Khoobi, Mehdi; Alipour, Masoumeh; Sakhteman, Amirhossein; Nadri, Hamid; Moradi, Alireza; Ghandi, Mehdi; Emami, Saeed; Foroumadi, Alireza; Shafiee, Abbas
2013-10-01
A series of fused coumarins namely 5-oxo-4,5-dihydropyrano[3,2-c]chromenes linked to N-benzylpyridinium scaffold were synthesized and evaluated as acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitors. The 1-(4-fluorobenzyl)pyridinium derivative 6g showed the most potent anti-AChE activity (IC50 value=0.038 μM) and the highest AChE/BuChE selectivity (SI>48). The docking study permitted us to rationalize the observed structure-affinity relationships and to detect possible binding modes. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Burmaoglu, Serdar; Yilmaz, Ali O; Taslimi, Parham; Algul, Oztekin; Kilic, Deryanur; Gulcin, Ilhami
2018-02-01
A series of novel phloroglucinol derivatives were designed, synthesized, characterized spectroscopically and tested for their inhibitory activity against selected metabolic enzymes, including α-glycosidase, acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and human carbonic anhydrase I and II (hCA I and II). These compounds displayed nanomolar inhibition levels and showed K i values of 1.14-3.92 nM against AChE, 0.24-1.64 nM against BChE, 6.73-51.10 nM against α-glycosidase, 1.80-5.10 nM against hCA I, and 1.14-5.45 nM against hCA II. © 2018 Deutsche Pharmazeutische Gesellschaft.
Marco, José L; de los Ríos, Cristóbal; García, Antonio G; Villarroya, Mercedes; Carreiras, M Carmo; Martins, Carla; Eleutério, Ana; Morreale, Antonio; Orozco, M; Luque, F Javier
2004-05-01
The synthesis and the biological activity of compounds 5-40 as inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), as well as modulators of voltage-dependent Ca(2+) channels and nicotinic receptors, are described. These molecules are tacrine analogues, which have been prepared from polyfunctionalized 6-amino-5-cyano-4H-pyrans, 6-amino-5-cyano-pyridines and 5-amino-2-aryl-3-cyano-1,3-oxazoles via Friedländer reaction with selected cycloalkanones. These compounds are moderate acetylcholinesterase and butyrylcholinesterase inhibitors, the BuChE/AChE selectivity of the most active molecules ranges from 10.0 (compound 29) to 76.9 (compound 16). Interestingly, the 'oxazolo-tacrine' derivatives are devoid of any activity. All compounds showed an important inhibitory effect on the nicotinic acetylcholine receptor. Most of them also blocked L-type Ca(2+) channels, and three of them, 64, 19 and 67, the non-L type of Ca(2+) channels. Molecular modelling studies suggest that these compounds might bind at the peripheral binding site of AChE, which opens the possibility to design inhibitors able to bind at both, the catalytic and peripheral binding sites of the enzyme.
Afzal, Samina; Chaudhry, Bashir Ahmad; Ahmad, Ashfaq; Uzair, Muhammad; Afzal, Khurram
2017-01-01
Background: Corchorus depressus (Cd) commonly known as Boa-phalee belonging to the family Tiliaceae having 50 genera and 450 species. Cd is not among the studied medicinal agent despite its potential in ethnopharmacology. Objectives: The present study investigated antioxidant, acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and α-glucosidase inhibitory activities of Cd. The dichloromethane and methanolic extracts of the Cd were evaluated for biological activities such as antioxidant and enzyme inhibitory activities of AChE, BChE, and α-glucosidase. Materials and Methods: Antioxidant activity was evaluated by measuring free radical scavenging potential of Cd using 1,1-diphenyl-2-picrylhydrazyl. Enzyme inhibition activities were done by measuring optical density. Results: The methanol extract of roots of Cd showed potential free radical scavenging activity 99% at concentration 16.1 μg/ml. AChE was inhibited by aerial part of dichloromethane fraction by 46.07% ± 0.45% while dichloromethane extracts of roots of Cd possessed significant activity against BChE with 86% inhibition compared with standard drug Eserine at concentration 0.5 mg/ml. The dichloromethane extract of roots of Cd showed 79% inhibition against α-glucosidase enzyme activity with IC50 62.8 ± 1.5 μg/ml. Conclusion: These findings suggest Cd as useful therapeutic option as antioxidant and inhibition of AChE, BChE, and α-glucosidase activities. SUMMARY The aerial parts and roots of Corchorus depressus (Cd) were extracted in dichloromethane and methanolThe extract of roots of Cd showed free radical scavenging activity 99% at concentration 16.1 mg/ml, Ach inhibition by aerial parts of dichloromethane fraction by 46.07%, and 79% inhibition against a-glucosidase enzyme activity with IC50 62.8 ± 1.5 mg/mlThe dichloromethane and methanolic extracts of Cd exhibited antioxidant inhibition of acetyl cholinesterase, butyrylcholinesterase, and a-glucosidase activities. Abbreviations used: DPPH: 1,1-diphenyl-2-picrylhydrazyl, Cd: Corchorus depressus, AChE: Acetylcholinesterase, BChE: Butyrylcholinesterase, AD: Alzheimer's disease. PMID:29200727
Solecka, Jolanta; Guśpiel, Adam; Postek, Magdalena; Ziemska, Joanna; Kawęcki, Robert; Lęczycka, Katarzyna; Osior, Agnieszka; Pietrzak, Bartłomiej; Pypowski, Krzysztof; Wyrzykowska, Agata
2014-09-30
A series of 3,4-dihydroisoquinoline-3-carboxylic acid derivatives were synthesised and tested for their free-radical scavenging activity using 2,2-diphenyl-1-picrylhydrazyl radical (DPPH·), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical (ABTS·+), superoxide anion radical (O2·-) and nitric oxide radical (·NO) assays. We also studied d-amino acid oxidase (DAAO), acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory activity. Almost each of newly synthesised compounds exhibited radical scavenging capabilities. Moreover, several compounds showed moderate inhibitory activities against DAAO, AChE and BuChE. Compounds with significant free-radical scavenging activity may be potential candidates for therapeutics used in oxidative-stress-related diseases.
Ozgun, Dilan Ozmen; Yamali, Cem; Gul, Halise Inci; Taslimi, Parham; Gulcin, Ilhami; Yanik, Telat; Supuran, Claudiu T
2016-12-01
The effects of isatin Mannich bases incorporating (1-[piperidin-1-yl (P1)/morpholin-4-yl (P2)/N-methylpiperazin-1-yl (P3)]methyl)-1H-indole-2,3-dione) moieties against human (h) carbonic anhydrase (CA, EC 4.2.1.1) isoenzymes hCA I and hCA II, acetylcholinesterase (AChE), and butyrylcholinesterase (BChE) enzymes were evaluated. P1-P3 demonstrated impressive inhibition profiles against AChE and BChE and also inhibited both CAs at nanomolar level. These inhibitory effects were more powerful in all cases than the reference compounds used for all these enzymes. This study suggests that isatin Mannich bases P1-P3 are good candidate compounds especially for the development of new cholinesterase inhibitors since they were 2.2-5.9 times better inhibitors than clinically used drug Tacrine.
Marco, José L; De Los Ríos, Cristóbal; Carreiras, María C; Baños, Josep E; Badia, Albert; Vivas, Nuria M
2002-07-01
The acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibition activities of a series of 4-amino-2, 3-diaryl-5, 6, 7, 8-tetrahydrofuro[2, 3-b]quinolines (10-12)/4-amino-5, 6, 7, 8-tetrahydro-2, 3-diphenylthieno[2, 3-b]quinoline (14) and 4-amino-5, 6, 7, 8, 9-pentahydro-2, 3-diphenylcyclohepta[e]furo[2, 3-b]pyridine (13)/4-amino-5, 6, 7, 8, 9-pentahydro-2, 3-phenylcyclohepta[e]thieno[2, 3-b]pyridine (15) are described. These compounds are tacrine (THA) analogues which have been prepared either from readily available 2-amino-3-cyano-4, 5-diarylfurans (16-18) or from 2-amino-3-cyano-4, 5-diphenylthiophene (19), via Friedländer condensation with cyclohexanone or cycloheptanone. These compounds are competitive inhibitors for acetylcholinesterase, the more potent being compound (13) which is three-fold less active than tacrine. The butyrylcholinesterase inhibition activity is significant only in compounds 10 and133, which are ten-fold less active than tacrine. It is found that the products 11 and 12 strongly inhibit acetylcholinesterase, and show excellent selectivity regarding butyrylcholinesterase.
Camps, Pelayo; Formosa, Xavier; Galdeano, Carles; Gómez, Tània; Muñoz-Torrero, Diego; Scarpellini, Michele; Viayna, Elisabet; Badia, Albert; Clos, M Victòria; Camins, Antoni; Pallàs, Mercè; Bartolini, Manuela; Mancini, Francesca; Andrisano, Vincenza; Estelrich, Joan; Lizondo, Mònica; Bidon-Chanal, Axel; Luque, F Javier
2008-06-26
A novel series of donepezil-tacrine hybrids designed to simultaneously interact with the active, peripheral and midgorge binding sites of acetylcholinesterase (AChE) have been synthesized and tested for their ability to inhibit AChE, butyrylcholinesterase (BChE), and AChE-induced A beta aggregation. These compounds consist of a unit of tacrine or 6-chlorotacrine, which occupies the same position as tacrine at the AChE active site, and the 5,6-dimethoxy-2-[(4-piperidinyl)methyl]-1-indanone moiety of donepezil (or the indane derivative thereof), whose position along the enzyme gorge and the peripheral site can be modulated by a suitable tether that connects tacrine and donepezil fragments. All of the new compounds are highly potent inhibitors of bovine and human AChE and BChE, exhibiting IC50 values in the subnanomolar or low nanomolar range in most cases. Moreover, six out of the eight hybrids of the series, particularly those bearing an indane moiety, exhibit a significant A beta antiaggregating activity, which makes them promising anti-Alzheimer drug candidates.
Alipour, Masoumeh; Khoobi, Mehdi; Nadri, Hamid; Sakhteman, Amirhossein; Moradi, Alireza; Ghandi, Mehdi; Foroumadi, Alireza; Shafiee, Abbas
2013-08-01
A novel series of coumarin and 3-coumaranone derivatives encompassing the phenacyl pyridinium moiety were synthesized and evaluated for their acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory activity using Ellman's method. All compounds presented inhibitory activity against both AChE and BuChE in the micromolar range. The molecular docking simulations revealed that all compounds were dual binding site inhibitors of AChE. A kinetic study was performed and the mechanism of enzyme inhibition was proved to be of mixed type. All compounds were tested for their antioxidant activity and no significant activity was observed. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bonesi, Marco; Menichini, Federica; Tundis, Rosa; Loizzo, Monica R; Conforti, Filomena; Passalacqua, Nicodemo G; Statti, Giancarlo A; Menichini, Francesco
2010-10-01
This study aimed to investigate the acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activity of the essential oils from Pinus nigra subsp. nigra, P. nigra var. calabrica, and P. heldreichii subsp. leucodermis. This activity is relevant to the treatment of Alzheimer's disease (AD), since cholinesterase drugs are currently the only drugs available to treat AD. P. heldreichii subsp. leucodermis exhibited the most promising activity, with IC(50) values of 51.1 and 80.6 microg/mL against AChE and BChE, respectively. An interesting activity against AChE was also observed with P. nigra subsp. nigra essential oil, with an IC(50) value of 94.4 microg/mL. Essential oils were analyzed by GC and GC-MS with the purpose of investigating their relationships with the observed activities. Among the identified constituents, terpinolene, beta-phellandrene, linalyl acetate, trans-caryophyllene, and terpinen-4-ol were tested. trans-Caryophyllene and terpinen-4-ol inhibited BChE with IC(50) values of 78.6 and 107.6 microg/mL, respectively. beta-Phellandrene was selective against AChE (IC(50) value of 120.2 microg/mL).
International Meeting on Cholinesterases (5th) Held in Madras, India on 24-28 September, 1994.
1994-09-01
AChE activity . 67 Session F: Structure-Function Relationship of Anticholinesterase Agents: Pesticides and Therapeutic Agents; Noncholinergic Function... plants . The activity of two cholinesterases: acetylcholinesterase [E.C. 3.1.1.7] and butyrylcholinesterase [E.C. 3.1.1.81 was found in homogenates from...was tested in vitro. POSTER NO. 27: ACETYLCHOLINESTERASE ACTIVITY IN PLANTS . S. Madhavan and Gautam Sarath. Department of Biochemistry, University of
NASA Astrophysics Data System (ADS)
Erdemir, Fatoş; Barut Celepci, Duygu; Aktaş, Aydın; Taslimi, Parham; Gök, Yetkin; Karabıyık, Hasan; Gülçin, İlhami
2018-03-01
This study contains novel a serie synthesis of N-heterocyclic carbene (NHC) precursors that 2-hydroxyethyl substituted. The NHC precursors have been prepared from 1-(2- hydroxyethyl)benzimidazole and alkyl halides. The novel NHC precursors have been characterized by using 1H NMR, 13C NMR, FTIR spectroscopy and elemental analysis techniques. Molecular and crystal structures of 2a, 2d, 2e, 2f and 2g were obtained with single-crystal X-ray diffraction studies. These novel NHC precursor's derivatives effectively inhibited the α-glycosidase, cytosolic carbonic anhydrase I and II isoforms (hCA I and II), butyrylcholinesterase (BChE) and acetylcholinesterase (AChE). Inhibition constant (Ki) were found in the range of 0.30-9.22 nM for α-glycosidase, 13.90-41.46 nM for hCA I, 12.82-49.95 nM for hCA II, 145.82-882.01 nM for BChE, and 280.92-1370.01 nM for AChE, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schallreuter, Karin U.; Institute for Pigmentary Disorders in Association with EM Arndt University of Greifswald; University of Bradford
The human epidermis holds an autocrine acetylcholine production and degradation including functioning membrane integrated and cytosolic butyrylcholinesterase (BuchE). Here we show that BuchE activities increase 9-fold in the presence of calcium (0.5 x 10{sup -3}M) via a specific EF-hand calcium binding site, whereas acetylcholinesterase (AchE) is not affected. {sup 45}Calcium labelling and computer simulation confirmed the presence of one EF-hand binding site per subunit which is disrupted by H{sub 2}O{sub 2}-mediated oxidation. Moreover, we confirmed the faster hydrolysis by calcium-activated BuchE using the neurotoxic organophosphate O-ethyl-O-(4-nitrophenyl)-phenylphosphonothioate (EPN). Considering the large size of the human skin with 1.8 m{sup 2} surfacemore » area with its calcium gradient in the 10{sup -3}M range, our results implicate calcium-activated BuchE as a major protective mechanism against suicide inhibition of AchE by organophosphates in this non-neuronal tissue.« less
Dual inhibition of acetylcholinesterase and butyrylcholinesterase enzymes by allicin
Kumar, Suresh
2015-01-01
Objectives: The brain of mammals contains two major form of cholinesterase enzymes, acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). The dual inhibition of these enzymes is considered as a promising strategy for the treatment of neurological disorder such as Alzheimer's disease (AD), senile dementia, ataxia, and myasthenia gravis. The present study was undertaken to explore the anticholinesterase inhibition property of allicin. Materials and Methods: An assessment of cholinesterase inhibition was carried out by Ellman's assay. Results: The present study demonstrates allicin, a major ingredient of crushed garlic (Allium sativum L.) inhibited both AChE and BuChE enzymes in a concentration-dependent manner. For allicin, the IC50 concentration was 0.01 mg/mL (61.62 μM) for AChE and 0.05 ± 0.018 mg/mL (308.12 μM) for BuChE enzymes. Conclusions: Allicin shows a potential to ameliorate the decline of cognitive function and memory loss associated with AD by inhibiting cholinesterase enzymes and upregulate the levels of acetylcholine (ACh) in the brain. It can be used as a new lead to target AChE and BuChE to upregulate the level of ACh which will be useful in alleviating the symptoms associated with AD. PMID:26288480
Inhibitors of Acetylcholinesterase and Butyrylcholinesterase Meet Immunity
Pohanka, Miroslav
2014-01-01
Acetylcholinesterase (AChE) inhibitors are widely used for the symptomatic treatment of Alzheimer’s disease and other dementias. More recent use is for myasthenia gravis. Many of these inhibitors interact with the second known cholinesterase, butyrylcholinesterase (BChE). Further, evidence shows that acetylcholine plays a role in suppression of cytokine release through a “cholinergic anti-inflammatory pathway” which raises questions about the role of these inhibitors in the immune system. This review covers research and discussion of the role of the inhibitors in modulating the immune response using as examples the commonly available drugs, donepezil, galantamine, huperzine, neostigmine and pyridostigmine. Major attention is given to the cholinergic anti-inflammatory pathway, a well-described link between the central nervous system and terminal effector cells in the immune system. PMID:24893223
NASA Astrophysics Data System (ADS)
Mehdi, Sayed Hasan; Ghalib, Raza Murad; Hashim, Rokiah; da Silva, M. Fátima C. Guedes; Sulaiman, Othman; Murugaiyah, Vikneswaran; Marimuthu, Mani Maran; Naqvi, Mehnaz
2013-10-01
The crystal structure of the title compound, 1-[3-methyl-5-(2,6,6-trimethyl-cyclohex-1-enyl)-4,5-dihydro-pyrazol-1-yl]-ethanone has been determined by single crystal X-ray diffraction. It crystallizes in the orthorhombic space group P212121. The FTIR as well as the 1H and 13C NMR spectra of the compound were also recorded and briefly discussed. Compound 1 demonstrated good inhibitory activity against butyrylcholinesterase (BChE; IC50 = 46.42 μM) comparable to physostigmine. However it showed moderate inhibitory activity against acetylcholinesterase (AChE; IC50 = 157.31 μM). It showed moderate inhibitory activity against acetylcholinesterase and selective inhibitory activity towards butyrylcholinesterase enzyme.
Abdel-Salam, Omar M E; Youness, Eman R; Khadrawy, Yasser A; Sleem, Amany A
2016-11-01
To investigate the effect of Cannabis sativa resin and/or tramadol, two commonly drugs of abuse on acetylcholinesterase and butyrylcholinesterase activities as a possible cholinergic biomarkers of neurotoxicity induced by these agents. Rats were treated with cannabis resin (5, 10 or 20 mg/kg) (equivalent to the active constituent Δ 9 -tetrahydrocannabinol), tramadol (5, 10 and 20 mg/kg) or tramadol (10 mg/kg) combined with cannabis resin (5, 10 and 20 mg/kg) subcutaneously daily for 6 weeks. Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities were measured in brain and serum. We also measured the activity of paraoxonase-1 (PON1) in serum of rats treated with these agents. (i) AChE activity in brain increased after 10-20 mg/kg cannabis resin (by 16.3-36.5%). AChE activity in brain did not change after treatment with 5-20 mg/kg tramadol. The administration of both cannabis resin (5, 10 or 20 mg/kg) and tramadol (10 mg/kg) resulted in decreased brain AChE activity by 14.1%, 12.9% and 13.6%, respectively; (ii) BChE activity in serum was markedly and dose-dependently inhibited by cannabis resin (by 60.9-76.9%). BChE activity also decreased by 17.6-36.5% by 10-20 mg/kg tramadol and by 57.2-63.9% by the cannabis resin/tramadol combined treatment; (iii) Cannabis resin at doses of 20 mg/kg increased serum PON1 activity by 25.7%. In contrast, tramadol given at 5, 10 and 20 mg/kg resulted in a dose-dependent decrease in serum PON1 activity by 19%, 36.7%, and 46.1%, respectively. Meanwhile, treatment with cannabis resin plus tramadol resulted in 40.2%, 35.8%, 30.7% inhibition of PON1 activity compared to the saline group. These data suggest that cannabis resin exerts different effects on AChE and BChE activities which could contribute to the memory problems and the decline in cognitive function in chronic users. Copyright © 2016 Hainan Medical University. Production and hosting by Elsevier B.V. All rights reserved.
Jun, Daniel; Musilova, Lucie; Musilek, Kamil; Kuca, Kamil
2011-01-01
We have in vitro tested the ability of common, commercially available, cholinesterase reactivators (pralidoxime, obidoxime, methoxime, trimedoxime and HI-6) to reactivate human acetylcholinesterase (AChE), inhibited by five structurally different organophosphate pesticides and inhibitors (paraoxon, dichlorvos, DFP, leptophos-oxon and methamidophos). We also tested reactivation of human butyrylcholinesterase (BChE) with the aim of finding a potent oxime, suitable to serve as a "pseudocatalytic" bioscavenger in combination with this enzyme. Such a combination could allow an increase of prophylactic and therapeutic efficacy of the administered enzyme. According to our results, the best broad-spectrum AChE reactivators were trimedoxime and obidoxime in the case of paraoxon, leptophos-oxon, and methamidophos-inhibited AChE. Methamidophos and leptophos-oxon were quite easily reactivatable by all tested reactivators. In the case of methamidophos-inhibited AChE, the lower oxime concentration (10(-5) M) had higher reactivation ability than the 10(-4) M concentration. Therefore, we evaluated the reactivation ability of obidoxime in a concentration range of 10(-3)-10(-7) M. The reactivation of methamidophos-inhibited AChE with different obidoxime concentrations resulted in a bell shaped curve with maximum reactivation at 10(-5) M. In the case of BChE, no reactivator exceeded 15% reactivation ability and therefore none of the oximes can be recommended as a candidate for "pseudocatalytic" bioscavengers with BChE.
Khoobi, Mehdi; Alipour, Masoumeh; Moradi, Alireza; Sakhteman, Amirhossein; Nadri, Hamid; Razavi, Seyyede Faeze; Ghandi, Mehdi; Foroumadi, Alireza; Shafiee, Abbas
2013-10-01
Novel hybrid derivatives of two known scaffolds; tetrahydroaminoquinoline and coumarin were synthesized and evaluated for both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) activities. By means of an efficient nanocatalyst, the reaction time for the syntheses of the target compounds was reduced. Subsequently, Ellman's modified method was used to evaluate the enzyme inhibitory activity of the synthesized structures. It was observed that most hybrid structures were moderate to potent inhibitors of AChE compared to Tacrine as the reference drug among which 7f with 4-fluorophenyl substituent was the most active compound (IC50=5 nM). Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Kuno, F; Otoguro, K; Shiomi, K; Iwai, Y; Omura, S
1996-08-01
An in vitro screening method for selective acetylcholinesterase (AChE) inhibitors was established. Inhibitory activity of AChE and butyrylcholinesterase (BuChE) was measured and the culture broths of microorganisms that showed selective inhibition against AChE were characterized. By using this method, a strain producing the novel and selective inhibitors of AChE, arisugacins A and B, was picked out among over seven thousand microorganisms tested. Arisugacins were obtained as white powders from the culture broth together with three known compounds, territrems B and C and cyclopenin that also showed selective inhibition against AChE. Arisugacins and territrems are members of the meroterpenoid compounds. They showed potent inhibitory activities against AChE with IC50 values in range of 1.0 approximately 25.8 nM. Furthermore, they showed greater than 2,000-fold more potent inhibition against AChE than BuChE.
Liu, Haoran; Fan, Haoqun; Gao, Xiaohui; Huang, Xueqing; Liu, Xianjun; Liu, Linbo; Zhou, Chao; Tang, Jingjing; Wang, Qiuan; Liu, Wukun
2016-08-01
In order to study the structure-activity relationship of Flavokawain B Mannich-based derivatives as acetylcholinesterase (AChE) inhibitors in our recent investigation, 20 new nitrogen-containing chalcone derivatives (4 a-8d) were designed, synthesized, and evaluated for AChE inhibitory activity in vitro. The results suggested that amino alkyl side chain of chalcone dramatically influenced the inhibitory activity against AChE. Among them, compound 6c revealed the strongest AChE inhibitory activity (IC50 value: 0.85 μmol/L) and the highest selectivity against AChE over BuChE (ratio: 35.79). Enzyme kinetic study showed that the inhibition mechanism of compound 6c against AChE was a mixed-type inhibition. The molecular docking assay showed that this compound can both bind with the catalytic site and the peripheral site of AChE.
Jun, Daniel; Musilova, Lucie; Musilek, Kamil; Kuca, Kamil
2011-01-01
We have in vitro tested the ability of common, commercially available, cholinesterase reactivators (pralidoxime, obidoxime, methoxime, trimedoxime and HI-6) to reactivate human acetylcholinesterase (AChE), inhibited by five structurally different organophosphate pesticides and inhibitors (paraoxon, dichlorvos, DFP, leptophos-oxon and methamidophos). We also tested reactivation of human butyrylcholinesterase (BChE) with the aim of finding a potent oxime, suitable to serve as a “pseudocatalytic” bioscavenger in combination with this enzyme. Such a combination could allow an increase of prophylactic and therapeutic efficacy of the administered enzyme. According to our results, the best broad-spectrum AChE reactivators were trimedoxime and obidoxime in the case of paraoxon, leptophos-oxon, and methamidophos-inhibited AChE. Methamidophos and leptophos-oxon were quite easily reactivatable by all tested reactivators. In the case of methamidophos-inhibited AChE, the lower oxime concentration (10−5 M) had higher reactivation ability than the 10−4 M concentration. Therefore, we evaluated the reactivation ability of obidoxime in a concentration range of 10−3–10−7 M. The reactivation of methamidophos-inhibited AChE with different obidoxime concentrations resulted in a bell shaped curve with maximum reactivation at 10−5 M. In the case of BChE, no reactivator exceeded 15% reactivation ability and therefore none of the oximes can be recommended as a candidate for “pseudocatalytic” bioscavengers with BChE. PMID:21673941
Alipour, Masoumeh; Khoobi, Mehdi; Foroumadi, Alireza; Nadri, Hamid; Moradi, Alireza; Sakhteman, Amirhossein; Ghandi, Mehdi; Shafiee, Abbas
2012-12-15
A novel series of coumarin derivatives linked to benzyl pyridinium group were synthesized and biologically evaluated as inhibitors of both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). The enzyme inhibitory activity of synthesized compounds was measured using colorimetric Ellman's method. It was revealed that compounds 3e, 3h, 3l, 3r and 3s have shown higher activity compared with donepezil hydrochloride as standard drug. Most of the compounds in these series had nanomolar range IC(50) in which compound 3r (IC(50) = 0.11 nM) was the most active compound against acetylcholinesterase enzyme. Copyright © 2012 Elsevier Ltd. All rights reserved.
Wan Othman, Wan Nurul Nazneem; Liew, Sook Yee; Khaw, Kooi Yeong; Murugaiyah, Vikneswaran; Litaudon, Marc; Awang, Khalijah
2016-09-15
Alzheimer's disease is the most common form of dementia among older adults. Acetylcholinesterase and butyrylcholinesterase are two enzymes involved in the breaking down of the neurotransmitter acetylcholine. Inhibitors for these enzymes have potential to prolong the availability of acetylcholine. Hence, the search for such inhibitors especially from natural products is needed in developing potential drugs for Alzheimer's disease. The present study investigates the cholinesterase inhibitory activity of compounds isolated from three Cryptocarya species towards acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Nine alkaloids were isolated; (+)-nornantenine 1, (-)-desmethylsecoantofine 2, (+)-oridine 3, (+)-laurotetanine 4 from the leaves of Cryptocarya densiflora BI., atherosperminine 5, (+)-N-methylisococlaurine 6, (+)-N-methyllaurotetanine 7 from the bark of Cryptocarya infectoria Miq., 2-methoxyatherosperminine 8 and (+)-reticuline 9 from the bark of Cryptocarya griffithiana Wight. In general, most of the alkaloids showed higher inhibition towards BChE as compared to AChE. The phenanthrene type alkaloid; 2-methoxyatherosperminine 8, exhibited the most potent inhibition against BChE with IC50 value of 3.95μM. Analysis of the Lineweaver-Burk (LB) plot of BChE activity over a range of substrate concentration suggested that 2-methoxyatherosperminine 8 exhibited mixed-mode inhibition with an inhibition constant (Ki) of 6.72μM. Molecular docking studies revealed that 2-methoxyatherosperminine 8 docked well at the choline binding site and catalytic triad of hBChE (butyrylcholinesterase from Homo sapiens); hydrogen bonding with Tyr 128 and His 438 residues respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.
Oxidation at C-16 enhances butyrylcholinesterase inhibition in lupane triterpenoids.
Castro, María Julia; Richmond, Victoria; Faraoni, María Belén; Murray, Ana Paula
2018-05-17
A set of triterpenoids with different grades of oxidation in the lupane skeleton were prepared and evaluated as cholinesterase inhibitors. Allylic oxidation with selenium oxide and Jones's oxidation were employed to obtain mono-, di- and tri-oxolupanes, starting from calenduladiol (1) and lupeol (3). All the derivatives showed a selective inhibition of butyrylcholinesterase over acetylcholinesterase (BChE vs. AChE). A kinetic study proved that compounds 2 and 9, the more potent inhibitors of the series, act as competitive inhibitors. Molecular modeling was used to understand their interaction with BChE, the role of carbonyl at C-16 and the selectivity towards this enzyme over AChE. These results indicate that oxidation at C-16 of the lupane skeleton is a key transformation in order to improve the cholinesterase inhibition of these compounds. Copyright © 2018 Elsevier Inc. All rights reserved.
Riaz, Sadaf; Khan, Islam Ullah; Bajda, Marek; Ashraf, Muhammad; Qurat-Ul-Ain; Shaukat, Ayesha; Rehman, Tanzeel Ur; Mutahir, Sadaf; Hussain, Sajjad; Mustafa, Ghulam; Yar, Muhammad
2015-12-01
This paper presents the efficient high yield synthesis of novel pyridine 2,4,6-tricarbohydrazide derivatives (4a-4i) along with their α-glucosidase, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibition activities. The enzymes inhibition results showed the potential of synthesized compounds in controlling both type-II diabetes mellitus and Alzheimer's disease. In vitro biological investigations revealed that most of compounds were more active against yeast α-glucosidase than the reference compound acarbose (IC50 38.25±0.12μM). Among the tested series the compound 4c bearing 4-flouro benzyl group was noted to be the most active (IC50 25.6±0.2μM) against α-glucosidase, and it displayed weak inhibition activities against AChE and BChE. Compound 4a exhibited the most desired results against all three enzymes, as it was significantly active against all the three enzymes; α-glucosidase (IC50 32.2±0.3μM), AChE (IC50 50.2±0.8μM) and BChE (IC50 43.8±0.8μM). Due to the most favorable activity of 4a against the tested enzymes, for molecular modeling studies this compound was selected to investigate its pattern of interaction with α-glucosidase and AChE targets. Copyright © 2015 Elsevier Inc. All rights reserved.
Makhaeva, Galina F; Lushchekina, Sofya V; Boltneva, Natalia P; Serebryakova, Olga G; Rudakova, Elena V; Ustyugov, Alexey A; Bachurin, Sergey O; Shchepochkin, Alexander V; Chupakhin, Oleg N; Charushin, Valery N; Richardson, Rudy J
2017-11-01
We investigated the inhibitory activity of 4 groups of novel acridine derivatives against acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and carboxylesterase (CaE) using the methods of enzyme kinetics and molecular docking. Antioxidant activity of the compounds was determined using the 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS + ) radical decolorization assay as their ability to scavenge free radicals. Analysis of the esterase profiles and antiradical activities of the acridine derivatives showed that 9-aryl(heteroaryl)-N-methyl-9,10-dihydroacridines have a high radical-scavenging activity but low potency as AChE and BChE inhibitors, whereas 9-aryl(heteroaryl)-N-methyl-acridinium tetrafluoroborates effectively inhibit cholinesterases but do not exhibit antiradical activity. In contrast, a group of derivatives of 9-heterocyclic amino-N-methyl-9,10-dihydroacridine has been found that combine effective inhibition of AChE and BChE with rather high radical-scavenging activity. The results of molecular docking well explain the observed features in the efficacy, selectivity, and mechanism of cholinesterase inhibition by the acridine derivatives. Thus, in a series of acridine derivatives we have found compounds possessing dual properties of effective and selective cholinesterase inhibition together with free radical scavenging, which makes promising the use of the acridine scaffold to create multifunctional drugs for the therapy of neurodegenerative diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.
2016-01-01
Acetylcholinesterase (AChE) is the physiologically important target for organophosphorus toxicants (OP) including nerve agents and pesticides. Butyrylcholinesterase (BChE) in blood serves as a bioscavenger that protects AChE in nerve synapses from inhibition by OP. Mass spectrometry methods can detect exposure to OP by measuring adducts on the active site serine of plasma BChE. Genetic variants of human AChE and BChE do exist, but loss of function mutations have been identified only in the BCHE gene. The most common AChE variant, His353Asn (H322N), also known as the Yt blood group antigen, has normal AChE activity. The most common BChE variant, Ala567Thr (A539T) or the K-variant in honor of Werner Kalow, has 33% reduced plasma BChE activity. The genetic variant most frequently associated with prolonged response to muscle relaxants, Asp98Gly (D70G) or atypical BChE, has reduced activity and reduced enzyme concentration. Early studies in young, healthy males, performed at a time when it was legal to test nerve agents in humans, showed that individuals responded differently to the same low dose of sarin with toxic symptoms ranging in severity from minimal to moderate. Additionally, animal studies indicated that BChE protects from toxicants that have a higher reactivity with AChE than with BChE (e.g., nerve agents) but not from toxicants that have a higher reactivity with BChE than with AChE (e.g., OP pesticides). As a corollary, we hypothesize that individuals with genetic variants of BChE may be at increased risk of toxicity from nerve agents but not from OP pesticides. PMID:27551784
Lockridge, Oksana; Norgren, Robert B; Johnson, Rudolph C; Blake, Thomas A
2016-09-19
Acetylcholinesterase (AChE) is the physiologically important target for organophosphorus toxicants (OP) including nerve agents and pesticides. Butyrylcholinesterase (BChE) in blood serves as a bioscavenger that protects AChE in nerve synapses from inhibition by OP. Mass spectrometry methods can detect exposure to OP by measuring adducts on the active site serine of plasma BChE. Genetic variants of human AChE and BChE do exist, but loss of function mutations have been identified only in the BCHE gene. The most common AChE variant, His353Asn (H322N), also known as the Yt blood group antigen, has normal AChE activity. The most common BChE variant, Ala567Thr (A539T) or the K-variant in honor of Werner Kalow, has 33% reduced plasma BChE activity. The genetic variant most frequently associated with prolonged response to muscle relaxants, Asp98Gly (D70G) or atypical BChE, has reduced activity and reduced enzyme concentration. Early studies in young, healthy males, performed at a time when it was legal to test nerve agents in humans, showed that individuals responded differently to the same low dose of sarin with toxic symptoms ranging in severity from minimal to moderate. Additionally, animal studies indicated that BChE protects from toxicants that have a higher reactivity with AChE than with BChE (e.g., nerve agents) but not from toxicants that have a higher reactivity with BChE than with AChE (e.g., OP pesticides). As a corollary, we hypothesize that individuals with genetic variants of BChE may be at increased risk of toxicity from nerve agents but not from OP pesticides.
Montenegro, M F; Moral-Naranjo, M T; Páez de la Cadena, M; Campoy, F J; Muñoz-Delgado, E; Vidal, C J
2008-09-25
Butyrylcholinesterase (BuChE) and acetylcholinesterase (AChE) display both esterase and aryl acylamidase (AAA) activities. Their AAA activity can be measured using o-nitroacetanilide (ONA). In human samples depleted of acetylcholinesterase, we noticed that the ratio of amidase to esterase activities varied depending on the source, despite both activities being due to BuChE. Searching for an explanation, we compared the activities of BuChE molecular forms in samples of human colon, kidney and serum, and observed that BuChE monomers (G(1)) hydrolyzed o-nitroacetanilide much faster than tetramers (G(4)). This fact suggested that association might cause differences in the AAA site between single and polymerized subunits. This and other post-translational modifications in BuChE subunits probably determine their level of AAA activity. The higher amidase activity of monomers could justify the presence of single BuChE subunits in cells as a way to preserve the AAA activity of BuChE, which could be lost by oligomerization.
Saeed, Aamer; Mahesar, Parvez Ali; Zaib, Sumera; Khan, Muhammad Siraj; Matin, Abdul; Shahid, Mohammad; Iqbal, Jamshed
2014-05-06
The present study reports the synthesis of cinnamide derivatives and their biological activity as inhibitors of both cholinesterases and anticancer agents. Controlled inhibition of brain acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) may slow neurodegeneration in Alzheimer's diseases (AD). The anticholinesterase activity of phenylcinnamide derivatives was determined against Electric Eel acetylcholinesterase (EeAChE) and horse serum butyrylcholinesterase (hBChE) and some of the compounds appeared as moderately potent inhibitors of EeAChE and hBChE. The compound 3-(2-(Benzyloxy)phenyl)-N-(3,4,5-trimethoxyphenyl)acrylamide (3i) showed maximum activity against EeAChE with an IC50 0.29 ± 0.21 μM whereas 3-(2-chloro-6-nitrophenyl)-N-(3,4,5-trimethoxyphenyl)acrylamide (3k) was proved to be the most potent inhibitor of hBChE having IC50 1.18 ± 1.31 μM. To better understand the enzyme-inhibitor interaction of the most active compounds toward cholinesterases, molecular modelling studies were carried out on high-resolution crystallographic structures. The anticancer effects of synthesized compounds were also evaluated against cancer cell line (lung carcinoma). The compounds may be useful leads for the design of a new class of anticancer drugs for the treatment of cancer and cholinesterase inhibitors for Alzheimer's disease (AD). Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Preparation, anticholinesterase activity and molecular docking of new lupane derivatives.
Castro, María Julia; Richmond, Victoria; Romero, Carmen; Maier, Marta S; Estévez-Braun, Ana; Ravelo, Angel G; Faraoni, María Belén; Murray, Ana Paula
2014-07-01
A set of twenty one lupane derivatives (2-22) was prepared from the natural triterpenoid calenduladiol (1) by transformations on the hydroxyl groups at C-3 and C-16, and also on the isopropenyl moiety. The derivatives were tested for their inhibitory activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) and some structure-activity relationships were outlined with the aid of enzyme kinetic studies and docking modelization. The most active compound resulted to be 3,16,30-trioxolup-20(29)-ene (22), with an IC50 value of 21.5μM for butyrylcholinesterase, which revealed a selective inhibitor profile towards this enzyme. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kandiah, Nagaendran; Pai, Ming-Chyi; Senanarong, Vorapun; Looi, Irene; Ampil, Encarnita; Park, Kyung Won; Karanam, Ananda Krishna; Christopher, Stephen
2017-01-01
Several studies have demonstrated clinical benefits of sustained cholinesterase inhibition with rivastigmine in Alzheimer’s disease (AD) and Parkinson’s disease dementia (PDD). Unlike donepezil and galantamine that selectively inhibit acetylcholinesterase (AChE; EC 3.1.1.7), rivastigmine is a unique cholinesterase inhibitor with both AChE and butyrylcholinesterase (BuChE; EC 3.1.1.8) inhibitory activity. Rivastigmine is also available as transdermal patch that has been approved by the US Food and Drug Administration for the treatment of mild, moderate, and severe AD as well as mild-to-moderate PDD. In this review, we explore the role of BuChE inhibition in addition to AChE inhibition with rivastigmine in the outcomes of cognition, global function, behavioral symptoms, and activities of daily living. Additionally, we review the evidence supporting the use of dual AChE−BuChE inhibitory activity of rivastigmine as a therapeutic strategy in the treatment of neurological disorders, with a focus on the role of rivastigmine in subcortical dementias such as vascular dementia (VaD) and PDD. Toward this objective, we performed a literature search in PubMed and Ovid with limits to articles published in the English language before June 2016. The available evidence from the literature suggests that the dual inhibition of AChE and BuChE may afford additional therapeutic potential of rivastigmine in subcortical dementias (subcortical VaD and PDD) with benefits on cognition and behavioral symptoms. Rivastigmine was found to specifically benefit executive dysfunction frequently observed in subcortical dementias; however, large randomized clinical studies are warranted to support these observations. PMID:28458525
Kandiah, Nagaendran; Pai, Ming-Chyi; Senanarong, Vorapun; Looi, Irene; Ampil, Encarnita; Park, Kyung Won; Karanam, Ananda Krishna; Christopher, Stephen
2017-01-01
Several studies have demonstrated clinical benefits of sustained cholinesterase inhibition with rivastigmine in Alzheimer's disease (AD) and Parkinson's disease dementia (PDD). Unlike donepezil and galantamine that selectively inhibit acetylcholinesterase (AChE; EC 3.1.1.7), rivastigmine is a unique cholinesterase inhibitor with both AChE and butyrylcholinesterase (BuChE; EC 3.1.1.8) inhibitory activity. Rivastigmine is also available as transdermal patch that has been approved by the US Food and Drug Administration for the treatment of mild, moderate, and severe AD as well as mild-to-moderate PDD. In this review, we explore the role of BuChE inhibition in addition to AChE inhibition with rivastigmine in the outcomes of cognition, global function, behavioral symptoms, and activities of daily living. Additionally, we review the evidence supporting the use of dual AChE-BuChE inhibitory activity of rivastigmine as a therapeutic strategy in the treatment of neurological disorders, with a focus on the role of rivastigmine in subcortical dementias such as vascular dementia (VaD) and PDD. Toward this objective, we performed a literature search in PubMed and Ovid with limits to articles published in the English language before June 2016. The available evidence from the literature suggests that the dual inhibition of AChE and BuChE may afford additional therapeutic potential of rivastigmine in subcortical dementias (subcortical VaD and PDD) with benefits on cognition and behavioral symptoms. Rivastigmine was found to specifically benefit executive dysfunction frequently observed in subcortical dementias; however, large randomized clinical studies are warranted to support these observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petzer, Anél, E-mail: 12264954@nwu.ac.za; Harvey, Brian H.; Petzer, Jacobus P.
Methylene blue (MB) is reported to possess diverse pharmacological actions and is attracting increasing attention for the treatment of neurodegenerative disorders such as Alzheimer's disease. Among the pharmacological actions of MB, is the significant inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). These activities may, at least in part, underlie MB's beneficial effects in Alzheimer's disease. MB is metabolized to yield N-demethylated products of which azure B, the monodemethyl metabolite, is the predominant species. Azure B has been shown to be pharmacologically active and also possesses a variety of biological actions. Azure B therefore may contribute to the pharmacological profile ofmore » MB. Based on these considerations, the present study investigates the possibility that azure B may, similar to MB, act as an inhibitor of human AChE and BuChE. The results document that azure B inhibits AChE and BuChE with IC{sub 50} values of 0.486 μM and 1.99 μM, respectively. The results further show that azure B inhibits AChE and BuChE reversibly, and that the modes of inhibition are most likely competitive. Although the AChE and BuChE inhibitory activities of azure B are twofold and fivefold, respectively, less potent than those recorded for MB [IC{sub 50}(AChE) = 0.214 μM; IC{sub 50}(BuChE) = 0.389 μM] under identical conditions, azure B may be a contributor to MB's in vivo activation of the cholinergic system and beneficial effects in Alzheimer's disease. - Highlights: • Methylene blue (MB) is a known inhibitor of AChE and BuChE. • Azure B, the major metabolite of MB, also is an inhibitor of AChE and BuChE. • Azure B may be a contributor to MB's in vivo activation of the cholinergic system. • Azure B may contribute to MB's potential in Alzheimer's disease therapy.« less
Ohta, Kazumasa; Takahashi, Chifumi; Tosuji, Hiroaki
2009-08-01
The activity of acetylcholinesterase (AchE) increases rapidly after the gastrula stage of sea urchin development. In this report, changes in activity and in the molecular differentiation of AchE were investigated. AchE activity increased slightly during gastrulation and rose sharply thereafter, and was dependent on new RNA synthesis. No activity of butyrylcholinesterase was found. Morphogenesis in sea urchin embryos was inhibited by the AchE inhibitor eserine, which specifically inhibited arm rod formation but not body rod formation. Spicule formation and enzyme activity in cultured micromeres were inhibited by eserine in a dose-dependent manner. During gastrulation, two molecular forms of AchE were detected with polyacrylamide gel electrophoresis. The appearance of an additional band on the gel was consistent with the occurrence of a remarkable increase in the enzyme activity. This additional band appeared as a larger molecular form in Anthocidaris crassispina, Hemicentrotus pulcherrimus, Stomopneustes variolaris, and Strongylocentrotus nudus, and as a smaller form in Clypeaster japonicus and Temnopleurus hardwicki. These results suggest that the change in the molecular form of AchE induced a change in enzymatic activity that in turn may play a role in spicule elongation in sea urchin embryos.
Onder, Seda; David, Emilie; Tacal, Ozden; Schopfer, Lawrence M; Lockridge, Oksana
2017-01-01
Hupresin is a new affinity resin that binds butyrylcholinesterase (BChE) in human plasma and acetylcholinesterase (AChE) solubilized from red blood cells (RBC). Hupresin is available from the CHEMFORASE company. BChE in human plasma binds to Hupresin and is released with 0.1 M trimethylammonium bromide (TMA) with full activity and 10-15% purity. BChE immunopurified from plasma by binding to immobilized monoclonal beads has fewer contaminating proteins than the one-step Hupresin-purified BChE. However, when affinity chromatography on Hupresin follows ion exchange chromatography at pH 4.5, BChE is 99% pure. The membrane bound AChE, solubilized from human RBC with 0.6% Triton X-100, binds to Hupresin and remains bound during washing with sodium chloride. Human AChE is not released in significant quantities with non-denaturing solvents, but is recovered in 1% trifluoroacetic acid. The denatured, partially purified AChE is useful for detecting exposure to nerve agents by mass spectrometry. Our goal was to determine whether Hupresin retains binding capacity for BChE and AChE after Hupresin is washed with 0.1 M NaOH. A 2 mL column of Hupresin equilibrated in 20 mM TrisCl pH 7.5 was used in seven consecutive trials to measure binding and recovery of BChE from 100 mL human plasma. Between each trial the Hupresin was washed with 10 column volumes of 0.1 M sodium hydroxide. A similar trial was conducted with red blood cell AChE in 0.6% Triton X-100. It was found that the binding capacity for BChE and AChE was unaffected by washing Hupresin with 0.1 M sodium hydroxide. Hupresin could be washed with sodium hydroxide at least seven times without losing binding capacity.
Increased serum butyrylcholinesterase activity in type IIb hyperlipidaemic patients.
Kálmán, János; Juhász, Anna; Rakonczay, Zoltán; Abrahám, György; Zana, Marianna; Boda, Krisztina; Farkas, Tibor; Penke, Botond; Janka, Zoltán
2004-07-23
The inheritance of the apolipoprotein E4 (APOE4) allele has been shown to increase the plasma cholesterol level, but little information is as concerns the association of the APOE genotype and hyperlipidaemia and the activities of two serum enzymes, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Blood samples from 55 type IIb hyperlipidaemic, non-demented patients and 55 age- and sex-matched controls were therefore examined in this pilot study. A significantly increased BChE activity was found in the serum of type IIb hyperlipidaemic patients, but the AChE activity did not differ significantly as compared with that in the control group. The APOE4 allele was significantly overrepresented among the hyperlipidaemic probands, but neither serum cholinesterase activity was affected by the dosage of the APOE4 gene. Our results point to a possible association between an abnormal lipid metabolism and the BChE activity and might have implications as regards the pathomechanism of both Alzheimer's and vascular dementias and the cholinesterase inhibitor therapy of dementing disorders.
Johnson, Glynis; Moore, Samuel W
2009-01-01
We have previously described anti-acetylcholinesterase antibodies that display acetylcholinesterase-like catalytic activity. No evidence of contaminating enzymes was found, and the antibodies are kinetically and apparently structurally distinct from both acetylcholinesterase (AChE) and butyrylcholinesterase. We have also mimicked the antibody catalytic sites in anti-anti-idiotypic (Ab3) antibodies. Independently from us, similar acetylcholinesterase-like antibodies have been raised as anti-idiotypic (Ab2) antibodies against a non-catalytic anti-acetylcholinesterase antibody, AE-2. In this paper, we describe an epitope analysis, using synthetic peptides in ELISA and competition ELISA, and a peptide array, of five catalytic anti-acetylcholinesterase antibodies (Ab1s), three catalytic Ab3s, as well as antibody AE-2 and a non-catalytic Ab2. The catalytic Ab1s and Ab3s recognized three Pro- and Gly-containing sequences ((40)PPMGPRRFL, (78)PGFEGTE, and (258)PPGGTGGNDTELVAC) on the AChE surface. As these sequences do not adjoin in the AChE structure, recognition would appear to be due to cross-reaction. This was confirmed by the observation that the sequences superimpose structurally. The non-catalytic antibodies, AE-2 and the Ab2, recognized AChE's peripheral anionic site (PAS), in particular, the sequence (70)YQYVD, which contains two of the site's residues. The crystal structure of the AChE tetramer (Bourne et al., 1999) shows direct interaction and high complementarity between the (257)CPPGGTGGNDTELVAC sequence and the PAS. Antibodies recognizing the sequence and the PAS may, in turn, be complementary; this may account for the apparent paradox of catalytic development in both Ab1s and Ab2s. The PAS binds, but does not hydrolyze, substrate. The catalytic Ab1s, therefore, recognize a site that may function as a substrate analog, and this, together with the presence of an Arg-Glu salt bridge in the epitope, suggests mechanisms whereby catalytic activity may have developed. In conclusion, the development of AChE-like catalytic activity in anti-AChE Ab1s and Ab2s appears to be the result of a combination of structural complementarity to a substrate-binding site, charge complementarity to a salt bridge, and specific structural peculiarities of the AChE molecule. Copyright 2008 John Wiley & Sons, Ltd.
Cholinesterase inhibitors from the roots of Harpagophytum procumbens.
Bae, Yoon Ho; Cuong, To Dao; Hung, Tran Manh; Kim, Jeong Ah; Woo, Mi Hee; Byeon, Jeong Su; Choi, Jae Sue; Min, Byung Sun
2014-01-01
Inhibition of cholinesterase has been proposed to be a therapeutic target for the treatment of Alzheimer's diseases. In our preliminary screening study on the acetylcholinesterase (AChE) inhibitory activity, an ethyl acetate soluble fraction of the roots of Harpagophytum procumbens (Pedaliaceae) was found to inhibit AChE activity at the concentration of 100 μg/mL. Ten compounds (1-10) were isolated from the active fraction and evaluated for their inhibitory effect on AChE and butyrylcholinesterase (BChE). Among the isolates, verbascosides (5, 6, and 8) containing a caffeoyl and a 3,4-dihydroxyphenethyl groups in their structures, showed effective AChE inhibitory activity and also possessed BChE inhibitory activity. The findings suggest that verbascoside derivatives may be partially related to the anti-Alzheimer effect of this medicinal plant.
2013-01-01
Background Millions of people and domestic animals around the world are affected by leishmaniasis, a disease caused by various species of flagellated protozoans in the genus Leishmania that are transmitted by several sand fly species. Insecticides are widely used for sand fly population control to try to reduce or interrupt Leishmania transmission. Zoonotic cutaneous leishmaniasis caused by L. major is vectored mainly by Phlebotomus papatasi (Scopoli) in Asia and Africa. Organophosphates comprise a class of insecticides used for sand fly control, which act through the inhibition of acetylcholinesterase (AChE) in the central nervous system. Point mutations producing an altered, insensitive AChE are a major mechanism of organophosphate resistance in insects and preliminary evidence for organophosphate-insensitive AChE has been reported in sand flies. This report describes the identification of complementary DNA for an AChE in P. papatasi and the biochemical characterization of recombinant P. papatasi AChE. Methods A P. papatasi Israeli strain laboratory colony was utilized to prepare total RNA utilized as template for RT-PCR amplification and sequencing of cDNA encoding acetylcholinesterase 1 using gene specific primers and 3’-5’-RACE. The cDNA was cloned into pBlueBac4.5/V5-His TOPO, and expressed by baculovirus in Sf21 insect cells in serum-free medium. Recombinant P. papatasi acetylcholinesterase was biochemically characterized using a modified Ellman’s assay in microplates. Results A 2309 nucleotide sequence of PpAChE1 cDNA [GenBank: JQ922267] of P. papatasi from a laboratory colony susceptible to insecticides is reported with 73-83% nucleotide identity to acetylcholinesterase mRNA sequences of Culex tritaeniorhynchus and Lutzomyia longipalpis, respectively. The P. papatasi cDNA ORF encoded a 710-amino acid protein [GenBank: AFP20868] exhibiting 85% amino acid identity with acetylcholinesterases of Cx. pipiens, Aedes aegypti, and 92% amino acid identity for L. longipalpis. Recombinant P. papatasi AChE1 was expressed in the baculovirus system and characterized as an insect acetylcholinesterase with substrate preference for acetylthiocholine and inhibition at high substrate concentration. Enzyme activity was strongly inhibited by eserine, BW284c51, malaoxon, and paraoxon, and was insensitive to the butyrylcholinesterase inhibitors ethopropazine and iso-OMPA. Conclusions Results presented here enable the screening and identification of PpAChE mutations resulting in the genotype for insensitive PpAChE. Use of the recombinant P. papatasi AChE1 will facilitate rapid in vitro screening to identify novel PpAChE inhibitors, and comparative studies on biochemical kinetics of inhibition. PMID:23379291
Koohestani, Faezeh; Brown, Chester M; Meisami, Esmail
2012-11-01
The effects of growth hormone (GH) deficiency on the developmental changes in the abundance and activity of cholinesterase enzymes were studied in the developing spinal cord (SC) of postnatal rats by measuring the specific activity of acetylcholinesterase (AChE), a marker for cholinergic neurons and their synaptic compartments, and butyrylcholinesterase (BuChE), a marker for glial cells and neurovascular cells. Specific activities of these two enzymes were measured in SC tissue of 21- and 90 day-old (P21, weaning age; P90, young adulthood) GH deficient spontaneous dwarf (SpDwf) mutant rats which lack anterior pituitary and circulating plasma GH, and were compared with SC tissue of normal age-matched control animals. Assays were carried out for AChE and BuChE activity in the presence of their specific chemical inhibitors, BW284C51 and iso-OMPA, respectively. Results revealed that mean AChE activity was markedly and significantly reduced [28% at P21, 49% at P90, (p<0.01)] in the SC of GH deficient rats compared to age-matched controls. GH deficiency had a higher and more significant effect on AChE activity of the older (P90) rats than the younger ones (P21) ones. In contrast, BuChE activity in SC showed no significant changes in GH deficient rats at either of the two ages studied. Results imply that, in the absence of pituitary GH, the postnatal proliferation of cholinergic synapses in the rat SC, a CNS structure, where AChE activity is abundant, is markedly reduced during both the pre- and postweaning periods; more so in the postweaning than preweaning ages. In contrast, the absence of any effects on BuChE activity implies that GH does not affect the development of non-neuronal elements, e.g., glia, as much as the neuronal and synaptic compartments of the developing rat SC. Copyright © 2012 ISDN. Published by Elsevier Ltd. All rights reserved.
Aksu, Kadir; Özgeriş, Bünyamin; Taslimi, Parham; Naderi, Ali; Gülçin, İlhami; Göksu, Süleyman
2016-12-01
A series of ureas derived from phenethylamines were synthesized and evaluated for human carbonic anhydrase (hCA) I and II, acetylcholinesterase (AChE), and butyrylcholinesterase (BChE) enzyme inhibitory activities and antioxidant properties. The ureas were synthesized from the reactions of substituted phenethylamines with N,N-dimethylcarbamoyl chloride; then, the synthesized compounds were converted to their corresponding phenolic derivatives via O-demethylation. hCA I and II were effectively inhibited by the newly synthesized compounds, with K i values in the range of 0.307-0.432 nM for hCA I and 0.149-0.278 nM for hCA II. On the other hand, the K i parameters of these compounds for AChE and BChE were determined in the range of 0.129-0.434 and 0.095-0.207 nM, respectively. Phenolic ureas also showed good antioxidant activities. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Che, Magnus M; Conti, Michele; Boylan, Megan; Sciuto, Alfred M; Gordon, Richard K; Nambiar, Madhusoodana P
2008-07-01
We determined acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibition in the bronchoalveolar lavage fluid (BALF) following inhalation exposure to chemical threat nerve agent (CTNA) sarin. Age- and weight-matched male guinea pigs were exposed to five different doses of sarin (169.3, 338.7, 508, 677.4, and 846.5 mg/m(3)) using a microinstillation inhalation exposure technique for 4 min. The technique involves aerosolization of the agent in the trachea using a microcatheter with a center hole that delivers the agent and multiple peripheral holes that pumps air to aerosolize the agent at the tip. Animals exposed to higher doses of sarin occasionally developed seizures and succumbed to death within 15 min after exposure. The LCt(50) for sarin using the microinstillation technique was determined to be close to 677.4 mg/m(3). Ear blood AChE activity showed a dose-dependent inhibition at 15 min postexposure. The inhibition of blood AChE remained constant over 35 and 55 min after sarin exposure indicating that there was no lung depot effect. Cardiac blood AChE and butyrylcholinesterase (BChE) activity in surviving animals euthanized at 24 h postexposure showed a dose-dependent inhibition with an inhibition of 60% at 677.4 and 846.5 mg/m(3) sarin exposure. AChE and BChE activity in bronchoalveolar lavage fluid (BALF) showed a slight increase at 338.7 to 677.4 mg/m(3) sarin exposure but a marginal inhibition at 169.3 mg/m(3). In contrast, the AChE protein levels determined by immunoblotting showed an increase at 169.3 mg/m(3) in the BALF. The BALF protein level, a biomarker of lung injury, was increased maximally at 338.7 mg/m(3) and that increase was dropped with an increase in the dose of sarin. The BALF protein levels correlated with the AChE and BChE activity. These data suggest that sarin microinstillation inhalation exposure results in respiratory toxicity and lung injury characterized by changes in lavage AChE, BChE, and protein levels.
Anti-Alzheimers activity and molecular mechanism of albumin-derived peptides against AChE and BChE.
Yu, Zhipeng; Wu, Sijia; Zhao, Wenzhu; Ding, Long; Fan, Yue; Shiuan, David; Liu, Jingbo; Chen, Feng
2018-02-21
Alzheimer's disease (AD) is a global health issue affecting millions of elderly people worldwide. The aim of the present study was to identify novel anti-AD peptides isolated from albumin. Anti-AD activities of the peptides were evaluated via inhibitory activities on acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Furthermore, the potential molecular mechanisms of the KLPGF/AChE were investigated by CDOCKER of Discovery studio 2017. The results revealed that peptide KLPGF could effectively inhibit AChE with an inhibition rate of 61.23% at a concentration of 50 μg mL -1 . In addition, the peptide KLPGF came in contact with acylation sites and peripheral anion sites of AChE. The present study demonstrates that the peptide KLPGF could become a potential functional food intervention in AD.
Characterization of acetylcholinesterase-inhibition by itopride.
Iwanaga, Y; Kimura, T; Miyashita, N; Morikawa, K; Nagata, O; Itoh, Z; Kondo, Y
1994-11-01
Itopride is a gastroprokinetic benzamide derivative. This agent inhibited both electric eel acetylcholinesterase (AChE) and horse serum butyrylcholinesterase (BuChE). The IC50 of itopride with AChE (2.04 +/- 0.27 microM) was, however, 100-fold less than that with BuChE, whereas in the case of neostigmine with AChE (11.3 +/- 3.4 nM), it was 10-fold less. The recovery of AChE activity inhibited by 10(-7) M neostigmine was partial, but that inhibited by up to 3 x 10(-5) M itopride was complete when the reaction mixture was subjected to ultrafiltration. Double reciprocal plots of the experimental data showed that both Km and Vmax were affected by itopride, suggesting that the inhibition is a "mixed" type, although primarily being an uncompetitive one. The inhibitory effect of itopride on cholinesterase (ChE) activity in guinea pig gastrointestine was much weaker than that on pure AChE. However, in the presence of a low dose of diisopropyl fluorophosphate, just enough to inhibit BuChE but not AChE, the IC50s of itopride against ChE activities were found to be about 0.5 microM. In conclusion, itopride exerts reversible and a "mixed" type of inhibition preferably against AChE. The IC50 of itopride for electric eel and guinea pig gastrointestinal AChE inhibition was 200 times and 50 times as large as that of neostigmine, respectively.
Compounds from the aerial parts of Piper bavinum and their anti-cholinesterase activity.
Dung, Hoang Viet; Cuong, To Dao; Chinh, Nguyen Minh; Quyen, Do; Kim, Jeong Ah; Byeon, Jeong Su; Woo, Mi Hee; Choi, Jae Sui; Min, Byung Sun
2015-01-01
A new alkenylphenol, bavinol A (1), together with six known compounds (2-7) were isolated from the aerial parts of Piper bavinum (Piperaceae). The chemical structures of these compounds were determined by spectroscopic analyses including 2D NMR spectroscopy. The anti-Alzheimer effects of compounds 1-7 were evaluated from acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activity assays. Bavinol A (1), ampelopsin (3), and violanthin (4) exhibited AChE inhibitory activities with IC50 values of 29.80, 59.47 and 79.80 μM. Compound 1 also showed the most potent BChE inhibitory activity with an IC50 value of 19.25 μM.
New cholinesterase inhibitors from Garcinia atroviridis.
Tan, Wen-Nee; Khairuddean, Melati; Wong, Keng-Chong; Khaw, Kooi-Yeong; Vikneswaran, Murugaiyah
2014-09-01
A triflavanone, Garcineflavanone A (1) and a biflavonol, Garcineflavonol A (2) have been isolated from the stem bark of Garcinia atroviridis (Clusiaceae), collected in Peninsular Malaysia. Their structures were established using one and two-dimensional NMR, UV, IR and mass spectrometry and evaluated in vitro for their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes inhibitory activity. Molecular docking studies of the isolated compounds were performed using docking procedure of AutoDock to disclose the binding interaction and orientation of these molecules into the active site gorge. Copyright © 2014 Elsevier B.V. All rights reserved.
Abd Razik, Basma M; Osman, Hasnah; Basiri, Alireza; Salhin, Abdussalam; Kia, Yalda; Ezzat, Mohammed Oday; Murugaiyah, Vikneswaran
2014-12-01
Novel aromatic embedded Schiff bases have been synthesized in ionic liquid [bmim]Br and evaluated in vitro for their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes inhibitory activities. Among the newly synthesized compounds, 5f, 5h and 7j displayed higher AChE enzyme inhibitory activities than standard drug, galanthamine, with IC50 values of 1.88, 2.05 and 2.03μM, respectively. Interestingly, all the compounds except for compound 5c displayed higher BChE inhibitories than standard with IC50 values ranging from 3.49 to 19.86μM. Molecular docking analysis for 5f and 7j possessing the most potent AChE and BChE inhibitory activities, disclosed their binding interaction templates to the active site of AChE and BChE enzymes, respectively. Copyright © 2014 Elsevier Inc. All rights reserved.
Luo, Wen; Zhao, Yong-mei; Tian, Run-guo; Su, Ya-bin; Hong, Chen
2013-11-01
A novel series of bis-nicotine derivatives (3a-3i) were designed, synthesized and evaluated as bivalent anti-Alzheimer's disease agents. The pharmacological results indicated that compounds 3e-3i inhibited both acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) in the micromolar range (IC50, 2.28-117.86 micromol x L(-1) for AChE and 1.67-125 micromol x L(-1) for BChE), which was at the same potency as rivastigmine. A Lineweaver-Burk plot and molecular modeling study showed that these derivatives targeted both the catalytic active site (CAS) and the peripheral anionic site (PAS) of AChE. Besides, these compounds could significantly inhibit the self-induced Abeta aggregation with inhibition activity (11.85%-62.14%) at the concentration of 20 micromol x L(-1).
Hamulakova, Slavka; Janovec, Ladislav; Hrabinova, Martina; Spilovska, Katarina; Korabecny, Jan; Kristian, Pavol; Kuca, Kamil; Imrich, Jan
2014-08-28
A series of novel tacrine derivatives and tacrine-coumarin heterodimers were designed, synthesized, and biologically evaluated for their potential inhibitory effect on both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). Of these compounds, tacrine-coumarin heterodimer 7c and tacrine derivative 6b were found to be the most potent inhibitors of human AChE (hAChE), demonstrating IC50 values of 0.0154 and 0.0263 μM. Ligands 6b, 6c, and 7c exhibited the highest levels of inhibitory activity against human BuChE (hBuChE), demonstrating IC50 values that range from 0.228 to 0.328 μM. Docking studies were performed in order to predict the binding modes of compounds 6b and 7c with hAChE/hBuChE.
A Review of Butyrylcholinesterase as a Therapeutic Target in the Treatment of Alzheimer’s Disease
Ballard, Clive; Bullock, Roger; Darreh-Shori, Taher; Somogyi, Monique
2013-01-01
Objective: To examine the role of butyrylcholinesterase (BuChE) in cholinergic signaling and neurologic conditions, such as Alzheimer’s disease (AD). The rationale for inhibiting cholinesterases in the management of AD, including clinical evidence supporting use of the dual acetylcholinesterase (AChE) and BuChE inhibitor rivastigmine, is discussed. Data Sources: PubMed searches were performed using butyrylcholinesterase as a keyword. English-language articles referenced in PubMed as of September 2011 were included. Study Selection and Data Synthesis: English-language articles related to BuChE considered to be of clinical relevance to physicians were included. English-language articles specifically related to AChE were not included, as the role of AChE in cholinergic signaling and the underlying pathology of AD is well documented. Reference lists of included publications were used to supplement the search. Results: AChE and BuChE play a role in cholinergic signaling; BuChE can hydrolyze acetylcholine and compensate for AChE when levels are depleted. In the AD brain, AChE levels decrease, while BuChE levels are reportedly increased or unchanged, with changes becoming more pronounced during the disease course. Furthermore, BuChE genotype may influence AD risk and rate of disease progression. Strategies that increase acetylcholine levels (eg, cholinesterase inhibitors) demonstrate symptomatic efficacy in AD. Rivastigmine has proven cognitive efficacy in clinical trials, and data suggest that its action is mediated, in part, by inhibition of BuChE. Retrospective analyses of clinical trials provide evidence that BuChE genotype may also influence treatment response. Conclusions: AChE-selective inhibitors and a dual AChE and BuChE inhibitor demonstrate symptomatic efficacy in AD. Mounting preclinical and clinical evidence for a role of BuChE in maintaining normal cholinergic function and the pathology of AD provides a rationale for further studies investigating use of rivastigmine in AD and the influence of BuChE genotype on observed efficacy. PMID:23930233
Makhaeva, Galina F; Lushchekina, Sofya V; Boltneva, Natalia P; Sokolov, Vladimir B; Grigoriev, Vladimir V; Serebryakova, Olga G; Vikhareva, Ekaterina A; Aksinenko, Alexey Yu; Barreto, George E; Aliev, Gjumrakch; Bachurin, Sergey O
2015-08-18
Alzheimer disease is a multifactorial pathology and the development of new multitarget neuroprotective drugs is promising and attractive. We synthesized a group of original compounds, which combine in one molecule γ-carboline fragment of dimebon and phenothiazine core of methylene blue (MB) linked by 1-oxo- and 2-hydroxypropylene spacers. Inhibitory activity of the conjugates toward acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and structurally close to them carboxylesterase (CaE), as well their binding to NMDA-receptors were evaluated in vitro and in silico. These newly synthesized compounds showed significantly higher inhibitory activity toward BChE with IC50 values in submicromolar and micromolar range and exhibited selective inhibitory action against BChE over AChE and CaE. Kinetic studies for the 9 most active compounds indicated that majority of them were mixed-type BChE inhibitors. The main specific protein-ligand interaction is π-π stacking of phenothiazine ring with indole group of Trp82. These compounds emerge as promising safe multitarget ligands for the further development of a therapeutic approach against aging-related neurodegenerative disorders such as Alzheimer and/or other pathological conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Bin; Duysen, Ellen G.; Poluektova, Larisa Y.
2006-07-15
Organophosphorus esters (OP) are highly toxic chemicals used as pesticides and nerve agents. Their acute toxicity is attributed to inhibition of acetylcholinesterase (AChE, EC 3.1.1.7) in nerve synapses. Our goal was to find a new therapeutic for protection against OP toxicity. We used a gene therapy vector, adeno-associated virus serotype 2 (AAV-2), to deliver murine AChE to AChE-/- mice that have no endogenous AChE activity. The vector encoded the most abundant form of AChE: exons 2, 3, 4, and 6. Two-day old animals, with an immature immune system, were injected. AChE delivered intravenously was expressed up to 5 months inmore » plasma, liver, heart, and lung, at 5-15% of the level in untreated wild-type mice. A few mice formed antibodies, but antibodies did not block AChE activity. The plasma AChE was a mixture of dimers and tetramers. AChE delivered intramuscularly had 40-fold higher activity levels than in wild-type muscle. None of the AChE was collagen-tailed. No retrograde transport through the motor neurons to the central nervous system was detected. AChE delivered intrastriatally assembled into tetramers. In brain, the AAV-2 vector transduced neurons, but not astrocytes and microglia. Vector-treated AChE-/- mice lived longer than saline-treated controls. AChE-/- mice were protected from diisopropylfluorophosphate-induced respiratory failure when the vector was delivered intravenously, but not intrastriatally. Since vector-treated animals had no AChE activity in diaphragm muscle, protection from respiratory failure came from AChE in other tissues. We conclude that AChE scavenged OP and in this way protected the activity of butyrylcholinesterase (BChE, EC 3.1.1.8) in motor endplates.« less
Fang, Jiansong; Wu, Ping; Yang, Ranyao; Gao, Li; Li, Chao; Wang, Dongmei; Wu, Song; Liu, Ai-Lin; Du, Guan-Hua
2014-12-01
In this study two genistein derivatives (G1 and G2) are reported as inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), and differences in the inhibition of AChE are described. Although they differ in structure by a single methyl group, the inhibitory effect of G1 (IC50=264 nmol/L) on AChE was 80 times stronger than that of G2 (IC50=21,210 nmol/L). Enzyme-kinetic analysis, molecular docking and molecular dynamics (MD) simulations were conducted to better understand the molecular basis for this difference. The results obtained by kinetic analysis demonstrated that G1 can interact with both the catalytic active site and peripheral anionic site of AChE. The predicted binding free energies of two complexes calculated by the molecular mechanics/generalized born surface area (MM/GBSA) method were consistent with the experimental data. The analysis of the individual energy terms suggested that a difference between the net electrostatic contributions (ΔE ele+ΔG GB) was responsible for the binding affinities of these two inhibitors. Additionally, analysis of the molecular mechanics and MM/GBSA free energy decomposition revealed that the difference between G1 and G2 originated from interactions with Tyr124, Glu292, Val294 and Phe338 of AChE. In conclusion, the results reveal significant differences at the molecular level in the mechanism of inhibition of AChE by these structurally related compounds.
Mehrabi, Farzad; Pourshojaei, Yaghoub; Moradi, Alireza; Sharifzadeh, Mohammad; Khosravani, Leila; Sabourian, Reyhaneh; Rahmani-Nezhad, Samira; Mohammadi-Khanaposhtani, Maryam; Mahdavi, Mohammad; Asadipour, Ali; Rahimi, Hamid Reza; Moghimi, Setareh; Foroumadi, Alireza
2017-05-01
A series of 2-benzylidene-benzofuran-3-ones were designed from the structures of Ebselen analogs and aurone derivatives and synthesized in good yields. The target compounds were prepared by the condensation reaction between appropriate benzofuranones with amino alkoxy aldehydes and evaluated as cholinesterase inhibitors by Ellman's method. The in vitro anti-acetylcholinesterase (AChE)/butyrylcholinesterase activities of the synthesized compounds revealed that 7e (IC 50 = 0.045 μM) is the most active compound against AChE. Furthermore, the docking study confirmed the results obtained through in vitro experiments and predicted the possible binding conformation. The anticholinesterase activities of benzylidene-benzofurane-3-ones as aurone analogs revealed that the compounds bearing piperidinylethoxy residue showed better activities against AChE, introducing these compounds for further drug discovery developments. [Formula: see text].
Cholinesterase inhibitors from Cleistocalyx operculatus buds.
Min, Byung Sun; Cuong, To Dao; Lee, Joo-Sang; Shin, Beom-Soo; Woo, Mi Hee; Hung, Tran Manh
2010-10-01
Five flavonoids, myricetin-3'-methylether 3-O-β-D: -galactopyranoside (1), myricetin-3',5'-dimethylether 3-O-β-D: -galactopyranoside (2), quercetin (3), kaempferol (4), and tamarixetin (5) were isolated from the buds of Cleistocalyx operculatus (Myrtaceae). The chemical structures of these compounds were determined on the basis of spectroscopic analyses, including 2D NMR. Their anti-Alzheimer effects were evaluated via acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activity assays. All five compounds 1-5 showed potential inhibitory activities against AChE with IC(50) values of 19.9, 37.8, 25.9, 30.4 and 22.3 μM, respectively, while compounds 1, 3, 4 and 5 also possessed BChE inhibitory activity with IC(50) values of 152.5, 177.8, 62.5, and 160.6 μM, respectively.
Komloova, Marketa; Musilek, Kamil; Horova, Anna; Holas, Ondrej; Dohnal, Vlastimil; Gunn-Moore, Frank; Kuca, Kamil
2011-04-15
This paper describes the preparation and in vitro evaluation of 18 newly prepared bis-quinolinium inhibitors on human recombinant acetylcholinesterase (AChE) and human plasmatic butyrylcholinesterase (BChE). Their inhibitory (IC(50)) and was compared to the chosen standards ambenonium dichloride, edrophonium chloride, BW284c51 and ethopropazine hydrochloride. One novel compound was found to be a promising inhibitor of hAChE (in nM range) and was better than edrophonium chloride or BW284c51, but was worse than ambenonium chloride. This compound also showed selectivity towards hAChE and it was confirmed as a non-competitive inhibitor of hAChE by kinetic analysis. A molecular modelling study further confirmed its binding to the peripheral active site of hAChE via apparent π-π or π-cationic interactions. Copyright © 2011 Elsevier Ltd. All rights reserved.
Yoon, Yeong Keng; Ali, Mohamed Ashraf; Wei, Ang Chee; Choon, Tan Soo; Khaw, Kooi-Yeong; Murugaiyah, Vikneswaran; Osman, Hasnah; Masand, Vijay H
2013-08-01
Two series of novel acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors containing benzimidazole core structure were synthesized by a four-step reaction pathway starting from 4-fluoro-3-nitrobenzoic acid as the basic compound. The structure of the novel benzimidazoles was characterized and confirmed by the elemental and mass spectral analyses as well as (1)H NMR spectroscopic data. Of the 34 novel synthesized compounds, three benzimidazoles revealed AChE inhibition with IC50<10 μM. The highest inhibitory activity (IC50=5.12 μM for AChE and IC50=8.63 μM for BChE) corresponds to the compound 5IIc (ethyl 1-(3-(1H-imidazol-1-yl)propyl)-2-(4-nitrophenyl)-1H-benzo[d]imidazole-5-carboxylate). The relationship between lipophilicity and the chemical structures as well as their limited structure-activity relationship was discussed. Copyright © 2013 Elsevier Inc. All rights reserved.
Recent developments in the synthesis of acetylcholinesterase inhibitors.
Marco, José L; Carreiras, M Carmo
2003-09-01
The acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory activities of a series of pyrano[2,3-b]quinolines (2, 3), [1,8]naphthyridines (5, 6), 4-amino-2,3-diaryl-5,6,7,8-tetrahydrofuro[2,3-b]quinolines (11-13)/ 4-amino-6,7,8,9-tetrahydro-2,3-diphenyl-5H-cyclohepta[e]furo[2,3-b]pyridine (14), 4-amino-5,6,7,8-tetrahydro-2,3-diphenylthieno[2,3-b]quinoline (15)/ 4-amino-6,7,8,9-tetrahydro-2,3-diphenyl-5H-cyclohepta[e]thieno[2,3-b]pyridine (16) are described. These compounds are tacrine analogues that have been prepared from readily available polyfunctionalized ethyl [6-amino-5-cyano-4H-pyran]-3-carboxylates (9, 10), ethyl [6-amino-5-cyanopyridine]-3-carboxylates (7, 8), 2-amino-3-cyano-4,5-diarylfurans (17-19) and 2-amino-3-cyano-4,5-diphenylthiophene (20) via Friedländer condensation with selected ketones. These compounds are competitive and, in a few cases, non-competitive inhibitors for AChE, the most potent being compound (14), though three-fold less active than tacrine. The BuChE inhibitory activity is only significant in compounds 11 and 14, ten-fold less active than tacrine. Furthermore, the products 12 and 13 are selective and moderate AChE inhibitors.
Erythrocyte acetylcholinesterase as biomarker of pesticide exposure: new and forgotten insights.
Assis, Caio R D; Linhares, Amanda G; Cabrera, Mariana P; Oliveira, Vagne M; Silva, Kaline C C; Marcuschi, Marina; Maciel Carvalho, Elba V M; Bezerra, Ranilson S; Carvalho, Luiz B
2018-05-24
Acetylcholinesterase (AChE) acts on the hydrolysis of acetylcholine, rapidly removing this neurotransmitter at cholinergic synapses and neuromuscular junctions as well as in neuronal growth and differentiation, modulation of cell adhesion ("electrotactins") and aryl-acylamidase activity (AAA). This enzyme is also found in erythrocyte, as 160 kDa dimer that anchors to the plasma membrane via glycophosphatidylinositol. The function of this enzyme in erythrocytes has not yet been elucidated; however, it is suspected to participate in cell-to-cell interactions. Here, a review on erythrocyte AChE characteristics and use as biomarker for organophosphorus and carbamate insecticides is presented since it is the first specific target/barrier of the action of these pesticides, besides plasma butyrylcholinesterase (BChE). However, some past and current methods have disadvantages: (a) not discriminating the activities of AChE and BChE; (b) low accuracy due to interference of hemoglobin in whole blood samples. On the other hand, extraction methods of hemoglobin-free erythrocyte AChE allows: (a) the freezing and transporting of samples; (b) samples free of colorimetric interference; (c) data from only erythrocyte AChE activity; (d) erythrocyte AChE specific activity presents higher correlation with the central nervous system AChE than other peripheral ChEs; (e) slow spontaneous regeneration against anti-ChEs agents of AChE in comparison to BChE, thus increasing the chances of detecting such compounds following longer interval after exposure. As monitoring perspectives, hemoglobin-free methodologies may be promising alternatives to assess the degree of exposure since they are not influenced by this interfering agent.
Liu, Wei; Shi, Xiaoyuan; Yang, Yadi; Cheng, Xuemei; Liu, Qing; Han, Han; Yang, Baohua; He, Chunyong; Wang, Yongli; Jiang, Bo; Wang, Zhengtao; Wang, Changhong
2015-01-01
Vasicine (VAS), a potential natural cholinesterase inhibitor, exhibited promising anticholinesterase activity in preclinical models and has been in development for treatment of Alzheimer’s disease. This study systematically investigated the in vitro and in vivo metabolism of VAS in rat using ultra performance liquid chromatography combined with electrospray ionization quadrupole time-of-flight mass spectrometry. A total of 72 metabolites were found based on a detailed analysis of their 1H- NMR and 13C NMR data. Six key metabolites were isolated from rat urine and elucidated as vasicinone, vasicinol, vasicinolone, 1,2,3,9-tetrahydropyrrolo [2,1-b] quinazolin-3-yl hydrogen sulfate, 9-oxo-1,2,3,9-tetrahydropyrrolo [2,1-b] quinazolin-3-yl hydrogen sulfate, and 1,2,3,9-tetrahydropyrrolo [2,1-b] quinazolin-3-β-D-glucuronide. The metabolic pathway of VAS in vivo and in vitro mainly involved monohydroxylation, dihydroxylation, trihydroxylation, oxidation, desaturation, sulfation, and glucuronidation. The main metabolic soft spots in the chemical structure of VAS were the 3-hydroxyl group and the C-9 site. All 72 metabolites were found in the urine sample, and 15, 25, 45, 18, and 11 metabolites were identified from rat feces, plasma, bile, rat liver microsomes, and rat primary hepatocyte incubations, respectively. Results indicated that renal clearance was the major excretion pathway of VAS. The acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities of VAS and its main metabolites were also evaluated. The results indicated that although most metabolites maintained potential inhibitory activity against AChE and BChE, but weaker than that of VAS. VAS undergoes metabolic inactivation process in vivo in respect to cholinesterase inhibitory activity. PMID:25849329
Different glycosylation in acetylcholinesterases from mammalian brain and erythrocytes.
Liao, J; Heider, H; Sun, M C; Brodbeck, U
1992-04-01
Acetylcholinesterases (EC 3.1.1.7, AChE) have varying amounts of carbohydrates attached to the core protein. Sequence analysis of the known primary structures gives evidence for several asparagine-linked carbohydrates. From the differences in molecular mass determined on sodium dodecyl sulfate-polyacrylamide gel before and after deglycosylation with N-glycosidase F (EC 3.2.2.18), it is seen that dimeric AChE from red cell membranes is more heavily glycosylated than the tetrameric brain enzyme. Furthermore, dimeric and tetrameric forms of bovine AChE are more heavily glycosylated than the corresponding human enzymes. Monoclonal antibodies 2E6, 1H11, and 2G8 raised against detergent-soluble AChE from electric organs of Torpedo nacline timilei as well as Elec-39 raised against AChE from Electrophorus electricus cross-reacted with AChE from bovine and human brain but not with AChE from erythrocytes. Treatment of the enzyme with N-glycosidase F abolished binding of monoclonal antibodies, suggesting that the epitope, or part of it, consists of N-linked carbohydrates. Analysis of N-acetylglucosamine sugars revealed the presence of N-acetylglucosamine in all forms of cholinesterases investigated, giving evidence for N-linked glycosylation. On the other hand, N-acetylgalactosamine was not found in AChE from human and bovine brain or in butyrylcholinesterase (EC 3.1.1.8) from human serum, indicating that these forms of cholinesterase did not contain O-linked carbohydrates. Despite the notion that within one species, the different forms of AChE arise from one gene by different splicing, our present results show that dimeric erythrocyte and tetrameric brain AChE must undergo different postsynthetic modifications leading to differences in their glycosylation patterns.
Novel structural hybrids of pyrazolobenzothiazines with benzimidazoles as cholinesterase inhibitors.
Aslam, Sana; Zaib, Sumera; Ahmad, Matloob; Gardiner, John M; Ahmad, Aqeel; Hameed, Abdul; Furtmann, Norbert; Gütschow, Michael; Bajorath, Jürgen; Iqbal, Jamshed
2014-05-06
Two series of novel pyrazolobenzothiazine-based hybrid compounds were efficiently synthesized starting from saccharin sodium salt. Pyrazolo[4,3-c][1,2]benzothiazine scaffolds were N-arylated by using p-fluorobenzaldehyde, followed by the incorporation of a benzimidazole or similar ring systems by treatment with arylenediamines. These phenylene-connected hybrid compounds were investigated as potential inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). Compounds 12d and 12k were the most potent AChE inhibitors with IC50 values of 11 and 13 nM, respectively, while 6j (IC50 = 17 nM) proved to be the most active inhibitor against BuChE with remarkable selectivity for BuChE over AChE. Molecular docking studies were also performed on human AChE and BuChE to suggest possible binding modes in which the inhibitor's extended structure is accommodated along the active site gorge of both enzymes. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Delmonte Corrado, M U; Politi, H; Trielli, F; Angelini, C; Falugi, C
1999-01-01
By histochemical and immunohistochemical methods, the presence of cholinergic-like molecules has previously been demonstrated in Paramecium primaurelia, and their functional role in mating-cell pairing was suggested. In this work, both true acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) activities were electrophoretically investigated, and the presence of molecules immunologically related to BuChE was checked by immunoblotting. The AChE activity, shown in the membrane protein fraction of mating-competent cells and in the cytoplasmic fraction of immature cells, is due to a 260-kDa molecular form, similar to the membrane-bound tetrameric form present in human erythrocytes. This AChE activity does not appear in either the cytoplasmic fraction of mating-competent cells or in the membrane protein fraction of immature cells. No evidence was found for the presence or the activity of BuChE-like molecules. The role of AChE in P. primaurelia developmental cycle is discussed.
