Sample records for acetylcholinesterase ache reactivators

  1. Synthesis and in-vitro reactivation screening of imidazolium aldoximes as reactivators of sarin and VX-inhibited human acetylcholinesterase (hAChE).

    PubMed

    Sharma, Rahul; Gupta, Bhanushree; Sahu, Arvind Kumar; Acharya, Jyotiranjan; Satnami, Manmohan L; Ghosh, Kallol K

    2016-11-25

    Post-treatment of organophosphate (OP) poisoning involves the application of oxime reactivator as an antidote. Structurally different oximes are widely studied to examine their kinetic and mechanistic behavior against OP-inhibited cholinesterase enzyme. A series of structurally related 1,3-disubstituted-2-[(hydroxyiminomethyl)alkyl]imidazolium halides (5a-5e, 9a-9c) were synthesized and further evaluated for their in-vitro reactivation ability to reactivate sarin- and VX-inhibited human acetylcholinesterase (hAChE). The observed results were compared with the reactivation efficacy of standard reactivators; 2-PAM, obidoxime and HI-6. Amongst the synthesized oximes, 5a, 9a and 9b were found to be most potent reactivators against sarin-inhibited hAChE while in case of VX only 9a exhibited comparable reactivity with 2-PAM. Incorporation of pyridinium ring to the imidazole ring resulted in substantial increase in the reactivation strength of prepared reactivator. Physicochemical properties of synthesized reactivators have also been evaluated. Copyright © 2016. Published by Elsevier Ireland Ltd.

  2. Recent advances in acetylcholinesterase Inhibitors and Reactivators: an update on the patent literature (2012-2015).

    PubMed

    McHardy, Stanton F; Wang, Hua-Yu Leo; McCowen, Shelby V; Valdez, Matthew C

    2017-04-01

    Acetylcholinesterase (AChE) is the major enzyme that hydrolyzes acetylcholine, a key neurotransmitter for synaptic transmission, into acetic acid and choline. Mild inhibition of AChE has been shown to have therapeutic relevance in Alzheimer's disease (AD), myasthenia gravis, and glaucoma among others. In contrast, strong inhibition of AChE can lead to cholinergic poisoning. To combat this, AChE reactivators have to be developed to remove the offending AChE inhibitor, restoring acetylcholine levels to normal. Areas covered: This article covers recent advances in the development of acetylcholinesterase modulators, including both inhibitors of acetylcholinesterase for the efforts in development of new chemical entities for treatment of AD, as well as re-activators for resurrection of organophosphate bound acetylcholinesterase. Expert opinion: Over the past three years, research efforts have continued to identify novel small molecules as AChE inhibitors for both CNS and peripheral diseases. The more recent patent activity has focused on three AChE ligand design areas: derivatives of known AChE ligands, natural product based scaffolds and multifunctional ligands, all of which have produced some unique chemical matter with AChE inhibition activities in the mid picomolar to low micromolar ranges. New AChE inhibitors with polypharmacology or dual inhibitory activity have also emerged as highlighted by new AChE inhibitors with dual activity at L-type calcium channels, GSK-3, BACE1 and H3, although most only show low micromolar activity, thus further research is warranted. New small molecule reactivators of organophosphate-inhibited AChE have also been disclosed, which focused on the design of neutral ligands with improved pharmaceutical properties and blood-brain barrier (BBB) penetration. Gratifyingly, some research in this area is moving away from the traditional quaternary pyridinium oximes AChE reactivators, while still employing the necessary reactivation group (oximes

  3. Design, evaluation and structure-activity relationship studies of the AChE reactivators against organophosphorus pesticides.

    PubMed

    Musilek, Kamil; Dolezal, Martin; Gunn-Moore, Frank; Kuca, Kamil

    2011-07-01

    Organophosphate pesticides (OPPs; e.g. chlorpyrifos, diazinon, paraoxon) are a wide and heterogeneous group of organophosphorus compounds. Their biological activity of inhibiting acetylcholinesterase (AChE) or butyrylcholinesterase (BChE) ranks them as life endangering agents. The necessary treatment after OPP exposure involves the use of parasympatolytics (e.g. atropine), oxime reactivators (e.g. obidoxime), and anticonvulsive drugs (e.g. diazepam). Therefore, the reactivators of AChE are essential compounds in the treatment of OPP intoxications. Commercial AChE reactivators (e.g. pralidoxime, HI-6, obidoxime, trimedoxime, methoxime) were originally developed for other members of the organophosphate family, such as nerve agents (e.g. sarin, soman, tabun, VX). Pralidoxime, HI-6, and methoxime were found to be weak reactivators of OPP-inhibited AChE. Obidoxime and trimedoxime showed satisfactory reactivation against various OPPs with minor toxicity issues. During the last two decades, the treatment of OPP exposure has become more widely discussed because of growing agricultural production, industrialization, and harmful social issues (e.g. suicides). In this review is the summarized design, evaluation, and structure-activity relationship studies of recently produced AChE reactivators. Since pralidoxime, over 300 oximes have been produced or tested against OPP poisoning, and several novel compounds show very promising abilities as comparable (or higher) to commercial oximes. Some of these are highlighted for their further testing of OPP exposure and, additionally, the main structure-activity relationship of AChE reactivators against OPP is discussed. © 2009 Wiley Periodicals, Inc.

  4. Discovery of New Classes of Compounds that Reactivate Acetylcholinesterase Inhibited by Organophosphates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katz, Francine S.; Pecic, Stevan; Tran, Timothy H.

    Acetylcholinesterase (AChE) that has been covalently inhibited by organophosphate compounds (OPCs), such as nerve agents and pesticides, has traditionally been reactivated by using nucleophilic oximes. There is, however, a clearly recognized need for new classes of compounds with the ability to reactivate inhibited AChE with improved in vivo efficacy. Here we describe our discovery of new functional groups—Mannich phenols and general bases—that are capable of reactivating OPC-inhibited AChE more efficiently than standard oximes and we describe the cooperative mechanism by which these functionalities are delivered to the active site. These discoveries, supported by preliminary in vivo results and crystallographic data,more » significantly broaden the available approaches for reactivation of AChE.« less

  5. Reactivation of organophosphate-inhibited human acetylcholinesterase by isonitrosoacetone (MINA): a kinetic analysis.

    PubMed

    Worek, Franz; Thiermann, Horst

    2011-11-15

    Treatment of poisoning by highly toxic organophosphorus compounds (OP) with atropine and an acetylcholinesterase (AChE) reactivator (oxime) is of limited effectiveness in case of different nerve agents and pesticides. One challenge is the reactivation of OP-inhibited brain AChE which shows inadequate success with charged pyridinium oximes. Recent studies with high doses of the tertiary oxime isonitrosoacetone (MINA) indicated a beneficial effect on central and peripheral AChE and on survival in nerve agent poisoned guinea pigs. Now, an in vitro study was performed to determine the reactivation kinetics of MINA with tabun-, sarin-, cyclosarin-, VX- and paraoxon-inhibited human AChE. MINA showed an exceptionally low affinity to inhibited AChE but, with the exception of tabun-inhibited AChE, a moderate to high reactivity. In comparison to the pyridinium oximes obidoxime, 2-PAM and HI-6 the affinity and reactivity of MINA was in most cases lower and in relation to the most effective reactivators, the second order reactivation constant of MINA was 500 to 3400-fold lower. Hence, high in vivo MINA concentrations would be necessary to achieve at least partial reactivation. This assumption corresponds to in vivo data showing a dose-dependent effect on reactivation and survival in animals. In view, of the toxic potential of MINA in animals human studies would be necessary to determine the tolerability and pharmacokinetics of MINA in order to enable a proper assessment of the value of this oxime as an antidote in OP poisoning. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  6. Acetylcholinesterases of Rhipicephalus (Boophilus) microplus – Multiple gene expression presents an opportune model system for elucidation of multiple functions of AChEs.

    USDA-ARS?s Scientific Manuscript database

    Acetylcholinesterase (AChE) is a key neural enzyme of both vertebrates and invertebrates, and is the biochemical target of organophosphate and carbamate pesticides for invertebrates, as well as vertebrate nerve agents, e.g., soman, tabun, VX, and others. AChE inhibitors are also key drugs among thos...

  7. Sesquiterpenes and a monoterpenoid with acetylcholinesterase (AchE) inhibitory activity from Valeriana officinalis var. latiofolia in vitro and in vivo.

    PubMed

    Chen, Heng-Wen; He, Xuan-Hui; Yuan, Rong; Wei, Ben-Jun; Chen, Zhong; Dong, Jun-Xing; Wang, Jie

    2016-04-01

    Acetylcholinesterase Inhibitor (AchEI) is the most extensive in all anti-dementia drugs. The extracts and isolated compounds from the Valeriana genus have shown anti-dementia bioactivity. Four new sesquiterpenoids (1-4) and a new monoterpenoid (5) were isolated from the root of Valeriana officinalis var. latiofolia. The acetylcholinesterase (AchE) inhibitory activity of isolates was evaluated by modified Ellman method in vitro. Learning and memory ability of compound 4 on mice was evaluated by the Morris water maze. The contents of acetylcholine (Ach), acetylcholine transferase (ChAT) and AchE in mice brains were determined by colorimetry. The results showed IC50 of compound 4 was 0.161 μM in vitro. Compared with the normal group, the learning and memory ability of mice and the contents of Ach and ChAT decreased in model group mice (P<0.01), while the AchE increased (P<0.01). Compared with the model group, Ach and ChAT in the positive control group, the high-dose group and the medium-dose group increased (P<0.01), while the AchE decreased (P<0.01). Compound 4 can improve the learning and memory abilities of APPswe/PSΔE9 double-transgenic mice, and the mechanism may be related to the regulation of the relative enzyme in the cholinergic system. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Comparison of oxime reactivation and aging of nerve agent-inhibited monkey and human acetylcholinesterases.

    PubMed

    Luo, Chunyuan; Tong, Min; Maxwell, Donald M; Saxena, Ashima

    2008-09-25

    Non-human primates are valuable animal models that are used for the evaluation of nerve agent toxicity as well as antidotes and results from animal experiments are extrapolated to humans. It has been demonstrated that the efficacy of an oxime primarily depends on its ability to reactivate nerve agent-inhibited acetylcholinesterase (AChE). If the in vitro oxime reactivation of nerve agent-inhibited animal AChE is similar to that of human AChE, it is likely that the results of an in vivo animal study will reliably extrapolate to humans. Therefore, the goal of this study was to compare the aging and reactivation of human and different monkey (Rhesus, Cynomolgus, and African Green) AChEs inhibited by GF, GD, and VR. The oximes examined include the traditional oxime 2-PAM, two H-oximes HI-6 and HLo-7, and the new candidate oxime MMB4. Results indicate that oxime reactivation of all three monkey AChEs was very similar to human AChE. The maximum difference in the second-order reactivation rate constant between human and three monkey AChEs or between AChEs from different monkey species was 5-fold. Aging rate constants of GF-, GD-, and VR-inhibited monkey AChEs were very similar to human AChE except for GF-inhibited monkey AChEs, which aged 2-3 times faster than the human enzyme. The results of this study suggest that all three monkey species are suitable animal models for nerve agent antidote evaluation since monkey AChEs possess similar biochemical/pharmacological properties to human AChE.

  9. In vitro ability of currently available oximes to reactivate organophosphate pesticide-inhibited human acetylcholinesterase and butyrylcholinesterase.

    PubMed

    Jun, Daniel; Musilova, Lucie; Musilek, Kamil; Kuca, Kamil

    2011-01-01

    We have in vitro tested the ability of common, commercially available, cholinesterase reactivators (pralidoxime, obidoxime, methoxime, trimedoxime and HI-6) to reactivate human acetylcholinesterase (AChE), inhibited by five structurally different organophosphate pesticides and inhibitors (paraoxon, dichlorvos, DFP, leptophos-oxon and methamidophos). We also tested reactivation of human butyrylcholinesterase (BChE) with the aim of finding a potent oxime, suitable to serve as a "pseudocatalytic" bioscavenger in combination with this enzyme. Such a combination could allow an increase of prophylactic and therapeutic efficacy of the administered enzyme. According to our results, the best broad-spectrum AChE reactivators were trimedoxime and obidoxime in the case of paraoxon, leptophos-oxon, and methamidophos-inhibited AChE. Methamidophos and leptophos-oxon were quite easily reactivatable by all tested reactivators. In the case of methamidophos-inhibited AChE, the lower oxime concentration (10(-5) M) had higher reactivation ability than the 10(-4) M concentration. Therefore, we evaluated the reactivation ability of obidoxime in a concentration range of 10(-3)-10(-7) M. The reactivation of methamidophos-inhibited AChE with different obidoxime concentrations resulted in a bell shaped curve with maximum reactivation at 10(-5) M. In the case of BChE, no reactivator exceeded 15% reactivation ability and therefore none of the oximes can be recommended as a candidate for "pseudocatalytic" bioscavengers with BChE.

  10. Bisquaternary pyridinium oximes: Comparison of in-vitro reactivation potency of compounds bearing aliphatic linkers and heteroaromatic linkers for paraoxon-inhibited electric eel and recombinant human acetylcholinesterase

    PubMed Central

    Bharate, Sandip B.; Guo, Lilu; Reeves, Tony E.; Cerasoli, Douglas M.; Thompson, Charles M.

    2009-01-01

    Oxime reactivators are the drugs of choice for the post-treatment of OP (organophosphorus) intoxication and used widely for mechanistic and kinetic studies of OP-inhibited cholinesterases. The purpose of the present study was to evaluate new oxime compounds to reactivate acetylcholinesterase (AChE) inhibited by the OP paraoxon. Several new bisquaternary pyridinium oximes with heterocyclic linkers along with some known bisquaternary pyridinium oximes bearing aliphatic linkers were synthesized and evaluated for their in vitro reactivation potency against paraoxon-inhibited electric eel acetylcholinesterase (EeAChE) and recombinant human acetylcholinesterase (rHuAChE). Results herein indicate that most of the compounds are better reactivators of EeAChE than of rHuAChE. The reactivation potency of two different classes of compounds with varying linker chains was compared and observed that the structure of the connecting chain is an important factor for the activity of the reactivators. At a higher concentration (10−3 M), compounds bearing aliphatic linker showed better reactivation than compounds with heterocyclic linkers. Interestingly, oximes with a heterocyclic linker inhibited AChE at higher concentration (10−3 M), whereas their ability to reactivate was increased at lower concentrations (10−4 M and 10−5 M). Compounds bearing either a thiophene linker 26, 46 or a furan linker 31 showed 59%, 49% and 52% reactivation of EeAChE, respectively, at 10−5 M. These compounds showed 14%, 6% and 15% reactivation of rHuAChE at 10−4 M. Amongst newly synthesized analogs with heterocyclic linkers (26–35 and 45–46), compound 31, bearing furan linker chain, was found to be the most effective reactivator with a kr 0.042 min−1, which is better than obidoxime (3) for paraoxon-inhibited EeAChE. Compound 31 showed a kr 0.0041 min−1 that is near equal to pralidoxime (1) for paraoxon-inhibited rHuAChE. PMID:20005727

  11. In vitro investigation of efficacy of new reactivators on OPC inhibited rat brain acetylcholinesterase.

    PubMed

    Atanasov, Vasil N; Petrova, Iskra; Dishovsky, Christophor

    2013-03-25

    Organophosphorus compounds (OPC) were developed as warfare nerve agents. They are also widely used as pesticides. The drug therapy of intoxication with OPC includes mainly combination of cholinesterase (ChE) reactivators and cholinolytics. There is no single ChE reactivator having an ability to reactivate sufficiently the inhibited enzyme due to the high variability of chemical structure of the inhibitors. The difficulties in reactivation of ChE activity and slight antidote effect regarding intoxication with some OPC are some of the reasons for continuous efforts to obtain new reactivators of ChE. The aim of the present study was to evaluate the efficacy of some ChE reactivators against OPC intoxication (tabun, paraoxon and dichlorvos) in in vitro experiments and to compare their activity to that known for some currently used oximes (obidoxime, HI-6, 2-PAM). Experiments were carried out using rat brain acetylcholinesterase (AChE). Reactivators showed different activity in the reactivation of rat brain AChE after dichlorvos, paraoxon and tabun inhibition. AChE was easier reactivated after paraoxon treatment. The best effect showed BT-07-4M, obidoxime, TMB-4 and BT-08 from the group of symmetric oximes, and Toxidin, BT-05 and BT-03 from asymmetric compounds. The reactivation of brain AChE inhibited with tabun demonstrated better activity of new compound BT-07-4M, TMB-4 and obidoxime from symmetric oximes, and BT-05 and BT-03 possessing asymmetric structure. All compounds showed low activity toward inhibition of AChE caused by dichlorvos. Comparison of two main structure types (symmetric/asymmetric) showed that the symmetric compounds reactivated better AChE, inhibited with this OPC, than asymmetric ones. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  12. Mono-oxime bisquaternary acetylcholinesterase reactivators with prop-1,3-diyl linkage-Preparation, in vitro screening and molecular docking.

    PubMed

    Musilek, Kamil; Komloova, Marketa; Holas, Ondrej; Horova, Anna; Pohanka, Miroslav; Gunn-Moore, Frank; Dohnal, Vlastimil; Dolezal, Martin; Kuca, Kamil

    2011-01-15

    The treatment of organophosphorus (OP) poisoning consists of the administration of a parasympatholytic agent (e.g., atropine), an anticonvulsant (e.g., diazepam) and an acetylcholinesterase (AChE) reactivator (e.g., obidoxime). The AChE reactivator is the causal treatment of OP exposure, because it cleaves the OP moiety covalently bound to the AChE active site. In this paper, fourteen novel AChE reactivators are described. Their design originated from a former promising compound K027. These compounds were synthesized, evaluated in vitro on human AChE (hAChE) inhibited by tabun, paraoxon, methylparaoxon and DFP and then compared to commercial hAChE reactivators (pralidoxime, HI-6, trimedoxime, obidoxime, methoxime) or previously prepared compounds (K027, K203). Three of these novel compounds showed a promising ability to reactivate hAChE comparable or better than the used standards. Consequently, a molecular docking study was performed for three of these promising novel compounds. The docking results confirmed the apparent influence of π-π or cation-π interactions and hydrogen bonding for reactivator binding within the hAChE active site cleft. The SAR features concerning the non-oxime part of the reactivator molecule are also discussed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. In Vitro Ability of Currently Available Oximes to Reactivate Organophosphate Pesticide-Inhibited Human Acetylcholinesterase and Butyrylcholinesterase

    PubMed Central

    Jun, Daniel; Musilova, Lucie; Musilek, Kamil; Kuca, Kamil

    2011-01-01

    We have in vitro tested the ability of common, commercially available, cholinesterase reactivators (pralidoxime, obidoxime, methoxime, trimedoxime and HI-6) to reactivate human acetylcholinesterase (AChE), inhibited by five structurally different organophosphate pesticides and inhibitors (paraoxon, dichlorvos, DFP, leptophos-oxon and methamidophos). We also tested reactivation of human butyrylcholinesterase (BChE) with the aim of finding a potent oxime, suitable to serve as a “pseudocatalytic” bioscavenger in combination with this enzyme. Such a combination could allow an increase of prophylactic and therapeutic efficacy of the administered enzyme. According to our results, the best broad-spectrum AChE reactivators were trimedoxime and obidoxime in the case of paraoxon, leptophos-oxon, and methamidophos-inhibited AChE. Methamidophos and leptophos-oxon were quite easily reactivatable by all tested reactivators. In the case of methamidophos-inhibited AChE, the lower oxime concentration (10−5 M) had higher reactivation ability than the 10−4 M concentration. Therefore, we evaluated the reactivation ability of obidoxime in a concentration range of 10−3–10−7 M. The reactivation of methamidophos-inhibited AChE with different obidoxime concentrations resulted in a bell shaped curve with maximum reactivation at 10−5 M. In the case of BChE, no reactivator exceeded 15% reactivation ability and therefore none of the oximes can be recommended as a candidate for “pseudocatalytic” bioscavengers with BChE. PMID:21673941

  14. Revealing the importance of linkers in K-series oxime reactivators for tabun-inhibited AChE using quantum chemical, docking and SMD studies.

    PubMed

    Ghosh, Shibaji; Chandar, Nellore Bhanu; Jana, Kalyanashis; Ganguly, Bishwajit

    2017-08-01

    Inhibition of acetylcholinesterase (AChE) with organophosphorus compounds has a detrimental effect on human life. Oxime K203 seems to be one of the promising reactivators for tabun-inhibited AChE than (K027, K127, and K628). These reactivators differ only in the linker units between the two pyridinium rings. The conformational analyses performed with quantum chemical RHF/6-31G* level for K027, K127, K203 and K628 showed that the minimum energy conformers have different orientations of the active and peripheral pyridinium rings for these reactivator molecules. K203 with (-CH 2 -CH=CH-CH 2 -) linker unit possesses more open conformation compared to the other reactivators. Such orientation of K203 experiences favorable interaction with the surrounding residues of catalytic anionic site (CAS) and peripheral anionic site (PAS) of tabun-inhibited AChE. From the steered molecular dynamics simulations, it has been observed that the oxygen atom of the oxime group of K203 reactivator approaches nearest to the P-atom of the SUN203 (3.75 Å) at lower time scales (less than ~1000 ps) as compared to the other reactivators. K203 experiences less number of hydrophobic interaction with the PAS residues which is suggested to be an important factor for the efficient reactivation process. In addition, K203 crates large number of H-bonding with CAS residues SUN203, Phe295, Tyr337, Phe338 and His447. K203 barely changes its conformation during the SMD simulation process and hence the energy penalty to adopt any other conformation is minimal in this case as compared to the other reactivators. The molecular mechanics and Poisson-Boltzmann surface area binding energies obtained for the interaction of K203 inside the gorge of tabun inhibited AChE is substantially higher (-290.2 kcal/mol) than the corresponding K628 reactivator (-260.4 kcal/mol), which also possess unsaturated aromatic linker unit.

  15. Revealing the importance of linkers in K-series oxime reactivators for tabun-inhibited AChE using quantum chemical, docking and SMD studies

    NASA Astrophysics Data System (ADS)

    Ghosh, Shibaji; Chandar, Nellore Bhanu; Jana, Kalyanashis; Ganguly, Bishwajit

    2017-08-01

    Inhibition of acetylcholinesterase (AChE) with organophosphorus compounds has a detrimental effect on human life. Oxime K203 seems to be one of the promising reactivators for tabun-inhibited AChE than (K027, K127, and K628). These reactivators differ only in the linker units between the two pyridinium rings. The conformational analyses performed with quantum chemical RHF/6-31G* level for K027, K127, K203 and K628 showed that the minimum energy conformers have different orientations of the active and peripheral pyridinium rings for these reactivator molecules. K203 with (-CH2-CH=CH-CH2-) linker unit possesses more open conformation compared to the other reactivators. Such orientation of K203 experiences favorable interaction with the surrounding residues of catalytic anionic site (CAS) and peripheral anionic site (PAS) of tabun-inhibited AChE. From the steered molecular dynamics simulations, it has been observed that the oxygen atom of the oxime group of K203 reactivator approaches nearest to the P-atom of the SUN203 (3.75 Å) at lower time scales (less than 1000 ps) as compared to the other reactivators. K203 experiences less number of hydrophobic interaction with the PAS residues which is suggested to be an important factor for the efficient reactivation process. In addition, K203 crates large number of H-bonding with CAS residues SUN203, Phe295, Tyr337, Phe338 and His447. K203 barely changes its conformation during the SMD simulation process and hence the energy penalty to adopt any other conformation is minimal in this case as compared to the other reactivators. The molecular mechanics and Poisson-Boltzmann surface area binding energies obtained for the interaction of K203 inside the gorge of tabun inhibited AChE is substantially higher (-290.2 kcal/mol) than the corresponding K628 reactivator (-260.4 kcal/mol), which also possess unsaturated aromatic linker unit.

  16. A selective molecularly imprinted polymer for immobilization of acetylcholinesterase (AChE): an active enzyme targeted and efficient method.

    PubMed

    Demirci, Gökhan; Doğaç, Yasemin İspirli; Teke, Mustafa

    2015-11-01

    In the present study, we immobilized acetylcholinesterase (AChE) enzyme onto acetylcholine removed imprinted polymer and acetylcholine containing polymer. First, the polymers were produced with acetylcholine, substrate of AChE, by dispersion polymerization. Then, the enzyme was immobilized onto the polymers by using two different methods: In the first method (method A), acetylcholine was removed from the polymer, and then AChE was immobilized onto this polymer (acetylcholine removed imprinted polymer). In the second method (method B), AChE was immobilized onto acetylcholine containing polymer by affinity. In method A, enzyme-specific species (binding sites) occurred by removing acetylcholine from the polymer. The immobilized AChE reached 240% relative specific activity comparison with free AChE because the active enzyme molecules bounded onto the polymer. Transmission electron microscopy results were taken before and after immobilization of AChE for the assessment of morphological structure of polymer. Also, the experiments, which include optimum temperature (25-65 °C), optimum pH (3-10), thermal stability (4-70 °C), kinetic parameters, operational stability and reusability, were performed to determine the characteristic of the immobilized AChE. Copyright © 2015 John Wiley & Sons, Ltd.

  17. Study of Inhibition, Reactivation and Aging Processes of Pesticides Using Graphene Nanosheets/Gold Nanoparticles-Based Acetylcholinesterase Biosensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Lin; Long, Linjuan; Zhang, Weiying

    2012-09-10

    Organophosphate (OP) and carbamate pesticides exert their toxicity via attacking the hydroxyl moiety of serine in the 'active site' of acetylcholinesterase (AChE). In this paper we developed a stable AChE biosensor based on self-assembling AChE to graphene nanosheet (GN)-gold nanoparticles (AuNPs) nanocomposite electrode for investigation of inhibition, reactivation and aging processes of different pesticides. It is confirmed that pesticides can inhibit AChE in a short time. OPs poisoning is treatable with oximes while carbarmates exposure is insensitive to oximes. The proposed electrochemical approach thus provides a new simple tool for comparison of pesticide sensitivity and guide of therapeutic intervention.

  18. Zebrafish as a model for acetylcholinesterase-inhibiting organophosphorus agent exposure and oxime reactivation

    PubMed Central

    Koenig, Jeffrey A.; Dao, Thuy L.; Kan, Robert K.; Shih, Tsung-Ming

    2016-01-01

    The current research progression efforts for investigating novel treatments for exposure to organophosphorus (OP) compounds that inhibit acetylcholinesterase (AChE), including pesticides and chemical warfare nerve agents (CWNAs), rely solely on in vitro cell assays and in vivo rodent models. The zebrafish (Danio rerio) is a popular, well-established vertebrate model in biomedical research that offers high-throughput capabilities and genetic manipulation not readily available with rodents. A number of research studies have investigated the effects of subacute developmental exposure to OP pesticides in zebrafish, observing detrimental effects on gross morphology, neuronal development, and behavior. Few studies, however, have utilized this model to evaluate treatments, such as oxime reactivators, anticholinergics, or anticonvulsants, following acute exposure. Preliminary work has investigated the effects of CWNA exposure. The results clearly demonstrated relative toxicity and oxime efficacy similar to that reported for the rodent model. This review surveys the current literature utilizing zebrafish as a model for OP exposure and highlights its potential use as a high-throughput system for evaluating AChE reactivator antidotal treatments to acute pesticide and CWNA exposure. PMID:27123828

  19. In vitro P-glycoprotein activity does not completely explain in vivo efficacy of novel centrally effective oxime acetylcholinesterase reactivators.

    PubMed

    Dail, Mary Beth; Meek, Edward Caldwell; Chambers, Howard Wayne; Chambers, Janice Elaine

    2018-05-03

    Novel-substituted phenoxyalkyl pyridinium oxime acetylcholinesterase (AChE) reactivators (US patent 9,227,937) that showed convincing evidence of penetration into the brains of intact rats were developed by our laboratories. The oximes separated into three groups based on their levels of brain AChE reactivation following exposure of rats to the sarin surrogate nitrophenyl isopropyl methylphosphonate (NIMP). P-glycoprotein (P-gp) is a major blood-brain barrier (BBB) transporter and requires ATP for efflux. To determine if P-gp affinity screening could be used to reduce animal use, we measured in vitro oxime-stimulated ATPase activity to see if the in vivo reactivation efficacies related to the oximes' functions as P-gp substrates. High efficacy oximes were expected to be poor P-gp substrates, thus remaining in the brain longer. The high efficacy oximes (24-35% brain AChE reactivation) were worse P-gp substrates than the low efficacy oximes (0-7% brain AChE reactivation). However, the oxime group with medium in vivo reactivation of 10-17% were even worse P-gp substrates than the high efficacy group so their reactivation ability was not reflected by P-gp export. The results suggest that in vitro P-gp ATPase activity can remove the low efficacy oximes from in vivo testing, but is not sufficient to differentiate between the top two tiers.

  20. In vitro effects of acetylcholinesterase reactivators on monoamine oxidase activity.

    PubMed

    Fišar, Zdeněk; Hroudová, Jana; Korábečný, Jan; Musílek, Kamil; Kuča, Kamil

    2011-03-05

    Administration of acetylcholinesterase (AChE) reactivators (oximes) is usually used in order to counteract the poisoning effects of nerve agents. The possibility was suggested that oximes may show some therapeutic and/or adverse effects through their action in central nervous system. There are no sufficient data about interaction of oximes with monoaminergic neurotransmitter's systems in the brain. Oxime-type AChE reactivators pralidoxime, obidoxime, trimedoxime, methoxime and HI-6 were tested for their potential to affect the activity of monoamine oxidase of type A (MAO-A) and type B (MAO-B) in crude mitochondrial fraction of pig brains. The compounds were found to inhibit fully MAO-A with half maximal inhibitory concentration (IC(50)) of 0.375 mmol/l (pralidoxime), 1.53 mmol/l (HI-6), 2.31 mmol/l (methoxime), 2.42 mmol/l (obidoxime) and 4.98 mmol/l (trimedoxime). Activity of MAO-B was fully inhibited by HI-6 and pralidoxime only with IC(50) 4.81 mmol/l and 11.01 mmol/l, respectively. Methoxime, obidoxime and trimedoxime displayed non-monotonic concentration dependent effect on MAO-B activity. Because oximes concentrations effective for MAO inhibition could not be achieved in vivo at the cerebral level, we suppose that oximes investigated do not interfere with brain MAO at therapeutically relevant concentrations. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  1. Reactivation of organophosphate-inhibited human, Cynomolgus monkey, swine and guinea pig acetylcholinesterase by MMB-4: a modified kinetic approach.

    PubMed

    Worek, Franz; Wille, Timo; Aurbek, Nadine; Eyer, Peter; Thiermann, Horst

    2010-12-15

    Treatment of poisoning by highly toxic organophosphorus compounds (OP, nerve agents) is a continuous challenge. Standard treatment with atropine and a clinically used oxime, obidoxime or pralidoxime is inadequate against various nerve agents. For ethical reasons testing of oxime efficacy has to be performed in animals. Now, it was tempting to investigate the reactivation kinetics of MMB-4, a candidate oxime to replace pralidoxime, with nerve agent-inhibited acetylcholinesterase (AChE) from human and animal origin in order to provide a kinetic basis for the proper assessment of in vivo data. By applying a modified kinetic approach, allowing the use of necessary high MMB-4 concentrations, it was possible to determine the reactivation constants with sarin-, cyclosarin-, VX-, VR- and tabun-inhibited AChE. MMB-4 exhibited a high reactivity and low affinity towards OP-inhibited AChE, except of tabun-inhibited enzyme where MMB-4 had an extremely low reactivity. Species differences between human and animal AChE were low (Cynomolgus) to moderate (swine, guinea pig). Due to the high reactivity of MMB-4 a rapid reactivation of inhibited AChE can be anticipated at adequate oxime concentrations which are substantially higher compared to HI-6. Additional studies are necessary to determine the in vivo toxicity, tolerability and pharmacokinetics of MMB-4 in humans in order to enable a proper assessment of the value of this oxime as an antidote against nerve agent poisoning. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Comparison of the oxime-induced reactivation of rhesus monkey, swine and guinea pig erythrocyte acetylcholinesterase following inhibition by sarin or paraoxon, using a perfusion model for the real-time determination of membrane-bound acetylcholinesterase activity.

    PubMed

    Herkert, Nadja M; Lallement, Guy; Clarençon, Didier; Thiermann, Horst; Worek, Franz

    2009-04-28

    Recently, a dynamically working in vitro model with real-time determination of membrane-bound human acetylcholinesterase (AChE) activity was shown to be a versatile model to investigate oxime-induced reactivation kinetics of organophosphate- (OP) inhibited enzyme. In this assay, AChE was immobilized on particle filters which were perfused with acetylthiocholine, Ellman's reagent and phosphate buffer. Subsequently, AChE activity was continuously analyzed in a flow-through detector. Now, it was an intriguing question whether this model could be used with erythrocyte AChE from other species in order to investigate kinetic interactions in the absence of annoying side reactions. Rhesus monkey, swine and guinea pig erythrocytes were a stable and highly reproducible enzyme source. Then, the model was applied to the reactivation of sarin- and paraoxon-inhibited AChE by obidoxime or HI 6 and it could be shown that the derived reactivation rate constants were in good agreement to previous results obtained from experiments with a static model. Hence, this dynamic model offers the possibility to investigate highly reproducible interactions between AChE, OP and oximes with human and animal AChE.

  3. Comparison of human and guinea pig acetylcholinesterase sequences and rates of oxime-assisted reactivation.

    PubMed

    Cadieux, C Linn; Broomfield, Clarence A; Kirkpatrick, Melanie G; Kazanski, Meghan E; Lenz, David E; Cerasoli, Douglas M

    2010-09-06

    Poisoning via organophosphorus (OP) nerve agents occurs when the OP binds and inhibits the enzyme acetylcholinesterase (AChE). This enzyme is responsible for the metabolism of the neurotransmitter acetylcholine (ACh) which transmits signals between nerves and several key somatic regions. When AChE is inhibited, the signal initiated by ACh is not properly terminated. Excessive levels of ACh result in a cholinergic crisis, and in severe cases can lead to death. Current treatments for OP poisoning involve the administration of atropine, which blocks ACh receptors, and oximes, which reactivate AChE after inhibition. Efforts to improve the safety, efficacy, and broad spectrum utility of these treatments are ongoing and usually require the use of appropriate animal model systems. For OP poisoning, the guinea pig (Cavia porcellus) is a commonly used animal model because guinea pigs more closely mirror primate susceptibility to OP poisoning than do other animals such as rats and mice. This is most likely because among rodents and other small mammals, guinea pigs have a very low relative concentration of serum carboxylesterase, an enzyme known to bind OPs in vitro and to act as an endogenous bioscavenger in vivo. Although guinea pigs historically have been used to test OP poisoning therapies, it has been found recently that guinea pig AChE is substantially more resistant to oxime-mediated reactivation than human AChE. To examine the molecular basis for this difference, we reverse transcribed mRNA encoding guinea pig AChE, amplified the resulting cDNA, and sequenced this product. The nucleotide and deduced amino acid sequences of guinea pig AChE were then compared to the human version. Several amino acid differences were noted, and the predicted locations of these differences were mapped onto a structural model of human AChE. To examine directly how these differences affect oxime-mediated reactivation of AChE after inhibition by OPs, human and guinea pig red blood cell

  4. Can hydroxylamine be a more potent nucleophile for the reactivation of tabun-inhibited AChE than prototype oxime drugs? An answer derived from quantum chemical and steered molecular dynamics studies.

    PubMed

    Lo, Rabindranath; Ganguly, Bishwajit

    2014-07-29

    Organophosphorus nerve agents are highly toxic compounds which strongly inhibit acetylcholinesterase (AChE) in the blood and in the central nervous system (CNS). Tabun is one of the highly toxic organophosphorus (OP) compounds and is resistant to many oxime drugs formulated for the reactivation of AChE. The reactivation mechanism of tabun-conjugated AChE with various drugs has been examined with density functional theory and ab initio quantum chemical calculations. The presence of a lone-pair located on the amidic group resists the nucleophilic attack at the phosphorus center of the tabun-conjugated AChE. We have shown that the newly designed drug candidate N-(pyridin-2-yl)hydroxylamine, at the MP2/6-31+G*//M05-2X/6-31G* level in the aqueous phase with the polarizable continuum solvation model (PCM), is more effective in reactivating the tabun-conjugated AChE than typical oxime drugs. The rate determining activation barrier with N-(pyridin-2-yl)hydroxylamine was found to be ∼1.7 kcal mol(-1), which is 7.2 kcal mol(-1) lower than the charged oxime trimedoxime (one of the most efficient reactivators in tabun poisonings). The greater nucleophilicity index (ω(-)) and higher CHelpG charge of pyridinylhydroxylamine compared to TMB4 support this observation. Furthermore, we have also examined the reactivation process of tabun-inhibited AChE with some other bis-quaternary oxime drug candidates such as methoxime (MMB4) and obidoxime. The docking analysis suggests that charged bis-quaternary pyridinium oximes have greater binding affinity inside the active-site gorge of AChE compared to the neutral pyridinylhydroxylamine. The peripheral ligand attached to the neutral pyridinylhydroxylamine enhanced the binding with the aromatic residues in the active-site gorge of AChE through effective π-π interactions. Steered molecular dynamics (SMD) simulations have also been performed with the charged oxime (TMB4) and the neutral hydroxylamine. From protein-drug interaction

  5. Assessing the reactivation efficacy of hydroxylamine anion towards VX-inhibited AChE: a computational study.

    PubMed

    Khan, Md Abdul Shafeeuulla; Ganguly, Bishwajit

    2012-05-01

    Oximate anions are used as potential reactivating agents for OP-inhibited AChE because of they possess enhanced nucleophilic reactivity due to the α-effect. We have demonstrated the process of reactivating the VX-AChE adduct with formoximate and hydroxylamine anions by applying the DFT approach at the B3LYP/6-311 G(d,p) level of theory. The calculated results suggest that the hydroxylamine anion is more efficient than the formoximate anion at reactivating VX-inhibited AChE. The reaction of formoximate anion and the VX-AChE adduct is a three-step process, while the reaction of hydroxylamine anion with the VX-AChE adduct seems to be a two-step process. The rate-determining step in the process is the initial attack on the VX of the VX-AChE adduct by the nucleophile. The subsequent steps are exergonic in nature. The potential energy surface (PES) for the reaction of the VX-AChE adduct with hydroxylamine anion reveals that the reactivation process is facilitated by the lower free energy of activation (by a factor of 1.7 kcal mol(-1)) than that of the formoximate anion at the B3LYP/6-311 G(d,p) level of theory. The higher free energy of activation for the reverse reactivation reaction between hydroxylamine anion and the VX-serine adduct further suggests that the hydroxylamine anion is a very good antidote agent for the reactivation process. The activation barriers calculated in solvent using the polarizable continuum model (PCM) for the reactivation of the VX-AChE adduct with hydroxylamine anion were also found to be low. The calculated results suggest that V-series compounds can be more toxic than G-series compounds, which is in accord with earlier experimental observations.

  6. Probing the reactivation process of sarin-inhibited acetylcholinesterase with α-nucleophiles: hydroxylamine anion is predicted to be a better antidote with DFT calculations.

    PubMed

    Khan, Md Abdul Shafeeuulla; Lo, Rabindranath; Bandyopadhyay, Tusar; Ganguly, Bishwajit

    2011-08-01

    Inactivation of acetylcholinesterase (AChE) due to inhibition by organophosphorus (OP) compounds is a major threat to human since AChE is a key enzyme in neurotransmission process. Oximes are used as potential reactivators of OP-inhibited AChE due to their α-effect nucleophilic reactivity. In search of more effective reactivating agents, model studies have shown that α-effect is not so important for dephosphylation reactions. We report the importance of α-effect of nucleophilic reactivity towards the reactivation of OP-inhibited AChE with hydroxylamine anion. We have demonstrated with DFT [B3LYP/6-311G(d,p)] calculations that the reactivation process of sarin-serine adduct 2 with hydroxylamine anion is more efficient than the other nucleophiles reported. The superiority of hydroxylamine anion to reactivate the sarin-inhibited AChE with sarin-serine adducts 3 and 4 compared to formoximate anion was observed in the presence and absence of hydrogen bonding interactions of Gly121 and Gly122. The calculated results show that the rates of reactivation process of adduct 4 with hydroxylamine anion are 261 and 223 times faster than the formoximate anion in the absence and presence of such hydrogen bonding interactions. The DFT calculated results shed light on the importance of the adjacent carbonyl group of Glu202 for the reactivation of sarin-serine adduct, in particular with formoximate anion. The reverse reactivation reaction between hydroxylamine anion and sarin-serine adduct was found to be higher in energy compared to the other nucleophiles, which suggests that this α-nucleophile can be a good antidote agent for the reactivation process. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Acetylcholinesterase (AChE) and heat shock proteins (Hsp70) of gypsy moth (Lymantria dispar L.) larvae in response to long-term fluoranthene exposure.

    PubMed

    Mrdaković, Marija; Ilijin, Larisa; Vlahović, Milena; Matić, Dragana; Gavrilović, Anja; Mrkonja, Aleksandra; Perić-Mataruga, Vesna

    2016-09-01

    Polycyclic aromatic hydrocarbons (PAHs) may affect biochemical and physiological processes in living organisms, thus impairing fitness related traits and influencing their populations. This imposes the need for providing early-warning signals of pollution. Our study aimed to examine changes in the activity of acetylcholinesterase (AChE) and the concentration of heat shock proteins (Hsp70) in homogenates of brain tissues of fifth instar gypsy moth (Lymantria dispar L.) larvae, exposed to the ubiquitous PAH, fluoranthene, supplemented to the rearing diet. Significantly increased activity of AChE in larvae fed on the diets with high fluoranthene concentrations suggests the necessity for elucidation of the role of AChE in these insects when exposed to PAH pollution. Significant induction of Hsp70 in gypsy moth larvae reared on the diets containing low fluoranthene concentrations, indicate that changes in the level of Hsp70 might be useful as an indicator of pollution in this widespread forest species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Studies on the interaction of BDE-47 and BDE-209 with acetylcholinesterase (AChE) based on the neurotoxicity through fluorescence, UV-vis spectra, and molecular docking.

    PubMed

    Wang, Shutao; Wu, Chuan; Liu, Zhisheng; You, Hong

    2018-05-01

    The neurotoxicity of polybrominated diphenyl ethers (PBDEs) has been of concern. Acetylcholinesterase (AChE) is a critical enzyme in the central and peripheral nervous system related to neurotoxicity. The interaction between BDE-47, BDE-209, and AChE was investigated through fluorescence and UV-vis spectra combined with molecular docking. Both BDE-47 and BDE-209 bound with AChE and changed the microenvironment of some amino acid residues, resulting in a change of AChE conformation. Hydrophobic interaction is the main binding force between BDE-47, BDE-209, and AChE, and electrostatic interaction exists according to the thermodynamic parameters of the interaction between them. A hydrophobic interaction of BDE-47-AChE and BDE-209-AChE has been confirmed through molecular docking to dominate the binding force. The binding constants of BDE-47-AChE and BDE-209-AChE were 4.2 × 10 4 and 4.1 × 10 4  L/mol, respectively, and the lowest binding energies of BDE-47-AChE and BDE-209-AChE were -7.8 and -5.9 kJ/mol, respectively. BDE-47 is more likely to bind with AChE than BED-209. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Synthesis and in vitro reactivation study of isonicotinamide derivatives of 2-(hydroxyimino)-N-(pyridin-3-yl)acetamide as reactivators of Sarin and VX inhibited human acetylcholinesterase (hAChE).

    PubMed

    Karade, Hitendra N; Raviraju, G; Acharya, B N; Valiveti, Aditya Kapil; Bhalerao, Uma; Acharya, Jyotiranjan

    2016-09-15

    Previously (Karade et al., 2014), we have reported the synthesis and in vitro evaluation of bis-pyridinium derivatives of pyridine-3-yl-(2-hydroxyimino acetamide), as reactivators of sarin and VX inhibited hAChE. Few of the molecules showed superior in vivo protection efficacy (mice model) (Kumar et al., 2014; Swami et al., 2016) in comparison to 2-PAM against DFP and sarin poisoning. Encouraged by these results, herein we report the synthesis and in vitro evaluation of isonicotinamide derivatives of pyridine-3-yl-(2-hydroxyimino acetamide) (4a-4d) against sarin and VX inhibited erythrocyte ghost hAChE. Reactivation kinetics of these compounds was studied and the determined kinetic parameters were compared with that of commercial reactivators viz. 2-PAM and obidoxime. In comparison to 2-PAM and obidoxime, oxime 4a and 4b exhibited enhanced reactivation efficacy toward sarin inhibited hAChE while oxime 4c showed far greater reactivation efficacy toward VX inhibited hAChE. The acid dissociation constant and IC50 values of these oximes were determined and correlated with the observed reactivation potential. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Acetylcholinesterase Regulates Skeletal In Ovo Development of Chicken Limbs by ACh-Dependent and -Independent Mechanisms

    PubMed Central

    Spieker, Janine; Ackermann, Anica; Salfelder, Anika; Vogel-Höpker, Astrid; Layer, Paul G.

