Gardner, Paul D.

    2010-01-01

    More than 1 billion people around the world smoke, with 10 million cigarettes sold every minute. Cigarettes contain thousands of harmful chemicals including the psychoactive compound, nicotine. Nicotine addiction is initiated by the binding of nicotine to nicotinic acetylcholine receptors, ligand-gated cation channels activated by the endogenous neurotransmitter, acetylcholine. These receptors serve as prototypes for all ligand-gated ion channels and have been extensively studied in an attempt to elucidate their role in nicotine addiction. Many of these studies have focused on heteromeric nicotinic acetylcholine receptors containing α4 and β2 subunits and homomeric nicotinic acetylcholine receptors containing the α7 subunit, two of the most abundant subtypes expressed in the brain. Recently however, a series of linkage analyses, candidate-gene analyses and genome-wide association studies have brought attention to three other members of the nicotinic acetylcholine receptor family: the α5, α3 and β4 subunits. The genes encoding these subunits lie in a genomic cluster that contains variants associated with increased risk for several diseases including nicotine dependence and lung cancer. The underlying mechanisms for these associations have not yet been elucidated but decades of research on the nicotinic receptor gene family as well as emerging data provide insight on how these receptors may function in pathological states. Here, we review this body of work, focusing on the clustered nicotinic acetylcholine receptor genes and evaluating their role in nicotine addiction and lung cancer. PMID:20685379

  12. Acetylcholine nicotinic receptor subtypes in chromaffin cells.

    PubMed

    Criado, Manuel

    2017-08-08

    In the adrenal gland, acetylcholine released on stimulation of the sympathetic splanchnic nerve activates neuronal-type nicotinic receptors (nAChRs) in chromaffin cells and triggers catecholamine secretion. At least two subtypes of nAChRs have been described in bovine chromaffin cells. The main subtype, a heteromeric assembly of α3, β4 and perhaps α5 subunits, is involved in the activation step of the catecholamine secretion process and is not blocked by the snake toxin α-bungarotoxin. The other is α-bungarotoxin-sensitive, and its functional role has not yet been well defined. The α7 subunit conforms the homomeric structure of this subtype. All nAChR subunits share the same molecular organization and structural data at atomic resolution level are now available for some homomeric and heteromeric ensembles. The α3, β4 and α5 subunits are clustered in genomes of different species, with the transcription factor Sp1 playing a co-ordinating role in the transcriptional regulation of these three subunits. The transcription factor Egr-1 controls the differential expression of α7 nAChR in adrenergic chromaffin cells, as happens with the enzyme phenylethanolamine N-methyl transferase. For unknown reasons, whole cell currents observed in bovine chromaffin cells clearly differ of the ones observed when different combinations of subunit RNAs are injected in oocytes. In addition to the typical nicotinic ligands, a variety of unrelated substances with clinical relevance can target nAChRs in chromaffin cells and, therefore, affect catecholamine secretion. They can act as agonists, antagonists or allosteric modulators.

  13. Binding of tropane alkaloids to nicotinic and muscarinic acetylcholine receptors.

    PubMed

    Schmeller, T; Sporer, F; Sauerwein, M; Wink, M

    1995-07-01

    Fourteen tropane and related alkaloids were analyzed for their affinity for nicotinic and/or muscarinic acetylcholine receptors. The biogenetic intermediates littorine, 6 beta-hydroxyhyoscyamine, 7 beta-hydroxyhyoscyamine exhibit similar affinities at the muscarinic receptor as scopolamine and atropine. The quarternary derivatives N-methylatropine and N-methylscopolamine show the highest binding with IC50 values of less than 100 pM and 300 pM, respectively. The tropane alkaloids (including cocaine) also bind to the nicotinic acetylcholine receptor, albeit with much lower affinities.

  14. Functional Characterization of a Novel Class of Morantel-Sensitive Acetylcholine Receptors in Nematodes

    PubMed Central

    Courtot, Elise; Charvet, Claude L.; Beech, Robin N.; Harmache, Abdallah; Wolstenholme, Adrian J.; Holden-Dye, Lindy; O’Connor, Vincent; Peineau, Nicolas; Woods, Debra J.; Neveu, Cedric

    2015-01-01

    Acetylcholine receptors are pentameric ligand–gated channels involved in excitatory neuro-transmission in both vertebrates and invertebrates. In nematodes, they represent major targets for cholinergic agonist or antagonist anthelmintic drugs. Despite the large diversity of acetylcholine-receptor subunit genes present in nematodes, only a few receptor subtypes have been characterized so far. Interestingly, parasitic nematodes affecting human or animal health possess two closely related members of this gene family, acr-26 and acr-27 that are essentially absent in free-living or plant parasitic species. Using the pathogenic parasitic nematode of ruminants, Haemonchus contortus, as a model, we found that Hco-ACR-26 and Hco-ACR-27 are co-expressed in body muscle cells. We demonstrated that co-expression of Hco-ACR-26 and Hco-ACR-27 in Xenopus laevis oocytes led to the functional expression of an acetylcholine-receptor highly sensitive to the anthelmintics morantel and pyrantel. Importantly we also reported that ACR-26 and ACR-27, from the distantly related parasitic nematode of horses, Parascaris equorum, also formed a functional acetylcholine-receptor highly sensitive to these two drugs. In Caenorhabditis elegans, a free-living model nematode, we demonstrated that heterologous expression of the H. contortus and P. equorum receptors drastically increased its sensitivity to morantel and pyrantel, mirroring the pharmacological properties observed in Xenopus oocytes. Our results are the first to describe significant molecular determinants of a novel class of nematode body wall muscle AChR. PMID:26625142

  15. Purification of acetylcholine receptors from the muscle of Electrophorus electricus.

    PubMed

    Lindstrom, J M; Cooper, J F; Swanson, L W

    1983-08-02

    Muscle from the electric eel Electrophorus electricus contains acetylcholine receptors at 50 times the concentration of normal mammalian muscle and fully one-tenth the concentration of receptors in its electric organ tissue. Receptor is organized much more diffusely over the surface of Electrophorus muscle cells than is the case in normally innervated mammalian skeletal muscle. Receptor was purified from Electrophorus muscle by affinity chromatography on cobra toxin-agarose and found to contain subunits which correspond immunochemically to the alpha, beta, gamma, and delta subunits of receptor from electric organ tissue of Torpedo californica. Receptor purified from Electrophorus muscle appears virtually identical with receptor purified from Electrophorus electric organ tissue.

  16. Physiological characterization of human muscle acetylcholine receptors from ALS patients

    PubMed Central

    Palma, Eleonora; Inghilleri, Maurizio; Conti, Luca; Deflorio, Cristina; Frasca, Vittorio; Manteca, Alessia; Pichiorri, Floriana; Roseti, Cristina; Torchia, Gregorio; Limatola, Cristina; Grassi, Francesca; Miledi, Ricardo

    2011-01-01

    Amyotrophic lateral sclerosis (ALS) is characterized by progressive degeneration of motor neurons leading to muscle paralysis. Research in transgenic mice suggests that the muscle actively contributes to the disease onset, but such studies are difficult to pursue in humans and in vitro models would represent a good starting point. In this work we show that tiny amounts of muscle from ALS or from control denervated muscle, obtained by needle biopsy, are amenable to functional characterization by two different technical approaches: “microtransplantation” of muscle membranes into Xenopus oocytes and culture of myogenic satellite cells. Acetylcholine (ACh)-evoked currents and unitary events were characterized in oocytes and multinucleated myotubes. We found that ALS acetylcholine receptors (AChRs) retain their native physiological characteristics, being activated by ACh and nicotine and blocked by α-bungarotoxin (α-BuTX), d-tubocurarine (dTC), and galantamine. The reversal potential of ACh-evoked currents and the unitary channel behavior were also typical of normal muscle AChRs. Interestingly, in oocytes injected with muscle membranes derived from ALS patients, the AChRs showed a significant decrease in ACh affinity, compared with denervated controls. Finally, riluzole, the only drug currently used against ALS, reduced, in a dose-dependent manner, the ACh-evoked currents, indicating that its action remains to be fully characterized. The two methods described here will be important tools for elucidating the role of muscle in ALS pathogenesis and for developing drugs to counter the effects of this disease. PMID:22128328

  17. Acetylcholine receptor distribution on myotubes in culture correlated to acetylcholine sensitivity.

    PubMed Central

    Land, B R; Podleski, T R; Salpeter, E E; Salpeter, M M

    1977-01-01

    1. A linear relation, with a slope of 0-9 +/- 0-2 on a log-log plot, was obtained between acetylcholine (ACh) sensitivity and alpha-bungarotoxin (alpha-BTX) binding site density in developing L6 and rat primary myotubes. ACh sensitivity was defined as g/Qn where g is conductance, Q is ACh charge and n is the Hill coefficient. Experimentally we found n approximately 1-7 for our myotubes, which is similar in value to that reported for adult systems. 2. The linear relationship is compatible with an organization whereby each ion channel is always complexed with a fixed number of ACh receptors such that the dose-response characteristics of each such complex are independent of average ACh receptor density. 3. Light microscope autoradiography showed that the alpha-bungarotoxin binding sites on L6 myotubes are uniformly distributed over the surface, while primary rat myotubes exhibit gradients and hot spots. Electron microscope autoradiography indicated that about 70% of the [125I]alpha-bungarotoxin label was on the surface of the myotubes. The alpha-bungarotoxin site density, after subtracting myoblast background, varied from 5 to 400 sites/micrometer2 on different L6 myotubes, and from 54 to 900 sites/micrometer2 on primary rat myotubes, with occasional hot spots of 3000-4000 sites/micrometer2. The conductance sensitivities varied from 10(-4) to 2 X 10(-2) Momega-1/nC1-7. Images A, B, and C D Plate 2 PMID:894536

  18. Identification of a family of muscarinic acetylcholine receptor genes

    SciTech Connect

    Bonner, T.I.; Buckley, N.J.; Young, A.C.; Brann, M.R.

    1987-07-31

    Complementary DNAs for three different muscarinic acetylcholine receptors were isolated from a rat cerebral cortex library, and the cloned receptors were expressed in mammalian cells. Analysis of human and rat genomic clones indicates that there are at least four functional muscarinic receptor genes and that these genes lack introns in the coding sequence. This gene family provides a new basis for evaluating the diversity of muscarinic mechanisms in the nervous system.

  19. Endoplasmic reticulum stress contributes to acetylcholine receptor degradation by promoting endocytosis in skeletal muscle cells.

    PubMed

    Du, Ailian; Huang, Shiqian; Zhao, Xiaonan; Zhang, Yun; Zhu, Lixun; Ding, Ji; Xu, Congfeng

    2016-01-15

    After binding by acetylcholine released from a motor neuron, a nicotinic acetylcholine receptor at the neuromuscular junction produces a localized end-plate potential, which leads to muscle contraction. Improper turnover and renewal of acetylcholine receptors contributes to the pathogenesis of myasthenia gravis. In the present study, we demonstrate that endoplasmic reticulum (ER) stress contributes to acetylcholine receptor degradation in C2C12 myocytes. We further show that ER stress promotes acetylcholine receptor endocytosis and lysosomal degradation, which was dampened by blocking endocytosis or treating with lysosome inhibitor. Knockdown of ER stress proteins inhibited acetylcholine receptor endocytosis and degradation, while rescue assay restored its endocytosis and degradation, confirming the effects of ER stress on promoting endocytosis-mediated degradation of junction acetylcholine receptors. Thus, our studies identify ER stress as a factor promoting acetylcholine receptor degradation through accelerating endocytosis in muscle cells. Blocking ER stress and/or endocytosis might provide a novel therapeutic approach for myasthenia gravis.

  20. A novel µ-conopeptide, CnIIIC, exerts potent and preferential inhibition of NaV1.2/1.4 channels and blocks neuronal nicotinic acetylcholine receptors

    PubMed Central

    Favreau, Philippe; Benoit, Evelyne; Hocking, Henry G; Carlier, Ludovic; D' hoedt, Dieter; Leipold, Enrico; Markgraf, René; Schlumberger, Sébastien; Córdova, Marco A; Gaertner, Hubert; Paolini-Bertrand, Marianne; Hartley, Oliver; Tytgat, Jan; Heinemann, Stefan H; Bertrand, Daniel; Boelens, Rolf; Stöcklin, Reto; Molgó, Jordi

    2012-01-01

    BACKGROUND AND PURPOSE The µ-conopeptide family is defined by its ability to block voltage-gated sodium channels (VGSCs), a property that can be used for the development of myorelaxants and analgesics. We characterized the pharmacology of a new µ-conopeptide (µ-CnIIIC) on a range of preparations and molecular targets to assess its potential as a myorelaxant. EXPERIMENTAL APPROACH µ-CnIIIC was sequenced, synthesized and characterized by its direct block of elicited twitch tension in mouse skeletal muscle and action potentials in mouse sciatic and pike olfactory nerves. µ-CnIIIC was also studied on HEK-293 cells expressing various rodent VGSCs and also on voltage-gated potassium channels and nicotinic acetylcholine receptors (nAChRs) to assess cross-interactions. Nuclear magnetic resonance (NMR) experiments were carried out for structural data. KEY RESULTS Synthetic µ-CnIIIC decreased twitch tension in mouse hemidiaphragms (IC50= 150 nM), and displayed a higher blocking effect in mouse extensor digitorum longus muscles (IC = 46 nM), compared with µ-SIIIA, µ-SmIIIA and µ-PIIIA. µ-CnIIIC blocked NaV1.4 (IC50= 1.3 nM) and NaV1.2 channels in a long-lasting manner. Cardiac NaV1.5 and DRG-specific NaV1.8 channels were not blocked at 1 µM. µ-CnIIIC also blocked the α3β2 nAChR subtype (IC50= 450 nM) and, to a lesser extent, on the α7 and α4β2 subtypes. Structure determination of µ-CnIIIC revealed some similarities to α-conotoxins acting on nAChRs. CONCLUSION AND IMPLICATIONS µ-CnIIIC potently blocked VGSCs in skeletal muscle and nerve, and hence is applicable to myorelaxation. Its atypical pharmacological profile suggests some common structural features between VGSCs and nAChR channels. PMID:22229737

  1. Permeability properties of chick myotube acetylcholine-activated channels.

    PubMed Central

    Dwyer, T M; Farley, J M

    1984-01-01

    The acetylcholine-(ACh-)activated channels of chick myotubes were studied by the patch-clamp method. Single-channel amplitudes were measured over a wide range of potentials in solutions of cesium, arginine, and three small amines. Symmetrical, isotonic cesium solutions gave a linear I-V relationship with the single-channel conductance, gamma, of 42 pS at 11 degrees C. Dilutions of cesium by mannitol shifted the reversal potential 23.9 mV per e-fold change in internal cesium concentration. Selectivity, as defined by reversal potential criteria, depended on the molecular size of the permeant cation. The Q10 of gamma for the symmetrical isotonic cesium solutions as well as internal isotonic methylamine was 1.3-1.4. These properties are qualitatively similar to those seen at the ACh-activated channel of the frog neuromuscular junction. Partially substituting arginine for internal cesium depressed outward currents. 80 mM arginine acted equally well from the inside or the outside, as if arginine transiently blocks the ACh-activated channel in a current dependent way. Diluting internal cesium almost 10-fold, from 320 to 40 mM, increased the permeability of the channel calculated from Goldman-Hodgkin-Katz equations by almost threefold. Thus, cesium itself appears to block with a dissociation constant of 135 mM. Methylamine blocked the channel approximately as well as did cesium. Ammonia and ethylamine blocked the channel somewhat more than cesium. We conclude that (a) the channel is qualitatively similar to that of frog neuromuscular junction, (b) cations bind within the channel, and (c) arginine decreases channel conductance equally whether applied from the inside or the outside. PMID:6324917

  2. Mechanisms of Action of Anticholinesterases and Oximes on Acetylcholine Receptors

    DTIC Science & Technology

    1988-07-23

    J.F. and D.B. Sanders. The management of patients with myasthenia gravis , in Myasthenia Gravis (E.X. Albuquerque and A.T. Eldefrawi, eds.), Chapman...Eldefrawi. Affinity of myasthenia drugs to acetylcholinesterase and acetylcholine receptor. Biochem. Med. 10:258-265 (1974). 9. Carpenter, D.O., L.A

  3. Alpha-conotoxins as pharmacological probes of nicotinic acetylcholine receptors

    PubMed Central

    Azam, Layla; McIntosh, J Michael

    2009-01-01

    Cysteine-rich peptides from the venom of cone snails (Conus) target a wide variety of different ion channels. One family of conopeptides, the α-conotoxins, specifically target different isoforms of nicotinic acetylcholine receptors (nAChRs) found both in the neuromuscular junction and central nervous system. This family is further divided into subfamilies based on the number of amino acids between cysteine residues. The exquisite subtype selectivity of certain α-conotoxins has been key to the characterization of native nAChR isoforms involved in modulation of neurotransmitter release, the pathophysiology of Parkinson's disease and nociception. Structure/function characterization of α-conotoxins has led to the development of analogs with improved potency and/or subtype selectivity. Cyclization of the backbone structure and addition of lipophilic moieties has led to improved stability and bioavailability of α-conotoxins, thus paving the way for orally available therapeutics. The recent advances in phylogeny, exogenomics and molecular modeling promises the discovery of an even greater number of α-conotoxins and analogs with improved selectivity for specific subtypes of nAChRs. PMID:19448650

  4. Autonomic ganglia, acetylcholine receptor antibodies, and autoimmune ganglionopathy.

    PubMed

    Vernino, Steven; Hopkins, Steve; Wang, Zhengbei

    2009-03-12

    Nicotinic acetylcholine receptors (AChR) are ligand-gated cation channels that are present throughout the nervous system. The ganglionic (alpha3-type) neuronal AChR mediates fast synaptic transmission in sympathetic, parasympathetic and enteric autonomic ganglia. Autonomic ganglia are an important site of neural integration and regulation of autonomic reflexes. Impaired cholinergic ganglionic synaptic transmission is one important cause of autonomic failure. Ganglionic AChR antibodies are found in many patients with autoimmune autonomic ganglionopathy (AAG). These antibodies recognize the alpha3 subunit of the ganglionic AChR, and thus do not bind non-specifically to other nicotinic AChR. Patients with high levels of ganglionic AChR antibodies typically present with rapid onset of severe autonomic failure, with orthostatic hypotension, gastrointestinal dysmotility, anhidrosis, bladder dysfunction and sicca symptoms. Impaired pupillary light reflex is often seen. Like myasthenia gravis, AAG is an antibody-mediated neurological disorder. Antibodies from patients with AAG inhibit ganglionic AChR currents and impair transmission in autonomic ganglia. An animal model of AAG in the rabbit recapitulates the important clinical features of the human disease and provides additional evidence that AAG is an antibody-mediated disorder caused by impairment of synaptic transmission in autonomic ganglia.

  5. Autonomic ganglia, acetylcholine receptor antibodies, and autoimmune ganglionopathy

    PubMed Central

    Vernino, Steven; Hopkins, Steve; Wang, Zhengbei

    2009-01-01

    Nicotinic acetylcholine receptors (AChR) are ligand-gated cation channels that are present throughout the nervous system. The ganglionic (α3-type) neuronal AChR mediates fast synaptic transmission in sympathetic, parasympathetic and enteric autonomic ganglia. Autonomic ganglia are an important site of neural integration and regulation of autonomic reflexes. Impaired cholinergic ganglionic synaptic transmission is one important cause of autonomic failure. Ganglionic AChR antibodies are found in many patients with autoimmune autonomic ganglionopathy (AAG). These antibodies recognize the α3 subunit of the ganglionic AChR, and thus do not bind non-specifically to other nicotinic AChR. Patients with high levels of ganglionic AChR antibodies typically present with rapid onset of severe autonomic failure, with orthostatic hypotension, gastrointestinal dysmotility, anhidrosis, bladder dysfunction and sicca symptoms. Impaired pupillary light reflex is often seen. Like myasthenia gravis, AAG is an antibody-mediated neurological disorder. Antibodies from patients with AAG inhibit ganglionic AChR currents and impair transmission in autonomic ganglia. An animal model of AAG in the rabbit recapitulates the important clinical features of the human disease and provides additional evidence that AAG is an antibody-mediated disorder caused by impairment of synaptic transmission in autonomic ganglia. PMID:18951069

  6. Spin labeled acetylcholine analogs: studies of cholinergic receptor.

    PubMed

    Rosen, G M; Abou-Donia, M B; Yeh, J Z; Menzel, D B

    1975-10-01

    Some spin-labeled acetylcholine analogs, in which the number of methylene groups between the quaternary nitrogen and the ether oxygen ranged between 1-5, were synthesized to study drug interacitons with acetylcholine receptors. None of the compounds tested, with the exception of the one that contained 2 methylene groups (SL-2) had any cholinergic activity. SL-2 was not capable of producing any nicotinic cholinomimetic activity. On the other hand it proved to have a very weak nicotinic cholinolytic activity on the receptors of the frog satorius muscle. This compound exhibited strong antagonism against muscarinic receptors of the isolated frog heart. The muscarinic cholinolytic action of the spin-label ACh analog is discussed in terms of the molecular perturbation theory of drug action.

  7. Substituted 2-Aminopyrimidines Selective for α7-Nicotinic Acetylcholine Receptor Activation and Association with Acetylcholine Binding Proteins.

    PubMed

    Kaczanowska, Katarzyna; Camacho Hernandez, Gisela Andrea; Bendiks, Larissa; Kohs, Larissa; Cornejo-Bravo, Jose Manuel; Harel, Michal; Finn, M G; Taylor, Palmer

    2017-03-15

    Through studies with ligand binding to the acetylcholine binding protein (AChBP), we previously identified a series of 4,6-substituted 2-aminopyrimidines that associate with this soluble surrogate of the nicotinic acetylcholine receptor (nAChR) in a cooperative fashion, not seen for classical nicotinic agonists and antagonists. To examine receptor interactions of this structural family on ligand-gated ion channels, we employed HEK cells transfected with cDNAs encoding three requisite receptor subtypes: α7-nAChR, α4β2-nAChR, and a serotonin receptor (5-HT3AR), along with a fluorescent reporter. Initial screening of a series of over 50 newly characterized 2-aminopyrimidines with affinity for AChBP showed only two to be agonists on the α7-nAChR below 10 μM concentration. Their unique structural features were incorporated into design of a second subset of 2-aminopyrimidines yielding several congeners that elicited α7 activation with EC50 values of 70 nM and Kd values for AChBP in a similar range. Several compounds within this series exhibit specificity for the α7-nAChR, showing no activation or antagonism of α4β2-nAChR or 5-HT3AR at concentrations up to 10 μM, while others were weaker antagonists (or partial agonists) on these receptors. Analysis following cocrystallization of four ligand complexes with AChBP show binding at the subunit interface, but with an orientation or binding pose that differs from classical nicotinic agonists and antagonists and from the previously analyzed set of 2-aminopyrimidines that displayed distinct cooperative interactions with AChBP. Orientations of aromatic side chains of these complexes are distinctive, suggesting new modes of binding at the agonist-antagonist site and perhaps an allosteric action for heteromeric nAChRs.

  8. Cellular approaches to the interaction between cannabinoid receptor ligands and nicotinic acetylcholine receptors.

    PubMed

    Oz, Murat; Al Kury, Lina; Keun-Hang, Susan Yang; Mahgoub, Mohamed; Galadari, Sehamuddin

    2014-05-15

    Cannabinoids are among the earliest known drugs to humanity. Cannabis plant contains various phytochemicals that bind to cannabinoid receptors. In addition, synthetic and endogenously produced cannabinoids (endocannabinoids) constitute other classes of cannabinoid receptor ligands. Although many pharmacological effects of these cannabinoids are mediated by the activation of cannabinoid receptors, recent studies indicate that cannabinoids also modulate the functions of various integral membrane proteins including ion channels, receptors, neurotransmitter transporters, and enzymes by mechanism(s) not involving the activation of known cannabinoid receptors. Currently, the mechanisms of these effects were not fully understood. However, it is likely that direct actions of cannabinoids are closely linked to their lipophilic structures. This report will focus on the actions of cannabinoids on nicotinic acetylcholine receptors and will examine the results of recent studies in this field. In addition some mechanistic approaches will be provided. The results discussed in this review indicate that, besides cannabinoid receptors, further molecular targets for cannabinoids exist and that these targets may represent important novel sites to alter neuronal excitability. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Positive allosteric modulators of α7 nicotinic acetylcholine receptors affect neither the function of other ligand- and voltage-gated ion channels and acetylcholinesterase, nor β-amyloid content.

    PubMed

    Arias, Hugo R; Ravazzini, Federica; Targowska-Duda, Katarzyna M; Kaczor, Agnieszka A; Feuerbach, Dominik; Boffi, Juan C; Draczkowski, Piotr; Montag, Dirk; Brown, Brandon M; Elgoyhen, Ana Belén; Jozwiak, Krzysztof; Puia, Giulia

    2016-07-01

    The activity of positive allosteric modulators (PAMs) of α7 nicotinic acetylcholine receptors (AChRs), including 3-furan-2-yl-N-p-tolyl-acrylamide (PAM-2), 3-furan-2-yl-N-o-tolylacrylamide (PAM-3), and 3-furan-2-yl-N-phenylacrylamide (PAM-4), was tested on a variety of ligand- [i.e., human (h) α7, rat (r) α9α10, hα3-containing AChRs, mouse (m) 5-HT3AR, and several glutamate receptors (GluRs)] and voltage-gated (i.e., sodium and potassium) ion channels, as well as on acetylcholinesterase (AChE) and β-amyloid (Aβ) content. The functional results indicate that PAM-2 inhibits hα3-containing AChRs (IC50=26±6μM) with higher potency than that for NR1aNR2B and NR1aNR2A, two NMDA-sensitive GluRs. PAM-2 affects neither the activity of m5-HT3ARs, GluR5/KA2 (a kainate-sensitive GluR), nor AChE, and PAM-4 does not affect agonist-activated rα9α10 AChRs. Relevant clinical concentrations of PAM-2-4 do not inhibit Nav1.2 and Kv3.1 ion channels. These PAMs slightly enhance the activity of GluR1 and GluR2, two AMPA-sensitive GluRs. PAM-2 does not change the levels of Aβ42 in an Alzheimer's disease mouse model (i.e., 5XFAD). The molecular docking and dynamics results using the hα7 model suggest that the active sites for PAM-2 include the intrasubunit (i.e., PNU-120596 locus) and intersubunit sites. These results support our previous study showing that these PAMs are selective for the α7 AChR, and clarify that the procognitive/promnesic/antidepressant activity of PAM-2 is not mediated by other targets.

  10. Nicotinic acetylcholine receptors: upregulation, age-related effects and associations with drug use

    PubMed Central

    Melroy-Greif, W. E.; Stitzel, J. A.; Ehringer, M. A.

    2016-01-01

    Nicotinic acetylcholine receptors are ligand-gated ion channels that exogenously bind nicotine. Nicotine produces rewarding effects by interacting with these receptors in the brain’s reward system. Unlike other receptors, chronic stimulation by an agonist induces an upregulation of receptor number that is not due to increased gene expression in adults; while upregulation also occurs during development and adolescence there have been some opposing findings regarding a change in corresponding gene expression. These receptors have also been well studied with regard to human genetic associations and, based on evidence suggesting shared genetic liabilities between substance use disorders, numerous studies have pointed to a role for this system in comorbid drug use. This review will focus on upregulation of these receptors in adulthood, adolescence and development, as well as the findings from human genetic association studies which point to different roles for these receptors in risk for initiation and continuation of drug use. PMID:26351737

  11. Correlation of phospholipid structure with functional effects on the nicotinic acetylcholine receptor. A modulatory role for phosphatidic acid.

    PubMed Central

    Bhushan, A; McNamee, M G

    1993-01-01

    Fourier transform infrared spectroscopy is used to characterize specific interactions between negatively charged lipids, such as phosphatidic acid, and the purified nicotinic acetylcholine receptor from Torpedo californica. The specific interaction of phosphatidic acid with acetylcholine receptor is demonstrated by the receptor-induced perturbation of the lipid ionization state, which is monitored using Fourier transform infrared bands arising from the phosphate head group. The acetylcholine receptor shifts the pKa of phosphatidic acid molecules adjacent to the receptor to a lower value by almost 2 pH units from 8.5 to 6.6. Decreased pH also leads to changes in ion channel function and to changes in the secondary structure of the acetylcholine receptor in membranes containing ionizable phospholipids. Phospholipase D restores functional activity of acetylcholine receptor reconstituted in an unfavorable environment containing phosphatidylcholine by generating phosphatidic acid. Lipids such as phosphatidic acid may serve as allosteric effectors for membrane protein function and the lipid-protein interface could be a site for activity-dependent changes that lead to modulation of synaptic efficacy. PMID:8471723

  12. Synthesis, Trafficking, and Localization of Muscarinic Acetylcholine Receptors

    PubMed Central

    Nathanson, Neil M.

    2008-01-01

    Muscarinic acetylcholine receptors are members of the G-protein coupled receptor superfamily that are expressed in and regulate the function of neurons, cardiac and smooth muscle, glands, and many other cell types and tissues. The correct trafficking of membrane proteins to the cell surface and their subsequent localization at appropriate sites in polarized cells are required for normal cellular signaling and physiological responses. This review will summarize work on the synthesis and trafficking of muscarinic receptors to the plasma membrane and their localization at the cell surface. PMID:18558434

  13. Structural model of nicotinic acetylcholine receptor isotypes bound to acetylcholine and nicotine

    PubMed Central

    Schapira, Matthieu; Abagyan, Ruben; Totrov, Maxim

    2002-01-01

    Background Nicotine is a psychoactive drug presenting a diverse array of biological activities, some positive, such as enhancement of cognitive performances, others negative, such as addiction liability. Ligands that discriminate between the different isotypes of nicotinic acetylcholine receptors (nAChRs) could present improved pharmacology and toxicity profile. Results Based on the recent crystal structure of a soluble acetylcholine binding protein from snails, we have built atomic models of acetylcholine and nicotine bound to the pocket of four different human nAChR subtypes. The structures of the docked ligands correlate with available biochemical data, and reveal that the determinants for isotype selectivity are relying essentially on four residues, providing diversity of the ligand binding pocket both in terms of Van der Waals boundary, and electrostatic potential. We used our models to screen in silico a large compound database and identify a new ligand candidate that could display subtype selectivity. Conclusion The nAChR-agonist models should be useful for the design of nAChR agonists with diverse specificity profiles. PMID:11860617

  14. Muscarinic acetylcholine receptor-interacting proteins (mAChRIPs): targeting the receptorsome.

    PubMed

    Borroto-Escuela, D O; Agnati, Luigi F; Fuxe, Kjell; Ciruela, F

    2012-01-01

    Muscarinic acetylcholine receptors comprise a large family of G protein-coupled receptors that are involved in the regulation of many important functions of the central and peripheral nervous system. To achieve such a large range of physiological effects, these receptors interact with a large array of accessory proteins including scaffold molecules, ion channels and enzymes that operate as molecular transducers of muscarinic function in addition to the canonical heterotrimeric G proteins. Interestingly, as demonstrated for others G protein-coupled receptors, this type of receptor is also able to oligomerise, a fact that has been shown to play a critical role in their subcellular distribution, trafficking, and fine tuning of cholinergic signalling. On the other hand, the specificity of these receptor interactions may be largely determined by the occurrence of precise protein-interacting motifs, posttranslational modifications, and the differential tissue distribution and stoichiometry of the receptor-interacting proteins. Thus, the exhaustive cataloguing and documentation of muscarinic acetylcholine receptor-interacting proteins and the grasp of their specific function will explain key physiological differences in muscarinic-mediated cholinergic transmission. Overall, a better comprehension of the muscarinic receptor interactome will have a significant impact on the cholinergic pharmacology and thus provide previously unrealised opportunities to achieve greater specificity in muscarinic-related drug discovery and diagnostics.

  15. Abundance, distribution, mobility and oligomeric state of M2 muscarinic acetylcholine receptors in live cardiac muscle

    PubMed Central

    Nenasheva, Tatiana A.; Neary, Marianne; Mashanov, Gregory I.; Birdsall, Nigel J.M.; Breckenridge, Ross A.; Molloy, Justin E.

    2013-01-01

    M2 muscarinic acetylcholine receptors modulate cardiac rhythm via regulation of the inward potassium current. To increase our understanding of M2 receptor physiology we used Total Internal Reflection Fluorescence Microscopy to visualize individual receptors at the plasma membrane of transformed CHOM2 cells, a cardiac cell line (HL-1), primary cardiomyocytes and tissue slices from pre- and post-natal mice. Receptor expression levels between individual cells in dissociated cardiomyocytes and heart slices were highly variable and only 10% of murine cardiomyocytes expressed muscarinic receptors. M2 receptors were evenly distributed across individual cells and their density in freshly isolated embryonic cardiomyocytes was ~ 1 μm− 2, increasing at birth (to ~ 3 μm− 2) and decreasing back to ~ 1 μm− 2 after birth. M2 receptors were primarily monomeric but formed reversible dimers. They diffused freely at the plasma membrane, moving approximately 4-times faster in heart slices than in cultured cardiomyocytes. Knowledge of receptor density and mobility has allowed receptor collision rate to be modeled by Monte Carlo simulations. Our estimated encounter rate of 5–10 collisions per second, may explain the latency between acetylcholine application and GIRK channel opening. PMID:23357106

  16. α7 nicotinic acetylcholine receptors: a therapeutic target in the structure era.

    PubMed

    Taly, Antoine; Charon, Sebastien

    2012-05-01

    The nicotinic acetylcholine receptors (nAChR) are ligand-gated ion channels involved in cognitive processes and are associated with brain disorders which makes them interesting drug targets. This article presents a general overview of the receptor to introduce the α7 nAChR as a drug target. The advances in understanding of the structure/function properties of the nAChR produced during the last decade are detailed as they are crucial for rational drug design. The allosteric properties of the nAChR will also be described because they also have important consequences for drug design.

  17. END-PLATE ACETYLCHOLINE RECEPTOR: STRUCTURE, MECHANISM, PHARMACOLOGY, AND DISEASE

    PubMed Central

    Sine, Steven M.

    2012-01-01

    The synapse is a localized neurohumoral contact between a neuron and an effector cell and may be considered the quantum of fast intercellular communication. Analogously, the postsynaptic neurotransmitter receptor may be considered the quantum of fast chemical to electrical transduction. Our understanding of postsynaptic receptors began to develop about a hundred years ago with the demonstration that electrical stimulation of the vagus nerve released acetylcholine and slowed the heart beat. During the past 50 years, advances in understanding postsynaptic receptors increased at a rapid pace, owing largely to studies of the acetylcholine receptor (AChR) at the motor endplate. The endplate AChR belongs to a large superfamily of neurotransmitter receptors, called Cys-loop receptors, and has served as an exemplar receptor for probing fundamental structures and mechanisms that underlie fast synaptic transmission in the central and peripheral nervous systems. Recent studies provide an increasingly detailed picture of the structure of the AChR and the symphony of molecular motions that underpin its remarkably fast and efficient chemoelectrical transduction. PMID:22811427

  18. End-plate acetylcholine receptor: structure, mechanism, pharmacology, and disease.

    PubMed

    Sine, Steven M

    2012-07-01

    The synapse is a localized neurohumoral contact between a neuron and an effector cell and may be considered the quantum of fast intercellular communication. Analogously, the postsynaptic neurotransmitter receptor may be considered the quantum of fast chemical to electrical transduction. Our understanding of postsynaptic receptors began to develop about a hundred years ago with the demonstration that electrical stimulation of the vagus nerve released acetylcholine and slowed the heart beat. During the past 50 years, advances in understanding postsynaptic receptors increased at a rapid pace, owing largely to studies of the acetylcholine receptor (AChR) at the motor endplate. The endplate AChR belongs to a large superfamily of neurotransmitter receptors, called Cys-loop receptors, and has served as an exemplar receptor for probing fundamental structures and mechanisms that underlie fast synaptic transmission in the central and peripheral nervous systems. Recent studies provide an increasingly detailed picture of the structure of the AChR and the symphony of molecular motions that underpin its remarkably fast and efficient chemoelectrical transduction.

  19. Role of dopamine receptor and muscarinic acetylcholine receptor blockade in the antiapomorphine action of neuroleptics

    SciTech Connect

    Zharkovskii, A.M.; Langel, Yu.L.; Chereshka, K.S.; Zharkovskaya, T.A.

    1987-08-01

    The authors analyze the role of dopamine and muscarinic acetylcholine receptor blocking components in the antistereotypic action of neuroleptics with different chemical structure. To determine dopamine-blocking activity in vitro, binding of /sup 3/H-spiperone with membranes of the rat striatum was measured. To study the blocking action of the substances on muscarinic acetylcholine receptors, binding of /sup 3/H-quinuclidinyl benzylate with brain membranes was chosen.

  20. Nicotinic Acetylcholine Receptor Signaling in Tumor Growth and Metastasis

    PubMed Central

    Singh, Sandeep; Pillai, Smitha; Chellappan, Srikumar

    2011-01-01

    Cigarette smoking is highly correlated with the onset of a variety of human cancers, and continued smoking is known to abrogate the beneficial effects of cancer therapy. While tobacco smoke contains hundreds of molecules that are known carcinogens, nicotine, the main addictive component of tobacco smoke, is not carcinogenic. At the same time, nicotine has been shown to promote cell proliferation, angiogenesis, and epithelial-mesenchymal transition, leading to enhanced tumor growth and metastasis. These effects of nicotine are mediated through the nicotinic acetylcholine receptors that are expressed on a variety of neuronal and nonneuronal cells. Specific signal transduction cascades that emanate from different nAChR subunits or subunit combinations facilitate the proliferative and prosurvival functions of nicotine. Nicotinic acetylcholine receptors appear to stimulate many downstream signaling cascades induced by growth factors and mitogens. It has been suggested that antagonists of nAChR signaling might have antitumor effects and might open new avenues for combating tobacco-related cancer. This paper examines the historical data connecting nicotine tumor progression and the recent efforts to target the nicotinic acetylcholine receptors to combat cancer. PMID:21541211

  1. Molecular mechanism of acetylcholine receptor-controlled ion translocation across cell membranes

    PubMed Central

    Cash, Derek J.; Hess, George P.

    1980-01-01

    Two molecular processes, the binding of acetylcholine to the membrane-bound acetylcholine receptor protein and the receptor-controlled flux rates of specific inorganic ions, are essential in determining the electrical membrane potential of nerve and muscle cells. The measurements reported establish the relationship between the two processes: the acetylcholine receptor-controlled transmembrane ion flux of 86Rb+ and the concentration of carbamoylcholine, a stable analog of acetylcholine. A 200-fold concentration range of carbamoylcholine was used. The flux was measured in the millisecond-to-minute time region by using a quench flow technique with membrane vesicles prepared from the electric organ of Electrophorus electricus in eel Ringer's solution at pH 7.0 and 1°C. The technique makes possible the study of the transmembrane transport of specific ions, with variable known internal and external ion concentrations, in a system in which a determinable number of receptors is exposed to a known concentration of ligand. The response curve of ion flux to ligand was sigmoidal with an average maximum rate of 84 sec-1. Carbamoylcholine induced inactivation of the receptor with a maximum rate of 2.7 sec-1 and a different ligand dependence so that it was fast relative to ion flux at low ligand concentration but slow relative to ion flux at high ligand concentration. The simplest model that fits the data consists of receptor in the active and inactive states in ligand-controlled equilibria. Receptor inactivation occurs with one or two ligand molecules bound. For channel opening, two ligand molecules bound to the active state are required, and cooperativity results from the channel opening process itself. With carbamoylcholine, apparently, the equilibrium position for the channel opening step is only one-fourth open. The integrated rate equation, based on the model, predicts the time dependence of receptor-controlled ion flux over the concentration range of carbamoylcholine

  2. Differential Contribution of Subunit Interfaces to α9α10 Nicotinic Acetylcholine Receptor Function.

    PubMed

    Boffi, Juan Carlos; Marcovich, Irina; Gill-Thind, JasKiran K; Corradi, Jeremías; Collins, Toby; Lipovsek, María Marcela; Moglie, Marcelo; Plazas, Paola V; Craig, Patricio O; Millar, Neil S; Bouzat, Cecilia; Elgoyhen, Ana Belén

    2017-03-01

    Nicotinic acetylcholine receptors can be assembled from either homomeric or heteromeric pentameric subunit combinations. At the interface of the extracellular domains of adjacent subunits lies the acetylcholine binding site, composed of a principal component provided by one subunit and a complementary component of the adjacent subunit. Compared with neuronal nicotinic acetylcholine cholinergic receptors (nAChRs) assembled from α and β subunits, the α9α10 receptor is an atypical member of the family. It is a heteromeric receptor composed only of α subunits. Whereas mammalian α9 subunits can form functional homomeric α9 receptors, α10 subunits do not generate functional channels when expressed heterologously. Hence, it has been proposed that α10 might serve as a structural subunit, much like a β subunit of heteromeric nAChRs, providing only complementary components to the agonist binding site. Here, we have made use of site-directed mutagenesis to examine the contribution of subunit interface domains to α9α10 receptors by a combination of electrophysiological and radioligand binding studies. Characterization of receptors containing Y190T mutations revealed unexpectedly that both α9 and α10 subunits equally contribute to the principal components of the α9α10 nAChR. In addition, we have shown that the introduction of a W55T mutation impairs receptor binding and function in the rat α9 subunit but not in the α10 subunit, indicating that the contribution of α9 and α10 subunits to complementary components of the ligand-binding site is nonequivalent. We conclude that this asymmetry, which is supported by molecular docking studies, results from adaptive amino acid changes acquired only during the evolution of mammalian α10 subunits.

  3. Differential Contribution of Subunit Interfaces to α9α10 Nicotinic Acetylcholine Receptor Function

    PubMed Central

    Boffi, Juan Carlos; Marcovich, Irina; Gill-Thind, JasKiran K.; Corradi, Jeremías; Collins, Toby; Lipovsek, María Marcela; Moglie, Marcelo; Plazas, Paola V.; Craig, Patricio O.; Millar, Neil S.; Bouzat, Cecilia

    2017-01-01

    Nicotinic acetylcholine receptors can be assembled from either homomeric or heteromeric pentameric subunit combinations. At the interface of the extracellular domains of adjacent subunits lies the acetylcholine binding site, composed of a principal component provided by one subunit and a complementary component of the adjacent subunit. Compared with neuronal nicotinic acetylcholine cholinergic receptors (nAChRs) assembled from α and β subunits, the α9α10 receptor is an atypical member of the family. It is a heteromeric receptor composed only of α subunits. Whereas mammalian α9 subunits can form functional homomeric α9 receptors, α10 subunits do not generate functional channels when expressed heterologously. Hence, it has been proposed that α10 might serve as a structural subunit, much like a β subunit of heteromeric nAChRs, providing only complementary components to the agonist binding site. Here, we have made use of site-directed mutagenesis to examine the contribution of subunit interface domains to α9α10 receptors by a combination of electrophysiological and radioligand binding studies. Characterization of receptors containing Y190T mutations revealed unexpectedly that both α9 and α10 subunits equally contribute to the principal components of the α9α10 nAChR. In addition, we have shown that the introduction of a W55T mutation impairs receptor binding and function in the rat α9 subunit but not in the α10 subunit, indicating that the contribution of α9 and α10 subunits to complementary components of the ligand-binding site is nonequivalent. We conclude that this asymmetry, which is supported by molecular docking studies, results from adaptive amino acid changes acquired only during the evolution of mammalian α10 subunits. PMID:28069778

  4. Acetylcholine receptor pathway in lung cancer: New twists to an old story

    PubMed Central

    Niu, Xiao-Min; Lu, Shun

    2014-01-01

    Genome-wide association studies revealed that allelic variation in the α5-α3-β4 nicotine acetylcholine receptor (nAChR) cluster on chromosome 15q24-15q25.1 was associated with lung cancer risk. nAChRs are membrane ligand-gated cation channels whose activation is triggered by the binding of the endogenous neurotransmitter acetylcholine (ACh) or other biologic compounds including nicotine. nAChRs have been found on lung cancer cells, underscoring the idea that the non-neuronal nAChR pathway has important implications for lung cancer. Several studies focusing on the treatment with nAChR antagonists with improved selectivity might trigger novel strategies for the intervention and prevention of lung cancer. Here we review the genetic risk factors for lung cancer in the nAChR gene cluster, the roles of nicotine receptors, and the molecular mechanisms of acetylcholine receptor pathways to lead to more opportunities for intervention and prevention of lung cancer. PMID:25302169

  5. Ultrastructure of acetylcholine receptor aggregates parallels mechanisms of aggregation

    PubMed Central

    Kunkel, Dennis D; Lee, Lara K; Stollberg, Jes

    2001-01-01

    Background Acetylcholine receptors become aggregated at the developing neuromuscular synapse shortly after contact by a motorneuron in one of the earliest manifestations of synaptic development. While a major physiological signal for receptor aggregation (agrin) is known, the mechanism(s) by which muscle cells respond to this and other stimuli have yet to be worked out in detail. The question of mechanism is addressed in the present study via a quantitative examination of ultrastructural receptor arrangement within aggregates. Results In receptor rich cell membranes resulting from stimulation by agrin or laminin, or in control membrane showing spontaneous receptor aggregation, receptors were found to be closer to neighboring receptors than would be expected at random. This indicates that aggregation proceeds heterogeneously: nanoaggregates, too small for detection in the light microscope, underlie developing microaggregates of receptors in all three cases. In contrast, the structural arrangement of receptors within nanoaggregates was found to depend on the aggregation stimulus. In laminin induced nanoaggregates receptors were found to be arranged in an unstructured manner, in contrast to the hexagonal array of about 10 nm spacing found for agrin induced nanoaggregates. Spontaneous aggregates displayed an intermediate amount of order, and this was found to be due to two distinct population of nanoaggregates. Conclusions The observations support earlier studies indicating that mechanisms by which agrin and laminin-1 induced receptor aggregates form are distinct and, for the first time, relate mechanisms underlying spontaneous aggregate formation to aggregate structure. PMID:11749670

  6. CHARACTERIZATION OF NICOTINE ACETYLCHOLINE RECEPTOR SUBUNITS IN THE COCKROACH Periplaneta americana MUSHROOM BODIES REVEALS A STRONG EXPRESSION OF β1 SUBUNIT: INVOLVEMENT IN NICOTINE-INDUCED CURRENTS.

    PubMed

    Taillebois, Emiliane; Thany, Steeve H

    2016-09-01

    Nicotinic acetylcholine receptors are ligand-gated ion channels expressed in many insect structures, such as mushroom bodies, in which they play a central role. We have recently demonstrated using electrophysiological recordings that different native nicotinic receptors are expressed in cockroach mushroom bodies Kenyon cells. In the present study, we demonstrated that eight genes coding for cockroach nicotinic acetylcholine receptor subunits are expressed in the mushroom bodies. Quantitative real-time polymerase chain reaction (PCR) experiments demonstrated that β1 subunit was the most expressed in the mushroom bodies. Moreover, antisense oligonucleotides performed against β1 subunit revealed that inhibition of β1 expression strongly decreases nicotine-induced currents amplitudes. Moreover, co-application with 0.5 μM α-bungarotoxin completely inhibited nicotine currents whereas 10 μM d-tubocurarine had a partial effect demonstrating that β1-containing neuronal nicotinic acetylcholine receptor subtypes could be sensitive to the nicotinic acetylcholine receptor antagonist α-bungarotoxin.

  7. A model of the human M2 muscarinic acetylcholine receptor

    NASA Astrophysics Data System (ADS)

    Jöhren, Kirstin; Höltje, Hans-Dieter

    2002-11-01

    The M2 muscarinic acetylcholine receptor belongs to the family of rhodopsin like G-Protein Coupled Receptors. This subtype of muscarinic receptors is of special interest because it bears, aside from an orthosteric binding site, also an allosteric binding site. Based on the X-ray structure of bovine rhodopsin a complete homology model of the human M2 receptor was developed. For the orthosteric binding site point mutations and binding studies with different agonists and antagonists are available. This knowledge was utilized for an initial verification of the M2 model. Allosteric modulation of activity is mediated by structurally different ligands such as gallamine, caracurine V salts or W84 (a hexamethonium-derivative). Caracurine V derivatives with different affinities to M2 were docked using GRID-fields. Subsequent molecular dynamics simulations yielded different binding energies based on diverse electrostatic and lipophilic interactions. The calculated affinities are in good agreement to experimentally determined affinities.

  8. Alternative splicing in nicotinic acetylcholine receptor subunits from Locusta migratoria and its influence on acetylcholine potencies.

    PubMed

    Zhang, Yixi; Liu, Yang; Bao, Haibo; Sun, Huahua; Liu, Zewen

    2017-01-18

    Due to the great abundance within insect central nervous system (CNS), nicotinic acetylcholine receptors (nAChRs) play key roles in insect CNS, which makes it to be the targets of several classes of insecticides, such as neonicotinoids. Insect nAChRs are pentameric complexes consisting of five subunits, and a dozen subunits in one insect species can theoretically comprise diverse nAChRs. The alternative splicing in insect nAChR subunits may increase the diversity of insect nAChRs. In the oriental migratory locust (Locusta migratoria manilensis Meyen), a model insect species with agricultural importance, the alternative splicing was found in six α subunits among nine α and two β subunits, such as missing conserved residues in Loop D from Locα1, Locα6 and Locα9, a 34-residue insertion in Locα8 cytoplasmic loop, and truncated transcripts for Locα4, Locα7 and Locα9. Hybrid nAChRs were successfully constructed in Xenopus oocytes through co-expression with rat β2 and one α subunit from L. migratoria, which included Locα1, Locα2, Locα3, Locα4, Locα5, Locα8 and Locα9. Influences of alternative splicing in Locα1, Locα8 and Locα9 on acetylcholine potency were tested on hybrid nAChRs. The alternative splicing in Locα1 and Locα9 could increase acetylcholine sensitivities on recombinant receptors, while the splicing in Locα8 showed significant influences on the current amplitudes of oocytes. The results revealed that the alternative splicing at or close to the ligand-binding sites, as well as at cytoplasmic regions away from the ligand-binding sites, in insect nAChR subunits would change the agonist potencies on the receptors, which consequently increased nAChR diversity in functional and pharmacological properties.

  9. Biochemical and immunological studies of the Muscarinic acetylcholine receptor

    SciTech Connect

    Gainer, M.W.

    1985-01-01

    Muscarinic acetylcholine receptors were solubilized from bovine brain membranes with 3(3-cholamidopropyl)dimethylammonio)propanesulfonate (CHAPS). A combination of 10 mM CHAPS and 1 M NaCl solubilized 15-40% of the specific receptor binding sites from these membranes. The solubilized receptors displayed high affinity binding of the muscarinic antagonist, (/sup 3/H)quinuclidinyl benzilate with a K/sub D/ = 300 pM. In addition, the solubilized and retained guanyl nucleotide regulation of agonist binding characteristic of membrane bound receptors. Gel filtration experiments showed that solubilized receptors from cortex and cerebellum had different elution profiles. Analysis by sucrose density gradient centrifugation showed that receptors in the lower molecular weight peak sedimented with a coefficient of 5S. Receptors in the larger molecular weight peak sedimented to the bottom of the gradient. Attempts to purify receptors by chromatography on propylbenzilycholine Sepharose were unsuccessful. The technique used to attach the ligand to the solid support, however, was used to synthesize a PrBCM-BSA conjugate and the conjugate used as an antigen in the production of anti-ligand antibodies. Two anti-PrBCM monoclonal antibodies were isolated that recognize muscarinic but not nicotinic cholinergic ligands. The abilities of the antibodies to recognize other muscarinic ligands indicated the antibodies recognized a portion of PrBCM involved in binding to the receptor. Construction of an antibody affinity resin resulted in the purification of this fragment a minimum of 170 fold.

  10. Molecular alteration of a muscarinic acetylcholine receptor system during synaptogenesis

    SciTech Connect

    Large, T.H.; Cho, N.J.; De Mello, F.G.; Klein, W.L.

    1985-07-25

    Biochemical properties of the muscarinic acetylcholine receptor system of the avian retina were found to change during the period when synapses form in ovo. Comparison of ligand binding to membranes obtained before and after synaptogenesis showed a significant increase in the affinity, but not proportion, of the high affinity agonist-binding state. There was no change in receptor sensitivity to antagonists during this period. Pirenzepine binding, which can discriminate muscarinic receptor subtypes, showed the presence of a single population of low affinity sites (M2) before and after synaptogenesis. The change in agonist binding was not due to the late development of receptor function. However, detergent-solubilization of membranes eliminated differences in agonist binding between receptors from embryos and hatched chicks, suggesting a developmental change in interactions of the receptor with functionally related membrane components. A possible basis for altered interactions was obtained from isoelectric point data showing that the muscarinic receptor population underwent a transition from a predominantly low pI form (4.25) in 13 day embryos to a predominantly high pI form (4.50) in newly hatched chicks. The possibility that biochemical changes in the muscarinic receptor play a role in differentiation of the system by controlling receptor position on the surface of nerve cells is discussed.

  11. Structure and dynamics of the M3 muscarinic acetylcholine receptor

    SciTech Connect

    Kruse, Andrew C.; Hu, Jianxin; Pan, Albert C.; Arlow, Daniel H.; Rosenbaum, Daniel M.; Rosemond, Erica; Green, Hillary F.; Liu, Tong; Chae, Pil Seok; Dror, Ron O.; Shaw, David E.; Weis, William I.; Wess, Jürgen; Kobilka, Brian K.

    2012-03-01

    Acetylcholine, the first neurotransmitter to be identified, exerts many of its physiological actions via activation of a family of G-protein-coupled receptors (GPCRs) known as muscarinic acetylcholine receptors (mAChRs). Although the five mAChR subtypes (M1-M5) share a high degree of sequence homology, they show pronounced differences in G-protein coupling preference and the physiological responses they mediate. Unfortunately, despite decades of effort, no therapeutic agents endowed with clear mAChR subtype selectivity have been developed to exploit these differences. We describe here the structure of the G{sub q/11}-coupled M3 mAChR ('M3 receptor', from rat) bound to the bronchodilator drug tiotropium and identify the binding mode for this clinically important drug. This structure, together with that of the G{sub i/o}-coupled M2 receptor, offers possibilities for the design of mAChR subtype-selective ligands. Importantly, the M3 receptor structure allows a structural comparison between two members of a mammalian GPCR subfamily displaying different G-protein coupling selectivities. Furthermore, molecular dynamics simulations suggest that tiotropium binds transiently to an allosteric site en route to the binding pocket of both receptors. These simulations offer a structural view of an allosteric binding mode for an orthosteric GPCR ligand and provide additional opportunities for the design of ligands with different affinities or binding kinetics for different mAChR subtypes. Our findings not only offer insights into the structure and function of one of the most important GPCR families, but may also facilitate the design of improved therapeutics targeting these critical receptors.

  12. Neural Systems Governed by Nicotinic Acetylcholine Receptors: Emerging Hypotheses

    PubMed Central

    Miwa, Julie M.; Freedman, Robert; Lester, Henry A.

    2015-01-01

    Cholinergic neurons and nicotinic acetylcholine receptors (nAChRs) in the brain participate in diverse functions: reward, learning and memory, mood, sensory processing, pain, and neuroprotection. Nicotinic systems also have well-known roles in drug abuse. Here, we review recent insights into nicotinic function, linking exogenous and endogenous manipulations of nAChRs to alterations in synapses, circuits, and behavior. We also discuss how these contemporary advances can motivate attempts to exploit nicotinic systems therapeutically in Parkinson’s disease, cognitive decline, epilepsy, and schizophrenia. PMID:21482353

  13. Neuronal Nicotinic Acetylcholine Receptor Structure and Function and Response to Nicotine.

    PubMed

    Dani, John A

    2015-01-01

    Nicotinic acetylcholine receptors (nAChRs) belong to the "Cys-loop" superfamily of ligand-gated ion channels that includes GABAA, glycine, and serotonin (5-HT3) receptors. There are 16 homologous mammalian nAChR subunits encoded by a multigene family. These subunits combine to form many different nAChR subtypes with various expression patterns, diverse functional properties, and differing pharmacological characteristics. Because cholinergic innervation is pervasive and nAChR expression is extremely broad, practically every area of the brain is impinged upon by nicotinic mechanisms. This review briefly examines the structural and functional properties of the receptor/channel complex itself. The review also summarizes activation and desensitization of nAChRs by the low nicotine concentrations obtained from tobacco. Knowledge of the three-dimensional structure and the structural characteristics of channel gating has reached an advanced stage. Likewise, the basic functional properties of the channel also are reasonably well understood. It is these receptor/channel properties that underlie the participation of nAChRs in nearly every anatomical region of the mammalian brain.

  14. Nicotinic acetylcholine receptors control acetylcholine and noradrenaline release in the rodent habenulo-interpeduncular complex

    PubMed Central

    Beiranvand, F; Zlabinger, C; Orr-Urtreger, A; Ristl, R; Huck, S; Scholze, P

    2014-01-01

    Background and purpose Nicotinic acetylcholine receptors (nACh receptors) play a central role in the habenulo-interpeduncular system. We studied nicotine-induced release of NA and ACh in the habenula and interpeduncular nucleus (IPN). Experimental approach The habenula and IPN were loaded with [3H]-choline or [3H]-NA and placed in superfusion chambers. [3H]-ACh release was also stimulated using nicotinic agonists, electrical pulses and elevated [KCl]o in hippocampal and cortical slices from rats, wild-type mice and mice lacking α5, α7, β2, or β4 nACh receptor subunits. Finally, we analysed nACh receptor subtypes in the IPN using immunoprecipitation. Key results Nicotine induced release of [3H]-ACh in the IPN of rats and mice. This release was calcium-dependent but not blocked by tetrodotoxin (TTX); moreover, [3H]-ACh release was abolished in β4-knockout mice but was unaffected in β2- and α5-knockout mice. In contrast, nicotine-induced release of [3H]-NA in the IPN and habenula was blocked by TTX and reduced in both β2-knockout and β4-knockout mice, and dose–response curves were right-shifted in α5-knockout mice. Although electrical stimuli triggered the release of both transmitters, [3H]-ACh release required more pulses delivered at a higher frequency. Conclusions and implications Our results confirm previous findings that β4-containing nACh receptors are critical for [3H]-ACh release in the mouse IPN. Experiments using α5-knockout mice also revealed that unlike in the hippocampus, nicotine-induced [3H]-NA release in the habenulo-interpeduncular system is altered in this knockout model. As α5-containing nACh receptors play a key role in nicotine intake, our results add NA to the list of transmitters involved in this mechanism. PMID:25041479

  15. The nicotinic acetylcholine receptor and its prokaryotic homologues: Structure, conformational transitions & allosteric modulation.