Alves-Amaral, Gracielle; Pires-Oliveira, Marcelo; Andrade-Lopes, Ana Luiza; Chiavegatti, Tiago; Godinho, Rosely Oliveira
2010-06-07
The role of acetylcholinesterase (AChE) in the termination of the cholinergic response through acetylcholine (ACh) hydrolysis and the involvement of plasma butyrylcholinesterase (BuChE), mainly of hepatic origin, in the metabolism of xenobiotics with ester bonds is well known. Besides, BuChE has a crucial role in ACh hydrolysis, especially when selective anticholinesterases inhibit AChE. Herein, we analyzed the gender-related differences and the circadian changes of rat plasma cholinesterases. Plasma and liver cholinesterase activities were evaluated in control or 2-30-day castrated adult male and female rats. Plasma and liver AChE activities did not differ between genders and were not influenced by sex hormone deprivation. BuChE plasma activity was 7 times greater in female, reflecting gender differences in liver enzyme expression. Castration increased liver and plasma BuChE activity in male, while reduced it in female, abolishing gender differences in enzyme activity. Interestingly, female AChE and BuChE plasma activities varied throughout the day, reaching values 27% and 42% lower, respectively, between 2 p.m. and 6 p.m. when compared to the morning peaks at 8 a.m. Castration attenuated daily female BuChE oscillation. On the other hand, male plasma enzymes remained constant throughout the day. In summary, our results show that liver and plasma BuChE, but not AChE, expression is influenced by sex hormones, leading to high levels of blood BuChE in females. The fluctuation of female plasma BuChE during the day should be taken into account to adjust the bioavailability and the therapeutic effects of cholinesterase inhibitors used in cholinergic-based conditions such Alzheimer's disease. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balan, A.; Barness, I.; Simon, G.
1988-02-15
7-(Methylethoxy phosphinyloxy)-1-methyl-quinolinium iodide (MEPQ), a powerful anti-cholinesterase methylphosphonate ester, was labeled with tritium (9 Ci/mmol) at the methylphosphonyl moiety (TCH2P(O)(OR)X) by an iodine-tritium replacement reaction. Kinetic measurements of the rate of inhibition of acetylcholinesterase (AChE) by (/sup 3/H)MEPQ and its rate of hydrolysis in alkaline solution confirmed the identity of (/sup 3/H)MEPQ with authentic MEPQ, which was prepared by the same reaction sequences. Gel-filtration experiments verified the radiospecificity of (/sup 3/H)MEPQ. In vitro radiolabeling of both AChE and butyrylcholinesterase along with the whole-body autoradiography of (/sup 3/H)MEPQ-treated mice suggests that (/sup 3/H)MEPQ is a convenient marker for studying biological systemsmore » containing these esterases.« less
Koohestani, Faezeh; Brown, Chester M; Meisami, Esmail
2012-11-01
The plasticity and vulnerability of the rat spinal cord (SC) during postnatal development has been less investigated compared to other CNS structures. In this study, we determined the effects of thyroid hormonal (TH) deficiency and excess on postnatal growth and neurochemical development of the rat SC. The growth as well as the specific and total activity of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzymes of the SC were determined in hypo- and hyperthyroid rat pups at postnatal (P) days P1, P5, P10 and P21 (weaning), and were compared to age-matched untreated normal controls. AChE is a cholinergic synaptic enzyme while BuChE is a metabolic enzyme mainly found in glial cells and neurovascular cells. The SC is rich in somatic motor, autonomic cholinergic neurons and associated interneurons. Daily subcutaneous injection of pups with thyroxine (T4) and administration of antithyroid goitrogen propylthiouracil (PTU) in the litter's drinking water were used to induce hyper- and hypothyroidism, respectively. Enzyme assays were carried out spectrophotometrically at the above-mentioned ages, using SC homogenates with acetylthiocholine-chloride as the substrate, together with specific cholinesterase inhibitors, which specifically target AChE and BuChE. SC weights were significantly lower at P10 and P21 in hypothyroid pups but unchanged in the hyperthyroid ones. Hypothyroidism significantly reduced both specific and total AChE activity in SC of P10 and P21 rat pups, while having no effects on the BuChE activity, although total BuChE activity was decreased due to reduced total tissue weight. In contrast both specific and total AChE activities were markedly and significantly increased (>100%) in the P10 and P21 hyperthyroid pups. However, BuChE specific activity was unaffected by this treatment. The results indicate that hypothyroid condition significantly reduces, while hyperthyroidism increases, the postnatal development of cholinergic synapses, thereby influencing the functional development of this major sensory and motor structure. However, the neurochemical development of glia and other non-neuronal cells, where BuChE is mainly localized, is comparatively unaffected in these abnormal developmental conditions. Copyright © 2012 ISDN. Published by Elsevier Ltd. All rights reserved.
Shrivastava, Sushant K; Srivastava, Pavan; Upendra, T V R; Tripathi, Prabhash Nath; Sinha, Saurabh K
2017-02-15
Series of some 3,5-dimethoxy-N-methylenebenzenamine and 4-(methyleneamino)benzoic acid derivatives comprising of N-methylenebenzenamine nucleus were designed, synthesized, characterized, and assessed for their acetylcholinesterase (AChE), butyrylcholinesterase (BChE) inhibitory, and antioxidant activity thereby improving learning and memory in rats. The IC 50 values of all the compound along with standard were determined on AChE and BChE enzyme. The free radical scavenging activity was also assessed by in vitro DPPH (2,2-diphenyl-1-picryl-hydrazyl) and hydrogen peroxide radical scavenging assay. The selective inhibitions of all compounds were observed against AChE in comparison with standard donepezil. The enzyme kinetic study of the most active compound 4 indicated uncompetitive AChE inhibition. The docking studies of compound 4 exhibited the worthy interaction on active-site gorge residues Phe330 and Trp279 responsible for its high affinity towards AChE, whereas lacking of the BChE inhibition was observed due to a wider gorge binding site and absence of important aromatic amino acids interactions. The ex vivo study confirmed AChE inhibition abilities of compound 4 at brain site. Further, a considerable decrease in escape latency period of the compound was observed in comparison with standard donepezil through in vivo Spatial Reference Memory (SRM) and Spatial Working Memory (SWM) models which showed the cognition-enhancing potential of compound 4. The in vivo reduced glutathione (GSH) estimation on rat brain tissue homogenate was also performed to evaluate free radical scavenging activity substantiated the antioxidant activity in learning and memory. Copyright © 2017 Elsevier Ltd. All rights reserved.
Jaganathan; Boopathy
2000-08-01
Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) from vertebrates, other than their predominant acylcholine hydrolase (esterase) activity, display a genuine aryl acylamidase activity (AAA) capable of hydrolyzing the synthetic substrate o-nitroacetanilide to o-nitroaniline. This AAA activity is strongly inhibited by classical cholinesterase (ChE) inhibitors. In the present study, benzalkonium chloride (BAC), a cationic detergent widely used as a preservative in pharmaceutical preparations, has been shown to distinctly modulate the esterase and AAA activities of BChEs. The detergent BAC was able to inhibit the esterase activity of human serum and horse serum BChEs and AChEs from electric eel and human erythrocyte. The remarkable property of BAC was its ability to profoundly activate the AAA activity of human serum and horse serum BChEs but not the AAA activity of AChEs. Thus BAC seem to preferentially activate the AAA activity of BChEs alone. Results of the study using the ChE active site-specific inhibitor diisopropyl phosphorofluoridate indicated that BAC binds to the active site of ChEs. Furthermore, studies using a structural homolog of BAC indicated that the alkyl group of BAC is essential not only for its interaction with ChEs but also for its distinct effect on the esterase and AAA activities of BChEs. This is the first report of a compound that inhibits the esterase activity, while simultaneously activating the AAA activity, of BChEs. Copyright 2000 Academic Press.
Cholinesterase inhibitors from botanicals
Ahmed, Faiyaz; Ghalib, Raza Murad; Sasikala, P.; Ahmed, K. K. Mueen
2013-01-01
Alzheimer's disease (AD) is a progressive neurodegenerative disease, wherein a progressive loss of cholinergic synapses occurs in hippocampus and neocortex. Decreased concentration of the neurotransmitter, acetylcholine (ACh), appears to be critical element in the development of dementia, and the most appropriate therapeutic approach to treat AD and other form of dementia is to restore acetylcholine levels by inhibiting both major form of cholinesterase: Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Consequently, researches have focused their attention towards finding cholinesterase inhibitors from natural products. A large number of such inhibitors have been isolated from medicinal plants. This review presents a comprehensive account of the advances in field of cholinesterase inhibitor phytoconstituents. The structures of some important phytoconstituents (collected through www.Chemspider.com) are also presented and the scope for future research is discussed. PMID:24347920
Montenegro, María F; Moral-Naranjo, María T; Muñoz-Delgado, Encarnación; Campoy, Francisco J; Vidal, Cecilio J
2009-04-01
Besides esterase activity, acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) hydrolyze o-nitroacetanilides through aryl acylamidase activity. We have reported that BuChE tetramers and monomers of human blood plasma differ in o-nitroacetanilide (ONA) hydrolysis. The homology in quaternary structure and folding of subunits in the prevalent BuChE species (G4(H)) of human plasma and AChE forms of fetal bovine serum prompted us to study the esterase and amidase activities of fetal bovine serum AChE. The k(cat)/K(m) values for acetylthiocholine (ATCh), ONA and its trifluoro derivative N-(2-nitrophenyl)-trifluoroacetamide (F-ONA) were 398 x 10(6) M(-1) min(-1), 0.8 x 10(6) M(-1) min(-1), and 17.5 x 10(6) M(-1) min(-1), respectively. The lack of inhibition of amidase activity at high F-ONA concentrations makes it unlikely that there is a role for the peripheral anionic site (PAS) in F-ONA degradation, but the inhibition of ATCh, ONA and F-ONA hydrolysis by the PAS ligand fasciculin-2 points to the transit of o-nitroacetalinides near the PAS on their way to the active site. Sedimentation analysis confirmed substrate hydrolysis by tetrameric 10.9S AChE. As compared with esterase activity, amidase activity was less sensitive to guanidine hydrochloride. This reagent led to the formation of 9.3S tetramers with partially unfolded subunits. Their capacity to hydrolyze ATCh and F-ONA revealed that, despite the conformational change, the active site architecture and functionality of AChE were partially retained.
Anticholinesterase and Antityrosinase Activities of Ten Piper Species from Malaysia
Salleh, Wan Mohd Nuzul Hakimi Wan; Hashim, Nur Athirah; Ahmad, Farediah; Heng Yen, Khong
2014-01-01
Purpose: The aim of this study was to investigate acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and antityrosinase activities of extracts from ten Piper species namely; P. caninum, P. lanatum, P. abbreviatum, P. aborescens, P. porphyrophyllum, P. erecticaule, P. ribesioides, P. miniatum, P. stylosum, and P. majusculum. Methods: Anticholinesterase and antityrosinase activities were evaluated against in vitro Ellman spectroscopy method and mushroom tyrosinase, respectively. Results: The EtOAc extract of P. erecticaule showed the highest AChE and BChE inhibitory with 22.9% and 70.9% inhibition, respectively. In antityrosinase activity, all extracts of P. porphyrophyllum showed the highest inhibitory effects against mushroom tyrosinase, compared to standard, kojic acid. Conclusion: This study showed that P. erecticaule and P. porphyrophyllum have potential AChE/BChE and tyrosinase inhibition activities. The respective extracts can be explored further for the development of novel lead as AChE/BChE and tyrosinase inhibitors in therapeutic management of Alzheimer’s disease. PMID:25671185
Oboh, G.; Bakare, O.O.; Ademosun, A.O.; Akinyemi, A.J.; Olasehinde, T.A.
2015-01-01
This study sought to investigate the effects of two tomato varieties [Lycopersicon esculentum Mill. var. esculentum (ESC) and Lycopersicon esculentum Mill. var. cerasiforme (CER)] on acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities in vitro. Phenolics content, carotenoids characterisation, inhibition of Fe2+ and quinolinic acid-induced malondialdehyde (MDA) production in rats brain homogenate and NO* scavenging abilities were also assesed in addition to the AChE and BChE inhibition assays. There was no significant difference in the AChE inhibitory ability of the samples, while CER had significantly higher BChE inhibitory activity. Furthermore, the tomatoes inhibited Fe2+ and quinolinic acid-induced MDA production and further exhibited antioxidant activities through their NO* scavenging abilities. There was no significant difference in the phenolic content of the samples, while significantly high amounts of lycopene were detected in the tomatoes. The cholinesterase-inhibition and antioxidant properties of the “tomatoes” could make them good dietary means for the management of neurodegenerative disorders.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saxena, A.; Doctor, B.P.
1995-12-31
Cholinesterases are serine esterases that hydrolyse choline esters faster than other substrates. They are highly glycosylated proteins with up to 24% of their molecular weight constituted of carbohydrates. Here we report the results of our studies on the glycosylation of fetal bovine serum acetylcholinesterase (FBS AChE) and horse serum butyrylcholinesterase (Eq BChE). Analysis of the monosaccharide content of the two enzymes indicated that Eq BChE contained 520 nmoles of monosaccharide/mg protein, as compared to 1290 nmoles/mg protein for Eq BChE. Both enzymes contained mannose, galactose, N-acetylglucosamine and sialic acid. Fucose was present in Eq BChE only. The structures of themore » two major oligosaccharides from FBS AChE and one major oligosaccharide from Eq BChE were determined and found to be very similar except that one of the oligosaccharides from FBS AChE contained a galactose alphal-3 galactose betal-4-determinant which has been identified as a potentially immunogenic determinant.« less
Cholinesterases, a target of pharmacology and toxicology.
Pohanka, Miroslav
2011-09-01
Cholinesterases are a group of serine hydrolases that split the neurotransmitter acetylcholine (ACh) and terminate its action. Of the two types, butyrylcholinesterase and acetylcholinesterase (AChE), AChE plays the key role in ending cholinergic neurotransmission. Cholinesterase inhibitors are substances, either natural or man-made that interfere with the break-down of ACh and prolong its action. Hence their relevance to toxicology and pharmacology. The present review summarizes current knowledge of the cholinesterases and their inhibition. Particular attention is paid to the toxicology and pharmacology of cholinesterase-related inhibitors such as nerve agents (e.g. sarin, soman, tabun, VX), pesticides (e.g. paraoxon, parathion, malathion, malaoxon, carbofuran), selected plants and fungal secondary metabolites (e.g. aflatoxins), drugs for Alzheimer's disease (e.g. huperzine, metrifonate, tacrine, donepezil) and Myasthenia gravis (e.g. pyridostigmine) treatment and other compounds (propidium, ethidium, decamethonium). The crucial role of the cholinesterases in neural transmission makes them a primary target of a large number of cholinesterase-inhibiting drugs and toxins. In pharmacology, this has relevance to the treatment of neurodegenerative disorders.
Iqbal, Jamshed; Saeed, Aamer; Shah, Syed J A; al-Rashida, Mariya; Shams-ul Mahmood
2016-01-01
In an attempt to discover novel anti-cancer agents and potent cholinesterase inhibitors, 11 azomethine-dihydroquinazolinone conjugates were evaluated against lung carcinoma cells and cholinesterases. Most of the compounds exhibited significant cytotoxicity at low micromolar concentrations and were less toxic to normal cells. After 24 h incubation period, 2i showed maximum cytotoxicity. The 4-bromine substituted compounds showed higher acetylcholinesterase (AChE) inhibitory activity than other screened compounds. The most active compound 2c, among the series, had an IC50 value 209.8 µM against AChE. The tested compounds showed less inhibition against butyrylcholinesterase. Molecular docking studies were performed in order to investigate the plausible binding modes of synthesized compounds. The compounds can be further optimized to treat cancer and Alzheimer's disease. These derivatives may open new pathways for introducing new therapies for curing cancer and senile dementia.
Xie, Sai-Sai; Wang, Xiao-Bing; Li, Jiang-Yan; Yang, Lei; Kong, Ling-Yi
2013-06-01
A series of tacrine-coumarin hybrids (8a-t) were designed, synthesized and evaluated as multifunctional cholinesterase (ChE) inhibitors against Alzheimer's disease (AD). The screening results showed that most of them exhibited a significant ability to inhibit ChE and self-induced β-amyloid (Aβ) aggregation, and to act as metal chelators. Especially, 8f displayed the greatest ability to inhibit acetylcholinesterase (AChE, IC50 = 0.092 μM) and Aβ aggregation (67.8%, 20 μM). It was also a good butyrylcholinesterase inhibitor (BuChE, IC50 = 0.234 μM) and metal chelator. Besides, kinetic and molecular modeling studies indicated that 8f was a mixed-type inhibitor, binding simultaneously to active, peripheral and mid-gorge sites of AChE. These results suggested that 8f might be an excellent multifunctional agent for AD treatment. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Luo, Wen; Wang, Ting; Hong, Chen; Yang, Ya-Chen; Chen, Ying; Cen, Juan; Xie, Song-Qiang; Wang, Chao-Jie
2016-10-21
A new series of 4-dimethylamine flavonoid derivatives were designed and synthesized as potential multifunctional anti-Alzheimer agents. The inhibition of cholinesterase activity, self-induced β-amyloid (Aβ) aggregation, and antioxidant activity by these derivatives was investigated. Most of the compounds exhibited potent acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activity. A Lineweaver-Burk plot and molecular modeling study showed that these compounds targeted both the catalytic active site (CAS) and peripheral anionic site (PAS) of AChE. The derivatives showed potent self-induced Aβ aggregation inhibition and peroxyl radical absorbance activity. Moreover, compound 6d significantly protected PC12 neurons against H2O2-induced cell death at low concentrations. Thus, these compounds could become multifunctional agents for further development for the treatment of AD. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Bacalhau, Patrícia; San Juan, Amor A; Goth, Albertino; Caldeira, A Teresa; Martins, Rosário; Burke, Anthony J
2016-08-01
Rivastigmine is a very important drug prescribed for the treatment of Alzheimer's disease (AD) symptoms. It is a dual inhibitor, in that it inhibits both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). For our screening program on the discovery of new rivastigmine analogue hits for human butyrylcholinesterase (hBuChE) inhibition, we investigated the interaction of this inhibitor with BuChE using the complimentary approach of the biophysical method, saturation transfer difference (STD)-NMR and molecular docking. This allowed us to obtain essential information on the key binding interactions between the inhibitor and the enzyme to be used for screening of hit compounds. The main conclusions obtained from this integrated study was that the most dominant interactions were (a) H-bonding between the carbamate carbonyl of the inhibitor and the NH group of the imidazole unit of H434, (b) stacking of the aromatic unit of the inhibitor and the W82 aromatic unit in the choline binding pocket via π-π interactions and (c) possible CH/π interactions between the benzylic methyl group and the N-methyl groups of the inhibitor and W82 of the enzyme. Copyright © 2016 Elsevier Inc. All rights reserved.
Antioxidant and cholinesterase inhibitory activity of a new peptide from Ziziphus jujuba fruits.
Zare-Zardini, Hadi; Tolueinia, Behnaz; Hashemi, Azam; Ebrahimi, Leila; Fesahat, Farzaneh
2013-11-01
Antioxidant agents and cholinesterase inhibitors are the foremost drugs for the treatment of Alzheimer's disease (AD). In this study, a new peptide from Ziziphus jujuba fruits was investigated for its inhibitory activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes as well as antioxidant activity. This peptide was introduced as a new peptide and named Snakin-Z. The Snakin-Z displayed considerable cholinesterase inhibition against AChE and BChE. The half maximal inhibitory concentration (IC50) values of Snakin-Z against AChE and BChE are 0.58 ± 0.08 and 0.72 ± 0.085 mg/mL, respectively. This peptide has 80% enzyme inhibitory activity on AChE and BChE at 1.5 mg/mL. The Snakin-Z also had the high antioxidant activity (IC50 = 0.75 ± 0.09 mg/mL). Thus, it is suggested that Snakin-Z may be beneficial in the treatment of AD. However, more detailed researches are still required as in vivo testing its anticholinesterase and antioxidant activities.
Imramovský, Aleš; Pejchal, Vladimír; Štěpánková, Šárka; Vorčáková, Katarína; Jampílek, Josef; Vančo, Ján; Šimůnek, Petr; Královec, Karel; Brůčková, Lenka; Mandíková, Jana; Trejtnar, František
2013-04-01
A series of novel cholinesterase inhibitors based on 2-substituted 6-fluorobenzo[d]thiazole were synthesised and characterised by IR, (1)H, (13)C and (19)F NMR spectroscopy and HRMS. Purity was checked by elemental analyses. The novel carbamates were tested for their ability to inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). The toxicity of the most active compounds was investigated using a standard in vitro test with HepG2 cells, and the ratio between biological activity and toxicity was determined. In addition, the toxicity of the most active compounds was evaluated against MCF7 cells using the xCELLigence system. Structure-activity relationships reflecting the dependence of cholinesterase inhibitors on the lipophilicity of the compounds as well as on the Taft polar and steric substituent constants are discussed. The specific orientation of the inhibitors in the binding site of acetylcholinesterase was determined using molecular docking of the most active compound. Copyright © 2013 Elsevier Ltd. All rights reserved.
Gao, Xiaohui; Tang, Jingjing; Liu, Haoran; Liu, Linbo; Kang, Lu; Chen, Wen
2018-12-01
In the present investigation, 48 new tertiary amine derivatives of cinnamic acid, phenylpropionic acid, sorbic acid and hexanoic acid (4d-6g, 10d-12g, 16d-18g and 22d-24g) were designed, synthesized and evaluated for the effect on AChE and BChE in vitro. The results revealed that the alteration of aminoalkyl types and substituted positions markedly influences the effects in inhibiting AChE. Almost of all cinnamic acid derivatives had the most potent inhibitory activity than that of other acid derivatives with the same aminoalkyl side chain. Unsaturated bond and benzene ring in cinnamic acid scaffold seems important for the inhibitory activity against AChE. Among them, compound 6g revealed the most potent AChE inhibitory activity (IC 50 value: 3.64 µmol/L) and highest selectivity over BChE (ratio: 28.6). Enzyme kinetic study showed that it present a mixed-type inhibition against AChE. The molecular docking study suggested that it can bind with the catalytic site and peripheral site of AChE.
Hirbod, Kimia; Jalili-baleh, Leili; Nadri, Hamid; ebrahimi, Seyed esmaeil Sadat; Moradi, Alireza; Pakseresht, Bahar; Foroumadi, Alireza; Shafiee, Abbas; Khoobi, Mehdi
2017-01-01
Objective(s): To investigate the efficiency of a novel series of coumarin derivatives bearing benzoheterocycle moiety as novel cholinesterase inhibitors. Materials and Methods: Different 7-hydroxycoumarin derivatives were synthesized via Pechmann or Knoevenagel condensation and conjugated to different benzoheterocycle (8-hydroxyquinoline, 2-mercaptobenzoxazole or 2-mercaptobenzimidazole) using dibromoalkanes 3a-m: Final compounds were evaluated against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) by Ellman’s method. Kinetic study of AChE inhibition and ligand-protein docking simulation were also carried out for the most potent compound 3b. Results: Some of the compounds revealed potent and selective activity against AChE. Compound 3b containing the quinoline group showed the best activity with an IC50 value of 8.80 μM against AChE. Kinetic study of AChE inhibition revealed the mixed-type inhibition of the enzyme by compound 3b. Ligand-protein docking simulation also showed that the flexibility of the hydrophobic five carbons linker allows the quinoline ring to form π-π interaction with Trp279 in the PAS. Conclusion: We suggest these synthesized compounds could become potential leads for AChE inhibition and prevention of AD symptoms. PMID:28868119
Graham, Jacob R; Wright, Benjamin S; Rezk, Peter E; Gordon, Richard K; Sciuto, Alfred M; Nambiar, Madhusoodana P
2006-06-01
Respiratory disturbances play a central role in chemical warfare nerve agent (CWNA) induced toxicity; they are the starting point of mass casualty and the major cause of death. We developed a microinstillation technique of inhalation exposure to nerve agent VX and assessed lung injury by biochemical analysis of the bronchoalveolar lavage fluid (BALF). Here we demonstrate that normal guinea pig BALF has a significant amount of cholinesterase activity. Treatment with Huperzine A, a specific inhibitor of acetylcholinesterase (AChE), showed that a minor fraction of BALF cholinesterase is AChE. Furthermore, treatment with tetraisopropyl pyrophosphoramide (iso-OMPA), a specific inhibitor of butyrylcholinesterase (BChE), inhibited more than 90% of BChE activity, indicating the predominance of BChE in BALF. A predominance of BChE expression in the lung lavage was seen in both genders. Substrate specific inhibition indicated that nearly 30% of the cholinesterase in lung tissue homogenate is AChE. BALF and lung tissue AChE and BChE activities were strongly inhibited in guinea pigs exposed for 5 min to 70.4 and 90.4 microg/m3 VX and allowed to recover for 15 min. In contrast, BALF AChE activity was increased 63% and 128% and BChE activity was increased 77% and 88% after 24 h of recovery following 5 min inhalation exposure to 70.4 microg/m3 and 90.4 mg/m3 VX, respectively. The increase in BALF AChE and BChE activity was dose dependent. Since BChE is synthesized in the liver and present in the plasma, an increase in BALF indicates endothelial barrier injury and leakage of plasma into lung interstitium. Therefore, a measure of increased levels of AChE and BChE in the lung lavage can be used to determine the chronology of barrier damage as well as the extent of lung injury following exposure to chemical warfare nerve agents.
Cespedes, Carlos L; Balbontin, Cristian; Avila, Jose G; Dominguez, Mariana; Alarcon, Julio; Paz, Cristian; Burgos, Viviana; Ortiz, Leandro; Peñaloza-Castro, Ignacio; Seigler, David S; Kubo, Isao
2017-11-01
It is reported in this study the effect of isolates from leaves of Aristotelia chilensis as inhibitors of acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and tyrosinase enzymes. The aim of the paper was to evaluate the activity of A. chilensis towards different enzymes. In addition to pure compounds, extracts rich in alkaloids and phenolics were tested. The most active F5 inhibited AChE (79.5% and 89.8% at 10.0 and 20.0 μg/mL) and against BChE (89.5% and 97.8% at 10.0 and 20.0 μg/mL), showing a strong mixed-type inhibition against AChE and BChE. F3 (a mixture of flavonoids and phenolics acids), showed IC 50 of 90.7 and 59.6 μg/mL of inhibitory activity against AChE and BChE, inhibiting the acetylcholinesterase competitively. Additionally, F3 showed and high potency as tyrosinase inhibitor with IC 50 at 8.4 μg/mL. Sample F4 (anthocyanidins and phenolic composition) presented a complex, mixed-type inhibition of tyrosinase with a IC 50 of 39.8 μg/mL. The findings in this investigation show that this natural resource has a strong potential for future research in the search of new phytotherapeutic treatments for cholinergic deterioration ailments avoiding the side effects of synthetic drugs. This is the first report as cholinesterases and tyrosinase inhibitors of alkaloids and phenolics from A. chilensis leaves. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kumar, Amit; Pintus, Francesca; Di Petrillo, Amalia; Medda, Rosaria; Caria, Paola; Matos, Maria João; Viña, Dolores; Pieroni, Enrico; Delogu, Francesco; Era, Benedetta; Delogu, Giovanna L; Fais, Antonella
2018-03-13
Alzheimer's disease (AD) is a neurodegenerative disorder representing the leading cause of dementia and is affecting nearly 44 million people worldwide. AD is characterized by a progressive decline in acetylcholine levels in the cholinergic systems, which results in severe memory loss and cognitive impairments. Expression levels and activity of butyrylcholinesterase (BChE) enzyme has been noted to increase significantly in the late stages of AD, thus making it a viable drug target. A series of hydroxylated 2-phenylbenzofurans compounds were designed, synthesized and their inhibitory activities toward acetylcholinesterase (AChE) and BChE enzymes were evaluated. Two compounds (15 and 17) displayed higher inhibitory activity towards BChE with IC 50 values of 6.23 μM and 3.57 μM, and a good antioxidant activity with EC 50 values 14.9 μM and 16.7 μM, respectively. The same compounds further exhibited selective inhibitory activity against BChE over AChE. Computational studies were used to compare protein-binding pockets and evaluate the interaction fingerprints of the compound. Molecular simulations showed a conserved protein residue interaction network between the compounds, resulting in similar interaction energy values. Thus, combination of biochemical and computational approaches could represent rational guidelines for further structural modification of these hydroxy-benzofuran derivatives as future drugs for treatment of AD.
Kovarik, Zrinka; Hrvat, Nikolina Maček; Katalinić, Maja; Sit, Rakesh K.; Paradyse, Alexander; Žunec, Suzana; Musilek, Kamil; Fokin, Valery V.; Taylor, Palmer; Radić, Zoran
2016-01-01
Exposure to the nerve agent soman is difficult to treat due to the rapid dealkylation of soman-acetylcholinesterase (AChE) conjugate known as aging. Oxime antidotes commonly used to reactivate organophosphate inhibited AChE are ineffective against soman, while the efficacy of the recommended nerve agent bioscavenger butyrylcholinesterase is limited by strictly stoichiometric scavenging. To overcome this limitation, we tested ex vivo, in human blood, and in vivo, in soman exposed mice, the capacity of aging-resistant human AChE mutant Y337A/F338A in combination with oxime HI-6 to act as a catalytic bioscavenger of soman. HI-6 was previously shown in vitro to efficiently reactivate this mutant upon soman, as well as VX, cyclosarin, sarin and paraoxon inhibition. We here demonstrate that ex vivo, in whole human blood, 1 μM soman was detoxified within 30 minutes when supplemented with 0.5 μM Y337A/F338A AChE and 100 μM HI-6. This combination was further tested in vivo. Catalytic scavenging of soman in mice improved the therapeutic outcome and resulted in the delayed onset of toxicity symptoms. Furthermore, in a preliminary in vitro screen we identified an even more efficacious oxime than HI-6, in a series of forty-two pyridinium aldoximes, and five imidazole 2-aldoxime N-propyl pyridinium derivatives. One of the later imidazole aldoximes, RS-170B, was a 2–3 –fold more effective reactivator of Y337A/F338A AChE than HI-6 due to the smaller imidazole ring, as indicated by computational molecular models, that affords a more productive angle of nucleophilic attack. PMID:25835984
Wandhammer, Marielle; Carletti, Eugénie; Van der Schans, Marcel; Gillon, Emilie; Nicolet, Yvain; Masson, Patrick; Goeldner, Maurice; Noort, Daan; Nachon, Florian
2011-01-01
Nerve agents are chiral organophosphate compounds (OPs) that exert their acute toxicity by phosphorylating the catalytic serine of acetylcholinesterase (AChE). The inhibited cholinesterases can be reactivated using oximes, but a spontaneous time-dependent process called aging alters the adduct, leading to resistance toward oxime reactivation. Human butyrylcholinesterase (BChE) functions as a bioscavenger, protecting the cholinergic system against OPs. The stereoselectivity of BChE is an important parameter for its efficiency at scavenging the most toxic OPs enantiomer for AChE. Crystals of BChE inhibited in solution or in cristallo with racemic V-agents (VX, Russian VX, and Chinese VX) systematically show the formation of the PS adduct. In this configuration, no catalysis of aging seems possible as confirmed by the three-dimensional structures of the three conjugates incubated over a period exceeding a week. Crystals of BChE soaked in optically pure VXR-(+) and VXS-(−) solutions lead to the formation of the PS and PR adduct, respectively. These structural data support an in-line phosphonylation mechanism. Additionally, they show that BChE reacts with VXR-(+) in the presence of racemic mixture of V-agents, at odds with earlier kinetic results showing a moderate higher inhibition rate for VXS-(−). These combined results suggest that the simultaneous presence of both enantiomers alters the enzyme stereoselectivity. In summary, the three-dimensional data show that BChE reacts preferentially with PR enantiomer of V-agents and does not age, in complete contrast to AChE, which is selectively inhibited by the PS enantiomer and ages. PMID:21454498
Musilek, Kamil; Pavlikova, Ruzena; Marek, Jan; Komloova, Marketa; Holas, Ondrej; Hrabinova, Martina; Pohanka, Miroslav; Dohnal, Vlastimil; Dolezal, Martin; Gunn-Moore, Frank; Kuca, Kamil
2011-04-01
Carbamate inhibitors (e.g. pyridostigmine bromide) are used as a pre-treatment for the prevention of organophosphorus poisoning. They work by blocking the native function of acetylcholinesterases (AChE) and thus protect AChE against irreversible inhibition by organophosphorus compounds. However, carbamate inhibitors are known for their many undesirable side effects related to the carbamylation of AChE. In this paper, we describe 17 novel bisquaternary compounds and have analysed their effect on AChE inhibition. The newly prepared compounds were evaluated in vitro using both human erythrocyte AChE and human plasmatic butyrylcholinesterase. Their inhibitory ability was expressed as the half maximal inhibitory concentration (IC₅₀) and then compared to the standard carbamate drugs and two AChE reactivators. One of these novel compounds showed promising AChE inhibition in vitro (nM range) and was better than the currently used standards. Additionally, a kinetic assay confirmed the non-competitive inhibition of hAChE by this novel compound. Consequently, the docking results confirmed the apparent π-π or π-cationic interactions with the key amino acid residues of hAChE and the binding of the chosen compound at the enzyme catalytic site.
Alpan, Ayşe Selcen; Sarıkaya, Görkem; Çoban, Güneş; Parlar, Sülünay; Armagan, Güliz; Alptüzün, Vildan
2017-07-01
A series of Mannich bases of benzimidazole derivatives having a phenolic group were designed to assess their anticholinesterase and antioxidant activities. The acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory activities were evaluated in vitro by using Ellman's method. According to the activity results, all of the compounds exhibited moderate to good AChE inhibitory activity (except for 2a), with IC 50 values ranging from 0.93 to 10.85 μM, and generally displayed moderate BuChE inhibitory activity. Also, most of the compounds were selective against BuChE. Compound 4b was the most active molecule on the AChE enzyme and also selective. In addition, we investigated the antioxidant effects of the synthesized compounds against FeCl 2 /ascorbic acid-induced oxidative stress in the rat brain in vitro, and the activity results showed that most of the compounds are effective as radical scavengers. Molecular docking studies and molecular dynamics simulations were also carried out. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Korabecny, Jan; Dolezal, Rafael; Cabelova, Pavla; Horova, Anna; Hruba, Eva; Ricny, Jan; Sedlacek, Lukas; Nepovimova, Eugenie; Spilovska, Katarina; Andrs, Martin; Musilek, Kamil; Opletalova, Veronika; Sepsova, Vendula; Ripova, Daniela; Kuca, Kamil
2014-07-23
A novel series of 7-methoxytacrine (7-MEOTA)-donepezil like compounds was synthesized and tested for their ability to inhibit electric eel acetylcholinesterase (EeAChE), human recombinant AChE (hAChE), equine serum butyrylcholinesterase (eqBChE) and human plasmatic BChE (hBChE). New hybrids consist of a 7-MEOTA unit, representing less toxic tacrine (THA) derivative, connected with analogues of N-benzylpiperazine moieties mimicking N-benzylpiperidine fragment from donepezil. 7-MEOTA-donepezil like compounds exerted mostly non-selective profile in inhibiting cholinesterases of different origin with IC50 ranging from micromolar to sub-micromolar concentration scale. Kinetic analysis confirmed mixed-type inhibition presuming that these inhibitors are capable to simultaneously bind peripheral anionic site (PAS) as well as catalytic anionic site (CAS) of AChE. Molecular modeling studies and QSAR studies were performed to rationalize studies from in vitro. Overall, 7-MEOTA-donepezil like derivatives can be considered as interesting candidates for Alzheimer's disease treatment. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Oboh, Ganiyu; Agunloye, Odunayo M; Akinyemi, Ayodele J; Ademiluyi, Adedayo O; Adefegha, Stephen A
2013-02-01
This study sought to investigate and compare the interaction of caffeic acid and chlorogenic acid on acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), and some pro-oxidants (FeSO(4), sodium nitroprusside and quinolinic acid) induced oxidative stress in rat brain in vitro. The result revealed that caffeic acid and chlorogenic acid inhibited AChE and BChE activities in dose-dependent manner; however, caffeic acid had a higher inhibitory effect on AChE and BChE activities than chlorogenic acid. Combination of the phenolic acids inhibited AChE and BChE activities antagonistically. Furthermore, pro-oxidants such as, FeSO(4), sodium nitroprusside and quinolinic acid caused increase in the malondialdehyde (MDA) contents of the brain which was significantly decreased dose-dependently by the phenolic acids. Inhibition of AChE and BChE activities slows down acetylcholine and butyrylcholine breakdown in the brain. Therefore, one possible mechanism through which the phenolic acids exert their neuroprotective properties is by inhibiting AChE and BChE activities as well as preventing oxidative stress-induced neurodegeneration. However, esterification of caffeic acid with quinic acid producing chlorogenic acid affects these neuroprotective properties.
Isolation of cholinesterase and β-secretase 1 inhibiting compounds from Lycopodiella cernua.
Nguyen, Van Thu; To, Dao Cuong; Tran, Manh Hung; Oh, Sang Ho; Kim, Jeong Ah; Ali, Md Yousof; Woo, Mi-Hee; Choi, Jae Sue; Min, Byung Sun
2015-07-01
Three new serratene-type triterpenoids (1-3) and a new hydroxy unsaturated fatty acid (13) together with nine known compounds (4-12) were isolated from Lycopodiella cernua. The chemical structures were established using NMR, MS, and Mosher's method. Compound 13 showed the most potent inhibitory activity against acetylcholinesterase (AChE) with an IC50 value of 0.22μM. For butyrylcholinesterase (BChE) inhibitory activity, 5 showed the most potent activity with an IC50 value of 0.42μM. Compound 2 showed the most potent activity with an IC50 of 0.23μM for BACE-1 inhibitory activity. The kinetic activities were investigated to determine the type of enzyme inhibition involved. The types of AChE inhibition shown by compounds 4, 5, and 13 were mixed; BChE inhibition by 5 was competitive, while 2 and 6 showed mixed-types. In addition, molecular docking studies were performed to investigate the interaction of these compounds with the pocket sites of AChE. The docking results revealed that the tested inhibitors 3, 4, and 13 were stably present in several pocket domains of the AChE residue. Copyright © 2015 Elsevier Ltd. All rights reserved.
Dysregulated Homeostasis of Acetylcholine Levels in Immune Cells of RR-Multiple Sclerosis Patients.
Di Bari, Maria; Reale, Marcella; Di Nicola, Marta; Orlando, Viviana; Galizia, Sabrina; Porfilio, Italo; Costantini, Erica; D'Angelo, Chiara; Ruggieri, Serena; Biagioni, Stefano; Gasperini, Claudio; Tata, Ada Maria
2016-11-30
Multiple sclerosis (MS) is characterized by pro-inflammatory cytokine production. Acetylcholine (ACh) contributes to the modulation of central and peripheral inflammation. We studied the homeostasis of the cholinergic system in relation to cytokine levels in immune cells and sera of relapsing remitting-MS (RR-MS) patients. We demonstrated that lower ACh levels in serum of RR-MS patients were inversely correlated with the increased activity of the hydrolyzing enzymes acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). Interestingly, the expression of the ACh biosynthetic enzyme and the protein carriers involved in non-vesicular ACh release were found overexpressed in peripheral blood mononuclear cells of MS patients. The inflammatory state of the MS patients was confirmed by increased levels of TNFα, IL-12/IL-23p40, IL-18. The lower circulating ACh levels in sera of MS patients are dependent on the higher activity of cholinergic hydrolyzing enzymes. The smaller ratio of ACh to TNFα, IL-12/IL-23p40 and IL-18 in MS patients, with respect to healthy donors (HD), is indicative of an inflammatory environment probably related to the alteration of cholinergic system homeostasis.
Dysregulated Homeostasis of Acetylcholine Levels in Immune Cells of RR-Multiple Sclerosis Patients
Di Bari, Maria; Reale, Marcella; Di Nicola, Marta; Orlando, Viviana; Galizia, Sabrina; Porfilio, Italo; Costantini, Erica; D’Angelo, Chiara; Ruggieri, Serena; Biagioni, Stefano; Gasperini, Claudio; Tata, Ada Maria
2016-01-01
Multiple sclerosis (MS) is characterized by pro-inflammatory cytokine production. Acetylcholine (ACh) contributes to the modulation of central and peripheral inflammation. We studied the homeostasis of the cholinergic system in relation to cytokine levels in immune cells and sera of relapsing remitting-MS (RR-MS) patients. We demonstrated that lower ACh levels in serum of RR-MS patients were inversely correlated with the increased activity of the hydrolyzing enzymes acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). Interestingly, the expression of the ACh biosynthetic enzyme and the protein carriers involved in non-vesicular ACh release were found overexpressed in peripheral blood mononuclear cells of MS patients. The inflammatory state of the MS patients was confirmed by increased levels of TNFα, IL-12/IL-23p40, IL-18. The lower circulating ACh levels in sera of MS patients are dependent on the higher activity of cholinergic hydrolyzing enzymes. The smaller ratio of ACh to TNFα, IL-12/IL-23p40 and IL-18 in MS patients, with respect to healthy donors (HD), is indicative of an inflammatory environment probably related to the alteration of cholinergic system homeostasis. PMID:27916909
Luo, Wen; Chen, Ying; Wang, Ting; Hong, Chen; Chang, Li-Ping; Chang, Cong-Cong; Yang, Ya-Cheng; Xie, Song-Qiang; Wang, Chao-Jie
2016-02-15
A novel series of 7-aminoalkyl-substituted flavonoid derivatives 5a-5r were designed, synthesized and evaluated as potential cholinesterase inhibitors. The results showed that most of the synthesized compounds exhibited potent acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities at the micromolar range. Compound 2-(naphthalen-1-yl)-7-(8-(pyrrolidin-1-yl)octyloxy)-4H-chromen-4-one (5q) showed the best inhibitory activity (IC50, 0.64μM for AChE and 0.42μM for BChE) which were better than our previously reported compounds and the commercially available cholinergic agent Rivastigmine. The results from a Lineweaver-Burk plot indicated a mixed-type inhibition for compound 5q with AChE and BChE. Furthermore, molecular modeling study showed that 5q targeted both the catalytic active site (CAS) and the peripheral anionic site (PAS) of AChE. Besides, these compounds (5a-5r) did not affect PC12 and HepG2 cell viability at the concentration of 10μM. Consequently, these flavonoid derivatives should be further investigated as multipotent agents for the treatment of Alzheimer's disease. Copyright © 2015 Elsevier Ltd. All rights reserved.
Gulcan, Hayrettin O; Orhan, Ilkay E; Sener, Bilge
2015-01-01
Dual action of galanthamine as potent cholinesterase inhibitor and nicotinic modulator has attracted a great attention to be used in the treatment of AD. Consequently, galanthamine, a natural alkaloid isolated from a Galanthus species (snowdrop, Amaryllidaceae), has become an attractive model compound for synthesis of its novel derivatives to discover new drug candidates. Numerous studies have been done to elucidate interactions between galanthamine and its different derivatives and the enzymes; acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) using in vitro and in silico experimental models. The in vitro studies revealed that galanthamine inhibits AChE in strong, competitive, long-acting, and reversible manner as well as BChE, although its selectivity towards AChE is much higher than BChE. The in silico studies carried out by employing molecular docking experiments as well as molecular dynamics simulations pointed out to existence of strong interactions of galanthamine with the active gorge of AChE, mostly of Torpedo californica (the Pasific electric ray) origin. In this review, we evaluate the mainstays of cholinesterase inhibitory action of galanthamine and its various derivatives from the point of view of chemical and molecular aspects.
Kilic, Burcu; Gulcan, Hayrettin O; Aksakal, Fatma; Ercetin, Tugba; Oruklu, Nihan; Umit Bagriacik, E; Dogruer, Deniz S
2018-05-08
A series of new carboxamide and propanamide derivatives bearing phenylpyridazine as a core ring were designed, synthesized and evaluated for their ability to inhibit both cholinesterase enzymes. In addition, a series of carboxamide and propanamide derivatives bearing biphenyl instead of phenylpyridazine were also synthesized to examine the inhibitory effect of pyridazine moiety on both cholinesterase enzymes. The inhibitory activity results revealed that compounds 5b, 5f, 5h, 5j, 5l pyridazine-3-carboxamide derivative, exhibited selective acetylcholinesterase (AChE) inhibition with IC 50 values ranging from 0.11 to 2.69 µM. Among them, compound 5h was the most active one (IC 50 = 0.11 µM) without cytotoxic effect at its effective concentration against AChE. Additionally, pyridazine-3-carboxamide derivative 5d (IC 50 for AChE = 0.16 µM and IC 50 for BChE = 9.80 µM) and biphenyl-4-carboxamide derivative 6d (IC 50 for AChE = 0.59 µM and IC 50 for BChE = 1.48 µM) displayed dual cholinesterase inhibitory activity. Besides, active compounds were also tested for their ability to inhibit Aβ aggregation. Theoretical physicochemical properties of the compounds were calculated by using Molinspiration Program as well. The Lineweaver-Burk plot and docking study showed that compound 5 h targeted both the catalytic active site (CAS) and the peripheral anionic site (PAS) of AChE. Copyright © 2018 Elsevier Inc. All rights reserved.
New Cholinesterase Inhibitory Constituents from Lonicera quinquelocularis
Khan, Dilfaraz; Khan, Hidayat Ullah; Khan, Farmanullah; Khan, Shafiullah; Badshah, Syed; Khan, Abdul Samad; Samad, Abdul; Ali, Farman; Khan, Ihsanullah; Muhammad, Nawshad
2014-01-01
A phytochemical investigation on the ethyl acetate soluble fraction of Lonicera quinquelocularis (whole plant) led to the first time isolation of one new phthalate; bis(7-acetoxy-2-ethyl-5-methylheptyl) phthalate (3) and two new benzoates; neopentyl-4-ethoxy-3, 5-bis (3-methyl-2-butenyl benzoate (4) and neopentyl-4-hydroxy-3, 5-bis (3-methyl-2-butenyl benzoate (5) along with two known compounds bis (2-ethylhexyl phthalate (1) and dioctyl phthalate (2). Their structures were established on the basis of spectroscopic analysis and by comparison with available data in the literature. All the compounds (1–5) were tested for their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities in dose dependent manner. The IC50 (50% inhibitory effect) values of compounds 3 and 5 against AChE were 1.65 and 3.43 µM while the values obtained against BChE were 5.98 and 9.84 µM respectively. Compounds 2 and 4 showed weak inhibition profile. PMID:24733024
Characterization of cholinesterases in the damselfish Sergeant major (Abudefduf saxatilis).
Rodríguez-Fuentes, Gabriela; Soto, Mélina; Luna-Ramírez, Karen
2013-10-01
Cholinesterase (ChE) activity has been used for many years as a biomarker of exposure to organophosphate and carbamate pesticides. Recent studies have demonstrated that there could be biological factors that determine ChE type and levels; thus, juvenile Sergeant major (Abudefduf saxatilis) ChE enzymes were biochemically characterized. ChE enzymes found in the head and trunk were evaluated for their substrate preference and sensitivity to selective inhibitors. The use of the head and trunk was chosen as a strategy to reduce dissection time and to ensure sample uniformity between stations. The results indicated that there are two types of ChE enzymes in the head: acetylcholinesterase (AChE) and atypical butyrylcholinesterase (BChE) that exhibits intermediate characteristics of human AChE and BChE activities. Atypical BChE is predominantly found in the trunk. The results also indicated that the ChE activity found in A. saxatilis may be used as a biomarker in studies monitoring the Mexican Caribbean. Copyright © 2013 Elsevier Inc. All rights reserved.
Aouani, Iyadh; Sellami, Badreddine; Lahbib, Karima; Cavalier, Jean-François; Touil, Soufiane
2017-06-01
Based on the broad spectrum of biological activities associated with organophosphates, a novel type of this class of compounds was synthesized, bearing a nitrile group, from the sodium alkoxide-catalyzed reaction of dialkylphosphites with γ-ketonitriles at 80°C under solvent-free conditions. A reaction mechanism involving a phospha-Brook type rearrangement is proposed. Eight title compounds were investigated for their in vitro inhibitory potency and selectivity against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) using Ellman's spectrophotometric method. The synthesized derivatives exhibited mostly a moderate activity against both cholinesterases. The IC 50 values for BChE were in a smaller concentration range (5.96-23.35µM) compared to those for AChE inhibition (9.61-53.74µM). The diethyl-3-cyano-1-p-tolylpropylphosphate which displayed the higher dual inhibitory potency towards both cholinesterases could be considered as a potential candidate for developing new drugs to treat Alzheimer's disease. Copyright © 2017 Elsevier Inc. All rights reserved.
Kubínová, Renata; Švajdlenka, Emil; Jankovská, Dagmar
2016-01-01
Aqueous extracts of aerial flowering parts of five Agrimonia species (Rosaceae): Agrimonia coreana Nakai, Agrimonia japonica (Miq.) Koidz, Agrimonia procera Wallr., Agrimonia eupatoria L. and Agrimonia leucantha Kunze were investigated on their antioxidant activity, measured using five different methods; the best was the extract from A. procera with IC50 values from 6 to 29 μg/mL. All the extracts displayed inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) at the tested concentration of 100 μg/mL. We found the highest inhibition of cholinesterase in the extract of A. japonica with inhibition 70.4% for AChE and 79.8% for BuChE. These findings are statistically significant in comparison with those of other extracts (p < 0.001). The phytochemical analyses showed that the antioxidant activity of Agrimonia extracts can be affected especially by hexahydroxydiphenoyl (HHDP)-glucose and quercetin glycosides, and inhibition of cholinesterases by apigenin, luteolin and quercetin glycosides.
Bonesi, Marco; Okusa, Philippe N; Tundis, Rosa; Loizzo, Monica R; Menichini, Federica; Stévigny, Caroline; Duez, Pierre; Menichini, Francesco
2011-02-01
This study aimed to investigate for the first time the chemical composition, the antioxidant properties and the acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activity of the essential oil from the leaves of Cordia gilletii De Wild (Boraginaceae). The essential oil, characterized by 23 constituents (90.1% of the total oil), was constituted by terpene derivatives (25.6%) and non-terpene derivatives (64.5%), among which aldehydes, fatty acids and alkanes were present with the percentage of 16.5%, 18.8% and 23.1%, respectively. The antioxidant activity of C. gilletii essential oil was screened by two in vitro tests: DPPH and beta-carotene bleaching test. The essential oil revealed antioxidant activity with an IC50 value of 75.0 and 129.9 microg/mL on DPPH radical and beta-carotene decoloration tests, respectively. Moreover, C. gilletii inhibited AChE enzyme with an IC50 value of 105.6 microg/mL.
[Interest of the cholinesterase assay during organophosphate poisonings].
Jalady, A-M; Dorandeu, F
2013-12-01
Cholinesterases are the main targets of organophosphorus compounds. The two enzymes present in the blood (butyrylcholinesterase, BChE; acetylcholinesterase, AChE) are biomarkers of their systemic toxicity. Activity of the plasma BChE is very often determined as it allows a rapid diagnostic of poisoning and is a marker of the persistence of the toxicant in the blood. The activity of the red blood cell AChE gives a better picture of the synaptic inhibition in the nervous system but the assay is less commonly available in routine laboratories. Better biomarker of the exposure, it allows a diagnosis of the severity of the poisoning and helps to assess the efficacy of oxime therapy. Besides the practical aspects of blood collection and sample processing, and the interpretation of the assays, this review stresses the complementarity of both enzyme assays and recalls their crucial interest for the confirmation of poisoning with an organophosphorus in a situation of war or terrorist attack and for the monitoring of occupational exposures. Copyright © 2013. Published by Elsevier SAS.
Evaluating Fmoc-amino acids as selective inhibitors of butyrylcholinesterase
Gonzalez, Jeannette; Ramirez, Jennifer
2018-01-01
Cholinesterases are involved in neuronal signal transduction, and perturbation of function has been implicated in diseases, such as Alzheimer’s and Huntington’s disease. For the two major classes of cholinesterases, such as acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), previous studies reported BChE activity is elevated in patients with Alzheimer’s disease, while AChE levels remain the same or decrease. Thus, the development of potent and specific inhibitors of BChE have received much attention as a potential therapeutic in the alleviation of neurodegenerative diseases. In this study, we evaluated amino acid analogs as selective inhibitors of BChE. Amino acid analogs bearing a 9-fluorenylmethyloxycarbonyl (Fmoc) group were tested, as the Fmoc group has structural resemblance to previously described inhibitors. We identified leucine, lysine, and tryptophan analogs bearing the Fmoc group as selective inhibitors of BChE. The Fmoc group contributed to inhibition, as analogs bearing a carboxybenzyl group showed ~tenfold higher values for the inhibition constant (KI value). Inclusion of a t-butoxycarbonyl on the side chain of Fmoc tryptophan led to an eightfold lower KI value compared to Fmoc tryptophan alone suggesting that modifications of the amino acid side chains may be designed to create inhibitors with higher affinity. Our results identify Fmoc-amino acids as a scaffold upon which to design BChE-specific inhibitors and provide the foundation for further experimental and computational studies to dissect the interactions that contribute to inhibitor binding. PMID:27522651
Evaluating Fmoc-amino acids as selective inhibitors of butyrylcholinesterase.
Gonzalez, Jeannette; Ramirez, Jennifer; Schwans, Jason P
2016-12-01
Cholinesterases are involved in neuronal signal transduction, and perturbation of function has been implicated in diseases, such as Alzheimer's and Huntington's disease. For the two major classes of cholinesterases, such as acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), previous studies reported BChE activity is elevated in patients with Alzheimer's disease, while AChE levels remain the same or decrease. Thus, the development of potent and specific inhibitors of BChE have received much attention as a potential therapeutic in the alleviation of neurodegenerative diseases. In this study, we evaluated amino acid analogs as selective inhibitors of BChE. Amino acid analogs bearing a 9-fluorenylmethyloxycarbonyl (Fmoc) group were tested, as the Fmoc group has structural resemblance to previously described inhibitors. We identified leucine, lysine, and tryptophan analogs bearing the Fmoc group as selective inhibitors of BChE. The Fmoc group contributed to inhibition, as analogs bearing a carboxybenzyl group showed ~tenfold higher values for the inhibition constant (K I value). Inclusion of a t-butoxycarbonyl on the side chain of Fmoc tryptophan led to an eightfold lower K I value compared to Fmoc tryptophan alone suggesting that modifications of the amino acid side chains may be designed to create inhibitors with higher affinity. Our results identify Fmoc-amino acids as a scaffold upon which to design BChE-specific inhibitors and provide the foundation for further experimental and computational studies to dissect the interactions that contribute to inhibitor binding.
Cespedes, Carlos L; Muñoz, Evelyn; Salazar, Juan R; Yamaguchi, Lydia; Werner, Enrique; Alarcon, Julio; Kubo, Isao
2013-12-01
Extracts, fractions and compounds from Calceolaria talcana and C. integrifolia exhibited strong inhibitory effects of the activity of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes using the in vitro Ellman's method. The most active samples were from the ethyl acetate extract, which caused a mixed-type inhibition against AChE (69.8% and 79.5% at 100 and 200 μg/ml, respectively) and against BChE (98.5% and 99.8% at 100 and 200 μg/ml, respectively) and its major components verbascoside 8 (50.9% and 70.0% at 200 μg/ml, against AChE and BChE, respectively), martynoside 9, and fraction F-7 (which corresponds to a mixture of 8, 9, and other phenylethanoids and phenolics that remain unidentified) (80.2% and 85.3% at 100 and 200 μg/ml, against AChE, respectively and 99.1% and 99.7% at 100 and 200 μg/ml, against BChE, respectively) inhibited the acetylcholinesterase enzyme competitively. The most polar fraction F-5 from n-hexane extract (a mixture of naphthoquinones: 2-hydroxy-3-(1,1-dimethylallyl-1,4-naphthoquinone) 6, α-dunnione 7 and other polar compounds that remain unidentified) showed a mixed-type inhibition (71.5% and 72.1% against AChE and BChE at 200 μg/ml, respectively). Finally, the methanol-soluble residue presented a complex, mixed-type inhibition (39.9% and 67.9% against AChE and BChE at 200 μg/ml, respectively). The mixture F-3 with diterpenes was obtained from the n-hexane extract: (1,10-cyclopropyl-9-epi-ent-isopimarol) 1, 19-α-hydroxy-abietatriene 2, and F-4 a mixture of triterpenes α-lupeol 3, β-sitosterol 4, ursolic acid 5 together with a complex mixture of terpenes that did not show activity. In summary, extracts and natural compounds from C. talcana and C. integrifolia were isolated, identified and characterized as cholinesterase inhibitors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shenouda, Josephine; Green, Paula; Sultatos, Lester, E-mail: sultatle@umdnj.ed
2009-12-01
Acetylcholinesterase (EC 3.1.1.7) and butyrylcholinesterase (EC 3.1.1.8) are enzymes that belong to the superfamily of alpha/beta-hydrolase fold proteins. While they share many characteristics, they also possess many important differences. For example, whereas they have about 54% amino acid sequence identity, the active site gorge of acetylcholinesterase is considerably smaller than that of butyrylcholinesterase. Moreover, both have been shown to display simple and complex kinetic mechanisms, depending on the particular substrate examined, the substrate concentration, and incubation conditions. In the current study, incubation of butyrylthiocholine in a concentration range of 0.005-3.0 mM, with 317 pM human butyrylcholinesterase in vitro, resulted inmore » rates of production of thiocholine that were accurately described by simple Michaelis-Menten kinetics, with a K{sub m} of 0.10 mM. Similarly, the inhibition of butyrylcholinesterase in vitro by the organophosphate chlorpyrifos oxon was described by simple Michaelis-Menten kinetics, with a k{sub i} of 3048 nM{sup -1} h{sup -1}, and a K{sub D} of 2.02 nM. In contrast to inhibition of butyrylcholinesterase, inhibition of human acetylcholinesterase by chlorpyrifos oxon in vitro followed concentration-dependent inhibition kinetics, with the k{sub i} increasing as the inhibitor concentration decreased. Chlorpyrifos oxon concentrations of 10 and 0.3 nM gave k{sub i}s of 1.2 and 19.3 nM{sup -1} h{sup -1}, respectively. Although the mechanism of concentration-dependent inhibition kinetics is not known, the much smaller, more restrictive active site gorge of acetylcholinesterase almost certainly plays a role. Similarly, the much larger active site gorge of butyrylcholinesterase likely contributes to its much greater reactivity towards chlorpyrifos oxon, compared to acetylcholinesterase.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katalinić, Maja; Maček Hrvat, Nikolina
A well-considered treatment of acute nerve agents poisoning involves the exogenous administration of butyrylcholinesterase (BChE, EC 3.1.1.8) as a stoichiometric bioscavenger efficient in preventing cholinergic crises caused by acetylcholinesterase (AChE, EC 3.1.1.7) inhibition. An additional improvement in medical countermeasures would be to use oximes that could reactivate BChE as well to upgrade bioscavenging from stoichiometric to oxime-assisted catalytic. Therefore, in this paper we investigated the potency of 39 imidazolium and benzimidazolium oximes (36 compounds synthesized for the first time) to be considered as the reactivators specifically designed for reactivation of phosphylated human BChE. Their efficiency in the reactivation of paraoxon-,more » VX-, and tabun-inhibited human BChE, as well as human AChE was tested and compared with the efficiencies of HI-6 and obidoxime, used in medical practice today. A comprehensive analysis was performed for the most promising oximes defining kinetic parameters of reactivation as well as interactions with uninhibited BChE. Furthermore, experimental data were compared with computational studies (docking, QSAR analysis) as a starting point in future oxime structure refinement. Considering the strict criteria set for in vivo applications, we determined the cytotoxicity of lead oximes on two cell lines. Among the tested oxime library, one imidazolium compound was selected for preliminary in vivo antidotal study in mice. The obtained protection in VX poisoning outlines its potential in development oxime-assisted OP-bioscavenging with BChE. - Highlights: • 36 new imidazolium and benzimidazolium oximes were designed and synthesized. • In vitro reactivation kinetics of phosphylated butyrylcholinesterase was studded. • The modes of actions were elucidated by QSAR and docking simulations. • Protection in VX poisoning was 6.3 × LD{sub 50} in in vivo antidotal study in mice. • Imidazolium oxime-assisted catalysis is feasible for OP-bioscavenging with BChE.« less
Nam, Dae Cheol; Ha, Yu Mi; Park, Min Kyu; Cho, Sung Kweon
2016-08-01
Organophosphorus pesticides (OPs) are a human health hazard. OPs inhibit acetylcholinesterase (AChE) at nerve endings and accumulate acetylcholine (ACh) at these sites. High levels of ACh and long exposure promote cholinergic crisis. The hydrolysis of OPs by serum paraoxonase 1 (PON1) plays a role in cholinergic crisis in humans. Human serum PON1 can break down organophosphate before binding to ChE. We investigated the effect of PON1 polymorphisms on AChE activity after OP treatment. 50 healthy volunteers were randomly recruited with informed consent. We investigated butyrylcholinesterase (BuChE) activity changes in plasma as a biomarker of AChE after OP treatment in human blood samples immediately following blood sampling. After the standardization of BuChE activity in human blood, we correlated changes in BuChE activity with changes in blood pH. We analyzed the PON1 polymorphisms (rs854560 and rs662) of 50 participants to retrospectively investigate the interindividual variability of changes in BuChE activity. Changes in BuChE activity are strongly correlated with pH changes after OP treatment (R2 = 0.913). We used changes in pH as a surrogate marker for BuChE inhibition after OP treatment. OP treatment significantly decreased BuChE activity by 56.4 ± 5.1% (p < 0.001). The degree of BuChE inhibition was significantly different in the PON1 rs662 genotype (56.10 ± 4.74% vs. 57.96 ± 5.67% vs. 52.34 ± 1.51%; GG vs. GA vs. AA, respectively). Changes in pH can be used as a surrogate marker for the detection of BuChE inhibition after OP exposure. The rs662 polymorphism of PON1 may explain the inter-individual variability in BuChE inhibition.
Ibrar, Aliya; Khan, Ajmal; Ali, Majid; Sarwar, Rizwana; Mehsud, Saifullah; Farooq, Umar; Halimi, Syed M. A.; Khan, Imtiaz; Al-Harrasi, Ahmed
2018-01-01
In a continuation of our previous work for the exploration of novel enzyme inhibitors, two new coumarin-thiazole 6(a–o) and coumarin-oxadiazole 11(a–h) hybrids have been designed and synthesized. All the compounds were characterized by 1H- and 13C-NMR spectroscopy and elemental analysis. New hybrid analogs were evaluated against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) in order to know their potential for the prevention of Alzheimer's disease (AD). In coumarinyl thiazole series, compound 6b was found as the most active member against AChE having IC50 value of 0.87 ± 0.09 μM, while the compound 6j revealed the same efficacy against BuChE with an IC50 value of 11.01 ± 3.37 μM. In case of coumarinyl oxadiazole series, 11a was turned out to be the lead candidate against AChE with an IC50 value of 6.07 ± 0.23 μM, whereas compound 11e was found significantly active against BuChE with an IC50 value of 0.15 ± 0.09 μM. To realize the binding interaction of these compounds with AChE and BuChE, the molecular docking studies were performed. Compounds from coumarinyl thiazole series with potent AChE activity (6b, 6h, 6i, and 6k) were found to interact with AChE in the active site with MOE score of −10.19, −9.97, −9.68, and −11.03 Kcal.mol−1, respectively. The major interactions include hydrogen bonding, π-π stacking with aromatic residues, and interaction through water bridging. The docking studies of coumarinyl oxadiazole derivatives 11(a–h) suggested that the compounds with high anti-butyrylcholinesterase activity (11e, 11a, and 11b) provided MOE score of −9.9, −7.4, and −8.2 Kcal.mol−1, respectively, with the active site of BuChE building π-π stacking with Trp82 and water bridged interaction. PMID:29632858
NASA Astrophysics Data System (ADS)
Ibrar, Aliya; Khan, Ajmal; Ali, Majid; Sarwar, Rizwana; Mehsud, Saifullah; Farooq, Umar; Halimi, Syed M. A.; Khan, Imtiaz; Al-Harrasi, Ahmed
2018-03-01
In a continuation of our previous work for the exploration of novel enzyme inhibitors, two new coumarin-thiazole 6(a–o) and coumarin-oxadiazole 11(a–h) hybrids have been designed and synthesized. All the compounds were characterized by 1H- and 13C-NMR spectroscopy and elemental analysis. New hybrid analogues were evaluated against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) in order to know their potential for the prevention of Alzheimer’s disease (AD). In coumarinyl thiazole series, compound 6b was found as the most active member against AChE having IC50 value of 0.87 ± 0.09 µM, while the compound 6j revealed the same efficacy against BuChE with an IC50 value of 11.01 ± 3.37 µM. In case of coumarinyl oxadiazole series, 11a was turned out to be the lead candidate against AChE with an IC50 value of 6.07 ± 0.23 µM, whereas compound 11e was found significantly active against BuChE with an IC50 value of 0.15 ± 0.09 µM. To realize the binding interaction of these compounds with AChE and BuChE, the molecular docking studies were performed. Compounds from coumarinyl thiazole series with potent AChE activity (6b, 6h, 6i and 6k) were found to interact with AChE in the active site with MOE score of ‒10.19, ‒9.97, ‒9.68, and ‒11.03 Kcal.mol‒1, respectively. The major interactions include hydrogen bonding, π-π stacking with aromatic residues, and interaction through water bridging. The docking studies of coumarinyl oxadiazole derivatives 11(a-h) suggested that the compounds with high anti-butyrylcholinesterase activity (11e, 11a and 11b) provided MOE score of ‒9.9, ‒7.4 and ‒8.2 Kcal.mol‒1 respectively, with the active site of BuChE building π-π stacking with Trp82 and water bridged interaction.
Marco, J L; de los Ríos, C; Carreiras, M C; Baños, J E; Badía, A; Vivas, N M
2001-03-01
The synthesis and preliminary results for acetylcholinesterase and butyrylcholinesterase inhibition activity of a series of pyrano[2,3-b]quinolines (2, 3) and benzonaphthyridines (5, 6) derivatives are described. These molecules are tacrine-like analogues which have been prepared from readily available polyfunctionalized ethyl [6-amino-5-cyano-4H-pyrans and 6-amino-5-cyanopyridines]-3-carboxylates via Friedlander condensation with selected ketones. These compounds showed moderate acetylcholinesterase inhibition activity, the more potent (2e, 5b) being 6 times less active than tacrine. The butyrylcholinesterase activity of some of these molecules is also discussed.
Raza, Rabia; Saeed, Aamer; Arif, Mubeen; Mahmood, Shamsul; Muddassar, Muhammad; Raza, Ahsan; Iqbal, Jamshed
2012-10-01
On the basis of the observed biological activity of the coumarins, a new set of 3-thiazolocoumarinyl Schiff-base derivatives with chlorine, hydroxy and methoxy functional group substitutions were designed and synthesized. These compounds were tested against acetylcholinesterase from Electrophorus electricus and butyrylcholinesterase from horse serum and their structure-activity relationship was established. Studies revealed them as the potential inhibitors of cholinesterase (acetylcholinesterase and butyrylcholinesterase). The 3f was found to be most potent against acetylcholinesterase with K(i) value of 1.05 ± 0.3 μM and 3l showed excellent inhibitory action against butyrylcholinesterase with K(i) value of 0.041 ± 0.002 μM. The synthesized compounds were also docked into the active sites of the homology models of acetylcholinesterase and butyrylcholinesterase to predict the binding modes of these compounds. It was predicted that most of the compounds have similar binding modes with reasonable binding affinities. Our docking studies have also shown that these synthesized compounds have better interaction patterns with butyrylcholinesterase over acetylcholinesterase. The main objective of the study was to develop new potent and selective compounds, which might be further optimized to prevent the progression of the Alzheimer's disease and could provide symptomatic treatment. © 2012 John Wiley & Sons A/S.
Menichini, Federica; Tundis, Rosa; Bonesi, Marco; de Cindio, Bruno; Loizzo, Monica R; Conforti, Filomena; Statti, Giancarlo A; Menabeni, Roberta; Bettini, Ruggero; Menichini, Francesco
2011-04-01
The chemical composition of the essential oil of Citrus medica L. cv. Diamante peel obtained by hydrodistillation, cold-pressing and supercritical carbon dioxide extraction techniques was determined by GC/MS analysis. Forty-six components were fully characterised. Limonene and γ-terpinene were the major components of the oils obtained by hydrodistillation (HD) and cold-pressing (CP), while citropten was the major constituent in the oil obtained by supercritical carbon dioxide extraction (SFE). Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities were evaluated. The essential oil obtained by hydrodistillation exerted the highest inhibitory activity against BChE (IC₅₀ value of 154.6 µg mL⁻¹) and AChE (IC₅₀ value of 171.3 µg mL⁻¹. Interestingly, the oil obtained by cold-pressing exhibited a selective inhibitory activity against AChE. The essential oils have also been evaluated for the inhibition of NO production in LPS induced RAW 264.7 macrophages. The oil obtained by hydrodistillation exerted a significant inhibition of NO production with an IC₅₀ value of 17 µg mL⁻¹ (IC₅₀ of positive control 53 µg mL⁻¹).
Anti-Alzheimer's disease activity of compounds from the root bark of Morus alba L.
Kuk, Eun Bi; Jo, A Ra; Oh, Seo In; Sohn, Hee Sook; Seong, Su Hui; Roy, Anupom; Choi, Jae Sue; Jung, Hyun Ah
2017-03-01
The inhibition of acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and β-site amyloid precursor protein cleaving enzyme 1 (BACE1) plays important roles in prevention and treatment of Alzheimer's disease (AD). Among the individual parts of Morus alba L. including root bark, branches, leaves, and fruits, the root bark showed the most potent enzyme inhibitory activities. Therefore, the aim of this study was to evaluate the anti-AD activity of the M. alba root bark and its isolate compounds, including mulberrofuran G (1), albanol B (2), and kuwanon G (3) via inhibition of AChE, BChE, and BACE1. Compounds 1 and 2 showed strong AChE- and BChE-inhibitory activities; 1-3 showed significant BACE1 inhibitory activity. Based on the kinetic study with AChE and BChE, 2 and 3 showed noncompetitive-type inhibition; 1 showed mixed-type inhibition. Moreover, 1-3 showed mixed-type inhibition against BACE1. The molecular docking simulations of 1-3 demonstrated negative binding energies, indicating a high affinity to AChE and BACE1. The hydroxyl group of 1-3 formed hydrogen bond with the amino acid residues located at AChE and BACE1. Consequently, these results indicate that the root bark of M. alba and its active compounds might be promising candidates for preventive and therapeutic agents for AD.
Furukawa-Hibi, Yoko; Alkam, Tursun; Nitta, Atsumi; Matsuyama, Akihiro; Mizoguchi, Hiroyuki; Suzuki, Kazuhiko; Moussaoui, Saliha; Yu, Qian-Sheng; Greig, Nigel H.; Nagai, Taku; Yamada, Kiyofumi
2016-01-01
The cholinesterase inhibitor, rivastigmine, ameliorates cognitive dysfunction and is approved for the treatment of Alzheimer's disease (AD). Rivastigmine is a dual inhibitor of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE); however, the impact of BuChE inhibition on cognitive dysfunction remains to be determined. We compared the effects of a selective BuChE inhibitor, N1-phenethylnorcymserine (PEC), rivastigmine and donepezil (an AChE-selective inhibitor) on cognitive dysfunction induced by amyloid-β peptide (Aβ1–40) in mice. Five-week-old imprinting control region (ICR) mice were injected intracerebroventricularly (i.c.v.) with either Aβ1–40 or the control peptide Aβ40–1 on Day 0, and their recognition memory was analyzed by a novel object recognition test. Treatment with donepezil (1.0 mg/kg), rivastigmine (0.03, 0.1, 0.3 mg/kg) or PEC (1.0, 3.0 mg/kg) 20 min prior to, or immediately after the acquisition session (Day 4) ameliorated the Aβ1–40 induced memory impairment, indicating a beneficial effect on memory acquisition and consolidation. In contrast, none of the investigated drugs proved effective when administrated before the retention session (Day 5). Repeated daily administration of donepezil, rivastigmine or PEC, on Days 0–3 inclusively, ameliorated the cognitive dysfunction in Aβ1–40 challenged mice. Consistent with the reversal of memory impairments, donepezil, rivastigmine or PEC treatment significantly reduced Aβ1–40 induced tyrosine nitration of hippocampal proteins, a marker of oxidative damage. These results indicate that BuChE inhibition, as well as AChE inhibition, is a viable therapeutic strategy for cognitive dysfunction in AD. PMID:21820013
Sarria, André Lucio Franceschini; Vilela, Adriana Ferreira Lopes; Frugeri, Bárbara Mammana; Fernandes, João Batista; Carlos, Rose Maria; da Silva, Maria Fátima das Graças Fernandes; Cass, Quezia Bezerra; Cardoso, Carmen Lúcia
2016-11-01
Metal chelates strongly influence the nature and magnitude of pharmacological activities in flavonoids. In recent years, studies have shown that a promising class of flavanone-metal ion complexes can act as selective cholinesterase inhibitors (ChEIs), which has led our group to synthesize a new series of flavanone derivatives (hesperidin, hesperetin, naringin, and naringenin) complexed to either copper (II) or zinc (II) and to evaluate their potential use as selective ChEIs. Most of the synthesized complexes exhibited greater inhibitory activity against acetylcholinesterase (AChE) than against butyrylcholinesterase (BChE). Nine of these complexes constituted potent, reversible, and selective ChEIs with inhibitory potency (IC 50 ) and inhibitory constant (K i ) ranging from 0.02 to 4.5μM. Copper complexes with flavanone-bipyridine derivatives afforded the best inhibitory activity against AChE and BChE. The complex Cu(naringin)(2,2'-bipyridine) (11) gave IC 50 and K i values of 0.012±0.002 and 0.07±0.01μM for huAChE, respectively, which were lower than the inhibitory values obtained for standard galanthamine (IC 50 =206±30.0 and K i =126±18.0μM). Evaluation of the inhibitory activity of this complex against butyrylcholinesterase from human serum (huBChE) gave IC 50 and K i values of 8.0±1.4 and 2.0±0.1μM, respectively. A Liquid Chromatography-Immobilized Capillary Enzyme Reactor by UV detection (LC-ICER-UV) assay allowed us to determine the IC 50 and K i values and the type of mechanism for the best inhibitors. Copyright © 2016 Elsevier Inc. All rights reserved.
Hariri, Roshanak; Afshar, Zahra; Mahdavi, Mohammad; Safavi, Maliheh; Saeedi, Mina; Najafi, Zahra; Sabourian, Reyhaneh; Karimpour-Razkenari, Elahe; Edraki, Najmeh; Moghadam, Farshad Homayouni; Shafiee, Abbas; Khanavi, Mahnaz; Akbarzadeh, Tahmineh
2016-12-01
In order to develop effective anti-cholinesterase compounds, a novel series of pyrano[3',4':5,6]pyrano[2,3-b]quinolinones were designed, synthesized, and evaluated in vitro against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). All derivatives showed very good AChE inhibitory (AChEI) activity (IC 50 = 0.37-5.62 μM) compared with rivastigmine (IC 50 = 11.07 μM). Among them, 11-amino-12-(2,3-dichlorophenyl)-3-methyl-7,8,9,10-tetrahydropyrano[3',4':5,6]pyrano[2,3-b]quinolin-1(12H)-one (6f) displayed the best inhibitory activity. However, most of the synthesized compounds showed no anti-BChE activity and compounds 6b and 6f were found to be only moderate inhibitors. The most potent anti-AChE compound 6f had low and moderate inhibitory activity and neuroprotective effects against beta-secretase (BACE1) and oxidative stress-induced cell death, respectively. Also, kinetic and molecular docking studies of binding interactions elucidated that compound 6f bound to both the catalytic anionic site (CAS) and peripheral anionic site (PAS) of AChE. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Arulkumar, Mani; Vijayan, Raji; Penislusshiyan, Sakayanathan; Sathishkumar, Palanivel; Angayarkanni, Jayaraman; Palvannan, Thayumanavan
2017-08-01
Toxicity due to excess fluoride concentration in drinking water is of great concern in people who rely only on the ground water as their water source in many region of the world. We collected samples and examined the toxicity of fluoride in a population residing at Salem, Dharmapuri and Krishnagiri districts of Tamil Nadu, India and measured HDL bound enzyme (PON1), erythrocyte membrane bound enzymes (acetylcholinesterase, AChE) and adenosine 5' triphosphatase (ATPases), plasma enzyme (butyrylcholinesterase, BChE) and rate limiting enzyme in heme biosynthesis (delta aminolevulinic acid dehydratase, δ-ALAD) activities. In fluorosis patients, formation of lipid peroxidation product was more in erythrocytes than in plasma. The observation further revealed that there was 50% reduction in the activity of HDL bound anti atherogenic enzyme-paraoxonase (PON1). The activities of membrane bound and signaling enzymes (acetylcholinesterase - AChE and adenosine 5' triphosphatase - ATPase) of erythrocyte were also diminished. These results suggested that there was defectiveness in the signaling and energy metabolism in fluorosis patients. Altered isoenzyme pattern of lactate dehydrogenase (LDH) in fluorosis samples was observed. Furthermore, the result suggested that both the heart (LDH 1) and liver (LDH 5) were most affected by fluoride toxicity. The study also provided reference values for tests which are used to predict the severity of fluoride toxicity. The toxic effect of fluoride was due to the collective effects on vital protective system rather than single factor. Copyright © 2017 Elsevier B.V. All rights reserved.
Araújo, Marlyete Chagas de; Assis, Caio Rodrigo Dias; Silva, Luciano Clemente; Machado, Dijanah Cota; Silva, Kaline Catiely Campos; Lima, Ana Vitória Araújo; Carvalho, Luiz Bezerra; Bezerra, Ranilson de Souza; Oliveira, Maria Betânia Melo de
2016-08-01
This contribution aimed to characterize physicochemical and kinetic parameters of the brain cholinesterases (ChEs) from Parachromis managuensis and investigate the in vitro effects of pesticides and metal ions on its activity intending to propose as biomarker. This species is suitable for this investigation because (1) it was recently introduced in Brazil becoming invasive (no restrictions on capture) and (2) occupies the top of the food chain (being subject to bioaccumulation). The enzyme extract was exposed to 10 metal ions (Al(3+), Ba(2+), Cd(2+), Cu(2+), Hg(2+), Mg(2+), Mn(2+), Pb(2+), Fe(2+) and Zn(2+)) and ChEs selective inhibitors (BW284c51, Iso-OMPA, neostigmine and serine). The extract was also incubated with organophosphate (dichlorvos) and carbamate pesticides (carbaryl and carbofuran). Inhibition parameters (IC20, IC50 and ki) were determined. Selective inhibitors and kinetic parameters confirmed acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) -like as responsible for the ChE activities, most AChE. The IC50 values for pesticides were: 1.68μM (dichlorvos); 4.35μM (carbaryl) and 0.28μM (carbofuran). Most of the analyzed ions did not show significant effect at 1mM (p=0.05), whereas the following ions inhibited the enzyme activity in the order: Hg(2+)>Cu(2+)>Cd(2+)>Zn(2+). Mercury ion strongly inhibited the enzyme activity (IC20=0.7μM). The results about allow to conclude that P. managuensis brain AChE is a potential biomarker for heavy metals and pesticides under study, mainly for the carbamate carbofuran once it was capable to detect 6-fold lower levels than the limit concentration internationally recommended. Copyright © 2016 Elsevier B.V. All rights reserved.
Rajakumar, Govindasamy; Gomathi, Thandapani; Thiruvengadam, Muthu; Devi Rajeswari, V; Kalpana, V N; Chung, Ill-Min
2017-02-01
The aim of this study is to develop an easy and eco-friendly method for the synthesis of Ag-NPs using extracts from the medicinal plant, Millettia pinnata flower extract and investigate the effects of Ag-NPs on acetylcholinesterase (AChE), butyrylcholinesterase (BChE), antibacterial and cytotoxicity activity. UV-Vis peak at 438 nm confirmed the Ag-NPs absorbance. The SEM analysis results confirmed the presence of spherical shaped Ag-NPs by a huge disparity in the particle size distribution with an average size of 49 ± 0.9 nm. TEM images revealed the formation of Ag-NPs with spherical shape and sizes in the range between 16 and 38 nm. The Ag-NPs showed an excellent inhibitory efficacy against AChE and BChE. The highest antibacterial activity was found against Escherichia coli (20.25 ± 0.91 mm). These nanoparticles showed the cytotoxic effects against brine shrimp (artemia saliana) nauplii with a LD 50 value of 33.92. Copyright © 2016 Elsevier Ltd. All rights reserved.
Insights into cholinesterase inhibitory and antioxidant activities of five Juniperus species.
Orhan, Nilufer; Orhan, Ilkay Erdogan; Ergun, Fatma
2011-09-01
In vitro acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory and antioxidant activities of the aqueous and ethanol extracts of the leaves, ripe fruits, and unripe fruits of Juniperus communis ssp. nana, Juniperus oxycedrus ssp. oxycedrus, Juniperus sabina, Juniperus foetidissima, and Juniperus excelsa were investigated in the present study. Cholinesterase inhibition of the extracts was screened using ELISA microplate reader. Antioxidant activity of the extracts was tested by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and superoxide radical scavenging, ferrous ion-chelating, and ferric-reducing antioxidant power (FRAP) assays. Total phenol and flavonoid contents of the extracts were determined spectrophotometrically. The extracts had low or no inhibition towards AChE, whereas the leaf aqueous extract of J. foetidissima showed the highest BChE inhibition (93.94 ± 0.01%). The leaf extracts usually exerted higher antioxidant activity. We herein describe the first study on anticholinesterase and antioxidant activity by the methods of ferrous ion-chelating, superoxide radical scavenging, and ferric-reducing antioxidant power (FRAP) assays of the mentioned Juniperus species. Copyright © 2011 Elsevier Ltd. All rights reserved.
Natural cholinesterase inhibitors from Myristica cinnamomea King.
Abdul Wahab, Siti Mariam; Sivasothy, Yasodha; Liew, Sook Yee; Litaudon, Marc; Mohamad, Jamaludin; Awang, Khalijah
2016-08-01
A new acylphenol, malabaricone E (1) together with the known malabaricones A-C (2-4), maingayones A and B (5 and 6) and maingayic acid B (7) were isolated from the ethyl acetate extract of the fruits of Myristica cinnamomea King. Their structures were determined by 1D and 2D NMR techniques and LCMS-IT-TOF analysis. Compounds 3 (1.84±0.19 and 1.76±0.21μM, respectively) and 4 (1.94±0.27 and 2.80±0.49μM, respectively) were identified as dual inhibitors, with almost equal acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes inhibiting potentials. The Lineweaver-Burk plots of compounds 3 and 4 indicated that they were mixed-mode inhibitors. Based on the molecular docking studies, compounds 3 and 4 interacted with the peripheral anionic site (PAS), the catalytic triad and the oxyanion hole of the AChE. As for the BChE, while compound 3 interacted with the PAS, the catalytic triad and the oxyanion hole, compound 4 only interacted with the catalytic triad and the oxyanion hole. Copyright © 2016 Elsevier Ltd. All rights reserved.