    2016-01-01

    Formation of the vertebrate limb presents an excellent model to analyze a non-neuronal cholinergic system (NNCS). Here, we first analyzed the expression of acetylcholinesterase (AChE) by IHC and of choline acetyltransferase (ChAT) by ISH in developing embryonic chicken limbs (stages HH17-37). AChE outlined formation of bones, being strongest at their distal tips, and later also marked areas of cell death. At onset, AChE and ChAT were elevated in two organizing centers of the limb anlage, the apical ectodermal ridge (AER) and zone of polarizing activity (ZPA), respectively. Thereby ChAT was expressed shortly after AChE, thus strongly supporting a leading role of AChE in limb formation. Then, we conducted loss-of-function studies via unilateral implantation of beads into chicken limb anlagen, which were soaked in cholinergic components. After varying periods, the formation of cartilage matrix and of mineralizing bones was followed by Alcian blue (AB) and Alizarin red (AR) stainings, respectively. Both acetylcholine (ACh)- and ChAT-soaked beads accelerated bone formation in ovo. Notably, inhibition of AChE by BW284c51, or by the monoclonal antibody MAB304 delayed cartilage formation. Since bead inhibition of BChE was mostly ineffective, an ACh-independent action during BW284c51 and MAB304 inhibition was indicated, which possibly could be due to an enzymatic side activity of AChE. In conclusion, skeletogenesis in chick is regulated by an ACh-dependent cholinergic system, but to some extent also by an ACh-independent aspect of the AChE protein. PMID:27574787

  11. Acetylcholinesterase Regulates Skeletal In Ovo Development of Chicken Limbs by ACh-Dependent and -Independent Mechanisms.

    PubMed

    Spieker, Janine; Ackermann, Anica; Salfelder, Anika; Vogel-Höpker, Astrid; Layer, Paul G

    2016-01-01

    Formation of the vertebrate limb presents an excellent model to analyze a non-neuronal cholinergic system (NNCS). Here, we first analyzed the expression of acetylcholinesterase (AChE) by IHC and of choline acetyltransferase (ChAT) by ISH in developing embryonic chicken limbs (stages HH17-37). AChE outlined formation of bones, being strongest at their distal tips, and later also marked areas of cell death. At onset, AChE and ChAT were elevated in two organizing centers of the limb anlage, the apical ectodermal ridge (AER) and zone of polarizing activity (ZPA), respectively. Thereby ChAT was expressed shortly after AChE, thus strongly supporting a leading role of AChE in limb formation. Then, we conducted loss-of-function studies via unilateral implantation of beads into chicken limb anlagen, which were soaked in cholinergic components. After varying periods, the formation of cartilage matrix and of mineralizing bones was followed by Alcian blue (AB) and Alizarin red (AR) stainings, respectively. Both acetylcholine (ACh)- and ChAT-soaked beads accelerated bone formation in ovo. Notably, inhibition of AChE by BW284c51, or by the monoclonal antibody MAB304 delayed cartilage formation. Since bead inhibition of BChE was mostly ineffective, an ACh-independent action during BW284c51 and MAB304 inhibition was indicated, which possibly could be due to an enzymatic side activity of AChE. In conclusion, skeletogenesis in chick is regulated by an ACh-dependent cholinergic system, but to some extent also by an ACh-independent aspect of the AChE protein.

  12. Design, synthesis and evaluation of some N-methylenebenzenamine derivatives as selective acetylcholinesterase (AChE) inhibitor and antioxidant to enhance learning and memory.

    PubMed

    Shrivastava, Sushant K; Srivastava, Pavan; Upendra, T V R; Tripathi, Prabhash Nath; Sinha, Saurabh K

    2017-02-15

    Series of some 3,5-dimethoxy-N-methylenebenzenamine and 4-(methyleneamino)benzoic acid derivatives comprising of N-methylenebenzenamine nucleus were designed, synthesized, characterized, and assessed for their acetylcholinesterase (AChE), butyrylcholinesterase (BChE) inhibitory, and antioxidant activity thereby improving learning and memory in rats. The IC 50 values of all the compound along with standard were determined on AChE and BChE enzyme. The free radical scavenging activity was also assessed by in vitro DPPH (2,2-diphenyl-1-picryl-hydrazyl) and hydrogen peroxide radical scavenging assay. The selective inhibitions of all compounds were observed against AChE in comparison with standard donepezil. The enzyme kinetic study of the most active compound 4 indicated uncompetitive AChE inhibition. The docking studies of compound 4 exhibited the worthy interaction on active-site gorge residues Phe330 and Trp279 responsible for its high affinity towards AChE, whereas lacking of the BChE inhibition was observed due to a wider gorge binding site and absence of important aromatic amino acids interactions. The ex vivo study confirmed AChE inhibition abilities of compound 4 at brain site. Further, a considerable decrease in escape latency period of the compound was observed in comparison with standard donepezil through in vivo Spatial Reference Memory (SRM) and Spatial Working Memory (SWM) models which showed the cognition-enhancing potential of compound 4. The in vivo reduced glutathione (GSH) estimation on rat brain tissue homogenate was also performed to evaluate free radical scavenging activity substantiated the antioxidant activity in learning and memory. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Tertiary amine derivatives of chlorochalcone as acetylcholinesterase (AChE) and buthylcholinesterase (BuChE) inhibitors: the influence of chlorine, alkyl amine side chain and α,β-unsaturated ketone group.

    PubMed

    Gao, Xiao-Hui; Zhou, Chao; Liu, Hao-Ran; Liu, Lin-Bo; Tang, Jing-Jing; Xia, Xin-Hua

    2017-12-01

    A new series of tertiary amine derivatives of chlorochalcone (4a∼4l) were designed, synthesized and evaluated for the effect on acetylcholinesterase (AChE) and buthylcholinesterase (BuChE). The results indicated that all compounds revealed moderate or potent inhibitory activity against AChE, and some possessed high selectivity for AChE over BuChE. The structure-activity investigation showed that the substituted position of chlorine significantly influenced the activity and selectivity. The alteration of tertiary amine group also leads to obvious change in bioactivity. Among them, IC 50 of compound 4l against AChE was 0.17 ± 0.06 µmol/L, and the selectivity was 667.2 fold for AChE over BuChE. Molecular docking and enzyme kinetic study on compound 4l suggested that it simultaneously binds to the catalytic active site (CAS) and peripheral anionic site (PAS) of AChE. Further study showed that the pyrazoline derivatives synthesized from chlorochalcones had weaker activity and lower selectivity in inhibiting AChE compared to that of chlorochalcone derivatives.

  14. Unbinding of fluorinated oxime drug from the AChE gorge in polarizable water: a well-tempered metadynamics study.

    PubMed

    Pathak, Arup Kumar; Bandyopadhyay, Tusar

    2017-02-15

    Despite the fact that fluorination makes a drug more lipophilic, the molecular level understanding of protein-fluorinated drug interactions is very poor. Due to their enhanced ability to penetrate the blood brain barrier, they are suitable for reactivation of organophosphorus inactivated acetylcholinesterase (AChE) in the central nervous system. We systematically studied the unbinding of fluorinated obidoxime (FOBI) and non-fluorinated obidoxime (OBI) from the active site gorge of the serine hydrolase AChE in mean field polarizable water by employing all atom molecular dynamics simulations. It is observed that the unbinding process is strongly influenced by cation-π, hydrogen bond (HB) and water bridge interactions. The FOBI drug interacts more strongly with the protein residues than OBI and this is also verified from quantum mechanical calculations. Distinct unbinding pathways for FOBI and OBI are observed as evident from the 1D and 2D potential of mean force of the unbinding profiles. The present study suggests that the FOBI drug is held more firmly in the gorge of AChE in comparison to OBI and may lead to higher reactivation efficiency of the inactivated enzyme.

  15. N-Benzoyl-D-phenylalanine attenuates brain acetylcholinesterase in neonatal streptozotocin-diabetic rats.

    PubMed

    Ashokkumar, Natarajan; Pari, Leelavinothan; Ramkumar, Kunga Mohan

    2006-09-01

    The effect of hyperglycaemia due to experimental diabetes in male Wistar rats causes a decrease in the level of acetylcholinesterase (AChE) with significant increase in lipid peroxidative markers: thiobarbituric acid-reactive substances (TBARS) and hydroperoxides in brains of experimental animals. The decreased activity of both salt soluble and detergent soluble acetylcholinesterase observed in diabetes may be attributed to lack of insulin which causes specific alterations in the level of neurotransmitter, thus causing brain dysfunction. Administration of non-sulfonylurea drug N-benzoyl-D-phenylalanine (NBDP) could protect against direct action of lipid peroxidation on brain AChE and in this way it might be useful in the prevention of cholinergic neural dysfunction, which is one of the major complications in diabetes.

  16. Discovery of potent and selective acetylcholinesterase (AChE) inhibitors: acacetin 7-O-methyl ether Mannich base derivatives synthesised from easy access natural product naringin.

    PubMed

    Liu, Hao-Ran; Men, Xue; Gao, Xiao-Hui; Liu, Lin-Bo; Fan, Hao-Qun; Xia, Xin-Hua; Wang, Qiu-An

    2018-03-01

    Naringin, as a component universal existing in the peel of some fruits or medicinal plants, was usually selected as the material to synthesise bioactive derivates since it was easy to gain with low cost. In present investigation, eight new acacetin-7-O-methyl ether Mannich base derivatives (1-8) were synthesised from naringin. The bioactivity evaluation revealed that most of them exhibited moderate or potent acetylcholinesterase (AChE) inhibitory activity. Among them, compound 7 (IC 50 for AChE = 0.82 ± 0.08 μmol•L -1 , IC 50 for BuChE = 46.30 ± 3.26 μmol•L -1 ) showed a potent activity and high selectivity compared with the positive control Rivastigmine (IC 50 for AChE = 10.54 ± 0.86 μmol•L -1 , IC 50 for BuChE = 0.26 ± 0.08 μmol•L -1 ). The kinetic study suggested that compound 7 bind to AChE with mix-type inhibitory profile. Molecular docking study revealed that compound 7 could combine both catalytic active site (CAS) and peripheral active site (PAS) of AChE with four points (Trp84, Trp279, Tyr70 and Phe330), while it could bind with BuChE via only His 20.

  17. Role of acetylcholinesterase in lung cancer

    PubMed Central

    Xi, Hui-Jun; Wu, Ren-Pei; Liu, Jing-Jing; Zhang, Ling-Juan; Li, Zhao-Shen

    2015-01-01

    Acetylcholinesterase (AChE) plays a key role in catalytic hydrolysis of cholinergic neurotransmitters. Intensive research has proven the involvement of this protein in novel functions, such as cell adhesion, differentiation, and proliferation. In addition, several recent studies have indicated that acetylcholinesterase is potentially a marker and regulator of apoptosis. Importantly, AChE is also a promising tumor suppressor. In this review, we briefly summarize the involvement of AChE in apoptosis and cancer, focusing on the role of AChE in lung cancer, as well as the therapeutic consideration of AChE for cancer therapy. PMID:26273392

  18. Monoclonal antibodies against acetylcholinesterase from electric organs of Electrophorus and Torpedo.

    PubMed

    Musset, F; Frobert, Y; Grassi, J; Vigny, M; Boulla, G; Bon, S; Massoulié, J

    1987-02-01

    We studied the reactivity of monoclonal antibodies (mAbs) raised against acetylcholinesterase (AChE) purified from Electrophorus and Torpedo electric organs. We obtained IgG antibodies (Elec-21, Elec-106, Tor-3E5, Tor-ME8, Tor-1A5), all of them directed against the catalytic subunit of the corresponding species, with no significant cross-reactivity. These antibodies do not inhibit the enzyme and recognize all molecular forms, globular (G) and asymmetric (A). Tor-ME8 reacts specifically with the denatured A and G subunits of Torpedo AChE, in immunoblots. Several hybridomas raised against Electrophorus AChE produced IgM antibodies (Elec-39, Elec-118, Elec-121). These antibodies react with the A forms of Electrophorus electric organs and also with a subset of dimers (G2) from Torpedo electric organ. In addition, they react with a number of non-AChE components, in immunoblots. In contrast, they do not recognize AChE from other Electrophorus tissues or A forms from Torpedo electric organs.

  19. An in vitro AChE inhibition assay combined with UF-HPLC-ESI-Q-TOF/MS approach for screening and characterizing of AChE inhibitors from roots of Coptis chinensis Franch.

    PubMed

    Zhao, Hengqiang; Zhou, Siduo; Zhang, Minmin; Feng, Jinhong; Wang, Shanshan; Wang, Daijie; Geng, Yanling; Wang, Xiao

    2016-02-20

    In this study, an in vitro acetylcholinesterase (AChE) inhibition assay based on microplate reader combined with ultrafiltration high performance liquid chromatography-electrospray quadrupole time of flight mass (UF-HPLC-ESI-Q-TOF/MS) was developed for the rapid screening and identification of acetylcholinesterase inhibitors (AChEI) from roots of Coptis chinensis Franch. Incubation conditions such as enzyme concentration, incubation time, incubation temperature and co-solvent was optimized so as to get better screening results. Five alkaloids including columbamine, jatrorrhizine, coptisine, palmatine and berberine were found with AChE inhibition activity in the 80% ethanol extract of C. chinensis Franch. The screened compounds were identified by HPLC-DAD-ESI-Q-TOF/MS compared with the reference stands and literatures. The screened results were verified by in vitro AChE inhibition assays, palmatine showed the best AChE inhibitory activities with IC50 values of 36.6μM among the five compounds. Results of the present study indicated that the combinative method using in vitro AChE inhibition assay and UF-HPLC-ESI-Q-TOF/MS could be widely applied for rapid screening and identification of AChEI from complex TCM extract. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Oximes: Inhibitors of Human Recombinant Acetylcholinesterase. A Structure-Activity Relationship (SAR) Study

    PubMed Central

    Sepsova, Vendula; Karasova, Jana Zdarova; Korabecny, Jan; Dolezal, Rafael; Zemek, Filip; Bennion, Brian J.; Kuca, Kamil

    2013-01-01

    Acetylcholinesterase (AChE) reactivators were developed for the treatment of organophosphate intoxication. Standard care involves the use of anticonvulsants (e.g., diazepam), parasympatolytics (e.g., atropine) and oximes that restore AChE activity. However, oximes also bind to the active site of AChE, simultaneously acting as reversible inhibitors. The goal of the present study is to determine how oxime structure influences the inhibition of human recombinant AChE (hrAChE). Therefore, 24 structurally different oximes were tested and the results compared to the previous eel AChE (EeAChE) experiments. Structural factors that were tested included the number of pyridinium rings, the length and structural features of the linker, and the number and position of the oxime group on the pyridinium ring. PMID:23959117

  1. Autoantibodies to acetylcholinesterase revisited.

    PubMed

    Geen, J; Hadjikoutis, S; Strachan, A; Hullin, D A; Hogg, S I; Wiles, C M

    2000-05-01

    A sensitive and specific enzyme linked immunosorbent assay (ELISA) utilizing human recombinant acetylcholinesterase has been employed for the detection of human antibodies to human acetylcholinesterase. The method can detect allogenic antibodies to the Yt(a) form of human erythrocyte AChE. Adaptation of this ELISA method allowed the IgG subclass typing of IgG anti-AChE antibodies, which could help to determine the possible role of these antibodies in the aetiology of any neurological conditions. Routine serological investigations established the AChE phenotype of each of the patients recruited, to determine whether anti-AChE antibodies were allogenic or autogenic in origin. These techniques were used to determine the incidence of autoantibodies to AChE in patients with neurological conditions, including the subtypes of motor neuron disease. The data presented are not consistent with earlier reports of a high incidence of autoantibodies to AChE in amyotrophic lateral sclerosis and progressive muscular atrophy.

  2. A Mechanism-based 3D-QSAR Approach for Classification and Prediction of Acetylcholinesterase Inhibitory Potency of Organophosphate and Carbamate Analogs

    EPA Science Inventory

    Organophosphate (OP) and carbamate esters can inhibit acetylcholinesterase (AChE) by binding covalently to a serine residue in the enzyme active site, and their inhibitory potency depends largely on affinity for the enzyme and the reactivity of the ester. Despite this understandi...

  3. Identification and Expression of Acetylcholinesterase in Octopus vulgaris Arm Development and Regeneration: a Conserved Role for ACHE?

    PubMed

    Fossati, Sara Maria; Candiani, Simona; Nödl, Marie-Therese; Maragliano, Luca; Pennuto, Maria; Domingues, Pedro; Benfenati, Fabio; Pestarino, Mario; Zullo, Letizia

    2015-08-01

    Acetylcholinesterase (ACHE) is a glycoprotein with a key role in terminating synaptic transmission in cholinergic neurons of both vertebrates and invertebrates. ACHE is also involved in the regulation of cell growth and morphogenesis during embryogenesis and regeneration acting through its non-cholinergic sites. The mollusk Octopus vulgaris provides a powerful model for investigating the mechanisms underlying tissue morphogenesis due to its high regenerative power. Here, we performed a comparative investigation of arm morphogenesis during adult arm regeneration and embryonic arm development which may provide insights on the conserved ACHE pathways. In this study, we cloned and characterized O. vulgaris ACHE, finding a single highly conserved ACHE hydrophobic variant, characterized by prototypical catalytic sites and a putative consensus region for a glycosylphosphatidylinositol (GPI)-anchor attachment at the COOH-terminus. We then show that its expression level is correlated to the stage of morphogenesis in both adult and embryonic arm. In particular, ACHE is localized in typical neuronal sites when adult-like arm morphology is established and in differentiating cell locations during the early stages of arm morphogenesis. This possibility is also supported by the presence in the ACHE sequence and model structure of both cholinergic and non-cholinergic sites. This study provides insights into ACHE conserved roles during processes of arm morphogenesis. In addition, our modeling study offers a solid basis for predicting the interaction of the ACHE domains with pharmacological blockers for in vivo investigations. We therefore suggest ACHE as a target for the regulation of tissue morphogenesis.

  4. Central Acetylcholinesterase Reactivation by Oximes Improves Survival and Terminates Seizures Following Nerve Agent Intoxication

    DTIC Science & Technology

    2009-01-01

    activity ; GB = sarin; im = intramuscular; ip = intraperitoneal; LD50 = median lethal dose 50%; MINA = monoisonitrosoacetone; MMB-4 = methoxime; OP...inhibited acetylcholinesterase (AChE) activity . We have studied the capability of the tertiary oximes monoisonitrosoacetone (MINA) and diacetylmonoxime...of 20, 26, 35, 46 and 60 mg/kg, there were 0, 9, 17, 60, and 75%, respectively, of animals never exhibited EEG seizure activity with 43, 64, 75, 90

  5. HI-6 assisted Catalytic Scavenging of VX by Acetylcholinesterase Choline Binding Site Mutants

    PubMed Central

    Hrvat, Nikolina Maček; Žunec, Suzana; Taylor, Palmer; Radić, Zoran; Kovarik, Zrinka

    2016-01-01

    The high toxicity of organophosphorus compounds originates from covalent inhibition of acetylcholinesterase (AChE), an essential enzyme in cholinergic neurotransmission. Poisonings that lead to life-threatening toxic manifestations require immediate treatment that combines administration of anticholinergic drugs and an aldoxime as a reactivator of AChE. An alternative approach to reduce the in vivo toxicity of OPs focuses on the use of bioscavengers against the parent organophosphate. Our previous research showed that AChE mutagenesis can enable aldoximes to substantially accelerate the reactivation of OP-enzyme conjugates, while dramatically slowing down rates of OP-conjugate dealkylation (aging). Herein, we demonstrate an efficient HI-6-assisted VX detoxification, both ex vivo in human blood and in vivo in mice by hAChE mutants modified at the choline binding site (Y337A and Y337A/F338A). The catalytic scavenging of VX in mice improved therapeutic outcomes preventing lethality and resulted in a delayed onset of toxicity symptoms. PMID:27083141

  6. Demonstration of in vitro Resurrection of Aged Acetylcholinesterase after Exposure to Organophosphorus Chemical Nerve Agents.

    PubMed

    Zhuang, Qinggeng; Franjesevic, Andrew J; Corrigan, Thomas S; Coldren, William H; Dicken, Rachel; Sillart, Sydney; DeYong, Ashley; Yoshino, Nathan; Smith, Justin; Fabry, Stephanie; Fitzpatrick, Keegan; Blanton, Travis G; Joseph, Jojo; Yoder, Ryan J; McElroy, Craig A; Dogan Ekici, Ozlem; Callam, Christopher S; Hadad, Christopher M

    2018-06-05

    After inhibition of acetylcholinesterase (AChE) by organophosphorus (OP) nerve agents, a dealkylation reaction, referred to as aging, of the phosphylated serine can occur. When aged, known reactivators of OP-inhibited AChE are no longer effective. Realkylation of aged AChE may provide a route to reverse aging. We designed and synthesized a library of quinone methide precursors (QMPs) as proposed realkylators of aged AChE. Our lead compound (C8) from an in vitro screening, successfully resurrected 32.7% and 20.4% of the activity of methylphosphonate-aged and isopropyl phosphate-aged electric eel AChE, respectively, after 4 days. C8 displays properties of both resurrection (recovery from the aged to the native state) and reactivation (recovery from the inhibited to the native state). Resurrection of methylphosphonate-aged AChE by C8 was significantly pH-dependent, recovering 21% of activity at 4 mM and pH 9 after only 1 day. C8 is also effective against isopropyl phosphate-aged human AChE.

  7. Kinetic analysis of interactions of paraoxon and oximes with human, Rhesus monkey, swine, rabbit, rat and guinea pig acetylcholinesterase.

    PubMed

    Worek, Franz; Aurbek, Nadine; Wille, Timo; Eyer, Peter; Thiermann, Horst

    2011-01-15

    Previous in vitro studies showed marked species differences in the reactivating efficiency of oximes between human and animal acetylcholinesterase (AChE) inhibited by organophosphorus (OP) nerve agents. These findings provoked the present in vitro study which was designed to determine the inhibition, aging, spontaneous and oxime-induced reactivation kinetics of the pesticide paraoxon, serving as a model compound for diethyl-OP, and the oximes obidoxime, pralidoxime, HI 6 and MMB-4 with human, Rhesus monkey, swine, rabbit, rat and guinea pig erythrocyte AChE. Comparable results were obtained with human and monkey AChE. Differences between human, swine, rabbit, rat and guinea pig AChE were determined for the inhibition and reactivation kinetics. A six-fold difference of the inhibitory potency of paraoxon with human and guinea pig AChE was recorded while only moderate differences of the reactivation constants between human and animal AChE were determined. Obidoxime was by far the most effective reactivator with all tested species. Only minor species differences were found for the aging and spontaneous reactivation kinetics. The results of the present study underline the necessity to determine the inhibition, aging and reactivation kinetics in vitro as a basis for the development of meaningful therapeutic animal models, for the proper assessment of in vivo animal data and for the extrapolation of animal data to humans. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  8. Mechanism-Based Analysis of Acetylcholinesterase Inhibitory Potency of Organophosphates, Carbamates, and Their Analogs

    EPA Science Inventory

    Acetylcholinesterase (AChE) is a key enzyme in the nervous system of animals, terminating impulse transmission by rapid hydrolysis of the neurotransmitter acetylcholine. Organophosphate (OP) and carbamate esters can inhibit acetylcholinesterase (AChE) by binding covalently to a s...

  9. Curcumin administration suppress acetylcholinesterase gene expression in cadmium treated rats.

    PubMed

    Akinyemi, Ayodele Jacob; Oboh, Ganiyu; Fadaka, Adewale Oluwaseun; Olatunji, Babawale Peter; Akomolafe, Seun

    2017-09-01

    Curcumin, the main polyphenolic component of turmeric (Curcuma longa) rhizomes have been reported to exert anticholinesterase potential with limited information on how they regulate acetylcholinesterase (AChE) gene expression. Hence, this study sought to evaluate the effect of curcumin on cerebral cortex acetylcholinesterase (AChE) activity and their mRNA gene expression level in cadmium (Cd)-treated rats. Furthermore, in vitro effect of different concentrations of curcumin (1-5μg/mL) on rat cerebral cortex AChE activity was assessed. Animals were divided into six groups (n=6): group 1 serve as control (without Cd) and receive saline/vehicle, group 2 receive saline plus curcumin at 25mg/kg, group 3 receive saline plus curcumin 50mg/kg, group 4 receive Cd plus vehicle, group 5 receive Cd plus curcumin at 25mg/kg and group 6 receive Cd plus curcumin at 50mg/kg. Rats received Cd (2.5mg/kg) and curcumin (25 and 50mg/kg, respectively) by oral gavage for 7days. Acetylcholinesterase activity was measured by Ellman's method and AChE expression was carried out by a quantitative reverse transcriptase polymerase chain reaction (RT-qPCR) assay. We observed that acute administration of Cd increased acetylcholinesterase activity and in addition caused a significant (P<0.05) increase in AChE mRNA levels in whole cerebral cortex when compared to control group. However, co-treatment with curcumin inhibited AChE activity and alters AChE mRNA levels when compared to Cd-treated group. In addition, curcumin inhibits rat cerebral cortex AChE activity in vitro. In conclusion, curcumin exhibit anti-acetylcholinesterase activity and suppressed AChE mRNA gene expression level in Cd exposed rats, thus providing some biochemical and molecular evidence on the therapeutic effect of this turmeric-derived compound in treating neurological disorders including Alzheimer's disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. HI-6 assisted catalytic scavenging of VX by acetylcholinesterase choline binding site mutants.

    PubMed

    Maček Hrvat, Nikolina; Žunec, Suzana; Taylor, Palmer; Radić, Zoran; Kovarik, Zrinka

    2016-11-25

    The high toxicity of organophosphorus compounds originates from covalent inhibition of acetylcholinesterase (AChE), an essential enzyme in cholinergic neurotransmission. Poisonings that lead to life-threatening toxic manifestations require immediate treatment that combines administration of anticholinergic drugs and an aldoxime as a reactivator of AChE. An alternative approach to reduce the in vivo toxicity of OPs focuses on the use of bioscavengers against the parent organophosphate. Our previous research showed that AChE mutagenesis can enable aldoximes to substantially accelerate the reactivation of OP-enzyme conjugates, while dramatically slowing down rates of OP-conjugate dealkylation (aging). Herein, we demonstrate an efficient HI-6-assisted VX detoxification, both ex vivo in human blood and in vivo in mice by hAChE mutants modified at the choline binding site (Y337A and Y337A/F338A). The catalytic scavenging of VX in mice improved therapeutic outcomes preventing lethality and resulted in a delayed onset of toxicity symptoms. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. AOP description: Acetylcholinesterase inhibition

    EPA Science Inventory

    This adverse outcome pathway (AOP) leverages existing knowledge in the open literature to describe the linkage between inhibition of acetylcholinesterase (AChE) and the subsequent mortality resulting from impacts at cholinergic receptors. The AOP takes a chemical category approa...

  12. Acetylcholinesterases of Blood-feeding Flies and Ticks

    USDA-ARS?s Scientific Manuscript database

    Acetylcholinesterase (AChE) is the biochemical target of organophosphate (OP) and carbamate pesticides for invertebrates, vertebrate nerve agents, and AChE inhibitors used to reduce effects of Alzheimer’s disease. Organophosphate pesticides (OPs) are widely used to control blood-feeding arthropods, ...

  13. Study of efficacy of reactivator HI 6 in reactivation of immobilized acetylcholinesterase, inhibited by organophosphorus chemical warfare agents of the "G" series.

    PubMed

    Hoskovcová, Monika; Halámek, Emil; Kobliha, Zbynĕk

    2009-01-01

    Reactivation with bis quaternary aldoxime HI-6, chemical formula 1-(2-hydroxyamino-methylpyridinium)-3-(4-carbamoylpyridinium)-2-oxapropane dichloride of immobilized enzyme acetylcholinesterase inhibited by nerve agent type "G" was studied. This aldoxime is effective in reactivation of sarin-inhibited acetylcholinesterase. Substantially lower reactivation potency was observed with cyclosarin-inhibited enzyme and almost no effect was found for that acetylcholinesterase is the enzyme complex. HI 6 is completely ineffective towards the soman-inhibited enzyme: After a 2-minute inhibition of the enzyme with soman no ability to define reactivator the inhibited enzymes and complexes.

  14. Induction of plasma acetylcholinesterase activity in mice challenged with organophosphorus poisons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duysen, Ellen G.; Lockridge, Oksana, E-mail: olockrid@unmc.edu

    2011-09-01

    The restoration of plasma acetylcholinesterase activity in mice following inhibition by organophosphorus pesticides and nerve agents has been attributed to synthesis of new enzyme. It is generally assumed that activity levels return to normal, are stable and do not exceed the normal level. We have observed over the past 10 years that recovery of acetylcholinesterase activity levels in mice treated with organophosphorus agents (OP) exceeds pretreatment levels and remains elevated for up to 2 months. The most dramatic case was in mice treated with tri-cresyl phosphate and tri-ortho-cresyl phosphate, where plasma acetylcholinesterase activity rebounded to a level 250% higher thanmore » the pretreatment activity. The present report summarizes our observations on plasma acetylcholinesterase activity in mice treated with chlorpyrifos, chlorpyrifos oxon, diazinon, tri-ortho-cresyl phosphate, tri-cresyl phosphate, tabun thiocholine, parathion, dichlorvos, and diisopropylfluorophosphate. We have developed a hypothesis to explain the excess acetylcholinesterase activity, based on published observations. We hypothesize that acetylcholinesterase activity is induced when cells undergo apoptosis and that consequently there is a rise in the level of plasma acetylcholinesterase. - Highlights: > Acetylcholinesterase activity is induced by organophosphorus agents. > AChE induction is related to apoptosis. > Induction of AChE activity by OP is independent of BChE.« less

  15. Biochemical effects of glyphosate based herbicide, Excel Mera 71 on enzyme activities of acetylcholinesterase (AChE), lipid peroxidation (LPO), catalase (CAT), glutathione-S-transferase (GST) and protein content on teleostean fishes.

    PubMed

    Samanta, Palas; Pal, Sandipan; Mukherjee, Aloke Kumar; Ghosh, Apurba Ratan

    2014-09-01

    Effects of glyphosate based herbicide, Excel Mera 71 at a dose of 17.20mg/l on enzyme activities of acetylcholinesterase (AChE), lipid peroxidation (LPO), catalase (CAT), glutathione-S-transferase (GST) and protein content were measured in different tissues of two Indian air-breathing teleosts, Anabas testudineus (Bloch) and Heteropneustes fossilis (Bloch) during an exposure period of 30 days under laboratory condition. AChE activity was significantly increased in all the investigated tissues of both fish species and maximum elevation was observed in brain of H. fossilis, while spinal cord of A. testudineus showed minimum increment. Fishes showed significant increase LPO levels in all the tissues; highest was observed in gill of A. testudineus but lowest LPO level was observed in muscle of H. fossilis. CAT was also enhanced in both the fishes, while GST activity in liver diminished substantially and minimum was observed in liver of A. testudineus. Total protein content showed decreased value in all the tissues, maximum reduction was observed in liver and minimum in brain of A. testudineus and H. fossilis respectively. The results indicated that Excel Mera 71 caused serious alterations in the enzyme activities resulting into severe deterioration of fish health; so, AChE, LPO, CAT and GST can be used as suitable indicators of herbicidal toxicity. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Cholinesterase reactivators and bioscavengers for pre- and post-exposure treatments of organophosphorus poisoning.

    PubMed

    Masson, Patrick; Nachon, Florian

    2017-08-01

    Organophosphorus agents (OPs) irreversibly inhibit acetylcholinesterase (AChE) causing a major cholinergic syndrome. The medical counter-measures of OP poisoning have not evolved for the last 30 years with carbamates for pretreatment, pyridinium oximes-based AChE reactivators, antimuscarinic drugs and neuroprotective benzodiazepines for post-exposure treatment. These drugs ensure protection of peripheral nervous system and mitigate acute effects of OP lethal doses. However, they have significant limitations. Pyridostigmine and oximes do not protect/reactivate central AChE. Oximes poorly reactivate AChE inhibited by phosphoramidates. In addition, current neuroprotectants do not protect the central nervous system shortly after the onset of seizures when brain damage becomes irreversible. New therapeutic approaches for pre- and post-exposure treatments involve detoxification of OP molecules before they reach their molecular targets by administrating catalytic bioscavengers, among them phosphotriesterases are the most promising. Novel generation of broad spectrum reactivators are designed for crossing the blood-brain barrier and reactivate central AChE. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms. © 2017 International Society for Neurochemistry.

  17. Microwave-Assisted Cytochemistry: Accelerated Visualization of Acetylcholinesterase at Motor Endplates

    DTIC Science & Technology

    2001-01-01

    ofAcetylcholinesterase at Motor Endplates John P. Petrali and Kenneth R. Mills INTRODUCTION Acetylcholinesterase (AChE) is the modulating enzyme of cholin ...utilized for this study was the Pelco 3440, 800 W. The animal used was the haired guinea pig, which was euthanatized by an overdose of Na pentobarbital

  18. Identification of new allosteric sites and modulators of AChE through computational and experimental tools.

    PubMed

    Roca, Carlos; Requena, Carlos; Sebastián-Pérez, Víctor; Malhotra, Sony; Radoux, Chris; Pérez, Concepción; Martinez, Ana; Antonio Páez, Juan; Blundell, Tom L; Campillo, Nuria E

    2018-12-01

    Allosteric sites on proteins are targeted for designing more selective inhibitors of enzyme activity and to discover new functions. Acetylcholinesterase (AChE), which is most widely known for the hydrolysis of the neurotransmitter acetylcholine, has a peripheral allosteric subsite responsible for amyloidosis in Alzheimer's disease through interaction with amyloid β-peptide. However, AChE plays other non-hydrolytic functions. Here, we identify and characterise using computational tools two new allosteric sites in AChE, which have allowed us to identify allosteric inhibitors by virtual screening guided by structure-based and fragment hotspot strategies. The identified compounds were also screened for in vitro inhibition of AChE and three were observed to be active. Further experimental (kinetic) and computational (molecular dynamics) studies have been performed to verify the allosteric activity. These new compounds may be valuable pharmacological tools in the study of non-cholinergic functions of AChE.

  19. Effects of hexamethonium, phenothiazines, propranolol and ephedrine on acetylcholinesterase carbamylation by physostigmine, aldicarb and carbaryl: interaction between the active site and the functionally distinct peripheral sites in acetylcholinesterase.

    PubMed

    Singh, A K; Spassova, D

    1998-01-01

    Physostigmine, aldicarb and carbaryl were potent inhibitors of acetylcholinesterase (AChE). The physostigmine-inhibited AChE fluoresced at 300 nm excitation and 500 nm emission wavelengths, but the aldicarb and carbaryl inhibited enzyme did not. This suggests that the carbamylated active center is not the fluorescing site in AChE. The fluorescence intensity of physostigmine-inhibited AChE decreased with increasing the substrate (acetylthiocholine) concentration, thus indicating that physostigmine binding to the active site is essential for the development of fluorescence. Thus, the physostigmine-inhibited AChE fluoresces due to the binding of trimethylpyrrolo[2,3-b]indol (TMPI) moiety, formed by the hydrolysis of physostigmine, to a peripheral site in AChE. The fluorescence intensity of the physostigmine-inhibited enzyme decreased when the inhibited-enzyme was dialyzed for either 30 min that poorly reactivated the enzyme or 180 min that fully reactivated the enzyme. This suggests that dialysis dissociates the AChE-TMPI complex much faster than it reactivates the carbamylated AChE. Ephedrine, propranolol and phenothiazines including trifluoparazine (TPZ) caused non-competitive inhibition, while hexamethonium caused an uncompetitive inhibition of AChE activity. TPZ, upon binding with AChE, formed a fluorescent TPZ-enzyme complex. The fluorescence intensity of TPZ-AChE complex was effectively decreased by ephedrine, but not by propranolol or hexamethonium. This indicates that TPZ and ephedrine bind to the same site in AChE which is different from the site/or sites to which propranolol or hexamethonium bind. Hexamethonium protected AChE from inhibition by carbamates and decreased the fluorescence intensity of the physostigmine-inhibited AChE. Phenothiazines and ephedrine did not modulate the enzyme inhibition or the fluorescence intensity of the physostigmine-inhibited AChE. Propranolol and TPZ potentiated the enzyme inhibition and increased the fluorescence intensity

  20. Natural AChE Inhibitors from Plants and their Contribution to Alzheimer’s Disease Therapy

    PubMed Central

    Murray, Ana Paula; Faraoni, María Belén; Castro, María Julia; Alza, Natalia Paola; Cavallaro, Valeria

    2013-01-01

    As acetylcholinesterase (AChE) inhibitors are an important therapeutic strategy in Alzheimer’s disease, efforts are being made in search of new molecules with anti-AChE activity. The fact that naturally-occurring compounds from plants are considered to be a potential source of new inhibitors has led to the discovery of an important number of secondary metabolites and plant extracts with the ability of inhibiting the enzyme AChE, which, according to the cholinergic hypothesis, increases the levels of the neurotransmitter acetylcholine in the brain, thus improving cholinergic functions in patients with Alzheimer’s disease and alleviating the symptoms of this neurological disorder. This review summarizes a total of 128 studies which correspond to the most relevant research work published during 2006-2012 (1st semester) on plant-derived compounds, plant extracts and essential oils found to elicit AChE inhibition. PMID:24381530

  1. Anti-Alzheimers activity and molecular mechanism of albumin-derived peptides against AChE and BChE.

    PubMed

    Yu, Zhipeng; Wu, Sijia; Zhao, Wenzhu; Ding, Long; Fan, Yue; Shiuan, David; Liu, Jingbo; Chen, Feng

    2018-02-21

    Alzheimer's disease (AD) is a global health issue affecting millions of elderly people worldwide. The aim of the present study was to identify novel anti-AD peptides isolated from albumin. Anti-AD activities of the peptides were evaluated via inhibitory activities on acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Furthermore, the potential molecular mechanisms of the KLPGF/AChE were investigated by CDOCKER of Discovery studio 2017. The results revealed that peptide KLPGF could effectively inhibit AChE with an inhibition rate of 61.23% at a concentration of 50 μg mL -1 . In addition, the peptide KLPGF came in contact with acylation sites and peripheral anion sites of AChE. The present study demonstrates that the peptide KLPGF could become a potential functional food intervention in AD.

  2. Acetylcholinesterases from Elapidae snake venoms: biochemical, immunological and enzymatic characterization.

    PubMed

    Frobert, Y; Créminon, C; Cousin, X; Rémy, M H; Chatel, J M; Bon, S; Bon, C; Grassi, J

    1997-05-23

    We analyzed 45 batches of venom from 20 different species belonging to 11 genera from the 3 main families of venomous snakes (Elapidae, Viperidae and Crotalidae). We found high acetylcholinesterase (AChE) activity in all venoms from Elapidae, except in those from the Dendroaspis genus. AChE was particularly abundant in Bungarus venoms which contain up to 8 mg of enzyme per gram of dried venom. We could not detect acetylcholinesterase activity in any batch of venom from Viperidae or Crotalidae. Titration of active sites with an organophosphorous agent (MPT) revealed that the AChE of all venoms have similar turnovers (6000 to 8000 s(-1)) which are clearly higher than those of Torpedo and mammalian enzymes but lower than that of Electrophorus. AChEs from the venom of elapid snakes of the Bungarus, Naja, Ophiophagus and Haemacatus genera were purified by affinity chromatography. SDS-PAGE analysis and sucrose gradient centrifugation demonstrated that AChE is exclusively present as a nonamphiphilic monomer. These enzymes are true AChEs, hydrolyzing acetylthiocholine faster than propionylthiocholine and butyrylthiocholine and exhibiting excess substrate inhibition. Twenty-seven different monoclonal antibodies directed against AChE from Bungarus fasciatus venom were raised in mice. Half of them recognized exclusively the Bungarus enzyme while the others cross-reacted with AChEs from other venoms. Polyspecific mAbs were used to demonstrate that venoms from Dendroaspis, which contain the AChE inhibitor fasciculin but lack AChE activity, were also devoid of immunoreactive AChE protein. AChE inhibitors acting at the active site (edrophonium, tacrine) and at the peripheral site (propidium, fasciculin), as well as bis-quaternary ligands (BW284C51, decamethonium), were tested against the venom AChEs from 11 different species. All enzymes had a very similar pattern of reactivity with regard to the different inhibitors, with the exception of fasciculin. AChEs from Naja and

  3. Investigations into the development of catalytic activity in anti-acetylcholinesterase idiotypic and anti-idiotypic antibodies.

    PubMed

    Johnson, Glynis; Moore, Samuel W

    2009-01-01

    We have previously described anti-acetylcholinesterase antibodies that display acetylcholinesterase-like catalytic activity. No evidence of contaminating enzymes was found, and the antibodies are kinetically and apparently structurally distinct from both acetylcholinesterase (AChE) and butyrylcholinesterase. We have also mimicked the antibody catalytic sites in anti-anti-idiotypic (Ab3) antibodies. Independently from us, similar acetylcholinesterase-like antibodies have been raised as anti-idiotypic (Ab2) antibodies against a non-catalytic anti-acetylcholinesterase antibody, AE-2. In this paper, we describe an epitope analysis, using synthetic peptides in ELISA and competition ELISA, and a peptide array, of five catalytic anti-acetylcholinesterase antibodies (Ab1s), three catalytic Ab3s, as well as antibody AE-2 and a non-catalytic Ab2. The catalytic Ab1s and Ab3s recognized three Pro- and Gly-containing sequences ((40)PPMGPRRFL, (78)PGFEGTE, and (258)PPGGTGGNDTELVAC) on the AChE surface. As these sequences do not adjoin in the AChE structure, recognition would appear to be due to cross-reaction. This was confirmed by the observation that the sequences superimpose structurally. The non-catalytic antibodies, AE-2 and the Ab2, recognized AChE's peripheral anionic site (PAS), in particular, the sequence (70)YQYVD, which contains two of the site's residues. The crystal structure of the AChE tetramer (Bourne et al., 1999) shows direct interaction and high complementarity between the (257)CPPGGTGGNDTELVAC sequence and the PAS. Antibodies recognizing the sequence and the PAS may, in turn, be complementary; this may account for the apparent paradox of catalytic development in both Ab1s and Ab2s. The PAS binds, but does not hydrolyze, substrate. The catalytic Ab1s, therefore, recognize a site that may function as a substrate analog, and this, together with the presence of an Arg-Glu salt bridge in the epitope, suggests mechanisms whereby catalytic activity may have

  4. Changes of rat plasma total low molecular weight antioxidant level after tabun exposure and consequent treatment by acetylcholinesterase reactivators.

    PubMed

    Pohanka, Miroslav; Karasova, Jana Zdarova; Musilek, Kamil; Kuca, Kamil; Jung, Young-Sik; Kassa, Jiri

    2011-02-01

    These experiments were performed on a rat model. The rats were divided into eight groups and consequently exposed to either a saline solution (control), atropine or a combination of atropine and tabun. The reactivation efficacy of the oximes was estimated on the rats exposed to tabun, atropine and a reactivator of AChE. The oximes HI-6, obidoxime, trimedoxime, K203 and KR-22836 were used as representative compounds of commonly available and new AChE reactivators. Besides the positive effect of the administered reactivators on blood AChE activity, the sizable modulation of low molecular weight antioxidant (LMWA) levels was also determined. The LMWA levels in the the animals treated with the oxime reactivators were decreased in comparison with the animals treated by atropine alone. It was found that the levels of LMWA returned to the level found in the control animals when either trimedoxime, K203 or KR-22836 were administered. The principle of oxime reactivator function and a novel insight into AChE activity regulation and oxidative stress is discussed.