    PubMed

    Cecchini, Marco; Changeux, Jean-Pierre

    2015-09-01

    Pentameric ligand-gated ion channels (pLGICs) play a central role in intercellular communications in the nervous system by converting the binding of a chemical messenger - a neurotransmitter - into an ion flux through the postsynaptic membrane. Here, we present an overview of the most recent advances on the signal transduction mechanism boosted by X-ray crystallography of both prokaryotic and eukaryotic homologues of the nicotinic acetylcholine receptor (nAChR) in conjunction with time-resolved analyses based on single-channel electrophysiology and Molecular Dynamics simulations. The available data consistently point to a global mechanism of gating that involves a large reorganization of the receptor mediated by two distinct quaternary transitions: a global twisting and a radial expansion/contraction of the extracellular domain. These transitions profoundly modify the organization of the interface between subunits, which host several sites for orthosteric and allosteric modulatory ligands. The same mechanism may thus mediate both positive and negative allosteric modulations of pLGICs ligand binding at topographically distinct sites. The emerging picture of signal transduction is expected to pave the way to new pharmacological strategies for the development of allosteric modulators of nAChR and pLGICs in general. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. An ER-resident membrane protein complex regulates nicotinic acetylcholine receptor subunit composition at the synapse

    PubMed Central

    Almedom, Ruta B; Liewald, Jana F; Hernando, Guillermina; Schultheis, Christian; Rayes, Diego; Pan, Jie; Schedletzky, Thorsten; Hutter, Harald; Bouzat, Cecilia; Gottschalk, Alexander

    2009-01-01

    Nicotinic acetylcholine receptors (nAChRs) are homo- or heteropentameric ligand-gated ion channels mediating excitatory neurotransmission and muscle activation. Regulation of nAChR subunit assembly and transfer of correctly assembled pentamers to the cell surface is only partially understood. Here, we characterize an ER transmembrane (TM) protein complex that influences nAChR cell-surface expression and functional properties in Caenorhabditis elegans muscle. Loss of either type I TM protein, NRA-2 or NRA-4 (nicotinic receptor associated), affects two different types of muscle nAChRs and causes in vivo resistance to cholinergic agonists. Sensitivity to subtype-specific agonists of these nAChRs is altered differently, as demonstrated by whole-cell voltage-clamp of dissected adult muscle, when applying exogenous agonists or after photo-evoked, channelrhodopsin-2 (ChR2) mediated acetylcholine (ACh) release, as well as in single-channel recordings in cultured embryonic muscle. These data suggest that nAChRs desensitize faster in nra-2 mutants. Cell-surface expression of different subunits of the ‘levamisole-sensitive' nAChR (L-AChR) is differentially affected in the absence of NRA-2 or NRA-4, suggesting that they control nAChR subunit composition or allow only certain receptor assemblies to leave the ER. PMID:19609303

  17. Acetylcholine receptors and cholinergic ligands: biochemical and genetic aspects in Torpedo californica and Drosophila melanogaster

    SciTech Connect

    Rosenthal, L.S.

    1987-01-01

    This study evaluates the biochemical and genetic aspects of the acetylcholine receptor proteins and cholinergic ligands in Drosophila melanogaster and Torpedo californica. Included are (1) a comparative study of nicotinic ligand-induced cation release from acetylcholine receptors isolated from Torpedo californica and from Drosophila melanogaster, (2) solution studies of the cholinergic ligands, nikethamide and ethamivan, aimed at measuring internal molecular rotational barriers in solvents of different polarity; and (3) the isolation and characterization of the gene(s) for the acetylcholine receptor in Drosophila melasogaster. Acetylcholine receptor proteins isolated from Drosphila melanogaster heads were found to behave kinetically similar (with regards to cholinergic ligand-induced /sup 155/Eu:/sup 3 +/ displacement from prelabeled proteins) to receptor proteins isolated from Torpedo californica electric tissue, providing additional biochemical evidence for the existence of a Drosophila acetylcholine receptor.

  18. Multiple conductance classes of mouse nicotinic acetylcholine receptors expressed in Xenopus oocytes.

    PubMed Central

    Kullberg, R; Owens, J L; Camacho, P; Mandel, G; Brehm, P

    1990-01-01

    Acetylcholine receptor (AcChoR) subunit mRNAs transcribed from mouse BC3H-1 cDNAs were injected into Xenopus oocytes and the expressed AcChoR channels were examined by single channel recording. Injection of alpha-, beta-, gamma-, and delta-subunit mRNAs produced two predominant channel classes with conductances of approximately 50 and approximately 12 pS, while infrequent openings of approximately 25-pS channels were also observed. Injection of alpha-, beta-, and gamma-subunit mRNAs produced a single class of approximately 12-pS AcChoR channels, which resembled the smallest conductance channels present in alpha beta gamma omega-injected oocytes. Assembly of delta-less channels may thus explain the lowest conductance AcChoR channels in alpha beta gamma delta-injected oocytes and might also account for similar channels that have been observed in vertebrate skeletal muscle. Images PMID:2315303

  19. Cell-surface translational dynamics of nicotinic acetylcholine receptors

    PubMed Central

    Barrantes, Francisco J.

    2014-01-01

    Synapse efficacy heavily relies on the number of neurotransmitter receptors available at a given time. In addition to the equilibrium between the biosynthetic production, exocytic delivery and recycling of receptors on the one hand, and the endocytic internalization on the other, lateral diffusion and clustering of receptors at the cell membrane play key roles in determining the amount of active receptors at the synapse. Mobile receptors traffic between reservoir compartments and the synapse by thermally driven Brownian motion, and become immobilized at the peri-synaptic region or the synapse by: (a) clustering mediated by homotropic inter-molecular receptor–receptor associations; (b) heterotropic associations with non-receptor scaffolding proteins or the subjacent cytoskeletal meshwork, leading to diffusional “trapping,” and (c) protein-lipid interactions, particularly with the neutral lipid cholesterol. This review assesses the contribution of some of these mechanisms to the supramolecular organization and dynamics of the paradigm neurotransmitter receptor of muscle and neuronal cells -the nicotinic acetylcholine receptor (nAChR). Currently available information stemming from various complementary biophysical techniques commonly used to interrogate the dynamics of cell-surface components is critically discussed. The translational mobility of nAChRs at the cell surface differs between muscle and neuronal receptors in terms of diffusion coefficients and residence intervals at the synapse, which cover an ample range of time regimes. A peculiar feature of brain α7 nAChR is its ability to spend much of its time confined peri-synaptically, vicinal to glutamatergic (excitatory) and GABAergic (inhibitory) synapses. An important function of the α7 nAChR may thus be visiting the territories of other neurotransmitter receptors, differentially regulating the dynamic equilibrium between excitation and inhibition, depending on its residence time in each domain. PMID

  20. Clinical and scientific aspects of acetylcholine receptor myasthenia gravis.

    PubMed

    Keijzers, Marlies; Nogales-Gadea, Gisela; de Baets, Marc

    2014-10-01

    Myasthenia gravis is a rare disease that causes impairment of the neuromuscular junction. In this review we will focus on the literature published in the last 18 months regarding autoimmune myasthenia gravis caused by antibodies against the nicotinic acetylcholine receptor myasthenia gravis. Acetylcholine receptor is the most common target of this autoimmune disease. A high number of long-lived plasma cells are present in myasthenia gravis patients. Treatments to eliminate these plasma cells, such as proteasome inhibitors, have proved utility in experimental autoimmune myasthenia gravis. MicroRNAs may have a role as biomarkers in myasthenia gravis. Epstein-Barr virus and human polyomavirus 7 are often found in myasthenia gravis thymus and may play a role in the initiation of the autoimmune process. Robotic thymectomy has been proved well tolerated and minimally invasive for the patients and is likely to replace open surgery. Knowledge of the initiation and perpetuation of the autoimmune response in myasthenia gravis condition is increasing every year. This knowledge is paired with in-vivo and in-vitro studies that are directed to further understand this disease, and to improve current treatment options in severe or nonresponding patients. Specific treatments and diagnosis in myasthenia gravis tend to an early detection and a better quality of life.

  1. Acetylcholine elongates neuronal growth cone filopodia via activation of nicotinic acetylcholine receptors.

    PubMed

    Zhong, Lei Ray; Estes, Stephen; Artinian, Liana; Rehder, Vincent

    2013-07-01

    In addition to acting as a classical neurotransmitter in synaptic transmission, acetylcholine (ACh) has been shown to play a role in axonal growth and growth cone guidance. What is not well understood is how ACh acts on growth cones to affect growth cone filopodia, structures known to be important for neuronal pathfinding. We addressed this question using an identified neuron (B5) from the buccal ganglion of the pond snail Helisoma trivolvis in cell culture. ACh treatment caused pronounced filopodial elongation within minutes, an effect that required calcium influx and resulted in the elevation of the intracellular calcium concentration ([Ca]i ). Whole-cell patch clamp recordings showed that ACh caused a reduction in input resistance, a depolarization of the membrane potential, and an increase in firing frequency in B5 neurons. These effects were mediated via the activation of nicotinic acetylcholine receptors (nAChRs), as the nAChR agonist dimethylphenylpiperazinium (DMPP) mimicked the effects of ACh on filopodial elongation, [Ca]i elevation, and changes in electrical activity. Moreover, the nAChR antagonist tubucurarine blocked all DMPP-induced effects. Lastly, ACh acted locally at the growth cone, because growth cones that were physically isolated from their parent neuron responded to ACh by filopodial elongation with a similar time course as growth cones that remained connected to their parent neuron. Our data revealed a critical role for ACh as a modulator of growth cone filopodial dynamics. ACh signaling was mediated via nAChRs and resulted in Ca influx, which, in turn, caused filopodial elongation.

  2. Role of acetylcholine receptors in proliferation and differentiation of P19 embryonal carcinoma cells

    SciTech Connect

    Resende, R.R.; Alves, A.S.; Britto, L.R.G; Ulrich, H.

    2008-04-15

    Coordinated proliferation and differentiation of progenitor cells is the base for production of appropriate numbers of neurons and glia during neuronal development in order to establish normal brain functions. We have used murine embryonal carcinoma P19 cells as an in vitro model for early differentiation to study participation of nicotinic (nAChR) and muscarinic acetylcholine (mAChR) receptors in the proliferation of neural progenitor cells and their differentiation to neurons. We have previously shown that functional nicotinic acetylcholine receptors (nAChRs) already expressed in embryonic cells mediate elevations in cytosolic free calcium concentration ([Ca{sup 2+}]{sub i}) via calcium influx through nAChR channels whereas intracellular stores contribute to nAChR- and mAChR-mediated calcium fluxes in differentiated cells [Resende et al., Cell Calcium 43 (2008) 107-121]. In the present study, we have demonstrated that nicotine provoked inhibition of proliferation in embryonic cells as determined by BrdU labeling. However, in neural progenitor cells nicotine stimulated proliferation which was reversed in the presence of inhibitors of calcium mobilization from intracellular stores, indicating that liberation of intracellular calcium contributed to this proliferation induction. Muscarine induced proliferation stimulation in progenitor cells by activation of G{alpha}{sub q/11}-coupled M{sub 1}, M{sub 3} and M{sub 5} receptors and intracellular calcium stores, whereas G{alpha}{sub i/o}-protein coupled M{sub 2} receptor activity mediated neuronal differentiation.

  3. Subtype Differences in Pre-Coupling of Muscarinic Acetylcholine Receptors

    PubMed Central

    Jakubík, Jan; Janíčková, Helena; Randáková, Alena; El-Fakahany, Esam E.; Doležal, Vladimír

    2011-01-01

    Based on the kinetics of interaction between a receptor and G-protein, a myriad of possibilities may result. Two extreme cases are represented by: 1/Collision coupling, where an agonist binds to the free receptor and then the agonist-receptor complex “collides” with the free G-protein. 2/Pre-coupling, where stable receptor/G-protein complexes exist in the absence of agonist. Pre-coupling plays an important role in the kinetics of signal transduction. Odd-numbered muscarinic acetylcholine receptors preferentially couple to Gq/11, while even-numbered receptors prefer coupling to Gi/o. We analyzed the coupling status of the various subtypes of muscarinic receptors with preferential and non-preferential G-proteins. The magnitude of receptor-G-protein coupling was determined by the proportion of receptors existing in the agonist high-affinity binding conformation. Antibodies directed against the C-terminus of the α-subunits of the individual G-proteins were used to interfere with receptor-G-protein coupling. Effects of mutations and expression level on receptor-G-protein coupling were also investigated. Tested agonists displayed biphasic competition curves with the antagonist [3H]-N-methylscopolamine. Antibodies directed against the C-terminus of the α-subunits of the preferential G-protein decreased the proportion of high-affinity sites, and mutations at the receptor-G-protein interface abolished agonist high-affinity binding. In contrast, mutations that prevent receptor activation had no effect. Expression level of preferential G-proteins had no effect on pre-coupling to non-preferential G-proteins. Our data show that all subtypes of muscarinic receptors pre-couple with their preferential classes of G-proteins, but only M1 and M3 receptors also pre-couple with non-preferential Gi/o G-proteins. Pre-coupling is not dependent on agonist efficacy nor on receptor activation. The ultimate mode of coupling is therefore dictated by a combination of the receptor subtype

  4. Characterization and photoaffinity labeling of the muscarinic acetylcholine receptor

    SciTech Connect

    Cremo, C.R.

    1983-01-01

    The muscarinic acetylcholine receptor, identified by tritiated L-quinuclidinyl benzilate (L-(/sup 3/H)QNB) binding, was solubilized from porcine atrial membranes using a 5:1 (w/w) ratio of digitonin and cholate. Specific binding activities of the solubilized receptor solutions usually exceeded 1.0 nmol L-(/sup 3/H)QNB sites per gram of protein, representing 75-98% total site recovery and a two- to three-fold enrichment over untreated atrial membranes. Two rapid assays for measuring the binding activities of detergent extracts were devised and compared with equilibrium dialysis. All three methods gave similar results. The equilibrium dissociation constant of the solubilized receptor for L-(/sup 3/H)QNB as determined by the three methods varied from 230 to 450 pM depending on the method and temperature. The interaction of alkyl quanidines and decahydrohistrionicotoxin with the membrane-bound and solubilized muscarinic acetylcholine receptor (mAcChR) from porcine atria was described. Alkyl guanidines with alkyl chain lengths from one to ten carbons displaced (/sup 3/H)L-quinuclidinyl bensilate ((/sup 3/H)L-QNB) competitively from a single class of sites for the membrane-bound mAcChR. From a plot of -1n K/sub i/ versus alkyl carbon chain number, a value of -(473 +/- 30) cal/mol was estimated as the energetic contribution per methylene group to the total binding energy. The synthesis and properties of a radiolabeled muscarinic antagonist photoaffinity probe, (/sup 3/H) p-azidoatropine methyl iodide were reported.

  5. Fixation of allosteric states of the nicotinic acetylcholine receptor by chemical cross-linking

    PubMed Central

    Watty, Anke; Methfessel, Christoph; Hucho, Ferdinand

    1997-01-01

    Receptor activity can be described in terms of ligand-induced transitions between functional states. The nicotinic acetylcholine receptor (nAChR), a prototypic ligand-gated ion channel, is an “unconventional allosteric protein” which exists in at least three interconvertible conformations, referred to as resting (low agonist affinity, closed channel), activated (open channel), and desensitized (high agonist affinity, closed channel). Here we show that 3,3′-dimethyl suberimidate (DMS) is an agonistic bifunctional cross-linking reagent, which irreversibly “freezes” the nAChR in a high agonist affinity/closed-channel state. The monofunctional homologue methyl acetoimidate, which is also a weak cholinergic agonist, has no such irreversible effect. Glutardialdehyde, a cross-linker that is not a cholinergic effector, fixes the receptor in a low-affinity state in the absence of carbamoylcholine, but, like DMS, in a high-affinity state in its presence. Covalent cross-linking thus allows us to arrest the nAChR in defined conformational states. PMID:9223339

  6. Heterogeneous distribution of acetylcholine receptors in chick myocytes induced by cholesterol enrichment.

    PubMed

    Lasalde, J A; Colom, A; Resto, E; Zuazaga, C

    1995-05-04

    The cholesterol concentration at the cell surface of cultured chick myocytes was increased in order to determine the effects of high levels of cholesterol on the ion channel properties of the nicotinic acetylcholine receptor. Single channel recordings and fluorescence polarization studies using 1,6-diphenyl-1,3,5-hexatriene (DPH) were performed under equivalent conditions for normal and cholesterol enriched myocytes. In cell attached patches from myocytes with a cholesterol to phospholipid molar ratio (c/p) of 0.24 and a microviscosity of 1.35 poise a single conductance of 51 pS was detected. The cholesterol enriched myocytes with a c/p of 0.52 and a microviscosity of 2.05 poise showed two conductances, a 54 pS and a 39 pS channel: both were blocked by alpha-bungarotoxin. The 39 pS channel was detected with the simultaneous appearance of a slow component of tau m (modulation time) for DPH fluorescence measured by phase demodulation. The 80% reduction in the open time constant (tau 2) of the 39 pS channel suggest an inhibition of the normal conformational state. The combined results suggest that cholesterol enrichment may induced a more heterogeneous lipid environment and that the two types of channel properties could result from the distribution of the receptors in different domains.

  7. Whole-cell patch-clamp recording of nicotinic acetylcholine receptors in adult Brugia malayi muscle

    PubMed Central

    Robertson, A. P.; Buxton, S. K.; Martin, R. J.

    2013-01-01

    Lymphatic filariasis is a debilitating disease caused by clade III parasites like Brugia malayi and Wuchereria bancrofti. Current recommended treatment regimen for this disease relies on albendazole, ivermectin and diethylcarbamazine, none of which targets the nicotinic acetylcholine receptors in these parasitic nematodes. Our aim therefore has been to develop adult B. malayi for electrophysiological recordings to aid in characterizing the ion channels in this parasite as anthelmintic target sites. In that regard, we recently demonstrated the amenability of adult B. malayi to patch-clamp recordings and presented results on the single-channel properties of nAChR in this nematode. We have built on this by recording whole-cell nAChR currents from adult B. malayi muscle. Acetylcholine, levamisole, pyrantel, bephenium and tribendimidine activated the receptors on B. malayi muscle, producing robust currents ranging from > 200 pA to ~1.5 nA. Levamisole completely inhibited motility of the adult B. malayi within 10 min and after 60 min, motility had recovered back to control values. PMID:23562945

  8. Flupyrimin: A Novel Insecticide Acting at the Nicotinic Acetylcholine Receptors.

    PubMed

    Onozaki, Yasumichi; Horikoshi, Ryo; Ohno, Ikuya; Kitsuda, Shigeki; Durkin, Kathleen A; Suzuki, Tomonori; Asahara, Chiaki; Hiroki, Natsuko; Komabashiri, Rena; Shimizu, Rikako; Furutani, Shogo; Ihara, Makoto; Matsuda, Kazuhiko; Mitomi, Masaaki; Kagabu, Shinzo; Uomoto, Katsuhito; Tomizawa, Motohiro

    2017-09-13

    A novel chemotype insecticide flupyrimin (FLP) [N-[(E)-1-(6-chloro-3-pyridinylmethyl)pyridin-2(1H)-ylidene]-2,2,2-trifluoroacetamide], discovered by Meiji Seika Pharma, has unique biological properties, including outstanding potency to imidacloprid (IMI)-resistant rice pests together with superior safety toward pollinators. Intriguingly, FLP acts as a nicotinic antagonist in American cockroach neurons, and [(3)H]FLP binds to the multiple high-affinity binding components in house fly nicotinic acetylcholine (ACh) receptor (nAChR) preparation. One of the [(3)H]FLP receptors is identical to the IMI receptor, and the alternative is IMI-insensitive subtype. Furthermore, FLP is favorably safe to rats as predicted by the very low affinity to the rat α4β2 nAChR. Structure-activity relationships of FLP analogues in terms of receptor potency, featuring the pyridinylidene and trifluoroacetyl pharmacophores, were examined, thereby establishing the FLP molecular recognition at the Aplysia californica ACh-binding protein, a suitable structural surrogate of the insect nAChR. These FLP pharmacophores account for the excellent receptor affinity, accordingly revealing differences in its binding mechanism from IMI.

  9. Serotonergic modulation of muscle acetylcholine receptors of different subunit composition.

    PubMed Central

    García-Colunga, J; Miledi, R

    1996-01-01

    Modulation of muscle acetylcholine (AcCho) receptors (AcChoRs) by serotonin [5-hydroxytryptamine (5HT)] and other serotonergic compounds was studied in Xenopus laevis oocytes. Various combinations of alpha, beta, gamma, and delta subunit RNAs were injected into oocytes, and membrane currents elicited by AcCho were recorded under voltage clamp. Judging by the amplitudes of AcCho currents generated, the levels of functional receptor expression were: alpha beta gamma delta > alpha beta delta > alpha beta gamma > alpha gamma delta. The alpha beta gamma delta and alpha beta delta AcChoR Subtypes were strongly blocked by 5HT, whereas the alpha beta gamma receptor was blocked only slightly. The order of blocking potency of AcChoRs by 5HT was: alpha beta delta > alpha beta gamma delta > alpha beta gamma. 5HT receptor antagonists, such as methysergide and spiperone, were even more potent blockers of AcChoRs than 5HT but did not show much subunit selectivity. Blockage of alpha beta gamma delta and alpha beta delta receptors by 5HT was voltage-dependent, and the voltage dependence was abolished when the delta subunit was omitted. These findings may need to be taken into consideration when trying to elucidate the mode of action of many clinically important serotonergic compounds. Images Fig. 3 PMID:8633003

  10. Universality of receptor channel responses.

    PubMed

    Kardos, J; Nyikos, L

    2001-12-01

    Rate parameters estimated for neurotransmitter-gated receptor channel opening and receptor desensitization are classified according to their dependence on the temporal resolution of the techniques applied in the measurements. Because allosteric proteins constituting receptor channels impose restrictions on the types of model suitable to describe the dynamic response of channels to neurotransmitters, Markovian, non-linear or fractal dynamic models and their possible extension to receptor channel response in excitable membranes are discussed.

  11. The coupling of acetylcholine-induced BK channel and calcium channel in guinea pig saccular type II vestibular hair cells.

    PubMed

    Kong, Wei-Jia; Guo, Chang-Kai; Zhang, Xiao-Wen; Chen, Xiong; Zhang, Song; Li, Guan-Qiao; Li, Zhi-Wang; Van Cauwenberge, Paul

    2007-01-19

    Molecular biological studies and electrophysiological data have demonstrated that acetylcholine (ACh) is the principal cochlear and vestibular efferent neurotransmitter among mammalians. However, the functional roles of ACh in type II vestibular hair cells (VHCs II) among mammalians are still unclear, with the exception of the well-known alpha9-containing nicotinic ACh receptor (alpha9-containing nAChR)-activated small conductance, calcium-dependent potassium current (SK) in cochlear hair cells and frog saccular hair cells. The activation of SK current was necessary for the calcium influx through the alpha9-containing nAChR. Recently, we have demonstrated that ACh-induced big conductance, calcium-dependent potassium current (BK) was present in VHCs II of the vestibular end-organ of guinea pig. In this study, the nature of calcium influx for the activation of ACh-induced BK current in saccular VHCs II of guinea pig was investigated. Following extracellular perfusion of ACh, saccular VHCs II displayed a sustained outward current, which was sensitive to iberiotoxin (IBTX). High concentration of apamin failed to inhibit the current amplitude of ACh-induced outward current. Intracellular application of Cs(+) completely abolished the current evoked by ACh. ACh-induced current was potently inhibited by nifedipine, nimodipine, Cd(2+) and Ni(2+), respectively. The inhibition potency of these four calcium channel antagonists was nimodipine>nifedipine>cadmium>nickel. The L-type Ca(2+) channels agonist, (-)-Bay-K 8644 mimicked the effect of ACh and activated an IBTX-sensitive current. In addition, partial VHCs II displayed a biphasic waveform. In conclusion, the present data showed that in the guinea pig saccular VHCs II, ACh-induced BK channel was coupled with the calcium channel, but not the receptor. The perfusion of ACh will drive the opening of calcium channels; the influx of calcium ions will then activate the BK current.

  12. Immunological studies on the structure and function of the nicotinic acetylcholine receptor in mammalian muscle

    SciTech Connect

    Gu, Y.

    1989-01-01

    The specificity of the antibodies in the serum of a patient with myasthenia gravis for a the {alpha}-bungarotoxin binding sites of the acetylcholine receptor (AChR) was examined using AChRs in the C2 mouse muscle cell line as a model. The antibodies were shown to be specific for one of the two toxin-binding sites. The effect of the antibodies in this myasthenic serum on the functional response of the receptor to cholinergic agonists was also examined using carbamylcholine-induced {sup 22}Na uptake into C2 myotubes as a measured of the receptor function. Antibodies specific for the {gamma}, {delta}, and {epsilon} subunit, respectively, of mammalian muscle AChRs were developed using subunit-specific synthetic peptides as antigens. Using these antibodies and monoclonal antibodies for other subunits as probes, I have identified four ({alpha}, {beta}, {gamma}, and {delta}) subunits of mammalian muscle AChRs on immunoblots. When AChRs from embryonic, neonatal, normal and denervated adult muscles were compared on immunoblots, the {alpha}, {beta}, and {delta} subunits were identical in all four receptor preparations, with or without endoglycosidase digestion. The spatial and temporal distribution of the {gamma}- and {epsilon}- AChRs in developing and in denervated muscles corresponds to the distribution of AChRs with slow and fast channels, respectively, and that the development changes in the channel properties of the receptor arise from a change in the subunit composition of the receptor, in which the {gamma} is replaced by {epsilon}.

  13. Acetylcholine receptors at neuromuscular synapses: phylogenetic differences detected by snake alpha-neurotoxins.

    PubMed Central

    Burden, S J; Hartzell, H C; Yoshikami, D

    1975-01-01

    Phylogenetic differences in acetylcholine receptors from skeletal neuromuscular synapses of various species of snakes and lizards have been investigated, using the snake venom alpha-neurotoxins alpha-atratoxin (cobrotoxin) and alpha-bungarotoxin. The acetylcholine receptors of the phylogenetically primitive lizards, like those from all other vertebrates previously tested, are blocked by these alpha-neurotoxins. In contrast, receptors from snakes and advanced lizards are insensitive to one or both of the toxins. It is suggested that toxin-resistant acetylcholine receptors appeared early in the evolution of Squamata and preceded the appearance of alpha-neurotoxins. Images PMID:1081230

  14. Conotoxin αD-GeXXA utilizes a novel strategy to antagonize nicotinic acetylcholine receptors.

    PubMed

    Xu, Shaoqiong; Zhang, Tianlong; Kompella, Shiva N; Yan, Mengdi; Lu, Aiping; Wang, Yanfang; Shao, Xiaoxia; Chi, Chengwu; Adams, David J; Ding, Jianping; Wang, Chunguang

    2015-09-23

    Nicotinic acetylcholine receptors (nAChRs) play essential roles in transmitting acetylcholine-mediated neural signals across synapses and neuromuscular junctions, and are also closely linked to various diseases and clinical conditions. Therefore, novel nAChR-specific compounds have great potential for both neuroscience research and clinical applications. Conotoxins, the peptide neurotoxins produced by cone snails, are a rich reservoir of novel ligands that target receptors, ion channels and transporters in the nervous system. From the venom of Conus generalis, we identified a novel dimeric nAChR-inhibiting αD-conotoxin GeXXA. By solving the crystal structure and performing structure-guided dissection of this toxin, we demonstrated that the monomeric C-terminal domain of αD-GeXXA, GeXXA-CTD, retains inhibitory activity against the α9α10 nAChR subtype. Furthermore, we identified that His7 of the rat α10 nAChR subunit determines the species preference of αD-GeXXA, and is probably part of the binding site of this toxin. These results together suggest that αD-GeXXA cooperatively binds to two inter-subunit interfaces on the top surface of nAChR, thus allosterically disturbing the opening of the receptor. The novel antagonistic mechanism of αD-GeXXA via a new binding site on nAChRs provides a valuable basis for the rational design of new nAChR-targeting compounds.

  15. Activation of alpha-latrotoxin receptors in neuromuscular synapses leads to a prolonged splash acetylcholine release.

    PubMed

    Lelyanova, V G; Thomson, D; Ribchester, R R; Tonevitsky, E A; Ushkaryov, Y A

    2009-06-01

    The mechanisms of acetylcholine release in presynaptic terminals of motoneurons induced by mutant alpha-latrotoxin (LT(N4C)) were analyzed. In contrast to wild-type alpha-latrotoxin that causes both continuous and splash secretion of acetylcholine and necessarity block neuromuscular transmission, LT(N4C) causes only splash release lasting over many hours. Thus, activation of alpha-latrotoxin receptors controls long-lasting enhanced secretion of acetylcholine.

  16. Schizophrenia and the alpha7 nicotinic acetylcholine receptor.

    PubMed

    Martin, Laura F; Freedman, Robert

    2007-01-01

    In addition to the devastating symptoms of psychosis, many people with schizophrenia also suffer from cognitive impairment. These cognitive symptoms lead to marked dysfunction and can impact employability, treatment adherence, and social skills. Deficits in P50 auditory gating are associated with attentional impairment and may contribute to cognitive symptoms and perceptual disturbances. This nicotinic cholinergic-mediated inhibitory process represents a potential new target for therapeutic intervention in schizophrenia. This chapter will review evidence implicating the nicotinic cholinergic, and specifically, the alpha7 nicotinic receptor system in the pathology of schizophrenia. Impaired auditory sensory gating has been linked to the alpha7 nicotinic receptor gene on the chromosome 15q14 locus. A majority of persons with schizophrenia are heavy smokers. Although nicotine can acutely reverse diminished auditory sensory gating in people with schizophrenia, this effect is lost on a chronic basis due to receptor desensitization. The alpha7 nicotinic agonist 3-(2,4 dimethoxy)benzylidene-anabaseine (DMXBA) can also enhance auditory sensory gating in animal models. DMXBA is well tolerated in humans and a new study in persons with schizophrenia has found that DMXBA enhances both P50 auditory gating and cognition. alpha7 Nicotinic acetylcholine receptor agonists appear to be viable candidates for the treatment of cognitive disturbances in schizophrenia.

  17. Stoichiometry for α-bungarotoxin block of α7 acetylcholine receptors

    PubMed Central

    daCosta, Corrie J. B.; Free, Chris R.; Sine, Steven M.

    2015-01-01

    α-Bungarotoxin (α-Btx) binds to the five agonist binding sites on the homopentameric α7-acetylcholine receptor, yet the number of bound α-Btx molecules required to prevent agonist-induced channel opening remains unknown. To determine the stoichiometry for α-Btx blockade, we generate receptors comprised of wild-type and α-Btx-resistant subunits, tag one of the subunit types with conductance mutations to report subunit stoichiometry, and following incubation with α-Btx, monitor opening of individual receptor channels with defined subunit stoichiometry. We find that a single α-Btx-sensitive subunit confers nearly maximal suppression of channel opening, despite four binding sites remaining unoccupied by α-Btx and accessible to the agonist. Given structural evidence that α-Btx locks the agonist binding site in an inactive conformation, we conclude that the dominant mechanism of antagonism is non-competitive, originating from conformational arrest of the binding sites, and that the five α7 subunits are interdependent and maintain conformational symmetry in the open channel state. PMID:26282895

  18. Activation of muscarinic acetylcholine receptors elicits pigment granule dispersion in retinal pigment epithelium isolated from bluegill

    PubMed Central

    González, Alfredo; Crittenden, Elizabeth L; García, Dana M

    2004-01-01

    Background In fish, melanin pigment granules in the retinal pigment epithelium disperse into apical projections as part of the suite of responses the eye makes to bright light conditions. This pigment granule dispersion serves to reduce photobleaching and occurs in response to neurochemicals secreted by the retina. Previous work has shown that acetylcholine may be involved in inducing light-adaptive pigment dispersion. Acetylcholine receptors are of two main types, nicotinic and muscarinic. Muscarinic receptors are in the G-protein coupled receptor superfamily, and five different muscarinic receptors have been molecularly cloned in human. These receptors are coupled to adenylyl cyclase, calcium mobilization and ion channel activation. To determine the receptor pathway involved in eliciting pigment granule migration, we isolated retinal pigment epithelium from bluegill and subjected it to a battery of cholinergic agents. Results The general cholinergic agonist carbachol induces pigment granule dispersion in isolated retinal pigment epithelium. Carbachol-induced pigment granule dispersion is blocked by the muscarinic antagonist atropine, by the M1 antagonist pirenzepine, and by the M3 antagonist 4-DAMP. Pigment granule dispersion was also induced by the M1 agonist 4-[N-(4-chlorophenyl) carbamoyloxy]-4-pent-2-ammonium iodide. In contrast the M2 antagonist AF-DX 116 and the M4 antagonist tropicamide failed to block carbachol-induced dispersion, and the M2 agonist arecaidine but-2-ynyl ester tosylate failed to elicit dispersion. Conclusions Our results suggest that carbachol-mediated pigment granule dispersion occurs through the activation of Modd muscarinic receptors, which in other systems couple to phosphoinositide hydrolysis and elevation of intracellular calcium. This conclusion must be corroborated by molecular studies, but suggests Ca2+-dependent pathways may be involved in light-adaptive pigment dispersion. PMID:15251036

  19. Freeze-fracture and electrophysiological studies of newly developed acetylcholine receptors in Xenopus embryonic muscle cells

    PubMed Central

    1984-01-01

    The development of acetylcholine receptors on Xenopus embryonic muscle cells both in culture and in situ was studied using electrophysiology and freeze-fracture electron microscopy. Acetylcholine sensitivity first appeared at developmental stage 20 and gradually increased up to about stage 31. Freeze-fracture of muscle cells that were nonsensitive to acetylcholine revealed diffusely distributed small P-face intramembraneous particles. When cells acquired sensitivity to acetylcholine, a different group of diffusely distributed large P-face particles began to appear. This group of particles was analyzed by subtracting the size distribution found on nonsensitive cells from that found on sensitive cells. We call this group of particles difference particles. The sizes of difference particles were large (peak diameter 11 nm). The density of difference particles gradually increased with development. The density of small particles (less than 9 nm) did not change with development. At later stages (32-36) aggregates of large particles appeared, which probably represent acetylcholine receptor clusters. The size distribution of difference particles was close to that of the aggregated particles, suggesting that at least part of difference particles represent diffusely distributed acetylcholine receptors. Difference particles exist mostly in solitary form (occasionally double), indicating that an acetylcholine receptor can be functional in solitary form. This result also shows that diffuse acetylcholine receptors that have previously been observed with 125I- alpha-bungarotoxin autoradiography do indeed exist in solitary forms not as microaggregates. PMID:6725410

  20. Widespread Decrease of Nicotinic Acetylcholine Receptors in Parkinson's Disease

    PubMed Central

    Ichise, Masanori; Zoghbi, Sami S; Liow, Jeih-San; Ghose, Subroto; Vines, Douglass C; Sangare, Janet; Lu, Jian-Qiang; Cropley, Vanessa L; Iida, Hidehiro; Kim, Kyeong Min; Cohen, Robert M; Bara-Jimenez, William; Ravina, Bernard; Innis, Robert B

    2005-01-01

    Nicotinic acetylcholine receptors (nAChRs) have close interactions with the dopaminergic system and play critical roles in cognitive function. nAChRs were imaged in 10 non-demented Parkinson's disease (PD) patients and 15 age-matched healthy subjects using a single photon emission computed tomography ligand [123I]5-iodo-3-[2(S)-2-azetidinylmethoxy]pyridine. Using an arterial input function, we measured the total distribution volume (V; specific plus non-displaceable) as well as the delivery (K1). PD showed a widespread significant decrease (∼10%) of V in both cortical and subcortical regions without a significant change in K1. These results indicate the importance of extending the study to demented patients. PMID:16374823

  1. Role of Nicotinic Acetylcholine Receptor on Efferent Inhibition in Cochlear Hair Cell

    PubMed Central

    2012-01-01

    The α9α10 nicotinic acetylcholine receptors (nAChRs) mediates efferent inhibition of hair cell function within the auditory sensory organ. Gating of the nAChRs leads to activation of calcium-dependent potassium channels to hyperpolarize the hair cell. In efferent system, main calcium providers to SK channel are nAChR and synaptic cistern, which contribution to efferent inhibition is different between avian and mammalian species. Calcium permeation is more effective in nAChRs of mammalian cochlea than avian cochlea, and mammalian calcium permeability of nAChRs is about 3 times more than avian hair cell. Thus, mammalian nAChRs is a main component of efferent inhibition in cochlear hair cell system. PMID:24653883

  2. Electrophysiological estimation of the actions of acetylcholinesterase inhibitors on acetylcholine receptor and cholinesterase in physically isolated Aplysia neurones.

    PubMed Central

    Oyama, Y.; Hori, N.; Evans, M. L.; Allen, C. N.; Carpenter, D. O.

    1989-01-01

    1. The actions of representative cholinesterase inhibitors on the acetylcholine responses of physically isolated single neurones from the pedal ganglion of Aplysia californica were studied, using electrophysiological techniques and rapid agonist application to analyse both the inhibitory actions on the acetylcholine receptor-channel complex and the degree of inhibition of acetylcholinesterase activity on the same neurone. The inhibitors used were physostigmine, edrophonium and diisopropylfluorophosphate (DFP). 2. When selected neurones were suddenly exposed to 50 microM acetylcholine by a 'concentration clamp' technique a large Na-dependent inward current was initiated, and decayed in the continued presence of acetylcholine without external perfusion. However, if perfusion of the acetylcholine solution was reinitiated the current increased somewhat, indicating that the decay of current was due to some combination of receptor desensitization and local depletion of acetylcholine at the membrane by acetylcholinesterase. 3. With simultaneous application of acetylcholine (50 microM) and physostigmine (0.1 to 100 microM) there was a dose-dependent reduction of peak amplitude of the acetylcholine response. However, physostigmine at low concentrations (0.1 to 10 microM) caused a time-dependent increase in the current amplitude alone with a time- and dose-dependent inhibition of acetylcholinesterase activity. At the highest concentration of physostigmine (100 microM) acetylcholinesterase activity was abolished but the current peak was very depressed. After removal of physostigmine from the bathing solution, the current amplitude decreased toward the control at the two lower concentrations as the inhibitory actions on acetylcholinesterase activity were almost reversible, while at the two higher concentrations (10 and 100 microM) the current increased and the inhibition of acethylcholinesterase remained. 4. When acetylcholine (50 microM) and edrophonium (0.1 to 10 micro

  3. Acetylcholine receptor extracellular domain determines sensitivity to nicotine-induced inactivation.

    PubMed

    Kuryatov, A; Olale, F A; Choi, C; Lindstrom, J

    2000-03-30

    We have shown previously that chronic exposure to submicromolar concentrations of nicotine permanently inactivates alpha4beta2 and alpha7 neuronal nicotinic acetylcholine receptors while alpha3beta2 acetylcholine receptors are resistant to inactivation. Phosphorylation of the large cytoplasmic domain has been proposed to mediate functional inactivation. Chimeric subunits consisting of human alpha4 sequence from their N-terminus to either the beginning of the first transmembrane domain or the large cytoplasmic domain and alpha3 sequences thereafter formed acetylcholine receptors with beta2 subunits which were as susceptible to nicotine-induced inactivation as wild-type alpha4 acetylcholine receptors. The converse chimeras, containing the N-terminal parts of the alpha3 subunit and the C-terminal parts of the alpha4 subunit, formed acetylcholine receptors with beta2 subunits which were as resistant to nicotine-induced inactivation as wild-type alpha3beta2 acetylcholine receptors. Thus, inactivation of acetylcholine receptors produced by chronic exposure to nicotine results primarily from effects of the agonist on the extracellular and transmembrane domains of the alpha subunit.

  4. Heterogeneity of Drosophila nicotinic acetylcholine receptors: SAD, a novel developmentally regulated alpha-subunit.

    PubMed Central

    Sawruk, E; Schloss, P; Betz, H; Schmitt, B

    1990-01-01

    Two genes, ard and als, are known to encode subunits of the nicotinic acetylcholine receptor (nAChR) in Drosophila. Here we describe the isolation of cDNA clones encoding a novel member (SAD, or alpha 2) of this receptor protein family. The deduced amino acid sequence displays high homology to the ALS protein and shares structural features with ligand binding nAChR alpha-subunits. Sad transcripts accumulate during major periods of neuronal differentiation and, in embryos, are localized in the central nervous system. Expression of SAD cRNA in Xenopus oocytes generates cation channels that are gated by nicotine. These data indicate heterogeneity of nAChRs in Drosophila. Images Fig. 3. Fig. 4. PMID:1697262

  5. Structure and Dynamics of the M3 Muscarinic Acetylcholine Receptor

    PubMed Central

    Kruse, Andrew C.; Hu, Jianxin; Pan, Albert C.; Arlow, Daniel H.; Rosenbaum, Daniel M.; Rosemond, Erica; Green, Hillary F.; Liu, Tong; Chae, Pil Seok; Dror, Ron O.; Shaw, David E.; Weis, William I.; Wess, Jurgen; Kobilka, Brian

    2012-01-01

    Acetylcholine (ACh), the first neurotransmitter to be identified1, exerts many of its physiological actions via activation of a family of G protein-coupled receptors (GPCRs) known as muscarinic ACh receptors (mAChRs). Although the five mAChR subtypes (M1-M5) share a high degree of sequence homology, they show pronounced differences in G protein coupling preference and the physiological responses they mediate.2–4 Unfortunately, despite decades of effort, no therapeutic agents endowed with clear mAChR subtype selectivity have been developed to exploit these differences.5–6 We describe here the structure of the Gq/11-coupled M3 mAChR bound to the bronchodilator drug tiotropium and identify the binding mode for this clinically important drug. This structure, together with that of the Gi/o-coupled M2 receptor, offers new possibilities for the design of mAChR subtype-selective ligands. Importantly, the M3 receptor structure allows the first structural comparison between two members of a mammalian GPCR subfamily displaying different G-protein coupling selectivities. Furthermore, molecular dynamics simulations suggest that tiotropium binds transiently to an allosteric site en route to the binding pocket of both receptors. These simulations offer a structural view of an allosteric binding mode for an orthosteric GPCR ligand and raise additional opportunities for the design of ligands with different affinities or binding kinetics for different mAChR subtypes. Our findings not only offer new insights into the structure and function of one of the most important GPCR families, but may also facilitate the design of improved therapeutics targeting these critical receptors. PMID:22358844

  6. Trypanosoma evansi: pharmacological evidence of a nicotinic acetylcholine receptor.

    PubMed

    Portillo, R; Bruges, G; Delgado, D; Betancourt, M; Mijares, A

    2010-06-01

    The role of calcium and its relevance have been deeply revised with respect to trypanosomatids, as the mechanism by which calcium enters trypanosomes was, until now, not well understood. There is evidence supporting the presence of a nAChR in another member of the trypanosomatidae family, Trypanosoma cruzi, these receptors being one entry path to calcium ions. The aims of this work were to determine if there was a nicotinic acetylcholine receptor (nAChR) in Trypanosoma evansi, and to subsequently perform a partial pharmacological characterization of this receptor. After being loaded with FURA-2AM, individual cells of T. evansi, were exposed to cholinergic compounds, and the cells displayed a dose-dependent response to carbachol. This observation indicated that a cholinergic receptor may be present in T. evansi. Although a dose-dependent response to muscarine could not be demonstrated, nicotine could promote an incremental dose-dependent response. The relative potency of this specific agonist of nAChR is in agreement with previous reports. The estimated affinity values were a Kd1 value of 29.6+/-5.72 nM and a Kd2 value of 315.9+/-26.6 nM, which is similar to the Kd value reported for the alpha4 nicotinic receptor. The Hill coefficients were determined to be an n1 of 1.2+/-0.3 and an n2 of 4.2+/-1.3. Finally, our calculations indicated that there are about 1020 receptors in each T. evansi parasite, which is approximately 15-fold lower than the number reported in Torpedo californica electric cells. These results suggest the presence of a nAChR in T. evansi, which is able to bind nicotinic ligands and induce calcium signals. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  7. Appearance of Acetylcholine Receptors During Differentiation of a Myogenic Cell Line

    PubMed Central

    Patrick, Jim; Heinemann, Stephen F.; Lindstrom, Jon; Schubert, Dave; Steinbach, Joe Henry

    1972-01-01

    Acquisition of acetylcholine receptors during differentiation of a clonal myoblast cell line was monitored with a neurotoxin isolated from venom of the Indian Cobra Naja naja. Toxin bound specifically and reversibly to acetylcholine receptors of the differentiated cells. Specificity of the binding reaction was assayed by measurement of the ability of various cholinergic agonists and antagonists to compete with neurotoxin for its binding site. The rate of toxin binding paralleled the rate of inactivation of functional acetylcholine receptors, as measured by iontophoretic application of acetylcholine. Bound toxin was released from the cells with a half-life of about 7 hr. This release was not associated with a decrease in the total number of toxin-binding sites. A slow hyperpolarizing response to acetylcholine seen in myoblasts was insensitive to toxin; the appearance of toxin-binding sites parallels the appearance of fused fibers during differentiation of the muscle cells in tissue culture. Images PMID:4507600

  8. High calcium permeability and calcium block of the alpha9 nicotinic acetylcholine receptor.

    PubMed

    Katz, E; Verbitsky, M; Rothlin, C V; Vetter, D E; Heinemann, S F; Elgoyhen, A B

    2000-03-01

    At the synapse between olivocochlear efferent fibers and outer hair cells (OHCs) of the cochlea, a non-classical ionotropic cholinergic receptor allows Ca(2+) entry into the hair cell, thus activating a Ca(2+)-sensitive K(+) current which hyperpolarizes the cell's membrane. In the mammalian ear, this leads to a reduction in basilar membrane motion, altering auditory nerve fiber activity and reducing the dynamic range of hearing. The alpha9 nicotinic acetylcholine receptor (nAChR) subunit mediates synaptic transmission between cholinergic olivocochlear fibers and OHCs. Given that Ca(2+) is a key player at this inhibitory synapse, we evaluated the permeability to Ca(2+) of the recombinant alpha9 receptor expressed in Xenopus laevis oocytes and the modulation of its activity by extracellular Ca(2+). Our results show that the alpha9 receptor is highly permeable to Ca(2+) and that this cation potently blocks monovalent currents through this channel (IC(50)=100 microM, at -70 mV) in a voltage-dependent manner. At a Ca(2+) concentration similar to that found in the perilymph bathing the base of the OHCs, approximately 90% of the Na(+) current through the alpha9 receptor is blocked, suggesting that one of the main functions of this channel could be to provide a pathway for Ca(2+) influx.

  9. Cation-pi interactions in ligand recognition by serotonergic (5-HT3A) and nicotinic acetylcholine receptors: the anomalous binding properties of nicotine.

    PubMed

    Beene, Darren L; Brandt, Gabriel S; Zhong, Wenge; Zacharias, Niki M; Lester, Henry A; Dougherty, Dennis A

    2002-08-13

    A series of tryptophan analogues has been introduced into the binding site regions of two ion channels, the ligand-gated nicotinic acetylcholine and serotonin 5-HT(3A) receptors, using unnatural amino acid mutagenesis and heterologous expression in Xenopus oocytes. A cation-pi interaction between serotonin and Trp183 of the serotonin channel 5-HT(3A)R is identified for the first time, precisely locating the ligand-binding site of this receptor. The energetic contribution of the observed cation-pi interaction between a tryptophan and the primary ammonium ion of serotonin is estimated to be approximately 4 kcal/mol, while the comparable interaction with the quaternary ammonium of acetylcholine is approximately 2 kcal/mol. The binding mode of nicotine to the nicotinic receptor of mouse muscle is examined by the same technique and found to differ significantly from that of the natural agonist, acetylcholine.

  10. Tracking the molecular evolution of calcium permeability in a nicotinic acetylcholine receptor.

    PubMed

    Lipovsek, Marcela; Fierro, Angélica; Pérez, Edwin G; Boffi, Juan C; Millar, Neil S; Fuchs, Paul A; Katz, Eleonora; Elgoyhen, Ana Belén

    2014-12-01

    Nicotinic acetylcholine receptors are a family of ligand-gated nonselective cationic channels that participate in fundamental physiological processes at both the central and the peripheral nervous system. The extent of calcium entry through ligand-gated ion channels defines their distinct functions. The α9α10 nicotinic cholinergic receptor, expressed in cochlear hair cells, is a peculiar member of the family as it shows differences in the extent of calcium permeability across species. In particular, mammalian α9α10 receptors are among the ligand-gated ion channels which exhibit the highest calcium selectivity. This acquired differential property provides the unique opportunity of studying how protein function was shaped along evolutionary history, by tracking its evolutionary record and experimentally defining the amino acid changes involved. We have applied a molecular evolution approach of ancestral sequence reconstruction, together with molecular dynamics simulations and an evolutionary-based mutagenesis strategy, in order to trace the molecular events that yielded a high calcium permeable nicotinic α9α10 mammalian receptor. Only three specific amino acid substitutions in the α9 subunit were directly involved. These are located at the extracellular vestibule and at the exit of the channel pore and not at the transmembrane region 2 of the protein as previously thought. Moreover, we show that these three critical substitutions only increase calcium permeability in the context of the mammalian but not the avian receptor, stressing the relevance of overall protein structure on defining functional properties. These results highlight the importance of tracking evolutionarily acquired changes in protein sequence underlying fundamental functional properties of ligand-gated ion channels.

  11. Tracking the Molecular Evolution of Calcium Permeability in a Nicotinic Acetylcholine Receptor

    PubMed Central

    Lipovsek, Marcela; Fierro, Angélica; Pérez, Edwin G.; Boffi, Juan C.; Millar, Neil S.; Fuchs, Paul A.; Katz, Eleonora; Elgoyhen, Ana Belén

    2014-01-01

    Nicotinic acetylcholine receptors are a family of ligand-gated nonselective cationic channels that participate in fundamental physiological processes at both the central and the peripheral nervous system. The extent of calcium entry through ligand-gated ion channels defines their distinct functions. The α9α10 nicotinic cholinergic receptor, expressed in cochlear hair cells, is a peculiar member of the family as it shows differences in the extent of calcium permeability across species. In particular, mammalian α9α10 receptors are among the ligand-gated ion channels which exhibit the highest calcium selectivity. This acquired differential property provides the unique opportunity of studying how protein function was shaped along evolutionary history, by tracking its evolutionary record and experimentally defining the amino acid changes involved. We have applied a molecular evolution approach of ancestral sequence reconstruction, together with molecular dynamics simulations and an evolutionary-based mutagenesis strategy, in order to trace the molecular events that yielded a high calcium permeable nicotinic α9α10 mammalian receptor. Only three specific amino acid substitutions in the α9 subunit were directly involved. These are located at the extracellular vestibule and at the exit of the channel pore and not at the transmembrane region 2 of the protein as previously thought. Moreover, we show that these three critical substitutions only increase calcium permeability in the context of the mammalian but not the avian receptor, stressing the relevance of overall protein structure on defining functional properties. These results highlight the importance of tracking evolutionarily acquired changes in protein sequence underlying fundamental functional properties of ligand-gated ion channels. PMID:25193338

  12. Discovery of new muscarinic acetylcholine receptor antagonists from Scopolia tangutica

    PubMed Central

    Du, Nana; Liu, Yanfang; Zhang, Xiuli; Wang, Jixia; Zhao, Jianqiang; He, Jian; Zhou, Han; Mei, Lijuan; Liang, Xinmiao

    2017-01-01

    Scopolia tangutica (S. tangutica) is a traditional Chinese medicinal plant used for antispasmodics, anesthesia, analgesia and sedation. Its pharmacological activities are mostly associated with the antagonistic activity at muscarinic acetylcholine receptors (mAchRs) of several known alkaloids such as atropine and scopolamine. With our recent identification of four hydroxycinnamic acid amides from S. tangutica, we hypothesized that this plant may contain previously unidentified alkaloids that may also contribute to its in vivo effect. Herein, we used a bioassay-guided multi-dimension separation strategy to discover novel mAchR antagonists from S. tangutica. The core of this approach is to use label-free cell phenotypic assay to first identify active fractions, and then to guide purification of active ligands. Besides four tropanes and six cinnamic acid amides that have been previously isolated from S. tangutica, we recently identified two new tropanes, one new cinnamic acid amide, and nine other compounds. Six tropane compounds purified from S. tangutica for the first time were confirmed to be competitive antagonists of muscarinic receptor 3 (M3), including the two new ones 8 and 12 with IC50 values of 1.97 μM and 4.47 μM, respectively. Furthermore, the cinnamic acid amide 17 displayed 15-fold selectivity for M1 over M3 receptors. These findings will be useful in designing lead compounds for mAchRs and elucidating mechanisms of action of S. tangutica. PMID:28387362

  13. Revisiting the endocytosis of the m2 muscarinic acetylcholine receptor.

    PubMed

    Ockenga, Wymke; Tikkanen, Ritva

    2015-05-12

    The agonist-induced endocytosis of the muscarinic acetylcholine receptor M2 is different from that of the other members of the muscarinic receptor family. The uptake of the M2 receptor involves the adapter proteins of the β-arrestin family and the small GTPase ADP-ribosylation factor 6. However, it has remained inconclusive if M2 endocytosis is dependent on clathrin or the large GTPase dynamin. We here show by means of knocking down the clathrin heavy chain that M2 uptake upon agonist stimulation requires clathrin. The expression of various dominant-negative dynamin-2 mutants and the use of chemical inhibitors of dynamin function revealed that dynamin expression and membrane localization as such appear to be necessary for M2 endocytosis, whereas dynamin GTPase activity is not required for this process. Based on the data from the present and from previous studies, we propose that M2 endocytosis takes place by means of an atypical clathrin-mediated pathway that may involve a specific subset of clathrin-coated pits/vesicles.

  14. Revisiting the Endocytosis of the M2 Muscarinic Acetylcholine Receptor

    PubMed Central

    Ockenga, Wymke; Tikkanen, Ritva

    2015-01-01

    The agonist-induced endocytosis of the muscarinic acetylcholine receptor M2 is different from that of the other members of the muscarinic receptor family. The uptake of the M2 receptor involves the adapter proteins of the β-arrestin family and the small GTPase ADP-ribosylation factor 6. However, it has remained inconclusive if M2 endocytosis is dependent on clathrin or the large GTPase dynamin. We here show by means of knocking down the clathrin heavy chain that M2 uptake upon agonist stimulation requires clathrin. The expression of various dominant-negative dynamin-2 mutants and the use of chemical inhibitors of dynamin function revealed that dynamin expression and membrane localization as such appear to be necessary for M2 endocytosis, whereas dynamin GTPase activity is not required for this process. Based on the data from the present and from previous studies, we propose that M2 endocytosis takes place by means of an atypical clathrin-mediated pathway that may involve a specific subset of clathrin-coated pits/vesicles. PMID:25985102

  15. NACHO Mediates Nicotinic Acetylcholine Receptor Function throughout the Brain.

    PubMed

    Matta, Jose A; Gu, Shenyan; Davini, Weston B; Lord, Brian; Siuda, Edward R; Harrington, Anthony W; Bredt, David S

    2017-04-25

    Neuronal nicotinic acetylcholine receptors (nAChRs) participate in diverse aspects of brain function and mediate behavioral and addictive properties of nicotine. Neuronal nAChRs derive from combinations of α and β subunits, whose assembly is tightly regulated. NACHO was recently identified as a chaperone for α7-type nAChRs. Here, we find NACHO mediates assembly of all major classes of presynaptic and postsynaptic nAChR tested. NACHO acts at early intracellular stages of nAChR subunit assembly and then synergizes with RIC-3 for receptor surface expression. NACHO knockout mice show profound deficits in binding sites for α-bungarotoxin, epibatidine, and conotoxin MII, illustrating essential roles for NACHO in proper assembly of α7-, α4β2-, and α6-containing nAChRs, respectively. By contrast, GABAA receptors are unaffected consistent with NACHO specifically modulating nAChRs. NACHO knockout mice show abnormalities in locomotor and cognitive behaviors compatible with nAChR deficiency and underscore the importance of this chaperone for physiology and disease associated with nAChRs. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Laminin-induced Acetylcholine Receptor Clustering: An Alternative Pathway

    PubMed Central

    Sugiyama, J.E.; Glass, D.J.; Yancopoulos, G.D.; Hall, Z.W.

    1997-01-01

    The induction of acetylcholine receptor (AChR) clustering by neurally released agrin is a critical, early step in the formation of the neuromuscular junction. Laminin, a component of the muscle fiber basal lamina, also induces AChR clustering. We find that induction of AChR clustering in C2 myotubes is specific for laminin-1; neither laminin-2 (merosin) nor laminin-11 (a synapse-specific isoform) are active. Moreover, laminin-1 induces AChR clustering by a pathway that is independent of that used by neural agrin. The effects of laminin-1 and agrin are strictly additive and occur with different time courses. Most importantly, laminin- 1–induced clustering does not require MuSK, a receptor tyrosine kinase that is part of the receptor complex for agrin. Laminin-1 does not cause tyrosine phosphorylation of MuSK in C2 myotubes and induces AChR clustering in myotubes from MuSK−/− mice that do not respond to agrin. In contrast to agrin, laminin-1 also does not induce tyrosine phosphorylation of the AChR, demonstrating that AChR tyrosine phosphorylation is not required for clustering in myotubes. Laminin-1 thus acts by a mechanism that is independent of that used by agrin and may provide a supplemental pathway for AChR clustering during synaptogenesis. PMID:9314538

  17. Ceramides modulate cell-surface acetylcholine receptor levels.

    PubMed

    Gallegos, C E; Pediconi, M F; Barrantes, F J

    2008-04-01

    The effects of ceramides (Cer) on the trafficking of the nicotinic acetylcholine receptor (AChR) to the plasma membrane were studied in CHO-K1/A5 cells, a clonal cell line that heterologously expresses the adult murine form of the receptor. When cells were incubated with short- (C6-Cer) or long- (brain-Cer) chain Cer at low concentrations, an increase in the number of cell-surface AChRs was observed concomitant with a decrease in intracellular receptor levels. The alteration in AChR distribution by low Cer treatment does not appear to be a general mechanism since the surface expression of the green fluorescent protein derivative of the vesicular stomatitis virus protein (VSVG-GFP) was not affected. High Cer concentrations caused the opposite effects, decreasing the number of cell-surface AChRs, which exhibited higher affinity for [125I]-alpha-bungarotoxin, and increasing the intracellular pool, which colocalized with trans-Golgi/TGN specific markers. The generation of endogenous Cer by sphingomyelinase treatment also decreased cell-surface AChR levels. These effects do not involve protein kinase C zeta or protein phosphatase 2A activation. Taken together, the results indicate that Cer modulate trafficking of AChRs to and stability at the cell surface.

  18. Immunological relationship between acetylcholine receptor and thymus: a possible significance in myasthenia gravis.

    PubMed Central

    Aharonov, A; Tarrab-Hazdai, R; Abramsky, O; Fuchs, S

    1975-01-01

    A defined immunological cross-reaction was observed between acetylcholine receptor fraction from the electric eel, Electrophorus electricus, and two calf thymus fractions. The cross-reaction was demonstrated on the cellular level by means of the lymphocyte transformation technique, and on the humoral level, by means of the microcomplement fixation assay. In the human disease myasthenia gravis both acetylcholine receptor at the neuromuscular junction and the thymus are affected, probably by an autoimmune mechanism. The immunological cross-reaction between acetylcholine receptor and thymic components may explain the association between endplate and thymus disorders in myasthenia gravis. PMID:1055418

  19. Acetylcholine Receptors in Model Membranes: Structure/Function Correlates.

    DTIC Science & Technology

    1985-12-01

    These are small, positively charge, water-soluble, heteroryclic guanidines that bind with . nanomolar KDs to a site on the extracellular-facing side of...of this polypeptide toxin to native channels is influenced by both membrane potential and occupancy of the alkaloid toxin receptor site (172). LqTX...binding recovered after reconstitution with endogenous lipid was not affected by either membrane potential or occupany of the alkaloid toxin receptor site

  20. Afterhyperpolarization induced by the activation of nicotinic acetylcholine receptors in pelvic ganglion neurons of male rats.