Namdaung, Umalee; Athipornchai, Anan; Khammee, Thongchai; Kuno, Mayuso; Suksamrarn, Sunit
2018-01-01
In vitro screening for acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities of the Artocarpus lakoocha root-bark extracts revealed interesting results. Bioassay-guided fractionation resulted in the isolation of two new (1 and 2) and six known 2-arylbenzofurans 3-8, along with one stilbenoid 9 and one flavonoid 10. The structures of the isolated compounds were elucidated by UV, IR, 1D- and 2D-NMR and MS spectroscopic data analysis. Compounds 4, 6 and 7 exhibited more potent AChE inhibitory activity (IC 50 = 0.87-1.10 μM) than the reference drug, galantamine. Compounds 4, 8 and 9 displayed greater BChE inhibition than the standard drug. The preferential inhibition of BChE over AChE indicated that 4 also showed a promising dual AChE and BChE inhibitor. The synthetic mono-methylated analogs 4a-c and 6a-b were found to be good BChE inhibitors with IC 50 values ranging between 0.31 and 1.11 μM. Based on the docking studies, compounds 4 and 6 are well-fitted in the catalytic triad of AChE. Compounds 4 and 6 showed different binding orientations on BChE, and the most potent BChE inhibitor 4 occupied dual binding to both CAS and PAS more efficiently. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Al-Aboudi, Amal; Al-Qawasmeh, Raed A; Shahwan, Alaa; Mahmood, Uzma; Khalid, Asaad; Ul-Haq, Zaheer
2015-01-01
Aim: To investigate the binding mode of synthesized adamantly derivatives inside of cholinesterase enzymes using molecular docking simulations. Methods: A series of hybrid compounds containing adamantane and hydrazide moieties was designed and synthesized. Their inhibitory activities against acetylcholinesterase (AChE) and (butyrylcholinesterase) BChE were assessed in vitro. The binding mode of the compounds inside cholinesterase enzymes was investigated using Surflex-Dock package of Sybyl7.3 software. Results: A total of 26 adamantyl derivatives were synthesized. Among them, adamantane-1-carboxylic acid hydrazide had an almost equal inhibitory activity towards both enzymes, whereas 10 other compounds exhibited moderate inhibitory activity against BChE. The molecular docking studies demonstrated that hydrophobic interactions between the compounds and their surrounding residues in the active site played predominant roles, while hydrophilic interactions were also found. When the compounds were docked inside each enzyme, they exhibited stronger interactions with BChE over AChE, possibly due to the larger active site of BChE. The binding affinities of the compounds for BChE and AChE estimated were in agreement with the experimental data. Conclusion: The new adamantly derivatives selectively inhibit BChE with respect to AChE, thus making them good candidates for testing the hypothesis that BChE inhibitors would be more efficient and better tolerated than AChE inhibitors in the treatment of Alzheimer's disease. PMID:25937631
Musilek, Kamil; Dolezal, Martin; Gunn-Moore, Frank; Kuca, Kamil
2011-07-01
Organophosphate pesticides (OPPs; e.g. chlorpyrifos, diazinon, paraoxon) are a wide and heterogeneous group of organophosphorus compounds. Their biological activity of inhibiting acetylcholinesterase (AChE) or butyrylcholinesterase (BChE) ranks them as life endangering agents. The necessary treatment after OPP exposure involves the use of parasympatolytics (e.g. atropine), oxime reactivators (e.g. obidoxime), and anticonvulsive drugs (e.g. diazepam). Therefore, the reactivators of AChE are essential compounds in the treatment of OPP intoxications. Commercial AChE reactivators (e.g. pralidoxime, HI-6, obidoxime, trimedoxime, methoxime) were originally developed for other members of the organophosphate family, such as nerve agents (e.g. sarin, soman, tabun, VX). Pralidoxime, HI-6, and methoxime were found to be weak reactivators of OPP-inhibited AChE. Obidoxime and trimedoxime showed satisfactory reactivation against various OPPs with minor toxicity issues. During the last two decades, the treatment of OPP exposure has become more widely discussed because of growing agricultural production, industrialization, and harmful social issues (e.g. suicides). In this review is the summarized design, evaluation, and structure-activity relationship studies of recently produced AChE reactivators. Since pralidoxime, over 300 oximes have been produced or tested against OPP poisoning, and several novel compounds show very promising abilities as comparable (or higher) to commercial oximes. Some of these are highlighted for their further testing of OPP exposure and, additionally, the main structure-activity relationship of AChE reactivators against OPP is discussed. © 2009 Wiley Periodicals, Inc.
10th International Meeting on Cholinesterases
2009-10-01
NATIVE, PHOSPHYLATED AND AGED HUMAN ACETYLCHOLINESTERASE AND BUTYRYLCHOLINESTERASE Page 9 Zrinka Kovarik ( Zagreb , Croatia): OXIME-ASSISTED...REACTIVATION OF PHOSPHORYLATED BUTYRYLCHOLINESTERASE Goran Šinko ( Zagreb , Croatia): INTERACTIONS OF PYRIDINIUM OXIMES WITH ACETYLCHOLINESTERASE...OF CHOLINESTERASES IN THE BRAIN Ninoslav Mimica ( Zagreb , Croatia): THE CHOLINESTERASE INHIBITORS – CURRENT CLINICAL VIEW AND CROATIAN REALITY
Najafi, Zahra; Mahdavi, Mohammad; Saeedi, Mina; Karimpour-Razkenari, Elahe; Asatouri, Raymond; Vafadarnejad, Fahimeh; Moghadam, Farshad Homayouni; Khanavi, Mahnaz; Sharifzadeh, Mohammad; Akbarzadeh, Tahmineh
2017-01-05
A new series of tacrine-1,2,3-triazole hybrids were designed, synthesized, and evaluated as potent dual cholinesterase inhibitors. Most of synthesized compounds showed good in vitro inhibitory activities toward both acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Among them, 7-chloro-N-((1-(4-methoxybenzyl)-1H-1,2,3-triazol-4-yl)methyl)-1,2,3,4-tetrahydroacridin-9-amine (5l) was found to be the most potent anti-AChE derivative (IC 50 = 0.521 μM) and N-((1-(4-methoxybenzyl)-1H-1,2,3-triazol-4-yl)methyl)-1,2,3,4-tetrahydroacridin-9-amine (5j) demonstrated the best anti-BChE activity (IC 50 = 0.055 μM). In vivo studies of compound 5l in Morris water maze task confirmed memory improvement in scopolamine-induced impairment. Also, molecular modeling and kinetic studies showed that compounds 5l and 5j bound simultaneously to the peripheral anionic site (PAS) and catalytic sites (CS) of the AChE and BChE. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Parlar, Sulunay; Bayraktar, Gulsah; Tarikogullari, Ayse Hande; Alptüzün, Vildan; Erciyas, Ercin
2016-01-01
A series of pyridinium salts bearing alkylphenyl groups at 1 position and hydrazone structure at 4 position of the pyridinium ring were synthesized and evaluated for the inhibition of both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzymes. The cholinesterase (ChE) inhibitory activity studies were carried out by using the Ellman's colorimetric method. All compounds displayed considerable AChE and BuChE inhibitory activity and some of the compounds manifested remarkable anti-AChE activity compared to the reference compound, galantamine. Among the title compounds, the series including benzofuran aromatic ring exhibited the best inhibitory activity both on AChE and BuChE enzymes. Compound 3b, 4-[2-(1-(benzofuran-2-yl)ethylidene)hydrazinyl]-1-(3-phenylpropyl)pyridinium bromide, was the most active compound with IC50 value of 0.23 (0.24) µM against enantiomeric excess (ee)AChE (human (h)AChE) while compound 3a, 4-[2-(1-(benzofuran-2-yl)ethylidene)hydrazinyl]-1-phenethylpyridinium bromide, was the most active compound with IC50 value of 0.95 µM against BuChE. Moreover, 3a and b exhibited higher activity than the reference compound galantamine (eeAChE (hAChE) IC50 0.43 (0.52) µM; BuChE IC50 14.92 µM). Molecular docking studies were carried out on 3b having highest inhibitory activity against AChE.
Bacalhau, Patrícia; San Juan, Amor A; Marques, Carolina S; Peixoto, Daniela; Goth, Albertino; Guarda, Cátia; Silva, Mara; Arantes, Sílvia; Caldeira, A Teresa; Martins, Rosário; Burke, Anthony J
2016-08-01
A library of isoquinolinone and azepanone derivatives were screened for both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) activity. The strategy adopted included (a) in vitro biological assays, against eel AChE (EeAChE) and equine serum BuChE (EqBuChE) in order to determine the compounds IC50 and their dose-response activity, consolidated by (b) molecular docking studies to evaluate the docking poses and interatomic interactions in the case of the hit compounds, validated by STD-NMR studies. Compound (1f) was identified as one of these hits with an IC50 of 89.5μM for EeAChE and 153.8μM for EqBuChE, (2a) was identified as a second hit with an IC50 of 108.4μM (EeAChE) and 277.8μM (EqBuChE). In order to gain insights into the binding mode and principle active site interactions of these molecules, (R)-(1f) along with 3 other analogues (also as the R-enantiomer) were docked into both RhAChE and hBuChE models. Galantamine was used as the benchmark. The docking study was validated by performing an STD-NMR study of (1f) with EeAChE using galantamine as the benchmark. Copyright © 2016 Elsevier Inc. All rights reserved.
Darreh-Shori, T; Soininen, H
2010-02-01
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by cognitive decline associated with a deficit in cholinergic function. Inhibitors of acetylcholinesterase (AChE) and/or butyrylcholinesterase (BuChE), such as donepezil, galantamine or rivastigmine, are widely prescribed as symptomatic treatments for AD. These agents exhibit a wide variation in their pharmacological properties. Here we review clinical data from 1998 to 2009 investigating the effect of different cholinesterase inhibitor treatments on the levels and activities of cholinesterases in the cerebrospinal fluid (CSF) of AD patients. These studies suggest that treatment with rapidly-reversible cholinesterase inhibitors (e.g. donepezil, galantamine, tacrine) are associated with marked and significant upregulation of AChE activities and protein levels in the CSF of AD patients. In contrast, pseudo-irreversible cholinesterase inhibition (e.g. rivastigmine) is associated with a significant decrease in both CSF AChE and BuChE activities, with no upregulation of CSF protein levels. Additionally, donepezil is associated with a decrease in the level of the AChE-R isoform relative to the synaptic AChE-S isoform, whereas rivastigmine seems to increase this ratio. These findings suggest that these agents exert different effects on CSF cholinesterases. The clinical effects of these pharmacological differences are yet to be fully established.
Nachon, Florian; Carletti, Eugénie; Ronco, Cyril; Trovaslet, Marie; Nicolet, Yvain; Jean, Ludovic; Renard, Pierre-Yves
2013-08-01
The multifunctional nature of Alzheimer's disease calls for MTDLs (multitarget-directed ligands) to act on different components of the pathology, like the cholinergic dysfunction and amyloid aggregation. Such MTDLs are usually on the basis of cholinesterase inhibitors (e.g. tacrine or huprine) coupled with another active molecule aimed at a different target. To aid in the design of these MTDLs, we report the crystal structures of hAChE (human acetylcholinesterase) in complex with FAS-2 (fasciculin 2) and a hydroxylated derivative of huprine (huprine W), and of hBChE (human butyrylcholinesterase) in complex with tacrine. Huprine W in hAChE and tacrine in hBChE reside in strikingly similar positions highlighting the conservation of key interactions, namely, π-π/cation-π interactions with Trp86 (Trp82), and hydrogen bonding with the main chain carbonyl of the catalytic histidine residue. Huprine W forms additional interactions with hAChE, which explains its superior affinity: the isoquinoline moiety is associated with a group of aromatic residues (Tyr337, Phe338 and Phe295 not present in hBChE) in addition to Trp86; the hydroxyl group is hydrogen bonded to both the catalytic serine residue and residues in the oxyanion hole; and the chlorine substituent is nested in a hydrophobic pocket interacting strongly with Trp439. There is no pocket in hBChE that is able to accommodate the chlorine substituent.
Karasova, Jana Zdarova; Kassa, Jiri; Jung, Young-Sik; Musilek, Kamil; Pohanka, Miroslav; Kuca, Kamil
2008-01-01
The therapeutical efficacies of eleven oxime-based acetylcholinesterase reactivators were compared in an in vivo (rat model) study of treatment of intoxication caused by tabun. In this group there were some currently available oximes (obidoxime, trimedoxime and HI-6) and the rest were newly synthesized compounds. The best reactivation efficacy for acetylcholinesterase in blood (expressed as percent of reactivation) among the currently available oximes was observed after administration of trimedoxime (16%) and of the newly synthesized K127 (22432) (25%). The reactivation of butyrylcholinesterase in plasma was also studied; the best reactivators were trimedoxime, K117 (22435), and K127 (22432), with overall reactivation efficacies of approximately 30%. Partial protection of brain ChE against tabun inhibition was observed after administration of trimedoxime (acetylcholinesterase 20%; butyrylcholinesterase 30%) and obidoxime (acetylcholinesterase 12%; butyrylcholinesterase 16%). PMID:19330072
Novel neuroprotective and hepatoprotective effects of citric acid in acute malathion intoxication.
Abdel-Salam, Omar M E; Youness, Eman R; Mohammed, Nadia A; Yassen, Noha N; Khadrawy, Yasser A; El-Toukhy, Safinaz Ebrahim; Sleem, Amany A
2016-12-01
To study the effect of citric acid given alone or combined with atropine on brain oxidative stress, neuronal injury, liver damage, and DNA damage of peripheral blood lymphocytes induced in the rat by acute malathion exposure. Rats were received intraperitoneal (i.p.) injection of malathion 150 mg/kg along with citric acid (200 or 400 mg/kg, orally), atropine (1 mg/kg, i.p.) or citric acid 200 mg/kg + atropine 1 mg/kg and euthanized 4 h later. Malathion resulted in increased lipid peroxidation (malondialdehyde) and nitric oxide concentrations accompanied with a decrease in brain reduced glutathione, glutathione peroxidase (GPx) activity, total antioxidant capacity (TAC) and glucose concentrations. Paraoxonase-1, acetylcholinesterase (AChE) and butyrylcholinesterase activities decreased in brain as well. Liver aspartate aminotransferase and alanine aminotransferase activities were raised. The comet assay showed increased DNA damage of peripheral blood lymphocytes. Histological damage and increased expression of inducible nitric oxide synthase (iNOS) were observed in brain and liver. Citric acid resulted in decreased brain lipid peroxidation and nitric oxide. Meanwhile, glutathione, GPx activity, TAC capacity and brain glucose level increased. Brain AChE increased but PON1 and butyrylcholinesterase activities decreased by citric acid. Liver enzymes, the percentage of damaged blood lymphocytes, histopathological alterations and iNOS expression in brain and liver was decreased by citric acid. Meanwhile, rats treated with atropine showed decreased brain MDA, nitrite but increased GPx activity, TAC, AChE and glucose. The drug also decreased DNA damage of peripheral blood lymphocytes, histopathological alterations and iNOS expression in brain and liver. The study demonstrates a beneficial effect for citric acid upon brain oxidative stress, neuronal injury, liver and DNA damage due to acute malathion exposure. Copyright © 2016 Hainan Medical University. Production and hosting by Elsevier B.V. All rights reserved.
De Jaco, Antonella; Kovarik, Zrinka; Comoletti, Davide; Jennings, Lori L; Gaietta, Guido; Ellisman, Mark H; Taylor, Palmer
2005-12-15
An Arg to Cys mutation in the extracellular domain of neuroligin-3 (NL3) was recently found in a twin set with autism [S. Jamain, H. Quach, C. Betancur, M. Rastam, C. Colineaux, I.C. Gillberg, H. Soderstrom, B. Giros, M. Leboyer, C. Gillberg, T. Bourgeron, Paris Autism Research International Sibpair Study, mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism, Nat. Genet. 34 (2003) 27-29]. The Cys substitution in NL3 causes altered intracellular protein trafficking, intracellular retention and diminished association with its cognate partner, beta-neurexin [D. Comoletti, A. De Jaco, L.L. Jennings, R.E. Flynn, G. Gaietta, I. Tsigelny, M.H. Ellisman, P. Taylor, The R451C-neuroligin-3 mutation associated with autism reveals a defect in protein processing, J. Neurosci. 24 (2004) 4889-4893]. NL3, butyrylcholinesterase (BuChE), and acetylcholinesterase (AChE), as members of the (/(-hydrolase fold family of proteins, share over 30% of amino acid identity in their extracellular domains. In particular, Arg451 in NL3 is conserved in the alpha/beta-hydrolase fold family being homologous to Arg386 in BuChE and Arg395 in AChE. A Cys substitution at the homologous Arg in the BuChE was found studying post-succinylcholine apnea in an Australian population [T. Yen, B.N. Nightingale, J.C. Burns, D.R. Sullivan, P.M. Stewart, Butyrylcholinesterase (BCHE) genotyping for post-succinylcholine apnea in an Australian population, Clin. Chem. 49 (2003) 1297-308]. We have made the homologous mutation in the mouse AChE and BuChE genes and showed that the Arg to Cys mutations resulted in identical alterations in the cellular phenotype for the various members of the alpha/beta-hydrolase fold family proteins.
Gonzalez, V.; Huen, K.; Venkat, S.; Pratt, K.; Xiang, P.; Harley, K.G.; Kogut, K.; Trujillo, C.M.; Bradman, A.; Eskenazi, B.; Holland, N.T.
2014-01-01
Exposure to organophosphate and carbamate pesticides can lead to neurotoxic effects through inhibition of cholinesterase enzymes. The paraoxonase (PON1) enzyme can detoxify oxon derivatives of some organophosphates. Lower PON1, acetylcholinesterase, and butyrylcholinesterase activities have been reported in newborns relative to adults, suggesting increased susceptibility to organophosphate exposure in young children. We determined PON1, acetylcholinesterase, and butyrylcholinesterase activities in Mexican-American mothers and their 9-year-old children (n=202 pairs) living in an agricultural community in California. We used paired t-tests to compare enzymatic activities among mothers and their children and analysis of variance to determine which factors are associated with enzyme activities. Substrate-specific PON1 activities were slightly lower in children than their mothers; however, these differences were not statistically significant. We observed significantly lower acetylcholinesterase but higher butyrylcholinesterase levels in children compared to their mothers. Mean butyrylcholinesterase levels were strongly associated with child obesity status (BMI Z scores >95%). We observed highly significant correlations among mother-child pairs for each of the enzymatic activities analyzed; however, PON1 activities did not correlate with acetylcholinesterase or butyrylcholinesterase activities. Our findings suggest that by age nine, PON1 activities approach adult levels and host factors including sex and obesity may affect key enzymes involved in pesticide metabolism. PMID:22760442
Bhagat, J; Kaur, A; Kaur, R; Yadav, A K; Sharma, V; Chadha, B S
2016-10-01
The aim of this study was to screen endophytic fungi isolated from Vinca rosea for their potential to produce acetylcholinesterase (AChE) inhibitors. Endophytic fungi isolated from V. rosea (Catharanthus roseus), were screened for AChE inhibitor production using Ellman's method. Maximum inhibition against AChE (78%) was observed in an isolate VS-10, identified to be Alternaria alternata on morphological and molecular basis. The isolate also inhibited butyrylcholinesterase (73%). Significant increase (1·3 fold) was achieved after optimization of process parameters using one variable at time approach. The inhibitor was purified using chromatographic techniques. The structure elucidation of the inhibitor was carried out using spectroscopic techniques and was identified to be 'altenuene'. The purified inhibitor possessed antioxidant potential as revealed by dot blot assay. The insecticidal potential of purified inhibitor was evaluated by feeding Spodoptora litura on diet amended with inhibitor. It evinced significant larval mortality. Endophytic A. alternata can serve as a source of dual cholinesterase inhibitor 'altenuene' with significant antioxidant and insecticidal activity. This is the first report on acetylcholinestearse inhibitory activity of altenuene. Alternaria alternata has the potential to produce a dual ChE inhibitor with antioxidant activity useful in the treatment of neurodegenerative disorders and in agriculture as biocontrol agent. © 2016 The Society for Applied Microbiology.
Anticholinesterase activity of 7-methoxyflavones isolated from Kaempferia parviflora.
Sawasdee, Pattara; Sabphon, Chalisa; Sitthiwongwanit, Duangporn; Kokpol, Udom
2009-12-01
The rhizome of Kaempferia parviflora or kra-chai-dum (in Thai) is used traditionally as a folk medicine. The preliminary cholinesterase inhibitory screening of this plant extract exhibited significant acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities. Thirteen known methoxyflavones (1-13) were isolated and their structures were completely elucidated based on NMR analysis and compared with literature reports. Minor compounds 12-13 were reported for the first time from this species. The cholinesterase inhibitory test results showed that the highest potential inhibitors toward AChE and BChE were 5,7,4'-trimethoxyflavone (6) and 5,7-dimethoxyflavone (7), respectively, with the percentage inhibitory activity varying over 43-85%. The structure-activity relationship study led to the conclusion that compounds bearing 5,7-dimethoxy groups and a free substituent at C-3 had a significant inhibitory effect at a concentration of 0.1 mg/mL, but those bearing a 5-hydroxyl group reduced the inhibitory potency. On the other hand, flavones bearing a 3'- or 5'-methoxy group did not influence the inhibitory effect. Interestingly, 5,7-dimethoxyflavone (7) exhibited strong selectivity for BChE over AChE which may be of great interest to modify as a treatment agent for Alzheimer's disease. Copyright (c) 2009 John Wiley & Sons, Ltd.
Carletti, Eugénie; Colletier, Jacques-Philippe; Schopfer, Lawrence M; Santoni, Gianluca; Masson, Patrick; Lockridge, Oksana; Nachon, Florian; Weik, Martin
2013-02-18
Tri-o-cresyl-phosphate (TOCP) is a common additive in jet engine lubricants and hydraulic fluids suspected to have a role in aerotoxic syndrome in humans. TOCP is metabolized to cresyl saligenin phosphate (CBDP), a potent irreversible inhibitor of butyrylcholinesterase (BChE), a natural bioscavenger present in the bloodstream, and acetylcholinesterase (AChE), the off-switch at cholinergic synapses. Mechanistic details of cholinesterase (ChE) inhibition have, however, remained elusive. Also, the inhibition of AChE by CBDP is unexpected, from a structural standpoint, i.e., considering the narrowness of AChE active site and the bulkiness of CBDP. In the following, we report on kinetic X-ray crystallography experiments that provided 2.7-3.3 Å snapshots of the reaction of CBDP with mouse AChE and human BChE. The series of crystallographic snapshots reveals that AChE and BChE react with the opposite enantiomers and that an induced-fit rearrangement of Phe297 enlarges the active site of AChE upon CBDP binding. Mass spectrometry analysis of aging in either H(2)(16)O or H(2)(18)O furthermore allowed us to identify the inhibition steps, in which water molecules are involved, thus providing insights into the mechanistic details of inhibition. X-ray crystallography and mass spectrometry show the formation of an aged end product formed in both AChE and BChE that cannot be reactivated by current oxime-based therapeutics. Our study thus shows that only prophylactic and symptomatic treatments are viable to counter the inhibition of AChE and BChE by CBDP.
Cholinesterase inhibitors modify the activity of intrinsic cardiac neurons.
Darvesh, Sultan; Arora, Rakesh C; Martin, Earl; Magee, David; Hopkins, David A; Armour, J Andrew
2004-08-01
Cholinesterase inhibitors used to treat the symptoms of Alzheimer's disease (AD) inhibit both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), albeit to different degrees. Because central and peripheral neurons, including intrinsic cardiac neurons located on the surface of the mammalian heart, express both BuChE and AChE, we studied spontaneously active intrinsic cardiac neurons in the pig as a model to assess the effects of inhibition of AChE compared to BuChE. Neuroanatomical experiments showed that some porcine intrinsic cardiac neurons expressed AChE and/or BuChE. Enzyme kinetic experiments with cholinesterase inhibitors, namely, donepezil, galantamine, (+/-) huperzine A, metrifonate, rivastigmine, and tetrahydroaminoacridine, demonstrated that these compounds differentially inhibited porcine AChE and BuChE. Donepezil and (+/-) huperzine A were better reversible inhibitors of AChE, and galantamine equally inhibited both the enzymes. Tetrahydroaminoacridine was a better reversible inhibitor of BuChE. Rivastigmine caused more rapid inactivation of BuChE as compared to AChE. Neurophysiological studies showed that acetylcholine and butyrylcholine increase or decrease the spontaneous activity of the intrinsic cardiac neurons. Donepezil, galantamine, (+/-) huperzine A, and tetrahydroaminoacridine changed spontaneous neuronal activity by about 30-35 impulses per minute, while rivastigmine changed it by approximately 100 impulses per minute. It is concluded that (i) inhibition of AChE and BuChE directly affects the porcine intrinsic cardiac nervous system, (ii) the intrinsic cardiac nervous system represents a suitable model for examining the effects of cholinesterase inhibitors on mammalian neurons in vivo, and (iii) the activity of intrinsic cardiac neurons may be affected by pharmacological agents that inhibit cholinesterases.
Mirajkar, Nikita; Pope, Carey N
2008-10-15
Organophosphorus (OP) insecticides elicit toxicity via acetylcholinesterase inhibition, allowing acetylcholine accumulation and excessive stimulation of cholinergic receptors. Some OP insecticides bind to additional macromolecules including butyrylcholinesterase and cholinergic receptors. While neurotoxicity from OP anticholinesterases has been extensively studied, effects on cardiac function have received less attention. We compared the in vitro sensitivity of acetylcholinesterase, butyrylcholinesterase and [(3)H]oxotremorine-M binding to muscarinic receptors in the cortex and heart of adult (3 months) and aging (18 months) rats to chlorpyrifos, methyl parathion and their active metabolites chlorpyrifos oxon and methyl paraoxon. Using selective inhibitors, the great majority of cholinesterase in brain was defined as acetylcholinesterase, while butyrylcholinesterase was the major cholinesterase in heart, regardless of age. In the heart, butyrylcholinesterase was markedly more sensitive than acetylcholinesterase to inhibition by chlorpyrifos oxon, and butyrylcholinesterase in tissues from aging rats was more sensitive than enzyme from adults, possibly due to differences in A-esterase mediated detoxification. Relatively similar differences were noted in brain. In contrast, acetylcholinesterase was more sensitive than butyrylcholinesterase to methyl paraoxon in both heart and brain, but no age-related differences were noted. Both oxons displaced [(3)H]oxotremorine-M binding in heart and brain of both age groups in a concentration-dependent manner. Chlorpyrifos had no effect but methyl parathion was a potent displacer of binding in heart and brain of both age groups. Such OP and age-related differences in interactions with cholinergic macromolecules may be important because of potential for environmental exposures to insecticides as well as the use of anticholinesterases in age-related neurological disorders.
Mirajkar, Nikita; Pope, Carey N.
2008-01-01
Organophosphorus (OP) insecticides elicit toxicity via acetylcholinesterase inhibition, allowing acetylcholine accumulation and excessive stimulation of cholinergic receptors. Some OP insecticides bind to additional macromolecules including butyrylcholinesterase and cholinergic receptors. While neurotoxicity from OP anticholinesterases has been extensively studied, effects on cardiac function have received less attention. We compared the in vitro sensitivity of acetylcholinesterase, butyrylcholinesterase and [3H]oxotremorine-M binding to muscarinic receptors in the cortex and heart of adult (3 months) and aging (18 months) rats to chlorpyrifos, methyl parathion and their active metabolites chlorpyrifos oxon and methyl paraoxon. Using selective inhibitors, the great majority of cholinesterase in brain was defined as acetylcholinesterase, while butyrylcholinesterase was the major cholinesterase in heart, regardless of age. In the heart, butyrylcholinesterase was markedly more sensitive than acetylcholinesterase to inhibition by chlorpyrifos oxon, and butyrylcholinesterase in tissues from aging rats was more sensitive than enzyme from adults, possibly due to differences in A-esterase mediated detoxification. Relatively similar differences were noted in brain. In contrast, acetylcholinesterase was more sensitive than butyrylcholinesterase to methyl paraoxon in both heart and brain, but no age-related differences were noted. Both oxons displaced [3H]oxotremorine-M binding in heart and brain of both age groups in a concentration-dependent manner. Chlorpyrifos had no effect but methyl parathion was a potent displacer of binding in heart and brain of both age groups. Such OP and age-related differences in interactions with cholinergic macromolecules may be important because of potential for environmental exposures to insecticides as well as the use of anticholinesterases in age-related neurological disorders. PMID:18761328
Kia, Yalda; Osman, Hasnah; Kumar, Raju Suresh; Basiri, Alireza; Murugaiyah, Vikneswaran
2014-02-15
One pot, three-component reaction of 1-acryloyl-3,5-bisarylmethylidenepiperidin-4-ones with isatin and sarcosine in molar ratios of 1:1:1 and 1:2:2 furnished to mono- and bis-spiropyrrolidine heterocyclic hybrids comprising functionalized piperidine, pyrrolidine and oxindole structural motifs. Both mono and bis-spiropyrrolidines displayed good inhibitory activity against acetylcholinesterase (AChE) with IC₅₀ values of 2.36-9.43 μM. For butyrylcholinesterase (BChE), mono-cycloadducts in series 8 with IC₅₀ values of lower than 10 μM displayed better inhibitory activities than their bis-cycloadduct analogs in series 9 with IC₅₀ values of 7.44-19.12 μM. The cycloadducts 9j and 8e were found to be the most potent AChE and BChE inhibitors with IC₅₀ values of 2.35 and 3.21 μM, respectively. Compound 9j was found to be competitive inhibitor of AChE while compound 8e was a mixed-mode inhibitor of BChE with calculated Ki values of 2.01 and 6.76 μM, respectively. Molecular docking on Torpedo californica AChE and human BChE showed good correlation between IC₅₀ values and free binding energy values of the synthesized compounds docked into the active site of the enzymes. Copyright © 2014 Elsevier Ltd. All rights reserved.
Krátký, Martin; Štěpánková, Šárka; Vorčáková, Katarína; Vinšová, Jarmila
2016-10-01
Based on a broad spectrum of biological activities of rhodanines, we synthesized aromatic amides and esters of 2-(4-oxo-2-thioxothiazolidin-3-yl)acetic acid (rhodanine-3-acetic acid) via carbodiimide- or PCl3-mediated coupling. Both esters and amides were investigated for their in vitro inhibitory potency and selectivity against acetylcholinesterase (AChE) from electric eel and butyrylcholinesterase (BChE) from equine serum using Ellman's spectrophotometric method. The derivatives exhibited mostly a moderate activity against both cholinesterases. IC50 values for AChE were in a closer concentration range of 24.05-86.85μM when compared to BChE inhibition (7.92-227.19μM). The esters caused the more efficient inhibition of AChE than amides and parent acid. The esterification and amidation of the rhodanine-3-acetic acid increased inhibition of BChE, even up to 26 times. Derivatives of 4-nitroaniline/phenol showed the activity superior to other substituents (H, Cl, CH3, OCH3, CF3). Rhodanines produced a balanced inhibition of both cholinesterases. Seven derivatives produced the more potent inhibition of AChE than rivastigmine, a clinically used drug; additional three compounds were comparable. Two amides exceeded inhibitory potency of rivastigmine towards BChE. Importantly, this is the first evidence that rhodanine-based compounds are able to inhibit BChE. Copyright © 2016 Elsevier Inc. All rights reserved.
Hameed, Abdul; Zehra, Syeda T; Shah, Syed J A; Khan, Khalid M; Alharthy, Rima D; Furtmann, Norbert; Bajorath, Jürgen; Tahir, Muhammad N; Iqbal, Jamshed
2015-11-01
Cholinesterases, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), have a role in cholinergic deficit which evidently leads to Alzheimer's disease (AD). Inhibition of cholinesterases with small molecules is an attractive strategy in AD therapy. This study demonstrates synthesis of pyrido[2,3-b]pyrazines (6a-6q) series, their inhibitory activities against both cholinesterases, AChE and BChE, and molecular docking studies. The bioactivities data of pyrido[2,3-b]pyrazines showed 3-(3'-nitrophenyl)pyrido[2,3-b]pyrazine 6n a potent dual inhibitor among the series against both AChE and BChE with IC50 values of 0.466 ± 0.121 and 1.89 ± 0.05 μm, respectively. The analogues 3-(3'-methylphenyl)pyrido[2,3-b]pyrazine 6c and 3-(3'-fluorophenyl)pyrido[2,3-b]pyrazine 6f were found to be selective inhibition for BChE with IC50 values of 0.583 ± 0.052 μm and AChE with IC50 value of 0.899 ± 0.10 μm, respectively. Molecular docking studies of the active compounds suggested the putative binding modes with cholinesterases. The potent compounds among the series could potentially serves as good leads for the development of new cholinesterase inhibitors. © 2015 John Wiley & Sons A/S.
Li, He; Schopfer, Lawrence M; Nachon, Florian; Froment, Marie-Thérèse; Masson, Patrick; Lockridge, Oksana
2007-11-01
Some organophosphorus compounds are toxic because they inhibit acetylcholinesterase (AChE) by phosphylation of the active site serine, forming a stable conjugate: Ser-O-P(O)-(Y)-(XR) (where X can be O, N, or S and Y can be methyl, OR, or SR). The inhibited enzyme can undergo an aging process, during which the X-R moiety is dealkylated by breaking either the P-X or the X-R bond depending on the specific compound, leading to a nonreactivatable enzyme. Aging mechanisms have been studied primarily using AChE. However, some recent studies have indicated that organophosphate-inhibited butyrylcholinesterase (BChE) may age through an alternative pathway. Our work utilized matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry to study the aging mechanism of human BChE inhibited by dichlorvos, echothiophate, diisopropylfluorophosphate (DFP), isomalathion, soman, sarin, cyclohexyl sarin, VX, and VR. Inhibited BChE was aged in the presence of H2O18 to allow incorporation of (18)O, if cleavage was at the P-X bond. Tryptic-peptide organophosphate conjugates were identified through peptide mass mapping. Our results showed no aging of VX- and VR-treated BChE at 25 degrees C, pH 7.0. However, BChE inhibited by dichlorvos, echothiophate, DFP, soman, sarin, and cyclohexyl sarin aged exclusively through O-C bond cleavage, i.e., the classical X-R scission pathway. In contrast, isomalathion aged through both X-R and P-X pathways; the main aged product resulted from P-S bond cleavage and a minor product resulted from O-C and/or S-C bond cleavage.
Different Cholinesterase Inhibitor Effects on CSF Cholinesterases in Alzheimer Patients
Nordberg, Agneta; Darreh-Shori, Taher; Peskind, Elaine; Soininen, Hilkka; Mousavi, Malahat; Eagle, Gina; Lane, Roger
2014-01-01
Background The current study aimed to compare the effects of different cholinesterase inhibitors on acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) activities and protein levels, in the cerebrospinal fluid (CSF) of Alzheimer disease (AD) patients. Methods and Findings AD patients aged 50–85 years were randomized to open-label treatment with oral rivastigmine, donepezil or galantamine for 13 weeks. AChE and BuChE activities were assayed by Ellman’s colorimetric method. Protein levels were assessed by enzyme-linked immunosorbent assay (ELISA). Primary analyses were based on the Completer population (randomized patients who completed Week 13 assessments). 63 patients were randomized to treatment. Rivastigmine was associated with decreased AChE activity by 42.6% and decreased AChE protein levels by 9.3%, and decreased BuChE activity by 45.6% and decreased BuChE protein levels by 21.8%. Galantamine decreased AChE activity by 2.1% and BuChE activity by 0.5%, but increased AChE protein levels by 51.2% and BuChE protein levels by10.5%. Donepezil increased AChE and BuChE activities by 11.8% and 2.8%, respectively. Donepezil caused a 215.2%increase in AChE and 0.4% increase in BuChE protein levels. Changes in mean AChE-Readthrough/Synaptic ratios, which might reflect underlying neurodegenerative processes, were 1.4, 0.6, and 0.4 for rivastigmine, donepezil and galantamine, respectively. Conclusion The findings suggest pharmacologically-induced differences between rivastigmine, donepezil and galantamine. Rivastigmine provides sustained inhibition of AChE and BuChE, while donepezil and galantamine do not inhibit BuChE and are associated with increases in CSF AChE protein levels. The clinical implications require evaluation. PMID:19199870
Different cholinesterase inhibitor effects on CSF cholinesterases in Alzheimer patients.
Nordberg, Agneta; Darreh-Shori, Taher; Peskind, Elaine; Soininen, Hilkka; Mousavi, Malahat; Eagle, Gina; Lane, Roger
2009-02-01
The current study aimed to compare the effects of different cholinesterase inhibitors on acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) activities and protein levels, in the cerebrospinal fluid (CSF) of Alzheimer disease (AD) patients. AD patients aged 50-85 years were randomized to open-label treatment with oral rivastigmine, donepezil or galantamine for 13 weeks. AChE and BuChE activities were assayed by Ellman's colorimetric method. Protein levels were assessed by enzyme-linked immunosorbent assay (ELISA). Primary analyses were based on the Completer population (randomized patients who completed Week 13 assessments). 63 patients were randomized to treatment. Rivastigmine was associated with decreased AChE activity by 42.6% and decreased AChE protein levels by 9.3%, and decreased BuChE activity by 45.6% and decreased BuChE protein levels by 21.8%. Galantamine decreased AChE activity by 2.1% and BuChE activity by 0.5%, but increased AChE protein levels by 51.2% and BuChE protein levels by 10.5%. Donepezil increased AChE and BuChE activities by 11.8% and 2.8%, respectively. Donepezil caused a 215.2% increase in AChE and 0.4% increase in BuChE protein levels. Changes in mean AChE-Readthrough/Synaptic ratios, which might reflect underlying neurodegenerative processes, were 1.4, 0.6, and 0.4 for rivastigmine, donepezil and galantamine, respectively. The findings suggest pharmacologically-induced differences between rivastigmine, donepezil and galantamine. Rivastigmine provides sustained inhibition of AChE and BuChE, while donepezil and galantamine do not inhibit BuChE and are associated with increases in CSF AChE protein levels. The clinical implications require evaluation.
Shi, Yu-fang; Zhang, Hai-yan; Wang, Wei; Fu, Yan; Xia, Yu; Tang, Xi-can; Bai, Dong-lu; He, Xu-chang
2009-01-01
Aim: To design novel bifunctional derivatives of huperzine B (HupB) based on the concept of dual binding site of acetylcholinesterase (AChE) and evaluate their pharmacological activities for seeking new drug candidates against Alzheimer's disease (AD). Methods: Novel 16-substituted bifunctional derivatives of HupB were synthesized through chemical reactions. The inhibitory activities of the derivatives toward AChE and butyrylcholinesterase (BuChE) were determined in vitro by modified Ellman's method. Cell viability was quantified by the reduction of MTT. Results: A new preparative method was developed for the generation of 16-substituted derivatives of HupB, and pharmacological trials indicated that the derivatives were multifunctional cholinesterase inhibitors targeting both AChE and BuChE. Among the derivatives tested, 9c, 9e, 9f, and 9i were 480 to 1360 times more potent as AChE inhibitors and 370 to 1560 times more potent as BuChE inhibitors than the parent HupB. Further preliminary pharmacological trials of derivatives 9c and 9i were performed, including examining the mechanism of AChE inhibition, the substrate kinetics of the enzyme inhibition, and protection against hydrogen peroxide (H2O2)-induced cytotoxicity in PC12 cells. Conclusion: Preliminary pharmacological evaluation indicated that 16-substituted derivatives of HupB, particularly 9c and 9i, would be potentially valuable new drug candidates for AD therapy, and further exploration is needed to evaluate their pharmacological and clinical efficacies. PMID:19578388
Indole alkaloids of Psychotria as multifunctional cholinesterases and monoamine oxidases inhibitors.
Passos, Carolina S; Simões-Pires, Claudia A; Nurisso, Alessandra; Soldi, Tatiane C; Kato, Lucilia; de Oliveira, Cecilia M A; de Faria, Emiret O; Marcourt, Laurence; Gottfried, Carmem; Carrupt, Pierre-Alain; Henriques, Amélia T
2013-02-01
Thirteen Psychotria alkaloids were evaluated regarding their interactions with acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and monoamine oxidases A and B (MAO-A and MAO-B), which are enzymatic targets related with neurodegenerative diseases. Two quaternary β-carboline alkaloids, prunifoleine and 14-oxoprunifoleine, inhibited AChE, BChE and MAO-A with IC(50) values corresponding to 10 and 3.39 μM for AChE, 100 and 11 μM for BChE, and 7.41 and 6.92 μM for MAO-A, respectively. Both compounds seem to behave as noncompetitive AChE inhibitors and time-dependent MAO-A inhibitors. In addition, the monoterpene indole alkaloids (MIAs) angustine, vallesiachotamine lactone, E-vallesiachotamine and Z-vallesiachotamine inhibited BChE and MAO-A with IC(50) values ranging from 3.47 to 14 μM for BChE inhibition and from 0.85 to 2.14 μM for MAO-A inhibition. Among the tested MIAs, angustine is able to inhibit MAO-A in a reversible and competitive way while the three vallesiachotamine-like alkaloids display a time-dependent inhibition on this target. Docking calculations were performed in order to understand the binding mode between the most active ligands and the selected targets. Taken together, our findings established molecular details of AChE, BChE and MAO-A inhibition by quaternary β-carboline alkaloids and MIAs from Psychotria, suggesting these secondary metabolites are scaffolds for the development of multifunctional compounds against neurodegeneration. Copyright © 2012 Elsevier Ltd. All rights reserved.
da Silva, Aleksandro Schafer; Santurio, Janio M; Roza, Lenilson F; Bottari, Nathieli B; Galli, Gabriela M; Morsch, Vera M; Schetinger, Maria Rosa C; Baldissera, Matheus D; Stefani, Lenita M; Radavelli, Willian M; Tomasi, Thainã; Boiago, Marcel M
2017-06-01
The aim of this study was to evaluate the effects of aflatoxins on cholinesterases (acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), and adenosine deaminase (ADA) activities in quails. For this, twenty male quails were randomly distributed into two groups (n = 10 each): the group A was composed by quails that received feed without aflatoxin (the control group); while the group B was composed by quails that received feed contaminated with 200 ppm/kg of feed of aflatoxin. On day 20, the animals were euthanized to measure the activities of AChE (total blood and brain), BChE (serum) and ADA (serum, liver, and brain), as well as for histopathological analyses (liver and intestine). AChE, BChE, and ADA levels increased in animals intoxicated by aflatoxin compared to the control group. The presence of aflatoxin lead to severe hydropic degeneration of hepatocytes and small focus of hepatocyte necrosis. In conclusion, aflatoxins poisoning increased AChE, BChE, and ADA activities, suggesting the involvement of these enzymes during this type of intoxication, in addition to the fact that they are well known molecules that participate in physiological and pathological events as inflammatory mediators. In summary, increased AChE, BChE and ADA activities contribute directly to the inflammatory process and tissue damage, and they might be involved in disease development. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sang, Zhipei; Pan, Wanli; Wang, Keren; Ma, Qinge; Yu, Lintao; Liu, Wenmin
2017-06-15
A new family of multitarget molecules able to interact with acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), as well as with monoamino oxidase (MAO) A and B, has been synthesized. Novel 3,4-dihydro-2(1H)-quinoline-O-alkylamine derivatives have been designed using a conjunctive approach that combines the JMC49 and donepezil. The most promising compound TM-33 showed potent and balance inhibitory activities toward ChE and MAO (eeAChE, eqBuChE, hMAO-A and hMAO-B with IC 50 values of 0.56μM, 2.3μM, 0.3μM and 1.4μM, respectively) but low selectivity. Both kinetic analysis of AChE inhibition and molecular modeling study suggested that TM-33 binds simultaneously to the catalytic active site and peripheral anionic site of AChE. Furthermore, our investigation proved that TM-33 could cross the blood-brain barrier (BBB) in vitro, and abided by Lipinski's rule of five. The results suggest that compound TM-33, an interesting multi-targeted active molecule, offers an attractive starting point for further lead optimization in the drug-discovery process against Alzheimer's disease. Copyright © 2017 Elsevier Ltd. All rights reserved.
Spilovska, Katarina; Korabecny, Jan; Kral, Jan; Horova, Anna; Musilek, Kamil; Soukup, Ondrej; Drtinova, Lucie; Gazova, Zuzana; Siposova, Katarina; Kuca, Kamil
2013-02-20
A structural series of 7-MEOTA-adamantylamine thioureas was designed, synthesized and evaluated as inhibitors of human acetylcholinesterase (hAChE) and human butyrylcholinesterase (hBChE). The compounds were prepared based on the multi-target-directed ligand strategy with different linker lengths (n = 2-8) joining the well-known NMDA antagonist adamantine and the hAChE inhibitor 7-methoxytacrine (7-MEOTA). Based on in silico studies, these inhibitors proved dual binding site character capable of simultaneous interaction with the peripheral anionic site (PAS) of hAChE and the catalytic active site (CAS). Clearly, these structural derivatives exhibited very good inhibitory activity towards hBChE resulting in more selective inhibitors of this enzyme. The most potent cholinesterase inhibitor was found to be thiourea analogue 14 (with an IC₅₀ value of 0.47 µM for hAChE and an IC₅₀ value of 0.11 µM for hBChE, respectively). Molecule 14 is a suitable novel lead compound for further evaluation proving that the strategy of dual binding site inhibitors might be a promising direction for development of novel AD drugs.
Microwave-assisted synthesis of novel purine nucleosides as selective cholinesterase inhibitors.
Schwarz, S; Csuk, R; Rauter, A P
2014-04-21
Alzheimer's disease (AD), the most common form of senile dementia, is characterized by high butyrylcholinesterase (BChE) levels in the brain in later AD stages, for which no treatment is available. Pursuing our studies on selective BChE inhibitors, that may contribute to understand the role of this enzyme in disease progression, we present now microwave-assisted synthesis and anticholinesterase activity of a new nucleoside series embodying 6-chloropurine or 2-acetamido-6-chloropurine linked to D-glucosyl, D-galactosyl and D-mannosyl residues. It was designed to assess the contribution of sugar stereochemistry, purine structure and linkage to the sugar for cholinesterase inhibition efficiency and selectivity. Compounds were subjected to Ellman's assay and their inhibition constants determined. The α-anomers were the most active compounds, while selectivity for BChE or acetylcholinesterase (AChE) inhibition could be tuned by the purine base, by the glycosyl moiety and by N(7)-ligation. Some of the nucleosides were far more potent than the drug galantamine, and the most promising competitive and selective BChE inhibitor, the N(7)-linked 2-acetamido-α-D-mannosylpurine, showed a Ki of 50 nM and a selectivity factor of 340 fold for BChE over AChE.
Synthesis of novel 5-(aroylhydrazinocarbonyl)escitalopram as cholinesterase inhibitors.
Nisa, Mehr-Un; Munawar, Munawar A; Iqbal, Amber; Ahmed, Asrar; Ashraf, Muhammad; Gardener, Qurra-Tul-Ann A; Khan, Misbahul A
2017-09-29
A novel series of 5-(aroylhydrazinocarbonyl)escitalopram (58-84) have been designed, synthesized and tested for their inhibitory potential against cholinesterases. 3-Chlorobenzoyl- (71) was found to be the most potent compound of this series having IC 50 1.80 ± 0.11 μM for acetylcholinesterase (AChE) inhibition. For the butyrylcholinesterase (BChE) inhibition, 2-bromobenzoyl- (76) was the most active compound of the series with IC 50 2.11 ± 0.31 μM. Structure-activity relationship illustrated that mild electron donating groups enhanced enzyme inhibition while electron withdrawing groups reduced the inhibition except o-NO 2 . However, size and position of the substituents affected enzyme inhibitions. . In docking study of AChE, the ligands 71, 72 and 76 showed the scores of 5874, 5756 and 5666 and ACE of -64.92,-203.25 and -140.29 kcal/mol, respectively. In case of BChE, ligands 71, 76 and 81 depicted high scores 6016, 6150 and 5994 with ACE values -170.91, -256.84 and -235.97 kcal/mol, respectively. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Characterization of potent anticholinesterase plant oil based microemulsion.
Chaiyana, Wantida; Saeio, Kiattisak; Hennink, Wim E; Okonogi, Siriporn
2010-11-30
In the present study, essential oils of three edible Thai plants, Cymbopogon citratus (Gramineae), Citrus hystrix (Rutaceae) and Zingiber cassumunar (Zingiberaceae) were comparatively tested for acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities using Ellman's colorimetric method. C. citratus oil exhibited the highest activity with IC(50) values of 0.34±0.07μl/ml and 2.14±0.18μl/ml against BChE and AChE activity, respectively. It was further investigated whether microemulsions of this oil could be obtained. The effects of type of surfactant and co-surfactant as well as pH and ionic strength on the phase behavior of the oil/water system were investigated. Brij 97, Triton X-114, Tween 20 and Tween 85 were employed as surfactant whereas ethanol and hexanol were used as cosurfactants. The size analysis, electrical conductivity measurements and cholinesterase inhibition assays were done in selected microemulsion. The results revealed that the type and concentration of surfactant and co-surfactant exhibited a distinct influence on the C. citratus oil microemulsions. Moreover, the inhibitory activities of the microemulsion formulation were remarkable. Copyright © 2010 Elsevier B.V. All rights reserved.
Ullah, Farhat; Ayaz, Muhammad; Sadiq, Abdul; Hussain, Abid; Ahmad, Sajjad; Imran, Muhammad; Zeb, Anwar
2016-06-01
This study was designed to investigate antioxidant and anticholinesterase potential of Iris germanica var; florentina. Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory potential of plant samples were investigated by Ellman's assay. Antioxidant activity was performed using DPPH, H2O2 and ABTS free radical scavenging assays. Total phenolics and flavonoids contents were expressed in mg GAE/g dry weight and mg RTE/g, respectively. In AChE inhibition assay, Ig.Fl, Ig.Sp and Ig.Cf fractions exhibited highest activity with IC50 values of < 0.1, 5.64 and 19 μg/mL, respectively. In BChE inhibitory assay, Ig.Fl, Ig.Sp, Ig.Cf and Ig.Cr were most active with IC50 of < 0.1, < 0.1, 31 and 78 μg/mL, respectively. In DPPH assay, Ig.Fl and Ig.Cf exhibited highest inhibition of free radicals, 80.52% (IC50 = 9 μg/mL) and 78.30% (IC50 = 8 μg/mL), respectively. In ABTS assay Ig.Cr, Ig.Cf, Ig.Fl and Ig.Sp exhibited IC50 values of < 0.1, 2, 2 and 3 μg/mL, respectively.
Folding anomalies of neuroligin3 caused by a mutation in the alpha/beta-hydrolase fold domain.
De Jaco, Antonella; Dubi, Noga; Comoletti, Davide; Taylor, Palmer
2010-09-06
Proteins of the alpha/beta-hydrolase fold family share a common structural fold, but perform a diverse set of functions. We have been studying natural mutations occurring in association with congenital disorders in the alpha/beta-hydrolase fold domain of neuroligin (NLGN), butyrylcholinesterase (BChE), acetylcholinesterase (AChE). Starting from the autism-related R451C mutation in the alpha/beta-hydrolase fold domain of NLGN3, we had previously shown that the Arg to Cys substitution is responsible for endoplasmic reticulum (ER) retention of the mutant protein and that a similar trafficking defect is observed when the mutation is inserted at the homologous positions in AChE and BChE. Herein we show further characterization of the R451C mutation in NLGN3 when expressed in HEK-293, and by protease digestion sensitivity, we reveal that the phenotype results from protein misfolding. However, the presence of an extra Cys does not interfere with the formation of disulfide bonds as shown by reaction with PEG-maleimide and estimation of the molecular mass changes. These findings highlight the role of proper protein folding in protein processing and localization. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.
FOLDING ANOMALIES OF NEUROLIGIN3 CAUSED BY A MUTATION IN THE α/β-HYDROLASE FOLD DOMAIN
De Jaco, Antonella; Dubi, Noga; Comoletti, Davide; Taylor, Palmer
2017-01-01
Proteins of the α/β-hydrolase fold family share a common structural fold, but perform a diverse set of functions. We have been studying natural mutations occurring in association with congenital disorders in the α/β-hydrolase fold domain of neuroligin (NLGN), butyrylcholinesterase (BChE), acetylcholinesterase (AChE). Starting from the autism-related R451C mutation in the α/β-hydrolase fold domain of NLGN3, we had previously shown that the Arg to Cys substitution is responsible for endoplasmic reticulum (ER) retention of the mutant protein and that a similar trafficking defect is observed when the mutation is inserted at the homologous positions in AChE and BChE. Herein we show further characterization of the R451C mutation in NLGN3 when expressed in HEK-293, and by protease digestion sensitivity, we reveal that the phenotype results from protein misfolding. However, the presence of an extra Cys doesn’t interfere with the formation of disulfide bonds as shown by reaction with PEG-maleimide and estimation of the molecular mass changes. These findings highlight the role of proper protein folding in protein processing and localization. PMID:20227402
Nguyen, Trung Kien; Im, Kyung Hoan; Choi, Jaehyuk; Shin, Pyung Gyun; Lee, Tae Soo
2016-12-01
Culinary mushroom Pleurotus pulmonarius has been popular in Asian countries. In this study, the anti-oxidant, cholinesterase, and inflammation inhibitory activities of methanol extract (ME) of fruiting bodies of P. pulmonarius were evaluted. The 1,1-diphenyl-2-picryl-hydrazy free radical scavenging activity of ME at 2.0 mg/mL was comparable to that of butylated hydroxytoluene, the standard reference. The ME exhibited significantly higher hydroxyl radical scavenging activity than butylated hydroxytoluene. ME showed slightly lower but moderate inhibitory activity against acetylcholinesterase (AChE) and butyrylcholinesterase than galantamine, a standard AChE inhibitor. It also exhibited protective effect against cytotoxicity to PC-12 cells induced by glutamate (10~100 µg/mL), inhibitory effect on nitric oxide (NO) production and inducible nitric oxide synthase protein expression in lipopolysaccharide-stimulated RAW 264.7 macrophages, and carrageenan-induced paw edema in a rat model. High-performance liquid chromatography analysis revealed the ME of P. pulmonarius contained at least 10 phenolic compounds and some of them were identified by the comparison with known standard phenolics. Taken together, our results demonstrate that fruiting bodies of P. pulmonarius possess antioxidant, anti-cholinesterase, and inflammation inhibitory activities.
Nguyen, Trung Kien; Im, Kyung Hoan; Choi, Jaehyuk; Shin, Pyung Gyun
2016-01-01
Culinary mushroom Pleurotus pulmonarius has been popular in Asian countries. In this study, the anti-oxidant, cholinesterase, and inflammation inhibitory activities of methanol extract (ME) of fruiting bodies of P. pulmonarius were evaluted. The 1,1-diphenyl-2-picryl-hydrazy free radical scavenging activity of ME at 2.0 mg/mL was comparable to that of butylated hydroxytoluene, the standard reference. The ME exhibited significantly higher hydroxyl radical scavenging activity than butylated hydroxytoluene. ME showed slightly lower but moderate inhibitory activity against acetylcholinesterase (AChE) and butyrylcholinesterase than galantamine, a standard AChE inhibitor. It also exhibited protective effect against cytotoxicity to PC-12 cells induced by glutamate (10~100 µg/mL), inhibitory effect on nitric oxide (NO) production and inducible nitric oxide synthase protein expression in lipopolysaccharide-stimulated RAW 264.7 macrophages, and carrageenan-induced paw edema in a rat model. High-performance liquid chromatography analysis revealed the ME of P. pulmonarius contained at least 10 phenolic compounds and some of them were identified by the comparison with known standard phenolics. Taken together, our results demonstrate that fruiting bodies of P. pulmonarius possess antioxidant, anti-cholinesterase, and inflammation inhibitory activities. PMID:28154487
Rahim, Fazal; Ullah, Hayat; Taha, Muhammad; Wadood, Abdul; Javed, Muhammad Tariq; Rehman, Wajid; Nawaz, Mohsan; Ashraf, Muhammad; Ali, Muhammad; Sajid, Muhammad; Ali, Farman; Khan, Muhammad Naseem; Khan, Khalid Mohammed
2016-10-01
To discover multifunctional agents for the treatment of Alzheimer's disease, a series of hydrazide based Schiff bases were designed and synthesized based on multitarget-directed strategy. We have synthesized twenty-eight analogs of hydrazide based Schiff bases, characterized by various spectroscopic techniques and evaluated in vitro for acetylcholinesterase and butyrylcholinesterase inhibition. All compounds showed varied degree of acetylcholinesterase and butyrylcholinesterase inhibition when compared with standard Eserine. Among the series, compounds 10, 3 and 24 having IC50 values 4.12±0.01, 8.12±0.01 and 8.41±0.06μM respectively showed potent acetylcholinesterase inhibition when compared with Eserine (IC50=0.85±0.0001μM). Three compounds 13, 24 and 3 having IC50 values 6.51±0.01, 9.22±0.07 and 37.82±0.14μM respectively showed potent butyrylcholinesterase inhibition by comparing with eserine (IC50=0.04±0.0001μM). The remaining compounds also exhibited moderate to weak inhibitory potential. Structure activity relationship has been established. Through molecular docking studies the binding interaction was confirmed. Copyright © 2016 Elsevier Inc. All rights reserved.
Inhibition of cholinesterases by stereoisomers of Huperzine-A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saxena, A.; Qian, N.; Kovach, I.M.
1993-05-13
Huperzine-A, a potential drug for the treatment of Alzheimer's disease and possible pretreament for nerve agent toxicity, has recently been characterized as a reversible inhibitor of cholinesterases (Ashani et al., BBRC, 184:719-726, 1992). Long-term incubation of purified cholinesterases with Huperzine-A did not show any chemical modification of Huperzine-A. The dissociation constant, K(I), for fetal bovine serum acetylcholinesterase (FBS AChE) was approximately 20 nM, for Torpedo AChE was 215 nM, and for horse serum butyrylcholinesterase (BChE) was 40 micrometers M. Inhibition studies with the two stereoisomers of Huperzine-A have shown that naturally occurring (-)-Huperzine-A inhibited FBS AChE 35-fold more potently thanmore » (+)-Huperzine-A, with K(I) values of 6.2 nM and 210 nM, respectively. These results are in agreement with those reported previously using crude preparations of rat cortical AChE (McKinney et al., Eur. J. Pharmacol., 203, 303-305, 1991). (-)-Huperzine-A, on the other hand, was 80-fold more potent than (+)-Huperzine-A in inhibiting Torpedo AChE, with K(I), values of 0.25 micrometers M and 22 micrometer M, respectively. No significant differences in K(I) were observed for the two stereoisomers of Huperzine-A with horse serum BChE, indicating the lack of stereoselectivity of this compound for BChE. Molecular modeling studies involving docking of each of the two stereoisomers of Huperzine-A into the active-site gorge of Torpedo AChE also revealed that (-)-Huperzine-A gave a better fit than (+)-Huperzine-A.« less
Khaw, K Y; Choi, S B; Tan, S C; Wahab, H A; Chan, K L; Murugaiyah, V
2014-09-25
Garcinia mangostana is a well-known tropical plant found mostly in South East Asia. The present study investigated acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities of G. mangostana extract and its chemical constituents using Ellman's colorimetric method. Cholinesterase inhibitory-guided approach led to identification of six bioactive prenylated xanthones showing moderate to potent cholinesterases inhibition with IC50 values of lower than 20.5 μM. The most potent inhibitor of AChE was garcinone C while γ-mangostin was the most potent inhibitor of BChE with IC50 values of 1.24 and 1.78 μM, respectively. Among the xanthones, mangostanol, 3-isomangostin, garcinone C and α-mangostin are AChE selective inhibitors, 8-deoxygartanin is a BChE selective inhibitor while γ-mangostin is a dual inhibitor. Preliminary structure-activity relationship suggests the importance of the C-8 prenyl and C-7 hydroxy groups for good AChE and BChE inhibitory activities. The enzyme kinetic studies indicate that both α-mangostin and garcinone C are mixed-mode inhibitors, while γ-mangostin is a non-competitive inhibitor of AChE. In contrast, both γ-mangostin and garcinone C are uncompetitive inhibitors, while α-mangostin is a mixed-mode inhibitor of BChE. Molecular docking studies revealed that α-mangostin, γ-mangostin and garcinone C interacts differently with the five important regions of AChE and BChE. The nature of protein-ligand interactions is mainly hydrophobic and hydrogen bonding. These bioactive prenylated xanthones are worthy for further investigations. Copyright © 2014 Elsevier GmbH. All rights reserved.
Synthesis and cholinesterase inhibition of cativic acid derivatives.
Alza, Natalia P; Richmond, Victoria; Baier, Carlos J; Freire, Eleonora; Baggio, Ricardo; Murray, Ana Paula
2014-08-01
Alzheimer's disease (AD) is a neurodegenerative disorder associated with memory impairment and cognitive deficit. Most of the drugs currently available for the treatment of AD are acetylcholinesterase (AChE) inhibitors. In a preliminary study, significant AChE inhibition was observed for the ethanolic extract of Grindelia ventanensis (IC₅₀=0.79 mg/mL). This result prompted us to isolate the active constituent, a normal labdane diterpenoid identified as 17-hydroxycativic acid (1), through a bioassay guided fractionation. Taking into account that 1 showed moderate inhibition of AChE (IC₅₀=21.1 μM), selectivity over butyrylcholinesterase (BChE) (IC₅₀=171.1 μM) and that it was easily obtained from the plant extract in a very good yield (0.15% w/w), we decided to prepare semisynthetic derivatives of this natural diterpenoid through simple structural modifications. A set of twenty new cativic acid derivatives (3-6) was prepared from 1 through transformations on the carboxylic group at C-15, introducing a C2-C6 linker and a tertiary amine group. They were tested for their inhibitory activity against AChE and BChE and some structure-activity relationships were outlined. The most active derivative was compound 3c, with an IC₅₀ value of 3.2 μM for AChE. Enzyme kinetic studies and docking modeling revealed that this inhibitor targeted both the catalytic active site and the peripheral anionic site of this enzyme. Furthermore, 3c showed significant inhibition of AChE activity in SH-SY5Y human neuroblastoma cells, and was non-cytotoxic. Copyright © 2014 Elsevier Ltd. All rights reserved.
Valle, Anne M.; Radić, Zoran; Rana, Brinda K.; Mahboubi, Vafa; Wessel, Jennifer; Shih, Pei-an Betty; Rao, Fangwen; O'Connor, Daniel T.
2011-01-01
Cholinergic neurotransmission in the central and autonomic nervous systems regulates immediate variations in and longer-term maintenance of cardiovascular function with acetylcholinesterase (AChE) activity that is critical to temporal responsiveness. Butyrylcholinesterase (BChE), largely confined to the liver and plasma, subserves metabolic functions. AChE and BChE are found in hematopoietic cells and plasma, enabling one to correlate enzyme levels in whole blood with hereditary traits in twins. Using both twin and unrelated subjects, we found certain single nucleotide polymorphisms (SNPs) in the ACHE gene correlated with catalytic properties and general cardiovascular functions. SNP discovery from ACHE resequencing identified 19 SNPs: 7 coding SNPs (cSNPs), of which 4 are nonsynonymous, and 12 SNPs in untranslated regions, of which 3 are in a conserved sequence of an upstream intron. Both AChE and BChE activity traits in blood were heritable: AChE at 48.8 ± 6.1% and BChE at 81.4 ± 2.8%. Allelic and haplotype variations in the ACHE and BCHE genes were associated with changes in blood AChE and BChE activities. AChE activity was associated with BP status and SBP, whereas BChE activity was associated with features of the metabolic syndrome (especially body weight and BMI). Gene products from cDNAs with nonsynonymous cSNPs were expressed and purified. Protein expression of ACHE nonsynonymous variant D134H (SNP6) is impaired: this variant shows compromised stability and altered rates of organophosphate inhibition and oxime-assisted reactivation. A substantial fraction of the D134H instability could be reversed in the D134H/R136Q mutant. Hence, common genetic variations at ACHE and BCHE loci were associated with changes in corresponding enzymatic activities in blood. PMID:21493754
Evolution of cholinesterases in the animal kingdom.
Pezzementi, Leo; Chatonnet, Arnaud
2010-09-06
Cholinesterases emerged from a family of enzymes and proteins with adhesion properties. This family is absent in plants and expanded in multicellular animals. True cholinesterases appeared in triploblastic animals together with the cholinergic system. Lineage specific duplications resulted in two acetylcholinesterases in most hexapods and in up to four genes in nematodes. In vertebrates the duplication leading to acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) is now considered to be an ancient event which occurred before the split of osteichthyes. The product of one or the other of the paralogues is responsible for the physiological hydrolysis of acetylcholine, depending on the species lineage and tissue considered. The BChE gene seems to have been lost in some fish lineages. The complete genome of amphioxus (Branchiostoma floridae: cephalochordate) contains a large number of duplicated genes or pseudogenes of cholinesterases. Sequence comparison and tree constructions raise the question of considering the atypical ChE studied in this organism as a representative of ancient BChE. Thus nematodes, arthropods, annelids, molluscs, and vertebrates typically possess two paralogous genes coding for cholinesterases. The origin of the duplication(s) is discussed. The mode of attachment through alternative C-terminal coding exons seems to have evolved independently from the catalytic part of the gene. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.
Abou-Donia, Mohamed B; Dechkovskaia, Anjelika M; Goldstein, Larry B; Abdel-Rahman, Ali; Bullman, Sarah L; Khan, Wasiuddin A
2004-02-01
Military personnel deployed in the Persian Gulf War (PGW) were exposed to a combination of chemicals, including pyridostigmine bromide (PB), DEET, and permethrin. We investigated the dose-response effects of these chemicals, alone or in combination, on the sensorimotor performance and cholinergic system of male Sprague-Dawley rats. Animals were treated with a daily dermal dose of DEET and/or permethrin for 60 days and/or PB (gavage) during the last 15 days. Neurobehavioral performance was assessed on day 60 following the beginning of the treatment with DEET and permethrin. The rats were sacrificed 24 h after the last treatment for biochemical evaluations. PB alone, or in combination with DEET, or DEET and permethrin resulted in deficits in beam-walk score and longer beam-walk times compared to controls. PB alone, or in combination with DEET, permethrin, or DEET and permethrin caused impairment in incline plane performance and forepaw grip strength. PB alone at all doses slightly inhibited plasma butyrylcholinesterase activity, whereas combination of PB with DEET or permethrin increased its activity. Brainstem acetylcholinesterase (AChE) activity significantly increased following treatment with combinations of either DEET or permethrin at all doses, whereas the cerebellum showed a significant increase in AChE activity following treatment with a combination of PB/DEET/permethrin. Co-exposure to PB, DEET, and permethrin resulted in significant inhibition in AChE in midbrain. PB alone or in combination with DEET and permethrin at all doses increased ligand binding for m2 muscarinic acetylcholine receptor in the cortex. In addition, PB and DEET together or a combination of PB, DEET, and permethrin significantly increased ligand binding for nicotinic acetylcholine receptor. These results suggest that exposure to various doses of PB, alone and in combination with DEET and permethrin, leads to sensorimotor deficits and differential alterations of the cholinergic system in the CNS.
Cholinesterase inhibitory activities of Apai-sa-le recipe and its ingredients.
Senavong, Pimolvan; Sattaponpan, Chitsanucha; Silavat Suk-um; Itharat, Arunporn
2014-08-01
Acetylcholinesterase and butyrylcholoinesterase inhibitors are well-known drugs commonly used in the treatment ofAlzheimer's disease (AD) to improve cognitive function. These enzyme inhibitors were reported to be found in manyplants. Apai-sa-le recipe was a Thai tradition used as nootropic recipe and formerly claimed to improve memory. Therefore, it is interesting to investigate cholinesterase inhibitory activity ofthe recipe and its ingredients. To determine the whole recipe ofApai-sa-le and its ingredients for inhibitory effect on acetylcholinesterase (AChE) and human butyrylcholinesterase (BuChE) activities. Thirty grams of each plant and 181 grams of the whole recipe were separately extracted by 95% ethanol, after filtered the filtrate were evaporated and vacuum-dried at 45°C. By Elman method, the inhibitory activities of both enzymes were assessed. The volatile constituents ofeach extract were determined by GCMS. The constituents in the non- volatile extract were examined by TLC and the antioxidant activity was determined. Four plants exhibited specific BuChE inhibitor were Lepidium sativum Linn. (Ls), Piper nigrum L. (Pn), Angelica dahurica Benth (Ad) andAtractylodes lancea DC. (Al), which shown the lC50 of 5.59, 24.52, 73.23, 96.25 μg/ml, respectively whereas galantamine and the whole recipe showed IC50 of 0.59 and 236 μg/ml. Only Pn extract inhibited AChE at lCso of 25.46 μg/ml. By GCMS and TLC fingerprints revealed the main constituents in LS, Ad, Al andPn as apiol, cumialdehyde, furanodiene and piperine. Moreover nine plant extracts and the whole recipe showed antioxidant activity. Lepidium sativum Linn. (Ls) extract showed the most potency on BuChE inhibitory effect. Three ingredients and the whole recipe exhibited mild activity. Only Piper nigrum L demonstrated inhibition effect on both AChE and BuChE.
Bautista-Aguilera, Oscar M; Esteban, Gerard; Chioua, Mourad; Nikolic, Katarina; Agbaba, Danica; Moraleda, Ignacio; Iriepa, Isabel; Soriano, Elena; Samadi, Abdelouahid; Unzeta, Mercedes; Marco-Contelles, José
2014-01-01
The design, synthesis, and biochemical evaluation of donepezil-pyridyl hybrids (DPHs) as multipotent cholinesterase (ChE) and monoamine oxidase (MAO) inhibitors for the potential treatment of Alzheimer's disease (AD) is reported. The 3D-quantitative structure-activity relationship study was used to define 3D-pharmacophores for inhibition of MAO A/B, acetylcholinesterase (AChE), and butyrylcholinesterase (BuChE) enzymes and to design DPHs as novel multi-target drug candidates with potential impact in the therapy of AD. DPH14 (Electrophorus electricus AChE [EeAChE]: half maximal inhibitory concentration [IC50] =1.1±0.3 nM; equine butyrylcholinesterase [eqBuChE]: IC50 =600±80 nM) was 318-fold more potent for the inhibition of AChE, and 1.3-fold less potent for the inhibition of BuChE than the reference compound ASS234. DPH14 is a potent human recombinant BuChE (hBuChE) inhibitor, in the same range as DPH12 or DPH16, but 13.1-fold less potent than DPH15 for the inhibition of human recombinant AChE (hAChE). Compared with donepezil, DPH14 is almost equipotent for the inhibition of hAChE, and 8.8-fold more potent for hBuChE. Concerning human monoamine oxidase (hMAO) A inhibition, only DPH9 and 5 proved active, compound DPH9 being the most potent (IC50 [MAO A] =5,700±2,100 nM). For hMAO B, only DPHs 13 and 14 were moderate inhibitors, and compound DPH14 was the most potent (IC50 [MAO B] =3,950±940 nM). Molecular modeling of inhibitor DPH14 within EeAChE showed a binding mode with an extended conformation, interacting simultaneously with both catalytic and peripheral sites of EeAChE thanks to a linker of appropriate length. Absortion, distribution, metabolism, excretion and toxicity analysis showed that structures lacking phenyl-substituent show better druglikeness profiles; in particular, DPHs13-15 showed the most suitable absortion, distribution, metabolism, excretion and toxicity properties. Novel donepezil-pyridyl hybrid DPH14 is a potent, moderately selective hAChE and selective irreversible hMAO B inhibitor which might be considered as a promising compound for further development for the treatment of AD.
Tissue distribution of human acetylcholinesterase and butyrylcholinesterase messenger RNA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jbilo, O.; Barteles, C.F.; Chatonnet, A.
1994-12-31
Tissue distribution of human acetyicholinesterase and butyryicholinesterase messenger RNA. 1 Cholinesterase inhibitors occur naturally in the calabar bean (eserine), green potatoes (solanine), insect-resistant crab apples, the coca plant (cocaine) and snake venom (fasciculin). There are also synthetic cholinesterase inhibitors, for example man-made insecticides. These inhibitors inactivate acetyicholinesterase and butyrylcholinesterase as well as other targets. From a study of the tissue distribution of acetylcholinesterase and butyrylcholinesterase mRNA by Northern blot analysis, we have found the highest levels of butyrylcholinesterase mRNA in the liver and lungs, tissues known as the principal detoxication sites of the human body. These results indicate that butyrylcholinesterasemore » may be a first line of defense against poisons that are eaten or inhaled.« less
Metformin and Its Sulfenamide Prodrugs Inhibit Human Cholinesterase Activity.
Markowicz-Piasecka, Magdalena; Sikora, Joanna; Mateusiak, Łukasz; Mikiciuk-Olasik, Elżbieta; Huttunen, Kristiina M
2017-01-01
The results of epidemiological and pathophysiological studies suggest that type 2 diabetes mellitus (T2DM) may predispose to Alzheimer's disease (AD). The two conditions present similar glucose levels, insulin resistance, and biochemical etiologies such as inflammation and oxidative stress. The diabetic state also contributes to increased acetylcholinesterase (AChE) activity, which is one of the factors leading to neurodegeneration in AD. The aim of this study was to assess in vitro the effects of metformin, phenformin, and metformin sulfenamide prodrugs on the activity of human AChE and butyrylcholinesterase (BuChE) and establish the type of inhibition. Metformin inhibited 50% of the AChE activity at micromolar concentrations (2.35 μ mol/mL, mixed type of inhibition) and seemed to be selective towards AChE since it presented low anti-BuChE activity. The tested metformin prodrugs inhibited cholinesterases (ChE) at nanomolar range and thus were more active than metformin or phenformin. The cyclohexyl sulfenamide prodrug demonstrated the highest activity towards both AChE (IC 50 = 890 nmol/mL, noncompetitive inhibition) and BuChE (IC 50 = 28 nmol/mL, mixed type inhibition), while the octyl sulfenamide prodrug did not present anti-AChE activity, but exhibited mixed inhibition towards BuChE (IC 50 = 184 nmol/mL). Therefore, these two bulkier prodrugs were concluded to be the most selective compounds for BuChE over AChE. In conclusion, it was demonstrated that biguanides present a novel class of inhibitors for AChE and BuChE and encourages further studies of these compounds for developing both selective and nonselective inhibitors of ChEs in the future.
Di Pietro, Ornella; Pérez-Areales, F Javier; Juárez-Jiménez, Jordi; Espargaró, Alba; Clos, M Victòria; Pérez, Belén; Lavilla, Rodolfo; Sabaté, Raimon; Luque, F Javier; Muñoz-Torrero, Diego
2014-09-12
Optimization of an essentially inactive 3,4-dihydro-2H-pyrano[3,2-c]quinoline carboxylic ester derivative as acetylcholinesterase (AChE) peripheral anionic site (PAS)-binding motif by double O → NH bioisosteric replacement, combined with molecular hybridization with the AChE catalytic anionic site (CAS) inhibitor 6-chlorotacrine and molecular dynamics-driven optimization of the length of the linker has resulted in the development of the trimethylene-linked 1,2,3,4-tetrahydrobenzo[h][1,6]naphthyridine-6-chlorotacrine hybrid 5a as a picomolar inhibitor of human AChE (hAChE). The tetra-, penta-, and octamethylene-linked homologues 5b-d have been also synthesized for comparison purposes, and found to retain the nanomolar hAChE inhibitory potency of the parent 6-chlorotacrine. Further biological profiling of hybrids 5a-d has shown that they are also potent inhibitors of human butyrylcholinesterase and moderately potent Aβ42 and tau anti-aggregating agents, with IC50 values in the submicromolar and low micromolar range, respectively. Also, in vitro studies using an artificial membrane model have predicted a good brain permeability for hybrids 5a-d, and hence, their ability to reach their targets in the central nervous system. The multitarget profile of the novel hybrids makes them promising leads for developing anti-Alzheimer drug candidates with more balanced biological activities. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Novel Cholinesterase Inhibitors Based on O-Aromatic N,N-Disubstituted Carbamates and Thiocarbamates.
Krátký, Martin; Štěpánková, Šárka; Vorčáková, Katarína; Švarcová, Markéta; Vinšová, Jarmila
2016-02-11
Based on the presence of carbamoyl moiety, twenty salicylanilide N,N-disubstituted (thio)carbamates were investigated using Ellman's method for their ability to inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). O-Aromatic (thio)carbamates exhibited weak to moderate inhibition of both cholinesterases with IC50 values within the range of 1.60 to 311.0 µM. IC50 values for BChE were mostly lower than those obtained for AChE; four derivatives showed distinct selectivity for BChE. All of the (thio)carbamates produced a stronger inhibition of AChE than rivastigmine, and five of them inhibited BChE more effectively than both established drugs rivastigmine and galantamine. In general, 5-chloro-2-hydroxy-N-[4-(trifluoromethyl)-phenyl]benzamide, 2-hydroxy-N-phenylbenzamide as well as N-methyl-N-phenyl carbamate derivatives led to the more potent inhibition. O-{4-Chloro-2-[(4-chlorophenyl)carbamoyl]phenyl} dimethylcarbamothioate was identified as the most effective AChE inhibitor (IC50 = 38.98 µM), while 2-(phenylcarbamoyl)phenyl diphenylcarbamate produced the lowest IC50 value for BChE (1.60 µM). Results from molecular docking studies suggest that carbamate compounds, especially N,N-diphenyl substituted representatives with considerable portion of aromatic moieties may work as non-covalent inhibitors displaying many interactions at peripheral anionic sites of both enzymes. Mild cytotoxicity for HepG2 cells and consequent satisfactory calculated selectivity indexes qualify several derivatives for further optimization.
Ozarowski, Marcin; Thiem, Barbara; Mikolajczak, Przemyslaw L.; Piasecka, Anna; Kachlicki, Piotr; Szulc, Michal; Kaminska, Ewa; Kujawski, Radoslaw; Bartkowiak-Wieczorek, Joanna; Kujawska, Malgorzata; Jodynis-Liebert, Jadwiga; Budzianowski, Jaromir; Kędziora, Izabela; Seremak-Mrozikiewicz, Agnieszka; Czerny, Boguslaw; Bobkiewicz-Kozłowska, Teresa
2015-01-01
Eryngium planum L. (EP) is as a rare medicinal plant with a lot of potentials as pharmaceutical crops. The aim of our study was to assess the effect of subchronic (28-fold) administration of a 70% ethanol extract of EP roots (200 mg/kg, p.o.) on behavioral and cognitive responses in Wistar rats linked with acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), and beta-secretase (BACE-1) mRNA levels and AChE and BuChE activities in the hippocampus and frontal cortex. On the last day of experiment, 30 min after the last dose of EP or Huperzine A (HU), scopolamine (SC) was given at a dose of 0.5 mg/kg b.w. intraperitoneally. The results of a passive avoidance test showed an improvement in long-term memory produced by the EP extract in both scopolamine-induced rats and control group. EP caused an insignificant inhibition of AChE and BuChE activities in the frontal cortex and the hippocampus. EP decreased mRNA AChE, BuChE, and BACE-1 levels, especially in the cortex. Our results suggest that the EP extract led to the improvement of the long-term memory in rats coupled with total saponin content. The mechanism of EP action is probably complicated, since HPLC-MS analysis showed 64 chemical compounds (phenolics, saponins) in the extract of EP roots. PMID:26483842
Vilela, Adriana Ferreira Lopes; Seidl, Cláudia; Lima, Juliana Maria; Cardoso, Carmen Lúcia
2018-05-15
Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are key cholinesterase enzymes responsible for the hydrolysis of acetylcholine into choline and acetic acid, an essential process for the restoration of the cholinergic neuron. The loss of cholinergic function in the central nervous system contributes to the cognitive decline associated with advanced age and Alzheimer's disease (AD). Inhibitions assays represent a significant role in the drug discovery process. Herein, we describe an improved label free method to screen and characterize new BChE ligands. The liquid chromatography system uses an immobilized capillary enzyme reactor (ICER) as a low affinity and high selectivity column coupled to a mass spectrometer (MS). The enzyme activity was evaluated by monitoring the choline's precursor ion [M + H] + m/z 104 for a brief period. The method was validated using two known cholinesterase inhibitors tacrine and galanthamine. The IC 50 values were 0.03 ± 0.006 μM and 0.88 ± 0.2 for tacrine and galanthamine respectively, and Ki was 0.11 ± 0.2 for galanthamine. The efficient combination of the huBChE-ICER with sensitive enzymatic assay detection such as MS, improved the reliable, fast identification of new ligands. Moreover, specific direct quantitation of the product contributes to the reduction of false positive and negative results. Copyright © 2018. Published by Elsevier Inc.
Calva, James; Bec, Nicole; Gilardoni, Gianluca; Larroque, Christian; Cartuche, Luis; Bicchi, Carlo; Montesinos, José Vinicio
2017-10-31
This study investigated the chemical composition, physical proprieties, biological activity, and enantiomeric analysis of the essential oil from the aerial parts of Niphogeton dissecta (culantrillo del cerro) from Ecuador, obtained by steam distillation. The qualitative and quantitative analysis of the essential oil was realized by gas chromatographic and spectroscopic techniques (GC-MS and GC-FID). Acorenone B was identified by GC-MS and NMR experiments. The enantiomeric distribution of some constituents has been assessed by enantio-GC through the use of a chiral cyclodextrin-based capillary column. We identified 41 components that accounted for 96.46% of the total analyzed, the major components were acorenone B (41.01%) and (E)-β-ocimene (29.64%). The enantiomeric ratio of (+)/(-)-β-pinene was 86.9:13.1, while the one of (+)/(-)-sabinene was 80.9:19.1. The essential oil showed a weak inhibitory activity, expressed as Minimal Inhibitory Concentration (MIC), against Enterococcus faecalis (MIC 10 mg/mL) and Staphylococcus aureus (MIC 5 mg/mL). Furthermore, it inhibited butyrylcholinesterase with an IC 50 value of 11.5 μg/mL. Pure acorenone B showed inhibitory activity against both acetylcholinesterase and butyrylcholinesterase, with IC 50 values of 40.8 μg/mL and 10.9 μg/mL, respectively.
Calva, James; Bec, Nicole; Gilardoni, Gianluca; Larroque, Christian; Cartuche, Luis; Bicchi, Carlo; Montesinos, José Vinicio
2017-01-01
This study investigated the chemical composition, physical proprieties, biological activity, and enantiomeric analysis of the essential oil from the aerial parts of Niphogeton dissecta (culantrillo del cerro) from Ecuador, obtained by steam distillation. The qualitative and quantitative analysis of the essential oil was realized by gas chromatographic and spectroscopic techniques (GC-MS and GC-FID). Acorenone B was identified by GC-MS and NMR experiments. The enantiomeric distribution of some constituents has been assessed by enantio-GC through the use of a chiral cyclodextrin-based capillary column. We identified 41 components that accounted for 96.46% of the total analyzed, the major components were acorenone B (41.01%) and (E)-β-ocimene (29.64%). The enantiomeric ratio of (+)/(−)-β-pinene was 86.9:13.1, while the one of (+)/(−)-sabinene was 80.9:19.1. The essential oil showed a weak inhibitory activity, expressed as Minimal Inhibitory Concentration (MIC), against Enterococcus faecalis (MIC 10 mg/mL) and Staphylococcus aureus (MIC 5 mg/mL). Furthermore, it inhibited butyrylcholinesterase with an IC50 value of 11.5 μg/mL. Pure acorenone B showed inhibitory activity against both acetylcholinesterase and butyrylcholinesterase, with IC50 values of 40.8 μg/mL and 10.9 μg/mL, respectively. PMID:29088082
Bharadwaj, Manushree; Pope, Carey; Davis, Michael; Katz, Stuart; Cook, Christian; Maxwell, Lara
2017-08-01
Heart rate recovery (HRR) describes the rapid deceleration of heart rate after strenuous exercise and is an indicator of parasympathetic tone. A reduction in parasympathetic tone occurs in patients with congestive heart failure, resulting in prolonged HRR. Acetylcholinesterase inhibitors, such as pyridostigmine, can enhance parasympathetic tone by increasing cholinergic input to the heart. The objective of this study was to develop a rodent model of HRR to test the hypothesis that subacute pyridostigmine administration decreases cholinesterase activity and accelerates HRR in rats. Ten days after implantation of radiotelemetry transmitters, male Sprague Dawley rats were randomized to control (CTL) or treated (PYR; 0.14 mg/mL pyridostigmine in the drinking water, 29 days) groups. Rats were exercised on a treadmill to record HRR, and blood samples were collected on days 0, 7, 14, and 28 of pyridostigmine administration. Total cholinesterase and acetylcholinesterase (AChE) activity in plasma was decreased by 32%-43% and 57%-80%, respectively, in PYR rats on days 7-28, while plasma butyrylcholinesterase activity did not significantly change. AChE activity in red blood cells was markedly reduced by 64%-66%. HRR recorded 1 minute after exercise was higher in the PYR group on days 7, 14 and 28, and on day 7 when HRR was estimated at 3 and 5 minutes. Autonomic tone was evaluated pharmacologically using sequential administration of muscarinic (atropine) and adrenergic (propranolol) blockers. Parasympathetic tone was increased in PYR rats as compared with the CTL group. These data support the study hypothesis that subacute pyridostigmine administration enhances HRR by increasing cardiac parasympathetic tone. © 2017 John Wiley & Sons Australia, Ltd.