  5. The acetylcholinesterase inhibitor BW284c51 is a potent blocker of Torpedo nicotinic AchRs incorporated into the Xenopus oocyte membrane

    PubMed Central

    Olivera-Bravo, Silvia; Ivorra, Isabel; Morales, Andrés

    2004-01-01

    This work was aimed to determine if 1,5-bis(4-allyldimethylammoniumphenyl)pentan-3-one dibromide (BW284c51), the most selective acetylcholinesterase inhibitor (AchEI), affects the nicotinic acetylcholine (Ach) receptor (AchR) function. Purified Torpedo nicotinic AchRs were injected into Xenopus laevis oocytes and BW284c51 effects on Ach- and carbamylcholine (Cch)-elicited currents were assessed using the voltage-clamp technique. BW284c51 (up to 1 mM) did not evoke any change in the oocyte membrane conductance. When BW284c51 (10 pM–100 μM) and Ach were coapplied, Ach-evoked currents (IAch) were reversibly inhibited in a concentration-dependent manner (Hill coefficient, 1; IC50, 0.2–0.5 μM for 0.1–1000 μM Ach). Cch-elicited currents showed a similar inhibition by BW284c51. IAch blockade by BW284c51 showed a strong voltage dependence, being only apparent at hyperpolarising potentials. BW284c51 also enhanced IAch desensitisation. BW284c51 changed the Ach concentration-dependence curve of Torpedo AchR response from two-site to single-site kinetics, without noticeably affecting the EC50 value. The BW284c51 blocking effect was highly selective for nicotinic over muscarinic receptors. BW284c51 inhibition potency was stronger than that of tacrine, and similar to that of d-tubocurarine (d-TC). Coapplication of BW284c51 with either tacrine or d-TC revealed synergistic inhibitory effects. Our results indicate that BW284c51 antagonises nicotinic AchRs in a noncompetitive way by blocking the receptor channel, and possibly by other, yet unknown, mechanisms. Therefore, besides acting as a selective AchEI, BW284c51 constitutes a powerful and reversible blocker of nicotinic AchRs that might be used as a valuable tool for understanding their function. PMID:15644872

  6. A comparison of reactivating and therapeutic efficacy of bispyridinium acetylcholinesterase reactivator KR-22934 with the oxime K203 and commonly used oximes (obidoxime, trimedoxime, HI-6) in tabun-poisoned rats and mice.

    PubMed

    Kassa, Jiri; Karasova, Jana Zdarova; Pavlikova, Ruzena; Musilek, Kamil; Kuca, Kamil; Bajgar, Jiri; Jung, Young-Sik

    2011-03-01

    The potency of bispyridinium acetylcholinesterase reactivator KR-22934 in reactivating tabun-inhibited acetylcholinesterase and reducing tabun-induced lethal toxic effects was compared with the oxime K203 and commonly used oximes. Studies determining percentage of reactivation of tabun-inhibited blood and tissue acetylcholinesterase in rats showed that the reactivating efficacy of KR-22934 was slightly higher than the reactivating efficacy of K203 and roughly corresponded to the reactivating efficacy of obidoxime and trimedoxime in blood and diaphragm. On the other hand, the oxime KR-22934 was not able to reactivate tabun-inhibited acetylcholinesterase in the brain. The therapeutic efficacy of all oximes studied approximately corresponded to their reactivating efficacy. Based on the results, one can conclude that the oxime KR-22934 is not suitable for the replacement of commonly used oximes for the antidotal treatment of tabun poisoning in spite of its potency to reactivate tabun-inhibited acetylcholinesterase in the peripheral compartment (blood, diaphragm).

  7. A novel fluorine-18 β-fluoroethoxy organophosphate positron emission tomography imaging tracer targeted to central nervous system acetylcholinesterase.

    PubMed

    James, Shelly L; Ahmed, S Kaleem; Murphy, Stephanie; Braden, Michael R; Belabassi, Yamina; VanBrocklin, Henry F; Thompson, Charles M; Gerdes, John M

    2014-07-16

    Radiosynthesis of a fluorine-18 labeled organophosphate (OP) inhibitor of acetylcholinesterase (AChE) and subsequent positron emission tomography (PET) imaging using the tracer in the rat central nervous system are reported. The tracer structure, which contains a novel β-fluoroethoxy phosphoester moiety, was designed as an insecticide-chemical nerve agent hybrid to optimize handling and the desired target reactivity. Radiosynthesis of the β-fluoroethoxy tracer is described that utilizes a [(18)F]prosthetic group coupling approach. The imaging utility of the [(18)F]tracer is demonstrated in vivo within rats by the evaluation of its brain penetration and cerebral distribution qualities in the absence and presence of a challenge agent. The tracer effectively penetrates brain and localizes to cerebral regions known to correlate with the expression of the AChE target. Brain pharmacokinetic properties of the tracer are consistent with the formation of an OP-adducted acetylcholinesterase containing the fluoroethoxy tracer group. Based on the initial favorable in vivo qualities found in rat, additional [(18)F]tracer studies are ongoing to exploit the technology to dynamically probe organophosphate mechanisms of action in mammalian live tissues.

  8. Repetitive obidoxime treatment induced increase of red blood cell acetylcholinesterase activity even in a late phase of a severe methamidophos poisoning: A case report.

    PubMed

    Steinritz, Dirk; Eyer, Florian; Worek, Franz; Thiermann, Horst; John, Harald

    2016-02-26

    Accidental self-poisoning or deliberate use in suicidal intent of organophosphorus pesticides (OPP), which are widely used in agriculture, represent a health problem worldwide. Symptoms of poisoning are characterized by acute cholinergic crisis caused by inhibition of acetylcholinesterase. A 75-year-old male patient ingested 20ml of an OPP solution containing 10% methamidophos in suicidal intent. In the course of poisoning typical clinical symptoms of cholinergic crisis (miosis, bradycardia, hypotension, hypersalivation and impairment of neurologic status) were evident. Butyryl (plasma) cholinesterase (BChE) and red blood cell acetylcholinesterase (RBC-AChE) revealed decreased activities, thus specific treatment with the enzyme reactivator obidoxime was started. Inhibitory activity of the patient's plasma indicated significant amounts of persisting methamidophos in the circulation and was still found on day 4 after ingestion. Due to missing spontaneous breathing on day 6, obidoxime was administered again. Afterwards a significant increase of RBC-AChE activity was found. The patient was extubated on day 10 and a restitution ad integrum was achieved. In conclusion, obidoxime is a potent reactivator of OPP-inhibited AChE. A repetitive and prolonged administration of obidoxime should be considered in cases of severe methamidophos poisoning and should be tailored with an advanced analytical biomonitoring. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Complexity of acetylcholinesterases in biting flies and ticks

    USDA-ARS?s Scientific Manuscript database

    Acetylcholinesterase (AChE) inhibitors function as pesticides for invertebrates, vertebrate nerve agents, and medicine to reduce cognitive effects of Alzheimer’s disease. Organophosphate (OP) pesticides have been widely used to control biting flies and ticks, however, OP-resistance has compromised c...

  10. Old and new acetylcholinesterase inhibitors for Alzheimer's disease.

    PubMed

    Galimberti, Daniela; Scarpini, Elio

    2016-10-01

    To date, pharmacological treatment of Alzheimer's disease (AD) includes Acetylcholinesterase Inhibitors (AChEIs) for mild-to-moderate AD, and memantine for moderate-to-severe AD. AChEIs reversibly inhibit acetylcholinesterase (AChE), thus increasing the availability of acetylcholine in cholinergic synapses, enhancing cholinergic transmission. These drugs provide symptomatic short-term benefits, without clearly counteracting the progression of the disease. On the wake of successful clinical trials which lead to the marketing of AChEIs donepezil, rivastigmine and galantamine, many compounds with AChEI properties have been developed and tested mainly in Phase I-II clinical trials in the last twenty years. Here, we review clinical trials initiated and interrupted, and those ongoing so far. Despite many clinical trials with novel AChEIs have been carried out after the registration of those currently used to treat mild to moderate AD, none so far has been successful in a Phase III trial and marketed. Alzheimer's disease is a complex multifactorial disorder, therefore therapy should likely address not only the cholinergic system but also additional neurotransmitters. Moreover, such treatments should be started in very mild phases of the disease, and preventive strategies addressed in elderly people.

  11. Acetylcholinesterase-Aβ Complexes Are More Toxic than Aβ Fibrils in Rat Hippocampus

    PubMed Central

    Reyes, Ariel E.; Chacón, Marcelo A.; Dinamarca, Margarita C.; Cerpa, Waldo; Morgan, Carlos; Inestrosa, Nibaldo C.

    2004-01-01

    Neuropathological changes generated by human amyloid-β peptide (Aβ) fibrils and Aβ-acetylcholinesterase (Aβ-AChE) complexes were compared in rat hippocampus in vivo. Results showed that Aβ-AChE complexes trigger a more dramatic response in situ than Aβ fibrils alone as characterized by the following features observed 8 weeks after treatment: 1) amyloid deposits were larger than those produced in the absence of AChE. In fact, AChE strongly stimulates rat Aβ aggregation in vitro as shown by turbidity measurements, Congo Red binding, as well as electron microscopy, suggesting that Aβ-AChE deposits observed in vivo probably recruited endogenous Aβ peptide; 2) the appearance of laminin expressing neurons surrounding Aβ-AChE deposits (such deposits are resistant to disaggregation by laminin in vitro); 3) an extensive astrocytosis revealed by both glial fibrillary acidic protein immunoreactivity and number counting of reactive hypertrophic astrocytes; and 4) a stronger neuronal cell loss in comparison with Aβ-injected animals. We conclude that the hippocampal injection of Aβ-AChE complexes results in the appearance of some features reminiscent of Alzheimer-like lesions in rat brain. Our studies are consistent with the notion that Aβ-AChE complexes are more toxic than Aβ fibrils and that AChE triggered some of the neurodegenerative changes observed in Alzheimer’s disease brains. PMID:15161650

  12. Acetylcholinesterase inhibitory properties of some benzoic acid derivatives

    NASA Astrophysics Data System (ADS)

    Yildiz, Melike; Kiliç, Deryanur; Ünver, Yaǧmur; Şentürk, Murat; Askin, Hakan; Küfrevioǧlu, Ömer Irfan

    2016-04-01

    Acetylcholinesterase (AChE) hydrolyses the neurotransmitter acetylcholine to acetic acid and choline. AChE inhibitors are used in treatment of several neurodegeneartive disorder and Alzheimer's disease. In the present study, inhibition of AChE with some benzoic acid derivatives were investigated. 3-Chloro-benzoic acid (1), 2-hydroxy-5-sulfobenzoic acid (2), 2-(sulfooxy) benzoic acid (3), 2-hydroxybenzoic acid (4), 2,3-dimethoxybenzoic (5), and 3,4,5-trimethoxybenzoic (6) were calculated IC50 values AChE enzyme. Kinetic investigations showed that similarly to AChE inhibitors. Benzoic acid derivatives (1-6) investigated are encouraging agents which may be used as lead molecules in order to derivative novel AChE inhibitors that might be useful in medical applications.

  13. Acetylcholinesterase of the sand fly, Phlebotomus papatasi (Scopoli): cDNA sequence, baculovirus expression, and biochemical properties

    PubMed Central

    2013-01-01

    Background Millions of people and domestic animals around the world are affected by leishmaniasis, a disease caused by various species of flagellated protozoans in the genus Leishmania that are transmitted by several sand fly species. Insecticides are widely used for sand fly population control to try to reduce or interrupt Leishmania transmission. Zoonotic cutaneous leishmaniasis caused by L. major is vectored mainly by Phlebotomus papatasi (Scopoli) in Asia and Africa. Organophosphates comprise a class of insecticides used for sand fly control, which act through the inhibition of acetylcholinesterase (AChE) in the central nervous system. Point mutations producing an altered, insensitive AChE are a major mechanism of organophosphate resistance in insects and preliminary evidence for organophosphate-insensitive AChE has been reported in sand flies. This report describes the identification of complementary DNA for an AChE in P. papatasi and the biochemical characterization of recombinant P. papatasi AChE. Methods A P. papatasi Israeli strain laboratory colony was utilized to prepare total RNA utilized as template for RT-PCR amplification and sequencing of cDNA encoding acetylcholinesterase 1 using gene specific primers and 3’-5’-RACE. The cDNA was cloned into pBlueBac4.5/V5-His TOPO, and expressed by baculovirus in Sf21 insect cells in serum-free medium. Recombinant P. papatasi acetylcholinesterase was biochemically characterized using a modified Ellman’s assay in microplates. Results A 2309 nucleotide sequence of PpAChE1 cDNA [GenBank: JQ922267] of P. papatasi from a laboratory colony susceptible to insecticides is reported with 73-83% nucleotide identity to acetylcholinesterase mRNA sequences of Culex tritaeniorhynchus and Lutzomyia longipalpis, respectively. The P. papatasi cDNA ORF encoded a 710-amino acid protein [GenBank: AFP20868] exhibiting 85% amino acid identity with acetylcholinesterases of Cx. pipiens, Aedes aegypti, and 92% amino acid identity for

  14. The role of the oximes HI-6 and HS-6 inside human acetylcholinesterase inhibited with nerve agents: a computational study.

    PubMed

    Cuya, Teobaldo; Gonçalves, Arlan da Silva; da Silva, Jorge Alberto Valle; Ramalho, Teodorico C; Kuca, Kamil; C C França, Tanos

    2017-10-27

    The oximes 4-carbamoyl-1-[({2-[(E)-(hydroxyimino) methyl] pyridinium-1-yl} methoxy) methyl] pyridinium (known as HI-6) and 3-carbamoyl-1-[({2-[(E)-(hydroxyimino) methyl] pyridinium-1-yl} methoxy) methyl] pyridinium (known as HS-6) are isomers differing from each other only by the position of the carbamoyl group on the pyridine ring. However, this slight difference was verified to be responsible for big differences in the percentual of reactivation of acetylcholinesterase (AChE) inhibited by the nerve agents tabun, sarin, cyclosarin, and VX. In order to try to find out the reason for this, a computational study involving molecular docking, molecular dynamics, and binding energies calculations, was performed on the binding modes of HI-6 and HS-6 on human AChE (HssAChE) inhibited by those nerve agents.

  15. Small molecular floribundiquinone B derived from medicinal plants inhibits acetylcholinesterase activity

    PubMed Central

    Jiang, Li; Qin, Rui; Su, Qiang; Chen, Fuxue; Du, Dongshu; Shu, Yilai; Chou, Kuo-Chen

    2017-01-01

    Being a neurodegenerative disorder, Alzheimer's disease (AD) is the one of the most terrible diseases. And acetylcholinesterase (AChE) is considered as an important target for treating AD. Acetylcholinesterase inhibitors (AChEI) are considered to be one of the effective drugs for the treatment of AD. The aim of this study is to find a novel potential AChEI as a drug for the treatment of AD. In this study, instead of using the synthetic compounds, we used those extracted from plants to investigate the interaction between floribundiquinone B (FB) and AChE by means of both the experimental approach such as fluorescence spectra, ultraviolet-visible (UV-vis) absorption spectrometry, circular dichroism (CD) and the theoretical approaches such as molecular docking. The findings reported here have provided many useful clues and hints for designing more effective and less toxic drugs against Alzheimer's disease. PMID:28915661

  16. Ibogaine and the inhibition of acetylcholinesterase.

    PubMed

    Alper, Kenneth; Reith, Maarten E A; Sershen, Henry

    2012-02-15

    Ibogaine is a psychoactive monoterpine indole alkaloid extracted from the root bark of Tabernanthe iboga Baill. that is used globally in medical and nonmedical settings to treat drug and alcohol addiction, and is of interest as an ethnopharmacological prototype for experimental investigation and pharmaceutical development. The question of whether ibogaine inhibits acetylcholinesterase (AChE) is of pharmacological and toxicological significance. AChE activity was evaluated utilizing reaction with Ellman's reagent with physostigmine as a control. Ibogaine inhibited AChE with an IC(50) of 520±40 μM. Ibogaine's inhibition of AChE is physiologically negligible, and does not appear to account for observations of functional effects in animals and humans that might otherwise suggest the possible involvement of pathways linked to muscarinic acetylcholine transmission. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  17. A sensitive acetylcholinesterase biosensor based on gold nanorods modified electrode for detection of organophosphate pesticide.

    PubMed

    Lang, Qiaolin; Han, Lei; Hou, Chuantao; Wang, Fei; Liu, Aihua

    2016-08-15

    A sensitive amperometric acetylcholinesterase (AChE) biosensor, based on gold nanorods (AuNRs), was developed for the detection of organophosphate pesticide. Compared with Au@Ag heterogeneous NRs, AuNRs exhibited excellent electrocatalytic properties, which can electrocatalytically oxidize thiocholine, the hydrolysate of acetylthiocholine chloride (ATCl) by AChE at +0.55V (vs. SCE). The AChE/AuNRs/GCE biosensor was fabricated on basis of the inhibition of AChE activity by organophosphate pesticide. The biosensor could detect paraoxon in the linear range from 1nM to 5μM and dimethoate in the linear range from 5nM to 1μM, respectively. The detection limits of paraoxon and dimethoate were 0.7nM and 3.9nM, which were lower than the reported AChE biosensor. The proposed biosensor could restore to over 95% of its original current, which demonstrated the good reactivation. Moreover, the biosensor can be applicable to real water sample measurement. Thus, the biosensor exhibited low applied potential, high sensitivity and good stability, providing a promising tool for analysis of pesticides. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Computer Image Analysis of Histochemically-Labeled Acetylcholinesterase.

    DTIC Science & Technology

    1984-11-30

    image analysis on conjunction with histochemical techniques to describe the distribution of acetylcholinesterase (AChE) activity in nervous and muscular tissue in rats treated with organophosphates (OPs). The objective of the first year of work on this remaining 2 years. We began by adopting a version of the AChE staining method as modified by Hanker, which consistent with the optical properties of our video system. We wrote computer programs for provide a numeric quantity which represents the degree of staining in a tissue section. The staining was calibrated by

  19. Effects of EGCG and Chlorpyrifos on the Mortality, AChE and GSH of Adult Zebrafish: Independent and Combination

    NASA Astrophysics Data System (ADS)

    Zhang, Rong; Zhang, Jian; Gao, Qian; Guo, Nichun

    2018-01-01

    Chlorpyrifos is a neurotoxic agent and also causes oxidative stress in the body. EGCG is a typical strong antioxidant and has been reported to be neuroprotective. Our study investigated the mortality, the activity of acetylcholinesterase (AChE) in the brain and glutathione (GSH) in the liver of the adult Zebrafish in present of Chlorpyrifos and EGCG independent and combination. The results indicated that after the addition of EGCG, the mortality of zebrafish induced by Chlorpyrifos was reduced and the activity of AChE and glutathione (GSH) inhibited by Chlorpyrifos in zebrafish was significantly increased, which demonstrated that EGCG inhibited the toxicity Chlorpyrifos to zebrafish. The inhibition was dependent on the concentration of EGCG and Chlorpyrifos, which was not shown a gradual change trend but a complex situation.

  20. Catalytic soman scavenging by Y337A/F338A acetylcholinesterase mutant assisted with novel site-directed aldoximes

    PubMed Central

    Kovarik, Zrinka; Hrvat, Nikolina Maček; Katalinić, Maja; Sit, Rakesh K.; Paradyse, Alexander; Žunec, Suzana; Musilek, Kamil; Fokin, Valery V.; Taylor, Palmer; Radić, Zoran

    2016-01-01

    Exposure to the nerve agent soman is difficult to treat due to the rapid dealkylation of soman-acetylcholinesterase (AChE) conjugate known as aging. Oxime antidotes commonly used to reactivate organophosphate inhibited AChE are ineffective against soman, while the efficacy of the recommended nerve agent bioscavenger butyrylcholinesterase is limited by strictly stoichiometric scavenging. To overcome this limitation, we tested ex vivo, in human blood, and in vivo, in soman exposed mice, the capacity of aging-resistant human AChE mutant Y337A/F338A in combination with oxime HI-6 to act as a catalytic bioscavenger of soman. HI-6 was previously shown in vitro to efficiently reactivate this mutant upon soman, as well as VX, cyclosarin, sarin and paraoxon inhibition. We here demonstrate that ex vivo, in whole human blood, 1 μM soman was detoxified within 30 minutes when supplemented with 0.5 μM Y337A/F338A AChE and 100 μM HI-6. This combination was further tested in vivo. Catalytic scavenging of soman in mice improved the therapeutic outcome and resulted in the delayed onset of toxicity symptoms. Furthermore, in a preliminary in vitro screen we identified an even more efficacious oxime than HI-6, in a series of forty-two pyridinium aldoximes, and five imidazole 2-aldoxime N-propyl pyridinium derivatives. One of the later imidazole aldoximes, RS-170B, was a 2–3 –fold more effective reactivator of Y337A/F338A AChE than HI-6 due to the smaller imidazole ring, as indicated by computational molecular models, that affords a more productive angle of nucleophilic attack. PMID:25835984

  1. Acetylcholinesterase-R increases germ cell apoptosis but enhances sperm motility

    PubMed Central

    Mor, I; Sklan, EH; Podoly, E; Pick, M; Kirschner, M; Yogev, L; Bar-Sheshet Itach, S; Schreiber, L; Geyer, B; Mor, T; Grisaru, D; Soreq, H

    2008-01-01

    Abstract Changes in protein subdomains through alternative splicing often modify protein-protein interactions, altering biological processes. A relevant example is that of the stress-induced up-regulation of the acetylcholinesterase (AChE-R) splice variant, a common response in various tissues. In germ cells of male transgenic TgR mice, AChE-R excess associates with reduced sperm differentiation and sperm counts. To explore the mechanism(s) by which AChE-R up-regulation affects spermatogenesis, we identified AChE-R's protein partners through a yeast two-hybrid screen. In meiotic spermatocytes from TgR mice, we detected AChE-R interaction with the scaffold protein RACK1 and elevated apoptosis. This correlated with reduced scavenging by RACK1 of the pro-apoptotic TAp73, an outcome compatible with the increased apoptosis. In contrast, at later stages in sperm development, AChE-R's interaction with the glycolytic enzyme enolase-α elevates enolase activity. In transfected cells, enforced AChE-R excess increased glucose uptake and adenosine tri-phosphate (ATP) levels. Correspondingly, TgR sperm cells display elevated ATP levels, mitochondrial hyperactivity and increased motility. In human donors' sperm, we found direct association of sperm motility with AChE-R expression. Interchanging interactions with RACK1 and enolase-α may hence enable AChE-R to affect both sperm differentiation and function by participating in independent cellular pathways. PMID:18194455

  2. An easy method for the determination of active concentrations of cholinesterase reactivators in blood samples: Application to the efficacy assessment of non quaternary reactivators compared to HI-6 and pralidoxime in VX-poisoned mice.

    PubMed

    Calas, André-Guilhem; Dias, José; Rousseau, Catherine; Arboléas, Mélanie; Touvrey-Loiodice, Mélanie; Mercey, Guillaume; Jean, Ludovic; Renard, Pierre-Yves; Nachon, Florian

    2017-04-01

    Organophosphorus nerve agents, like VX, are highly toxic due to their strong inhibition potency against acetylcholinesterase (AChE). AChE inhibited by VX can be reactivated using powerful nucleophilic molecules, most commonly oximes, which are one major component of the emergency treatment in case of nerve agent intoxication. We present here a comparative in vivo study on Swiss mice of four reactivators: HI-6, pralidoxime and two uncharged derivatives of 3-hydroxy-2-pyridinaldoxime that should more easily cross the blood-brain barrier and display a significant central nervous system activity. The reactivability kinetic profile of the oximes is established following intraperitoneal injection in healthy mice, using an original and fast enzymatic method based on the reactivation potential of oxime-containing plasma samples. HI-6 displays the highest reactivation potential whatever the conditions, followed by pralidoxime and the two non quaternary reactivators at the dose of 50 mg/kg bw. But these three last reactivators display equivalent reactivation potential at the same dose of 100 μmol/kg bw. Maximal reactivation potential closely correlates to surviving test results of VX intoxicated mice. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. The lignicolous fungus Trametes versicolor (L.) Lloyd (1920): a promising natural source of antiradical and AChE inhibitory agents.

    PubMed

    Janjušević, Ljiljana; Karaman, Maja; Šibul, Filip; Tommonaro, Giuseppina; Iodice, Carmine; Jakovljević, Dragica; Pejin, Boris

    2017-12-01

    This study aimed to determine antiradical (DPPH • and • OH) and acetylcholinesterase (AChE) inhibitory activities along with chemical composition of autochtonous fungal species Trametes versicolor (Serbia). A total of 38 phenolic compounds with notable presence of phenolic acids were identified using HPLC/MS-MS. Its water extract exhibited the highest antiradical activity against • OH (3.21 μg/mL), among the rest due to the presence of gallic, p-coumaric and caffeic acids. At the concentration of 100 μg/mL, the same extract displayed a profound AChE inhibitory activity (60.53%) in liquid, compared to donepezil (89.05%), a drug in clinical practice used as positive control. The flavonoids baicalein and quercetin may be responsible compounds for the AChE inhibitory activity observed. These findings have demonstrated considerable potential of T. versicolor water extract as a natural source of antioxidant(s) and/or AChE inhibitor(s) to be eventually used as drug-like compounds or food supplements in the treatment of Alzheimer's disease.

  4. Esterase detoxification of acetylcholinesterase inhibitors using human liver samples in vitro

    EPA Science Inventory

    Organophosphate (OP) and N-methylcarbamate pesticides inhibit acetylcholinesterase (AChE), but differences in metabolism and detoxification can influence potency of these pesticides across and within species. Carboxylesterase (CaE) and A-esterase (paraoxonase, PON1) are consider...

  5. Correlation of cholinergic drug induced quenching of acetylcholinesterase bound thioflavin-T fluorescence with their inhibition activity

    NASA Astrophysics Data System (ADS)

    Islam, Mullah Muhaiminul; Rohman, Mostofa Ataur; Gurung, Arun Bahadur; Bhattacharjee, Atanu; Aguan, Kripamoy; Mitra, Sivaprasad

    2018-01-01

    The development of new acetylcholinesterase inhibitors (AChEIs) and subsequent assay of their inhibition efficiency is considered to be a key step for AD treatment. The fluorescence intensity of thioflavin-T (ThT) bound in the active site of acetylcholinesterase (AChE) quenches substantially in presence of standard AChEI drugs due to the dynamic replacement of the fluorophore from the AChE active site as confirmed from steady state emission as well as time-resolved fluorescence anisotropy measurement and molecular dynamics simulation in conjunction with docking calculation. The parametrized % quenching data for individual system shows excellent correlation with enzyme inhibition activity measured independently by standard Ellman AChE assay method in a high throughput plate reader system. The results are encouraging towards design of a fluorescence intensity based AChE inhibition assay method and may provide a better toolset to rapidly evaluate as well as develop newer AChE-inhibitors for AD treatment.

  6. An acetylcholinesterase biosensor based on graphene-gold nanocomposite and calcined layered double hydroxide.

    PubMed

    Zhai, Chen; Guo, Yemin; Sun, Xia; Zheng, Yuhe; Wang, Xiangyou

    2014-05-10

    In this study, a novel acetylcholinesterase-based biosensor was fabricated. Acetylcholinesterase (AChE) was immobilized onto a glassy carbon electrode (GCE) with the aid of Cu-Mg-Al calcined layered double hydroxide (CLDH). CLDH can provide a bigger effective surface area for AChE loading, which could improve the precision and stability of AChE biosensor. However, the poor electroconductibility of CLDHs could lead to the low sensitivity of AChE biosensor. In order to effectively compensate the disadvantages of CLDHs, graphene-gold nanocomposites were used for improving the electron transfer rate. Thus, the graphene-gold nanocomposite (GN-AuNPs) was firstly modified onto the GCE, and then the prepared CLDH-AChE composite was immobilized onto the modified GCE to construct a sensitive AChE biosensor for pesticides detection. Relevant parameters were studied in detail and optimized, including the pH of the acetylthiocholine chloride (ATCl) solution, the amount of AChE immobilized on the biosensor and the inhibition time governing the analytical performance of the biosensor. The biosensor detected chlorpyrifos at concentrations ranging from 0.05 to 150μg/L. The detection limit for chlorpyrifos was 0.05μg/L. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Design and synthesis of dual inhibitors of acetylcholinesterase and serotonin transporter targeting potential agents for Alzheimer's disease.

    PubMed

    Kogen, Hiroshi; Toda, Narihiro; Tago, Keiko; Marumoto, Shinji; Takami, Kazuko; Ori, Mayuko; Yamada, Naho; Koyama, Kazuo; Naruto, Shunji; Abe, Kazumi; Yamazaki, Reina; Hara, Takao; Aoyagi, Atsushi; Abe, Yasuyuki; Kaneko, Tsugio

    2002-10-03

    Highly efficient acetylcholinesterase (AChE) and serotonin transporter (SERT) dual inhibitors, (S)-4 and (R)-13 were designed and synthesized on the basis of the hypothetical model of AChE active site. Both compounds showed potent inhibitory activities against AChE and SERT. [structure: see text

  8. Surface display and bioactivity of Bombyx mori acetylcholinesterase on Pichia pastoris

    USDA-ARS?s Scientific Manuscript database

    To construct the Pichia pastoris (P. pastoris) cell surface display system of Bombyx mori acetylcholinesterase (BmAChE), the gene for the anchor protein (AGa1) was obtained from Saccharomyces cerevisiae and was fused with the modified Bombyx mori acetylcholinesterase gene (bmace) and transformed int...

  9. Acetylcholinesterase and Nissl staining in the same histological section.

    PubMed

    Shipley, M T; Ennis, M; Behbehani, M M

    1989-12-18

    Acetylcholinesterase (AChE) enzyme histochemistry and Nissl staining are commonly utilized in neural architectonic studies. However, the opaque reaction deposit produced by the most commonly used AChE histochemical methods is not compatible with satisfactory Nissl staining. As a result, precise correlation of AChE and Nissl staining necessitates time-consuming comparisons of adjacent sections which may have differential shrinkage. Here, we have modified the Koelle-Friedenwald histochemical reaction for AChE by omitting the final intensification steps. The modified reaction yields a non-opaque reaction product that is selectively visualized by darkfield illumination. This non-intensified darkfield AChE (NIDA) reaction allows clear visualization of Nissl staining in the same histological section. This combined AChE-Nissl method greatly facilitates detailed correlation of enzyme and cytoarchitectonic organization.

  10. Acetylcholinesterase-inhibitory activities of the extracts from sponges collected in mauritius waters.

    PubMed

    Beedessee, Girish; Ramanjooloo, Avin; Surnam-Boodhun, Rashmee; van Soest, Rob W M; Marie, Daniel E P

    2013-03-01

    Patients diagnosed with Alzheimer's disease (AD) show a characteristic neurochemical deficit of acetylcholine, especially in the basal forebrains. The use of acetylcholinesterase (AChE) inhibitors to retard the hydrolysis of acetylcholine has been suggested as a promising strategy for AD treatment. In this study, we evaluated the acetylcholinesterase inhibitory (AChEI) activities of 134 extracts obtained from 45 species of marine sponges. Thin-layer chromatography (TLC) and microplate assays reveal potent acetylcholinsterase inhibitory activities of two AcOEt extracts from the sponges Pericharax heteroraphis and Amphimedon navalis PULITZER-FINALI. We further investigated the inhibitory kinetics of the extracts and found them to display mixed competitive/noncompetitive inhibition and associated their inhibitory activity partly to terpenoids. Acetylcholinesterase inhibitors from marine organisms have been rarely studied, and this study demonstrated the potential of marine sponges as a source of pharmaceutical leads against neurodegenerative diseases. Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.

  11. Esterase detoxification of acetylcholinesterase inhibitors by human or rat liver in vitro

    EPA Science Inventory

    Organophosphate (OP) and N-methylcarbamate pesticides inhibit acetylcholinesterase (AChE), but differences in metabolism and detoxification can influence potency of these pesticides across and within species. Carboxylesterase (CaE) and A-esterase (paraoxonase, PON) are considered...

  12. Modulators of Acetylcholinesterase Activity: From Alzheimer's Disease to Anti-Cancer Drugs.

    PubMed

    Lazarevic-Pasti, Tamara; Leskovac, Andreja; Momic, Tatjana; Petrovic, Sandra; Vasic, Vesna

    2017-01-01

    Acetylcholinesterase (AChE) is involved in the termination of impulse transmission by rapid hydrolysis of the neurotransmitter acetylcholine in numerous cholinergic pathways in the central and peripheral nervous systems. The enzyme inactivation leads to acetylcholine accumulation, hyperstimulation of nicotinic and muscarinic receptors, and disrupted neurotransmission. Hence, acetylcholinesterase inhibitors, interacting with the enzyme as their primary target, are applied as relevant drugs for different neurodegenerative diseases (such as Alzheimer's and Parkinson's) as well as toxins. At the same time, there are increasing evidence that in non-neuronal context, AChE is involved in the regulation of cell proliferation, differentiation, apoptosis and cell-cell interaction. An irregular expression of AChE has been found in different types of tumors, suggesting the involvement of AChE in the regulation of tumor development. Having all this in mind, there is a possibility that some AChE inhibitors could be used as anti-cancer agents. This contribution will discuss a broad range of possible application of different AChE inhibitors as drugs, from well-known anti-Alzheimer's disease drugs to their use in cancer treatment in future. Emphasis will be put on various known AChE inhibitors classes, whose application as drugs could be controversy, as well as on newly investigated natural products, which can also modulate AChE activity. It is not clear a patient treated for neurodegenerative condition prone to increased risk for some types of cancer and vice versa. This is necessary to keep in mind during rational drug design process for all therapies, which are based on AChE as a target molecule. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Acetylcholinesterase of Rhipicephalus (Boophilus) microplus and Phlebotomus papatasi: Gene identification, expression, and biochemical properties of recombinant proteins

    USDA-ARS?s Scientific Manuscript database

    Rhipicephalus (Boophilus) microplus (Bm) ticks are vectors of bovine babesiosis and anaplasmosis. Tick resistance to organophosphate (OP) acaricide involves acetylcholinesterase (AChE) insensitivity to OP and metabolic detoxification. Sequencing and in vitro expression of Bm genes encoding AChE allo...

  14. Acetylcholinesterases of Rhipicephalus (Boophilus) microplus and Phlebotomus papatasi: Gene identification, expression and biochemical properties of recombinant proteins

    USDA-ARS?s Scientific Manuscript database

    Rhipicephalus (Boophilus) microplus (Bm) is a vector of bovine babesiosis and anaplasmosis. Tick resistance to organophosphate (OP) acaricide involves acetylcholinesterase (AChE) insensitivity to OP and metabolic detoxification. In vitro expression of Bm genes encoding AChE allowed biochemical chara...

  15. Pre- and post-treatment effect of physostigmine on soman-inhibited human erythrocyte and muscle acetylcholinesterase in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herkert, N.M.; Schulz, S.; Wille, T.

    2011-05-15

    Standard treatment of organophosphorus (OP) poisoning includes administration of an antimuscarinic (e.g., atropine) and of an oxime-based reactivator. However, successful oxime treatment in soman poisoning is limited due to rapid aging of phosphylated acetylcholinesterase (AChE). Hence, the inability of standard treatment procedures to counteract the effects of soman poisoning resulted in the search for alternative strategies. Recently, results of an in vivo guinea pig study indicated a therapeutic effect of physostigmine given after soman. The present study was performed to investigate a possible pre- and post-treatment effect of physostigmine on soman-inhibited human AChE given at different time intervals before ormore » after perfusion with soman by using a well-established dynamically working in vitro model for real-time analysis of erythrocyte and muscle AChE. The major findings were that prophylactic physostigmine prevented complete inhibition of AChE by soman and resulted in partial spontaneous recovery of the enzyme by decarbamylation. Physostigmine given as post-treatment resulted in a time-dependent reduction of the protection from soman inhibition and recovery of AChE. Hence, these date indicate that physostigmine given after soman does not protect AChE from irreversible inhibition by the OP and that the observed therapeutic effect of physostigmine in nerve agent poisoning in vivo is probably due to other factors.« less

  16. Upregulation of α7 Nicotinic Receptors by Acetylcholinesterase C-Terminal Peptides

    PubMed Central

    Bond, Cherie E.; Zimmermann, Martina; Greenfield, Susan A.

    2009-01-01

    Background The alpha-7 nicotinic acetylcholine receptor (α7-nAChR) is well known as a potent calcium ionophore that, in the brain, has been implicated in excitotoxicity and hence in the underlying mechanisms of neurodegenerative disorders such as Alzheimer's disease. Previous research implied that the activity of this receptor may be modified by exposure to a peptide fragment derived from the C-terminal region of the enzyme acetylcholinesterase. This investigation was undertaken to determine if the functional changes observed could be attributed to peptide binding interaction with the α7-nAChR, or peptide modulation of receptor expression. Methodology/Principal Findings This study provides evidence that two peptides derived from the C-terminus of acetylcholinesterase, not only selectively displace specific bungarotoxin binding at the α7-nAChR, but also alter receptor binding properties for its familiar ligands, including the alternative endogenous agonist choline. Of more long-term significance, these peptides also induce upregulation of α7-nAChR mRNA and protein expression, as well as enhancing receptor trafficking to the plasma membrane. Conclusions/Significance The results reported here demonstrate a hitherto unknown relationship between the α7-nAChR and the non-enzymatic functions of acetylcholinesterase, mediated independently by its C-terminal domain. Such an interaction may prove valuable as a pharmacological tool, prompting new approaches for understanding, and combating, the process of neurodegeneration. PMID:19287501

  17. Nanomaterials-Based Optical Techniques for the Detection of Acetylcholinesterase and Pesticides

    PubMed Central

    Xia, Ning; Wang, Qinglong; Liu, Lin

    2015-01-01

    The large amount of pesticide residues in the environment is a threat to global health by inhibition of acetylcholinesterase (AChE). Biosensors for inhibition of AChE have been thus developed for the detection of pesticides. In line with the rapid development of nanotechnology, nanomaterials have attracted great attention and have been intensively studied in biological analysis due to their unique chemical, physical and size properties. The aim of this review is to provide insight into nanomaterial-based optical techniques for the determination of AChE and pesticides, including colorimetric and fluorescent assays and surface plasmon resonance. PMID:25558991

  18. Acetylcholinesterase activity in soleus muscle intrafusal and extrafusal fibres in tail suspended rats.

    PubMed

    Tang, Bin; Fan, Xiao-li; Wu, Su-di

    2002-10-01

    Objective. To explore the mechanisms involved in muscle atrophy and conversion of the fiber types induced by simulated weightlessness. Method. Weightlessness was simulated by tail suspension of female rats. Intrafusal and extrafusal fibers of soleus muscles in the rat were examined histochemically for their activity of acetylcholinesterase (AChE) and succinic dehydrogenase (SDH) in 7 d, 14 d, 21 d tail-suspended groups and control groups. Result. Staining for succinic dehydrogenase showed that simulated weightlessness caused obvious atrophy and change in fiber type composition in soleus muscle, with decrease of the proportion of type I fiber and increase of type II fiber. Acetylcholinesterase activities of intrafusal and extrafusal fibers were both decreased significantly after 21 d tail suspension. Conclusion. Simulated weightlessness could induce decrease of AChE activity in neuromuscular junctions, which might be linked with decrease in motor neuron activity.

  19. Continuous flow immobilized enzyme reactor-tandem mass spectrometry for screening of AChE inhibitors in complex mixtures.

    PubMed

    Forsberg, Erica M; Green, James R A; Brennan, John D

    2011-07-01

    A method is described for identifying bioactive compounds in complex mixtures based on the use of capillary-scale monolithic enzyme-reactor columns for rapid screening of enzyme activity. A two-channel nanoLC system was used to continuously infuse substrate coupled with automated injections of substrate/small molecule mixtures, optionally containing the chromogenic Ellman reagent, through sol-gel derived acetylcholinesterase (AChE) doped monolithic columns. This is the first report of AChE encapsulated in monolithic silica for use as an immobilized enzyme reactor (IMER), and the first use of such IMERs for mixture screening. AChE IMER columns were optimized to allow rapid functional screening of compound mixtures based on changes in the product absorbance or the ratio of mass spectrometric peaks for product and substrate ions in the eluent. The assay had robust performance and produced a Z' factor of 0.77 in the presence of 2% (v/v) DMSO. A series of 52 mixtures consisting of 1040 compounds from the Canadian Compound Collection of bioactives was screened and two known inhibitors, physostigmine and 9-aminoacridine, were identified from active mixtures by manual deconvolution. The activity of the compounds was confirmed using the enzyme reactor format, which allowed determination of both IC(50) and K(I) values. Screening results were found to correlate well with a recently published fluorescence-based microarray screening assay for AChE inhibitors.

  20. Naturally Occurring Genetic Variants of Human Acetylcholinesterase and Butyrylcholinesterase and Their Potential Impact on the Risk of Toxicity from Cholinesterase Inhibitors.

    PubMed

    Lockridge, Oksana; Norgren, Robert B; Johnson, Rudolph C; Blake, Thomas A

    2016-09-19

    Acetylcholinesterase (AChE) is the physiologically important target for organophosphorus toxicants (OP) including nerve agents and pesticides. Butyrylcholinesterase (BChE) in blood serves as a bioscavenger that protects AChE in nerve synapses from inhibition by OP. Mass spectrometry methods can detect exposure to OP by measuring adducts on the active site serine of plasma BChE. Genetic variants of human AChE and BChE do exist, but loss of function mutations have been identified only in the BCHE gene. The most common AChE variant, His353Asn (H322N), also known as the Yt blood group antigen, has normal AChE activity. The most common BChE variant, Ala567Thr (A539T) or the K-variant in honor of Werner Kalow, has 33% reduced plasma BChE activity. The genetic variant most frequently associated with prolonged response to muscle relaxants, Asp98Gly (D70G) or atypical BChE, has reduced activity and reduced enzyme concentration. Early studies in young, healthy males, performed at a time when it was legal to test nerve agents in humans, showed that individuals responded differently to the same low dose of sarin with toxic symptoms ranging in severity from minimal to moderate. Additionally, animal studies indicated that BChE protects from toxicants that have a higher reactivity with AChE than with BChE (e.g., nerve agents) but not from toxicants that have a higher reactivity with BChE than with AChE (e.g., OP pesticides). As a corollary, we hypothesize that individuals with genetic variants of BChE may be at increased risk of toxicity from nerve agents but not from OP pesticides.

  1. Ligand-based 3D QSAR analysis of reactivation potency of mono- and bis-pyridinium aldoximes toward VX-inhibited rat acetylcholinesterase.

    PubMed

    Dolezal, Rafael; Korabecny, Jan; Malinak, David; Honegr, Jan; Musilek, Kamil; Kuca, Kamil

    2015-03-01

    To predict unknown reactivation potencies of 12 mono- and bis-pyridinium aldoximes for VX-inhibited rat acetylcholinesterase (rAChE), three-dimensional quantitative structure-activity relationship (3D QSAR) analysis has been carried out. Utilizing molecular interaction fields (MIFs) calculated by molecular mechanical (MMFF94) and quantum chemical (B3LYP/6-31G*) methods, two satisfactory ligand-based CoMFA models have been developed: 1. R(2)=0.9989, Q(LOO)(2)=0.9090, Q(LTO)(2)=0.8921, Q(LMO(20%))(2)=0.8853, R(ext)(2)=0.9259, SDEP(ext)=6.8938; 2. R(2)=0.9962, Q(LOO)(2)=0.9368, Q(LTO)(2)=0.9298, Q(LMO(20%))(2)=0.9248, R(ext)(2)=0.8905, SDEP(ext)=6.6756. High statistical significance of the 3D QSAR models has been achieved through the application of several data noise reduction techniques (i.e. smart region definition SRD, fractional factor design FFD, uninformative/iterative variable elimination UVE/IVE) on the original MIFs. Besides the ligand-based CoMFA models, an alignment molecular set constructed by flexible molecular docking has been also studied. The contour maps as well as the predicted reactivation potencies resulting from 3D QSAR analyses help better understand which structural features are associated with increased reactivation potency of studied compounds. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Is acetylcholinesterase a biomarker of susceptibility in Daphnia magna (Crustacea, Cladocera) after deltamethrin exposure?