    PubMed

    Park, Kyu-Sang; Cha, Seung-Kuy; Kim, Min-Jeong; Kim, Na-Hyun; Lee, Joong-Woo; Jeong, Seong-Woo; Kong, In Deok

    2010-09-27

    The electrophysiological mechanism underlying afterhyperpolarization induced by the activation of the nicotinic acetylcholine receptor (nAChR) in male rat major pelvic ganglion neurons (MPG) was investigated using a gramicidin-perforated patch clamp and microscopic fluorescence measurement system. Acetylcholine (ACh) induced fast depolarization through the activation of nAChR, followed by a sustained hyperpolarization after the removal of ACh in a dose-dependent manner (10 microM to 1mM). ACh increased both intracellular Ca(2+) ([Ca(2+)](i)) and Na(+) concentrations ([Na(+)](i)) in MPG neurons. The recovery of [Na(+)](i) after the removal of ACh was markedly delayed by ouabain (100 microM), an inhibitor of Na(+)/K(+) ATPase. Pretreatment with ouabain blocked ACh-induced hyperpolarization by 67.2+/-5.4% (n=7). ACh-induced hyperpolarization was partially attenuated by either the chelation of [Ca(2+)](i) with BAPTA/AM (20 microM) or the blockade of small-conductance Ca(2+)-activated K(+) channels by apamin (500 nM). Taken together, the activation of nAChR increases [Na(+)](i) and [Ca(2+)](i), which activates Na(+)/K(+) ATPase and Ca(2+)-activated K(+) channels, respectively. Consequently, hyperpolarization occurs after the activation of nAChR in the autonomic pelvic ganglia. (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  1. The pore domain of the nicotinic acetylcholine receptor: molecular modeling, pore dimensions, and electrostatics.

    PubMed Central

    Sankararamakrishnan, R; Adcock, C; Sansom, M S

    1996-01-01

    The pore domain of the nicotinic acetylcholine receptor has been modeled as a bundle of five kinked M2 helices. Models were generated via molecular dynamics simulations incorporating restraints derived from 9-A resolution cryoelectron microscopy data (Unwin, 1993; 1995), and from mutagenesis data that identify channel-lining side chains. Thus, these models conform to current experimental data but will require revision as higher resolution data become available. Models of the open and closed states of a homopentameric alpha 7 pore are compared. The minimum radius of the closed-state model is less than 2 A; the minimum radius of the open-state models is approximately 6 A. It is suggested that the presence of "bound" water molecules within the pore may reduce the effective minimum radii below these values by up to approximately 3 A. Poisson-Boltzmann calculations are used to obtain a first approximation to the potential energy of a monovalent cation as it moves along the pore axis. The differences in electrostatic potential energy profiles between the open-state models of alpha 7 and of a mutant of alpha 7 are consistent with the experimentally observed change in ion selectivity from cationic to anionic. Models of the open state of the heteropentameric Torpedo nicotinic acetylcholine receptor pore domain are also described. Relatively small differences in pore radius and electrostatic potential energy profiles are seen when the Torpedo and alpha 7 models are compared. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 5 PMID:8889144

  2. A role for acetylcholine receptors in the fusion of chick myoblasts

    PubMed Central

    1988-01-01

    The role of acetylcholine receptors in the control of chick myoblast fusion in culture has been explored. Spontaneous fusion of myoblasts was inhibited by the nicotinic acetylcholine receptor antagonists alpha- bungarotoxin, Naja naja toxin and monoclonal antibody mcAb 5.5. The muscarinic antagonists QNB and n-methyl scopolamine were without effect. Atropine had no effect below 1 microM, where it blocks muscarinic receptors; at higher concentrations, when it blocks nicotinic receptors also, atropine inhibited myoblast fusion. The inhibitions imposed by acetylcholine receptor antagonists lasted for approximately 12 h; fusion stimulated by other endogenous substances then took over. The inhibition was limited to myoblast fusion. The increases in cell number, DNA content, the level of creatine phosphokinase activity (both total and muscle-specific isozyme) and the appearance of heavy chain myosin, which accompany muscle differentiation, followed a normal time course. Pre-fusion myoblasts, fusing myoblasts, and young myotubes specifically bound labeled alpha- bungarotoxin, indicating the presence of acetylcholine receptors. The nicotinic acetylcholine receptor agonist, carbachol, induced uptake of [14C]Guanidinium through the acetylcholine receptor. Myoblasts, aligned myoblasts and young myotubes expressed the synthetic enzyme Choline acetyltransferase and stained positively with antibodies against acetylcholine. The appearance of ChAT activity in myogenic cultures was prevented by treatment with BUDR; nonmyogenic cells in the cultures expressed ChAT at a level which was too low to account for the activity in myogenic cultures. We conclude that activation of the nicotinic acetylcholine receptor is part of the mechanism controlling spontaneous myoblast fusion and that myoblasts synthesize an endogenous, fusion- inducing agent that activates the nicotinic ACh receptor. PMID:3372592

  3. Mutational analysis of muscle nicotinic acetylcholine receptor subunit assembly

    PubMed Central

    1990-01-01

    The structural elements required for normal maturation and assembly of the nicotinic acetylcholine receptor alpha subunit were investigated by expression of mutated subunits in transfected fibroblasts. Normally, the wild-type alpha subunit acquires high affinity alpha bungarotoxin binding in a time-dependent manner; however, mutation of the 128 and/or 142 cysteines to either serine or alanine, as well as deletion of the entire 14 amino acids in this region abolished all detectable high affinity binding. Nonglycosylated subunits that had a serine to glycine mutation in the consensus sequence also did not efficiently attain high affinity binding to toxin. In contrast, mutation of the proline at position 136 to glycine or alanine, or a double mutation of the cysteines at position 192 and 193 to serines had no effect on the acquisition of high affinity toxin binding. These data suggest that a disulfide bridge between cysteines 128 and 142 and oligosaccharide addition at asparagine 141 are required for the normal maturation of alpha subunit as assayed by high affinity toxin binding. The unassembled wild-type alpha subunit expressed in fibroblasts is normally degraded with a t1/2 of 2 h; upon assembly with the delta subunit, the degradation rate slows significantly (t1/2 greater than 13 h). All mutated alpha subunits retained the capacity to assemble with a delta subunit coexpressed in fibroblasts; however, mutated alpha subunits that were not glycosylated or did not acquire high affinity toxin binding were rapidly degraded (t1/2 = 20 min to 2 h) regardless of whether or not they assembled with the delta subunit. Assembly and rapid degradation of nonglycosylated acetylcholine receptor (AChR) subunits and subunit complexes were also observed in tunicamycin- treated BC3H-1 cells, a mouse musclelike cell line that normally expresses functional AChR. Hence, rapid degradation may be one form of regulation assuring that only correctly processed and assembled subunits

  4. High Throughput Random Mutagenesis and Single Molecule Real Time Sequencing of the Muscle Nicotinic Acetylcholine Receptor

    PubMed Central

    Groot-Kormelink, Paul J.; Ferrand, Sandrine; Kelley, Nicholas; Bill, Anke; Freuler, Felix; Imbert, Pierre-Eloi; Marelli, Anthony; Gerwin, Nicole; Sivilotti, Lucia G.; Miraglia, Loren; Orth, Anthony P.; Oakeley, Edward J.; Schopfer, Ulrich; Siehler, Sandra

    2016-01-01

    High throughput random mutagenesis is a powerful tool to identify which residues are important for the function of a protein, and gain insight into its structure-function relation. The human muscle nicotinic acetylcholine receptor was used to test whether this technique previously used for monomeric receptors can be applied to a pentameric ligand-gated ion channel. A mutant library for the α1 subunit of the channel was generated by error-prone PCR, and full length sequences of all 2816 mutants were retrieved using single molecule real time sequencing. Each α1 mutant was co-transfected with wildtype β1, δ, and ε subunits, and the channel function characterized by an ion flux assay. To test whether the strategy could map the structure-function relation of this receptor, we attempted to identify mutations that conferred resistance to competitive antagonists. Mutant hits were defined as receptors that responded to the nicotinic agonist epibatidine, but were not inhibited by either α-bungarotoxin or tubocurarine. Eight α1 subunit mutant hits were identified, six of which contained mutations at position Y233 or V275 in the transmembrane domain. Three single point mutations (Y233N, Y233H, and V275M) were studied further, and found to enhance the potencies of five channel agonists tested. This suggests that the mutations made the channel resistant to the antagonists, not by impairing antagonist binding, but rather by producing a gain-of-function phenotype, e.g. increased agonist sensitivity. Our data show that random high throughput mutagenesis is applicable to multimeric proteins to discover novel functional mutants, and outlines the benefits of using single molecule real time sequencing with regards to quality control of the mutant library as well as downstream mutant data interpretation. PMID:27649498

  5. Subunit structure of the acetylcholine receptor from Electrophorus electricus.

    PubMed

    Conti-Tronconi, B M; Hunkapiller, M W; Lindstrom, J M; Raftery, M A

    1982-11-01

    The amino-terminal amino acid sequences of the four major peptides (Mr 41,000, 50,000, 55,000, and 62,000) present in purified preparations of Electrophorus electricus nicotinic acetylcholine receptor (AcChoR) have been determined for 24 cycles by automated sequence analysis procedures yielding four unique polypeptide sequences. The sequences showed a high degree of similarity, having identical residues in a number of positions ranging between 37% and 50% for specific pairs of subunits. Comparison of the sequences obtained with those of the subunits of similar molecular weight from Torpedo californica AcChoR revealed an even higher degree of homology (from 46% to 71%) for these two highly diverged species. Simultaneous sequence analysis of the amino termini present in native, purified Electrophorus AcChoR showed that these four related sequences were the only ones present and that they occur in a ratio of 2:1:1:1, with the smallest subunit ("alpha 1") being present in two copies. Genealogical analysis suggests that the subunits of both Torpedo and Electrophorus AcChoRs derive from a common ancestral gene, the divergence having occurred early in the evolution of the receptor. This shared ancestry and the very early divergence of the four subunits, as well as the highly conserved structure of the AcChoR complex along animal evolution, suggest that each of the subunits evolved to perform discrete crucial roles in the physiological function of the AcChoR.

  6. Alpha9 nicotinic acetylcholine receptors and the treatment of pain

    PubMed Central

    McIntosh, J. Michael; Absalom, Nathan; Chebib, Mary; Elgoyhen, Ana Belén; Vincler, Michelle

    2009-01-01

    Chronic pain is a vexing worldwide problem that causes substantial disability and consumes significant medical resources. Although there are numerous analgesic medications, these work through a small set of molecular mechanisms. Even when these medications are used in combination, substantial amounts of pain often remain. It is therefore highly desirable to develop treatments that work through distinct mechanisms of action. While agonists of nicotinic acetylcholine receptors (nAChRs) have been intensively studied, new data suggest a role for selective antagonists of nAChRs. α-Conotoxins are small peptides used offensively by carnivorous marine snails known as Conus. A subset of these peptides known as α-conotoxins RgIA and Vc1.1 produces both acute and long lasting analgesia. In addition, these peptides appear to accelerate the recovery of function after nerve injury, possibly through immune mediated mechanisms. Pharmacological analysis indicates that RgIA and Vc1.1 are selective antagonists of α9α10 nAChRs. A recent study also reported that these α9α10 antagonists are also potent GABA-B agonists. In the current study, we were unable to detect RgIA or Vc1.1 binding to or action on cloned GABA-B receptors expressed in HEK cells or Xenopus oocytes. We review the background, findings and implications of use of compounds that act on α9* nAChRs. PMID:19477168

  7. Muscarinic acetylcholine receptors: location of the ligand binding site

    SciTech Connect

    Hulme, E.; Wheatley, M.; Curtis, C.; Birdsall, N.

    1987-05-01

    The key to understanding the pharmacological specificity of muscarinic acetylcholine receptors (mAChR's) is the location within the receptor sequence of the amino acid residues responsible for ligand binding. To approach this problem, they have purified mAChR's from rat brain to homogeneity by sequential ion-exchange chromatography, affinity chromatography and molecular weight fractionation. Following labelling of the binding site with an alkylating affinity label, /sup 3/H-propylbenzilycholine mustard aziridinium ion (/sup 3/H-PrBCM), the mAChR was digested with a lysine-specific endoproteinase, and a ladder of peptides of increasing molecular weight, each containing the glycosylated N-terminus, isolated by chromatography on wheat-germ agglutinin sepharose. The pattern of labelling showed that a residue in the peptides containing transmembrane helices 2 and/or 3 of the mAChR was alkylated. The linkage was cleaved by 1 M hydroxylamine, showing that /sup 3/H-PrBCM was attached to an acidic residue, whose properties strongly suggested it to be embedded in a hydrophobic intramembrane region of the mAChR. Examination of the cloned sequence of the mAChR reveals several candidate residues, the most likely of which is homologous to an aspartic acid residue thought to protonate the retinal Schiff's base in the congeneric protein rhodopsin.

  8. Acetylcholine Receptor Organization in Membrane Domains in Muscle Cells

    PubMed Central

    Piguet, Joachim; Schreiter, Christoph; Segura, Jean-Manuel; Vogel, Horst; Hovius, Ruud

    2011-01-01

    Nicotinic acetylcholine receptors (nAChR) in muscle fibers are densely packed in the postsynaptic region at the neuromuscular junction. Rapsyn plays a central role in directing and clustering nAChR during cellular differentiation and neuromuscular junction formation; however, it has not been demonstrated whether rapsyn is the only cause of receptor immobilization. Here, we used single-molecule tracking methods to investigate nAChR mobility in plasma membranes of myoblast cells during their differentiation to myotubes in the presence and absence of rapsyn. We found that in myoblasts the majority of nAChR were immobile and that ∼20% of the receptors showed restricted diffusion in small domains of ∼50 nm. In myoblasts devoid of rapsyn, the fraction of mobile nAChR was considerably increased, accompanied by a 3-fold decrease in the immobile population of nAChR with respect to rapsyn-expressing cells. Half of the mobile receptors were confined to domains of ∼120 nm. Measurements performed in heterologously transfected HEK cells confirmed the direct immobilization of nAChR by rapsyn. However, irrespective of the presence of rapsyn, about one-third of nAChR were confined in 300-nm domains. Our results show (i) that rapsyn efficiently immobilizes nAChR independently of other postsynaptic scaffold components; (ii) nAChR is constrained in confined membrane domains independently of rapsyn; and (iii) in the presence of rapsyn, the size of these domains is strongly reduced. PMID:20978122

  9. Circulating antibodies against nicotinic acetylcholine receptors in chagasic patients

    PubMed Central

    GOIN, J C; VENERA, G; BONINO, M BISCOGLIO DE JIMÉNEZ; STERIN-BORDA, L

    1997-01-01

    Human and experimental Chagas' disease causes peripheral nervous system damage involving neuromuscular transmission alterations at the neuromuscular junction. Additionally, autoantibodies directed to peripheral nerves and sarcolemmal proteins of skeletal muscle have been described. In this work, we analyse the ability of serum immunoglobulin factors associated with human chagasic infection to bind the affinity-purified nicotinic acetylcholine receptor (nAChR) from electric organs of Discopyge tschudii and to identify the receptor subunits involved in the interaction. The frequency of serum anti-nAChR reactivity assayed by dot-blot was higher in seropositive chagasic patients than in uninfected subjects. Purified IgG obtained from chagasic patients immunoprecipitated a significantly higher fraction of the solubilized nAChR than normal IgG. Furthermore, immunoblotting assays indicated that α and β are the main subunits involved in the interaction. Chagasic IgG was able to inhibit the binding of α-bungarotoxin to the receptor in a concentration-dependent manner, confirming the contribution of the α-subunit in the autoantibody-receptor interaction. The presence of anti-nAChR antibodies was detected in 73% of chagasic patients with impairment of neuromuscular transmission in conventional electromyographical studies, indicating a strong association between seropositive reactivity against nAChR and electromyographical abnormalities in chagasic patients. The chronic binding of these autoantibodies to the nAChR could induce a decrease in the population of functional nAChRs at the neuromuscular junction and consequently contribute to the electrophysiological neuromuscular alterations described in the course of chronic Chagas' disease. PMID:9367405

  10. Activation and desensitization of nicotinic alpha7-type acetylcholine receptors by benzylidene anabaseines and nicotine.

    PubMed

    Papke, Roger L; Kem, William R; Soti, Ferenc; López-Hernández, Gretchen Y; Horenstein, Nicole A

    2009-05-01

    Nicotinic receptor activation is inextricably linked to desensitization. This duality affects our ability to develop useful therapeutics targeting nicotinic acetylcholine receptor (nAChR). Nicotine and some alpha7-selective experimental partial agonists produce a transient activation of alpha7 receptors followed by a period of prolonged residual inhibition or desensitization (RID). The object of the present study was to determine whether RID was primarily due to prolonged desensitization or due to channel block. To make this determination, we used agents that varied significantly in their production of RID and two alpha7-selective positive allosteric modulators (PAMs): 5-hydroxyindole (5HI), a type 1 PAM that does not prevent desensitization; and 1-(5-chloro-2,4-dimethoxy-phenyl)-3-(5-methyl-isoxanol-3-yl)-urea (PNU-120596), a type 2 PAM that reactivates desensitized receptors. The RID-producing compounds nicotine and 3-(2,4-dimethoxybenzylidene)anabaseine (diMeOBA) could obscure the potentiating effects of 5HI. However, through the use of nicotine, diMeOBA, and the RID-negative compound 3-(2,4-dihydroxybenzylidene)anabaseine (diOHBA) in combination with PNU-120596, we confirmed that diMeOBA produces short-lived channel block of alpha7 but that RID is because of the induction of a desensitized state that is stable in the absence of PNU-120596 and activated in the presence of PNU-120596. In contrast, diOHBA produced channel block but only readily reversible desensitization, whereas nicotine produced desensitization that could be converted into activation by PNU-120596 but no demonstrable channel block. Steady-state currents through receptors that would otherwise be desensitized could also be produced by the application of PNU-120596 in the presence of a physiologically relevant concentration of choline (60 microM), which may be significant for the therapeutic development of type 2 PAMs.

  11. Histamine H3 receptors regulate acetylcholine release from the guinea pig ileum myenteric plexus

    SciTech Connect

    Poli, E.; Coruzzi, G.; Bertaccini, G. )

    1991-01-01

    The effect of selective histamine H3-receptor agonists and antagonists on the acetylcholine release from peripheral nerves was evaluated in the guinea pig longitudinal muscle-myenteric plexus preparations, preloaded with ({sup 3}H)choline. In the presence of H1 and H2 blockade, histamine and (R)-{alpha}-methylhistamine inhibited the electrically-evoked acetylcholine release, being (R)-{alpha}-methylhistamine more active than histamine, but behaving as a partial agonist. The effect of histamine was completely reversed by selective H3-blocking drugs, thioperamide and impromidine, while only submaximal doses of (R)-{alpha}-methylhistamine were antagonized. Furthermore, thioperamide and impromidine enhanced the electrically-evoked acetylcholine release. On the contrary, the new H3-blocker, HST-7, was found substantially ineffective, both as histamine antagonist and as acetylcholine overflow enhancer. These data suggest that histamine exerts an inhibitory control on the acetylcholine release from intestinal cholinergic nerves through the activation of H3 receptors.

  12. Electrophysiology-Based Assays to Detect Subtype-Selective Modulation of Human Nicotinic Acetylcholine Receptors

    PubMed Central

    Kirsch, Glenn E.; Fedorov, Nikolai B.; Kuryshev, Yuri A.; Liu, Zhiqi; Orr, Michael S.

    2016-01-01

    Abstract The Family Smoking Prevention and Tobacco Control Act of 2009 (Public Law 111-31) gave the US Food and Drug Administration (FDA) the responsibility for regulating tobacco products. Nicotine is the primary addictive component of tobacco and its effects can be modulated by additional ingredients in manufactured products. Nicotine acts by mimicking the neurotransmitter acetylcholine on neuronal nicotinic acetylcholine receptors (nAChRs), which function as ion channels in cholinergic modulation of neurotransmission. Subtypes within the family of neuronal nAChRs are defined by their α- and β-subunit composition. The subtype-selective profiles of tobacco constituents are largely unknown, but could be essential for understanding the physiological effects of tobacco products. In this report, we report the development and validation of electrophysiology-based high-throughput screens (e-HTS) for human nicotinic subtypes, α3β4, α3β4α5, α4β2, and α7 stably expressed in Chinese Hamster Ovary cells. Assessment of agonist sensitivity and acute desensitization gave results comparable to those obtained by conventional manual patch clamp electrophysiology assays. The potency of reference antagonists for inhibition of the receptor channels and selectivity of positive allosteric modulators also were very similar between e-HTS and conventional manual patch voltage clamp data. Further validation was obtained in pilot screening of a library of FDA-approved drugs that identified α7 subtype-selective positive allosteric modulation by novel compounds. These assays provide new tools for profiling of nicotinic receptor selectivity. PMID:27505073

  13. Evaluating the suitability of nicotinic acetylcholine receptor antibodies for standard immunodetection procedures.

    PubMed

    Moser, N; Mechawar, N; Jones, I; Gochberg-Sarver, A; Orr-Urtreger, A; Plomann, M; Salas, R; Molles, B; Marubio, L; Roth, U; Maskos, U; Winzer-Serhan, U; Bourgeois, J-P; Le Sourd, A-M; De Biasi, M; Schröder, H; Lindstrom, J; Maelicke, A; Changeux, J-P; Wevers, A

    2007-07-01

    Nicotinic acetylcholine receptors play important roles in numerous cognitive processes as well as in several debilitating central nervous system (CNS) disorders. In order to fully elucidate the diverse roles of nicotinic acetylcholine receptors in CNS function and dysfunction, a detailed knowledge of their cellular and subcellular localizations is essential. To date, methods to precisely localize nicotinic acetylcholine receptors in the CNS have predominantly relied on the use of anti-receptor subunit antibodies. Although data obtained by immunohistology and immunoblotting are generally in accordance with ligand binding studies, some discrepancies remain, in particular with electrophysiological findings. In this context, nicotinic acetylcholine receptor subunit-deficient mice should be ideal tools for testing the specificity of subunit-directed antibodies. Here, we used standard protocols for immunohistochemistry and western blotting to examine the antibodies raised against the alpha3-, alpha4-, alpha7-, beta2-, and beta4-nicotinic acetylcholine receptor subunits on brain tissues of the respective knock-out mice. Unexpectedly, for each of the antibodies tested, immunoreactivity was the same in wild-type and knock-out mice. These data imply that, under commonly used conditions, these antibodies are not suited for immunolocalization. Thus, particular caution should be exerted with regards to the experimental approach used to visualize nicotinic acetylcholine receptors in the brain.

  14. Rabies virus interaction with various cell lines is independent of the acetylcholine receptor.

    PubMed

    Reagan, K J; Wunner, W H

    1985-01-01

    Rabies virus infects most cells in vitro. The presence of the nicotinic acetylcholine receptor on the plasma membrane of various cell lines is not an obligate factor for rabies virus susceptibility of those cells.

  15. Menthol Suppresses Nicotinic Acetylcholine Receptor Functioning in Sensory Neurons via Allosteric Modulation

    PubMed Central

    Wilhelm, M.; Swandulla, D.

    2012-01-01

    In this study, we have investigated how the function of native and recombinant nicotinic acetylcholine receptors (nAChRs) is modulated by the monoterpenoid alcohol from peppermint (−) menthol. In trigeminal neurons (TG), we found that nicotine (75 μM)-activated whole-cell currents through nAChRs were reversibly reduced by menthol in a concentration-dependent manner with an IC50 of 111 μM. To analyze the mechanism underlying menthol's action in more detail, we used single channel and whole-cell recordings from recombinant human α4β2 nAChR expressed in HEK tsA201 cells. Here, we found a shortening of channel open time and a prolongation of channel closed time, and an increase in single channel amplitude leading in summary to a reduction in single channel current. Furthermore, menthol did not affect nicotine's EC50 value for currents through recombinant human α4β2 nAChRs but caused a significant reduction in nicotine's efficacy. Taken together, these findings indicate that menthol is a negative allosteric modulator of nAChRs. PMID:22281529

  16. The binding of some antidepressant drugs to brain muscarinic acetylcholine receptors.

    PubMed Central

    Golds, P. R.; Przyslo, F. R.; Strange, P. G.

    1980-01-01

    1 The binding of some antidepressant drugs, including some new drugs of atypical structure (flupenthixol, iprindole, maprotiline, mianserin, nomifensine, tofenacine and viloxazine) to muscarinic acetylcholine receptors in the brain has been studied by displacement of [3H]-atropine. 2 Many of the drugs are potent muscarinic antagonists. 3 Some correlation can be made between the affinity for binding to the muscarinic acetylcholine receptor and the incidence of anticholinergic side effects in clinical usage. PMID:7052344

  17. Neonicotinoid insecticides differently modulate acetycholine-induced currents on mammalian α7 nicotinic acetylcholine receptor.

    PubMed

    Cartereau, Alison; Martin, Carine; Thany, Steeve H

    2017-08-29

    Neonicotinoid insecticides are described as poor agonists of mammalian nicotinic acetylcholine receptors. In this paper, we provide evidence that they diffenrently act on mammalian nicotinic receptors. Two-electrode voltage-clamp electrophysiology was used to characterized the pharmacology of neonicotinoid insecticides on α7 receptors expressed in Xenopus oocytes. Single and combined application of clothianidin, acetamiprid and thiamethoxam were tested. The neonicotinoid insecticides, clothianidin and acetamiprid were partial agonists of mammalian neuronal α7 nicotinic receptors and thiamethoxam, a neonicotinoid insecticide, which is converted to clothianidin in insect and plant tissues had no effect. Pretreatment of 10 μM clothianidin and acetamiprid with 100 μM acetylcholine, significantly enhanced the subsequent acetylcholine-evoked currents whereas, 10 μM thiamethoxam reduced acetylcholine-induced current amplitudes. Moreover, the combinations of the three neonicotinoids decreased the ACh evoked currents. The present findings suggest that neonicotinoid insecticides differently affect α7 nicotinic acetylcholine receptors and can modulate acetylcholine-induced current. In final, the data indicate a previous unknown modulation of mammalian α7 receptors by combined application of clothianidin, acetamiprid and thiamethoxam. This article is protected by copyright. All rights reserved.

  18. Multiple binding sites in the nicotinic acetylcholine receptors: An opportunity for polypharmacolgy.

    PubMed

    Iturriaga-Vásquez, Patricio; Alzate-Morales, Jans; Bermudez, Isabel; Varas, Rodrigo; Reyes-Parada, Miguel

    2015-11-01

    For decades, the development of selective compounds has been the main goal for chemists and biologists involved in drug discovery. However, diverse lines of evidence indicate that polypharmacological agents, i.e. those that act simultaneously at various protein targets, might show better profiles than selective ligands, regarding both efficacy and side effects. On the other hand, the availability of the crystal structure of different receptors allows a detailed analysis of the main interactions between drugs and receptors in a specific binding site. Neuronal nicotinic acetylcholine receptors (nAChRs) constitute a large and diverse family of ligand-gated ion channels (LGICs) that, as a product of its modulation, regulate neurotransmitter release, which in turns produce a global neuromodulation of the central nervous system. nAChRs are pentameric protein complexes in such a way that expression of compatible subunits can lead to various receptor assemblies or subtypes. The agonist binding site, located at the extracellular region, exhibits different properties depending on the subunits that conform the receptor. In the last years, it has been recognized that nAChRs could also contain one or more allosteric sites which could bind non-classical nicotinic ligands including several therapeutically useful drugs. The presence of multiple binding sites in nAChRs offers an interesting possibility for the development of novel polypharmacological agents with a wide spectrum of actions.

  19. Sequence and functional expression of a single alpha subunit of an insect nicotinic acetylcholine receptor.

    PubMed Central

    Marshall, J; Buckingham, S D; Shingai, R; Lunt, G G; Goosey, M W; Darlison, M G; Sattelle, D B; Barnard, E A

    1990-01-01

    We report the isolation and sequence of a cDNA clone that encodes a locust (Schistocerca gregaria) nervous system nicotinic acetylcholine receptor (AChR) subunit (alpha L1). The calculated molecular weight of the unglycosylated polypeptide, which contains in the proposed extracellular domain two adjacent cysteine residues which are characteristic of alpha (ligand binding) subunits, is 60,641 daltons. Injection into Xenopus oocytes, of RNA synthesized from this clone in vitro, results in expression of functional nicotinic receptors in the oocyte membrane. In these, nicotine opens a cation channel; the receptors are blocked by both alpha-bungarotoxin (alpha-Bgt) and kappa-bungarotoxin (kappa-Bgt). Reversible block of the expressed insect AChR by mecamylamine, d-tubocurarine, tetraethylammonium, bicuculline and strychnine has also been observed. These data are entirely consistent with previously reported electrophysiological studies on in vivo insect nicotinic receptors and also with biochemical studies on an alpha-Bgt affinity purified locust AChR. Thus, a functional receptor exhibiting the characteristic pharmacology of an in vivo insect nicotinic AChR can be expressed in Xenopus oocytes by injection with a single subunit RNA. PMID:1702381

  20. Muscarinic acetylcholine receptor compounds alter net Ca2+ flux and contractility in an invertebrate smooth muscle.

    PubMed

    Devlin, C Leah; Amole, William; Anderson, Shawn; Shea, Kyle

    2003-11-01

    Responses of a holothurian smooth muscle to a range of muscarinic (M(1) to M(5)) acetylcholine receptor (mAChR) agonists and antagonists were surveyed using calcium (Ca(2+))-selective electrodes and a mechanical recording technique. Most of the mAChR agonists and antagonists tested increased both contractility and net Ca(2+) efflux, with M(1)-specific agents like oxotremorine M being the most potent in their action. To investigate the possible sources of Ca(2+) used during mAChR activation, agents that disrupt intracellular Ca(2+) ion sequestration [cyclopiazonic acid (CPA), caffeine, ryanodine], the phosphoinositide signaling pathway [lithium chloride (LiCl)], and L-type Ca(2+) channels (diltiazem and verapamil) were used to challenge contractions induced by oxotremorine M. These contractions were blocked by treatment with CPA, caffeine, LiCl, and by channel blockers, diltiazem and verapamil, but were unaltered by ryanodine. Our data suggest that this smooth muscle had an M(1,3,5)-like receptor that was associated with the phosphoinositide signaling pathway that relied on intracellular Ca(2+) stores, but secondarily used extracellular Ca(2+) via the opening of L-type channels.

  1. Nicotinic Acetylcholine Receptor (nAChR) Dependent Chorda Tympani Taste Nerve Responses to Nicotine, Ethanol and Acetylcholine

    PubMed Central

    Ren, Zuo Jun; Mummalaneni, Shobha; Qian, Jie; Baumgarten, Clive M.; DeSimone, John A.; Lyall, Vijay

    2015-01-01

    Nicotine elicits bitter taste by activating TRPM5-dependent and TRPM5-independent but neuronal nAChR-dependent pathways. The nAChRs represent common targets at which acetylcholine, nicotine and ethanol functionally interact in the central nervous system. Here, we investigated if the nAChRs also represent a common pathway through which the bitter taste of nicotine, ethanol and acetylcholine is transduced. To this end, chorda tympani (CT) taste nerve responses were monitored in rats, wild-type mice and TRPM5 knockout (KO) mice following lingual stimulation with nicotine free base, ethanol, and acetylcholine, in the absence and presence of nAChR agonists and antagonists. The nAChR modulators: mecamylamine, dihydro-β-erythroidine, and CP-601932 (a partial agonist of the α3β4* nAChR), inhibited CT responses to nicotine, ethanol, and acetylcholine. CT responses to nicotine and ethanol were also inhibited by topical lingual application of 8-chlorophenylthio (CPT)-cAMP and loading taste cells with [Ca2+]i by topical lingual application of ionomycin + CaCl2. In contrast, CT responses to nicotine were enhanced when TRC [Ca2+]i was reduced by topical lingual application of BAPTA-AM. In patch-clamp experiments, only a subset of isolated rat fungiform taste cells exposed to nicotine responded with an increase in mecamylamine-sensitive inward currents. We conclude that nAChRs expressed in a subset of taste cells serve as common receptors for the detection of the TRPM5-independent bitter taste of nicotine, acetylcholine and ethanol. PMID:26039516

  2. Nicotinic Acetylcholine Receptor (nAChR) Dependent Chorda Tympani Taste Nerve Responses to Nicotine, Ethanol and Acetylcholine.

    PubMed

    Ren, Zuo Jun; Mummalaneni, Shobha; Qian, Jie; Baumgarten, Clive M; DeSimone, John A; Lyall, Vijay

    2015-01-01

    Nicotine elicits bitter taste by activating TRPM5-dependent and TRPM5-independent but neuronal nAChR-dependent pathways. The nAChRs represent common targets at which acetylcholine, nicotine and ethanol functionally interact in the central nervous system. Here, we investigated if the nAChRs also represent a common pathway through which the bitter taste of nicotine, ethanol and acetylcholine is transduced. To this end, chorda tympani (CT) taste nerve responses were monitored in rats, wild-type mice and TRPM5 knockout (KO) mice following lingual stimulation with nicotine free base, ethanol, and acetylcholine, in the absence and presence of nAChR agonists and antagonists. The nAChR modulators: mecamylamine, dihydro-β-erythroidine, and CP-601932 (a partial agonist of the α3β4* nAChR), inhibited CT responses to nicotine, ethanol, and acetylcholine. CT responses to nicotine and ethanol were also inhibited by topical lingual application of 8-chlorophenylthio (CPT)-cAMP and loading taste cells with [Ca2+]i by topical lingual application of ionomycin + CaCl2. In contrast, CT responses to nicotine were enhanced when TRC [Ca2+]i was reduced by topical lingual application of BAPTA-AM. In patch-clamp experiments, only a subset of isolated rat fungiform taste cells exposed to nicotine responded with an increase in mecamylamine-sensitive inward currents. We conclude that nAChRs expressed in a subset of taste cells serve as common receptors for the detection of the TRPM5-independent bitter taste of nicotine, acetylcholine and ethanol.

  3. Plant toxins that affect nicotinic acetylcholine receptors: a review.

    PubMed

    Green, Benedict T; Welch, Kevin D; Panter, Kip E; Lee, Stephen T

    2013-08-19

    Plants produce a wide variety of chemical compounds termed secondary metabolites that are not involved in basic metabolism, photosynthesis, or reproduction. These compounds are used as flavors, fragrances, insecticides, dyes, hallucinogens, nutritional supplements, poisons, and pharmaceutical agents. However, in some cases these secondary metabolites found in poisonous plants perturb biological systems. Ingestion of toxins from poisonous plants by grazing livestock often results in large economic losses to the livestock industry. The chemical structures of these compounds are diverse and range from simple, low molecular weight toxins such as oxalate in halogeton to the highly complex norditerpene alkaloids in larkspurs. While the negative effects of plant toxins on people and the impact of plant toxins on livestock producers have been widely publicized, the diversity of these toxins and their potential as new pharmaceutical agents for the treatment of diseases in people and animals has also received widespread interest. Scientists are actively screening plants from all regions of the world for bioactivity and potential pharmaceuticals for the treatment or prevention of many diseases. In this review, we focus the discussion to those plant toxins extensively studied at the USDA Poisonous Plant Research Laboratory that affect the nicotinic acetylcholine receptors including species of Delphinium (Larkspurs), Lupinus (Lupines), Conium (poison hemlock), and Nicotiana (tobaccos).

  4. Nicotinic acetylcholine receptor agonist attenuates ILC2-dependent airway hyperreactivity

    PubMed Central

    Galle-Treger, Lauriane; Suzuki, Yuzo; Patel, Nisheel; Sankaranarayanan, Ishwarya; Aron, Jennifer L.; Maazi, Hadi; Chen, Lin; Akbari, Omid

    2016-01-01

    Allergic asthma is a complex and chronic inflammatory disorder that is associated with airway hyperreactivity (AHR) and driven by Th2 cytokine secretion. Type 2 innate lymphoid cells (ILC2s) produce large amounts of Th2 cytokines and contribute to the development of AHR. Here, we show that ILC2s express the α7-nicotinic acetylcholine receptor (α7nAChR), which is thought to have an anti-inflammatory role in several inflammatory diseases. We show that engagement of a specific agonist with α7nAChR on ILC2s reduces ILC2 effector function and represses ILC2-dependent AHR, while decreasing expression of ILC2 key transcription factor GATA-3 and critical inflammatory modulator NF-κB, and reducing phosphorylation of upstream kinase IKKα/β. Additionally, the specific α7nAChR agonist reduces cytokine production and AHR in a humanized ILC2 mouse model. Collectively, our data suggest that α7nAChR expressed by ILC2s is a potential therapeutic target for the treatment of ILC2-mediated asthma. PMID:27752043

  5. Looking below the surface of nicotinic acetylcholine receptors

    PubMed Central

    Stokes, Clare; Treinin, Millet; Papke, Roger L.

    2015-01-01

    The amino acid sequences of nicotinic acetylcholine receptors (nAChRs) from diverse species can be compared across extracellular, transmembrane, and intracellular domains. The intracellular domains are most divergent among subtypes, yet relatively consistent among species. The diversity indicates that each nAChR subtype possesses a unique language for communication with its host cell. The conservation across species also suggests that the intracellular domains may play defining functional roles for each subtype. Secondary structure prediction indicates two relatively conserved alpha helices within the intracellular domains of all nAChRs. Among all subtypes, the intracellular domain of α7 nAChR is one of the most-well conserved, and α7 nAChRs have effects in non-neuronal cells independent of generating ion currents, making it likely that the α7 intracellular domain directly mediates signal transduction. There are potential phosphorylation and protein binding sites in the α7 intracellular domain, which are conserved and may be the basis for α7-mediated signal transduction. PMID:26067101

  6. Regulation of hippocampal inhibitory circuits by nicotinic acetylcholine receptors

    PubMed Central

    Griguoli, Marilena; Cherubini, Enrico

    2012-01-01

    The hippocampal network comprises a large variety of locally connected GABAergic interneurons exerting a powerful control on network excitability and which are responsible for the oscillatory behaviour crucial for information processing. GABAergic interneurons receive an important cholinergic innervation from the medial septum-diagonal band complex of the basal forebrain and are endowed with a variety of muscarinic and nicotinic acetylcholine receptors (mAChRs and nAChRs) that regulate their activity. Deficits in the cholinergic system lead to the impairment of high cognitive functions, which are particularly relevant in neurodegenerative pathologies such as Alzheimer's and Parkinson's diseases as well as in schizophrenia. Here, we highlight some recent advances in the mechanisms by which cholinergic signalling via nAChRs regulates local inhibitory circuits in the hippocampus, early in postnatal life and in adulthood. We also discuss recent findings concerning the functional role of nAChRs in controlling short- and long-term modifications of synaptic efficacy. Insights into these processes may provide new targets for the therapeutic control of pathological conditions associated with cholinergic dysfunctions. PMID:22124144

  7. Single channel currents at six microsecond resolution elicited by acetylcholine in mouse myoballs

    PubMed Central

    Parzefall, Franz; Wilhelm, Robert; Heckmann, Manfred; Dudel, Josef

    1998-01-01

    A patch-clamp set-up was optimized for low noise and high time resolution. An Axoclamp 200B amplifier was modified to incorporate a Teflon connector to the electrode. An electrode puller was equipped with a hydrogen-oxygen burner to produce quartz-glass pipettes with optimally 0.2μm openings and 20 MΩ resistance.The r.m.s. (root mean square) noise of sealed pipettes in the bath ranged from 3.6 fA with 100 Hz filter cut-off to 1.5 pA with 61 kHz filter cut-off. At these extremes currents of 17 fA and more than 3 ms, or 9 pA and more than 6μs could be resolved with a negligible error rate.The system was tested on mouse myoballs, recording 9–10 pA single channel currents on-cell at −200 mV polarization which were elicited by 0.1–5000μm acetylcholine (ACh).Distributions of open and closed times and of correlations of open times to the preceding closed time defined several open states: single openings with mean durations of 1.2 and 25μs, from single-liganded receptors, and bursts of 10 ms mean duration containing on average 800μs openings and 16μs closings, from double liganded receptors. Above 0.1 mm ACh these openings are interrupted increasingly by on average 18μs and 72μs channel blocks by ACh. PMID:9729627

  8. Block of nicotinic acetylcholine receptors by philanthotoxins is strongly dependent on their subunit composition

    PubMed Central

    Kachel, Hamid S.; Patel, Rohit N.; Franzyk, Henrik; Mellor, Ian R.

    2016-01-01

    Philanthotoxin-433 (PhTX-433) is an active component of the venom from the Egyptian digger wasp, Philanthus triangulum. PhTX-433 inhibits several excitatory ligand-gated ion channels, and to improve selectivity two synthetic analogues, PhTX-343 and PhTX-12, were developed. Previous work showed a 22-fold selectivity of PhTX-12 over PhTX-343 for embryonic muscle-type nicotinic acetylcholine receptors (nAChRs) in TE671 cells. We investigated their inhibition of different neuronal nAChR subunit combinations as well as of embryonic muscle receptors expressed in Xenopus oocytes. Whole-cell currents in response to application of acetylcholine alone or co-applied with PhTX analogue were studied by using two-electrode voltage-clamp. α3β4 nAChRs were most sensitive to PhTX-343 (IC50 = 12 nM at −80 mV) with α4β4, α4β2, α3β2, α7 and α1β1γδ being 5, 26, 114, 422 and 992 times less sensitive. In contrast α1β1γδ was most sensitive to PhTX-12 along with α3β4 (IC50 values of 100 nM) with α4β4, α4β2, α3β2 and α7 being 3, 3, 26 and 49 times less sensitive. PhTX-343 inhibition was strongly voltage-dependent for all subunit combinations except α7, whereas this was not the case for PhTX-12 for which weak voltage dependence was observed. We conclude that PhTX-343 mainly acts as an open-channel blocker of nAChRs with strong subtype selectivity. PMID:27901080

  9. Muscarinic acetylcholine receptor but not nicotinic acetylcholine receptor plays a role in morphine-induced behavioral sensitization in rats.

    PubMed

    Sun, Jinling; Tian, Lin; Cui, Ruisi; Ruan, Heng; Li, Xinwang

    2017-09-01

    Background and Aim The cholinergic system can affect drug reward. The present study aimed to examine the roles of muscarinic acetylcholine receptor (mAChR) and nicotinic acetylcholine receptor (nAChR) in morphine-induced behavioral sensitization. To analyze the roles of mAChR and nAChR in behavioral sensitization induced by morphine (5mg/kg), seven experiments were designed. Experiments 1 and 2 examined the effects of 3, 1, and 0.3 mg/kg scopolamine and 0.2, 0.1, and 0.05mg/kg scopolamine, respectively, on the locomotor activity when administered alone. Experiments 3 and 4 explored the effect of scopolamine on morphine-induced behavioral sensitization. Experiment 5 studied the effect of mecamylamine on morphine-induced behavioral sensitization. Experiments 6 and 7 investigated the effects of scopolamine+huperzine A and mecamylamine+huperzine A, respectively, on morphine-induced behavioral sensitization. The results revealed that 3mg/kg scopolamine, which significantly enhanced locomotor activity when administered alone, inhibited the acquisition of morphine-induced sensitization. However, mecamylamine (0.5, 1, 2mg/kg) did not have these effects. The co-administration of scopolamine (0.05 mg/kg)+huperzine A (0.4mg/kg) or mecamylamine (1mg/kg)+huperzine A (0.4mg/kg) did not affect the acquisition of morphine-induced behavioral sensitization. Scopolamine (0.05mg/kg) which did not affect the locomotor activity when administered alone, but not mecamylamine (1mg/kg), reversed the acute attenuation effect of huperzine A (0.4mg/kg) on morphine-induced locomotor activity at the acquisition stage and reversed the inhibition of huperzine A on the expression of morphine-induced sensitization. The mAChR might play a more important role in morphine-induced locomotor activity and the expression of morphine-induced behavioral sensitization. The mechanisms of mAChR and nAChR were relatively separate in morphine-induced sensitization. Copyright © 2017 Elsevier Inc. All rights

  10. Subunit structure of the acetylcholine receptor from Electrophorus electricus.

    PubMed Central

    Conti-Tronconi, B M; Hunkapiller, M W; Lindstrom, J M; Raftery, M A

    1982-01-01

    The amino-terminal amino acid sequences of the four major peptides (Mr 41,000, 50,000, 55,000, and 62,000) present in purified preparations of Electrophorus electricus nicotinic acetylcholine receptor (AcChoR) have been determined for 24 cycles by automated sequence analysis procedures yielding four unique polypeptide sequences. The sequences showed a high degree of similarity, having identical residues in a number of positions ranging between 37% and 50% for specific pairs of subunits. Comparison of the sequences obtained with those of the subunits of similar molecular weight from Torpedo californica AcChoR revealed an even higher degree of homology (from 46% to 71%) for these two highly diverged species. Simultaneous sequence analysis of the amino termini present in native, purified Electrophorus AcChoR showed that these four related sequences were the only ones present and that they occur in a ratio of 2:1:1:1, with the smallest subunit ("alpha 1") being present in two copies. Genealogical analysis suggests that the subunits of both Torpedo and Electrophorus AcChoRs derive from a common ancestral gene, the divergence having occurred early in the evolution of the receptor. This shared ancestry and the very early divergence of the four subunits, as well as the highly conserved structure of the AcChoR complex along animal evolution, suggest that each of the subunits evolved to perform discrete crucial roles in the physiological function of the AcChoR. Images PMID:6959131

  11. Molecular-Dynamics Simulations of ELIC a Prokaryotic Homologue of the Nicotinic Acetylcholine Receptor

    SciTech Connect

    Cheng, Xiaolin; Ivanov, Ivaylo N; Wang, Hailong; McCammon, Jonathan

    2009-01-01

    The ligand-gated ion channel from Erwinia chrysanthemi (ELIC) is a prokaryotic homolog of the eukaryotic nicotinic acetylcholine receptor (nAChR) that responds to the binding of neurotransmitter acetylcholine and mediates fast signal transmission. ELIC is similar to the nAChR in its primary sequence and overall subunit organization, but despite their structural similarity, it is not clear whether these two ligand-gated ion channels operate in a similar manner. Further, it is not known to what extent mechanistic insights gleaned from the ELIC structure translate to eukaryotic counterparts such as the nAChR. Here we use molecular-dynamics simulations to probe the conformational dynamics and hydration of the transmembrane pore of ELIC. The results are compared with those from our previous simulation of the human ?7 nAChR. Overall, ELIC displays increased stability compared to the nAChR, whereas the two proteins exhibit remarkable similarity in their global motion and flexibility patterns. The majority of the increased stability of ELIC does not stem from the deficiency of the models used in the simulations, and but rather seems to have a structural basis. Slightly altered dynamical correlation features are also observed among several loops within the membrane region. In sharp contrast to the nAChR, ELIC is completely dehydrated from the pore center to the extracellular end throughout the simulation. Finally, the simulation of an ELIC mutant substantiates the important role of F246 on the stability, hydration and possibly function of the ELIC channel.

  12. Chronic nicotine blunts hypoxic sensitivity in perinatal rat adrenal chromaffin cells via upregulation of KATP channels: role of alpha7 nicotinic acetylcholine receptor and hypoxia-inducible factor-2alpha.

    PubMed

    Buttigieg, Josef; Brown, Stephen; Holloway, Alison C; Nurse, Colin A

    2009-06-03

    Fetal nicotine exposure blunts hypoxia-induced catecholamine secretion from neonatal adrenomedullary chromaffin cells (AMCs), providing a link between maternal smoking, abnormal arousal responses, and risk of sudden infant death syndrome. Here, we show that the mechanism is attributable to upregulation of K(ATP) channels via stimulation of alpha7 nicotinic ACh receptors (AChRs). These K(ATP) channels open during hypoxia, thereby suppressing membrane excitability. After in utero exposure to chronic nicotine, neonatal AMCs show a blunted hypoxic sensitivity as determined by inhibition of outward K(+) current, membrane depolarization, rise in cytosolic Ca(2+), and catecholamine secretion. However, hypoxic sensitivity could be unmasked in nicotine-exposed AMCs when glibenclamide, a blocker of K(ATP) channels, was present. Both K(ATP) current density and K(ATP) channel subunit (Kir 6.2) expression were significantly enhanced in nicotine-exposed cells relative to controls. The entire sequence could be reproduced in culture by exposing neonatal rat AMCs or immortalized fetal chromaffin (MAH) cells to nicotine for approximately 1 week, and was prevented by coincubation with selective blockers of alpha7 nicotinic AChRs. Additionally, coincubation with inhibitors of protein kinase C and CaM kinase, but not protein kinase A, prevented the effects of chronic nicotine in vitro. Interestingly, chronic nicotine failed to blunt hypoxia-evoked responses in MAH cells bearing short hairpin knockdown (>90%) of the transcription factor, hypoxia-inducible factor-2alpha (HIF-2alpha), suggesting involvement of the HIF pathway. The therapeutic potential of K(ATP) channel blockers was validated in experiments in which hypoxia-induced neonatal mortality in nicotine-exposed pups was significantly reduced after pretreatment with glibenclamide.

  13. Inhibition of cortical acetylcholine release and cognitive performance by histamine H3 receptor activation in rats.

    PubMed Central

    Blandina, P.; Giorgetti, M.; Bartolini, L.; Cecchi, M.; Timmerman, H.; Leurs, R.; Pepeu, G.; Giovannini, M. G.

    1996-01-01

    1. The effects of histamine and agents at histamine receptors on spontaneous and 100 mM K(+)-evoked release of acetylcholine, measured by microdialysis from the cortex of freely moving, rats, and on cognitive tests are described. 2. Local administration of histamine (0.1-100 microM) failed to affect spontaneous but inhibited 100 mM K(+)-stimulated release of acetylcholine up to about 50%. The H3 receptor agonists (R)-alpha-methylhistamine (RAMH) (0.1-10 microM), imetit (0.01-10 microM) and immepip (0.01-10 microM) mimicked the effect of histamine. 3. Neither 2-thiazolylethylamine (TEA), an agonist showing some selectivity for H1 receptors, nor the H2 receptor agonist, dimaprit, modified 100 mM K(+)-evoked release of acetylcholine. 4. The inhibitory effect of 100 microM histamine was completely prevented by the highly selective histamine H3 receptor antagonist, clobenpropit but was resistant to antagonism by triprolidine and cimetidine, antagonists at histamine H1 and H2 but not H3 receptors. 5. The H3 receptor-induced inhibition of K(+)-evoked release of acetylcholine was fully sensitive to tetrodotoxin (TTX). 6. The effects of intraperitoneal (i.p.) injection of imetit (5 mg kg-1) and RAMH (5 mg kg-1) were tested on acetylcholine release and short term memory paradigms. Both drugs reduced 100 mM K(+)-evoked release of cortical acetylcholine, and impaired object recognition and a passive avoidance response. 7. These observations provide the first evidence of a regulatory role of histamine H3 receptors on cortical acetylcholine release in vivo. Moreover, they suggest a role for histamine in learning and memory and may have implications for the treatment of degenerative disorders associated with impaired cholinergic function. PMID:8982515

  14. Neuronal nicotinic acetylcholine receptors are important targets for alcohol reward and dependence.

    PubMed

    Wu, Jie; Gao, Ming; Taylor, Devin H

    2014-03-01

    Neuronal nicotinic acetylcholine receptors are important targets for alcohol reward and dependence. Alcoholism is a serious public health problem and has been identified as the third major cause of preventable mortality in the world. Worldwide, about 2 billion people consume alcohol, with 76.3 million having diagnosable alcohol use disorders. Alcohol is currently responsible for the death of 4% of adults worldwide (about 2.5 million deaths each year), and this number will be significantly increased by 2020 unless effective action is taken. Alcohol is the most commonly abused substance by humans. Ethanol (EtOH) is the intoxicating agent in alcoholic drinks that can lead to abuse and dependence. Although it has been extensively studied, the mechanisms of alcohol reward and dependence are still poorly understood. The major reason is that, unlike other addictive drugs (eg, morphine, cocaine or nicotine) that have specific molecular targets, EtOH affects much wider neuronal functions. These functions include phospholipid membranes, various ion channels and receptors, synaptic and network functions, and intracellular signaling molecules. The major targets in the brain that mediate EtOH's effects remain unclear. This knowledge gap results in a therapeutic barrier in the treatment of alcoholism. Interestingly, alcohol and nicotine are often co-abused, which suggests that neuronal nicotinic acetylcholine receptors (nAChRs), the molecular targets for nicotine, may also contribute to alcohol's abusive properties. Here, we briefly summarize recent lines of evidence showing how EtOH modulates nAChRs in the mesolimbic pathway, which provides a perspective that nAChRs are important targets mediating alcohol abuse.

  15. Rational Design of α-Conotoxin Analogues Targeting α7 Nicotinic Acetylcholine Receptors

    PubMed Central

    Armishaw, Christopher; Jensen, Anders A.; Balle, Thomas; Clark, Richard J.; Harpsøe, Kasper; Skonberg, Christian; Liljefors, Tommy; Strømgaard, Kristian

    2009-01-01

    Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that belong to the superfamily of Cys loop receptors. Valuable insight into the orthosteric ligand binding to nAChRs in recent years has been obtained from the crystal structures of acetylcholine-binding proteins (AChBPs) that share significant sequence homology with the amino-terminal domains of the nAChRs. α-Conotoxins, which are isolated from the venom of carnivorous marine snails, selectively inhibit the signaling of neuronal nAChR subtypes. Co-crystal structures of α-conotoxins in complex with AChBP show that the side chain of a highly conserved proline residue in these toxins is oriented toward the hydrophobic binding pocket in the AChBP but does not have direct interactions with this pocket. In this study, we have designed and synthesized analogues of α-conotoxins ImI and PnIA[A10L], by introducing a range of substituents on the Pro6 residue in these toxins to probe the importance of this residue for their binding to the nAChRs. Pharmacological characterization of the toxin analogues at the α7 nAChR shows that although polar and charged groups on Pro6 result in analogues with significantly reduced antagonistic activities, analogues with aromatic and hydrophobic substituents in the Pro6 position exhibit moderate activity at the receptor. Interestingly, introduction of a 5-(R)-phenyl substituent at Pro6 in α-conotoxin ImI gives rise to a conotoxin analogue with a significantly higher binding affinity and antagonistic activity at the α7 nAChR than those exhibited by the native conotoxin. PMID:19131337

  16. The endogenous cannabinoid anandamide inhibits alpha7 nicotinic acetylcholine receptor-mediated responses in Xenopus oocytes.

    PubMed

    Oz, Murat; Ravindran, Arippa; Diaz-Ruiz, Oscar; Zhang, Li; Morales, Marisela

    2003-09-01

    The effect of the endogenous cannabinoid ligand anandamide on the function of the cloned alpha7 subunit of the nicotinic acetylcholine (ACh) receptor expressed in Xenopus oocytes was investigated by using the two-electrode voltage-clamp technique. Anandamide reversibly inhibited nicotine (10 microM) induced-currents in a concentration-dependent manner (10 nM to 30 microM), with an IC50 value of 229.7 +/- 20.4 nM. The effect of anandamide was neither dependent on the membrane potential nor meditated by endogenous Ca2+ dependent Cl- channels since it was unaffected by intracellularly injected BAPTA and perfusion with Ca2+-free bathing solution containing 2 mM Ba2+. Anandamide decreased the maximal nicotine-induced responses without significantly affecting its potency, indicating that it acts as a noncompetitive antagonist on nicotinic acetylcholine (nACh) alpha7 receptors. This effect was not mediated by CB1 or CB2 receptors, as neither the selective CB1 receptor antagonist N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboximide hydrochloride (SR 141716A) nor CB2 receptor antagonist N-((1S)-endo-1,3,3-trimethyl-bicyclo-heptan-2-yl]-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide (SR 144528) reduced the inhibition by anandamide. In addition, inhibition of nicotinic responses by anandamide was not sensitive to either pertussis toxin treatment or to the membrane permeable cAMP analog 8-Br-cAMP (0.2 mM). Inhibitors of enzymes involved in anandamide metabolism including phenylmethylsulfonyl fluoride, superoxide dismutase, and indomethacin, or the anandamide transport inhibitor AM404 did not prevent anandamide inhibition of nicotinic responses, suggesting that anandamide itself acted on nicotinic receptors. In conclusion, these results demonstrate that the endogenous cannabinoid anandamide inhibits the function of nACh alpha7 receptors expressed in Xenopus oocytes in a cannabinoid receptor-independent and

  17. Antipsychotic clozapine inhibits the function of alpha7-nicotinic acetylcholine receptors.

    PubMed

    Singhal, Sachin K; Zhang, Li; Morales, Marisela; Oz, Murat

    2007-02-01

    The effects of the antipsychotic clozapine on the function of the cloned alpha(7) subunit of the nicotinic acetylcholine (nACh) receptor expressed in Xenopus oocytes was investigated by using the two-electrode voltage-clamp technique. Clozapine reversibly inhibited nicotine (10 microM)-induced currents in a concentration-dependent manner (300 nM to 90 microM), with an IC(50) value of 3.2+/-0.4 microM. The effect of clozapine was not dependent on the membrane potential. Clozapine did not affect the activity of endogenous Ca(2+)-dependent Cl(-) channels since the inhibition by clozapine was unaltered by the intracellularly injected Ca(2+) chelator BAPTA and perfusion with Ca(2+)-free bathing solution containing 2mM Ba(2+). Clozapine decreased the maximal nicotine-induced responses without significantly affecting its potency, indicating that it acts as a noncompetitive antagonist on alpha(7)-nACh receptors. In hippocampal slices, the whole-cell recordings from CA1 pyramidal neurons indicated that the increases in the frequency and amplitudes of the GABA-mediated spontaneous inhibitory postsynaptic currents induced by bath application of 2 mM choline, a specific agonist for alpha(7)-nACh receptors, were abolished after 10 min application of 5 microM clozapine. In conclusion, these results demonstrate that clozapine inhibits the function of alpha(7)-nACh receptors expressed in Xenopus oocytes and in hippocampal neurons.

  18. High-affinity binding of (/sup 3/H)acetylcholine to muscarinic cholinergic receptors

    SciTech Connect

    Kellar, K.J.; Martino, A.M.; Hall, D.P. Jr.; Schwartz, R.D.; Taylor, R.L.

    1985-06-01

    High-affinity binding of (/sup 3/H)acetylcholine to muscarinic cholinergic sites in rat CNS and peripheral tissues was measured in the presence of cytisin, which occupies nicotinic cholinergic receptors. The muscarinic sites were characterized with regard to binding kinetics, pharmacology, anatomical distribution, and regulation by guanyl nucleotides. These binding sites have characteristics of high-affinity muscarinic cholinergic receptors with a Kd of approximately 30 nM. Most of the muscarinic agonist and antagonist drugs tested have high affinity for the (/sup 3/H)acetylcholine binding site, but pirenzepine, an antagonist which is selective for M-1 receptors, has relatively low affinity. The ratio of high-affinity (/sup 3/H)acetylcholine binding sites to total muscarinic binding sites labeled by (/sup 3/H)quinuclidinyl benzilate varies from 9 to 90% in different tissues, with the highest ratios in the pons, medulla, and heart atrium. In the presence of guanyl nucleotides, (/sup 3/H) acetylcholine binding is decreased, but the extent of decrease varies from 40 to 90% in different tissues, with the largest decreases being found in the pons, medulla, cerebellum, and heart atrium. The results indicate that (/sup 3/H)acetylcholine binds to high-affinity M-1 and M-2 muscarinic receptors, and they suggest that most M-2 sites have high affinity for acetylcholine but that only a small fraction of M-1 sites have such high affinity.

  19. Ligand binding to nicotinic acetylcholine receptor investigated by surface plasmon resonance.

    PubMed

    Kröger, D; Hucho, F; Vogel, H

    1999-08-01

    Ligand binding to the nicotinic acetylcholine receptor is studied by surface plasmon resonance. Biotinylated bungarotoxin, immobilized on a streptavidin-coated gold film, binds nicotinic acetylcholine receptor both in detergent-solubilized and in lipid vesicle-reconstituted form with high specificity. In the latter case, nonspecific binding to the sensor surface is significantly reduced by reconstituting the receptor into poly(ethylene glycol)-lipid-containing sterically stabilized vesicles. By preincubation of a bulk nicotinic acetylcholine receptor sample with the competing ligands carbamoylcholine and decamethonium bromide, the subsequent specific binding of the receptor to the surface-immobilized bungarotoxin is reduced, depending on the concentration of competing ligand. This competition assay allows the determination of the dissociation constants of the acetylcholine receptor-carbamoylcholine complex. A K(D) = 3.5 × 10(-)(6) M for the detergent-solubilized receptor and a K(D) = 1.4 × 10(-)(5) M for the lipid vesicle-reconstituted receptor are obtained. For decamethonium bromide, a K(D) = 4.5 × 10(-)(5) M is determined for the detergent-solubilized receptor. This approach is of general importance for investigating ligand-receptor interactions in case of small ligand molecules by mass-sensitive techniques.