Brittain, Matthew K.; McGarry, Kevin G.; Moyer, Robert A.; Babin, Michael C.; Jett, David A.; Platoff, Gennady E.; Yeung, David T.
2016-01-01
Purpose Aldicarb and methomyl are carbamate pesticides commonly implicated in human poisonings. The primary toxic mechanism of action for carbamate poisoning is cholinesterase (ChE) inhibition. As such, it is logical to assume that the currently accepted therapies for organophosphate poisoning [muscarinic antagonist atropine and the oxime acetylcholinesterase reactivator pralidoxime chloride (2-PAM Cl),], could afford therapeutic protection. However, oximes have been shown to be contraindicated for poisoning by some carbamates. Methods A protective ratio study was conducted in guinea pigs to evaluate the efficacy of atropine and 2-PAM Cl. ChE activity was determined in both the blood and cerebral cortex.. Results Co-administration of atropine free base (0.4 mg/kg) and 2-PAM Cl (25.7 mg/kg) demonstrated protective ratios of 2 and 3 against aldicarb and methomyl, respectively, relative to saline. The data reported here show that this protection was primarily mediated by the action of atropine. The reactivator 2-PAM Cl had neither positive nor negative effects on survival. Both blood acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities were significantly reduced at 15 minutes post-challenge but gradually returned to normal within 24 h. Analysis of cerebral cortex showed that BChE, but not AChE, activity was reduced in animals that succumbed prior to 24 h after challenge. Conclusion The results suggest that co-administration of atropine and 2-PAM Cl at the currently recommended human equivalent doses for use in the pre-hospital setting to treat organophosphorus nerve agent and pesticide poisoning would likely also be effective against aldicarb or methomyl poisoning. PMID:27102179
Peltzer, Paola M; Junges, Celina M; Attademo, Andrés M; Bassó, Agustín; Grenón, Paula; Lajmanovich, Rafael C
2013-09-01
In this study, amphibian tadpoles of Hypsiboas pulchellus were exposed to herbicide Liberty®, which contains glufosinate ammonium (GLA), for 48 h to the following concentrations: 0 (control), 3.55, 4.74, 6.32, 8.43, 11.25, 15, 20, 26.6, and 35.5 mg GLA L(-1). Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities, as well as swimming capabilities (swimming speed and mean distance) were measured in tadpoles whose concentrations displayed survival rates > 85 %. Our results reveal that sublethal concentrations of GLA significantly inhibited both AChE and BChE activities in tadpoles with respect to the control, showing a concentration-dependent inhibitory effect. The highest inhibition percentages of AChE (50.86%) and BChE (53.02%) were registered in tadpoles exposed to 15 mg GLA L(-1). At this concentration, a significant increase of the swimming speed and mean distance were found in exposed tadpoles with respect to the control, as well as a negative and significant correlation between swimming speed and BChE activity, thus suggesting that this enzyme inhibition is related to an increase in swimming speed. Therefore, exposure of tadpoles to GLA in the wild at concentrations similar to those tested here may have adverse consequences at population level because neurotransmission and swimming performance are essential for tadpole performance and survival.
Fadaeinasab, Mehran; Hadi, A Hamid A; Kia, Yalda; Basiri, Alireza; Murugaiyah, Vikneswaran
2013-03-25
Plants of the Apocynaceae family have been traditionally used in the treatment of age-related brain disorders. Rauvolfia reflexa, a member of the family, has been used as an antidote for poisons and to treat malaria. The dichloromethane, ethanol and methanol extracts from the leaves of Rauvolfia reflexa showed potential acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities, with IC50 values in the 8.49 to 52.23 g/mL range. Further cholinesterase inhibitory-guided isolation of these extracts afforded four bioactive compounds, namely: (E)-3-(3,4,5-trimethoxyphenyl)acrylic acid (1), (E)-methyl 3-(4-hydroxy-3,5-dimethoxyphenyl) acrylate (2), 17-methoxycarbonyl-14-heptadecaenyl-4-hydroxy-3-methoxycinnamate (3) and 1,2,3,4-tetrahydro-1-oxo-β-carboline (4). The isolated compounds showed moderate cholinesterase inhibitory activity compared to the reference standard, physostigmine. Compounds 1 and 2 showed the highest inhibitory activity against AChE (IC50 = 60.17 µM) and BChE (IC50 = 61.72 µM), respectively. Despite having similar molecular weight, compounds 1 and 2 were structurally different according to their chemical substitution patterns, leading to their different enzyme inhibition selectivity. Compound 2 was more selective against BChE, whereas compound 1 was a selective inhibitor of AChE. Molecular docking revealed that both compounds 1 and 2 were inserted, but not deeply into the active site of the cholinesterase enzymes.
Trafficking of cholinesterases and neuroligins mutant proteins. An association with autism.
De Jaco, Antonella; Comoletti, Davide; King, Charles C; Taylor, Palmer
2008-09-25
Autism encompasses a wide spectrum of disorders arising during brain development. Recent studies reported that sequence polymorphisms in neuroligin-3 (NLGN3) and neuroligin-4 (NLGN4) genes have been linked to autism spectrum disorders indicating neuroligin genes as candidate targets in brain disorders. We have characterized a single mutation found in two affected brothers that substituted Arg451 to Cys in NL3. Our data show that the exposed Cys causes retention of the protein in the endoplasmic reticulum (ER) when expressed in HEK-293 cells. To examine whether the introduction of a Cys in the C-terminal region of other alpha/beta-hydrolase fold proteins could promote the same cellular phenotype, we made homologous mutations in acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) and found a similar processing deficiency and intracellular retention (De Jaco et al., J Biol Chem. 2006, 281:9667-76). NL3, AChE and BChE mutant proteins are recognized as misfolded in the ER, and degraded via the proteasome pathway. A 2D electrophoresis coupled with mass spectrometry based approach was used to analyze proteins co-immunoprecipitating with NL3 and show differential expression of factors interacting with wild type and mutant NL3. We identified several proteins belonging to distinct ER resident chaperones families, including calnexin, responsible for playing a role in the folding steps of the AChE and NLs.
Che, Magnus M; Song, Jian; Oguntayo, Samuel; Doctor, Bhupendra P; Rezk, Peter; Perkins, Michael W; Sciuto, Alfred M; Nambiar, Madhusoodana P
2012-05-01
Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities were measured in the blood and tissues of animals that are treated with a number of endotracheally aerosolized therapeutics for protection against inhalation toxicity to sarin. Therapeutics included, aerosolized atropine methyl bromide (AMB), scopolamine or combination of AMB with salbutamol, sphingosine 1-phosphate, keratinocyte growth factor, adenosine A1 receptor antisense oligonucleotide (EPI2010), 2,3-diacetyloxybenzoic acid (2,3 DABA), oxycyte, and survanta. Guinea pigs exposed to 677.4 mg/m(3) or 846.5 mg/m(3) (1.2 LCt(50)) sarin for 4 min using a microinstillation inhalation exposure technique and treated 1 min later with the aerosolized therapeutics. Treatment with all therapeutics significantly increased the survival rate with no convulsions throughout the 24 h study period. Blood AChE activity determined using acetylthiocholine as substrate showed 20% activity remaining in sarin-exposed animals compare to controls. In aerosolized AMB and scopolamine-treated animals the remaining AChE activity was significantly higher (45-60%) compared to sarin-exposed animals (p < 0.05). Similarly, treatment with all the combination therapeutics resulted in significant increase in blood AChE activity in comparison to sarin-exposed animals although the increases varied between treatments (p < 0.05). BChE activity was increased after treatment with aerosolized therapeutics but was lesser in magnitude compared to AChE activity changes. Various tissues showed elevated AChE activity after therapeutic treatment of sarin-exposed animals. Increased AChE and BChE activities in animals treated with nasal therapeutics suggest that enhanced breathing and reduced respiratory toxicity/lung injury possibly contribute to rapid normalization of chemical warfare nerve agent inhibited cholinesterases.
Bhakta, Himanshu Kumar; Park, Chan Hum; Yokozawa, Takako; Min, Byung-Sun; Jung, Hyun Ah; Choi, Jae Sue
2016-06-01
We evaluated the major active components isolated from Corni Fructus: loganin, morroniside, and 7-O-galloyl-D-sedoheptulose as inhibitors of acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and β-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1) for use in Alzheimer's disease treatment. These compounds exhibited predominant cholinesterase (ChEs) inhibitory effects with IC50 values of 0.33, 3.95, and 10.50 ± 1.16 µM, respectively, for AChE, and 33.02, 37.78, and 87.94 ± 4.66 µM, respectively, for BChE. Kinetics studies revealed that loganin and 7-O-galloyl-D-sedoheptulose inhibited AChE with characteristics typical of mixed inhibitors, while morroniside was found to be a noncompetitive inhibitor against AChE and also exerted mixed BChE inhibitory activities. For BACE1, loganin showed noncompetitive type inhibitory effects, while morroniside and 7-O-galloyl-D-sedoheptulose were found to be mixed inhibitors. Furthermore, these compounds exhibited dose-dependent inhibitory activity with ONOO(-)-mediated protein tyrosine nitration. Molecular docking simulation of these compounds demonstrated negative binding energies for ChEs, and BACE1, indicating high affinity and tighter binding capacity for the active site of the enzyme. Loganin was the most potent inhibitor against both ChEs and BACE1. The data suggest that these compounds together can act as a triple inhibitor of AChE, BChE, and BACE1, providing a preventive and therapeutic strategy for Alzheimer's disease treatment.
Acetylcholinesterase (AChE) is a key enzyme in the nervous system of animals, terminating impulse transmission by rapid hydrolysis of the neurotransmitter acetylcholine. Organophosphate (OP) and carbamate esters can inhibit acetylcholinesterase (AChE) by binding covalently to a s...
Role of acetylcholinesterase in lung cancer
Xi, Hui-Jun; Wu, Ren-Pei; Liu, Jing-Jing; Zhang, Ling-Juan; Li, Zhao-Shen
2015-01-01
Acetylcholinesterase (AChE) plays a key role in catalytic hydrolysis of cholinergic neurotransmitters. Intensive research has proven the involvement of this protein in novel functions, such as cell adhesion, differentiation, and proliferation. In addition, several recent studies have indicated that acetylcholinesterase is potentially a marker and regulator of apoptosis. Importantly, AChE is also a promising tumor suppressor. In this review, we briefly summarize the involvement of AChE in apoptosis and cancer, focusing on the role of AChE in lung cancer, as well as the therapeutic consideration of AChE for cancer therapy. PMID:26273392
Musilek, Kamil; Komloova, Marketa; Holas, Ondrej; Hrabinova, Martina; Pohanka, Miroslav; Dohnal, Vlastimil; Nachon, Florian; Dolezal, Martin; Kuca, Kamil
2011-02-01
Inhibitors of acetylcholinesterase are compounds widely used in the treatment of various diseases, such as Alzheimer's disease, glaucoma and Myasthenia gravis (MG). Compounds used in the therapy of MG posses a positive charge in the molecule to ensure peripheral effect of action and minimal blood-brain barrier penetration. The most prescribed carbamate inhibitors are however known for many severe side effects related to the carbamylation of AChE. This paper describes preparation and in vitro evaluation of 20 newly prepared bis-isoquinolinium inhibitors of potential concern for MG. The newly prepared compounds were evaluated in vitro on human recombinant AChE and human plasmatic butyrylcholinesterase (BChE). Their inhibitory ability was expressed as IC50 and compared to chosen standards ambenonium dichloride, edrophonium chloride, BW284c51 and ethopropazine hydrochloride. Three novel compounds presented promising inhibition (in nM range) of both enzymes in vitro better or similar to edrophonium and BW284c51, but worse to ambenonium. The novel inhibitors did not present higher selectivity toward AChE or BChE. The kinetic assay confirmed non-competitive inhibition of hAChE by two selected promising novel compounds. Two newly prepared compounds were also chosen for docking studies that confirmed apparent π-π or π-cationic interactions aside the cholinesterases catalytic sites. The SAR findings were discussed. Copyright © 2010 Elsevier Masson SAS. All rights reserved.
Qiao, Yan; Han, Keli; Zhan, Chang-Guo
2014-01-01
As the most active metabolite of heroin, 6-monoacetylmorphine (6-MAM) can penetrate into the brain for the rapid onset of heroin effects. The primary enzymes responsible for the metabolism of 6-MAM to the less potent morphine in humans are acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). The detailed reaction pathways for AChE- and BChE-catalyzed hydrolysis of 6-MAM to morphine have been explored, for the first time, in the present study by performing first-principles quantum mechanical/molecular mechanical free energy calculations. It has been demonstrated that the two enzymatic reaction processes follow the similar catalytic reaction mechanism, and the whole catalytic reaction pathway for each enzyme consists of four reaction steps. According to the calculated results, the second reaction step associated with the transition state TS2a/TS2b should be rate-determining for the AChE/BChE-catalyzed hydrolysis, and the free energy barrier calculated for the AChE-catalyzed hydrolysis (18.3 kcal/mol) is 2.5 kcal/mol lower than that for the BChE-catalyzed hydrolysis (20.8 kcal/mol). The free energy barriers calculated for the AChE- and BChE-catalyzed reactions are in good agreement with the experimentally derived activation free energies (17.5 and 20.7 kcal/mol for the AChE- and BChE-catalyzed reactions, respectively). Further structural analysis reveals that the aromatic residues Phe295 and Phe297 in the acyl pocket of AChE (corresponding to Leu286 and Val288 in BChE) contribute to the lower energy of TS2a relative to TS2b. The obtained structural and mechanistic insights could be valuable for use in future rational design of a novel therapeutic treatment of heroin abuse. PMID:24595354
Hadda, Taibi Ben; Talhi, Oualid; Silva, Artur S M; Senol, Fatma Sezer; Orhan, Ilkay Erdogan; Rauf, Abdur; Mabkhot, Yahia N; Bachari, Khaldoun; Warad, Ismail; Farghaly, Thoraya A; Althagafi, Ismail I; Mubarak, Mohammad S
2018-01-01
Cholinesterase family consists of two sister enzymes; acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) which hydrolyze acetylcholine. Since deficit of acetylcholine has been evidenced in patients of Alzheimer's disease (AD), cholinesterase inhibitors are currently the most prescribed drugs for the treatment of AD. our aim in this article was to investigate the inhibitory potential of five known compounds (2-6) with spiro skeleton against AChE and BChE using ELISA microplate assays. In addition to their ChE inhibitory effect, their physico-chemical properties were also calculated. Moreover, the present work aims at investigating the charge/geometrical effect of a hypothetical pharmacophore or bidentate site in a bioactive group, on the inhibition efficiency of spiro compounds 2-6 by using Petra/Osiris/ molinspiration (POM) and X-ray analyses. In the present study, five compounds (2-6) with spiro skeleton have been synthesized and tested in vitro for their inhibitory potential against AChE and BChE using ELISA microtiter plate assays at 25 µg/mL. Results revealed that three of the spiro compounds tested exert more than 50% inhibition against one of cholinesterases. Compound 5 displayed 68.73 ± 4.73% of inhibition toward AChE, whereas compound 6 showed 56.17 ± 0.83% of inhibition toward BChE; these two previously synthesized compounds have been the most active hits. Our data obtained from screening of compounds 2-6 against the two cholinesterases indicate that three of these show good potential to selectively inhibit AChE or BChE. Spiro compounds 2, 5, and 6 exhibited the most potent activity of the series against AChE or BChE with inhibition values in the range 55-70%. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Potential of aryl-urea-benzofuranylthiazoles hybrids as multitasking agents in Alzheimer's disease.
Kurt, Belma Zengin; Gazioglu, Isil; Basile, Livia; Sonmez, Fatih; Ginex, Tiziana; Kucukislamoglu, Mustafa; Guccione, Salvatore
2015-09-18
New benzofuranylthiazole derivatives containing the aryl-urea moiety were synthesized and evaluated in vitro as dual acetylcholinesterase (AChE)-butyrylcholinesterase (BuChE) inhibitors. In addition, the cupric reducing antioxidant capacities (CUPRAC) and ABTS cation radical scavenging abilities of the synthesized compounds were assayed. The result showed that all the synthesized compounds exhibited inhibitory activity on both AChE and BuChE with 1-(4-(5-bromobenzofuran-2-yl)thiazol-2-yl)-3-(2-fluorophenyl)urea (e25, IC50 value of 3.85 μM) and 1-(4-iodophenyl)-3-(4-(5-nitrobenzofuran-2-yl)thiazol-2-yl)urea (e38, IC50 value of 2.03 μM) as the strongest inhibitors against AChE and BuChE, respectively. Compound e38 was 8.5-fold more potent than galanthamine. The selectivity index of e25 and e38 was 2.40 and 0.37 against AChE and BuChE, respectively. Compound e2, e4 and e11 (IC50 = 0.2, 0.5 and 1.13 μM, respectively) showed a better ABTS cation radical scavenging ability than the standard quercetin (IC50 = 1.18 μM). Best poses of compounds e38 on BuChE and e25 on AChE indicate that the thiazole ring and the amidic moiety are important sites of interaction with both ChEs. In addition, the benzofuran ring and phenyl ring are anchored to the side chains of both enzymes by π-π(pi-pi) interactions. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Wu, Alan H B; Smith, Andrew; McComb, Robert; Bowers, George N; Makowski, Gregory S; McKay, Charles A; Vena, Jason; McDonagh, John; Hopfer, Sidney; Sena, Salvatore F; Malkus, Herbert; Forte, Elaine; Kelly, Katherine
2008-02-01
Hospital laboratories currently lack the capacity to provide emergency determination of cholinesterase activity. We have developed a hospital-based 3-tiered system to test plasma for butyrylcholinesterase (BChE) activity and whole blood for red cell acetylcholinesterase (AChE) activity using available technology and personnel. Interagency communications, toxidrome definition, and patient triage will be coordinated by the Connecticut Department of Public Health and the Poison Control Center. Initial BChE data documents good precision between institutions (coefficient of variation < 8%). Laboratory testing of plasma or blood for cholinesterase activity is important in the management of nerve agent exposure and in ruling out disease in those with non-specific symptoms in the setting of a terrorist attack or accidental exposure. Rapid availability of strong hospital-based analytic support in a smoothly functioning network of clinical, public health, and laboratory services will facilitate overall regional response to chemical terrorism or large scale HazMat events.
Beverages of lemon juice and exotic noni and papaya with potential for anticholinergic effects.
Gironés-Vilaplana, Amadeo; Valentão, Patrícia; Andrade, Paula B; Ferreres, Federico; Moreno, Diego A; García-Viguera, Cristina
2015-03-01
Lemon (Citrus limon (L.) Burm. f.) juice beverages enriched either with noni (Morinda citrifolia L.) (LN) or papaya (Carica papaya L.) (LP), were characterized by HPLC-DAD-ESI/MS(n), the antioxidant capacity was evaluated by (DPPH·), superoxide (O2(·-)), hydroxyl radicals (·OH) and hypochlorous acid (HOCl) assays, and their potential as acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitors was also assessed. The fruits are rich in a wide range of bioactive phenolics. Regarding DPPH·, ·OH and HOCl assays, the LP displayed strong activity, and LN was the most active against O2(·-). Concerning cholinesterases, LP was the most active, mainly due to lemon juice contribution. The effect on the cholinesterases was not as strong as in previous reports on purified extracts, but the bioactive-rich beverages offer the possibility of dietary coadjutants for daily consumption of health-promoting substances by adults with aging-related cognitive or physical disorders. Copyright © 2014 Elsevier Ltd. All rights reserved.
Cholinesterases as biomarkers for parasympathetic dysfunction and inflammation-related disease.
Shenhar-Tsarfaty, Shani; Berliner, Shlomo; Bornstein, Natan M; Soreq, Hermona
2014-07-01
Accumulating evidence suggests parasympathetic dysfunction and elevated inflammation as underlying processes in multiple peripheral and neurological diseases. Acetylcholine, the main parasympathetic neurotransmitter and inflammation regulator, is hydrolyzed by the two closely homologous enzymes, acetylcholinesterase and butyrylcholinesterase (AChE and BChE, respectively), which are also expressed in the serum. Here, we consider the potential value of both enzymes as possible biomarkers in diseases associated with parasympathetic malfunctioning. We cover the modulations of cholinesterase activities in inflammation-related events as well as by cholinesterase-targeted microRNAs. We further discuss epigenetic control over cholinesterase gene expression and the impact of single-nucleotide polymorphisms on the corresponding physiological and pathological processes. In particular, we focus on measurements of circulation cholinesterases as a readily quantifiable readout for changes in the sympathetic/parasympathetic balance and the implications of changes in this readout in health and disease. Taken together, this cumulative know-how calls for expanding the use of cholinesterase activity measurements for both basic research and as a clinical assessment tool.
Bosak, Anita; Knežević, Anamarija; Gazić Smilović, Ivana; Šinko, Goran; Kovarik, Zrinka
2017-12-01
We investigated the influence of bronchodilating β2-agonists on the activity of human acetylcholinesterase (AChE) and usual, atypical and fluoride-resistant butyrylcholinesterase (BChE). We determined the inhibition potency of racemate and enantiomers of fenoterol as a resorcinol derivative, isoetharine and epinephrine as catechol derivatives and salbutamol and salmeterol as saligenin derivatives. All of the tested compounds reversibly inhibited cholinesterases with K i constants ranging from 9.4 μM to 6.4 mM and had the highest inhibition potency towards usual BChE, but generally none of the cholinesterases displayed any stereoselectivity. Kinetic and docking results revealed that the inhibition potency of the studied compounds could be related to the size of the hydroxyaminoethyl chain on the benzene ring. The additional π-π interaction of salmeterol's benzene ring and Trp286 and hydrogen bond with His447 probably enhanced inhibition by salmeterol which was singled out as the most potent inhibitor of all the cholinesterases.
[Ligands of cholinesterases of ephedrine and pseudoephedrine structure].
Basova, N E; Kormilitsin, B N; Perchenok, A Yu; Rozengatt, E V; Saakov, V S; Suvorov, A A
2013-01-01
The paper is a review of literature data on interaction of the mammalian erythrocyte acetylcholinesterase and blood serum butyrylcholinesterase with a group of isomer complex ester derivatives (acetates, propionates, butyrates, valerates, and isobutyrates) of bases and iodomethylates of ephedrine and its enantiomer pseudoephedrine. For 20 alkaloid monoesters, parameters of enzymatic hydrolysis are determined and their certain specificity toward acetylcholinesterase is revealed, whereas 5 diesters of iodomethylates of pseudoephedrine were hydrolyzed only by butyrylcholinesterase. The studied 20 aklaloid diesters and 10 trimethylammonium derivatives turned out to be non-competitive reversible inhibitors of acetylcholinesterase and competitive inhibitors of butyrylcholinesterase. The performed for the first time isomer and enantiomer analysis "structure-efficiency" has shown that in most cases it is possible to state the greater comlementarity of the catalytical surface of enzymes for ligands of the pseudoephedrine structure, such differentiation being realized more often at the reversible inhibition of enzymes. pseudoephedrine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaiswal, R.; Huang, T.; Obih, P.
1995-12-31
The objectives of this study are to investigate the sensitivity of different classes of esterases in various aquatic species to environmental contaminants and the possible use of these enzymes as biomarkers for monitoring the effects of pollutants. Acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), and the non-specific carboxylesterases (CaE) were analyzed in three fish species, Ictiobus bubalus (small mouth buffalo), Ictiobus cyprinellus (big mouth buffalo) and Lepisosteus oculatus (spotted gar) and the green tree frog, Hyla cinerea. These samples were collected from the Devil`s Swamp Site (DSS), an industrial site known to be highly contaminated at the Mississippi River Basin, and Lake Tunica,more » a nonindustrial site. ACHE and BuChE activities in the subcellular fractions of liver and brain were significantly lower in fishes and frogs obtained from DSS when compared to the same species obtained from Tunica swamp site. The greatest decrease was observed with ACHE activity in the liver and brain of Ictiobus bubalus from DSS. CaE activity analyzed with p-nitrophenyl acetate was found to be significantly lower in the liver of all three fish species collected from DSS when compared to the same fish species obtained from the Tunica swamp site.« less
Brain region-specific effects of immobilization stress on cholinesterases in mice.
Valuskova, Paulina; Farar, Vladimir; Janisova, Katerina; Ondicova, Katarina; Mravec, Boris; Kvetnansky, Richard; Myslivecek, Jaromir
2017-01-01
Brain acetylcholinesterase (AChE) variant AChE R expression increases with acute stress, and this persists for an extended period, although the timing, strain and laterality differences, have not been explored previously. Acute stress transiently increases acetylcholine release, which in turn may increase activity of cholinesterases. Also the AChE gene contains a glucocorticoid response element (GRE), and stress-inducible AChE transcription and activity changes are linked to increased glucocorticoid levels. Corticotropin-releasing hormone knockout (CRH-KO) mice have basal glucocorticoid levels similar to wild type (WT) mice, but much lower levels during stress. Hence we hypothesized that CRH is important for the cholinesterase stress responses, including butyrylcholinesterase (BChE). We used immobilization stress, acute (30 or 120 min) and repeated (120 min daily × 7) in 48 male mice (24 WT and 24 CRH-KO) and determined AChE R , AChE and BChE mRNA expression and AChE and BChE activities in left and right brain areas (as cholinergic signaling shows laterality). Immobilization decreased BChE mRNA expression (right amygdala, to 0.5, 0.3 and 0.4, × control respectively) and AChE R mRNA expression (to 0.5, 0.4 and 0.4, × control respectively). AChE mRNA expression increased (1.3, 1.4 and 1.8-fold, respectively) in the left striatum (Str). The AChE activity increased in left Str (after 30 min, 1.2-fold), decreased in right parietal cortex with repeated stress (to 0.5 × control). BChE activity decreased after 30 min in the right CA3 region (to 0.4 × control) but increased (3.8-fold) after 120 min in the left CA3 region. The pattern of changes in CRH-KO differed from that in WT mice.
Wille, Timo; Thiermann, Horst; Worek, Franz
2011-04-25
The simultaneous use of the repellent DEET, pyridostigmine, and organophosphorus pesticides has been assumed as a potential cause for the Gulf War Illness and combinations have been tested in different animal models. However, human in vitro data on interactions of DEET with other compounds are scarce and provoked the present in vitro study scrutinizing the interactions of DEET, pyridostigmine and pesticides with human acetylcholinesterase (hAChE) and butyrylcholinesterase (hBChE). DEET showed to be a weak and reversible inhibitor of hAChE and hBChE. The IC(50) of DEET was calculated to be 21.7mM DEET for hAChE and 3.2mM DEET for hBChE. The determination of the inhibition kinetics of pyridostigmine, malaoxon and chlorpyrifos oxon with hAChE in the presence of 5mM DEET resulted in a moderate reduction of the inhibition rate constant k(i). The decarbamoylation velocity of pyridostigmine-inhibited hAChE was not affected by DEET. In conclusion, the in vitro investigation of interactions between human cholinesterases, DEET, pyridostigmine, malaoxon and chlorpyrifos oxon showed a weak inhibition of hAChE and hBChE by DEET. The inhibitory potency of the tested cholinesterase inhibitors was not enhanced by DEET and it did not affect the regeneration velocity of pyridostigmine-inhibited AChE. Hence, this in vitro study does not give any evidence of a synergistic effect of the tested compounds on human cholinesterases. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Reale, Marcella; Di Nicola, Marta; Velluto, Lucia; D’Angelo, Chiara; Costantini, Erica; Lahiri, Debomoy K.; Kamal, Mohammad A.; Yu, Qian-sheng; Greig, Nigel H.
2016-01-01
Increasing evidence suggests that the early pathogenesis of Alzheimer’s disease (AD) is driven by elevated production and/or reduced clearance of amyloid-β peptide (Aβ), which is derived from the larger Aβ precursor protein (APP). Aβ aggregates to form neurotoxic soluble oligomers that trigger a cascade of events leading to neuronal dysfunction, neurodegeneration and, ultimately, clinical dementia. Inflammation, both within the brain and systemically, together with a deficiency in the brain neurotransmitter acetylcholine, which underpinned the development of anticholinesterases for the symptomatic treatment of AD, are invariable hallmarks of the disease. The inter-relation between Aβ, inflammation and cholinergic signaling is complex, with each feeding back onto the others to drive disease progression. To elucidate these interactions plasma samples and peripheral blood mononuclear cells (PBMCs) were evaluated from healthy control (HC) subjects and AD patients. Plasma levels of acetyl- (AChE) and butyrylcholinesterase (BuChE) as well as Aβ were significantly elevated in AD vs. HC subjects, and acetylcholine showed a trend towards reduced levels. Aβ challenge of the AD and HC PBMCs resulted in greater release of inflammatory cytokines interleukin-1β (IL-1β), monocyte chemotactic protein-1 (MCP-1) and tumor necrosis factor-alpha (TNF-α) from AD vs. HC subjects, with IL-10 expression being similarly affected. THP-1 monocytic cells, a cell culture counterpart of PBMCs and brain microglial cells, responded similarly to Aβ as well as to phytohaemagglutinin (PHA) challenge, to allow preliminary analysis of the cellular and molecular pathways that underpin Aβ-induced changes in cytokine expression. In light of prior studies demonstrating that APP expression was regulated by specific cytokines and anticholinesterase drugs, the latter were evaluated on Aβ- and PHA-induced chemo-cytokine expression. Co-incubation with selective inhibitors, such as the acetylcholinesterase (AChE)-inhibitor (−)-phenserine and the butyrylcholinesterase (BuChE)-inhibitor (−)-cymserine analogues mitigated the rise in cytokine levels, and suggest that augmentation of the cholinergic anti-inflammatory pathway may prove valuable in AD. PMID:24359497
Novel tacrine/acridine anticholinesterase inhibitors with piperazine and thiourea linkers.
Hamulakova, Slavka; Imrich, Jan; Janovec, Ladislav; Kristian, Pavol; Danihel, Ivan; Holas, Ondrej; Pohanka, Miroslav; Böhm, Stanislav; Kozurkova, Maria; Kuca, Kamil
2014-09-01
A new series of substituted tacrine/acridine and tacrine/tacrine dimers with aliphatic or alkylene-thiourea linkers was synthesized and the potential of these compounds as novel human acetylcholinesterase (hAChE) and human butyrylcholinesterase (hBChE) inhibitors with nanomolar inhibition activity was evaluated. The most potent AChE inhibitor was found to be homodimeric tacrine derivative 14a, which demonstrated an IC50 value of 2 nM; this value indicates an activity rate which is 250-times higher than that of tacrine 1 and 7500-times higher than 7-MEOTA 15, the compounds which were used as standards in the study. IC50 values of derivatives 1, 9, 10, 14b and 15 were compared with the dissociation constants of the enzyme-inhibitor complex, Ki1, and the enzyme-substrate-inhibitor complex, Ki2, for. A dual binding site is presumed for the synthesized compounds which possess two tacrines or tacrine and acridine as terminal moieties show evidence of dual site binding. DFT calculations of theoretical desolvation free energies, ΔΔGtheor, and docking studies elucidate these suggestions in more detail. Copyright © 2014 Elsevier B.V. All rights reserved.
Shah, Muhammad Shakil; Khan, Shafi Ullah; Ejaz, Syeda Abida; Afridi, Saifullah; Rizvi, Syed Umar Farooq; Najam-Ul-Haq, Muhammad; Iqbal, Jamshed
2017-01-22
Super-activation of cholinesterases (acetylcholinesterase and butyrylcholinesterase) are linked to various neurological problems most precisely Alzheimer's disease (AD), which leads to senile dementia. Therefore, cholinesterases (AChE & BChE) inhibition are considered as a promising strategy for the treatment of Alzheimer's disease. FDA approved drugs for the treatment of AD, belong to a group of cholinesterase inhibitors. However, none of them is able to combat or completely abrogate the disease progression. Herein, we report a series of newly synthesized chalcone derivatives with anti-AD potential. For this purpose, a series of piperidyl-thienyl and 2-pyrazoline derivatives of chalcones were tested for their cholinesterases (AChE & BChE) inhibitory activity. All compounds were found as selective inhibitor of AChE. In piperidyl chalcones derivatives compound 1e having IC 50 of 0.16 ± 0.008 μM and 2m in 2-pyrazoline chalcones with IC 50 of 0.13 ± 0.006 μM, were found to be the most potent inhibitors of AChE, exhibiting ≈142 and ≈ 173-fold greater inhibitory potential compared to the reference inhibitor i.e., Neostigmine (IC 50 ± SEM = 22.2 ± 3.2 μM). Molecular docking studies of most potent inhibitors were carried out to investigate the binding interactions inside the active site. Molecular docking study revealed that potent compounds and co-crystalized ligand had same binding orientation within the active site of target enzyme. Most of these compounds are selective inhibitors of AChE with a potential use against progressive neurodegenerative disorder and age related problems. Copyright © 2016 Elsevier Inc. All rights reserved.
Lopes, Renato Matos; Filho, Moacelio Veranio Silva; de Salles, João Bosco; Bastos, Vera Lúcia Freire Cunha; Bastos, Jayme Cunha
2014-06-01
The biochemical characterization of cholinesterases (ChE) from different teleost species has been a critical step in ensuring the proper use of ChE activity levels as biomarkers in environmental monitoring programs. In the present study, ChE from Oreochromis niloticus, Piaractus mesopotamicus, Leporinus macrocephalus, and Prochilodus lineatus was biochemically characterized by specific substrates and inhibitors. Moreover, muscle tissue ChE sensitivity to the organophosphate pesticide methyl-paraoxon was evaluated by determining the inhibition kinetic constants for its progressive irreversible inhibition by methyl-paraoxon as well as the 50% inhibitory concentration (IC50) for 30 min for each species. The present results indicate that acetylcholinesterase (AChE) must be present in the muscle from P. mesopotamicus, L. macrocephalus, and P. lineatus and that O. niloticus possesses an atypical cholinesterase or AChE and butyrylcholinesterase (BChE). Furthermore, there is a large difference regarding the sensitivity of these enzymes to methyl-paraoxon. The determined IC50 values for 30 min were 70 nM (O. niloticus), 258 nM (P. lineatus), 319 nM (L. macrocephalus), and 1578 nM (P. mesopotamicus). The results of the present study also indicate that the use of efficient methods for extracting these enzymes, their kinetic characterization, and determination of sensitivity differences between AChE and BChE to organophosphate compounds are essential for the determination of accurate ChE activity levels for environmental monitoring programs. © 2014 SETAC.
Aguilera, Carlos; del Pliego, Pamela González; Alfaro, Roberto Mendoza; Lazcano, David; Cruz, Julio
2012-11-01
Environmental pollution may severely impact reptile species in urbanized areas. The magnitude of the impact is analyzed in the present study using lizard tail tips for the quantitative evaluation of enzymatic biomarkers of pollution. Spiny lizards (Sceloporus serrifer and S. torquatus) were collected from two suburban localities in the Monterrey metropolitan area, Mexico: Chipinque Ecological Park, a natural protected area, and El Carmen Industrial Park (IP), a highly polluted site. Different enzymes were used as biomarkers including: acetylcholinesterase (AChE), butyrylcholinesterase (BChE), carboxylesterase (CaE), alkaline phosphatase (ALP), acid phosphatase (ACP), superoxide dismutase (SOD) and glutathione S-transferase (GST). The levels of AChE, BChE and ACP activity were not significantly different between localities. AChE and BChE, commonly used as biomarkers of neurotoxic polluting agents (e.g. organophosphate pesticides) do not appear to be affecting the populations from the study locations. In contrast, the levels of CaE, GST, ALP and SOD were significantly different between the localities. These biomarkers are regularly associated with oxidative stress and processes of detoxification, and generally indicate pollution caused by heavy metals or hydrocarbons, which are common in industrial sites. The data resulting from the analysis of these biomarkers indicate that these polluting agents are affecting the populations of Sceloporus in IP. The present work validates the possibility of conducting additional ecotoxicological studies using biomarkers in combination with a nondestructive sampling technique in species of spiny lizards that are abundant in many North America areas.
Efficient Synthesis and Discovery of Schiff Bases as Potent Cholinesterase Inhibitors.
Razik, Basma M Abd; Osman, Hasnah; Ezzat, Mohammed O; Basiri, Alireza; Salhin, Abdussalam; Kia, Yalda; Murugaiyah, Vikneswaran
2016-01-01
The search for new cholinesterase inhibitors is still a promising approach for management of Alzheimer`s disease. Schiff bases are considered as important class of organic compounds, which have wide range of applications including as enzyme inhibitors. In the present study, a new green ionic liquid mediated strategy was developed for convenient synthesis of two series of Schiff bases 3(a-j) and 5(a-j) as potential cholinesterase inhibitors using aromatic aldehydes and primary amines in [bmim]Br. The synthesized compounds were evaluated for their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory potential by modified Ellman's method. The molecular interactions between the most active compound and the enzyme were analyzed by molecular docking. Among them, 3j displayed higher inhibitory activities than reference drug, galanthamine, with IC50 values of 2.05 and 5.77 µM, for AChE and BChE, respectively. Interestingly, all the compounds except 3b displayed higher BChE inhibitions than galanthamine with IC50 values ranging from 5.77 to 18.52 µM. Molecular docking of compound 3j inside the TcAChE and hBChE completely coincided with the inhibitory activities observed. The compound forms strong hydrogen bonding at the peripheral anionic site of AChE whereas on BChE, it had hydrophobic and mild polar interactions. An efficient and eco-friendly synthetic methodology has been developed to synthesize Schiff bases in a very short reaction time and excellent yields in ionic solvent, whereby the compounds from series 3 showed promising cholinesterase inhibitory activity.
Khuda, Fazli; Iqbal, Zafar; Khan, Ayub; Zakiullah; Shah, Yasar; Khan, Abad
2014-05-01
In present study four medicinal plants namely Valeriana wallichii, Xanthium strumarium, Achyranthes aspera and Duchesnea indica belonging to different families were collected in Khyber Pakhtunkhwa province and crude extract and subsequent fractions were analyzed for their inhibitory potential against acetylcholinesterase, butyrylcholinesterase and α-glucosidase enzymes. Valeriana wallichii, Xanthium strumarium and Achyranthes aspera were significantly active against cholinesterases. Chloroform and ethylacetate fractions of Valeriana wallichii exhibited significant activity against acetylcholinesterase (IC50: 61μg/ml) and butyrylcholinesterase enzymes (IC50: 58μg/ml), respectively. Similarly ethylacetate fraction of Achyranthes aspera showed significant activity against acetylcholinesterase (IC50: 61 μg/ml) and butyrylcholinesterase enzymes (IC50: 61 μg/ml), respectively. In case of α-glucosidase enzyme, the chloroform fraction of Xanthium strumarium exhibited significant inhibitory activity (IC50: 72 μg/ml) as compared to the standard compound acarbose (IC50: 483 μg/ml). Duchesnea indica showed no such activities.
Rodríguez, Yeray A; Gutiérrez, Margarita; Ramírez, David; Alzate-Morales, Jans; Bernal, Cristian C; Güiza, Fausto M; Romero Bohórquez, Arnold R
2016-10-01
New N-allyl/propargyl 4-substituted 1,2,3,4-tetrahydroquinolines derivatives were efficiently synthesized using acid-catalyzed three components cationic imino Diels-Alder reaction (70-95%). All compounds were tested in vitro as dual acetylcholinesterase and butyryl-cholinesterase inhibitors and their potential binding modes, and affinity, were predicted by molecular docking and binding free energy calculations (∆G) respectively. The compound 4af (IC50 = 72 μm) presented the most effective inhibition against acetylcholinesterase despite its poor selectivity (SI = 2), while the best inhibitory activity on butyryl-cholinesterase was exhibited by compound 4ae (IC50 = 25.58 μm) with considerable selectivity (SI = 0.15). Molecular docking studies indicated that the most active compounds fit in the reported acetylcholinesterase and butyryl-cholinesterase active sites. Moreover, our computational data indicated a high correlation between the calculated ∆G and the experimental activity values in both targets. © 2016 The Authors Chemical Biology & Drug Design Published by John Wiley & Sons Ltd.
Kogen, Hiroshi; Toda, Narihiro; Tago, Keiko; Marumoto, Shinji; Takami, Kazuko; Ori, Mayuko; Yamada, Naho; Koyama, Kazuo; Naruto, Shunji; Abe, Kazumi; Yamazaki, Reina; Hara, Takao; Aoyagi, Atsushi; Abe, Yasuyuki; Kaneko, Tsugio
2002-10-03
Highly efficient acetylcholinesterase (AChE) and serotonin transporter (SERT) dual inhibitors, (S)-4 and (R)-13 were designed and synthesized on the basis of the hypothetical model of AChE active site. Both compounds showed potent inhibitory activities against AChE and SERT. [structure: see text
Masson, Patrick; Lockridge, Oksana
2009-01-01
Butyrylcholinesterase is a promiscuous enzyme that displays complex kinetic behavior. It is toxicologically important because it detoxifies organophosphorus poisons (OP) by making a covalent bond with the OP. The OP and the butyrylcholinesterase are both inactivated in the process. Inactivation of butyrylcholinesterase has no adverse effects. However inactivation of acetylcholinesterase in nerve synapses can be lethal. OP-inhibited butyrylcholinesterase and acetylcholinesterase can be reactivated with oximes provided the OP has not aged. Strategies for preventing the toxicity of OP include a) treatment with an OP scavenger, b) reaction of nonaged enzyme with oximes, c) reactivation of aged enzyme, d) slowing down aging with peripheral site ligands, and e) design of mutants that rapidly hydrolyze OP. Option (a) has progressed through phase I clinical trials with human butyrylcholinesterase. Option (b) is in routine clinical use. The others are at the basic research level. Butyrylcholinesterase displays complex kinetic behavior including activation by positively charged esters, ability to hydrolyze amides, and a lag time (hysteresis) preceding hydrolysis of benzoylcholine and N-methyl indoxyl acetate. Mass spectrometry has identified new OP binding motifs on tyrosine and lysine in proteins that have no active site serine. It is proposed, but not yet proven, that low dose exposure involves OP modification of proteins that have no active site serine. PMID:20004171
Curcumin administration suppress acetylcholinesterase gene expression in cadmium treated rats.
Akinyemi, Ayodele Jacob; Oboh, Ganiyu; Fadaka, Adewale Oluwaseun; Olatunji, Babawale Peter; Akomolafe, Seun
2017-09-01
Curcumin, the main polyphenolic component of turmeric (Curcuma longa) rhizomes have been reported to exert anticholinesterase potential with limited information on how they regulate acetylcholinesterase (AChE) gene expression. Hence, this study sought to evaluate the effect of curcumin on cerebral cortex acetylcholinesterase (AChE) activity and their mRNA gene expression level in cadmium (Cd)-treated rats. Furthermore, in vitro effect of different concentrations of curcumin (1-5μg/mL) on rat cerebral cortex AChE activity was assessed. Animals were divided into six groups (n=6): group 1 serve as control (without Cd) and receive saline/vehicle, group 2 receive saline plus curcumin at 25mg/kg, group 3 receive saline plus curcumin 50mg/kg, group 4 receive Cd plus vehicle, group 5 receive Cd plus curcumin at 25mg/kg and group 6 receive Cd plus curcumin at 50mg/kg. Rats received Cd (2.5mg/kg) and curcumin (25 and 50mg/kg, respectively) by oral gavage for 7days. Acetylcholinesterase activity was measured by Ellman's method and AChE expression was carried out by a quantitative reverse transcriptase polymerase chain reaction (RT-qPCR) assay. We observed that acute administration of Cd increased acetylcholinesterase activity and in addition caused a significant (P<0.05) increase in AChE mRNA levels in whole cerebral cortex when compared to control group. However, co-treatment with curcumin inhibited AChE activity and alters AChE mRNA levels when compared to Cd-treated group. In addition, curcumin inhibits rat cerebral cortex AChE activity in vitro. In conclusion, curcumin exhibit anti-acetylcholinesterase activity and suppressed AChE mRNA gene expression level in Cd exposed rats, thus providing some biochemical and molecular evidence on the therapeutic effect of this turmeric-derived compound in treating neurological disorders including Alzheimer's disease. Copyright © 2017 Elsevier B.V. All rights reserved.
Acetylcholinesterases of Blood-feeding Flies and Ticks
USDA-ARS?s Scientific Manuscript database
Acetylcholinesterase (AChE) is the biochemical target of organophosphate (OP) and carbamate pesticides for invertebrates, vertebrate nerve agents, and AChE inhibitors used to reduce effects of Alzheimer’s disease. Organophosphate pesticides (OPs) are widely used to control blood-feeding arthropods, ...
Fadaeinasab, Mehran; Basiri, Alireza; Kia, Yalda; Karimian, Hamed; Ali, Hapipah Mohd; Murugaiyah, Vikneswaran
2015-01-01
Rauvolfia reflexa is a member of the Apocynaceae family. Plants from the Apocynaceae family have been traditionally used in the treatment of age-related brain disorders Methods and Results: Two new indole alkaloids, rauvolfine C (1) and 3-methyl-10,11-dimethoxy-6-methoxycarbonyl-β-carboline (2), along with five known, macusine B (3), vinorine (4), undulifoline (5), isoresrpiline (6) and rescinnamine (7) were isolated from the bark of Rauvolfia reflexa. Cholinesterase inhibitory assay and molecular docking were performed to get insight of the inhibitory activity and molecular interactions of the compounds. The compounds showed good to moderate cholinesterase inhibitory activity with IC50 values in the range of 8.06 to 73.23 µM. Compound 7 was found to be the most potent inhibitor of both acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Compounds 1, 2, 5 and 6 were found to be selective towards BChE, while compounds 3, 4 and 7 were dual inhibitors, having almost equal inhibitory activity on both AChE and BChE. Molecular docking revealed that compounds 6 and 7 interacted differently on AChE and BChE, by means of hydrophobic interactions and hydrogen bonding. In AChE, the indole moiety of both compounds interacted with the residues lining the peripheral anionic site, whereas in BChE, their methoxy groups are primarily responsible for the strong inhibitory activity via interactions with residues at the active site of the enzyme. Two new and five known indole alkaloids were isolated from R. reflexa. Among the compounds, 7 and 6 showed the most potent and promising cholinesterase inhibitory activity, worthy for further investigations. © 2015 S. Karger AG, Basel.
Acetamide Derivatives of Chromen-2-ones as Potent Cholinesterase Inhibitors.
Prasad, Suchita; Kumar, Bipul; Kumar, Shiv; Chand, Karam; Kamble, Shashank S; Gautam, Hemant K; Sharma, Sunil K
2017-08-01
Alzheimer's disease (AD), a neurodegenerative disorder, is a serious medical issue worldwide with drastic social consequences. Inhibition of cholinesterase is one of the rational and effective approaches to retard the symptoms of AD and, hence, consistent efforts are being made to develop efficient anti-cholinesterase agents. In pursuit of this, a series of 19 acetamide derivatives of chromen-2-ones were synthesized and evaluated for their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory potential. All the synthesized compounds exhibited significant anti-AChE and anti-BChE activity, with IC 50 values in the range of 0.24-10.19 μM and 0.64-30.08 μM, respectively, using donepezil hydrochloride as the standard. Out of 19 compounds screened, 3 compounds, viz. 22, 40, and 43, caused 50% inhibition of AChE at 0.24, 0.25, and 0.25 μM, respectively. A kinetic study revealed them to be mixed-type inhibitors, binding with both the CAS and PAS sites of AChE. The above-selected compounds were found to be effective inhibitors of AChE-induced and self-mediated Aβ 1-42 aggregation. ADMET predictions demonstrated that these compounds may possess suitable blood-brain barrier (BBB) permeability. Hemolytic assay results revealed that these compounds did not lyse human RBCs up to a thousand times of their IC 50 value. MTT assays performed for the shortlisted compounds showed them to be negligibly toxic after 24 h of treatment with the SH-SY5Y neuroblastoma cells. These results provide insights for further optimization of the scaffolds for designing the next generation of compounds as lead cholinesterase inhibitors. © 2017 Deutsche Pharmazeutische Gesellschaft.
Ali, Md Yousof; Seong, Su Hui; Reddy, Machireddy Rajeshkumar; Seo, Sung Yong; Choi, Jae Sue; Jung, Hyun Ah
2017-09-24
Coumarins, which have low toxicity, are present in some natural foods, and are used in various herbal remedies, have attracted interest in recent years because of their potential medicinal properties. In this study, we report the isolation of two natural coumarins, namely umbelliferone ( 1 ) and 6-formyl umbelliferone ( 2 ), from Angelica decursiva , and the synthesis of 8-formyl umbelliferone ( 3 ) from 1 . We investigated the anti-Alzheimer disease (anti-AD) potential of these coumarins by assessing their ability to inhibit acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and β-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1). Among these coumarins, 2 exhibited poor inhibitory activity against AChE and BChE, and modest activity against BACE1. Structure-activity relationship analysis showed that 2 has an aldehyde group at the C-6 position, and exhibited strong anti-AD activity, whereas the presence or absence of an aldehyde group at the C-8 position reduced the anti-AD activity of 3 and 1 , respectively. In addition, 2 exhibited concentration-dependent inhibition of peroxynitrite-mediated protein tyrosine nitration. A kinetic study revealed that 2 and 3 non-competitively inhibited BACE1. To confirm enzyme inhibition, we predicted the 3D structures of AChE and BACE1, and used AutoDock 4.2 to simulate binding of coumarins to these enzymes. The blind docking studies demonstrated that these molecules could interact with both the catalytic active sites and peripheral anionic sites of AChE and BACE1. Together, our results indicate that 2 has an interesting inhibitory activity in vitro, and can be used in further studies to develop therapeutic modalities for the treatment of AD.
Hagstrom, Danielle; Hirokawa, Hideto; Zhang, Limin; Radic, Zoran; Taylor, Palmer; Collins, Eva-Maria S
2017-08-01
The freshwater planarian Dugesia japonica has recently emerged as an animal model for developmental neurotoxicology and found to be sensitive to organophosphorus (OP) pesticides. While previous activity staining of D. japonica, which possess a discrete cholinergic nervous system, has shown acylthiocholine catalysis, it is unknown whether this is accomplished through an acetylcholinesterase (AChE), butyrylcholinesterase (BChE), or a hybrid esterase and how OP exposure affects esterase activity. Here, we show that the majority of D. japonica cholinesterase (DjChE) activity departs from conventional AChE and BChE classifications. Inhibition by classic protonable amine and quaternary reversible inhibitors (ethopropazine, donepezil, tacrine, edrophonium, BW284c51, propidium) shows that DjChE is far less sensitive to these inhibitors than human AChE, suggesting discrete differences in active center and peripheral site recognition and structures. Additionally, we find that different OPs (chlorpyrifos oxon, paraoxon, dichlorvos, diazinon oxon, malaoxon) and carbamylating agents (carbaryl, neostigmine, physostigmine, pyridostigmine) differentially inhibit DjChE activity in vitro. DjChE was most sensitive to diazinon oxon and neostigmine and least sensitive to malaoxon and carbaryl. Diazinon oxon-inhibited DjChE could be reactivated by the quaternary oxime, pralidoxime (2-PAM), and the zwitterionic oxime, RS194B, with RS194B being significantly more potent. Sodium fluoride (NaF) reactivates OP-DjChE faster than 2-PAM. As one of the most ancient true cholinesterases, DjChE provides insight into the evolution of a hybrid enzyme before the separation into distinct AChE and BChE enzymes found in higher vertebrates. The sensitivity of DjChE to OPs and capacity for reactivation validate the use of planarians for OP toxicology studies.
Agarwal, Sonam; Chaudhary, Bharti; Bist, Renu
2017-01-05
Current study established a protective action of bacoside A and bromelain against the toxic effects of dichlorvos in kidneys of mice. Experimental design included five groups. The first group was control. Mice of groups II, III and IV were administered doses of dichlorvos, bromelain and bacoside A respectively. In group V, mice were treated with both the antioxidants (bacoside A and bromelain) and dichlorvos. After 21 days of exposure of different doses, levels of acetylcholinesterase (AChE), butyrylcholinesterase (BChE), γ-aminobutyric acid (GABA) and serotonin were measured in renal tissues. Dichlorvos significantly reduced the kidney AChE (p < 0.001), BChE (p < 0.01) and GABA level (p < 0.01) compared to control. A simultaneous significant elevation in the serotonin level (p < 0.01) was recorded after dichlorvos exposure. Concomitant exposure of bacoside A and bromelain followed by dichlorvos treatment in group V not only restored, but increased the renal cholinesterases and GABA level. Meanwhile, a significant decline in serotonin level (p < 0.001) was revealed, compared to dichlorvos exposed mice. Bacoside A and bromelain occupy a tremendous antioxidant action in the mice kidneys and a combination of the same ameliorates the renal toxicity induced by dichlorvos. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Loizzo, Monica Rosa; Ben Jemia, Mariem; Senatore, Felice; Bruno, Maurizio; Menichini, Francesco; Tundis, Rosa
2013-09-01
The chemical composition of Cistus creticus, Cistus salvifolius, Cistus libanotis, Cistus monspeliensis and Cistus villosus essential oils has been examined by GC and GC-MS analysis. Height-nine constituents were identified in C. salvifolius oil, sixty in C. creticus, fifty-six in C. libanotis, fifty-four in C. villosus, forty-five in C. monspeliensis. Although the five species belong to the same genus, the composition showed interesting differences. Essential oils were screened also for their potential antioxidant effects (by DPPH, ABTS, FRAP and β-carotene bleaching test) and their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activity, useful for prevention and treatment of Alzheimer's disease. C. monspeliensis exhibited the most promising activity in β-carotene bleaching test (IC₅₀ of 54.7 μg/mL). In FRAP test C. libanotis showed a value of 19.2 μM Fe(II)/g. C. salvifolius showed the highest activity against AChE (IC₅₀ of 58.1 μg/mL) while C. libanotis, C. creticus, C. salvifolius demonstrated a good inhibitory activity against BChE with IC₅₀ values of 23.7, 29.1 and 34.2 μg/mL, respectively. Overall our results could promote the use of the essential oil of different Cistus species as food additives and for formulation of herbal infusion or nutraceutical products. Copyright © 2013 Elsevier Ltd. All rights reserved.
Ali, Mumtaz; Muhammad, Sultan; Shah, Muhammad R.; Khan, Ajmal; Rashid, Umer; Farooq, Umar; Ullah, Farhat; Sadiq, Abdul; Ayaz, Muhammad; Ali, Majid; Ahmad, Manzoor; Latif, Abdul
2017-01-01
Crataegus oxyacantha is an important herbal supplement and famous for its antioxidant potential. The antioxidant in combination with anticholinesterase activity can be considered as an important target in the management of Alzheimer’s disease. The compounds isolated from C. oxyacantha were evaluated for cholinesterases inhibitory activity using Ellman’s assay with Galantamine as standard drug. Total of nine (1–9) compounds were isolated. Compounds 1 and 2 were isolated for the first time from natural source. Important natural products like β-Sitosterol-3-O-β-D-Glucopyranoside (3), lupeol (4), β-sitosterol (5), betulin (6), betulinic acid (7), oleanolic acid (8), and chrysin (9) have also been isolated from C. oxyacantha. Overall, all the compounds exhibited an overwhelming acetylcholinesterase (AChE) inhibition potential in the range 5.22–44.47 μM. The compound 3 was prominent AChE inhibitor with IC50 value of 5.22 μM. Likewise, all the compounds were also potent in butyrylcholinesterase (BChE) inhibitions with IC50s of up to 0.55–15.36 μM. All the compounds, except 3, were selective toward BChE. Mechanism of the inhibition of both the enzymes were further studied by docking procedures using Genetic Optimization for Ligand Docking suit v5.4.1. Furthermore, computational blood brain barrier prediction of the isolated compounds suggest that these are BBB+. PMID:28638340
Altıntop, Mehlika D; Gurkan-Alp, A Selen; Ozkay, Yusuf; Kaplancıklı, Zafer A
2013-08-01
In the present paper, a novel series of dithiocarbamates was synthesized via the treatment of 4-(trifluoromethyl)benzyl chloride with appropriate sodium salts of N,N-disubstituted dithiocarbamic acids. The chemical structures of the compounds were elucidated by (1) H NMR, mass spectral data, and elemental analyses. Each derivative was evaluated for its ability to inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) using a modification of Ellman's spectrophotometric method. The most potent AChE inhibitor was found as compound 2g (IC50 = 0.53 ± 0.001 µM) followed by compounds 2f (IC50 = 0.74 ± 0.001 µM) and 2j (IC50 = 0.89 ± 0.002 µM) when compared with donepezil (IC50 = 0.048 ± 0.001 µM). Compounds 2f and 2g were more effective than donepezil (IC50 = 7.88 ± 0.52 µM) on BuChE inhibition. Compounds 2f and 2g exhibited the inhibitory effect on BuChE with IC50 values of 1.39 ± 0.041 and 3.64 ± 0.072 µM, respectively. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Konrath, Eduardo Luis; Passos, Carolina dos Santos; Klein, Luiz Carlos; Henriques, Amélia T
2013-12-01
The inhibition of acetylcholinesterase (AChE), the key enzyme in the breakdown of acetylcholine, is currently the main pharmacological strategy available for Alzheimer's disease (AD). In this sense, many alkaloids isolated from natural sources, such as physostigmine, have been long recognized as acetyl- and butyrylcholinesterase (BChE) inhibitors. Since the approval of galantamine for the treatment of AD patients, the search for new anticholinesterase alkaloids has escalated, leading to promising candidates such as huperzine A. This review aims to summarize recent advances in current knowledge on alkaloids as AChE and BChE inhibitors, highlighting structure-activity relationship (SAR) and docking studies. Natural alkaloids belonging to the steroidal/triterpenoidal, quinolizidine, isoquinoline and indole classes, mainly distributed within Buxaceae, Amaryllidaceae and Lycopodiaceae, are considered important sources of alkaloids with anti-enzymatic properties. Investigations into the possible SARs for some active compounds are based on molecular modelling studies, predicting the mode of interaction of the molecules with amino acid residues in the active site of the enzymes. Following this view, an increasing interest in achieving more potent and effective analogues makes alkaloids good chemical templates for the development of new cholinesterase inhibitors. The anticholinesterase activity of alkaloids, together with their structural diversity and physicochemical properties, makes them good candidate agents for the treatment of AD. © 2013 Royal Pharmaceutical Society.
Senol, Fatma Sezer; Ankli, Anita; Reich, Eike
2016-01-01
Summary Inhibitory activity of thirty-one ethanol extracts obtained from albedo, flavedo, seed and leaf parts of 17 cultivars of Citrus species from Turkey, the bark and leaves of Olea europaea L. from two locations (Turkey and Cyprus) as well as caffeic acid and hesperidin was tested against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), related to the pathogenesis of Alzheimer’s disease, using ELISA microtiter assays at 500 µg/mL. Metal-chelating capacity of the extracts was also determined. BChE inhibitory effect of the Citrus sp. extracts was from (7.7±0.7) to (70.3±1.1) %, whereas they did not show any inhibition against AChE. Cholinesterase inhibitory activity of the leaf and bark ethanol extracts of O. europaea was very weak ((10.2±3.1) to (15.0±2.3) %). The extracts had either no or low metal-chelating capacity at 500 µg/mL. HPTLC fingerprinting of the extracts, which indicated a similar phytochemical pattern, was also done using the standards of caffeic acid and hesperidin with weak cholinesterase inhibition. Among the screened extracts, the albedo extract of C. limon ‘Interdonato’, the flavedo extracts of ‘Kara Limon’ and ‘Cyprus’ cultivars and the seed extract of C. maxima appear to be promising as natural BChE inhibitors. PMID:27956858
Oztürk, Mehmet; Tümen, İbrahim; Uğur, Aysel; Aydoğmuş-Öztürk, Fatma; Topçu, Gülaçtı
2011-03-30
Juniperus L. (Cupressaceae) species are mostly spread out in the Northern Hemisphere of the world, and some of them are used as folkloric medicines. The fruits of some species are eaten. Since oxidative stress is one of the reasons for neurodegeneration and is associated with the Alzheimer's disease (AD), the extracts prepared from the fruits of six Juniperus species were screened for their antioxidant activity. Therefore, the extracts were also evaluated against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), which are chief enzymes in the pathogenesis of AD. In addition, antimicrobial activity was also evaluated. In the β-carotene-linoleic acid assay, acetone extracts of J. oxycedrus subsp. oxycedrus, J. sabina and J. excelsa, and methanol extracts of J. phoenicea and J. sabina, effectively inhibited oxidation of linoleic acid. The hexane extracts of J. oxycedrus subsp. oxycedrus, J. foetidissima and J. phoenicea showed remarkable inhibitory effect against AChE and BChE. Because of their high antioxidant activity, J. excelsa, J. oxycedrus subsp. oxycedrus, J. sabina and J. phoenicia might be used in the food industry as preservative agents or extension of the shelf-life of raw and processed foods. Since the hexane extracts of J. oxycedrus subsp. oxycedrus and J. foetidissima demonstrated significant anticholinesterase activity they should be considered as a potential source for anticholinesterase agents. Copyright © 2010 Society of Chemical Industry.
Iminosugars as a new class of cholinesterase inhibitors.
Decroocq, Camille; Stauffert, Fabien; Pamlard, Olivier; Oulaïdi, Farah; Gallienne, Estelle; Martin, Olivier R; Guillou, Catherine; Compain, Philippe
2015-02-15
To further extend the scope of iminosugar biological activity, a systematic structure-activity relationship investigation has been performed by synthesizing and evaluating as cholinesterase inhibitors a library of twenty-three iminoalditols with different substitutions and stereochemistry patterns. These compounds have been evaluated in vitro for the inhibition of cholinesterases (different sources of acetylcholinesterase and butyrylcholinesterase). Some compounds have IC50 values in the micromolar range and display significant inhibition selectivity for butyrylcholinesterase over acetylcholinesterase. These are the first examples of iminosugar-based inhibitors of cholinesterases. Copyright © 2015 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Acetylcholinesterase (AChE) is a key neural enzyme of both vertebrates and invertebrates, and is the biochemical target of organophosphate and carbamate pesticides for invertebrates, as well as vertebrate nerve agents, e.g., soman, tabun, VX, and others. AChE inhibitors are also key drugs among thos...
Wang, Yue; Wang, Fang; Yu, Jun-Ping; Jiang, Feng-Chao; Guan, Xin-Lei; Wang, Can-Ming; Li, Lei; Cao, Hui; Li, Ming-Xing; Chen, Jian-Guo
2012-11-01
In this study, a series of multipotent phenylthiazole-tacrine hybrids (7a-7e, 8, and 9a-9m) were synthesized and biologically evaluated. Screening results showed that phenylthiazole-tacrine hybrids were potent cholinesterase inhibitors with pIC(50) (-logIC(50)) value ranging from 5.78 ± 0.05 to 7.14 ± 0.01 for acetylcholinesterase (AChE), and from 5.75 ± 0.03 to 10.35 ± 0.15 for butyrylcholinesterase (BuChE). The second series of phenylthiazole-tacrine hybrids (9a-9m) could efficiently prevent Aβ(1-42) self-aggregation. The structure-activity relationship revealed that their inhibitory potency relied on the type of middle linker and substitutions at 4'-position of 4-phenyl-2-aminothiazole. In addition, 7a and 7c also displayed the Ca(2+) overload blockade effect in the primary cultured cortical neurons. Consequently, these compounds emerged as promising molecules for the therapy of Alzheimer's disease. Copyright © 2012 Elsevier Ltd. All rights reserved.
Capsofulvesins A-C, cholinesterase inhibitors from Capsosiphon fulvescens.
Fang, Zhe; Yang Jeong, Su; Ah Jung, Hyun; Sue Choi, Jae; Sun Min, Byung; Hee Woo, Mi
2012-01-01
Activity-directed isolation of the n-hexane and dichloromethane fractions of Capsosiphon fulvescens resulted in the identification of four new glycolipids (1-3): (2S)-1-O-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-2-O-(4Z,7Z,10Z,13Z-hexadecatetraenoyl)-3-O-β-D-galactopyranosyl glycerol (1, capsofulvesin A), (2S)-l-O-(9Z,12Z,15Z-octadecatrienoyl)-2-O-(10Z,13Z-hexadecadienoyl)-3-O-β-D-galactopyranosyl glycerol (2, capsofulvesin B), (2S)-1-O-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-3-O-β-D-galacatopyranosyl glycerol (3, capsofulvesin C). Compounds 1-6 exhibited acetylcholinesterase (AChE) inhibitory activities with IC(50) values ranging from 50.90 to 82.83 µM, whereas 2-6 showed butyrylcholinesterase (BChE) inhibitory activities with IC(50) values of 114.75-185.55 µM. Although most of the compounds isolated lacked scavenging activity for 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical and peroxynitrite (ONOO(-)), compound 8 showed ONOO(-) scavenging activity with an IC(50) value of 26.23 µg/mL.
Anti-cholinesterase activity of the standardized extract of Syzygium aromaticum L.
Dalai, Manoj K; Bhadra, Santanu; Chaudhary, Sushil K; Bandyopadhyay, Arun; Mukherjee, Pulok K
2014-04-01
Clove (Syzygium aromaticum) is a well-known culinary spice with strong aroma; contains a high amount of oil known as clove oil. The major phyto-constituent of the clove oil is eugenol. Clove and its oil possess various medicinal uses in indigenous medicine as an antiseptic, anti-oxidant, analgesic and neuroprotective properties. Thus, it draws much attention among researchers from pharmaceutical, food and cosmetic industries. The aim of the present study was to determine the anti-cholinesterase activity of the methanol extract of clove, its oil and eugenol. In vitro anti-cholinesterase activity of S. aromaticum was performed by a thin layer chromatography bio autography, 96 well micro titer plate and kinetic methods. Reverse phase high performance liquid chromatography (RP-HPLC) analysis was carried out to identify the biomarker compound eugenol in clove oil. Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibition study revealed that eugenol possess better inhibition of the enzymes than extract and oil. Clove extract, its oil and eugenol showed better inhibition of AChE than BChE. Polyphenolic compound eugenol was detected through RP-HPLC analysis. The content of eugenol in essential oil was found to be 0.5 μg/ml. Kinetic analysis of the cholinesterase inhibition study of the extract; clove oil and eugenol have shown that they possess mixed type of inhibition for AChE and non-competitive type of inhibition for BChE. These results might be useful in explaining the effect of clove as anti-cholinesterase agent for the management of cognitive ailments like Alzheimer's disease.
Wille, Timo; von der Wellen, Jens; Thiermann, Horst; Worek, Franz
2017-03-01
Despite six decades of extensive research in medical countermeasures against nerve agent poisoning, a broad spectrum acetylcholinesterase (AChE) reactivator is not yet available. One current approach is directed toward synthesizing oximes with high affinity and reactivatability toward butyrylcholinesterase (BChE) in plasma to generate an effective pseudocatalytic scavenger. An interim solution could be the administration of external AChE or BChE from blood products to augment pseudocatalytic scavenging with slower but clinically approved oximes to decrease nerve agent concentrations in the body. We here semiquantitatively investigate the ability of obidoxime and HI-6 to decrease the inhibitory activity of VX with human AChE and BChE from whole blood, erythrocyte membranes, erythrocytes, plasma, clinically available fresh frozen plasma and packed red blood cells. The main findings are that whole blood showed a VX concentration-dependent decrease in inhibitory activity with HI-6 being more potent than obidoxime. Using erythrocytes and erythrocyte membranes again, HI-6 was more potent compared to obidoxime. With freshly prepared plasma, obidoxime and HI-6 showed comparable results for the decrease in VX. The use of the clinically available blood products revealed that packed red blood cells showed similar kinetics as fresh erythrocytes. Fresh frozen plasma resulted in a slower and incomplete decrease in inhibitory plasma compared to freshly prepared plasma. In conclusion, the administration of blood products in combination with available oximes augments pseudocatalytic scavenging and might be useful to decrease the body load of persistent, highly toxic nerve agents.
Shelukhina, Irina; Mikhailov, Nikita; Abushik, Polina; Nurullin, Leniz; Nikolsky, Evgeny E; Giniatullin, Rashid
2017-01-01
Parasympathetic innervation of meninges and ability of carbachol, acetylcholine (ACh) receptor (AChR) agonist, to induce headaches suggests contribution of cholinergic mechanisms to primary headaches. However, neurochemical mechanisms of cholinergic regulation of peripheral nociception in meninges, origin place for headache, are almost unknown. Using electrophysiology, calcium imaging, immunohistochemistry, and staining of meningeal mast cells, we studied effects of cholinergic agents on peripheral nociception in rat hemiskulls and isolated trigeminal neurons. Both ACh and carbachol significantly increased nociceptive firing in peripheral terminals of meningeal trigeminal nerves recorded by local suction electrode. Strong nociceptive firing was also induced by nicotine, implying essential role of nicotinic AChRs in control of excitability of trigeminal nerve endings. Nociceptive firing induced by carbachol was reduced by muscarinic antagonist atropine, whereas the action of nicotine was prevented by the nicotinic blocker d-tubocurarine but was insensitive to the TRPA1 antagonist HC-300033. Carbachol but not nicotine induced massive degranulation of meningeal mast cells known to release multiple pro-nociceptive mediators. Enzymes terminating ACh action, acetylcholinesterase (AChE) and butyrylcholinesterase, were revealed in perivascular meningeal nerves. The inhibitor of AChE neostigmine did not change the firing per se but induced nociceptive activity, sensitive to d-tubocurarine, after pretreatment of meninges with the migraine mediator CGRP. This observation suggested the pro-nociceptive action of endogenous ACh in meninges. Both nicotine and carbachol induced intracellular Ca 2+ transients in trigeminal neurons partially overlapping with expression of capsaicin-sensitive TRPV1 receptors. Trigeminal nerve terminals in meninges, as well as dural mast cells and trigeminal ganglion neurons express a repertoire of pro-nociceptive nicotinic and muscarinic AChRs, which could be activated by the ACh released from parasympathetic nerves. These receptors represent a potential target for novel therapeutic interventions in trigeminal pain and probably in migraine.
A direct method to visualise the aryl acylamidase activity on cholinesterases in polyacrylamide gels
Jaganathan, Lakshmanan; Boopathy, Rathanam
2000-01-01
Background In vertebrates, two types of cholinesterases exist, acetylcholinesterase and butyrylcholinesterase. The function of acetylcholinesterase is to hydrolyse acetylcholine, thereby terminating the neurotransmission at cholinergic synapse, while the precise physiological function of butyrylcholinesterase has not been identified. The presence of cholinesterases in tissues that are not cholinergically innervated indicate that cholinesterases may have functions unrelated to neurotransmission. Furthermore, cholinesterases display a genuine aryl acylamidase activity apart from their predominant acylcholine hydrolase activity. The physiological significance of this aryl acylamidase activity is also not known. The study on the aryl acylamidase has been, in part hampered by the lack of a specific method to visualise this activity. We have developed a method to visualise the aryl acylamidase activity on cholinesterase in polyacrylamide gels. Results The o-nitroaniline liberated from o-nitroacetanilide by the action of aryl acylamidase activity on cholinesterases, in the presence of nitrous acid formed a diazonium compound. This compound gave an azo dye complex with N-(1-napthyl)-ethylenediamine, which appeared as purple bands in polyacrylamide gels. Treating the stained gels with trichloroacetic acid followed by Tris-HCl buffer helped in fixation of the stain in the gels. By using specific inhibitors for acetylcholinesterase and butyrylcholinesterase, respectively, differential staining for the aryl acylamidase activities on butyrylcholinesterase and acetylcholinesterase in a sample containing both these enzymes has been demonstrated. A linear relationship between the intensity of colour developed and activity of the enzyme was obtained. Conclusions A novel method to visualise the aryl acylamidase activity on cholinesterases in polyacrylamide gels has been developed. PMID:11231883
Jaganathan, L; Boopathy, R
2000-01-01
In vertebrates, two types of cholinesterases exist, acetylcholinesterase and butyrylcholinesterase. The function of acetylcholinesterase is to hydrolyse acetylcholine, thereby terminating the neurotransmission at cholinergic synapse, while the precise physiological function of butyrylcholinesterase has not been identified. The presence of cholinesterases in tissues that are not cholinergically innervated indicate that cholinesterases may have functions unrelated to neurotransmission. Furthermore, cholinesterases display a genuine aryl acylamidase activity apart from their predominant acylcholine hydrolase activity. The physiological significance of this aryl acylamidase activity is also not known. The study on the aryl acylamidase has been, in part hampered by the lack of a specific method to visualise this activity. We have developed a method to visualise the aryl acylamidase activity on cholinesterase in polyacrylamide gels. The o-nitroaniline liberated from o-nitroacetanilide by the action of aryl acylamidase activity on cholinesterases, in the presence of nitrous acid formed a diazonium compound. This compound gave an azo dye complex with N-(1-napthyl)-ethylenediamine, which appeared as purple bands in polyacrylamide gels. Treating the stained gels with trichloroacetic acid followed by Tris-HCl buffer helped in fixation of the stain in the gels. By using specific inhibitors for acetylcholinesterase and butyrylcholinesterase, respectively, differential staining for the aryl acylamidase activities on butyrylcholinesterase and acetylcholinesterase in a sample containing both these enzymes has been demonstrated. A linear relationship between the intensity of colour developed and activity of the enzyme was obtained. A novel method to visualise the aryl acylamidase activity on cholinesterases in polyacrylamide gels has been developed.
Activity of essential oils and individual components against acetyl- and butyrylcholinesterase.
Orhan, Ilkay; Kartal, Murat; Kan, Yüksel; Sener, Bilge
2008-01-01
We have tested acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities of nineteen essential oils obtained from cultivated plants, namely one from Anethum graveolens L. (organic fertilizer), two from Foeniculum vulgare Mill. collected at fully-mature and flowering stages (organic fertilizer), two from Melissa officinalis L. (cultivated using organic and chemical fertilizers), two from Mentha piperita L. and M. spicata L. (organic fertilizer), two from Lavandula officinalis Chaix ex Villars (cultivated using organic and chemical fertilizers), two from Ocimum basilicum L. (green and purple-leaf varieties cultivated using only organic fertilizer), four from Origanum onites L., O. vulgare L., O. munitiflorum Hausskn., and O. majorana L. (cultivated using organic fertilizer), two from Salvia sclarea L. (organic and chemical fertilizers), one from S. officinalis L. (organic fertilizer), and one from Satureja cuneifolia Ten. (organic fertilizer) by a spectrophotometric method of Ellman using ELISA microplate-reader at 1 mg/ml concentration. In addition, a number of single components widely encountered in most of the essential oils [gamma-terpinene, 4-allyl anisole, (-)-carvone, dihydrocarvone, (-)-phencone, cuminyl alcohol, cumol, 4-isopropyl benzaldehyde, trans-anethole, camphene, iso-borneol, (-)-borneol, L-bornyl acetate, 2-decanol, 2-heptanol, methyl-heptanol, farnesol, nerol, iso-pulegol, 1,8-cineole, citral, citronellal, citronellol, geraniol, linalool, alpha-pinene, beta-pinene, piperitone, iso-menthone, menthofurane, linalyl oxide, linalyl ester, geranyl ester, carvacrol, thymol, menthol, vanilline, and eugenol] was also screened for the same activity in the same manner. Almost all of the essential oils showed a very high inhibitory activity (over 80%) against both enzymes, whereas the single components were not as active as the essential oils.
Zorbaz, Tamara; Braïki, Anissa; Maraković, Nikola; Renou, Julien; de la Mora, Eugenio; Maček Hrvat, Nikolina; Katalinić, Maja; Silman, Israel; Sussman, Joel L; Mercey, Guillaume; Gomez, Catherine; Mougeot, Romain; Pérez, Belén; Baati, Rachid; Nachon, Florian; Weik, Martin; Jean, Ludovic; Kovarik, Zrinka; Renard, Pierre-Yves
2018-04-19
A new series of 3-hydroxy-2-pyridine aldoxime compounds have been designed, synthesised and tested in vitro, in silico, and ex vivo as reactivators of human acetylcholinesterase (hAChE) and butyrylcholinesterase (hBChE) inhibited by organophosphates (OPs), for example, VX, sarin, cyclosarin, tabun, and paraoxon. The reactivation rates of three oximes (16-18) were determined to be greater than that of 2-PAM and comparable to that of HI-6, two pyridinium aldoximes currently used by the armies of several countries. The interactions important for a productive orientation of the oxime group within the OP-inhibited enzyme have been clarified by molecular-modelling studies, and by the resolution of the crystal structure of the complex of oxime 17 with Torpedo californica AChE. Blood-brain barrier penetration was predicted for oximes 15-18 based on their physicochemical properties and an in vitro brain membrane permeation assay. Among the evaluated compounds, two morpholine-3-hydroxypyridine aldoxime conjugates proved to be promising reactivators of OP-inhibited cholinesterases. Moreover, efficient ex vivo reactivation of phosphylated native cholinesterases by selected oximes enabled significant hydrolysis of VX, sarin, paraoxon, and cyclosarin in whole human blood, which indicates that the oximes have scavenging potential. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rivastigmine in the treatment of Alzheimer’s disease: an update
Onor, Maria Luisa; Trevisiol, Marianna; Aguglia, Eugenio
2007-01-01
Alzheimer’s disease is the most common form of dementia in industrialized countries. In the European Union, about 54% of dementia cases are believed to be due to Alzheimer’s disease. The condition is an age-related neurodegenerative disorder characterized by multiple cognitive deficiencies, including loss of memory, judgment, and comprehension. These manifestations are accompanied by behavioral and mood disturbances. Although no cure has yet been discovered for Alzheimer’s disease, symptomatic therapies are now widely available and offer significant relief to patients and benefits to caregivers in terms of reduced care burden. At the start of the 21st century, health technology assessments recommended three agents for the symptomatic treatment of mild to moderate Alzheimer disease: rivastigmine, donepezil, and galantamine. Rivastigmine (Exelon®, Novartis Basel—Switzerland) is a slowly reversible inhibitor of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), while donepezil (Aricept®, Pfizer, New York, USA) and galantamine (Reminyl®, Janssen, New Jersey,USA) show no functional inhibition of BuChE, and are considered AChE-selective, rapidly-reversible inhibitors. The efficacy of all three agents has been evaluated in large, double-blind, placebo-controlled clinical trials of up to 6 months’ duration. Rivastigmine treatment in mild to moderate Alzheimer’s disease improves cognition, activities of daily living, and global function. PMID:18044073
USDA-ARS?s Scientific Manuscript database
Rhipicephalus (Boophilus) microplus (Bm) ticks are vectors of bovine babesiosis and anaplasmosis. Tick resistance to organophosphate (OP) acaricide involves acetylcholinesterase (AChE) insensitivity to OP and metabolic detoxification. Sequencing and in vitro expression of Bm genes encoding AChE allo...
USDA-ARS?s Scientific Manuscript database
Rhipicephalus (Boophilus) microplus (Bm) is a vector of bovine babesiosis and anaplasmosis. Tick resistance to organophosphate (OP) acaricide involves acetylcholinesterase (AChE) insensitivity to OP and metabolic detoxification. In vitro expression of Bm genes encoding AChE allowed biochemical chara...
Proline-Based Carbamates as Cholinesterase Inhibitors.
Pizova, Hana; Havelkova, Marketa; Stepankova, Sarka; Bak, Andrzej; Kauerova, Tereza; Kozik, Violetta; Oravec, Michal; Imramovsky, Ales; Kollar, Peter; Bobal, Pavel; Jampilek, Josef
2017-11-14
Series of twenty-five benzyl (2S)-2-(arylcarbamoyl)pyrrolidine-1-carboxylates was prepared and completely characterized. All the compounds were tested for their in vitro ability to inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), and the selectivity of compounds to individual cholinesterases was determined. Screening of the cytotoxicity of all the compounds was performed using a human monocytic leukaemia THP-1 cell line, and the compounds demonstrated insignificant toxicity. All the compounds showed rather moderate inhibitory effect against AChE; benzyl (2 S )-2-[(2-chlorophenyl)carbamoyl]pyrrolidine-1-carboxylate (IC 50 = 46.35 μM) was the most potent agent. On the other hand, benzyl (2 S )-2-[(4-bromophenyl)-] and benzyl (2 S )-2-[(2-bromophenyl)carbamoyl]pyrrolidine-1-carboxylates expressed anti-BChE activity (IC 50 = 28.21 and 27.38 μM, respectively) comparable with that of rivastigmine. The ortho -brominated compound as well as benzyl (2 S )-2-[(2-hydroxyphenyl)carbamoyl]pyrrolidine-1-carboxylate demonstrated greater selectivity to BChE. The in silico characterization of the structure-inhibitory potency for the set of proline-based carbamates considering electronic, steric and lipophilic properties was provided using comparative molecular surface analysis (CoMSA) and principal component analysis (PCA). Moreover, the systematic space inspection with splitting data into the training/test subset was performed to monitor the statistical estimators performance in the effort to map the probability-guided pharmacophore pattern. The comprehensive screening of the AChE/BChE profile revealed potentially relevant structural and physicochemical features that might be essential for mapping of the carbamates inhibition efficiency indicating qualitative variations exerted on the reaction site by the substituent in the 3'-/4'-position of the phenyl ring. In addition, the investigation was completed by a molecular docking study of recombinant human AChE.
Samadi, Abdelouahid; Chioua, Mourad; Bolea, Irene; de Los Ríos, Cristóbal; Iriepa, Isabel; Moraleda, Ignacio; Bastida, Agatha; Esteban, Gerard; Unzeta, Mercedes; Gálvez, Enrique; Marco-Contelles, José
2011-09-01
The synthesis, biological evaluation and molecular modeling of new multipotent inhibitors of type I and type II, able to simultaneously inhibit monoamine oxidases (MAO) as well as acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), is described. Compounds of type I were prepared by sequential reaction of 2,6-dichloro-4-phenylpyridine-3,5-dicarbonitrile (14) [or 2,6-dichloropyridine-3,5-dicarbonitrile (15)] with prop-2-yn-1-amine (or N-methylprop-2-yn-1-amine) and 2-(1-benzyl-piperidin-4-yl)alkylamines 22-25. Compounds of type II were prepared by Friedländer type reaction of 6-amino-5-formyl-2-(methyl(prop-2-yn-1-yl)amino)nicotinonitriles 32 and 33 with 4-(1-benzylpiperidin-4-yl)butan-2-one (31). The biological evaluation of molecules 1-11 showed that most of these compounds are potent, in the nanomolar range, and selective AChEI, with moderate and equipotent selectivity for MAO-A and MAO-B inhibition. Kinetic studies of compound 8 proved that this is a EeAChE mixed type inhibitor (IC(50) = 16 ± 2; Ki = 12 ± 3 nM). Molecular modeling investigation on compound 8 confirmed its dual AChE inhibitory profile, binding simultaneously at the catalytic active site (CAS) and at the peripheric anionic site (PAS). In overall, compound 11, as a potent and selective dual AChEI, showing a moderate and selective MAO-A inhibitory profile, can be considered as an attractive multipotent drug for further development on two key pharmacological targets playing key roles in the therapy of Alzheimer's disease. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
McHardy, Stanton F; Wang, Hua-Yu Leo; McCowen, Shelby V; Valdez, Matthew C
2017-04-01
Acetylcholinesterase (AChE) is the major enzyme that hydrolyzes acetylcholine, a key neurotransmitter for synaptic transmission, into acetic acid and choline. Mild inhibition of AChE has been shown to have therapeutic relevance in Alzheimer's disease (AD), myasthenia gravis, and glaucoma among others. In contrast, strong inhibition of AChE can lead to cholinergic poisoning. To combat this, AChE reactivators have to be developed to remove the offending AChE inhibitor, restoring acetylcholine levels to normal. Areas covered: This article covers recent advances in the development of acetylcholinesterase modulators, including both inhibitors of acetylcholinesterase for the efforts in development of new chemical entities for treatment of AD, as well as re-activators for resurrection of organophosphate bound acetylcholinesterase. Expert opinion: Over the past three years, research efforts have continued to identify novel small molecules as AChE inhibitors for both CNS and peripheral diseases. The more recent patent activity has focused on three AChE ligand design areas: derivatives of known AChE ligands, natural product based scaffolds and multifunctional ligands, all of which have produced some unique chemical matter with AChE inhibition activities in the mid picomolar to low micromolar ranges. New AChE inhibitors with polypharmacology or dual inhibitory activity have also emerged as highlighted by new AChE inhibitors with dual activity at L-type calcium channels, GSK-3, BACE1 and H3, although most only show low micromolar activity, thus further research is warranted. New small molecule reactivators of organophosphate-inhibited AChE have also been disclosed, which focused on the design of neutral ligands with improved pharmaceutical properties and blood-brain barrier (BBB) penetration. Gratifyingly, some research in this area is moving away from the traditional quaternary pyridinium oximes AChE reactivators, while still employing the necessary reactivation group (oximes). However, selectivity over inhibition of native AChE enzyme, effectiveness of reactivation, broad-spectrum reactivation against multiple organophosphates and reactivation of aged-enzyme continue to be hurdles for this area of research.