    PubMed

    Toumi, Héla; Boumaiza, Moncef; Millet, Maurice; Radetski, Claudemir Marcos; Felten, Vincent; Férard, Jean François

    2015-02-01

    In the present study, we explored the possibility of using the acetylcholinesterase (AChE) as a biomarker after deltamethrin (pyrethroid insecticide) exposure with three strains of the cladoceran Daphnia magna. Four calculated time-weighted deltamethrin concentrations (20.1, 40.3, 80.6 and 161.3 ng L(-1)) were compared against control acetylcholinesterase activity. Our results showed that after 48 h of deltamethrin exposure, all treatments induced a significant decrease of AChE activities whatever the three considered strains. However, diverse responses were registered in terms of lowest observed effect concentrations (LOEC: 80.6 ng L(-1) for strain 1 and 20.1 ng L(-1) for strains 2 and 3) revealing differences in sensitivity among the three tested strains of D. magna. Our results suggest that after deltamethrin exposure, the AChE activity responses can be also used as a biomarker of susceptibility (i.e., variation of strain specific response). Moreover, our results show that strain 1 is the less sensitive in terms of IC50-48 h of AChE, whereas it became the most sensitive when considering the EC50-48 h estimated in the standard ecotoxicity test. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Glyphosate Adversely Affects Danio rerio Males: Acetylcholinesterase Modulation and Oxidative Stress.

    PubMed

    Lopes, Fernanda Moreira; Caldas, Sergiane Souza; Primel, Ednei Gilberto; da Rosa, Carlos Eduardo

    2017-04-01

    It has been demonstrated that glyphosate-based herbicides are toxic to animals. In the present study, reactive oxygen species (ROS) generation, antioxidant capacity against peroxyl radicals (ACAP), and lipid peroxidation (LPO), as well as the activity and expression of the acetylcholinesterase (AChE) enzyme, were evaluated in Danio rerio males exposed to 5 or 10 mg/L of glyphosate for 24 and 96 h. An increase in ACAP in gills after 24 h was observed in the animals exposed to 5 mg/L of glyphosate. A decrease in LPO was observed in brain tissue of animals exposed to 10 mg/L after 24 h, while an increase was observed in muscle after 96 h. No significant alterations were observed in ROS generation. AChE activity was not altered in muscles or brains of animals exposed to either glyphosate concentration for 24 or 96 h. However, gene expression of this enzyme in the brain was reduced after 24 h and was enhanced in both brain and muscle tissues after 96 h. Thus, contrary to previous findings that had attributed the imbalance in the oxidative state of animals exposed to glyphosate-based herbicides to surfactants and other inert compounds, the present study demonstrated that glyphosate per se promotes this same effect in zebrafish males. Although glyphosate concentrations did not alter AChE activity, this study demonstrated for the first time that this molecule affects ache expression in male zebrafish D. rerio.

  4. In Search of an Effective in vivo Reactivator for Organophosphorus Nerve Agent-Inhibited Acetylcholinesterase in the Central Nervous System

    DTIC Science & Technology

    2012-01-01

    monoisonitrosoacetone (MINA) crossed BBB, provided some degree of CNS AChE reactivation, enhanced survival, and mitigated the seizure activity following nerve agent...tissues (brain regions, diaphragm, heart, skeletal muscle) were collected. AChE activity was measured using the Ellman assay. In GB exposure, pro...therapy. Protecting and/or restoring AChE activity in the brain is a major goal in the treatment of nerve agent intoxication. Our long-term goal is to

  5. Acetylcholinesterase as a Biomarker in Environmental and Occupational Medicine: New Insights and Future Perspectives

    PubMed Central

    Caricato, Roberto; Calisi, Antonio; Giordano, Maria Elena; Schettino, Trifone

    2013-01-01

    Acetylcholinesterase (AChE) is a key enzyme in the nervous system. It terminates nerve impulses by catalysing the hydrolysis of neurotransmitter acetylcholine. As a specific molecular target of organophosphate and carbamate pesticides, acetylcholinesterase activity and its inhibition has been early recognized to be a human biological marker of pesticide poisoning. Measurement of AChE inhibition has been increasingly used in the last two decades as a biomarker of effect on nervous system following exposure to organophosphate and carbamate pesticides in occupational and environmental medicine. The success of this biomarker arises from the fact that it meets a number of characteristics necessary for the successful application of a biological response as biomarker in human biomonitoring: the response is easy to measure, it shows a dose-dependent behavior to pollutant exposure, it is sensitive, and it exhibits a link to health adverse effects. The aim of this work is to review and discuss the recent findings about acetylcholinesterase, including its sensitivity to other pollutants and the expression of different splice variants. These insights open new perspective for the future use of this biomarker in environmental and occupational human health monitoring. PMID:23936791

  6. Protein-mimicking nanowire-inspired electro-catalytic biosensor for probing acetylcholinesterase activity and its inhibitors.

    PubMed

    Zhang, Qingqing; Hu, Yufang; Wu, Di; Ma, Shaohua; Wang, Jiao; Rao, Jiajia; Xu, Lihua; Xu, Huan; Shao, Huili; Guo, Zhiyong; Wang, Sui

    2018-06-01

    A highly sensitive electrochemical biosensor based on the synthetized L-Cysteine-Ag(I) coordination polymer (L-Cys-Ag(I) CP), which looks like a protein-mimicking nanowire, was constructed to detect acetylcholinesterase (AChE) activity and screen its inhibitors. This sensing strategy involves the reaction of acetylcholine chloride (ACh) with acetylcholinesterase (AChE) to form choline that is in turn catalytically oxidized by choline oxidase (ChOx) to produce hydrogen peroxide (H 2 O 2 ), thus L-Cys-Ag(I) CP possesses the electro-catalytic property to H 2 O 2 reduction. Herein, the protein-mimicking nanowire-based platform was capable of investigating successive of H 2 O 2 effectively by amperometric i-t (current-time) response, and was further applied for the turn-on electrochemical detection of AChE activity. The proposed sensor is highly sensitive (limit of detection is 0.0006 U/L) and is feasible for screening inhibitors of AChE. The model for AChE inhibition was further established and two traditional AChE inhibitors (donepezil and tacrine) were employed to verify the feasibility of the system. The IC 5 0 of donepezil and tacrine were estimated to be 1.4 nM and 3.5 nM, respectively. The developed protocol provides a new and promising platform for probing AChE activity and screening its inhibitors with low cost, high sensitivity and selectivity. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Flavoring extracts of Hemidesmus indicus roots and Vanilla planifolia pods exhibit in vitro acetylcholinesterase inhibitory activities.

    PubMed

    Kundu, Anish; Mitra, Adinpunya

    2013-09-01

    Acetylcholinesterase inhibitors (AChEIs) are important for treatment of Alzheimer's disease and other neurological disorders. Search for potent and safe AChEIs from plant sources still continues. In the present work, we explored fragrant plant extracts that are traditionally used in flavoring foods, namely, Hemidesmus indicus and Vanilla planifolia, as possible sources for AChEI. Root and pod extracts of H. indicus and V. planifolia, respectively, produce fragrant phenolic compounds, 2-hydroxy-4-methoxybenzaldehyde (MBALD) and 4-hydroxy-3-methoxybenzaldehyde (vanillin). These methoxybenzaldehydes were shown to have inhibitory potential against acetylcholinesterase (AChE). Vanillin (IC50 = 0.037 mM) was detected as more efficient inhibitor than MBALD (IC50 = 0.047 mM). This finding was supported by kinetic analysis. Thus, plant-based food flavoring agents showed capacity in curing Alzheimer's disease and other neurological dysfunctions.

  8. Characterization of acetylcholinesterase-inhibition by itopride.

    PubMed

    Iwanaga, Y; Kimura, T; Miyashita, N; Morikawa, K; Nagata, O; Itoh, Z; Kondo, Y

    1994-11-01

    Itopride is a gastroprokinetic benzamide derivative. This agent inhibited both electric eel acetylcholinesterase (AChE) and horse serum butyrylcholinesterase (BuChE). The IC50 of itopride with AChE (2.04 +/- 0.27 microM) was, however, 100-fold less than that with BuChE, whereas in the case of neostigmine with AChE (11.3 +/- 3.4 nM), it was 10-fold less. The recovery of AChE activity inhibited by 10(-7) M neostigmine was partial, but that inhibited by up to 3 x 10(-5) M itopride was complete when the reaction mixture was subjected to ultrafiltration. Double reciprocal plots of the experimental data showed that both Km and Vmax were affected by itopride, suggesting that the inhibition is a "mixed" type, although primarily being an uncompetitive one. The inhibitory effect of itopride on cholinesterase (ChE) activity in guinea pig gastrointestine was much weaker than that on pure AChE. However, in the presence of a low dose of diisopropyl fluorophosphate, just enough to inhibit BuChE but not AChE, the IC50s of itopride against ChE activities were found to be about 0.5 microM. In conclusion, itopride exerts reversible and a "mixed" type of inhibition preferably against AChE. The IC50 of itopride for electric eel and guinea pig gastrointestinal AChE inhibition was 200 times and 50 times as large as that of neostigmine, respectively.

  9. Novel bis-(−)-nor-meptazinol derivatives act as dual binding site AChE inhibitors with metal-complexing property

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Wei; NPFPC Key Laboratory of Contraceptives and Devices, Shanghai Institute of Planned Parenthood Research, 2140 Xietu Road, Shanghai 200032; Li, Juan

    The strategy of dual binding site acetylcholinesterase (AChE) inhibition along with metal chelation may represent a promising direction for multi-targeted interventions in the pathophysiological processes of Alzheimer's disease (AD). In the present study, two derivatives (ZLA and ZLB) of a potent dual binding site AChE inhibitor bis-(−)-nor-meptazinol (bis-MEP) were designed and synthesized by introducing metal chelating pharmacophores into the middle chain of bis-MEP. They could inhibit human AChE activity with IC{sub 50} values of 9.63 μM (for ZLA) and 8.64 μM (for ZLB), and prevent AChE-induced amyloid-β (Aβ) aggregation with IC{sub 50} values of 49.1 μM (for ZLA) and 55.3more » μM (for ZLB). In parallel, molecular docking analysis showed that they are capable of interacting with both the catalytic and peripheral anionic sites of AChE. Furthermore, they exhibited abilities to complex metal ions such as Cu(II) and Zn(II), and inhibit Aβ aggregation triggered by these metals. Collectively, these results suggest that ZLA and ZLB may act as dual binding site AChEIs with metal-chelating potency, and may be potential leads of value for further study on disease-modifying treatment of AD. -- Highlights: ► Two novel bis-(−)-nor-meptazinol derivatives are designed and synthesized. ► ZLA and ZLB may act as dual binding site AChEIs with metal-chelating potency. ► They are potential leads for disease-modifying treatment of Alzheimer's disease.« less

  10. Influence of various force fields in estimating the binding affinity of acetylcholinesterase inhibitors using fast pulling of ligand scheme

    NASA Astrophysics Data System (ADS)

    Tam, Nguyen Minh; Vu, Khanh B.; Vu, Van V.; Ngo, Son Tung

    2018-06-01

    Acetylcholinesterase (AChE) is considered as one of the most favored drug targets for Alzheimer's disease. The effects of different force fields (FFs) on ranking affinity of acetylcholinesterase inhibitors were obtained using the fast pulling of ligand (FPL) method in steered-molecular dynamics (SMD) simulations. GROMOS, AMBER, CHARMM, and OPLS-AA FFs were investigated in this work. The pulling work derived with GROMOS FF has the strongest correlation and smallest error compared with experimental binding affinity. Moreover, the CPU consumption in the calculations using GROMOS FF is the lowest, which could allow us to rank affinity of a large number of AChE ligands.

  11. Effect of Calea serrata Less. n-hexane extract on acetylcholinesterase of larvae ticks and brain Wistar rats.

    PubMed

    Ribeiro, Vera Lucia Sardá; Vanzella, Cláudia; Moysés, Felipe dos Santos; Santos, Jaqueline Campiol Dos; Martins, João Ricardo Souza; von Poser, Gilsane Lino; Siqueira, Ionara Rodrigues

    2012-10-26

    Acetylcholinesterase (AChE), an enzyme that hydrolyses acetylcholine (ACh) at cholinergic synapses, is a target for pesticides and its inhibition by organophosphates leads to paralysis and death of arthropods. It has been demonstrated that the n-hexane extract of Calea serrata had acaricidal activity against larvae of Rhipicephalus (Boophilus) microplus and Rhipicephalus sanguineus. The aim of the present study was to understand the mechanism of the acaricidal action of C. serrata n-hexane extract are specifically to investigate the in vitro anticholinesterase activity on larvae of R. microplus and in brain structures of male Wistar rats. The n-hexane extract significantly inhibited in vitro acetylcholinesterase activity in R. microplus larvae and rat brain structures. The results confirm that inhibition of acetylcholinesterase is a possible mechanism of action of hexane extract at C. serrata. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. A Common Mechanism for Resistance to Oxime Reactivation of Acetylcholinesterase Inhibited by Organophosphorus Compounds

    DTIC Science & Technology

    2013-01-01

    application of the Hammett equation with the constants rph in the chemistry of organophosphorus compounds, Russ. Chem. Rev. 38 (1969) 795–811. [13...of oximes and OP compounds and the ability of oximes to reactivate OP- inhibited AChE. Multiple linear regression equations were analyzed using...phosphonate pairs, 21 oxime/ phosphoramidate pairs and 12 oxime/phosphate pairs. The best linear regression equation resulting from multiple regression anal

  13. Naturally Occurring Genetic Variants of Human Acetylcholinesterase and Butyrylcholinesterase and Their Potential Impact on the Risk of Toxicity from Cholinesterase Inhibitors

    PubMed Central

    2016-01-01

    Acetylcholinesterase (AChE) is the physiologically important target for organophosphorus toxicants (OP) including nerve agents and pesticides. Butyrylcholinesterase (BChE) in blood serves as a bioscavenger that protects AChE in nerve synapses from inhibition by OP. Mass spectrometry methods can detect exposure to OP by measuring adducts on the active site serine of plasma BChE. Genetic variants of human AChE and BChE do exist, but loss of function mutations have been identified only in the BCHE gene. The most common AChE variant, His353Asn (H322N), also known as the Yt blood group antigen, has normal AChE activity. The most common BChE variant, Ala567Thr (A539T) or the K-variant in honor of Werner Kalow, has 33% reduced plasma BChE activity. The genetic variant most frequently associated with prolonged response to muscle relaxants, Asp98Gly (D70G) or atypical BChE, has reduced activity and reduced enzyme concentration. Early studies in young, healthy males, performed at a time when it was legal to test nerve agents in humans, showed that individuals responded differently to the same low dose of sarin with toxic symptoms ranging in severity from minimal to moderate. Additionally, animal studies indicated that BChE protects from toxicants that have a higher reactivity with AChE than with BChE (e.g., nerve agents) but not from toxicants that have a higher reactivity with BChE than with AChE (e.g., OP pesticides). As a corollary, we hypothesize that individuals with genetic variants of BChE may be at increased risk of toxicity from nerve agents but not from OP pesticides. PMID:27551784

  14. Protection of human muscle acetylcholinesterase from soman by pyridostigmine bromide.

    PubMed

    Maselli, Ricardo A; Henderson, John D; Ng, Jarae; Follette, David; Graves, Gregory; Wilson, Barry W

    2011-04-01

    Pretreatment with pyridostigmine bromide (PB) of human intercostal muscle fibers exposed to the irreversible acetylcholinesterase (AChE) inhibitor soman was investigated. Muscles were pretreated with 3 × 10(-6) M PB or saline for 20 minutes, then exposed to 10(-7) M soman for 10 minutes. AChE of muscles treated with soman alone was inhibited >95%. In contrast, PB pretreatment of soman-exposed bundles protected 20% of AChE activity. AChE of bundles exposed to PB alone recovered after 4 hours, but bundles exposed to both PB and soman did not. Soman-induced reduction of resting membrane potentials and increment of amplitudes and decay times of miniature endplate potentials (MEPPs) were partially corrected by PB pretreatment. In vitro pretreatment of human muscles with PB protected up to 20% of muscle AChE and ameliorated some deleterious effects on endplate physiology induced by soman. Copyright © 2011 Wiley Periodicals, Inc.

  15. Comparative study on short- and long-term behavioral consequences of organophosphate exposure: relationship to AChE mRNA expression.

    PubMed

    López-Granero, Caridad; Cardona, Diana; Giménez, Estela; Lozano, Rafael; Barril, José; Aschner, Michael; Sánchez-Santed, Fernando; Cañadas, Fernando

    2014-01-01

    Organophosphates (OPs) affect behavior by inhibiting acetylcholinesterase (AChE). While the cognitive short-term effects may be directly attributed to this inhibition, the mechanisms that underlie OP's long-term cognitive effects remain controversial and poorly understood. Accordingly, two experiments were designed to assess the effects of OPs on cognition, and to ascertain whether both the short- and long-term effects of are AChE-dependent. A single subcutaneous dose of 250 mg/kg chlorpyrifos (CPF), 1.5mg/kg diisopropylphosphorofluoridate (DFP) or 15 mg/kg parathion (PTN) was administered to male Wistar rats. Spatial learning was evaluated 72 h or 23 weeks after exposure, and impulsive choice was tested at 10 and 30 weeks following OPs administration (experiment 1 and 2, respectively). Brain soluble and membrane-bound AChE activity, synaptic AChE-S mRNA, read-through AChE-R mRNA and brain acylpeptide hydrolase (APH) activity (as alternative non-cholinergic target) were analyzed upon completion of the behavioral testing (17 and 37 weeks after OPs exposure). Both short- and long-term CPF treatment caused statistically significant effects on spatial learning, while PTN treatment led only to statistically significant short-term effects. Neither CPF, DFP nor PTN affected the long-term impulsivity response. Long-term exposure to CPF and DFP significantly decreased AChE-S and AChE-R mRNA, while in the PTN treated group only AChE-S mRNA levels were decreased. However, after long-term OP exposure, soluble and membrane-bound AChE activity was indistinguishable from controls. Finally, no changes were noted in brain APH activity in response to OP treatment. Taken together, this study demonstrates long-term effects of OPs on AChE-S and AChE-R mRNA in the absence of changes in AChE soluble and membrane-bound activity. Thus, changes in AChE mRNA expression imply non-catalytic properties of the AChE enzyme. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Novel Organophosphate Ligand O-(2-Fluoroethyl)-O-(p-Nitrophenyl)Methylphosphonate: Synthesis, Hydrolytic Stability and Analysis of the Inhibition and Reactivation of Cholinesterases.

    PubMed

    Chao, Chih-Kai; Ahmed, S Kaleem; Gerdes, John M; Thompson, Charles M

    2016-11-21

    The organophosphate O-(2-fluoroethyl)-O-(p-nitrophenyl) methyphosphonate 1 is the first-in-class, fluorine-18 radiolabeled organophosphate inhibitor ([ 18 F]1) of acetylcholinesterase (AChE). In rats, [ 18 F]1 localizes in AChE rich regions of the brain and other tissues where it likely exists as the (CH 3 )( 18 FCH 2 CH 2 O)P(O)-AChE adduct (ChE-1). Characterization of this adduct would define the inhibition mechanism and subsequent postinhibitory pathways and reactivation rates. To validate this adduct, the stability (hydrolysis) of 1 and ChE-1 reactivation rates were determined. Base hydrolysis of 1 yields p-nitrophenol and (CH 3 ) (FCH 2 CH 2 O)P(O)OH with pseudo first order rate constants (k obsd ) at pH 7.4 (PBS) of 3.25 × 10 -4 min -1 (t 1/2 = 35.5 h) at 25 °C and 8.70 × 10 -4 min -1 (t 1/2 = 13.3 h) at 37 °C. Compound 1 was a potent inhibitor of human acetylcholinesterase (HuAChE; k i = 7.5 × 10 5 M -1 min -1 ), electric eel acetylcholinesterase (EEAChE) (k i = 3.0 × 10 6 M -1 min -1 ), and human serum butyrylcholinesterase (HuBChE; 1.95 × 10 5 M -1 min -1 ). Spontaneous and oxime-mediated reactivation rates for the (CH 3 ) (FCH 2 CH 2 O)P(O)-serine ChE adducts using 2-PAM (10 μM) were (a) HuAChE 8.8 × 10 -5 min -1 (t 1/2 = 131.2 h) and 2.41 × 10 -2 min -1 (t 1/2 = 0.48 h), (b) EEAChE 9.32 × 10 -3 min -1 (t 1/2 = 1.24 h) and 3.33 × 10 -2 min -1 (t 1/2 = 0.35 h), and (c) HuBChE 1.16 × 10 -4 min -1 (t 1/2 = 99.6 h) and 4.19 × 10 -2 min -1 (t 1/2 = 0.27 h). All ChE-1 adducts undergo rapid and near complete restoration of enzyme activity following addition of 2-PAM (30 min), and no aging was observed for either reactivation process. The fast reactivation rates and absence of aging of ChE-1 adducts are explained on the basis of the electron-withdrawing fluorine group that favors the nucleophilic reactivation processes but disfavors cation-based dealkylation aging mechanisms. Therefore, the likely fate of radiolabeled compound 1 in vivo is the

  17. Development of 3D-QSAR model for acetylcholinesterase inhibitors using a combination of fingerprint, molecular docking, and structure-based pharmacophore approaches

    EPA Science Inventory

    Acetylcholinesterase (AChE), a serine hydrolase vital for regulating the neurotransmitter acetylcholine in animals, has been used as a target for drugs and pesticides. With the increasing availability of AChE crystal structures, with or without ligands bound, structure-based appr...

  18. Toxicological and biochemical characterizations of AChE in phosalone-susceptible and resistant populations of the common pistachio psyllid, Agonoscena pistaciae

    PubMed Central

    Alizadeh, Ali; Talebi-Jahromi, Khalil; Hosseininaveh, Vahid; Ghadamyari, Mohammad

    2014-01-01

    Abstract The toxicological and biochemical characteristics of acetylcholinesterases (AChE) in nine populations of the common pistachio psyllid, Agonoscena pistaciae Burckhardt and Lauterer (Hemiptera: Psyllidae), were investigated in Kerman Province, Iran. Nine A. pistaciae populations were collected from pistachio orchards, Pistacia vera L. (Sapindales: Anacardiaceae), located in Rafsanjan, Anar, Bam, Kerman, Shahrbabak, Herat, Sirjan, Pariz, and Paghaleh regions of Kerman province. The previous bioassay results showed these populations were susceptible or resistant to phosalone, and the Rafsanjan population was most resistant, with a resistance ratio of 11.3. The specific activity of AChE in the Rafsanjan population was significantly higher than in the susceptible population (Bam). The affinity ( KM ) and hydrolyzing efficiency ( Vmax ) of AChE on acetylthiocholine iodide, butyrylthiocholine iodide, and propionylthiocholine odide as artificial substrates were clearly lower in the Bam population than that in the Rafsanjan population. These results indicated that the AChE of the Rafsanjan population had lower affinity to these substrates than that of the susceptible population. The higher Vmax value in the Rafsanjan population compared to the susceptible population suggests a possible over expression of AChE in the Rafsanjan population. The in vitro inhibitory effect of several organophosphates and carbamates on AChE of the Rafsanjan and Bam populations was determined. Based on I50, the results showed that the ratios of AChE insensitivity of the resistant to susceptible populations were 23 and 21.7-fold to monocrotophos and phosphamidon, respectively. Whereas, the insensitivity ratios for Rafsanjan population were 0.86, 0.8, 0.78, 0.46, and 0.43 for carbaryl, eserine, propoxur, m-tolyl methyl carbamate, and carbofuran, respectively, suggesting negatively correlated sensitivity to organophosphate-insensitive AChE. Therefore, AChE from the Rafsanjan population showed

  19. Two Bombyx mori acetylcholinesterase genes influence motor control and development in different ways

    USDA-ARS?s Scientific Manuscript database

    Among its other biological roles, acetylcholinesterase (AChE, EC 3.1.1.7), encoded by two ace genes in most insects, catalyses the breakdown of acetylcholine, thereby terminating synaptic transmission. ace1 encodes the synaptic enzyme and ace2 has other essential actions in many insect species, such...

  20. Rapid Screening and Characterization of Acetylcholinesterase Inhibitors from Yinhuang Oral Liquid Using Ultrafiltration-liquid Chromatography-electrospray Ionization Tandem Mass Spectrometry

    PubMed Central

    Zhang, Haomin; Guo, Yinan; Meng, Lingwen; Sun, Hui; Yang, Yinping; Gao, Ying; Sun, Jiaming

    2018-01-01

    Background: At present, approximately 17–25 million people in the world suffer from Alzheimer's disease (AD). The most efficacious and acceptable therapeutic drug clinically are the acetylcholinesterase inhibitors (AChEIs). Yinhuang oral liquid is a Chinese medicine preparation which contains AChEIs according to the literatures. However, no strategy has been presented for rapid screening and identification of AChEIs from Yinhuang oral liquid. Objective: To develop a method for rapid screening and identification of AChEIs from Yinhuang oral liquid using ultrafiltration–liquid chromatography–electrospray ionization tandem mass spectrometry (UF-LC-ESI-MS/MS). Materials and Methods: In this study, UF incubation conditions such as enzyme concentration, incubation time, and incubation temperature were optimized so as to get better screening results. The AChEIs from Yinhuang oral liquid were identified by high-performance liquid chromatography-ESI-MS and the improved Ellman method was used for the AChE inhibitory activity test in vitro. Results: The results showed that Yinhuang oral liquid can inhibit the activity of AChE. We screened and identified seven compounds with potential AChE inhibitory activity from Yinhuang oral liquid, which provided experimental basis for the treatment and prevention of AD. Conclusion: The current technique was used to directly screen the active ingredients with acetylcholinesterase inhibition from complex traditional Chinese medicine, which was simple, rapid, accurate, and suitable for high-throughput screening of AChEI from complex systems. SUMMARY A UF-LC-ESI-MS/MS method for rapid screening and identification of AChEIs from Yinhuang oral liquid was developedSeven compounds were screened and identified with potential AChE inhibitory activity from Yinhuang oral liquidIt provided experimental basis of Yinhuang oral liquid for the treating and preventing AD. Abbreviations used: (AD): Alzheimer's disease; (UF

  1. Inhibition of acetylcholinesterase by (1S,3S)-isomalathion proceeds with loss of thiomethyl: kinetic and mass spectral evidence for an unexpected primary leaving group.

    PubMed

    Doorn, J A; Gage, D A; Schall, M; Talley, T T; Thompson, C M; Richardson, R J

    2000-12-01

    Previous work demonstrated kinetically that inhibition of mammalian acetylcholinesterase (AChE) by (1S)-isomalathions may proceed by loss of thiomethyl instead of the expected diethyl thiosuccinate as the primary leaving group followed by one of four possible modes of rapid aging. This study sought to identify the adduct that renders AChE refractory toward reactivation after inhibition with the (1S, 3S)-stereoisomer. Electric eel acetylcholinesterase (EEAChE) was inhibited with the four stereoisomers of isomalathion, and rate constants for spontaneous and oxime-mediated reactivation (k(3)) were measured. Oxime-mediated k(3) values were >25-fold higher for enzyme inhibited by (1R)- versus (1S)-stereoisomers with the greatest contrast between the (1R,3R)- and (1S,3S)-enantiomers. EEAChE inactivated by (1R,3R)-isomalathion reactivated spontaneously and in the presence of pyridine-2-aldoxime methiodide (2-PAM) with k(3) values of 1.88 x 10(5) and 4.18 x 10(5) min(-)(1), respectively. In contrast, enzyme treated with the (1S,3S)-enantiomer had spontaneous and 2-PAM-mediated k(3) values of 0 and 6.05 x 10(3) min(-)(1), respectively. The kinetic data that were measured were consistent with those obtained for mammalian AChE used in previous studies. Identification of the adduct that renders EEAChE stable toward reactivation after inhibition with (1S,3S)-isomalathion was accomplished using a peptide mass mapping approach with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). A peak with a mass corresponding to the active site peptide containing the catalytic Ser with a covalently bound O-methyl phosphate adduct was found in the mass spectra of (1S, 3S)-treated EEAChE but not control samples. Identities of the modified active site peptide and adduct were confirmed by fragmentation in MALDI-TOF-MS post-source decay (PSD) analysis, and peaks corresponding to the loss of an adduct as phosphorous/phosphoric acid methyl ester were

  2. Buprofezin inhibits acetylcholinesterase activity in B-biotype Bemisia tabaci.

    PubMed

    Cottage, Emma L A; Gunning, Robin V

    2006-01-01

    B-biotype Bemisia tabaci is a severe insect pest worldwide in many ornamental, agricultural, and horticultural industries. Control of this insect is hampered by resistance to many acetylcholinesterase (AChE)-inhibiting insecticides, such as organophosphates and carbamates. Consequently, insect growth regulators such as buprofezin, which act by inhibiting chitin synthesis, are being investigated for use against B-biotype B. tabaci in Australia. This study discusses the effects of buprofezin on B. tabaciAChE.

  3. Exploration of the susceptibility of AChE from the poultry red mite Dermanyssus gallinae (Acari: Mesostigmata) to organophosphates in field isolates from France.

    PubMed

    Roy, Lise; Chauve, Claude; Delaporte, Jean; Inizan, Gilbert; Buronfosse, Thierry

    2009-06-01

    The red fowl mite Dermanyssus gallinae (De Geer, 1778) is a hematophagous mite species, which is very commonly found in layer facilities in Europe. The economic and animal health impact of this parasite is quite important. In laying hen houses, organophosphates are almost the only legally usable chemicals. Detecting a target resistance can be useful in order to limit the emergence of resistant populations. The acetylcholinesterase (AChE) activity and the enzyme sensitivity to paraoxon was investigated in 39 field samples and compared to a susceptible reference strain (SSK). Insensitivity factor values (expressed as IC50 ratio) obtained from field isolates compared to SSK revealed some polymorphism but not exceeding a 6-fold difference. The kinetic characteristics of AChE from some field samples showed some difference in KM values for acetylthiocholine and inhibition kinetics performed with diethyl paraoxon exhibited a 5.5-fold difference in the bimolecular rate constant in one field isolate. Taken together, these data suggested that differences in AChE susceptibility to organophosphates may exist in D. gallinae but no resistant population was found.

  4. Discovering New Acetylcholinesterase Inhibitors by Mining the Buzhongyiqi Decoction Recipe Data.

    PubMed

    Cui, Lu; Wang, Yu; Liu, Zhihong; Chen, Hongzhuan; Wang, Hao; Zhou, Xinxin; Xu, Jun

    2015-11-23

    Myasthenia gravis (MG) is a neuromuscular disease that is conventionally treated with acetylcholinesterase (AChE) inhibitors, which may not fully remove the symptom for many reasons. When AChE inhibitors do not work, Chinese patients turn to Chinese medicine, such as the Buzhongyiqi decoction (BD), to treat MG. By elucidating the relations between the herbs of the Buzhongyiqi decoction recipe and AChE inhibitors with structure-based and ligand-based drug design methods and chemoinformatics approaches, we have found the key active components of BD. Using these key active components as templates, we have discovered five new AChE inhibitors through virtual screening of a commercial compound library. The new AChE inhibitors have been confirmed with Ellman assays. This study demonstrates that lead identification can be inspired by elucidating Chinese medicine. Since BD is a mixture, further studies against other drug targets are needed.

  5. Development of a 3D-QSAR model for acetylcholinesterase inhibitors using a combination of fingerprint, docking, and structure-based pharmacophore approaches - Conference Abstract

    EPA Science Inventory

    Acetylcholinesterase (AChE), a serine hydrolase vital for regulating the neurotransmitter acetylcholine in animals, has been used as a target for drugs and pesticides. With the increasing availability of AChE crystal structures, with or without ligands bound, structure-based appr...

  6. Altered expression of acetylcholinesterase gene in rice results in enhancement or suppression of shoot gravitropism.

    PubMed

    Yamamoto, Kosuke; Sakamoto, Hikaru; Momonoki, Yoshie S

    2016-01-01

    Acetylcholinesterase (AChE), an acetylcholine-hydrolyzing enzyme, exists widely in plants, although its role in plant signal transduction is still unclear. We have hypothesized that the plant AChE regulates asymmetric distribution of hormones and substrates due to gravity stimulus, based on indirect pharmacological experiments using an AChE inhibitor. As a direct evidence for this hypothesis, our recent study has shown that AChE overexpression causes an enhanced gravitropic response in rice seedlings and suggested that the function of the rice AChE relates to the promotion of shoot gravitropism in the seedlings. Here, we report that AChE suppression inhibited shoot gravitropism in rice seedlings, as supportive evidence demonstrating the role of AChE as a positive regulator of shoot gravitropic response in plants.

  7. Management, Diagnostic and Prognostic Significance of Acetylcholinesterase as a Biomarker of the Toxic Effects of Pesticides in People Occupationally Exposed.

    PubMed

    Lutovac, Mitar; Popova, Olga V; Jovanovic, Zoran; Berisa, Hatidza; Kristina, Radoman; Ketin, Sonja; Bojic, Marko

    2017-12-15

    The paper presents research on the most common causes of exposure that leads to disorders of cholinesterase activity, as well as an overview of the results of cholinesterase activity with the poisoned people. In a group of 35 acute poisoned patients by organophosphate compounds has led to inhibition of AchE. A total number of examined workers are 175 in the chemical industry and agricultural production in the area of Rasina District-Serbia. The results showed that among workers who are constantly exposed to pesticides, acetylcholinesterase is within the reference value. Having examined the medical records of these workers, it is noted that, at 72%, there is a slight fall of AchE activity, each year. The workers who had been exposed to pesticides at the time of testing had acetylcholinesterase regarding reference value, but 52% of them had a few years ago significantly reduced the value of the activity of acetylcholinesterase, which was treated and then transferred to other jobs. The 48% of these workers had acetylcholinesterase regarding benchmarks or were transferred to other jobs, for a variety of other health problems. Using each pesticide should only deal with people who are well versed in the way of its use, as well as the way of protecting them from poisoning.

  8. Syntheses of coumarin-tacrine hybrids as dual-site acetylcholinesterase inhibitors and their activity against butylcholinesterase, Aβ aggregation, and β-secretase.

    PubMed

    Sun, Qi; Peng, Da-Yong; Yang, Sheng-Gang; Zhu, Xiao-Lei; Yang, Wen-Chao; Yang, Guang-Fu

    2014-09-01

    Exploring small-molecule acetylcholinesterase (AChE) inhibitors to slow the breakdown of acetylcholine (Ach) represents the mainstream direction for Alzheimer's disease (AD) therapy. As the first acetylcholinesterase inhibitor approved for the clinical treatment of AD, tacrine has been widely used as a pharmacophore to design hybrid compounds in order to combine its potent AChE inhibition with other multi-target profiles. In present study, a series of novel tacrine-coumarin hybrids were designed, synthesized and evaluated as potent dual-site AChE inhibitors. Moreover, compound 1g was identified as the most potent candidate with about 2-fold higher potency (Ki=16.7nM) against human AChE and about 2-fold lower potency (Ki=16.1nM) against BChE than tacrine (Ki=35.7nM for AChE, Ki=8.7nM for BChE), respectively. In addition, some of the tacrine-coumarin hybrids showed simultaneous inhibitory effects against both Aβ aggregation and β-secretase. We therefore conclude that tacrine-coumarin hybrid is an interesting multifunctional lead for the AD drug discovery. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Lower Acetylcholinesterase Activity among Children Living with Flower Plantation Workers

    PubMed Central

    Suarez-Lopez, Jose R.; Jacobs, David R.; Himes, John H.; Alexander, Bruce H.; Lazovich, DeAnn; Gunnar, Megan

    2012-01-01

    BACKGROUND Children of workers exposed to pesticides are at risk of secondary pesticide exposure. We evaluated the potential for lower acetylcholinesterase activity in children cohabiting with fresh-cut flower plantation workers, which would be expected from organophosphate and carbamate insecticide exposure. Parental home surveys were performed and acetylcholinesterase activity was measured in 277 children aged 4–9 years in the study of Secondary Exposure to Pesticides among Infants, Children and Adolescents (ESPINA). Participants lived in a rural county in Ecuador with substantial flower plantation activity. RESULTS Mean acetylcholinesterase activity was 3.14 U/ml, standard deviation (SD): 0.49. It was lower by 0.09 U/ml (95% confidence interval (CI) −0.19, −0.001) in children of flower workers (57% of participants) than non-flower workers’ children, after adjustment for gender, age, height-for-age, hemoglobin concentration, income, pesticide use within household lot, pesticide use by contiguous neighbors, examination date and residence distance to nearest flower plantation. Using a 4 level polychotomous acetylcholinesterase activity dependent variable, flower worker cohabitation (vs. not) had odds ratio 3.39 (95% CI 1.19, 9.64) for being <15th percentile compared to the highest tertile. Children cohabitating for ≥5 years (vs. never) had OR of 4.11 (95% CI: 1.17, 14.38) of AChE activity within <15th percentile compared to the highest tertile. CONCLUSIONS Cohabitation with a flower worker was related to lower acetylcholinesterase activity in children. This supports the hypothesis that the amount of take-home pesticides from flower workers suffices to decrease acetylcholinesterase activity, with lower activity associated with longer exposure. PMID:22405996

  10. Altered expression of acetylcholinesterase gene in rice results in enhancement or suppression of shoot gravitropism

    PubMed Central

    Yamamoto, Kosuke; Sakamoto, Hikaru; Momonoki, Yoshie S.

    2016-01-01

    ABSTRACT Acetylcholinesterase (AChE), an acetylcholine-hydrolyzing enzyme, exists widely in plants, although its role in plant signal transduction is still unclear. We have hypothesized that the plant AChE regulates asymmetric distribution of hormones and substrates due to gravity stimulus, based on indirect pharmacological experiments using an AChE inhibitor. As a direct evidence for this hypothesis, our recent study has shown that AChE overexpression causes an enhanced gravitropic response in rice seedlings and suggested that the function of the rice AChE relates to the promotion of shoot gravitropism in the seedlings. Here, we report that AChE suppression inhibited shoot gravitropism in rice seedlings, as supportive evidence demonstrating the role of AChE as a positive regulator of shoot gravitropic response in plants. PMID:26979939

  11. Rescue of the acetylcholinesterase knockout mouse by feeding a liquid diet; phenotype of the adult acetylcholinesterase deficient mouse.

    PubMed

    Duysen, Ellen G; Stribley, Judith A; Fry, Debra L; Hinrichs, Steven H; Lockridge, Oksana

    2002-07-30

    Acetylcholinesterase (AChE, EC3.1.1.7) functions in nerve impulse transmission, and possibly as a cell adhesion factor during neurite outgrowth. These functions predicted that a mouse with zero AChE activity would be unable to live. It was a surprise to find that AChE -/- mice were born alive and survived an average of 14 days. The emaciated appearance of AChE -/- mice suggested an inability to obtain sufficient nutrition and experiments were undertaken to increase caloric intake. Pregnant and lactating dams (+/-) were fed 11% high fat chow supplemented with liquid Ensure. AChE -/- pups were weaned early, on day 15, and fed liquid Ensure. Although nullizygous animals showed slow but steady weight gain with survival over 1 year (average 100 days), they remained small at all ages compared to littermates. They demonstrated delays in temperature regulation (day 22 vs. 15), eye opening (day 13 vs. 12), righting reflex (day 18 vs. 12), descent of testes (week 7-8 vs. 4), and estrous (week 15-16 vs. 6-7). Significant physical findings in adult AChE -/- mice included body tremors, abnormal gait and posture, absent grip strength, inability to eat solid food, pinpoint pupils, decreased pain response, vocalization, and early death caused by seizures or gastrointestinal tract ileus. Behavioral deficits included urination and defecation in the nest, lack of aggression, reduced pain perception, and sexual dysfunction. These findings support the classical role for AChE in nerve impulse conduction and further suggest that AChE is essential for timely physical development and higher brain function. Copyright 2002 Elsevier Science B.V.

  12. Antioxidant, Acetylcholinesterase, Butyrylcholinesterase, and α-glucosidase Inhibitory Activities of Corchorus depressus

    PubMed Central

    Afzal, Samina; Chaudhry, Bashir Ahmad; Ahmad, Ashfaq; Uzair, Muhammad; Afzal, Khurram

    2017-01-01

    Background: Corchorus depressus (Cd) commonly known as Boa-phalee belonging to the family Tiliaceae having 50 genera and 450 species. Cd is not among the studied medicinal agent despite its potential in ethnopharmacology. Objectives: The present study investigated antioxidant, acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and α-glucosidase inhibitory activities of Cd. The dichloromethane and methanolic extracts of the Cd were evaluated for biological activities such as antioxidant and enzyme inhibitory activities of AChE, BChE, and α-glucosidase. Materials and Methods: Antioxidant activity was evaluated by measuring free radical scavenging potential of Cd using 1,1-diphenyl-2-picrylhydrazyl. Enzyme inhibition activities were done by measuring optical density. Results: The methanol extract of roots of Cd showed potential free radical scavenging activity 99% at concentration 16.1 μg/ml. AChE was inhibited by aerial part of dichloromethane fraction by 46.07% ± 0.45% while dichloromethane extracts of roots of Cd possessed significant activity against BChE with 86% inhibition compared with standard drug Eserine at concentration 0.5 mg/ml. The dichloromethane extract of roots of Cd showed 79% inhibition against α-glucosidase enzyme activity with IC50 62.8 ± 1.5 μg/ml. Conclusion: These findings suggest Cd as useful therapeutic option as antioxidant and inhibition of AChE, BChE, and α-glucosidase activities. SUMMARY The aerial parts and roots of Corchorus depressus (Cd) were extracted in dichloromethane and methanolThe extract of roots of Cd showed free radical scavenging activity 99% at concentration 16.1 mg/ml, Ach inhibition by aerial parts of dichloromethane fraction by 46.07%, and 79% inhibition against a-glucosidase enzyme activity with IC50 62.8 ± 1.5 mg/mlThe dichloromethane and methanolic extracts of Cd exhibited antioxidant inhibition of acetyl cholinesterase, butyrylcholinesterase, and a-glucosidase activities. Abbreviations used: DPPH: 1

  13. [Molecular cloning and characterization of an acetylcholinesterase gene Dd-ace-2 from sweet potato stem nematode Ditylenchus destructor].

    PubMed

    Ding, Zhong; Peng, Deliang; Huang, Wenkun; He, Wenting; Gao, Bida

    2008-02-01

    A cDNA, named Dd-ace-2, encoding an acetylcholinesterase (AChE, EC3.1.1.7), was isolated from sweet-potato-stem nematode, Ditylenchus destructor. The nucleotide and amino acid sequences among different nematode species were compared and analyzed with DNAMAN5.0, MEGA3.0 softwares. The results showed that the complete nucleotide sequence of Dd-ace-2 gene of Ditylenchus destructor contains 2425 base pairs from which deduced 734 amino acids (GenBank accession No. EF583058). The homology rates of amino acid sequences of Dd-ace-2 gene between Ditylenchus destructor and Meloidogyne incognita, Caenorhabditis elegans, Dictyocaulus viviparous were 48.0%, 42.7%, 42.1% respectively. The mature acetylcholinesterase sequences of Ditylenchus destructor may encode by the first 701 residues of deduced 734 amino acids.The conserved motifs involved in the catalytic triad, the choline binding site and 10 aromatic residues lining the catalytic gorge were present in the Dd-ace-2 deduced protein. Phylogenetic analysis based on AChEs of other nematodes and species showed that the deduced AChE formed the same cluster with ACE-2s.

  14. Chlorpyrifos and malathion have opposite effects on behaviors and brain size that are not correlated to changes in AChE activity.