  20. Ryanodine is a positive modulator of acetylcholine receptor gating in cochlear hair cells.

    PubMed

    Zorrilla de San Martín, Javier; Ballestero, Jimena; Katz, Eleonora; Elgoyhen, A Belén; Fuchs, Paul A

    2007-12-01

    The efferent synaptic specialization of hair cells includes a near-membrane synaptic cistern, whose presence suggests a role for internal calcium stores in cholinergic inhibition. Calcium release channels from internal stores include 'ryanodine receptors', whose participation is usually demonstrated by sensitivity to the eponymous plant alkaloid, ryanodine. However, use of this and other store-active compounds on hair cells could be confounded by the unusual pharmacology of the alpha9alpha10-containing hair cell nicotinic cholinergic receptor (nAChR), which has been shown to be antagonized by a broad spectrum of compounds. Surprisingly, we found that ryanodine, rather than antagonizing, is a positive modulator of the alpha9alpha10 nAChR expressed in Xenopus oocytes, the first such compound to be found. The effect of ryanodine was to increase the apparent affinity and efficacy for acetylcholine (ACh). Correspondingly, ACh-evoked currents through the isolated cholinergic receptors of inner hair cells in excised mouse cochleas were approximately doubled by 200 microM ryanodine, a concentration that inhibits gating of the ryanodine receptor itself. This unusual positive modulation was not unique to the mammalian receptor. The response to ACh of chicken 'short' hair cells likewise was enhanced in the presence of 100 microM ryanodine. This facilitatory effect on current through the AChR could enhance brief ( approximately 1 s) activation of associated calcium-dependent K(+) (SK) channels in both chicken short hair cells and rat outer hair cells. This novel effect of ryanodine provides new opportunities for the design of compounds that potentiate alpha9alpha10-mediated responses and for potential inner ear therapeutics based on this interaction.

  1. Subunit Interfaces Contribute Differently to Activation and Allosteric Modulation of Neuronal Nicotinic Acetylcholine Receptors

    PubMed Central

    Short, Caitlin A.; Cao, Angela T.; Wingfield, Molly A.; Doers, Matthew E.; Jobe, Emily M.; Wang, Nan; Levandoski, Mark M.

    2015-01-01

    Neuronal nicotinic acetylcholine receptors (nAChRs) are widely distributed in the nervous system and are implicated in many normal and pathological processes. The structural determinants of allostery in nAChRs are not well understood. One class of nAChR allosteric modulators, including the small molecule morantel (Mor), acts from a site that is structurally homologous to the canonical agonist site but exists in the β(+)/α(–) subunit interface. We hypothesized that all nAChR subunits move with respect to each other during channel activation and allosteric modulation. We therefore studied five pairs of residues predicted to span the interfaces of α3β2 receptors, one at the agonist interface and four at the modulator interface. Substituting cysteines in these positions, we used disulfide trapping to perturb receptor function. The pair α3Y168-β2D190, involving the C loop region of the β2 subunit, mediates modulation and agonist activation, because evoked currents were reduced up to 50% following oxidation (H2O2) treatment. The pair α3S125-β2Q39, below the canonical site, is also involved in channel activation, in accord with previous studies of the muscle-type receptor; however, the pair is differentially sensitive to ACh activation and Mor modulation (currents decreased 60% and 80%, respectively). The pairs α3Q37-β2A127 and α3E173-β2R46, both in the non-canonical interface, showed increased currents following oxidation, suggesting that subunit movements are not symmetrical. Together, our results from disulfide trapping and further mutation analysis indicate that subunit interface movement is important for allosteric modulation of nAChRs, but that the two types of interfaces contribute unequally to receptor activation. PMID:25486620

  2. Allosteric modulation of alpha4beta2 nicotinic acetylcholine receptors by HEPES.

    PubMed

    Weltzin, Maegan M; Huang, Yanzhou; Schulte, Marvin K

    2014-06-05

    A number of new positive allosteric modulators (PAMs) have been reported that enhance responses of neuronal alpha7 and alpha4beta2 nicotinic acetylcholine receptor subtypes to orthosteric ligands. PAMs represent promising new leads for the development of therapeutic agents for disorders involving alterations in nicotinic neurotransmission including Autism, Alzheimer's and Parkinson's disease. During our recent studies of alpha4beta2 PAMs, we identified a novel effect of 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES). The effects of HEPES were evaluated in a phosphate buffered recording solution using two-electrode voltage clamp techniques and alpha4beta2 and alpha7 nicotinic acetylcholine receptor subtypes expressed in Xenopus laevis oocytes. Acetylcholine induced responses of high-sensitivity alpha4beta2 receptors were potentiated 190% by co-exposure to HEPES. Responses were inhibited at higher concentrations (bell-shaped concentration/response curve). Coincidentally, at concentrations of HEPES typically used in oocyte recording (5-10mM), the potentiating effects of HEPES are matched by its inhibitory effects, thus producing no net effect. Mutagenesis results suggest HEPES potentiates the high-sensitivity stoichiometry of the alpha4beta2 receptors through action at the beta2+/beta2- interface and is dependent on residue beta2D218. HEPES did not potentiate low-sensitivity alpha4beta2 receptors and did not produce any observable effect on acetylcholine induced responses on alpha7 nicotinic acetylcholine receptors.

  3. Neuronal nicotinic acetylcholine receptors are modulated by zinc.

    PubMed

    Vázquez-Gómez, Elizabeth; García-Colunga, Jesús

    2009-01-01

    It is known that zinc modulates nicotinic acetylcholine receptors (nAChRs). Here, we studied the effects of zinc on neuronal alpha4beta4 nAChRs, expressed in Xenopus oocytes and activated by nicotine. Membrane ion currents elicited by nicotine (10 nM to 100 microM) were enhanced by zinc (100 microM). Maximal zinc potentiation of the nicotine-activated current (2530%) occurred at 50 nM nicotine, and potentiation gradually decreased as the nicotine concentration increased. The EC(50) and IC(50) for the nicotine-activated current were 639 nM and 14.7 microM nicotine, respectively. Both parameters decreased in the presence of zinc to 160 nM and 4.6 microM, respectively, probably due to an increase of sensitivity of nAChRs for nicotine. We used different concentrations and durations of exposure to nicotine, due to desensitization of nAChRs directly depends on both these factors. With 500 nM nicotine and 20 min washing periods between nicotine applications, zinc potentiation remained constant, 901% for 2 min and 813% for 20 min of nicotine exposure. With continuous application of nicotine, zinc potentiation decreased as the time of nicotine exposure increased, 721% for 2 min and 254% for 48 min of nicotine exposure. Our results indicate that zinc-potentiating effects on alpha4beta4 nAChRs strongly depend on both concentration and time of exposure to nicotine, suggesting that zinc potentiation depends on the degree of desensitization.

  4. Developmental regulation of nicotinic acetylcholine receptors within midbrain dopamine neurons

    PubMed Central

    Azam, Layla; Chen, Yiling; Leslie, Frances M.

    2007-01-01

    We have combined anatomical and functional methodologies to provide a comprehensive analysis of the properties of nicotinic acetylcholine receptors (nAChRs) on developing dopamine (DA) neurons. Double-labeling in situ hybridization was used to examine the expression of nAChR subunit mRNAs within developing midbrain DA neurons. As brain maturation progressed there was a change in the pattern of subunit mRNA expression within DA neurons, such that α3 and α4 subunits declined and α6 mRNA increased. Although there were strong similarities in subunit mRNA expression in substantia nigra (SNc) and ventral tegmental area (VTA), there was higher expression of α4 mRNA in SNc than VTA at gestational day (G)15, and of α5, α6 and β3 mRNAs during postnatal development. Using a superfusion neurotransmitter release paradigm to functionally characterize nicotine-stimulated release of [3H]DA from striatal slices, the properties of the nAChRs on DA terminals were also found to change with age. Functional nAChRs were detected on striatal terminals at G18. There was a decrease in maximal release in the first postnatal week, followed by an increase in nicotine efficacy and potency during the second and third postnatal weeks. In the transition from adolescence (postnatal days (P) 30 and 40) to adulthood, there was a complex pattern of functional maturation of nAChRs in ventral, but not dorsal, striatum. In males, but not females, there were significant changes in both nicotine potency and efficacy during this developmental period. These findings suggest that nAChRs may play critical functional roles throughout DA neuronal maturation. PMID:17197101

  5. Structure-activity relationships of acetylcholine derivatives with Lucilia cuprina nicotinic acetylcholine receptor α1 and α2 subunits in chicken β2 subunit hybrid receptors in comparison with chicken nicotinic acetylcholine receptor α4/β2.

    PubMed

    Dederer, H; Berger, M; Meyer, T; Werr, M; Ilg, T

    2013-04-01

    Insect nicotinic acetylcholine (ACh) receptors (nAChRs) are the targets of several insecticide classes. In the present study, we report the gene identification and cloning of nAChR α1 and α2 subunits (Lcα1 and Lcα2) from the sheep blowfly Lucilia cuprina. Xenopus oocytes voltage clamp experiments as hybrids with the chicken β2 nAChR (Ggβ2) subunit resulted in ACh-gated ion channels with distinct dose-response curves for Lcα1/Ggβ2 (effective concentration 50% [EC50 ] = 80 nM; nH  = 1.05), and Lcα2/Ggβ2 (EC50  = 5.37 μM, nH  = 1.46). The neonicotinoid imidacloprid was a potent agonist for the α-bungarotoxin-sensitive Lcα1/Ggβ2 (EC50 ∼ 20 nM), while the α-bungarotoxin-resistant Lcα2/Ggβ2 showed a 30-fold lower sensitivity to this insecticide (EC50  = 0.62 μM). Thirteen close derivatives of ACh were analysed in EC50 , Hill coefficient and maximum current (relative to ACh) determinations for Lcα1/Ggβ2 and Lcα2/Ggβ2 and the chicken Ggα4/Ggβ2 nAChRs, and comparisons relative to ACh allowed the definition of novel structure-activity and structure-selectivity relationships. In the case of N-ethyl-acetylcholine, the EC50 of the chicken Ggα4/Ggβ2 rose by a factor of 1000, while for both Lcα1/Ggβ2 and Lcα2/Ggβ2, potency remained unchanged. Further derivatives with insect nAChR selectivity potential were acetyl-α-methylcholine and trimethyl-(3-methoxy-3-oxopropyl)ammonium, followed by acetylhomocholine and trimethyl-(4-oxopentyl) ammonium. Our results may provide guidance for the identification or design of insect-specific nAChR agonists using structure-based or in silico methods. © 2013 Royal Entomological Society.

  6. Rabies virus binding to an acetylcholine receptor alpha-subunit peptide.

    PubMed

    Lentz, T L

    1990-04-01

    The binding of 125I-labeled rabies virus to a synthetic peptide comprising residues 173-204 of the alpha 1-subunit of the nicotinic acetylcholine receptor was investigated. Binding of rabies virus to the receptor peptide was dependent on pH, could be competed with by unlabeled homologous virus particles, and was saturable. Synthetic peptides of snake venom, curaremimetic neurotoxins and of the structurally similar segment of the rabies virus glycoprotein, were effective in competing with labeled virus binding to the receptor peptide at micromolar concentrations. Similarly, synthetic peptides of the binding domain on the acetylcholine receptor competed for binding. These findings suggest that both rabies virus and neurotoxins bind to residues 173-204 of the alpha 1-subunit of the acetylcholine receptor. Competition studies with shorter alpha-subunit peptides within this region indicate that the highest affinity virus binding determinants are located within residues 179-192. A rat nerve alpha 3-subunit peptide, that does not bind alpha-bungarotoxin, inhibited binding of virus to the alpha 1 peptide, suggesting that rabies binds to neuronal nicotinic acetylcholine receptors. These studies indicate that synthetic peptides of the glycoprotein binding domain and of the receptor binding domain may represent useful antiviral agents by targeting the recognition event between the viral attachment protein and the host cell receptor, and inhibiting attachment of virus to the receptor.

  7. Menthol Enhances the Desensitization of Human α3β4 Nicotinic Acetylcholine Receptors

    PubMed Central

    Ton, Hoai T.; Smart, Amanda E.; Aguilar, Brittany L.; Olson, Thao T.

    2015-01-01

    The α3β4 nicotinic acetylcholine receptor (nAChR) subtype is widely expressed in the peripheral and central nervous systems, including in airway sensory nerves. The nAChR subtype transduces the irritant effects of nicotine in tobacco smoke and, in certain brain areas, may be involved in nicotine addiction and/or withdrawal. Menthol, a widely used additive in cigarettes, is a potential analgesic and/or counterirritant at sensory nerves and may also influence nicotine’s actions in the brain. We examined menthol’s effects on recombinant human α3β4 nAChRs and native nAChRs in mouse sensory neurons. Menthol markedly decreased nAChR activity as assessed by Ca2+ imaging, 86Rb+ efflux, and voltage-clamp measurements. Coapplication of menthol with acetylcholine or nicotine increased desensitization, demonstrated by an increase in the rate and magnitude of the current decay and a reduction of the current integral. These effects increased with agonist concentration. Pretreatment with menthol followed by its washout did not affect agonist-induced desensitization, suggesting that menthol must be present during the application of agonist to augment desensitization. Notably, menthol acted in a voltage-independent manner and reduced the mean open time of single channels without affecting their conductance, arguing against a simple channel-blocking effect. Further, menthol slowed or prevented the recovery of nAChRs from desensitization, indicating that it probably stabilizes a desensitized state. Moreover, menthol at concentrations up to 1 mM did not compete for the orthosteric nAChR binding site labeled by [3H]epibatidine. Taken together, these data indicate that menthol promotes desensitization of α3β4 nAChRs by an allosteric action. PMID:25964258

  8. Subunit profiling and functional characteristics of acetylcholine receptors in GT1-7 cells.

    PubMed

    Arai, Yuki; Ishii, Hirotaka; Kobayashi, Makito; Ozawa, Hitoshi

    2017-03-01

    GnRH neurons form a final common pathway for the central regulation of reproduction. Although the involvement of acetylcholine in GnRH secretion has been reported, direct effects of acetylcholine and expression profiles of acetylcholine receptors (AChRs) still remain to be studied. Using immortalized GnRH neurons (GT1-7 cells), we analyzed molecular expression and functionality of AChRs. Expression of the mRNAs were identified in the order α7 > β2 = β1 ≧ α4 ≧ α5 = β4 = δ > α3 for nicotinic acetylcholine receptor (nAChR) subunits and m4 > m2 for muscarinic acetylcholine receptor (mAChR) subtypes. Furthermore, this study revealed that α7 nAChRs contributed to Ca(2+) influx and GnRH release and that m2 and m4 mAChRs inhibited forskolin-induced cAMP production and isobutylmethylxanthine-induced GnRH secretion. These findings demonstrate the molecular profiles of AChRs, which directly contribute to GnRH secretion in GT1-7 cells, and provide one possible regulatory action of acetylcholine in GnRH neurons.

  9. The Validation of Nematode-Specific Acetylcholine-Gated Chloride Channels as Potential Anthelmintic Drug Targets

    PubMed Central

    Wever, Claudia M.; Farrington, Danielle; Dent, Joseph A.

    2015-01-01

    New compounds are needed to treat parasitic nematode infections in humans, livestock and plants. Small molecule anthelmintics are the primary means of nematode parasite control in animals; however, widespread resistance to the currently available drug classes means control will be impossible without the introduction of new compounds. Adverse environmental effects associated with nematocides used to control plant parasitic species are also motivating the search for safer, more effective compounds. Discovery of new anthelmintic drugs in particular has been a serious challenge due to the difficulty of obtaining and culturing target parasites for high-throughput screens and the lack of functional genomic techniques to validate potential drug targets in these pathogens. We present here a novel strategy for target validation that employs the free-living nematode Caenorhabditis elegans to demonstrate the value of new ligand-gated ion channels as targets for anthelmintic discovery. Many successful anthelmintics, including ivermectin, levamisole and monepantel, are agonists of pentameric ligand-gated ion channels, suggesting that the unexploited pentameric ion channels encoded in parasite genomes may be suitable drug targets. We validated five members of the nematode-specific family of acetylcholine-gated chloride channels as targets of agonists with anthelmintic properties by ectopically expressing an ivermectin-gated chloride channel, AVR-15, in tissues that endogenously express the acetylcholine-gated chloride channels and using the effects of ivermectin to predict the effects of an acetylcholine-gated chloride channel agonist. In principle, our strategy can be applied to validate any ion channel as a putative anti-parasitic drug target. PMID:26393923

  10. Potentiation of alpha7 nicotinic acetylcholine receptors via an allosteric transmembrane site.

    PubMed

    Young, Gareth T; Zwart, Ruud; Walker, Alison S; Sher, Emanuele; Millar, Neil S

    2008-09-23

    Positive allosteric modulators of alpha7 nicotinic acetylcholine receptors (nAChRs) have attracted considerable interest as potential tools for the treatment of neurological and psychiatric disorders such as Alzheimer's disease and schizophrenia. However, despite the potential therapeutic usefulness of these compounds, little is known about their mechanism of action. Here, we have examined two allosteric potentiators of alpha7 nAChRs (PNU-120596 and LY-2087101). From studies with a series of subunit chimeras, we have identified the transmembrane regions of alpha7 as being critical in facilitating potentiation of agonist-evoked responses. Furthermore, we have identified five transmembrane amino acids that, when mutated, significantly reduce potentiation of alpha7 nAChRs. The amino acids we have identified are located within the alpha-helical transmembrane domains TM1 (S222 and A225), TM2 (M253), and TM4 (F455 and C459). Mutation of either A225 or M253 individually have particularly profound effects, reducing potentiation of EC(20) concentrations of acetylcholine to a tenth of the level seen with wild-type alpha7. Reference to homology models of the alpha7 nAChR, based on the 4A structure of the Torpedo nAChR, indicates that the side chains of all five amino acids point toward an intrasubunit cavity located between the four alpha-helical transmembrane domains. Computer docking simulations predict that the allosteric compounds such as PNU-120596 and LY-2087101 may bind within this intrasubunit cavity, much as neurosteroids and volatile anesthetics are thought to interact with GABA(A) and glycine receptors. Our findings suggest that this is a conserved modulatory allosteric site within neurotransmitter-gated ion channels.

  11. Modes of action, resistance and toxicity of insecticides targeting nicotinic acetylcholine receptors.

    PubMed

    Ihara, Makoto; Buckingham, Steven D; Matsuda, Kazuhiko; Sattelle, David B

    2017-02-06

    Nicotinic acetylcholine receptors (nAChRs) are members of the cys-loop superfamily of ligand-gated ion channels (cys-loop LGICs) and mediate fast cholinergic synaptic transmission in the nervous system of insects. The completion of many insect genome projects has greatly enhanced our understanding of the individual subunits that make up nAChR gene families from an insect genetic model organism (Drosophila melanogaster), crop pests, disease vectors and beneficial (pollinator) species. In addition to considerable insect nAChR subunit diversity, individual subunits can be subject to alternative splicing and RNA editing and these post-transcriptional modifications can add significantly to the diversity of nAChR receptor subtypes. The actions of insecticides targeting nAChRs, notably cartap, neonicotinoids, sulfoximines, flupyradifurone, spinosyns and triflumezopyrim are reviewed. Structural studies obtained using an acetylcholine binding protein (AChBP) co-crystallised with neonicotinoids have yielded important new insights into the requirements for neonicotinoid insecticide - nAChR interactions. The persistent application of insecticides to crop pests leads to the onset of resistance and several examples of resistance to insecticides targeting nAChRs have been documented. Understanding the molecular basis of resistance can inform our understanding of the mechanism of insecticide action. It also provides an important driver for the development of new chemistry, diagnostic tests for resistance and the adoption of application strategies designed to attenuate such problems. Finally, we consider toxicity issues relating to nAChR-active insecticides, with particular reference to beneficial insect species (pollinators) as well as mammalian and avian toxicity. This review is part of the special issue "Insecticide Mode of Action: From Insect to Mammalian Toxicity.".

  12. Computational determination of the binding mode of α-conotoxin to nicotinic acetylcholine receptor

    NASA Astrophysics Data System (ADS)

    Tabassum, Nargis; Yu, Rilei; Jiang, Tao

    2016-12-01

    Conotoxins belong to the large families of disulfide-rich peptide toxins from cone snail venom, and can act on a broad spectrum of ion channels and receptors. They are classified into different subtypes based on their targets. The α-conotoxins selectively inhibit the current of the nicotinic acetylcholine receptors. Because of their unique selectivity towards distinct nAChR subtypes, α-conotoxins become valuable tools in nAChR study. In addition to the X-ray structures of α-conotoxins in complex with acetylcholine-binding protein, a homolog of the nAChR ligand-binding domain, the high-resolution crystal structures of the extracellular domain of the α1 and α9 subunits are also obtained. Such structures not only revealed the details of the configuration of nAChR, but also provided higher sequence identity templates for modeling the binding modes of α-conotoxins to nAChR. This mini-review summarizes recent modeling studies for the determination of the binding modes of α-conotoxins to nAChR. As there are not crystal structures of the nAChR in complex with conotoxins, computational modeling in combination of mutagenesis data is expected to reveal the molecular recognition mechanisms that govern the interactions between α-conotoxins and nAChR at molecular level. An accurate determination of the binding modes of α-conotoxins on AChRs allows rational design of α-conotoxin analogues with improved potency or selectivity to nAChRs.

  13. Positive allosteric modulators as an approach to nicotinic acetylcholine receptor-targeted therapeutics: advantages and limitations.

    PubMed

    Williams, Dustin K; Wang, Jingyi; Papke, Roger L

    2011-10-15

    Neuronal nicotinic acetylcholine receptors (nAChR), recognized targets for drug development in cognitive and neuro-degenerative disorders, are allosteric proteins with dynamic interconversions between multiple functional states. Activation of the nAChR ion channel is primarily controlled by the binding of ligands (agonists, partial agonists, competitive antagonists) at conventional agonist binding sites, but is also regulated in either negative or positive ways by the binding of ligands to other modulatory sites. In this review, we discuss models for the activation and desensitization of nAChR, and the discovery of multiple types of ligands that influence those processes in both heteromeric nAChR, such as the high-affinity nicotine receptors of the brain, and homomeric α7-type receptors. In recent years, α7 nAChRs have been identified as a potential target for therapeutic indications leading to the development of α7-selective agonists and partial agonists. However, unique properties of α7 nAChR, including low probability of channel opening and rapid desensitization, may limit the therapeutic usefulness of ligands binding exclusively to conventional agonist binding sites. New enthusiasm for the therapeutic targeting of α7 has come from the identification of α7-selective positive allosteric modulators (PAMs) that work effectively on the intrinsic factors that limit α7 ion channel activation. While these new drugs appear promising for therapeutic development, we also consider potential caveats and possible limitations for their use, including PAM-insensitive forms of desensitization and cytotoxicity issues.

  14. Modulation of the anti-acetylcholine receptor response and experimental autoimmune myasthenia gravis by recombinant fragments of the acetylcholine receptor.

    PubMed

    Barchan, D; Asher, O; Tzartos, S J; Fuchs, S; Souroujon, M C

    1998-02-01

    Myasthenia gravis (MG) is a neuromuscular disorder of man caused by a humoral response to the acetylcholine receptor (AChR). Most of the antibodies in MG and in experimental autoimmune myasthenia gravis (EAMG) are directed to the extracellular portion of the AChR alpha subunit, and within it, primarily to the main immunogenic region (MIR). We have cloned and expressed recombinant fragments, corresponding to the entire extracellular domain of the AChR alpha subunit (H alpha1-210), and to portions of it that encompass either the MIR (H alpha1-121) or the ligand binding site of AChR (H alpha122-210), and studied their ability to interfere with the immunopathological anti-AChR response in vitro and in vivo. All fragments were expressed as fusion proteins with glutathione S-transferase. Fragments H alpha1-121 and H alpha1-210 protected AChR in TE671 cells against accelerated degradation induced by the anti-MIR monoclonal antibody (mAb)198 in a dose-dependent manner. Moreover, these fragments had a similar effect on the antigenic modulation of AChR by other anti-MIR mAb and by polyclonal rat anti-AChR antibodies. Fragments H alpha1-121 and H alpha1-210 were also able to modulate in vivo muscle AChR loss and development of clinical symptoms of EAMG, passively transferred to rats by mAb 198. Fragment H alpha122-210 did not have such a protective activity. Our results suggest that the appropriate recombinant fragments of the human AChR may be employed in the future for antigen-specific therapy of myasthenia.

  15. Ryanodine is a Positive Modulator of Acetylcholine Receptor Gating in Cochlear Hair Cells

    PubMed Central

    Zorrilla de San Martín, Javier; Ballestero, Jimena; Katz, Eleonora; Elgoyhen, A. Belén

    2007-01-01

    The efferent synaptic specialization of hair cells includes a near-membrane synaptic cistern, whose presence suggests a role for internal calcium stores in cholinergic inhibition. Calcium release channels from internal stores include ‘ryanodine receptors’, whose participation is usually demonstrated by sensitivity to the eponymous plant alkaloid, ryanodine. However, use of this and other store-active compounds on hair cells could be confounded by the unusual pharmacology of the α9α10-containing hair cell nicotinic cholinergic receptor (nAChR), which has been shown to be antagonized by a broad spectrum of compounds. Surprisingly, we found that ryanodine, rather than antagonizing, is a positive modulator of the α9α10 nAChR expressed in Xenopus oocytes, the first such compound to be found. The effect of ryanodine was to increase the apparent affinity and efficacy for acetylcholine (ACh). Correspondingly, ACh-evoked currents through the isolated cholinergic receptors of inner hair cells in excised mouse cochleas were approximately doubled by 200 μM ryanodine, a concentration that inhibits gating of the ryanodine receptor itself. This unusual positive modulation was not unique to the mammalian receptor. The response to ACh of chicken ‘short’ hair cells likewise was enhanced in the presence of 100 μM ryanodine. This facilitatory effect on current through the AChR could enhance brief (∼1 s) activation of associated calcium-dependent K+ (SK) channels in both chicken short hair cells and rat outer hair cells. This novel effect of ryanodine provides new opportunities for the design of compounds that potentiate α9α10-mediated responses and for potential inner ear therapeutics based on this interaction. PMID:17647061

  16. Metal interactions with voltage- and receptor-activated ion channels.

    PubMed Central

    Vijverberg, H P; Oortgiesen, M; Leinders, T; van Kleef, R G

    1994-01-01

    Effects of Pb and several other metal ions on various distinct types of voltage-, receptor- and Ca-activated ion channels have been investigated in cultured N1E-115 mouse neuroblastoma cells. Experiments were performed using the whole-cell voltage clamp and single-channel patch clamp techniques. External superfusion of nanomolar to submillimolar concentrations of Pb causes multiple effects on ion channels. Barium current through voltage-activated Ca channels is blocked by micromolar concentrations of Pb, whereas voltage-activated Na current appears insensitive. Neuronal type nicotinic acetylcholine receptor-activated ion current is blocked by nanomolar concentrations of Pb and this block is reversed at micromolar concentrations. Serotonin 5-HT3 receptor-activated ion current is much less sensitive to Pb. In addition, external superfusion with micromolar concentrations of Pb as well as of Cd and aluminum induces inward current, associated with the direct activation of nonselective cation channels by these metal ions. In excised inside-out membrane patches of neuroblastoma cells, micromolar concentrations of Ca activate small (SK) and big (BK) Ca-activated K channels. Internally applied Pb activates SK and BK channels more potently than Ca, whereas Cd is approximately equipotent to Pb with respect to SK channel activation, but fails to activate BK channels. The results show that metal ions cause distinct, selective effects on the various types of ion channels and that metal ion interaction sites of ion channels may be highly selective for particular metal ions. PMID:7531139

  17. Effects of a monoclonal anti-acetylcholine receptor antibody on the avian end-plate.

    PubMed Central

    Maselli, R A; Nelson, D J; Richman, D P

    1989-01-01

    1. The effects of anti-acetylcholine receptor (AChR) monoclonal antibodies (mAbs) 370 and 132A on miniature end-plate potentials (MEPPs) and end-plate currents (EPCs) in the posterior latissimus dorsi muscle of adult chickens were investigated. 2. After incubation of the electrophysiological preparation with mAb 370 (5-50 micrograms/ml), which blocks both agonist (carbamylcholine) and alpha-bungarotoxin (alpha-BTX) binding and induces a hyperacute form of experimental autoimmune myasthenia gravis (EAMG), MEPP and EPC amplitudes were irreversibly reduced. 3. This effect was not associated with any significant change in the time constant describing EPC decay (tau EPC), current reversal potential, or the voltage dependence of tau EPC. The tau EPC at -80 mV was 5.9 +/- 0.6 ms before incubation with mAb 370 (50 micrograms/ml) and 6.0 +/- 0.9 ms afterwards. Current reversal potential was -3.9 +/- 0.4 mV before mAb incubation and -4.8 +/- 1.5 mV afterwards. The change in membrane potential required to produce an e-fold change in tau EPC was 128 +/- 2.3 mV before antibody incubation compared to 125 +/- 6.6 mV after incubation. 4. A second anti-AChR mAb, 132A (50 micrograms/ml), which is capable of inducing the classically described form of EAMG without blocking agonist or alpha-BTX binding, or inducing hyperacute EAMG, produced no significant change in MEPP amplitude, EPC amplitude, tau EPC or EPC reversal potentials. 5. The mAb 370 (50 micrograms/ml) induced a partially reversible decrease of the quantal content of the neurally evoked end-plate potential (EPP). This effect was not observed with mAb 132A, (+)tubocurarine (10(-7)-10(-5) g/ml) or an irrelevant anti-oestrogen receptor mAb. 6. These data suggest that the rapid onset of weakness observed in chicken hatchlings after the injection of mAb 370 (Gomez & Richman, 1983) can be attributed to a combined effect of a block of acetylcholine (ACh)-induced ion channel activity in the postsynaptic membrane and a reduction of

  18. Unique pharmacology of heteromeric α7β2 nicotinic acetylcholine receptors expressed in Xenopus laevis oocytes.

    PubMed

    Zwart, Ruud; Strotton, Merrick; Ching, Jennifer; Astles, Peter C; Sher, Emanuele

    2014-03-05

    α7β2 is a novel type of nicotinic acetylcholine receptor shown to be uniquely expressed in cholinergic neurons of the basal forebrain and in hippocampal interneurons. We have compared the pharmacological properties of recombinant homomeric α7 and heteromeric α7β2 nicotinic acetylcholine receptors in order to reveal the pharmacological consequences of β2 subunit incorporation into the pentamer. The non-selective agonist epibatidine did not distinguish α7β2 from α7 nicotinic acetylcholine receptors, but three other non-selective agonists (nicotine, cytisine and varenicline) were less efficacious on α7β2 than on α7. A more dramatic change in efficacy was seen with eight different selective α7 agonists. Because of their very low intrinsic efficacy, some compounds became very efficacious functional antagonists at α7β2 receptors. Three α4β2 nicotinic receptor selective agonists that were not active on α7, were also inactive on α7β2, and dihydro-β-erythroidine, an α4β2 receptor-preferring antagonist, inhibited α7 and α7β2 in a similar manner. These results reveal significant effects of β2 incorporation in determining the relative efficacy of several non-selective and α7 selective agonists, and also show that incorporation of β2 subunits does not cause a shift to a more “β2-like” pharmacology of α7 nicotinic acetylcholine receptors.

  19. Molecular forms and subunit structure of the acetylcholine receptor in the central nervous system of insects.

    PubMed

    Breer, H; Kleene, R; Hinz, G

    1985-12-01

    The nicotinic acetylcholine receptor as probed by alpha-bungarotoxin binding has been isolated from detergent-solubilized ganglionic membrane preparations from the insect, Locusta migratoria. The isolation and characterization of the receptor protein was achieved by preparation of membrane fragments, extraction by sodium deoxycholate, centrifugation on sucrose density gradient, affinity chromatography, gel electrophoresis, and immunoblotting. The purified receptor protein migrated as a single band on polyacrylamide when native (Mr = 250,000 to 300,000) but also under denaturing conditions (Mr = 65,000) and cross-reacted with some monoclonal antibodies against the Torpedo receptor. In immunohistochemical approaches using polyclonal antibodies the acetylcholine receptor antigenic sites could topochemically be identified at very distinct zones in the neuropil of locust ganglia. The results suggest that the acetylcholine receptor in the central nervous system of insects represents an oligomeric complex composed of four identical or very similar subunits and thus may represent a prototype of the recently proposed homo-oligomeric ancestral acetylcholine receptor.

  20. αS-conotoxin GVIIIB potently and selectively blocks α9α10 nicotinic acetylcholine receptors.

    PubMed

    Christensen, Sean B; Bandyopadhyay, Pradip K; Olivera, Baldomero M; McIntosh, J Michael

    2015-08-15

    Although acetylcholine is widely utilized in vertebrate nervous systems, nicotinic acetylcholine receptors (nAChRs), including the α9α10 subtype, also are expressed in a wide variety of non-neuronal cells. These cell types include cochlear hair cells, adrenal chromaffin cells and immune cells. α9α10 nAChRs present in these cells may respectively play roles in protection from noise-induced hearing loss, response to stress and neuroprotection. Despite these critical functions, there are few available selective ligands to confirm mechanistic hypothesis regarding the role of α9α10 nAChRs. Conus, has been a rich source of ligands for receptors and ion channels. Here, we identified Conus geographus venom as a lead source for a novel α9α10 antagonist. The active component was isolated and the encoding gene cloned. The peptide signal sequence and cysteine arrangement had the signature of the σ-conotoxin superfamily. Previously isolated σ-conotoxin GVIIIA, also from Conus geographus, targets the 5-HT3 receptor. In contrast, αS-GVIIIB blocked the α9α10 nAChR with an IC50 of 9.8 nM, yet was inactive at the 5-HT3 receptor. Pharmacological characterization of αS-GVIIIB shows that it is over 100-fold selective for the α9α10 nAChR compared to other nAChR subtypes. Thus, the S-superfamily represents a novel conotoxin scaffold for flexibly targeting a variety of receptor subtypes. Functional competition studies utilized distinct off-rate kinetics of conotoxins to identify the α10/α9 nAChR interface as the site of αS-GVIIIB binding; this adds to the importance of the (+) face of the α10 rather than the (+) face of the α9 nAChR subunit as critical to binding of α9α10-targeted conotoxins. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Functional characterization of mongoose nicotinic acetylcholine receptor alpha-subunit: resistance to alpha-bungarotoxin and high sensitivity to acetylcholine.

    PubMed

    Asher, O; Lupu-Meiri, M; Jensen, B S; Paperna, T; Fuchs, S; Oron, Y

    1998-07-24

    The mongoose is resistant to snake neurotoxins. The mongoose muscle nicotinic acetylcholine receptor (AChR) alpha-subunit contains a number of mutations in the ligand-binding domain and exhibits poor binding of alpha-bungarotoxin (alpha-BTX). We characterized the functional properties of a hybrid (alpha-mongoose/beta gamma delta-rat) AChR. Hybrid AChRs, expressed in Xenopus oocytes, respond to acetylcholine with depolarizing current, the mean maximal amplitude of which was greater than that mediated by the rat AChR. The IC50 of alpha-BTX to the hybrid AChR was 200-fold greater than that of the rat, suggesting much lower affinity for the toxin. Hybrid AChRs exhibited an apparent higher rate of desensitization and higher affinity for ACh (EC50 1.3 vs. 23.3 microM for the rat AChR). Hence, changes in the ligand-binding domain of AChR not only affect the binding properties of the receptor, but also result in marked changes in the characteristics of the current.

  2. Recent Duplication and Functional Divergence in Parasitic Nematode Levamisole-Sensitive Acetylcholine Receptors

    PubMed Central

    Duguet, Thomas B.; Charvet, Claude L.; Forrester, Sean G.; Wever, Claudia M.; Dent, Joseph A.; Neveu, Cedric; Beech, Robin N.

    2016-01-01

    Helminth parasites rely on fast-synaptic transmission in their neuromusculature to experience the outside world and respond to it. Acetylcholine plays a pivotal role in this and its receptors are targeted by a wide variety of both natural and synthetic compounds used in human health and for the control of parasitic disease. The model, Caenorhabditis elegans is characterized by a large number of acetylcholine receptor subunit genes, a feature shared across the nematodes. This dynamic family is characterized by both gene duplication and loss between species. The pentameric levamisole-sensitive acetylcholine receptor has been characterized from C. elegans, comprised of five different subunits. More recently, cognate receptors have been reconstituted from multiple parasitic nematodes that are found to vary in subunit composition. In order to understand the implications of receptor composition change and the origins of potentially novel drug targets, we investigated a specific example of subunit duplication based on analysis of genome data for 25 species from the 50 helminth genome initiative. We found multiple independent duplications of the unc-29, acetylcholine receptor subunit, where codon substitution rate analysis identified positive, directional selection acting on amino acid positions associated with subunit assembly. Characterization of four gene copies from a model parasitic nematode, Haemonchus contortus, demonstrated that each copy has acquired unique functional characteristics based on phenotype rescue of transgenic C. elegans and electrophysiology of receptors reconstituted in Xenopus oocytes. We found evidence that a specific incompatibility has evolved for two subunits co-expressed in muscle. We demonstrated that functional divergence of acetylcholine receptors, driven by directional selection, can occur more rapidly than previously thought and may be mediated by alteration of receptor assembly. This phenomenon is common among the clade V parasitic

  3. Venomous secretions from marine snails of the Terebridae family target acetylcholine receptors.

    PubMed

    Kendel, Yvonne; Melaun, Christian; Kurz, Alexander; Nicke, Annette; Peigneur, Steve; Tytgat, Jan; Wunder, Cora; Mebs, Dietrich; Kauferstein, Silke

    2013-05-21

    Venoms from cone snails (Conidae) have been extensively studied during the last decades, but those from other members of the suborder Toxoglossa, such as of Terebridae and Turridae superfamilies attracted less interest so far. Here, we report the effects of venom and gland extracts from three species of the superfamily Terebridae. By 2-electrode voltage-clamp technique the gland extracts were tested on Xenopus oocytes expressing nicotinic acetylcholine receptors (nAChRs) of rat neuronal (α3β2, α3β4, α4β2, α4β4, α7) and muscle subtypes (α1β1γδ), and expressing potassium (Kv1.2 and Kv1.3) and sodium channels (Nav1.2, 1.3, 1.4, 1.6). The extracts were shown to exhibit remarkably high inhibitory activities on almost all nAChRs tested, in particular on the α7 subtype suggesting the presence of peptides of the A-superfamily from the venom of Conus species. In contrast, no effects on the potassium and sodium channels tested were observed. The venoms of terebrid snails may offer an additional source of novel biologically active peptides.

  4. Venomous Secretions from Marine Snails of the Terebridae Family Target Acetylcholine Receptors

    PubMed Central

    Kendel, Yvonne; Melaun, Christian; Kurz, Alexander; Nicke, Annette; Peigneur, Steve; Tytgat, Jan; Wunder, Cora; Mebs, Dietrich; Kauferstein, Silke

    2013-01-01

    Venoms from cone snails (Conidae) have been extensively studied during the last decades, but those from other members of the suborder Toxoglossa, such as of Terebridae and Turridae superfamilies attracted less interest so far. Here, we report the effects of venom and gland extracts from three species of the superfamily Terebridae. By 2-electrode voltage-clamp technique the gland extracts were tested on Xenopus oocytes expressing nicotinic acetylcholine receptors (nAChRs) of rat neuronal (α3β2, α3β4, α4β2, α4β4, α7) and muscle subtypes (α1β1γδ), and expressing potassium (Kv1.2 and Kv1.3) and sodium channels (Nav1.2, 1.3, 1.4, 1.6). The extracts were shown to exhibit remarkably high inhibitory activities on almost all nAChRs tested, in particular on the α7 subtype suggesting the presence of peptides of the A-superfamily from the venom of Conus species. In contrast, no effects on the potassium and sodium channels tested were observed. The venoms of terebrid snails may offer an additional source of novel biologically active peptides. PMID:23698359

  5. Redistribution of Terbium Ions Across Acetylcholine Receptor-Enriched Membranes Induced by Agonist Desensitization

    PubMed Central

    Lee, Thomas E.; Chuang, Anthony R.; Marek, Matthew S.; Doniach, Sebastian; Fairclough, Robert H.

    2009-01-01

    Using small-angle x-ray diffraction from centrifugally oriented acetylcholine receptor (AChR) enriched membranes coupled with anomalous scattering from terbium ions (Tb3+) titrated into presumed Ca2+ binding sites, we have mapped the distribution of Tb3+ perpendicular to the membrane plane using a heavy atom refinement algorithm. We have compared the distribution of Tb3+ in the closed resting state with that in the carbamylcholine-desensitized state. In the closed resting state we find 45 Tb3+ ions distributed in 10 narrow peaks perpendicular to the membrane plane. Applying the same refinement procedure to the data from carbamylcholine desensitized AChR we find 18 fewer Tb3+ ions in eight peaks, and slight rearrangements of Tb3+ density in the peaks near the ends of the AChR ion channel pore. These agonist dependent changes in the Tb3+ stoichiometry and distribution suggest a likely role for multivalent cations in stabilizing the different functional states of the AChR, and the changes in the Tb3+ distribution at the two ends of the pore suggest a potential role for multivalent cations in the gating of the ion channel. PMID:19348747

  6. Nicotine inhibits activation of microglial proton currents via interactions with α7 acetylcholine receptors.

    PubMed

    Noda, Mami; Kobayashi, A I

    2017-01-01

    Alpha 7 subunits of nicotinic acetylcholine receptors (nAChRs) are expressed in microglia and are involved in the suppression of neuroinflammation. Over the past decade, many reports show beneficial effects of nicotine, though little is known about the mechanism. Here we show that nicotine inhibits lipopolysaccharide (LPS)-induced proton (H(+)) currents and morphological change by using primary cultured microglia. The H(+) channel currents were measured by whole-cell patch clamp method under voltage-clamp condition. Increased H(+) current in activated microglia was attenuated by blocking NADPH oxidase. The inhibitory effect of nicotine was due to the activation of α7 nAChR, not a direct action on the H(+) channels, because the effects of nicotine was cancelled by α7 nAChR antagonists. Neurotoxic effect of LPS-activated microglia due to inflammatory cytokines was also attenuated by pre-treatment of microglia with nicotine. These results suggest that α7 nAChRs in microglia may be a therapeutic target in neuroinflammatory diseases.

  7. Functional nicotinic acetylcholine receptor reconstitution in Au(111)-supported thiolipid monolayers

    NASA Astrophysics Data System (ADS)

    Pissinis, Diego E.; Diaz, Carolina; Maza, Eliana; Bonini, Ida C.; Barrantes, Francisco J.; Salvarezza, Roberto C.; Schilardi, Patricia L.

    2015-09-01

    The insertion and function of the muscle-type nicotinic acetylcholine receptor (nAChR) in Au(111)-supported thiolipid self-assembled monolayers have been studied by atomic force microscopy (AFM), surface plasmon resonance (SPR), and electrochemical techniques. It was possible for the first time to resolve the supramolecular arrangement of the protein spontaneously inserted in a thiolipid monolayer in an aqueous solution. Geometric supramolecular arrays of nAChRs were observed, most commonly in a triangular form compatible with three nAChR dimers of ~20 nm each. Addition of the full agonist carbamoylcholine activated and opened the nAChR ion channel, as revealed by the increase in capacitance relative to that of the nAChR-thiolipid system under basal conditions. Thus, the self-assembled system appears to be a viable biomimetic model to measure ionic conductance mediated by ion-gated ion channels under different experimental conditions, with potential applications in biotechnology and pharmacology.

  8. Redistribution of terbium ions across acetylcholine receptor-enriched membranes induced by agonist desensitization.

    PubMed

    Lee, Thomas E; Chuang, Anthony R; Marek, Matthew S; Doniach, Sebastian; Fairclough, Robert H

    2009-04-08

    Using small-angle x-ray diffraction from centrifugally oriented acetylcholine receptor (AChR) enriched membranes coupled with anomalous scattering from terbium ions (Tb3+) titrated into presumed Ca2+ binding sites, we have mapped the distribution of Tb3+ perpendicular to the membrane plane using a heavy atom refinement algorithm. We have compared the distribution of Tb3+ in the closed resting state with that in the carbamylcholine-desensitized state. In the closed resting state we find 45 Tb3+ ions distributed in 10 narrow peaks perpendicular to the membrane plane. Applying the same refinement procedure to the data from carbamylcholine desensitized AChR we find 18 fewer Tb3+ ions in eight peaks, and slight rearrangements of Tb3+ density in the peaks near the ends of the AChR ion channel pore. These agonist dependent changes in the Tb3+ stoichiometry and distribution suggest a likely role for multivalent cations in stabilizing the different functional states of the AChR, and the changes in the Tb3+ distribution at the two ends of the pore suggest a potential role for multivalent cations in the gating of the ion channel.

  9. Relevance of CARC and CRAC Cholesterol-Recognition Motifs in the Nicotinic Acetylcholine Receptor and Other Membrane-Bound Receptors.

    PubMed

    Di Scala, Coralie; Baier, Carlos J; Evans, Luke S; Williamson, Philip T F; Fantini, Jacques; Barrantes, Francisco J

    2017-01-01

    Cholesterol is a ubiquitous neutral lipid, which finely tunes the activity of a wide range of membrane proteins, including neurotransmitter and hormone receptors and ion channels. Given the scarcity of available X-ray crystallographic structures and the even fewer in which cholesterol sites have been directly visualized, application of in silico computational methods remains a valid alternative for the detection and thermodynamic characterization of cholesterol-specific sites in functionally important membrane proteins. The membrane-embedded segments of the paradigm neurotransmitter receptor for acetylcholine display a series of cholesterol consensus domains (which we have coined "CARC"). The CARC motif exhibits a preference for the outer membrane leaflet and its mirror motif, CRAC, for the inner one. Some membrane proteins possess the double CARC-CRAC sequences within the same transmembrane domain. In addition to in silico molecular modeling, the affinity, concentration dependence, and specificity of the cholesterol-recognition motif-protein interaction have recently found experimental validation in other biophysical approaches like monolayer techniques and nuclear magnetic resonance spectroscopy. From the combined studies, it becomes apparent that the CARC motif is now more firmly established as a high-affinity cholesterol-binding domain for membrane-bound receptors and remarkably conserved along phylogenetic evolution. © 2017 Elsevier Inc. All rights reserved.

  10. Computer modeling of the neurotoxin binding site of acetylcholine receptor spanning residues 185 through 196

    NASA Technical Reports Server (NTRS)

    Garduno-Juarez, R.; Shibata, M.; Zielinski, T. J.; Rein, R.

    1987-01-01

    A model of the complex between the acetylcholine receptor and the snake neurotoxin, cobratoxin, was built by molecular model building and energy optimization techniques. The experimentally identified functionally important residues of cobratoxin and the dodecapeptide corresponding to the residues 185-196 of acetylcholine receptor alpha subunit were used to build the model. Both cis and trans conformers of cyclic L-cystine portion of the dodecapeptide were examined. Binding residues independently identified on cobratoxin are shown to interact with the dodecapeptide AChR model.

  11. Computer modeling of the neurotoxin binding site of acetylcholine receptor spanning residues 185 through 196

    NASA Technical Reports Server (NTRS)

    Garduno-Juarez, R.; Shibata, M.; Zielinski, T. J.; Rein, R.

    1987-01-01

    A model of the complex between the acetylcholine receptor and the snake neurotoxin, cobratoxin, was built by molecular model building and energy optimization techniques. The experimentally identified functionally important residues of cobratoxin and the dodecapeptide corresponding to the residues 185-196 of acetylcholine receptor alpha subunit were used to build the model. Both cis and trans conformers of cyclic L-cystine portion of the dodecapeptide were examined. Binding residues independently identified on cobratoxin are shown to interact with the dodecapeptide AChR model.

  12. Comparative study of muscarinic acetylcholine receptors of human and rat cortical glial cells

    SciTech Connect

    Demushkin, V.P.; Burbaeva, G.S.; Dzhaliashvili, T.A.; Plyashkevich, Y.G.

    1985-04-01

    The aim of the present investigation was a comparative studyof muscarinic acetylcholine receptors in human and rat glial cells. (/sup 3/H)Quinuclidinyl-benzylate ((/sup 3/H)-QB), atropine, platiphylline, decamethonium, carbamylcholine, tubocurarine, and nicotine were used. The glial cell fraction was obtained from the cerebral cortex of rats weighing 130-140 g and from the frontal pole of the postmortem brain from men aged 60-70 years. The use of the method of radioimmune binding of (/sup 3/H)-QB with human and rat glial cell membranes demonstrated the presence of a muscarinic acetylcholine receptor in the glial cells.

  13. Synthetic peptides in the study of the interaction of rabies virus and the acetylcholine receptor.

    PubMed

    Lentz, T L; Hawrot, E; Donnelly-Roberts, D; Wilson, P T

    1988-01-01

    The neurotropism of some viruses may be explained in part by the attachment of these viruses to host cell receptors that are present on or even largely restricted to neurons. Rabies virus is an RNA virus that, after a period of replication in muscle, gains access to the central nervous system, where it selectively infects certain neuronal populations. The nicotinic acetylcholine receptor occurs in high density at the neuromuscular junction and is present in the central nervous system. Although several different cell surface constituents may act as attachment determinants for rabies, direct binding of radioactively labeled virus to affinity-purified acetylcholine receptor has been demonstrated. Binding of virus to the receptor was saturable and inhibited by up to 50% by alpha-bungarotoxin, a snake venom neurotoxin that binds at or near the acetylcholine binding site on the receptor. The molecular basis for the virus-receptor interaction may lie in an amino acid sequence similarity between the snake venom neurotoxins and a segment of the rabies virus glycoprotein. Two peptides (10 and 13 residues) of the rabies virus glycoprotein and homologous bungarotoxin peptides were synthesized and tested for ability to compete with labeled alpha-bungarotoxin for binding to the acetylcholine receptor. The peptides were found to compete with toxin binding with affinities comparable to those of the cholinergic ligands d-tubocurarine and nicotine. These findings indicate that a segment of the rabies virus glycoprotein interacts with the acetylcholine receptor at or near the acetylcholine binding site of the receptor. The similarity between the virus glycoprotein and the neurotoxin was further evidenced by the cross reaction of antibody raised against the virus 10-mer with the bungarotoxin 10-mer. Binding of rabies virus to the acetylcholine receptor or to other neuronal bungarotoxin-binding proteins may be related to the neurotropism of this virus. In addition, knowledge of both

  14. Oseltamivir produces hypothermic and neuromuscular effects by inhibition of nicotinic acetylcholine receptor functions: comparison to procaine and bupropion.

    PubMed

    Fukushima, Akihiro; Chazono, Kaori; Hashimoto, Yuichi; Iwajima, Yui; Yamamoto, Shohei; Maeda, Yasuhiro; Ohsawa, Masahiro; Ono, Hideki

    2015-09-05

    Oseltamivir, an anti-influenza virus drug, induces marked hypothermia in normal mice. We have proposed that the hypothermic effect arises from inhibition of the nicotinic acetylcholine receptor function of sympathetic ganglion neurons which innervate the brown adipose tissue (a heat generator). It has been reported that local anesthetics inhibit nicotinic acetylcholine receptor function by acting on its ionic channels, and that bupropion, a nicotinic antagonist, induces hypothermia. In this study, we compared the effects of oseltamivir, procaine and bupropion on body temperature, cardiovascular function and neuromuscular transmission. Intraperitoneal administration of oseltamivir (100mg/kg), procaine (86.6mg/kg) and bupropion (86.7mg/kg) lowered the core body temperature of normal mice. At lower doses (10-30mg/kg oseltamivir, 8.7-26mg/kg procaine and bupropion), when administered subcutaneously, the three drugs antagonized the hypothermia induced by intraperitoneal injection of nicotine (1mg/kg). In anesthetized rats, intravenous oseltamivir (30-100mg/kg), procaine (10mg/kg) and bupropion (10mg/kg) induced hypotension and bradycardia. Oseltamivir alone (100mg/kg) did not inhibit neuromuscular twitch contraction of rats, but at 3-30mg/kg it augmented the muscle-relaxing effect of d-tubocurarine. Similar effects were observed when lower doses of procaine (10-30mg/kg) and bupropion (3-10mg/kg) were administered, suggesting that systemic administration of oseltamivir inhibits muscular nicotinic acetylcholine receptors. These results support the idea that the hypothermic effect of oseltamivir is due to its effects on sympathetic ganglia which innervate the brown adipose tissue, and suggest that oseltamivir may exert non-selective ion channel blocking effects like those of ester-type local anesthetics. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Muscarinic acetylcholine receptor X-ray structures: potential implications for drug development.

    PubMed

    Kruse, Andrew C; Hu, Jianxin; Kobilka, Brian K; Wess, Jürgen

    2014-06-01

    Muscarinic acetylcholine receptor antagonists are widely used as bronchodilating drugs in pulmonary medicine. The therapeutic efficacy of these agents depends on the blockade of M3 muscarinic receptors expressed on airway smooth muscle cells. All muscarinic antagonists currently used as bronchodilating agents show high affinity for all five muscarinic receptor subtypes, thus increasing the likelihood of unwanted side effects. Recent X-ray crystallographic studies have provided detailed structural information about the nature of the orthosteric muscarinic binding site (the conventional acetylcholine binding site) and an 'outer' receptor cavity that can bind allosteric (non-orthosteric) drugs. These new findings should guide the development of selective M3 receptor blockers that have little or no effect on other muscarinic receptor subtypes.

  16. Development of a photoactivatable allosteric ligand for the m1 muscarinic acetylcholine receptor.

    PubMed

    Davie, Briana J; Sexton, Patrick M; Capuano, Ben; Christopoulos, Arthur; Scammells, Peter J

    2014-10-15

    The field of G protein-coupled receptor drug discovery has benefited greatly from the structural and functional insights afforded by photoactivatable ligands. One G protein-coupled receptor subfamily for which photoactivatable ligands have been developed is the muscarinic acetylcholine receptor family, though, to date, all such ligands have been designed to target the orthosteric (endogenous ligand) binding site of these receptors. Herein we report the synthesis and pharmacological investigation of a novel photoaffinity label, MIPS1455 (4), designed to bind irreversibly to an allosteric site of the M1 muscarinic acetylcholine receptor; a target of therapeutic interest for the treatment of cognitive deficits. MIPS1455 may be a valuable molecular tool for further investigating allosteric interactions at this receptor.

  17. Implications of the quaternary twist allosteric model for the physiology and pathology of nicotinic acetylcholine receptors

    PubMed Central

    Taly, Antoine; Corringer, Pierre-Jean; Grutter, Thomas; de Carvalho, Lia Prado; Karplus, Martin; Changeux, Jean-Pierre

    2006-01-01

    Nicotinic acetylcholine receptors (nAChR) are pentameric ligand-gated ion channels composed of subunits that consist of an extracellular domain that carries the ligand-binding site and a distinct ion-pore domain. Signal transduction results from the allosteric coupling between the two domains: the distance from the binding site to the gate of the pore domain is 50 Å. Normal mode analysis with a Cα Gaussian network of a new structural model of the neuronal α7 nAChR showed that the lowest mode involves a global quaternary twist motion that opens the ion pore. A molecular probe analysis, in which the network is modified at each individual amino acid residue, demonstrated that the major effect is to change the frequency, but not the form, of the twist mode. The largest effects were observed for the ligand-binding site and the Cys-loop. Most (24/27) of spontaneous mutations known to cause congenital myasthenia and autosomal dominant nocturnal frontal lobe epilepsy are located either at the interface between subunits or, within a given subunit, at the interface between rigid blocks. These interfaces are modified significantly by the twist mode. The present analysis, thus, supports the quaternary twist model of the nAChR allosteric transition and provides a qualitative interpretation of the effect of the mutations responsible for several receptor pathologies. PMID:17077146

  18. The neuronal nicotinic acetylcholine receptor {alpha}7 subunit gene: Cloning, mapping, structure, and targeting in mouse

    SciTech Connect

    Orr-Urtreger, A.; Baldini, A.; Beaudet, A.L.

    1994-09-01

    The neuronal nicotinic acetylcholine receptor {alpha}7 subunit is a member of a family of ligand-gated ion channels, and is the only subunit know to bind {alpha}-bungarotoxin in mammalian brain. {alpha}-Bungarotoxin binding sites are known to be more abundant in the hippocampus of mouse strains that are particularly sensitive to nicotine-induced seizures. The {alpha}7 receptor is highly permeable to calcium, which could suggest a role in synaptic plasticity in the nervous system. Auditory gating deficiency, an abnormal response to a second auditory stimulus, is characteristic of schizophrenia. Mouse strains that exhibit a similar gating deficit have reduced hippocampal expression of the {alpha}7 subunit. We have cloned and sequenced the full length cDNA for the mouse {alpha}7 gene (Acra-7) and characterized its gene structure. The murine {alpha}7 shares amino acid identity of 99% and 93% with the rat and human {alpha}7 subunits, respectively. Using an interspecies backcross panel, the murine gene was mapped to chromosome 7 near the p locus, a region syntenic with human chromosome 15; the human gene (CHRNA7) was confirmed to map to 15q13-q14 by FISH. To generate a mouse {alpha}7 mutant by homologous recombination, we have constructed a replacement vector which will delete transmembrane domains II-IV and the cytoplasmic domain from the gene product. Recombinant embryonic stem (ES) cell clones were selected and used to develop mouse chimeras that are currently being bred to obtain germline transmission.

  19. Alpha-conotoxin GIC from Conus geographus, a novel peptide antagonist of nicotinic acetylcholine receptors.

    PubMed

    McIntosh, J Michael; Dowell, Cheryl; Watkins, Maren; Garrett, James E; Yoshikami, Doju; Olivera, Baldomero M

    2002-09-13

    Many venomous organisms produce toxins that disrupt neuromuscular communication to paralyze their prey. One common class of such toxins comprises nicotinic acetylcholine receptor antagonists (nAChRs). Thus, most toxins that act on nAChRs are targeted to the neuromuscular subtype. The toxin characterized in this report, alpha-conotoxin GIC, is a most striking exception. The 16-amino acid peptide was identified from a genomic DNA clone from Conus geographus. The predicted mature toxin was synthesized, and synthetic toxin was used in all studies described. alpha-Conotoxin GIC shows no paralytic activity in fish or mice. Furthermore, even at concentrations up to 100 microm, the peptide has no detectable effect on the human muscle nicotinic receptor subtype heterologously expressed in Xenopus oocytes. In contrast, the toxin has high affinity (IC(50) approximately 1.1 nm) for the human alpha3beta2 subunit combination, making it the most neuronally selective nicotinic antagonist characterized thus far. Although alpha-conotoxin GIC shares some sequence similarity with alpha-conotoxin MII, which is also a potent alpha3beta2 nicotinic antagonist, it is much less hydrophobic, and the kinetics of channel block are substantially different. It is noteworthy that the nicotinic ligands in C. geographus venom fit an emerging pattern in venomous predators, with one nicotinic antagonist targeted to the muscle subtype (thereby causing paralysis) and a second nicotinic antagonist targeted to the alpha3beta2 nAChR subtype (possibly inhibiting the fight-or-flight response).