Autoantibodies to acetylcholinesterase revisited.
Geen, J; Hadjikoutis, S; Strachan, A; Hullin, D A; Hogg, S I; Wiles, C M
2000-05-01
A sensitive and specific enzyme linked immunosorbent assay (ELISA) utilizing human recombinant acetylcholinesterase has been employed for the detection of human antibodies to human acetylcholinesterase. The method can detect allogenic antibodies to the Yt(a) form of human erythrocyte AChE. Adaptation of this ELISA method allowed the IgG subclass typing of IgG anti-AChE antibodies, which could help to determine the possible role of these antibodies in the aetiology of any neurological conditions. Routine serological investigations established the AChE phenotype of each of the patients recruited, to determine whether anti-AChE antibodies were allogenic or autogenic in origin. These techniques were used to determine the incidence of autoantibodies to AChE in patients with neurological conditions, including the subtypes of motor neuron disease. The data presented are not consistent with earlier reports of a high incidence of autoantibodies to AChE in amyotrophic lateral sclerosis and progressive muscular atrophy.
Acetylcholinesterase (AChE), a serine hydrolase vital for regulating the neurotransmitter acetylcholine in animals, has been used as a target for drugs and pesticides. With the increasing availability of AChE crystal structures, with or without ligands bound, structure-based appr...
NASA Astrophysics Data System (ADS)
Islam, Mullah Muhaiminul; Rohman, Mostofa Ataur; Gurung, Arun Bahadur; Bhattacharjee, Atanu; Aguan, Kripamoy; Mitra, Sivaprasad
2018-01-01
The development of new acetylcholinesterase inhibitors (AChEIs) and subsequent assay of their inhibition efficiency is considered to be a key step for AD treatment. The fluorescence intensity of thioflavin-T (ThT) bound in the active site of acetylcholinesterase (AChE) quenches substantially in presence of standard AChEI drugs due to the dynamic replacement of the fluorophore from the AChE active site as confirmed from steady state emission as well as time-resolved fluorescence anisotropy measurement and molecular dynamics simulation in conjunction with docking calculation. The parametrized % quenching data for individual system shows excellent correlation with enzyme inhibition activity measured independently by standard Ellman AChE assay method in a high throughput plate reader system. The results are encouraging towards design of a fluorescence intensity based AChE inhibition assay method and may provide a better toolset to rapidly evaluate as well as develop newer AChE-inhibitors for AD treatment.
Acetylcholinesterase (AChE), a serine hydrolase vital for regulating the neurotransmitter acetylcholine in animals, has been used as a target for drugs and pesticides. With the increasing availability of AChE crystal structures, with or without ligands bound, structure-based appr...
Induction of plasma acetylcholinesterase activity in mice challenged with organophosphorus poisons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duysen, Ellen G.; Lockridge, Oksana, E-mail: olockrid@unmc.edu
2011-09-01
The restoration of plasma acetylcholinesterase activity in mice following inhibition by organophosphorus pesticides and nerve agents has been attributed to synthesis of new enzyme. It is generally assumed that activity levels return to normal, are stable and do not exceed the normal level. We have observed over the past 10 years that recovery of acetylcholinesterase activity levels in mice treated with organophosphorus agents (OP) exceeds pretreatment levels and remains elevated for up to 2 months. The most dramatic case was in mice treated with tri-cresyl phosphate and tri-ortho-cresyl phosphate, where plasma acetylcholinesterase activity rebounded to a level 250% higher thanmore » the pretreatment activity. The present report summarizes our observations on plasma acetylcholinesterase activity in mice treated with chlorpyrifos, chlorpyrifos oxon, diazinon, tri-ortho-cresyl phosphate, tri-cresyl phosphate, tabun thiocholine, parathion, dichlorvos, and diisopropylfluorophosphate. We have developed a hypothesis to explain the excess acetylcholinesterase activity, based on published observations. We hypothesize that acetylcholinesterase activity is induced when cells undergo apoptosis and that consequently there is a rise in the level of plasma acetylcholinesterase. - Highlights: > Acetylcholinesterase activity is induced by organophosphorus agents. > AChE induction is related to apoptosis. > Induction of AChE activity by OP is independent of BChE.« less
Russo, Daniela; Valentão, Patrícia; Andrade, Paula B.; Fernandez, Eloy C.; Milella, Luigi
2015-01-01
The present study aimed to investigate the phytochemical profile of leaf methanol extracts of fourteen Smallanthus sonchifolius (yacon) landraces and their antioxidant, anticholinesterase and antidiabetic activities that could lead to the finding of more effective agents for the treatment and management of Alzheimer’s disease and diabetes. For this purpose, antioxidant activity was assessed using different tests: ferric reducing ability power (FRAP), 2,2-diphenyl-1-picryl hydrazyl (DPPH), nitric oxide (˙NO) and superoxide (O2˙−) scavenging and lipid peroxidation inhibition assays. Anticholinesterase activity was investigated by quantifying the acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities, whereas antidiabetic activity was investigated by α-amylase and α-glucosidase inhibition tests. To understand the contribution of metabolites, phytochemical screening was also performed by high performance liquid chromatography-diode array detector (HPLC-DAD) system. Among all, methanol extract of PER09, PER04 and ECU44 landraces exhibited the highest relative antioxidant capacity index (RACI). ECU44 was found to be rich in 4,5-di-O-caffeoylquinic acid (CQA) and 3,5-di-O-CQA and displayed a good α-amylase and α-glucosidase inhibition, showing the lowest IC50 values. Flavonoids, instead, seem to be involved in the AChE and BChE inhibition. The results of this study revealed that the bioactive compound content differences could be determinant for the medicinal properties of this plant especially for antioxidant and antidiabetic activities. PMID:26263984
Russo, Daniela; Valentão, Patrícia; Andrade, Paula B; Fernandez, Eloy C; Milella, Luigi
2015-07-31
The present study aimed to investigate the phytochemical profile of leaf methanol extracts of fourteen Smallanthus sonchifolius (yacon) landraces and their antioxidant, anticholinesterase and antidiabetic activities that could lead to the finding of more effective agents for the treatment and management of Alzheimer's disease and diabetes. For this purpose, antioxidant activity was assessed using different tests: ferric reducing ability power (FRAP), 2,2-diphenyl-1-picryl hydrazyl (DPPH), nitric oxide (˙NO) and superoxide (O2˙-) scavenging and lipid peroxidation inhibition assays. Anticholinesterase activity was investigated by quantifying the acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities, whereas antidiabetic activity was investigated by α-amylase and α-glucosidase inhibition tests. To understand the contribution of metabolites, phytochemical screening was also performed by high performance liquid chromatography-diode array detector (HPLC-DAD) system. Among all, methanol extract of PER09, PER04 and ECU44 landraces exhibited the highest relative antioxidant capacity index (RACI). ECU44 was found to be rich in 4,5-di-O-caffeoylquinic acid (CQA) and 3,5-di-O-CQA and displayed a good α-amylase and α-glucosidase inhibition, showing the lowest IC50 values. Flavonoids, instead, seem to be involved in the AChE and BChE inhibition. The results of this study revealed that the bioactive compound content differences could be determinant for the medicinal properties of this plant especially for antioxidant and antidiabetic activities.
Sanchez-Hernandez, Juan C; Ríos, Juan Manuel; Attademo, Andrés M
2018-03-01
Assessment of organophosphorus (OP) pesticide exposure in non-target organisms rarely involves non-neural molecular targets. Here we performed a 30-d microcosm experiment with Lumbricus terrestris to determine whether the activity of digestive enzymes (phosphatase, β-glucosidase, carboxylesterase and lipase) was sensitive to chlorpyrifos (5 mg kg -1 wet soil). Likewise, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities were measured in the wall muscle and gastrointestinal tissues as indicators of OP exposure. Chlorpyrifos inhibited the acid phosphatase (34% of controls), carboxylesterase (25.6%) and lipase activities (31%) in the gastrointestinal content. However, in the gastrointestinal tissue, only the carboxylesterase and lipase activities were significantly depressed (42-67% carboxylesterase inhibition in the foregut and crop/gizzard, and 15% lipase inhibition in the foregut). Chlorpyrifos inhibited the activity of both cholinesterases in the gastrointestinal tissues, whereas the AChE activity was affected in the wall muscle. These results suggested chlorpyrifos was widely distributed throughout the earthworm body after 30 d of incubation. Interestingly, we found muscle carboxylesterase activity strongly inhibited (92% of control) compared with that detected in the gastrointestinal tissues of the same OP-exposed individuals. This finding was explained by the occurrence of pesticide-resistant esterases in the gastrointestinal tissues, which were evidenced by zymography. Our results suggest that digestive processes of L. terrestris may be altered by chlorpyrifos, as a consequence of the inhibitory action of the insecticide on some digestive enzymes.
Oboh, Ganiyu; Odubanjo, Veronica O; Bello, Fatai; Ademosun, Ayokunle O; Oyeleye, Sunday I; Nwanna, Emem E; Ademiluyi, Adedayo O
2016-03-01
Avocado pear (Persea americana Mill.) leaves and seeds are used in traditional medicine for the treatment/management of Alzheimer disease (AD); however, information on the mechanism of actions is limited. This study sought to investigate the effect of P. americana leaf and seed aqueous extracts on some enzymes linked with AD (acetylcholinesterase [AChE] and butyrylcholinesterase [BChE] activities) and their antioxidant potentials in vitro. The inhibitory effects of extracts on AChE and BChE activities and antioxidant potentials (inhibition of Fe2+- and sodium nitroprusside-induced thiobarbiturate reactive species [TBARS] production in rat brain homogenates, radicals [1,1-diphenyl-2-picrylhydrazyl, hydroxyl, and nitric oxide] scavenging and iron [Fe] chelation abilities) were investigated. Phenolic content and phytochemical screening were carried out. Alkaloid profile was also determined using gas chromatography coupled with flame ionization detector (GC-FID). The extracts inhibited AChE and BChE activities and prooxidant-induced TBARS production in a dose-dependent manner, with the seed extract having the highest inhibitory effect and the leaf extract exhibiting higher phenolic content and radical scavenging abilities, but lower Fe chelation ability compared with that of the seed. The phytochemical screening revealed the presence of saponins, alkaloids, and terpenoids in both extracts, whereas the total alkaloid profile was higher in the seed extract than in the leaf extract, as revealed by GC-FID. The anti-cholinesterase and antioxidant activities of avocado leaf and seed could be linked to their phytoconstituents and might be the possible mechanisms underlying their use as a cheap and natural treatment/management of AD. However, these extracts should be further investigated in vivo.
Can, Mao Van; Tran, Anh Hai; Pham, Dam Minh; Dinh, Bao Quoc; Le, Quan Van; Nguyen, Ba Van; Nguyen, Mai Thanh Thi; Nguyen, Hai Xuan; Nguyen, Nhan Trung; Nishijo, Hisao
2018-03-25
Willughbeia cochinchinensis (WC) has been used in Vietnamese traditional medicine for the treatment of dementia as well as diarrhea, heartburn, and cutaneous abscess and as a diuretic. Alzheimer's disease (AD) is one of the most prevalent diseases in elderly individuals. Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors have been widely used to treat patients with AD. In the present study, we investigated anti-AChE and anti-BChE activities of a natural product, WC, for its potential applications in therapies to prevent/treat dementia. First, compounds extracted from WC were tested for their AChE and BChE inhibitory activities in vitro. Second, in vivo behavioral experiments were performed to investigate the effects of WC at doses of 100, 150, and 200mg/kg on scopolamine (1.5mg/kg)-induced memory and cognitive deficits in mice. The behavior of mice treated with and without WC and/or scopolamine was tested using the Y-maze, Morris water maze, and novel object recognition task. The results of the in vitro assay demonstrated anti-AChE and anti-BChE activities of the compounds extracted from WC. The results of behavioral experiments showed that the administration of WC prevented 1) scopolamine-induced decrease in spontaneous alternation (%) behavior in the Y-maze, 2) scopolamine-induced deficits in spatial learning and memory in the Morris water maze, and 3) scopolamine-induced deficits in novel object recognition. These results indicate that WC prevents cognitive and memory deficits induced by scopolamine injection. Our findings suggest that WC may represent a novel candidate for the treatment of memory and cognitive deficits in humans with dementia. Copyright © 2017. Published by Elsevier B.V.
Oboh, Ganiyu; Ogunruku, Omodesola O; Oyeleye, Sunday I; Olasehinde, Tosin A; Ademosun, Ayokunle O; Boligon, Aline Augusti
2017-05-04
This study investigated the inhibitory effects of phenolic-rich extracts from Clerodendrum volubile leaves on cholinergic [acetylcholinesterase (AChE) and butyrylcholinesterase (BChE)] and monoaminergic [monoamine oxidase (MAO)] enzymes' activities and pro-oxidants [Fe 2+ and quinolinic acid-(QA)] induced lipid peroxidation in rats brain homogenates in vitro. Free phenolic extracts (FPE) and bound phenolic extracts (BPE) were obtained via solvent extraction, and the total phenol and flavonoid contents were evaluated. The phenolic constituents of the extracts were also determined using high performance liquid chromatography coupled with diode array detector (HPLC-DAD). Our findings revealed that FPE had higher AChE (2.06 μg/mL), BChE (2.79 μg/mL), and MAO (2.81 μg/mL) inhibitory effects than BPE [AChE, 2.80 μg/mL; BChE, 3.40 μg/mL; MAO, 3.39 μg/mL]. Furthermore, FPE also had significantly (P < 0.05) higher inhibitory effects on Fe 2+ and QA-induced lipid peroxidation compared to BPE. FPE (162.61 mg GAE/g) had higher total phenol content than BPE. However, BPE (18.65 mg QE/g) had significantly higher total flavonoid content than FPE (13.32 mg QE/g). Phenolic acids (such as gallic acid, catechin, chlorogenic, caffeic, ellagic, p-Coumaric acids) and flavonoids (catechins, rutin and quercetin) were present in both extracts. This study revealed that the enzymes' inhibitory activities and antioxidant potentials of phenolic-rich extracts from C. volubile could be part of the mechanism of actions behind its use for memory/cognitive function as obtained in folklore. However, FPE exhibited significantly higher enzymes, inhibitory and antioxidant potentials than BPE.
Amino derivatives of glycyrrhetinic acid as potential inhibitors of cholinesterases.
Schwarz, Stefan; Lucas, Susana Dias; Sommerwerk, Sven; Csuk, René
2014-07-01
The development of remedies against the Alzheimer's disease (AD) is one of the biggest challenges in medicinal chemistry nowadays. Although not completely understood, there are several strategies fighting this disease or at least bringing some relief. During the progress of AD, the level of acetylcholine (ACh) decreases; hence, a therapy using inhibitors should be of some benefit to the patients. Drugs presently used for the treatment of AD inhibit the two ACh controlling enzymes, acetylcholinesterase as well as butyrylcholinesterase; hence, the design of selective inhibitors is called for. Glycyrrhetinic acid seems to be an interesting starting point for the development of selective inhibitors. Although its glycon, glycyrrhetinic acid is known for being an AChE activator, several derivatives, altered in position C-3 and C-30, exhibited remarkable inhibition constants in micro-molar range. Furthermore, five representative compounds were subjected to three more enzyme assays (on carbonic anhydrase II, papain and the lipase from Candida antarctica) to gain information about the selectivity of the compounds in comparison to other enzymes. In addition, photometric sulforhodamine B assays using murine embryonic fibroblasts (NiH 3T3) were performed to study the cytotoxicity of these compounds. Two derivatives, bearing either a 1,3-diaminopropyl or a 1H-benzotriazolyl residue, showed a BChE selective inhibition in the single-digit micro-molar range without being cytotoxic up to 30μM. In silico molecular docking studies on the active sites of AChE and BChE were performed to gain a molecular insight into the mode of action of these compounds and to explain the pronounced selectivity for BChE. Copyright © 2014 Elsevier Ltd. All rights reserved.
Potentiation by cholinesterase inhibitors of cholinergic activity in rat isolated stomach and colon.
Jarvie, Emma M; Cellek, Selim; Sanger, Gareth J
2008-01-01
Acetylcholinesterase (AChE) inhibitors stimulate gastrointestinal (GI) motility and are potential treatments of conditions associated with inadequate GI motility. The ability of itopride to facilitate neuronally (predominantly cholinergic) mediated contractions of rat isolated stomach, evoked by electrical field stimulation (EFS), has been compared with other cholinesterase inhibitors and with tegaserod, a clinically effective prokinetic and non-selective 5-HT(4) receptor agonist which also facilitates GI cholinergic function. Neostigmine greatly increased EFS-evoked contractions over a narrow concentration range (0.01-1 microM; 754+/-337% facilitation at 1 microM); higher concentrations (1, 3 microM) also increased muscle tension. Donepezil increased EFS-evoked contractions gradually over the full range of concentrations (0.01-10 microM; maximum increase 516+/-20% at 10 microM). Itopride increased the contractions even more gradually, rising to 188+/-84% at 10 microM. The butyrylcholinesterase inhibitor iso-OMPA 0.01-10 microM also increased EFS-evoked contractions, to a maximum of 36+/-5.0% at 10 microM, similar to that caused by tegaserod (35+/-5.2% increase at 1 microM). The effects of tegaserod, but not itopride were inhibited by the 5-HT(4) receptor antagonist SB-204070A 0.3 microM. In rat isolated colon, neostigmine was again the most efficacious, causing a defined maximum increase in EFS-evoked contractions (343+/-82% at 10 microM), without changing muscle tension. Maximum increases caused by donepezil and itopride were, respectively, 57.6+/-20 and 43+/-15% at 10 microM. These data indicate that the abilities of different AChE inhibitors to increase GI cholinergic activity differ markedly. Understanding the reasons is essential if AChE inhibitors are to be optimally developed as GI prokinetics.
2001-01-01
ofAcetylcholinesterase at Motor Endplates John P. Petrali and Kenneth R. Mills INTRODUCTION Acetylcholinesterase (AChE) is the modulating enzyme of cholin ...utilized for this study was the Pelco 3440, 800 W. The animal used was the haired guinea pig, which was euthanatized by an overdose of Na pentobarbital
Aeinehband, Shahin; Behbahani, Homira; Grandien, Alf; Nilsson, Bo; Ekdahl, Kristina N.; Lindblom, Rickard P. F.; Piehl, Fredrik; Darreh-Shori, Taher
2013-01-01
Acetylcholine (ACh), the classical neurotransmitter, also affects a variety of nonexcitable cells, such as endothelia, microglia, astrocytes and lymphocytes in both the nervous system and secondary lymphoid organs. Most of these cells are very distant from cholinergic synapses. The action of ACh on these distant cells is unlikely to occur through diffusion, given that ACh is very short-lived in the presence of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), two extremely efficient ACh-degrading enzymes abundantly present in extracellular fluids. In this study, we show compelling evidence for presence of a high concentration and activity of the ACh-synthesizing enzyme, choline-acetyltransferase (ChAT) in human cerebrospinal fluid (CSF) and plasma. We show that ChAT levels are physiologically balanced to the levels of its counteracting enzymes, AChE and BuChE in the human plasma and CSF. Equilibrium analyses show that soluble ChAT maintains a steady-state ACh level in the presence of physiological levels of fully active ACh-degrading enzymes. We show that ChAT is secreted by cultured human-brain astrocytes, and that activated spleen lymphocytes release ChAT itself rather than ACh. We further report differential CSF levels of ChAT in relation to Alzheimer’s disease risk genotypes, as well as in patients with multiple sclerosis, a chronic neuroinflammatory disease, compared to controls. Interestingly, soluble CSF ChAT levels show strong correlation with soluble complement factor levels, supporting a role in inflammatory regulation. This study provides a plausible explanation for the long-distance action of ACh through continuous renewal of ACh in extracellular fluids by the soluble ChAT and thereby maintenance of steady-state equilibrium between hydrolysis and synthesis of this ubiquitous cholinergic signal substance in the brain and peripheral compartments. These findings may have important implications for the role of cholinergic signaling in states of inflammation in general and in neurodegenerative disease, such as Alzheimer’s disease and multiple sclerosis in particular. PMID:23840379
Chao, Chih-Kai; Ahmed, S Kaleem; Gerdes, John M; Thompson, Charles M
2016-11-21
The organophosphate O-(2-fluoroethyl)-O-(p-nitrophenyl) methyphosphonate 1 is the first-in-class, fluorine-18 radiolabeled organophosphate inhibitor ([ 18 F]1) of acetylcholinesterase (AChE). In rats, [ 18 F]1 localizes in AChE rich regions of the brain and other tissues where it likely exists as the (CH 3 )( 18 FCH 2 CH 2 O)P(O)-AChE adduct (ChE-1). Characterization of this adduct would define the inhibition mechanism and subsequent postinhibitory pathways and reactivation rates. To validate this adduct, the stability (hydrolysis) of 1 and ChE-1 reactivation rates were determined. Base hydrolysis of 1 yields p-nitrophenol and (CH 3 ) (FCH 2 CH 2 O)P(O)OH with pseudo first order rate constants (k obsd ) at pH 7.4 (PBS) of 3.25 × 10 -4 min -1 (t 1/2 = 35.5 h) at 25 °C and 8.70 × 10 -4 min -1 (t 1/2 = 13.3 h) at 37 °C. Compound 1 was a potent inhibitor of human acetylcholinesterase (HuAChE; k i = 7.5 × 10 5 M -1 min -1 ), electric eel acetylcholinesterase (EEAChE) (k i = 3.0 × 10 6 M -1 min -1 ), and human serum butyrylcholinesterase (HuBChE; 1.95 × 10 5 M -1 min -1 ). Spontaneous and oxime-mediated reactivation rates for the (CH 3 ) (FCH 2 CH 2 O)P(O)-serine ChE adducts using 2-PAM (10 μM) were (a) HuAChE 8.8 × 10 -5 min -1 (t 1/2 = 131.2 h) and 2.41 × 10 -2 min -1 (t 1/2 = 0.48 h), (b) EEAChE 9.32 × 10 -3 min -1 (t 1/2 = 1.24 h) and 3.33 × 10 -2 min -1 (t 1/2 = 0.35 h), and (c) HuBChE 1.16 × 10 -4 min -1 (t 1/2 = 99.6 h) and 4.19 × 10 -2 min -1 (t 1/2 = 0.27 h). All ChE-1 adducts undergo rapid and near complete restoration of enzyme activity following addition of 2-PAM (30 min), and no aging was observed for either reactivation process. The fast reactivation rates and absence of aging of ChE-1 adducts are explained on the basis of the electron-withdrawing fluorine group that favors the nucleophilic reactivation processes but disfavors cation-based dealkylation aging mechanisms. Therefore, the likely fate of radiolabeled compound 1 in vivo is the formation of (CH 3 )(FCH 2 CH 2 O)P(O)-serine adducts and monoacid (CH 3 )(FCH 2 CH 2 O)P(O)OH from hydrolysis and reactivation.
Acetylcholinesterase inhibitory properties of some benzoic acid derivatives
NASA Astrophysics Data System (ADS)
Yildiz, Melike; Kiliç, Deryanur; Ünver, Yaǧmur; Şentürk, Murat; Askin, Hakan; Küfrevioǧlu, Ömer Irfan
2016-04-01
Acetylcholinesterase (AChE) hydrolyses the neurotransmitter acetylcholine to acetic acid and choline. AChE inhibitors are used in treatment of several neurodegeneartive disorder and Alzheimer's disease. In the present study, inhibition of AChE with some benzoic acid derivatives were investigated. 3-Chloro-benzoic acid (1), 2-hydroxy-5-sulfobenzoic acid (2), 2-(sulfooxy) benzoic acid (3), 2-hydroxybenzoic acid (4), 2,3-dimethoxybenzoic (5), and 3,4,5-trimethoxybenzoic (6) were calculated IC50 values AChE enzyme. Kinetic investigations showed that similarly to AChE inhibitors. Benzoic acid derivatives (1-6) investigated are encouraging agents which may be used as lead molecules in order to derivative novel AChE inhibitors that might be useful in medical applications.
Toda, Narihiro; Tago, Keiko; Marumoto, Shinji; Takami, Kazuko; Ori, Mayuko; Yamada, Naho; Koyama, Kazuo; Naruto, Shunji; Abe, Kazumi; Yamazaki, Reina; Hara, Takao; Aoyagi, Atsushi; Abe, Yasuyuki; Kaneko, Tsugio; Kogen, Hiroshi
2003-05-01
We have designed and synthesized a dual inhibitor of acetylcholinesterase (AChE) and serotonin transporter (SERT) as a novel class of treatment drugs for Alzheimer's disease on the basis of a hypothetical model of the AChE active site. Dual inhibitions of AChE and SERT would bring about greater therapeutic effects than AChE inhibition alone and avoid adverse peripheral effects caused by excessive AChE inhibition. Compound (S)-6j exhibited potent inhibitory activities against AChE (IC(50)=101 nM) and SERT (IC(50)=42 nM). Furthermore, (S)-6j showed inhibitory activities of both AChE and SERT in mice brain following oral administration.
Protein tyrosine adduct in humans self-poisoned by chlorpyrifos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Bin, E-mail: binli@unmc.edu; Eyer, Peter, E-mail: peter.eyer@lrz.uni-muenchen.de; Eddleston, Michael, E-mail: M.Eddleston@ed.ac.uk
2013-06-15
Studies of human cases of self-inflicted poisoning suggest that chlorpyrifos oxon reacts not only with acetylcholinesterase and butyrylcholinesterase but also with other blood proteins. A favored candidate is albumin because in vitro and animal studies have identified tyrosine 411 of albumin as a site covalently modified by organophosphorus poisons. Our goal was to test this proposal in humans by determining whether plasma from humans poisoned by chlorpyrifos has adducts on tyrosine. Plasma samples from 5 self-poisoned humans were drawn at various time intervals after ingestion of chlorpyrifos for a total of 34 samples. All 34 samples were analyzed for plasmamore » levels of chlorpyrifos and chlorpyrifos oxon (CPO) as a function of time post-ingestion. Eleven samples were analyzed for the presence of diethoxyphosphorylated tyrosine by mass spectrometry. Six samples yielded diethoxyphosphorylated tyrosine in pronase digests. Blood collected as late as 5 days after chlorpyrifos ingestion was positive for CPO-tyrosine, consistent with the 20-day half-life of albumin. High plasma CPO levels did not predict detectable levels of CPO-tyrosine. CPO-tyrosine was identified in pralidoxime treated patients as well as in patients not treated with pralidoxime, indicating that pralidoxime does not reverse CPO binding to tyrosine in humans. Plasma butyrylcholinesterase was a more sensitive biomarker of exposure than adducts on tyrosine. In conclusion, chlorpyrifos oxon makes a stable covalent adduct on the tyrosine residue of blood proteins in humans who ingested chlorpyrifos. - Highlights: • Chlorpyrifos-poisoned patients have adducts on protein tyrosine. • Diethoxyphosphate-tyrosine does not lose an alkyl group. • Proteins in addition to AChE and BChE are modified by organophosphates.« less
Grigoryan, Hasmik A; Hambardzumyan, Artur A; Mkrtchyan, Marina V; Topuzyan, Vigen O; Halebyan, Ghukas P; Asatryan, Ruben S
2008-01-10
Our goal was to design, synthesize, and evaluate new cholinesterase inhibitors. Fourteen dehydroamino acids esterified to choline and to its ternary analog were synthesized by a new method that gave a yield of 84-93%. The potency of the amino acid ester derivatives was tested by measuring K(i) values for inhibition of human red cell acetylcholinesterase and human plasma butyrylcholinesterase. The most potent compound was a choline ester of dehydrophenylalanine where the amine group of the amino acid was derivatized with a benzoyl group containing a methoxy in the 2-position, CH(3)O(C(6)H(4))CONHC(CHC(6)H(5))COOCH(2)CH(2)N(+)(CH(3))(3). This compound was a strong inhibitor of both human acetylcholinesterase and human butyrylcholinesterase, with K(i) values of 10 microM and 0.08 microM, respectively. These K(i) values are comparable to that of Rivastigmine. Docking of the most potent compound into the active site of human butyrylcholinesterase showed that the lowest energy model had two benzene rings oriented towards Trp 82 and Tyr 332 whereas the positively charged nitrogen group was stabilized by Trp 231. This orientation placed the ester group 3.89 A from the active site Ser 198, a distance too far for covalent bonding, explaining why the esters are inhibitors rather than substrates. This class of anticholinesterase agents has the potential for therapeutic utility in the treatment of disorders of the cholinergic system.
NASA Astrophysics Data System (ADS)
Zhou, Yanyan; Li, Peng; Brantner, Adelheid; Wang, Hongjie; Shu, Xinbin; Yang, Jian; Si, Nan; Han, Lingyu; Zhao, Haiyu; Bian, Baolin
2017-03-01
Lepidium meyenii (Maca), originated from Peru, has been cultivated widely in China as a popular health care food. However, the chemical and effective studies of Maca were less in-depth, which restricted its application seriously. To ensure the quality of Maca, a feasible and accurate strategy was established. One hundred and sixty compounds including 30 reference standards were identified in 6 fractions of methanol extract of Maca by UHPLC-ESI-Orbitrap MS. Among them, 15 representative active compounds were simultaneously determined in 17 samples by UHPLC-ESI-QqQ MS. The results suggested that Maca from Yunnan province was the potential substitute for the one from Peru. Meanwhile, the neuroprotective effects of Maca were investigated. Three fractions and two pure compounds showed strong activities in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced zebrafish model. Among them, 80% methanol elution fraction (Fr5) showed significant neuroprotective activity, followed by 100% part (Fr6). The inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) was a possible mechanism of its neuroprotective effect.
Zhou, Yanyan; Li, Peng; Brantner, Adelheid; Wang, Hongjie; Shu, Xinbin; Yang, Jian; Si, Nan; Han, Lingyu; Zhao, Haiyu; Bian, Baolin
2017-01-01
Lepidium meyenii (Maca), originated from Peru, has been cultivated widely in China as a popular health care food. However, the chemical and effective studies of Maca were less in-depth, which restricted its application seriously. To ensure the quality of Maca, a feasible and accurate strategy was established. One hundred and sixty compounds including 30 reference standards were identified in 6 fractions of methanol extract of Maca by UHPLC-ESI-Orbitrap MS. Among them, 15 representative active compounds were simultaneously determined in 17 samples by UHPLC-ESI-QqQ MS. The results suggested that Maca from Yunnan province was the potential substitute for the one from Peru. Meanwhile, the neuroprotective effects of Maca were investigated. Three fractions and two pure compounds showed strong activities in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced zebrafish model. Among them, 80% methanol elution fraction (Fr5) showed significant neuroprotective activity, followed by 100% part (Fr6). The inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) was a possible mechanism of its neuroprotective effect. PMID:28304399
Zhou, Yanyan; Li, Peng; Brantner, Adelheid; Wang, Hongjie; Shu, Xinbin; Yang, Jian; Si, Nan; Han, Lingyu; Zhao, Haiyu; Bian, Baolin
2017-03-17
Lepidium meyenii (Maca), originated from Peru, has been cultivated widely in China as a popular health care food. However, the chemical and effective studies of Maca were less in-depth, which restricted its application seriously. To ensure the quality of Maca, a feasible and accurate strategy was established. One hundred and sixty compounds including 30 reference standards were identified in 6 fractions of methanol extract of Maca by UHPLC-ESI-Orbitrap MS. Among them, 15 representative active compounds were simultaneously determined in 17 samples by UHPLC-ESI-QqQ MS. The results suggested that Maca from Yunnan province was the potential substitute for the one from Peru. Meanwhile, the neuroprotective effects of Maca were investigated. Three fractions and two pure compounds showed strong activities in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced zebrafish model. Among them, 80% methanol elution fraction (Fr 5 ) showed significant neuroprotective activity, followed by 100% part (Fr 6 ). The inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) was a possible mechanism of its neuroprotective effect.
Zhai, Chen; Guo, Yemin; Sun, Xia; Zheng, Yuhe; Wang, Xiangyou
2014-05-10
In this study, a novel acetylcholinesterase-based biosensor was fabricated. Acetylcholinesterase (AChE) was immobilized onto a glassy carbon electrode (GCE) with the aid of Cu-Mg-Al calcined layered double hydroxide (CLDH). CLDH can provide a bigger effective surface area for AChE loading, which could improve the precision and stability of AChE biosensor. However, the poor electroconductibility of CLDHs could lead to the low sensitivity of AChE biosensor. In order to effectively compensate the disadvantages of CLDHs, graphene-gold nanocomposites were used for improving the electron transfer rate. Thus, the graphene-gold nanocomposite (GN-AuNPs) was firstly modified onto the GCE, and then the prepared CLDH-AChE composite was immobilized onto the modified GCE to construct a sensitive AChE biosensor for pesticides detection. Relevant parameters were studied in detail and optimized, including the pH of the acetylthiocholine chloride (ATCl) solution, the amount of AChE immobilized on the biosensor and the inhibition time governing the analytical performance of the biosensor. The biosensor detected chlorpyrifos at concentrations ranging from 0.05 to 150μg/L. The detection limit for chlorpyrifos was 0.05μg/L. Copyright © 2014 Elsevier Inc. All rights reserved.
In vitro and ex vivo anticholinesterase activities of Erythrina velutina leaf extracts.
Santos, Wanderson Praxedes; da Silva Carvalho, Ana Carla; dos Santos Estevam, Charles; Santana, Antônio Euzébio Goulart; Marçal, Rosilene Moretti
2012-07-01
Erythrina velutina (EV) Willd (Fabaceae-Faboideae) is a medicinal tree that is commonly used in Brazil for the treatment of several central nervous system disorders. The anticholinesterase activity of EV is described in this work. Concentration-response curves (0-1.6 mg/mL) for EV leaf aqueous extract (AE) and alkaloid-rich extracts (AKEs) were performed in vitro. Cholinesterase inhibition was examined in mouse brains, as the cholinesterase source, and in pure acetylcholinesterase (AChE) or butyrylcholinesterase (BuChE). Mice were treated with AE or AKE (100, 200, and 400 mg/kg, p.o.) and their brains were used for the measurement of cholinesterase activity (CA) ex vivo. CA was inhibited by AE (IC(50) = 0.57 [0.43-0.75] mg/mL) and AKE (IC(50) = 0.52 [0.39-0.70] mg/mL) in brain homogenates in a concentration-dependent manner. The ex vivo experiments indicated that AE (400 mg/kg, p < 0.05, 32.2 ± 3.9% of inhibition) and AKE (all doses: p < 0.05-p < 0.001, 29.6 ± 3.2% as the maximum inhibition) significantly inhibited CA in the central nervous system after oral administration. AE and AKE inhibited AChE and BuChE activities in a concentration-dependent manner (AE: IC(50AChE) = 0.56 [0.38-0.81] mg/mL, IC(50BuChE) = 2.95 [1.51-5.76] mg/mL, AKE: IC(50AChE) = 0.87 [0.60-12.5] mg/mL, IC(50BuChE) = 2.67 [0.87-8.11] mg/mL). These data indicated that AE and AKE crossed the blood-brain barrier to inhibit CA in the brain. AE and AKE also exhibited a dual inhibitory action on acetyl- and BuChE.
Kikuchi, Tatsuya; Okamura, Toshimitsu; Arai, Takuya; Obata, Takayuki; Fukushi, Kiyoshi; Irie, Toshiaki; Shiraishi, Tetsuya
2010-01-01
Background and purpose: Cholinesterase inhibitors have been widely used for the treatment of patients with dementia. Monitoring of the cholinesterase activity in the blood is used as an indicator of the effect of the cholinesterase inhibitors in the brain. The selective measurement of cholinesterase with low tissue dilution is preferred for accurate monitoring; however, the methods have not been established. Here, we investigated the effect of tissue dilution on the action of cholinesterase inhibitors using a novel radiometric method with selective substrates, N-[14C]methylpiperidin-4-yl acetate ([14C]MP4A) and (R)-N-[14C]methylpiperidin-3-yl butyrate ([14C]MP3B_R), for AChE and butyrylcholinesterase (BChE) respectively. Experimental approach: We investigated the kinetics of hydrolysis of [14C]-MP4A and [14C]-MP3B_R by cholinesterases, and evaluated the selectivity of [14C]MP4A and [14C]MP3B_R for human AChE and BChE, respectively, compared with traditional substrates. Then, IC50 values of cholinesterase inhibitors in minimally diluted and highly diluted tissues were measured with [14C]MP4A and [14C]MP3B_R. Key results: AChE and BChE activities were selectively measured as the first-order hydrolysis rates of [14C]-MP4A and [14C]MP3B_R respectively. The AChE selectivity of [14C]MP4A was an order of magnitude higher than traditional substrates used for the AChE assay. The IC50 values of specific AChE and BChE inhibitors, donepezil and ethopropazine, in 1.2-fold diluted human whole blood were much higher than those in 120-fold diluted blood. In addition, the IC50 values of donepezil in monkey brain were dramatically decreased as the tissue was diluted. Conclusions and implications: This method would effectively monitor the activity of cholinesterase inhibitors used for therapeutics, pesticides and chemical warfare agents. PMID:20401964
Yamamoto, Kosuke; Sakamoto, Hikaru; Momonoki, Yoshie S
2016-01-01
Acetylcholinesterase (AChE), an acetylcholine-hydrolyzing enzyme, exists widely in plants, although its role in plant signal transduction is still unclear. We have hypothesized that the plant AChE regulates asymmetric distribution of hormones and substrates due to gravity stimulus, based on indirect pharmacological experiments using an AChE inhibitor. As a direct evidence for this hypothesis, our recent study has shown that AChE overexpression causes an enhanced gravitropic response in rice seedlings and suggested that the function of the rice AChE relates to the promotion of shoot gravitropism in the seedlings. Here, we report that AChE suppression inhibited shoot gravitropism in rice seedlings, as supportive evidence demonstrating the role of AChE as a positive regulator of shoot gravitropic response in plants.
AOP description: Acetylcholinesterase inhibition
This adverse outcome pathway (AOP) leverages existing knowledge in the open literature to describe the linkage between inhibition of acetylcholinesterase (AChE) and the subsequent mortality resulting from impacts at cholinergic receptors. The AOP takes a chemical category approa...
Duysen, Ellen G.; Cashman, John R.; Schopfer, Lawrence M.; Nachon, Florian; Masson, Patrick; Lockridge, Oksana
2012-01-01
Mouse blood contains four esterases that detoxify organophosphorus compounds: carboxylesterase, butyrylcholinesterase, acetylcholinesterase, and paraoxonase-1. In contrast human blood contains the latter three enzymes but not carboxylesterase. Organophosphorus compound toxicity is due to inhibition of acetylcholinesterase. Symptoms of intoxication appear after approximately 50% of the acetylcholinesterase is inhibited. However, complete inhibition of carboxylesterase and butyrylcholinesterase has no known effect on an animal’s well being. Paraoxonase hydrolyzes organophosphorus compounds and is not inhibited by them. Our goal was to determine the effect of plasma carboxylesterase deficiency on response to sublethal doses of 10 organophosphorus toxicants and one carbamate pesticide. Homozygous plasma carboxylesterase deficient ES1−/− mice and wild-type littermates were observed for toxic signs and changes in body temperature after treatment with a single sublethal dose of toxicant. Inhibition of plasma acetylcholinesterase, butyrylcholinesterase, and plasma carboxylesterase was measured. It was found that wild-type mice were protected from the toxicity of 12.5 mg/kg parathion applied subcutaneously. However, both genotypes responded similarly to paraoxon, cresyl saligenin phosphate, diisopropylfluorophosphate, diazinon, dichlorvos, cyclosarin thiocholine, tabun thiocholine, and carbofuran. An unexpected result was the finding that transdermal application of chlorpyrifos at 100 mg/kg and chlorpyrifos oxon at 14 mg/kg was lethal to wild-type but not to ES1−/− mice, showing that with this organochlorine, the presence of carboxylesterase was harmful rather than protective. It was concluded that carboxylesterase in mouse plasma protects from high toxicity agents, but the amount of carboxylesterase in plasma is too low to protect from low toxicity compounds that require high doses to inhibit acetylcholinesterase. PMID:22209767
Herkert, Nadja M; Lallement, Guy; Clarençon, Didier; Thiermann, Horst; Worek, Franz
2009-04-28
Recently, a dynamically working in vitro model with real-time determination of membrane-bound human acetylcholinesterase (AChE) activity was shown to be a versatile model to investigate oxime-induced reactivation kinetics of organophosphate- (OP) inhibited enzyme. In this assay, AChE was immobilized on particle filters which were perfused with acetylthiocholine, Ellman's reagent and phosphate buffer. Subsequently, AChE activity was continuously analyzed in a flow-through detector. Now, it was an intriguing question whether this model could be used with erythrocyte AChE from other species in order to investigate kinetic interactions in the absence of annoying side reactions. Rhesus monkey, swine and guinea pig erythrocytes were a stable and highly reproducible enzyme source. Then, the model was applied to the reactivation of sarin- and paraoxon-inhibited AChE by obidoxime or HI 6 and it could be shown that the derived reactivation rate constants were in good agreement to previous results obtained from experiments with a static model. Hence, this dynamic model offers the possibility to investigate highly reproducible interactions between AChE, OP and oximes with human and animal AChE.
Jiang, Li; Qin, Rui; Su, Qiang; Chen, Fuxue; Du, Dongshu; Shu, Yilai; Chou, Kuo-Chen
2017-01-01
Being a neurodegenerative disorder, Alzheimer's disease (AD) is the one of the most terrible diseases. And acetylcholinesterase (AChE) is considered as an important target for treating AD. Acetylcholinesterase inhibitors (AChEI) are considered to be one of the effective drugs for the treatment of AD. The aim of this study is to find a novel potential AChEI as a drug for the treatment of AD. In this study, instead of using the synthetic compounds, we used those extracted from plants to investigate the interaction between floribundiquinone B (FB) and AChE by means of both the experimental approach such as fluorescence spectra, ultraviolet-visible (UV-vis) absorption spectrometry, circular dichroism (CD) and the theoretical approaches such as molecular docking. The findings reported here have provided many useful clues and hints for designing more effective and less toxic drugs against Alzheimer's disease. PMID:28915661
Sun, Qi; Peng, Da-Yong; Yang, Sheng-Gang; Zhu, Xiao-Lei; Yang, Wen-Chao; Yang, Guang-Fu
2014-09-01
Exploring small-molecule acetylcholinesterase (AChE) inhibitors to slow the breakdown of acetylcholine (Ach) represents the mainstream direction for Alzheimer's disease (AD) therapy. As the first acetylcholinesterase inhibitor approved for the clinical treatment of AD, tacrine has been widely used as a pharmacophore to design hybrid compounds in order to combine its potent AChE inhibition with other multi-target profiles. In present study, a series of novel tacrine-coumarin hybrids were designed, synthesized and evaluated as potent dual-site AChE inhibitors. Moreover, compound 1g was identified as the most potent candidate with about 2-fold higher potency (Ki=16.7nM) against human AChE and about 2-fold lower potency (Ki=16.1nM) against BChE than tacrine (Ki=35.7nM for AChE, Ki=8.7nM for BChE), respectively. In addition, some of the tacrine-coumarin hybrids showed simultaneous inhibitory effects against both Aβ aggregation and β-secretase. We therefore conclude that tacrine-coumarin hybrid is an interesting multifunctional lead for the AD drug discovery. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tam, Nguyen Minh; Vu, Khanh B.; Vu, Van V.; Ngo, Son Tung
2018-06-01
Acetylcholinesterase (AChE) is considered as one of the most favored drug targets for Alzheimer's disease. The effects of different force fields (FFs) on ranking affinity of acetylcholinesterase inhibitors were obtained using the fast pulling of ligand (FPL) method in steered-molecular dynamics (SMD) simulations. GROMOS, AMBER, CHARMM, and OPLS-AA FFs were investigated in this work. The pulling work derived with GROMOS FF has the strongest correlation and smallest error compared with experimental binding affinity. Moreover, the CPU consumption in the calculations using GROMOS FF is the lowest, which could allow us to rank affinity of a large number of AChE ligands.
Sepsova, Vendula; Karasova, Jana Zdarova; Korabecny, Jan; Dolezal, Rafael; Zemek, Filip; Bennion, Brian J.; Kuca, Kamil
2013-01-01
Acetylcholinesterase (AChE) reactivators were developed for the treatment of organophosphate intoxication. Standard care involves the use of anticonvulsants (e.g., diazepam), parasympatolytics (e.g., atropine) and oximes that restore AChE activity. However, oximes also bind to the active site of AChE, simultaneously acting as reversible inhibitors. The goal of the present study is to determine how oxime structure influences the inhibition of human recombinant AChE (hrAChE). Therefore, 24 structurally different oximes were tested and the results compared to the previous eel AChE (EeAChE) experiments. Structural factors that were tested included the number of pyridinium rings, the length and structural features of the linker, and the number and position of the oxime group on the pyridinium ring. PMID:23959117
Lee, Sang-Hoon; Park, Jin-Sook; Kim, Se-Kwon; Ahn, Chang-Bum; Je, Jae-Young
2009-02-01
Clinical applications of acetylcholinesterase (AChE) inhibitors are widespread in Alzheimer's sufferers in order to activate central cholinergic system and alleviate cognitive deficits by inhibiting the hydrolysis of acetylcholine. In this study, six kinds of chitooligosaccharides (COSs) with different molecular weight and degree of deacetylation were examined for their inhibitory effects against AChE. The 90-COSs exhibited potent AChE inhibitory activities compared to 50-COSs, while 90-MMWCOS (1000-5000 Da) in the 90-COSs showed the highest activity. Cell culture experiment revealed that 90-MMWCOS suppressed the level of AChE protein expression and AChE activity induced by Abeta(25-35) in PC12 cell lines.
Yamamoto, Kosuke; Sakamoto, Hikaru; Momonoki, Yoshie S.
2016-01-01
ABSTRACT Acetylcholinesterase (AChE), an acetylcholine-hydrolyzing enzyme, exists widely in plants, although its role in plant signal transduction is still unclear. We have hypothesized that the plant AChE regulates asymmetric distribution of hormones and substrates due to gravity stimulus, based on indirect pharmacological experiments using an AChE inhibitor. As a direct evidence for this hypothesis, our recent study has shown that AChE overexpression causes an enhanced gravitropic response in rice seedlings and suggested that the function of the rice AChE relates to the promotion of shoot gravitropism in the seedlings. Here, we report that AChE suppression inhibited shoot gravitropism in rice seedlings, as supportive evidence demonstrating the role of AChE as a positive regulator of shoot gravitropic response in plants. PMID:26979939
Nanomaterials-Based Optical Techniques for the Detection of Acetylcholinesterase and Pesticides
Xia, Ning; Wang, Qinglong; Liu, Lin
2015-01-01
The large amount of pesticide residues in the environment is a threat to global health by inhibition of acetylcholinesterase (AChE). Biosensors for inhibition of AChE have been thus developed for the detection of pesticides. In line with the rapid development of nanotechnology, nanomaterials have attracted great attention and have been intensively studied in biological analysis due to their unique chemical, physical and size properties. The aim of this review is to provide insight into nanomaterial-based optical techniques for the determination of AChE and pesticides, including colorimetric and fluorescent assays and surface plasmon resonance. PMID:25558991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Lin; Long, Linjuan; Zhang, Weiying
2012-09-10
Organophosphate (OP) and carbamate pesticides exert their toxicity via attacking the hydroxyl moiety of serine in the 'active site' of acetylcholinesterase (AChE). In this paper we developed a stable AChE biosensor based on self-assembling AChE to graphene nanosheet (GN)-gold nanoparticles (AuNPs) nanocomposite electrode for investigation of inhibition, reactivation and aging processes of different pesticides. It is confirmed that pesticides can inhibit AChE in a short time. OPs poisoning is treatable with oximes while carbarmates exposure is insensitive to oximes. The proposed electrochemical approach thus provides a new simple tool for comparison of pesticide sensitivity and guide of therapeutic intervention.
Acetylcholinesterase and Nissl staining in the same histological section.
Shipley, M T; Ennis, M; Behbehani, M M
1989-12-18
Acetylcholinesterase (AChE) enzyme histochemistry and Nissl staining are commonly utilized in neural architectonic studies. However, the opaque reaction deposit produced by the most commonly used AChE histochemical methods is not compatible with satisfactory Nissl staining. As a result, precise correlation of AChE and Nissl staining necessitates time-consuming comparisons of adjacent sections which may have differential shrinkage. Here, we have modified the Koelle-Friedenwald histochemical reaction for AChE by omitting the final intensification steps. The modified reaction yields a non-opaque reaction product that is selectively visualized by darkfield illumination. This non-intensified darkfield AChE (NIDA) reaction allows clear visualization of Nissl staining in the same histological section. This combined AChE-Nissl method greatly facilitates detailed correlation of enzyme and cytoarchitectonic organization.
Carletti, Eugénie; Schopfer, Lawrence M; Colletier, Jacques-Philippe; Froment, Marie-Thérèse; Nachon, Florian; Weik, Martin; Lockridge, Oksana; Masson, Patrick
2011-06-20
Aerotoxic syndrome is assumed to be caused by exposure to tricresyl phosphate (TCP), an antiwear additive in jet engine lubricants and hydraulic fluid. CBDP (2-(ortho-cresyl)-4H-1,2,3-benzodioxaphosphoran-2-one) is the toxic metabolite of triortho-cresylphosphate, a component of TCP. Human butyrylcholinesterase (BChE; EC 3.1.1.8) and human acetylcholinesterase (AChE; EC 3.1.1.7) are irreversibly inhibited by CBDP. The bimolecular rate constants of inhibition (k(i)), determined under pseudo-first-order conditions, displayed a biphasic time course of inhibition with k(i) of 1.6 × 10(8) M(-1) min(-1) and 2.7 × 10(7) M(-1) min(-1) for E and E' forms of BChE. The inhibition constants for AChE were 1 to 2 orders of magnitude slower than those for BChE. CBDP-phosphorylated cholinesterases are nonreactivatable due to ultra fast aging. Mass spectrometry analysis showed an initial BChE adduct with an added mass of 170 Da from cresylphosphate, followed by dealkylation to a structure with an added mass of 80 Da. Mass spectrometry in (18)O-water showed that (18)O was incorporated only during the final aging step to form phospho-serine as the final aged BChE adduct. The crystal structure of CBDP-inhibited BChE confirmed that the phosphate adduct is the ultimate aging product. CBDP is the first organophosphorus agent that leads to a fully dealkylated phospho-serine BChE adduct.
Boudouda, Houria Berhail; Zeghib, Assia; Karioti, Anastazia; Bilia, Anna Rita; Öztürk, Mehmet; Aouni, Mahjoub; Kabouche, Ahmed; Kabouche, Zahia
2015-01-01
Different extracts of the aerial parts of Biscutella raphanifolia (Brassicaceae), which has not been the subject of any study, were screened for the phytochemical content, anti-microbial, antioxidant and anti-cholinesterase activities. We used four methods to identify the antioxidant activity namely, ABTS(•+), DPPH• scavenging, CUPRAC and ferrous-ions chelating methods. Since there is a relationship between antioxidants and cholinesterase enzyme inhibitors, we used two methods to determine the in vitro anti-cholinesterase activity by the use of the basic enzymes that occur in causing Alzheimer's disease: acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). The extracts were also tested in vitro antimicrobial activity against various bacteria. The phytochemical study of B. raphanifolia afforded four flavonol glycosides; namely, quercetin-3-O-β-D-g1ucoside, quercetin-3-O-[β-D-glucosyl(1→2)-O-β-D-glucoside], quercetin-3-O-[β-D-glucosyl(1→3)-O-β-D-glucoside] and kaempferol-3-O-[β-D-glucosyl(1→2)-[(6'''p-coumaroyl)- β-D-glucoside], being isolated here for the first time from Biscutella raphanifolia and the genus. The ethyl acetate extract showed the highest activity in ABTS(•+), DPPH• and CUPRAC assays, while the petroleum ether extract demonstrated optimum efficiency metal chelating activity. The dicloromethane and petroleum ether extracts showed a mild inhibition against AChE and BChE. However, the petroleum ether extract showed a good antibacterial activity against the pathovars Enteropathogenic E. coli (EPEC), Enterotoxigenic E. coli (ETEC) and Enterococcus feacalis, whereas the Enterohemorrhagic E. coli (EHEC) strain was more sensitive to dichloromethane and n-butanol extracts.
Carletti, Eugénie; Schopfer, Lawrence M.; Colletier, Jacques-Philippe; Froment, Marie-Thérése; Nachon, Florian; Weik, Martin; Lockridge, Oksana; Masson, Patrick
2011-01-01
The aerotoxic syndrome is assumed to be caused by exposure to tricresyl phosphate (TCP), an anti-wear additive in jet engine lubricants and hydraulic fluids. CBDP (2-(ortho-cresyl)-4H-1,2,3-benzodioxaphosphoran-2-one) is the toxic metabolite of tri-ortho-cresylphosphate, a component of TCP. Human butyrylcholinesterase (BChE; EC 3.1.1.8) and human acetylcholinesterase (AChE; EC 3.1.1.7) are irreversibly inhibited by CBDP. The bimolecular rate constants of inhibition (ki), determined under pseudo first-order conditions, displayed a biphasic time course of inhibition with ki 1.6×108 M−1min−1 and 2.7×107 M−1min−1 for E and E′ forms of BChE. The inhibition constants for AChE were one to two orders of magnitude slower than for BChE. CBDP-phosphorylated cholinesterases are non-reactivatable due to ultra fast “aging”. Mass spectrometry analysis showed an initial BChE adduct with an added mass of 170 Da from cresylphosphate, followed by dealkylation to a structure with an added mass of 80 Da. Mass spectrometry in 18O–water showed that 18O was incorporated only during the final aging step to form phospho-serine as the final “aged” BChE adduct. The crystal structure of CBDP-inhibited BChE confirmed that the phosphate adduct is the ultimate aging product. CBDP is the first organophosphorus agent that leads to a fully dealkylated phospho-serine BChE adduct. PMID:21438623
Zheng, Hailin; Fridkin, Mati; Youdim, Moussa B H
2010-12-01
chelators can modulate β-amyloid accumulation, protect against tau hyperphosphorylation, and block metal-related oxidative stress, and thereby hold considerable promise as effective anti-AD drugs. At present, a growing interest is focusing on increasing the efficacy and targeting of chelators through drug design. To this end, we have developed a new class of multifunctional prochelators from three FDA- approved drugs rasagiline, rivastigmine, and donepezil or tacrine. HLA20 A was designed by merging the important pharmacophores of rasagiline, rivastigmine, and donepezil into our newly developed multifunctional chelator HLA20. M30D was constructed using the key pharmacophoric moieties from rasagiline, rivastigmine, and tacrine. Experiments showed that both compounds possess potent anti-acetylcholinesterase (AChE) activity in vitro with weak inhibition of butyrylcholinesterase (BuChE), and without significant metal-binding activity. M30D was found also to be a highly potent MAO A inhibitor with moderate inhibition of MAO B in vitro. Both HLA20 and M30D can be activated by inhibition of AChE to release active chelators HLA20 and M30, respectively. HLA20 and M30 have been shown to be able to modulate amyloid precursor protein regulation and beta-amyloid reduction, suppress oxidative stress, and passivate excess metal ions (Fe, Cu, and Zn). Compared with the activated chelator HLA20 or M30, both HLA20A and M30D exhibited lower cytotoxicity in SH-SY5Y neuroblastoma cells, substantiating the prochelator strategy for minimizing toxicity associated with poor targeted chelators.
Ortiz, Javier E; Garro, Adriana; Pigni, Natalia B; Agüero, María Belén; Roitman, German; Slanis, Alberto; Enriz, Ricardo D; Feresin, Gabriela E; Bastida, Jaume; Tapia, Alejandro
2018-01-15
In Argentina, the Amaryllidaceae family (59 species) comprises a wide variety of genera, only a few species have been investigated as a potential source of cholinesterases inhibitors to treat Alzheimer disease (AD). To study the acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities of the basic dichloromethane extracts (E) from Hieronymiella aurea, H. caletensis, H. clidanthoides, H. marginata, and H. speciosa species, as well as the isolated compounds from these plant extracts. AChE and BChE inhibitory activities were evaluated with the Ellman's spectrophotometric method. The alkaloids composition from the E was obtained by gas chromatography-mass spectrometry (GC-MS). The E were successively chromatographed on a silica gel column and permeated on Sephadex LH-20 column to afford the main alkaloids identified by means of spectroscopic data. Additionally, an in silico study was carried out. Nine known alkaloids were isolated from the E of five Hieronymiella species. Galanthamine was identified in all the species by GC-MS standing out H. caletensis with a relative abundance of 9.79% of the total ion current. Strong AChE (IC 50 = 1.84 - 15.40 µg/ml) and moderate BChE (IC50 = 23.74 - 136.40 µg/ml) inhibitory activities were displayed by the extracts. Among the isolated alkaloids, only sanguinine and chlidanthine (galanthamine-type alkaloids) demonstrated inhibitory activity toward both enzymes. The QTAIM study suggests that sanguinine has the strongest affinity towards AChE, attributed to an additional interaction with Ser200 as well as stronger molecular interactions Glu199 and His440.These results allowed us to differentiate the molecular behavior in the active site among alkaloids possessing different in vitro inhibitory activities. Hieronymiella species growing in Argentina represent a rich and widespread source of galanthamine and others AChE and BChE inhibitors alkaloids. Additionally, the new trend towards the use of natural extracts as pharmaceuticals rather than pure drugs opens a pathway for the development of a phytomedicine derived from extracts of Hieronymiella spp. Copyright © 2017 Elsevier GmbH. All rights reserved.
Zhang, Haomin; Guo, Yinan; Meng, Lingwen; Sun, Hui; Yang, Yinping; Gao, Ying; Sun, Jiaming
2018-01-01
Background: At present, approximately 17–25 million people in the world suffer from Alzheimer's disease (AD). The most efficacious and acceptable therapeutic drug clinically are the acetylcholinesterase inhibitors (AChEIs). Yinhuang oral liquid is a Chinese medicine preparation which contains AChEIs according to the literatures. However, no strategy has been presented for rapid screening and identification of AChEIs from Yinhuang oral liquid. Objective: To develop a method for rapid screening and identification of AChEIs from Yinhuang oral liquid using ultrafiltration–liquid chromatography–electrospray ionization tandem mass spectrometry (UF-LC-ESI-MS/MS). Materials and Methods: In this study, UF incubation conditions such as enzyme concentration, incubation time, and incubation temperature were optimized so as to get better screening results. The AChEIs from Yinhuang oral liquid were identified by high-performance liquid chromatography-ESI-MS and the improved Ellman method was used for the AChE inhibitory activity test in vitro. Results: The results showed that Yinhuang oral liquid can inhibit the activity of AChE. We screened and identified seven compounds with potential AChE inhibitory activity from Yinhuang oral liquid, which provided experimental basis for the treatment and prevention of AD. Conclusion: The current technique was used to directly screen the active ingredients with acetylcholinesterase inhibition from complex traditional Chinese medicine, which was simple, rapid, accurate, and suitable for high-throughput screening of AChEI from complex systems. SUMMARY A UF-LC-ESI-MS/MS method for rapid screening and identification of AChEIs from Yinhuang oral liquid was developedSeven compounds were screened and identified with potential AChE inhibitory activity from Yinhuang oral liquidIt provided experimental basis of Yinhuang oral liquid for the treating and preventing AD. Abbreviations used: (AD): Alzheimer's disease; (UF-LC-ESI-MS/MS): ultrafiltration–liquid chromatography–electrospray ionization tandem mass spectrometry; (AChEIs): acetylcholinesterase inhibitors. PMID:29720840
Esterase detoxification of acetylcholinesterase inhibitors by human or rat liver in vitro
Organophosphate (OP) and N-methylcarbamate pesticides inhibit acetylcholinesterase (AChE), but differences in metabolism and detoxification can influence potency of these pesticides across and within species. Carboxylesterase (CaE) and A-esterase (paraoxonase, PON) are considered...
Esterase detoxification of acetylcholinesterase inhibitors using human liver samples in vitro
Organophosphate (OP) and N-methylcarbamate pesticides inhibit acetylcholinesterase (AChE), but differences in metabolism and detoxification can influence potency of these pesticides across and within species. Carboxylesterase (CaE) and A-esterase (paraoxonase, PON1) are consider...
Complexity of acetylcholinesterases in biting flies and ticks
USDA-ARS?s Scientific Manuscript database
Acetylcholinesterase (AChE) inhibitors function as pesticides for invertebrates, vertebrate nerve agents, and medicine to reduce cognitive effects of Alzheimer’s disease. Organophosphate (OP) pesticides have been widely used to control biting flies and ticks, however, OP-resistance has compromised c...
Toda, Narihiro; Tago, Keiko; Marumoto, Shinji; Takami, Kazuko; Ori, Mayuko; Yamada, Naho; Koyama, Kazuo; Naruto, Shunji; Abe, Kazumi; Yamazaki, Reina; Hara, Takao; Aoyagi, Atsushi; Abe, Yasuyuki; Kaneko, Tsugio; Kogen, Hiroshi
2003-10-01
Alzheimer's disease (AD) has been treated with acetylcholinesterase (AChE) inhibitors such as donepezil. However, the clinical usefulness of AChE inhibitors is limited mainly due to their adverse peripheral effects. Depression seen in AD patients has been treated with serotonin transporter (SERT) inhibitors. We considered that combining SERT and AChE inhibition could improve the clinical usefulness of AChE inhibitors. In a previous paper, we found a potential dual inhibitor, 1, of AChE (IC50=101 nM) and SERT (IC50=42 nM), but its AChE inhibition activity was less than donepezil (IC50=10 nM). Here, we report the conformationally restricted (R)-18a considerably enhanced inhibitory activity against AChE (IC50=14 nM) and SERT (IC50=6 nM).
Ashokkumar, Natarajan; Pari, Leelavinothan; Ramkumar, Kunga Mohan
2006-09-01
The effect of hyperglycaemia due to experimental diabetes in male Wistar rats causes a decrease in the level of acetylcholinesterase (AChE) with significant increase in lipid peroxidative markers: thiobarbituric acid-reactive substances (TBARS) and hydroperoxides in brains of experimental animals. The decreased activity of both salt soluble and detergent soluble acetylcholinesterase observed in diabetes may be attributed to lack of insulin which causes specific alterations in the level of neurotransmitter, thus causing brain dysfunction. Administration of non-sulfonylurea drug N-benzoyl-D-phenylalanine (NBDP) could protect against direct action of lipid peroxidation on brain AChE and in this way it might be useful in the prevention of cholinergic neural dysfunction, which is one of the major complications in diabetes.
Chen, Heng-Wen; He, Xuan-Hui; Yuan, Rong; Wei, Ben-Jun; Chen, Zhong; Dong, Jun-Xing; Wang, Jie
2016-04-01
Acetylcholinesterase Inhibitor (AchEI) is the most extensive in all anti-dementia drugs. The extracts and isolated compounds from the Valeriana genus have shown anti-dementia bioactivity. Four new sesquiterpenoids (1-4) and a new monoterpenoid (5) were isolated from the root of Valeriana officinalis var. latiofolia. The acetylcholinesterase (AchE) inhibitory activity of isolates was evaluated by modified Ellman method in vitro. Learning and memory ability of compound 4 on mice was evaluated by the Morris water maze. The contents of acetylcholine (Ach), acetylcholine transferase (ChAT) and AchE in mice brains were determined by colorimetry. The results showed IC50 of compound 4 was 0.161 μM in vitro. Compared with the normal group, the learning and memory ability of mice and the contents of Ach and ChAT decreased in model group mice (P<0.01), while the AchE increased (P<0.01). Compared with the model group, Ach and ChAT in the positive control group, the high-dose group and the medium-dose group increased (P<0.01), while the AchE decreased (P<0.01). Compound 4 can improve the learning and memory abilities of APPswe/PSΔE9 double-transgenic mice, and the mechanism may be related to the regulation of the relative enzyme in the cholinergic system. Copyright © 2016 Elsevier B.V. All rights reserved.
Production of Polyclonal Antibodies in Rabbits
1995-10-01
injections of bovine fetal serum acetylcholinesterase and horse serum butyrylcholinesterase in rabbits. Concentrations of these enzymes became...13 2. Horse Serum Butyrylcholinesterase (E-BChE) 14 3. Bovine Serum Albumin (BSA) and Rabbit Serum Al4umin (RSA) 14 4. Suppocire-D 14 5. Triglyceride...Extraction from Calcium Sulfate Microspheres 16 c. Removal of Sealant and Polymer Overcoat from Calcium 17 Sulfate Microspheres 5. Size Distribution 17 6. In
Neuroinflammatory Pathobiology in Gulf War Illness: Characterization with an Animal Model
2013-08-01
GFAP,IL6,CCL2, TNF, L118, Lif, IL10 Hip, Ctx Ctx Ctx CORT=corticosterone;(200mg/L) for days 7-14 P8= pyridostigmine bromide ;P8(2.5 mg/kg/day, s.c...reversible acetylcholinesterase (AChE) inhibitor pyridostigmine bromide (PB), the insect repellent DEET and, potentially, the nerve agent, sarin. These...acetylcholinesterase (AChE) inhibitor, pyridostigmine bromide (PB), the insect repellent, DEET, and, potentially, acutely to the nerve agent sarin. Previously, we
NASA Technical Reports Server (NTRS)
Dettbarn, W. D.; Groswald, D.; Gupta, R. C.; Misulis, K. E.
1985-01-01
The role of acetylcholinesterase (AChE) in neuromuscular transmission is relatively well established, little is known, however, of the mechanisms that regulate its synthesis and control its specific distribution in fast and slow muscle. Innervation plays an important role in the regulation of AChE and elimination of the influence of the nerve by surgical denervation results in a loss of AChE. The influences of the nerve and how they are mediated was investigated. It is suggested that muscle usage and other factors such as materials carried by axonal transport may participate in the regulation of this enzyme. The mechanisms that regulate AChE and its molecular forms in two functionally different forms are studied.
Yang, Zhong-Duo; Duan, Dong-Zhu; Du, Juan; Yang, Ming-Jun; Li, Shuo; Yao, Xiao-Jun
2012-01-01
Geissoschizine methyl ether (1), a newly discovered strong acetylcholinesterase (AChE) inhibitor, along with six weakly active alkaloids, vallesiachotamine (2), hisuteine (3), hirsutine (4), isorhynchophylline (5), cisocorynoxeine (6) and corynoxeine (7) have been isolated from Uncaria rhynchophylla. Geissoschizine methyl ether (1) inhibited 50% of AChE activity at concentrations of 3.7 ± 0.3 µg mL(-1) while the IC(50) value of physostigmine as a standard was 0.013 ± 0.002 µg mL(-1). The mode of AChE inhibition by 1 was reversible and non-competitive. In addition, molecular modelling was performed to explore the binding mode of inhibitor 1 at the active site of AChE.
Kundu, Anish; Mitra, Adinpunya
2013-09-01
Acetylcholinesterase inhibitors (AChEIs) are important for treatment of Alzheimer's disease and other neurological disorders. Search for potent and safe AChEIs from plant sources still continues. In the present work, we explored fragrant plant extracts that are traditionally used in flavoring foods, namely, Hemidesmus indicus and Vanilla planifolia, as possible sources for AChEI. Root and pod extracts of H. indicus and V. planifolia, respectively, produce fragrant phenolic compounds, 2-hydroxy-4-methoxybenzaldehyde (MBALD) and 4-hydroxy-3-methoxybenzaldehyde (vanillin). These methoxybenzaldehydes were shown to have inhibitory potential against acetylcholinesterase (AChE). Vanillin (IC50 = 0.037 mM) was detected as more efficient inhibitor than MBALD (IC50 = 0.047 mM). This finding was supported by kinetic analysis. Thus, plant-based food flavoring agents showed capacity in curing Alzheimer's disease and other neurological dysfunctions.
Zhang, Qingqing; Hu, Yufang; Wu, Di; Ma, Shaohua; Wang, Jiao; Rao, Jiajia; Xu, Lihua; Xu, Huan; Shao, Huili; Guo, Zhiyong; Wang, Sui
2018-06-01
A highly sensitive electrochemical biosensor based on the synthetized L-Cysteine-Ag(I) coordination polymer (L-Cys-Ag(I) CP), which looks like a protein-mimicking nanowire, was constructed to detect acetylcholinesterase (AChE) activity and screen its inhibitors. This sensing strategy involves the reaction of acetylcholine chloride (ACh) with acetylcholinesterase (AChE) to form choline that is in turn catalytically oxidized by choline oxidase (ChOx) to produce hydrogen peroxide (H 2 O 2 ), thus L-Cys-Ag(I) CP possesses the electro-catalytic property to H 2 O 2 reduction. Herein, the protein-mimicking nanowire-based platform was capable of investigating successive of H 2 O 2 effectively by amperometric i-t (current-time) response, and was further applied for the turn-on electrochemical detection of AChE activity. The proposed sensor is highly sensitive (limit of detection is 0.0006 U/L) and is feasible for screening inhibitors of AChE. The model for AChE inhibition was further established and two traditional AChE inhibitors (donepezil and tacrine) were employed to verify the feasibility of the system. The IC 5 0 of donepezil and tacrine were estimated to be 1.4 nM and 3.5 nM, respectively. The developed protocol provides a new and promising platform for probing AChE activity and screening its inhibitors with low cost, high sensitivity and selectivity. Copyright © 2018 Elsevier B.V. All rights reserved.
Tonelli, Michele; Catto, Marco; Tasso, Bruno; Novelli, Federica; Canu, Caterina; Iusco, Giovanna; Pisani, Leonardo; Stradis, Angelo De; Denora, Nunzio; Sparatore, Anna; Boido, Vito; Carotti, Angelo; Sparatore, Fabio
2015-06-01
Multitarget therapeutic leads for Alzheimer's disease were designed on the models of compounds capable of maintaining or restoring cell protein homeostasis and of inhibiting β-amyloid (Aβ) oligomerization. Thirty-seven thioxanthen-9-one, xanthen-9-one, naphto- and anthraquinone derivatives were tested for the direct inhibition of Aβ(1-40) aggregation and for the inhibition of electric eel acetylcholinesterase (eeAChE) and horse serum butyrylcholinesterase (hsBChE). These compounds are characterized by basic side chains, mainly quinolizidinylalkyl moieties, linked to various bi- and tri-cyclic (hetero)aromatic systems. With very few exceptions, these compounds displayed inhibitory activity on both AChE and BChE and on the spontaneous aggregation of β-amyloid. In most cases, IC50 values were in the low micromolar and sub-micromolar range, but some compounds even reached nanomolar potency. The time course of amyloid aggregation in the presence of the most active derivative (IC50 =0.84 μM) revealed that these compounds might act as destabilizers of mature fibrils rather than mere inhibitors of fibrillization. Many compounds inhibited one or both cholinesterases and Aβ aggregation with similar potency, a fundamental requisite for the possible development of therapeutics exhibiting a multitarget mechanism of action. The described compounds thus represent interesting leads for the development of multitarget AD therapeutics. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bagrov, Ia Iu; Manusova, N B
2011-01-01
Acetylcholine (ACh, 1 microM) stimulates activity of the contractile vacuole of proteus. The effect of ACh is not mimicked by its analogs which are not hydrolyzed by acetylcholinesterase (AChE), i. e., carbacholine and 5-methylfurmethide. The effect of ACh is not sensitive to the blocking action of M-cholinolytics, atropine and mytolone, but is suppressed by N-cholinolytic, tubocurarine. The inhibitors of AChE, eserine (0.01 microM) and armine (0.1 microM), suppress the effect of ACh on amoeba contractile vacuole. ACh does not affect activation of contractile vacuole induced by arginine-vasopressin (1 microM), but it blocks such effect of opiate receptors agonist, dynorphin A1-13 (0.01 microM). This effect of ACh is also suppressed by the inhibitors of AChE. These results suggest that, in the above-described effects of ACh, AChE acts not as an antagonist, but rather as a synergist.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katz, Francine S.; Pecic, Stevan; Tran, Timothy H.
Acetylcholinesterase (AChE) that has been covalently inhibited by organophosphate compounds (OPCs), such as nerve agents and pesticides, has traditionally been reactivated by using nucleophilic oximes. There is, however, a clearly recognized need for new classes of compounds with the ability to reactivate inhibited AChE with improved in vivo efficacy. Here we describe our discovery of new functional groups—Mannich phenols and general bases—that are capable of reactivating OPC-inhibited AChE more efficiently than standard oximes and we describe the cooperative mechanism by which these functionalities are delivered to the active site. These discoveries, supported by preliminary in vivo results and crystallographic data,more » significantly broaden the available approaches for reactivation of AChE.« less
Toumi, Héla; Boumaiza, Moncef; Millet, Maurice; Radetski, Claudemir Marcos; Felten, Vincent; Férard, Jean François
2015-02-01
In the present study, we explored the possibility of using the acetylcholinesterase (AChE) as a biomarker after deltamethrin (pyrethroid insecticide) exposure with three strains of the cladoceran Daphnia magna. Four calculated time-weighted deltamethrin concentrations (20.1, 40.3, 80.6 and 161.3 ng L(-1)) were compared against control acetylcholinesterase activity. Our results showed that after 48 h of deltamethrin exposure, all treatments induced a significant decrease of AChE activities whatever the three considered strains. However, diverse responses were registered in terms of lowest observed effect concentrations (LOEC: 80.6 ng L(-1) for strain 1 and 20.1 ng L(-1) for strains 2 and 3) revealing differences in sensitivity among the three tested strains of D. magna. Our results suggest that after deltamethrin exposure, the AChE activity responses can be also used as a biomarker of susceptibility (i.e., variation of strain specific response). Moreover, our results show that strain 1 is the less sensitive in terms of IC50-48 h of AChE, whereas it became the most sensitive when considering the EC50-48 h estimated in the standard ecotoxicity test. Copyright © 2014 Elsevier Ltd. All rights reserved.
Plasma B-esterase activities in European raptors.
Roy, Claudie; Grolleau, Gérard; Chamoulaud, Serge; Rivière, Jean-Louis
2005-01-01
B-esterases are serine hydrolases composed of cholinesterases, including acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), and carboxylesterase (CbE). These esterases, found in blood plasma, are inhibited by organophosphorus (OP) and carbamate (CB) insecticides and can be used as nondestructive biomarkers of exposure to anticholinesterase insecticides. Furthermore, B-esterases are involved in detoxification of these insecticides. In order to establish the level of these enzymes and to have reference values for their normal activities, total plasma cholinesterase (ChE), AChE and BChE activities, and plasma CbE activity were determined in 729 European raptors representing 20 species, four families, and two orders. The diurnal families of the Falconiforme order were represented by Accipitridae and Falconidae and the nocturnal families of the Strigiforme order by Tytonidae and Strigidae. Intraspecies differences in cholinesterase activities according to sex and/or age were investigated in buzzards (Buteo buteo), sparrowhawks (Accipiter nisus), kestrels (Falco tinnunculus), barn owls (Tyto alba), and tawny owls (Strix aluco). Sex-related differences affecting ChE and AChE activities were observed in young kestrels (2-3-mo-old) and age-related differences in kestrels (ChE and AChE), sparrowhawks (AChE), and tawny owls (ChE, AChE, and BChE). The interspecies analysis yielded a negative correlation between ChE activity and body mass taking into account the relative contribution of AChE and BChE to ChE activity, with the exception of the honey buzzard (Pernis apivorus). The lowest ChE activities were found in the two largest species, Bonelli's eagle (Hieraaetus fasciatus) and Egyptian vulture (Neophron percnopterus) belonging to the Accipitridae family. The highest ChE activities were found in the relatively small species belonging to the Tytonidae and Strigidae families and in honey buzzard of the Accipitridae family. Species of the Accipitridae, Tytonidae, and Strigidae families were characterized by a BChE contribution that dominated the total ChE activity, while in the species of the Falconidae family, AChE activity dominated. With the exception of the barn owl, CbE activity (eserine-insensitive alpha-naphthyl acetate esterase [alpha-NAE] activity) in all species was almost absent or very low. The values obtained in this study for ChE, AChE, and BChE activities and the AChE:BChE ratios for buzzard, kestrel, barn owl, and tawny owl provide a good estimate of the normal values in free-living individuals of these European species. They can be used as a baseline to evaluate the effect of anticholinesterase insecticides in the field.
Ibogaine and the inhibition of acetylcholinesterase.
Alper, Kenneth; Reith, Maarten E A; Sershen, Henry
2012-02-15
Ibogaine is a psychoactive monoterpine indole alkaloid extracted from the root bark of Tabernanthe iboga Baill. that is used globally in medical and nonmedical settings to treat drug and alcohol addiction, and is of interest as an ethnopharmacological prototype for experimental investigation and pharmaceutical development. The question of whether ibogaine inhibits acetylcholinesterase (AChE) is of pharmacological and toxicological significance. AChE activity was evaluated utilizing reaction with Ellman's reagent with physostigmine as a control. Ibogaine inhibited AChE with an IC(50) of 520±40 μM. Ibogaine's inhibition of AChE is physiologically negligible, and does not appear to account for observations of functional effects in animals and humans that might otherwise suggest the possible involvement of pathways linked to muscarinic acetylcholine transmission. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Abas, Faridah; Ahmad, Syahida; Shaari, Khozirah; Khamis, Shamsul; Lajis, N. H.
2013-01-01
The methanol extracts of three Macaranga species (M. denticulata, M. pruinosa, and M. gigantea) were screened to evaluate their total phenolic contents and activities as cholinesterase inhibitors, nitric oxide (NO) production inhibitors, tyrosinase inhibitors, and antioxidants. The bark of M. denticulata showed the highest total phenolic content (2682 mg gallic acid equivalent (GAE)/100 g) and free radical scavenging activity (IC50 = 0.063 mg/mL). All of the samples inhibited linoleic acid peroxidation by greater than 80%, with the leaves of M. gigantea exhibiting the highest inhibition of 92.21%. Most of the samples exhibited significant antioxidant potential. The bark of M. denticulata and the leaves of both M. pruinosa and M. gigantea exhibited greater than 50% tyrosinase inhibition, with the bark of M. denticulata having the highest percentage of inhibition (68.7%). The bark and leaves of M. denticulata exhibited greater than 50% inhibition (73.82% and 54.50%, resp.) of the acetylcholinesterase enzyme (AChE), while none of the samples showed any significant inhibition of butyrylcholinesterase (BChE). Only the bark of M. denticulata and M. gigantea displayed greater than 50% inhibition of nitric oxide production in cells (81.79% and 56.51%, resp.). These bioactivities indicate that some Macaranga spp. have therapeutic potential in medicinal research. PMID:24319356
Mazlan, Nor Aishah; Mediani, Ahmed; Abas, Faridah; Ahmad, Syahida; Shaari, Khozirah; Khamis, Shamsul; Lajis, N H
2013-01-01
The methanol extracts of three Macaranga species (M. denticulata, M. pruinosa, and M. gigantea) were screened to evaluate their total phenolic contents and activities as cholinesterase inhibitors, nitric oxide (NO) production inhibitors, tyrosinase inhibitors, and antioxidants. The bark of M. denticulata showed the highest total phenolic content (2682 mg gallic acid equivalent (GAE)/100 g) and free radical scavenging activity (IC50 = 0.063 mg/mL). All of the samples inhibited linoleic acid peroxidation by greater than 80%, with the leaves of M. gigantea exhibiting the highest inhibition of 92.21%. Most of the samples exhibited significant antioxidant potential. The bark of M. denticulata and the leaves of both M. pruinosa and M. gigantea exhibited greater than 50% tyrosinase inhibition, with the bark of M. denticulata having the highest percentage of inhibition (68.7%). The bark and leaves of M. denticulata exhibited greater than 50% inhibition (73.82% and 54.50%, resp.) of the acetylcholinesterase enzyme (AChE), while none of the samples showed any significant inhibition of butyrylcholinesterase (BChE). Only the bark of M. denticulata and M. gigantea displayed greater than 50% inhibition of nitric oxide production in cells (81.79% and 56.51%, resp.). These bioactivities indicate that some Macaranga spp. have therapeutic potential in medicinal research.
Senol, F Sezer; Acikara, Ozlem Bahadir; Citoglu, Gulcin Saltan; Orhan, Ilkay Erdogan; Dall' Acqua, Stefano; Ozgökce, Fevzi
2014-07-01
Scorzonera L. species (Asteraceae) are edible and as medicinal plants are used for various purposed in folk medicine. The methanol extracts of the aerial parts and roots from 27 Scorzonera taxa were investigated for their possible neurobiological effects. Inhibitory potential of the Scorzonera species was tested against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and tyrosinase (TYRO) at 100 µg mL(-1) using ELISA microtiter assay. Antioxidant activity of the extracts was tested with radical scavenging activity, metal-chelation capacity, ferric- (FRAP), and phosphomolibdenum-reducing antioxidant power (PRAP) assays. Chlorogenic acid, hyperoside, rutin, and scorzotomentosin-4-O-β-glucoside were also screened in the same manner. Total phenol and flavonoid quantification in the extracts were determined spectrophotometrically. The aerial parts of Scorzonera pisidica (40.25 ± 0.74%) and chlorogenic acid (46.97 ± 0.82%) displayed the highest TYRO inhibition, while the remaining samples showed only trivial inhibition against cholinesterases (2.08 ± 1.35%-25.32 ± 1.37%). The same extract of S. pisidica was revealed to be the most potent in scavenging of all three radicals and FRAP assay. Out of 27 taxa, S. pisidica, in particular, may deserve further investigation for its neuroprotective potential.
Junges, Celina M; Vidal, Eduardo E; Attademo, Andrés M; Mariani, Melisa L; Cardell, Leandro; Negro, Antonio C; Cassano, Alberto; Peltzer, Paola M; Lajmanovich, Rafael C; Zalazar, Cristina S
2013-01-01
The H(2)O(2)/UVC process was applied to the photodegradation of a commercial formulation of glyphosate in water. Two organisms (Vibrio fischeri bacteria and Rhinella arenarum tadpoles) were used to investigate the toxicity of glyphosate in samples M(1,) M(2), and M(3) following different photodegradation reaction times (120, 240 and 360 min, respectively) that had differing amounts of residual H(2)O(2). Subsamples of M(1), M(2), and M(3) were then used to create samples M(1,E), M(2,E) and M(3,E) in which the H(2)O(2) had been removed. Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities were measured in tadpoles to determine possible sub-lethal effects. In V. fischeri, M(1,E), which was collected early in the photodegradation process, caused 52% inhibition, while M(3,E), which was collected at the end of the photodegradation process, caused only 17% inhibition. Survival of tadpoles was 100% in samples M(2), M(3), and in M(1,E), M(2,E) and M(3,E). The lowest percentages of enzymatic inhibition were observed in samples without removal of H(2)O(2): 13.96% (AChE) and 16% (BChE) for M(2), and 24.12% (AChE) and 13.83% (BChE) for M(3). These results show the efficiency of the H(2)O(2)/UVC process in reducing the toxicity of water or wastewater polluted by commercial formulations of glyphosate. According to the ecotoxicity assays, the conditions corresponding to M(2) (11 ± 1 mg a.e. L(-1) glyphosate and 11 ± 1 mg L(-1) H(2)O(2)) could be used as a final point for glyphosate treatment with the H(2)O(2)/UV process.