    PubMed

    Richendrfer, Holly; Creton, Robbert

    2015-07-01

    Organophosphates, a type of neurotoxicant pesticide, are used globally for the treatment of pests on croplands and are therefore found in a large number of conventional foods. These pesticides are harmful and potentially deadly if ingested or inhaled in large quantities by causing a significant reduction in acetylcholinesterase (AChE) activity in the central and peripheral nervous system. However, much less is known about the effects of exposure to small quantities of the pesticides on neural systems and behavior during development. In the current study we used zebrafish larvae in order to determine the effects of two of the most widely used organophosphates, chlorpyrifos and malathion, on zebrafish behavior and AChE activity. Embryos and larvae were exposed to the organophosphates during different time points in development and then tested at 5 days post-fertilization for behavioral, neurodevelopmental and AChE abnormalities. The results of the study indicate that chlorpyrifos and malathion cause opposing behaviors in the larvae such as swim speed (hypoactivity vs. hyperactivity) and rest. Additionally, the pesticides affect only certain behaviors, such as thigmotaxis, during specific time points in development that are unrelated to changes in AChE activity. Larvae treated with malathion but not chlorpyrifos also had significantly smaller forebrain and hindbrain regions compared to controls by 5 days post-fertilization. We conclude that exposure to very low concentrations of organophosphate pesticides during development cause abnormalities in behavior and brain size. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Chlorpyrifos and Malathion have opposite effects on behaviors and brain size that are not correlated to changes in AChE activity

    PubMed Central

    Richendrfer, Holly; Creton, Robbert

    2015-01-01

    Organophosphates, a type of neurotoxicant pesticide, are used globally for the treatment of pests on croplands and are therefore found in a large number of conventional foods. These pesticides are harmful and potentially deadly if ingested or inhaled in large quantities by causing a significant reduction in acetylcholinesterase (AChE) activity in the central and peripheral nervous system. However, much less is known about the effects of exposure to small quantities of the pesticides on neural systems and behavior during development. In the current study we used zebrafish larvae in order to determine the effects of two of the most widely used organophosphates, chlorpyrifos and malathion, on zebrafish behavior and AChE activity. Embryos and larvae were exposed to the organophosphates during different time points in development and then tested at 5 days post-fertilization for behavioral, neurodevelopmental and AChE abnormalities. The results of the study indicate that chlorpyrifos and malathion cause opposing behaviors in the larvae such as swim speed (hypoactivity vs. hyperactivity) and rest. Additionally, the pesticides affect only certain behaviors, such as thigmotaxis, during specific time points in development that are unrelated to changes in AChE activity. Larvae treated with malathion but not chlorpyrifos also had significantly smaller forebrain and hindbrain regions compared to controls by 5 days post-fertilization. We conclude that exposure to very low concentrations of organophosphate pesticides during development cause abnormalities in behavior and brain size. PMID:25983063

  16. Neurite differentiation is modulated in neuroblastoma cells engineered for altered acetylcholinesterase expression.

    PubMed

    Koenigsberger, C; Chiappa, S; Brimijoin, S

    1997-10-01

    Previous observations from several groups suggest that acetylcholinesterase (AChE) may have a role in neural morphogenesis, but not solely by virtue of its ability to hydrolyze acetylcholine. We tested the possibility that AChE influences neurite outgrowth in nonenzymatic ways. With this aim, antisense oligonucleotides were used to decrease AChE levels transiently, and N1E.115 cell lines were engineered for permanently altered AChE protein expression. Cells stably transfected with a sense AChE cDNA construct increased their AChE expression 2.5-fold over the wild type and displayed significantly increased neurite outgrowth. Levels of the differentiation marker, tau, also rose. In contrast, AChE expression in cell lines containing an antisense construct was half of that observed in the wild type. Significant reductions in neurite outgrowth and tau protein accompanied this effect. Overall, these measures correlated statistically with the AChE level (p < 0.01). Furthermore, treatment of AChE-overexpressing cells with a polyclonal antibody against AChE decreased neurite outgrowth by 43%. We conclude that AChE may have a novel, noncholinergic role in neuronal differentiation.

  17. Management, Diagnostic and Prognostic Significance of Acetylcholinesterase as a Biomarker of the Toxic Effects of Pesticides in People Occupationally Exposed

    PubMed Central

    Lutovac, Mitar; Popova, Olga V.; Jovanovic, Zoran; Berisa, Hatidza; Kristina, Radoman; Ketin, Sonja; Bojic, Marko

    2017-01-01

    AIM: The paper presents research on the most common causes of exposure that leads to disorders of cholinesterase activity, as well as an overview of the results of cholinesterase activity with the poisoned people. MATERIAL AND METHODS: In a group of 35 acute poisoned patients by organophosphate compounds has led to inhibition of AchE. A total number of examined workers are 175 in the chemical industry and agricultural production in the area of Rasina District-Serbia. RESULTS: The results showed that among workers who are constantly exposed to pesticides, acetylcholinesterase is within the reference value. Having examined the medical records of these workers, it is noted that, at 72%, there is a slight fall of AchE activity, each year. The workers who had been exposed to pesticides at the time of testing had acetylcholinesterase regarding reference value, but 52% of them had a few years ago significantly reduced the value of the activity of acetylcholinesterase, which was treated and then transferred to other jobs. The 48% of these workers had acetylcholinesterase regarding benchmarks or were transferred to other jobs, for a variety of other health problems. CONCLUSION: Using each pesticide should only deal with people who are well versed in the way of its use, as well as the way of protecting them from poisoning. PMID:29362639

  18. Novel coumarin derivatives bearing N-benzyl pyridinium moiety: potent and dual binding site acetylcholinesterase inhibitors.

    PubMed

    Alipour, Masoumeh; Khoobi, Mehdi; Foroumadi, Alireza; Nadri, Hamid; Moradi, Alireza; Sakhteman, Amirhossein; Ghandi, Mehdi; Shafiee, Abbas

    2012-12-15

    A novel series of coumarin derivatives linked to benzyl pyridinium group were synthesized and biologically evaluated as inhibitors of both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). The enzyme inhibitory activity of synthesized compounds was measured using colorimetric Ellman's method. It was revealed that compounds 3e, 3h, 3l, 3r and 3s have shown higher activity compared with donepezil hydrochloride as standard drug. Most of the compounds in these series had nanomolar range IC(50) in which compound 3r (IC(50) = 0.11 nM) was the most active compound against acetylcholinesterase enzyme. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. The prevalence of anti-acetylcholinesterase antibodies in autoimmune disease.

    PubMed

    Geen, J; Howells, R C; Ludgate, M; Hullin, D A; Hogg, S I

    2004-12-01

    A robust and precise enzyme linked immunosorbent assay (ELISA) with proven sensitivity and specificity has been employed to detect human antibodies (allogenic/autogenic) to human acetylcholinesterase (AChE). The sensitivity of the method has been established using mouse monoclonal antibodies (0.8 ng/ml) and uniquely, human sera positive for anti-Yt(a) allogenic antibodies, to one phenotypic form (most common) of human AChE. The latter was also used as the positive human control to ensure functionality of the assay. The ELISA method was used to establish a normal distribution curve for absorbance values employing sera from healthy blood donors Subsequently, the ELISA was employed to investigate the prevalence of anti-AChE antibodies in patients with confirmed autoimmune disease and patients with non-autoimmune thyroid disease (diseased control). The results indicate that there is not a high prevalence of anti-AChE antibodies in patients with confirmed autoimmune disease. The lack of anti-AChE autoantibodies in patients' with clinically apparent Graves' ophthalmopathy, mitigates against there being a causal role of such antibodies in Graves' associated eye disease.

  20. Dihydroagarofuranoid Sesquiterpenes as Acetylcholinesterase Inhibitors from Celastraceae Plants: Maytenus disticha and Euonymus japonicus.

    PubMed

    Alarcón, Julio; Cespedes, Carlos L; Muñoz, Evelyn; Balbontin, Cristian; Valdes, Francisco; Gutierrez, Margarita; Astudillo, Luis; Seigler, David S

    2015-12-02

    Natural cholinesterase inhibitors have been found in many biological sources. Nine compounds with agarofuran (epoxyeudesmane) skeletons were isolated from seeds and aerial parts of Maytenus disticha and Euonymus japonicus. The identification and structural elucidation of compounds were based on spectroscopic data analyses. All compounds had inhibitory acetylcholinesterase (AChE) activity. These natural compounds, which possessed mixed or uncompetitive mechanisms of inhibitory activity against AChE, may be considered as models for the design and development of new naturally occurring drugs for management strategies for neurodegenerative diseases. This is the first report of these chemical structures for seeds of M. disticha.

  1. Screening for antimalarial and acetylcholinesterase inhibitory activities of some Iranian seaweeds

    PubMed Central

    Ghannadi, A; Plubrukarn, A; Zandi, K; Sartavi, K; Yegdaneh, A

    2013-01-01

    Alcoholic extracts of 8 different types of seaweeds from Iran’s Persian Gulf were tested for their antimalarial and acetylcholinesterase enzyme (AChE) inhibitory activities for the first time. A modified Ellman and Ingkaninan method was used for measuring AChE inhibitory activity in which galanthamine was used as the reference. The antimalarial assay was performed using microculture radioisotope technique. Mefloquine and dihydroartemisinin were uased as the standards. The extract of Sargassum boveanum (Sargasseae family) showed the highest AChE inhibitory activity (IC50 equals to 1 mg ml-1) while Cystoseira indica (Cystoseiraceae family) exhibited the least activity (IC50 of 11 mg ml-1). The species from Rhodophyta (Gracilaria corticata and Gracilaria salicornia) also showed moderate activities (IC509.5, 8.7 mg ml-1, respectively). All extracts were inactive in antimalarial assay. PMID:24019820

  2. [Effect of acetylcholine and acetylcholinesterase on the activity of contractile vacuole of Amoeba proteus].

    PubMed

    Bagrov, Ia Iu; Manusova, N B

    2011-01-01

    Acetylcholine (ACh, 1 microM) stimulates activity of the contractile vacuole of proteus. The effect of ACh is not mimicked by its analogs which are not hydrolyzed by acetylcholinesterase (AChE), i. e., carbacholine and 5-methylfurmethide. The effect of ACh is not sensitive to the blocking action of M-cholinolytics, atropine and mytolone, but is suppressed by N-cholinolytic, tubocurarine. The inhibitors of AChE, eserine (0.01 microM) and armine (0.1 microM), suppress the effect of ACh on amoeba contractile vacuole. ACh does not affect activation of contractile vacuole induced by arginine-vasopressin (1 microM), but it blocks such effect of opiate receptors agonist, dynorphin A1-13 (0.01 microM). This effect of ACh is also suppressed by the inhibitors of AChE. These results suggest that, in the above-described effects of ACh, AChE acts not as an antagonist, but rather as a synergist.

  3. Differences between male and female rhesus monkey erythrocyte acetylcholinesterase and plasma cholinesterase activity before and after exposure to sarin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodard, C.L.; Calamaio, C.A.; Kaminskis, A.

    The female rhesus monkey has a menstrual cycle like the human. Additionally, several differences in enzyme levels between males and females and in the female during the menstrual cycle are present. Therefore we quantitated plasma cholinesterase (ChE/BuChE) and erythrocyte (RBC) acetylcholinesterase (AChE) activity before and after exposure to sarin (GB)(1 5 ug/kg, iv; a 0.75 LD50), in male and female rhesus (Macaca mulatta) monkeys. Twenty-eight-day preexposure baseline plasma ChE and RBC AChE values for six male and six female rhesus monkeys were compared for intra-animal, within sex and between sex differences. After these baseline values were obtained, the organophosphorus (OP)more » compound/Isopropyl methylphosphono-fluoridate (GB) was administered to atropinized monkeys to determine if there was a significant in vivo difference between the sexes in their response to this intoxication in regard to the rate of BuChE /AChE inhibition, pyridine-2-aldoxime methyl chloride (2-PAM) reactivation of the phosphonylated BuChE and the rate of aging of the phosphonylated:BuChE/AChE. In the pre-exposure portion of the protocol; the intra-animal and intra-group BuChE/AChE variations were found to be minimal; but there were significant differences between the male and female monkeys in both plasma BuChE and RBC AChE levels; although probably clinically insignificant in respect to an OP intoxication. No significant cyclic fluctuations were seen during the 28-day study in either sex.« less

  4. Development and validation of a FIA/UV-vis method for pK(a) determination of oxime based acetylcholinesterase reactivators.

    PubMed

    Musil, Karel; Florianova, Veronika; Bucek, Pavel; Dohnal, Vlastimil; Kuca, Kamil; Musilek, Kamil

    2016-01-05

    Acetylcholinesterase reactivators (oximes) are compounds used for antidotal treatment in case of organophosphorus poisoning. The dissociation constants (pK(a1)) of ten standard or promising acetylcholinesterase reactivators were determined by ultraviolet absorption spectrometry. Two methods of spectra measurement (UV-vis spectrometry, FIA/UV-vis) were applied and compared. The soft and hard models for calculation of pK(a1) values were performed. The pK(a1) values were recommended in the range 7.00-8.35, where at least 10% of oximate anion is available for organophosphate reactivation. All tested oximes were found to have pK(a1) in this range. The FIA/UV-vis method provided rapid sample throughput, low sample consumption, high sensitivity and precision compared to standard UV-vis method. The hard calculation model was proposed as more accurate for pK(a1) calculation. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Inhibition effect of graphene oxide on the catalytic activity of acetylcholinesterase enzyme.

    PubMed

    Wang, Yong; Gu, Yao; Ni, Yongnian; Kokot, Serge

    2015-11-01

    Variations in the enzyme activity of acetylcholinesterase (AChE) in the presence of the nano-material, graphene oxide (GO), were investigated with the use of molecular spectroscopy UV-visible and fluorescence methods. From these studies, important kinetic parameters of the enzyme were extracted; these were the maximum reaction rate, Vm , and the Michaelis constant, Km . A comparison of these parameters indicated that GO inhibited the catalytic activity of the AChE because of the presence of the AChE-GO complex. The formation of this complex was confirmed with the use of fluorescence data, which was resolved with the use of the MCR-ALS chemometrics method. Furthermore, it was found that the resonance light-scattering (RLS) intensity of AChE changed in the presence of GO. On this basis, it was demonstrated that the relationship between AChE and GO was linear and such models were used for quantitative analyses of GO. Copyright © 2015 John Wiley & Sons, Ltd.

  6. Landscape and pesticide effects on honey bees: forager survival and expression of acetylcholinesterase and brain oxidative genes

    USDA-ARS?s Scientific Manuscript database

    The aim of the present work was to assess the effects of agricultural pesticides on honey bee (Apis mellifera L.) survival and physiological stress. Integrated use of acetylcholinesterase (AChE) and antioxidant enzymes (catalase and glutathione S-transferase) was tested on honey bee brains for detec...

  7. Design, synthesis and structure-activity relationships of dual inhibitors of acetylcholinesterase and serotonin transporter as potential agents for Alzheimer's disease.

    PubMed

    Toda, Narihiro; Tago, Keiko; Marumoto, Shinji; Takami, Kazuko; Ori, Mayuko; Yamada, Naho; Koyama, Kazuo; Naruto, Shunji; Abe, Kazumi; Yamazaki, Reina; Hara, Takao; Aoyagi, Atsushi; Abe, Yasuyuki; Kaneko, Tsugio; Kogen, Hiroshi

    2003-05-01

    We have designed and synthesized a dual inhibitor of acetylcholinesterase (AChE) and serotonin transporter (SERT) as a novel class of treatment drugs for Alzheimer's disease on the basis of a hypothetical model of the AChE active site. Dual inhibitions of AChE and SERT would bring about greater therapeutic effects than AChE inhibition alone and avoid adverse peripheral effects caused by excessive AChE inhibition. Compound (S)-6j exhibited potent inhibitory activities against AChE (IC(50)=101 nM) and SERT (IC(50)=42 nM). Furthermore, (S)-6j showed inhibitory activities of both AChE and SERT in mice brain following oral administration.

  8. Geissoschizine methyl ether, a corynanthean-type indole alkaloid from Uncaria rhynchophylla as a potential acetylcholinesterase inhibitor.

    PubMed

    Yang, Zhong-Duo; Duan, Dong-Zhu; Du, Juan; Yang, Ming-Jun; Li, Shuo; Yao, Xiao-Jun

    2012-01-01

    Geissoschizine methyl ether (1), a newly discovered strong acetylcholinesterase (AChE) inhibitor, along with six weakly active alkaloids, vallesiachotamine (2), hisuteine (3), hirsutine (4), isorhynchophylline (5), cisocorynoxeine (6) and corynoxeine (7) have been isolated from Uncaria rhynchophylla. Geissoschizine methyl ether (1) inhibited 50% of AChE activity at concentrations of 3.7 ± 0.3 µg mL(-1) while the IC(50) value of physostigmine as a standard was 0.013 ± 0.002 µg mL(-1). The mode of AChE inhibition by 1 was reversible and non-competitive. In addition, molecular modelling was performed to explore the binding mode of inhibitor 1 at the active site of AChE.

  9. Dual inhibition of acetylcholinesterase and butyrylcholinesterase enzymes by allicin

    PubMed Central

    Kumar, Suresh

    2015-01-01

    Objectives: The brain of mammals contains two major form of cholinesterase enzymes, acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). The dual inhibition of these enzymes is considered as a promising strategy for the treatment of neurological disorder such as Alzheimer's disease (AD), senile dementia, ataxia, and myasthenia gravis. The present study was undertaken to explore the anticholinesterase inhibition property of allicin. Materials and Methods: An assessment of cholinesterase inhibition was carried out by Ellman's assay. Results: The present study demonstrates allicin, a major ingredient of crushed garlic (Allium sativum L.) inhibited both AChE and BuChE enzymes in a concentration-dependent manner. For allicin, the IC50 concentration was 0.01 mg/mL (61.62 μM) for AChE and 0.05 ± 0.018 mg/mL (308.12 μM) for BuChE enzymes. Conclusions: Allicin shows a potential to ameliorate the decline of cognitive function and memory loss associated with AD by inhibiting cholinesterase enzymes and upregulate the levels of acetylcholine (ACh) in the brain. It can be used as a new lead to target AChE and BuChE to upregulate the level of ACh which will be useful in alleviating the symptoms associated with AD. PMID:26288480

  10. Acetylcholinesterases of blood-feeding flies and ticks.

    PubMed

    Temeyer, Kevin B; Tuckow, Alexander P; Brake, Danett K; Li, Andrew Y; Pérez de León, Adalberto A

    2013-03-25

    Acetylcholinesterase (AChE) is the biochemical target of organophosphate (OP) and carbamate pesticides for invertebrates, vertebrate nerve agents, and AChE inhibitors used to reduce effects of Alzheimer's disease. Organophosphate pesticides (OPs) are widely used to control blood-feeding arthropods, including biting flies and ticks. However, resistance to OPs in pests affecting animal and human health has compromised control efficacy. OP resistance often results from mutations producing an OP-insensitive AChE. Our studies have demonstrated production of OP-insensitive AChEs in biting flies and ticks. Complementary DNA (cDNA) sequences encoding AChEs were obtained for the horn fly, stable fly, sand fly, and the southern cattle tick. The availability of cDNA sequences enables the identification of mutations, expression and characterization of recombinant proteins, gene silencing for functional studies, as well as in vitro screening of novel inhibitors. The southern cattle tick expresses at least three different genes encoding AChE in their synganglion, i.e. brain. Gene amplification for each of the three known cattle tick AChE genes and expression of multiple alleles for each gene may reduce fitness cost associated with OP-resistance. AChE hydrolyzes the neurotransmitter, acetylcholine, but may have additional roles in physiology and development. The three cattle tick AChEs possess significantly different biochemical properties, and are expressed in neural and non-neural tissues, which suggest separation of structure and function. The remarkable complexity of AChEs in ticks suggested by combining genomic data from Ixodes scapularis with our genetic and biochemical data from Rhipicephalus microplus is suggestive of previously unknown gene duplication and diversification. Comparative studies between invertebrate and vertebrate AChEs could enhance our understanding of structure-activity relationships. Research with ticks as a model system offers the opportunity to

  11. Electro-Immobilization of Acetylcholinesterase Using Polydopamine for Carbaryl Microsensor

    NASA Astrophysics Data System (ADS)

    Ha, Trung B.; Le, Huyen T.; Cao, Ha H.; Binh, Nguyen Thanh; Nguyen, Huy L.; Dang, Le Hai; Do, Quan P.; Nguyen, Dzung T.; Lam, Tran Dai; Nguyen, Vân-Anh

    2018-02-01

    A simple and sensitive electrochemical acetylcholinesterase (AChE) biosensor for determination of carbaryl, one of the most commonly used carbamate pesticides, is described. The AChE enzyme was successfully entrapped by a polydopamine-graphene composite on polypyrrole nanowires that modified interdigitated planar platinum-film microelectrodes . The influence of different parameters on the operation of the biosensor was also studied. The selected parameters for the biosensor performance in detecting carbaryl were as follows: applied potential + 0.7 V, pH 7.4 at 25°C. The inhibition of carbaryl was proportional to its concentrations ranging from 0.05 to 1.5 μg/mL with the detection limit of 0.008 μg/mL using chronoamperometry. This study provides a promising approach in fabrication of sensitive biosensors for the analysis of carbamate pesticides as well as other hazardous compounds.

  12. Screen-printed electrode modified with carbon black and chitosan: a novel platform for acetylcholinesterase biosensor development.

    PubMed

    Talarico, Daria; Arduini, Fabiana; Amine, Aziz; Cacciotti, Ilaria; Moscone, Danila; Palleschi, Giuseppe

    2016-10-01

    We report a screen-printed electrode (SPE) modified with a dispersion of carbon black (CB) and chitosan by drop casting. A cyclic voltammetry technique towards ferricyanide, caffeic acid, hydroquinone, and thiocholine was performed and an improvement of the electrochemical response with respect to bare SPE as well as SPE modified only with chitosan was observed. The possibility to detect thiocholine at a low applied potential with high sensitivity was exploited and an acetylcholinesterase (AChE) biosensor was developed. A dispersion of CB, chitosan, and AChE was used to fabricate this biosensor in one step by drop casting. The enzymatic activity of the immobilized AChE was determined measuring the enzymatic product thiocholine at +300 mV. Owing to the capability of organophosphorus pesticides to inhibit AChE, this biosensor was used to detect these pollutants, and paraoxon was taken as model compound. The enzyme inhibition was linearly related to the concentration of paraoxon up to 0.5 μg L(-1), and a low detection limit equal to 0.05 μg L(-1) (calculated as 10% of inhibition) was achieved. This biosensor was challenged for paraoxon detection in drinking waters with satisfactory recovery values. The use of AChE embedded in a dispersion of CB and chitosan allowed an easy and fast production of a sensitive biosensor suitable for paraoxon detection in drinking waters at legal limit levels. Graphical Abstract Biosensors based on screen-printed electrodes modified with Acetylcholinesterase, Carbon Black, and Chitosan for organophosphorus pesticide detection.

  13. Chitooligosaccharides suppress the level of protein expression and acetylcholinesterase activity induced by Abeta25-35 in PC12 cells.

    PubMed

    Lee, Sang-Hoon; Park, Jin-Sook; Kim, Se-Kwon; Ahn, Chang-Bum; Je, Jae-Young

    2009-02-01

    Clinical applications of acetylcholinesterase (AChE) inhibitors are widespread in Alzheimer's sufferers in order to activate central cholinergic system and alleviate cognitive deficits by inhibiting the hydrolysis of acetylcholine. In this study, six kinds of chitooligosaccharides (COSs) with different molecular weight and degree of deacetylation were examined for their inhibitory effects against AChE. The 90-COSs exhibited potent AChE inhibitory activities compared to 50-COSs, while 90-MMWCOS (1000-5000 Da) in the 90-COSs showed the highest activity. Cell culture experiment revealed that 90-MMWCOS suppressed the level of AChE protein expression and AChE activity induced by Abeta(25-35) in PC12 cell lines.

  14. Maize acetylcholinesterase is a positive regulator of heat tolerance in plants.

    PubMed

    Yamamoto, Kosuke; Sakamoto, Hikaru; Momonoki, Yoshie S

    2011-11-01

    We previously reported that native tropical zone plants showed high acetylcholinesterase (AChE) activity during heat stress, and that AChE activity in endodermal cells of maize seedlings was increased by heat treatment. However, the physiological role of AChE in heat stressed plants is still unclear. Here we report (1) tissue-specific expression and subcellular localization of maize AChE, (2) elevation of AChE activity and possible post-translational modifications of this enzyme under heat stress, and (3) involvement of AChE in plant heat stress tolerance. Maize AChE was mainly expressed in coleoptile nodes and seeds. Maize AChE fused with green fluorescent protein (GFP) was localized in extracellular spaces of transgenic rice plants. Therefore, in maize coleoptile nodes and seeds AChE mainly functions in the cell wall matrix. After heat treatment, enhanced maize AChE activity was observed by in vitro activity measurement and by in situ cytochemical staining; transcript and protein levels, however, were not changed. Protein gel blot analysis revealed two AChE isoforms (upper and lower); the upper-form gradually disappeared after heat treatment. Thus, maize AChE activity might be enhanced through a post-translational modification response to heat stress. Finally, we found that overexpression of maize AChE in transgenic tobacco plants enhanced heat tolerance relative to that of non-transgenic plants, suggesting AChE plays a positive role in maize heat tolerance. Copyright © 2011 Elsevier GmbH. All rights reserved.

  15. Acetylcholinesterase 1 in populations of organophosphate resistant North American strains of the cattle tick, Rhipicephalus microplus (Acari: Ixodidae)

    USDA-ARS?s Scientific Manuscript database

    In a collaboration with Purdue University researchers, we sequenced a 143,606 base pair Rhipicephalus microplus BAC library clone that contained the coding region for acetylcholinesterase 1 (AChE1). Sequencing was by Sanger protocols and the final assembly resulted in 15 contigs of varying length, e...

  16. Acetylcholinesterase of Rhipicephalus (Boophilus) microplus and Phlebotomus papatasi: Gene Identification, Expression, and Biochemical Properties of Recombinant Proteins

    DTIC Science & Technology

    2013-01-01

    predicted amino acid sequences of the three encoded BmAChEs were no more closely related to one another than AChEs from different organisms and their...solely on nucleotide and amino acid sequence similarity; however, the cholinesterase gene family contains a number of related enzymes and structural...acetylcholinesterase of P. papatasi was cloned, sequenced , and expressed in the baculo- virus system to generate a recombinant enzyme for biochemical

  17. Use and disuse and the control of acetylcholinesterase activity in fast and slow twitch muscle of rat

    NASA Technical Reports Server (NTRS)

    Dettbarn, W. D.; Groswald, D.; Gupta, R. C.; Misulis, K. E.

    1985-01-01

    The role of acetylcholinesterase (AChE) in neuromuscular transmission is relatively well established, little is known, however, of the mechanisms that regulate its synthesis and control its specific distribution in fast and slow muscle. Innervation plays an important role in the regulation of AChE and elimination of the influence of the nerve by surgical denervation results in a loss of AChE. The influences of the nerve and how they are mediated was investigated. It is suggested that muscle usage and other factors such as materials carried by axonal transport may participate in the regulation of this enzyme. The mechanisms that regulate AChE and its molecular forms in two functionally different forms are studied.

  18. Inhibitor Profile of bis(n)-tacrines and N-methylcarbamates on Acetylcholinesterase from Rhipicephalus (Boophilus) microplus and Phlebotomus papatasi

    USDA-ARS?s Scientific Manuscript database

    The cattle tick, Rhipicephalus (Boophilus) microplus (Bm), and the sand fly, Phlebotomus papatasi (Pp), are disease vectors to cattle and humans, respectively. The purpose of this study was to characterize the inhibitor profile of acetylcholinesterases from Bm (BmAChE1) and Pp (PpAchE) compared to h...

  19. A mechanism-based 3D-QSAR approach for classification and prediction of acetylcholinesterase inhibitory potency of organophosphate and carbamate analogs

    NASA Astrophysics Data System (ADS)

    Lee, Sehan; Barron, Mace G.

    2016-04-01

    Organophosphate (OP) and carbamate esters can inhibit acetylcholinesterase (AChE) by binding covalently to a serine residue in the enzyme active site, and their inhibitory potency depends largely on affinity for the enzyme and the reactivity of the ester. Despite this understanding, there has been no mechanism-based in silico approach for classification and prediction of the inhibitory potency of ether OPs or carbamates. This prompted us to develop a three dimensional prediction framework for OPs, carbamates, and their analogs. Inhibitory structures of a compound that can form the covalent bond were identified through analysis of docked conformations of the compound and its metabolites. Inhibitory potencies of the selected structures were then predicted using a previously developed three dimensional quantitative structure-active relationship. This approach was validated with a large number of structurally diverse OP and carbamate compounds encompassing widely used insecticides and structural analogs including OP flame retardants and thio- and dithiocarbamate pesticides. The modeling revealed that: (1) in addition to classical OP metabolic activation, the toxicity of carbamate compounds can be dependent on biotransformation, (2) OP and carbamate analogs such as OP flame retardants and thiocarbamate herbicides can act as AChEI, (3) hydrogen bonds at the oxyanion hole is critical for AChE inhibition through the covalent bond, and (4) π-π interaction with Trp86 is necessary for strong inhibition of AChE. Our combined computation approach provided detailed understanding of the mechanism of action of OP and carbamate compounds and may be useful for screening a diversity of chemical structures for AChE inhibitory potency.

  20. Downregulated expression of microRNA-124 in pediatric intestinal failure patients modulates macrophages activation by inhibiting STAT3 and AChE

    PubMed Central

    Xiao, Yong-Tao; Wang, Jun; Lu, Wei; Cao, Yi; Cai, Wei

    2016-01-01

    Intestinal inflammation plays a critical role in the pathogenesis of intestinal failure (IF). The macrophages are essential to maintain the intestinal homeostasis. However, the underlying mechanisms of intestinal macrophages activation remain poorly understood. Since microRNAs (miRNAs) have pivotal roles in regulation of immune responses, here we aimed to investigate the role of miR-124 in the activation of intestinal macrophages. In this study, we showed that the intestinal macrophages increased in pediatric IF patients and resulted in the induction of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). The miRNA fluorescence in situ hybridization analysis showed that the expression of miR-124 significantly reduced in intestinal macrophages in IF patients. Overexpression of miR-124 was sufficient to inhibit intestinal macrophages activation by attenuating production of IL-6 and TNF-α. Further studies showed that miR-124 could directly target the 3′-untranslated region of both signal transducer and activator of transcription 3 (STAT3) and acetylcholinesterase (AChE) mRNAs, and suppress their protein expressions. The AChE potentially negates the cholinergic anti-inflammatory signal by hydrolyzing the acetylcholine. We here showed that intestinal macrophages increasingly expressed the AChE and STAT3 in IF patients when compared with controls. The inhibitors against to STAT3 and AChE significantly suppressed the lipopolysaccharides-induced IL-6 and TNF-α production in macrophages. Taken together, these findings highlight an important role for miR-124 in the regulation of intestinal macrophages activation, and suggest a potential application of miR-124 in pediatric IF treatment regarding as suppressing intestinal inflammation. PMID:27977009

  1. Screening for acetylcholinesterase inhibition and antioxidant activity of selected plants from Croatia.

    PubMed

    Jukic, Mila; Burcul, Franko; Carev, Ivana; Politeo, Olivera; Milos, Mladen

    2012-01-01

    The methanol, ethyl acetate and chloroform extracts of selected Croatian plants were tested for their acetylcholinesterase (AChE) inhibition and antioxidant activity. Assessment of AChE inhibition was carried out using microplate reader at 1 mg mL⁻¹. Antioxidant capacities were determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging test and ferric reducing/antioxidant power assay (FRAP). Total phenol content (TPC) of extracts were determined using Folin-Ciocalteu colorimetric method. Out of 48 extracts, only methanolic extract of the Salix alba L. cortex exerted modest activity towards AChE, reaching 50.80% inhibition at concentration of 1 mg mL⁻¹. All the other samples tested had activity below 20%. The same extract performed the best antioxidative activity using DPPH and FRAP method, too. In essence, among all extracts used in the screening, methanolic extracts showed the best antioxidative activity as well as highest TPC.

  2. Design of multi-target compounds as AChE, BACE1, and amyloid-β(1-42) oligomerization inhibitors: in silico and in vitro studies.

    PubMed

    Hernández-Rodríguez, Maricarmen; Correa-Basurto, José; Martínez-Ramos, Federico; Padilla-Martínez, Itzia Irene; Benítez-Cardoza, Claudia G; Mera-Jiménez, Elvia; Rosales-Hernández, Martha Cecilia

    2014-01-01

    Despite great efforts to develop new therapeutic strategies against Alzheimer's disease (AD), the acetylcholinesterase inhibitors (AChEIs): donepezil, rivastigmine, and galantamine, have been used only as a palliative therapeutic approach. However, the pathogenesis of AD includes several factors such as cholinergic hypothesis, amyloid-β (Aβ) aggregation, and oxidative stress. For this reason, the design of compounds that target the genesis and progression of AD could offer a therapeutic benefit. We have designed a set of compounds (M-1 to M-5) with pharmacophore moieties to inhibit the release, aggregation, or toxicity of Aβ, act as AChEIs and have antioxidant properties. Once the compounds were designed, we analyzed their physicochemical parameters and performed docking studies to determine their affinity values for AChE, β-site amyloid-protein precursor cleaving enzyme 1 (BACE1), and the Aβ monomer. The best ligands, M-1 and M-4, were then synthesized, chemically characterized, and evaluated in vitro. The in vitro studies showed that these compounds inhibit AChE (M-1 Ki = 0.12 and M-4 Ki = 0.17 μM) and BACE1 (M-1 IC50 = 15.1 and M-4 IC50 = 15.4 nM). They also inhibit Aβ oligomerization and exhibit antioxidant activity. In addition, these compounds showed low cytotoxicity in microglial cells. For these reasons, they are promising for future use as drugs in AD mice transgenic models.

  3. Phenolic composition, antioxidant and anti-acetylcholinesterase activities of the Tunisian Scabiosa arenaria.

    PubMed

    Besbes Hlila, Malek; Omri, Amel; Ben Jannet, Hichem; Lamari, Ali; Aouni, Mahjoub; Selmi, Boulbaba

    2013-05-01

    There is a need for the discovery of novel natural antioxidants and acetylcholinesterase inhibitors (AChEIs) that are safe and effective at a global level. This is the first study on antioxidant and anti-acethylcholinesterase activity of Scabiosa arenaria Forssk (Dipsacaceae). The antioxidant potential and anti-acetylcholinesterase (AChE) activity of S. arenaria were investigated. The crude, ethyl acetate (EtOAc), butanol (n-BuOH) and water extracts prepared from flowers, fruits and stems and leaves of S. arenaria were tested to determine their total polyphenol content (TPC), total flavonoid content (TFC), total condensed tannin content (CTC) and their antioxidant activity by using 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS), reducing power and β-carotene bleaching inhibition activity. Anti-AChE activity was also determined. EtOAc and n-BuOH fractions of fruits had both the highest (TPC) (269.09 mg gallic acid equivalents/g dry weight). The crude extract of stems and leaves had the highest TFC (10.9 mg quercetin equivalent/g dry weight). The n-BuOH fraction of stems and leaves had the highest CTC (489.75 mg catechin equivalents/g dry weight). The EtOAc fraction of flowers exhibit a higher activity in each antioxidant system with a special attention for DPPH assay (IC50 = 0.017 mg/mL) and reducing power (EC50 = 0.02 mg/mL). The EtOAc and n-BuOH fractions of stems and leaves showed strong inhibition of AChE (IC50 = 0.016 and 0.029 mg/mL, respectively). These results suggest the potential of S. arenaria as a possible source of novel compounds and as an alternative antioxidant and AChEIs.

  4. Graphene quantum dots for ultrasensitive detection of acetylcholinesterase and its inhibitors

    NASA Astrophysics Data System (ADS)

    Li, Nan; Wang, Xuewan; Chen, Jie; Sun, Lei; Chen, Peng

    2015-09-01

    Graphene quantum dots (GQDs) are emerging zero-dimensional materials promising a wide spectrum of novel applications including development of optical sensors. Herein, a GQD-based fluorometric sensor is devised to detect acetylcholinesterase (AChE, a critical enzyme in central nervous system and neuromuscular junctions) with an ultralow detection limit (0.58 pM with S/N of 5.0), using a photoluminescence ‘turn-off’ mechanism. This simple ‘mix-and-detect’ platform can also be employed to sense a variety of compounds that can directly or indirectly inhibit the enzymatic activities of AChE, such as nerve gases, pesticides, and therapeutic drugs. As the proof-of-concept demonstrations, we show the sensitive detection of paraoxon (a pesticide), tacrine (a drug to treat Alzheimer’s disease), and dopamine (an important neurotransmitter).

  5. Red blood cell acetylcholinesterase activity among healthy dwellers of an agrarian region in Sri Lanka: a descriptive cross-sectional study.

    PubMed

    Rathish, Devarajan; Senavirathna, Indika; Jayasumana, Channa; Agampodi, Suneth

    2018-06-21

    Assessment of acetylcholinesterase-inhibitor insecticide (AChEII) toxicity depends on the measurement of red blood cell acetylcholinesterase (RBC-AChE) activity. Its interpretation requires baseline values which is lacking in scientific literature. We aim to find the measures of central tendency and variation for RBC-AChE activity among dwellers of Anuradhapura, where the use and abuse of AChEIIs were rampant for the last few decades. A descriptive cross-sectional study with a community-based sampling for 100 healthy non-farmers (male:female = 1:1) was done using pre-determined selection criteria. Duplicate measurements of RBC-AChE activity were performed according to the modified Ellman procedure. Pearson's correlation and regression analysis were sort for RBC-AChE activity against its possible determinants. RBC-AChE activity had a mean of 449.8 (SD 74.2) mU/μM Hb with a statistical power of 0.847. It was similar to values of "healthy controls" from previous Sri Lankan toxicological studies but was low against international reference value [586.1 (SD 65.1) mU/μM Hb]. None of the possible determinants showed a significant strength of relationship with RBC-AChE activity. The baseline RBC-AChE activity among people of Anuradhapura is low in comparison with international reference values. This arises a need to find a causative mechanism.

  6. A method for acetylcholinesterase staining of brain sections previously processed for receptor autoradiography.

    PubMed

    Lim, M M; Hammock, E A D; Young, L J

    2004-02-01

    Receptor autoradiography using selective radiolabeled ligands allows visualization of brain receptor distribution and density on film. The resolution of specific brain regions on the film often can be difficult to discern owing to the general spread of the radioactive label and the lack of neuroanatomical landmarks on film. Receptor binding is a chemically harsh protocol that can render the tissue virtually unstainable by Nissl and other conventional stains used to delineate neuroanatomical boundaries of brain regions. We describe a method for acetylcholinesterase (AChE) staining of slides previously processed for receptor binding. AChE staining is a useful tool for delineating major brain nuclei and tracts. AChE staining on sections that have been processed for receptor autoradiography provides a direct comparison of brain regions for more precise neuroanatomical description. We report a detailed thiocholine protocol that is a modification of the Koelle-Friedenwald method to amplify the AChE signal in brain sections previously processed for autoradiography. We also describe several temporal and experimental factors that can affect the density and clarity of the AChE signal when using this protocol.

  7. Different glycosylation in acetylcholinesterases from mammalian brain and erythrocytes.

    PubMed

    Liao, J; Heider, H; Sun, M C; Brodbeck, U

    1992-04-01

    Acetylcholinesterases (EC 3.1.1.7, AChE) have varying amounts of carbohydrates attached to the core protein. Sequence analysis of the known primary structures gives evidence for several asparagine-linked carbohydrates. From the differences in molecular mass determined on sodium dodecyl sulfate-polyacrylamide gel before and after deglycosylation with N-glycosidase F (EC 3.2.2.18), it is seen that dimeric AChE from red cell membranes is more heavily glycosylated than the tetrameric brain enzyme. Furthermore, dimeric and tetrameric forms of bovine AChE are more heavily glycosylated than the corresponding human enzymes. Monoclonal antibodies 2E6, 1H11, and 2G8 raised against detergent-soluble AChE from electric organs of Torpedo nacline timilei as well as Elec-39 raised against AChE from Electrophorus electricus cross-reacted with AChE from bovine and human brain but not with AChE from erythrocytes. Treatment of the enzyme with N-glycosidase F abolished binding of monoclonal antibodies, suggesting that the epitope, or part of it, consists of N-linked carbohydrates. Analysis of N-acetylglucosamine sugars revealed the presence of N-acetylglucosamine in all forms of cholinesterases investigated, giving evidence for N-linked glycosylation. On the other hand, N-acetylgalactosamine was not found in AChE from human and bovine brain or in butyrylcholinesterase (EC 3.1.1.8) from human serum, indicating that these forms of cholinesterase did not contain O-linked carbohydrates. Despite the notion that within one species, the different forms of AChE arise from one gene by different splicing, our present results show that dimeric erythrocyte and tetrameric brain AChE must undergo different postsynthetic modifications leading to differences in their glycosylation patterns.

  8. Ultastructural analysis on acetylcholinesterase localization in the cerebellar cortex of teleosts.

    PubMed

    Contestabile, A; Villani, L; Ciani, F

    1977-12-28

    The histochemical localization of acetylcholinesterase (AChE) was studied by electron microscopy in the cerebellar cortex of the goldfish and the catfish. The patterns of enzyme distribution show noticeable differences in the two teleost species at the level of the corresponding cerebellar structures. Among the most distinctive features is the prevailing intracellular localization of enzyme activity in the goldfish and the prevailing extracellular localization in the catfish in the molecular layer and, to a lesser extent, the granular layer. Only quantitative differences in the ability to synthesize AChE can be recorded among the different cerebellar neurons in the two species, since all these neurons exhibit different amounts of enzyme activity linked to their cytoplasmic structures. Comparing the results obtained with those of previous histochemical, experimental and developmental researches, the hypothesis seems well founded that the embryonic pool of cerebellar neurons is made up of AChE-synthesizing nruroblasts which, during development, loss or maintain to a different the mechanisms for AChE synthesis. In addition the light and electron microscope histochemistry reveals at different levels of resolution that the final pattern of AChE distribution in the cerebellar cortex is the sum of different degress of AChE synthesis by cerebellar neurons and different degrees of enzyme release in extracellular spaces.

  9. Novel Triazole-Quinoline Derivatives as Selective Dual Binding Site Acetylcholinesterase Inhibitors.

    PubMed

    Mantoani, Susimaire P; Chierrito, Talita P C; Vilela, Adriana F L; Cardoso, Carmen L; Martínez, Ana; Carvalho, Ivone

    2016-02-05

    Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder worldwide. Currently, the only strategy for palliative treatment of AD is to inhibit acetylcholinesterase (AChE) in order to increase the concentration of acetylcholine in the synaptic cleft. Evidence indicates that AChE also interacts with the β-amyloid (Aβ) protein, acting as a chaperone and increasing the number and neurotoxicity of Aβ fibrils. It is known that AChE has two binding sites: the peripheral site, responsible for the interactions with Aβ, and the catalytic site, related with acetylcholine hydrolysis. In this work, we reported the synthesis and biological evaluation of a library of new tacrine-donepezil hybrids, as a potential dual binding site AChE inhibitor, containing a triazole-quinoline system. The synthesis of hybrids was performed in four steps using the click chemistry strategy. These compounds were evaluated as hAChE and hBChE inhibitors, and some derivatives showed IC50 values in the micro-molar range and were remarkably selective towards hAChE. Kinetic assays and molecular modeling studies confirm that these compounds block both catalytic and peripheral AChE sites. These results are quite interesting since the triazole-quinoline system is a new structural scaffold for AChE inhibitors. Furthermore, the synthetic approach is very efficient for the preparation of target compounds, allowing a further fruitful new chemical library optimization.

  10. Inhibition of spicule elongation in sea urchin embryos by the acetylcholinesterase inhibitor eserine.

    PubMed

    Ohta, Kazumasa; Takahashi, Chifumi; Tosuji, Hiroaki

    2009-08-01

    The activity of acetylcholinesterase (AchE) increases rapidly after the gastrula stage of sea urchin development. In this report, changes in activity and in the molecular differentiation of AchE were investigated. AchE activity increased slightly during gastrulation and rose sharply thereafter, and was dependent on new RNA synthesis. No activity of butyrylcholinesterase was found. Morphogenesis in sea urchin embryos was inhibited by the AchE inhibitor eserine, which specifically inhibited arm rod formation but not body rod formation. Spicule formation and enzyme activity in cultured micromeres were inhibited by eserine in a dose-dependent manner. During gastrulation, two molecular forms of AchE were detected with polyacrylamide gel electrophoresis. The appearance of an additional band on the gel was consistent with the occurrence of a remarkable increase in the enzyme activity. This additional band appeared as a larger molecular form in Anthocidaris crassispina, Hemicentrotus pulcherrimus, Stomopneustes variolaris, and Strongylocentrotus nudus, and as a smaller form in Clypeaster japonicus and Temnopleurus hardwicki. These results suggest that the change in the molecular form of AchE induced a change in enzymatic activity that in turn may play a role in spicule elongation in sea urchin embryos.

  11. Potent 3-Hydroxy-2-Pyridine Aldoxime Reactivators of Organophosphate-Inhibited Cholinesterases with Predicted Blood-Brain Barrier Penetration.