  20. Inhibition of human α7 nicotinic acetylcholine receptors by cyclic monoterpene carveol.

    PubMed

    Lozon, Yosra; Sultan, Ahmed; Lansdell, Stuart J; Prytkova, Tatiana; Sadek, Bassem; Yang, Keun-Hang Susan; Howarth, Frank Christopher; Millar, Neil S; Oz, Murat

    2016-04-05

    Cyclic monoterpenes are a group of phytochemicals with antinociceptive, local anesthetic, and anti-inflammatory actions. Effects of cyclic monoterpenes including vanilin, pulegone, eugenole, carvone, carvacrol, carveol, thymol, thymoquinone, menthone, and limonene were investigated on the functional properties of the cloned α7 subunit of the human nicotinic acetylcholine receptor expressed in Xenopus oocytes. Monoterpenes inhibited the α7 nicotinic acetylcholine receptor in the order carveol>thymoquinone>carvacrol>menthone>thymol>limonene>eugenole>pulegone≥carvone≥vanilin. Among the monoterpenes, carveol showed the highest potency on acetylcholine-induced responses, with IC50 of 8.3µM. Carveol-induced inhibition was independent of the membrane potential and could not be reversed by increasing the concentration of acetylcholine. In line with functional experiments, docking studies indicated that cyclic monoterpenes such as carveol may interact with an allosteric site located in the α7 transmembrane domain. Our results indicate that cyclic monoterpenes inhibit the function of human α7 nicotinic acetylcholine receptors, with varying potencies.

  1. Small changes in bone structure of female α7 nicotinic acetylcholine receptor knockout mice.

    PubMed

    Lips, Katrin S; Yanko, Özcan; Kneffel, Mathias; Panzer, Imke; Kauschke, Vivien; Madzharova, Maria; Henss, Anja; Schmitz, Peter; Rohnke, Marcus; Bäuerle, Tobias; Liu, Yifei; Kampschulte, Marian; Langheinrich, Alexander C; Dürselen, Lutz; Ignatius, Anita; Heiss, Christian; Schnettler, Reinhard; Kilian, Olaf

    2015-01-31

    Recently, analysis of bone from knockout mice identified muscarinic acetylcholine receptor subtype M3 (mAChR M3) and nicotinic acetylcholine receptor (nAChR) subunit α2 as positive regulator of bone mass accrual whereas of male mice deficient for α7-nAChR (α7KO) did not reveal impact in regulation of bone remodeling. Since female sex hormones are involved in fair coordination of osteoblast bone formation and osteoclast bone degradation we assigned the current study to analyze bone strength, composition and microarchitecture of female α7KO compared to their corresponding wild-type mice (α7WT). Vertebrae and long bones of female 16-week-old α7KO (n = 10) and α7WT (n = 8) were extracted and analyzed by means of histological, radiological, biomechanical, cell- and molecular methods as well as time of flight secondary ion mass spectrometry (ToF-SIMS) and transmission electron microscopy (TEM). Bone of female α7KO revealed a significant increase in bending stiffness (p < 0.05) and cortical thickness (p < 0.05) compared to α7WT, whereas gene expression of osteoclast marker cathepsin K was declined. ToF-SIMS analysis detected a decrease in trabecular calcium content and an increase in C4H6N(+) (p < 0.05) and C4H8N(+) (p < 0.001) collagen fragments whereas a loss of osteoid was found by means of TEM. Our results on female α7KO bone identified differences in bone strength and composition. In addition, we could demonstrate that α7-nAChRs are involved in regulation of bone remodelling. In contrast to mAChR M3 and nAChR subunit α2 the α7-nAChR favours reduction of bone strength thereby showing similar effects as α7β2-nAChR in male mice. nAChR are able to form heteropentameric receptors containing α- and β-subunits as well as the subunits α7 can be arranged as homopentameric cation channel. The different effects of homopentameric and heteropentameric α7-nAChR on bone need to be analysed in future studies as well as gender effects of cholinergic receptors on

  2. Muscarinic acetylcholine receptor-mediated effects in slices from human epileptogenic cortex.

    PubMed

    Gigout, S; Wierschke, S; Lehmann, T-N; Horn, P; Dehnicke, C; Deisz, R A

    2012-10-25

    Acetylcholine has been implicated in higher cortical functions such as learning, memory and cognition, yet the cellular effects of muscarinic acetylcholine receptor (mAChR) activation are poorly understood in the human cortex. Here we investigated the effect of the mAChR agonist carbachol (CCh) and various mAChR antagonists in human cortical slices (from tissue removed during neurosurgical treatment of epilepsy) by intracellular and extracellular recordings. CCh increased neuronal firing, which was antagonised by atropine (non-selective mAChR antagonist) and pirenzepine (M(1)/M(4) mAChRs antagonist) when applied before or after CCh application. AF-DX 116 (M(2)/M(4) mAChRs antagonist) had no effect on CCh-induced increase of firing. CCh also reduced evoked excitatory postsynaptic potentials (EPSP), and the CCh-induced depression of EPSP was fully reversed by atropine. Pirenzepine reversed the depression of CCh on EPSP, but failed to prevent the depression when applied before CCh. AF-DX 116 prevented the CCh-induced depression of evoked EPSP when applied before CCh. CCh also depressed GABAergic transmission and this effect was antagonised by AF-DX 116. Xanomeline (M(1)/M(4) mAChR agonist) increased neuronal firing and decreased EPSP, but had no effect on GABAergic transmission. Reduction (with linopirdine) and enhancement (with retigabine) of the M-current (mediated by K(V)7 channels), increased and decreased neuronal firing, respectively, but had marginal effects on the evoked EPSP. Our results indicate that three pharmacologically distinct mAChRs modulate neuronal firing, glutamatergic and GABAergic transmissions in the human epileptogenic neocortex. The data are discussed towards possible implications of altered mAChR signalling in hyperexcitability and cognitive functions in the human neocortex. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. α2* Nicotinic acetylcholine receptors influence hippocampus-dependent learning and memory in adolescent mice.

    PubMed

    Lotfipour, Shahrdad; Mojica, Celina; Nakauchi, Sakura; Lipovsek, Marcela; Silverstein, Sarah; Cushman, Jesse; Tirtorahardjo, James; Poulos, Andrew; Elgoyhen, Ana Belén; Sumikawa, Katumi; Fanselow, Michael S; Boulter, Jim

    2017-06-01

    The absence of α2* nicotinic acetylcholine receptors (nAChRs) in oriens lacunosum moleculare (OLM) GABAergic interneurons ablate the facilitation of nicotine-induced hippocampal CA1 long-term potentiation and impair memory. The current study delineated whether genetic mutations of α2* nAChRs (Chrna2(L9'S/L9'S) and Chrna2(KO)) influence hippocampus-dependent learning and memory and CA1 synaptic plasticity. We substituted a serine for a leucine (L9'S) in the α2 subunit (encoded by the Chrna2 gene) to make a hypersensitive nAChR. Using a dorsal hippocampus-dependent task of preexposure-dependent contextual fear conditioning, adolescent hypersensitive Chrna2(L9'S/L9'S) male mice exhibited impaired learning and memory. The deficit was rescued by low-dose nicotine exposure. Electrophysiological studies demonstrated that hypersensitive α2 nAChRs potentiate acetylcholine-induced ion channel flux in oocytes and acute nicotine-induced facilitation of dorsal/intermediate CA1 hippocampal long-term potentiation in Chrna2(L9'S/L9'S) mice. Adolescent male mice null for the α2 nAChR subunit exhibited a baseline deficit in learning that was not reversed by an acute dose of nicotine. These effects were not influenced by locomotor, sensory or anxiety-related measures. Our results demonstrated that α2* nAChRs influenced hippocampus-dependent learning and memory, as well as nicotine-facilitated CA1 hippocampal synaptic plasticity. © 2017 Lotfipour et al.; Published by Cold Spring Harbor Laboratory Press.

  4. Phosphocholine – an agonist of metabotropic but not of ionotropic functions of α9-containing nicotinic acetylcholine receptors

    PubMed Central

    Richter, K.; Mathes, V.; Fronius, M.; Althaus, M.; Hecker, A.; Krasteva-Christ, G.; Padberg, W.; Hone, A. J.; McIntosh, J. M.; Zakrzewicz, A.; Grau, V.

    2016-01-01

    We demonstrated previously that phosphocholine and phosphocholine-modified macromolecules efficiently inhibit ATP-dependent release of interleukin-1β from human and murine monocytes by a mechanism involving nicotinic acetylcholine receptors (nAChR). Interleukin-1β is a potent pro-inflammatory cytokine of innate immunity that plays pivotal roles in host defence. Control of interleukin-1β release is vital as excessively high systemic levels cause life threatening inflammatory diseases. In spite of its structural similarity to acetylcholine, there are no other reports on interactions of phosphocholine with nAChR. In this study, we demonstrate that phosphocholine inhibits ion-channel function of ATP receptor P2X7 in monocytic cells via nAChR containing α9 and α10 subunits. In stark contrast to choline, phosphocholine does not evoke ion current responses in Xenopus laevis oocytes, which heterologously express functional homomeric nAChR composed of α9 subunits or heteromeric receptors containing α9 and α10 subunits. Preincubation of these oocytes with phosphocholine, however, attenuated choline-induced ion current changes, suggesting that phosphocholine may act as a silent agonist. We conclude that phophocholine activates immuno-modulatory nAChR expressed by monocytes but does not stimulate canonical ionotropic receptor functions. PMID:27349288

  5. Mammalian Nicotinic Acetylcholine Receptors: From Structure to Function

    PubMed Central

    Albuquerque, Edson X.; Pereira, Edna F. R.; Alkondon, Manickavasagom; Rogers, Scott W.

    2009-01-01

    The classical studies of nicotine by Langley at the turn of the 20th century introduced the concept of a “receptive substance,” from which the idea of a “receptor” came to light. Subsequent studies aided by the Torpedo electric organ, a rich source of muscle-type nicotinic receptors (nAChRs), and the discovery of α-bungarotoxin, a snake toxin that binds pseudo-irreversibly to the muscle nAChR, resulted in the muscle nAChR being the best characterized ligand-gated ion channel hitherto. With the advancement of functional and genetic studies in the late 1980s, the existence of nAChRs in the mammalian brain was confirmed and the realization that the numerous nAChR subtypes contribute to the psychoactive properties of nicotine and other drugs of abuse and to the neuropathology of various diseases, including Alzheimer’s, Parkinson’s, and schizophrenia, has since emerged. This review provides a comprehensive overview of these findings and the more recent revelations of the impact that the rich diversity in function and expression of this receptor family has on neuronal and nonneuronal cells throughout the body. Despite these numerous developments, our understanding of the contributions of specific neuronal nAChR subtypes to the many facets of physiology throughout the body remains in its infancy. PMID:19126755

  6. Discovery of peptide ligands through docking and virtual screening at nicotinic acetylcholine receptor homology models.

    PubMed

    Leffler, Abba E; Kuryatov, Alexander; Zebroski, Henry A; Powell, Susan R; Filipenko, Petr; Hussein, Adel K; Gorson, Juliette; Heizmann, Anna; Lyskov, Sergey; Tsien, Richard W; Poget, Sébastien F; Nicke, Annette; Lindstrom, Jon; Rudy, Bernardo; Bonneau, Richard; Holford, Mandë

    2017-09-19

    Venom peptide toxins such as conotoxins play a critical role in the characterization of nicotinic acetylcholine receptor (nAChR) structure and function and have potential as nervous system therapeutics as well. However, the lack of solved structures of conotoxins bound to nAChRs and the large size of these peptides are barriers to their computational docking and design. We addressed these challenges in the context of the α4β2 nAChR, a widespread ligand-gated ion channel in the brain and a target for nicotine addiction therapy, and the 19-residue conotoxin α-GID that antagonizes it. We developed a docking algorithm, ToxDock, which used ensemble-docking and extensive conformational sampling to dock α-GID and its analogs to an α4β2 nAChR homology model. Experimental testing demonstrated that a virtual screen with ToxDock correctly identified three bioactive α-GID mutants (α-GID[A10V], α-GID[V13I], and α-GID[V13Y]) and one inactive variant (α-GID[A10Q]). Two mutants, α-GID[A10V] and α-GID[V13Y], had substantially reduced potency at the human α7 nAChR relative to α-GID, a desirable feature for α-GID analogs. The general usefulness of the docking algorithm was highlighted by redocking of peptide toxins to two ion channels and a binding protein in which the peptide toxins successfully reverted back to near-native crystallographic poses after being perturbed. Our results demonstrate that ToxDock can overcome two fundamental challenges of docking large toxin peptides to ion channel homology models, as exemplified by the α-GID:α4β2 nAChR complex, and is extendable to other toxin peptides and ion channels. ToxDock is freely available at rosie.rosettacommons.org/tox_dock.

  7. Interaction of ibogaine with human alpha3beta4-nicotinic acetylcholine receptors in different conformational states.

    PubMed

    Arias, Hugo R; Rosenberg, Avraham; Targowska-Duda, Katarzyna M; Feuerbach, Dominik; Yuan, Xiao Juan; Jozwiak, Krzysztof; Moaddel, Ruin; Wainer, Irving W

    2010-09-01

    The interaction of ibogaine and phencyclidine (PCP) with human (h) alpha3beta4-nicotinic acetylcholine receptors (AChRs) in different conformational states was determined by functional and structural approaches including, radioligand binding assays, Ca2+ influx detections, and thermodynamic and kinetics measurements. The results established that (a) ibogaine inhibits (+/-)-epibatidine-induced Ca2+ influx in h(alpha)3beta4 AChRs with approximately 9-fold higher potency than that for PCP, (b) [3H]ibogaine binds to a single site in the h(alpha)3beta4 AChR ion channel with relatively high affinity (Kd = 0.46 +/- 0.06 microM), and ibogaine inhibits [3H]ibogaine binding to the desensitized h(alpha)3beta4 AChR with slightly higher affinity compared to the resting AChR. This is explained by a slower dissociation rate from the desensitized ion channel compared to the resting ion channel, and (c) PCP inhibits [3H]ibogaine binding to the h(alpha)3beta4 AChR, suggesting overlapping sites. The experimental results correlate with the docking simulations suggesting that ibogaine and PCP interact with a binding domain located between the serine (position 6') and valine/phenylalanine (position 13') rings. This interaction is mediated mainly by van der Waals contacts, which is in agreement with the observed enthalpic contribution determined by non-linear chromatography. However, the calculated entropic contribution also indicates local conformational changes. Collectively our data suggest that ibogaine and PCP bind to overlapping sites located between the serine and valine/phenylalanine rings, to finally block the AChR ion channel, and in the case of ibogaine, to probably maintain the AChR in the desensitized state for longer time.

  8. Functional adult acetylcholine receptor develops independently of motor innervation in Sol 8 mouse muscle cell line.

    PubMed Central

    Pinset, C; Mulle, C; Benoit, P; Changeux, J P; Chelly, J; Gros, F; Montarras, D

    1991-01-01

    We have defined culture conditions, using a feeder layer of cells from the embryonic mesenchymal cell line, 10T1/2 and a serum-free medium, which allow cells from the mouse myogenic cell line Sol 8 to form contracting myotubes for two weeks. Under these culture conditions, Sol 8 myotubes undergo a maturation process characterized by a sequential expression of two phenotypes. An early phenotype is typified by the expression of the nicotinic acetylcholine receptor (AChR) gamma-subunit transcripts and the presence of low conductance ACh-activated channels, typical of embryonic AChR. A late phenotype is characterized by the expression of AChR epsilon-subunit transcripts, the decreased accumulation of gamma-subunit transcripts and the appearance of high conductance ACh-activated channels, typical of adult AChR. These results indicate that the expression of functional adult type AChR does not require the presence of the motor nerve and therefore represents an intrinsic feature of the Sol 8 muscle cells. Chronic exposure of the cells to the voltage-sensitive Na+ channel blocking agent tetrodotoxin does not affect the appearance of the AChR epsilon-subunit transcripts but prevents the reduction of the steady-state level of the AChR gamma-subunit transcripts and yields a reduced proportion of the adult type channels. Thus, activity seems to facilitate the switch from the embryonic to the adult phenotype of the AChR protein. The Sol 8 cell system might be useful to analyse further the genetic and epigenetic regulation of muscle fibre maturation in mammals. Images PMID:1868829

  9. Chalcones as positive allosteric modulators of α7 nicotinic acetylcholine receptors: a new target for a privileged structure.

    PubMed

    Balsera, Beatriz; Mulet, José; Fernández-Carvajal, Asia; de la Torre-Martínez, Roberto; Ferrer-Montiel, Antonio; Hernández-Jiménez, José G; Estévez-Herrera, Judith; Borges, Ricardo; Freitas, Andiara E; López, Manuela G; García-López, M Teresa; González-Muñiz, Rosario; Pérez de Vega, María Jesús; Valor, Luis M; Svobodová, Lucie; Sala, Salvador; Sala, Francisco; Criado, Manuel

    2014-10-30

    The α7 acetylcholine nicotine receptor is a ligand-gated ion channel that is involved in cognition disorders, schizophrenia, pain and inflammation among other diseases. Therefore, the development of new agents that target this receptor has great significance. Positive allosteric modulators might be advantageous, since they facilitate receptor responses without directly interacting with the agonist binding site. Here we report the search for and further design of new positive allosteric modulators having the relatively simple chalcone structure. From the natural product isoliquiritigenin as starting point, chalcones substituted with hydroxyl groups at defined locations were identified as optimal and specific promoters of α7 nicotinic function. The most potent compound (2,4,2',5'-tetrahydroxychalcone, 111) was further characterized showing its potential as neuroprotective, analgesic and cognitive enhancer, opening the way for future developments around the chalcone structure.

  10. (-)-Spiro[1-azabicyclo[2.2.2]octane-3,5'-oxazolidin-2'-one], a conformationally restricted analogue of acetylcholine, is a highly selective full agonist at the alpha 7 nicotinic acetylcholine receptor.

    PubMed

    Mullen, G; Napier, J; Balestra, M; DeCory, T; Hale, G; Macor, J; Mack, R; Loch, J; Wu, E; Kover, A; Verhoest, P; Sampognaro, A; Phillips, E; Zhu, Y; Murray, R; Griffith, R; Blosser, J; Gurley, D; Machulskis, A; Zongrone, J; Rosen, A; Gordon, J

    2000-11-02

    Neuronal nicotinic acetylcholine receptors are members of the ligand-gated ion channel receptor superfamily and may play important roles in modulating neurotransmission, cognition, sensory gating, and anxiety. Because of its distribution and abundance in the CNS, the alpha 7 nicotinic receptor is a strong candidate to be involved in some of these functions. In this paper we describe the synthesis and in vitro profile of AR-R17779, (-)-spiro[1-azabicyclo[2.2. 2]octane-3,5'-oxazolidin-2'-one] (4a), a potent full agonist at the rat alpha 7 nicotinic receptor, which is highly selective for the rat alpha 7 nicotinic receptor over the alpha 4 beta 2 subtype. Preliminary SAR of AR-R17779 presented here indicate that there is little scope for modification of this rigid molecule as even minor changes result in significant loss of the alpha 7 nicotinic receptor affinity.

  11. A novel muscarinic receptor-independent mechanism of KCNQ2/3 potassium channel blockade by Oxotremorine-M.

    PubMed

    Zwart, Ruud; Reed, Hannah; Clarke, Sophie; Sher, Emanuele

    2016-11-15

    Inhibition of KCNQ (Kv7) potassium channels by activation of muscarinic acetylcholine receptors has been well established, and the ion currents through these channels have been long known as M-currents. We found that this cross-talk can be reconstituted in Xenopus oocytes by co-transfection of human recombinant muscarinic M1 receptors and KCNQ2/3 potassium channels. Application of the muscarinic acetylcholine receptor agonist Oxotremorine-methiodide (Oxo-M) between voltage pulses to activate KCNQ2/3 channels caused inhibition of the subsequent KCNQ2/3 responses. This effect of Oxo-M was blocked by the muscarinic acetylcholine receptor antagonist atropine. We also found that KCNQ2/3 currents were inhibited when Oxo-M was applied during an ongoing KCNQ2/3 response, an effect that was not blocked by atropine, suggesting that Oxo-M inhibits KCNQ2/3 channels directly. Indeed, also in oocytes that were transfected with only KCNQ2/3 channels, but not with muscarinic M1 receptors, Oxo-M inhibited the KCNQ2/3 response. These results show that besides the usual muscarinic acetylcholine receptor-mediated inhibition, Oxo-M also inhibits KCNQ2/3 channels by a direct mechanism. We subsequently tested xanomeline, which is a chemically distinct muscarinic acetylcholine receptor agonist, and oxotremorine, which is a close analogue of Oxo-M. Both compounds inhibited KCNQ2/3 currents via activation of M1 muscarinic acetylcholine receptors but, in contrast to Oxo-M, they did not directly inhibit KCNQ2/3 channels. Xanomeline and oxotremorine do not contain a positively charged trimethylammonium moiety that is present in Oxo-M, suggesting that such a charged moiety could be a crucial component mediating this newly described direct inhibition of KCNQ2/3 channels.

  12. The effective opening of nicotinic acetylcholine receptors with single agonist binding sites

    PubMed Central

    Williams, Dustin K.; Stokes, Clare; Horenstein, Nicole A.

    2011-01-01

    We have identified a means by which agonist-evoked responses of nicotinic receptors can be conditionally eliminated. Modification of α7L119C mutants by the sulfhydryl reagent 2-aminoethyl methanethiosulfonate (MTSEA) reduces responses to acetylcholine (ACh) by more than 97%, whereas corresponding mutations in muscle-type receptors produce effects that depend on the specific subunits mutated and ACh concentration. We coexpressed α7L119C subunits with pseudo wild-type α7C116S subunits, as well as ACh-insensitive α7Y188F subunits with wild-type α7 subunits in Xenopus laevis oocytes using varying ratios of cRNA. When mutant α7 cRNA was coinjected at a 5:1 ratio with wild-type cRNA, net charge responses to 300 µM ACh were retained by α7L119C-containing mutants after MTSEA modification and by the ACh-insensitive Y188F-containing mutants, even though the expected number of ACh-sensitive wild-type binding sites would on average be fewer than two per receptor. Responses of muscle-type receptors with one MTSEA-sensitive subunit were reduced at low ACh concentrations, but much less of an effect was observed when ACh concentrations were high (1 mM), indicating that saturation of a single binding site with agonist can evoke strong activation of nicotinic ACh receptors. Single-channel patch clamp analysis revealed that the burst durations of fetal wild-type and α1β1γδL121C receptors were equivalent until the α1β1γδL121C mutants were exposed to MTSEA, after which the majority (81%) of bursts were brief (≤2 ms). The longest duration events of the receptors modified at only one binding site were similar to the long bursts of native receptors traditionally associated with the activation of receptors with two sites containing bound agonists. PMID:21444659

  13. Development of the electromotor system of Torpedo marmorata: distribution of extracellular matrix and cytoskeletal components during acetylcholine receptor focalization.

    PubMed

    Richardson, G P; Fiedler, W; Fox, G Q

    1987-03-01

    A combination of direct fluorescence and indirect immunofluorescence microscopy has been used to compare the distribution of the acetylcholine receptor with the distribution of major cytoskeletal and extracellular matrix components during electrocyte differentiation in the electric organs of Torpedo marmorata. Laminin, fibronectin and extracellular matrix proteoglycan are always more extensively distributed around the differentiating cell than the acetylcholine receptor-rich patch that forms on the ventral surface of the cell. The distribution of acetylcholinesterase within the ventral surface of the differentiating electrocyte closely resembles the distribution of the acetylcholine receptor. Areas of apparently high acetylcholine receptor density within the ventrally forming acetylcholine receptor-rich patch are always areas of apparently high extracellular matrix proteoglycan density but are not always areas of high laminin or fibronectin density. Desmin levels appear to increase at the onset of differentiation and desmin initially accumulates in the ventral pole of each myotube as it begins to form an electrocyte. During differentiation F-actin-positive filament bundles are observed that extend from the nuclei down to the ventrally forming acetylcholine receptor-rich patch. Most filament bundles terminate in the acetylcholine receptor-rich region of the cell membrane. Electron-microscopic autoradiography suggests that the filament bundles attach to the membrane at sites where small acetylcholine receptor clusters are found. The results of this study suggest that, out of the four extracellular matrix components studied, only the distribution of acetylcholinesterase (which may be both matrix- and membrane-bound at this stage) closely parallels that of the acetylcholine receptor, and that F-actin filament bundles terminate in a region of the cell that is becoming an area of high acetylcholine receptor density.

  14. Role of the M3 Muscarinic Acetylcholine Receptor Subtype in Murine Ophthalmic Arteries After Endothelial Removal

    PubMed Central

    Gericke, Adrian; Steege, Andreas; Manicam, Caroline; Böhmer, Tobias; Wess, Jürgen; Pfeiffer, Norbert

    2014-01-01

    Purpose. We tested the hypothesis that the M3 muscarinic acetylcholine receptor subtype mediates cholinergic responses in murine ophthalmic arteries after endothelial removal. Methods. Muscarinic receptor gene expression was determined in ophthalmic arteries with intact and with removed endothelium using real-time PCR. To examine the role of the M3 receptor in mediating vascular responses, ophthalmic arteries from M3 receptor-deficient mice (M3R−/−) and respective wild-type controls were studied in vitro. Functional studies were performed in nonpreconstricted arteries with either intact or removed endothelium using video microscopy. Results. In endothelium-intact ophthalmic arteries, mRNA for all five muscarinic receptor subtypes was detected, but M3 receptor mRNA was most abundant. In endothelium-removed ophthalmic arteries, M1, M2, and M3 receptors displayed similar mRNA expression levels, which were higher than those for M4 and M5 receptors. In functional studies, acetylcholine evoked vasoconstriction in endothelium-removed arteries from wild-type mice that was virtually abolished after incubation with the muscarinic receptor blocker atropine, indicative of the involvement of muscarinic receptors. In concentration-response experiments, acetylcholine and carbachol concentration-dependently constricted endothelium-removed ophthalmic arteries from wild-type mice, but produced only negligible responses in arteries from M3R−/− mice. In contrast, acetylcholine concentration-dependently dilated ophthalmic arteries with intact endothelium from wild-type mice, but not from M3R−/− mice. Responses to the nitric oxide donor nitroprusside and to KCl did not differ between ophthalmic arteries from wild-type and M3R−/− mice, neither in endothelium-intact nor in endothelium-removed arteries. Conclusions. These findings provide evidence that in murine ophthalmic arteries the muscarinic M3 receptor subtype mediates cholinergic endothelium-dependent vasodilation

  15. Effects of cannabidiol on the function of α7-nicotinic acetylcholine receptors.

    PubMed

    Mahgoub, Mohamed; Keun-Hang, Susan Yang; Sydorenko, Vadym; Ashoor, Abrar; Kabbani, Nadine; Al Kury, Lina; Sadek, Bassem; Howarth, Christopher F; Isaev, Dmytro; Galadari, Sehamuddin; Oz, Murat

    2013-11-15

    The effects of cannabidiol (CBD), a non-psychoactive ingredient of cannabis plant, on the function of the cloned α7 subunit of the human nicotinic acetylcholine (α7 nACh) receptor expressed in Xenopus oocytes were tested using the two-electrode voltage-clamp technique. CBD reversibly inhibited ACh (100 μM)-induced currents with an IC50 value of 11.3 µM. Other phytocannabinoids such as cannabinol and Δ(9)-tetrahydrocannabinol did not affect ACh-induced currents. CBD inhibition was not altered by pertussis toxin treatment. In addition, CBD did not change GTP-γ-S binding to the membranes of oocytes injected with α7 nACh receptor cRNA. The effect of CBD was not dependent on the membrane potential. CBD (10 µM) did not affect the activity of endogenous Ca(2+)-dependent Cl(-) channels, since the extent of inhibition by CBD was unaltered by intracellular injection of the Ca(2+) chelator BAPTA and perfusion with Ca(2+)-free bathing solution containing 2mM Ba(2+). Inhibition by CBD was not reversed by increasing ACh concentrations. Furthermore, specific binding of [(125)I] α-bungarotoxin was not inhibited by CBD (10 µM) in oocytes membranes. Using whole cell patch clamp technique in CA1 stratum radiatum interneurons of rat hippocampal slices, currents induced by choline, a selective-agonist of α7-receptor induced currents were also recoded. Bath application of CBD (10 µM) for 10 min caused a significant inhibition of choline induced currents. Finally, in hippocampal slices, [(3)H] norepinephrine release evoked by nicotine (30 µM) was also inhibited by 10 µM CBD. Our results indicate that CBD inhibits the function of the α7-nACh receptor.

  16. Use of intact rat brain cells as a model to study regulation of muscarinic acetylcholine receptors

    SciTech Connect

    Lee, J.H.; El-Fakahany, E.E.

    1985-08-12

    Intact rat brain cells were dissociated and used to study the regulation of muscarinic acetylcholine receptors upon exposure to muscarinic receptor agonists. Incubation of cells with carbamylcholine resulted in a time-dependent decrease in subsequent (/sup 3/H)N-methylscopolamine specific binding, an effect which reached a steady state after 3 hr at 37/sup 0/C. This effect of carbamylcholine was dependent on the concentration of the agonist in the incubation medium and was due to a reduction in the maximal binding capacity of the receptor with no decrease in the affinity of the remaining receptors. This preparation might be useful in future studies to elucidate the mechanisms underlying the regulation of muscarinic acetylcholine receptors in the central nervous system. 20 references, 3 tables.

  17. Enhancement effects of nicotine on neurogenic relaxation responses in the corpus cavernosum in rabbits: the role of nicotinic acetylcholine receptor subtypes.

    PubMed

    Ozturk Fincan, Gokce Sevim; Vural, Ismail Mert; Ercan, Zeynep Sevim; Sarioglu, Yusuf

    2010-02-10

    Nicotine acts as an agonist of nicotinic acetylcholine receptors, which belong to a superfamily of neurotransmitter-gated ion channels. We previously demonstrated that nicotine increases the electrical field stimulation (EFS)-evoked nitrergic relaxation responses via activation of nicotinic acetylcholine receptors. The aim of the present study is to investigate the subtypes of nicotinic acetylcholine receptors in rabbit corpus cavernosum. EFS-evoked relaxation responses were recorded from corpus cavernosum strips obtained from rabbits with an isometric force displacement transducers. Effects of nicotine on EFS-evoked relaxations were examined in pre-contracted tissues. Then the effect of nicotine on the EFS-evoked relaxations was examined in the presence of hexamethonium, dihydro-beta-erythroidine, mecamylamine or alpha-bungarotoxin. In our study, nicotine (3 x 10(-5), 10(-4)) transiently increased nitrergic relaxations induced by EFS in the rabbit isolated corpus cavernosum. While hexamethonium and mecamylamine near totally inhibited or abolished the neurorelaxation response to nicotine (3 x 10(-5)) on EFS, dihydro-beta-erythroidine and alpha-bungarotoxin partially inhibited these responses. These findings demonstrated that the alpha3-beta4, alpha4-beta2 and alpha7 subunits of nicotinic acetylcholine receptors play role on the nicotine-induced augmentation in EFS-evoked relaxation responses in rabbit corpus cavernosum. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  18. Inhibition of nicotinic acetylcholine receptors, a novel facet in the pleiotropic activities of snake venom phospholipases A2.

    PubMed

    Vulfius, Catherine A; Kasheverov, Igor E; Starkov, Vladislav G; Osipov, Alexey V; Andreeva, Tatyana V; Filkin, Sergey Yu; Gorbacheva, Elena V; Astashev, Maxim E; Tsetlin, Victor I; Utkin, Yuri N

    2014-01-01

    Phospholipases A2 represent the most abundant family of snake venom proteins. They manifest an array of biological activities, which is constantly expanding. We have recently shown that a protein bitanarin, isolated from the venom of the puff adder Bitis arietans and possessing high phospholipolytic activity, interacts with different types of nicotinic acetylcholine receptors and with the acetylcholine-binding protein. To check if this property is characteristic to all venom phospholipases A2, we have studied the capability of these enzymes from other snakes to block the responses of Lymnaea stagnalis neurons to acetylcholine or cytisine and to inhibit α-bungarotoxin binding to nicotinic acetylcholine receptors and acetylcholine-binding proteins. Here we present the evidence that phospholipases A2 from venoms of vipers Vipera ursinii and V. nikolskii, cobra Naja kaouthia, and krait Bungarus fasciatus from different snake families suppress the acetylcholine- or cytisine-elicited currents in L. stagnalis neurons and compete with α-bungarotoxin for binding to muscle- and neuronal α7-types of nicotinic acetylcholine receptor, as well as to acetylcholine-binding proteins. As the phospholipase A2 content in venoms is quite high, under some conditions the activity found may contribute to the deleterious venom effects. The results obtained suggest that the ability to interact with nicotinic acetylcholine receptors may be a general property of snake venom phospholipases A2, which add a new target to the numerous activities of these enzymes.

  19. Inhibition of Nicotinic Acetylcholine Receptors, a Novel Facet in the Pleiotropic Activities of Snake Venom Phospholipases A2

    PubMed Central

    Vulfius, Catherine A.; Kasheverov, Igor E.; Starkov, Vladislav G.; Osipov, Alexey V.; Andreeva, Tatyana V.; Filkin, Sergey Yu.; Gorbacheva, Elena V.; Astashev, Maxim E.; Tsetlin, Victor I.; Utkin, Yuri N.

    2014-01-01

    Phospholipases A2 represent the most abundant family of snake venom proteins. They manifest an array of biological activities, which is constantly expanding. We have recently shown that a protein bitanarin, isolated from the venom of the puff adder Bitis arietans and possessing high phospholipolytic activity, interacts with different types of nicotinic acetylcholine receptors and with the acetylcholine-binding protein. To check if this property is characteristic to all venom phospholipases A2, we have studied the capability of these enzymes from other snakes to block the responses of Lymnaea stagnalis neurons to acetylcholine or cytisine and to inhibit α-bungarotoxin binding to nicotinic acetylcholine receptors and acetylcholine-binding proteins. Here we present the evidence that phospholipases A2 from venoms of vipers Vipera ursinii and V. nikolskii, cobra Naja kaouthia, and krait Bungarus fasciatus from different snake families suppress the acetylcholine- or cytisine-elicited currents in L. stagnalis neurons and compete with α-bungarotoxin for binding to muscle- and neuronal α7-types of nicotinic acetylcholine receptor, as well as to acetylcholine-binding proteins. As the phospholipase A2 content in venoms is quite high, under some conditions the activity found may contribute to the deleterious venom effects. The results obtained suggest that the ability to interact with nicotinic acetylcholine receptors may be a general property of snake venom phospholipases A2, which add a new target to the numerous activities of these enzymes. PMID:25522251

  20. Critical Molecular Determinants of α7 Nicotinic Acetylcholine Receptor Allosteric Activation

    PubMed Central

    Horenstein, Nicole A.; Papke, Roger L.; Kulkarni, Abhijit R.; Chaturbhuj, Ganesh U.; Stokes, Clare; Manther, Khan; Thakur, Ganesh A.

    2016-01-01

    The α7 nicotinic acetylcholine receptors (nAChRs) are uniquely sensitive to selective positive allosteric modulators (PAMs), which increase the efficiency of channel activation to a level greater than that of other nAChRs. Although PAMs must work in concert with “orthosteric” agonists, compounds such as GAT107 ((3aR,4S,9bS)-4-(4-bromophenyl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline-8-sulfonamide) have the combined properties of agonists and PAMs (ago-PAM) and produce very effective channel activation (direct allosteric activation (DAA)) by operating at two distinct sites in the absence of added agonist. One site is likely to be the same transmembrane site where PAMs like PNU-120596 function. We show that the other site, required for direct activation, is likely to be solvent-accessible at the extracellular domain vestibule. We identify key attributes of molecules in this family that are able to act at the DAA site through variation at the aryl ring substituent of the tetrahydroquinoline ring system and with two different classes of competitive antagonists of DAA. Analyses of molecular features of effective allosteric agonists allow us to propose a binding model for the DAA site, featuring a largely non-polar pocket accessed from the extracellular vestibule with an important role for Asp-101. This hypothesis is supported with data from site-directed mutants. Future refinement of the model and the characterization of specific GAT107 analogs will allow us to define critical structural elements that can be mapped onto the receptor surface for an improved understanding of this novel way to target α7 nAChR therapeutically. PMID:26742843

  1. Calcium signalling mediated by the 9 acetylcholine receptor in a cochlear cell line from the immortomouse.

    PubMed

    Jagger, D J; Griesinger, C B; Rivolta, M N; Holley, M C; Ashmore, J F

    2000-08-15

    1. We have investigated the characteristics of the alpha9 acetylcholine receptor (alpha9AChR) expressed in hair cell precursors in an immortalized cell line UB/OC-2 developed from the organ of Corti of the transgenic H-2Kb-tsA58 mouse (the Immortomouse) using both calcium imaging and whole-cell recording. 2. Ratiometric measurements of fura-2 fluorescence revealed an increase of intracellular calcium concentration in cells when challenged with 10 microM ACh. The calcium increase was seen in 66 % of the cells grown at 39 degrees C in differentiated conditions. A sm aller fraction (34%) of cells grown at 33 degrees C in proliferative con ditions responded. 3. Caffeine (10mM) elevated cell calcium. In the ab sence of caffeine, the majority of imaged cells responded only once to A Ch presentations. Pretreatment with caffeine ingibited all calcium respo nses to ACh. 4. In whole-cell tight-seal recordings 10 microM ACh activa ted inward current was dependent on the extracellular calcium concentrat ion with an estimated PCa/PNa of 80 for the alpha9 receptor at physiological calcium levels. 5 . The data indicate that ACh activates a calcium-permeable channel alpha 9AChR in UB/OC-2 cells and that the channel has a significantly higher c alcium permeability than other AChRs. The results indicate that the alp ha9AChR may be able to elevate intracellular calcium levels in hair cell s both directly and via store release.

  2. Effects of the α subunit on imidacloprid sensitivity of recombinant nicotinic acetylcholine receptors

    PubMed Central

    Matsuda, K; Buckingham, S D; Freeman, J C; Squire, M D; Baylis, H A; Sattelle, D B

    1998-01-01

    Imidacloprid is a new insecticide with selective toxicity for insects over vertebrates. Recombinant (α4β2) chicken neuronal nicotinic acetylcholine receptors (AChRs) and a hybrid nicotinic AChR formed by co-expression of a Drosophila melanogaster neuronal α subunit (SAD) with the chicken β2 subunit were heterologously expressed in Xenopus oocytes by nuclear injection of cDNAs. The agonist actions of imidacloprid and other nicotinic AChR ligands ((+)-epibatidine, (−)-nicotine and acetylcholine) were compared on both recombinant nicotinic AChRs by use of two-electrode, voltage-clamp electrophysiology. Imidacloprid alone of the 4 agonists behaved as a partial agonist on the α4β2 receptor; (+)-epibatidine, (−)-nicotine and acetylcholine were all full, or near full, agonists. Imidacloprid was also a partial agonist of the hybrid Drosophila SAD chicken β2 receptor, as was (−)-nicotine, whereas (+)-epibatidine and acetylcholine were full agonists. The EC50 of imidacloprid was decreased by replacing the chicken α4 subunit with the Drosophila SAD α subunit. This α subunit substitution also resulted in an increase in the EC50 for (+)-epibatidine, (−)-nicotine and acetylcholine. Thus, the Drosophila (SAD) α subunit contributes to the greater apparent affinity of imidacloprid for recombinant insect/vertebrate nicotinic AChRs. Imidacloprid acted as a weak antagonist of ACh-mediated responses mediated by SADβ2 hybrid receptors and as a weak potentiator of ACh responses mediated by α4β2 receptors. This suggests that imidacloprid has complex effects upon these recombinant receptors, determined at least in part by the α subunit. PMID:9504393

  3. INHIBITORY EFFECTS OF VOLATILE ORGANIC COMPOUNDS ON NEURONAL NICOTINIC ACETYLCHOLINE RECEPTORS.

    EPA Science Inventory

    INHIBITORY EFFECTS OF VOLATILE ORGANIC COMPOUNDS ON NEURONAL NICOTINIC ACETYLCHOLINE RECEPTORS.
    A.S. Bale*; P.J. Bushnell; C.A. Meacham; T.J. Shafer
    Neurotoxicology Division, NHEERL, ORD, US Environmental Protection Agency, Research Triangle Park, NC, USA
    Toluene (TOL...

  4. a2* Nicotinic Acetylcholine Receptors Influence Hippocampus-Dependent Learning and Memory in Adolescent Mice

    ERIC Educational Resources Information Center

    Lotfipour, Shahrdad; Mojica, Celina; Nakauchi, Sakura; Lipovsek, Marcela; Silverstein, Sarah; Cushman, Jesse; Tirtorahardjo, James; Poulos, Andrew; Elgoyhen, Ana Belén; Sumikawa, Katumi; Fanselow, Michael S.; Boulter, Jim

    2017-01-01

    The absence of a2* nicotinic acetylcholine receptors (nAChRs) in oriens lacunosum moleculare (OLM) GABAergic interneurons ablate the facilitation of nicotine-induced hippocampal CA1 long-term potentiation and impair memory. The current study delineated whether genetic mutations of a2* nAChRs ("Chrna2"[superscript L9'S/L9'S] and…

  5. INHIBITORY EFFECTS OF VOLATILE ORGANIC COMPOUNDS ON NEURONAL NICOTINIC ACETYLCHOLINE RECEPTORS.

    EPA Science Inventory

    INHIBITORY EFFECTS OF VOLATILE ORGANIC COMPOUNDS ON NEURONAL NICOTINIC ACETYLCHOLINE RECEPTORS.
    A.S. Bale*; P.J. Bushnell; C.A. Meacham; T.J. Shafer
    Neurotoxicology Division, NHEERL, ORD, US Environmental Protection Agency, Research Triangle Park, NC, USA
    Toluene (TOL...

  6. The Minimal Pharmacophore for Silent Agonism of the α7 Nicotinic Acetylcholine Receptor

    PubMed Central

    Chojnacka, Kinga; Horenstein, Nicole A.

    2014-01-01

    The minimum pharmacophore for activation of the human α7 nicotinic acetylcholine receptor (nAChR) is the tetramethylammonium cation. Previous work demonstrated that larger quaternary ammonium compounds, such as diethyldimethylammonium or 1-methyl quinuclidine, were α7-selective partial agonists, but additional increase in the size of the ammonium cation or the quinuclidine N-alkyl group by a single carbon to an N-ethyl group led to a loss of efficacy for ion channel activation. We report that although such compounds are ineffective at inducing the normal channel open state, they nonetheless regulate the induction of specific conformational states normally considered downstream of channel activation. We synthesized several panels of quaternary ammonium nAChR ligands that systematically varied the size of the substituents bonded to the central positively charged nitrogen atom. In these molecular series, we found a correlation between the molecular volume of the ligand and/or charge density, and the receptor’s preferred distribution among conformational states including the closed state, the active state, a nonconducting state that could be converted to an activated state by a positive allosteric modulator (PAM), and a PAM-insensitive nonconducting state. We hypothesize that the changes of molecular volume of an agonist’s cationic core subtly impact interactions at the subunit interface constituting the orthosteric binding site in such a way as to regulate the probability of conversions among the conformational states. We define a new minimal pharmacophore for the class of compounds we have termed “silent agonists,” which are able to induce allosteric modulator-dependent activation but not the normal activated state. PMID:24990939

  7. Pharmacological and biochemical characterization of the D-1 dopamine receptor mediating acetylcholine release in rabbit retina

    SciTech Connect

    Hensler, J.G.; Cotterell, D.J.; Dubocovich, M.L.

    1987-12-01

    Superfusion with dopamine (0.1 microM-10 mM) evokes calcium-dependent (/sup 3/H)acetylcholine release from rabbit retina labeled in vitro with (/sup 3/H)choline. This effect is antagonized by the D-1 dopamine receptor antagonist SCH 23390. Activation or blockade of D-2 dopamine, alpha-2 or beta receptors did not stimulate or attenuate the release of (/sup 3/H)acetylcholine from rabbit retina. Dopamine receptor agonists evoke the release of (/sup 3/H)acetylcholine with the following order of potency: apomorphine less than or equal to SKF(R)82526 < SKF 85174 < SKF(R)38393 less than or equal to pergolide less than or equal to dopamine (EC50 = 4.5 microM) < SKF(S)82526 less than or equal to SKF(S)38393. Dopamine receptor antagonists inhibited the dopamine-evoked release of (/sup 3/H)acetylcholine: SCH 23390 (IC50 = 1 nM) < (+)-butaclamol less than or equal to cis-flupenthixol < fluphenazine < perphenazine < trans-flupenthixol < R-sulpiride. The potencies of dopamine receptor agonists and antagonists at the dopamine receptor mediating (/sup 3/H)acetylcholine release is characteristic of the D-1 dopamine receptor. These potencies were correlated with the potencies of dopamine receptor agonists and antagonists at the D-1 dopamine receptor in rabbit retina as labeled by (/sup 3/H)SCH 23390, or as determined by adenylate cyclase activity. (/sup 3/H)SCH 23390 binding in rabbit retinal membranes was stable, saturable and reversible. Scatchard analysis of (/sup 3/H)SCH 23390 saturation data revealed a single high affinity binding site (Kd = 0.175 +/- 0.002 nM) with a maximum binding of 482 +/- 12 fmol/mg of protein. The potencies of dopamine receptor agonists to stimulate (/sup 3/H)acetylcholine release were correlated with their potencies to stimulate adenylate cyclase (r = 0.784, P less than .05, n = 7) and with their affinities at (/sup 3/H)SCH 23390 binding sites (r = 0.755, P < .05, n = 8).

  8. Measuring relative acetylcholine receptor agonist binding by selective proton nuclear magnetic resonance relaxation experiments.

    PubMed Central

    Behling, R W; Yamane, T; Navon, G; Sammon, M J; Jelinski, L W

    1988-01-01

    A method is presented that uses selective proton Nuclear Magnetic Resonance (NMR) relaxation measurements of nicotine in the presence of the acetylcholine receptor to obtain relative binding constants for acetylcholine, carbamylcholine, and muscarine. For receptors from Torpedo californica the results show that (a) the binding constants are in the order acetylcholine greater than nicotine greater than carbamylcholine greater than muscarine; (b) selective NMR measurements provide a rapid and direct method for monitoring both the specific and nonspecific binding of agonists to these receptors and to the lipid; (c) alpha-bungarotoxin can be used to distinguish between specific and nonspecific binding to the receptor; (d) the receptor--substrate interaction causes a large change in the selective relaxation time of the agonists even at concentrations 100x greater than that of the receptor. This last observation means that these measurements provide a rapid method to monitor drug binding when only small amounts of receptor are available. Furthermore, the binding strategies presented here may be useful for the NMR determination of the conformation of the ligand in its bound state. Images FIGURE 1 PMID:3395661

  9. Comparison of the subunit structure of acetylcholine receptors from muscle and electric organ of Electrophorus electricus.

    PubMed

    Gullick, W J; Lindstrom, J M

    1983-08-02

    The acetylcholine receptors of the electric organ and muscle tissues of Electrophorus electricus are composed of alpha, beta, gamma, and delta subunits. Receptor subunits from the two tissues were compared by peptide mapping with monoclonal antibodies, an affinity-labeling reagent, and a lectin to characterize particular peptide fragments. These experiments indicate that the corresponding receptor subunits from the two tissues are extensively homologous or identical throughout their amino acid sequences. Small differences in the electrophoresis of peptide fragments of alpha subunits between the two tissues occurred on fragments which bound labeled lectin. These results suggest that the acetylcholine receptors in electric organ and muscle tissues of Electrophorus differ in structure only by minor posttranslational modifications perhaps involving carbohydrate.

  10. Glutamatergic contributions to nicotinic acetylcholine receptor agonist-evoked cholinergic transients in the prefrontal cortex.

    PubMed

    Parikh, Vinay; Man, Kingson; Decker, Michael W; Sarter, Martin

    2008-04-02

    Because modulation of cortical cholinergic neurotransmission has been hypothesized to represent a necessary mechanism mediating the beneficial cognitive effects of nicotine and nicotinic acetylcholine receptor (nAChR) subtype-selective agonists, we used choline-sensitive microelectrodes for the real-time measurement of ACh release in vivo, to characterize cholinergic transients evoked by nicotine and the alpha4beta2*-selective nAChR partial agonist 2-methyl-3-(2-(S)-pyrrolindinylmethoxy)pyridine dihydrochloride (ABT-089), a clinically effective cognition enhancer. In terms of cholinergic signal amplitudes, ABT-089 was significantly more potent than nicotine in evoking ACh cholinergic transients. Moreover, cholinergic signals evoked by ABT-089 were characterized by faster signal rise time and decay rate. The nAChR antagonist mecamylamine attenuated the cholinergic signals evoked by either compound. Cholinergic signals evoked by ABT-089 were more efficaciously attenuated by the relatively beta2*-selective nAChR antagonist dihydro-beta-erythroidine. The alpha7 antagonist methyllycaconitine did not affect choline signal amplitudes but partly attenuated the relatively slow decay rate of nicotine-evoked cholinergic signals. Furthermore, the AMPA receptor antagonist DNQX as well as the NMDA receptor antagonist APV more potently attenuated cholinergic signals evoked by ABT-089. Using glutamate-sensitive microelectrodes to measure glutamatergic transients, ABT-089 was more potent than nicotine in evoking glutamate release. Glutamatergic signals were highly sensitive to tetrodotoxin-induced blockade of voltage-regulated sodium channels. Together, the present evidence indicates that compared with nicotine, ABT-089 evokes more potent and sharper cholinergic transients in prefrontal cortex. Glutamatergic mechanisms necessarily mediate the cholinergic effects of nAChR agonists in the prefrontal cortex.

  11. Conductance Properties of the Acetylcholine Receptor Current of Guinea Pig Outer Hair Cells

    PubMed Central

    Darbon, Pascal; Wright, Daniel J.

    2010-01-01

    The nicotinic acetylcholine receptor (AChR) current of outer hair cells (OHCs) was investigated in isolated and voltage-clamped cells under conditions where co-activating Ca2+-activated K+ currents had been abolished using internal BAPTA, external calcium removal and/or depolarisation to positive voltages. The AChR current activated rapidly and thereafter declined in the continued presence of ACh. Reversal potential measurements indicated that it was a non-specific cation current with a substantial Ca2+ permeability. It had a characteristic bidirectional rectification with an especially prominent outward component in solutions containing 1 mM Ca2+. The I–V relation was fitted with a single-energy barrier model. The fit suggests a blocking site within the channel, situated about one third of the way through the membrane from the outside and probably normally occupied by Ca2+ or Mg2+. The AChR current was sensitive to the external Ca2+ since it was reduced, to differing extents, in nominally Ca2+-free saline or in high Ca2+ saline (10 mM). In the presence of a nominally Mg2+-free solution containing 0.4 mM Ca2+, the currents were larger, indicating a potentiated response. This type of behaviour is also shown by recombinant α9α10 AChRs, suggesting a close similarity. The AChR current at both positive and negative voltages was reduced in external solutions where most of the Na+ had been replaced by NMG+. The conductance properties of the OHC AChR are compared with α9α10 receptors and nicotinic receptors in other hair cells and discussed in terms of the accepted functional role of providing calcium influx leading to efferent synaptic inhibition of hair cells. PMID:20941522

  12. Binding of antibodies to acetylcholine receptors in Electrophorus and Torpedo electroplax membranes

    PubMed Central

    1978-01-01

    Antisera against purified acetylcholine receptors from the electric tissues of Torpedo californica and of Electrophorus electricus were raised in rabbits. The antisera contain antibodies which bind to both autologous and heterologous receptors in solution as shown by an immunoprecipitation assay. Antibodies in both types of antisera bind specifically to the postjunctional membrane on the innervated surface of the intact electroplax from Electrophorus electric tissue as demonstrated by an indirect immunohistochemical procedure using horseradish peroxidase conjugated to anti-rabbit IgG. Only anti- Electrophorus receptor antisera, however, cause inhibition of the receptor-mediated depolarization of the intact Electrophorus electroplax. The lack of inhibition by anti-Torpedo receptor antibodies, which do bind, suggests that the receptor does not undergo extensive movement during activity. The binding of anti-Torpedo antibodies to receptor-rich vesicles prepared by subcellular fractionation of Torpedo electric tissue was demonstrated by both direct and indirect immunohistochemical methods using ferritin conjugates. These vesicles can be conveniently collected and prepared for electron microscopy on Millipore filters, a procedure requiring only 25 micrograms of membrane protein per filter. In addition, it was possible to visualize the binding of anti-Torpedo receptor antibodies directly, without ferritin. These anti-Torpedo receptor antibodies, however, do not inhibit the binding of acetylcholine or of alpha- neurotoxin to receptor in Torpedo microsacs but do inhibit binding of alpha-neurotoxin to Torpedo receptor in Triton X-100 solution. It is likely that the principal antigenic determinants on receptor are at sites other than the acetylcholine-binding sites and that inhibition of receptor function, when it occurs, may be due to a stabilization by antibody binding of an inactive conformational state. PMID:344325

  13. Docking of 6-chloropyridazin-3-yl derivatives active on nicotinic acetylcholine receptors into molluscan acetylcholine binding protein (AChBP).

    PubMed

    Artali, Roberto; Bombieri, Gabriella; Meneghetti, Fiorella

    2005-04-01

    The crystal structure of Acetylcholine Binding Protein (AChBP), homolog of the ligand binding domain of nAChR, has been used as model for computational investigations on the ligand-receptor interactions of derivatives of 6-chloropyridazine substituted at C3 with 3,8-diazabicyclo[3.2.1]octane, 2,5-diazabicyclo[2.2.1]heptane and with piperazine and homopiperazine, substituted or not at N4. The ligand-receptor complexes have been analyzed by docking techniques using the binding site of HEPES complexed with AChBP as template. The good relationship between the observed binding affinity and the calculated docking energy confirms that this model provides a good starting point for understanding the binding domain of neuronal nicotinic receptors. An analysis of the possible factors significant for the ligand recognition has evidenced, besides the cation-pi interaction, the distance between the chlorine atom of the pyridazinyl group and the carbonylic oxygen of Leu B112 as an important parameter in the modulation of the binding energy.

  14. Neuronal nicotinic acetylcholine receptors: neuroplastic changes underlying alcohol and nicotine addictions

    PubMed Central

    Feduccia, Allison A.; Chatterjee, Susmita; Bartlett, Selena E.

    2012-01-01

    Addictive drugs can activate systems involved in normal reward-related learning, creating long-lasting memories of the drug's reinforcing effects and the environmental cues surrounding the experience. These memories significantly contribute to the maintenance of compulsive drug use as well as cue-induced relapse which can occur even after long periods of abstinence. Synaptic plasticity is thought to be a prominent molecular mechanism underlying drug-induced learning and memories. Ethanol and nicotine are both widely abused drugs that share a common molecular target in the brain, the neuronal nicotinic acetylcholine receptors (nAChRs). The nAChRs are ligand-gated ion channels that are vastly distributed throughout the brain and play a key role in synaptic neurotransmission. In this review, we will delineate the role of nAChRs in the development of ethanol and nicotine addiction. We will characterize both ethanol and nicotine's effects on nAChR-mediated synaptic transmission and plasticity in several key brain areas that are important for addiction. Finally, we will discuss some of the behavioral outcomes of drug-induced synaptic plasticity in animal models. An understanding of the molecular and cellular changes that occur following administration of ethanol and nicotine will lead to better therapeutic strategies. PMID:22876217

  15. [Nicotine effects on mitochondria membrane potential: participation of nicotinic acetylcholine receptors].

    PubMed

    Gergalova, G L; Skok, M V

    2011-01-01

    The effect of nicotine on the mouse liver mitochondria was studied by fluorescent flow cytometry. Mice consumed nicotine during 65 days; alternatively, nicotine was added to isolated mitochondria. Mitochondria of nicotine-treated mice had significantly lower basic levels of membrane potential and granularity as compared to those of the control group. Pre-incubation of the isolated mitochondria with nicotine prevented from dissipation of their membrane potential stimulated with 0.8 microM CaCl2 depending on the dose, and this effect was strengthened by the antagonist of alpha7 nicotinic receptors (alpha7 nAChR) methyllicaconitine. Mitochondria of mice intravenously injected with the antibodies against alpha7 nAChR demonstrated lower levels of membrane potential. Introduction of nicotine, choline, acetylcholine or synthetic alpha7 nAChR agonist PNU 282987 into the incubation medium inhibited Ca2+ accumulation in mitochondria, although the doses of agonists were too low to activate the alpha7 nAChR ion channel. It is concluded that nicotine consumption worsens the functional state of mitochondria by affecting their membrane potential and granularity, and this effect, at least in part, is mediated by alpha7 nAChR desensitization.

  16. Differential sensitivity of Ctenocephalides felis and Drosophila melanogaster nicotinic acetylcholine receptor α1 and α2 subunits in recombinant hybrid receptors to nicotinoids and neonicotinoid insecticides.

    PubMed

    Dederer, Helene; Werr, Margaret; Ilg, Thomas

    2011-01-01

    Nicotinic acetylcholine receptors (nAChRs) are the binding sites for nicotinoid drugs, such as nicotine and epibatidine, and are the molecular targets of the selectively insecticidal neonicotinoids. In this study we report the full length cDNA cloning of the three Ctenocephalides (C.) felis (cat flea) nAChR α subunits Cfα1, Cfα2, and Cfα3. When expressed in Xenopus oocytes as hybrid receptors with the Gallus gallus (chicken) β2 (Ggβ2) subunit, these cat flea α subunits formed acetylcholine-responsive ion channels. Acetylcholine-evoked currents of Cfα2/Ggβ2 were resistant to α-bungarotoxin, while those of Cfα1/Ggβ2 were sensitive to this snake toxin. The pharmacological profiles of Cfα1/Ggβ2, Cfα2/Ggβ2 and the chicken neuronal receptor Ggα4/Ggβ2 for acetylcholine, two nicotinoids and 6 insecticidal neonicotinoids were determined and compared. Particularly remarkable was the finding that Cfα1/Ggβ2 was far more sensitive to acetylcholine, nicotine and neonicotinoid agonists than either Cfα2/Ggβ2 or Ggα4/Ggβ2: for the anti flea neonicotinoid market compound imidacloprid the respective EC₅₀s were 0.02 μM, 1.31 μM and 10 μM. These results were confirmed for another insect species, Drosophila melanogaster, where the pharmacological profile of the Dmα1 and Dmα2 subunits as hybrid receptors with Ggβ2 in Xenopus oocyte expressions resulted in a similar sensitivity pattern as those identified for the C. felis orthologs. Our results show that at least in a Ggβ2 hybrid receptor setting, insect α1 subunits confer higher sensitivity to neonicotinoids than α2 subunits, which may contribute in vivo to the insect-selective action of this pesticide class.

  17. Binding of N-methylscopolamine to the extracellular domain of muscarinic acetylcholine receptors

    PubMed Central

    Jakubík, Jan; Randáková, Alena; Zimčík, Pavel; El-Fakahany, Esam E.; Doležal, Vladimír

    2017-01-01

    Interaction of orthosteric ligands with extracellular domain was described at several aminergic G protein-coupled receptors, including muscarinic acetylcholine receptors. The orthosteric antagonists quinuclidinyl benzilate (QNB) and N-methylscopolamine (NMS) bind to the binding pocket of the muscarinic acetylcholine receptor formed by transmembrane α-helices. We show that high concentrations of either QNB or NMS slow down dissociation of their radiolabeled species from all five subtypes of muscarinic acetylcholine receptors, suggesting allosteric binding. The affinity of NMS at the allosteric site is in the micromolar range for all receptor subtypes. Using molecular modelling of the M2 receptor we found that E172 and E175 in the second extracellular loop and N419 in the third extracellular loop are involved in allosteric binding of NMS. Mutation of these amino acids to alanine decreased affinity of NMS for the allosteric binding site confirming results of molecular modelling. The allosteric binding site of NMS overlaps with the binding site of some allosteric, ectopic and bitopic ligands. Understanding of interactions of NMS at the allosteric binding site is essential for correct analysis of binding and action of these ligands. PMID:28091608

  18. Binding of N-methylscopolamine to the extracellular domain of muscarinic acetylcholine receptors

    NASA Astrophysics Data System (ADS)

    Jakubík, Jan; Randáková, Alena; Zimčík, Pavel; El-Fakahany, Esam E.; Doležal, Vladimír

    2017-01-01

    Interaction of orthosteric ligands with extracellular domain was described at several aminergic G protein-coupled receptors, including muscarinic acetylcholine receptors. The orthosteric antagonists quinuclidinyl benzilate (QNB) and N-methylscopolamine (NMS) bind to the binding pocket of the muscarinic acetylcholine receptor formed by transmembrane α-helices. We show that high concentrations of either QNB or NMS slow down dissociation of their radiolabeled species from all five subtypes of muscarinic acetylcholine receptors, suggesting allosteric binding. The affinity of NMS at the allosteric site is in the micromolar range for all receptor subtypes. Using molecular modelling of the M2 receptor we found that E172 and E175 in the second extracellular loop and N419 in the third extracellular loop are involved in allosteric binding of NMS. Mutation of these amino acids to alanine decreased affinity of NMS for the allosteric binding site confirming results of molecular modelling. The allosteric binding site of NMS overlaps with the binding site of some allosteric, ectopic and bitopic ligands. Understanding of interactions of NMS at the allosteric binding site is essential for correct analysis of binding and action of these ligands.