Ali Reza, A S M; Hossain, Mohammad Shahadat; Akhter, Sharmin; Rahman, Md Rezanur; Nasrin, Mst Samima; Uddin, Md Josim; Sadik, Golam; Khurshid Alam, A H M
2018-04-05
Alzheimer's disease (AD), one of the major causes of dementia, is an overwhelming neurodegenerative disease that particularly affects the brain, leading to memory loss and impairment of language and judgment capacity. The aim of the present study was to investigate the antioxidant and anticholinesterase properties of the leaves of Elatostema papillosum (EPL) and correlate with their phytochemical profiles, which are relevant to the treatment of AD. The dried coarse powder of EPL was extracted with 80% methanol (EPL-M80) by cold extraction method. The resultant EPL-M80 was assessed for acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activity by the Ellman method. The antioxidant activity was determined by DPPH (1, 1-diphenyl-2-picrylhydrazyl) and hydroxyl radical scavenging assays. Quantitative phytochemical (phenolic and flavonoid contents) analysis of endogenous substances in EPL-M80 was performed by standard spectrophotometric methods. EPL-M80 significantly (p < 0.05) inhibited AChE and BChE activity with IC 50 of 165.40 ± 4.01 and 213.81 ± 3.57 μg/mL, respectively in a dose-dependent manner. Additionally, EPL-M80 exhibited strong radical scavenging activity against DPPH (IC 50 = 32.35 ± 0.68 μg/mL) and hydroxyl radical (IC 50 = 19.67 ± 1.42 μg/mL) when compared to that of standards. EPL-M80 was found to be rich in phenolic (23.74 mg gallic acid equivalent/g of dry extract) and flavonoid (31.18 mg quercetin equivalent/g of dry extract) content. Furthermore, a positive correlation (p < 0.001) was observed between the total phenolics and antioxidant as well as the anticholinesterase potential. The marked inhibition of AChE and BChE, and potent antioxidant activity of the leaves of Elatostema papillosum highlight its potential to provide an effective treatment for AD.
Terry, Alvin V; Buccafusco, Jerry J; Herman, Elizabeth J; Callahan, Patrick M; Beck, Wayne D; Warner, Samantha; Vandenhuerk, Leah; Bouchard, Kristy; Schwarz, Gary M; Gao, Jie; Chapman, James M
2011-03-01
This study was designed to evaluate further a prototypical ranitidine analog, JWS-USC-75-IX, [(3-[[[2-[[(5-dimethylaminomethyl)-2-furanyl]methyl]thio]ethyl]amino]-4-nitropyridazine, JWS], for neuropharmacologic properties that would theoretically be useful for treating cognitive and noncognitive behavioral symptoms of neuropsychiatric disorders. JWS was previously found to inhibit acetylcholinesterase (AChE) activity, serve as a potent ligand at muscarinic M₂ acetylcholine receptors, and elicit positive effects on spatial learning, passive avoidance, and working memory in rodents. In the current study, JWS was evaluated for binding activity at more than 60 neurotransmitter receptors, transporters, and ion channels, as well as for inhibitory activity at AChE and butyrylcholinesterase (BChE). The results indicate that JWS inhibits AChE and BChE at low (micromolar) concentrations and that it is a functional antagonist at M₂ receptors (K(B) = 320 nM). JWS was subsequently evaluated orally across additional behavioral assays in rodents (dose range, 0.03-10.0 mg/kg) as well as nonhuman primates (dose range, 0.05-2.0 mg/kg). In rats, JWS improved prepulse inhibition (PPI) of the acoustic startle response in nonimpaired rats and attenuated PPI deficits in three pharmacologic impairment models. JWS also attenuated scopolamine and (-)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801)-related impairments in a spontaneous novel object recognition task and a five-choice serial reaction time task, respectively. In monkeys, JWS elicited dose-dependent improvements of a delayed match-to-sample task as well as an attention-related version of the task where randomly presented (task-relevant) distractors were presented. Thus, JWS (potentially via effects at several drug targets) improves information processing, attention, and memory in animal models and could potentially treat the cognitive and behavioral symptoms of some neuropsychiatric illnesses.
Buccafusco, Jerry J.; Herman, Elizabeth J.; Callahan, Patrick M.; Beck, Wayne D.; Warner, Samantha; Vandenhuerk, Leah; Bouchard, Kristy; Schwarz, Gary M.; Gao, Jie; Chapman, James M.
2011-01-01
This study was designed to evaluate further a prototypical ranitidine analog, JWS-USC-75-IX, [(3-[[[2-[[(5-dimethylaminomethyl)-2-furanyl]methyl]thio]ethyl]amino]-4-nitropyridazine, JWS], for neuropharmacologic properties that would theoretically be useful for treating cognitive and noncognitive behavioral symptoms of neuropsychiatric disorders. JWS was previously found to inhibit acetylcholinesterase (AChE) activity, serve as a potent ligand at muscarinic M2 acetylcholine receptors, and elicit positive effects on spatial learning, passive avoidance, and working memory in rodents. In the current study, JWS was evaluated for binding activity at more than 60 neurotransmitter receptors, transporters, and ion channels, as well as for inhibitory activity at AChE and butyrylcholinesterase (BChE). The results indicate that JWS inhibits AChE and BChE at low (micromolar) concentrations and that it is a functional antagonist at M2 receptors (KB = 320 nM). JWS was subsequently evaluated orally across additional behavioral assays in rodents (dose range, 0.03–10.0 mg/kg) as well as nonhuman primates (dose range, 0.05–2.0 mg/kg). In rats, JWS improved prepulse inhibition (PPI) of the acoustic startle response in nonimpaired rats and attenuated PPI deficits in three pharmacologic impairment models. JWS also attenuated scopolamine and (−)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801)-related impairments in a spontaneous novel object recognition task and a five-choice serial reaction time task, respectively. In monkeys, JWS elicited dose-dependent improvements of a delayed match-to-sample task as well as an attention-related version of the task where randomly presented (task-relevant) distractors were presented. Thus, JWS (potentially via effects at several drug targets) improves information processing, attention, and memory in animal models and could potentially treat the cognitive and behavioral symptoms of some neuropsychiatric illnesses. PMID:21106907
Koenigsberger, C; Chiappa, S; Brimijoin, S
1997-10-01
Previous observations from several groups suggest that acetylcholinesterase (AChE) may have a role in neural morphogenesis, but not solely by virtue of its ability to hydrolyze acetylcholine. We tested the possibility that AChE influences neurite outgrowth in nonenzymatic ways. With this aim, antisense oligonucleotides were used to decrease AChE levels transiently, and N1E.115 cell lines were engineered for permanently altered AChE protein expression. Cells stably transfected with a sense AChE cDNA construct increased their AChE expression 2.5-fold over the wild type and displayed significantly increased neurite outgrowth. Levels of the differentiation marker, tau, also rose. In contrast, AChE expression in cell lines containing an antisense construct was half of that observed in the wild type. Significant reductions in neurite outgrowth and tau protein accompanied this effect. Overall, these measures correlated statistically with the AChE level (p < 0.01). Furthermore, treatment of AChE-overexpressing cells with a polyclonal antibody against AChE decreased neurite outgrowth by 43%. We conclude that AChE may have a novel, noncholinergic role in neuronal differentiation.
Computer Image Analysis of Histochemically-Labeled Acetylcholinesterase.
1984-11-30
image analysis on conjunction with histochemical techniques to describe the distribution of acetylcholinesterase (AChE) activity in nervous and muscular tissue in rats treated with organophosphates (OPs). The objective of the first year of work on this remaining 2 years. We began by adopting a version of the AChE staining method as modified by Hanker, which consistent with the optical properties of our video system. We wrote computer programs for provide a numeric quantity which represents the degree of staining in a tissue section. The staining was calibrated by
Discovering New Acetylcholinesterase Inhibitors by Mining the Buzhongyiqi Decoction Recipe Data.
Cui, Lu; Wang, Yu; Liu, Zhihong; Chen, Hongzhuan; Wang, Hao; Zhou, Xinxin; Xu, Jun
2015-11-23
Myasthenia gravis (MG) is a neuromuscular disease that is conventionally treated with acetylcholinesterase (AChE) inhibitors, which may not fully remove the symptom for many reasons. When AChE inhibitors do not work, Chinese patients turn to Chinese medicine, such as the Buzhongyiqi decoction (BD), to treat MG. By elucidating the relations between the herbs of the Buzhongyiqi decoction recipe and AChE inhibitors with structure-based and ligand-based drug design methods and chemoinformatics approaches, we have found the key active components of BD. Using these key active components as templates, we have discovered five new AChE inhibitors through virtual screening of a commercial compound library. The new AChE inhibitors have been confirmed with Ellman assays. This study demonstrates that lead identification can be inspired by elucidating Chinese medicine. Since BD is a mixture, further studies against other drug targets are needed.
Protection of human muscle acetylcholinesterase from soman by pyridostigmine bromide.
Maselli, Ricardo A; Henderson, John D; Ng, Jarae; Follette, David; Graves, Gregory; Wilson, Barry W
2011-04-01
Pretreatment with pyridostigmine bromide (PB) of human intercostal muscle fibers exposed to the irreversible acetylcholinesterase (AChE) inhibitor soman was investigated. Muscles were pretreated with 3 × 10(-6) M PB or saline for 20 minutes, then exposed to 10(-7) M soman for 10 minutes. AChE of muscles treated with soman alone was inhibited >95%. In contrast, PB pretreatment of soman-exposed bundles protected 20% of AChE activity. AChE of bundles exposed to PB alone recovered after 4 hours, but bundles exposed to both PB and soman did not. Soman-induced reduction of resting membrane potentials and increment of amplitudes and decay times of miniature endplate potentials (MEPPs) were partially corrected by PB pretreatment. In vitro pretreatment of human muscles with PB protected up to 20% of muscle AChE and ameliorated some deleterious effects on endplate physiology induced by soman. Copyright © 2011 Wiley Periodicals, Inc.
Modulators of Acetylcholinesterase Activity: From Alzheimer's Disease to Anti-Cancer Drugs.
Lazarevic-Pasti, Tamara; Leskovac, Andreja; Momic, Tatjana; Petrovic, Sandra; Vasic, Vesna
2017-01-01
Acetylcholinesterase (AChE) is involved in the termination of impulse transmission by rapid hydrolysis of the neurotransmitter acetylcholine in numerous cholinergic pathways in the central and peripheral nervous systems. The enzyme inactivation leads to acetylcholine accumulation, hyperstimulation of nicotinic and muscarinic receptors, and disrupted neurotransmission. Hence, acetylcholinesterase inhibitors, interacting with the enzyme as their primary target, are applied as relevant drugs for different neurodegenerative diseases (such as Alzheimer's and Parkinson's) as well as toxins. At the same time, there are increasing evidence that in non-neuronal context, AChE is involved in the regulation of cell proliferation, differentiation, apoptosis and cell-cell interaction. An irregular expression of AChE has been found in different types of tumors, suggesting the involvement of AChE in the regulation of tumor development. Having all this in mind, there is a possibility that some AChE inhibitors could be used as anti-cancer agents. This contribution will discuss a broad range of possible application of different AChE inhibitors as drugs, from well-known anti-Alzheimer's disease drugs to their use in cancer treatment in future. Emphasis will be put on various known AChE inhibitors classes, whose application as drugs could be controversy, as well as on newly investigated natural products, which can also modulate AChE activity. It is not clear a patient treated for neurodegenerative condition prone to increased risk for some types of cancer and vice versa. This is necessary to keep in mind during rational drug design process for all therapies, which are based on AChE as a target molecule. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
da Silva Benetti, Carla; Silveira, Patrícia Pelufo; Wyse, Angela T S; Scherer, Emilene B S; Ferreira, Andréa G K; Dalmaz, Carla; Goldani, Marcelo Zubaran
2014-04-01
Previous studies have demonstrated that early environmental interventions influence the consumption of palatable food and the abdominal fat deposition in female rats chronically exposed to a highly caloric diet in adulthood. In this study, we verified the metabolic effects of chronic exposure to a highly palatable diet, and determine the response to its withdrawal in adult neonatally handled and non-handled rats. Consumption of foods (standard lab chow and chocolate), body weight gain, abdominal fat deposition, plasma triglycerides, and leptin, as well as serum butyrylcholinesterase (BuChE), and cerebral acetylcholinesterase (AChE) activities were measured during chronic chocolate exposure and after deprivation of this palatable food in female rats exposed or not to neonatal handling (10 minutes/day, 10 first days of life). Handled rats increased rebound chocolate consumption in comparison to non-handled animals after 1 week of chocolate withdrawal; these animals also decreased body weight in the first 24 hours but this effect disappeared after 7 days of withdrawal. Chocolate increased abdominal fat in non-handled females, and this effect remained after 30 days of withdrawal; no differences in plasma leptin were seen after 7 days of withdrawal. Chocolate also increased serum BuChE activity in non-handled females, this effect was still evident after 7 days of withdrawal, but it disappeared after 30 days of withdrawal. Chocolate deprivation decreased cerebral AChE activity in both handled and non-handled animals. These findings suggest that neonatal handling modulates the preference for palatable food and induces a specific metabolic response that may be more adaptive in comparison to non-handled rats.
Wilhelm, Christina M.; Snider, Thomas H.; Babin, Michael C.; Jett, David A.; Platoff, Gennady E.; Yeung, David T.
2014-01-01
The currently fielded pre-hospital therapeutic regimen for the treatment of organophosphorus (OP) poisoning in the United States (U.S.) is the administration of atropine in combination with an oxime antidote (2-PAM Cl) to reactivate inhibited acetylcholinesterase (AChE). Depending on clinical symptoms, an anticonvulsant, e.g., diazepam, may also be administered. Unfortunately, 2-PAM Cl does not offer sufficient protection across the range of OP threat agents, and there is some question as to whether it is the most effective oxime compound available. The objective of the present study is to identify an oxime antidote, under standardized and comparable conditions, that offers protection at the FDA approved human equivalent dose (HED) of 2-PAM Cl against tabun (GA), sarin (GB), soman (GD), cyclosarin (GF), and VX, and the pesticides paraoxon, chlorpyrifos oxon, and phorate oxon. Male Hartley guinea pigs were subcutaneously challenged with a lethal level of OP and treated at approximately 1 min post challenge with atropine followed by equimolar oxime therapy (2-PAM Cl, HI-6 DMS, obidoxime Cl2, TMB-4, MMB4-DMS, HLö-7 DMS, MINA, and RS194B) or therapeutic-index (TI) level therapy (HI-6 DMS, MMB4-DMS, MINA, and RS194B). Clinical signs of toxicity were observed for 24 hours post challenge and blood cholinesterase [AChE and butyrylcholinesterase (BChE)] activity was analyzed utilizing a modified Ellman’s method. When the oxime is standardized against the HED of 2-PAM Cl for guinea pigs, the evidence from clinical observations, lethality, quality of life (QOL) scores, and cholinesterase reactivation rates across all OPs indicated that MMB4 DMS and HLö-7 DMS were the two most consistently efficacious oximes. PMID:25448441
In vitro antioxidant and anti-cholinesterase activities of Rhizophora mucronata.
Suganthy, N; Devi, K Pandima
2016-01-01
Rhizophora mucronata Lam. (Rhizophoraceae), commonly known as Asiatic mangrove, has been used traditionally among Asian countries as folk medicine. This study investigates the cholinesterase inhibitory potential and antioxidant activities of R. mucronata. Rhizophora mucronata leaves were successively extracted using solvents of varying polarity and a dosage of 100-500 µg/ml were used for each assay. Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities were assessed according to the method of Ellman. In vitro antioxidant activity was assessed using free radical scavenging, reducing power, and metal-chelating activity (duration - 3 months). Total phenolic and flavonoid content were quantified spectrophotometrically. Compound characterization was done using column chromatography, NMR, FTIR, and LC-MS analysis. Methanolic leaf extract (500 µg/ml) exhibited the highest inhibitory activity against AChE (92.73 ± 0.54%) and BuChE (98.98 ± 0.17%), with an IC50 value of 59.31 ± 0.35 and 51.72 ± 0.33 µg/ml, respectively. Among the different solvent extracts, methanolic extract exhibited the highest antioxidant activity with an IC50 value of 47.39 ± 0.43, 401.45 ± 18.52, 80.23 ± 0.70, and 316.47 ± 3.56 µg/ml for DPPH, hydroxyl, nitric oxide radical, and hydrogen peroxide, respectively. Total polyphenolic and flavonoid contents in methanolic extract were observed to be 598.13 ± 1.85 µg of gallic acid equivalent and 48.85 ± 0.70 μg of rutin equivalent/mg of extract. Compound characterization illustrated (+)-catechin as the bioactive compound responsible for cholinesterase inhibitory and antioxidant activities. The presence of rich source of flavonoids, in particular catechin, might be responsible for its cholinesterase inhibitory and antioxidant activities.
Kopjar, Nevenka; Žunec, Suzana; Mendaš, Gordana; Micek, Vedran; Kašuba, Vilena; Mikolić, Anja; Lovaković, Blanka Tariba; Milić, Mirta; Pavičić, Ivan; Čermak, Ana Marija Marjanović; Pizent, Alica; Lucić Vrdoljak, Ana; Želježić, Davor
2018-01-05
In this 28 day-study, we evaluated the effects of the insecticide chlorpyrifos orally administered to Wistar rats at doses 0.160, 0.015, and 0.010 mg/kg b. w./day. Following treatment, total cholinesterase activity and activities of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) were measured. Oxidative stress responses were evaluated using a battery of endpoints to establish lipid peroxidation, changes in total antioxidant capacity, level of reactive oxygen species (ROS), glutathione (GSH) level and activities of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and catalase. Using HPLC-UV DAD analysis, levels of the parent compound and its main metabolite 3,5,6-trichloro-2-pyridinol in plasma and brain tissue were measured. The genotoxic effect was estimated using alkaline comet assay in leukocytes and brain tissue. The exposure did not result in significant effects on total cholinesterase, AChE and BChE activity in plasma and brain tissue. Lipid peroxidation slightly increased both in plasma and brain tissue. Total antioxidant capacity, ROS and GSH levels were marginally influenced by the exposure. Treatment led to significant increases of GSH-Px activity in blood, SOD activity in erythrocytes and a slight increase of catalase activity in plasma. HPLC-UV DAD analysis revealed the presence of both the parent compound and its main metabolite in the plasma of all of the experimental animals and brain tissue of the animals treated at the two higher doses. All of the tested doses of chlorpyrifos were slightly genotoxic, both to leukocytes and brain tissue. Our results call for further research using other sensitive biomarkers of effect, along with different exposure scenarios. Copyright © 2017 Elsevier B.V. All rights reserved.
Gomez-Ramos, P; Mufson, E J; Moran, M A
1992-01-13
Acetylcholinesterase (AChE) histochemistry was used to evaluate the accumulation of this enzyme in senile plaques, neurofibrillary tangles and neuropil threads using light and electron microscopy in Alzheimer's disease as well as non-demented aged brains. Under the electron microscope, a crystalline-like AChE precipitate was localized over paired helical filaments and straight filaments in both neurofibrillary tangles and neuropil threads. AChE reaction product also decorated the amyloid fibrils in diffuse plaques as well as the halo and the heavy accumulation of amyloid which forms the core of classical plaques. In both diffuse plaques and the halo of classical plaques, we found AChE-positive structures resembling cell processes, which in some cases appeared to contain amyloid fibrils. The possible origin and significance of AChE localized over paired helical filaments, straight filaments and amyloid is discussed.
2013-01-01
predicted amino acid sequences of the three encoded BmAChEs were no more closely related to one another than AChEs from different organisms and their...solely on nucleotide and amino acid sequence similarity; however, the cholinesterase gene family contains a number of related enzymes and structural...acetylcholinesterase of P. papatasi was cloned, sequenced , and expressed in the baculo- virus system to generate a recombinant enzyme for biochemical
Old and new acetylcholinesterase inhibitors for Alzheimer's disease.
Galimberti, Daniela; Scarpini, Elio
2016-10-01
To date, pharmacological treatment of Alzheimer's disease (AD) includes Acetylcholinesterase Inhibitors (AChEIs) for mild-to-moderate AD, and memantine for moderate-to-severe AD. AChEIs reversibly inhibit acetylcholinesterase (AChE), thus increasing the availability of acetylcholine in cholinergic synapses, enhancing cholinergic transmission. These drugs provide symptomatic short-term benefits, without clearly counteracting the progression of the disease. On the wake of successful clinical trials which lead to the marketing of AChEIs donepezil, rivastigmine and galantamine, many compounds with AChEI properties have been developed and tested mainly in Phase I-II clinical trials in the last twenty years. Here, we review clinical trials initiated and interrupted, and those ongoing so far. Despite many clinical trials with novel AChEIs have been carried out after the registration of those currently used to treat mild to moderate AD, none so far has been successful in a Phase III trial and marketed. Alzheimer's disease is a complex multifactorial disorder, therefore therapy should likely address not only the cholinergic system but also additional neurotransmitters. Moreover, such treatments should be started in very mild phases of the disease, and preventive strategies addressed in elderly people.
Mukherjee, P K; Satheeshkumar, N; Venkatesh, P; Venkatesh, M
2011-03-01
Acetylcholinesterase (AChE) inhibitors are considered as promising therapeutic agents for the treatment of several neurological disorders such as Alzheimer's disease (AD), senile dementia, ataxia and myasthenia gravis. There are only few synthetic medicines with adverse effects, available for treatment of cognitive dysfunction and memory loss associated with these diseases. A variety of plants has been reported to possess AChE inhibitory activity and so may be relevant to the treatment of neurodegenerative disorders such as AD. Hence, developing potential AChE inhibitors from botanicals is the need of the day. This review will cover some of the promising acetylcholinesterase inhibitors isolated from plants with proven in vitro and in vivo activities with concern to their structure activity relationship.
USDA-ARS?s Scientific Manuscript database
The aim of the present work was to assess the effects of agricultural pesticides on honey bee (Apis mellifera L.) survival and physiological stress. Integrated use of acetylcholinesterase (AChE) and antioxidant enzymes (catalase and glutathione S-transferase) was tested on honey bee brains for detec...
Two Bombyx mori acetylcholinesterase genes influence motor control and development in different ways
USDA-ARS?s Scientific Manuscript database
Among its other biological roles, acetylcholinesterase (AChE, EC 3.1.1.7), encoded by two ace genes in most insects, catalyses the breakdown of acetylcholine, thereby terminating synaptic transmission. ace1 encodes the synaptic enzyme and ace2 has other essential actions in many insect species, such...
Organophosphate (OP) and carbamate esters can inhibit acetylcholinesterase (AChE) by binding covalently to a serine residue in the enzyme active site, and their inhibitory potency depends largely on affinity for the enzyme and the reactivity of the ester. Despite this understandi...
Beedessee, Girish; Ramanjooloo, Avin; Surnam-Boodhun, Rashmee; van Soest, Rob W M; Marie, Daniel E P
2013-03-01
Patients diagnosed with Alzheimer's disease (AD) show a characteristic neurochemical deficit of acetylcholine, especially in the basal forebrains. The use of acetylcholinesterase (AChE) inhibitors to retard the hydrolysis of acetylcholine has been suggested as a promising strategy for AD treatment. In this study, we evaluated the acetylcholinesterase inhibitory (AChEI) activities of 134 extracts obtained from 45 species of marine sponges. Thin-layer chromatography (TLC) and microplate assays reveal potent acetylcholinsterase inhibitory activities of two AcOEt extracts from the sponges Pericharax heteroraphis and Amphimedon navalis PULITZER-FINALI. We further investigated the inhibitory kinetics of the extracts and found them to display mixed competitive/noncompetitive inhibition and associated their inhibitory activity partly to terpenoids. Acetylcholinesterase inhibitors from marine organisms have been rarely studied, and this study demonstrated the potential of marine sponges as a source of pharmaceutical leads against neurodegenerative diseases. Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.
Ribeiro, Vera Lucia Sardá; Vanzella, Cláudia; Moysés, Felipe dos Santos; Santos, Jaqueline Campiol Dos; Martins, João Ricardo Souza; von Poser, Gilsane Lino; Siqueira, Ionara Rodrigues
2012-10-26
Acetylcholinesterase (AChE), an enzyme that hydrolyses acetylcholine (ACh) at cholinergic synapses, is a target for pesticides and its inhibition by organophosphates leads to paralysis and death of arthropods. It has been demonstrated that the n-hexane extract of Calea serrata had acaricidal activity against larvae of Rhipicephalus (Boophilus) microplus and Rhipicephalus sanguineus. The aim of the present study was to understand the mechanism of the acaricidal action of C. serrata n-hexane extract are specifically to investigate the in vitro anticholinesterase activity on larvae of R. microplus and in brain structures of male Wistar rats. The n-hexane extract significantly inhibited in vitro acetylcholinesterase activity in R. microplus larvae and rat brain structures. The results confirm that inhibition of acetylcholinesterase is a possible mechanism of action of hexane extract at C. serrata. Copyright © 2012 Elsevier B.V. All rights reserved.
Duysen, Ellen G; Stribley, Judith A; Fry, Debra L; Hinrichs, Steven H; Lockridge, Oksana
2002-07-30
Acetylcholinesterase (AChE, EC3.1.1.7) functions in nerve impulse transmission, and possibly as a cell adhesion factor during neurite outgrowth. These functions predicted that a mouse with zero AChE activity would be unable to live. It was a surprise to find that AChE -/- mice were born alive and survived an average of 14 days. The emaciated appearance of AChE -/- mice suggested an inability to obtain sufficient nutrition and experiments were undertaken to increase caloric intake. Pregnant and lactating dams (+/-) were fed 11% high fat chow supplemented with liquid Ensure. AChE -/- pups were weaned early, on day 15, and fed liquid Ensure. Although nullizygous animals showed slow but steady weight gain with survival over 1 year (average 100 days), they remained small at all ages compared to littermates. They demonstrated delays in temperature regulation (day 22 vs. 15), eye opening (day 13 vs. 12), righting reflex (day 18 vs. 12), descent of testes (week 7-8 vs. 4), and estrous (week 15-16 vs. 6-7). Significant physical findings in adult AChE -/- mice included body tremors, abnormal gait and posture, absent grip strength, inability to eat solid food, pinpoint pupils, decreased pain response, vocalization, and early death caused by seizures or gastrointestinal tract ileus. Behavioral deficits included urination and defecation in the nest, lack of aggression, reduced pain perception, and sexual dysfunction. These findings support the classical role for AChE in nerve impulse conduction and further suggest that AChE is essential for timely physical development and higher brain function. Copyright 2002 Elsevier Science B.V.
Lutovac, Mitar; Popova, Olga V; Jovanovic, Zoran; Berisa, Hatidza; Kristina, Radoman; Ketin, Sonja; Bojic, Marko
2017-12-15
The paper presents research on the most common causes of exposure that leads to disorders of cholinesterase activity, as well as an overview of the results of cholinesterase activity with the poisoned people. In a group of 35 acute poisoned patients by organophosphate compounds has led to inhibition of AchE. A total number of examined workers are 175 in the chemical industry and agricultural production in the area of Rasina District-Serbia. The results showed that among workers who are constantly exposed to pesticides, acetylcholinesterase is within the reference value. Having examined the medical records of these workers, it is noted that, at 72%, there is a slight fall of AchE activity, each year. The workers who had been exposed to pesticides at the time of testing had acetylcholinesterase regarding reference value, but 52% of them had a few years ago significantly reduced the value of the activity of acetylcholinesterase, which was treated and then transferred to other jobs. The 48% of these workers had acetylcholinesterase regarding benchmarks or were transferred to other jobs, for a variety of other health problems. Using each pesticide should only deal with people who are well versed in the way of its use, as well as the way of protecting them from poisoning.
NASA Astrophysics Data System (ADS)
Khoirunisa, V.; Rusydi, F.; Kasai, H.; Gandaryus, A. G.; Dipojono, H. K.
2016-08-01
The catalytic activity of acetylcholinesterase enzyme (AChE) relates to the symptom progress in Alzheimer's disease. Interaction of AChE with rivastigmine (from the medicine) can reduce its catalytic activity toward acetylcholine to decelerate the progression of Alzheimer's disease. This research attempts to study the interaction between AChE and rivastigmine, and also acetylcholine (without the presence of rivastigmine) using density functional theory by simplifying the reaction occurs in the active site, which is assumed to be C2H5OH, C3N2H3(Ch3), and CH3COO-. The results suggest that AChE interacts easier with acetylcholine than with rivastigmine, which implies that the medicine does not effectively reduce the catalytic activity of AChE. At this stage, no experimental data is available to be compared with the calculation results. Nonetheless, this study has shown a good prospect to understand the AChE-substrate interaction using a first-principles calculation.
Tang, Bin; Fan, Xiao-li; Wu, Su-di
2002-10-01
Objective. To explore the mechanisms involved in muscle atrophy and conversion of the fiber types induced by simulated weightlessness. Method. Weightlessness was simulated by tail suspension of female rats. Intrafusal and extrafusal fibers of soleus muscles in the rat were examined histochemically for their activity of acetylcholinesterase (AChE) and succinic dehydrogenase (SDH) in 7 d, 14 d, 21 d tail-suspended groups and control groups. Result. Staining for succinic dehydrogenase showed that simulated weightlessness caused obvious atrophy and change in fiber type composition in soleus muscle, with decrease of the proportion of type I fiber and increase of type II fiber. Acetylcholinesterase activities of intrafusal and extrafusal fibers were both decreased significantly after 21 d tail suspension. Conclusion. Simulated weightlessness could induce decrease of AChE activity in neuromuscular junctions, which might be linked with decrease in motor neuron activity.
Zhuang, Qinggeng; Franjesevic, Andrew J; Corrigan, Thomas S; Coldren, William H; Dicken, Rachel; Sillart, Sydney; DeYong, Ashley; Yoshino, Nathan; Smith, Justin; Fabry, Stephanie; Fitzpatrick, Keegan; Blanton, Travis G; Joseph, Jojo; Yoder, Ryan J; McElroy, Craig A; Dogan Ekici, Ozlem; Callam, Christopher S; Hadad, Christopher M
2018-06-05
After inhibition of acetylcholinesterase (AChE) by organophosphorus (OP) nerve agents, a dealkylation reaction, referred to as aging, of the phosphylated serine can occur. When aged, known reactivators of OP-inhibited AChE are no longer effective. Realkylation of aged AChE may provide a route to reverse aging. We designed and synthesized a library of quinone methide precursors (QMPs) as proposed realkylators of aged AChE. Our lead compound (C8) from an in vitro screening, successfully resurrected 32.7% and 20.4% of the activity of methylphosphonate-aged and isopropyl phosphate-aged electric eel AChE, respectively, after 4 days. C8 displays properties of both resurrection (recovery from the aged to the native state) and reactivation (recovery from the inhibited to the native state). Resurrection of methylphosphonate-aged AChE by C8 was significantly pH-dependent, recovering 21% of activity at 4 mM and pH 9 after only 1 day. C8 is also effective against isopropyl phosphate-aged human AChE.
Rathish, Devarajan; Senavirathna, Indika; Jayasumana, Channa; Agampodi, Suneth
2018-06-21
Assessment of acetylcholinesterase-inhibitor insecticide (AChEII) toxicity depends on the measurement of red blood cell acetylcholinesterase (RBC-AChE) activity. Its interpretation requires baseline values which is lacking in scientific literature. We aim to find the measures of central tendency and variation for RBC-AChE activity among dwellers of Anuradhapura, where the use and abuse of AChEIIs were rampant for the last few decades. A descriptive cross-sectional study with a community-based sampling for 100 healthy non-farmers (male:female = 1:1) was done using pre-determined selection criteria. Duplicate measurements of RBC-AChE activity were performed according to the modified Ellman procedure. Pearson's correlation and regression analysis were sort for RBC-AChE activity against its possible determinants. RBC-AChE activity had a mean of 449.8 (SD 74.2) mU/μM Hb with a statistical power of 0.847. It was similar to values of "healthy controls" from previous Sri Lankan toxicological studies but was low against international reference value [586.1 (SD 65.1) mU/μM Hb]. None of the possible determinants showed a significant strength of relationship with RBC-AChE activity. The baseline RBC-AChE activity among people of Anuradhapura is low in comparison with international reference values. This arises a need to find a causative mechanism.
Acetylcholinesterase-R increases germ cell apoptosis but enhances sperm motility
Mor, I; Sklan, EH; Podoly, E; Pick, M; Kirschner, M; Yogev, L; Bar-Sheshet Itach, S; Schreiber, L; Geyer, B; Mor, T; Grisaru, D; Soreq, H
2008-01-01
Abstract Changes in protein subdomains through alternative splicing often modify protein-protein interactions, altering biological processes. A relevant example is that of the stress-induced up-regulation of the acetylcholinesterase (AChE-R) splice variant, a common response in various tissues. In germ cells of male transgenic TgR mice, AChE-R excess associates with reduced sperm differentiation and sperm counts. To explore the mechanism(s) by which AChE-R up-regulation affects spermatogenesis, we identified AChE-R's protein partners through a yeast two-hybrid screen. In meiotic spermatocytes from TgR mice, we detected AChE-R interaction with the scaffold protein RACK1 and elevated apoptosis. This correlated with reduced scavenging by RACK1 of the pro-apoptotic TAp73, an outcome compatible with the increased apoptosis. In contrast, at later stages in sperm development, AChE-R's interaction with the glycolytic enzyme enolase-α elevates enolase activity. In transfected cells, enforced AChE-R excess increased glucose uptake and adenosine tri-phosphate (ATP) levels. Correspondingly, TgR sperm cells display elevated ATP levels, mitochondrial hyperactivity and increased motility. In human donors' sperm, we found direct association of sperm motility with AChE-R expression. Interchanging interactions with RACK1 and enolase-α may hence enable AChE-R to affect both sperm differentiation and function by participating in independent cellular pathways. PMID:18194455
Molecular Probe Analysis of Mammalian Brain Acetylcholinesterase
1988-09-27
Project and Degrees Awarded During this Reporting Period: Judith K. Marquis, Principal Investigator Thomas Biagioni , Senior Research Technician Robert...binding sites in nerve membrane vesicles. Comp. Biochem. Physiol. 80C: 203-205 (1985). 5. Volpe, L.S., T.M. Biagioni & J.K. Marquis: In vitro modulation of...Saxena, Vol. 6(1988Y.8 11. Marquis, J.K. & T.M. Biagioni : Selective inhibition of acetylcholinesterase and butyrylcholinesterase in human plasma
Demirci, Gökhan; Doğaç, Yasemin İspirli; Teke, Mustafa
2015-11-01
In the present study, we immobilized acetylcholinesterase (AChE) enzyme onto acetylcholine removed imprinted polymer and acetylcholine containing polymer. First, the polymers were produced with acetylcholine, substrate of AChE, by dispersion polymerization. Then, the enzyme was immobilized onto the polymers by using two different methods: In the first method (method A), acetylcholine was removed from the polymer, and then AChE was immobilized onto this polymer (acetylcholine removed imprinted polymer). In the second method (method B), AChE was immobilized onto acetylcholine containing polymer by affinity. In method A, enzyme-specific species (binding sites) occurred by removing acetylcholine from the polymer. The immobilized AChE reached 240% relative specific activity comparison with free AChE because the active enzyme molecules bounded onto the polymer. Transmission electron microscopy results were taken before and after immobilization of AChE for the assessment of morphological structure of polymer. Also, the experiments, which include optimum temperature (25-65 °C), optimum pH (3-10), thermal stability (4-70 °C), kinetic parameters, operational stability and reusability, were performed to determine the characteristic of the immobilized AChE. Copyright © 2015 John Wiley & Sons, Ltd.
USDA-ARS?s Scientific Manuscript database
The cattle tick, Rhipicephalus (Boophilus) microplus (Bm), and the sand fly, Phlebotomus papatasi (Pp), are disease vectors to cattle and humans, respectively. The purpose of this study was to characterize the inhibitor profile of acetylcholinesterases from Bm (BmAChE1) and Pp (PpAchE) compared to h...
USDA-ARS?s Scientific Manuscript database
In a collaboration with Purdue University researchers, we sequenced a 143,606 base pair Rhipicephalus microplus BAC library clone that contained the coding region for acetylcholinesterase 1 (AChE1). Sequencing was by Sanger protocols and the final assembly resulted in 15 contigs of varying length, e...
Jung, Hyun Ah; Ali, Md Yousof; Jung, Hee Jin; Jeong, Hyong Oh; Chung, Hae Young; Choi, Jae Sue
2016-09-15
Semen Cassiae has been traditionally used as an herbal remedy for liver, eye, and acute inflammatory diseases. Recent pharmacological reports have indicated that Cassiae semen has neuroprotective effects, attributable to its anti-inflammatory actions, in ischemic stroke and Alzheimer's disease (AD) models. The basic goal of this study was to evaluate the anti-AD activities of C. obtusifolia and its major constituents. Previously, the extract of C. obtusifolia seeds, was reported to have memory enhancing properties and anti-AD activity to ameliorate amyloid β-induced synaptic dysfunction. However, the responsible components of C. obtusifolia seeds in an AD are currently still unknown. In this study, we investigated the inhibitory effects of C. obtusifolia and its constituents against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and β-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1) enzyme activity. In vitro cholinesterase enzyme assays by using AChE, BChE, and BACE1 were performed. We also scrutinized the potentials of Cassiae semen active component as BACE1 inhibitors via enzyme kinetics and molecular docking simulation. In vitro enzyme assays demonstrated that C. obtusifolia and its major constituents have promising inhibitory potential against AChE, BChE, and BACE1. All Cassiae semen constituents exhibited potent inhibitory activities against AChE and BACE1 with IC50 values of 6.29-109µg/mL and 0.94-190µg/mL, whereas alaternin, questin, and toralactone gentiobioside exhibited significant inhibitory activities against BChE with IC50 values of 113.10-137.74µg/mL. Kinetic study revealed that alaternin noncompetitively inhibited, whereas cassiaside and emodin showed mixed-type inhibition against BACE1. Furthermore, molecular docking simulation results demonstrated that hydroxyl group of alaternin and emodin tightly interacted with the active site residues of BACE1 and their relevant binding energies (-6.62 and -6.89kcal/mol), indicating a higher affinity and tighter binding capacity of these compounds for the active site of BACE1. The findings of the present study suggest the potential of C. obtusifolia and its major constituents for use in the development of therapeutic or preventive agents for AD, especially through inhibition of AChE, BChE and BACE1 activities. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Samadi, Abdelouahid; Marco-Contelles, José; Soriano, Elena; Alvarez-Pérez, Mónica; Chioua, Mourad; Romero, Alejandro; González-Lafuente, Laura; Gandía, Luis; Roda, José M; López, Manuela G; Villarroya, Mercedes; García, Antonio G; Ríos, Cristóbal de Los
2010-08-15
The synthesis, molecular modeling, and pharmacological analysis of new multipotent simple, and readily available 2-aminopyridine-3,5-dicarbonitriles (3-20), and 2-chloropyridine-3,5-dicarbonitriles (21-28), prepared from 2-amino-6-chloropyridine-3,5-dicarbonitrile (1) and 2-amino-6-chloro-4-phenylpyridine-3,5-dicarbonitrile (2) is described. The biological evaluation showed that some of these molecules were modest inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), in the micromolar range. The 2-amino (3, 4), and 2-chloro derivatives 21-23, 25, 26 were AChE selective inhibitors, whereas 2-amino derivatives 5, 14 proved to be selective for BuChE. Only inhibitor 24 was equipotent for both cholinesterases. Kinetic studies on compound 23 showed that this compound is a mixed-type inhibitor of AChE showing a K(i) of 6.33 microM. No clear SAR can be obtained form these data, but apparently, compounds bearing small groups such as the N,N'-dimethylamino or the pyrrolidino, regardless of the presence of a 2-amino, or 6-chloro substituent in the pyridine ring, preferentially inhibit AChE. Molecular modeling on inhibitors 4, 5, 22, and 23 has been carried out to give a better insight into the binding mode on the catalytic active site (CAS), and peripheral anionic site (PAS) of AChE. The most important differences in the observed binding relay on the modifications of the group at C2, as the amino group forms two hydrogen bonds that direct the binding mode, while in the case of compounds with a chlorine atom, this is not possible. The neuroprotective profile of these molecules has been investigated. In the LDH test, only compounds 26, 3, 22, and 24 showed neuroprotection with values in the range 37.8-31.6% in SH-SY5Y neuroblastoma cells stressed with a mixture of oligomycin-A/rotenone, but in the MTT test only compound 17 (32.9%) showed a similar profile. Consequently, these compounds can be considered as attractive multipotent therapeutic molecules on two key pharmacological receptors playing key roles in the progress of Alzheimer, that is, cholinergic dysfunction and oxidative stress, and neuronal vascular diseases. Copyright 2010 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kousba, Ahmed A.; Poet, Torka S.; Timchalk, Charles
2003-02-12
Chlorpyrifos (CPF) is a commonly used organophosphate insecticide (OP). The primary mechanism of action for CPF involves the inhibition of acetylcholinesterase (AChE) by the active metabolite, CPF-oxon, with subsequent accumulation of acetylcholine (ACh) resulting in a wide range of neutotoxicity. CPF-oxon, can likewise inhibit other non-target cholinesterases (ChE) such as butyrylcholinesterase (BuChE), which represents a detoxification mechanism and a potential biomarker of exposure/response. Biological monitoring for OPs has focused on measuring parent chemical or metabolite in blood and urine or blood ChE inhibition. Salivary biomonitoring has recently been explored as a practical method for examination of chemical exposure; however, theremore » are a limited number of studies exploring its use for OPs. To evaluate the use of salivary ChE as a biological monitor for OP exposure, the current study characterized salivary ChE activity in Sprague-Dawley rats through its comparison with brain and plasma ChE using BW284C51 and iso-OMPA as selective inhibitors of AChE and BuChE, respectively. The study also estimated the kinetic constants describing BuChE interaction with CPF-oxon. A modified Ellman assay in conjunction with pharmacodynamic (PD) modeling was used to characterize the in vitro titration of diluted rat salivary ChE enzyme with CPF-oxon. The results indicated that, more than 95% of rat salivary ChE activity was associated with BuChE activity, total BuChE active site concentration was 0.0012 0.00013 nmol/ml saliva, reactivation rate constant (Kr) was 0.068 0.008 h-1 and inhibitory (Ki) rate constant of 8.825 and 9.80 nM-1h-1 determined experimentally and using model optimization respectively. These study results would be helpful for further evaluating the potential utility of salivary ChE as a practical tool for biological monitor of OP exposures.« less
Gao, Xiao-Hui; Zhou, Chao; Liu, Hao-Ran; Liu, Lin-Bo; Tang, Jing-Jing; Xia, Xin-Hua
2017-12-01
A new series of tertiary amine derivatives of chlorochalcone (4a∼4l) were designed, synthesized and evaluated for the effect on acetylcholinesterase (AChE) and buthylcholinesterase (BuChE). The results indicated that all compounds revealed moderate or potent inhibitory activity against AChE, and some possessed high selectivity for AChE over BuChE. The structure-activity investigation showed that the substituted position of chlorine significantly influenced the activity and selectivity. The alteration of tertiary amine group also leads to obvious change in bioactivity. Among them, IC 50 of compound 4l against AChE was 0.17 ± 0.06 µmol/L, and the selectivity was 667.2 fold for AChE over BuChE. Molecular docking and enzyme kinetic study on compound 4l suggested that it simultaneously binds to the catalytic active site (CAS) and peripheral anionic site (PAS) of AChE. Further study showed that the pyrazoline derivatives synthesized from chlorochalcones had weaker activity and lower selectivity in inhibiting AChE compared to that of chlorochalcone derivatives.
Alarcón, Julio; Cespedes, Carlos L; Muñoz, Evelyn; Balbontin, Cristian; Valdes, Francisco; Gutierrez, Margarita; Astudillo, Luis; Seigler, David S
2015-12-02
Natural cholinesterase inhibitors have been found in many biological sources. Nine compounds with agarofuran (epoxyeudesmane) skeletons were isolated from seeds and aerial parts of Maytenus disticha and Euonymus japonicus. The identification and structural elucidation of compounds were based on spectroscopic data analyses. All compounds had inhibitory acetylcholinesterase (AChE) activity. These natural compounds, which possessed mixed or uncompetitive mechanisms of inhibitory activity against AChE, may be considered as models for the design and development of new naturally occurring drugs for management strategies for neurodegenerative diseases. This is the first report of these chemical structures for seeds of M. disticha.
Ding, Zhong; Peng, Deliang; Huang, Wenkun; He, Wenting; Gao, Bida
2008-02-01
A cDNA, named Dd-ace-2, encoding an acetylcholinesterase (AChE, EC3.1.1.7), was isolated from sweet-potato-stem nematode, Ditylenchus destructor. The nucleotide and amino acid sequences among different nematode species were compared and analyzed with DNAMAN5.0, MEGA3.0 softwares. The results showed that the complete nucleotide sequence of Dd-ace-2 gene of Ditylenchus destructor contains 2425 base pairs from which deduced 734 amino acids (GenBank accession No. EF583058). The homology rates of amino acid sequences of Dd-ace-2 gene between Ditylenchus destructor and Meloidogyne incognita, Caenorhabditis elegans, Dictyocaulus viviparous were 48.0%, 42.7%, 42.1% respectively. The mature acetylcholinesterase sequences of Ditylenchus destructor may encode by the first 701 residues of deduced 734 amino acids.The conserved motifs involved in the catalytic triad, the choline binding site and 10 aromatic residues lining the catalytic gorge were present in the Dd-ace-2 deduced protein. Phylogenetic analysis based on AChEs of other nematodes and species showed that the deduced AChE formed the same cluster with ACE-2s.
Abuhamdah, Sawsan; Habash, Maha; Taha, Mutasem O
2013-12-01
Inhibition of the enzyme acetylcholinesterase (AChE) has been shown to alleviate neurodegenerative diseases prompting several attempts to discover and optimize new AChE inhibitors. In this direction, we explored the pharmacophoric space of 85 AChE inhibitors to identify high quality pharmacophores. Subsequently, we implemented genetic algorithm-based quantitative structure-activity relationship (QSAR) modeling to select optimal combination of pharmacophoric models and 2D physicochemical descriptors capable of explaining bioactivity variation among training compounds (r2(68)=0.94, F-statistic=125.8, r2 LOO=0.92, r2 PRESS against 17 external test inhibitors = 0.84). Two orthogonal pharmacophores emerged in the QSAR equation suggesting the existence of at least two binding modes accessible to ligands within AChE binding pocket. The successful pharmacophores were comparable with crystallographically resolved AChE binding pocket. We employed the pharmacophoric models and associated QSAR equation to screen the national cancer institute list of compounds. Twenty-four low micromolar AChE inhibitors were identified. The most potent gave IC50 value of 1.0 μM.
Lin, Jiajia; Huang, Ling; Yu, Jie; Xiang, Siying; Wang, Jialing; Zhang, Jinrong; Yan, Xiaojun; Cui, Wei; He, Shan; Wang, Qinwen
2016-01-01
Fucoxanthin, a natural carotenoid abundant in edible brown seaweeds, has been shown to possess anti-cancer, anti-oxidant, anti-obesity and anti-diabetic effects. In this study, we report for the first time that fucoxanthin effectively protects against scopolamine-induced cognitive impairments in mice. In addition, fucoxanthin significantly reversed the scopolamine-induced increase of acetylcholinesterase (AChE) activity and decreased both choline acetyltransferase activity and brain-derived neurotrophic factor (BDNF) expression. Using an in vitro AChE activity assay, we discovered that fucoxanthin directly inhibits AChE with an IC50 value of 81.2 μM. Molecular docking analysis suggests that fucoxanthin likely interacts with the peripheral anionic site within AChE, which is in accordance with enzymatic activity results showing that fucoxanthin inhibits AChE in a non-competitive manner. Based on our current findings, we anticipate that fucoxanthin might exhibit great therapeutic efficacy for the treatment of Alzheimer’s disease by acting on multiple targets, including inhibiting AChE and increasing BDNF expression. PMID:27023569
de Jong, Camiel F; Derks, Rico J E; Bruyneel, Ben; Niessen, Wilfried; Irth, Hubertus
2006-04-21
The present paper describes a High-performance liquid chromatography-mass spectrometry (LC-MS) methodology for the screening of acetylcholinesterase (AChE) inhibitors in natural extracts. AChE activity of sample components is monitored by a post-column biochemical assay that is based on the separate, sequential mixing of AChE and acetylcholine, respectively, with the HPLC eluate. AChE inhibitors are detected by measuring a decrease of product formation using electrospray MS. Ammonium bicarbonate was used as buffer in order to achieve optimum compatibility between biochemical assay and MS detection conditions. The assay is robust and stable for over 13 h and compares favourably with other AChE assays in terms of stability and sensitivity. IC(50) values of 9-aminoacridine, galanthamine, gallamine, (-)-huperzine A and thioflavin T were determined to be 0.12, 0.38, 6.4, 0.46 and 3.2 microM, respectively. The assay was used to effectively identify an AChE inhibitor present in a crude extract of Narcissus c.v. "Bridal Crown".
Bharate, Sandip B.; Guo, Lilu; Reeves, Tony E.; Cerasoli, Douglas M.; Thompson, Charles M.
2009-01-01
Oxime reactivators are the drugs of choice for the post-treatment of OP (organophosphorus) intoxication and used widely for mechanistic and kinetic studies of OP-inhibited cholinesterases. The purpose of the present study was to evaluate new oxime compounds to reactivate acetylcholinesterase (AChE) inhibited by the OP paraoxon. Several new bisquaternary pyridinium oximes with heterocyclic linkers along with some known bisquaternary pyridinium oximes bearing aliphatic linkers were synthesized and evaluated for their in vitro reactivation potency against paraoxon-inhibited electric eel acetylcholinesterase (EeAChE) and recombinant human acetylcholinesterase (rHuAChE). Results herein indicate that most of the compounds are better reactivators of EeAChE than of rHuAChE. The reactivation potency of two different classes of compounds with varying linker chains was compared and observed that the structure of the connecting chain is an important factor for the activity of the reactivators. At a higher concentration (10−3 M), compounds bearing aliphatic linker showed better reactivation than compounds with heterocyclic linkers. Interestingly, oximes with a heterocyclic linker inhibited AChE at higher concentration (10−3 M), whereas their ability to reactivate was increased at lower concentrations (10−4 M and 10−5 M). Compounds bearing either a thiophene linker 26, 46 or a furan linker 31 showed 59%, 49% and 52% reactivation of EeAChE, respectively, at 10−5 M. These compounds showed 14%, 6% and 15% reactivation of rHuAChE at 10−4 M. Amongst newly synthesized analogs with heterocyclic linkers (26–35 and 45–46), compound 31, bearing furan linker chain, was found to be the most effective reactivator with a kr 0.042 min−1, which is better than obidoxime (3) for paraoxon-inhibited EeAChE. Compound 31 showed a kr 0.0041 min−1 that is near equal to pralidoxime (1) for paraoxon-inhibited rHuAChE. PMID:20005727
Láng, G; Kufcsák, O; Szegletes, T; Nemcsók, J
1997-07-01
1. The cholinesterases play an important role in the innervation of organs. The ratio of solubilized to membrane-bound cholinesterase and the quantitative distributions of acetylcholinesterase and butyrylcholinesterase were measured in different segments of the gut of carp (Cyprinus carpio) connected with different types of nerve-muscle synapses in different parts of the alimentary tract. 2. The inhibition of acetylcholinesterase (EC 3.1.1.7.) by the herbicide paraquat and the insecticide metidathion was measured in different parts of the gut of carp. 3. Metidathion and paraquat significantly decreased the activity of acetylcholinesterase in different segments of the alimentary tract of common carp, in a concentration-dependent manner.
Inhibition effect of graphene oxide on the catalytic activity of acetylcholinesterase enzyme.
Wang, Yong; Gu, Yao; Ni, Yongnian; Kokot, Serge
2015-11-01
Variations in the enzyme activity of acetylcholinesterase (AChE) in the presence of the nano-material, graphene oxide (GO), were investigated with the use of molecular spectroscopy UV-visible and fluorescence methods. From these studies, important kinetic parameters of the enzyme were extracted; these were the maximum reaction rate, Vm , and the Michaelis constant, Km . A comparison of these parameters indicated that GO inhibited the catalytic activity of the AChE because of the presence of the AChE-GO complex. The formation of this complex was confirmed with the use of fluorescence data, which was resolved with the use of the MCR-ALS chemometrics method. Furthermore, it was found that the resonance light-scattering (RLS) intensity of AChE changed in the presence of GO. On this basis, it was demonstrated that the relationship between AChE and GO was linear and such models were used for quantitative analyses of GO. Copyright © 2015 John Wiley & Sons, Ltd.
Musset, F; Frobert, Y; Grassi, J; Vigny, M; Boulla, G; Bon, S; Massoulié, J
1987-02-01
We studied the reactivity of monoclonal antibodies (mAbs) raised against acetylcholinesterase (AChE) purified from Electrophorus and Torpedo electric organs. We obtained IgG antibodies (Elec-21, Elec-106, Tor-3E5, Tor-ME8, Tor-1A5), all of them directed against the catalytic subunit of the corresponding species, with no significant cross-reactivity. These antibodies do not inhibit the enzyme and recognize all molecular forms, globular (G) and asymmetric (A). Tor-ME8 reacts specifically with the denatured A and G subunits of Torpedo AChE, in immunoblots. Several hybridomas raised against Electrophorus AChE produced IgM antibodies (Elec-39, Elec-118, Elec-121). These antibodies react with the A forms of Electrophorus electric organs and also with a subset of dimers (G2) from Torpedo electric organ. In addition, they react with a number of non-AChE components, in immunoblots. In contrast, they do not recognize AChE from other Electrophorus tissues or A forms from Torpedo electric organs.
Alteration in cellular acetylcholine influences dauer formation in Caenorhabditis elegans.
Lee, Jeeyong; Kim, Kwang-Youl; Paik, Young-Ki
2014-02-01
Altered acetylcholine (Ach) homeostasis is associated with loss of viability in flies, developmental defects in mice, and cognitive deficits in human. Here, we assessed the importance of Ach in Caenorhabditis elegans development, focusing on the role of Ach during dauer formation. We found that dauer formation was disturbed in choline acetyltransferase (cha-1) and acetylcholinesterase (ace) mutants defective in Ach biosynthesis and degradation, respectively. When examined the potential role of G-proteins in dauer formation, goa-1 and egl-30 mutant worms, expressing mutated versions of mammalian G(o) and G(q) homolog, respectively, showed some abnormalities in dauer formation. Using quantitative mass spectrometry, we also found that dauer larvae had lower Ach content than did reproductively grown larvae. In addition, a proteomic analysis of acetylcholinesterase mutant worms, which have excessive levels of Ach, showed differential expression of metabolic genes. Collectively, these results indicate that alterations in Ach release may influence dauer formation in C. elegans.
Caricato, Roberto; Calisi, Antonio; Giordano, Maria Elena; Schettino, Trifone
2013-01-01
Acetylcholinesterase (AChE) is a key enzyme in the nervous system. It terminates nerve impulses by catalysing the hydrolysis of neurotransmitter acetylcholine. As a specific molecular target of organophosphate and carbamate pesticides, acetylcholinesterase activity and its inhibition has been early recognized to be a human biological marker of pesticide poisoning. Measurement of AChE inhibition has been increasingly used in the last two decades as a biomarker of effect on nervous system following exposure to organophosphate and carbamate pesticides in occupational and environmental medicine. The success of this biomarker arises from the fact that it meets a number of characteristics necessary for the successful application of a biological response as biomarker in human biomonitoring: the response is easy to measure, it shows a dose-dependent behavior to pollutant exposure, it is sensitive, and it exhibits a link to health adverse effects. The aim of this work is to review and discuss the recent findings about acetylcholinesterase, including its sensitivity to other pollutants and the expression of different splice variants. These insights open new perspective for the future use of this biomarker in environmental and occupational human health monitoring. PMID:23936791
Lutovac, Mitar; Popova, Olga V.; Jovanovic, Zoran; Berisa, Hatidza; Kristina, Radoman; Ketin, Sonja; Bojic, Marko
2017-01-01
AIM: The paper presents research on the most common causes of exposure that leads to disorders of cholinesterase activity, as well as an overview of the results of cholinesterase activity with the poisoned people. MATERIAL AND METHODS: In a group of 35 acute poisoned patients by organophosphate compounds has led to inhibition of AchE. A total number of examined workers are 175 in the chemical industry and agricultural production in the area of Rasina District-Serbia. RESULTS: The results showed that among workers who are constantly exposed to pesticides, acetylcholinesterase is within the reference value. Having examined the medical records of these workers, it is noted that, at 72%, there is a slight fall of AchE activity, each year. The workers who had been exposed to pesticides at the time of testing had acetylcholinesterase regarding reference value, but 52% of them had a few years ago significantly reduced the value of the activity of acetylcholinesterase, which was treated and then transferred to other jobs. The 48% of these workers had acetylcholinesterase regarding benchmarks or were transferred to other jobs, for a variety of other health problems. CONCLUSION: Using each pesticide should only deal with people who are well versed in the way of its use, as well as the way of protecting them from poisoning. PMID:29362639
Screening for antimalarial and acetylcholinesterase inhibitory activities of some Iranian seaweeds
Ghannadi, A; Plubrukarn, A; Zandi, K; Sartavi, K; Yegdaneh, A
2013-01-01
Alcoholic extracts of 8 different types of seaweeds from Iran’s Persian Gulf were tested for their antimalarial and acetylcholinesterase enzyme (AChE) inhibitory activities for the first time. A modified Ellman and Ingkaninan method was used for measuring AChE inhibitory activity in which galanthamine was used as the reference. The antimalarial assay was performed using microculture radioisotope technique. Mefloquine and dihydroartemisinin were uased as the standards. The extract of Sargassum boveanum (Sargasseae family) showed the highest AChE inhibitory activity (IC50 equals to 1 mg ml-1) while Cystoseira indica (Cystoseiraceae family) exhibited the least activity (IC50 of 11 mg ml-1). The species from Rhodophyta (Gracilaria corticata and Gracilaria salicornia) also showed moderate activities (IC509.5, 8.7 mg ml-1, respectively). All extracts were inactive in antimalarial assay. PMID:24019820
Upregulation of α7 Nicotinic Receptors by Acetylcholinesterase C-Terminal Peptides
Bond, Cherie E.; Zimmermann, Martina; Greenfield, Susan A.
2009-01-01
Background The alpha-7 nicotinic acetylcholine receptor (α7-nAChR) is well known as a potent calcium ionophore that, in the brain, has been implicated in excitotoxicity and hence in the underlying mechanisms of neurodegenerative disorders such as Alzheimer's disease. Previous research implied that the activity of this receptor may be modified by exposure to a peptide fragment derived from the C-terminal region of the enzyme acetylcholinesterase. This investigation was undertaken to determine if the functional changes observed could be attributed to peptide binding interaction with the α7-nAChR, or peptide modulation of receptor expression. Methodology/Principal Findings This study provides evidence that two peptides derived from the C-terminus of acetylcholinesterase, not only selectively displace specific bungarotoxin binding at the α7-nAChR, but also alter receptor binding properties for its familiar ligands, including the alternative endogenous agonist choline. Of more long-term significance, these peptides also induce upregulation of α7-nAChR mRNA and protein expression, as well as enhancing receptor trafficking to the plasma membrane. Conclusions/Significance The results reported here demonstrate a hitherto unknown relationship between the α7-nAChR and the non-enzymatic functions of acetylcholinesterase, mediated independently by its C-terminal domain. Such an interaction may prove valuable as a pharmacological tool, prompting new approaches for understanding, and combating, the process of neurodegeneration. PMID:19287501
Wang, Shutao; Wu, Chuan; Liu, Zhisheng; You, Hong
2018-05-01
The neurotoxicity of polybrominated diphenyl ethers (PBDEs) has been of concern. Acetylcholinesterase (AChE) is a critical enzyme in the central and peripheral nervous system related to neurotoxicity. The interaction between BDE-47, BDE-209, and AChE was investigated through fluorescence and UV-vis spectra combined with molecular docking. Both BDE-47 and BDE-209 bound with AChE and changed the microenvironment of some amino acid residues, resulting in a change of AChE conformation. Hydrophobic interaction is the main binding force between BDE-47, BDE-209, and AChE, and electrostatic interaction exists according to the thermodynamic parameters of the interaction between them. A hydrophobic interaction of BDE-47-AChE and BDE-209-AChE has been confirmed through molecular docking to dominate the binding force. The binding constants of BDE-47-AChE and BDE-209-AChE were 4.2 × 10 4 and 4.1 × 10 4 L/mol, respectively, and the lowest binding energies of BDE-47-AChE and BDE-209-AChE were -7.8 and -5.9 kJ/mol, respectively. BDE-47 is more likely to bind with AChE than BED-209. Copyright © 2018 Elsevier B.V. All rights reserved.
Figueiredo-González, M; Reboredo-Rodríguez, P; González-Barreiro, C; Simal-Gándara, J; Valentão, P; Carrasco-Pancorbo, A; Andrade, P B; Cancho-Grande, B
2018-04-01
In this work, phenol-rich extracts from 'Cornicabra' and 'Picual' virgin-olive oils (EVOOs) were examined, for the first time, to establish their capacity to inhibit key enzymes involved in Alzheimer's disease (AD) (acetylcholinesterase (AChE), butyrylcholinesterase (BuChE) and 5-lipoxygenase (LOX)), major depressive disorder (MDD) and Parkinson's disease (PD) (monoamine oxidases: hMAO-A and hMAO-B respectively), and diabetes mellitus (DM) (α-glucosidase and α-amylase). 'Cornicabra' displayed the best inhibitory activity against all enzymes, when compared to 'Picual': BuChE (IC 50 = 156 ± 4 and 308 ± 33 mg mL -1 ), LOX (IC 50 = 26 ± 0.5 and 37 ± 3 mg mL -1 ), hMAO-A (IC 50 = 20 ± 2 and 37 ± 0.2 mg mL -1 ), hMAO-B (IC 50 = 131 ± 7 and 215 ± 13 mg mL -1 ) and α-glucosidase (IC 50 = 154 ± 17 and 251 ± 31 mg mL -1 ), respectively. The behaviour observed can be associated with the higher content of secoiridoids, lignans and phenolic acids in 'Cornicabra' EVOO. Copyright © 2018 Elsevier Ltd. All rights reserved.
Figueiredo-González, María; Reboredo-Rodríguez, Patricia; González-Barreiro, Carmen; Carrasco-Pancorbo, Alegría; Simal-Gándara, Jesús; Cancho-Grande, Beatriz
2018-03-21
The increasing interest in the Mediterranean diet is based on the protective effects against several diseases, including neurodegenerative disorders. Polyphenol-rich functional foods have been proposed to be unique supplementary and nutraceutical treatments for these disorders. Extra-virgin olive oils (EVOOs) obtained from 'Brava' and 'Mansa', varieties recently identified from Galicia (northwestern Spain), were selected for in vitro screening to evaluate their capacity to inhibit key enzymes involved in Alzheimer's disease (AD) (acetylcholinesterase (AChE), butyrylcholinesterase (BuChE) and 5-lipoxygenase (5-LOX)), major depressive disorder (MDD) and Parkinson's disease (PD) (monoamine oxidases: h MAO-A and h MAO-B respectively). 'Brava' oil exhibited the best inhibitory activity against all enzymes, when they are compared to 'Mansa' oil: BuChE (IC 50 = 245 ± 5 and 591 ± 23 mg·mL -1 ), 5-LOX (IC 50 = 45 ± 7 and 106 ± 14 mg·mL -1 ), h MAO-A (IC 50 = 30 ± 1 and 72 ± 10 mg·mL -1 ) and h MAO-B (IC 50 = 191 ± 8 and 208 ± 14 mg·mL -1 ), respectively. The inhibitory capacity of the phenolic extracts could be associated with the content of secoiridoids, lignans and phenolic acids.
NASA Astrophysics Data System (ADS)
Sumrra, Sajjad H.; Mushtaq, Fazila; Khalid, Muhammad; Raza, Muhammad Asam; Nazar, Muhammad Faizan; Ali, Bakhat; Braga, Ataualpa A. C.
2018-02-01
Biologically active triazole Schiff base ligand (L) and metal complexes [Fe(II), Co(II), Ni(II), Cu(II) and Zn(II)] are reported herein. The ligand acted as tridentate and coordinated towards metallic ions via azomethine-N, triazolic-N moiety and deprotonated-O of phenyl substituents in an octahedral manner. These compounds were characterized by physical, spectral and analytical analysis. The synthesized ligand and metal complexes were screened for antibacterial pathogens against Chromohalobacter salexigens, Chromohalobacter israelensi, Halomonas halofila and Halomonas salina, antifungal bioassay against Aspergillus niger and Aspergellus flavin, antioxidant (DPPH, phosphomolybdate) and also for enzyme inhibition [butyrylcholinesterase (BChE) and acetylcholinesterase (AChE)] studies. The results of these activities indicated the ligand to possess potential activity which significantly increased upon chelation. Moreover, vibrational bands, frontier molecular orbitals (FMOs) and natural bond analysis (NBO) of ligand (1) were carried out through density functional theory (DFT) with B3lYP/6-311 ++G (d,p) approach. While, UV-Vis analysis was performed by time dependent TD-DFT with B3lYP/6-311 ++G (d,p) method. NBO analysis revealed that investigated compound (L) contains enormous molecular stability owing to hyper conjugative interactions. Theoretical spectroscopic findings showed good agreement to experimental spectroscopic data. Global reactivity descriptors were calculated using the energies of FMOs which indicated compound (L) might be bioactive. These parameters confirmed the charge transfer phenomenon and reasonable correspondence with experimental bioactivity results.
Biomarkers of Sensitivity and Exposure in Washington State Pesticide Handlers
Keifer, M.C.; Checkoway, H.; De Roos, A.J.; Farin, F.M.; Fenske, R.A.; Richter, R.J.; van Belle, G.; Furlong, C.E.
2011-01-01
Organophosphate (OP) and N-methyl-carbamate (CB) insecticides are widely used in agriculture in the US and abroad. These compounds – which inhibit acetylcholinesterase (AChE) enzyme activity – continue to be responsible for a high proportion of pesticide poisonings among US agricultural workers. It is possible that some individuals may be especially susceptible to health effects related to OP/CB exposure. The paraoxonase (PON1) enzyme metabolizes the highly toxic oxon forms of some OPs, and an individual's PON1 status may be an important determinant of his or her sensitivity to these chemicals. This chapter discusses methods used to characterize individual PON1 status and reviews previous epidemiologic studies that have evaluated PON1-related sensitivity to OPs in relation to various health endpoints. It also describes an ongoing longitudinal study among OP-exposed agricultural pesticide handlers who are participating in a recently implemented cholinesterase monitoring program in Washington State. This study will evaluate handlers' PON1 status as a hypothesized determinant of butyrylcholinesterase (BuChE) inhibition. Such studies will be useful to determine how regulatory risk assessments might account for differences in PON1-related OP sensitivity when characterizing inter-individual variability in risk related to OP exposure. Recent work assessing newer and more sensitive biomarkers of OP exposure is also discussed briefly in this chapter. PMID:20221867
Bhakta, Himanshu Kumar; Park, Chan Hum; Yokozawa, Takako; Tanaka, Takashi; Jung, Hyun Ah; Choi, Jae Sue
2017-07-01
Cholinesterase (ChE) and β-site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibitors are promising agents for the treatment of Alzheimer's disease (AD). In the present study, we examined the inhibitory activity of seven compounds isolated from the fruits of Cornus officinalis, cornuside, polymeric proanthocyanidins, 1,2,3-tri-O-galloyl-β-D-glucose, 1,2,3,6-tetra-O-galloyl-β-D-glucose, tellimagrandin I, tellimagrandin II, and isoterchebin, against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and BACE1. All of the compounds displayed concentration-dependent in vitro inhibitory activity toward the ChEs and BACE1. Among them, tellimagrandin II exhibited the best inhibitory activity toward ChEs, whereas the best BACE1 inhibitor was 1,2,3,6-tetra-O-galloyl-β-D-glucose. Isoterchebin and polymeric proanthocyanidins were also significant ChE inhibitors. The kinetic and docking studies demonstrated that all compounds interacted with both the catalytic active sites and the peripheral anionic sites of the ChEs and BACE1. Tellimagrandin II, isoterchebin, and the polymeric proanthocyanidins exhibited concentration-dependent inhibition of peroxynitrite-mediated protein tyrosine nitration. In conclusion, we identified significant ChE and BACE1 inhibitors from Corni Fructus that could have value as new multi-targeted compounds for anti-AD agents.
Brain acetycholinesterase activity in botulism-intoxicated mallards
Rocke, T.E.; Samuel, M.D.
1991-01-01
Brain acetylcholinesterase (AChE) activity in captive-reared mallards (Anas platyrhynchos) that died of botulism was compared with euthanized controls. AChE levels for both groups were within the range reported for normal mallards, and there was no significant difference in mean AChE activity between birds that ingested botulism toxin and died and those that did not.
Quandt, Sara A; Pope, Carey N.; Chen, Haiying; Summers, Phillip; Arcury, Thomas A.
2015-01-01
Objective This study (1) describes patterns of whole blood total cholinesterase, acetylcholinesterase, and butyrylcholinesterase activities across the agricultural season, comparing farmworkers and non-farmworkers; and (2) explores differences between farmworkers' and non-farmworkers' likelihood of cholinesterase depression. Methods Blood samples from 210 Latino male farmworkers and 163 Latino workers with no occupational pesticide exposure collected eight times across two agricultural seasons were analyzed. Mean cholinesterase activity levels and depressions ≥15% were compared by month. Results Farmworkers had significantly lower total cholinesterase and butyrylcholinesterase activities in July and August and lower acetylcholinesterase activity in August. Farmworkers had significantly greater likelihood of cholinesterase depression for each cholinesterase measure across the agricultural season. Significance A repeated-measures design across two years with a non-exposed control group demonstrated anticholinesterase effects in farmworkers. Current regulations designed to prevent pesticide exposure are not effective. PMID:26247638
Gulcan, Hayrettin Ozan; Unlu, Serdar; Esiringu, Ilker; Ercetin, Tugba; Sahin, Yasemin; Oz, Demet; Sahin, Mustafa Fethi
2014-10-01
Hydroxylated 6H-benzo[c]chromen-6-one derivatives (i.e., urolithins) are the main bioavailable metabolites, and biomarkers of ellagitannins present in various nutrition. Although these dietaries, the sources of urolithins, are employed in folk medicine as cognitive enhancer in the treatment of Alzheimer's Disease, urolithins have negligible potential to inhibit acetylcholinesterase and butyrylcholinesterase enzymes, the validated targets of Alzheimer's Disease. Therefore, within this research, a series of 6H-benzo[c]chromen-6-one, and 7,8,9,10-tetrahydro-benzo[c]chromen-6-one derivatives has been designed, synthesized, and their biological activities were evaluated as potential acetylcholinesterase and butyrylcholinesterase inhibitors. The compounds synthesized exerted comparable activity in comparison to rivastigmine, galantamine, and donepezil both in in vitro and in vivo studies. Copyright © 2014 Elsevier Ltd. All rights reserved.
Szymański, P; Markowicz, M; Bajda, M; Malawska, B; Mikiciuk-Olasik, E
2012-12-01
The aim of this study was to synthesize and determine the biological activity of new derivatives of 4-fluorobenzoic acid and tetrahydroacridine towards inhibition of cholinesterases. Compounds were synthesized in condensation reaction between 9-aminoalkyl-tetrahydroacridines and the activated 4-fluorobenzoic acid. Properties towards inhibition of acetyl- and butyrylcholinesterase were estimated according to Ellman's spectrophotometric method. Among synthesized compounds the most active were compounds 4a and 4d. These compounds, in comparison with tacrine, were characterized by the similar values of IC50. Among all obtained compounds, 4d presented the highest selectivity towards inhibition of acetylcholinesterase. Molecular modeling studies revealed that all derivatives presented similar extended conformation in the gorge of acetylcholinesterase, however, there were 2 main conformations in the active center of butyrylcholinesterase: bent and extended conformation. © Georg Thieme Verlag KG Stuttgart · New York.
Quandt, Sara A; Pope, Carey N; Chen, Haiying; Summers, Phillip; Arcury, Thomas A
2015-08-01
This study (1) describes patterns of whole blood total cholinesterase, acetylcholinesterase, and butyrylcholinesterase activities across the agricultural season, comparing farmworkers and nonfarmworkers; and (2) explores differences between farmworkers' and non-farmworkers' likelihood of cholinesterase depression. Blood samples from 210 Latino male farmworkers and 163 Latino workers with no occupational pesticide exposure collected 8 times across 2 agricultural seasons were analyzed. Mean cholinesterase activity levels and depressions 15% or more were compared by month. Farmworkers had significantly lower total cholinesterase and butyrylcholinesterase activities in July and August and lower acetylcholinesterase activity in August. Farmworkers had significantly greater likelihood of cholinesterase depression for each cholinesterase measure across the agricultural season. A repeated-measures design across 2 years with a nonexposed control group demonstrated anticholinesterase effects in farmworkers. Current regulations designed to prevent pesticide exposure are not effective.
Singh, A K; Spassova, D
1998-01-01
Physostigmine, aldicarb and carbaryl were potent inhibitors of acetylcholinesterase (AChE). The physostigmine-inhibited AChE fluoresced at 300 nm excitation and 500 nm emission wavelengths, but the aldicarb and carbaryl inhibited enzyme did not. This suggests that the carbamylated active center is not the fluorescing site in AChE. The fluorescence intensity of physostigmine-inhibited AChE decreased with increasing the substrate (acetylthiocholine) concentration, thus indicating that physostigmine binding to the active site is essential for the development of fluorescence. Thus, the physostigmine-inhibited AChE fluoresces due to the binding of trimethylpyrrolo[2,3-b]indol (TMPI) moiety, formed by the hydrolysis of physostigmine, to a peripheral site in AChE. The fluorescence intensity of the physostigmine-inhibited enzyme decreased when the inhibited-enzyme was dialyzed for either 30 min that poorly reactivated the enzyme or 180 min that fully reactivated the enzyme. This suggests that dialysis dissociates the AChE-TMPI complex much faster than it reactivates the carbamylated AChE. Ephedrine, propranolol and phenothiazines including trifluoparazine (TPZ) caused non-competitive inhibition, while hexamethonium caused an uncompetitive inhibition of AChE activity. TPZ, upon binding with AChE, formed a fluorescent TPZ-enzyme complex. The fluorescence intensity of TPZ-AChE complex was effectively decreased by ephedrine, but not by propranolol or hexamethonium. This indicates that TPZ and ephedrine bind to the same site in AChE which is different from the site/or sites to which propranolol or hexamethonium bind. Hexamethonium protected AChE from inhibition by carbamates and decreased the fluorescence intensity of the physostigmine-inhibited AChE. Phenothiazines and ephedrine did not modulate the enzyme inhibition or the fluorescence intensity of the physostigmine-inhibited AChE. Propranolol and TPZ potentiated the enzyme inhibition and increased the fluorescence intensity in the presence of physostigmine. These compounds, however, did not affect the inhibition of AChE by carbaryl or aldicarb. Ephedrine blocked the effects of TPZ, but did not alter the effects of propranolol on physostigmine-inhibited AChE. AChE, therefore, contains multiple peripheral binding sites which, upon binding to specific ligands, transduce differential signals to the active center.
Talarico, Daria; Arduini, Fabiana; Amine, Aziz; Cacciotti, Ilaria; Moscone, Danila; Palleschi, Giuseppe
2016-10-01
We report a screen-printed electrode (SPE) modified with a dispersion of carbon black (CB) and chitosan by drop casting. A cyclic voltammetry technique towards ferricyanide, caffeic acid, hydroquinone, and thiocholine was performed and an improvement of the electrochemical response with respect to bare SPE as well as SPE modified only with chitosan was observed. The possibility to detect thiocholine at a low applied potential with high sensitivity was exploited and an acetylcholinesterase (AChE) biosensor was developed. A dispersion of CB, chitosan, and AChE was used to fabricate this biosensor in one step by drop casting. The enzymatic activity of the immobilized AChE was determined measuring the enzymatic product thiocholine at +300 mV. Owing to the capability of organophosphorus pesticides to inhibit AChE, this biosensor was used to detect these pollutants, and paraoxon was taken as model compound. The enzyme inhibition was linearly related to the concentration of paraoxon up to 0.5 μg L(-1), and a low detection limit equal to 0.05 μg L(-1) (calculated as 10% of inhibition) was achieved. This biosensor was challenged for paraoxon detection in drinking waters with satisfactory recovery values. The use of AChE embedded in a dispersion of CB and chitosan allowed an easy and fast production of a sensitive biosensor suitable for paraoxon detection in drinking waters at legal limit levels. Graphical Abstract Biosensors based on screen-printed electrodes modified with Acetylcholinesterase, Carbon Black, and Chitosan for organophosphorus pesticide detection.
Mathew, Maya; Subramanian, Sarada
2014-01-01
Inhibition of Acetylcholinesterase (AChE) is still considered as the main therapeutic strategy against Alzheimer’s disease (AD). Many plant derived phytochemicals have shown AChE inhibitory activity in addition to the currently approved drugs for AD. In the present study, methanolic extracts of 20 plants used in Indian Ayurvedic system of medicine for improving cognitive function were screened for acetylcholinesterase inhibitory activity by Ellman’s microplate colorimetric method. Out of 20 extracts, Emblica officinalis, Nardostachys jatamansi, Nelumbo nucifera, Punica granatum and Raulfia Serpentina showed IC50 values <100 µg/ml for acetylcholinesterase inhibitory activity. Antioxidant activities of these plants were assessed by DPPH scavenging assay. Among the extracts used, antioxidant activity was highest for Terminalia chebula and Emblica officinalis with IC50 values <10 µg/ml. Considering the complex multifactorial etiology of AD, these plant extracts will be safer and better candidates for the future disease modifying therapies against this devastating disease. PMID:24466247
Mathew, Maya; Subramanian, Sarada
2014-01-01
Inhibition of Acetylcholinesterase (AChE) is still considered as the main therapeutic strategy against Alzheimer's disease (AD). Many plant derived phytochemicals have shown AChE inhibitory activity in addition to the currently approved drugs for AD. In the present study, methanolic extracts of 20 plants used in Indian Ayurvedic system of medicine for improving cognitive function were screened for acetylcholinesterase inhibitory activity by Ellman's microplate colorimetric method. Out of 20 extracts, Emblica officinalis, Nardostachys jatamansi, Nelumbo nucifera, Punica granatum and Raulfia Serpentina showed IC50 values <100 µg/ml for acetylcholinesterase inhibitory activity. Antioxidant activities of these plants were assessed by DPPH scavenging assay. Among the extracts used, antioxidant activity was highest for Terminalia chebula and Emblica officinalis with IC50 values <10 µg/ml. Considering the complex multifactorial etiology of AD, these plant extracts will be safer and better candidates for the future disease modifying therapies against this devastating disease.
NASA Astrophysics Data System (ADS)
Adejumo, D. O.; Egbunike, G. N.
1988-06-01
The effects of direct exposure of boars to thermal stress for 1 h daily for 5 days and to acute water deprivation for 24 or 48 h were studied on the acetylcholinesterase (AChE) activity of porcine brain and hypophysial regions. Mean ambient temperatures, respiratory rates and rectal temperatures in the open were significantly higher than inside the pen. Heat stress induced a rise in AChE activities in the pons, cerebellum, amygdala, hippocampus, hypothalamus, mid-brain and medulla oblongata. However, no significant changes were observed in the cerebral cortex, adenohypophysis and neurohypophysis. Water deprivation significantly ( P<0.05) depressed AChE activity to varying extents depending on the duration of water restriction. Thus AChE activity in the amygdala was depressed by water deprivation for 24 h but partially restored at 48 h. The pons and medulla oblongata were comparable to the amygdala in this respect. The adenohypophysis and neurohypophysis were relatively unaffected.
NASA Astrophysics Data System (ADS)
Khaldi, Khadidja; Sam, Sabrina; Lounas, Amel; Yaddaden, Chafiaa; Gabouze, Noure-Eddine
2017-11-01
In this work, Acetylcholinesterase enzyme (AChE) was immobilized on porous silicon (PSi) surface using two strategies. In the first method, acid chains were covalently grafted on the hydrogenated PSi by hydrosilylation reaction. The obtained acid-terminated surface was activated by a reaction with N-hydroxysuccinimide (NHS) in the presence of a peptide-coupling agent N-ethyl-N‧-(3-dimethylaminopropyl)-carbodiimide (EDC), and then reacted with the amino linker of the lysine residues AChE to anchor the enzyme by a covalent amide bond. In the second procedure, the PSi surface was first hydroxylated in piranha solution, followed by a silanization reaction with 3-aminopropyltriethoxysilane (APTES) to form amine-terminated surface. Finally, AChE was attached to the terminal amine groups by an aminolysis reaction with carboxylic acid groups of AChE in the presence of NHS/EDC mixture. Fourier transform infrared spectroscopy (FTIR) confirmed the efficiency of the surface modifications. The enzymatic activity of immobilized AChE was determined by means of a colorimetric test and was discussed according to the enzyme orientation on the surface which was revealed by contact angle measurements.
Lim, M M; Hammock, E A D; Young, L J
2004-02-01
Receptor autoradiography using selective radiolabeled ligands allows visualization of brain receptor distribution and density on film. The resolution of specific brain regions on the film often can be difficult to discern owing to the general spread of the radioactive label and the lack of neuroanatomical landmarks on film. Receptor binding is a chemically harsh protocol that can render the tissue virtually unstainable by Nissl and other conventional stains used to delineate neuroanatomical boundaries of brain regions. We describe a method for acetylcholinesterase (AChE) staining of slides previously processed for receptor binding. AChE staining is a useful tool for delineating major brain nuclei and tracts. AChE staining on sections that have been processed for receptor autoradiography provides a direct comparison of brain regions for more precise neuroanatomical description. We report a detailed thiocholine protocol that is a modification of the Koelle-Friedenwald method to amplify the AChE signal in brain sections previously processed for autoradiography. We also describe several temporal and experimental factors that can affect the density and clarity of the AChE signal when using this protocol.
Zhao, Hengqiang; Zhou, Siduo; Zhang, Minmin; Feng, Jinhong; Wang, Shanshan; Wang, Daijie; Geng, Yanling; Wang, Xiao
2016-02-20
In this study, an in vitro acetylcholinesterase (AChE) inhibition assay based on microplate reader combined with ultrafiltration high performance liquid chromatography-electrospray quadrupole time of flight mass (UF-HPLC-ESI-Q-TOF/MS) was developed for the rapid screening and identification of acetylcholinesterase inhibitors (AChEI) from roots of Coptis chinensis Franch. Incubation conditions such as enzyme concentration, incubation time, incubation temperature and co-solvent was optimized so as to get better screening results. Five alkaloids including columbamine, jatrorrhizine, coptisine, palmatine and berberine were found with AChE inhibition activity in the 80% ethanol extract of C. chinensis Franch. The screened compounds were identified by HPLC-DAD-ESI-Q-TOF/MS compared with the reference stands and literatures. The screened results were verified by in vitro AChE inhibition assays, palmatine showed the best AChE inhibitory activities with IC50 values of 36.6μM among the five compounds. Results of the present study indicated that the combinative method using in vitro AChE inhibition assay and UF-HPLC-ESI-Q-TOF/MS could be widely applied for rapid screening and identification of AChEI from complex TCM extract. Copyright © 2015 Elsevier B.V. All rights reserved.
BEHAVIORAL AND NEUROCHEMICAL CHANGES IN RATS DOSED REPEATEDLY WITH DIISOPROPYLFLUOROPHOSPHATE (DFP)
Behavioral effects of organophosphates (OPs) typically decrease with repeated exposure, despite persistence of OP-induced inhibition of acetylcholinesterase (AChE) and downregulation of muscarinic acetylcholine (ACh) receptors. o characterize this tolerance phenomenon, rats were ...