    PubMed

    Zorbaz, Tamara; Braïki, Anissa; Maraković, Nikola; Renou, Julien; de la Mora, Eugenio; Maček Hrvat, Nikolina; Katalinić, Maja; Silman, Israel; Sussman, Joel L; Mercey, Guillaume; Gomez, Catherine; Mougeot, Romain; Pérez, Belén; Baati, Rachid; Nachon, Florian; Weik, Martin; Jean, Ludovic; Kovarik, Zrinka; Renard, Pierre-Yves

    2018-04-19

    A new series of 3-hydroxy-2-pyridine aldoxime compounds have been designed, synthesised and tested in vitro, in silico, and ex vivo as reactivators of human acetylcholinesterase (hAChE) and butyrylcholinesterase (hBChE) inhibited by organophosphates (OPs), for example, VX, sarin, cyclosarin, tabun, and paraoxon. The reactivation rates of three oximes (16-18) were determined to be greater than that of 2-PAM and comparable to that of HI-6, two pyridinium aldoximes currently used by the armies of several countries. The interactions important for a productive orientation of the oxime group within the OP-inhibited enzyme have been clarified by molecular-modelling studies, and by the resolution of the crystal structure of the complex of oxime 17 with Torpedo californica AChE. Blood-brain barrier penetration was predicted for oximes 15-18 based on their physicochemical properties and an in vitro brain membrane permeation assay. Among the evaluated compounds, two morpholine-3-hydroxypyridine aldoxime conjugates proved to be promising reactivators of OP-inhibited cholinesterases. Moreover, efficient ex vivo reactivation of phosphylated native cholinesterases by selected oximes enabled significant hydrolysis of VX, sarin, paraoxon, and cyclosarin in whole human blood, which indicates that the oximes have scavenging potential. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Evaluation of the nature of camel retinal acetylcholinesterase: inhibition by hexamethonium.

    PubMed

    Alhomida, A S; Kamal, M A; al-Jafari, A A

    1997-12-01

    Acetylcholinesterase (AChE, EC 3.1.1.7) has been demonstrated in retinas of several species, however, the nature of the interaction of AChE with specific inhibitors are very limited in the literature and the mode of inhibition of camel retinal AChE by hexamethonium has been studied. Hexamethonium reversibly inhibited AChE in a concentration dependent manner, the IC50 value being c. 2.52 mM. The Km for the hydrolysis of acetylthiocholine iodide was found to be 0.087 mM and the Vmax was 0.63 mumol/min/mg protein. Dixon, as well as Lineweaver-Burk, plots and their secondary replots indicated that the nature of the inhibition is of the hyperbolic (partial) mixed type, which is considered to be a partial competitive and non-competitive mixture. The values of Ki(slope) and KI(intercept) from a Lineweaver-Burk plot were estimated as 0.30 mM and 0.17 mM, respectively, while Ki from a Dixon plot was estimated as 0.725 mM. The Ki was greater than KI indicating that hexamethonium has a greater affinity of binding for the active site than the peripheral site of the camel retina AChE.

  13. Acetylcholinesterase inhibition and anti-Soman efficacy of homologs of physostigmine. (Reannouncement with new availability information)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, L.W.; Anderson, D.R.; Pastelak, A.M.

    1992-12-31

    Inhibition of acetylcholinesterase (AChE) activity by physostigmine (PHY) is reversible due to spontaneous decarbamylation. Physostigmine has been shown to be effective as a pretreatment against potent anticholinesterase poisons (e.g., soman) in experimental animals, yet it is short acting and causes undesirable side effects in mammals. The two-fold purpose of this study was (1) to determine whether extension of the N-substituted alkyl chain (N-SAC) of PHY from N-methyl to N-ethyl (1), N-propyl (2), N-isopropyl (3), N-butyl (4) or N-heptyl (5) affects anti-AChE potency and spontaneous decarbamylation of inhibited AChE of guinea pig blood in vitro and in vivo and (2) tomore » see whether chain extension affects efficacy as pretreatment in poisoning by soman. The in vitro AChE inhibition studies were done using whole blood incubated at 37 deg C for 30 min. All 5 homologs possessed anti-AChE activity with I50s ranging from 1.1 to 27.6 x l0(-7)M; compound III was the least potent in vitro and in vivo. Lengthening of the N-SAC of PHY markedly extended the duration of anti-AChE activity when compared to PHY, but rendered the modified compounds ineffective as pretreatments against soman. These data support the premise that the decrease in decarbamylation rates observed upon extending the N-SAC of PHY is responsible for the loss of effectiveness of pretreatment regimens against soman. Perhaps, these homologs of PHY may have potential use in instances where sustained action of acetylcholine is required at cholinergic junctions because of disease conditions or drug overdosage.... Physostigmine, Nerve agent pretreatment, Soman, Acetylcholinesterase inhibition.« less

  14. Synthesis and study of thiocarbonate derivatives of choline as potential inhibitors of acetylcholinesterase.

    PubMed

    Boyle, N A; Talesa, V; Giovannini, E; Rosi, G; Norton, S J

    1997-09-12

    Fourteen alkyl and aryl thiocarbonate derivatives of choline were synthesized and studied as potential inhibitors of acetylcholinesterase (AChE). Twelve of the compounds inhibited AChEs derived from calf forebrain, human red blood cells, and octopus brain ranging from low to moderately high inhibition potency. The concentration of each inhibitory compound giving 50% inhibition of enzyme activity (IC50 values, which ranged from 1 x 10(-2) to 8 x 10(-7) M) was determined and is reported; inhibitor constants (Ki values) for the most inhibitory compounds, (1-pentylthiocarbonyl)choline chloride and (1-heptylthiocarbonyl)choline chloride, were calculated from kinetic data and are also reported. The inhibitors are competitive with substrate, and they are not hydrolyzed by the AChE activities. Certain of these new compounds may provide direction for the development of new drugs that have anticholinesterase activity and may be used for the treatment of Alzheimer's disease.

  15. Expression and subcellular localization of a novel nuclear acetylcholinesterase protein.

    PubMed

    Santos, Susana Constantino Rosa; Vala, Inês; Miguel, Cláudia; Barata, João T; Garção, Pedro; Agostinho, Paula; Mendes, Marta; Coelho, Ana V; Calado, Angelo; Oliveira, Catarina R; e Silva, João Martins; Saldanha, Carlota

    2007-08-31

    Acetylcholine is found in the nervous system and also in other cell types (endothelium, lymphocytes, and epithelial and blood cells), which are globally termed the non-neuronal cholinergic system. In this study we investigated the expression and subcellular localization of acetylcholinesterase (AChE) in endothelial cells. Our results show the expression of the 70-kDa AChE in both cytoplasmic and nuclear compartments. We also describe, for the first time, a nuclear and cytoskeleton-bound AChE isoform with approximately 55 kDa detected in endothelial cells. This novel isoform is decreased in response to vascular endothelial growth factor via the proteosomes pathway, and it is down-regulated in human leukemic T-cells as compared with normal T-cells, suggesting that the decreased expression of the 55-kDa AChE protein may contribute to an angiogenic response and associate with tumorigenesis. Importantly, we show that its nuclear expression is not endothelial cell-specific but also evidenced in non-neuronal and neuronal cells. Concerning neuronal cells, we can distinguish an exclusively nuclear expression in postnatal neurons in contrast to a cytoplasmic and nuclear expression in embryonic neurons, suggesting that the cell compartmentalization of this new AChE isoform is changed during the development of nervous system. Overall, our studies suggest that the 55-kDa AChE may be involved in different biological processes such as neural development, tumor progression, and angiogenesis.

  16. Bivalent ligands derived from Huperzine A as acetylcholinesterase inhibitors.

    PubMed

    Haviv, H; Wong, D M; Silman, I; Sussman, J L

    2007-01-01

    The naturally occurring alkaloid Huperzine A (HupA) is an acetylcholinesterase (AChE) inhibitor that has been used for centuries as a Chinese folk medicine in the context of its source plant Huperzia Serrata. The potency and relative safety of HupA rendered it a promising drug for the ameliorative treatment of Alzheimer's disease (AD) vis-à-vis the "cholinergic hypothesis" that attributes the cognitive decrements associated with AD to acetylcholine deficiency in the brain. However, recent evidence supports a neuroprotective role for HupA, suggesting that it could act as more than a mere palliative. Biochemical and crystallographic studies of AChE revealed two potential binding sites in the active-site gorge of AChE, one of which, the "peripheral anionic site" at the mouth of the gorge, was implicated in promoting aggregation of the beta amyloid (Abeta) peptide responsible for the neurodegenerative process in AD. This feature of AChE facilitated the development of dual-site binding HupA-based bivalent ligands, in hopes of concomitantly increasing AChE inhibition potency by utilizing the "chelate effect", and protecting neurons from Abeta toxicity. Crystal structures of AChE allowed detailed modeling and docking studies that were instrumental in enhancing the understanding of underlying principles of bivalent inhibitor-enzyme dynamics. This monograph reviews two categories of HupA-based bivalent ligands, in which HupA and HupA fragments serve as building blocks, with a focus on the recently solved crystallographic structures of Torpedo californica AChE in complex with such bifunctional agents. The advantages and drawbacks of such structured-based drug design, as well as species differences, are highlighted and discussed.

  17. New perspectives for multi-level regulations of neuronal acetylcholinesterase by dioxins.

    PubMed

    Xie, Heidi Q; Xu, Tuan; Chen, Yangsheng; Li, Yunping; Xia, Yingjie; Xu, Sherry L; Wang, Lingyun; Tsim, Karl W K; Zhao, Bin

    2016-11-25

    Acetylcholinesterase (AChE; EC 3.1.1.7) is a vital functional enzyme in cholinergic neurotransmission which can rapidly hydrolyze neurotransmitter, acetylcholine, in the central and peripheral nervous systems. Emerging evidence showed that in addition to classical environmental AChE inhibitors, e.g. organophosphate and carbamate pesticides, dioxins are a new type of xenobiotic causing impairment of AChE. Dioxin can transcriptionally or post-transcriptionally suppress AChE expression in human neuroblastoma cells or mouse immune cells via the aryl hydrocarbon receptor (AhR) pathway, respectively. Dioxins can affect gene expression through other mechanisms, such as cross-talk with other signaling cascades and epigenetic modulations. Therefore, in this review, by summarizing the known mechanisms of AChE regulation and dioxin-induced gene alteration, potential signaling cascades and epigenetic mechanisms are proposed for dioxin-mediated AChE regulation. Mitogen activated protein (MAP) kinase, 3', 5'-cyclic adenosine monophosphate (cAMP) and calcium-related singaling pathways, as well as potential epigenetic mechanisms, such as DNA methylation, and post-transcriptional regulation via microRNAs, including hsa-miR-132, hsa-miR-212 and hsa-miR-25-3p are discussed here. These proposed mechanisms may be invaluable not only to promote comprehensive understanding of the action mechanisms for dioxin, but to illustrate the molecular basis of dioxin-induced health impacts. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Acetylcholinesterase-reduced graphene oxide hybrid films for organophosphorus neurotoxin sensing via quartz crystal microbalance

    NASA Astrophysics Data System (ADS)

    Tang, Shi; Ma, Wenying; Xie, Guangzhong; Su, Yuanjie; Jiang, Yadong

    2016-09-01

    An acetylcholinesterase (AChE)-reduced graphene oxide (RGO) hybrid films based biosensor enabled by quartz crystal microbalance (QCM) has been developed for the detection of organophosphorus neurotoxin in gas phase at room temperature. To improve the sensing performance, RGO was used to immobilize large quantities of enzyme and provide a favorable microenvironment to maintain the enzyme activity. The experimental results reveal that the response of AChE-RGO/glutaraldehyde based sensors is about 8 times larger than that of the AChE with the sensitivity of 1.583 Hz/mg/m3. 1.0 mg amount of RGO, 5% concentration of glutaraldehyde and pH 6.8 is the optimal condition of this biosensor.

  19. Ultrastructural localization of acetylcholinesterase in neurofibrillary tangles, neuropil threads and senile plaques in aged and Alzheimer's brain.

    PubMed

    Gomez-Ramos, P; Mufson, E J; Moran, M A

    1992-01-13

    Acetylcholinesterase (AChE) histochemistry was used to evaluate the accumulation of this enzyme in senile plaques, neurofibrillary tangles and neuropil threads using light and electron microscopy in Alzheimer's disease as well as non-demented aged brains. Under the electron microscope, a crystalline-like AChE precipitate was localized over paired helical filaments and straight filaments in both neurofibrillary tangles and neuropil threads. AChE reaction product also decorated the amyloid fibrils in diffuse plaques as well as the halo and the heavy accumulation of amyloid which forms the core of classical plaques. In both diffuse plaques and the halo of classical plaques, we found AChE-positive structures resembling cell processes, which in some cases appeared to contain amyloid fibrils. The possible origin and significance of AChE localized over paired helical filaments, straight filaments and amyloid is discussed.

  20. Can Salivary Acetylcholinesterase be a Diagnostic Biomarker for Alzheimer?

    PubMed

    Bakhtiari, Sedigheh; Moghadam, Nahid Beladi; Ehsani, Marjan; Mortazavi, Hamed; Sabour, Siamak; Bakhshi, Mahin

    2017-01-01

    The loss of brain cholinergic activity is a key phenomenon in the biochemistry of Alzheimer's Disease (AD). Due to the specific biosynthesis of Acetylcholinesterase (AChE) of cholinergic neurons, the enzyme has been proposed as a potential biochemical marker of cholinergic activity. AChE is expressed not only in the Central Nervous System (CNS), Peripheral Nervous System (PNS) and muscles, but also on the surface of blood cells and saliva. This study aimed to measure salivary AChE activity in AD and to determine the feasibility of creating a simple laboratory test for diagnosing such patients. In this cross-sectional study, the recorded data were obtained from 15 Alzheimer's patients on memantine therapy and 15 healthy subjects. Unstimulated whole saliva samples were collected from the participants and salivary levels of AChE activity were determined by using the Ellman colorimetric method. The Mann Whitney U test was used to compare the average (median) of AChE activity between AD and controls. In order to adjust for possible confounding factors, partial correlation coefficient and multivariate linear regressions were used. Although the average of AChE activity in the saliva of people with AD was lower compared to the control group, we found no statistically significant differences using Mann Whitney U test (138 in control group vs. 175 in Alzheimer's patients, p value=0.25). Additionally, no significant differences were observed in the activity of this enzyme in both sexes or with increased age or duration of the disease. After adjusting for age and gender, there was no association between AChE activity and AD (regression coefficient β=0.08; p value= 0.67). Saliva AChE activity was not significantly associated with AD. This study might help in introduce a new diagnostic aid for AD or monitor patients with AD.

  1. Effect of local acetylcholinesterase inhibition on sweat rate in humans

    NASA Technical Reports Server (NTRS)

    Shibasaki, M.; Crandall, C. G.

    2001-01-01

    ACh is the neurotransmitter responsible for increasing sweat rate (SR) in humans. Because ACh is rapidly hydrolyzed by acetylcholinesterase (AChE), it is possible that AChE contributes to the modulation of SR. Thus the primary purpose of this project was to identify whether AChE around human sweat glands is capable of modulating SR during local application of various concentrations of ACh in vivo, as well as during a heat stress. In seven subjects, two microdialysis probes were placed in the intradermal space of the forearm. One probe was perfused with the AChE inhibitor neostigmine (10 microM); the adjacent membrane was perfused with the vehicle (Ringer solution). SR over both membranes was monitored via capacitance hygrometry during microdialysis administration of various concentrations of ACh (1 x 10(-7)-2 M) and during whole body heating. SR was significantly greater at the neostigmine-treated site than at the control site during administration of lower concentrations of ACh (1 x 10(-7)-1 x 10(-3) M, P < 0.05), but not during administration of higher concentrations of ACh (1 x 10(-2)-2 M, P > 0.05). Moreover, the core temperature threshold for the onset of sweating at the neostigmine-treated site was significantly reduced relative to that at the control site. However, no differences in SR were observed between sites after 35 min of whole body heating. These results suggest that AChE is capable of modulating SR when ACh concentrations are low to moderate (i.e., when sudomotor activity is low) but is less effective in governing SR after SR has increased substantially.

  2. Acetylcholinesterase is involved in apoptosis in the precursors of human muscle regeneration.

    PubMed

    Pegan, Katarina; Matkovic, Urska; Mars, Tomaz; Mis, Katarina; Pirkmajer, Sergej; Brecelj, Janez; Grubic, Zoran

    2010-09-06

    The best established role of acetylcholinesterase (EC 3.1.1.7, AChE) is termination of neurotransmission at cholinergic synapses. However, AChE is also located at sites, where no other cholinergic components are present and there is accumulating evidence for non-cholinergic functions of this protein. In the process of skeletal muscle formation, AChE is expressed already at the stage of mononuclear myoblast, which is long before other cholinergic components can be demonstrated in this tissue. Myoblast proliferation is an essential step in muscle regeneration and is always accompanied by apoptosis. Since there are several reports demonstrating AChE participation in apoptosis one can hypothesize that early AChE expression in myoblasts reflects the development of the apoptotic apparatus in these cells. Here we tested this hypothesis by following the effect of siRNA AChE silencing on apoptotic markers and by determination of AChE level after staurosporine-induced apoptosis in cultured human myoblasts. Decreased apoptosis in siRNA AChE silenced myoblasts and increased AChE expression in staurosporine-treated myoblasts confirmed AChE involvement in apoptosis. The three AChE splice variants were differently affected by staurosporine-induced apoptosis. The hydrophobic (H) variant appeared unaffected, a tendency towards increase of tailed (T) variant was detected, however the highest, 8-fold increase was observed for readthrough (R) variant. In the light of these findings AChE appears to be a potential therapeutic target at muscle injuries including organophosphate myopathy. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  3. Evaluation of acetylcholinesterase in an animal model of maple syrup urine disease.

    PubMed

    Scaini, Giselli; de Rochi, Natália; Jeremias, Isabela C; Deroza, Pedro F; Zugno, Alexandra I; Pereira, Talita C B; Oliveira, Giovanna M T; Kist, Luiza W; Bogo, Maurício R; Schuck, Patrícia F; Ferreira, Gustavo C; Streck, Emilio L

    2012-04-01

    Maple syrup urine disease is an inherited metabolic disease predominantly characterized by neurological dysfunction. However, the mechanisms underlying the neuropathology of this disease are still not defined. Therefore, the aim of this study was to investigate the effect of acute and chronic administration of a branched-chain amino acids (BCAA) pool (leucine, isoleucine, and valine) on acetylcholinesterase (AChE) activity and gene expression in the brain and serum of rats and to assess if antioxidant treatment prevented the alterations induced by BCAA administration. Our results show that the acute administration of a BCAA pool in 10- and 30-day-old rats increases AChE activity in the cerebral cortex, striatum, hippocampus, and serum. Moreover, chronic administration of the BCAA pool also increases AChE activity in the structures studied, and antioxidant treatment prevents this increase. In addition, we show a significant decrease in the mRNA expression of AChE in the hippocampus following acute administration in 10- and 30-day-old rats. On the other hand, AChE expression increased significantly after chronic administration of the BCAA pool. Interestingly, the antioxidant treatment was able to prevent the increased AChE activity without altering AChE expression. In conclusion, the results from the present study demonstrate a marked increase in AChE activity in all brain structures following the administration of a BCAA pool. Moreover, the increased AChE activity is prevented by the coadministration of N-acetylcysteine and deferoxamine as antioxidants.

  4. Overexpression of acetylcholinesterase gene in rice results in enhancement of shoot gravitropism.

    PubMed

    Yamamoto, Kosuke; Shida, Satoshi; Honda, Yoshihiro; Shono, Mariko; Miyake, Hiroshi; Oguri, Suguru; Sakamoto, Hikaru; Momonoki, Yoshie S

    2015-09-25

    Acetylcholine (ACh), a known neurotransmitter in animals and acetylcholinesterase (AChE) exists widely in plants, although its role in plant signal transduction is unclear. We previously reported AChE in Zea mays L. might be related to gravitropism based on pharmacological study using an AChE inhibitor. Here we clearly demonstrate plant AChE play an important role as a positive regulator in the gravity response of plants based on a genetic study. First, the gene encoding a second component of the ACh-mediated signal transduction system, AChE was cloned from rice, Oryza sativa L. ssp. Japonica cv. Nipponbare. The rice AChE shared high homology with maize, siratro and Salicornia AChEs. Similar to animal and other plant AChEs, the rice AChE hydrolyzed acetylthiocholine and propionylthiocholine, but not butyrylthiocholine. Thus, the rice AChE might be characterized as an AChE (E.C.3.1.1.7). Similar to maize and siratro AChEs, the rice AChE exhibited low sensitivity to the AChE inhibitor, neostigmine bromide, compared with the electric eel AChE. Next, the functionality of rice AChE was proved by overexpression in rice plants. The rice AChE was localized in extracellular spaces of rice plants. Further, the rice AChE mRNA and its activity were mainly detected during early developmental stages (2 d-10 d after sowing). Finally, by comparing AChE up-regulated plants with wild-type, we found that AChE overexpression causes an enhanced gravitropic response. This result clearly suggests that the function of the rice AChE relate to positive regulation of gravitropic response in rice seedlings. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Acetylcholinesterase Activity and Neurodevelopment in Boys and Girls

    PubMed Central

    Himes, John H.; Jacobs, David R.; Alexander, Bruce H.; Gunnar, Megan R.

    2013-01-01

    BACKGROUND: Organophosphate exposures can affect children’s neurodevelopment, possibly due to neurotoxicity induced by acetylcholinesterase (AChE) inhibition, and may affect boys more than girls. We tested the hypothesis that lower AChE activity is associated with lower neurobehavioral development among children living in Ecuadorian floricultural communities. METHODS: In 2008, we examined 307 children (age: 4–9 years; 52% male) and quantified AChE activity and neurodevelopment in 5 domains: attention/executive functioning, language, memory/learning, visuospatial processing, and sensorimotor (NEPSY-II test). Associations were adjusted for demographic and socioeconomic characteristics and height-for-age, flower worker cohabitation, and hemoglobin concentration. RESULTS: Mean ± standard deviation AChE activity was 3.14 ± 0.49 U/mL (similar for both genders). The range of scores among neurodevelopment subtests was 5.9 to 10.7 U (standard deviation: 2.6–4.9 U). Girls had a greater mean attention/executive functioning domain score than boys. In boys only, there were increased odds ratios of low (<9th percentile) neurodevelopment among those in the lowest tertile versus the highest tertile of AChE activity (odds ratios: total neurodevelopment: 5.14 [95% confidence interval (CI): 0.84 to 31.48]; attention/executive functioning domain: 4.55 [95% CI: 1.19 to 17.38], memory/learning domain: 6.03 [95% CI: 1.17 to 31.05]) after adjustment for socioeconomic and demographic factors, height-for-age, and hemoglobin. Within these domains, attention, inhibition and long-term memory subtests were most affected. CONCLUSIONS: Low AChE activity was associated with deficits in neurodevelopment, particularly in attention, inhibition, and memory in boys but not in girls. These critical cognitive skills affect learning and academic performance. Added precautions regarding secondary occupational pesticide exposure would be prudent. PMID:24249815

  6. A conformational restriction approach to the development of dual inhibitors of acetylcholinesterase and serotonin transporter as potential agents for Alzheimer's disease.

    PubMed

    Toda, Narihiro; Tago, Keiko; Marumoto, Shinji; Takami, Kazuko; Ori, Mayuko; Yamada, Naho; Koyama, Kazuo; Naruto, Shunji; Abe, Kazumi; Yamazaki, Reina; Hara, Takao; Aoyagi, Atsushi; Abe, Yasuyuki; Kaneko, Tsugio; Kogen, Hiroshi

    2003-10-01

    Alzheimer's disease (AD) has been treated with acetylcholinesterase (AChE) inhibitors such as donepezil. However, the clinical usefulness of AChE inhibitors is limited mainly due to their adverse peripheral effects. Depression seen in AD patients has been treated with serotonin transporter (SERT) inhibitors. We considered that combining SERT and AChE inhibition could improve the clinical usefulness of AChE inhibitors. In a previous paper, we found a potential dual inhibitor, 1, of AChE (IC50=101 nM) and SERT (IC50=42 nM), but its AChE inhibition activity was less than donepezil (IC50=10 nM). Here, we report the conformationally restricted (R)-18a considerably enhanced inhibitory activity against AChE (IC50=14 nM) and SERT (IC50=6 nM).

  7. Comparative investigation of two methods for Acetylcholinesterase enzyme immobilization on modified porous silicon

    NASA Astrophysics Data System (ADS)

    Khaldi, Khadidja; Sam, Sabrina; Lounas, Amel; Yaddaden, Chafiaa; Gabouze, Noure-Eddine

    2017-11-01

    In this work, Acetylcholinesterase enzyme (AChE) was immobilized on porous silicon (PSi) surface using two strategies. In the first method, acid chains were covalently grafted on the hydrogenated PSi by hydrosilylation reaction. The obtained acid-terminated surface was activated by a reaction with N-hydroxysuccinimide (NHS) in the presence of a peptide-coupling agent N-ethyl-N‧-(3-dimethylaminopropyl)-carbodiimide (EDC), and then reacted with the amino linker of the lysine residues AChE to anchor the enzyme by a covalent amide bond. In the second procedure, the PSi surface was first hydroxylated in piranha solution, followed by a silanization reaction with 3-aminopropyltriethoxysilane (APTES) to form amine-terminated surface. Finally, AChE was attached to the terminal amine groups by an aminolysis reaction with carboxylic acid groups of AChE in the presence of NHS/EDC mixture. Fourier transform infrared spectroscopy (FTIR) confirmed the efficiency of the surface modifications. The enzymatic activity of immobilized AChE was determined by means of a colorimetric test and was discussed according to the enzyme orientation on the surface which was revealed by contact angle measurements.

  8. Planarian cholinesterase: in vitro characterization of an evolutionarily ancient enzyme to study organophosphorus pesticide toxicity and reactivation.

    PubMed

    Hagstrom, Danielle; Hirokawa, Hideto; Zhang, Limin; Radic, Zoran; Taylor, Palmer; Collins, Eva-Maria S

    2017-08-01

    The freshwater planarian Dugesia japonica has recently emerged as an animal model for developmental neurotoxicology and found to be sensitive to organophosphorus (OP) pesticides. While previous activity staining of D. japonica, which possess a discrete cholinergic nervous system, has shown acylthiocholine catalysis, it is unknown whether this is accomplished through an acetylcholinesterase (AChE), butyrylcholinesterase (BChE), or a hybrid esterase and how OP exposure affects esterase activity. Here, we show that the majority of D. japonica cholinesterase (DjChE) activity departs from conventional AChE and BChE classifications. Inhibition by classic protonable amine and quaternary reversible inhibitors (ethopropazine, donepezil, tacrine, edrophonium, BW284c51, propidium) shows that DjChE is far less sensitive to these inhibitors than human AChE, suggesting discrete differences in active center and peripheral site recognition and structures. Additionally, we find that different OPs (chlorpyrifos oxon, paraoxon, dichlorvos, diazinon oxon, malaoxon) and carbamylating agents (carbaryl, neostigmine, physostigmine, pyridostigmine) differentially inhibit DjChE activity in vitro. DjChE was most sensitive to diazinon oxon and neostigmine and least sensitive to malaoxon and carbaryl. Diazinon oxon-inhibited DjChE could be reactivated by the quaternary oxime, pralidoxime (2-PAM), and the zwitterionic oxime, RS194B, with RS194B being significantly more potent. Sodium fluoride (NaF) reactivates OP-DjChE faster than 2-PAM. As one of the most ancient true cholinesterases, DjChE provides insight into the evolution of a hybrid enzyme before the separation into distinct AChE and BChE enzymes found in higher vertebrates. The sensitivity of DjChE to OPs and capacity for reactivation validate the use of planarians for OP toxicology studies.

  9. Novel donepezil-based inhibitors of acetyl- and butyrylcholinesterase and acetylcholinesterase-induced beta-amyloid aggregation.

    PubMed

    Camps, Pelayo; Formosa, Xavier; Galdeano, Carles; Gómez, Tània; Muñoz-Torrero, Diego; Scarpellini, Michele; Viayna, Elisabet; Badia, Albert; Clos, M Victòria; Camins, Antoni; Pallàs, Mercè; Bartolini, Manuela; Mancini, Francesca; Andrisano, Vincenza; Estelrich, Joan; Lizondo, Mònica; Bidon-Chanal, Axel; Luque, F Javier

    2008-06-26

    A novel series of donepezil-tacrine hybrids designed to simultaneously interact with the active, peripheral and midgorge binding sites of acetylcholinesterase (AChE) have been synthesized and tested for their ability to inhibit AChE, butyrylcholinesterase (BChE), and AChE-induced A beta aggregation. These compounds consist of a unit of tacrine or 6-chlorotacrine, which occupies the same position as tacrine at the AChE active site, and the 5,6-dimethoxy-2-[(4-piperidinyl)methyl]-1-indanone moiety of donepezil (or the indane derivative thereof), whose position along the enzyme gorge and the peripheral site can be modulated by a suitable tether that connects tacrine and donepezil fragments. All of the new compounds are highly potent inhibitors of bovine and human AChE and BChE, exhibiting IC50 values in the subnanomolar or low nanomolar range in most cases. Moreover, six out of the eight hybrids of the series, particularly those bearing an indane moiety, exhibit a significant A beta antiaggregating activity, which makes them promising anti-Alzheimer drug candidates.

  10. Lanostanoids with acetylcholinesterase inhibitory activity from the mushroom Haddowia longipes.

    PubMed

    Zhang, Shuang-Shuang; Ma, Qing-Yun; Huang, Sheng-Zhuo; Dai, Hao-Fu; Guo, Zhi-Kai; Yu, Zhi-Fang; Zhao, You-Xing

    2015-02-01

    Nine lanostanoids, together with nine known ones, were isolated from the ethyl acetate extract of the fruiting bodies of the mushroom Haddowia longipes. Their structures were elucidated as 11-oxo-ganoderiol D, lanosta-8-en-7,11-dioxo-3β-acetyloxy-24,25,26-trihydroxy, lanosta-8-en-7-oxo-3β-acetyloxy-11β,24,25,26-tetrahydroxy, lanosta-7,9(11)-dien-3β-acetyloxy-24,25,26-trihydroxy, lanosta-7,9(11)-dien-3β-acetyloxy-24,26-dihydroxy-25-methoxy, 11-oxo-lucidadiol, 11β-hydroxy-lucidadiol, lucidone H and lanosta-7,9(11),24E-trien-3β-acetyloxy-26,27-dihydroxy by analysing their 1D/2D NMR and MS spectra. In addition, bioassays of inhibitory activity against acetylcholinesterase (AChE) of all compounds showed that thirteen compounds possessed inhibitory activity against AChE with the percentage inhibition ranging from 10.3% to 42.1% when tested at 100 μM. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Erythrocyte acetylcholinesterase as biomarker of pesticide exposure: new and forgotten insights.

    PubMed

    Assis, Caio R D; Linhares, Amanda G; Cabrera, Mariana P; Oliveira, Vagne M; Silva, Kaline C C; Marcuschi, Marina; Maciel Carvalho, Elba V M; Bezerra, Ranilson S; Carvalho, Luiz B

    2018-05-24

    Acetylcholinesterase (AChE) acts on the hydrolysis of acetylcholine, rapidly removing this neurotransmitter at cholinergic synapses and neuromuscular junctions as well as in neuronal growth and differentiation, modulation of cell adhesion ("electrotactins") and aryl-acylamidase activity (AAA). This enzyme is also found in erythrocyte, as 160 kDa dimer that anchors to the plasma membrane via glycophosphatidylinositol. The function of this enzyme in erythrocytes has not yet been elucidated; however, it is suspected to participate in cell-to-cell interactions. Here, a review on erythrocyte AChE characteristics and use as biomarker for organophosphorus and carbamate insecticides is presented since it is the first specific target/barrier of the action of these pesticides, besides plasma butyrylcholinesterase (BChE). However, some past and current methods have disadvantages: (a) not discriminating the activities of AChE and BChE; (b) low accuracy due to interference of hemoglobin in whole blood samples. On the other hand, extraction methods of hemoglobin-free erythrocyte AChE allows: (a) the freezing and transporting of samples; (b) samples free of colorimetric interference; (c) data from only erythrocyte AChE activity; (d) erythrocyte AChE specific activity presents higher correlation with the central nervous system AChE than other peripheral ChEs; (e) slow spontaneous regeneration against anti-ChEs agents of AChE in comparison to BChE, thus increasing the chances of detecting such compounds following longer interval after exposure. As monitoring perspectives, hemoglobin-free methodologies may be promising alternatives to assess the degree of exposure since they are not influenced by this interfering agent.

  12. Acetylcholinesterase inhibitory activity of Thai traditional nootropic remedy and its herbal ingredients.

    PubMed

    Tappayuthpijarn, Pimolvan; Itharat, Arunporn; Makchuchit, Sunita

    2011-12-01

    The incidence of Alzheimer disease (AD) is increasing every year in accordance with the increasing of elderly population and could pose significant health problems in the future. The use of medicinal plants as an alternative prevention or even for a possible treatment of the AD is, therefore, becoming an interesting research issue. Acetylcholinesterase (AChE) inhibitors are well-known drugs commonly used in the treatment of AD. The aim of the present study was to screen for AChE inhibitory activity of the Thai traditional nootropic recipe and its herbal ingredients. The results showed that ethanolic extracts of four out of twenty-five herbs i.e. Stephania pierrei Diels. Kaempfera parviflora Wall. ex Baker, Stephania venosa (Blume) Spreng, Piper nigrum L at 0.1 mg/mL showed % AChE inhibition of 89, 64, 59, 50; the IC50 were 6, 21, 29, 30 microg/mL respectively. The other herbs as well as combination of the whole recipe had no synergistic inhibitory effect on AChE activity. However some plants revealed antioxidant activity. More research should have be performed on this local wisdom remedy to verify the uses in scientific term.

  13. Novel eugenol derivatives: Potent acetylcholinesterase and carbonic anhydrase inhibitors.

    PubMed

    Topal, Fevzi; Gulcin, Ilhami; Dastan, Arif; Guney, Murat

    2017-01-01

    Eugenol was used as starting material to obtain some phenolic compounds. The synthesis of these phenolic compounds was performed in a two-step procedure. The structures of the formed products (novel eugenol derivatives 1-6) have been determined on the basis of NMR spectroscopy and other spectroscopic methods. The compounds were tested in terms of carbonic anhydrase (CA) inhibition potency. Carbonic anhydrases (CAs, EC 4.2.1.1) are metalloenzymes, which catalyse the reaction between carbon dioxide (CO 2 ) and water (H 2 O), to generate bicarbonate (HCO 3 - ) and protons (H + ). CO 2 , HCO 3 - and H + are essential molecules and ions for many important physiologic processes occurring in all living organisms. Acetylcholinesterase (AChE, E.C.3.1.1.7) is found in high concentrations in the red blood cells and brain. Novel eugenol derivatives (1-6) were tested for the inhibition of two cytosolic CA isoforms I, and II (hCA I, and II) and AChE. These compounds demonstrated effective inhibitory profiles with Ki values in ranging of 113.48-738.69nM against hCA I, 92.35-530.81nM against hCA II, and 90.10-379.57nM against AChE, respectively. On the other hand, acetazolamide clinically used as CA inhibitor, shoed Ki value of 594.11nM against hCA I, and 120.68nM against hCA II, respectively. Also, AChE was inhibited by tacrine as an AChE inhibitor at the 71.18nM level. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Recent developments in the synthesis of acetylcholinesterase inhibitors.

    PubMed

    Marco, José L; Carreiras, M Carmo

    2003-09-01

    The acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory activities of a series of pyrano[2,3-b]quinolines (2, 3), [1,8]naphthyridines (5, 6), 4-amino-2,3-diaryl-5,6,7,8-tetrahydrofuro[2,3-b]quinolines (11-13)/ 4-amino-6,7,8,9-tetrahydro-2,3-diphenyl-5H-cyclohepta[e]furo[2,3-b]pyridine (14), 4-amino-5,6,7,8-tetrahydro-2,3-diphenylthieno[2,3-b]quinoline (15)/ 4-amino-6,7,8,9-tetrahydro-2,3-diphenyl-5H-cyclohepta[e]thieno[2,3-b]pyridine (16) are described. These compounds are tacrine analogues that have been prepared from readily available polyfunctionalized ethyl [6-amino-5-cyano-4H-pyran]-3-carboxylates (9, 10), ethyl [6-amino-5-cyanopyridine]-3-carboxylates (7, 8), 2-amino-3-cyano-4,5-diarylfurans (17-19) and 2-amino-3-cyano-4,5-diphenylthiophene (20) via Friedländer condensation with selected ketones. These compounds are competitive and, in a few cases, non-competitive inhibitors for AChE, the most potent being compound (14), though three-fold less active than tacrine. The BuChE inhibitory activity is only significant in compounds 11 and 14, ten-fold less active than tacrine. Furthermore, the products 12 and 13 are selective and moderate AChE inhibitors.

  15. Inhibitors of Acetylcholinesterase and Butyrylcholinesterase Meet Immunity

    PubMed Central

    Pohanka, Miroslav

    2014-01-01

    Acetylcholinesterase (AChE) inhibitors are widely used for the symptomatic treatment of Alzheimer’s disease and other dementias. More recent use is for myasthenia gravis. Many of these inhibitors interact with the second known cholinesterase, butyrylcholinesterase (BChE). Further, evidence shows that acetylcholine plays a role in suppression of cytokine release through a “cholinergic anti-inflammatory pathway” which raises questions about the role of these inhibitors in the immune system. This review covers research and discussion of the role of the inhibitors in modulating the immune response using as examples the commonly available drugs, donepezil, galantamine, huperzine, neostigmine and pyridostigmine. Major attention is given to the cholinergic anti-inflammatory pathway, a well-described link between the central nervous system and terminal effector cells in the immune system. PMID:24893223

  16. Fucoxanthin, a Marine Carotenoid, Reverses Scopolamine-Induced Cognitive Impairments in Mice and Inhibits Acetylcholinesterase in Vitro

    PubMed Central

    Lin, Jiajia; Huang, Ling; Yu, Jie; Xiang, Siying; Wang, Jialing; Zhang, Jinrong; Yan, Xiaojun; Cui, Wei; He, Shan; Wang, Qinwen

    2016-01-01

    Fucoxanthin, a natural carotenoid abundant in edible brown seaweeds, has been shown to possess anti-cancer, anti-oxidant, anti-obesity and anti-diabetic effects. In this study, we report for the first time that fucoxanthin effectively protects against scopolamine-induced cognitive impairments in mice. In addition, fucoxanthin significantly reversed the scopolamine-induced increase of acetylcholinesterase (AChE) activity and decreased both choline acetyltransferase activity and brain-derived neurotrophic factor (BDNF) expression. Using an in vitro AChE activity assay, we discovered that fucoxanthin directly inhibits AChE with an IC50 value of 81.2 μM. Molecular docking analysis suggests that fucoxanthin likely interacts with the peripheral anionic site within AChE, which is in accordance with enzymatic activity results showing that fucoxanthin inhibits AChE in a non-competitive manner. Based on our current findings, we anticipate that fucoxanthin might exhibit great therapeutic efficacy for the treatment of Alzheimer’s disease by acting on multiple targets, including inhibiting AChE and increasing BDNF expression. PMID:27023569

  17. Inhibitory effects of isatin Mannich bases on carbonic anhydrases, acetylcholinesterase, and butyrylcholinesterase.

    PubMed

    Ozgun, Dilan Ozmen; Yamali, Cem; Gul, Halise Inci; Taslimi, Parham; Gulcin, Ilhami; Yanik, Telat; Supuran, Claudiu T

    2016-12-01

    The effects of isatin Mannich bases incorporating (1-[piperidin-1-yl (P1)/morpholin-4-yl (P2)/N-methylpiperazin-1-yl (P3)]methyl)-1H-indole-2,3-dione) moieties against human (h) carbonic anhydrase (CA, EC 4.2.1.1) isoenzymes hCA I and hCA II, acetylcholinesterase (AChE), and butyrylcholinesterase (BChE) enzymes were evaluated. P1-P3 demonstrated impressive inhibition profiles against AChE and BChE and also inhibited both CAs at nanomolar level. These inhibitory effects were more powerful in all cases than the reference compounds used for all these enzymes. This study suggests that isatin Mannich bases P1-P3 are good candidate compounds especially for the development of new cholinesterase inhibitors since they were 2.2-5.9 times better inhibitors than clinically used drug Tacrine.

  18. Protection from the toxicity of diisopropylfluorophosphate by adeno-associated virus expressing acetylcholinesterase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Bin; Duysen, Ellen G.; Poluektova, Larisa Y.

    2006-07-15

    Organophosphorus esters (OP) are highly toxic chemicals used as pesticides and nerve agents. Their acute toxicity is attributed to inhibition of acetylcholinesterase (AChE, EC 3.1.1.7) in nerve synapses. Our goal was to find a new therapeutic for protection against OP toxicity. We used a gene therapy vector, adeno-associated virus serotype 2 (AAV-2), to deliver murine AChE to AChE-/- mice that have no endogenous AChE activity. The vector encoded the most abundant form of AChE: exons 2, 3, 4, and 6. Two-day old animals, with an immature immune system, were injected. AChE delivered intravenously was expressed up to 5 months inmore » plasma, liver, heart, and lung, at 5-15% of the level in untreated wild-type mice. A few mice formed antibodies, but antibodies did not block AChE activity. The plasma AChE was a mixture of dimers and tetramers. AChE delivered intramuscularly had 40-fold higher activity levels than in wild-type muscle. None of the AChE was collagen-tailed. No retrograde transport through the motor neurons to the central nervous system was detected. AChE delivered intrastriatally assembled into tetramers. In brain, the AAV-2 vector transduced neurons, but not astrocytes and microglia. Vector-treated AChE-/- mice lived longer than saline-treated controls. AChE-/- mice were protected from diisopropylfluorophosphate-induced respiratory failure when the vector was delivered intravenously, but not intrastriatally. Since vector-treated animals had no AChE activity in diaphragm muscle, protection from respiratory failure came from AChE in other tissues. We conclude that AChE scavenged OP and in this way protected the activity of butyrylcholinesterase (BChE, EC 3.1.1.8) in motor endplates.« less

  19. Acetylcholinesterase-independent protective effects of huperzine A against iron overload-induced oxidative damage and aberrant iron metabolism signaling in rat cortical neurons.

    PubMed

    Tao, Ling-Xue; Huang, Xiao-Tian; Chen, Yu-Ting; Tang, Xi-Can; Zhang, Hai-Yan

    2016-11-01

    Iron dyshomeostasis is one of the primary causes of neuronal death in Alzheimer's disease (AD). Huperzine A (HupA), a natural inhibitor of acetylcholinesterase (AChE), is a licensed anti-AD drug in China and a nutraceutical in the United Sates. Here, we investigated the protective effects of HupA against iron overload-induced injury in neurons. Rat cortical neurons were treated with ferric ammonium citrate (FAC), and cell viability was assessed with MTT assays. Reactive oxygen species (ROS) assays and adenosine triphosphate (ATP) assays were performed to assess mitochondrial function. The labile iron pool (LIP) level, cytosolic-aconitase (c-aconitase) activity and iron uptake protein expression were measured to determine iron metabolism changes. The modified Ellman's method was used to evaluate AChE activity. HupA significantly attenuated the iron overload-induced decrease in neuronal cell viability. This neuroprotective effect of HupA occurred concurrently with a decrease in ROS and an increase in ATP. Moreover, HupA treatment significantly blocked the upregulation of the LIP level and other aberrant iron metabolism changes induced by iron overload. Additionally, another specific AChE inhibitor, donepezil (Don), at a concentration that caused AChE inhibition equivalent to that of HupA negatively, influenced the aberrant changes in ROS, ATP or LIP that were induced by excessive iron. We provide the first demonstration of the protective effects of HupA against iron overload-induced neuronal damage. This beneficial role of HupA may be attributed to its attenuation of oxidative stress and mitochondrial dysfunction and elevation of LIP, and these effects are not associated with its AChE-inhibiting effect.