  19. Identification of Propofol Binding Sites in a Nicotinic Acetylcholine Receptor with a Photoreactive Propofol Analog*

    PubMed Central

    Jayakar, Selwyn S.; Dailey, William P.; Eckenhoff, Roderic G.; Cohen, Jonathan B.

    2013-01-01

    Propofol, a widely used intravenous general anesthetic, acts at anesthetic concentrations as a positive allosteric modulator of γ-aminobutyric acid type A receptors and at higher concentration as an inhibitor of nicotinic acetylcholine receptors (nAChRs). Here, we characterize propofol binding sites in a muscle-type nAChR by use of a photoreactive analog of propofol, 2-isopropyl-5-[3-(trifluoromethyl)-3H-diazirin-3-yl]phenol (AziPm). Based upon radioligand binding assays, AziPm stabilized the Torpedo nAChR in the resting state, whereas propofol stabilized the desensitized state. nAChR-rich membranes were photolabeled with [3H]AziPm, and labeled amino acids were identified by Edman degradation. [3H]AziPm binds at three sites within the nAChR transmembrane domain: (i) an intrasubunit site in the δ subunit helix bundle, photolabeling in the nAChR desensitized state (+agonist) δM2-18′ and two residues in δM1 (δPhe-232 and δCys-236); (ii) in the ion channel, photolabeling in the nAChR resting, closed channel state (−agonist) amino acids in the M2 helices (αM2-6′, βM2-6′ and -13′, and δM2-13′) that line the channel lumen (with photolabeling reduced by >90% in the desensitized state); and (iii) at the γ-α interface, photolabeling αM2-10′. Propofol enhanced [3H]AziPm photolabeling at αM2-10′. Propofol inhibited [3H]AziPm photolabeling within the δ subunit helix bundle at lower concentrations (IC50 = 40 μm) than it inhibited ion channel photolabeling (IC50 = 125 μm). These results identify for the first time a single intrasubunit propofol binding site in the nAChR transmembrane domain and suggest that this is the functionally relevant inhibitory binding site. PMID:23300078

  20. Use of acetylcholine mustard to study allosteric interactions at the M2 muscarinic receptor

    PubMed Central

    Suga, Hinako; Figueroa, Katherine W.; Ehlert, Frederick J.

    2008-01-01

    We explored the interaction of a nitrogen mustard derivative of acetylcholine with the human M2 muscarinic receptor expressed in CHO cells using the muscarinic radioligand, [3H]N-methylscopolamine. Acetylcholine mustard caused a concentration-dependent, first order loss of [3H]N-methylscopolamine binding at 37°C, with the half maximal rate constant occurring at 24 µM and a maximal rate constant of 0.16 min−1. We examined the effects of various ligands on the rate of alkylation of M2 receptors by acetylcholine mustard. N-methylscopolamine and McN-A-343 (4-(trimethylamino)-2-butynyl-(3-chlorophenyl)carbamate) competitively slowed the rate of alkylation, whereas the inhibition by gallamine reached a plateau at high concentrations, indicating allosteric inhibition. In contrast, WIN 51708 (17-β-hydroxy-17-α-ethynyl-5-α-androstano[3,2-b]pyrimido[1,2-a]benzimidazole) had no effect. We also measured the inhibition of [3H]NMS binding by acetylcholine mustard at 0°C, conditions under which there is little or no detectable covalent binding. In these experiments, the dissociation constant of the aziridinium ion of acetylcholine mustard was estimated to be 12.3 µM. In contrast, the parent mustard and alcoholic hydrolysis product of acetylcholine mustard were without effect. Our results show that measurement of the effects of ligands on the rate of inactivation of the orthosteric site by a small site-directed electrophile is a powerful method for discriminating competitive inhibition from allosterism. PMID:18682569

  1. Sigma receptor ligand N,N'-di-(ortho-tolyl)guanidine inhibits release of acetylcholine in the guinea pig ileum.

    PubMed

    Cambell, B G; Keana, J F; Weber, E

    1991-11-26

    The inhibition of stimulated contractions of the guinea pig ileum longitudinal muscle/myenteric plexus preparation by sigma receptor ligands has been previously described. In this study, the stimulated release of [3H]acetylcholine from cholinergic nerve terminals in this same preparation was monitored in the presence and absence of sigma receptor ligands. N,N'-Di-(orthotolyl)guanidine (DTG) and other compounds selective for the sigma receptor inhibited stimulated [3H]acetylcholine release. These results suggest that their inhibition of stimulated contractions in this preparation was mediated by inhibition of acetylcholine release.

  2. Nicotine increases GABAergic input on rat dorsal raphe serotonergic neurons through alpha7 nicotinic acetylcholine receptor.

    PubMed

    Hernández-Vázquez, F; Chavarría, K; Garduño, J; Hernández-López, S; Mihailescu, S P

    2014-12-15

    The dorsal raphe nucleus (DRN) contains large populations of serotonergic (5-HT) neurons. This nucleus receives GABAergic inhibitory afferents from many brain areas and from DRN interneurons. Both GABAergic and 5-HT DRN neurons express functional nicotinic acetylcholine receptors (nAChRs). Previous studies have demonstrated that nicotine increases 5-HT release and 5-HT DRN neuron discharge rate by stimulating postsynaptic nAChRs and by increasing glutamate and norepinephrine release inside DRN. However, the influence of nicotine on the GABAergic input to 5-HT DRN neurons was poorly investigated. Therefore, the aim of this work was to determine the effect of nicotine on GABAergic spontaneous inhibitory postsynaptic currents (sIPSCs) of 5-HT DRN neurons and the subtype of nAChR(s) involved in this response. Experiments were performed in coronal slices obtained from young Wistar rats. GABAergic sIPSCs were recorded from post hoc-identified 5-HT DRN neurons with the whole cell voltage patch-clamp technique. Administration of nicotine (1 μM) increased sIPSC frequency in 72% of identified 5-HT DRN neurons. This effect was not reproduced by the α4β2 nAChR agonist RJR-2403 and was not influenced by TTX (1 μM). It was mimicked by the selective agonist for α7 nAChR, PNU-282987, and exacerbated by the positive allosteric modulator of the same receptor, PNU-120596. The nicotine-induced increase in sIPSC frequency was independent on voltage-gated calcium channels and dependent on Ca(2+)-induced Ca(2+) release (CICR). These results demonstrate that nicotine increases the GABAergic input to most 5-HT DRN neurons, by activating α7 nAChRs and producing CICR in DRN GABAergic terminals.

  3. Expression of muscarinic acetylcholine and dopamine receptor mRNAs in rat basal ganglia

    SciTech Connect

    Weiner, D.M. Howard Hughes Medical Inst., Bethesda, MD ); Levey, A.I. Johns Hopkins Univ., Baltimore, MD ); Brann, M.R. )

    1990-09-01

    Within the basal ganglia, acetylcholine and dopamine play a central role in the extrapyramidal control of motor function. The physiologic effects of these neurotransmitters are mediated by a diversity of receptor subtypes, several of which have now been cloned. Muscarinic acetylcholine receptors are encoded by five genes (m1-m5), and of the two known dopamine receptor subtypes (D1 and D2) the D2 receptor gene has been characterized. To gain insight into the physiological roles of each of these receptor subtypes, the authors prepared oligodeoxynucleotide probes to localize receptor subtype mRNAs within the rat striatum and substantia nigra by in situ hybridization histochemistry. Within the striatum, three muscarinic (m1, m2, m4) receptor mRNAs and the D2 receptor mRNA were detected. The m1 mRNA was expressed in most neurons; the m2 mRNA, in neurons which were both very large and rare; and the m4 and D2 mRNAs, in 40-50% of the neurons, one-third of which express both mRNAs. Within the substantia nigra, pars compacta, only the m5 and D2 mRNAs were detected, and most neurons expressed both mRNAs. These data provide anatomical evidence for the identity of the receptor subtypes which mediate the diverse effects of muscarinic and dopaminergic drugs on basal ganglia function.

  4. Cocaine and phencyclidine inhibition of the acetylcholine receptor: analysis of the mechanisms of action based on measurements of ion flux in the millisecond-to-minute time region.

    PubMed Central

    Karpen, J W; Aoshima, H; Abood, L G; Hess, G P

    1982-01-01

    The effects of cocaine and of phencyclidine and procaine on acetylcholine receptor-controlled ion flux were measured in the millisecond-to-minute time region. Chemical kinetic measurements of ion flux were made in membrane vesicles prepared from the electric organ of Electrophorus electricus and in PC-12 cells, a sympathetic neuronal cell line. A quench-flow technique was used to measure ion flux in the millisecond-to-second range in membrane vesicles. Cocaine and phencyclidine both inhibit acetylcholine receptor-controlled ion flux, but by different mechanisms. Both compounds decrease the initial rate of ion flux, an effect observed with the local anesthetic procaine. This inhibition cannot be prevented by saturating concentrations of acetylcholine (1 mM). These results from chemical kinetic experiments are consistent with electrophysiological measurements which indicate that local anesthetics act by interfering with the movement of ions through receptor-formed channels. The chemical kinetic experiments, however, give additional information about the action of phencyclidine. They indicate that phencyclidine also increases the rate of receptor inactivation (desensitization) and changes the equilibrium between active and inactive receptor conformations, effects not observed in the presence of cocaine or procaine. PMID:6953408

  5. The nicotinic acetylcholine receptor: Binding of nitroxide analogs of a local anesthetic and a photoactivatable analog of phosphatidylserine

    SciTech Connect

    Blanton, M.P.

    1989-01-01

    Electron spin resonance was used to contrast the accessibility of tertiary and quaternary amine local anesthetics to their high affinity binding site in the desensitized Torpedo californica acetylcholine receptor (AchR). Preincubation of AchR-rich membranes with agonist resulted in a substantial reduction in the initial association of the quaternary amine local anesthetic C6SLMEI with the receptor. The time-dependent reduction in association follows a biphasic exponential function having rate constants of 0.19 min{sup {minus}1} and 0.03 min{sup {minus}1}. In contrast, agonist preincubation did not produce a comparable decrease in the association of C6SL, a tertiary amine analog, with the AchR. The results are modeled in two ways: (1) A charge gate near the channel mouth in the desensitized receptor limits access of the permanently charged cationic local anesthetic (C6SLMEI), but not for the uncharged form of the tertiary amine anesthetic C6SL. (2) A hydrophobic pathway, possibly through a corridor in the annular lipid surrounding receptor subunits, allows the uncharged form of C6SL to reach the high affinity binding site in the AchR. A photoactivatable analog of phosphatidylserine {sup 125}I 4-azido salicylic acid-phosphatidylserine ({sup 125}I ASA-PS) was use to label both Torpedo californica acetylcholine receptor-rich membranes and reconstituted AchR membranes. All four subunits of the AchR were found to incorporate label, with the {alpha} subunit incorporating approximately twice as much as each of the other subunits on a per mole basis. The regions of the AchR {alpha} subunit that incorporate {sup 125}I ASA-PS were mapped by Staphylococcus aureus V8 protease digestion. Eighty-one per cent of the incorporated label was localized to 11.7 and 10.1 kdal V8 cleavage fragments.

  6. Ryanodine receptors as leak channels.

    PubMed

    Guerrero-Hernández, Agustín; Ávila, Guillermo; Rueda, Angélica

    2014-09-15

    Ryanodine receptors are Ca(2+) release channels of internal stores. This review focuses on those situations and conditions that transform RyRs from a finely regulated ion channel to an unregulated Ca(2+) leak channel and the pathological consequences of this alteration. In skeletal muscle, mutations in either CaV1.1 channel or RyR1 results in a leaky behavior of the latter. In heart cells, RyR2 functions normally as a Ca(2+) leak channel during diastole within certain limits, the enhancement of this activity leads to arrhythmogenic situations that are tackled with different pharmacological strategies. In smooth muscle, RyRs are involved more in reducing excitability than in stimulating contraction so the leak activity of RyRs in the form of Ca(2+) sparks, locally activates Ca(2+)-dependent potassium channels to reduce excitability. In neurons the enhanced activity of RyRs is associated with the development of different neurodegenerative disorders such as Alzheimer and Huntington diseases. It appears then that the activity of RyRs as leak channels can have both physiological and pathological consequences depending on the cell type and the metabolic condition.

  7. Mutations in Dalpha1 or Dbeta2 nicotinic acetylcholine receptor subunits can confer resistance to neonicotinoids in Drosophila melanogaster.

    PubMed

    Perry, Trent; Heckel, David G; McKenzie, John A; Batterham, Philip

    2008-05-01

    Resistance to insecticides by modification of their molecular targets is a serious problem in chemical control of many arthropod pests. Neonicotinoids target the nicotinic acetylcholine receptor (nAChR) of arthropods. The spectrum of possible resistance-conferring mutations of this receptor is poorly understood. Prediction of resistance is complicated by the existence of multiple genes encoding the different subunits of this essential component of neurotransmission. We focused on the cluster of three Drosophila melanogaster nAChR subunit genes at cytological region 96A. EMS mutagenesis and selection for resistance to nitenpyram was performed on hybrids carrying a deficiency for this chromosomal region. Two complementation groups were defined for the four strains isolated. Molecular characterisation of the mutations found lesions in two nAChR subunit genes, Dalpha1 (encoding an alpha-type subunit) and Dbeta2 (beta-type). Mutations conferring resistance in beta-type receptors have not previously been reported, but we found several lesions in the Dbeta2 sequence, including locations distant from the predicted neonicotinoid-binding site. This study illustrates that mutations in a single-receptor subunit can confer nitenpyram resistance. Moreover, some of the mutations may protect the insect against nitenpyram by interfering with subunit assembly or channel activation, rather than affecting binding affinities of neonicotinoids to the channel.

  8. Desensitization and Down Regulation of Muscarinic Acetylcholine Receptors

    DTIC Science & Technology

    1988-06-22

    decrease in the relative densities ofNMlImuscarinic receptors which have a high affinity for the selective antagonist pirenzepine . Activation of...which is readily susceptible to regu- lation by receptor agonists, while the other is resistant in this regard. In control cells, both pirenzepine and... pirenzepine and carbamylcholine with [3H]N-methylsco- polamine showed that the receptor sites remaining upon desensitization are composed mainly of pirenzepine

  9. Use of Monoclonal Antibodies to Study the Structure and Function of Nicotinic Acetylcholine Receptors on Electric Organ and Muscle and to Determine the Structure of Nicotinic Acetylcholine Receptors on Neurons

    DTIC Science & Technology

    1988-03-16

    observed when the sections were coincubated in 400 nrL cold mAb 270. Adjacent Nissl -stained sections were used to identify labeled structures...affinity reagent for the acetylcholine receptor binding site. J Biol Chem 259:11662-11665. 7. Whiting PJ, JM Lindstrom. 1986 . Purification and...characterization of a nicotinic acetylcholine receptor from chick brain. Biochemistry 2502082-2093. 8. Whiting PJ, JM Lindstrom. 1986 . Pharmacological

  10. Acetylcholine receptor-inducing factor from chicken brain increases the level of mRNA encoding the receptor. alpha. subunit

    SciTech Connect

    Harris, D.A.; Falls, D.L.; Dill-Devor, R.M.; Fischbach, G.D. )

    1988-03-01

    A 42-kDa glycoprotein isolated from chicken brain, referred to as acetylcholine receptor-inducing activity (ARIA), that stimulates the rate of incorporation of acetylcholine receptors into the surface of chicken myotubes may play a role in the nerve-induced accumulation of receptors at developing neuromuscular synapses. Using nuclease-protection assays, the authors have found that ARIA causes a 2- to 16-fold increase in the level of mRNA encoding the {alpha} subunit of the receptor, with little or no change in the levels of {gamma}- and {delta}-subunit messengers. ARIA also increases the amount of a putative nuclear precursor of {alpha}-subunit mRNA, consistent with an activation of gene transcription. These results suggest that the concentration of {alpha} subunit may limit the rate of biosynthesis of the acetylcholine receptors in chicken myotubes. They also indicate that neuronal factors can regulate the expression of receptor subunit genes in a selective manner. Tetrodotoxin, 8-bromo-cAMP, and forskolin also increase the amount of {alpha}-subunit mRNA, with little change in the amount of {gamma}- and {delta}-subunit mRNAs. Unlike ARIA, however, these agents have little effect on the concentration of the {alpha}-subunit nuclear precursor.

  11. Prolonged administration of pyridostigmine impairs neuromuscular function with and without down-regulation of acetylcholine receptors.

    PubMed

    Richtsfeld, Martina; Yasuhara, Shingo; Fink, Heidrun; Blobner, Manfred; Martyn, J A Jeevendra

    2013-08-01

    The acetylcholinesterase inhibitor, pyridostigmine, is prophylactically administered to mitigate the toxic effects of nerve gas poisoning. The authors tested the hypothesis that prolonged pyridostigmine administration can lead to neuromuscular dysfunction and even down-regulation of acetylcholine receptors. Pyridostigmine (5 or 25 mg·kg·day) or saline was continuously administered via osmotic pumps to rats, and infused for either 14 or 28 days until the day of neuromuscular assessment (at day 14 or 28), or discontinued 24 h before neuromuscular assessment. Neurotransmission and muscle function were examined by single-twitch, train-of-four stimulation and 100-Hz tetanic stimulation. Sensitivity to atracurium and acetylcholine receptor number (quantitated by I-α-bungarotoxin) provided additional measures of neuromuscular integrity. Specific tetanic tensions (Newton [N]/muscle weight [g]) were significantly (P < 0.05) decreased at 14 (10.3 N/g) and 28 (11.1 N/g) days of 25 mg·kg·day pyridostigmine compared with controls (13.1-13.6 N/g). Decreased effective dose (0.81-1.05 vs. 0.16-0.45 mg/kg; P < 0.05) and decreased plasma concentration (3.02-3.27 vs. 0.45-1.37 μg/ml; P < 0.05) of atracurium for 50% paralysis (controls vs. 25 mg·kg·day pyridostigmine, respectively), irrespective of discontinuation of pyridostigmine, confirmed the pyridostigmine-induced altered neurotransmission. Pyridostigmine (25 mg·kg·day) down-regulated acetylcholine receptors at 28 days. Prolonged administration of pyridostigmine (25 mg·kg·day) leads to neuromuscular impairment, which can persist even when pyridostigmine is discontinued 24 h before assessment of neuromuscular function. Pyridostigmine has the potential to down-regulate acetylcholine receptors, but induces neuromuscular dysfunction even in the absence of receptor changes.

  12. Agonist activation of alpha7 nicotinic acetylcholine receptors via an allosteric transmembrane site.

    PubMed

    Gill, Jaskiran K; Savolainen, Mari; Young, Gareth T; Zwart, Ruud; Sher, Emanuele; Millar, Neil S

    2011-04-05

    Conventional nicotinic acetylcholine receptor (nAChR) agonists, such as acetylcholine, act at an extracellular "orthosteric" binding site located at the interface between two adjacent subunits. Here, we present evidence of potent activation of α7 nAChRs via an allosteric transmembrane site. Previous studies have identified a series of nAChR-positive allosteric modulators (PAMs) that lack agonist activity but are able to potentiate responses to orthosteric agonists, such as acetylcholine. It has been shown, for example, that TQS acts as a conventional α7 nAChR PAM. In contrast, we have found that a compound with close chemical similarity to TQS (4BP-TQS) is a potent allosteric agonist of α7 nAChRs. Whereas the α7 nAChR antagonist metyllycaconitine acts competitively with conventional nicotinic agonists, metyllycaconitine is a noncompetitive antagonist of 4BP-TQS. Mutation of an amino acid (M253L), located in a transmembrane cavity that has been proposed as being the binding site for PAMs, completely blocks agonist activation by 4BP-TQS. In contrast, this mutation had no significant effect on agonist activation by acetylcholine. Conversely, mutation of an amino acid located within the known orthosteric binding site (W148F) has a profound effect on agonist potency of acetylcholine (resulting in a shift of ∼200-fold in the acetylcholine dose-response curve), but had little effect on the agonist dose-response curve for 4BP-TQS. Computer docking studies with an α7 homology model provides evidence that both TQS and 4BP-TQS bind within an intrasubunit transmembrane cavity. Taken together, these findings provide evidence that agonist activation of nAChRs can occur via an allosteric transmembrane site.

  13. Cyclic imine toxins from dinoflagellates: a growing family of potent antagonists of the nicotinic acetylcholine receptors.

    PubMed

    Molgó, Jordi; Marchot, Pascale; Aráoz, Rómulo; Benoit, Evelyne; Iorga, Bogdan I; Zakarian, Armen; Taylor, Palmer; Bourne, Yves; Servent, Denis

    2017-08-01

    We present an overview of the toxicological profile of the fast-acting, lipophilic macrocyclic imine toxins, an emerging family of organic compounds associated with algal blooms, shellfish contamination and neurotoxicity. Worldwide, shellfish contamination incidents are expanding; therefore, the significance of these toxins for the shellfish food industry deserves further study. Emphasis is directed to the dinoflagellate species involved in their production, their chemical structures, and their specific mode of interaction with their principal natural molecular targets, the nicotinic acetylcholine receptors, or with the soluble acetylcholine-binding protein, used as a surrogate receptor model. The dinoflagellates Karenia selliformis and Alexandrium ostenfeldii / A. peruvianum have been implicated in the biosynthesis of gymnodimines and spirolides, while Vulcanodinium rugosum is the producer of pinnatoxins and portimine. The cyclic imine toxins are characterized by a macrocyclic skeleton comprising 14-27 carbon atoms, flanked by two conserved moieties, the cyclic imine and the spiroketal ring system. These phycotoxins generally display high affinity and broad specificity for the muscle type and neuronal nicotinic acetylcholine receptors, a feature consistent with their binding site at the receptor subunit interfaces, composed of residues highly conserved among all nAChRs, and explaining the diverse toxicity among animal species. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms. © 2017 International Society for Neurochemistry.

  14. On Some Structural Analogies between Acetylcholinesterase and the Macromolecular Receptor of Acetylcholine

    PubMed Central

    Changeux, Jean-Pierre; Podleski, Thomas; Meunier, Jean-Claude

    1969-01-01

    Several properties of the enzyme acetylcholinesterase (AChE) isolated in vitro are compared with those of the membrane receptor(s) of acetylcholine expressed by the in vivo electrical response of the electroplax membrane. AChE strongly binds in vitro effectors of the electroplax: agonists e.g., decamethonium or antagonists, e.g., d-tubocurarine and flaxedil. It also reacts covalently with an affinity labeling reagent of the acetylcholine receptor site(s) in vivo (TDF). Two classes of sites on AChE molecule account for the binding of these quaternary nitrogen containing compounds: (1) the anionic site of the active center and (2) noncatalytic "peripheral anionic centers" located outside the active center. A disulfide bond breaking agent, dithiothreitol (DTT) alters in a parallel manner the reaction of AChE and the excitable membrane of the electroplax to TDF. The irreversibility of TDF action is lost in both cases, after exposure to DTT. Both AChE and the acetylcholine receptor thus contain disulfide bonds—they are closely related but not necessarily identical proteins. PMID:19873643

  15. The structure of the third intracellular loop of the muscarinic acetylcholine receptor M2 subtype.

    PubMed

    Ichiyama, Susumu; Oka, Yoshiaki; Haga, Kazuko; Kojima, Shuichi; Tateishi, Yukihiro; Shirakawa, Masahiro; Haga, Tatsuya

    2006-01-09

    We have examined whether the long third intracellular loop (i3) of the muscarinic acetylcholine receptor M2 subtype has a rigid structure. Circular dichroism (CD) and nuclear magnetic resonance spectra of M2i3 expressed in and purified from Escherichia coli indicated that M2i3 consists mostly of random coil. In addition, the differential CD spectrum between the M2 and M2deltai3 receptors, the latter of which lacks most of i3 except N- and C-terminal ends, gave no indication of secondary structure. These results suggest that the central part of i3 of the M2 receptor has a flexible structure.

  16. Crystal structures of the M1 and M4 muscarinic acetylcholine receptors

    DOE PAGES

    Thal, David M.; Sun, Bingfa; Feng, Dan; ...

    2016-03-09

    Muscarinic M1–M5 acetylcholine receptors are G-protein-coupled receptors that regulate many vital functions of the central and peripheral nervous systems. In particular, the M1 and M4 receptor subtypes have emerged as attractive drug targets for treatments of neurological disorders, such as Alzheimer’s disease and schizophrenia, but the high conservation of the acetylcholine-binding pocket has spurred current research into targeting allosteric sites on these receptors. In this paper, we report the crystal structures of the M1 and M4 muscarinic receptors bound to the inverse agonist, tiotropium. Comparison of these structures with each other, as well as with the previously reported M2 andmore » M3 receptor structures, reveals differences in the orthosteric and allosteric binding sites that contribute to a role in drug selectivity at this important receptor family. Finally, we also report identification of a cluster of residues that form a network linking the orthosteric and allosteric sites of the M4 receptor, which provides new insight into how allosteric modulation may be transmitted between the two spatially distinct domains.« less

  17. Crystal Structures of the M1 and M4 Muscarinic Acetylcholine Receptors

    PubMed Central

    Thal, David M.; Sun, Bingfa; Feng, Dan; Nawaratne, Vindhya; Leach, Katie; Felder, Christian C.; Bures, Mark G.; Evans, David A.; Weis, William I.; Bachhawat, Priti; Kobilka, Tong Sun; Sexton, Patrick M.; Kobilka, Brian K.; Christopoulos, Arthur

    2016-01-01

    Summary Muscarinic M1–M5 acetylcholine receptors are G protein-coupled receptors (GPCRs) that regulate many vital functions of the central and peripheral nervous systems. In particular, the M1 and M4 receptor subtypes have emerged as attractive drug targets for treatments of neurological disorders, such as Alzheimer's disease and schizophrenia, but the high conservation of the acetylcholine-binding pocket has spurred current research into targeting allosteric sites on these receptors. Here, we report the first crystal structures of the M1 and M4 muscarinic receptors bound to the inverse agonist, tiotropium. Comparison of these structures to each other, as well as the previously reported M2 and M3 receptor structures, reveals differences in the orthosteric and allosteric binding sites that contribute to a role in drug selectivity at this important receptor family. We also report identification of a cluster of residues that form a network linking the orthosteric and allosteric sites of the M4 receptor, which provides new insight into how allosteric modulation may be transmitted between the two spatially distinct domains. PMID:26958838

  18. A new family of Conus peptides targeted to the nicotinic acetylcholine receptor.

    PubMed

    Hopkins, C; Grilley, M; Miller, C; Shon, K J; Cruz, L J; Gray, W R; Dykert, J; Rivier, J; Yoshikami, D; Olivera, B M

    1995-09-22

    In this work, a new family of Conus peptides, the alpha A-conotoxins, which target the nicotinic acetylcholine receptor, is defined. The first members of this family have been characterized from the eastern Pacific species, Conus purpurascens (the purple cone); three peptides that cause paralysis in fish were purified and characterized from milked venom. The sequence and disulfide bonding pattern of one of these, alpha A-conotoxin PIVA, is as follows: [formula: see text] where O represents trans-4-hydroxyproline. The two other peptides purified from C. purpurascens venom are the under-hydroxylated derivatives, [Pro13]alpha A-conotoxin PIVA and [Pro7,13]alpha A-conotoxin PIVA. The peptides have been chemically synthesized in a biologically active form. Both electrophysiological experiments and competition binding with alpha-bungarotoxin demonstrate that alpha A-PIVA acts as an antagonist of the nicotinic acetylcholine receptor at the postsynaptic membrane.

  19. Identification of a novel nicotinic acetylcholine receptor structural subunit expressed in goldfish retina

    PubMed Central

    1989-01-01

    A new non-alpha (n alpha) member of the nicotinic acetylcholine receptor (nAChR) gene family designated GFn alpha-2 has been identified in goldfish retina by cDNA cloning. This cDNA clone encodes a protein with structural features common to all nAChR subunits sequenced to date; however, unlike all known alpha-subunits of the receptor, it lacks the cysteine residues believed to be involved in acetylcholine binding. Northern blot analysis shows multiple transcripts hybridizing to the GFn alpha-2 cDNA in goldfish retina but undetectable levels of hybridizable RNA in brain, muscle, or liver. S1 nuclease protection experiments indicate that multiple mRNAs are expressed in retina with regions identical or very similar to the GFn alpha-2 sequence. In situ hybridization shows that the gene encoding GFn alpha-2 is expressed predominantly in the ganglion cell layer of the retina. PMID:2465296

  20. Morphine inhibits an alpha9-acetylcholine nicotinic receptor-mediated response by a mechanism which does not involve opioid receptors.

    PubMed

    Lioudyno, M I; Verbitsky, M; Holt, J C; Elgoyhen, A B; Guth, P S

    2000-11-01

    Nicotinic acetylcholine (nACh) receptors are known to be targets for modulation by a number of substances, including the opiates. It is known that acetylcholine (ACh) coexists with opioid peptides in cochlear efferent neurons, and such a colocalization has been proposed for the vestibular system. In the present study we test the hypothesis that morphine, an opioid receptor agonist with a broad spectrum of selectivity, modulates alpha9nACh receptor-mediated responses in frog vestibular hair cells. Morphine dose-dependently and reversibly inhibited ACh-induced currents as recorded by the perforated patch-clamp method. In the presence of morphine the ACh dose-response curve was shifted to the right in a parallel fashion, suggesting a competitive interaction. However, naloxone did not antagonize the inhibition produced by morphine. To test the hypothesis that morphine could interact with the alpha9nACh receptor without the involvement of opioid receptors, experiments were performed using Xenopus laevis oocytes injected with the alpha9nACh receptor cRNA. The currents activated by ACh in Xenopus oocytes, a system that lacks opioid receptors, were also dose-dependently inhibited by morphine. We conclude that morphine inhibits the alpha9nACh receptor-mediated response in hair cells and Xenopus oocytes through a mechanism which does not involve opioid receptors but may be a direct block of the alpha9nACh receptor.

  1. In vivo Therapy with Monoclonal Anti-I-A Antibody Suppresses Immune Responses to Acetylcholine Receptor

    NASA Astrophysics Data System (ADS)

    Waldor, Matthew K.; Sriram, Subramaniam; McDevitt, Hugh O.; Steinman, Lawrence

    1983-05-01

    A monoclonal antibody to I-A gene products of the immune response gene complex attenuates both humoral and cellular responses to acetylcholine receptor and appears to suppress clinical manifestations of experimental autoimmune myasthenia gravis. This demonstrates that use of antibodies against immune response gene products that are associated with susceptibility to disease may be feasible for therapy in autoimmune conditions such as myasthenia gravis.

  2. Synaptic modulation of excitatory synaptic transmission by nicotinic acetylcholine receptors in spinal ventral horn neurons.

    PubMed

    Mine, N; Taniguchi, W; Nishio, N; Izumi, N; Miyazaki, N; Yamada, H; Nakatsuka, T; Yoshida, M

    2015-04-02

    Nicotinic acetylcholine receptors (nAChRs) are distributed widely in the central nervous system and play important roles in higher brain functions, including learning, memory, and recognition. However, functions of the cholinergic system in spinal motoneurons remain poorly understood. In this study, we investigated the actions of presynaptic and postsynaptic nAChRs in spinal ventral horn neurons by performing whole-cell patch-clamp recordings on lumbar slices from male rats. The application of nicotine or acetylcholine generated slow inward currents and increased the frequency and amplitude of spontaneous excitatory postsynaptic currents (sEPSCs). Slow inward currents by acetylcholine or nicotine were not inhibited by tetrodotoxin (TTX) or glutamate receptor antagonists. In the presence of TTX, the frequency and amplitude of miniature excitatory postsynaptic currents (mEPSCs) were also increased by acetylcholine or nicotine. A selective α4β2 nicotinic receptor antagonist, dihydro-β-erythroidine hydrobromide (DhβE), significantly decreased nicotine-induced inward currents without affecting the enhancement of sEPSCs and mEPSCs. In addition, a selective α7 nicotinic receptor antagonist, methyllycaconitine, did not affect either nicotine-induced inward currents or the enhancement of sEPSCs and mEPSCs. These results suggest that α4β2 AChRs are localized at postsynaptic sites in the spinal ventral horn, non-α4β2 and non-α7 nAChRs are located presynaptically, and nAChRs enhance excitatory synaptic transmission in the spinal ventral horn.

  3. 5-HT1A and muscarinic acetylcholine receptors jointly regulate passive avoidance behavior.

    PubMed

    Riekkinen, P

    1994-09-01

    The present study was designed to investigate the effects of combined stimulation of 5-HT1A or 5-HT2 receptors and blockade of muscarinic acetylcholine receptors on passive avoidance behavior. Administration of 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), a 5-HT1A receptor agonist, and 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI), a 5-HT2 receptor agonist, impaired passive avoidance acquisition (pre-training injections) and consolidation (post-training injections) performance. Ketanserin, a 5-HT2 receptor antagonist, blocked the performance-impairing effect of DOI on passive avoidance consolidation. Interestingly, 5-HT receptor agonists may affect passive avoidance consolidation only during the immediate post-training period, as passive avoidance testing performance was not modulated by 8-OH-DPAT or DOI injected 30 min after the training trial. Furthermore, passive avoidance retention (pre-testing injections) performance was impaired only by the highest dose of 8-OH-DPAT, and DOI had no effect on passive avoidance retention. Next, the effects of combined 5-HT and acetylcholine receptor manipulations on passive avoidance behavior were studied. The effects on passive avoidance behavior of a combination of subthreshold doses of scopolamine, a muscarinic acetylcholine receptor antagonist, and 8-OH-DPAT were compared to those of a single high dose of scopolamine. A combination of small doses of scopolamine and 8-OH-DPAT impaired acquisition and consolidation of passive avoidance performance, but a single high dose of scopolamine impaired only acquisition performance. The small dose of 8-OH-DPAT also aggravated medial septal lesion-induced passive avoidance acquisition and consolidation failure. The combination of small doses of scopolamine and DOI had no effect on passive avoidance behavior. Peripherally acting scopolamine methylbromide alone or in combination with 8-OH-DPAT had no effect on passive avoidance performance. Motor activity in a swimming pool

  4. The Nicotinic Acetylcholine Receptor α5 Subunit Plays a Key Role in Attention Circuitry and Accuracy

    PubMed Central

    Bailey, Craig D. C.; De Biasi, Mariella; Fletcher, Paul J.; Lambe, Evelyn K.

    2010-01-01

    Stimulation of the prefrontal cortex by acetylcholine is critical for attention; however, the cellular mechanisms underlying its influence on attention pathways within the brain are not well understood. Pyramidal neurons in layer VI of the prefrontal cortex are believed to play an important role in this process because they are excited by acetylcholine and provide a major source of feedback projections to the thalamus. Here, we show using whole-cell electrophysiology that the relatively rare α5 subunit of the nicotinic acetylcholine receptor powerfully enhances nicotinic currents in layer VI pyramidal neurons in prefrontal cortical brain slices from adult mice. In addition, behavioral experiments using the five-choice serial reaction time test show that the presence of the nicotinic receptor α5 subunit also increases the accuracy of adult mice on this visual attention task under highly demanding conditions. Together, these findings demonstrate a novel and important role for the nicotinic receptor α5 subunit in adult brain circuitry required for attentional performance. PMID:20610759

  5. Expression of a Drosophila melanogaster acetylcholine receptor-related gene in the central nervous system

    SciTech Connect

    Wadsworth, S.C.; Rosenthal, L.S.; Kammermeyer, K.L.; Potter, M.B.; Nelson, D.J.

    1988-02-01

    The authors isolated Drosophila melanogaster genomic sequences with nucleotide and amino acid sequence homology to subunits of vertebrate acetylcholine receptor by hybridization with a Torpedo acetylcholine receptor subunit cDNA probe. Five introns are present in the portion of the Drosophila gene encoding the unprocessed protein and are positionally conserved relative to the human acetylcholine receptor alpha-subunit gene. The Drosophila genomic clone hybridized to salivary gland polytene chromosome 3L within region 64B and was termed AChR64B. A 3-kilobasae poly(A)-containing transcript complementary to the AChR64B clone was readily detectable by RNA blot hybridizations during midembryogenesis, during metamorphosis, and in newly enclosed adults. AChR64B transcripts were localized to the cellular regions of the central nervous system during embryonic, larval, pupal, and adult stages of development. During metamorphosis, a temporal relationship between the morphogenesis of the optic lobe and expression of AChR64B transcripts was observed.

  6. Effects of dichlorobenzene on acetylcholine receptors in human neuroblastoma SH-SY5Y cells.

    PubMed

    Yan, Ren-Ming; Chiung, Yin-Mei; Pan, Chien-Yuan; Liu, Jenn-Hwa; Liu, Pei-Shan

    2008-11-20

    para-Dichlorobenzene (DCB), a deodorant and an industrial chemical, is a highly volatile compound and is known to be an indoor air contaminant. Because of its widespread use and volatility, the toxicity of DCB presents a concern to industrial workers and public. Some toxic aspects of DCB have already been focused but its effects on neuronal signal transduction have been hitherto unknown. The effects of DCB on the cytosolic calcium homeostasis are investigated in human neuroblastoma SH-SY5Y cells in this study. DCB, above 200 microM, was found to induce a rise in cytosolic calcium concentration that could not be counteracted by nicotinic acetylcholine receptor (nAChR) and muscarinic acetylcholine receptor (mAChR) antagonists but was partially inhibited by thapsigargin. To understand the actions of DCB on the acetylcholine receptors, we investigated its effects on the changes of cytosolic calcium concentration following nicotinic AChR stimulation with epibatidine and muscarinic AChR stimulation with methacholine in human neuroblastoma SH-SY5Y cells. DCB inhibited the cytosolic calcium concentration rise induced by epibatidine and methacholine with respective IC(50)s of 34 and 294 microM. The inhibitions of DCB were not the same as thapsigargin's inhibition. In the electrophysiological observations, DCB blocked the influx currents induced by epibatidine. Our findings suggest that DCB interferes with the functional activities of AChR, including its coupling influx currents and cytosolic calcium elevations.

  7. miRNAome analysis of the mammalian neuronal nicotinic acetylcholine receptor gene family.

    PubMed

    Hogan, Eric M; Casserly, Alison P; Scofield, Michael D; Mou, Zhongming; Zhao-Shea, Rubing; Johnson, Chris W; Tapper, Andrew R; Gardner, Paul D

    2014-12-01

    Nicotine binds to and activates a family of ligand-gated ion channels, neuronal nicotinic acetylcholine receptors (nAChRs). Chronic nicotine exposure alters the expression of various nAChR subtypes, which likely contributes to nicotine dependence; however, the underlying mechanisms regulating these changes remain unclear. A growing body of evidence indicates that microRNAs (miRNAs) may be involved in nAChR regulation. Using bioinformatics, miRNA library screening, site-directed mutagenesis, and gene expression analysis, we have identified a limited number of miRNAs that functionally interact with the 3'-untranslated regions (3' UTRs) of mammalian neuronal nAChR subunit genes. In silico analyses revealed specific, evolutionarily conserved sites within the 3' UTRs through which the miRNAs regulate gene expression. Mutating these sites disrupted miRNA regulation confirming the in silico predictions. In addition, the miRNAs that target nAChR 3' UTRs are expressed in mouse brain and are regulated by chronic nicotine exposure. Furthermore, we show that expression of one of these miRNAs, miR-542-3p, is modulated by nicotine within the mesocorticolimbic reward pathway. Importantly, overexpression of miR-542-3p led to a decrease in the protein levels of its target, the nAChR β2 subunit. Bioinformatic analysis suggests that a number of the miRNAs play a general role in regulating cholinergic signaling. Our results provide evidence for a novel mode of nicotine-mediated regulation of the mammalian nAChR gene family.

  8. An unusual phospholipase A₂ from puff adder Bitis arietans venom--a novel blocker of nicotinic acetylcholine receptors.

    PubMed

    Vulfius, Catherine A; Gorbacheva, Elena V; Starkov, Vladislav G; Osipov, Alexey V; Kasheverov, Igor E; Andreeva, Tatyana V; Astashev, Maxim E; Tsetlin, Victor I; Utkin, Yuri N

    2011-04-01

    The venoms of snakes from Viperidae family mainly influence the function of various blood components. However, the published data indicate that these venoms contain also neuroactive components, the most studied being neurotoxic phospholipases A₂ (PLA₂s). Earlier we have shown (Gorbacheva et al., 2008) that several Viperidae venoms blocked nicotinic acetylcholine receptors (nAChRs) and voltage-gated Ca²+ channels in isolated identified neurons of the fresh-water snail Lymnaea stagnalis. In this paper, we report on isolation from puff adder Bitis arietans venom and characterization of a novel protein bitanarin that reversibly blocks nAChRs. To isolate the protein, the venom of B. arietans was fractionated by gel-filtration, ion-exchange and reversed phase chromatography and fractions obtained were screened for capability to block nAChRs. The isolated protein competed with [¹²⁵I]iodinated α-bungarotoxin for binding to human α7 and Torpedo californica nAChRs, as well as to acetylcholine-binding protein from L. stagnalis, the IC₅₀ being 20 ± 1.5, 4.3 ± 0.2, and 10.6 ± 0.6 μM, respectively. It also blocked reversibly acetylcholine-elicited current in isolated L. stagnalis neurons with IC₅₀ of 11.4 μM. Mass-spectrometry analysis determined the molecular mass of 27.4 kDa and the presence of 28 cysteine residues forming 14 disulphide bonds. Edman degradation of the protein and tryptic fragments showed its similarity to PLA₂s from snake venoms. Indeed, the protein possessed high PLA₂ activity, which was 1.95 mmol/min/μmol. Bitanarin is the first described PLA₂ that contains 14 disulphide bonds and the first nAChR blocker possessing PLA₂ activity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. A nicotinic acetylcholine receptor transmembrane point mutation (G275E) associated with resistance to spinosad in Frankliniella occidentalis

    PubMed Central

    Puinean, Alin M; Lansdell, Stuart J; Collins, Toby; Bielza, Pablo; Millar, Neil S

    2013-01-01

    High levels of resistance to spinosad, a macrocyclic lactone insecticide, have been reported previously in western flower thrips, Frankliniella occidentalis, an economically important insect pest of vegetables, fruit and ornamental crops. We have cloned the nicotinic acetylcholine receptor (nAChR) α6 subunit from F. occidentalis (Foα6) and compared the nucleotide sequence of Foα6 from susceptible and spinosad-resistant insect populations (MLFOM and R1S respectively). A single nucleotide change has been identified in Foα6, resulting in the replacement of a glycine (G) residue in susceptible insects with a glutamic acid (E) in resistant insects. The resistance-associated mutation (G275E) is predicted to lie at the top of the third α-helical transmembrane domain of Foα6. Although there is no direct evidence identifying the location of the spinosad binding site, the analogous amino acid in the C. elegans glutamate-gated chloride channel lies in close proximity (4.4 Å) to the known binding site of ivermectin, another macrocyclic lactone pesticide. The functional consequences of the resistance-associated mutation have been examined in the human nAChR α7 subunit. Introduction of an analogous (A272E) mutation in α7 abolishes the modulatory effects of spinosad whilst having no significant effect upon activation by acetylcholine, consistent with spinosad having an allosteric mechanism of action. PMID:23016960

  10. Marine alkaloids (-)-pictamine and (-)-lepadin B block neuronal nicotinic acetylcholine receptors.

    PubMed

    Tsuneki, Hiroshi; You, Yueren; Toyooka, Naoki; Sasaoka, Toshiyasu; Nemoto, Hideo; Dani, John A; Kimura, Ikuko

    2005-04-01

    Ascidians (sea squirts) contain a wealth of alkaloids, but their influence over neuronal nicotinic acetylcholine receptors (nAChRs) has not been evaluated. In this study, we examined the effects of two synthetic compounds, (-)-pictamine, a quinolizidine alkaloid from Clavelina picta, and (-)-lepadin B, a decahydroquinoline alkaloid from Clavelina lepadiformis, on major types of neuronal nicotinic receptors (alpha4beta2 and alpha7) expressed in Xenopus oocytes. We found that these alkaloids are potent blockers at these receptors: acetylcholine-elicited currents through alpha4beta2 and alpha7 receptors were blocked by (-)-pictamine with IC(50) values of 1.5 microM and 1.3 microM, respectively, and by (-)-lepadin B with IC(50) values of 0.9 microM and 0.7 microM, respectively. Interestingly, no recovery was observed after the removal of (-)-pictamine in oocytes expressing alpha4beta2 receptors, whereas the inhibited alpha7 currents quickly recovered after the removal of (-)-pictamine. Since there are few compounds that elicit irreversible blocks of alpha4beta2 receptors, (-)-pictamine will be a novel, valuable tool to remove the alpha4beta2-nAChR action from neuronal activities mediated by these two major types of nAChRs.

  11. Local Application of Drugs to Study Nicotinic Acetylcholine Receptor Function in Mouse Brain Slices

    PubMed Central

    Engle, Staci E.; Broderick, Hilary J.; Drenan, Ryan M.

    2012-01-01

    Tobacco use leads to numerous health problems, including cancer, heart disease, emphysema, and stroke. Addiction to cigarette smoking is a prevalent neuropsychiatric disorder that stems from the biophysical and cellular actions of nicotine on nicotinic acetylcholine receptors (nAChRs) throughout the central nervous system. Understanding the various nAChR subtypes that exist in brain areas relevant to nicotine addiction is a major priority. Experiments that employ electrophysiology techniques such as whole-cell patch clamp or two-electrode voltage clamp recordings are useful for pharmacological characterization of nAChRs of interest. Cells expressing nAChRs, such as mammalian tissue culture cells or Xenopus laevis oocytes, are physically isolated and are therefore easily studied using the tools of modern pharmacology. Much progress has been made using these techniques, particularly when the target receptor was already known and ectopic expression was easily achieved. Often, however, it is necessary to study nAChRs in their native environment: in neurons within brain slices acutely harvested from laboratory mice or rats. For example, mice expressing "hypersensitive" nAChR subunits such as α4 L9′A mice 1 and α6 L9′S mice 2, allow for unambiguous identification of neurons based on their functional expression of a specific nAChR subunit. Although whole-cell patch clamp recordings from neurons in brain slices is routinely done by the skilled electrophysiologist, it is challenging to locally apply drugs such as acetylcholine or nicotine to the recorded cell within a brain slice. Dilution of drugs into the superfusate (bath application) is not rapidly reversible, and U-tube systems are not easily adapted to work with brain slices. In this paper, we describe a method for rapidly applying nAChR-activating drugs to neurons recorded in adult mouse brain slices. Standard whole-cell recordings are made from neurons in slices, and a second micropipette filled with a drug of

  12. Metabotropic GABAB receptors mediate GABA inhibition of acetylcholine release in the rat neuromuscular junction.

    PubMed

    Malomouzh, Artem I; Petrov, Konstantin A; Nurullin, Leniz F; Nikolsky, Evgeny E

    2015-12-01

    Gamma-aminobutyric acid (GABA) is an amino acid which acts as a neurotransmitter in the central nervous system. Here, we studied the effects of GABA on non-quantal, spontaneous, and evoked quantal acetylcholine (ACh) release from motor nerve endings. We found that while the application of 10 μM of GABA had no effect on spontaneous quantal ACh release, as detected by the frequency of miniature endplate potentials, GABA reduced the non-quantal ACh release by 57%, as determined by the H-effect value. Finally, the evoked quantal ACh release, estimated by calculating the quantal content of full-sized endplate potentials (EPPs), was reduced by 34%. GABA's inhibitory effect remained unchanged after pre-incubation with picrotoxin, an ionotropic GABAA receptor blocker, but was attenuated following application of the GABAB receptor blocker CGP 55845, which itself had no effect on ACh release. An inhibitor of phospholipase C, U73122, completely prevented the GABA-induced decrease in ACh release. Immunofluorescence demonstrated the presence of both subunits of the GABAB receptor (GABAB R1 and GABAB R2) in the neuromuscular junction. These findings suggest that metabotropic GABAB receptors are expressed in the mammalian neuromuscular synapse and their activation results in a phospholipase C-mediated reduction in the intensity of non-quantal and evoked quantal ACh release. We investigated the effect of gamma-aminobutyric acid (GABA) on neuromuscular transmission. GABA reduced the non-quantal and evoked quantal release of acetylcholine. These effects are mediated by GABAB receptors and are implemented via phospholipase C (PLC) activation. Our findings suggest that in the mammalian neuromuscular synapse, metabotropic GABAB receptors are expressed and their activation results in a reduction in the intensity of acetylcholine release. © 2015 International Society for Neurochemistry.

  13. Non-competitive Inhibition of Nicotinic Acetylcholine Receptors by Ladybird Beetle Alkaloids.

    PubMed

    Leong, Ron L; Xing, Hong; Braekman, Jean-Claude; Kem, William R

    2015-10-01

    Ladybird beetles (Family Coccinellidae) secrete an alkaloid rich venom from their leg joints that protects them from predators. Coccinellines, the major venom constituents, are alkaloids composed of three fused piperidine rings that share a common nitrogen atom. Although many coccinellines have been isolated and chemically characterized, their pharmacological properties are essentially unknown. Using radioligand binding and functional assays we investigated the actions of several coccinellines on skeletal muscle and α7 nicotinic acetylcholine receptors (nAChRs). The alkaloids were shown to displace the specific binding of tritiated piperidyl-N-(1-(2-thienyl)cyclohexyl)-3,4-piperidine ([(3)H]-TCP), which has been shown to bind deep within the ion channel of the electric fish (Torpedo) muscle nAChR. The stereoisomers precoccinelline and hippodamine (whose nitrogens are predicted to be ionized at physiological pH) and their respective analogs N-methyl-precoccinelline and N-methyl-hippodamine (whose quaternary nitrogens are permanently charged) displayed similar IC50s for inhibition of [(3)H]-TCP binding. However, the corresponding precoccinelline and hippodamine N-oxides, coccinelline and convergine (which have an electronegative oxygen bonded to an electropositive nitrogen) displayed significantly higher binding IC50s. Finally, exochomine, a dimeric coccinelline containing the hippodamine structure, displayed the highest IC50 (lowest affinity) for displacing specific [(3)H]-TCP binding. The presence of a desensitizing concentration (10(-3) M) of carbachol (CCh) had little or no effect on the affinity of the Torpedo nAChR for the three coccinellines tested. High concentrations of the coccinellid alkaloids did not affect binding of [(3)H]-cytisine to Torpedo receptor ACh binding sites. Inhibition of the alpha7 nAChR with pre-equilibrated precoccinelline was insurmountable with respect to ACh concentration. We conclude that the coccinellines bind to one or more

  14. Two types of muscarinic acetylcholine receptors in Drosophila and other arthropods.

    PubMed

    Collin, Caitlin; Hauser, Frank; Gonzalez de Valdivia, Ernesto; de Valdivia, Ernesto Gonzalez; Li, Shizhong; Reisenberger, Julia; Carlsen, Eva M M; Khan, Zaid; Hansen, Niels O; Puhm, Florian; Søndergaard, Leif; Niemiec, Justyna; Heninger, Magdalena; Ren, Guilin R; Grimmelikhuijzen, Cornelis J P

    2013-09-01

    Muscarinic acetylcholine receptors (mAChRs) play a central role in the mammalian nervous system. These receptors are G protein-coupled receptors (GPCRs), which are activated by the agonists acetylcholine and muscarine, and blocked by a variety of antagonists. Mammals have five mAChRs (m1-m5). In this study, we cloned two structurally related GPCRs from the fruit fly Drosophila melanogaster, which, after expression in Chinese hamster ovary cells, proved to be muscarinic acetylcholine receptors. One mAChR (the A-type; encoded by gene CG4356) is activated by acetylcholine (EC50, 5 × 10(-8) M) and muscarine (EC50, 6 × 10(-8) M) and blocked by the classical mAChR antagonists atropine, scopolamine, and 3-quinuclidinyl-benzilate (QNB), while the other (the B-type; encoded by gene CG7918) is also activated by acetylcholine, but has a 1,000-fold lower sensitivity to muscarine, and is not blocked by the antagonists. A- and B-type mAChRs were also cloned and functionally characterized from the red flour beetle Tribolium castaneum. Recently, Haga et al. (Nature 2012, 482: 547-551) published the crystal structure of the human m2 mAChR, revealing 14 amino acid residues forming the binding pocket for QNB. These residues are identical between the human m2 and the D. melanogaster and T. castaneum A-type mAChRs, while many of them are different between the human m2 and the B-type receptors. Using bioinformatics, one orthologue of the A-type and one of the B-type mAChRs could also be found in all other arthropods with a sequenced genome. Protostomes, such as arthropods, and deuterostomes, such as mammals and other vertebrates, belong to two evolutionarily distinct lineages of animal evolution that split about 700 million years ago. We found that animals that originated before this split, such as cnidarians (Hydra), had two A-type mAChRs. From these data we propose a model for the evolution of mAChRs.

  15. Selectivity of lynx proteins on insect nicotinic acetylcholine receptors in the brown planthopper, Nilaparvata lugens.

    PubMed

    Yang, B; Yao, X; Gu, S; Zhang, Y; Liu, Z; Zhang, Y

    2010-06-01

    Neuronal nicotinic acetylcholine receptors (nAChRs) are major excitatory neurotransmitter receptors in both vertebrates and invertebrates. Two lynx proteins (Nl-lynx1 and Nl-lynx2) have been identified in the brown planthopper, Nilaparvata lugens, which act as modulators on insect nAChRs. In the present study, two lynx proteins were found to act on the triplet receptor Nlalpha1/Nlalpha2/beta2 expressed in Xenopus oocytes, increasing agonist-evoked macroscopic currents, but not changing agonist sensitivity and desensitization properties. Nl-lynx1 and Nl-lynx2 increased I(max) (maximum responses) of acetylcholine to 4.85-fold and 2.40-fold of that of Nlalpha1/Nlalpha2/beta2 alone, and they also increased I(max) of imidacloprid to 2.57-fold and 1.25-fold. Although, on another triplet nAChRs Nlalpha3/Nlalpha8/beta2, Nl-lynx2 increased I(max) of acetylcholine and imidacloprid to 3.63-fold and 2.16-fold, Nl-lynx1 had no effects on I(max) of either acetylcholine or imidacloprid. The results demonstrate the selectivity of lynx proteins for different insect nAChR subtypes. This selectivity was also identified in native N. Lugens. Co-immunoprecipitation was found between Nlalpha1/Nlalpha2-containing receptors and both Nl-lynx1 and Nl-lynx2, but was only found between Nlalpha3/Nlalpha8-containing receptors and Nl-lynx2. When the previously identified Nlalpha1(Y151S) and Nlalpha3(Y151S) mutations were included (Nlalpha1(Y151S)/Nlalpha2/beta2 and Nlalpha3(Y151S)/Nlalpha8/beta2), the increase in I(max) of imidacloprid, but not acetylcholine, caused by co-expression of Nl-lynx1 and Nl-lynx2 was more noticeable than that of their wildtype counterparts. Taken together, these data suggest that two modulators, Nl-lynx1 and Nl-lynx2, might serve as an influencing factor in target site insensitivity in N. lugens, such as Y151S mutation.

  16. In vitro selection of RNA molecules that displace cocaine from the membrane-bound nicotinic acetylcholine receptor.

    PubMed

    Ulrich, H; Ippolito, J E; Pagán, O R; Eterović, V A; Hann, R M; Shi, H; Lis, J T; Eldefrawi, M E; Hess, G P

    1998-11-24

    The nicotinic acetylcholine receptor (AChR) controls signal transmission between cells in the nervous system. Abused drugs such as cocaine inhibit this receptor. Transient kinetic investigations indicate that inhibitors decrease the channel-opening equilibrium constant [Hess, G. P. & Grewer, C. (1998) Methods Enzymol. 291, 443-473]. Can compounds be found that compete with inhibitors for their binding site but do not change the channel-opening equilibrium? The systematic evolution of RNA ligands by exponential enrichment methodology and the AChR in Torpedo californica electroplax membranes were used to find RNAs that can displace inhibitors from the receptor. The selection of RNA ligands was carried out in two consecutive steps: (i) a gel-shift selection of high-affinity ligands bound to the AChR in the electroplax membrane, and (ii) subsequent use of nitrocellulose filters to which both the membrane-bound receptor and RNAs bind strongly, but from which the desired RNA can be displaced from the receptor by a high-affinity AChR inhibitor, phencyclidine. After nine selection rounds, two classes of RNA molecules that bind to the AChR with nanomolar affinities were isolated and sequenced. Both classes of RNA molecules are displaced by phencyclidine and cocaine from their binding site on the AChR. Class I molecules are potent inhibitors of AChR activity in BC3H1 muscle cells, as determined by using the whole-cell current-recording technique. Class II molecules, although competing with AChR inhibitors, do not affect receptor activity in this assay; such compounds or derivatives may be useful for alleviating the toxicity experienced by millions of addicts.

  17. In vitro selection of RNA molecules that displace cocaine from the membrane-bound nicotinic acetylcholine receptor

    PubMed Central

    Ulrich, Henning; Ippolito, Joseph E.; Pagán, Oné R.; Eterovic, Vesna A.; Hann, Richard M.; Shi, Hua; Lis, John T.; Eldefrawi, Mohyee E.; Hess, George P.