Maize acetylcholinesterase is a positive regulator of heat tolerance in plants.
Yamamoto, Kosuke; Sakamoto, Hikaru; Momonoki, Yoshie S
2011-11-01
We previously reported that native tropical zone plants showed high acetylcholinesterase (AChE) activity during heat stress, and that AChE activity in endodermal cells of maize seedlings was increased by heat treatment. However, the physiological role of AChE in heat stressed plants is still unclear. Here we report (1) tissue-specific expression and subcellular localization of maize AChE, (2) elevation of AChE activity and possible post-translational modifications of this enzyme under heat stress, and (3) involvement of AChE in plant heat stress tolerance. Maize AChE was mainly expressed in coleoptile nodes and seeds. Maize AChE fused with green fluorescent protein (GFP) was localized in extracellular spaces of transgenic rice plants. Therefore, in maize coleoptile nodes and seeds AChE mainly functions in the cell wall matrix. After heat treatment, enhanced maize AChE activity was observed by in vitro activity measurement and by in situ cytochemical staining; transcript and protein levels, however, were not changed. Protein gel blot analysis revealed two AChE isoforms (upper and lower); the upper-form gradually disappeared after heat treatment. Thus, maize AChE activity might be enhanced through a post-translational modification response to heat stress. Finally, we found that overexpression of maize AChE in transgenic tobacco plants enhanced heat tolerance relative to that of non-transgenic plants, suggesting AChE plays a positive role in maize heat tolerance. Copyright © 2011 Elsevier GmbH. All rights reserved.
Boyle, N A; Talesa, V; Giovannini, E; Rosi, G; Norton, S J
1997-09-12
Fourteen alkyl and aryl thiocarbonate derivatives of choline were synthesized and studied as potential inhibitors of acetylcholinesterase (AChE). Twelve of the compounds inhibited AChEs derived from calf forebrain, human red blood cells, and octopus brain ranging from low to moderately high inhibition potency. The concentration of each inhibitory compound giving 50% inhibition of enzyme activity (IC50 values, which ranged from 1 x 10(-2) to 8 x 10(-7) M) was determined and is reported; inhibitor constants (Ki values) for the most inhibitory compounds, (1-pentylthiocarbonyl)choline chloride and (1-heptylthiocarbonyl)choline chloride, were calculated from kinetic data and are also reported. The inhibitors are competitive with substrate, and they are not hydrolyzed by the AChE activities. Certain of these new compounds may provide direction for the development of new drugs that have anticholinesterase activity and may be used for the treatment of Alzheimer's disease.
Jukic, Mila; Burcul, Franko; Carev, Ivana; Politeo, Olivera; Milos, Mladen
2012-01-01
The methanol, ethyl acetate and chloroform extracts of selected Croatian plants were tested for their acetylcholinesterase (AChE) inhibition and antioxidant activity. Assessment of AChE inhibition was carried out using microplate reader at 1 mg mL⁻¹. Antioxidant capacities were determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging test and ferric reducing/antioxidant power assay (FRAP). Total phenol content (TPC) of extracts were determined using Folin-Ciocalteu colorimetric method. Out of 48 extracts, only methanolic extract of the Salix alba L. cortex exerted modest activity towards AChE, reaching 50.80% inhibition at concentration of 1 mg mL⁻¹. All the other samples tested had activity below 20%. The same extract performed the best antioxidative activity using DPPH and FRAP method, too. In essence, among all extracts used in the screening, methanolic extracts showed the best antioxidative activity as well as highest TPC.
Detoxification of Organophosphate Poisoning Using Nanoparticle Bioscavengers
Pang, Zhiqing; Hu, Che-Ming J.; Fang, Ronnie H.; Luk, Brian T.; Gao, Weiwei; Wang, Fei; Chuluun, Erdembileg; Angsantikul, Pavimol; Thamphiwatana, Soracha; Lu, Weiyue; Jiang, Xinguo; Zhang, Liangfang
2016-01-01
Organophosphate poisoning is highly lethal as organophosphates, which are commonly found in insecticides and nerve agents, cause irreversible phosphorylation and inactivation of acetylcholinesterase (AChE), leading to neuromuscular disorders via accumulation of acetylcholine in the body. Direct interception of organophosphates in the systemic circulation thus provides a desirable strategy in treatment of the condition. Inspired by the presence of acetylcholinesterase on red blood cell (RBC) membranes, we explored a biomimetic nanoparticle consisting of a polymeric core surrounded by RBC membranes to serve as an anti-organophosphate agent. Through in vitro studies, we demonstrated that the biomimetic nanoparticles retain the enzymatic activity of membrane-bound AChE and are able to bind to a model organophosphate, dichlorvos, precluding its inhibitory effect on other enzymatic substrates. In a mouse model of organophosphate poisoning, the nanoparticles were shown to improve the AChE activity in the blood and markedly improved the survival of dichlorvos-challenged mice. PMID:26053868
Siatka, Tomáš; Adamcová, Markéta; Opletal, Lubomír; Cahlíková, Lucie; Jun, Daniel; Hrabinová, Martina; Kuneš, Jiří; Chlebek, Jakub
2017-07-14
Alzheimer's disease is an age-related, neurodegenerative disorder, characterized by cognitive impairment and restrictions in activities of daily living. This disease is the most common form of dementia with complex multifactorial pathological mechanisms. Many therapeutic approaches have been proposed. Among them, inhibition of acetylcholinesterase, butyrylcholinesterase, and prolyl oligopeptidase can be beneficial targets in the treatment of Alzheimer's disease. Roots, along with aerial parts of Argemone platyceras , were extracted with ethanol and fractionated on an alumina column using light petrol, chloroform and ethanol. Subsequently, repeated preparative thin-layer chromatography led to the isolation of (+)-laudanosine, protopine, (-)-argemonine, allocryptopine, (-)-platycerine, (-)-munitagine, and (-)-norargemonine belonging to pavine, protopine and benzyltetrahydroisoquinoline structural types. Chemical structures of the isolated alkaloids were elucidated by optical rotation, spectroscopic and spectrometric analysis (NMR, MS), and comparison with literature data. (+)-Laudanosine was isolated from A. platyceras for the first time. Isolated compounds were tested for human blood acetylcholinesterase, human plasma butyrylcholinesterase and recombinant prolyl oligopeptidase inhibitory activity. The alkaloids inhibited the enzymes in a dose-dependent manner. The most active compound (-)-munitagine, a pavine alkaloid, inhibited both acetylcholinesterase and prolyl oligopeptidase with IC 50 values of 62.3 ± 5.8 µM and 277.0 ± 31.3 µM, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilhelm, Christina M., E-mail: wilhelmc@battelle.org; Snider, Thomas H., E-mail: snidert@battelle.org; Babin, Michael C., E-mail: babinm@battelle.org
The currently fielded pre-hospital therapeutic regimen for the treatment of organophosphorus (OP) poisoning in the United States (U.S.) is the administration of atropine in combination with an oxime antidote (2-PAM Cl) to reactivate inhibited acetylcholinesterase (AChE). Depending on clinical symptoms, an anticonvulsant, e.g., diazepam, may also be administered. Unfortunately, 2-PAM Cl does not offer sufficient protection across the range of OP threat agents, and there is some question as to whether it is the most effective oxime compound available. The objective of the present study is to identify an oxime antidote, under standardized and comparable conditions, that offers protection atmore » the FDA approved human equivalent dose (HED) of 2-PAM Cl against tabun (GA), sarin (GB), soman (GD), cyclosarin (GF), and VX, and the pesticides paraoxon, chlorpyrifos oxon, and phorate oxon. Male Hartley guinea pigs were subcutaneously challenged with a lethal level of OP and treated at approximately 1 min post challenge with atropine followed by equimolar oxime therapy (2-PAM Cl, HI-6 DMS, obidoxime Cl{sub 2}, TMB-4, MMB4-DMS, HLö-7 DMS, MINA, and RS194B) or therapeutic-index (TI) level therapy (HI-6 DMS, MMB4-DMS, MINA, and RS194B). Clinical signs of toxicity were observed for 24 h post challenge and blood cholinesterase [AChE and butyrylcholinesterase (BChE)] activity was analyzed utilizing a modified Ellman's method. When the oxime is standardized against the HED of 2-PAM Cl for guinea pigs, the evidence from clinical observations, lethality, quality of life (QOL) scores, and cholinesterase reactivation rates across all OPs indicated that MMB4 DMS and HLö-7 DMS were the two most consistently efficacious oximes. - Highlights: • First comprehensive evaluation of leading AChE oxime reactivators • All oximes are compared against current U.S. therapy 2-PAM Cl. • Relative therapeutic oxime efficacies against OP CWNA and pesticides • Contribution to more effective antidotes for civilian and military populations.« less
Co, Aila L.; Hay, Ariel M.; MacDonald, James W.; Bammler, Theo K.; Farin, Federico M.; Costa, Lucio G.; Furlong, Clement E.
2014-01-01
Chlorpyrifos oxon (CPO), the toxic metabolite of the organophosphorus (OP) insecticide chlorpyrifos, causes developmental neurotoxicity in humans and rodents. CPO is hydrolyzed by paraoxonase-1 (PON1), with protection determined by PON1 levels and the human Q192R polymorphism. To examine how the Q192R polymorphism influences fetal toxicity associated with gestational CPO exposure, we measured enzyme inhibition and fetal-brain gene expression in wild-type (PON1+/+), PON1-knockout (PON1−/−), and tgHuPON1R192 and tgHuPON1Q192 transgenic mice. Pregnant mice exposed dermally to 0, 0.50, 0.75, or 0.85 mg/kg/d CPO from gestational day (GD) 6 through 17 were sacrificed on GD18. Biomarkers of CPO exposure inhibited in maternal tissues included brain acetylcholinesterase (AChE), red blood cell acylpeptide hydrolase (APH), and plasma butyrylcholinesterase (BChE) and carboxylesterase (CES). Fetal plasma BChE was inhibited in PON1−/− and tgHuPON1Q192, but not PON1+/+ or tgHuPON1R192 mice. Fetal brain AChE and plasma CES were inhibited in PON1−/− mice, but not in other genotypes. Weighted gene co-expression network analysis identified five gene modules based on clustering of the correlations among their fetal-brain expression values, allowing for correlation of module membership with the phenotypic data on enzyme inhibition. One module that correlated highly with maternal brain AChE activity had a large representation of homeobox genes. Gene set enrichment analysis revealed multiple gene sets affected by gestational CPO exposure in tgHuPON1Q192 but not tgHuPON1R192 mice, including gene sets involved in protein export, lipid metabolism, and neurotransmission. These data indicate that maternal PON1 status modulates the effects of repeated gestational CPO exposure on fetal-brain gene expression and on inhibition of both maternal and fetal biomarker enzymes. PMID:25070982
Musilek, Kamil; Komloova, Marketa; Holas, Ondrej; Horova, Anna; Pohanka, Miroslav; Gunn-Moore, Frank; Dohnal, Vlastimil; Dolezal, Martin; Kuca, Kamil
2011-01-15
The treatment of organophosphorus (OP) poisoning consists of the administration of a parasympatholytic agent (e.g., atropine), an anticonvulsant (e.g., diazepam) and an acetylcholinesterase (AChE) reactivator (e.g., obidoxime). The AChE reactivator is the causal treatment of OP exposure, because it cleaves the OP moiety covalently bound to the AChE active site. In this paper, fourteen novel AChE reactivators are described. Their design originated from a former promising compound K027. These compounds were synthesized, evaluated in vitro on human AChE (hAChE) inhibited by tabun, paraoxon, methylparaoxon and DFP and then compared to commercial hAChE reactivators (pralidoxime, HI-6, trimedoxime, obidoxime, methoxime) or previously prepared compounds (K027, K203). Three of these novel compounds showed a promising ability to reactivate hAChE comparable or better than the used standards. Consequently, a molecular docking study was performed for three of these promising novel compounds. The docking results confirmed the apparent influence of π-π or cation-π interactions and hydrogen bonding for reactivator binding within the hAChE active site cleft. The SAR features concerning the non-oxime part of the reactivator molecule are also discussed. Copyright © 2010 Elsevier Ltd. All rights reserved.
Cui, Ruqiang; Zhang, Lei; Chen, Yuyan; Huang, Wenkun; Fan, Chengming; Wu, Qingsong; Peng, Deliang; da Silva, Washington; Sun, Xiaotang
2017-05-01
The full cDNA of Mi-ace-3 encoding an acetylcholinesterase (AChE) in Meloidogyne incognita was cloned and characterized. Mi-ace-3 had an open reading frame of 1875 bp encoding 624 amino acid residues. Key residues essential to AChE structure and function were conserved. The deduced Mi-ACE-3 protein sequence had 72% amino acid similarity with that of Ditylenchus destructor Dd-AChE-3. Phylogenetic analyses using 41 AChEs from 24 species showed that Mi-ACE-3 formed a cluster with 4 other nematode AChEs. Our results revealed that the Mi-ace-3 cloned in this study, which is orthologous to Caenorhabditis elegans AChE, belongs to the nematode ACE-3/4 subgroup. There was a significant reduction in the number of galls in transgenic tobacco roots when Mi-ace-1, Mi-ace-2, and Mi-ace-3 were knocked down simultaneously, whereas little or no effect were observed when only one or two of these genes were knocked down. This is an indication that the functions of these three genes are redundant. Copyright © 2017. Published by Elsevier Inc.
HI-6 assisted Catalytic Scavenging of VX by Acetylcholinesterase Choline Binding Site Mutants
Hrvat, Nikolina Maček; Žunec, Suzana; Taylor, Palmer; Radić, Zoran; Kovarik, Zrinka
2016-01-01
The high toxicity of organophosphorus compounds originates from covalent inhibition of acetylcholinesterase (AChE), an essential enzyme in cholinergic neurotransmission. Poisonings that lead to life-threatening toxic manifestations require immediate treatment that combines administration of anticholinergic drugs and an aldoxime as a reactivator of AChE. An alternative approach to reduce the in vivo toxicity of OPs focuses on the use of bioscavengers against the parent organophosphate. Our previous research showed that AChE mutagenesis can enable aldoximes to substantially accelerate the reactivation of OP-enzyme conjugates, while dramatically slowing down rates of OP-conjugate dealkylation (aging). Herein, we demonstrate an efficient HI-6-assisted VX detoxification, both ex vivo in human blood and in vivo in mice by hAChE mutants modified at the choline binding site (Y337A and Y337A/F338A). The catalytic scavenging of VX in mice improved therapeutic outcomes preventing lethality and resulted in a delayed onset of toxicity symptoms. PMID:27083141
Frobert, Y; Créminon, C; Cousin, X; Rémy, M H; Chatel, J M; Bon, S; Bon, C; Grassi, J
1997-05-23
We analyzed 45 batches of venom from 20 different species belonging to 11 genera from the 3 main families of venomous snakes (Elapidae, Viperidae and Crotalidae). We found high acetylcholinesterase (AChE) activity in all venoms from Elapidae, except in those from the Dendroaspis genus. AChE was particularly abundant in Bungarus venoms which contain up to 8 mg of enzyme per gram of dried venom. We could not detect acetylcholinesterase activity in any batch of venom from Viperidae or Crotalidae. Titration of active sites with an organophosphorous agent (MPT) revealed that the AChE of all venoms have similar turnovers (6000 to 8000 s(-1)) which are clearly higher than those of Torpedo and mammalian enzymes but lower than that of Electrophorus. AChEs from the venom of elapid snakes of the Bungarus, Naja, Ophiophagus and Haemacatus genera were purified by affinity chromatography. SDS-PAGE analysis and sucrose gradient centrifugation demonstrated that AChE is exclusively present as a nonamphiphilic monomer. These enzymes are true AChEs, hydrolyzing acetylthiocholine faster than propionylthiocholine and butyrylthiocholine and exhibiting excess substrate inhibition. Twenty-seven different monoclonal antibodies directed against AChE from Bungarus fasciatus venom were raised in mice. Half of them recognized exclusively the Bungarus enzyme while the others cross-reacted with AChEs from other venoms. Polyspecific mAbs were used to demonstrate that venoms from Dendroaspis, which contain the AChE inhibitor fasciculin but lack AChE activity, were also devoid of immunoreactive AChE protein. AChE inhibitors acting at the active site (edrophonium, tacrine) and at the peripheral site (propidium, fasciculin), as well as bis-quaternary ligands (BW284C51, decamethonium), were tested against the venom AChEs from 11 different species. All enzymes had a very similar pattern of reactivity with regard to the different inhibitors, with the exception of fasciculin. AChEs from Naja and Haemacatus venoms were relatively insensitive to fasciculin inhibition (IC50 > 10(-6) M), while Bungarus (IC50 approximately 10(-8) M) and especially Ophiophagus (IC50 < 10(-10) M) AChEs were inhibited very efficiently. Ophiophagus and Bungarus AChEs were also efficiently inhibited by a monoclonal antibody (Elec-410) previously described as a specific ligand for the Electrophorus electricus peripheral site. Taken together, these results show that the venoms of most Elapidae snakes contain large amounts of a highly active non-amphiphilic monomeric AChE. All snake venom AChEs show strong immunological similarities and possess very similar enzymatic properties. However, they present quite different sensitivity to peripheral site inhibitors, fasciculin and the monoclonal antibody Elec-410.
NASA Astrophysics Data System (ADS)
Tang, Shi; Ma, Wenying; Xie, Guangzhong; Su, Yuanjie; Jiang, Yadong
2016-09-01
An acetylcholinesterase (AChE)-reduced graphene oxide (RGO) hybrid films based biosensor enabled by quartz crystal microbalance (QCM) has been developed for the detection of organophosphorus neurotoxin in gas phase at room temperature. To improve the sensing performance, RGO was used to immobilize large quantities of enzyme and provide a favorable microenvironment to maintain the enzyme activity. The experimental results reveal that the response of AChE-RGO/glutaraldehyde based sensors is about 8 times larger than that of the AChE with the sensitivity of 1.583 Hz/mg/m3. 1.0 mg amount of RGO, 5% concentration of glutaraldehyde and pH 6.8 is the optimal condition of this biosensor.
Overexpression of acetylcholinesterase gene in rice results in enhancement of shoot gravitropism.
Yamamoto, Kosuke; Shida, Satoshi; Honda, Yoshihiro; Shono, Mariko; Miyake, Hiroshi; Oguri, Suguru; Sakamoto, Hikaru; Momonoki, Yoshie S
2015-09-25
Acetylcholine (ACh), a known neurotransmitter in animals and acetylcholinesterase (AChE) exists widely in plants, although its role in plant signal transduction is unclear. We previously reported AChE in Zea mays L. might be related to gravitropism based on pharmacological study using an AChE inhibitor. Here we clearly demonstrate plant AChE play an important role as a positive regulator in the gravity response of plants based on a genetic study. First, the gene encoding a second component of the ACh-mediated signal transduction system, AChE was cloned from rice, Oryza sativa L. ssp. Japonica cv. Nipponbare. The rice AChE shared high homology with maize, siratro and Salicornia AChEs. Similar to animal and other plant AChEs, the rice AChE hydrolyzed acetylthiocholine and propionylthiocholine, but not butyrylthiocholine. Thus, the rice AChE might be characterized as an AChE (E.C.3.1.1.7). Similar to maize and siratro AChEs, the rice AChE exhibited low sensitivity to the AChE inhibitor, neostigmine bromide, compared with the electric eel AChE. Next, the functionality of rice AChE was proved by overexpression in rice plants. The rice AChE was localized in extracellular spaces of rice plants. Further, the rice AChE mRNA and its activity were mainly detected during early developmental stages (2 d-10 d after sowing). Finally, by comparing AChE up-regulated plants with wild-type, we found that AChE overexpression causes an enhanced gravitropic response. This result clearly suggests that the function of the rice AChE relate to positive regulation of gravitropic response in rice seedlings. Copyright © 2015 Elsevier Inc. All rights reserved.
Howard, Marcia D.; Mirajkar, Nikita; Karanth, Subramanya; Pope, Carey N.
2010-01-01
Organophosphorus (OP) pesticides elicit acute toxicity by inhibiting acetylcholinesterase (AChE), the enzyme responsible for inactivating acetylcholine (ACh) at cholinergic synapses. A number of OP toxicants have also been reported to interact directly with muscarinic receptors, in particular the M2 muscarinic subtype. Parasympathetic innervation to the heart primarily regulates cardiac function by activating M2 receptors in the sinus node, atrial-ventricular node and conducting tissues. Thus, OP insecticides can potentially influence cardiac function in a receptor–mediated manner indirectly by inhibiting acetylcholinesterase and directly by binding to muscarinic M2 receptors. Young animals are generally more sensitive than adults to the acute toxicity of OP insecticides and age related differences in potency of direct binding to muscarinic receptors by some OP toxicants have been reported. We thus compared the effects of the common OP insecticide chlorpyrifos (CPF) on functional signs of toxicity and cardiac ChE activity and muscarinic receptor binding in neonatal and adult rats. Dosages were based on acute lethality (i.e., 0.5 and 1 × LD10: neonates, 7.5 and 15 mg/kg; adults, 68 and 136 mg/kg). Dose- and time-related changes in body weight and cholinergic signs of toxicity (involuntary movements) were noted in both age groups. With 1 × LD10, relatively similar maximal reductions in ChE activity (95%) and muscarinic receptor binding (≈ 30%) were noted, but receptor binding reductions appeared earlier in adults and were more prolonged in neonates. In vitro inhibition studies indicated that ChE in neonatal tissues was markedly more sensitive to inhibition by the active metabolite of chlorpyrifos (i.e., chlorpyrifos oxon, CPO) than enzyme in adult tissues (IC50 values: neonates, 17 nM; adults, 200 nM). Chelation of free calcium with EDTA had relatively little effect on in vitro cholinesterase inhibition, suggesting that differential A-esterase activity was not responsible for the age-related difference in cholinesterase sensitivity between age groups. Pre-incubation of neonatal and adult tissues with selective inhibitors of AChE and butyrylcholinesterase (BChE) indicated that a majority (82–90%) of ChE activity in the heart of both neonates and adults was BChE. The rapid onset (by 4 hours after dosing) of changes in muscarinic receptor binding in adult heart may be a reflection of the more potent direct binding to muscarinic receptors by chlorpyrifos oxon previously reported in adult tissues. The results suggest that ChE activity (primarily BChE) in neonatal heart may be inherently more sensitive to inhibition by some anticholinesterases and that toxicologically significant binding to muscarinic receptors may be possible with acute chlorpyrifos intoxication, potentially contributing to age-related differences in sensitivity. PMID:17644233
2009-01-01
activity ; GB = sarin; im = intramuscular; ip = intraperitoneal; LD50 = median lethal dose 50%; MINA = monoisonitrosoacetone; MMB-4 = methoxime; OP...inhibited acetylcholinesterase (AChE) activity . We have studied the capability of the tertiary oximes monoisonitrosoacetone (MINA) and diacetylmonoxime...of 20, 26, 35, 46 and 60 mg/kg, there were 0, 9, 17, 60, and 75%, respectively, of animals never exhibited EEG seizure activity with 43, 64, 75, 90
Buprofezin inhibits acetylcholinesterase activity in B-biotype Bemisia tabaci.
Cottage, Emma L A; Gunning, Robin V
2006-01-01
B-biotype Bemisia tabaci is a severe insect pest worldwide in many ornamental, agricultural, and horticultural industries. Control of this insect is hampered by resistance to many acetylcholinesterase (AChE)-inhibiting insecticides, such as organophosphates and carbamates. Consequently, insect growth regulators such as buprofezin, which act by inhibiting chitin synthesis, are being investigated for use against B-biotype B. tabaci in Australia. This study discusses the effects of buprofezin on B. tabaciAChE.
Cholinergic Neurotransmission in the Mammalian Retina.
1988-01-30
acetylcholinesterase (AChE), which terminates the action of acetylcholine (ACh), is more widespread in its distribution than the enzyme choline ...interaction in the retina. Autoradiographic studies showed that both the muscarinic receptor ligand (3H)propylbenzilyl choline mustard and the putative...action of acetylcholine (ACh) is more widespread in its distribution than the enzyme choline acetyltransferase (ChAT), which is responsible for ACh
Evaluation of the nature of camel retinal acetylcholinesterase: inhibition by hexamethonium.
Alhomida, A S; Kamal, M A; al-Jafari, A A
1997-12-01
Acetylcholinesterase (AChE, EC 3.1.1.7) has been demonstrated in retinas of several species, however, the nature of the interaction of AChE with specific inhibitors are very limited in the literature and the mode of inhibition of camel retinal AChE by hexamethonium has been studied. Hexamethonium reversibly inhibited AChE in a concentration dependent manner, the IC50 value being c. 2.52 mM. The Km for the hydrolysis of acetylthiocholine iodide was found to be 0.087 mM and the Vmax was 0.63 mumol/min/mg protein. Dixon, as well as Lineweaver-Burk, plots and their secondary replots indicated that the nature of the inhibition is of the hyperbolic (partial) mixed type, which is considered to be a partial competitive and non-competitive mixture. The values of Ki(slope) and KI(intercept) from a Lineweaver-Burk plot were estimated as 0.30 mM and 0.17 mM, respectively, while Ki from a Dixon plot was estimated as 0.725 mM. The Ki was greater than KI indicating that hexamethonium has a greater affinity of binding for the active site than the peripheral site of the camel retina AChE.
Toumi, Hela; Bejaoui, Mustapha; Touaylia, Samir; Burga Perez, Karen F; Ferard, Jean François
2016-11-01
The present study was designed to investigate the effect of carbaryl (carbamate insecticide) on the acetylcholinesterase activity in two strains (same clone A) of the crustacean cladoceran Daphnia magna. Four carbaryl concentrations (0.4, 0.9, 1.8 and 3.7 µg L(-1)) were compared against control AChE activity. Our results showed that after 48 h of carbaryl exposure, all treatments induced a significant decrease of AChE activities whatever the two considered strains. However, different responses were registered in terms of lowest observed effect concentrations (LOEC: 0.4 µg L(-1) for strain 1 and 0.9 µg L(-1) for strains 2) revealing differences in sensitivity among the two tested strains of D. magna. These results suggest that after carbaryl exposure, the AChE activity responses can be also used as a biomarker of susceptibility. Moreover, our results show that strain1 is less sensitive than strain 2 in terms of IC50-48 h of AChE activity. Comparing the EC50-48 h of standard ecotoxicity test and IC50-48 h of AChE inhibition, there is the same order of sensitivity with both strains.
Johnson, Catherine S.; Schwarzbach, Steven E.; Henderson, John D.; Wilson, Barry W.; Tjeerdema, Ronald S.
2005-01-01
This investigation evaluated whether acetylcholinesterase (AChE) in Pacific tree frogs (Hyla regilla) from different geographical locations was influenced by different temperatures during early aquatic life stages, independent of pesticide exposure. Tadpoles were collected from both a California coastal pond and a Sierra Nevada mountain range pond, USA. Groups of frogs from each location were raised in temperatures representative of either the Sierra Nevada (8°C) or the coastal (19°C) location. Metamorphs from both locations raised as tadpoles at 19°C had AChE activities of 42.3 and 38.7 nm/min/mg protein, while those raised as tadpoles at 8°C had activities of 26.9 and 28.2 nm/min/mg protein. A two-way analysis of variance revealed temperature to be the significant factor in determining AChE activity (F = 22.3, p < 0.001), although origin was not important (F = 0.09, p = 0.75). Interpretations regarding the influence of pesticides upon AChE activity in Pacific tree frogs must consider the influence of environmental temperature to enable cross-population comparisons.
Mrdaković, Marija; Ilijin, Larisa; Vlahović, Milena; Matić, Dragana; Gavrilović, Anja; Mrkonja, Aleksandra; Perić-Mataruga, Vesna
2016-09-01
Polycyclic aromatic hydrocarbons (PAHs) may affect biochemical and physiological processes in living organisms, thus impairing fitness related traits and influencing their populations. This imposes the need for providing early-warning signals of pollution. Our study aimed to examine changes in the activity of acetylcholinesterase (AChE) and the concentration of heat shock proteins (Hsp70) in homogenates of brain tissues of fifth instar gypsy moth (Lymantria dispar L.) larvae, exposed to the ubiquitous PAH, fluoranthene, supplemented to the rearing diet. Significantly increased activity of AChE in larvae fed on the diets with high fluoranthene concentrations suggests the necessity for elucidation of the role of AChE in these insects when exposed to PAH pollution. Significant induction of Hsp70 in gypsy moth larvae reared on the diets containing low fluoranthene concentrations, indicate that changes in the level of Hsp70 might be useful as an indicator of pollution in this widespread forest species. Copyright © 2016 Elsevier Ltd. All rights reserved.
Luo, Chunyuan; Tong, Min; Maxwell, Donald M; Saxena, Ashima
2008-09-25
Non-human primates are valuable animal models that are used for the evaluation of nerve agent toxicity as well as antidotes and results from animal experiments are extrapolated to humans. It has been demonstrated that the efficacy of an oxime primarily depends on its ability to reactivate nerve agent-inhibited acetylcholinesterase (AChE). If the in vitro oxime reactivation of nerve agent-inhibited animal AChE is similar to that of human AChE, it is likely that the results of an in vivo animal study will reliably extrapolate to humans. Therefore, the goal of this study was to compare the aging and reactivation of human and different monkey (Rhesus, Cynomolgus, and African Green) AChEs inhibited by GF, GD, and VR. The oximes examined include the traditional oxime 2-PAM, two H-oximes HI-6 and HLo-7, and the new candidate oxime MMB4. Results indicate that oxime reactivation of all three monkey AChEs was very similar to human AChE. The maximum difference in the second-order reactivation rate constant between human and three monkey AChEs or between AChEs from different monkey species was 5-fold. Aging rate constants of GF-, GD-, and VR-inhibited monkey AChEs were very similar to human AChE except for GF-inhibited monkey AChEs, which aged 2-3 times faster than the human enzyme. The results of this study suggest that all three monkey species are suitable animal models for nerve agent antidote evaluation since monkey AChEs possess similar biochemical/pharmacological properties to human AChE.
Surface display and bioactivity of Bombyx mori acetylcholinesterase on Pichia pastoris
USDA-ARS?s Scientific Manuscript database
To construct the Pichia pastoris (P. pastoris) cell surface display system of Bombyx mori acetylcholinesterase (BmAChE), the gene for the anchor protein (AGa1) was obtained from Saccharomyces cerevisiae and was fused with the modified Bombyx mori acetylcholinesterase gene (bmace) and transformed int...
2013-01-01
matic brain injury (TBI). Centrally acting acetylcholinesterase (AChE) inhibitors are also being considered as potential therapeutic candidates...repeated blast exposures [12]. AChE inhibitors are possible therapeutic candidates against Alzheimer’s disease and TBI [13–15]. In this study, we...esterase inhibitor , as described earlier [12,17–19]. Brain AChE activity was expressed as milliunits/mg protein. 2.3. Microarray analysis Various
Boone, J S; Tyler, J W; Chambers, J E
2001-01-01
We studied chlorpyrifos, an insecticide present in a commercial dip for treating ectoparasites in dogs, to estimate the amount of transferable residues that children could obtain from their treated pets. Although the chlorpyrifos dip is no longer supported by the manufacturer, the methodology described herein can help determine transferable residues from other flea control insecticide formulations. Twelve dogs of different breeds and weights were dipped using the recommended guidelines with a commercial, nonprescription chlorpyrifos flea dip for 4 consecutive treatments at 3-week intervals (nonshampoo protocol) and another 12 dogs were dipped with shampooing between dips (shampoo protocol). The samples collected at 4 hr and 7, 14, and 21 days after treatment in the nonshampoo protocol averaged 971, 157, 70, and 26 microg chlorpyrifos, respectively; in the shampoo protocol the samples averaged 459, 49, 15, and 10 microg, respectively. The highest single sample was about 7,000 microg collected at 4 hr. The pretreatment specific activities in the plasma of the dogs were about 75 nmol/min/mg protein for butyrylcholinesterase (BChE), and 9 nmol/min/mg protein for acetylcholinesterase (AChE). BChE was inhibited 50-75% throughout the study, and AChE was inhibited 11-18% in the nonshampoo protocol; inhibition was not as great in the shampoo protocol. There was no correlation (p
Gálvez, Jaime; Polo, Stivens; Insuasty, Braulio; Gutiérrez, Margarita; Cáceres, Daniela; Alzate-Morales, Jans H; De-la-Torre, Pedro; Quiroga, Jairo
2018-03-07
Given the wide spectrum of biological uses of pyrazolo[1,5-c]quinazoline and spiro-quinazoline derivatives as anticancer, anti-inflammatory analgesic agents, and their therapeutic applications in neurodegenerative disorders, it is compulsory to find easy, efficient, and simple methods to obtain and chemically diversify these families of compounds, thereby improving their biological applications. In this paper, we report the design and eco-friendly two-step synthesis of novel, fused spiro-pyrazolo[1,5-c]quinazoline derivatives as cholinesterase inhibitors. In addition, we studied their protein-ligand interactions via molecular docking and MM/GBSA calculations for a further rational design of more potent inhibitors. In first step, 2-(1H-pyrazol-5-yl)anilines were obtained through microwave (MW) assisted solvent-free/catalyst-free conditions and the second step involved the synthesis of the spiro-pyrazolo[1,5-c]quinazolines by a cyclocondensation reaction between 2-(1H-pyrazol-5-yl)anilines and cyclic ketones, or acetophenones, using stirring at room temperature. The compounds were obtained in high purity, good yields (50-97%), and at varying reaction times. The spiro-compounds were evaluated as acetylcholinesterase and butyrylcholinesterase inhibitors (AChEIs/BuChEIs) respectively, and the most potent compound exhibited a moderate AChE inhibitory activity (5f: IC 50 = 84 μM). Molecular docking studies indicated that the binding mode of the compound 5f share common characteristics with the galantamine/donepezil-AChE complexes. Moreover, free binding energy (ΔG) calculations showed a good agreement with the experimental biological activity values. Our theoretical results indicated that halogen bond interactions could be involved with differential potency of these compounds and provide a new starting point to design novel pyrazolo[1,5-c]quinazolines as new anti-Alzheimer agents. Copyright © 2018. Published by Elsevier Ltd.
Junges, Celina M; Lajmanovich, Rafael C; Peltzer, Paola M; Attademo, Andres M; Bassó, Agustín
2010-11-01
Environmental contaminants can disrupt interactions between aquatic species by altering community structure. We explored predator-prey interactions between marbled swamp juvenile eels (Synbranchus marmoratus; predator) and anuran tadpoles (Hypsiboas pulchellus; prey) in relation to two aspects: the importance of lateral line in the predator and whether the absence of light modifies predation rates; and the effect of a sub-lethal concentration of fenitrothion on both predator and prey. Eels were tested under two sensory conditions (lateral line intact and lateral line blocked by cobalt chloride) in dark conditions. Predation rates were evaluated using different treatments that combined predator and prey exposed or not to insecticide. Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities were also measured in muscle samples of eels and tadpoles to explore whether fenitrothion affects predator and prey differentially. Marbled swamp eels were more efficient in feeding on tadpoles during the night than during the day, showing that lateral line makes an important contribution to prey detection and capture. Regarding pesticide effects, short-term (6 h) exposure to an ecologically relevant fenitrothion dose of 2.5 mg L(-1) altered the predator-prey relationship by changing prey behaviour, reducing prey detection and therefore increasing tadpole survival. At this concentration, the outcome of the predator-prey relationship appears biased in favor of the exposed tadpoles, which were released from predation risk, despite their altered behaviour and the higher inhibition percentages of tail BChE (70%) and AChE (51%) than in control individuals. Our study involving these model species and agrochemicals demonstrates that fenitrothion affected the outcome of a predator-prey relationship. Further studies are needed, in these species and other native amphibians, to investigate the nature of the mechanisms responsible for the adverse effects of pesticides on antipredator behaviour and predation efficiency. Copyright © 2010 Elsevier Ltd. All rights reserved.
Sheeja Malar, Dicson; Beema Shafreen, Rajamohamed; Karutha Pandian, Shunmugiah; Pandima Devi, Kasi
2017-12-01
Grewia tiliaefolia Vahl. (Tiliaceae) is a sub-tropical plant used as an indigenous medicine in India. However, its efficacy has not been evaluated against Alzheimer's disease. The objective of this study is to evaluate cholinesterase inhibitory, anti-aggregation and neuroprotective activity of G. tiliaefolia. Grewia tiliaefolia leaves were collected from Eastern Ghats region, India, and subjected to successive extraction (petroleum ether, chloroform, ethyl acetate, methanol and water). The extracts were subjected to in vitro antioxidant, anticholinesterase and anti-aggregation assays. The active methanol extract (MEGT) was separated using column chromatography. LC-MS analysis was done and the obtained compounds were docked against acetylcholinesterase (AChE) enzyme to identify the active component. Antioxidant assays demonstrated that the MEGT showed significant free radical scavenging activity at the IC 50 value of 71.5 ± 1.12 μg/mL. MEGT also exhibited significant dual cholinesterase inhibition with IC 50 value of 64.26 ± 2.56 and 54 ± 0.7 μg/mL for acetyl and butyrylcholinesterase (BChE), respectively. Also, MEGT showed significant anti-aggregation activity by preventing the oligomerization of Aβ 25-35 . Further, MEGT increased the viability of Neuro2a cells up to 95% against Aβ 25-35 neurotoxicity. LC-MS analysis revealed the presence of 16 compounds including vitexin, ellagic acid, isovitexin, etc. In silico analysis revealed that vitexin binds effectively with AChE through strong hydrogen bonding. These results were further confirmed by evaluating the activity of vitexin in vitro, which showed dual cholinesterase inhibition with IC 50 value of 15.21 ± 0.41 and 19.75 ± 0.16 μM for acetyl and butyrlcholinesterase, respectively. Grewia tiliaefolia can be considered as a promising therapeutic agent for the treatment of AD.
Ozen, Tevfik; Yenigun, Semiha; Altun, Muhammed; Demirtas, Ibrahim
2017-01-01
Due to the common ethnopharmacological used or scientifically examined biochemical properties, Elaeagnaceae family, Elaeagnus umbellate (Thunb.) (EU, Guz yemisi) was worth investigating. In this investigation, we revealed antioxidant, antiproliferative and enzyme inhibition activities of the water, methanol, ethanol, acetone, ethyl acetate and hexane extracts of EU as well as the contents of their phenolic, flavonoid, anthocyanin, ascorbic acid, lycopene and β- carotene. The antioxidant activity was screened by total antioxidant (phosphomolybdenum), inhibition of linoleic acid peroxidation, reducing power, 2-deoxyribose degradation assay, H2O2 scavenging and metal chelating activities of the samples were tested in vitro. Additionally, the scavenging activities of the extracts were determined against 1,1-diphenyl-2-picrylhydrazyl (DPPH˙), 2,2-azino-bis(3-ethylbenzothiazloine-6-sulfonicacid (ABTS˙+), superoxide anion and peroxide radicals. The samples were determined for their inhibitory activities against urease, acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). In vitro, antiproliferative activities of six different extracts were tested using the xCELLigence system against HeLa and HT29 cell lines. The antioxidant activities of the extracts were found higher than standard antioxidants. The water extracts of fruit and leaf showed the best antioxidant activity. In inhibition assays of urease, AChE and BuChE, all extracts exhibited remarkable inhibition potential. Ethyl acetate extracts, especially, showed better inhibition capacity. It was found that the antioxidant activities of the extracts presented consistently with their chemical contents. The antiproliferative activities of leaf extracts were more effective than the fruit extracts. The chromatographic methods were applied to the different solvents to analyses phenolic secondery metabolites. It was found that fumaric acid, 4- hydroxybenzoic acid, rutin and quercetin-3-β-D-glucoside, neohesperidin, hesperidin determined to have higher contents all the extracts. EU can be suggested as a potential natural source of antioxidants appropriate for utilization in nutritional/pharmaceutical fields. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Mamczarz, Jacek; Pescrille, Joseph D.; Gavrushenko, Lisa; Burke, Richard D.; Fawcett, William P.; DeTolla, Louis J.; Chen, Hegang; Pereira, Edna F.R.; Albuquerque, Edson X.
2017-01-01
Exposure of the developing brain to chlorpyrifos (CPF), an organophosphorus (OP) pesticide used extensively in agriculture worldwide, has been associated with increased prevalence of cognitive deficits in children, particularly boys. The present study was designed to test the hypothesis that cognitive deficits induced by prenatal exposure to sub-acute doses of CPF can be reproduced in precocial small species. To address this hypothesis, pregnant guinea pigs were injected daily with CPF (25 mg/kg, s.c.) or vehicle (peanut oil) for 10 days starting on presumed gestation day (GD) 53–55. Offspring were born around GD 65, weaned on postnatal day (PND) 20, and subjected to behavioral tests starting around PND 30. On the day of birth, butyrylcholinesterase (BuChE), an OP bioscavenger used as a biomarker of OP exposures, and acetylcholinesterase (AChE), a major molecular target of OP compounds, were significantly inhibited in the blood of CPF-exposed offspring. In their brains, BuChE, but not AChE, was significantly inhibited. Prenatal CPF exposure had no significant effect on locomotor activity or on locomotor habituation, a form of non-associative memory assessed in open fields. Spatial navigation in the Morris water maze (MWM) was found to be sexually dimorphic among guinea pigs, with males outperforming females. Prenatal CPF exposure impaired spatial learning more significantly among male than female guinea pigs and, consequently, reduced the sexual dimorphism of the task. The results presented here, which strongly support the test hypothesis, reveal that the guinea pig is a valuable animal model for preclinical assessment of the developmental neurotoxicity of OP pesticides. These findings are far reaching as they lay the groundwork for future studies aimed at identifying therapeutic interventions to treat and/or prevent the neurotoxic effects of CPF in the developing brain. PMID:27296654
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, L.W.; Anderson, D.R.; Pastelak, A.M.
1992-12-31
Inhibition of acetylcholinesterase (AChE) activity by physostigmine (PHY) is reversible due to spontaneous decarbamylation. Physostigmine has been shown to be effective as a pretreatment against potent anticholinesterase poisons (e.g., soman) in experimental animals, yet it is short acting and causes undesirable side effects in mammals. The two-fold purpose of this study was (1) to determine whether extension of the N-substituted alkyl chain (N-SAC) of PHY from N-methyl to N-ethyl (1), N-propyl (2), N-isopropyl (3), N-butyl (4) or N-heptyl (5) affects anti-AChE potency and spontaneous decarbamylation of inhibited AChE of guinea pig blood in vitro and in vivo and (2) tomore » see whether chain extension affects efficacy as pretreatment in poisoning by soman. The in vitro AChE inhibition studies were done using whole blood incubated at 37 deg C for 30 min. All 5 homologs possessed anti-AChE activity with I50s ranging from 1.1 to 27.6 x l0(-7)M; compound III was the least potent in vitro and in vivo. Lengthening of the N-SAC of PHY markedly extended the duration of anti-AChE activity when compared to PHY, but rendered the modified compounds ineffective as pretreatments against soman. These data support the premise that the decrease in decarbamylation rates observed upon extending the N-SAC of PHY is responsible for the loss of effectiveness of pretreatment regimens against soman. Perhaps, these homologs of PHY may have potential use in instances where sustained action of acetylcholine is required at cholinergic junctions because of disease conditions or drug overdosage.... Physostigmine, Nerve agent pretreatment, Soman, Acetylcholinesterase inhibition.« less
Acetylcholinesterase is involved in apoptosis in the precursors of human muscle regeneration.
Pegan, Katarina; Matkovic, Urska; Mars, Tomaz; Mis, Katarina; Pirkmajer, Sergej; Brecelj, Janez; Grubic, Zoran
2010-09-06
The best established role of acetylcholinesterase (EC 3.1.1.7, AChE) is termination of neurotransmission at cholinergic synapses. However, AChE is also located at sites, where no other cholinergic components are present and there is accumulating evidence for non-cholinergic functions of this protein. In the process of skeletal muscle formation, AChE is expressed already at the stage of mononuclear myoblast, which is long before other cholinergic components can be demonstrated in this tissue. Myoblast proliferation is an essential step in muscle regeneration and is always accompanied by apoptosis. Since there are several reports demonstrating AChE participation in apoptosis one can hypothesize that early AChE expression in myoblasts reflects the development of the apoptotic apparatus in these cells. Here we tested this hypothesis by following the effect of siRNA AChE silencing on apoptotic markers and by determination of AChE level after staurosporine-induced apoptosis in cultured human myoblasts. Decreased apoptosis in siRNA AChE silenced myoblasts and increased AChE expression in staurosporine-treated myoblasts confirmed AChE involvement in apoptosis. The three AChE splice variants were differently affected by staurosporine-induced apoptosis. The hydrophobic (H) variant appeared unaffected, a tendency towards increase of tailed (T) variant was detected, however the highest, 8-fold increase was observed for readthrough (R) variant. In the light of these findings AChE appears to be a potential therapeutic target at muscle injuries including organophosphate myopathy. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.
Sharma, Rashmi; Gupta, Rajendra
2007-05-30
Cyperus rotundus (nutgrass) is the world's worst invasive weed through tubers. Its success in dominating natural habitats depends on its ability to prevent herbivory, and to kill or suppress other plants growing in its vicinity. The present study was done to investigate whether chemicals in nutgrass target neuronal and non-neuronal acetylcholinesterases to affect surrounding animals and plants respectively. Methanolic extract of tubers of nutgrass strongly inhibited activity of AChE from electric eel, wheat and tomato. It also inhibited seed germination and seedling growth in wheat and tomato. Our results suggest that inhibitor of AChE in nutgrass possibly acts as agent of plant's war against (a) herbivore animals, and (b) other plants trying to grow in the same habitat. An antiAChE from nutgrass has been purified by employing chromatography and crystallization. The structural determination of the purified inhibitor is in progress.
Cuya, Teobaldo; Gonçalves, Arlan da Silva; da Silva, Jorge Alberto Valle; Ramalho, Teodorico C; Kuca, Kamil; C C França, Tanos
2017-10-27
The oximes 4-carbamoyl-1-[({2-[(E)-(hydroxyimino) methyl] pyridinium-1-yl} methoxy) methyl] pyridinium (known as HI-6) and 3-carbamoyl-1-[({2-[(E)-(hydroxyimino) methyl] pyridinium-1-yl} methoxy) methyl] pyridinium (known as HS-6) are isomers differing from each other only by the position of the carbamoyl group on the pyridine ring. However, this slight difference was verified to be responsible for big differences in the percentual of reactivation of acetylcholinesterase (AChE) inhibited by the nerve agents tabun, sarin, cyclosarin, and VX. In order to try to find out the reason for this, a computational study involving molecular docking, molecular dynamics, and binding energies calculations, was performed on the binding modes of HI-6 and HS-6 on human AChE (HssAChE) inhibited by those nerve agents.
Evaluation of acetylcholinesterase in an animal model of maple syrup urine disease.
Scaini, Giselli; de Rochi, Natália; Jeremias, Isabela C; Deroza, Pedro F; Zugno, Alexandra I; Pereira, Talita C B; Oliveira, Giovanna M T; Kist, Luiza W; Bogo, Maurício R; Schuck, Patrícia F; Ferreira, Gustavo C; Streck, Emilio L
2012-04-01
Maple syrup urine disease is an inherited metabolic disease predominantly characterized by neurological dysfunction. However, the mechanisms underlying the neuropathology of this disease are still not defined. Therefore, the aim of this study was to investigate the effect of acute and chronic administration of a branched-chain amino acids (BCAA) pool (leucine, isoleucine, and valine) on acetylcholinesterase (AChE) activity and gene expression in the brain and serum of rats and to assess if antioxidant treatment prevented the alterations induced by BCAA administration. Our results show that the acute administration of a BCAA pool in 10- and 30-day-old rats increases AChE activity in the cerebral cortex, striatum, hippocampus, and serum. Moreover, chronic administration of the BCAA pool also increases AChE activity in the structures studied, and antioxidant treatment prevents this increase. In addition, we show a significant decrease in the mRNA expression of AChE in the hippocampus following acute administration in 10- and 30-day-old rats. On the other hand, AChE expression increased significantly after chronic administration of the BCAA pool. Interestingly, the antioxidant treatment was able to prevent the increased AChE activity without altering AChE expression. In conclusion, the results from the present study demonstrate a marked increase in AChE activity in all brain structures following the administration of a BCAA pool. Moreover, the increased AChE activity is prevented by the coadministration of N-acetylcysteine and deferoxamine as antioxidants.
Novel Triazole-Quinoline Derivatives as Selective Dual Binding Site Acetylcholinesterase Inhibitors.
Mantoani, Susimaire P; Chierrito, Talita P C; Vilela, Adriana F L; Cardoso, Carmen L; Martínez, Ana; Carvalho, Ivone
2016-02-05
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder worldwide. Currently, the only strategy for palliative treatment of AD is to inhibit acetylcholinesterase (AChE) in order to increase the concentration of acetylcholine in the synaptic cleft. Evidence indicates that AChE also interacts with the β-amyloid (Aβ) protein, acting as a chaperone and increasing the number and neurotoxicity of Aβ fibrils. It is known that AChE has two binding sites: the peripheral site, responsible for the interactions with Aβ, and the catalytic site, related with acetylcholine hydrolysis. In this work, we reported the synthesis and biological evaluation of a library of new tacrine-donepezil hybrids, as a potential dual binding site AChE inhibitor, containing a triazole-quinoline system. The synthesis of hybrids was performed in four steps using the click chemistry strategy. These compounds were evaluated as hAChE and hBChE inhibitors, and some derivatives showed IC50 values in the micro-molar range and were remarkably selective towards hAChE. Kinetic assays and molecular modeling studies confirm that these compounds block both catalytic and peripheral AChE sites. These results are quite interesting since the triazole-quinoline system is a new structural scaffold for AChE inhibitors. Furthermore, the synthetic approach is very efficient for the preparation of target compounds, allowing a further fruitful new chemical library optimization.
AGE-RELATED EFFECTS OF CHLORPYRIFOS ON ACETYLCHOLINE RELEASE IN RAT BRAIN. (R825811)
Chlorpyrifos (CPF) is an organophosphorus insecticide that elicits toxicity through inhibition of acetylcholinesterase (AChE). Young animals are markedly more sensitive than adults to the acute toxicity of CPF. We evaluated acetylcholine (ACh) release and its muscarinic recept...
Luo, Weiming; Yu, Qian-sheng; Kulkarni, Santosh S.; Parrish, Damon A.; Holloway, Harold W.; Tweedie, David; Shafferman, Avigdor; Lahiri, Debomoy K.; Brossi, Arnold; Greig, Nigel H.
2008-01-01
A new enantiomeric synthesis utilizing classical resolution provided two novel series of optically active inhibitors of cholinesterase: (−)- and (+)- O-carbamoyl phenols of tetrahydrofurobenzofuran and methanobenzodioxepine. An additional two series of (−)- and (+)-O-carbamoyl phenols of pyrroloindole and furoindole were obtained by known procedures, and their anticholinesterase actions were similarly quantified against freshly prepared human acetyl- (AChE) and butyrylcholinesterase (BChE). Both enantiomeric forms of each series demonstrated potent cholinesterase inhibitory activity (with IC50 values as low as 10 nM for AChE and 3 nM for BChE), with the exception of the (+)-O-carbamoyl phenols of pyrroloindole that lacked activity (IC50 values > 1 µM). Based on the biological data of these four series, a SAR analysis was provided by molecular volume calculations. In addition, a probable transition state model was established according to the known X-ray structure of a transition state complex of Torpedo californica AChE-m-(N,N,N,trimethylammonio)-2,2,2-trifluoroacetophenone (TcAChE-TMTFA). This model proved valuable in explaining the enantio-selectivity and enzyme subtype selectivity of each series. These carbamates are more or similarly potent to anticholinesterases in current clinical use; providing not only inhibitors of potential clinical relevance but also pharmacological tools to define drug-enzyme binding interactions within an enzyme crucial in the maintenance of cognition and numerous systemic physiological functions in health, aging and disease. PMID:16570913
Anticholinesterase inhibitory activity of quaternary alkaloids from Tinospora crispa.
Yusoff, Mashitah; Hamid, Hazrulrizawati; Houghton, Peter
2014-01-20
Quaternary alkaloids are the major alkaloids isolated from Tinospora species. A previous study pointed to the necessary presence of quaternary nitrogens for strong acetylcholinesterase (AChE) inhibitory activity in such alkaloids. Repeated column chromatography of the vine of Tinospora crispa extract led to the isolation of one new protoberberine alkaloid, 4,13-dihydroxy-2,8,9-trimethoxydibenzo[a,g]quinolizinium (1), along with six known alkaloids-dihydrodiscretamine (2), columbamine (3), magnoflorine (4), N-formylannonaine (5), N-formylnornuciferine (6), and N-trans-feruloyltyramine (7). The seven compounds were isolated and structurally elucidated by spectroscopic analysis. Two known alkaloids, namely, dihydrodiscretamine and columbamine are reported for the first time for this plant. The compounds were tested for AChE inhibitory activity using Ellman's method. In the AChE inhibition assay, only columbamine (3) showed strong activity with IC50 48.1 µM. The structure-activity relationships derived from these results suggest that the quaternary nitrogen in the skeleton has some effect, but that a high degree of methoxylation is more important for acetylcholinesterase inhibition.
Davis, Richard; Koelle, George B.
1967-01-01
By means of the gold-thiocholine (AuThCh) and gold-thiolacetic acid (AuThAc) methods, it has been demonstrated electron microscopically that acetylcholinesterase (AChE) is located at the prejunctional axoplasmic membrane and the postjunctional sarcoplasmic membrane, including the full lengths of its invaginations, at the motor end plate of mouse intercostal muscle. Nonspecific cholinesterase (ChE) is present in relatively low concentrations at the same sites, and in greater concentrations in the teloglial Schwann sheath cells. Significant amounts of reaction product appeared in the junctional cleft only after prolonged incubation with both methods. The identification of AChE and ChE was confirmed by the use of appropriate concentrations of several selective inhibitors. In confirmation of previous studies by light microscopy, the AuThCh method is more specific for AChE and ChE, whereas the AuThAc method allows greater accuracy of localization. PMID:6033530
Novel hits for acetylcholinesterase inhibition derived by docking-based screening on ZINC database.
Doytchinova, Irini; Atanasova, Mariyana; Valkova, Iva; Stavrakov, Georgi; Philipova, Irena; Zhivkova, Zvetanka; Zheleva-Dimitrova, Dimitrina; Konstantinov, Spiro; Dimitrov, Ivan
2018-12-01
The inhibition of the enzyme acetylcholinesterase (AChE) increases the levels of the neurotransmitter acetylcholine and symptomatically improves the affected cognitive function. In the present study, we searched for novel AChE inhibitors by docking-based virtual screening of the standard lead-like set of ZINC database containing more than 6 million small molecules using GOLD software. The top 10 best-scored hits were tested in vitro for AChE affinity, neurotoxicity, GIT and BBB permeability. The main pharmacokinetic parameters like volume of distribution, free fraction in plasma, total clearance, and half-life were predicted by previously derived models. Nine of the compounds bind to the enzyme with affinities from 0.517 to 0.735 µM, eight of them are non-toxic. All hits permeate GIT and BBB and bind extensively to plasma proteins. Most of them are low-clearance compounds. In total, seven of the 10 hits are promising for further lead optimisation. These are structures with ZINC IDs: 00220177, 44455618, 66142300, 71804814, 72065926, 96007907, and 97159977.
Jaques, Jeandre Augusto Dos Santos; Rezer, João Felipe Peres; Gonçalves, Jamile Fabbrin; Spanevello, Rosélia Maria; Gutierres, Jessié Martins; Pimentel, Victor Câmera; Thomé, Gustavo Roberto; Morsch, Vera Maria; Schetinger, Maria Rosa Chitolina; Leal, Daniela Bitencourt Rosa
2011-12-01
With the evidence that curcumin may be a potent neuroprotective agent and that cigarette smoke is associated with a decline in the cognitive performance as our bases, we investigated the activities of Ecto-Nucleoside Triphosphate Diphosphohydrolase (NTPDase), 5'-nucleotidase and acetylcholinesterase (AChE) in cerebral cortex synaptosomes from cigarette smoke-exposed rats treated with curcumin (Cur). The experimental procedures entailed two sets of experiments. In the first set, the groups were vehicle, Cur 12·5, 25 and 50 mg·kg(-1) ; those in the second set were vehicle, smoke, smoke and Cur 12·5, 25 and 50 mg·kg(-1) . Curcumin prevented the increased NTPDase, 5'-nucleotidase and AChE activities caused by smoke exposure. We suggest that treatment with Cur was protective because the decrease of ATP and acetylcholine (ACh) concentrations is responsible for cognitive impairment, and both ATP and ACh have key roles in neurotransmission. Copyright © 2011 John Wiley & Sons, Ltd.
Graphene quantum dots for ultrasensitive detection of acetylcholinesterase and its inhibitors
NASA Astrophysics Data System (ADS)
Li, Nan; Wang, Xuewan; Chen, Jie; Sun, Lei; Chen, Peng
2015-09-01
Graphene quantum dots (GQDs) are emerging zero-dimensional materials promising a wide spectrum of novel applications including development of optical sensors. Herein, a GQD-based fluorometric sensor is devised to detect acetylcholinesterase (AChE, a critical enzyme in central nervous system and neuromuscular junctions) with an ultralow detection limit (0.58 pM with S/N of 5.0), using a photoluminescence ‘turn-off’ mechanism. This simple ‘mix-and-detect’ platform can also be employed to sense a variety of compounds that can directly or indirectly inhibit the enzymatic activities of AChE, such as nerve gases, pesticides, and therapeutic drugs. As the proof-of-concept demonstrations, we show the sensitive detection of paraoxon (a pesticide), tacrine (a drug to treat Alzheimer’s disease), and dopamine (an important neurotransmitter).
Lang, Qiaolin; Han, Lei; Hou, Chuantao; Wang, Fei; Liu, Aihua
2016-08-15
A sensitive amperometric acetylcholinesterase (AChE) biosensor, based on gold nanorods (AuNRs), was developed for the detection of organophosphate pesticide. Compared with Au@Ag heterogeneous NRs, AuNRs exhibited excellent electrocatalytic properties, which can electrocatalytically oxidize thiocholine, the hydrolysate of acetylthiocholine chloride (ATCl) by AChE at +0.55V (vs. SCE). The AChE/AuNRs/GCE biosensor was fabricated on basis of the inhibition of AChE activity by organophosphate pesticide. The biosensor could detect paraoxon in the linear range from 1nM to 5μM and dimethoate in the linear range from 5nM to 1μM, respectively. The detection limits of paraoxon and dimethoate were 0.7nM and 3.9nM, which were lower than the reported AChE biosensor. The proposed biosensor could restore to over 95% of its original current, which demonstrated the good reactivation. Moreover, the biosensor can be applicable to real water sample measurement. Thus, the biosensor exhibited low applied potential, high sensitivity and good stability, providing a promising tool for analysis of pesticides. Copyright © 2016 Elsevier B.V. All rights reserved.
Ultastructural analysis on acetylcholinesterase localization in the cerebellar cortex of teleosts.
Contestabile, A; Villani, L; Ciani, F
1977-12-28
The histochemical localization of acetylcholinesterase (AChE) was studied by electron microscopy in the cerebellar cortex of the goldfish and the catfish. The patterns of enzyme distribution show noticeable differences in the two teleost species at the level of the corresponding cerebellar structures. Among the most distinctive features is the prevailing intracellular localization of enzyme activity in the goldfish and the prevailing extracellular localization in the catfish in the molecular layer and, to a lesser extent, the granular layer. Only quantitative differences in the ability to synthesize AChE can be recorded among the different cerebellar neurons in the two species, since all these neurons exhibit different amounts of enzyme activity linked to their cytoplasmic structures. Comparing the results obtained with those of previous histochemical, experimental and developmental researches, the hypothesis seems well founded that the embryonic pool of cerebellar neurons is made up of AChE-synthesizing nruroblasts which, during development, loss or maintain to a different the mechanisms for AChE synthesis. In addition the light and electron microscope histochemistry reveals at different levels of resolution that the final pattern of AChE distribution in the cerebellar cortex is the sum of different degress of AChE synthesis by cerebellar neurons and different degrees of enzyme release in extracellular spaces.
Efficacy of human serum butyrylcholinesterase against sarin vapor.
Saxena, Ashima; Sun, Wei; Dabisch, Paul A; Hulet, Stanley W; Hastings, Nicholas B; Jakubowski, Edward M; Mioduszewski, Robert J; Doctor, Bhupendra P
2008-09-25
Human serum butyrylcholinesterase (Hu BChE) is currently under advanced development as a pretreatment drug for organophosphate (OP) poisoning in humans. It was shown to protect mice, rats, guinea pigs, and monkeys against multiple LD(50) challenges of OP nerve agents by i.v. or s.c. bolus injections. Since inhalation is the most likely route of exposure to OP nerve agents on the battlefield or in public places, the aim of this study was to evaluate the efficacy of Hu BChE against whole-body inhalation exposure to sarin (GB) vapor. Male Göttingen minipigs were subjected to one of the following treatments: (1) air exposure; (2) GB vapor exposure; (3) pretreatment with 3 mg/kg of Hu BChE followed by GB vapor exposure; (4) pretreatment with 6.5 mg/kg of Hu BChE followed by GB vapor exposure; (5) pretreatment with 7.5 mg/kg of Hu BChE followed by GB vapor exposure. Hu BChE was administered by i.m. injection, 24h prior to whole-body exposure to GB vapor at a concentration of 4.1 mg/m(3) for 60 min, a dose lethal to 99% of untreated exposed pigs (LCt99). EEG, ECG, and pupil size were monitored throughout exposure, and blood drawn from a surgically implanted jugular catheter before and throughout the exposure period, was analyzed for acetylcholinesterase (AChE) and BChE activities, and the amount of GB present in plasma. All animals exposed to GB vapor alone or pretreated with 3 or 6.5 mg/kg of Hu BChE, died following exposure to GB vapor. All five animals pretreated with 7.5 mg/kg of Hu BChE survived the GB exposure. The amount of GB bound in plasma was 200-fold higher compared to that from plasma of pigs that did not receive Hu BChE, suggesting that Hu BChE was effective in scavenging GB in blood. Additionally, pretreatment with 7.5 mg/kg of Hu BChE prevented cardiac abnormalities and seizure activity observed in untreated animals and those treated with lower doses of Hu BChE.
Yang, Zhifan; Chen, Jun; Chen, Yongqin; Jiang, Sijing
2010-01-01
A full cDNA encoding an acetylcholinesterase (AChE, EC 3.1.1.7) was cloned and characterized from the brown planthopper, Nilaparvata lugens Stål (Hemiptera: Delphacidae). The complete cDNA (2467 bp) contains a 1938-bp open reading frame encoding 646 amino acid residues. The amino acid sequence of the AChE deduced from the cDNA consists of 30 residues for a putative signal peptide and 616 residues for the mature protein with a predicted molecular weight of 69,418. The three residues (Ser242, Glu371, and His485) that putatively form the catalytic triad and the six Cys that form intra-subunit disulfide bonds are completely conserved, and 10 out of the 14 aromatic residues lining the active site gorge of the AChE are also conserved. Northern blot analysis of poly(A)+ RNA showed an approximately 2.6-kb transcript, and Southern blot analysis revealed there likely was just a single copy of this gene in N. lugens. The deduced protein sequence is most similar to AChE of Nephotettix cincticeps with 83% amino acid identity. Phylogenetic analysis constructed with 45 AChEs from 30 species showed that the deduced N. lugens AChE formed a cluster with the other 8 insect AChE2s. Additionally, the hypervariable region and amino acids specific to insect AChE2 also existed in the AChE of N. lugens. The results revealed that the AChE cDNA cloned in this work belongs to insect AChE2 subgroup, which is orthologous to Drosophila AChE. Comparison of the AChEs between the susceptible and resistant strains revealed a point mutation, Gly185Ser, is likely responsible for the insensitivity of the AChE to methamidopho in the resistant strain.
Yang, Zhen-Zhen; Zhang, Yan-Qing; Wang, Zhan-Zhang; Wu, Kai; Lou, Jin-Ning; Qi, Xian-Rong
2013-08-16
Alzheimer's disease (AD) is a common progressive neurodegenerative disorder associated with cholinergic neurons degeneration. The blood-brain barrier (BBB) not only provides protection for the brain but also hinders the treatment and diagnosis of this neurological disease, because the drugs must cross BBB to reach the lesions. The present work was aimed at formulating rivastigmine liposomes (Lp) and cell-penetrating peptide (CPP) modified liposomes (CPP-Lp) to improve rivastigmine distribution in brain and proceed to enhance pharmacodynamics by intranasal (IN) administration and minimize side effects. The results revealed that Lp especially the CPP-Lp can enhance the permeability across the BBB by murine brain microvascular endothelial cells model in vitro. IN administration of rivastigmine solution and rivastigmine liposomes demonstrated the capacity to improve rivastigmine distribution and adequate retention in CNS regions especially in hippocampus and cortex, which were the regions most affected by AD, than that of IV administration. Importantly, the lagging but intense inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) activities were relative to the extended release, absorption and retention. In addition, there was very mild nasal toxicity of liposomal formulations. The data suggest that rivastigmine liposomes especially CPP-Lp improve the brain delivery and enhance pharmacodynamics which respect to BBB penetration and nasal olfactory pathway into brain after IN administration, and simultaneously decrease the hepatic first pass metabolism and gastrointestinal adverse effects. Copyright © 2013 Elsevier B.V. All rights reserved.
Tel, Gulsen; Ozturk, Mehmet; Duru, Mehmet E; Turkoglu, Aziz
2015-06-01
Recently, mushrooms are interesting natural products to be investigated due to exhibiting various bioactivities. This study determines the antioxidant and anticholinesterase activities of various extracts of five wild mushroom species. In addition, the total bioactive contents, namely, ascorbic acid, β-carotene, and lycopene along with phenolic and flavonoid contents were also determined spectrophotometrically. Antioxidant activity was tested by using five complementary tests; namely, β-carotene-linoleic acid, DPPH(•) scavenging, ABTS(•+) scavenging, cupric-reducing antioxidant capacity (CUPRAC), and metal chelating assays. The in vitro anticholinesterase activity was tested against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes using the Ellman method. The spectrophotometric methods were used to determine the total phenolic, flavonoid, ascorbic acid, β-carotene, and lycopene contents. The current study has shown that ethyl acetate extracts of Ganoderma lucidum (Curtis) P. Karst (IC50: 1.55 ± 0.05 µg/mL) and Funalia trogii (Berk.) Bondartsev & Singer (IC50: 4.31 ± 0.18 µg/mL) exhibited good lipid peroxidation inhibitory activity. The DPPH, ABTS, and CUPRAC assays supported this activity. The ethyl acetate and methanol extracts of Funalia trogii and Ganoderma lucidum indicated good anticholinesterase activity. Ganoderma lucidum had rich phenolic and flavonoid contents, indicating 98.67 ± 0.32 mg PEs/g extract and 160.38 ± 1.25 mg QEs/g extract, respectively. The results demonstrate that some of the mushroom species tested herein could be used in food and pharmaceutical industries as natural antioxidants.
Spieker, Janine; Ackermann, Anica; Salfelder, Anika; Vogel-Höpker, Astrid; Layer, Paul G.
2016-01-01
Formation of the vertebrate limb presents an excellent model to analyze a non-neuronal cholinergic system (NNCS). Here, we first analyzed the expression of acetylcholinesterase (AChE) by IHC and of choline acetyltransferase (ChAT) by ISH in developing embryonic chicken limbs (stages HH17-37). AChE outlined formation of bones, being strongest at their distal tips, and later also marked areas of cell death. At onset, AChE and ChAT were elevated in two organizing centers of the limb anlage, the apical ectodermal ridge (AER) and zone of polarizing activity (ZPA), respectively. Thereby ChAT was expressed shortly after AChE, thus strongly supporting a leading role of AChE in limb formation. Then, we conducted loss-of-function studies via unilateral implantation of beads into chicken limb anlagen, which were soaked in cholinergic components. After varying periods, the formation of cartilage matrix and of mineralizing bones was followed by Alcian blue (AB) and Alizarin red (AR) stainings, respectively. Both acetylcholine (ACh)- and ChAT-soaked beads accelerated bone formation in ovo. Notably, inhibition of AChE by BW284c51, or by the monoclonal antibody MAB304 delayed cartilage formation. Since bead inhibition of BChE was mostly ineffective, an ACh-independent action during BW284c51 and MAB304 inhibition was indicated, which possibly could be due to an enzymatic side activity of AChE. In conclusion, skeletogenesis in chick is regulated by an ACh-dependent cholinergic system, but to some extent also by an ACh-independent aspect of the AChE protein. PMID:27574787
Spieker, Janine; Ackermann, Anica; Salfelder, Anika; Vogel-Höpker, Astrid; Layer, Paul G
2016-01-01
Formation of the vertebrate limb presents an excellent model to analyze a non-neuronal cholinergic system (NNCS). Here, we first analyzed the expression of acetylcholinesterase (AChE) by IHC and of choline acetyltransferase (ChAT) by ISH in developing embryonic chicken limbs (stages HH17-37). AChE outlined formation of bones, being strongest at their distal tips, and later also marked areas of cell death. At onset, AChE and ChAT were elevated in two organizing centers of the limb anlage, the apical ectodermal ridge (AER) and zone of polarizing activity (ZPA), respectively. Thereby ChAT was expressed shortly after AChE, thus strongly supporting a leading role of AChE in limb formation. Then, we conducted loss-of-function studies via unilateral implantation of beads into chicken limb anlagen, which were soaked in cholinergic components. After varying periods, the formation of cartilage matrix and of mineralizing bones was followed by Alcian blue (AB) and Alizarin red (AR) stainings, respectively. Both acetylcholine (ACh)- and ChAT-soaked beads accelerated bone formation in ovo. Notably, inhibition of AChE by BW284c51, or by the monoclonal antibody MAB304 delayed cartilage formation. Since bead inhibition of BChE was mostly ineffective, an ACh-independent action during BW284c51 and MAB304 inhibition was indicated, which possibly could be due to an enzymatic side activity of AChE. In conclusion, skeletogenesis in chick is regulated by an ACh-dependent cholinergic system, but to some extent also by an ACh-independent aspect of the AChE protein.
HI-6 assisted catalytic scavenging of VX by acetylcholinesterase choline binding site mutants.
Maček Hrvat, Nikolina; Žunec, Suzana; Taylor, Palmer; Radić, Zoran; Kovarik, Zrinka
2016-11-25
The high toxicity of organophosphorus compounds originates from covalent inhibition of acetylcholinesterase (AChE), an essential enzyme in cholinergic neurotransmission. Poisonings that lead to life-threatening toxic manifestations require immediate treatment that combines administration of anticholinergic drugs and an aldoxime as a reactivator of AChE. An alternative approach to reduce the in vivo toxicity of OPs focuses on the use of bioscavengers against the parent organophosphate. Our previous research showed that AChE mutagenesis can enable aldoximes to substantially accelerate the reactivation of OP-enzyme conjugates, while dramatically slowing down rates of OP-conjugate dealkylation (aging). Herein, we demonstrate an efficient HI-6-assisted VX detoxification, both ex vivo in human blood and in vivo in mice by hAChE mutants modified at the choline binding site (Y337A and Y337A/F338A). The catalytic scavenging of VX in mice improved therapeutic outcomes preventing lethality and resulted in a delayed onset of toxicity symptoms. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
The prevalence of anti-acetylcholinesterase antibodies in autoimmune disease.
Geen, J; Howells, R C; Ludgate, M; Hullin, D A; Hogg, S I
2004-12-01
A robust and precise enzyme linked immunosorbent assay (ELISA) with proven sensitivity and specificity has been employed to detect human antibodies (allogenic/autogenic) to human acetylcholinesterase (AChE). The sensitivity of the method has been established using mouse monoclonal antibodies (0.8 ng/ml) and uniquely, human sera positive for anti-Yt(a) allogenic antibodies, to one phenotypic form (most common) of human AChE. The latter was also used as the positive human control to ensure functionality of the assay. The ELISA method was used to establish a normal distribution curve for absorbance values employing sera from healthy blood donors Subsequently, the ELISA was employed to investigate the prevalence of anti-AChE antibodies in patients with confirmed autoimmune disease and patients with non-autoimmune thyroid disease (diseased control). The results indicate that there is not a high prevalence of anti-AChE antibodies in patients with confirmed autoimmune disease. The lack of anti-AChE autoantibodies in patients' with clinically apparent Graves' ophthalmopathy, mitigates against there being a causal role of such antibodies in Graves' associated eye disease.
Diao, Jianxiong; Yu, Xiaolu; Ma, Lin; Li, Yuanqing; Sun, Ying
2018-05-16
This work reported a new method of design for the immobilization of acetylcholinesterase (AChE) based on its molecular structure to improve its sensitivity and stability. The immobilization binding site on the surface of AChE was determined using MOLCAD's multi-channel functionality. Then, 11 molecules ((+)-catechin, (-)-epicatechin, (-)-gallocatechin, hesperetin, naringenin, quercetin, taxifolin, (-)-epicatechin gallate, flupirtine, atropine, and hyoscyamine) were selected from the ZINC database (about 50 000 molecules) as candidate affinity ligands for AChE. The fluorescence results showed that the binding constant K b between AChE and the ligands ranged from 0.01344 × 10 4 to 4.689 × 10 4 M -1 and there was one independent class of binding site for the ligands on AChE. The AChE-ligand binding free energy ranged from -12.14 to -26.65 kJ mol -1 . Naringenin, hesperetin, and quercetin were the three most potent immobilized affinity ligands. In addition, it was confirmed that the binding between the immobilized ligands only occurred at a single site, located in an inactive area on the surface of AChE, and did not affect the enzymatic activity as shown through a competition experiment and enzyme assay. This method based on protein surface structural recognition with high sensitivity and stability can be used as a generic approach for design of the enzyme immobilization and biosensor development.
Xu, Miranda L; Bi, Cathy W C; Liu, Etta Y L; Dong, Tina T X; Tsim, Karl W K
2017-07-28
Acetylcholinesterase (AChE) hydrolyzes acetylcholine to terminate cholinergic transmission in neurons. Apart from this AChE activity, emerging evidence suggests that AChE could also function in other, non-neuronal cells. For instance, in bone, AChE exists as a proline-rich membrane anchor (PRiMA)-linked globular form in osteoblasts, in which it is proposed to play a noncholinergic role in differentiation. However, this hypothesis is untested. Here, we found that in cultured rat osteoblasts, AChE expression was increased in parallel with osteoblastic differentiation. Because several lines of evidence indicate that AChE activity in osteoblast could be triggered by Wnt/β-catenin signaling, we added recombinant human Wnt3a to cultured osteoblasts and found that this addition induced expression of the ACHE gene and protein product. This Wnt3a-induced AChE expression was blocked by the Wnt-signaling inhibitor Dickkopf protein-1 (DKK-1). We hypothesized that the Runt-related transcription factor 2 (Runx2), a downstream transcription factor in Wnt/β-catenin signaling, is involved in AChE regulation in osteoblasts, confirmed by the identification of a Runx2-binding site in the ACHE gene promoter, further corroborated by ChIP. Of note, Runx2 overexpression in osteoblasts induced AChE expression and activity of the ACHE promoter tagged with the luciferase gene. Moreover, deletion of the Runx2-binding site in the ACHE promoter reduced its activity during osteoblastic differentiation, and addition of 5-azacytidine and trichostatin A to differentiating osteoblasts affected AChE expression, suggesting epigenetic regulation of the ACHE gene. We conclude that AChE plays a role in osteoblastic differentiation and is regulated by both Wnt3a and Runx2. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Watabe, Tadashi; Naka, Sadahiro; Ikeda, Hayato; Horitsugi, Genki; Kanai, Yasukazu; Isohashi, Kayako; Ishibashi, Mana; Kato, Hiroki; Shimosegawa, Eku; Watabe, Hiroshi; Hatazawa, Jun
2014-01-01
Acetylcholinesterase (AChE) inhibitors have been used for patients with Alzheimer's disease. However, its pharmacokinetics in non-target organs other than the brain has not been clarified yet. The purpose of this study was to evaluate the relationship between the whole-body distribution of intravenously administered (11)C-Donepezil (DNP) and the AChE activity in the normal rat, with special focus on the adrenal glands. The distribution of (11)C-DNP was investigated by PET/CT in 6 normal male Wistar rats (8 weeks old, body weight = 220 ± 8.9 g). A 30-min dynamic scan was started simultaneously with an intravenous bolus injection of (11)C-DNP (45.0 ± 10.7 MBq). The whole-body distribution of the (11)C-DNP PET was evaluated based on the Vt (total distribution volume) by Logan-plot analysis. A fluorometric assay was performed to quantify the AChE activity in homogenized tissue solutions of the major organs. The PET analysis using Vt showed that the adrenal glands had the 2nd highest level of (11)C-DNP in the body (following the liver) (13.33 ± 1.08 and 19.43 ± 1.29 ml/cm(3), respectively), indicating that the distribution of (11)C-DNP was the highest in the adrenal glands, except for that in the excretory organs. The AChE activity was the third highest in the adrenal glands (following the small intestine and the stomach) (24.9 ± 1.6, 83.1 ± 3.0, and 38.5 ± 8.1 mU/mg, respectively), indicating high activity of AChE in the adrenal glands. We demonstrated the whole-body distribution of (11)C-DNP by PET and the AChE activity in the major organs by fluorometric assay in the normal rat. High accumulation of (11)C-DNP was observed in the adrenal glands, which suggested the risk of enhanced cholinergic synaptic transmission by the use of AChE inhibitors.
Guo, Li-li; Guan, Zhi-zhong; Wang, Yong-lin
2011-01-01
Aim: To examine the protective effects of scutellarin (Scu) on rats with learning and memory deficit induced by β-amyloid peptide (Aβ). Methods: Fifty male Wistar rats were randomly divided into 5 groups: control, sham operation, Aβ, Aβ+Scu, and Aβ+piracetam groups. Aβ25–35 was injected into the lateral ventricle (10 μg each side). Scu (10 mg/2 mL) or piracetam (10 mg/2 mL was intragastrically administered per day for 20 consecutive days following Aβ treatment. Learning and memory was assessed with Morris water maze test. The protein and mRNA levels of nicotinic acetylcholine receptor (nAChR) α4, α7, and β2 subunits in the brain were examined using Western blotting and real-time PCR, respectively. The activities of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) in the brain and plasma were measured using Ellman's colorimetric method. Results: In Aβ group, the escape latency period and first platform cross was significantly increased, and the total number of platform crossings was significantly decreased, as compared with the control and the sham operation groups. Both Scu and piracetam treatment significantly reduced the escape latency period and time to cross platform, and increased the number of platform crosses, but there were no significant differences between Aβ+Scu and Aβ+piracetam groups. In Aβ group, the protein levels of nAChR α4 and α7 subunits in the cerebral cortex were significantly decreased by 42%–47% and 58%–61%, respectively, as compared to the control and the sham operation groups. Scu treatment caused upregulation of α4 and α7 subunit proteins by around 24% and 30%, respectively, as compared to Aβ group, but there were no significant differences between Aβ+Scu and Aβ+piracetam groups. The protein level of nAChR β2 subunit had no significant difference among different groups. The mRNA levels of nAChR α4, α7, and β2 subunits were not significantly changed. In Aβ group, the activities of AChE and BuChE in the brain were significantly increased, but were significantly decreased in the plasma, as compared to the control and the sham operation groups. Scu or piracetam treatment restored the activities in brain and plasma nearly to the levels in the control group. Conclusion: The results suggest that Scu may rescue some of the deleterious effects of Aβ, possibly by stimulating nAChR protein translation and regulating cholinesterase activity. PMID:21986571
Hongsibsong, Surat; Kerdnoi, Tanyaporn; Polyiem, Watcharapon; Srinual, Niphan; Patarasiriwong, Vanvimol; Prapamontol, Tippawan
2018-03-01
Organophosphate and carbamate pesticides have been widely used by farmers for crop protection and pest control. Inhibition of acetylcholinesterase (AChE) in erythrocyte and butyrylcholinesterase (BChE) in plasma is the predominant toxic effect of organophosphate and carbamate pesticides. Mae Taeng District, Chiang Mai Province, is one of the large areas of growing vegetables and fruits. Due to their regular exposure to these pesticides, the farmers are affected by this toxicity. The objective of the study was to examine the AChE and the BChE activity levels in the blood of 102 farmers for comparison of exposure in two cropping seasons, winter and hot. Blood samples were collected in December 2013 (winter) and April-June 2014 (hot). A total of 102 farmers joined the study, represented by 76 males (74.5 %) and 26 females (25.5 %). The age of most of the farmers was 53.4 ± 8.7 years. Out of 102, 21 farmers used carbamate pesticides. The results showed that the AChE and the BChE activity levels of all the farmers were 3.27 ± 0.84 Unit/mL and 2.15 ± 0.58 Unit/mL, respectively. The AChE and the BChE activity levels in males were 3.31 ± 0.88 Unit/mL and 1.97 ± 0.60 U/mL, respectively, during winter and 3.27 ± 0.82 Unit/mL and 2.15 ± 0.58 U/mL, respectively, during the hot season, and AChE and the BChE activity levels in females were 3.27 ± 0.82 U/mL and 2.44 ± 0.56 U/mL, respectively, during the hot season. The cholinesterase activity levels, both AChE and BChE, in the male farmers' blood had significant difference between the two seasons, while in the case of the female farmers, there was significant difference in the BChE activity levels, at p < 0.05. The BChE activity level was found to significantly correlate with self-spray (p < 0.05), which implies that the BChE activity decreased when they sprayed by themselves. The cholinesterase activity levels of the present study were lower than those of the other studies, which may be an indication of some chronic effect of exposure to anticholinesterase pesticides. Thus, it is recommended that the use of pesticides be decreased, together with increase in the awareness of the impact of pesticides on health; also recommended is regular monitoring of blood cholinesterase.
[Effects of methomyl on acetylcholinesterase in erythrocyte membrane and various brain areas].
Zhao, Fei; Li, Tao; Zhang, Changchun; Xu, Yiping; Xu, Hangong; Shi, Nian
2015-06-01
To study the toxicity of methomyl to acetylcholinesterase (AChE) in different regions. The optimal temperature and time for measurement of AChE activity were determined in vitro. The dose- and time-response relationships of methomyl with AChE activity in human erythrocyte membrane, rat erythrocyte membrane, cortical synapses, cerebellar synapses, hippocampal synapses, and striatal synapses were evaluated. The half maximal inhibitory concentration (IC50) and bimolecular rate constant (K) of methomyl for AChE activity in different regions were calculated, and the type of inhibition of AChE activity by methomyl was determined. AChE achieved the maximum activity at 370 °C, and the optimal time to determine initial reaction velocity was 0-17 min. There were dose- and time-response relationships between methomyl and AChE activity in the erythrocyte membrane and various brain areas. The IC50 value of methomyl for AChE activity in human erythrocyte membrane was higher than that in rat erythrocyte membrane, while the Ki value of methomyl for AChE activity in rat erythrocyte membrane was higher than that in human erythrocyte membrane. Among synapses in various brain areas, the striatum had the highest IC50 value, followed by the cerebellum, cerebral cortex, and hippocampus, while the cerebral cortex had the highest Ki value, followed by the hippocampus, striatum, and cerebellum. Lineweaver-Burk diagram demonstrated that with increasing concentration of methomyl, the maximum reaction velocity (Vmax) of AChE decreased, and the Michaelis constant (Km) remained the same. Methomyl is a reversible non-competitive inhibitor of AChE. AChE of rat erythrocyte membrane is more sensitive to methomyl than that of human erythrocyte membrane; the cerebral cortical synapses have the most sensitive AChE to methomyl among synapses in various brain areas.