  20. Acetylcholinesterase-independent protective effects of huperzine A against iron overload-induced oxidative damage and aberrant iron metabolism signaling in rat cortical neurons

    PubMed Central

    Tao, Ling-xue; Huang, Xiao-tian; Chen, Yu-ting; Tang, Xi-can; Zhang, Hai-yan

    2016-01-01

    Aim: Iron dyshomeostasis is one of the primary causes of neuronal death in Alzheimer's disease (AD). Huperzine A (HupA), a natural inhibitor of acetylcholinesterase (AChE), is a licensed anti-AD drug in China and a nutraceutical in the United Sates. Here, we investigated the protective effects of HupA against iron overload-induced injury in neurons. Methods: Rat cortical neurons were treated with ferric ammonium citrate (FAC), and cell viability was assessed with MTT assays. Reactive oxygen species (ROS) assays and adenosine triphosphate (ATP) assays were performed to assess mitochondrial function. The labile iron pool (LIP) level, cytosolic-aconitase (c-aconitase) activity and iron uptake protein expression were measured to determine iron metabolism changes. The modified Ellman's method was used to evaluate AChE activity. Results: HupA significantly attenuated the iron overload-induced decrease in neuronal cell viability. This neuroprotective effect of HupA occurred concurrently with a decrease in ROS and an increase in ATP. Moreover, HupA treatment significantly blocked the upregulation of the LIP level and other aberrant iron metabolism changes induced by iron overload. Additionally, another specific AChE inhibitor, donepezil (Don), at a concentration that caused AChE inhibition equivalent to that of HupA negatively, influenced the aberrant changes in ROS, ATP or LIP that were induced by excessive iron. Conclusion: We provide the first demonstration of the protective effects of HupA against iron overload-induced neuronal damage. This beneficial role of HupA may be attributed to its attenuation of oxidative stress and mitochondrial dysfunction and elevation of LIP, and these effects are not associated with its AChE-inhibiting effect. PMID:27498774

  1. Binding free energy calculations to rationalize the interactions of huprines with acetylcholinesterase.

    PubMed

    Nascimento, Érica C M; Oliva, Mónica; Andrés, Juan

    2018-05-01

    In the present study, the binding free energy of a family of huprines with acetylcholinesterase (AChE) is calculated by means of the free energy perturbation method, based on hybrid quantum mechanics and molecular mechanics potentials. Binding free energy calculations and the analysis of the geometrical parameters highlight the importance of the stereochemistry of huprines in AChE inhibition. Binding isotope effects are calculated to unravel the interactions between ligands and the gorge of AChE. New chemical insights are provided to explain and rationalize the experimental results. A good correlation with the experimental data is found for a family of inhibitors with moderate differences in the enzyme affinity. The analysis of the geometrical parameters and interaction energy per residue reveals that Asp72, Glu199, and His440 contribute significantly to the network of interactions between active site residues, which stabilize the inhibitors in the gorge. It seems that a cooperative effect of the residues of the gorge determines the affinity of the enzyme for these inhibitors, where Asp72, Glu199, and His440 make a prominent contribution.

  2. Binding free energy calculations to rationalize the interactions of huprines with acetylcholinesterase

    NASA Astrophysics Data System (ADS)

    Nascimento, Érica C. M.; Oliva, Mónica; Andrés, Juan

    2018-03-01

    In the present study, the binding free energy of a family of huprines with acetylcholinesterase (AChE) is calculated by means of the free energy perturbation method, based on hybrid quantum mechanics and molecular mechanics potentials. Binding free energy calculations and the analysis of the geometrical parameters highlight the importance of the stereochemistry of huprines in AChE inhibition. Binding isotope effects are calculated to unravel the interactions between ligands and the gorge of AChE. New chemical insights are provided to explain and rationalize the experimental results. A good correlation with the experimental data is found for a family of inhibitors with moderate differences in the enzyme affinity. The analysis of the geometrical parameters and interaction energy per residue reveals that Asp72, Glu199, and His440 contribute significantly to the network of interactions between active site residues, which stabilize the inhibitors in the gorge. It seems that a cooperative effect of the residues of the gorge determines the affinity of the enzyme for these inhibitors, where Asp72, Glu199, and His440 make a prominent contribution.

  3. Binding free energy calculations to rationalize the interactions of huprines with acetylcholinesterase

    NASA Astrophysics Data System (ADS)

    Nascimento, Érica C. M.; Oliva, Mónica; Andrés, Juan

    2018-05-01

    In the present study, the binding free energy of a family of huprines with acetylcholinesterase (AChE) is calculated by means of the free energy perturbation method, based on hybrid quantum mechanics and molecular mechanics potentials. Binding free energy calculations and the analysis of the geometrical parameters highlight the importance of the stereochemistry of huprines in AChE inhibition. Binding isotope effects are calculated to unravel the interactions between ligands and the gorge of AChE. New chemical insights are provided to explain and rationalize the experimental results. A good correlation with the experimental data is found for a family of inhibitors with moderate differences in the enzyme affinity. The analysis of the geometrical parameters and interaction energy per residue reveals that Asp72, Glu199, and His440 contribute significantly to the network of interactions between active site residues, which stabilize the inhibitors in the gorge. It seems that a cooperative effect of the residues of the gorge determines the affinity of the enzyme for these inhibitors, where Asp72, Glu199, and His440 make a prominent contribution.

  4. Influence of water temperature on acetylcholinesterase activity in the pacific tree frog (Hyla regilla)

    USGS Publications Warehouse

    Johnson, Catherine S.; Schwarzbach, Steven E.; Henderson, John D.; Wilson, Barry W.; Tjeerdema, Ronald S.

    2005-01-01

    This investigation evaluated whether acetylcholinesterase (AChE) in Pacific tree frogs (Hyla regilla) from different geographical locations was influenced by different temperatures during early aquatic life stages, independent of pesticide exposure. Tadpoles were collected from both a California coastal pond and a Sierra Nevada mountain range pond, USA. Groups of frogs from each location were raised in temperatures representative of either the Sierra Nevada (8°C) or the coastal (19°C) location. Metamorphs from both locations raised as tadpoles at 19°C had AChE activities of 42.3 and 38.7 nm/min/mg protein, while those raised as tadpoles at 8°C had activities of 26.9 and 28.2 nm/min/mg protein. A two-way analysis of variance revealed temperature to be the significant factor in determining AChE activity (F = 22.3, p < 0.001), although origin was not important (F = 0.09, p = 0.75). Interpretations regarding the influence of pesticides upon AChE activity in Pacific tree frogs must consider the influence of environmental temperature to enable cross-population comparisons.

  5. A first principle study on the interaction between acetylcholinesterase and acetylcholine, and also rivastigmine in alzheimer's disease case

    NASA Astrophysics Data System (ADS)

    Khoirunisa, V.; Rusydi, F.; Kasai, H.; Gandaryus, A. G.; Dipojono, H. K.

    2016-08-01

    The catalytic activity of acetylcholinesterase enzyme (AChE) relates to the symptom progress in Alzheimer's disease. Interaction of AChE with rivastigmine (from the medicine) can reduce its catalytic activity toward acetylcholine to decelerate the progression of Alzheimer's disease. This research attempts to study the interaction between AChE and rivastigmine, and also acetylcholine (without the presence of rivastigmine) using density functional theory by simplifying the reaction occurs in the active site, which is assumed to be C2H5OH, C3N2H3(Ch3), and CH3COO-. The results suggest that AChE interacts easier with acetylcholine than with rivastigmine, which implies that the medicine does not effectively reduce the catalytic activity of AChE. At this stage, no experimental data is available to be compared with the calculation results. Nonetheless, this study has shown a good prospect to understand the AChE-substrate interaction using a first-principles calculation.

  6. Exploration of the Energy Landscape of Acetylcholinesterase by Molecular Dynamics Simulation.

    NASA Astrophysics Data System (ADS)

    McCammon, J. Andrew

    2002-03-01

    Proteins have rough energy landscapes. Often more states than just the ground state are occupied and have biological functions. It is essential to study these conformational substates and the dynamical transitions among them. Acetylcholinesterase (AChE) is an important enzyme that has biological functions including the termination of synaptic transmission signals. X-ray structures show that it has an active site that is accessible only via a long and narrow channel from its surface. Therefore the fact that acetylcholine and larger ligands can reach the active site is believed to reflect the protein's structural fluctuation. We carried out long molecular dynamics simulations to investigate the dynamics of AChE and its relation to biological function, and compared our results with experiments. The results reveal several "doors" that open intermittantly between the active site and the surface. Instead of having simple exponential decay correlation functions, the time series of these channels reveal complex, fractal gating between conformations. We also compared the AChE dynamics data with those from an AchE-fasciculin complex. (Fasciculin is a small protein that is a natural inhibitor of AChE.) The results show remarkable effects of the protein-protein interaction, including allosteric and dynamical inhibition by fasciculin besides direct steric blocking. More information and images can be found at http://mccammon.ucsd.edu

  7. Protein Surface Structural Recognition in Inactive Areas: A New Immobilization Strategy for Acetylcholinesterase.

    PubMed

    Diao, Jianxiong; Yu, Xiaolu; Ma, Lin; Li, Yuanqing; Sun, Ying

    2018-05-16

    This work reported a new method of design for the immobilization of acetylcholinesterase (AChE) based on its molecular structure to improve its sensitivity and stability. The immobilization binding site on the surface of AChE was determined using MOLCAD's multi-channel functionality. Then, 11 molecules ((+)-catechin, (-)-epicatechin, (-)-gallocatechin, hesperetin, naringenin, quercetin, taxifolin, (-)-epicatechin gallate, flupirtine, atropine, and hyoscyamine) were selected from the ZINC database (about 50 000 molecules) as candidate affinity ligands for AChE. The fluorescence results showed that the binding constant K b between AChE and the ligands ranged from 0.01344 × 10 4 to 4.689 × 10 4 M -1 and there was one independent class of binding site for the ligands on AChE. The AChE-ligand binding free energy ranged from -12.14 to -26.65 kJ mol -1 . Naringenin, hesperetin, and quercetin were the three most potent immobilized affinity ligands. In addition, it was confirmed that the binding between the immobilized ligands only occurred at a single site, located in an inactive area on the surface of AChE, and did not affect the enzymatic activity as shown through a competition experiment and enzyme assay. This method based on protein surface structural recognition with high sensitivity and stability can be used as a generic approach for design of the enzyme immobilization and biosensor development.

  8. Development and Structural Modifications of Cholinesterase Reactivators against Chemical Warfare Agents in Last Decade: A Review.

    PubMed

    Sharma, Rahul; Gupta, Bhanushree; Singh, Namrata; Acharya, J R; Musilek, Kamil; Kuca, Kamil; Ghosh, Kallol Kumar

    2015-01-01

    Organophosphate (OP) pesticides and nerve agents are responsible for suicidal and accidental poisonings. The acute toxicity of nerve agents leads to progressive inhibition of the enzyme acetylcholinesterase (AChE) by phosphylation of serine residue at the active site of gorge. The recent massive destruction of Syrian civilians by nerve gas sarin, has again renewed the research attention of global science fraternity towards nerve agents, their mode of action and most prominently their therapeutic treatment. This review is principally focused on nerve agent intoxication. The common approach to deal with OP-intoxication is, application of antimuscarinic drug (atropine), anticonvulsant drug (diazepam) and clinically used oximes (pralidoxime, trimedoxime, obidoxime and asoxime). However, the existing therapeutic approach is arguable and has several failings to cure all kinds of nerve agent poisonings. Considering this issue, numerous oximes have been synthesized and screened through various in-vitro and in-vivo studies in last decade to overcome the downsides. At present, only a few oximes (bis pyridinum-oximes) exhibit sound efficacy against selective OPs. In spite of extensive efforts, till date no oxime is available as a universal antidote against all the classes of OPs. This review is centered on the recent developments and structural modification of AChE reactivators against nerve agent toxicity. In particular, a deeper look has been taken into chemical modifications of the reactivators by incorporation of different structural moieties targeted towards the increased reactivation affinity and improved blood brain barrier (BBB) penetration.

  9. Synthesis and biological evaluation of phloroglucinol derivatives possessing α-glycosidase, acetylcholinesterase, butyrylcholinesterase, carbonic anhydrase inhibitory activity.

    PubMed

    Burmaoglu, Serdar; Yilmaz, Ali O; Taslimi, Parham; Algul, Oztekin; Kilic, Deryanur; Gulcin, Ilhami

    2018-02-01

    A series of novel phloroglucinol derivatives were designed, synthesized, characterized spectroscopically and tested for their inhibitory activity against selected metabolic enzymes, including α-glycosidase, acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and human carbonic anhydrase I and II (hCA I and II). These compounds displayed nanomolar inhibition levels and showed K i values of 1.14-3.92 nM against AChE, 0.24-1.64 nM against BChE, 6.73-51.10 nM against α-glycosidase, 1.80-5.10 nM against hCA I, and 1.14-5.45 nM against hCA II. © 2018 Deutsche Pharmazeutische Gesellschaft.

  10. [Effects of methomyl on acetylcholinesterase in erythrocyte membrane and various brain areas].

    PubMed

    Zhao, Fei; Li, Tao; Zhang, Changchun; Xu, Yiping; Xu, Hangong; Shi, Nian

    2015-06-01

    To study the toxicity of methomyl to acetylcholinesterase (AChE) in different regions. The optimal temperature and time for measurement of AChE activity were determined in vitro. The dose- and time-response relationships of methomyl with AChE activity in human erythrocyte membrane, rat erythrocyte membrane, cortical synapses, cerebellar synapses, hippocampal synapses, and striatal synapses were evaluated. The half maximal inhibitory concentration (IC50) and bimolecular rate constant (K) of methomyl for AChE activity in different regions were calculated, and the type of inhibition of AChE activity by methomyl was determined. AChE achieved the maximum activity at 370 °C, and the optimal time to determine initial reaction velocity was 0-17 min. There were dose- and time-response relationships between methomyl and AChE activity in the erythrocyte membrane and various brain areas. The IC50 value of methomyl for AChE activity in human erythrocyte membrane was higher than that in rat erythrocyte membrane, while the Ki value of methomyl for AChE activity in rat erythrocyte membrane was higher than that in human erythrocyte membrane. Among synapses in various brain areas, the striatum had the highest IC50 value, followed by the cerebellum, cerebral cortex, and hippocampus, while the cerebral cortex had the highest Ki value, followed by the hippocampus, striatum, and cerebellum. Lineweaver-Burk diagram demonstrated that with increasing concentration of methomyl, the maximum reaction velocity (Vmax) of AChE decreased, and the Michaelis constant (Km) remained the same. Methomyl is a reversible non-competitive inhibitor of AChE. AChE of rat erythrocyte membrane is more sensitive to methomyl than that of human erythrocyte membrane; the cerebral cortical synapses have the most sensitive AChE to methomyl among synapses in various brain areas.

  11. Acetylcholinesterase and butyrylcholinesterase inhibitory activity of Pinus species essential oils and their constituents.

    PubMed

    Bonesi, Marco; Menichini, Federica; Tundis, Rosa; Loizzo, Monica R; Conforti, Filomena; Passalacqua, Nicodemo G; Statti, Giancarlo A; Menichini, Francesco

    2010-10-01

    This study aimed to investigate the acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activity of the essential oils from Pinus nigra subsp. nigra, P. nigra var. calabrica, and P. heldreichii subsp. leucodermis. This activity is relevant to the treatment of Alzheimer's disease (AD), since cholinesterase drugs are currently the only drugs available to treat AD. P. heldreichii subsp. leucodermis exhibited the most promising activity, with IC(50) values of 51.1 and 80.6 microg/mL against AChE and BChE, respectively. An interesting activity against AChE was also observed with P. nigra subsp. nigra essential oil, with an IC(50) value of 94.4 microg/mL. Essential oils were analyzed by GC and GC-MS with the purpose of investigating their relationships with the observed activities. Among the identified constituents, terpinolene, beta-phellandrene, linalyl acetate, trans-caryophyllene, and terpinen-4-ol were tested. trans-Caryophyllene and terpinen-4-ol inhibited BChE with IC(50) values of 78.6 and 107.6 microg/mL, respectively. beta-Phellandrene was selective against AChE (IC(50) value of 120.2 microg/mL).

  12. Elaborate ligand-based modeling coupled with QSAR analysis and in silico screening reveal new potent acetylcholinesterase inhibitors.

    PubMed

    Abuhamdah, Sawsan; Habash, Maha; Taha, Mutasem O

    2013-12-01

    Inhibition of the enzyme acetylcholinesterase (AChE) has been shown to alleviate neurodegenerative diseases prompting several attempts to discover and optimize new AChE inhibitors. In this direction, we explored the pharmacophoric space of 85 AChE inhibitors to identify high quality pharmacophores. Subsequently, we implemented genetic algorithm-based quantitative structure-activity relationship (QSAR) modeling to select optimal combination of pharmacophoric models and 2D physicochemical descriptors capable of explaining bioactivity variation among training compounds (r2(68)=0.94, F-statistic=125.8, r2 LOO=0.92, r2 PRESS against 17 external test inhibitors = 0.84). Two orthogonal pharmacophores emerged in the QSAR equation suggesting the existence of at least two binding modes accessible to ligands within AChE binding pocket. The successful pharmacophores were comparable with crystallographically resolved AChE binding pocket. We employed the pharmacophoric models and associated QSAR equation to screen the national cancer institute list of compounds. Twenty-four low micromolar AChE inhibitors were identified. The most potent gave IC50 value of 1.0 μM.

  13. High-performance liquid chromatography-mass spectrometry-based acetylcholinesterase assay for the screening of inhibitors in natural extracts.

    PubMed

    de Jong, Camiel F; Derks, Rico J E; Bruyneel, Ben; Niessen, Wilfried; Irth, Hubertus

    2006-04-21

    The present paper describes a High-performance liquid chromatography-mass spectrometry (LC-MS) methodology for the screening of acetylcholinesterase (AChE) inhibitors in natural extracts. AChE activity of sample components is monitored by a post-column biochemical assay that is based on the separate, sequential mixing of AChE and acetylcholine, respectively, with the HPLC eluate. AChE inhibitors are detected by measuring a decrease of product formation using electrospray MS. Ammonium bicarbonate was used as buffer in order to achieve optimum compatibility between biochemical assay and MS detection conditions. The assay is robust and stable for over 13 h and compares favourably with other AChE assays in terms of stability and sensitivity. IC(50) values of 9-aminoacridine, galanthamine, gallamine, (-)-huperzine A and thioflavin T were determined to be 0.12, 0.38, 6.4, 0.46 and 3.2 microM, respectively. The assay was used to effectively identify an AChE inhibitor present in a crude extract of Narcissus c.v. "Bridal Crown".

  14. Acetylcholinesterase, butyrylcholinesterase and paraoxonase 1 activities in rats treated with cannabis, tramadol or both.

    PubMed

    Abdel-Salam, Omar M E; Youness, Eman R; Khadrawy, Yasser A; Sleem, Amany A

    2016-11-01

    To investigate the effect of Cannabis sativa resin and/or tramadol, two commonly drugs of abuse on acetylcholinesterase and butyrylcholinesterase activities as a possible cholinergic biomarkers of neurotoxicity induced by these agents. Rats were treated with cannabis resin (5, 10 or 20 mg/kg) (equivalent to the active constituent Δ 9 -tetrahydrocannabinol), tramadol (5, 10 and 20 mg/kg) or tramadol (10 mg/kg) combined with cannabis resin (5, 10 and 20 mg/kg) subcutaneously daily for 6 weeks. Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities were measured in brain and serum. We also measured the activity of paraoxonase-1 (PON1) in serum of rats treated with these agents. (i) AChE activity in brain increased after 10-20 mg/kg cannabis resin (by 16.3-36.5%). AChE activity in brain did not change after treatment with 5-20 mg/kg tramadol. The administration of both cannabis resin (5, 10 or 20 mg/kg) and tramadol (10 mg/kg) resulted in decreased brain AChE activity by 14.1%, 12.9% and 13.6%, respectively; (ii) BChE activity in serum was markedly and dose-dependently inhibited by cannabis resin (by 60.9-76.9%). BChE activity also decreased by 17.6-36.5% by 10-20 mg/kg tramadol and by 57.2-63.9% by the cannabis resin/tramadol combined treatment; (iii) Cannabis resin at doses of 20 mg/kg increased serum PON1 activity by 25.7%. In contrast, tramadol given at 5, 10 and 20 mg/kg resulted in a dose-dependent decrease in serum PON1 activity by 19%, 36.7%, and 46.1%, respectively. Meanwhile, treatment with cannabis resin plus tramadol resulted in 40.2%, 35.8%, 30.7% inhibition of PON1 activity compared to the saline group. These data suggest that cannabis resin exerts different effects on AChE and BChE activities which could contribute to the memory problems and the decline in cognitive function in chronic users. Copyright © 2016 Hainan Medical University. Production and hosting by Elsevier B.V. All rights reserved.

  15. Bridged Bicyclic Oximes as Acetylcholinesterase Reactivators

    DTIC Science & Technology

    1988-04-03

    with acetylcholine as substrate, is based on coupling away the choline produced from the esterase reaction with choline kinase, which catalyzes the...transfer of the y-phosphate from ATP to choline , producing ADP, and then removed with the pyruvate kinase-lactate dehydrogenase couple, and disappearance...nitrobenzoic acid absorbs strongly at 412 nm. Choline kinase and acetylcholinesterase were purchased from Sigma as the lyophilized powders. Each enzyme

  16. Characterization of monoclonal antibodies that strongly inhibit Electrophorus electricus acetylcholinesterase.

    PubMed

    Remy, M H; Frobert, Y; Grassi, J

    1995-08-01

    In this study, we describe three different monoclonal antibodies (mAbs Elec-403, Elec-408, and Elec-410) directed against Electrophorus electricus acetylcholinesterase (AChE) which were selected as inhibitors for this enzyme. Two of these antibodies (Elec-403 and Elec-410), recognized overlapping but different epitopes, competed with snake venom toxin fasciculin for binding to the enzyme, and thus apparently recognized the peripheral site of AChE. In addition, the binding of Elec-403 was antagonized by 1,5-bis(4-allyldimethylammoniumphenyl)pentan-3-one dibromide (BW284C51) and propidium, indicating that the corresponding epitope encompassed the anionic site involved in the binding of these low-molecular-mass inhibitors. The third mAb (Elec-408), was clearly bound to another site on the AChE molecule, and its inhibitory effect was cumulative with those of Elec-403, Elec-410, and fasciculin. All mAbs bound AChE with high affinity and were as strong inhibitors with an apparent Ki values less than 0.1 nM. Elec-403 was particularly efficient with an inhibitory activity similar to that of fasciculin. Inhibition was observed with both charged (acetylthiocholine) and neutral substrates (o-nitrophenyl acetate) and had the characteristics of a non-competitive process. Elec-403 and Elec-410 probably exert their effect by triggering allosteric transitions from the peripheral site to the active site. The epitope recognized by mAb Elec-408 has not been localized, but it may correspond to a new regulatory site on AChE.

  17. Distribution of intravenously administered acetylcholinesterase inhibitor and acetylcholinesterase activity in the adrenal gland: 11C-donepezil PET study in the normal rat.

    PubMed

    Watabe, Tadashi; Naka, Sadahiro; Ikeda, Hayato; Horitsugi, Genki; Kanai, Yasukazu; Isohashi, Kayako; Ishibashi, Mana; Kato, Hiroki; Shimosegawa, Eku; Watabe, Hiroshi; Hatazawa, Jun

    2014-01-01

    Acetylcholinesterase (AChE) inhibitors have been used for patients with Alzheimer's disease. However, its pharmacokinetics in non-target organs other than the brain has not been clarified yet. The purpose of this study was to evaluate the relationship between the whole-body distribution of intravenously administered (11)C-Donepezil (DNP) and the AChE activity in the normal rat, with special focus on the adrenal glands. The distribution of (11)C-DNP was investigated by PET/CT in 6 normal male Wistar rats (8 weeks old, body weight  = 220 ± 8.9 g). A 30-min dynamic scan was started simultaneously with an intravenous bolus injection of (11)C-DNP (45.0 ± 10.7 MBq). The whole-body distribution of the (11)C-DNP PET was evaluated based on the Vt (total distribution volume) by Logan-plot analysis. A fluorometric assay was performed to quantify the AChE activity in homogenized tissue solutions of the major organs. The PET analysis using Vt showed that the adrenal glands had the 2nd highest level of (11)C-DNP in the body (following the liver) (13.33 ± 1.08 and 19.43 ± 1.29 ml/cm(3), respectively), indicating that the distribution of (11)C-DNP was the highest in the adrenal glands, except for that in the excretory organs. The AChE activity was the third highest in the adrenal glands (following the small intestine and the stomach) (24.9 ± 1.6, 83.1 ± 3.0, and 38.5 ± 8.1 mU/mg, respectively), indicating high activity of AChE in the adrenal glands. We demonstrated the whole-body distribution of (11)C-DNP by PET and the AChE activity in the major organs by fluorometric assay in the normal rat. High accumulation of (11)C-DNP was observed in the adrenal glands, which suggested the risk of enhanced cholinergic synaptic transmission by the use of AChE inhibitors.

  18. Novel hits for acetylcholinesterase inhibition derived by docking-based screening on ZINC database.

    PubMed

    Doytchinova, Irini; Atanasova, Mariyana; Valkova, Iva; Stavrakov, Georgi; Philipova, Irena; Zhivkova, Zvetanka; Zheleva-Dimitrova, Dimitrina; Konstantinov, Spiro; Dimitrov, Ivan

    2018-12-01

    The inhibition of the enzyme acetylcholinesterase (AChE) increases the levels of the neurotransmitter acetylcholine and symptomatically improves the affected cognitive function. In the present study, we searched for novel AChE inhibitors by docking-based virtual screening of the standard lead-like set of ZINC database containing more than 6 million small molecules using GOLD software. The top 10 best-scored hits were tested in vitro for AChE affinity, neurotoxicity, GIT and BBB permeability. The main pharmacokinetic parameters like volume of distribution, free fraction in plasma, total clearance, and half-life were predicted by previously derived models. Nine of the compounds bind to the enzyme with affinities from 0.517 to 0.735 µM, eight of them are non-toxic. All hits permeate GIT and BBB and bind extensively to plasma proteins. Most of them are low-clearance compounds. In total, seven of the 10 hits are promising for further lead optimisation. These are structures with ZINC IDs: 00220177, 44455618, 66142300, 71804814, 72065926, 96007907, and 97159977.

  19. Understanding the conformational flexibility and electrostatic properties of curcumin in the active site of rhAChE via molecular docking, molecular dynamics, and charge density analysis.

    PubMed

    Saravanan, Kandasamy; Kalaiarasi, Chinnasamy; Kumaradhas, Poomani

    2017-12-01

    Acetylcholinesterase (AChE) is an important enzyme responsible for Alzheimer's disease, as per report, keto-enol form of curcumin inhibits this enzyme. The present study aims to understand the binding mechanism of keto-enol curcumin with the recombinant human Acetylcholinesterase (rhAChE) from its conformational flexibility, intermolecular interactions, charge density distribution, and the electrostatic properties at the active site of rhAChE. To accomplish this, a molecular docking analysis of curcumin with the rhAChE was performed, which gives the structure and conformation of curcumin in the active site of rhAChE. Further, the charge density distribution and the electrostatic properties of curcumin molecule (lifted from the active site of rhAChE) were determined from the high level density functional theory (DFT) calculations coupled with the charge density analysis. On the other hand, the curcumin molecule was optimized (gas phase) using DFT method and further, the structure and charge density analysis were also carried out. On comparing the conformation, charge density distribution and the electrostatic potential of the active site form of curcumin with the corresponding gas phase form reveals that the above said properties are significantly altered when curcumin is present in the active site of rhAChE. The conformational stability and the interaction of curcumin in the active site are also studied using molecular dynamics simulation, which shows a large variation in the conformational geometry of curcumin as well as the intermolecular interactions.

  20. Effect of thermal stress and water deprivation on the acetylcholinesterase activity of the pig brain and hypophyses

    NASA Astrophysics Data System (ADS)

    Adejumo, D. O.; Egbunike, G. N.

    1988-06-01

    The effects of direct exposure of boars to thermal stress for 1 h daily for 5 days and to acute water deprivation for 24 or 48 h were studied on the acetylcholinesterase (AChE) activity of porcine brain and hypophysial regions. Mean ambient temperatures, respiratory rates and rectal temperatures in the open were significantly higher than inside the pen. Heat stress induced a rise in AChE activities in the pons, cerebellum, amygdala, hippocampus, hypothalamus, mid-brain and medulla oblongata. However, no significant changes were observed in the cerebral cortex, adenohypophysis and neurohypophysis. Water deprivation significantly ( P<0.05) depressed AChE activity to varying extents depending on the duration of water restriction. Thus AChE activity in the amygdala was depressed by water deprivation for 24 h but partially restored at 48 h. The pons and medulla oblongata were comparable to the amygdala in this respect. The adenohypophysis and neurohypophysis were relatively unaffected.

  1. Arisugacins A and B, novel and selective acetylcholinesterase inhibitors from Penicillium sp. FO-4259. I. Screening, taxonomy, fermentation, isolation and biological activity.

    PubMed

    Kuno, F; Otoguro, K; Shiomi, K; Iwai, Y; Omura, S

    1996-08-01

    An in vitro screening method for selective acetylcholinesterase (AChE) inhibitors was established. Inhibitory activity of AChE and butyrylcholinesterase (BuChE) was measured and the culture broths of microorganisms that showed selective inhibition against AChE were characterized. By using this method, a strain producing the novel and selective inhibitors of AChE, arisugacins A and B, was picked out among over seven thousand microorganisms tested. Arisugacins were obtained as white powders from the culture broth together with three known compounds, territrems B and C and cyclopenin that also showed selective inhibition against AChE. Arisugacins and territrems are members of the meroterpenoid compounds. They showed potent inhibitory activities against AChE with IC50 values in range of 1.0 approximately 25.8 nM. Furthermore, they showed greater than 2,000-fold more potent inhibition against AChE than BuChE.

  2. Neuromuscular Junction Impairment in Amyotrophic Lateral Sclerosis: Reassessing the Role of Acetylcholinesterase.

    PubMed

    Campanari, Maria-Letizia; García-Ayllón, María-Salud; Ciura, Sorana; Sáez-Valero, Javier; Kabashi, Edor

    2016-01-01

    Amyotrophic Lateral Sclerosis (ALS) is a highly debilitating disease caused by progressive degeneration of motorneurons (MNs). Due to the wide variety of genes and mutations identified in ALS, a highly varied etiology could ultimately converge to produce similar clinical symptoms. A major hypothesis in ALS research is the "distal axonopathy" with pathological changes occurring at the neuromuscular junction (NMJ), at very early stages of the disease, prior to MNs degeneration and onset of clinical symptoms. The NMJ is a highly specialized cholinergic synapse, allowing signaling between muscle and nerve necessary for skeletal muscle function. This nerve-muscle contact is characterized by the clustering of the collagen-tailed form of acetylcholinesterase (ColQ-AChE), together with other components of the extracellular matrix (ECM) and specific key molecules in the NMJ formation. Interestingly, in addition to their cholinergic role AChE is thought to play several "non-classical" roles that do not require catalytic function, most prominent among these is the facilitation of neurite growth, NMJ formation and survival. In all this context, abnormalities of AChE content have been found in plasma of ALS patients, in which AChE changes may reflect the neuromuscular disruption. We review these findings and particularly the evidences of changes of AChE at neuromuscular synapse in the pre-symptomatic stages of ALS.

  3. Neuromuscular Junction Impairment in Amyotrophic Lateral Sclerosis: Reassessing the Role of Acetylcholinesterase

    PubMed Central

    Campanari, Maria-Letizia; García-Ayllón, María-Salud; Ciura, Sorana; Sáez-Valero, Javier; Kabashi, Edor

    2016-01-01

    Amyotrophic Lateral Sclerosis (ALS) is a highly debilitating disease caused by progressive degeneration of motorneurons (MNs). Due to the wide variety of genes and mutations identified in ALS, a highly varied etiology could ultimately converge to produce similar clinical symptoms. A major hypothesis in ALS research is the “distal axonopathy” with pathological changes occurring at the neuromuscular junction (NMJ), at very early stages of the disease, prior to MNs degeneration and onset of clinical symptoms. The NMJ is a highly specialized cholinergic synapse, allowing signaling between muscle and nerve necessary for skeletal muscle function. This nerve-muscle contact is characterized by the clustering of the collagen-tailed form of acetylcholinesterase (ColQ-AChE), together with other components of the extracellular matrix (ECM) and specific key molecules in the NMJ formation. Interestingly, in addition to their cholinergic role AChE is thought to play several “non-classical” roles that do not require catalytic function, most prominent among these is the facilitation of neurite growth, NMJ formation and survival. In all this context, abnormalities of AChE content have been found in plasma of ALS patients, in which AChE changes may reflect the neuromuscular disruption. We review these findings and particularly the evidences of changes of AChE at neuromuscular synapse in the pre-symptomatic stages of ALS. PMID:28082868

  4. Identification and Molecular Characterization of Two Acetylcholinesterases from the Salmon Louse, Lepeophtheirus salmonis

    PubMed Central

    Kaur, Kiranpreet; Bakke, Marit Jørgensen; Nilsen, Frank; Horsberg, Tor Einar

    2015-01-01

    Acetylcholinesterase (AChE) is an important enzyme in cholinergic synapses. Most arthropods have two genes (ace1 and ace2), but only one encodes the predominant synaptic AChE, the main target for organophosphates. Resistance towards organophosphates is widespread in the marine arthropod Lepeophtheirus salmonis. To understand this trait, it is essential to characterize the gene(s) coding for AChE(s). The full length cDNA sequences encoding two AChEs in L. salmonis were molecularly characterized in this study. The two ace genes were highly similar (83.5% similarity at protein level). Alignment to the L. salmonis genome revealed that both genes were located close to each other (separated by just 26.4 kbp on the L. salmonis genome), resulting from a recent gene duplication. Both proteins had all the typical features of functional AChE and clustered together with AChE-type 1 proteins in other species, an observation that has not been described in other arthropods. We therefore concluded the presence of two versions of ace1 gene in L. salmonis, named ace1a and ace1b. Ace1a was predominantly expressed in different developmental stages compared to ace1b and was possibly active in the cephalothorax, indicating that ace1a is more likely to play the major role in cholinergic synaptic transmission. The study is essential to understand the role of AChEs in resistance against organophosphates in L. salmonis. PMID:25938836

  5. How Is Acetylcholinesterase Phosphonylated by Soman? An Ab Initio QM/MM Molecular Dynamics Study

    PubMed Central

    2015-01-01

    Acetylcholinesterase (AChE) is a crucial enzyme in the cholinergic nerve system that hydrolyzes acetylcholine (ACh) and terminates synaptic signals by reducing the effective concentration of ACh in the synaptic clefts. Organophosphate compounds irreversibly inhibit AChEs, leading to irreparable damage to nerve cells. By employing Born–Oppenheimer ab initio QM/MM molecular dynamics simulations with umbrella sampling, a state-of-the-art approach to simulate enzyme reactions, we have characterized the covalent inhibition mechanism between AChE and the nerve toxin soman and determined its free energy profile for the first time. Our results indicate that phosphonylation of the catalytic serine by soman employs an addition–elimination mechanism, which is highly associative and stepwise: in the initial addition step, which is also rate-limiting, His440 acts as a general base to facilitate the nucleophilic attack of Ser200 on the soman’s phosphorus atom to form a trigonal bipyrimidal pentacovalent intermediate; in the subsequent elimination step, Try121 of the catalytic gorge stabilizes the leaving fluorine atom prior to its dissociation from the active site. Together with our previous characterization of the aging mechanism of soman inhibited AChE, our simulations have revealed detailed molecular mechanistic insights into the damaging function of the nerve agent soman. PMID:24786171

  6. Synthesis and characterization of novel 1,2-oxazine-based small molecules that targets acetylcholinesterase.

    PubMed

    Sukhorukov, Alexey Yu; Nirvanappa, Anilkumar C; Swamy, Jagadish; Ioffe, Sema L; Nanjunda Swamy, Shivananju; Basappa; Rangappa, Kanchugarakoppal S

    2014-08-01

    Thirteen 2-oxazine-based small molecules were synthesized targeting 5-lipoxygenase (LOX), and acetylcholinesterase (AChE). The test revealed that the newly synthesized compounds had potent inhibition towards both 5-LOX and AChE in lower micro molar concentration. Among the tested compounds, the most active compound, 2-[(2-acetyl-6,6-dimethyl-4-phenyl-5,6-dihydro-2H-1,2-oxazin-3-yl)methyl]-1H-isoindole-1,3(2H)-dione (2a) showed inhibitory activity towards 5-LOX and AChE with an IC50 values of 1.88, and 2.5 μM, respectively. Further, the in silico molecular docking studies revealed that the compound 2a bound to the catalytic domain of AChE strongly with a highest CDOCKER score of -1.18 kcal/mol when compared to other compounds of the same series. Additionally, 2a showed a good lipophilicity (logP=2.66), suggesting a potential ability to penetrate the blood-brain-barrier. These initial pharmacological data revealed that the compound 2a could serve as a drug-seed in developing anti-Alzheimer's agents. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Analysis of phosphorothionate pesticides using a chloroperoxidase pretreatment and acetylcholinesterase biosensor detection.

    PubMed

    Roepcke, Clarisse B S; Muench, Susanne B; Schulze, Holger; Bachmann, Till T; Bachmann, Till; Schmid, Rolf D; Hauer, Bernhard

    2010-08-11

    Acetylcholinesterase (AChE) is responsible for the hydrolysis of acetylcholine in the nervous system. It is inhibited by organophosphate and carbamate pesticides. However, this enzyme is only slightly inhibited by organophosphorothionates, which makes the detection of these pesticides analytically very difficult. A new enzymatic method for the activation and detection of phosphorothionates was developed with the capability to be used directly in food samples without the need of laborious solvent extraction steps. Chloroperoxidase (CPO) from Caldariomyces fumago was combined with tert-butyl hydroperoxide and two halides. Chlorpyrifos and triazophos were completely oxidized. Fenitrothion, methidathion and parathion methyl showed conversion rates between 54 and 61%. Furthermore, the oxidized solution was submitted to an AChE biosensor assay. Chlorpyrifos spiked in organic orange juice was oxidized, where its oxon product was detected in concentrations down to 5 microg/L (final concentration food sample: 25 microg/L). The complete duration of the method takes about 2 h.

  8. Understanding the molecular mechanism of aryl acylamidase activity of acetylcholinesterase - An in silico study.

    PubMed

    Chinnadurai, Raj Kumar; Saravanaraman, Ponne; Boopathy, Rathanam

    2015-08-15

    Acetylcholinesterase (AChE) exhibits two different activities, namely esterase and aryl acylamidase (AAA). Unlike esterase, AAA activity of AChE is inhibited by the active site inhibitors while remaining unaffected by the peripheral anionic site inhibitors. This differential inhibitory pattern of active and peripheral anionic site inhibitors on the AAA activity remains unanswered. To answer this, we investigated the mechanism of binding and trafficking of AAA substrates using in silico tools. Molecular docking of serotonin and AAA substrates (o-nitroacetanilide, and o-nitrotrifluoroacetanilide,) onto AChE shows that these compounds bind at the side door of AChE. Thus, we conceived that the AAA substrates prefer the side door to reach the active site for their catalysis. Further, steered molecular dynamics simulations show that the force required for binding and trafficking of the AAA substrate through the side door is comparatively lesser than their dissociation (900kJ/mol/nm). Among the two substrates, o-nitrotrifluoroacetanilide required lesser force (380kJ/mol/nm) than o-nitroacetanilide the (550kJ/mol/nm) for its binding, thus validating o-nitrotrifluoroacetanilide as a better substrate. With these observations, we resolve that the AAA activity of AChE is mediated through its side door. Therefore, binding of PAS inhibitors at the main door of AChE remain ineffective against AAA activity. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Environmental monitoring using acetylcholinesterase inhibition in vitro. A case study in two Mexican lagoons.

    PubMed

    Rodríguez-Fuentes, G; Gold-Bouchot, G

    2000-01-01

    Cholinesterase inhibition is considered a specific biomarker of exposure and effect for organophosphorous pesticides. Its use for monitoring has been hindered, particularly in tropical countries where organophosphates are widely used for malaria and dengue control, because of the frequent lack of suitable controls. An in vitro technique is proposed as a biochemical method for monitoring pollutant mixtures in sediment toxicity tests. Brain homogenate from the fish Oreochromis niloticus is used as the enzyme source. Optimum incubation time, extraction solvent and effect of crude oil on acetylcholinesterase (AChE) are reported. The method described was used in sediments from two Mexican lagoons, located in an oil extraction area where pesticides are used in agriculture and vector control campaigns. AChE inhibitions from 3 to 21% were found in these lagoons, even in the presence of high concentrations of petroleum.

  10. In vitro acetylcholinesterase activity of peptide derivatives isolated from two species of Leguminosae.

    PubMed

    Alves, Clayton Q; Lima, Luciano S; David, Jorge M; Lima, Marcos V B; David, Juceni P; Lima, Fernanda W M; Pedroza, Kelly C M C; Queiroz, Luciano P

    2013-07-01

    Cratylia mollis Martius ex Benth. and Cenostigma macrophyllum Tul. (Leguminosae) are both endemic Brazilian plants and they are used by the natives as medicinal plants, and the leaves of C. mollis are also employed as forage for cattle during the dry season of region. Isolation of the compounds responsible for the acetylcholinesterase (AChE) inhibition from the CHCl3 active extract. Two peptidic compounds were isolated by chromatographic techniques from the CHCl3 extract of the leaves of C. mollis and C. macrophyllum. They were identified by spectrometric data analysis (MS and NMR) and they were subjected to AChE inhibition employing Ellman's test. The peptides were identified as N-benzoylphenylalaninoyl-phenlyalaninolacetate (aurentiamide acetate) (1) and N-benzoylphenylalaninyl-N-benzoylphenylalaninate (2). Both peptides 1 and 2 exhibit AChE inhibition, with IC50 values equal to 111.34 µM and 137.6 µM, respectively. Compound 1 (aurentiamide acetate) has rarely been isolated from the Leguminosae family, and N-benzoylphenylalaninyl-N-benzoylphenylalaninate (2) is a compound that has never previously been isolated from this family. Compound 1 is shown to be a potent inhibitor of AChE, with IC50 values similar to the physostigmine control (141.51 µM).

  11. Design, synthesis, biological evaluation and docking study of 5-oxo-4,5-dihydropyrano[3,2-c]chromene derivatives as acetylcholinesterase and butyrylcholinesterase inhibitors.

    PubMed

    Khoobi, Mehdi; Alipour, Masoumeh; Sakhteman, Amirhossein; Nadri, Hamid; Moradi, Alireza; Ghandi, Mehdi; Emami, Saeed; Foroumadi, Alireza; Shafiee, Abbas

    2013-10-01

    A series of fused coumarins namely 5-oxo-4,5-dihydropyrano[3,2-c]chromenes linked to N-benzylpyridinium scaffold were synthesized and evaluated as acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitors. The 1-(4-fluorobenzyl)pyridinium derivative 6g showed the most potent anti-AChE activity (IC50 value=0.038 μM) and the highest AChE/BuChE selectivity (SI>48). The docking study permitted us to rationalize the observed structure-affinity relationships and to detect possible binding modes. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  12. Effect of carbaryl (carbamate insecticide) on acetylcholinesterase activity of two strains of Daphnia magna (Crustacea, Cladocera).

    PubMed

    Toumi, Hela; Bejaoui, Mustapha; Touaylia, Samir; Burga Perez, Karen F; Ferard, Jean François

    2016-11-01

    The present study was designed to investigate the effect of carbaryl (carbamate insecticide) on the acetylcholinesterase activity in two strains (same clone A) of the crustacean cladoceran Daphnia magna. Four carbaryl concentrations (0.4, 0.9, 1.8 and 3.7 µg L(-1)) were compared against control AChE activity. Our results showed that after 48 h of carbaryl exposure, all treatments induced a significant decrease of AChE activities whatever the two considered strains. However, different responses were registered in terms of lowest observed effect concentrations (LOEC: 0.4 µg L(-1) for strain 1 and 0.9 µg L(-1) for strains 2) revealing differences in sensitivity among the two tested strains of D. magna. These results suggest that after carbaryl exposure, the AChE activity responses can be also used as a biomarker of susceptibility. Moreover, our results show that strain1 is less sensitive than strain 2 in terms of IC50-48 h of AChE activity. Comparing the EC50-48 h of standard ecotoxicity test and IC50-48 h of AChE inhibition, there is the same order of sensitivity with both strains.

  13. Galactose alters markers of oxidative stress and acetylcholinesterase activity in the cerebrum of rats: protective role of antioxidants.