    1998-01-01

    The nicotinic acetylcholine receptor (AChR) controls signal transmission between cells in the nervous system. Abused drugs such as cocaine inhibit this receptor. Transient kinetic investigations indicate that inhibitors decrease the channel-opening equilibrium constant [Hess, G. P. & Grewer, C. (1998) Methods Enzymol. 291, 443–473]. Can compounds be found that compete with inhibitors for their binding site but do not change the channel-opening equilibrium? The systematic evolution of RNA ligands by exponential enrichment methodology and the AChR in Torpedo californica electroplax membranes were used to find RNAs that can displace inhibitors from the receptor. The selection of RNA ligands was carried out in two consecutive steps: (i) a gel-shift selection of high-affinity ligands bound to the AChR in the electroplax membrane, and (ii) subsequent use of nitrocellulose filters to which both the membrane-bound receptor and RNAs bind strongly, but from which the desired RNA can be displaced from the receptor by a high-affinity AChR inhibitor, phencyclidine. After nine selection rounds, two classes of RNA molecules that bind to the AChR with nanomolar affinities were isolated and sequenced. Both classes of RNA molecules are displaced by phencyclidine and cocaine from their binding site on the AChR. Class I molecules are potent inhibitors of AChR activity in BC3H1 muscle cells, as determined by using the whole-cell current-recording technique. Class II molecules, although competing with AChR inhibitors, do not affect receptor activity in this assay; such compounds or derivatives may be useful for alleviating the toxicity experienced by millions of addicts. PMID:9826651

  18. Nicotine-morphine interactions at α4β2, α7 and α3(⁎) nicotinic acetylcholine receptors.

    PubMed

    Talka, Reeta; Salminen, Outi; Whiteaker, Paul; Lukas, Ronald J; Tuominen, Raimo K

    2013-02-15

    Nicotine and opioids share several behavioral and rewarding properties. Although both opioids and nicotine have their own specific mechanism of action, there is empirical and experimental evidence of interactions between these drugs. We studied receptor-level interactions of nicotine and morphine at α4β2, α7 and α3(⁎) nicotinic acetylcholine receptors. [(3)H]epibatidine displacement was used to determine if morphine binds competitively to nicotinic acetylcholine receptors. Functional interactions of morphine and nicotine were studied with calcium fluorometry and (86)Rb(+) efflux assays. Morphine displaced [(3)H]epibatidine from nicotinic agonist binding sites in all cell lines studied. The Ki values for morphine were 13.2μM in SH-EP1-hα4β2 cells, 0.16μM and 126μM in SH-SY5Y cells and 43.7μM in SH-EP1-hα7 cells. In SH-EP1-hα4β2 cells expressing α4β2 nicotinic acetylcholine receptors, morphine acted as a partial agonist of (86)Rb(+) efflux comparable to cytisine (with EC50 values of 53.3μM for morphine and 5.38μM for cytisine). The effect of morphine was attenuated concentration-dependently by the nicotinic antagonist mecamylamine. In the SH-SY5Y cell line expressing several subtypes of nicotinic acetylcholine receptors morphine had an inhibitory effect on nicotine induced (86)Rb(+) ion efflux mediated by α3(⁎) nicotinic acetylcholine receptors. These results suggest that morphine acts as a partial agonist at α4β2 nicotinic acetylcholine receptors and as a weak antagonist at α3(⁎) nicotinic acetylcholine receptors.

  19. Sphingosine kinase-mediated calcium signaling by muscarinic acetylcholine receptors.

    PubMed

    van Koppen, C J; Meyer zu Heringdorf, D; Alemany, R; Jakobs, K H

    2001-04-27

    Based on the finding that G protein-coupled receptors (GPCRs) can induce Ca2+ mobilization, apparently independent of the phospholipase C (PLC)/inositol-1,4,5-trisphosphate (IP3) pathway, we investigated whether sphingosine kinase, which generates sphingosine-1-phosphate (SPP), is involved in calcium signaling by mAChR and other GPCRs. Inhibition of sphingosine kinase by DL-threo-dihydrosphingosine and N,/N-dimethylsphingosine markedly inhibited [Ca2+]i increases elicited by M2 and M3 mAChRs in HEK-293 cells without affecting PLC activation. Activation of M2 and M3 mAChR rapidly and transiently stimulated production of SPP. Furthermore, microinjection of SPP into HEK-293 cells induced rapid and transient Ca2+ mobilization. Pretreatment of HEK-293 cells with the calcium chelator BAPTA/AM fully blocked mAChR-induced SPP production. On the other hand, incubation of HEK-293 cells with calcium ionophores activated SPP production. Similar findings were obtained for formyl peptide and P2Y2 purinergic receptors in HL-60 cells. On the basis of these studies we propose, that following initial IP3 production by receptor-mediated PLC activation, a local discrete increase in [Ca2+]i induces sphingosine kinase stimulation, which ultimately leads to full calcium mobilization. Thus, sphingosine kinase activation most likely represents an amplification system for calcium signaling by mAChRs and other GPCRs.

  20. The alpha7 nicotinic acetylcholine receptor as a pharmacological target for inflammation

    PubMed Central

    de Jonge, W J; Ulloa, L

    2007-01-01

    The physiological regulation of the immune system encompasses comprehensive anti-inflammatory mechanisms that can be harnessed for the treatment of infectious and inflammatory disorders. Recent studies indicate that the vagal nerve, involved in control of heart rate, hormone secretion and gastrointestinal motility, is also an immunomodulator. In experimental models of inflammatory diseases, vagal nerve stimulation attenuates the production of proinflammatory cytokines and inhibits the inflammatory process. Acetylcholine, the principal neurotransmitter of the vagal nerve, controls immune cell functions via the alpha7 nicotinic acetylcholine receptor (alpha7nAChR). From a pharmacological perspective, nicotinic agonists are more efficient than acetylcholine at inhibiting the inflammatory signaling and the production of proinflammatory cytokines. This ‘nicotinic anti-inflammatory pathway' may have clinical implications as treatment with nicotinic agonists can modulate the production of proinflammatory cytokines from immune cells. Nicotine has been tested in clinical trials as a treatment for inflammatory diseases such as ulcerative colitis, but the therapeutic potential of this mechanism is limited by the collateral toxicity of nicotine. Here, we review the recent advances that support the design of more specific receptor-selective nicotinic agonists that have anti-inflammatory effects while eluding its collateral toxicity. PMID:17502850

  1. Monkey Adrenal Chromaffin Cells Express α6β4* Nicotinic Acetylcholine Receptors

    PubMed Central

    Scadden, Mick´l; Carmona-Hidalgo, Beatriz; McIntosh, J. Michael; Albillos, Almudena

    2014-01-01

    Nicotinic acetylcholine receptors (nAChRs) that contain α6 and β4 subunits have been demonstrated functionally in human adrenal chromaffin cells, rat dorsal root ganglion neurons, and on noradrenergic terminals in the hippocampus of adolescent mice. In human adrenal chromaffin cells, α6β4* nAChRs (the asterisk denotes the possible presence of additional subunits) are the predominant subtype whereas in rodents, the predominant nAChR is the α3β4* subtype. Here we present molecular and pharmacological evidence that chromaffin cells from monkey (Macaca mulatta) also express α6β4* receptors. PCR was used to show the presence of transcripts for α6 and β4 subunits and pharmacological characterization was performed using patch-clamp electrophysiology in combination with α-conotoxins that target the α6β4* subtype. Acetylcholine-evoked currents were sensitive to inhibition by BuIA[T5A,P6O] and MII[H9A,L15A]; α-conotoxins that inhibit α6-containing nAChRs. Two additional agonists were used to probe for the expression of α7 and β2-containing nAChRs. Cells with currents evoked by acetylcholine were relatively unresponsive to the α7-selctive agonist choline but responded to the agonist 5-I-A-85380. These studies provide further insights into the properties of natively expressed α6β4* nAChRs. PMID:24727685

  2. Monkey adrenal chromaffin cells express α6β4* nicotinic acetylcholine receptors.

    PubMed

    Hernández-Vivanco, Alicia; Hone, Arik J; Scadden, Mick L; Carmona-Hidalgo, Beatriz; McIntosh, J Michael; Albillos, Almudena

    2014-01-01

    Nicotinic acetylcholine receptors (nAChRs) that contain α6 and β4 subunits have been demonstrated functionally in human adrenal chromaffin cells, rat dorsal root ganglion neurons, and on noradrenergic terminals in the hippocampus of adolescent mice. In human adrenal chromaffin cells, α6β4* nAChRs (the asterisk denotes the possible presence of additional subunits) are the predominant subtype whereas in rodents, the predominant nAChR is the α3β4* subtype. Here we present molecular and pharmacological evidence that chromaffin cells from monkey (Macaca mulatta) also express α6β4* receptors. PCR was used to show the presence of transcripts for α6 and β4 subunits and pharmacological characterization was performed using patch-clamp electrophysiology in combination with α-conotoxins that target the α6β4* subtype. Acetylcholine-evoked currents were sensitive to inhibition by BuIA[T5A,P6O] and MII[H9A,L15A]; α-conotoxins that inhibit α6-containing nAChRs. Two additional agonists were used to probe for the expression of α7 and β2-containing nAChRs. Cells with currents evoked by acetylcholine were relatively unresponsive to the α7-selctive agonist choline but responded to the agonist 5-I-A-85380. These studies provide further insights into the properties of natively expressed α6β4* nAChRs.

  3. Acetylcholine receptor clustering is triggered by a change in the density of a nonreceptor molecule

    PubMed Central

    1990-01-01

    Acetylcholine receptors become clustered at the neuromuscular junction during synaptogenesis, at least in part via lateral migration of diffusely expressed receptors. We have shown previously that electric fields initiate a specific receptor clustering event which is dependent on lateral migration in aneural muscle cell cultures (Stollberg, J., and S. E. Fraser. 1988. J. Cell Biol. 107:1397-1408). Subsequent work with this model system ruled out the possibility that the clustering event was triggered by increasing the receptor density beyond a critical threshold (Stollberg, J., and S. E. Fraser. 1990. J. Neurosci. 10:247-255). This leaves two possibilities: the clustering event could be triggered by the field-induced change in the density of some other molecule, or by a membrane voltage-sensitive mechanism (e.g., a voltage- gated calcium signal). Electromigration is a slow, linear process, while voltage-sensitive mechanisms respond in a rapid, nonlinear fashion. Because of this the two possibilities make different predictions about receptor clustering behavior in response to pulsed or alternating electric fields. In the present work we have studied subcellular calcium distributions, as well as receptor clustering, in response to such fields. Subcellular calcium distributions were quantified and found to be consistent with the predicted nonlinear response. Receptor clustering, however, behaves in accordance with the predictions of a linear response, consistent with the electromigration hypothesis. The experiments demonstrate that a local increase in calcium, or, more generally, a voltage-sensitive mechanism, is not sufficient and probably not necessary to trigger receptor clustering. Experiments with slowly alternating electric fields confirm the view that the clustering of acetylcholine receptors is initiated by a local change in the density of some non-receptor molecule. PMID:2229185

  4. Experimental determination of the vertical alignment between the second and third transmembrane segments of muscle nicotinic acetylcholine receptors

    PubMed Central

    Mnatsakanyan, Nelli; Jansen, Michaela

    2013-01-01

    Nicotinic acetylcholine receptors (nAChR) are members of the Cys-loop ligand-gated ion channel superfamily. Muscle nAChR are heteropentamers that assemble from two α, and one each of β, γ, and δ subunits. Each subunit is composed of three domains, extracellular, transmembrane and intracellular. The transmembrane domain consists of four α-helical segments (M1–M4). Pioneering structural information was obtained using electronmicroscopy of Torpedo nAChR. The recently-solved X-ray structure of the first eukaryotic Cys-loop receptor, a truncated (intracellular domain missing) glutamate-gated chloride channel α (GluClα)showed the same overall architecture . However, a significant difference with regard to the vertical alignment between the channel-lining segment M2 and segment M3 was observed. Here we used functional studies utilizing disulfide trapping experiments in muscle nAChR to determine the spatial orientation between M2 and M3. Our results are in agreement with the vertical alignment as obtained when using the GluClα structure as a template to homology model muscle nAChR, however, they cannot be reconciled with the current Torpedo nAChR model. The vertical M2–M3 alignments as observed in X-ray structures of prokaryotic Gloeobacter violaceus ligand-gated ion channel (GLIC) and GluClα are in agreement. Our results further confirm that this alignment in Cys-loop receptors is conserved between prokaryotes and eukaryotes. PMID:23565737

  5. Investigation of the presence and antinociceptive function of muscarinic acetylcholine receptors in the African naked mole-rat (Heterocephalus glaber).

    PubMed

    Jørgensen, Kristine B; Krogh-Jensen, Karen; Pickering, Darryl S; Kanui, Titus I; Abelson, Klas S P

    2016-01-01

    The present study investigated the cholinergic system in the African naked mole-rat (Heterocephalus glaber) with focus on the muscarinic acetylcholine receptor subtypes M1 and M4. The protein sequences for the subtypes m 1-5 of the naked mole-rat were compared to that of the house mouse (Mus musculus) using basic local alignment search tool (BLAST). The presence and function of M1 and M4 was investigated in vivo, using the formalin test with the muscarinic receptor agonists xanomeline and VU0152100. Spinal cord tissue from the naked mole-rat was used for receptor saturation binding studies with [(3)H]-N-methylscopolamine. The BLAST test revealed 95 % protein sequence homology showing the naked mole-rat to have the genetic potential to express all five muscarinic acetylcholine receptor subtypes. A significant reduction in pain behavior was demonstrated after administration of 8.4 mg/kg in the formalin test. Administration of 50 mg/kg VU0152100 resulted in a non-significant tendency towards antinociception. The antinociceptive effects were reversed by the muscarinic acetylcholine receptor antagonist atropine. Binding studies indicated presence of muscarinic acetylcholine receptors with a radioligand affinity comparable to that reported in mice. In conclusion, muscarinic acetylcholine receptor subtypes are present in the naked mole-rat and contribute to antinociception in the naked mole-rat.

  6. Muscarinic acetylcholine receptors act in synergy to facilitate learning and memory.

    PubMed

    Leaderbrand, Katherine; Chen, Helen J; Corcoran, Kevin A; Guedea, Anita L; Jovasevic, Vladimir; Wess, Jurgen; Radulovic, Jelena

    2016-11-01

    Understanding how episodic memories are formed and retrieved is necessary if we are to treat disorders in which they malfunction. Muscarinic acetylcholine receptors (mAChR) in the hippocampus and cortex underlie memory formation, but there is conflicting evidence regarding their role in memory retrieval. Additionally, there is no consensus on which mAChR subtypes are critical for memory processing. Using pharmacological and genetic approaches, we found that (1) encoding and retrieval of contextual memory requires mAChR in the dorsal hippocampus (DH) and retrosplenial cortex (RSC), (2) memory formation requires hippocampal M3 and cooperative activity of RSC M1 and M3, and (3) memory retrieval is more impaired by inactivation of multiple M1-M4 mAChR in DH or RSC than inactivation of individual receptor subtypes. Contrary to the view that acetylcholine supports learning but is detrimental to memory retrieval, we found that coactivation of multiple mAChR is required for retrieval of both recently and remotely acquired context memories. Manipulations with higher receptor specificity were generally less potent than manipulations targeting multiple receptor subtypes, suggesting that mAChR act in synergy to regulate memory processes. These findings provide unique insight into the development of therapies for amnestic symptoms, suggesting that broadly acting, rather than receptor-specific, mAchR agonists and positive allosteric modulators may be the most effective therapeutic approach. © 2016 Leaderbrand et al.; Published by Cold Spring Harbor Laboratory Press.

  7. Characterization of a putative acetylcholine receptor in chick ciliary ganglion neurons

    SciTech Connect

    Stollberg, J.

    1985-01-01

    Monoclonal antibodies to the main immunogenic region on the alpha subunit of acetylcholine receptors in muscle and electric organ recognize membrane components in chick brain and ciliary ganglia that are candidates for the neuronal receptor. The component in chick brain has been purified by immunoaffinity chromatography. It specifically binds nicotine but not alpha-bungarotoxin, and can be affinity labeled with (/sup 3/H)bromoacetylcholine. The cross-reacting component in ciliary ganglion neurons is concentrated in synaptic membrane, and can be modulated by exposure of the cells to cholinergic ligands in culture. The cross-reacting component in ciliary ganglion neurons is an integral membrane component that binds concanavalin A, and it is distinct from the alpha-bungarotoxin binding component. The acetylcholine receptor function in these neurons can be locked by affinity alkylation with bromoacetylcholine, indicating similarity in this respect to receptors from muscle and electric organ. Antisera raised against the partially purified component from chick brain also block receptor function on ciliary ganglion neurons. The subcellular distribution of the ganglion component in culture is assessed, and it is shown that approximately 2/3 of the cross-reacting components are intracellular; the majority of these seem not to be destined for insertion into the plasma membrane.

  8. Changes in acetylcholine content, release and muscarinic receptors in rat hippocampus under cold stress

    SciTech Connect

    Fatranska, M.; Budai, D.; Gulya, K; Kvetnansky, R.

    1989-01-01

    The aim was to study the mechanism of the previously established decrease in acetylcholine (ACh) concentration in the rat hippocampus under cold stress. Male rats were exposed for 14 days to cold (5/degree/C) or kept (controls) at room temperature (24/degree/C). Acetylcholine content, release and muscarinic receptor binding were investigated in the hippocampus. Cold exposure resulted in a decrease of ACh concentration in the dorsal hippocampus. Moreover, the potassium-evoked release of ACh from hippocampal slices was increased and an increase of maximal binding capacity of (/sup 3/H)(-) quinuclidinyl benzilate in the dorsal hippocampus of cold exposed animals was also observed. Thus the decrease of hippocampal ACh concentration under cold exposure is probably due to its increased release. On balance then, our results demonstrate that cold stress in the rat induces significant activation of the hippocampal cholinergic system.

  9. Study of the Peripheral Nerve Fibers Myelin Structure Changes during Activation of Schwann Cell Acetylcholine Receptors

    PubMed Central

    Verdiyan, Ekaterina E.; Allakhverdiev, Elvin S.; Maksimov, Georgy V.

    2016-01-01

    In the present paper we consider a new type of mechanism by which neurotransmitter acetylcholine (ACh) regulates the properties of peripheral nerve fibers myelin. Our data show the importance of the relationship between the changes in the number of Schwann cell (SC) acetylcholine receptors (AChRs) and the axon excitation (different intervals between action potentials (APs)). Using Raman spectroscopy, an effect of activation of SC AChRs on the myelin membrane fluidity was investigated. It was found, that ACh stimulates an increase in lipid ordering degree of the myelin lipids, thus providing evidence for specific role of the “axon-SC” interactions at the axon excitation. It was proposed, that during the axon excitation, the SC membrane K+- depolarization and the Ca2+—influx led to phospholipase activation or exocytosis of intracellular membrane vesicles and myelin structure reorganization. PMID:27455410

  10. Effects of nonylphenol on the calcium signal and catecholamine secretion coupled with nicotinic acetylcholine receptors in bovine adrenal chromaffin cells.

    PubMed

    Liu, Pei-Shan; Liu, Ging-Hui; Chao, Wei-Liang

    2008-02-03

    Nonylphenol (NP) is the most critical metabolite of alkylphenol polyethoxylate detergents. NP is known as an endocrine disruptor with estrogenic activities and as an inhibitor of endoplasmic reticulum Ca(2+)-ATPase. Estrogen has modulatory roles on ligand-gated ion channels, such as nicotinic acetylcholine receptors (nAChRs). Ca(2+)-ATPase inhibitors can modulate the cytosolic calcium concentration ([Ca(2+)](c)]) and thus can affect the calcium signaling coupled with nAChRs. Therefore, NP is predicted to have complex effects on the Ca(2+) signaling and secretion coupled with nAChRs. This study investigated these effects using bovine adrenal chromaffin cells. The results show that NP suppressed the Ca(2+) signaling coupled with nAChRs and voltage-operated Ca(2+) channels in a dose-dependent manner, with IC(50)s of 1 and 5.9 microM, respectively. Estradiol exhibits similar suppression but much lower inhibitory potencies. NP alone induced a transient rise in [Ca(2+)](c) in the presence or absence of extracellular calcium. Thapsigargin, an endoplasmic reticulum Ca(2+)-ATPase inhibitor, partially suppressed the [Ca(2+)](c) rise induced by NP, but NP totally blocked the [Ca(2+)](c) rise induced by thapsigargin. This illustrates that NP can cause Ca(2+) release from thapsigargin-insensitive pools. Thapsigargin suppressed the Ca(2+) signaling coupled with nAChRs but increased that coupled with voltage-operated Ca(2+) channels. We propose that three routes are responsible for the effects of NP on nAChRs: named receptor channels, voltage-gated Ca(2+) channels, and Ca(2+)-induced Ca(2+) release. Three routes are related to the characteristics of NP as steroid-like compounds and Ca(2+)-ATPase inhibitor.

  11. α-Conotoxin OmIA Is a Potent Ligand for the Acetylcholine-binding Protein as Well as α3β2 and α7 Nicotinic Acetylcholine Receptors*

    PubMed Central

    Talley, Todd T.; Olivera, Baldomero M.; Han, Kyou-Hoon; Christensen, Sean B.; Dowell, Cheryl; Tsigelny, Igor; Ho, Kwok-Yiu; Taylor, Palmer; McIntosh, J. Michael

    2016-01-01

    The molluskan acetylcholine-binding protein (AChBP) is a homolog of the extracellular binding domain of the pentameric ligand-gated ion channel family. AChBP most closely resembles the α-subunit of nicotinic acetylcholine receptors and in particular the homomeric α7 nicotinic receptor. We report the isolation and characterization of an α-conotoxin that has the highest known affinity for the Lymnaea AChBP and also potently blocks the α7 nAChR subtype when expressed in Xenopus oocytes. Remarkably, the peptide also has high affinity for the α3β2 nAChR indicating that α-conotoxin OmIA in combination with the AChBP may serve as a model system for understanding the binding determinants of α3β2 nAChRs. α-Conotoxin OmIA was purified from the venom of Conus omaria. It is a 17-amino-acid, two-disulfide bridge peptide. The ligand is the first α-conotoxin with higher affinity for the closely related receptor subtypes, α3β2 versus α6β2, and selectively blocks these two subtypes when compared with α2β2, α4β2, and α1β1δε nAChRs. PMID:16803900

  12. Regulation of muscarinic acetylcholine receptor-mediated synaptic responses by adenosine receptors in the rat hippocampus.

    PubMed Central

    Morton, R A; Davies, C H

    1997-01-01

    1. Intracellular current clamp recordings were made from CA1 pyramidal neurones in rat hippocampal slices. Experiments were performed in the presence of ionotropic glutamate receptor antagonists and gamma-aminobutyric acid (GABA) receptor antagonists to block all fast excitatory and inhibitory synaptic transmission. A single stimulus, delivered extracellularly in the stratum oriens, caused a reduction in spike frequency adaptation in response to a depolarizing current step delivered 2 s after the stimulus. A 2- to 10-fold increase in stimulus intensity evoked a slow excitatory postsynaptic potential (EPSP) which was associated with a small increase in input resistance. The peak amplitude of the EPSP occurred approximately 2.5 s after the stimulus and its magnitude (up to 30 mV) and duration (10-50 s) increased with increasing stimulus intensity. 2. The slow EPSP was unaffected by the metabotropic glutamate receptor antagonist (+)-alpha-methyl-4-carboxyphenylglycine ((+)-MCPG; 1000 microM) but was greatly enhanced by the acetylcholinesterase inhibitor physostigmine (1-5 microM). Both the slow EPSP and the stimulus-evoked reduction in spike frequency adaptation were inhibited by the muscarinic acetylcholine receptor (mAChR) antagonist atropine (1-5 microM). These results are consistent with these effects being mediated by mAChRs. 3. Both the mAChR-mediated EPSP (EPSPm) and the associated reduction in spike frequency adaptation were reversibly depressed (up to 97%) by either adenosine (100 microM) or its non-hydrolysable analogue 2-chloroadenosine (CADO; 0.1-5.0 microM). These effects were often accompanied by postsynaptic hyperpolarization (up to 8 mV) and a reduction in input resistance (up to 11%). The selective adenosine A1 receptor agonists 2-chloro-N6-cyclopentyladenosine (CCPA; 0.1-0.4 microM) and R(-)N6-(2-phenylisopropyl)-adenosine (R-PIA; 1 microM) both depressed the EPSPm. In contrast, the adenosine A2A receptor agonist 2-p-(2-carboxyethyl)-phenethylamino-5

  13. Preventing Illegitimate Extrasynaptic Acetylcholine Receptor Clustering Requires the RSU-1 Protein.

    PubMed

    Pierron, Marie; Pinan-Lucarré, Bérangère; Bessereau, Jean-Louis

    2016-06-15

    Diffuse extrasynaptic neurotransmitter receptors constitute an abundant pool of receptors that can be recruited to modulate synaptic strength. Whether the diffuse distribution of receptors in extrasynaptic membranes is a default state or is actively controlled remains essentially unknown. Here we show that RSU-1 (Ras Suppressor-1) is required for the proper distribution of extrasynaptic acetylcholine receptors (AChRs) in Caenorhabditis elegans muscle cells. RSU-1 is an evolutionary conserved cytoplasmic protein that contains multiple leucine-rich repeats (LRRs) and interacts with integrin-dependent adhesion complexes. In rsu-1 mutants, neuromuscular junctions differentiate as in the wild type, but AChRs assemble into ectopic clusters that progressively enlarge during development. As a consequence, the synaptic content of AChRs is reduced. Our study provides the first evidence that an RSU-1-dependent active mechanism maintains extrasynaptic receptors dispersed and indirectly regulates synapse maturation. Using Caenorhabditis elegans neuromuscular junction as a model synapse, we uncovered a novel mechanism that regulates the distribution of acetylcholine receptors (AChRs). In an unbiased visual screen for mutants with abnormal AChR distribution, we isolated the ras suppressor 1 (rsu-1) mutant based on the presence of large extrasynaptic clusters. We show that disrupting rsu-1 causes spontaneous clustering of extrasynaptic receptors that are normally dispersed, independently of synaptic cues. These clusters outcompete synaptic domains and cause a decrease of synaptic receptor content. These results indicate that the diffuse state of extrasynaptic receptors is not a default state that is simply explained by the lack of synaptic cues but necessitates additional proteins to prevent spontaneous clustering, a concept that is relevant for developmental and pathological situations. Copyright © 2016 the authors 0270-6474/16/366525-13$15.00/0.

  14. Muscarinic acetylcholine receptors in the nucleus accumbens core and shell contribute to cocaine priming-induced reinstatement of drug seeking

    PubMed Central

    Yee, Judy; Famous, Katie R.; Hopkins, Thomas J.; McMullen, Michael C.; Pierce, R. Christopher; Schmidt, Heath D.

    2011-01-01

    Muscarinic acetylcholine receptors in the nucleus accumbens play an important role in mediating the reinforcing effects of cocaine. However, there is a paucity of data regarding the role of accumbal muscarinic acetylcholine receptors in the reinstatement of cocaine-seeking behavior. The goal of these experiments was to assess the role of muscarinic acetylcholine receptors in the nucleus accumbens core and shell in cocaine and sucrose priming-induced reinstatement. Rats were initially trained to self-administer cocaine or sucrose on a fixed-ratio schedule of reinforcement. Lever-pressing behavior was then extinguished and followed by a subsequent reinstatement phase during which operant responding was induced by either a systemic injection of cocaine in cocaine-experienced rats or non-contingent delivery of sucrose pellets in subjects with a history of sucrose self-administration. Results indicated that systemic administration of the muscarinic acetylcholine receptor antagonist scopolamine (5.0 mg/kg, i.p.) dose-dependently attenuated cocaine, but not sucrose, reinstatement. Furthermore, administration of scopolamine (36.0 μg) directly into the nucleus accumbens shell or core attenuated cocaine-priming induced reinstatement. In contrast, infusion of scopolamine (36.0 μg) directly into the accumbens core, but not shell, attenuated sucrose reinstatement, which suggests that muscarinic acetylcholine receptors in these two subregions of the nucleus accumbens have differential roles in sucrose seeking. Taken together, these results indicate that cocaine-priming induced reinstatement is mediated, in part, by increased signaling through muscarinic acetylcholine receptors in the shell subregion of the nucleus accumbens. Muscarinic acetylcholine receptors in the core of the accumbens, in contrast, appear to play a more general (i.e. not cocaine specific) role in motivated behaviors. PMID:21034738

  15. Role of the large cytoplasmic loop of the alpha 7 neuronal nicotinic acetylcholine receptor subunit in receptor expression and function.

    PubMed

    Valor, Luis M; Mulet, José; Sala, Francisco; Sala, Salvador; Ballesta, Juan J; Criado, Manuel

    2002-06-25

    The role of the large intracellular loop of the nicotinic acetylcholine receptor (nAChR) alpha7 subunit in the expression of functional channels was studied. For this purpose, systematic deletions and substitutions were made throughout the loop and the ability of the mutated alpha7 subunits to support expression of functional nAChRs at the Xenopus oocyte membrane was tested. Surface nAChR expression was abolished upon removal of sequences at two regions, a 29-amino acid segment close to the N-terminus of the loop (amino acids 297-325) and adjacent to the third transmembrane region and an 11-amino acid segment near the fourth transmembrane region. Some residues (amino acids 317-322) within the 29 amino acids N-terminal segment could be substituted by others but not deleted without loss of expression, suggesting that a certain structure, determined by the number of amino acids rather than by their identity, has to be maintained in this region. The contiguous sequence M323 K324 R325 did not tolerate deletions and substitutions. Removal of the rest of the cytoplasmic loop was not deleterious; even higher expression levels (2-4-fold) were obtained upon large deletions of the loop (Delta399-432 and Delta339-370). High expression levels were observed provided that a minimal sequence of three amino acids (E371, G372, and M373) was present. In addition, some electrophysiological properties of mutant nAChRs were modified. Substitution of the EGM sequence by other protein segments produced a variety of effects, but, in general, insertions were not well tolerated, suggesting the existence of tight structural restrictions in the large cytoplasmic region of the rat alpha7 subunit.

  16. Structural Characterization of the Putative Cholinergic Binding Region alpha(179-201) of the Nicotinic Acetylcholine Receptor. Part 1. Review and Experimental Design.

    DTIC Science & Technology

    1993-04-01

    Dynamic Model for the Nicotinic Acetylcholine Receptor, in Computer -Assisted Modeling of Receptor-Ligand Interactions: Theoretical Aspects and...Hunkapillar, M.W., Strader, C.D., Hood, LE.-Acetylcholine receptor: complex of homologous subunits. Sceince vol. 208, pp. 1454-1457, 1980 Ragone, R

  17. Common molecular mechanisms in field- and agrin-induced acetylcholine receptor clustering.

    PubMed

    Sabrina, F; Stollberg, J

    1997-04-01

    1. The aggregation of acetylcholine receptors at the developing neuromuscular junction is critical to the development and function of this synapse. In vitro studies have shown that receptor aggregation can be induced by the finding of agrin to the muscle cell surface and by the electric field-induced concentration of a (nonreceptor) molecule at the cathodal cell pole. 2. We report here on the interaction between agrin binding and electric fields with respect to the distribution of receptors and agrin binding sites. 3. (a) Pretreatment of cells with agrin completely blocks the development of field-induced receptor clusters. (b) Field-induced aggregation of receptors precedes the field-induced aggregation of agrin binding sites by approximately 30 min. (c) Electric fields prevent agrin-induced receptor clustering despite the presence of agrin binding sites and freely diffusing receptors. 4. These results indicate that another membrane component-but not the agrin binding site and not the receptor-is required for agrin-induced receptor clustering. They also suggest that electric fields and agrin cause receptor clustering via common molecular mechanisms.

  18. Subcellular localization of creatine kinase in Torpedo electrocytes: association with acetylcholine receptor-rich membranes

    PubMed Central

    1985-01-01

    Creatine kinase (CK, EC 2.7.3.2) has recently been identified as the intermediate isoelectric point species (pl 6.5-6.8) of the Mr 40,000- 43,000 nonreceptor, peripheral v-proteins in Torpedo marmorata acetylcholine receptor-rich membranes (Barrantes, F. J., G. Mieskes, and T. Wallimann, 1983, Proc. Natl. Acad. Sci. USA, 80: 5440-5444). In the present study, this finding is substantiated at the cellular and subcellular level of the T. marmorata electric organ by immunofluorescence and by protein A-gold labeling of either ultrathin cryosections of electrocytes or purified receptor-membrane vesicles that use subunit-specific anti-chicken creatine kinase antibodies. The muscle form of the kinase, on the one hand, is present throughout the entire T. marmorata electrocyte except in the nuclei. The brain form of the kinase, on the other hand, is predominantly located on the ventral, innervated face of the electrocyte, where it is closely associated with both surfaces of the postsynaptic membrane, and secondarily in the synaptic vesicles at the presynaptic terminal. Labeling of the noninnervated dorsal membrane is observed at the invaginated sac system. In the case of purified acetylcholine receptor-rich membranes, antibodies specific for chicken B-CK label only one face of the isolated vesicles. No immunoreaction is observed with anti-chicken M-CK antibodies. A discussion follows on the possible implications of these localizations of creatine kinase in connection with the function of the acetylcholine receptor at the postsynaptic membrane, the Na/K ATPase at the dorsal electrocyte membrane, and the ATP-dependent transmitter release at the nerve ending. PMID:3884630

  19. Pharmacological profile of zacopride and new quaternarized fluorobenzamide analogues on mammalian α7 nicotinic acetylcholine receptor.

    PubMed

    Bourdin, Céline M; Lebreton, Jacques; Mathé-Allainmat, Monique; Thany, Steeve H

    2015-08-15

    From quaternarization of quinuclidine enantiomers of 2-fluoro benzamide LMA10203 in dichloromethane, the corresponding N-chloromethyl derivatives LMA10227 and LMA10228 were obtained. Here, we compared the agonist action of known zacopride and its 2-fluoro benzamide analogues, LMA10203, LMA10227 and LMA10228 against mammalian homomeric α7 nicotinic acetylcholine receptor expressed in Xenopus oocytes. We found that LMA10203 was a partial agonist of α7 receptor with a pEC50 value of 4.25 ± 0.06 μM whereas LMA10227 and LMA10228 were poorly active on α7 homomeric nicotinic receptor. LMA10227 and LMA10228 were identified as antagonists of acetylcholine-induced currents with IC50 values of 28.4 μM and 39.3 μM whereas LMA10203 and zacopride possessed IC50 values of 8.07 μM and 7.04 μM, respectively. Moreover, despite their IC50 values, LMA10227 was the most potent inhibitor of nicotine-induced current amplitudes (65.7 ± 2.1% inhibition). LMA10203 and LMA10228 had the same inhibitory effects (26.5 ± 7.5% and 33.2 ± 4.1%, respectively), whereas zacopride had no significant inhibitory effect (4.37 ± 4%) on nicotine-induced responses. Our results revealed different pharmacological properties between the four compounds on acetylcholine and nicotine currents. The mode of action of benzamide compounds may need to be reinterpreted with respect to the potential role of α7 receptor.

  20. Evidence for the extramembranous location of the putative amphipathic helix of acetylcholine receptor

    SciTech Connect

    Dwyer, B.P.

    1988-07-26

    Evidence has been obtained demonstrating that the peptides GVKYIAE and AIKYIAE found in the potential amphipathic helices of the ..cap alpha.. and ..beta.. subunits, respectively, of acetylcholine receptor are not buried in the membrane. The peptide KYIAE was synthesized, and polyclonal antibodies were prepared against a conjugate of bovine serum albumin and synthetic peptide. An immunoadsorbent capable of binding and subsequently releasing peptides ending with the sequence-YIAE was produced by attaching these specific antibodies to agarose. Native acetylcholine receptor was labeled with pyridoxal phosphate and Na(/sup 3/H)BH/sub 4/. The labeled protein was stripped of phospholipid and digested with the protease from Staphylococcus aureus strain V8. The digest was submitted to immunoadsorption to isolate the labeled indigenous peptides. As a control, ..cap alpha.. and ..beta.. polypeptides prepared by gel filtration of a solution of acetylcholine receptor in detergent were stripped of detergent and labeled with pyridoxal phosphate and Na(/sup 3/H)BH/sub 4/ in the presence of 8 M urea. The labeled ..cap alpha.. and ..beta.. polypeptides were digested and submitted to immunoadsorption. The specific radioactivities of the indigenous peptides from the ..cap alpha.. and ..beta.. subunits labeled under native and denaturing conditions were nearly equal. In similar experiments using isethionyl (2',4'-dinitrophenyl)-3-aminopropionimidate as the labeling agent, the indigenous peptides from native and denatured receptor were also labeled to the same extent. Since these peptides are labeled to the same extent whether or not the protein is denatured, they cannot be buried in the membrane.

  1. Enhanced acetylcholine release in the hippocampus of cannabinoid CB1 receptor-deficient mice

    PubMed Central

    Kathmann, Markus; Weber, Bernd; Zimmer, Andreas; Schlicker, Eberhard

    2001-01-01

    We examined whether acetylcholine release in the hippocampus and striatum and noradrenaline release in the hippocampus is altered in CB1 receptor-deficient mice. The electrically evoked tritium overflow from hippocampal slices preincubated with [3H]-choline was increased by about 100% in CB1−/− compared to CB1+/+ mice whereas the electrically evoked tritium overflow from striatal slices preincubated with [3H]-choline and from hippocampal slices preincubated with [3H]-noradrenaline did not differ. The cannabinoid receptor agonist, WIN 55,212-2, inhibited, and the CB1 receptor antagonist, SR 141716, facilitated, the evoked tritium overflow from hippocampal slices (preincubated with [3H]-choline) from CB1+/+ as opposed to CB1−/− mice. Both drugs did not affect the evoked tritium overflow from striatal slices (preincubated with [3H]-choline) and from hippocampal slices (preincubated with [3H]-noradrenaline) from CB1+/+ and CB1−/− mice. The selective increase in acetylcholine release in CB1−/− mice may indicate that the presynaptic CB1 receptors on the cholinergic neurones of the mouse hippocampus are tonically activated and/or constitutively active in vivo. PMID:11250865

  2. Inhibition of neuronal nicotinic acetylcholine receptors by the abused solvent, toluene

    PubMed Central

    Bale, Ambuja S; Smothers, Corigan T; Woodward, John J

    2002-01-01

    Toluene is a representative example of a class of industrial solvents that are voluntarily inhaled as drugs of abuse. Previous data from this lab and others has shown that toluene modulates the function of N-methyl-D-aspartate (NMDA), γ-aminobutyric acid (GABA) and glycine receptors at concentrations that do not affect non-NMDA receptors. We utilized two-electrode voltage-clamp and whole cell patch-clamp techniques to assess the effects of toluene on neuronal nicotinic acetylcholine receptors expressed in oocytes and cultured hippocampal neurons. Toluene (50 μM to 10 mM) produced a reversible, concentration-dependent inhibition of acetylcholine-induced current in Xenopus oocytes expressing various nicotinic receptor subtypes. The α4β2 and α3β2 subunit combinations were significantly more sensitive to toluene inhibition than the α4β4, α3β4 and α7 receptors. Receptors composed of α4 and β2(V253F) subunits showed α4β4-like toluene sensitivity while those containing α4 and β4(F255V) subunits showed α4β2-like sensitivity. In hippocampal neurons, toluene (50 μM to 10 mM) dose-dependently inhibited ACh-mediated responses with an IC50 of 1.1 mM. Taken together, these results suggest that nicotinic receptors, like NMDA receptors, show a subunit-dependent sensitivity to toluene and may represent an important site of action for some of the neurobehavioural effects of toluene. PMID:12237258

  3. Evidence from the anti-idiotypic network that the acetylcholine receptor is a rabies virus receptor.

    PubMed

    Hanham, C A; Zhao, F; Tignor, G H

    1993-01-01

    We have developed idiotype-anti-idiotype monoclonal antibodies that provide evidence for rabies virus binding to the acetylcholine receptor (AChR). Hybridoma cell lines 7.12 and 7.25 resulted after fusion of NS-1 myeloma cells with spleen cells from a BALB/c mouse immunized with rabies virus strain CVS. Antibody 7.12 reacted with viral glycoprotein and neutralized virus infectivity in vivo. It also neutralized infectivity in vitro when PC12 cells, which express neuronal AChR, but not CER cells or neuroblastoma cells (clone N18), which have no AChR, were used. Antibody 7.25 reacted with nucleocapsid protein. Anti-idiotypic monoclonal antibody B9 was produced from fusion of NS-1 cells with spleen cells from a mouse immunized with 7.12 Fab. In an enzyme-linked immunosorbent assay and immunoprecipitation, B9 reacted with 7.12, polyclonal rabies virus immune dog serum, and purified AChR. The binding of B9 to 7.12 and immune dog serum was inhibited by AChR. B9 also inhibited the binding of 7.12 to rabies virus both in vitro and in vivo. Indirect immunofluorescence revealed that B9 reacted at neuromuscular junctions of mouse tissue. B9 also reacted in indirect immunofluorescence with distinct neurons in mouse and monkey brain tissue as well as with PC12 cells. B9 staining of neuronal elements in brain tissue of rabies virus-infected mice was greatly reduced. Rabies virus inhibited the binding of B9 to PC12 cells. Mice immunized with B9 developed low-titer rabies virus-neutralizing antibody. These mice were protected from lethal intramuscular rabies virus challenge. In contrast, anti-idiotypic antibody raised against nucleocapsid antibody 7.25 did not react with AChR.

  4. Presynaptic α4β2 nicotinic acetylcholine receptors increase glutamate release and serotonin neuron excitability in the dorsal raphe nucleus.

    PubMed

    Garduño, Julieta; Galindo-Charles, Luis; Jiménez-Rodríguez, Javier; Galarraga, Elvira; Tapia, Dagoberto; Mihailescu, Stefan; Hernandez-Lopez, Salvador

    2012-10-24

    Several behavioral effects of nicotine are mediated by changes in serotonin (5-HT) release in brain areas that receive serotonergic afferents from the dorsal raphe nucleus (DRN). In vitro experiments have demonstrated that nicotine increases the firing activity in the majority of DRN 5-HT neurons and that DRN contains nicotinic acetylcholine receptors (nAChRs) located at both somata and presynaptic elements. One of the most common presynaptic effects of nicotine is to increase glutamate release. Although DRN receives profuse glutamatergic afferents, the effect of nicotine on glutamate release in the DRN has not been studied in detail. Using whole-cell recording techniques, we investigated the effects of nicotine on the glutamatergic input to 5-HT DRN neurons in rat midbrain slices. Low nicotine concentrations, in the presence of bicuculline and tetrodotoxin (TTX), increased the frequency but did not change the amplitude of glutamate-induced EPSCs, recorded from identified 5-HT neurons. Nicotine-induced increase of glutamatergic EPSC frequency persisted 10-20 min after drug withdrawal. This nicotinic effect was mimicked by exogenous administration of acetylcholine (ACh) or inhibition of ACh metabolism. In addition, the nicotine-induced increase in EPSC frequency was abolished by blockade of α4β2 nAChRs, voltage-gated calcium channels, or intracellular calcium signaling but not by α7 nAChR antagonists. These data suggest that both nicotine and endogenous ACh can increase glutamate release through activation of presynaptic α4β2 but not α7 nAChRs in the DRN. The effect involves long-term changes in synaptic function, and it is dependent on voltage-gated calcium channels and presynaptic calcium stores.

  5. The nicotinic acetylcholine receptor: smoking and Alzheimer's disease revisited.

    PubMed

    Mehta, Mona; Adem, Abdu; Kahlon, Maninder S; Sabbagh, Marwan N

    2012-01-01

    Epidemiological studies regarding Alzheimer's disease (AD) in smokers currently suggest inconsistent results. The clinicopathological findings also vary as to how AD pathology is affected by smoking behavior. Even though clinicopathological, functional, and epidemiological studies in humans do not present a consistent picture, much of the in vitro data implies that nicotine has neuroprotective effects when used in neurodegenerative disorder models. Current studies of the effects of nicotine and nicotinic agonists on cognitive function in both the non-demented and those with AD are not convincing. More data is needed to determine whether repetitive activation of nAChR with intermittent or acute exposure to nicotine, acute activation of nAChR, or long-lasting inactivation of nAChR secondary to chronic nicotine exposure will have a therapeutic effect and/or explain the beneficial effects of those types of drugs. Other studies show multifaceted connections between nicotine, nicotinic agonists, smoking, and nAChRs implicated in AD etiology. Although many controversies still exist, ongoing studies are revealing how nicotinic receptor changes and functions may be significant to the neurochemical, pathological, and clinical changes that appear in AD.

  6. Probing Protein Packing Surrounding the Residues In and Flanking the Nicotinic Acetylcholine Receptor M2M3 Loop

    PubMed Central

    Wiltfong, Roger Ernest; Jansen, Michaela

    2009-01-01

    Nicotinic Acetylcholine Receptors (nAChR) are cation-selective, ligand-gated ion channels of the Cys-loop gene superfamily. The recent crystal structure of a bacterial homologue from Erwinia chrysanthemi (ELIC) agrees with previous structures of the N-terminal domain of acetylcholine-binding protein (AChBP) and of the electronmicroscopy derived Torpedo nAChR structure. However, the ELIC transmembrane domain is significantly more tightly packed than the corresponding region of the Torpedo nAChR. We investigated the tightness of protein packing surrounding the extracellular end of the M2 transmembrane segment and around the loop connecting the M2 and M3 segments using the substituted cysteine accessibility method (SCAM). The M2 20′ to 27′ residues were highly water accessible and the variation in reaction rates were consistent with this region being α-helical. At all positions tested, the presence of ACh changed MTSEA modification rates by less than 10-fold. In the presence of ACh, reaction rates for residues in the last extracellular α-helical turn of M2 and in the M2M3 loop increased, whereas rates in M2's penultimate α-helical turn decreased. Only 3 out of 8 M2M3 loop residues were accessible to MTSEA in both the presence and absence of ACh. We infer that the protein packing around the M2M3 loop is tight, consistent with it's location at the interdomain interface where it is involved in the transduction of ligand binding in the extracellular domain to gating in the transmembrane domain. Our data indicate that the Torpedo nAChR transmembrane domain structure is a better model than the ELIC structure for eukaryotic Cys loop receptors. PMID:19211870

  7. Functional analysis of Torpedo californica nicotinic acetylcholine receptors in multiple activation states by SSM-based electrophysiology.

    PubMed

    Niessen, K V; Muschik, S; Langguth, F; Rappenglück, S; Seeger, T; Thiermann, H; Worek, F

    2016-04-15

    Organophosphorus compounds (OPC), i.e. nerve agents or pesticides, are highly toxic due to their strong inhibition potency against acetylcholinesterase (AChE). Inhibited AChE results in accumulation of acetylcholine in the synaptic cleft and thus the desensitisation of the nicotinic acetylcholine receptor (nAChR) in the postsynaptic membrane is provoked. Direct targeting of nAChR to reduce receptor desensitisation might be an alternative therapeutic approach. For drug discovery, functional properties of potent therapeutic candidates need to be investigated in addition to affinity properties. Solid supported membrane (SSM)-based electrophysiology is useful for functional characterisation of ligand-gated ion channels like nAChRs, as charge translocations via capacitive coupling of the supporting membrane can be measured. By varying the agonist (carbamoylcholine) concentration, different functional states of the nAChR were initiated. Using plasma membrane preparations obtained from Torpedo californica electric organ, functional properties of selected nAChR ligands and non-oxime bispyridinium compounds were investigated. Depending on overall-size, the bispyridinium compounds enhanced or inhibited cholinergic signals induced by 100 μM carbamoylcholine. Applying excessive concentrations of the agonist carbamoylcholine provoked desensitisation of the nAChRs, whereas addition of bispyridinium compounds bearing short alkyl linkers exhibited functional recovery of previously desensitised nAChRs. The results suggest that these non-oxime bispyridinium compounds possibly interacted with nAChR subtypes in a manner of a positive allosteric modulator (PAM). The described newly developed functional assay is a valuable tool for the assessment of functional properties of potential compounds such as nAChR modulating ligands, which might be a promising approach in the therapeutically treatment of OPC-poisonings. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Muscarinic acetylcholine receptor-mediated stimulation of retinal ganglion cell photoreceptors.

    PubMed

    Sodhi, Puneet; Hartwick, Andrew T E

    2016-09-01

    Melanopsin-dependent phototransduction in intrinsically photosensitive retinal ganglion cells (ipRGCs) involves a Gq-coupled phospholipase C (PLC) signaling cascade. Acetylcholine, released in the mammalian retina by starburst amacrine cells, can also activate Gq-PLC pathways through certain muscarinic acetylcholine receptors (mAChRs). Using multielectrode array recordings of rat retinas, we demonstrate that robust spiking responses can be evoked in neonatal and adult ipRGCs after bath application of the muscarinic agonist carbachol. The stimulatory action of carbachol on ipRGCs was a direct effect, as confirmed through calcium imaging experiments on isolated ipRGCs in purified cultures. Using flickering (6 Hz) yellow light stimuli at irradiances below the threshold for melanopsin activation, spiking responses could be elicited in ipRGCs that were suppressed by mAChR antagonism. Therefore, this work identified a novel melanopsin-independent pathway for stimulating sustained spiking in ganglion cell photoreceptors. This mAChR-mediated pathway could enhance ipRGC spiking responses in conditions known to evoke retinal acetylcholine release, such as those involving flickering or moving visual stimuli. Furthermore, this work identifies a pharmacological approach for light-independent ipRGC stimulation that could be targeted by mAChR agonists.

  9. Selective actions of Lynx proteins on different nicotinic acetylcholine receptors in the locust, Locusta migratoria manilensis.

    PubMed

    Wang, Xin; Bao, Haibo; Sun, Huahua; Zhang, Yixi; Fang, Jichao; Liu, Qinghong; Liu, Zewen

    2015-08-01

    Nicotinic acetylcholine receptors (nAChRs) are major neurotransmitter receptors and targets of neonicotinoid insecticides in the insect nervous system. The full function of nAChRs is often dependent on associated proteins, such as chaperones, regulators and modulators. Here, three Lynx (Ly-6/neurotoxin) proteins, Loc-lynx1, Loc-lynx2 and Loc-lynx3, were identified in the locust, Locusta migratoria manilensis. Co-expression with Lynx resulted in a dramatic increase in agonist-evoked macroscopic currents on nAChRs Locα1/β2 and Locα2/β2 in Xenopus oocytes, but no changes in agonist sensitivity. Loc-lynx1 and Loc-lynx3 only modulated nAChRs Locα1/β2 while Loc-lynx2 modulated Locα2/β2 specifically. Meanwhile, Loc-lynx1 induced a more significant increase in currents evoked by imidacloprid and epibatidine than Loc-lynx3, and the effects of Loc-lynx1 on imidacloprid and epibatidine were significantly higher than those on acetylcholine. Among three lynx proteins, only Loc-lynx1 significantly increased [(3) H]epibatidine binding on Locα1/β2. The results indicated that Loc-lynx1 had different modulation patterns in nAChRs compared to Loc-lynx2 and Loc-lynx3. Taken together, these findings indicated that three Lynx proteins were nAChR modulators and had selective activities in different nAChRs. Lynx proteins might display their selectivities from three aspects: nAChR subtypes, various agonists and different modulation patterns. Insect Lynx (Ly-6/neurotoxin) proteins act as the allosteric modulators on insect nicotinic acetylcholine receptors (nAChRs), the important targets of insecticides. We found that insect lynx proteins showed their selectivities from at least three aspects: nAChR subtypes, various agonists and different modulation patterns.

  10. Mapping of the alpha-bungarotoxin binding site within the alpha subunit of the acetylcholine receptor.

    PubMed Central

    Neumann, D; Barchan, D; Safran, A; Gershoni, J M; Fuchs, S

    1986-01-01

    Synthetic peptides and their respective antibodies have been used in order to map the alpha-bungarotoxin binding site within the alpha subunit of the acetylcholine receptor. By using antibodies to a synthetic peptide corresponding to residues 169-181 of the alpha subunit, we demonstrate that this sequence is included within the 18-kDa toxin binding fragment previously reported. Furthermore, the 18-kDa fragment was also found to bind a monoclonal antibody (5.5) directed against the cholinergic binding site. Sequential proteolysis of the acetylcholine receptor with trypsin, prior to Staphylococcus aureus V8 protease digestion, resulted in a 15-kDa toxin binding fragment that is included within the 18-kDa fragment but is shorter than it only at its carboxyl terminus. This 15-kDa fragment therefore initiates beyond Asp-152 and terminates in the region of Arg-313/Lys-314. In addition, experiments are reported that indicate that in the intact acetylcholine receptor, Cys-128 and/or Cys-142 are not crosslinked by disulfide bridges with any of the cysteines (at positions 192, 193, and 222) that reside in the 15-kDa toxin binding fragment. Finally, the synthetic dodecapeptide Lys-His-Trp-Val-Tyr-Tyr-Thr-Cys-Cys-Pro-Asp-Thr, which is present in the 15-kDa fragment (corresponding to residues 185-196 of the alpha subunit) was shown to bind alpha-bungarotoxin directly. This binding was completely inhibited by competition with d-tubocurarine. Images PMID:3458258

  11. Mapping of the alpha-bungarotoxin binding site within the alpha subunit of the acetylcholine receptor.

    PubMed

    Neumann, D; Barchan, D; Safran, A; Gershoni, J M; Fuchs, S

    1986-05-01

    Synthetic peptides and their respective antibodies have been used in order to map the alpha-bungarotoxin binding site within the alpha subunit of the acetylcholine receptor. By using antibodies to a synthetic peptide corresponding to residues 169-181 of the alpha subunit, we demonstrate that this sequence is included within the 18-kDa toxin binding fragment previously reported. Furthermore, the 18-kDa fragment was also found to bind a monoclonal antibody (5.5) directed against the cholinergic binding site. Sequential proteolysis of the acetylcholine receptor with trypsin, prior to Staphylococcus aureus V8 protease digestion, resulted in a 15-kDa toxin binding fragment that is included within the 18-kDa fragment but is shorter than it only at its carboxyl terminus. This 15-kDa fragment therefore initiates beyond Asp-152 and terminates in the region of Arg-313/Lys-314. In addition, experiments are reported that indicate that in the intact acetylcholine receptor, Cys-128 and/or Cys-142 are not crosslinked by disulfide bridges with any of the cysteines (at positions 192, 193, and 222) that reside in the 15-kDa toxin binding fragment. Finally, the synthetic dodecapeptide Lys-His-Trp-Val-Tyr-Tyr-Thr-Cys-Cys-Pro-Asp-Thr, which is present in the 15-kDa fragment (corresponding to residues 185-196 of the alpha subunit) was shown to bind alpha-bungarotoxin directly. This binding was completely inhibited by competition with d-tubocurarine.

  12. A novel physiological property of snake bradykinin-potentiating peptides-reversion of MK-801 inhibition of nicotinic acetylcholine receptors.

    PubMed

    Nery, Arthur A; Trujillo, Cleber A; Lameu, Claudiana; Konno, Katsuhiro; Oliveira, Vitor; Camargo, Antonio C M; Ulrich, Henning; Hayashi, Mirian A F

    2008-10-01

    The first naturally occurring angiotensin-converting enzyme (ACE) inhibitors described are pyroglutamyl proline-rich oligopeptides, found in the venom of the viper Bothrops jararaca, and named as bradykinin-potentiating peptides (BPPs). Biochemical and pharmacological properties of these peptides were essential for the development of Captopril, the first active site-directed inhibitor of ACE, currently used for the treatment of human hypertension. However, a number of data have suggested that the pharmacological activity of BPPs could not only be explained by their inhibitory action on enzymatic activity of somatic ACE. In fact, we showed recently that the strong and long-lasting anti-hypertensive effect of BPP-10c [acetylcholine receptors expressed in blood vessels have been related to blood pressure regulation. Therefore, we have studied the effects of BPP-10c on acetylcholine receptor function in the PC12 pheochromocytoma cell line, which following induction to neuronal differentiation expresses most of the nicotinic receptor subtypes. BPP-10c did not induce receptor-mediated ion flux, nor potentiated carbamoylcholine-provoked receptor activity as determined by whole-cell recording. This peptide, however, alleviated MK-801-induced inhibition of nicotinic acetylcholine receptor activity. Although more data are needed for understanding the mechanism of the BPP-10c effect on nicotinic receptor activity and its relationship with the anti-hypertensive activity, this work reveals possible therapeutic applications for BPP-10c in establishing normal acetylcholine receptor activity.

  13. Peptides from puff adder Bitis arietans venom, novel inhibitors of nicotinic acetylcholine receptors.

    PubMed

    Vulfius, Catherine A; Spirova, Ekaterina N; Serebryakova, Marina V; Shelukhina, Irina V; Kudryavtsev, Denis S; Kryukova, Elena V; Starkov, Vladislav G; Kopylova, Nina V; Zhmak, Maxim N; Ivanov, Igor A; Kudryashova, Ksenia S; Andreeva, Tatyana V; Tsetlin, Victor I; Utkin, Yuri N

    2016-10-01

    Phospholipase A2 (named bitanarin) possessing capability to block nicotinic acetylcholine receptors (nAChRs) was isolated earlier (Vulfius et al., 2011) from puff adder Bitis arietans venom. Further studies indicated that low molecular weight fractions of puff adder venom inhibit nAChRs as well. In this paper, we report on isolation from this venom and characterization of three novel peptides called baptides 1, 2 and 3 that reversibly block nAChRs. To isolate the peptides, the venom of B. arietans was fractionated by gel-filtration and reversed phase chromatography. The amino acid sequences of peptides were established by de novo sequencing using MALDI mass spectrometry. Baptide 1 comprised 7, baptides 2 and 3-10 amino acid residues, the latter being acetylated at the N-terminus. This is the first indication for the presence of such post-translational modification in snake venom proteins. None of the peptides contain cysteine residues. For biological activity studies the peptides were prepared by solid phase peptide synthesis. Baptide 3 and 2 blocked acetylcholine-elicited currents in isolated Lymnaea stagnalis neurons with IC50 of about 50 μM and 250 μM, respectively. In addition baptide 2 blocked acetylcholine-induced currents in muscle nAChR heterologously expressed in Xenopus oocytes with IC50 of about 3 μM. The peptides did not compete with radioactive α-bungarotoxin for binding to Torpedo and α7 nAChRs at concentration up to 200 μM that suggests non-competitive mode of inhibition. Calcium imaging studies on α7 and muscle nAChRs heterologously expressed in mouse neuroblastoma Neuro2a cells showed that on α7 receptor baptide 2 inhibited acetylcholine-induced increasing intracellular calcium concentration with IC50 of 20.6 ± 3.93 μM. On both α7 and muscle nAChRs the suppression of maximal response to acetylcholine by about 50% was observed at baptide 2 concentration of 25 μM, the value being close to IC50 on α7 nAChR. These data are in

  14. Three austin family compounds from Penicillium brasilianum exhibit selective blocking action on cockroach nicotinic acetylcholine receptors.

    PubMed

    Kataoka, Saori; Furutani, Shogo; Hirata, Koichi; Hayashi, Hideo; Matsuda, Kazuhiko

    2011-01-01

    Austin (AT) and its derivatives (dehydroaustin (DAT) and acetoxydehydroaustin (ADAT)) produced by Penicillium brasilianum MG-11 exhibit toxicity to insects, yet their targets are unknown. Here, we used whole-cell patch-clamp electrophysiology to investigate the action of AT family compounds on cockroach acetylcholine (ACh), γ-aminobutyric acid (GABA) and l-glutamate receptors expressed in the American cockroach (Periplaneta americana) neuron. U-tube application of AT or its derivatives did not induce any current amplitudes, suggesting that they did not act as agonist of these three receptors. In the second step of experiments, they were bath-applied for 1min before co-application with the corresponding ligand. We found that AT and its derivatives had no effect on GABA and l-glutamate-induced currents, whereas they significantly reduced ACh- and epibatidine-induced currents, showing that these compounds acted as selective antagonists of nicotinic acetylcholine receptors (nAChRs) expressed in the cockroach neuron. Of the compounds, DAT showed the highest blocking potency for nAChRs, differentially attenuating the peak and slowly desensitizing current amplitude of ACh-induced responses with pIC(50) (=-logIC(50) (M)) values of 6.11 and 5.91, respectively. DAT reduced the maximum normalized response to ACh without a significant shift in EC(50), suggesting that the blocking action is not competitive with ACh.

  15. A fluorinated quinuclidine benzamide named LMA 10203 acts as an agonist of insect nicotinic acetylcholine receptors.

    PubMed

    Mathé-Allainmat, Monique; Bodereau-Dubois, Béatrice; Lapied, Bruno; Lebreton, Jacques; Thany, Steeve H

    2012-06-01

    In the present study, we take advantage of the fact that cockroach dorsal unpaired median neurons express different nicotinic acetylcholine receptor subtypes to demonstrate that simple quinuclidine benzamides such as the 2-fluorinated benzamide LMA 10203, could act as an agonist of cockroach α-bungarotoxin-insensitive nicotinic acetylcholine receptor subtype, called nAChR2. Indeed, 1 mM LMA 10203 induced ionic currents which were partially blocked by 0.5 μM α-bungarotoxin and methyllycaconitine and completely blocked by 5 μM mecamylamine. Moreover, the current-voltage curve revealed that the ionic current induced by LMA 10203 increased from -30 mV to +20 mV confirming that it acted as an agonist of α-bungarotoxin-insensitive nAChR2. In addition, 1 mM LMA 10203 induced a depolarization of the sixth abdominal ganglion and this neuroexcitatory activity was completely blocked by 5 μM mecamylamine. These data suggest that nAChR2 was also expressed at the postsynaptic level on the synapse between the cercal afferent nerve and the giant interneurons. Interestingly, despite LMA 10203 being an agonist of cockroach nicotinic receptors, it had a poor insecticidal activity. We conclude that LMA 10203 could be used as an interesting compound to identify specific insect nAChR subtypes.