How Is Acetylcholinesterase Phosphonylated by Soman? An Ab Initio QM/MM Molecular Dynamics Study
2015-01-01
Acetylcholinesterase (AChE) is a crucial enzyme in the cholinergic nerve system that hydrolyzes acetylcholine (ACh) and terminates synaptic signals by reducing the effective concentration of ACh in the synaptic clefts. Organophosphate compounds irreversibly inhibit AChEs, leading to irreparable damage to nerve cells. By employing Born–Oppenheimer ab initio QM/MM molecular dynamics simulations with umbrella sampling, a state-of-the-art approach to simulate enzyme reactions, we have characterized the covalent inhibition mechanism between AChE and the nerve toxin soman and determined its free energy profile for the first time. Our results indicate that phosphonylation of the catalytic serine by soman employs an addition–elimination mechanism, which is highly associative and stepwise: in the initial addition step, which is also rate-limiting, His440 acts as a general base to facilitate the nucleophilic attack of Ser200 on the soman’s phosphorus atom to form a trigonal bipyrimidal pentacovalent intermediate; in the subsequent elimination step, Try121 of the catalytic gorge stabilizes the leaving fluorine atom prior to its dissociation from the active site. Together with our previous characterization of the aging mechanism of soman inhibited AChE, our simulations have revealed detailed molecular mechanistic insights into the damaging function of the nerve agent soman. PMID:24786171
Oriel, Sarit; Kofman, Ora
2015-01-01
Following reports of emotional psychopathology in children and adults exposed to organophosphates, the effects of postnatal chlorpyrifos (CPF) on fear-conditioning and depression-like behaviors were tested in adult mice. Concomitant changes in expression of mRNA for synaptic and soluble splice variants of acetylcholinesterase (AChE) were examined in mouse pups and adults of the Balb/C and C57Bl/6 (B6) strains, which differ in their behavioral and hormonal stress response. Mice were injected subcutaneously with 1 mg/kg CPF on postnatal days 4–10 and tested as adults for conditioned fear, sucrose preference, and forced swim. Acetylcholinesterase activity was assessed in the brains of pups on the first and last day of treatment. Expression of soluble and synaptic AChE mRNA was assessed in brains of treated pups and fear-conditioned adults using real-time PCR. Adult Balb/C mice exposed postnatally to CPF showed exacerbated fear-conditioning and impaired active avoidance. Adult B6 mice exposed postnatally to CPF showed a more specific fear response to tones and less freezing in the inter-tone intervals, in contrast to the vehicle-pretreated mice. Chlorpyrifos also attenuated sweet preference and enhanced climbing in the forced swim test. Chlorpyrifos-treated mice had increased expression of both synaptic and readthrough AChE transcripts in the hippocampus of Balb/C mice and decreased expression in the amygdala following fear-conditioning. In conclusion, postnatal CPF had long-term effects on fear and depression, as well as on expression of AChE mRNA. These changes may be related to alteration in the interaction between hippocampus and amygdala in regulating negative emotions. PMID:25972795
Martini, Franciele; Bruning, César Augusto; Soares, Suelen Mendonca; Nogueira, Cristina Wayne; Zeni, Gilson
2015-01-01
Ebselen is a synthetic organoselenium compound that has been considered a potential pharmacological agent with low toxicity, showing antioxidant, anti-inflammatory and neuroprotective effects. It is bioavailable, blood-brain barrier permeant and safe based on cellular toxicity and Phase I-III clinical trials. There is evidence that ebselen inhibits acetylcholinesterase (AChE) activity, an enzyme that plays a key role in the cholinergic system by hydrolyzing acetylcholine (ACh), in vitro and ex vivo. This system has a well-known relationship with cognitive process, and AChE inhibitors, such as donepezil and galantamine, have been used to treat cognitive deficits, mainly in the Alzheimer's Disease (AD). However, these drugs have poor bioavailability and a number of side effects, including gastrointestinal upsets and hepatotoxicity. In this way, this study aimed to evaluate the effect of ebselen on cerebral AChE activity in vitro and to determine the kinetic profile and the reversibility of inhibition by dialysis. Ebselen inhibited the cerebral AChE activity with an IC50 of 29 µM, similar to IC50 found with pure AChE from electric eel, demonstrating a mixed and reversible inhibition of AChE, since it increased Km and decreased Vmax. The AChE activity was recovered within 60 min of dialysis. Therefore, the use of ebselen as a therapeutic agent for treatment of AD should be considered, although memory behavior tasks are needed to support such hypothesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Aiqiong; Du, Dan; Lin, Yuehe
Acetylcholinesterase (AChE) enzyme activity in red blood cells (RBCs) is a useful biomarker for biomonitoring of exposures to organophosphorus (OP) pesticides and chemical nerve agents. In this paper, we reported a new method for AChE activity assay based on selective immuno-capture of AChE from biological samples followed by enzyme activity assay of captured AChE using a disposable electrochemical sensor. The electrochemical sensor is based on multiwalled carbon nanotubes-gold nanocomposites (MWCNTs-Au) modified screen printed carbon electrode (SPCE). Upon the completion of immunoreaction, the target AChE (including active and inhibited) is captured onto the electrode surface and followed by an electrochemical detectionmore » of enzymatic activity in the presence of acetylthiocholine. A linear response is obtained over standard AChE concentration range from 0.1 to 10 nM. To demonstrate the capability of this new biomonitoring method, AChE solutions dosed with different concentration of paraoxon were used to validate the new AChE assay method. AChE inhibition in OP dosed solutions was proportional to its concentration from 0.2 to 50 nM. The new AChE activity assay method for biomonitoring of OP exposure was further validated with in-vitro paraoxon-dosed RBC samples. The established electrochemical sensing platform for AChE activity assay not only avoids the problem of overlapping substrate specificity with esterases by using selective antibody, but also eliminates potential interference from other electroactive species in biological samples. It offers a new approach for sensitive, selective, and rapid AChE activity assay for biomonitoring of exposures to OPs.« less
Expression and subcellular localization of a novel nuclear acetylcholinesterase protein.
Santos, Susana Constantino Rosa; Vala, Inês; Miguel, Cláudia; Barata, João T; Garção, Pedro; Agostinho, Paula; Mendes, Marta; Coelho, Ana V; Calado, Angelo; Oliveira, Catarina R; e Silva, João Martins; Saldanha, Carlota
2007-08-31
Acetylcholine is found in the nervous system and also in other cell types (endothelium, lymphocytes, and epithelial and blood cells), which are globally termed the non-neuronal cholinergic system. In this study we investigated the expression and subcellular localization of acetylcholinesterase (AChE) in endothelial cells. Our results show the expression of the 70-kDa AChE in both cytoplasmic and nuclear compartments. We also describe, for the first time, a nuclear and cytoskeleton-bound AChE isoform with approximately 55 kDa detected in endothelial cells. This novel isoform is decreased in response to vascular endothelial growth factor via the proteosomes pathway, and it is down-regulated in human leukemic T-cells as compared with normal T-cells, suggesting that the decreased expression of the 55-kDa AChE protein may contribute to an angiogenic response and associate with tumorigenesis. Importantly, we show that its nuclear expression is not endothelial cell-specific but also evidenced in non-neuronal and neuronal cells. Concerning neuronal cells, we can distinguish an exclusively nuclear expression in postnatal neurons in contrast to a cytoplasmic and nuclear expression in embryonic neurons, suggesting that the cell compartmentalization of this new AChE isoform is changed during the development of nervous system. Overall, our studies suggest that the 55-kDa AChE may be involved in different biological processes such as neural development, tumor progression, and angiogenesis.
New perspectives for multi-level regulations of neuronal acetylcholinesterase by dioxins.
Xie, Heidi Q; Xu, Tuan; Chen, Yangsheng; Li, Yunping; Xia, Yingjie; Xu, Sherry L; Wang, Lingyun; Tsim, Karl W K; Zhao, Bin
2016-11-25
Acetylcholinesterase (AChE; EC 3.1.1.7) is a vital functional enzyme in cholinergic neurotransmission which can rapidly hydrolyze neurotransmitter, acetylcholine, in the central and peripheral nervous systems. Emerging evidence showed that in addition to classical environmental AChE inhibitors, e.g. organophosphate and carbamate pesticides, dioxins are a new type of xenobiotic causing impairment of AChE. Dioxin can transcriptionally or post-transcriptionally suppress AChE expression in human neuroblastoma cells or mouse immune cells via the aryl hydrocarbon receptor (AhR) pathway, respectively. Dioxins can affect gene expression through other mechanisms, such as cross-talk with other signaling cascades and epigenetic modulations. Therefore, in this review, by summarizing the known mechanisms of AChE regulation and dioxin-induced gene alteration, potential signaling cascades and epigenetic mechanisms are proposed for dioxin-mediated AChE regulation. Mitogen activated protein (MAP) kinase, 3', 5'-cyclic adenosine monophosphate (cAMP) and calcium-related singaling pathways, as well as potential epigenetic mechanisms, such as DNA methylation, and post-transcriptional regulation via microRNAs, including hsa-miR-132, hsa-miR-212 and hsa-miR-25-3p are discussed here. These proposed mechanisms may be invaluable not only to promote comprehensive understanding of the action mechanisms for dioxin, but to illustrate the molecular basis of dioxin-induced health impacts. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herkert, N.M.; Schulz, S.; Wille, T.
2011-05-15
Standard treatment of organophosphorus (OP) poisoning includes administration of an antimuscarinic (e.g., atropine) and of an oxime-based reactivator. However, successful oxime treatment in soman poisoning is limited due to rapid aging of phosphylated acetylcholinesterase (AChE). Hence, the inability of standard treatment procedures to counteract the effects of soman poisoning resulted in the search for alternative strategies. Recently, results of an in vivo guinea pig study indicated a therapeutic effect of physostigmine given after soman. The present study was performed to investigate a possible pre- and post-treatment effect of physostigmine on soman-inhibited human AChE given at different time intervals before ormore » after perfusion with soman by using a well-established dynamically working in vitro model for real-time analysis of erythrocyte and muscle AChE. The major findings were that prophylactic physostigmine prevented complete inhibition of AChE by soman and resulted in partial spontaneous recovery of the enzyme by decarbamylation. Physostigmine given as post-treatment resulted in a time-dependent reduction of the protection from soman inhibition and recovery of AChE. Hence, these date indicate that physostigmine given after soman does not protect AChE from irreversible inhibition by the OP and that the observed therapeutic effect of physostigmine in nerve agent poisoning in vivo is probably due to other factors.« less
Chinnadurai, Raj Kumar; Saravanaraman, Ponne; Boopathy, Rathanam
2015-08-15
Acetylcholinesterase (AChE) exhibits two different activities, namely esterase and aryl acylamidase (AAA). Unlike esterase, AAA activity of AChE is inhibited by the active site inhibitors while remaining unaffected by the peripheral anionic site inhibitors. This differential inhibitory pattern of active and peripheral anionic site inhibitors on the AAA activity remains unanswered. To answer this, we investigated the mechanism of binding and trafficking of AAA substrates using in silico tools. Molecular docking of serotonin and AAA substrates (o-nitroacetanilide, and o-nitrotrifluoroacetanilide,) onto AChE shows that these compounds bind at the side door of AChE. Thus, we conceived that the AAA substrates prefer the side door to reach the active site for their catalysis. Further, steered molecular dynamics simulations show that the force required for binding and trafficking of the AAA substrate through the side door is comparatively lesser than their dissociation (900kJ/mol/nm). Among the two substrates, o-nitrotrifluoroacetanilide required lesser force (380kJ/mol/nm) than o-nitroacetanilide the (550kJ/mol/nm) for its binding, thus validating o-nitrotrifluoroacetanilide as a better substrate. With these observations, we resolve that the AAA activity of AChE is mediated through its side door. Therefore, binding of PAS inhibitors at the main door of AChE remain ineffective against AAA activity. Copyright © 2015 Elsevier Inc. All rights reserved.
Polsinelli, Gregory A; Singh, Sanjay K; Mishra, Rajesh K; Suranyi, Robert; Ragsdale, David W; Pang, Yuan-Ping; Brimijoin, Stephen
2010-09-06
Insecticides directed against acetylcholinesterase (AChE) are facing increased resistance among target species as well as increasing concerns for human toxicity. The result has been a resurgence of disease vectors, insects destructive to agriculture, and residential pests. We previously reported a free cysteine (Cys) residue at the entrance to the AChE active site in some insects but not higher vertebrates. We also reported Cys-targeting methanethiosulfonate molecules (AMTSn), which, under conditions that spared human AChE, caused total irreversible inhibition of aphid AChE, 95% inhibition of AChE from the malaria vector mosquito (Anopheles gambia), and >80% inhibition of activity from the yellow fever mosquito (Aedes aegypti) and northern house mosquito (Culex pipiens). We now find the same compounds inhibit AChE from cockroaches (Blattella germanica and Periplaneta americana), the flour beetle (Tribolium confusum), the multi-colored Asian ladybird beetle (Harmonia axyridis), the bed bug (Cimex lectularius), and a wasp (Vespula maculifrons), with IC(50) values of approximately 1-11muM. Our results support further study of Cys-targeting inhibitors as conceptually novel insecticides that may be free of resistance in a range of insect pests and disease vectors and, compared with current compounds, should demonstrate much lower toxicity to mammals, birds, and fish. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.
Acetylcholinesterase-Aβ Complexes Are More Toxic than Aβ Fibrils in Rat Hippocampus
Reyes, Ariel E.; Chacón, Marcelo A.; Dinamarca, Margarita C.; Cerpa, Waldo; Morgan, Carlos; Inestrosa, Nibaldo C.
2004-01-01
Neuropathological changes generated by human amyloid-β peptide (Aβ) fibrils and Aβ-acetylcholinesterase (Aβ-AChE) complexes were compared in rat hippocampus in vivo. Results showed that Aβ-AChE complexes trigger a more dramatic response in situ than Aβ fibrils alone as characterized by the following features observed 8 weeks after treatment: 1) amyloid deposits were larger than those produced in the absence of AChE. In fact, AChE strongly stimulates rat Aβ aggregation in vitro as shown by turbidity measurements, Congo Red binding, as well as electron microscopy, suggesting that Aβ-AChE deposits observed in vivo probably recruited endogenous Aβ peptide; 2) the appearance of laminin expressing neurons surrounding Aβ-AChE deposits (such deposits are resistant to disaggregation by laminin in vitro); 3) an extensive astrocytosis revealed by both glial fibrillary acidic protein immunoreactivity and number counting of reactive hypertrophic astrocytes; and 4) a stronger neuronal cell loss in comparison with Aβ-injected animals. We conclude that the hippocampal injection of Aβ-AChE complexes results in the appearance of some features reminiscent of Alzheimer-like lesions in rat brain. Our studies are consistent with the notion that Aβ-AChE complexes are more toxic than Aβ fibrils and that AChE triggered some of the neurodegenerative changes observed in Alzheimer’s disease brains. PMID:15161650
Kassa, Jiri; Musilek, Kamil; Koomlova, Marketa; Bajgar, Jiri
2012-04-01
The ability of three newly developed reversible inhibitors of acetylcholinesterase (AChE) (K298, K344 and K474) and currently available carbamate pyridostigmine to increase the resistance of mice against soman and the efficacy of antidotal treatment of soman-poisoned mice was compared. Neither pyridostigmine nor new reversible inhibitors of AChE were able to increase the LD(50) value of soman. Thus, the pharmacological pre-treatment with pyridostigmine or newly synthesized inhibitors of AChE was not able to protect mice against soman-induced lethal acute toxicity. The pharmacological pre-treatment with pyridostigmine alone or with K474 was able to slightly increase the efficacy of antidotal treatment (the oxime HI-6 in combination with atropine) of soman-poisoned mice, but the increase in the efficacy of antidotal treatment was not significant. The other newly developed reversible inhibitors of AChF (K298, K344) were completely ineffective. These findings demonstrate that pharmacological pre-treatment of soman-poisoned mice with tested reversible inhibitors of AChF is not promising. © 2011 The Authors. Basic & Clinical Pharmacology & Toxicology © 2011 Nordic Pharmacological Society.
Tappayuthpijarn, Pimolvan; Itharat, Arunporn; Makchuchit, Sunita
2011-12-01
The incidence of Alzheimer disease (AD) is increasing every year in accordance with the increasing of elderly population and could pose significant health problems in the future. The use of medicinal plants as an alternative prevention or even for a possible treatment of the AD is, therefore, becoming an interesting research issue. Acetylcholinesterase (AChE) inhibitors are well-known drugs commonly used in the treatment of AD. The aim of the present study was to screen for AChE inhibitory activity of the Thai traditional nootropic recipe and its herbal ingredients. The results showed that ethanolic extracts of four out of twenty-five herbs i.e. Stephania pierrei Diels. Kaempfera parviflora Wall. ex Baker, Stephania venosa (Blume) Spreng, Piper nigrum L at 0.1 mg/mL showed % AChE inhibition of 89, 64, 59, 50; the IC50 were 6, 21, 29, 30 microg/mL respectively. The other herbs as well as combination of the whole recipe had no synergistic inhibitory effect on AChE activity. However some plants revealed antioxidant activity. More research should have be performed on this local wisdom remedy to verify the uses in scientific term.
Sukhorukov, Alexey Yu; Nirvanappa, Anilkumar C; Swamy, Jagadish; Ioffe, Sema L; Nanjunda Swamy, Shivananju; Basappa; Rangappa, Kanchugarakoppal S
2014-08-01
Thirteen 2-oxazine-based small molecules were synthesized targeting 5-lipoxygenase (LOX), and acetylcholinesterase (AChE). The test revealed that the newly synthesized compounds had potent inhibition towards both 5-LOX and AChE in lower micro molar concentration. Among the tested compounds, the most active compound, 2-[(2-acetyl-6,6-dimethyl-4-phenyl-5,6-dihydro-2H-1,2-oxazin-3-yl)methyl]-1H-isoindole-1,3(2H)-dione (2a) showed inhibitory activity towards 5-LOX and AChE with an IC50 values of 1.88, and 2.5 μM, respectively. Further, the in silico molecular docking studies revealed that the compound 2a bound to the catalytic domain of AChE strongly with a highest CDOCKER score of -1.18 kcal/mol when compared to other compounds of the same series. Additionally, 2a showed a good lipophilicity (logP=2.66), suggesting a potential ability to penetrate the blood-brain-barrier. These initial pharmacological data revealed that the compound 2a could serve as a drug-seed in developing anti-Alzheimer's agents. Copyright © 2014 Elsevier Ltd. All rights reserved.
Jeelan Basha, Shaik; Mohan, Penumala; Yeggoni, Daniel Pushparaju; Babu, Zinka Raveendra; Kumar, Palaka Bhagath; Dinakara Rao, Ampasala; Subramanyam, Rajagopal; Damu, Amooru Gangaiah
2018-05-10
In line with the modern multi target-directed ligand paradigm of Alzheimer's disease (AD), a series of nineteen compounds composed of flavone and cyanoacetamide groups have been synthesized and evaluated as multifunctional agents against AD. Biological evaluation demonstrated that compounds 7j, 7n, 7o, 7r and 7s exhibited excellent inhibitory potency (AChE, IC50 0.271 ± 0.012 to ± 0.075 M) and good selectivity toward acetylcholinesterase, significant antioxidant activity, good modulation effects on self-induced A aggregation, low cytotoxicity and neuroprotection in human neuroblastoma SK-N-SH cells. Further, an inclusive study on the interaction of 7j, 7n, 7o, 7r and 7s with AChE at physiological pH 7.2 using fluorescence, circular dichroism and molecular docking methods suggesting that these derivatives bind strongly to peripheral anionic site of AChE mostly through hydrophobic interactions. Overall, the multifunctional profiles and strong AChE binding affinity highlight these compounds as promising prototypes for further pursuit of innovative multifunctional drugs for AD.
Alves, Clayton Q; Lima, Luciano S; David, Jorge M; Lima, Marcos V B; David, Juceni P; Lima, Fernanda W M; Pedroza, Kelly C M C; Queiroz, Luciano P
2013-07-01
Cratylia mollis Martius ex Benth. and Cenostigma macrophyllum Tul. (Leguminosae) are both endemic Brazilian plants and they are used by the natives as medicinal plants, and the leaves of C. mollis are also employed as forage for cattle during the dry season of region. Isolation of the compounds responsible for the acetylcholinesterase (AChE) inhibition from the CHCl3 active extract. Two peptidic compounds were isolated by chromatographic techniques from the CHCl3 extract of the leaves of C. mollis and C. macrophyllum. They were identified by spectrometric data analysis (MS and NMR) and they were subjected to AChE inhibition employing Ellman's test. The peptides were identified as N-benzoylphenylalaninoyl-phenlyalaninolacetate (aurentiamide acetate) (1) and N-benzoylphenylalaninyl-N-benzoylphenylalaninate (2). Both peptides 1 and 2 exhibit AChE inhibition, with IC50 values equal to 111.34 µM and 137.6 µM, respectively. Compound 1 (aurentiamide acetate) has rarely been isolated from the Leguminosae family, and N-benzoylphenylalaninyl-N-benzoylphenylalaninate (2) is a compound that has never previously been isolated from this family. Compound 1 is shown to be a potent inhibitor of AChE, with IC50 values similar to the physostigmine control (141.51 µM).
Li, Xue-Jiao; Dong, Jian-Wei; Cai, Le; Mei, Rui-Feng; Ding, Zhong-Tao
2017-11-01
Illigera henryi, an endemic traditional Chinese medicine, contains abundant aporphine alkaloids that possess various bioactivities. In the present study, tubers of I. henryi were fermented by several fungi, and the acetylcholinesterase (AChE) inhibitory activities of non-fermented and fermented I. henryi were measured. The results showed that the fermentation of I. henryi with Clonostachys rogersoniana 828H2 is effective for improving the AChE inhibitory activity. A key biotransformation was found during the C. rogersoniana fermentation for clarifying the improvement of the AChE inhibitory activity of I. henryi: (S)-actinodaphnine (1) was converted to a new 4-hydroxyaporphine alkaloid (4R,6aS)-4-hydroxyactinodaphnine (2) that possessed a stronger AChE inhibitory activity, with an IC 50 value of 17.66±0.06 μM. This paper is the first to report that the pure strain fermentation processing of I. henryi and indicated C. rogersoniana fermentation might be a potential processing method for I. henryi. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Pandey, Sony; Sree, Ayinampudi; Sethi, Dipti Priya; Kumar, Chityal Ganesh; Kakollu, Sudha; Chowdhury, Lipsa; Dash, Soumya Suchismita
2014-02-15
Acetylcholinesterase (AChE) inhibitors or anticholinesterases reduce the activity of enzyme acetylcholinesterase that degrades the neurotransmitter acetylcholine in the brain. The inhibitors have a significant pharmacological role in neurodegenerative diseases like Alzheimer's and Parkinson's etc. Although plants have been a significant source of these compounds, there are very few sporadic reports of microorganisms producing such inhibitors. Anticholinesterase activity in bacterial associates of marine soft corals and sponges were not previously reported. We screened 887 marine bacteria for the presence of acetylcholinesterase inhibitors, in a microplate based assay, and found that 140 (15.8%) of them inhibit the electric eel enzyme, acetylcholinesterase. Majority of the active isolates were bacterial associates of soft corals followed by sediment isolates while most of the potent inhibitors belonged to the bacterial associates of marine sponges. Maximum inhibition (54%) was exhibited by a bacterial strain M18SP4P (ii), isolated from the marine sponge Fasciospongia cavernosa. Based on phenotypic characterization and 16S rDNA sequencing, the strain was identified as Bacillus subtilis - revealing yet another activity in a strain of the model organism that is considered to be a cell factory. TLC bioautography of the methanol extract of this culture, showed the presence of two major components having this activity, when compared to Galanthamine, the positive control. From the results of our study, we conclude that acetylcholinesterase inhibitors are quite prevalent in marine bacteria, particularly the bacterial associates of marine invertebrates. Several potential AChE inhibitors in marine bacteria are waiting to be discovered to provide easily manipulable natural sources for the mass production of these therapeutic compounds.
Electro-Immobilization of Acetylcholinesterase Using Polydopamine for Carbaryl Microsensor
NASA Astrophysics Data System (ADS)
Ha, Trung B.; Le, Huyen T.; Cao, Ha H.; Binh, Nguyen Thanh; Nguyen, Huy L.; Dang, Le Hai; Do, Quan P.; Nguyen, Dzung T.; Lam, Tran Dai; Nguyen, Vân-Anh
2018-02-01
A simple and sensitive electrochemical acetylcholinesterase (AChE) biosensor for determination of carbaryl, one of the most commonly used carbamate pesticides, is described. The AChE enzyme was successfully entrapped by a polydopamine-graphene composite on polypyrrole nanowires that modified interdigitated planar platinum-film microelectrodes . The influence of different parameters on the operation of the biosensor was also studied. The selected parameters for the biosensor performance in detecting carbaryl were as follows: applied potential + 0.7 V, pH 7.4 at 25°C. The inhibition of carbaryl was proportional to its concentrations ranging from 0.05 to 1.5 μg/mL with the detection limit of 0.008 μg/mL using chronoamperometry. This study provides a promising approach in fabrication of sensitive biosensors for the analysis of carbamate pesticides as well as other hazardous compounds.
James, Shelly L; Ahmed, S Kaleem; Murphy, Stephanie; Braden, Michael R; Belabassi, Yamina; VanBrocklin, Henry F; Thompson, Charles M; Gerdes, John M
2014-07-16
Radiosynthesis of a fluorine-18 labeled organophosphate (OP) inhibitor of acetylcholinesterase (AChE) and subsequent positron emission tomography (PET) imaging using the tracer in the rat central nervous system are reported. The tracer structure, which contains a novel β-fluoroethoxy phosphoester moiety, was designed as an insecticide-chemical nerve agent hybrid to optimize handling and the desired target reactivity. Radiosynthesis of the β-fluoroethoxy tracer is described that utilizes a [(18)F]prosthetic group coupling approach. The imaging utility of the [(18)F]tracer is demonstrated in vivo within rats by the evaluation of its brain penetration and cerebral distribution qualities in the absence and presence of a challenge agent. The tracer effectively penetrates brain and localizes to cerebral regions known to correlate with the expression of the AChE target. Brain pharmacokinetic properties of the tracer are consistent with the formation of an OP-adducted acetylcholinesterase containing the fluoroethoxy tracer group. Based on the initial favorable in vivo qualities found in rat, additional [(18)F]tracer studies are ongoing to exploit the technology to dynamically probe organophosphate mechanisms of action in mammalian live tissues.
Behavioral and biochemical effects of neonicotinoid thiamethoxam on the cholinergic system in rats.
Rodrigues, K J A; Santana, M B; Do Nascimento, J L M; Picanço-Diniz, D L W; Maués, L A L; Santos, S N; Ferreira, V M M; Alfonso, M; Durán, R; Faro, L R F
2010-01-01
Thiamethoxam is a neonicotinoid insecticide, a group of pesticides that acts selectively on insect nicotinic acetylcholine receptors (nAChRs), with only a little action on mammalian nAChRs. Nevertheless, the selectivity of neonicotinoids for the insect nAChRs may change when these substances are metabolized. Therefore, we aimed to determine the potential effects of thiamethoxam on mammalian brain, testing the performance in the open field and elevated plus-maze of rats exposed to this insecticide and, in order to establish the neurochemical endpoints, we measured the acetylcholinesterase activity in different brain regions (hippocampus, striatum and cortex) and the high-affinity choline uptake (HACU) in synaptosomes from rat hippocampus. Treated animals received thiamethoxam (25, 50 or 100mg/kg) for 7 consecutive days. The results showed that treatment with thiamethoxam induced an increase in the anxiety behavior at two doses (50 or 100mg/kg). Moreover, there was a significant decrease in both HACU and acetylcholinesterase activity. Our hypothesis is that thiamethoxam (or its metabolites) could be acting on the central rats nAChRs. This would produce an alteration on the cholinergic transmission, modulating the anxiety behavior, acetylcholinesterase levels and HACU.
Effect of local acetylcholinesterase inhibition on sweat rate in humans
NASA Technical Reports Server (NTRS)
Shibasaki, M.; Crandall, C. G.
2001-01-01
ACh is the neurotransmitter responsible for increasing sweat rate (SR) in humans. Because ACh is rapidly hydrolyzed by acetylcholinesterase (AChE), it is possible that AChE contributes to the modulation of SR. Thus the primary purpose of this project was to identify whether AChE around human sweat glands is capable of modulating SR during local application of various concentrations of ACh in vivo, as well as during a heat stress. In seven subjects, two microdialysis probes were placed in the intradermal space of the forearm. One probe was perfused with the AChE inhibitor neostigmine (10 microM); the adjacent membrane was perfused with the vehicle (Ringer solution). SR over both membranes was monitored via capacitance hygrometry during microdialysis administration of various concentrations of ACh (1 x 10(-7)-2 M) and during whole body heating. SR was significantly greater at the neostigmine-treated site than at the control site during administration of lower concentrations of ACh (1 x 10(-7)-1 x 10(-3) M, P < 0.05), but not during administration of higher concentrations of ACh (1 x 10(-2)-2 M, P > 0.05). Moreover, the core temperature threshold for the onset of sweating at the neostigmine-treated site was significantly reduced relative to that at the control site. However, no differences in SR were observed between sites after 35 min of whole body heating. These results suggest that AChE is capable of modulating SR when ACh concentrations are low to moderate (i.e., when sudomotor activity is low) but is less effective in governing SR after SR has increased substantially.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang Dongren; Howard, Angela; Bruun, Donald
2008-04-01
A primary role of acetylcholinesterase (AChE) is regulation of cholinergic neurotransmission by hydrolysis of synaptic acetylcholine. In the developing nervous system, however, AChE also functions as a morphogenic factor to promote axonal growth. This raises the question of whether organophosphorus pesticides (OPs) that are known to selectively bind to and inactivate the enzymatic function of AChE also interfere with its morphogenic function to perturb axonogenesis. To test this hypothesis, we exposed primary cultures of sensory neurons derived from embryonic rat dorsal root ganglia (DRG) to chlorpyrifos (CPF) or its oxon metabolite (CPFO). Both OPs significantly decreased axonal length at concentrationsmore » that had no effect on cell viability, protein synthesis or the enzymatic activity of AChE. Comparative analyses of the effects of CPF and CPFO on axonal growth in DRG neurons cultured from AChE nullizygous (AChE{sup -/-}) versus wild type (AChE{sup +/+}) mice indicated that while these OPs inhibited axonal growth in AChE{sup +/+} DRG neurons, they had no effect on axonal growth in AChE{sup -/-} DRG neurons. However, transfection of AChE{sup -/-} DRG neurons with cDNA encoding full-length AChE restored the wild type response to the axon inhibitory effects of OPs. These data indicate that inhibition of axonal growth by OPs requires AChE, but the mechanism involves inhibition of the morphogenic rather than enzymatic activity of AChE. These findings suggest a novel mechanism for explaining not only the functional deficits observed in children and animals following developmental exposure to OPs, but also the increased vulnerability of the developing nervous system to OPs.« less
Simon, S; Le Goff, A; Frobert, Y; Grassi, J; Massoulié, J
1999-09-24
We investigated the target sites of three inhibitory monoclonal antibodies on Electrophorus acetylcholinesterase (AChE). Previous studies showed that Elec-403 and Elec-410 are directed to overlapping but distinct epitopes in the peripheral site, at the entrance of the catalytic gorge, whereas Elec-408 binds to a different region. Using Electrophorus/rat AChE chimeras, we identified surface residues that differed between sensitive and insensitive AChEs: the replacement of a single Electrophorus residue by its rat homolog was able to abolish binding and inhibition, for each antibody. Reciprocally, binding and inhibition by Elec-403 and by Elec-410 could be conferred to rat AChE by the reverse mutation. Elec-410 appears to bind to one side of the active gorge, whereas Elec-403 covers its opening, explaining why the AChE-Elec-410 complex reacts faster than the AChE-Elec-403 or AChE-fasciculin complexes with two active site inhibitors, m-(N,N, N-trimethyltammonio)trifluoro-acetophenone and echothiophate. Elec-408 binds to the region of the putative "back door," distant from the peripheral site, and does not interfere with the access of inhibitors to the active site. The binding of an antibody to this novel regulatory site may inhibit the enzyme by blocking the back door or by inducing a conformational distortion within the active site.
Exploration of the Energy Landscape of Acetylcholinesterase by Molecular Dynamics Simulation.
NASA Astrophysics Data System (ADS)
McCammon, J. Andrew
2002-03-01
Proteins have rough energy landscapes. Often more states than just the ground state are occupied and have biological functions. It is essential to study these conformational substates and the dynamical transitions among them. Acetylcholinesterase (AChE) is an important enzyme that has biological functions including the termination of synaptic transmission signals. X-ray structures show that it has an active site that is accessible only via a long and narrow channel from its surface. Therefore the fact that acetylcholine and larger ligands can reach the active site is believed to reflect the protein's structural fluctuation. We carried out long molecular dynamics simulations to investigate the dynamics of AChE and its relation to biological function, and compared our results with experiments. The results reveal several "doors" that open intermittantly between the active site and the surface. Instead of having simple exponential decay correlation functions, the time series of these channels reveal complex, fractal gating between conformations. We also compared the AChE dynamics data with those from an AchE-fasciculin complex. (Fasciculin is a small protein that is a natural inhibitor of AChE.) The results show remarkable effects of the protein-protein interaction, including allosteric and dynamical inhibition by fasciculin besides direct steric blocking. More information and images can be found at http://mccammon.ucsd.edu
Baldissera, M D; Souza, C F; Doleski, P H; Moreira, K L S; da Veiga, M L; da Rocha, M I U M; Santos, R C V; Baldisserotto, B
2018-01-01
It has been recognized that the cholinergic and adenosinergic systems have an essential role in immune and inflammatory responses during bacterial fish pathogens, such as the enzymes acetylcholinesterase (AChE) and adenosine deaminase (ADA), which are responsible for catalysis of the anti-inflammatory molecules acetylcholine (ACh) and adenosine (Ado) respectively. Thus, the aim of this study was to investigate the involvement of the cholinergic and adenosinergic systems on the immune response and inflammatory process in gills of experimentally infected Rhamdia quelen with Streptococcus agalactiae. Acetylcholinesterase activity decreased, while ACh levels increased in gills of infected animals compared to uninfected animals. On the other hand, a significant increase in ADA activity with a concomitant decrease in Ado levels was observed in infected animals compared to uninfected animals. Based on this evidence, we concluded that infection by S. agalactiae in silver catfish alters the cholinergic and adenosinergic systems, suggesting the involvement of AChE and ADA activities on immune and inflammatory responses, regulating the ACh and Ado levels. In summary, the downregulation of AChE activity exerts an anti-inflammatory profile in an attempt to reduce or prevent the tissue damage, while the upregulation of ADA activity exerts a pro-inflammatory profile, contributing to disease pathophysiology. © 2017 John Wiley & Sons Ltd.
Campanari, Maria-Letizia; García-Ayllón, María-Salud; Ciura, Sorana; Sáez-Valero, Javier; Kabashi, Edor
2016-01-01
Amyotrophic Lateral Sclerosis (ALS) is a highly debilitating disease caused by progressive degeneration of motorneurons (MNs). Due to the wide variety of genes and mutations identified in ALS, a highly varied etiology could ultimately converge to produce similar clinical symptoms. A major hypothesis in ALS research is the "distal axonopathy" with pathological changes occurring at the neuromuscular junction (NMJ), at very early stages of the disease, prior to MNs degeneration and onset of clinical symptoms. The NMJ is a highly specialized cholinergic synapse, allowing signaling between muscle and nerve necessary for skeletal muscle function. This nerve-muscle contact is characterized by the clustering of the collagen-tailed form of acetylcholinesterase (ColQ-AChE), together with other components of the extracellular matrix (ECM) and specific key molecules in the NMJ formation. Interestingly, in addition to their cholinergic role AChE is thought to play several "non-classical" roles that do not require catalytic function, most prominent among these is the facilitation of neurite growth, NMJ formation and survival. In all this context, abnormalities of AChE content have been found in plasma of ALS patients, in which AChE changes may reflect the neuromuscular disruption. We review these findings and particularly the evidences of changes of AChE at neuromuscular synapse in the pre-symptomatic stages of ALS.
2012-01-01
monoisonitrosoacetone (MINA) crossed BBB, provided some degree of CNS AChE reactivation, enhanced survival, and mitigated the seizure activity following nerve agent...tissues (brain regions, diaphragm, heart, skeletal muscle) were collected. AChE activity was measured using the Ellman assay. In GB exposure, pro...therapy. Protecting and/or restoring AChE activity in the brain is a major goal in the treatment of nerve agent intoxication. Our long-term goal is to
Aryl Trifluoromethyl Iximes: potential new mosquito insecticides
USDA-ARS?s Scientific Manuscript database
Fluorinated methylketones have been identified as potential mosquitocides, suspected of acting as reaction coordinate analogues that inhibit acetylcholinesterase (AChE) thereby leading to paralysis and eventual death. Previous work has explored trifluoro-, difluoro-, and fluoromethylketone analogues...
Ito, K; Kawachi, M; Matsunaga, Y; Hori, Y; Ozaki, T; Nagahama, K; Hirayama, M; Kawabata, Y; Shiraishi, Y; Takei, M; Tanaka, T
2016-04-01
Acotiamide is a first-in-class prokinetic drug approved in Japan for the treatment of functional dyspepsia. Given that acotiamide enhances gastric motility in conscious dogs and rats, we assessed the in vitro effects of this drug on the contraction of guinea pig stomach strips and on acetylcholinesterase (AChE) activity in stomach homogenate following fundus removal. We also investigated the serotonin 5-HT4 receptor agonist mosapride, dopamine D2 receptor and AChE inhibitor itopride, and representative AChE inhibitor neostigmine. Acotiamide (0.3 and 1 μM) and itopride (1 and 3 μM) significantly enhanced the contraction of gastric body strips induced by electrical field stimulation (EFS), but mosapride (1 and 10 μM) did not. Acotiamide and itopride significantly enhanced the contraction of gastric body and antrum strips induced by acetylcholine (ACh), but not that induced by carbachol (CCh). Neostigmine also significantly enhanced the contraction of gastric body strips induced by ACh, but not that by CCh. In contrast, mosapride failed to enhance contractions induced by either ACh or CCh in gastric antrum strips. Acotiamide exerted mixed inhibition of AChE, and the percentage inhibition of acotiamide (100 μM) against AChE activity was markedly reduced after the reaction mixture was dialyzed. In contrast, itopride exerted noncompetitive inhibition on AChE activity. These results indicate that acotiamide enhances ACh-dependent contraction in gastric strips of guinea pigs via the inhibition of AChE activity, and that it exerts mixed and reversible inhibition of AChE derived from guinea pig stomach. © Georg Thieme Verlag KG Stuttgart · New York.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozlkowski, A.P.; Campiani, G.; Saxena, A.
1995-12-31
Synthesis of four new pyrimidone analogues of the acetyicholinesterase (AChE) inhibitor huperzine A are reported together with the inhibitory potendes of these compounds for foetal bovine calf serum AChE; t3-lactone formation followed by a thermal cycloreversion reaction serves as the key step for introduction of the ethylidene appendage of analogue 12 in the stereochemically correct form.
2007-04-01
target molecules, we are interested in incorporating the existing, liquid AChE sensor chemistry into a multiphase microreactor . The multiphase... microreactor will play a critical role in combining microsensor technology with analytical biochemistry and increase reaction time, sensitivity and... microreactor with a micro-scale gas- liquid interface, 2) to adapt AChE biochemistry into the microreactor in order to develop an electrochemical biosensor for
NASA Astrophysics Data System (ADS)
Pang, Yuan-Ping; Kozikowski, Alan P.
1994-12-01
In the preceding paper we reported on a docking study with the SYSDOC program for predicting the binding sites of huperzine A in acetylcholinesterase (AChE) [Pang, Y.-P. and Kozikowski, A.P., J. Comput.-Aided Mol. Design, 8 (1994) 669]. Here we present a prediction of the binding sites of 1-benzyl-4-[(5,6-dimethoxy-1-indanon-2-yl)methyl]piperidine (E2020) in AChE by the same method. E2020 is one of the most potent and selective reversible inhibitors of AChE, and this molecule has puzzled researchers, partly due to its flexible structure, in understanding how it binds to AChE. Based on the results of docking 1320 different conformers of E2020 into 69 different conformers of AChE and on the pharmacological data reported for E2020 and its analogs, we predict that both the R- and the S-isomer of E2020 span the whole binding cavity of AChE, with the ammonium group interacting mainly with Trp84, Phe330 and Asp72, the phenyl group interacting mainly with Trp84 and Phe330, and the indanone moiety interacting mainly with Tyr70 and Trp279. The topography of the calculated E2020 binding sites provides insights into understanding the high potency of E2020 in the inhibition of AChE and provides hints as to possible structural modifications for identifying improved AChE inhibitors as potential therapeutics for the palliative treatment of Alzheimer's disease.
Kaur, Kiranpreet; Bakke, Marit Jørgensen; Nilsen, Frank; Horsberg, Tor Einar
2015-01-01
Acetylcholinesterase (AChE) is an important enzyme in cholinergic synapses. Most arthropods have two genes (ace1 and ace2), but only one encodes the predominant synaptic AChE, the main target for organophosphates. Resistance towards organophosphates is widespread in the marine arthropod Lepeophtheirus salmonis. To understand this trait, it is essential to characterize the gene(s) coding for AChE(s). The full length cDNA sequences encoding two AChEs in L. salmonis were molecularly characterized in this study. The two ace genes were highly similar (83.5% similarity at protein level). Alignment to the L. salmonis genome revealed that both genes were located close to each other (separated by just 26.4 kbp on the L. salmonis genome), resulting from a recent gene duplication. Both proteins had all the typical features of functional AChE and clustered together with AChE-type 1 proteins in other species, an observation that has not been described in other arthropods. We therefore concluded the presence of two versions of ace1 gene in L. salmonis, named ace1a and ace1b. Ace1a was predominantly expressed in different developmental stages compared to ace1b and was possibly active in the cephalothorax, indicating that ace1a is more likely to play the major role in cholinergic synaptic transmission. The study is essential to understand the role of AChEs in resistance against organophosphates in L. salmonis. PMID:25938836
Nascimento, Érica C M; Oliva, Mónica; Andrés, Juan
2018-05-01
In the present study, the binding free energy of a family of huprines with acetylcholinesterase (AChE) is calculated by means of the free energy perturbation method, based on hybrid quantum mechanics and molecular mechanics potentials. Binding free energy calculations and the analysis of the geometrical parameters highlight the importance of the stereochemistry of huprines in AChE inhibition. Binding isotope effects are calculated to unravel the interactions between ligands and the gorge of AChE. New chemical insights are provided to explain and rationalize the experimental results. A good correlation with the experimental data is found for a family of inhibitors with moderate differences in the enzyme affinity. The analysis of the geometrical parameters and interaction energy per residue reveals that Asp72, Glu199, and His440 contribute significantly to the network of interactions between active site residues, which stabilize the inhibitors in the gorge. It seems that a cooperative effect of the residues of the gorge determines the affinity of the enzyme for these inhibitors, where Asp72, Glu199, and His440 make a prominent contribution.
Ibrahim, Firas; Andre, Claire; Iutzeler, Anne; Guillaume, Yves Claude
2013-10-01
A biochromatographic system was used to study the direct effect of carbon nanoparticles (CNPs) on the acetylcholinesterase (AChE) activity. The AChE enzyme was covalently immobilized on a monolithic CIM-disk via its NH2 residues. Our results showed an increase in the AChE activity in presence of CNPs. The catalytic constant (k(cat)) was increased while the Michaelis constant (K(m)) was slightly decreased. This indicated an increase in the enzyme efficiency with increase of the substrate affinity to the active site. The thermodynamic data of the activation mechanism of the enzyme, i.e. ΔH* and ΔS*, showed no change in the substrate interaction mechanism with the anionic binding site. The increase of the enthalpy (ΔH*) and the entropy (ΔS*) with decrease in the free energy of activation (Ea) was related to structural conformation change in the active site gorge. This affected the stability of water molecules in the active site gorge and facilitated water displacement by substrate for entering to the active site of the enzyme.
NASA Astrophysics Data System (ADS)
Nascimento, Érica C. M.; Oliva, Mónica; Andrés, Juan
2018-03-01
In the present study, the binding free energy of a family of huprines with acetylcholinesterase (AChE) is calculated by means of the free energy perturbation method, based on hybrid quantum mechanics and molecular mechanics potentials. Binding free energy calculations and the analysis of the geometrical parameters highlight the importance of the stereochemistry of huprines in AChE inhibition. Binding isotope effects are calculated to unravel the interactions between ligands and the gorge of AChE. New chemical insights are provided to explain and rationalize the experimental results. A good correlation with the experimental data is found for a family of inhibitors with moderate differences in the enzyme affinity. The analysis of the geometrical parameters and interaction energy per residue reveals that Asp72, Glu199, and His440 contribute significantly to the network of interactions between active site residues, which stabilize the inhibitors in the gorge. It seems that a cooperative effect of the residues of the gorge determines the affinity of the enzyme for these inhibitors, where Asp72, Glu199, and His440 make a prominent contribution.
NASA Astrophysics Data System (ADS)
Nascimento, Érica C. M.; Oliva, Mónica; Andrés, Juan
2018-05-01
In the present study, the binding free energy of a family of huprines with acetylcholinesterase (AChE) is calculated by means of the free energy perturbation method, based on hybrid quantum mechanics and molecular mechanics potentials. Binding free energy calculations and the analysis of the geometrical parameters highlight the importance of the stereochemistry of huprines in AChE inhibition. Binding isotope effects are calculated to unravel the interactions between ligands and the gorge of AChE. New chemical insights are provided to explain and rationalize the experimental results. A good correlation with the experimental data is found for a family of inhibitors with moderate differences in the enzyme affinity. The analysis of the geometrical parameters and interaction energy per residue reveals that Asp72, Glu199, and His440 contribute significantly to the network of interactions between active site residues, which stabilize the inhibitors in the gorge. It seems that a cooperative effect of the residues of the gorge determines the affinity of the enzyme for these inhibitors, where Asp72, Glu199, and His440 make a prominent contribution.
Ramírez-Santana, Muriel; Farías-Gómez, Cristián; Zúñiga-Venegas, Liliana; Sandoval, Rodrigo; Roeleveld, Nel; Van der Velden, Koos; Scheepers, Paul T. J.
2018-01-01
In Chile, agriculture is a relevant economic activity and is concomitant with the use of pesticides to improve the yields. Acute intoxications of agricultural workers occur with some frequency and they must be reported to the surveillance system of the Ministry of Health. However the impacts of chronic and environmental pesticide exposure have been less studied. Among pesticides frequently used in Chile for insects control are organophosphates (OP) and carbamates (CB). They are inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). In this study we determined the pattern of both biomarkers activity in three populations with different type of chronic exposure to OP/CB: environmentally exposed (EE), occupationally exposed (OE) and a reference group (RG) without exposure. Besides this, we also measured the activity of acylpeptide hydrolase (APEH), an enzyme involved in relevant functions in the central synapses that is also expressed in erythrocytes and previously reported to be highly inhibited by some OP. A baseline measurement was done in both exposure groups and then a second measurement was done during the spraying season. The RG was measured only once at any time of the year. Our results indicate that people under chronic OP/CB exposure showed an adaptive response through an increase of basal BChE activity. During the spray season only BChE activity was decreased in the EE and OE groups (p<0.05 and p<0.01, respectively) and the higher magnitude of BChE inhibition was observed in the EE group. The analysis of the frequencies of inhibition above 30% (biological tolerance limit declared by Chilean legislation) indicated that BChE was most frequently inhibited in the EE group (53% of the individuals displayed inhibition) and AChE in the OE group (55% of the individuals displayed AChE inhibition). APEH activity showed the highest frequency of inhibition in the EE group independent of its magnitude (64%). Our results demonstrate that the rural population living nearby agricultural settings displays high levels of environmental exposure. APEH activity seems to be a sensitive biomarker for acute low-level exposure and its usefulness as a routine biomarker must to be explored in future studies. Systematic biomonitoring and health outcomes studies are necessary as well as obtaining the baseline for BChE and AChE activity levels with the aim to improve environmental and occupational health policies in Chile. PMID:29718943
Penumala, Mohan; Zinka, Raveendra Babu; Shaik, Jeelan Basha; Mallepalli, Suresh Kumar Reddy; Vadde, Ramakrishna; Amooru, Damu Gangaiah
2018-03-02
Extensive epidemiological and clinical studies revealed that Alzheimer's Disease (AD) and Type 2 Diabetes Mellitus (T2D) are most likely to appear simultaneously in aged people as T2D is a major risk factor for AD. Therefore, development of potential multifunctional agents for dual therapy of AD and T2D has received much attention. Buchanania axillaris, Hemidesmus indicus and Rhus mysorensis have been used extensively in popular medicine. The present study was aimed at phytochemical profiling and evaluating multifunctional ability of titled plants in the AD and T2D dual therapy. Methanolic extracts and their derived fractions were evaluated for their inhibitory capacities against acetylcholinesterase (AChE) & butyrylcholinesterase (BuChE), and α- & β-glucosidase besides kinetic analysis of inhibition using methods of Elmann and Shibano, respectively. Antioxidant potency of active fractions was assessed by their DPPH and ABTS radical scavenging activities. Active fractions were tested by the MTT assay to verify cytotoxicity and neuroprotective ability in human nueroblastoma cell lines. Phytochemical screening was done with the aid of spectrophotometric methods. All the methanolic extracts of test plants (BAM, HIM, RMM) showed concentration dependent inhibitory activities against AChE, BuChE, α- and β-glucosidase enzymes. Subsequent fractionation and evaluation revealed that chloroform fractions BAC, HIC and RMC with IC 50 values of 12.29±2.14, 9.94±2.14, 16.65±1.99 and 27.38±1.24; 28.14±0.9, 5.16±0.22, 11.03±0.5 and 87.64±15.41; 41.35±1.6, 15.86±7.3, 26.04±0.37 and 25.33±0.3 were most prominent with regard to inhibition potential against AChE, BuChE, α- and β-glucosidase, respectively. Kinetic analysis of these active fractions proved that they disclosed mixed-type inhibition against AChE, BuChE, α- and β-glucosidase enzymes. In the MTT assay, active fractions BAC, HIC, RMC showed significant cell viability at high concentrations (400 μg). Moreover, in MTT assay, the active fractions displayed excellent neuroprotective effects against oxidative stress induced cell death and significant cell viability in SK N SH cells at all concentrations. The strong anticholinesterase, antiglucosidase, antioxidant and neuroprotective activities of methanolic extracts and their derived chloroform fractions indicate the potential of Buchanania axillaris, Hemidesmus indicus and Rhus mysorensis as multifunctional therapeutic remedies for the dual therapy of T2D and AD.
Więckowska, Anna; Kołaczkowski, Marcin; Bucki, Adam; Godyń, Justyna; Marcinkowska, Monika; Więckowski, Krzysztof; Zaręba, Paula; Siwek, Agata; Kazek, Grzegorz; Głuch-Lutwin, Monika; Mierzejewski, Paweł; Bienkowski, Przemysław; Sienkiewicz-Jarosz, Halina; Knez, Damijan; Wichur, Tomasz; Gobec, Stanislav; Malawska, Barbara
2016-11-29
As currently postulated, a complex treatment may be key to an effective therapy for Alzheimer's disease (AD). Recent clinical trials in patients with moderate AD have shown a superior effect of the combination therapy of donepezil (a selective acetylcholinesterase inhibitor) with idalopirdine (a 5-HT 6 receptor antagonist) over monotherapy with donepezil. Here, we present the first report on the design, synthesis and biological evaluation of a novel class of multifunctional ligands that combines a 5-HT 6 receptor antagonist with a cholinesterase inhibitor. Novel multi-target-directed ligands (MTDLs) were designed by combining pharmacophores directed against the 5-HT 6 receptor (1-(phenylsulfonyl)-4-(piperazin-1-yl)-1H-indole) and cholinesterases (tacrine or N-benzylpiperidine analogues). In vitro evaluation led to the identification of tacrine derivative 12 with well-balanced potencies against the 5-HT 6 receptor (K b = 27 nM), acetylcholinesterase and butyrylcholinesterase (IC 50 hAChE = 12 nM, IC 50 hBuChE = 29 nM). The compound also showed good in vitro blood-brain-barrier permeability (PAMPA-BBB assay), which was confirmed in vivo (open field study). Central cholinomimetic activity was confirmed in vivo in rats using a scopolamine-induced hyperlocomotion model. A novel class of multifunctional ligands with compound 12 as the best derivative in a series represents an excellent starting point for the further development of an effective treatment for AD. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Rollinger, Judith M; Schuster, Daniela; Baier, Elisabeth; Ellmerer, Ernst P; Langer, Thierry; Stuppner, Hermann
2006-09-01
A bioactivity-guided approach was taken to identify the acetylcholinesterase (AChE, EC 3.1.1.7) inhibitory agent in a Magnolia x soulangiana extract using a microplate enzyme assay with Ellman's reagent. This permitted the isolation of the alkaloids taspine (1) and (-)-asimilobine (2), which were detected for the first time in this species. Compound 1 showed a significantly higher effect on AChE than the positive control galanthamine and selectively inhibited the enzyme in a long-lasting and concentration-dependent fashion with an IC(50) value of 0.33 +/- 0.07 muM. Extensive molecular docking studies were performed with human and Torpedo californica-AChE employing Gold software to rationalize the binding interaction. The results suggested ligand 1 to bind in an alternative binding orientation when compared to galanthamine. While this is located in close vicinity to the catalytic amino acid triad, the 1-AChE complex was found to be stabilized by (i) sandwich-like pi-stacking interactions between the planar aromatic ligand (1) and the Trp84 and Phe330 of the enzyme, (ii) an esteratic site anchoring with the amino side chain, and (iii) a hydrogen-bonding network.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Ying; Zhang, Sheng; Du, Dan
A nanohybrid of gold nanoparticles (Au NPs) and chemically reduced graphene oxide nanosheets (cr-Gs) was synthesized by in situ growth of Au NPs on the surface of graphene nanosheets in the presence of poly(diallyldimethylammonium chloride) (PDDA), which not only improved the dispersion of Au NPs but also stabilized cholinesterase with high activity and loading efficiency. The obtained nanohybrid was characterized by TEM, XRD, XPS, and electrochemistry. Then an enzyme nanoassembly (AChE/Au NPs/cr-Gs) was prepared by self-assembling acetylcholinesterase (AChE) on Au NP/cr-Gs nanohybrid. An electrochemical sensor based on AChE/Au NPs/cr-Gs was further developed for ultrasensitive detection of organophosphate pesticide. The resultsmore » demonstrate that the developed approach provides a promising strategy to improve the sensitivity and enzyme activity of electrochemical biosensors.« less
Rodríguez-Fuentes, G; Gold-Bouchot, G
2000-01-01
Cholinesterase inhibition is considered a specific biomarker of exposure and effect for organophosphorous pesticides. Its use for monitoring has been hindered, particularly in tropical countries where organophosphates are widely used for malaria and dengue control, because of the frequent lack of suitable controls. An in vitro technique is proposed as a biochemical method for monitoring pollutant mixtures in sediment toxicity tests. Brain homogenate from the fish Oreochromis niloticus is used as the enzyme source. Optimum incubation time, extraction solvent and effect of crude oil on acetylcholinesterase (AChE) are reported. The method described was used in sediments from two Mexican lagoons, located in an oil extraction area where pesticides are used in agriculture and vector control campaigns. AChE inhibitions from 3 to 21% were found in these lagoons, even in the presence of high concentrations of petroleum.
Kocyigit, Umit M; Taşkıran, Ahmet Şevki; Taslimi, Parham; Yokuş, Ahmet; Temel, Yusuf; Gulçin, İlhami
2017-11-01
The aim of this study was to investigate the effects of oxytocin (OT), atosiban, which is an OT receptor antagonist, and OT-atosiban chemicals injected to rats on the activities of carbonic anhydrase (CA) and acetylcholinesterase (AChE) enzymes in liver and kidney tissues of rats. For this purpose, four different groups, each consisting of six rats (n = 6), were formed (control group, OT administered group, atosiban administered group, and both OT and atosiban administered group). The rats were necropsied 60 min after intraperitoneal injection of chemicals into the rats. Liver tissues of rats were extracted. CA and AChE enzyme activities were measured for each tissue by using hydratase, esterase, and acetylcholiniodide methods. Activity values for each enzyme obtained were statistically calculated. © 2017 Wiley Periodicals, Inc.
Camps, Pelayo; Formosa, Xavier; Galdeano, Carles; Gómez, Tània; Muñoz-Torrero, Diego; Ramírez, Lorena; Viayna, Elisabet; Gómez, Elena; Isambert, Nicolás; Lavilla, Rodolfo; Badia, Albert; Clos, M Victòria; Bartolini, Manuela; Mancini, Francesca; Andrisano, Vincenza; Bidon-Chanal, Axel; Huertas, Oscar; Dafni, Thomai; Luque, F Javier
2010-09-06
Two novel families of dual binding site acetylcholinesterase (AChE) inhibitors have been developed, consisting of a tacrine or 6-chlorotacrine unit as the active site interacting moiety, either the 5,6-dimethoxy-2-[(4-piperidinyl)methyl]-1-indanone fragment of donepezil (or the indane derivative thereof) or a 5-phenylpyrano[3,2-c]quinoline system, reminiscent to the tryciclic core of propidium, as the peripheral site interacting unit, and a linker of suitable length as to allow the simultaneous binding at both sites. These hybrid compounds are all potent and selective inhibitors of human AChE, and more interestingly, are able to interfere in vitro both formation and aggregation of the beta-amyloid peptide, the latter effects endowing these compounds with the potential to modify Alzheimer's disease progression. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.
Roepcke, Clarisse B S; Muench, Susanne B; Schulze, Holger; Bachmann, Till T; Bachmann, Till; Schmid, Rolf D; Hauer, Bernhard
2010-08-11
Acetylcholinesterase (AChE) is responsible for the hydrolysis of acetylcholine in the nervous system. It is inhibited by organophosphate and carbamate pesticides. However, this enzyme is only slightly inhibited by organophosphorothionates, which makes the detection of these pesticides analytically very difficult. A new enzymatic method for the activation and detection of phosphorothionates was developed with the capability to be used directly in food samples without the need of laborious solvent extraction steps. Chloroperoxidase (CPO) from Caldariomyces fumago was combined with tert-butyl hydroperoxide and two halides. Chlorpyrifos and triazophos were completely oxidized. Fenitrothion, methidathion and parathion methyl showed conversion rates between 54 and 61%. Furthermore, the oxidized solution was submitted to an AChE biosensor assay. Chlorpyrifos spiked in organic orange juice was oxidized, where its oxon product was detected in concentrations down to 5 microg/L (final concentration food sample: 25 microg/L). The complete duration of the method takes about 2 h.
Besbes Hlila, Malek; Omri, Amel; Ben Jannet, Hichem; Lamari, Ali; Aouni, Mahjoub; Selmi, Boulbaba
2013-05-01
There is a need for the discovery of novel natural antioxidants and acetylcholinesterase inhibitors (AChEIs) that are safe and effective at a global level. This is the first study on antioxidant and anti-acethylcholinesterase activity of Scabiosa arenaria Forssk (Dipsacaceae). The antioxidant potential and anti-acetylcholinesterase (AChE) activity of S. arenaria were investigated. The crude, ethyl acetate (EtOAc), butanol (n-BuOH) and water extracts prepared from flowers, fruits and stems and leaves of S. arenaria were tested to determine their total polyphenol content (TPC), total flavonoid content (TFC), total condensed tannin content (CTC) and their antioxidant activity by using 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS), reducing power and β-carotene bleaching inhibition activity. Anti-AChE activity was also determined. EtOAc and n-BuOH fractions of fruits had both the highest (TPC) (269.09 mg gallic acid equivalents/g dry weight). The crude extract of stems and leaves had the highest TFC (10.9 mg quercetin equivalent/g dry weight). The n-BuOH fraction of stems and leaves had the highest CTC (489.75 mg catechin equivalents/g dry weight). The EtOAc fraction of flowers exhibit a higher activity in each antioxidant system with a special attention for DPPH assay (IC50 = 0.017 mg/mL) and reducing power (EC50 = 0.02 mg/mL). The EtOAc and n-BuOH fractions of stems and leaves showed strong inhibition of AChE (IC50 = 0.016 and 0.029 mg/mL, respectively). These results suggest the potential of S. arenaria as a possible source of novel compounds and as an alternative antioxidant and AChEIs.
Tsai, Ping-Huang; Liu, Fang-Chun; Tsao, Jenho; Wang, Yung-Hung; Lo, Men-Tzung
2015-01-01
Alzheimer's disease (AD) is the most common form of dementia. According to one hypothesis, AD is caused by the reduced synthesis of the neurotransmitter acetylcholine. Therefore, acetylcholinesterase (AChE) inhibitors are considered to be an effective therapy. For clinicians, however, AChE inhibitors are not a predictable treatment for individual patients. We aimed to disclose the difference by biosignal processing. In this study, we used multiscale entropy (MSE) analysis, which can disclose the embedded information in different time scales, in electroencephalography (EEG), in an attempt to predict the efficacy of AChE inhibitors. Seventeen newly diagnosed AD patients were enrolled, with an initial minimental state examination (MMSE) score of 18.8 ± 4.5. After 12 months of AChE inhibitor therapy, 7 patients were responsive and 10 patients were nonresponsive. The major difference between these two groups is Slope 2 (MSE6 to 20). The area below the receiver operating characteristic (ROC) curve of Slope 2 is 0.871 (95% CI = 0.69–1). The sensitivity is 85.7% and the specificity is 60%, whereas the cut-off value of Slope 2 is −0.024. Therefore, MSE analysis of EEG signals, especially Slope 2, provides a potential tool for predicting the efficacy of AChE inhibitors prior to therapy. PMID:26120358
Tong, Fan; Islam, Rafique M.; Carlier, Paul R.; Ma, Ming; Ekström, Fredrik; Bloomquist, Jeffrey R.
2013-01-01
Conventional insecticides targeting acetylcholinesterase (AChE) typically show high mammalian toxicities and because there is resistance to these compounds in many insect species, alternatives to established AChE inhibitors used for pest control are needed. Here we used a fluorescence method to monitor interactions between various AChE inhibitors and the AChE peripheral anionic site, which is a novel target for new insecticides acting on this enzyme. The assay uses thioflavin-T as a probe, which binds to the peripheral anionic site of AChE and yields an increase in fluorescent signal. Three types of AChE inhibitors were studied: catalytic site inhibitors (carbamate insecticides, edrophonium, and benzylpiperidine), peripheral site inhibitors (tubocurarine, ethidium bromide, and propidium iodide), and bivalent inhibitors (donepezil, BW284C51, and a series of bis(n)-tacrines). All were screened on murine AChE to compare and contrast changes of peripheral site conformation in the TFT assay with catalytic inhibition. All the inhibitors reduced thioflavin-T fluorescence in a concentration-dependent manner with potencies (IC50) ranging from 8 nM for bis(6)-tacrine to 159 μM for benzylpiperidine. Potencies in the fluorescence assay were correlated well with their potencies for enzyme inhibition (R2 = 0.884). Efficacies for reducing thioflavin-T fluorescence ranged from 23–36% for catalytic site inhibitors and tubocurarine to near 100% for ethidium bromide and propidium iodide. Maximal efficacies could be reconciled with known mechanisms of interaction of the inhibitors with AChE. When extended to pest species, we anticipate these findings will assist in the discovery and development of novel, selective bivalent insecticides acting on AChE. PMID:24003261
Duan, Songwei; Guan, Xiaoyin; Lin, Runxuan; Liu, Xincheng; Yan, Ying; Lin, Ruibang; Zhang, Tianqi; Chen, Xueman; Huang, Jiaqi; Sun, Xicui; Li, Qingqing; Fang, Shaoliang; Xu, Jun; Yao, Zhibin; Gu, Huaiyu
2015-05-01
Alzheimer's disease (AD) is characterized by amyloid β (Aβ) peptide aggregation and cholinergic neurodegeneration. Therefore, in this paper, we examined silibinin, a flavonoid extracted from Silybum marianum, to determine its potential as a dual inhibitor of acetylcholinesterase (AChE) and Aβ peptide aggregation for AD treatment. To achieve this, we used molecular docking and molecular dynamics simulations to examine the affinity of silibinin with Aβ and AChE in silico. Next, we used circular dichroism and transmission electron microscopy to study the anti-Aβ aggregation capability of silibinin in vitro. Moreover, a Morris Water Maze test, enzyme-linked immunosorbent assay, immunohistochemistry, 5-bromo-2-deoxyuridine double labeling, and a gene gun experiment were performed on silibinin-treated APP/PS1 transgenic mice. In molecular dynamics simulations, silibinin interacted with Aβ and AChE to form different stable complexes. After the administration of silibinin, AChE activity and Aβ aggregations were down-regulated, and the quantity of AChE also decreased. In addition, silibinin-treated APP/PS1 transgenic mice had greater scores in the Morris Water Maze. Moreover, silibinin could increase the number of newly generated microglia, astrocytes, neurons, and neuronal precursor cells. Taken together, these data suggest that silibinin could act as a dual inhibitor of AChE and Aβ peptide aggregation, therefore suggesting a therapeutic strategy for AD treatment. Copyright © 2015 Elsevier Inc. All rights reserved.
Worek, Franz; Aurbek, Nadine; Wille, Timo; Eyer, Peter; Thiermann, Horst
2011-01-15
Previous in vitro studies showed marked species differences in the reactivating efficiency of oximes between human and animal acetylcholinesterase (AChE) inhibited by organophosphorus (OP) nerve agents. These findings provoked the present in vitro study which was designed to determine the inhibition, aging, spontaneous and oxime-induced reactivation kinetics of the pesticide paraoxon, serving as a model compound for diethyl-OP, and the oximes obidoxime, pralidoxime, HI 6 and MMB-4 with human, Rhesus monkey, swine, rabbit, rat and guinea pig erythrocyte AChE. Comparable results were obtained with human and monkey AChE. Differences between human, swine, rabbit, rat and guinea pig AChE were determined for the inhibition and reactivation kinetics. A six-fold difference of the inhibitory potency of paraoxon with human and guinea pig AChE was recorded while only moderate differences of the reactivation constants between human and animal AChE were determined. Obidoxime was by far the most effective reactivator with all tested species. Only minor species differences were found for the aging and spontaneous reactivation kinetics. The results of the present study underline the necessity to determine the inhibition, aging and reactivation kinetics in vitro as a basis for the development of meaningful therapeutic animal models, for the proper assessment of in vivo animal data and for the extrapolation of animal data to humans. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Hamulakova, Slavka; Poprac, Patrik; Jomova, Klaudia; Brezova, Vlasta; Lauro, Peter; Drostinova, Lenka; Jun, Daniel; Sepsova, Vendula; Hrabinova, Martina; Soukup, Ondrej; Kristian, Pavol; Gazova, Zuzana; Bednarikova, Zuzana; Kuca, Kamil; Valko, Marian
2016-08-01
Alzheimer's disease is a multifactorial disease that is characterized mainly by Amyloid-β (A-β) deposits, cholinergic deficit and extensive metal (copper, iron)-induced oxidative stress. In this work we present details of the synthesis, antioxidant and copper-chelating properties, DNA protection study, cholinergic activity and amyloid-antiaggregation properties of new multifunctional tacrine-7-hydroxycoumarin hybrids. The mode of interaction between copper(II) and hybrids and interestingly, the reduction of Cu(II) to Cu(I) species (for complexes Cu-5e-g) were confirmed by EPR measurements. EPR spin trapping on the model Fenton reaction, using 5,5-dimethyl-1-pyrroline N-oxide (DMPO) as a spin trap, demonstrated a significantly suppressed formation of hydroxyl radicals for the Cu-5e complex in comparison with free copper(II). This suggests that compound 5e upon coordination to free copper ion prevents the Cu(II)-catalyzed decomposition of hydrogen peroxide, which in turn may alleviate oxidative stress-induced damage. Protective activity of hybrids 5c and 5e against DNA damage in a Fenton system (copper catalyzed) was found to be in excellent agreement with the EPR spin trapping study. Compound 5g was the most effective in the inhibition of acetylcholinesterase (hAChE, IC50=38nM) and compound 5b was the most potent inhibitor of butyrylcholinesterase (hBuChE, IC50=63nM). Compound 5c was the strongest inhibitor of A-β1-40 aggregation, although a significant inhibition (>50%) was detected for compounds 5b, 5d, 5e and 5g. Collectively, these results suggest that the design and investigation of multifunctional agents containing along with the acetylcholinesterase inhibitory segment also an antioxidant moiety capable of alleviating metal (copper)-induced oxidative stress, may be of importance in the treatment of Alzheimer's disease. Copyright © 2016 Elsevier Inc. All rights reserved.
Gao, Daquan; Zhan, Chang-Guo
2006-01-01
Molecular dynamics (MD) simulations and quantum mechanical/molecular mechanical (QM/MM) calculations were performed on the prereactive enzyme-substrate complex, transition states, intermediates, and product involved in the process of human butyrylcholinesterase (BChE)-catalyzed hydrolysis of (-)-cocaine. The computational results consistently reveal a unique role of the oxyanion hole (consisting of G116, G117, and A199) in BChE-catalyzed hydrolysis of cocaine, compared to acetylcholinesterase (AChE)-catalyzed hydrolysis of acetylcholine. During BChE-catalyzed hydrolysis of cocaine, only G117 has a hydrogen bond with the carbonyl oxygen (O31) of the cocaine benzoyl ester in the prereactive BChE-cocaine complex, and the NH groups of G117 and A199 are hydrogen-bonded with O31 of cocaine in all of the transition states and intermediates. Surprisingly, the NH hydrogen of G116 forms an unexpected hydrogen bond with the carboxyl group of E197 side chain and, therefore, is not available to form a hydrogen bond with O31 of cocaine in the acylation. The NH hydrogen of G116 is only partially available to form a weak hydrogen bond with O31 of cocaine in some structures involved in the deacylation. The change of the estimated hydrogen-bonding energy between the oxyanion hole and O31 of cocaine during the reaction process demonstrates how the protein environment can affect the energy barrier for each step of the BChE-catalyzed hydrolysis of cocaine. These insights concerning the effects of the oxyanion hole on the energy barriers provide valuable clues on how to rationally design BChE mutants with a higher catalytic activity for the hydrolysis of (-)-cocaine. 2005 Wiley-Liss, Inc.
Gao, Daquan; Zhan, Chang-Guo
2010-01-01
Molecular dynamics (MD) simulations and quantum mechanical/molecular mechanical (QM/MM) calculations were performed on the prereactive enzyme-substrate complex, transition states, intermediates, and product involved in the process of human butyrylcholinesterase (BChE)-catalyzed hydrolysis of (−)-cocaine. The computational results consistently reveal a unique role of the oxyanion hole (consisting of G116, G117, and A199) in BChE-catalyzed hydrolysis of cocaine, as compared to acetylcholinesterase (AChE)-catalyzed hydrolysis of acetylcholine. During BChE-catalyzed hydrolysis of cocaine, only G117 has a hydrogen bond with the carbonyl oxygen (O31) of the cocaine benzoyl ester in the prereactive BChE-cocaine complex, and the NH groups of G117 and A199 are hydrogen-bonded with O31 of cocaine in all of the transition states and intermediates. Surprisingly, the NH hydrogen of G116 forms an unexpected hydrogen bond with the carboxyl group of E197 side chain and, therefore, is not available to form a hydrogen bond with O31 of cocaine in the acylation. The NH hydrogen of G116 is only partially available to form a weak hydrogen bond with O31 of cocaine in some structures involved in the deacylation. The change of the estimated hydrogen bonding energy between the oxyanion hole and O31 of cocaine during the reaction process demonstrates how the protein environment can affect the energy barrier for each step of the BChE-catalyzed hydrolysis of cocaine. These insights concerning the effects of the oxyanion hole on the energy barriers provide valuable clues on how to rationally design BChE mutants with a higher catalytic activity for the hydrolysis of (−)-cocaine. PMID:16288482
Yang, Zhifan; Chen, Jun; Chen, Yongqin; Jiang, Sijing
2010-01-01
A full cDNA encoding an acetylcholinesterase (AChE, EC 3.1.1.7) was cloned and characterized from the brown planthopper, Nilaparvata lugens Stål (Hemiptera: Delphacidae). The complete cDNA (2467 bp) contains a 1938-bp open reading frame encoding 646 amino acid residues. The amino acid sequence of the AChE deduced from the cDNA consists of 30 residues for a putative signal peptide and 616 residues for the mature protein with a predicted molecular weight of 69,418. The three residues (Ser242, Glu371, and His485) that putatively form the catalytic triad and the six Cys that form intra-subunit disulfide bonds are completely conserved, and 10 out of the 14 aromatic residues lining the active site gorge of the AChE are also conserved. Northern blot analysis of poly(A)+ RNA showed an approximately 2.6-kb transcript, and Southern blot analysis revealed there likely was just a single copy of this gene in N. lugens. The deduced protein sequence is most similar to AChE of Nephotettix cincticeps with 83% amino acid identity. Phylogenetic analysis constructed with 45 AChEs from 30 species showed that the deduced N. lugens AChE formed a cluster with the other 8 insect AChE2s. Additionally, the hypervariable region and amino acids specific to insect AChE2 also existed in the AChE of N. lugens. The results revealed that the AChE cDNA cloned in this work belongs to insect AChE2 subgroup, which is orthologous to Drosophila AChE. Comparison of the AChEs between the susceptible and resistant strains revealed a point mutation, Gly185Ser, is likely responsible for the insensitivity of the AChE to methamidopho in the resistant strain. PMID:20874389
Multi-Target Directed Donepezil-Like Ligands for Alzheimer's Disease
Unzeta, Mercedes; Esteban, Gerard; Bolea, Irene; Fogel, Wieslawa A.; Ramsay, Rona R.; Youdim, Moussa B. H.; Tipton, Keith F.; Marco-Contelles, José
2016-01-01
HIGHLIGHTS ASS234 is a MTDL compound containing a moiety from Donepezil and the propargyl group from the PF 9601N, a potent and selective MAO B inhibitor. This compound is the most advanced anti-Alzheimer agent for preclinical studies identified in our laboratory.Derived from ASS234 both multipotent donepezil-indolyl (MTDL-1) and donepezil-pyridyl hybrids (MTDL-2) were designed and evaluated as inhibitors of AChE/BuChE and both MAO isoforms. MTDL-2 showed more high affinity toward the four enzymes than MTDL-1.MTDL-3 and MTDL-4, were designed containing the N-benzylpiperidinium moiety from Donepezil, a metal- chelating 8-hydroxyquinoline group and linked to a N-propargyl core and they were pharmacologically evaluated.The presence of the cyano group in MTDL-3, enhanced binding to AChE, BuChE and MAO A. It showed antioxidant behavior and it was able to strongly complex Cu(II), Zn(II) and Fe(III).MTDL-4 showed higher affinity toward AChE, BuChE.MTDL-3 exhibited good brain penetration capacity (ADMET) and less toxicity than Donepezil. Memory deficits in scopolamine-lesioned animals were restored by MTDL-3.MTDL-3 particularly emerged as a ligand showing remarkable potential benefits for its use in AD therapy. Alzheimer's disease (AD), the most common form of adult onset dementia, is an age-related neurodegenerative disorder characterized by progressive memory loss, decline in language skills, and other cognitive impairments. Although its etiology is not completely known, several factors including deficits of acetylcholine, β-amyloid deposits, τ-protein phosphorylation, oxidative stress, and neuroinflammation are considered to play significant roles in the pathophysiology of this disease. For a long time, AD patients have been treated with acetylcholinesterase inhibitors such as donepezil (Aricept®) but with limited therapeutic success. This might be due to the complex multifactorial nature of AD, a fact that has prompted the design of new Multi-Target-Directed Ligands (MTDL) based on the “one molecule, multiple targets” paradigm. Thus, in this context, different series of novel multifunctional molecules with antioxidant, anti-amyloid, anti-inflammatory, and metal-chelating properties able to interact with multiple enzymes of therapeutic interest in AD pathology including acetylcholinesterase, butyrylcholinesterase, and monoamine oxidases A and B have been designed and assessed biologically. This review describes the multiple targets, the design rationale and an in-house MTDL library, bearing the N-benzylpiperidine motif present in donepezil, linked to different heterocyclic ring systems (indole, pyridine, or 8-hydroxyquinoline) with special emphasis on compound ASS234, an N-propargylindole derivative. The description of the in vitro biological properties of the compounds and discussion of the corresponding structure-activity-relationships allows us to highlight new issues for the identification of more efficient MTDL for use in AD therapy. PMID:27252617
Obajuluwa, Adejoke Olukayode; Akinyemi, Ayodele Jacob; Afolabi, Olakunle Bamikole; Adekoya, Khalid; Sanya, Joseph Olurotimi; Ishola, Azeez Olakunle
2017-01-01
Humans in modern society are exposed to an ever-increasing number of electromagnetic fields (EMFs) and some studies have demonstrated that these waves can alter brain function but the mechanism still remains unclear. Hence, this study sought to investigate the effect of 2.5 Ghz band radio-frequency electromagnetic waves (RF-EMF) exposure on cerebral cortex acetylcholinesterase (AChE) activity and their mRNA expression level as well as locomotor function and anxiety-linked behaviour in male rats. Animals were divided into four groups namely; group 1 was control (without exposure), group 2-4 were exposed to 2.5 Ghz radiofrequency waves from an installed WI-FI device for a period of 4, 6 and 8 weeks respectively. The results revealed that WiFi exposure caused a significant increase in anxiety level and affect locomotor function. Furthermore, there was a significant decrease in AChE activity with a concomitant increase in AChE mRNA expression level in WiFi exposed rats when compared with control. In conclusions, these data showed that long term exposure to WiFi may lead to adverse effects such as neurodegenerative diseases as observed by a significant alteration on AChE gene expression and some neurobehavioral parameters associated with brain damage.
Anderson, L A; Christianson, G B; Linden, J F
2009-02-03
Cytochrome oxidase (CYO) and acetylcholinesterase (AChE) staining density varies across the cortical layers in many sensory areas. The laminar variations likely reflect differences between the layers in levels of metabolic activity and cholinergic modulation. The question of whether these laminar variations differ between primary sensory cortices has never been systematically addressed in the same set of animals, since most studies of sensory cortex focus on a single sensory modality. Here, we compared the laminar distribution of CYO and AChE activity in the primary auditory, visual, and somatosensory cortices of the mouse, using Nissl-stained sections to define laminar boundaries. Interestingly, for both CYO and AChE, laminar patterns of enzyme activity were similar in the visual and somatosensory cortices, but differed in the auditory cortex. In the visual and somatosensory areas, staining densities for both enzymes were highest in layers III/IV or IV and in lower layer V. In the auditory cortex, CYO activity showed a reliable peak only at the layer III/IV border, while AChE distribution was relatively homogeneous across layers. These results suggest that laminar patterns of metabolic activity and cholinergic influence are similar in the mouse visual and somatosensory cortices, but differ in the auditory cortex.
Tripathi, Rati K P; Rai, Gopal K; Ayyannan, Senthil R
2016-06-06
A library of 3,4-(methylenedioxy)aniline-derived semicarbazones was designed, synthesized, and evaluated as monoamine oxidase (MAO) and acetylcholinesterase (AChE) inhibitors for the treatment of neurodegenerative diseases. Most of the new compounds selectively inhibited MAO-B and AChE, with IC50 values in the micro- or nanomolar ranges. Compound 16, 1-(2,6-dichlorobenzylidene)-4-(benzo[1,3]dioxol-5-yl)semicarbazide presented a balanced multifunctional profile of MAO-A (IC50 =4.52±0.032 μm), MAO-B (IC50 =0.059±0.002 μm), and AChE (IC50 =0.0087±0.0002 μm) inhibition without neurotoxicity. Kinetic studies revealed that compound 16 exhibits competitive and reversible inhibition against MAO-A and MAO-B, and mixed-type inhibition against AChE. Molecular docking studies further revealed insight into the possible interactions within the enzyme-inhibitor complexes. The most active compounds were found to interact with the enzymes through hydrogen bonding and hydrophobic interactions. Additionally, in silico molecular properties and ADME properties of the synthesized compounds were calculated to explore their drug-like characteristics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Yanhua; Chen, Chen; Zhao, Xueping; Wang, Qiang; Qian, Yongzhong
2015-07-01
Mixtures of organophosphate (OP) and carbamate (CB) pesticides are commonly detected in freshwater ecosystems. These pesticides inhibit the activity of acetylcholinesterase (AChE) and have potential to interfere with behaviors that may be essential for the survival of species. Although the effects of individual anticholinesterase insecticides on aquatic species have been studied for decades, the neurotoxicity of mixtures is still poorly understood. In the present study, brain AChE inhibition in carp (Cyprinus carpio) exposed to a series of concentrations of the organophosphates (malathion and triazophos) as well as the carbamates (fenobucarb and carbosulfan) was measured. In equitoxic mixtures, the observed AChE activity inhibition of the malathion plus triazophos, and triazophos plus carbosulfan mixtures, was synergism. In equivalent concentration mixtures, the combination of malathion plus fenobucarb mixture conformed to synergism, while the observed AChE activity inhibition of the remaining pairings was less than additive. Single pesticide risk assessments are likely to underestimate the impacts of these insecticides on carps in aquatic environment where mixtures occur. Moreover, mixtures of pesticides that have been commonly reported in aquatic ecosystems may pose a more important challenge than previously anticipated. Copyright © 2014 Elsevier Inc. All rights reserved.
Alkondon, Manickavasagom; Albuquerque, Edson X.; Pereira, Edna F.R.
2013-01-01
The involvement of brain nicotinic acetylcholine receptors (nAChRs) in the neurotoxicological effects of soman, a potent acetylcholinesterase (AChE) inhibitor and a chemical warfare agent, is not clear. This is partly due to a poor understanding of the role of AChE in brain nAChR-mediated functions. To test the hypothesis that AChE inhibition builds sufficient acetylcholine (ACh) in the brain and facilitates nAChR-dependent glutamate transmission, we used whole-cell patch-clamp technique to record spontaneous glutamate excitatory postsynaptic currents (EPSCs) from CA1 stratum radiatum interneurons (SRI) in hippocampal slices. First, the frequency, amplitude and kinetics of EPSCs recorded from slices of control guinea pigs were compared to those recorded from slices of guinea pigs after a single injection of the irreversible AChE inhibitor soman (25.2 μg/kg, s.c.). Second, EPSCs were recorded from rat hippocampal slices before and after their superfusion with the reversible AChE inhibitor donepezil (100 nM). The frequency of EPSCs was significantly higher in slices taken from guinea pigs 24 h but not 7 days after the soman injection than in slices from control animals. In 52% of the rat hippocampal slices tested, bath application of donepezil increased the frequency of EPSCs. Further, exposure to donepezil increased both burst-like and large-amplitude EPSCs, and increased the proportion of short (20–100 ms) inter-event intervals. Donepezil’s effects were suppressed significantly in presence of 10 μM mecamylamine or 10 nM methyllycaconitine. These results support the concept that AChE inhibition is able to recruit nAChR-dependent glutamate transmission in the hippocampus and such a mechanism can contribute to the acute neurotoxicological actions of soman. PMID:23511125
Teralı, Kerem; Dalmizrak, Ozlem; Hoti, Qendresa; Ozer, Nazmi
2018-06-08
Abamectin, a blend of the natural avermectins B 1a and B 1b , is a widely-used insecticide/miticide with relatively low toxicity to mammals. Exposure to high doses of it, however, leads to cholinergic-like neurotoxic effects. Butyrylcholinesterase, which is best known for its abundant presence in plasma, is a serine hydrolase loosely coupled with the cholinergic system. It protects and supports the neurotransmitter function of its sister enzyme acetylcholinesterase. Here, using experimental and computational studies, we provide evidence demonstrating that abamectin is a potent (IC 50 = 10.6 μM; K i = 2.26 ± 0.35 μM) inhibitor of horse serum butyrylcholinesterase and that it interacts with the enzyme in a reversible, competitive manner predictively to block the mouth of the active-site gorge of the enzyme and to bind to several critical residues that normally bind/hydrolyze choline esters.
Esterase metabolism of cholinesterase inhibitors using rat liver in vitro
A variety of chemicals, such as organophosphate (OP) and carbamate pesticides, nerve agents, and industrial chemicals, inhibit acetylcholinesterase (AChE) leading to overstimulation of the cholinergic nervous system. The resultant neurotoxicity is similar across mammalian species...