  16. Regulation of phosphorylation of nicotinic acetylcholine receptors in mouse BC3H1 myocytes

    SciTech Connect

    Smith, M.M.; Merlie, J.P.; Lawrence, J.C. Jr.

    1987-09-01

    By using /sup 32/P-labeling methods and performing immunoprecipitations with specific antibodies, the authors have found that three subunits of the nicotinic acetylcholine receptor and phosphorylated in mouse skeletal muscle cells. In nonstimulated cells, the molar ratios of phosphate estimated in ..cap alpha.., ..beta.., and delta subunits were 0.02, 0.05, and 0.5, respectively. All three subunits contained predominantly phosphoserine with some phosphothreonine; the ..beta.., subunit also contained phosphotyrosine. Incubating cells with agents that stimulate cAMP-dependent pathways (isoproterenol, forskolin, 8-Br-cAMP) increased the phosphorylation of the delta subunit by 50%, but phosphate labeling of the ..beta.. subunit was depressed by a third. In contrast, when cells were incubated with the divalent cation ionophores A-23187 or ionomycin, phosphorylation of both the delta and ..beta.. subunits increased. The results indicate that acetylcholine receptors are phosphorylated to significant levels in skeletal muscle cells and that cAMP-dependent and Ca/sup 2 +/-dependent pathways exist for controlling the phosphorylation state of the receptor subunits.

  17. Biosynthesis of the Torpedo californica Acetylcholine Receptor α Subunit in Yeast

    NASA Astrophysics Data System (ADS)

    Fujita, Norihisa; Nelson, Nathan; Fox, Thomas D.; Claudio, Toni; Lindstrom, Jon; Riezman, Howard; Hess, George P.

    1986-03-01

    Yeast cells were transformed with a plasmid containing complementary DNA encoding the α subunit of the Torpedo californica acetylcholine receptor. These cells synthesized a protein that had the expected molecular weight, antigenic specificity, and ligand-binding properties of the α subunit. The subunit was inserted into the yeast plasma membrane, demonstrating that yeast has the apparatus to express a membrane-bound receptor protein and to insert such a foreign protein into its plasma membrane. The α subunit constituted approximately 1 percent of the total yeast membrane proteins, and its density was about the same in the plasma membrane of yeast and in the receptor-rich electric organ of Electrophorus electricus. In view of the available technology for obtaining large quantities of yeast proteins, it may now be possible to obtain amplified amounts of interesting membrane-bound proteins for physical and biochemical studies.

  18. α7-nicotinic acetylcholine receptor agonists for cognitive enhancement in schizophrenia.

    PubMed

    Freedman, Robert

    2014-01-01

    α7-Nicotinic acetylcholine receptors have emerged as a potential therapeutic target for the treatment of neurocognitive dysfunctions in schizophrenia that are often resistant to existing antipsychotic drugs. Molecular evidence for involvement in schizophrenia of CHRNA7, the gene for the receptor subunit, in the neurobiology of deficits in attention is a critical rationale for the clinical study of α7-nicotinic receptor agonists to improve neurocognition. Initial clinical trials show enhancement of inhibitory neuron function related to sensory gating and increased attention and working memory, as well as improvement in negative symptoms such as anhedonia and alogia. Further development of this therapeutic strategy requires assessment of interactions with patients' heavy cigarette smoking and the relationship of this mechanism to the therapeutic effects of clozapine and olanzapine, both highly effective therapeutics with significant side effects.

  19. Pharmacological and kinetic properties of alpha 4 beta 2 neuronal nicotinic acetylcholine receptors expressed in Xenopus oocytes.

    PubMed Central

    Charnet, P; Labarca, C; Cohen, B N; Davidson, N; Lester, H A; Pilar, G

    1992-01-01

    1. Co-injection of RNA synthesized from cloned neuronal acetylcholine receptor (nAChR) subunits (alpha 4 and beta 2) in Xenopus oocytes produced functional receptors. In macroscopic voltage-clamp experiments, the agonist-induced current exhibited a strong inward rectification. 2. Voltage jumps from +50 mV to more negative potentials produced relaxations of the agonist-induced current with a single exponential time course. The relaxation rate constant was only weakly voltage dependent. 3. At the single-channel level, three conductances were recorded of 12, 22 and 34 pS. Their burst durations were similar and varied only weakly with voltage (e-fold for 120 to 370 mV), consistent with the poorly voltage-dependent relaxation rate constants. However, the burst durations were less than 10 ms, or less than 1/5 the value expected from voltage-jump relaxations. 4. Hexamethonium (Hex, 0.5 to 8 microM) inhibited the agonist-induced current and produced voltage-jump relaxations characterized by a rapid conductance increase and a slower conductance decrease. Analysis of these relaxations suggested that the Hex-receptor interaction is open-channel blockade characterized by a forward binding rate of 1 x 10(7) M-1 s-1 and a dissociation rate constant of about 25 s-1. 5. For the relaxations produced by QX222, the slowest phase was a conductance increase, suggesting that the dissociation rate constant for QX222 is 10-30-fold greater than for Hex. 6. Hex but not QX222 produced an additional use-dependent blockade that was manifest during repetitive hyperpolarizing pulses. 7. With mouse muscle ACh receptors expressed in oocytes, the blockade by Hex did not depend strongly on voltage. Neither Hex nor QX222 produced appreciable use-dependent block on muscle ACh receptors. 8. Of the four conditions studied (neuronal and muscle receptors, Hex and QX222), only the blockade of the neuronal AChR by Hex is characterized by a residence time longer than the normal open time. 9. It is concluded

  20. Desensitization of human muscarinic acetylcholine receptor m2 subtypes is caused by their sequestration/internalization.

    PubMed

    Tsuga, H; Kameyama, K; Haga, T

    1998-10-01

    Desensitization of human muscarinic acetylcholine receptor m2 subtypes (hm2 receptors) stably expressed in chinese hamster ovary cells was measured as decreases in the carbamylcholine-stimulated [35S]GTPgammaS binding activity in membrane preparations after pre-treatment of cells with carbamylcholine. The extent of carbamylcholine-stimulated [35S]GTPgammaS binding activity was found to decrease to 64% following pretreatment of cells with 10 microM carbamylcholine for 30 min, and under the same conditions 51-59% of hm2 receptors were sequestered/internalized as assessed by decreases in the [3H]N-methylscopolamine binding activity on the cell surface. A similar reduction in the carbamylcholine-stimulated [35S]GTPgammaS binding activity was observed by pretreatment of cells with 5 nM propylbenzylylcholine mustard, which irreversibly bound to and inactivated 58% of the hm2 receptors. When the cells were pretreated with 10 microM carbamylcholine in the presence of 0.32 M sucrose, which is known to inhibit clathrin-mediated endocytosis, no sequestration/internalization of hm2 receptors was observed, and the extent of carbamylcholine-stimulated [35S]GTPgammaS binding activity did not change. These results indicate that desensitization of hm2 receptors may be caused by reduction of receptor number on the cell surface through sequestration/internalization rather than by loss of the function of receptors.

  1. The binding of pirenzepine to digitonin-solubilized muscarinic acetylcholine receptors from the rat myocardium.

    PubMed Central

    Birdsall, N. J.; Hulme, E. C.; Keen, M.

    1986-01-01

    The binding of pirenzepine to digitonin-solubilized rat myocardial muscarinic acetylcholine receptors has been examined at 4 degrees C. Solubilization produced only small changes in the binding of N-methylscopolamine and atropine. In contrast to the low affinity binding of pirenzepine found to be present in in the membranes, high affinity binding was detected in the soluble preparation. In both preparations, pirenzepine binding was complex. High affinity pirenzepine binding (KD approximately 3 X 10(-8)M) to the soluble myocardial receptors could be monitored directly using [3H]-pirenzepine. [3H]-pirenzepine-labelled soluble myocardial receptors have a sedimentation coefficient of 11.1 s. This indicates that [3H]-pirenzepine binds predominantly to the uncoupled form of the receptor. However, [3H]-pirenzepine-agonist competition experiments indicated that the high affinity pirenzepine binding sites are capable of coupling with a guanosine 5'-triphosphate (GTP)-binding protein. Pirenzepine affinities for the soluble myocardial receptors were unaffected by their state of association with the GTP-binding proteins found in the heart. The equilibrium binding properties of the soluble cortical and myocardial receptors were very similar. However, the binding kinetics of the myocardial receptor were much slower. It appears that the membrane environment can affect the affinity of pirenzepine for the rat myocardial muscarinic receptor. Removal of the constraint by solubilization allows the expression of high affinity pirenzepine binding. PMID:3754173

  2. Some properties of human neuronal alpha 7 nicotinic acetylcholine receptors fused to the green fluorescent protein.

    PubMed

    Palma, Eleonora; Mileo, Anna M; Martinez-Torres, Ataulfo; Eusebi, Fabrizio; Miledi, Ricardo

    2002-03-19

    The functional properties and cellular localization of the human neuronal alpha7 nicotinic acetylcholine (AcCho) receptor (alpha7 AcChoR) and its L248T mutated (mut) form were investigated by expressing them alone or as gene fusions with the enhanced version of the green fluorescent protein (GFP). Xenopus oocytes injected with wild-type (wt), mutalpha7, or the chimeric subunit cDNAs expressed receptors that gated membrane currents when exposed to AcCho. As already known, AcCho currents generated by wtalpha7 receptors decay much faster than those elicited by the mutalpha7 receptors. Unexpectedly, the fusion of GFP to the wt and mutated alpha7 receptors led to opposite results: the AcCho-current decay of the wt receptors became slower, whereas that of the mutated receptors was accelerated. Furthermore, repetitive applications of AcCho led to a considerable "run-down" of the AcCho currents generated by mutalpha7-GFP receptors, whereas those of the wtalpha7-GFP receptors remained stable or increased in amplitude. The AcCho-current run-down of mutalpha7-GFP oocytes was accompanied by a marked decrease of alpha-bungarotoxin binding activity. Fluorescence, caused by the chimeric receptors expressed, was seen over the whole oocyte surface but was more intense and abundant in the animal hemisphere, whereas it was much weaker in the vegetal hemisphere. We conclude that fusion of GFP to wtalpha7 and mutalpha7 receptors provides powerful tools to study the distribution and function of alpha7 receptors. We also conclude that fused genes do not necessarily recapitulate all of the properties of the original receptors. This fact must be borne close in mind whenever reporter genes are attached to proteins.

  3. Some properties of human neuronal α7 nicotinic acetylcholine receptors fused to the green fluorescent protein

    PubMed Central

    Palma, Eleonora; Mileo, Anna M.; Martínez-Torres, Ataúlfo; Eusebi, Fabrizio; Miledi, Ricardo

    2002-01-01

    The functional properties and cellular localization of the human neuronal α7 nicotinic acetylcholine (AcCho) receptor (α7 AcChoR) and its L248T mutated (mut) form were investigated by expressing them alone or as gene fusions with the enhanced version of the green fluorescent protein (GFP). Xenopus oocytes injected with wild-type (wt), mutα7, or the chimeric subunit cDNAs expressed receptors that gated membrane currents when exposed to AcCho. As already known, AcCho currents generated by wtα7 receptors decay much faster than those elicited by the mutα7 receptors. Unexpectedly, the fusion of GFP to the wt and mutated α7 receptors led to opposite results: the AcCho-current decay of the wt receptors became slower, whereas that of the mutated receptors was accelerated. Furthermore, repetitive applications of AcCho led to a considerable “run-down” of the AcCho currents generated by mutα7-GFP receptors, whereas those of the wtα7-GFP receptors remained stable or increased in amplitude. The AcCho-current run-down of mutα7-GFP oocytes was accompanied by a marked decrease of α-bungarotoxin binding activity. Fluorescence, caused by the chimeric receptors expressed, was seen over the whole oocyte surface but was more intense and abundant in the animal hemisphere, whereas it was much weaker in the vegetal hemisphere. We conclude that fusion of GFP to wtα7 and mutα7 receptors provides powerful tools to study the distribution and function of α7 receptors. We also conclude that fused genes do not necessarily recapitulate all of the properties of the original receptors. This fact must be borne close in mind whenever reporter genes are attached to proteins. PMID:11891308

  4. Isoform-specific mechanisms of α3β4*-nicotinic acetylcholine receptor modulation by the prototoxin lynx1.

    PubMed

    George, Andrew A; Bloy, Abigail; Miwa, Julie M; Lindstrom, Jon M; Lukas, Ronald J; Whiteaker, Paul

    2017-04-01

    This study investigates-for the first time to our knowledge-the existence and mechanisms of functional interactions between the endogenous mammalian prototoxin, lynx1, and α3- and β4-subunit-containing human nicotinic acetylcholine receptors (α3β4*-nAChRs). Concatenated gene constructs were used to express precisely defined α3β4*-nAChR isoforms (α3β4)2β4-, (α3β4)2α3-, (α3β4)2α5(398D)-, and (α3β4)2α5(398N)-nAChR in Xenopus oocytes. In the presence or absence of lynx1, α3β4*-nAChR agonist responses were recorded by using 2-electrode voltage clamp and single-channel electrophysiology, whereas radioimmunolabeling measured cell-surface expression. Lynx1 reduced (α3β4)2β4-nAChR function principally by lowering cell-surface expression, whereas single-channel effects were primarily responsible for reducing (α3β4)2α3-nAChR function [decreased unitary conductance (≥50%), altered burst proportions (3-fold reduction in the proportion of long bursts), and enhanced closed dwell times (3- to 6-fold increase)]. Alterations in both cell-surface expression and single-channel properties accounted for the reduction in (α3β4)2α5-nAChR function that was mediated by lynx1. No effects were observed when α3β4*-nAChRs were coexpressed with mutated lynx1 (control). Lynx1 is expressed in the habenulopeduncular tract, where α3β4*-α5*-nAChR subtypes are critical contributors to the balance between nicotine aversion and reward. This gives our findings a high likelihood of physiologic significance. The exquisite isoform selectivity of lynx1 interactions provides new insights into the mechanisms and allosteric sites [α(-)-interface containing] by which prototoxins can modulate nAChR function.-George, A. A., Bloy, A., Miwa, J. M., Lindstrom, J. M., Lukas, R. J., Whiteaker, P. Isoform-specific mechanisms of α3β4*-nicotinic acetylcholine receptor modulation by the prototoxin lynx1. © FASEB.

  5. Rare human nicotinic acetylcholine receptor α4 subunit (CHRNA4) variants affect expression and function of high-affinity nicotinic acetylcholine receptors.

    PubMed

    McClure-Begley, T D; Papke, R L; Stone, K L; Stokes, C; Levy, A D; Gelernter, J; Xie, P; Lindstrom, J; Picciotto, M R

    2014-03-01

    Nicotine, the primary psychoactive component in tobacco smoke, produces its behavioral effects through interactions with neuronal nicotinic acetylcholine receptors (nAChRs). α4β2 nAChRs are the most abundant in mammalian brain, and converging evidence shows that this subtype mediates the rewarding and reinforcing effects of nicotine. A number of rare variants in the CHRNA4 gene that encode the α4 nAChR subunit have been identified in human subjects and appear to be underrepresented in a cohort of smokers. We compared three of these variants (α4R336C, α4P451L, and α4R487Q) to the common variant to determine their effects on α4β2 nAChR pharmacology. We examined [(3)H]epibatidine binding, interacting proteins, and phosphorylation of the α4 nAChR subunit with liquid chromatography and tandem mass spectrometry (LC-MS/MS) in HEK 293 cells and voltage-clamp electrophysiology in Xenopus laevis oocytes. We observed significant effects of the α4 variants on nAChR expression, subcellular distribution, and sensitivity to nicotine-induced receptor upregulation. Proteomic analysis of immunopurified α4β2 nAChRs incorporating the rare variants identified considerable differences in the intracellular interactomes due to these single amino acid substitutions. Electrophysiological characterization in X. laevis oocytes revealed alterations in the functional parameters of activation by nAChR agonists conferred by these α4 rare variants, as well as shifts in receptor function after incubation with nicotine. Taken together, these experiments suggest that genetic variation at CHRNA4 alters the assembly and expression of human α4β2 nAChRs, resulting in receptors that are more sensitive to nicotine exposure than those assembled with the common α4 variant. The changes in nAChR pharmacology could contribute to differences in responses to smoked nicotine in individuals harboring these rare variants.

  6. 86Rb+ efflux mediated by alpha4beta2*-nicotinic acetylcholine receptors with high and low-sensitivity to stimulation by acetylcholine display similar agonist-induced desensitization.

    PubMed

    Marks, Michael J; Meinerz, Natalie M; Brown, Robert W B; Collins, Allan C

    2010-10-15

    The nicotinic acetylcholine receptors (nAChR) assembled from alpha4 and beta2 subunits are the most densely expressed subtype in the brain. Concentration-effect curves for agonist activation of alpha4beta2*-nAChR are biphasic. This biphasic agonist sensitivity is ascribed to differences in subunit stoichiometry. The studies described here evaluated desensitization elicited by low concentrations of epibatidine, nicotine, cytisine or methylcarbachol of brain alpha4beta2-nAChR function measured with acetylcholine-stimulated (86)Rb(+) efflux from mouse thalamic synaptosomes. Each agonist elicited concentration-dependent desensitization. The agonists differed in potency. However, IC(50) values for each agonist for desensitization of (86)Rb(+) efflux both with high (EC(50) approximately 3 microM) and low (EC(50) approximately 150 microM) acetylcholine sensitivity were not significantly different. Concentrations required to elicit desensitization were higher that their respective K(D) values for receptor binding. Even though the two components of alpha4beta2*-nAChR-mediated (86)Rb(+) efflux from mouse brain differ markedly in EC(50) values for agonist activation, they are equally sensitive to desensitization by exposure to low agonist concentrations. Mice were also chronically treated with nicotine by continuous infusion of 0, 0.5 or 4.0mg/kg/h and desensitization induced by nicotine was evaluated. Consistent with previous results, chronic nicotine treatment increased the density of epibatidine binding sites. Acute exposure to nicotine also elicited concentration-dependent desensitization of both high-sensitivity and low-sensitivity acetylcholine-stimulated (86)Rb(+) efflux from cortical and thalamic synaptosomes. Although chronic nicotine treatment reduced maximal (86)Rb(+) efflux from thalamus, IC(50) values in both brain regions were unaffected by chronic nicotine treatment. Copyright 2010 Elsevier Inc. All rights reserved.

  7. Evidence of alpha 7 nicotinic acetylcholine receptor expression in retinal pigment epithelial cells.

    PubMed

    Maneu, Victoria; Gerona, Guillermo; Fernández, Laura; Cuenca, Nicolás; Lax, Pedro

    2010-11-01

    Some evidence suggests that retinal pigment epithelium (RPE) can express nicotinic acetylcholine receptors (nAChRs) as described for other epithelial cells, where nAChRs have been involved in processes such as cell development, cell death, cell migration, and angiogenesis. This study is designed to determine the expression and activity of α7 nAChRs in RPE cells. Reverse transcriptase (RT)-PCR was performed to test the expression of nicotinic α7 subunit in bovine RPE cells. Protein expression was determined by Western blot and by immunocytochemistry. Expression of nicotinic α7 subunits was also analyzed in cryostat sections of albino rat retina. Changes in protein expression were tested under hypoxic conditions. Functional nAChRs were studied by examining the Ca2+ transients elicited by nicotine and acetylcholine stimulation in fura-2-loaded cells. Expression of endogenous modulators of nAChRs was analyzed by RT-PCR and Western blot in retina and RPE. Cultured bovine RPE cells expressed nicotinic receptors containing α7 subunit. RT-PCR amplified the expected specific α7 fragment. Western blotting showed expression at the protein level, with a specific band being found at 57 kDa in both cultured and freshly isolated RPE cells. Expression of nAChRs was confirmed for cultured cells by immunofluorescence. Immunohistochemistry confirmed α7 receptor expression in rat RPE retina. α7 receptor expression was down-regulated by long-term hypoxia. A small subpopulation of RPE cultured cells showed functional nAChRs, as evidenced by the selective response elicited by nicotine and acetylcholine stimulation. Expression of the endogenous nicotinic receptors' modulator lynx1 was confirmed in bovine retina and RPE, and expression of lynx1 and other endogenous nicotinic receptor modulators (SLURP1 and RGD1308195) were also confirmed in rat retina. These results suggest that nAChRs could have a significant role in RPE, which may not be related to the traditional role in nerve

  8. Role of Muscarinic Acetylcholine Receptor-2 in the Cerebellar Cortex in Cardiovascular Modulation in Anaesthetized Rats.

    PubMed

    Zhang, Changzheng; Sun, Tingzhe; Zhou, Peiling; Zhu, Qingfeng; Zhang, Liefeng

    2016-04-01

    Our previous investigations have demonstrated that microinjection of acetylcholine (ACh) or muscarinic ACh receptor activation in the cerebellar cortex induces a systemic blood pressure depressor response. This study aimed to determine the role of muscarinic ACh receptor-2 (M2 receptor) in the cerebellar cortex in cardiovascular function regulation in rats. A nonselective muscarinic receptor agonist (oxotremorine M, OXO; 30 mM), a selective M2 receptor agonist (arecaidine but-2-ynyl ester tosylate, ABET; 3, 10, and 30 mM), 30 mM OXO mixed with a selective M2 receptor antagonist (methoctramine hydrate, MCT; 0.3, 1, and 3 mM), and normal saline (0.9 % NaCl) were separately microinjected (0.5 µl/5 s) into the cerebellar cortex (lobule VI) of anaesthetized rats. We measured the mean arterial pressure (MAP), maximum change in MAP, and reactive time (RT; the duration required for the blood pressure to return to basal levels), heart rate (HR) and the maximum change in HR during the RT in response to drug activation. The results demonstrated that ABET dose-dependently decreased MAP and HR, increased the maximum change in MAP and the maximum change in HR, and prolonged the RT. Furthermore, MCT dose-dependently blocked the OXO-mediated cardiovascular depressor response. This study provides the first evidence that M2 receptors in the cerebellar cortex are involved in cardiovascular regulation, the activation of which evokes significant depressor and bradycardic responses.

  9. Topological dispositions of lysine. alpha. 380 and lysine. gamma. 486 in the acetylcholine receptor from Torpedo californica

    SciTech Connect

    Dwyer, B.P. )

    1991-04-23

    The locations have been determined, with respect to the plasma membrane, of lysine {alpha}380 and lysine {gamma}486 in the {alpha} subunit and the {gamma} subunit, respectively, of the nicotinic acetylcholine receptor from Torpedo californica. Immunoadsorbents were constructed that recognize the carboxy terminus of the peptide GVKYIAE released by proteolytic digestion from positions 378-384 in the amino acid sequence of the {alpha} subunit of the acetylcholine receptor and the carboxy terminus of the peptide KYVP released by proteolytic digestion from positions 486-489 in the amino acid sequence of the {gamma} subunit. They were used to isolate these peptides from proteolytic digests of polypeptides from the acetylcholine receptor. Sealed vesicles containing the native acetylcholine receptor were labeled with pyridoxal phosphate and sodium ({sup 3}H)-borohydride. The effect of saponin on the incorporation of pyridoxamine phosphate into lysine {alpha}380 and lysine {gamma}486 from the acetylcholine receptor in these vesicles was assessed with the immunoadsorbents. The conclusions that follow from these results are that lysine {alpha}380 is on the inside surface of a vesicle and lysine {gamma}486 is on the outside surface. Because a majority (85%) of the total binding sites for {alpha}-bungarotoxin bind the toxin in the absence of saponin, the majority of the vesicles are right side out with the inside of the vesicle corresponding to the cytoplasmic surface and the outside of the vesicle corresponding to the extracytoplasmic, synaptic surface. Because lysine {alpha}380 and lysine {gamma}486 lie on opposite sides of the membrane, a membrane-spanning segment must be located between the two positions occupied by these two amino acids in the common sequence of a polypeptide of the acetylcholine receptor.

  10. Analysis of ligand binding to the synthetic dodecapeptide 185-196 of the acetylcholine receptor alpha subunit.

    PubMed Central

    Neumann, D; Barchan, D; Fridkin, M; Fuchs, S

    1986-01-01

    A synthetic dodecapeptide corresponding to residues 185-196 of the Torpedo acetylcholine receptor alpha subunit, which contains the adjacent cysteine residues at positions 192 and 193, was recently shown by us to contain the essential elements for alpha-bungarotoxin binding. In the present study, we have used Sepharose-linked peptides for quantitative analysis of the cholinergic binding properties of this and other synthetic peptides. Sepharose-linked peptides corresponding to residues 1-20, 126-143, 143-158, 169-181, 185-196, 193-210, and 394-409 of the alpha subunit of Torpedo acetylcholine receptor, as well as a peptide corresponding to residues 185-196 of the alpha subunit of human acetylcholine receptor, were tested for their toxin-binding capacity. Of these immobilized peptides, only peptide 185-196 of the Torpedo acetylcholine receptor bound toxin significantly, thus verifying that this synthetic peptide contains essential components of the receptor toxin-binding site. Analysis of toxin binding to the peptide yielded a dissociation constant of 3.5 X 10(-5) M. This binding was inhibited by various cholinergic ligands. The inhibition potency obtained was alpha-bungarotoxin greater than Naja naja siamensis toxin greater than d-tubocurarine greater than decamethonium greater than acetylcholine greater than carbamoylcholine. This pharmacological profile resembles that of the nicotinic acetylcholine receptor and therefore suggests that the synthetic dodecapeptide also includes the neurotransmitter binding site. Reduction and carboxymethylation of the cysteine residues on peptide 185-196 inhibit its capacity to bind toxin, demonstrating that an intact disulfide is required for toxin binding. A decrease in toxin binding was also obtained following chemical modification of the tryptophan residue at position 187, thus implying its possible involvement in toxin binding. The failure to detect binding of toxin to the corresponding human sequence 185-196, in which the

  11. Analysis of ligand binding to the synthetic dodecapeptide 185-196 of the acetylcholine receptor alpha subunit.

    PubMed

    Neumann, D; Barchan, D; Fridkin, M; Fuchs, S

    1986-12-01

    A synthetic dodecapeptide corresponding to residues 185-196 of the Torpedo acetylcholine receptor alpha subunit, which contains the adjacent cysteine residues at positions 192 and 193, was recently shown by us to contain the essential elements for alpha-bungarotoxin binding. In the present study, we have used Sepharose-linked peptides for quantitative analysis of the cholinergic binding properties of this and other synthetic peptides. Sepharose-linked peptides corresponding to residues 1-20, 126-143, 143-158, 169-181, 185-196, 193-210, and 394-409 of the alpha subunit of Torpedo acetylcholine receptor, as well as a peptide corresponding to residues 185-196 of the alpha subunit of human acetylcholine receptor, were tested for their toxin-binding capacity. Of these immobilized peptides, only peptide 185-196 of the Torpedo acetylcholine receptor bound toxin significantly, thus verifying that this synthetic peptide contains essential components of the receptor toxin-binding site. Analysis of toxin binding to the peptide yielded a dissociation constant of 3.5 X 10(-5) M. This binding was inhibited by various cholinergic ligands. The inhibition potency obtained was alpha-bungarotoxin greater than Naja naja siamensis toxin greater than d-tubocurarine greater than decamethonium greater than acetylcholine greater than carbamoylcholine. This pharmacological profile resembles that of the nicotinic acetylcholine receptor and therefore suggests that the synthetic dodecapeptide also includes the neurotransmitter binding site. Reduction and carboxymethylation of the cysteine residues on peptide 185-196 inhibit its capacity to bind toxin, demonstrating that an intact disulfide is required for toxin binding. A decrease in toxin binding was also obtained following chemical modification of the tryptophan residue at position 187, thus implying its possible involvement in toxin binding. The failure to detect binding of toxin to the corresponding human sequence 185-196, in which the

  12. Subtype-selective nicotinic acetylcholine receptor agonists enhance the responsiveness to citalopram and reboxetine in the mouse forced swim test.

    PubMed

    Andreasen, Jesper T; Nielsen, Elsebet Ø; Christensen, Jeppe K; Olsen, Gunnar M; Peters, Dan; Mirza, Naheed R; Redrobe, John P

    2011-10-01

    Nicotine increases serotonergic and noradrenergic neuronal activity and facilitates serotonin and noradrenaline release. Accordingly, nicotine enhances antidepressant-like actions of reuptake inhibitors selective for serotonin or noradrenaline in the mouse forced swim test and the mouse tail suspension test. Both high-affinity α4β2 and low-affinity α7 nicotinic acetylcholine receptor subtypes are implicated in nicotine-mediated release of serotonin and noradrenaline. The present study therefore investigated whether selective agonism of α4β2 or α7 nicotinic acetylcholine receptors would affect the mouse forced swim test activity of two antidepressants with distinct mechanisms of action, namely the selective serotonin reuptake inhibitor citalopram and the noradrenaline reuptake inhibitor reboxetine. Subthreshold and threshold doses of citalopram (3 and 10 mg/kg) or reboxetine (10 and 20 mg/kg) were tested alone and in combination with the novel α4β2-selective partial nicotinic acetylcholine receptor agonist, NS3956 (0.3 and 1.0 mg/kg) or the α7-selective nicotinic acetylcholine receptor agonist, PNU-282987 (10 and 30 mg/kg). Alone, NS3956 and PNU-282987 were devoid of activity in the mouse forced swim test, but both 1.0 mg/kg NS3956 and 30 mg/kg PNU-282987 enhanced the effect of citalopram and also reboxetine. The data suggest that the activity of citalopram and reboxetine in the mouse forced swim test can be enhanced by agonists at either α4β2 or α7 nicotinic acetylcholine receptors, suggesting that both nicotinic acetylcholine receptor subtypes may be involved in the nicotine-enhanced action of antidepressants.

  13. CNS acetylcholine receptor activity in European medicinal plants traditionally used to improve failing memory.

    PubMed

    Wake, G; Court, J; Pickering, A; Lewis, R; Wilkins, R; Perry, E

    2000-02-01

    Certain Lamiaceous and Asteraceous plants have long histories of use as restoratives of lost or declining cognitive functions in western European systems of traditional medicine. Investigations were carried out to evaluate human CNS cholinergic receptor binding activity in extracts of those European medicinal plants reputed to enhance or restore mental functions including memory. Ethanolic extracts were prepared from accessions of these plants and a number of other species related by genus. Amongst the plant extracts screened for contents able to displace [3H]-(N)-nicotine and [3H]-(N)-scopolamine from nicotinic receptors and muscarinic receptors, respectively in homogenates of human cerebral cortical cell membranes, the most potent extracts, prepared from one accession of Melissa officinalis, three Salvia species and Artemisia absinthium had IC50 concentrations of < 1 mg/ml. The displacement curves of some extracts were comparable with that of carbamylcholine chloride, a potent acetylcholine analogue. Choline, a weak nicotinic ligand (IC50 = 3 x 10(-4) M) was found in extracts of all plants studied at concentrations of 10(-6)-10(-5) M. These concentrations could not account for not more than 5% of the displacement activity observed. Some extracts displayed differential displacement at nicotinic and muscarinic acetylcholine receptors, with M. officinalis 0033 having the highest [3H]-(N)-nicotine displacement value and Salvia elegans with the highest [3H]-(N)-scopolamine displacement value. There was also considerable variation in cholinoreceptor interactions between different accessions of a single plant species. Although most plant extracts screened showed some nicotinic and muscarinic activity, only some showed dose-dependent receptor activity typical of materials with genuine cholinergic activity.

  14. Roles of nicotinic acetylcholine receptor β subunits in function of human α4-containing nicotinic receptors

    PubMed Central

    Wu, Jie; Liu, Qiang; Yu, Kewei; Hu, Jun; Kuo, Yen-Ping; Segerberg, Marsha; St John, Paul A; Lukas, Ronald J

    2006-01-01

    Naturally expressed nicotinic acetylcholine receptors (nAChR) containing α4 subunits (α4*-nAChR) in combination with β2 subunits (α4β2-nAChR) are among the most abundant, high-affinity nicotine binding sites in the mammalian brain. β4 subunits are also richly expressed and colocalize with α4 subunits in several brain regions implicated in behavioural responses to nicotine and nicotine dependence. Thus, α4β4-nAChR also may exist and play important functional roles. In this study, properties were determined of human α4β2- and α4β4-nAChR heterologously expressed de novo in human SH-EP1 epithelial cells. Whole-cell currents mediated via human α4β4-nAChR have ∼4-fold higher amplitude than those mediated via human α4β2-nAChR and exhibit much slower acute desensitization and functional rundown. Nicotinic agonists induce peak whole-cell current responses typically with higher functional potency at α4β4-nAChR than at α4β2-nAChR. Cytisine and lobeline serve as full agonists at α4β4-nAChR but are only partial agonists at α4β2-nAChR. However, nicotinic antagonists, except hexamethonium, have comparable affinities for functional α4β2- and α4β4-nAChR. Whole-cell current responses show stronger inward rectification for α4β2-nAChR than for α4β4-nAChR at a positive holding potential. Collectively, these findings demonstrate that human nAChR β2 or β4 subunits can combine with α4 subunits to generate two forms of α4*-nAChR with distinctive physiological and pharmacological features. Diversity in α4*-nAChR is of potential relevance to nervous system function, disease, and nicotine dependence. PMID:16825297

  15. Structural and functional studies of the modulator NS9283 reveal agonist-like mechanism of action at α4β2 nicotinic acetylcholine receptors.

    PubMed

    Olsen, Jeppe A; Ahring, Philip K; Kastrup, Jette S; Gajhede, Michael; Balle, Thomas

    2014-09-05

    Modulation of Cys loop receptor ion channels is a proven drug discovery strategy, but many underlying mechanisms of the mode of action are poorly understood. We report the x-ray structure of the acetylcholine-binding protein from Lymnaea stagnalis with NS9283, a stoichiometry selective positive modulator that targets the α4-α4 interface of α4β2 nicotinic acetylcholine receptors (nAChRs). Together with homology modeling, mutational data, quantum mechanical calculations, and pharmacological studies on α4β2 nAChRs, the structure reveals a modulator binding mode that overlaps the α4-α4 interface agonist (acetylcholine)-binding site. Analysis of contacts to residues known to govern agonist binding and function suggests that modulation occurs by an agonist-like mechanism. Selectivity for α4-α4 over α4-β2 interfaces is determined mainly by steric restrictions from Val-136 on the β2-subunit and favorable interactions between NS9283 and His-142 at the complementary side of α4. In the concentration ranges where modulation is observed, its selectivity prevents NS9283 from directly activating nAChRs because activation requires coordinated action from more than one interface. However, we demonstrate that in a mutant receptor with one natural and two engineered α4-α4 interfaces, NS9283 is an agonist. Modulation via extracellular binding sites is well known for benzodiazepines acting at γ-aminobutyric acid type A receptors. Like NS9283, benzodiazepines increase the apparent agonist potency with a minimal effect on efficacy. The shared modulatory profile along with a binding site located in an extracellular subunit interface suggest that modulation via an agonist-like mechanism may be a common mechanism of action that potentially could apply to Cys loop receptors beyond the α4β2 nAChRs.

  16. Molecular dynamics simulation of the M2 helices within the nicotinic acetylcholine receptor transmembrane domain: structure and collective motions.

    PubMed

    Hung, Andrew; Tai, Kaihsu; Sansom, Mark S P

    2005-05-01

    Multiple nanosecond duration molecular dynamics simulations were performed on the transmembrane region of the Torpedo nicotinic acetylcholine receptor embedded within a bilayer mimetic octane slab. The M2 helices and M2-M3 loop regions were free to move, whereas the outer (M1, M3, M4) helix bundle was backbone restrained. The M2 helices largely retain their hydrogen-bonding pattern throughout the simulation, with some distortions in the helical end and loop regions. All of the M2 helices exhibit bending motions, with the hinge point in the vicinity of the central hydrophobic gate region (corresponding to residues alphaL251 and alphaV255). The bending motions of the M2 helices lead to a degree of dynamic narrowing of the pore in the region of the proposed hydrophobic gate. Calculations of Born energy profiles for various structures along the simulation trajectory suggest that the conformations of the M2 bundle sampled correspond to a closed conformation of the channel. Principal components analyses of each of the M2 helices, and of the five-helix M2 bundle, reveal concerted motions that may be relevant to channel function. Normal mode analyses using the anisotropic network model reveal collective motions similar to those identified by principal components analyses.

  17. Nicotine enhances alcohol intake and dopaminergic responses through β2* and β4* nicotinic acetylcholine receptors

    PubMed Central

    Tolu, Stefania; Marti, Fabio; Morel, Carole; Perrier, Carole; Torquet, Nicolas; Pons, Stephanie; de Beaurepaire, Renaud; Faure, Philippe

    2017-01-01

    Alcohol and nicotine are the most widely co-abused drugs. Both modify the activity of dopaminergic (DA) neurons of the Ventral Tegmental Area (VTA) and lead to an increase in DA release in the Nucleus Accumbens, thereby affecting the reward system. Evidences support the hypothesis that distinct nicotinic acetylcholine receptors (nAChRs), the molecular target of acetylcholine (ACh) and exogenous nicotine, are also in addition implicated in the response to alcohol. The precise molecular and neuronal substrates of this interaction are however not well understood. Here we used in vivo electrophysiology in the VTA to characterise acute and chronic interactions between nicotine and alcohol. Simultaneous injections of the two drugs enhanced their responses on VTA DA neuron firing and chronic exposure to nicotine increased alcohol-induced DA responses and alcohol intake. Then, we assessed the role of β4 * nAChRs, but not β2 * nAChRs, in mediating acute responses to alcohol using nAChR subtypes knockout mice (β2−/− and β4−/− mice). Finally, we showed that nicotine-induced modifications of alcohol responses were absent in β2−/− and β4−/− mice, suggesting that nicotine triggers β2* and β4 * nAChR-dependent neuroadaptations that subsequently modify the responses to alcohol and thus indicating these receptors as key mediators in the complex interactions between these two drugs. PMID:28332590

  18. The phenolic monoterpenoid carvacrol inhibits the binding of nicotine to the housefly nicotinic acetylcholine receptor.

    PubMed

    Tong, Fan; Gross, Aaron D; Dolan, Marc C; Coats, Joel R

    2013-07-01

    The phenolic monoterpenoid carvacrol, which is found in many plant essential oils (thyme, oregano and Alaska yellow cedar), is highly active against pest arthropods, but its mechanisms of action are not fully understood. Here, carvacrol is shown to bind in a membrane preparation containing insect nicotinic acetylcholine receptors (nAChRs). [(14) C]-Nicotine binding assays with Musca domestica (housefly) nAChRs were used in this study to demonstrate carvacrol's binding to nAChRs, thereby acting as a modulator of the receptors. Carvacrol showed a concentration-dependent inhibition of [(14) C]-nicotine binding in a membrane preparation of housefly heads containing nAChRs, with IC50 = 1.4 μM, in a non-competitive pattern. Binding studies with neonicotinoid insecticides revealed that imidacloprid and thiamethoxam did not inhibit the binding of [(14) C]-nicotine, while dinotefuran, from the guanidine subclass of neonicotinoids, inhibited nicotine binding like carvacrol. Carvacrol binds to housefly nAChRs at a binding site distinct from nicotine and acetylcholine, and the nAChRs are a possible target of carvacrol for its insecticidal activity. © 2012 Society of Chemical Industry.

  19. Activation of Muscarinic M1 Acetylcholine Receptors Induces Long-Term Potentiation in the Hippocampus

    PubMed Central

    Dennis, Siobhan H.; Pasqui, Francesca; Colvin, Ellen M.; Sanger, Helen; Mogg, Adrian J.; Felder, Christian C.; Broad, Lisa M.; Fitzjohn, Steve M.; Isaac, John T.R.; Mellor, Jack R.

    2016-01-01

    Muscarinic M1 acetylcholine receptors (M1Rs) are highly expressed in the hippocampus, and their inhibition or ablation disrupts the encoding of spatial memory. It has been hypothesized that the principal mechanism by which M1Rs influence spatial memory is by the regulation of hippocampal synaptic plasticity. Here, we use a combination of recently developed, well characterized, selective M1R agonists and M1R knock-out mice to define the roles of M1Rs in the regulation of hippocampal neuronal and synaptic function. We confirm that M1R activation increases input resistance and depolarizes hippocampal CA1 pyramidal neurons and show that this profoundly increases excitatory postsynaptic potential-spike coupling. Consistent with a critical role for M1Rs in synaptic plasticity, we now show that M1R activation produces a robust potentiation of glutamatergic synaptic transmission onto CA1 pyramidal neurons that has all the hallmarks of long-term potentiation (LTP): The potentiation requires NMDA receptor activity and bi-directionally occludes with synaptically induced LTP. Thus, we describe synergistic mechanisms by which acetylcholine acting through M1Rs excites CA1 pyramidal neurons and induces LTP, to profoundly increase activation of CA1 pyramidal neurons. These features are predicted to make a major contribution to the pro-cognitive effects of cholinergic transmission in rodents and humans. PMID:26472558

  20. Activation of Muscarinic M1 Acetylcholine Receptors Induces Long-Term Potentiation in the Hippocampus.

    PubMed

    Dennis, Siobhan H; Pasqui, Francesca; Colvin, Ellen M; Sanger, Helen; Mogg, Adrian J; Felder, Christian C; Broad, Lisa M; Fitzjohn, Steve M; Isaac, John T R; Mellor, Jack R

    2016-01-01

    Muscarinic M1 acetylcholine receptors (M1Rs) are highly expressed in the hippocampus, and their inhibition or ablation disrupts the encoding of spatial memory. It has been hypothesized that the principal mechanism by which M1Rs influence spatial memory is by the regulation of hippocampal synaptic plasticity. Here, we use a combination of recently developed, well characterized, selective M1R agonists and M1R knock-out mice to define the roles of M1Rs in the regulation of hippocampal neuronal and synaptic function. We confirm that M1R activation increases input resistance and depolarizes hippocampal CA1 pyramidal neurons and show that this profoundly increases excitatory postsynaptic potential-spike coupling. Consistent with a critical role for M1Rs in synaptic plasticity, we now show that M1R activation produces a robust potentiation of glutamatergic synaptic transmission onto CA1 pyramidal neurons that has all the hallmarks of long-term potentiation (LTP): The potentiation requires NMDA receptor activity and bi-directionally occludes with synaptically induced LTP. Thus, we describe synergistic mechanisms by which acetylcholine acting through M1Rs excites CA1 pyramidal neurons and induces LTP, to profoundly increase activation of CA1 pyramidal neurons. These features are predicted to make a major contribution to the pro-cognitive effects of cholinergic transmission in rodents and humans.

  1. Weak neurotoxin from Naja kaouthia cobra venom affects haemodynamic regulation by acting on acetylcholine receptors.

    PubMed

    Ogay, Alexey Ya; Rzhevsky, Dmitry I; Murashev, Arkady N; Tsetlin, Victor I; Utkin, Yuri N

    2005-01-01

    Recent in vitro studies of weak neurotoxins from snake venoms have demonstrated their ability to interact with both muscle-type and neuronal alpha7 nicotinic acetylcholine receptors (nAChR). However, the biological activity in vivo of weak neurotoxins remains largely unknown. We have studied the influence of weak neurotoxin (WTX) from the venom of cobra Naja kaouthia on arterial blood pressure (BP) and heart rate (HR) in rats and mice. It was found that intravenous injection of WTX induced a dose-dependent decrease in BP and an increase in HR in both species, the rats being more sensitive to WTX. Application of WTX following blockade of nAChRs or muscarinic acetylcholine receptors (mAChR) by hexamethonium or atropine, respectively, showed that both nAChRs and mAChRs are involved in the haemodynamic effects of WTX. Blockade of either nAChRs or mAChRs affected WTX action differently in rats and mice, thus reflecting interspecies differences in haemodynamic regulation.

  2. Activation of AMPA/kainate receptors but not acetylcholine receptors causes Mg2+ influx into Retzius neurones of the leech Hirudo medicinalis.

    PubMed

    Muller, Anja; Gunzel, Dorothee; Schlue, Wolf-Rudiger

    2003-12-01

    In Retzius neurones of the medicinal leech, Hirudo medicinalis, kainate activates ionotropic glutamate receptors classified as AMPA/kainate receptors. Activation of the AMPA/kainate receptor-coupled cation channels evokes a marked depolarization, intracellular acidification, and increases in the intracellular concentrations of Na+ ([Na+]i) and Ca2+. Qualitatively similar changes are observed upon the application of carbachol, an activator of acetylcholine receptor-coupled cation channels. Using multibarrelled ion-selective microelectrodes it was demonstrated that kainate, but not carbachol, caused additional increases in the intracellular free Mg2+ concentration ([Mg2+]i). Experiments were designed to investigate whether this kainate-induced [Mg2+]i increase was due to a direct Mg2+ influx through the AMPA/kainate receptor-coupled cation channels or a secondary effect due to the depolarization or the ionic changes. It was found that: (a) Similar [Mg2+]i increases were evoked by the application of glutamate or aspartate. (b) All kainate-induced effects were inhibited by the glutamatergic antagonist DNQX. (c) The magnitude of the [Mg2+]i increases depended on the extracellular Mg2+ concentration. (d) A reduction of the extracellular Ca2+ concentration increased kainate-induced [Mg2+]i increases, excluding possible Ca2+ interference at the Mg2+-selective microelectrode or at intracellular buffer sites. (e) Neither depolarizations evoked by the application of 30 mM K+, nor [Na+]i increases induced by the inhibition of the Na+/K+ ATPase caused comparable [Mg2+]i increases. (f) Inhibitors of voltage-dependent Ca2+ channels did not affect the kainate-induced [Mg2+]i increases. Moreover, previous experiments had already shown that intracellular acidification evoked by the application of 20 mM propionate did not cause changes in [Mg2+]i. The results indicate that kainate-induced [Mg2+]i increases in leech Retzius neurones are due to an influx of extracellular Mg2+ through

  3. Differential Effects of Quercetin and Quercetin Glycosides on Human α7 Nicotinic Acetylcholine Receptor-Mediated Ion Currents

    PubMed Central

    Lee, Byung-Hwan; Choi, Sun-Hye; Kim, Hyeon-Joong; Jung, Seok-Won; Hwang, Sung-Hee; Pyo, Mi-Kyung; Rhim, Hyewhon; Kim, Hyoung-Chun; Kim, Ho-Kyoung; Lee, Sang-Mok; Nah, Seung-Yeol

    2016-01-01

    Quercetin is a flavonoid usually found in fruits and vegetables. Aside from its antioxidative effects, quercetin, like other flavonoids, has a various neuropharmacological actions. Quercetin-3-O-rhamnoside (Rham1), quercetin-3-O-rutinoside (Rutin), and quercetin-3-(2(G)-rhamnosylrutinoside (Rham2) are mono-, di-, and tri-glycosylated forms of quercetin, respectively. In a previous study, we showed that quercetin can enhance α7 nicotinic acetylcholine receptor (α7 nAChR)-mediated ion currents. However, the role of the carbohydrates attached to quercetin in the regulation of α7 nAChR channel activity has not been determined. In the present study, we investigated the effects of quercetin glycosides on the acetylcholine induced peak inward current (IACh) in Xenopus oocytes expressing the α7 nAChR. IACh was measured with a two-electrode voltage clamp technique. In oocytes injected with α7 nAChR copy RNA, quercetin enhanced IACh, whereas quercetin glycosides inhibited IACh. Quercetin glycosides mediated an inhibition of IACh, which increased when they were pre-applied and the inhibitory effects were concentration dependent. The order of IACh inhibition by quercetin glycosides was Rutin≥Rham1>Rham2. Quercetin glycosides-mediated IACh enhancement was not affected by ACh concentration and appeared voltage-independent. Furthermore, quercetin-mediated IACh inhibition can be attenuated when quercetin is co-applied with Rham1 and Rutin, indicating that quercetin glycosides could interfere with quercetin-mediated α7 nAChR regulation and that the number of carbohydrates in the quercetin glycoside plays a key role in the interruption of quercetin action. These results show that quercetin and quercetin glycosides regulate the α7 nAChR in a differential manner. PMID:27098860

  4. The α-bungarotoxin binding site on the nicotinic acetylcholine receptor: Analysis using a phage–epitope library

    PubMed Central

    Balass, Moshe; Katchalski-Katzir, Ephraim; Fuchs, Sara

    1997-01-01

    The nicotinic acetylcholine receptor (AcChoR) is a ligand-gated ion channel that is activated upon binding of acetylcholine. α-Neurotoxins, in particular α-bungarotoxin (α-BTX), bind specifically and with high affinity to the AcChoR and compete with binding of the natural ligand. We employed a 15-mer phage-display peptide library to select epitopes reacting with α-BTX. Phages bearing the motif YYXSSL as a consensus sequence were found to bind with high affinity to α-BTX. The library-derived peptide (MRYYESSLKSYPD) bears amino acid sequence similarities to a region of the α-subunit of the Torpedo muscle AcChoR, as well as of other muscle and neuronal AcChoRs that bind α-BTX. The library-derived peptide and the corresponding peptides containing residues 187–199 of the Torpedo AcChoR α-subunit (WVYYTCCPDTPYL), as well as peptides analogous to the above region in the neuronal AcChoR (e.g., human α7; ERFYECCKEPYPD) that binds α-BTX, inhibit the binding of α-BTX to the intact Torpedo AcChoR with IC50 values of 10−6 M. A synthetic peptide from a neuronal AcChoR that does not bind α-BTX (e.g., human α2; ERKYECCKEPYPD) which differs by just one amino acid from the homologous peptide from the α-BTX-binding protein (α7)—i.e., Lys in α2 and Tyr in α7—does not inhibit the binding of α-BTX to Torpedo AcChoR. These results indicate the requirement for two adjacent aromatic amino acid residues for binding to α-BTX. PMID:9177167

  5. Steroids induce acetylcholine receptors on cultured human muscle: Implications for myasthenia gravis

    SciTech Connect

    Kaplan, I.; Blakely, B.T.; Pavlath, G.K.; Travis, M.; Blau, H.M. )

    1990-10-01

    Antibodies to the acetylcholine receptor (AChR), which are diagnostic of the human autoimmune disease myasthenia gravis, block AChR function and increase the rate of AChR degradation leading to impaired neuromuscular transmission. Steroids are frequently used to alleviate symptoms of muscle fatigue and weakness in patients with myasthenia gravis because of their well-documented immunosuppressive effects. The authors show here that the steroid dexamethasone significantly increases total surface AChRs on cultured human muscle exposed to myasthenia gravis sera. The results suggest that the clinical improvement observed in myasthenic patients treated with steroids is due not only to an effect on the immune system but also a direct effect on muscle. They propose that the identification and development of pharmacologic agents that augment receptors and other proteins that are reduced by human genetic or autoimmune disease will have broad therapeutic applications.

  6. The Protective Effect of Alpha 7 Nicotinic Acetylcholine Receptor Activation on Critical Illness and Its Mechanism

    PubMed Central

    REN, Chao; TONG, Ya-lin; LI, Jun-cong; LU, Zhong-qiu; YAO, Yong-ming

    2017-01-01

    Critical illnesses and injuries are recognized as major threats to human health, and they are usually accompanied by uncontrolled inflammation and dysfunction of immune response. The alpha 7 nicotinic acetylcholine receptor (α7nAchR), which is a primary receptor of cholinergic anti-inflammatory pathway (CAP), exhibits great benefits for critical ill conditions. It is composed of 5 identical α7 subunits that form a central pore with high permeability for calcium. This putative structure is closely associated with its functional states. Activated α7nAChR exhibits extensive anti-inflammatory and immune modulatory reactions, including lowered pro-inflammatory cytokines levels, decreased expressions of chemokines as well as adhesion molecules, and altered differentiation and activation of immune cells, which are important in maintaining immune homeostasis. Well understanding of the effects and mechanisms of α7nAChR will be of great value in exploring effective targets for treating critical diseases. PMID:28123345

  7. Steroids induce acetylcholine receptors on cultured human muscle: implications for myasthenia gravis.

    PubMed Central

    Kaplan, I; Blakely, B T; Pavlath, G K; Travis, M; Blau, H M

    1990-01-01

    Antibodies to the acetylcholine receptor (AChR), which are diagnostic of the human autoimmune disease myasthenia gravis, block AChR function and increase the rate of AChR degradation leading to impaired neuromuscular transmission. Steroids are frequently used to alleviate symptoms of muscle fatigue and weakness in patients with myasthenia gravis because of their well-documented immunosuppressive effects. We show here that the steroid dexamethasone significantly increases total surface AChRs on cultured human muscle exposed to myasthenia gravis sera. Our results suggest that the clinical improvement observed in myasthenic patients treated with steroids is due not only to an effect on the immune system but also to a direct effect on muscle. We propose that the identification and development of pharmacologic agents that augment receptors and other proteins that are reduced by human genetic or autoimmune disease will have broad therapeutic applications. Images PMID:2236023

  8. Minimum number of lipids are required to support the functional properties of the nicotinic acetylcholine receptor

    SciTech Connect

    Jones, O.T.; Eubanks, J.H.; Earnest, J.P.; McNamee, M.G.

    1988-05-17

    The detergent sodium cholate was used to both solubilize and partially delipidate the nicotinic acetylcholine receptor from Torpedo californica. Using both native membranes and reconstituted membranes, it is shown that the detergent to lipid molar ratio is the most important parameter in determining the effect of the detergent on the functional properties of the receptor. Receptor-lipid complexes were quantitatively separated from detergent and excess lipids by centrifugation through detergent-free sucrose gradients. The lipid to protein molar ratio of the complexes could be precisely controlled by adjusting the cholate and lipid concentrations of the starting membranes. Analyses of both ion influx activity and ligand binding revealed that a minimum of 45 lipids per receptor was required for stabilization of the receptor in a fully functional state. Progressive irreversible inactivation occurred as the lipid to protein mole ratio was decreased below 45, and complete inactivation occurred below a ratio of 20. The results are consistent with a functional requirement for a single shell of lipids around the perimeter of the receptor.

  9. The physiology of the nicotinic acetylcholine receptor and its importance in the administration of anesthesia.

    PubMed

    Rossman, Amanda C

    2011-10-01

    The nicotinic acetylcholine receptor (nAChR) can be found widely throughout the body. Although the activation of this receptor leads to multiple functions dependent on its location within the body and subunit composition, all nAChRs aid in the communication between the extracellular and intracellular compartments. The nAChR is composed of 3 domains: the extracellular, transmembrane, and intracellular. The receptor functions in response to ligands that act as an agonist or antagonist that binds to the extracellular domain causing activation or inactivation of the receptor. The activation of the nAChR causes a twisting motion of the receptor, which opens a gate allowing for the passage of sodium, potassium, and calcium cations through the cell membrane. The muscle-type nAChR and neuronal-type nAChR have important roles during the administration of anesthesia. The muscle-type nAChR, located in the neuromuscular junction, is the target of neuromuscular blockers and local anesthetics to prevent muscle contraction. General anesthetics affect the neuronal-type nAChR by inhibiting functions of the central nervous system, including memory formation. The importance of the nAChR cannot be underestimated, for it is through the manipulation of this receptor that many anesthetic goals are achieved.

  10. Analysis of acetylcholine receptor phosphorylation sites using antibodies to synthetic peptides and monoclonal antibodies.

    PubMed Central

    Safran, A; Neumann, D; Fuchs, S

    1986-01-01

    Three peptides corresponding to residues 354-367, 364-374, 373-387 of the acetylcholine receptor (AChR) delta subunit were synthesized. These peptides represent the proposed phosphorylation sites of the cAMP-dependent protein kinase, the tyrosine-specific protein kinase and the calcium/phospholipid-dependent protein kinase respectively. Using these peptides as substrates for phosphorylation by the catalytic subunit of cAMP-dependent protein kinase it was shown that only peptides 354-367 was phosphorylated whereas the other two were not. These results verify the location of the cAMP-dependent protein kinase phosphorylation site within the AChR delta subunit. Antibodies elicited against these peptides reacted with the delta subunit. The antipeptide antibodies and two monoclonal antibodies (7F2, 5.46) specific for the delta subunit were tested for their binding to non-phosphorylated receptor and to receptor phosphorylated by the catalytic subunit of cAMP-dependent protein kinase. Antibodies to peptide 354-367 were found to react preferentially with non-phosphorylated receptor whereas the two other anti-peptide antibodies bound equally to phosphorylated and non-phosphorylated receptors. Monoclonal antibody 7F2 reacted preferentially with the phosphorylated form of the receptor whereas monoclonal antibody 5.46 did not distinguish between the two forms. Images Fig. 2. Fig. 4. Fig. 5. PMID:3816758

  11. Castration decreases amylase release associated with muscarinic acetylcholine receptor downregulation in rat parotid gland.

    PubMed

    Busch, Lucila; Borda, Enri

    2003-05-01

    1 The mechanism and receptor subtypes involved in carbachol-stimulated amylase release and its changes after castration were studied in parotid slices from male rats. 2 Carbachol induced both amylase release and inositol phosphate (IP) accumulation in parotid slices from control and castrated rats, but castration induced a decrease of carbachol maximal effect. The effect of castration was reverted by testosterone replacement. 3 The selective M(1) and M(3) muscarinic receptor antagonists, pirenzepine and 4-diphenylacetoxy-N-methylpiperidine methiodide, respectively, inhibited carbachol-stimulated amylase release and IP accumulation in a dose-dependent manner in parotid slices from control and castrated rats. 4 A diminution of binding sites of muscarinic receptor in parotid membrane from castrated rats was observed. Competition binding assays showed that both, M(1) and M(3) muscarinic receptor subtypes are expressed in membranes of parotid glands from control and castrated rats, M(3) being the greater population. 5 These results suggest that amylase release induced by carbachol in parotid slices is mediated by phosphoinositide accumulation. This mechanism appears to be triggered by the activation of M(1) and M(3) muscarinic receptor subtypes. Castration induced a decrease of the maximal effect of carbachol evoked amylase release and IP accumulation followed by a diminution in the number of parotid gland muscarinic acetylcholine receptors.

  12. Potentiation of alpha7-containing nicotinic acetylcholine receptors by select albumins.

    PubMed

    Conroy, William G; Liu, Qing-Song; Nai, Qiang; Margiotta, Joseph F; Berg, Darwin K

    2003-02-01

    Nicotinic receptors containing alpha7 subunits are ligand-gated ion channels widely distributed in the nervous system; they influence a diverse array of events because of their high relative calcium permeability. We show here that nicotine-induced whole-cell responses generated by such receptors can be dramatically potentiated in a rapidly reversible manner by some but not all albumins. The potentiation involves increases both in potency and efficacy with no obvious differences in rise and fall times of the response. The potentiation is not reduced by removing absorbed components; it is abolished by proteolysis, suggesting that the albumin protein backbone is essential. The fact that some albumins are ineffective indicates that minor differences in amino acid sequence may be critical. Experiments with open channel blockers indicate that the potentiation involves increased responses from active receptors rather than recruitment of receptors from a previously silent pool. Single channel recordings reveal that the potentiation correlates with increased single channel opening probability, reflected in increased frequency of channel opening and increased mean channel open time. The potentiation can be exploited to overcome blockade by noncompetitive inhibitors such as beta-amyloid peptide. The results raise the possibility that endogenous compounds use the site to modulate receptor function in vivo, and