    PubMed

    Delwing-de Lima, Daniela; Fröhlich, Monique; Dalmedico, Leticia; Aurélio, Juliana Gruenwaldt Maia; Delwing-Dal Magro, Débora; Pereira, Eduardo Manoel; Wyse, Angela T S

    2017-04-01

    We evaluated the in vitro effects of galactose at 0.1, 3.0, 5.0 and 10.0 mM on thiobarbituric acid-reactive substances (TBA-RS), total sulfhydryl content, protein carbonyl content, on the activities of the antioxidant enzymes catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and on acetylcholinesterase (AChE) activity in the cerebral cortex, cerebellum and hippocampus of rats. We also investigated the influence of the antioxidants (each at 1 mM), α-tocopherol, ascorbic acid and glutathione, on the effects elicited by galactose on the parameters tested. Results showed that galactose, at a concentration of 3.0 mM, enhanced TBA-RS levels in the hippocampus, cerebral cortex and cerebellum of rats. In the cerebral cortex, galactose at concentrations of 5.0 and 10.0 mM increased TBA-RS and protein carbonyl content, and at 10.0 mM increased CAT activity and decreased AChE activity. In the cerebellum, galactose at concentrations of 5.0 and 10.0 mM increased TBA-RS, SOD and GSH-Px activities. In the hippocampus, galactose at concentrations of 5.0 and 10.0 mM increased TBA-RS and CAT activity and at 10.0 mM decreased GSH-Px. Data showed that at the pathologically high concentration (greater than 5.0 mM), galactose induces lipid peroxidation, protein carbonylation, alters antioxidant defenses in the cerebrum, and also alters cholinesterase activity. Trolox, ascorbic acid and glutathione addition prevented the majority of alterations in oxidative stress parameters and the decrease in AChE activity that were caused by galactose. Our findings lend support to a potential therapeutic strategy for this condition, which may include the use of appropriate antioxidants for ameliorating the damage caused by galactose.

  14. Improving the acetylcholinesterase inhibitory effect of Illigera henryi by solid-state fermentation with Clonostachys rogersoniana.

    PubMed

    Li, Xue-Jiao; Dong, Jian-Wei; Cai, Le; Mei, Rui-Feng; Ding, Zhong-Tao

    2017-11-01

    Illigera henryi, an endemic traditional Chinese medicine, contains abundant aporphine alkaloids that possess various bioactivities. In the present study, tubers of I. henryi were fermented by several fungi, and the acetylcholinesterase (AChE) inhibitory activities of non-fermented and fermented I. henryi were measured. The results showed that the fermentation of I. henryi with Clonostachys rogersoniana 828H2 is effective for improving the AChE inhibitory activity. A key biotransformation was found during the C. rogersoniana fermentation for clarifying the improvement of the AChE inhibitory activity of I. henryi: (S)-actinodaphnine (1) was converted to a new 4-hydroxyaporphine alkaloid (4R,6aS)-4-hydroxyactinodaphnine (2) that possessed a stronger AChE inhibitory activity, with an IC 50 value of 17.66±0.06 μM. This paper is the first to report that the pure strain fermentation processing of I. henryi and indicated C. rogersoniana fermentation might be a potential processing method for I. henryi. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  15. Synthesis, biological evaluation and molecular modelling of diversely functionalized heterocyclic derivatives as inhibitors of acetylcholinesterase/butyrylcholinesterase and modulators of Ca2+ channels and nicotinic receptors.

    PubMed

    Marco, José L; de los Ríos, Cristóbal; García, Antonio G; Villarroya, Mercedes; Carreiras, M Carmo; Martins, Carla; Eleutério, Ana; Morreale, Antonio; Orozco, M; Luque, F Javier

    2004-05-01

    The synthesis and the biological activity of compounds 5-40 as inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), as well as modulators of voltage-dependent Ca(2+) channels and nicotinic receptors, are described. These molecules are tacrine analogues, which have been prepared from polyfunctionalized 6-amino-5-cyano-4H-pyrans, 6-amino-5-cyano-pyridines and 5-amino-2-aryl-3-cyano-1,3-oxazoles via Friedländer reaction with selected cycloalkanones. These compounds are moderate acetylcholinesterase and butyrylcholinesterase inhibitors, the BuChE/AChE selectivity of the most active molecules ranges from 10.0 (compound 29) to 76.9 (compound 16). Interestingly, the 'oxazolo-tacrine' derivatives are devoid of any activity. All compounds showed an important inhibitory effect on the nicotinic acetylcholine receptor. Most of them also blocked L-type Ca(2+) channels, and three of them, 64, 19 and 67, the non-L type of Ca(2+) channels. Molecular modelling studies suggest that these compounds might bind at the peripheral binding site of AChE, which opens the possibility to design inhibitors able to bind at both, the catalytic and peripheral binding sites of the enzyme.

  16. The inhibition, reactivation and mechanism of VX-, sarin-, fluoro-VX and fluoro-sarin surrogates following their interaction with HuAChE and HuBuChE.

    PubMed

    Chao, Chih-Kai; Balasubramanian, Narayanaganesh; Gerdes, John M; Thompson, Charles M

    2018-06-16

    In this study, the mechanisms of HuAChE and HuBChE inhibition by Me-P(O) (OPNP) (OR) [PNP = p-nitrophenyl; R = CH 2 CH 3 , CH 2 CH 2 F, OCH(CH 3 ) 2 , OCH(CH 3 ) (CH 2 F)] representing surrogates and fluoro-surrogates of VX and sarin were studied by in vitro kinetics and mass spectrometry. The in vitro measures showed that the VX- and fluoro-VX surrogates were relatively strong inhibitors of HuAChE and HuBChE (k i  ∼ 10 5 -10 6  M -1 min -1 ) and underwent spontaneous and 2-PAM-mediated reactivation within 30 min. The sarin surrogates were weaker inhibitors of HuAChE and HuBChE (k i  ∼ 10 4 -10 5  M -1 min -1 ), and in general did not undergo spontaneous reactivation, although HuAChE adducts were partially reactivatable at 18 h using 2-PAM. The mechanism of HuAChE and HuBChE inhibition by the surrogates was determined by Q-TOF and MALDI-TOF mass spectral analyses. The surrogate-adducted proteins were trypsin digested and the active site-containing peptide bearing the OP-modified serine identified by Q-TOF as triply- and quadruply-charged ions representing the respective increase in mass of the attached OP moiety. Correspondingly, monoisotopic ions of the tryptic peptides representing the mass increase of the OP-adducted peptide was identified by MALDI-TOF. The mass spectrometry analyses validated the identity of the OP moiety attached to HuAChE or HuBChE as MeP(O) (OR)-O-serine peptides (loss of the PNP leaving group) via mechanisms consistent with those found with chemical warfare agents. MALDI-TOF MS analyses of the VX-modified peptides versus time showed a steady reduction in adduct versus parent peptide (reactivation), whereas the sarin-surrogate-modified peptides remained largely intact over the course of the experiment (24 h). Overall, the presence of a fluorine atom on the surrogate modestly altered the rate constants of inhibition and reactivation, however, the mechanism of inhibition (ejection of PNP group) did not change

  17. A comparison of the efficacy of new asymmetric bispyridinium oximes (K027, K048) with currently available oximes against tabun by in vivo methods.

    PubMed

    Kassa, Jiri; Kuca, Kamil; Cabal, Jiri; Paar, Martin

    2006-10-01

    The potency of newly developed asymmetric bispyridinium oximes (K027, K048) in reactivating tabun-inhibited acetylcholinesterase (AChE) and in eliminating tabun-induced acute toxic effects was compared with commonly used oximes (obidoxime, trimedoxime, the oxime HI-6) using in vivo methods. Studies determined the percent of reactivation of tabun-inhibited blood and tissue AChE in poisoned rats and showed that the reactivating efficacy of both newly developed oximes is comparable with obidoxime and trimedoxime, the most efficacious known reactivators of tabun-inhibited AChE. These were also found to be sufficiently efficacious in the elimination of acute lethal toxic effects in tabun-poisoned rats. The oxime HI-6, relatively efficacious against soman, did not seem to be an adequately effective oxime in reactivation of tabun-inhibited AChE and in counteracting acute lethal effects of tabun. In addition, our results confirm that the efficacy of oximes in reactivating tabun-inhibited AChE in blood, diaphragm, and brain correlates with the potency of oximes in protecting rats poisoned with supralethal doses of tabun.

  18. Synthesis, spectroscopic, computational (DFT/B3LYP), AChE inhibition and antioxidant studies of imidazole derivative

    NASA Astrophysics Data System (ADS)

    Ahmad, Faheem; Alam, Mohammad Jane; Alam, Mahboob; Azaz, Shaista; Parveen, Mehtab; Park, Soonheum; Ahmad, Shabbir

    2018-01-01

    The present study reports the synthesis and evaluation of biological properties of 3a,8a-dihydroxy-8-oxo-1,3,3a,8a-tetrahydroindeno[1,2-d]imidazol-2(1H)-iminium chloride (3). The structure was confirmed by the FTIR, NMR, MS, CHN microanalysis and X-ray crystallographic analysis. Quantum chemical calculations have been performed at B3LYP-D3/6-311++G(d,p) level of theory to study the molecular geometry, IR, (1H and 13C) NMR, UV/Vis spectra and other molecular parameters of the asymmetric unit of crystal of imidazole compound (3). An empirical dispersion correction to hybrid functional (B3LYP-D3) has been incorporated in the present calculations due to presence of non-covalent interaction, Cl⋯H-O, in the present compound. The remarkable agreement has been observed between theoretical data and those measured experimentally. Moreover, the Hirshfeld analysis was carried out to ascertain the secondary interactions and associated 2D fingerprint plots. The synthesized imidazole derivative showed promising antioxidant property and inhibitory activity against acetylcholinesterase (AChE). Molecular docking was also performed in order to explain in silico antioxidant studies and to ascertain the probable binding mode of compound with the amino acid residues of protein.

  19. Tacrine-based dual binding site acetylcholinesterase inhibitors as potential disease-modifying anti-Alzheimer drug candidates.

    PubMed

    Camps, Pelayo; Formosa, Xavier; Galdeano, Carles; Gómez, Tània; Muñoz-Torrero, Diego; Ramírez, Lorena; Viayna, Elisabet; Gómez, Elena; Isambert, Nicolás; Lavilla, Rodolfo; Badia, Albert; Clos, M Victòria; Bartolini, Manuela; Mancini, Francesca; Andrisano, Vincenza; Bidon-Chanal, Axel; Huertas, Oscar; Dafni, Thomai; Luque, F Javier

    2010-09-06

    Two novel families of dual binding site acetylcholinesterase (AChE) inhibitors have been developed, consisting of a tacrine or 6-chlorotacrine unit as the active site interacting moiety, either the 5,6-dimethoxy-2-[(4-piperidinyl)methyl]-1-indanone fragment of donepezil (or the indane derivative thereof) or a 5-phenylpyrano[3,2-c]quinoline system, reminiscent to the tryciclic core of propidium, as the peripheral site interacting unit, and a linker of suitable length as to allow the simultaneous binding at both sites. These hybrid compounds are all potent and selective inhibitors of human AChE, and more interestingly, are able to interfere in vitro both formation and aggregation of the beta-amyloid peptide, the latter effects endowing these compounds with the potential to modify Alzheimer's disease progression. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  20. Inhibitory effect of ebselen on cerebral acetylcholinesterase activity in vitro: kinetics and reversibility of inhibition.

    PubMed

    Martini, Franciele; Bruning, César Augusto; Soares, Suelen Mendonca; Nogueira, Cristina Wayne; Zeni, Gilson

    2015-01-01

    Ebselen is a synthetic organoselenium compound that has been considered a potential pharmacological agent with low toxicity, showing antioxidant, anti-inflammatory and neuroprotective effects. It is bioavailable, blood-brain barrier permeant and safe based on cellular toxicity and Phase I-III clinical trials. There is evidence that ebselen inhibits acetylcholinesterase (AChE) activity, an enzyme that plays a key role in the cholinergic system by hydrolyzing acetylcholine (ACh), in vitro and ex vivo. This system has a well-known relationship with cognitive process, and AChE inhibitors, such as donepezil and galantamine, have been used to treat cognitive deficits, mainly in the Alzheimer's Disease (AD). However, these drugs have poor bioavailability and a number of side effects, including gastrointestinal upsets and hepatotoxicity. In this way, this study aimed to evaluate the effect of ebselen on cerebral AChE activity in vitro and to determine the kinetic profile and the reversibility of inhibition by dialysis. Ebselen inhibited the cerebral AChE activity with an IC50 of 29 µM, similar to IC50 found with pure AChE from electric eel, demonstrating a mixed and reversible inhibition of AChE, since it increased Km and decreased Vmax. The AChE activity was recovered within 60 min of dialysis. Therefore, the use of ebselen as a therapeutic agent for treatment of AD should be considered, although memory behavior tasks are needed to support such hypothesis.

  1. Prediction of the binding sites of huperzine A in acetylcholinesterase by docking studies

    NASA Astrophysics Data System (ADS)

    Pang, Yuan-Ping; Kozikowski, Alan P.

    1994-12-01

    We have performed docking studies with the SYSDOC program on acetylcholinesterase (AChE) to predict the binding sites in AChE of huperzine A (HA), which is a potent and selective, reversible inhibitor of AChE. The unique aspects of our docking studies include the following: (i) Molecular flexibility of the guest and the host is taken into account, which permits both to change their conformations upon binding. (ii) The binding energy is evaluated by a sum of energies of steric, electrostatic and hydrogen bonding interactions. In the energy calculation no grid approximation is used, and all hydrogen atoms of the system are treated explicitly. (iii) The energy of cation-π interactions between the guest and the host, which is important in the binding of AChE, is included in the calculated binding energy. (iv) Docking is performed in all regions of the host's binding cavity. Based on our docking studies and the pharmacological results reported for HA and its analogs, we predict that HA binds to the bottom of the binding cavity of AChE (the gorge) with its ammonium group interacting with Trp84, Phe330, Glu199 and Asp72 (catalytic site). At the the opening of the gorge with its ammonium group partially interacting with Trp279 (peripheral site). At the catalytic site, three partially overlapping subsites of HA were identified which might provide a dynamic view of binding of HA to the catalytic site.

  2. Molecular Cloning and Characterization of an Acetylcholinesterase cDNA in the Brown Planthopper, Nilaparvata lugens

    PubMed Central

    Yang, Zhifan; Chen, Jun; Chen, Yongqin; Jiang, Sijing

    2010-01-01

    A full cDNA encoding an acetylcholinesterase (AChE, EC 3.1.1.7) was cloned and characterized from the brown planthopper, Nilaparvata lugens Stål (Hemiptera: Delphacidae). The complete cDNA (2467 bp) contains a 1938-bp open reading frame encoding 646 amino acid residues. The amino acid sequence of the AChE deduced from the cDNA consists of 30 residues for a putative signal peptide and 616 residues for the mature protein with a predicted molecular weight of 69,418. The three residues (Ser242, Glu371, and His485) that putatively form the catalytic triad and the six Cys that form intra-subunit disulfide bonds are completely conserved, and 10 out of the 14 aromatic residues lining the active site gorge of the AChE are also conserved. Northern blot analysis of poly(A)+ RNA showed an approximately 2.6-kb transcript, and Southern blot analysis revealed there likely was just a single copy of this gene in N. lugens. The deduced protein sequence is most similar to AChE of Nephotettix cincticeps with 83% amino acid identity. Phylogenetic analysis constructed with 45 AChEs from 30 species showed that the deduced N. lugens AChE formed a cluster with the other 8 insect AChE2s. Additionally, the hypervariable region and amino acids specific to insect AChE2 also existed in the AChE of N. lugens. The results revealed that the AChE cDNA cloned in this work belongs to insect AChE2 subgroup, which is orthologous to Drosophila AChE. Comparison of the AChEs between the susceptible and resistant strains revealed a point mutation, Gly185Ser, is likely responsible for the insensitivity of the AChE to methamidopho in the resistant strain. PMID:20874389

  3. Molecular cloning and characterization of an acetylcholinesterase cDNA in the brown planthopper, Nilaparvata lugens.

    PubMed

    Yang, Zhifan; Chen, Jun; Chen, Yongqin; Jiang, Sijing

    2010-01-01

    A full cDNA encoding an acetylcholinesterase (AChE, EC 3.1.1.7) was cloned and characterized from the brown planthopper, Nilaparvata lugens Stål (Hemiptera: Delphacidae). The complete cDNA (2467 bp) contains a 1938-bp open reading frame encoding 646 amino acid residues. The amino acid sequence of the AChE deduced from the cDNA consists of 30 residues for a putative signal peptide and 616 residues for the mature protein with a predicted molecular weight of 69,418. The three residues (Ser242, Glu371, and His485) that putatively form the catalytic triad and the six Cys that form intra-subunit disulfide bonds are completely conserved, and 10 out of the 14 aromatic residues lining the active site gorge of the AChE are also conserved. Northern blot analysis of poly(A)+ RNA showed an approximately 2.6-kb transcript, and Southern blot analysis revealed there likely was just a single copy of this gene in N. lugens. The deduced protein sequence is most similar to AChE of Nephotettix cincticeps with 83% amino acid identity. Phylogenetic analysis constructed with 45 AChEs from 30 species showed that the deduced N. lugens AChE formed a cluster with the other 8 insect AChE2s. Additionally, the hypervariable region and amino acids specific to insect AChE2 also existed in the AChE of N. lugens. The results revealed that the AChE cDNA cloned in this work belongs to insect AChE2 subgroup, which is orthologous to Drosophila AChE. Comparison of the AChEs between the susceptible and resistant strains revealed a point mutation, Gly185Ser, is likely responsible for the insensitivity of the AChE to methamidopho in the resistant strain.

  4. Chlorpyrifos and chlorpyrifos-oxon inhibit axonal growth by interfering with the morphogenic activity of acetylcholinesterase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang Dongren; Howard, Angela; Bruun, Donald

    2008-04-01

    A primary role of acetylcholinesterase (AChE) is regulation of cholinergic neurotransmission by hydrolysis of synaptic acetylcholine. In the developing nervous system, however, AChE also functions as a morphogenic factor to promote axonal growth. This raises the question of whether organophosphorus pesticides (OPs) that are known to selectively bind to and inactivate the enzymatic function of AChE also interfere with its morphogenic function to perturb axonogenesis. To test this hypothesis, we exposed primary cultures of sensory neurons derived from embryonic rat dorsal root ganglia (DRG) to chlorpyrifos (CPF) or its oxon metabolite (CPFO). Both OPs significantly decreased axonal length at concentrationsmore » that had no effect on cell viability, protein synthesis or the enzymatic activity of AChE. Comparative analyses of the effects of CPF and CPFO on axonal growth in DRG neurons cultured from AChE nullizygous (AChE{sup -/-}) versus wild type (AChE{sup +/+}) mice indicated that while these OPs inhibited axonal growth in AChE{sup +/+} DRG neurons, they had no effect on axonal growth in AChE{sup -/-} DRG neurons. However, transfection of AChE{sup -/-} DRG neurons with cDNA encoding full-length AChE restored the wild type response to the axon inhibitory effects of OPs. These data indicate that inhibition of axonal growth by OPs requires AChE, but the mechanism involves inhibition of the morphogenic rather than enzymatic activity of AChE. These findings suggest a novel mechanism for explaining not only the functional deficits observed in children and animals following developmental exposure to OPs, but also the increased vulnerability of the developing nervous system to OPs.« less

  5. Antioxidant and acetylcholinesterase inhibitory activities of ginger root (Zingiber officinale Roscoe) extract.

    PubMed

    Tung, Bui Thanh; Thu, Dang Kim; Thu, Nguyen Thi Kim; Hai, Nguyen Thanh

    2017-05-04

    Background Zingiber officinale Roscoe has been used in traditional medicine for the treatment of neurological disorder. This study aimed to investigate the phenolic contents, antioxidant, acetylcholinesterase enzyme (AChE) inhibitory activities of different fraction of Z. officinale root grown in Vietnam. Methods The roots of Z. officinale are extracted with ethanol 96 % and fractionated with n-hexane, ethyl acetate (EtOAc) and butanol (BuOH) solvents. These fractions evaluated the antioxidant activity by 1,1-Diphenyl -2-picrylhydrazyl (DPPH) assay and AChE inhibitory activity by Ellman's colorimetric method. Results Our data showed that the total phenolic content of EtOAc fraction was highest equivalents to 35.2±1.4 mg quercetin/g of fraction. Our data also demonstrated that EtOAc fraction had the strongest antioxidant activity with IC50 was 8.89±1.37 µg/mL and AChE inhibitory activity with an IC50 value of 22.85±2.37 μg/mL in a dose-dependent manner, followed by BuOH fraction and the n-hexane fraction is the weakest. Detailed kinetic analysis indicated that EtOAc fraction was mixed inhibition type with Ki (representing the affinity of the enzyme and inhibitor) was 30.61±1.43 µg/mL. Conclusions Our results suggest that the EtOAc fraction of Z. officinale may be a promising source of AChE inhibitors for Alzheimer's disease.

  6. Synthesis and biological evaluation of potential acetylcholinesterase inhibitors based on a benzoxazine core.

    PubMed

    Méndez-Rojas, Claudio; Quiroz, Gabriel; Faúndez, Mario; Gallardo-Garrido, Carlos; Pessoa-Mahana, C David; Chung, Hery; Gallardo-Toledo, Eduardo; Saitz-Barría, Claudio; Araya-Maturana, Ramiro; Kogan, Marcelo J; Zúñiga-López, María C; Iturriaga-Vásquez, Patricio; Valenzuela-Gutiérrez, Carla; Pessoa-Mahana, Hernán

    2018-05-01

    With the purpose of expanding the structural variety of chemical compounds available as pharmacological tools for the treatment of Alzheimer's disease, we synthesized and evaluated a novel series of indole-benzoxazinones (Family I) and benzoxazine-arylpiperazine derivatives (Family II) for potential human acetylcholinesterase (hAChE) inhibitory properties. The most active compounds 7a and 7d demonstrated effective inhibitory profiles with K i values of 20.3 ± 0.9 μM and 20.2 ± 0.9 μM, respectively. Kinetic inhibition assays showed non-competitive inhibition of AChE by the tested compounds. According to our docking studies, the most active compounds from both series (Families I and II) showed a binding mode similar to donepezil and interact with the same residues. © 2018 Deutsche Pharmazeutische Gesellschaft.

  7. Antioxidant Activity, Acetylcholinesterase, and Carbonic Anhydrase Inhibitory Properties of Novel Ureas Derived from Phenethylamines.

    PubMed

    Aksu, Kadir; Özgeriş, Bünyamin; Taslimi, Parham; Naderi, Ali; Gülçin, İlhami; Göksu, Süleyman

    2016-12-01

    A series of ureas derived from phenethylamines were synthesized and evaluated for human carbonic anhydrase (hCA) I and II, acetylcholinesterase (AChE), and butyrylcholinesterase (BChE) enzyme inhibitory activities and antioxidant properties. The ureas were synthesized from the reactions of substituted phenethylamines with N,N-dimethylcarbamoyl chloride; then, the synthesized compounds were converted to their corresponding phenolic derivatives via O-demethylation. hCA I and II were effectively inhibited by the newly synthesized compounds, with K i values in the range of 0.307-0.432 nM for hCA I and 0.149-0.278 nM for hCA II. On the other hand, the K i parameters of these compounds for AChE and BChE were determined in the range of 0.129-0.434 and 0.095-0.207 nM, respectively. Phenolic ureas also showed good antioxidant activities. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Calcium-activated butyrylcholinesterase in human skin protects acetylcholinesterase against suicide inhibition by neurotoxic organophosphates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schallreuter, Karin U.; Institute for Pigmentary Disorders in Association with EM Arndt University of Greifswald; University of Bradford

    The human epidermis holds an autocrine acetylcholine production and degradation including functioning membrane integrated and cytosolic butyrylcholinesterase (BuchE). Here we show that BuchE activities increase 9-fold in the presence of calcium (0.5 x 10{sup -3}M) via a specific EF-hand calcium binding site, whereas acetylcholinesterase (AchE) is not affected. {sup 45}Calcium labelling and computer simulation confirmed the presence of one EF-hand binding site per subunit which is disrupted by H{sub 2}O{sub 2}-mediated oxidation. Moreover, we confirmed the faster hydrolysis by calcium-activated BuchE using the neurotoxic organophosphate O-ethyl-O-(4-nitrophenyl)-phenylphosphonothioate (EPN). Considering the large size of the human skin with 1.8 m{sup 2} surfacemore » area with its calcium gradient in the 10{sup -3}M range, our results implicate calcium-activated BuchE as a major protective mechanism against suicide inhibition of AchE by organophosphates in this non-neuronal tissue.« less

  9. Inhibition of acetylcholinesterase by two genistein derivatives: kinetic analysis, molecular docking and molecular dynamics simulation.

    PubMed

    Fang, Jiansong; Wu, Ping; Yang, Ranyao; Gao, Li; Li, Chao; Wang, Dongmei; Wu, Song; Liu, Ai-Lin; Du, Guan-Hua

    2014-12-01

    In this study two genistein derivatives (G1 and G2) are reported as inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), and differences in the inhibition of AChE are described. Although they differ in structure by a single methyl group, the inhibitory effect of G1 (IC50=264 nmol/L) on AChE was 80 times stronger than that of G2 (IC50=21,210 nmol/L). Enzyme-kinetic analysis, molecular docking and molecular dynamics (MD) simulations were conducted to better understand the molecular basis for this difference. The results obtained by kinetic analysis demonstrated that G1 can interact with both the catalytic active site and peripheral anionic site of AChE. The predicted binding free energies of two complexes calculated by the molecular mechanics/generalized born surface area (MM/GBSA) method were consistent with the experimental data. The analysis of the individual energy terms suggested that a difference between the net electrostatic contributions (ΔE ele+ΔG GB) was responsible for the binding affinities of these two inhibitors. Additionally, analysis of the molecular mechanics and MM/GBSA free energy decomposition revealed that the difference between G1 and G2 originated from interactions with Tyr124, Glu292, Val294 and Phe338 of AChE. In conclusion, the results reveal significant differences at the molecular level in the mechanism of inhibition of AChE by these structurally related compounds.

  10. Design, synthesis and preliminary structure-activity relationship investigation of nitrogen-containing chalcone derivatives as acetylcholinesterase and butyrylcholinesterase inhibitors: a further study based on Flavokawain B Mannich base derivatives.

    PubMed

    Liu, Haoran; Fan, Haoqun; Gao, Xiaohui; Huang, Xueqing; Liu, Xianjun; Liu, Linbo; Zhou, Chao; Tang, Jingjing; Wang, Qiuan; Liu, Wukun

    2016-08-01

    In order to study the structure-activity relationship of Flavokawain B Mannich-based derivatives as acetylcholinesterase (AChE) inhibitors in our recent investigation, 20 new nitrogen-containing chalcone derivatives (4 a-8d) were designed, synthesized, and evaluated for AChE inhibitory activity in vitro. The results suggested that amino alkyl side chain of chalcone dramatically influenced the inhibitory activity against AChE. Among them, compound 6c revealed the strongest AChE inhibitory activity (IC50 value: 0.85 μmol/L) and the highest selectivity against AChE over BuChE (ratio: 35.79). Enzyme kinetic study showed that the inhibition mechanism of compound 6c against AChE was a mixed-type inhibition. The molecular docking assay showed that this compound can both bind with the catalytic site and the peripheral site of AChE.

  11. The nervus terminalis in the chick: a FMRFamide-immunoreactive and AChE-positive nerve.

    PubMed

    Wirsig-Wiechmann, C R

    1990-07-16

    The chick terminal nerve (TN) was examined by immunocytochemical and histochemical methods. Molluscan cardioexcitatory peptide-immunoreactive (FMRFamide-ir) and acetylcholinesterase (AChE)-positive TN perikarya and fibers were distributed along olfactory and trigeminal nerves. FMRFamide-ir TN fibers terminated in the olfactory lamina propria and epithelium and in ganglia along the rostroventral nasal septum. This initial description of several populations of avian TN neurons should provide the foundation for future developmental studies of this system.

  12. Acetylcholinesterase of the sand fly, Phlebotomus papatasi (Scopoli): construction, expression and biochemical properties of the G119S orthologous mutant

    USDA-ARS?s Scientific Manuscript database

    Phlebotomus papatasi vectors zoonotic cutaneous leishmaniasis, widespread in intertropical and temperate regions of the world. Previous cloning, expression, and biochemical characterization of recombinant P. papatasi acetylcholinesterase 1 (PpAChE1) revealed 85% amino acid sequence identity to mosq...

  13. The Effects of Donepezil, an Acetylcholinesterase Inhibitor, on Impaired Learning and Memory in Rodents.

    PubMed

    Shin, Chang Yell; Kim, Hae-Sun; Cha, Kwang-Ho; Won, Dong Han; Lee, Ji-Yun; Jang, Sun Woo; Sohn, Uy Dong

    2018-05-01

    A previous study in humans demonstrated the sustained inhibitory effects of donepezil on acetylcholinesterase (AChE) activity; however, the effective concentration of donepezil in humans and animals is unclear. This study aimed to characterize the effective concentration of donepezil on AChE inhibition and impaired learning and memory in rodents. A pharmacokinetic study of donepezil showed a mean peak plasma concentration of donepezil after oral treatment (3 and 10 mg/kg) of approximately 1.2 ± 0.4 h and 1.4 ± 0.5 h, respectively; absolute bioavailability was calculated as 3.6%. Further, AChE activity was inhibited by increasing plasma concentrations of donepezil, and a maximum inhibition of 31.5 ± 5.7% was observed after donepezil treatment in hairless rats. Plasma AChE activity was negatively correlated with plasma donepezil concentration. The pharmacological effects of donepezil are dependent upon its concentration and AChE activity; therefore, we assessed the effects of donepezil on learning and memory using a Y-maze in mice. Donepezil treatment (3 mg/kg) significantly prevented the progression of scopolamine-induced memory impairment in mice. As the concentration of donepezil in the brain increased, the recovery of spontaneous alternations also improved; maximal improvement was observed at 46.5 ± 3.5 ng/g in the brain. In conclusion, our findings suggest that the AChE inhibitory activity and pharmacological effects of donepezil can be predicted by the concentration of donepezil. Further, 46.5 ± 3.5 ng/g donepezil is an efficacious target concentration in the brain for treating learning and memory impairment in rodents.

  14. Exposure to acetylcholinesterase inhibitors alters the physiology and motor function of honeybees.

    PubMed

    Williamson, Sally M; Moffat, Christopher; Gomersall, Martha A E; Saranzewa, Nastja; Connolly, Christopher N; Wright, Geraldine A

    2013-01-01

    Cholinergic signaling is fundamental to neuromuscular function in most organisms. Sub-lethal doses of neurotoxic pesticides that target cholinergic signaling can alter the behavior of insects in subtle ways; their influence on non-target organisms may not be readily apparent in simple mortality studies. Beneficial arthropods such as honeybees perform sophisticated behavioral sequences during foraging that, if influenced by pesticides, could impair foraging success and reduce colony health. Here, we investigate the behavioral effects on honeybees of exposure to a selection of pesticides that target cholinergic signaling by inhibiting acetylcholinesterase (AChE). To examine how continued exposure to AChE inhibitors affected motor function, we fed adult foraging worker honeybees sub-lethal concentrations of these compounds in sucrose solution for 24 h. Using an assay for locomotion in bees, we scored walking, stopped, grooming, and upside down behavior continuously for 15 min. At a 10 nM concentration, all the AChE inhibitors caused similar effects on behavior, notably increased grooming activity and changes in the frequency of bouts of behavior such as head grooming. Coumaphos caused dose-dependent effects on locomotion as well as grooming behavior, and a 1 μM concentration of coumaphos induced symptoms of malaise such as abdomen grooming and defecation. Biochemical assays confirmed that the four compounds we assayed (coumaphos, aldicarb, chlorpyrifos, and donepezil) or their metabolites acted as AChE inhibitors in bees. Furthermore, we show that transcript expression levels of two honeybee AChE inhibitors were selectively upregulated in the brain and in gut tissues in response to AChE inhibitor exposure. The results of our study imply that the effects of pesticides that rely on this mode of action have subtle yet profound effects on physiological effects on behavior that could lead to reduced survival.

  15. Exposure to Acetylcholinesterase Inhibitors Alters the Physiology and Motor Function of Honeybees

    PubMed Central

    Williamson, Sally M.; Moffat, Christopher; Gomersall, Martha A. E.; Saranzewa, Nastja; Connolly, Christopher N.; Wright, Geraldine A.

    2013-01-01

    Cholinergic signaling is fundamental to neuromuscular function in most organisms. Sub-lethal doses of neurotoxic pesticides that target cholinergic signaling can alter the behavior of insects in subtle ways; their influence on non-target organisms may not be readily apparent in simple mortality studies. Beneficial arthropods such as honeybees perform sophisticated behavioral sequences during foraging that, if influenced by pesticides, could impair foraging success and reduce colony health. Here, we investigate the behavioral effects on honeybees of exposure to a selection of pesticides that target cholinergic signaling by inhibiting acetylcholinesterase (AChE). To examine how continued exposure to AChE inhibitors affected motor function, we fed adult foraging worker honeybees sub-lethal concentrations of these compounds in sucrose solution for 24 h. Using an assay for locomotion in bees, we scored walking, stopped, grooming, and upside down behavior continuously for 15 min. At a 10 nM concentration, all the AChE inhibitors caused similar effects on behavior, notably increased grooming activity and changes in the frequency of bouts of behavior such as head grooming. Coumaphos caused dose-dependent effects on locomotion as well as grooming behavior, and a 1 μM concentration of coumaphos induced symptoms of malaise such as abdomen grooming and defecation. Biochemical assays confirmed that the four compounds we assayed (coumaphos, aldicarb, chlorpyrifos, and donepezil) or their metabolites acted as AChE inhibitors in bees. Furthermore, we show that transcript expression levels of two honeybee AChE inhibitors were selectively upregulated in the brain and in gut tissues in response to AChE inhibitor exposure. The results of our study imply that the effects of pesticides that rely on this mode of action have subtle yet profound effects on physiological effects on behavior that could lead to reduced survival. PMID:23386834

  16. Habituation, discrimination and anxiety in transgenic mice overexpressing acetylcholinesterase splice variants.

    PubMed

    Kofman, Ora; Shavit, Yehoshua; Ashkenazi, Sarit; Gabay, Shai

    2007-12-14

    TgS and TgR transgenic mice overexpress different splice variants of acetylcholinesterase and serve as models for genetic disruption of the cholinergic system. Whereas the TgS mouse overexpresses synaptic AChE, the TgR mouse overexpresses the rare readthrough variant whose C-terminal lacks the cysteine residue which permits adherence to the membrane. The two genotypes were compared to the parent strain, FVB/N mice on locomotion, discrimination learning and anxiety behavior following two exposures to the elevated plus maze. Male TgS mice were slower to acquire a simple odor discrimination, failed to habituate to a novel environment but were not impaired on reversal or set shifting compared to the FVB/N or TgR mice. In addition, TgS mice showed less avoidance behavior on the first exposure and but less exploration on the second exposure to the EPM. TgR mice were not impaired on discrimination learning; however, the females showed excessive running in circles in the activity meter. The findings suggest that the effects of overexpression of AChE are unique to different splice variants and may be sex-dependent.

  17. Biochemical and morphological differentiation of acetylcholinesterase-positive efferent fibers in the mouse cochlea.

    PubMed

    Emmerling, M R; Sobkowicz, H M; Levenick, C V; Scott, G L; Slapnick, S M; Rose, J E

    1990-06-01

    We have compared the biochemical expression of cholinergic enzymes with the morphological differentiation of efferent nerve fibers and endings in the cochlea of the postnatally developing mouse. Choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) are present in the newborn cochlea at specific activities 63% and 25%, respectively, of their mature levels. The relative increases in ChAT, in AChE, and in its molecular forms over the newborn values start about day 4 and reach maturity by about day 10. The biochemical results correlate well with the massive presence of nerve fibers stained immunocytochemically for ChAT and AChE or enzymatically for AChE in the inner and outer hair cell regions. Ultrastructral studies, however, indicate the presence of only few vesiculated fibers and endings in the inner and outer hair cell regions. The appearance of large, cytologically mature endings occurs only toward the end of the third postnatal week. The discrepancy may be resolved in the electron microscopy using the enzymatic staining for AChE. Labeling is seen on many nonvesiculated fibers and endings in the hair cell regions, suggesting that the majority of the efferent fibers in the perinatal organ may be biochemically differentiated but morphologically immature. The results may imply that the efferents to inner and outer hair cells develop earlier than indicated by previous ultrastructral studies. Moreover, the pattern of development suggests that in the cochlea, as in other tissues, the biochemical differentiation of the efferent innervation may precede the morphological maturation.

  18. Hydrolysis of acetylthiocoline, o-nitroacetanilide and o-nitrotrifluoroacetanilide by fetal bovine serum acetylcholinesterase.

    PubMed

    Montenegro, María F; Moral-Naranjo, María T; Muñoz-Delgado, Encarnación; Campoy, Francisco J; Vidal, Cecilio J

    2009-04-01

    Besides esterase activity, acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) hydrolyze o-nitroacetanilides through aryl acylamidase activity. We have reported that BuChE tetramers and monomers of human blood plasma differ in o-nitroacetanilide (ONA) hydrolysis. The homology in quaternary structure and folding of subunits in the prevalent BuChE species (G4(H)) of human plasma and AChE forms of fetal bovine serum prompted us to study the esterase and amidase activities of fetal bovine serum AChE. The k(cat)/K(m) values for acetylthiocholine (ATCh), ONA and its trifluoro derivative N-(2-nitrophenyl)-trifluoroacetamide (F-ONA) were 398 x 10(6) M(-1) min(-1), 0.8 x 10(6) M(-1) min(-1), and 17.5 x 10(6) M(-1) min(-1), respectively. The lack of inhibition of amidase activity at high F-ONA concentrations makes it unlikely that there is a role for the peripheral anionic site (PAS) in F-ONA degradation, but the inhibition of ATCh, ONA and F-ONA hydrolysis by the PAS ligand fasciculin-2 points to the transit of o-nitroacetalinides near the PAS on their way to the active site. Sedimentation analysis confirmed substrate hydrolysis by tetrameric 10.9S AChE. As compared with esterase activity, amidase activity was less sensitive to guanidine hydrochloride. This reagent led to the formation of 9.3S tetramers with partially unfolded subunits. Their capacity to hydrolyze ATCh and F-ONA revealed that, despite the conformational change, the active site architecture and functionality of AChE were partially retained.

  19. Acetylcholinesterase inhibition in the threeridge mussel (Amblema plicata) by chlorpyrifos: implications for biomonitoring

    USGS Publications Warehouse

    Doran, W.J.; Cope, W.G.; Rada, R.G.; Sandheinrich, M.B.

    2001-01-01

    The effects of chlorpyrifos, an organophosphorus insecticide, were examined on the activity of the nervous system enzyme acetylcholinesterase (AChE) in the threeridge mussel Amblema plicata in a 24-day laboratory test. Thirty-six mussels in each of seven treatments (18 mussels per duplicate) were exposed to chlorpyrifos (0.1, 0.2, 0.3, 0.6, and 1.2 mg/L), a solvent (acetone), and a solvent-free (well water) control for 12, 24, or 96 h. The activity of AChE was measured in the anterior adductor muscle of eight mussels from each treatment after exposure. To assess potential latent effects, six mussels from each treatment were removed after 24 h of exposure and transferred to untreated water for a 21-day holding period; AChE activity was measured on three mussels from each treatment at 7 and 21 days of the holding period. The activity of AChE in chlorpyrifos-exposed mussels did not differ from controls after 12 or 24 h of exposure (t- test, P>0.05), but was significantly less than controls after 96 h (t- test, P=0.01). AChE activity did not vary among mussels at 24 h of exposure (i.e., Day 0 of holding period) and those at Day 7 and Day 21 of the holding period. Overall changes in AChE activity of mussels during the test were unrelated to individual chlorpyrifos concentrations and exposure times (repeated measure ANOVA; (P=0.06). A power analysis revealed that the sample size must be increased from 2 to 5 replicates (8 to 20 mussels per time interval and test concentration) to increase the probability of detecting significant differences in AChE activity. This calculated increase in sample size has potential implications for future biomonitoring studies with chlorpyrifos and unionid mussels.

  20. Hupresin Retains Binding Capacity for Butyrylcholinesterase and Acetylcholinesterase after Sanitation with Sodium Hydroxide.

    PubMed

    Onder, Seda; David, Emilie; Tacal, Ozden; Schopfer, Lawrence M; Lockridge, Oksana

    2017-01-01

    Hupresin is a new affinity resin that binds butyrylcholinesterase (BChE) in human plasma and acetylcholinesterase (AChE) solubilized from red blood cells (RBC). Hupresin is available from the CHEMFORASE company. BChE in human plasma binds to Hupresin and is released with 0.1 M trimethylammonium bromide (TMA) with full activity and 10-15% purity. BChE immunopurified from plasma by binding to immobilized monoclonal beads has fewer contaminating proteins than the one-step Hupresin-purified BChE. However, when affinity chromatography on Hupresin follows ion exchange chromatography at pH 4.5, BChE is 99% pure. The membrane bound AChE, solubilized from human RBC with 0.6% Triton X-100, binds to Hupresin and remains bound during washing with sodium chloride. Human AChE is not released in significant quantities with non-denaturing solvents, but is recovered in 1% trifluoroacetic acid. The denatured, partially purified AChE is useful for detecting exposure to nerve agents by mass spectrometry. Our goal was to determine whether Hupresin retains binding capacity for BChE and AChE after Hupresin is washed with 0.1 M NaOH. A 2 mL column of Hupresin equilibrated in 20 mM TrisCl pH 7.5 was used in seven consecutive trials to measure binding and recovery of BChE from 100 mL human plasma. Between each trial the Hupresin was washed with 10 column volumes of 0.1 M sodium hydroxide. A similar trial was conducted with red blood cell AChE in 0.6% Triton X-100. It was found that the binding capacity for BChE and AChE was unaffected by washing Hupresin with 0.1 M sodium hydroxide. Hupresin could be washed with sodium hydroxide at least seven times without losing binding capacity.

  1. Selective detection of hypertoxic organophosphates pesticides via PDMS composite based acetylcholinesterase-inhibition biosensor.

    PubMed

    Zhao, Wei; Ge, Pei-Yu; Xu, Jing-Juan; Chen, Hong-Yuan

    2009-09-01

    We report on a pair of highly sensitive amperometric biosensors for organophosphate pesticides (OPs) based on assembling acetylcholinesterase (AChE) on poly(dimethylsiloxane) (PDMS)-poly(diallydimethylemmonium) (PDDA)/gold nanoparticles (AuNPs) composite film. Two AChE immobilization strategies are proposed based on the composite film with hydrophobic and hydrophilic surface tailored by oxygen plasma. The twin biosensors show interesting different electrochemical performances. The hydrophobic surface based PDMS-PDDAN AuNPs/choline oxidase (ChO)/AChE biosensor (biosensor-1) shows excellent stability and unique selectivity to hypertoxic organophosphate. At optimal conditions, this biosensor-1 could measure 5.0 x 10(-10) g/L paraoxon and 1.0 x 10(-9) g/L parathion. As for the hydrophilic surface based biosensor (biosensor-2), it shows no selectivity but can be commonly used for the detection of most OPs. Based on the structure of AChE, it is assumed that via the hydrophobic interaction between enzyme molecules and hydrophobic surface, the enzyme active sites surrounded by hydrophobic amino acids face toward the surface and get better protection from OPs. This assumption may explain the different performances of the twin biosensors and especially the unique selectivity of biosensor-1 to hypertoxic OPs. Real sample detection was performed and the omethoate residue on Cottomrose Hibiscus leaves was detected with biosensor-1.

  2. Extracts and constituents of Leontopodium alpinum enhance cholinergic transmission: Brain ACh increasing and memory improving properties

    PubMed Central

    Hornick, Ariane; Schwaiger, Stefan; Rollinger, Judith M.; Vo, Nguyen Phung; Prast, Helmut; Stuppner, Hermann

    2012-01-01

    Leontopodium alpinum (‘Edelweiss’) was phytochemically investigated for constituents that might enhance cholinergic neurotransmission. The potency to increase synaptic availability of acetylcholine (ACh) in rat brain served as key property for the bioguided isolation of cholinergically active compounds using different chromatographic techniques. The dichlormethane (DCM) extract of the root, fractions and isolated constituents were injected i.c.v. and the effect on brain ACh was detected via the push–pull technique. The DCM extract enhanced extracellular ACh concentration in rat brain and inhibited acetylcholinesterase (AChE) in vitro. The extracellular level of brain ACh was significantly increased by the isolated sesquiterpenes, isocomene and 14-acetoxyisocomene, while silphiperfolene acetate and silphinene caused a small increasing tendency. Only silphiperfolene acetate showed in vitro AChE inhibitory activity, thus suggesting the other sesquiterpenes to stimulate cholinergic transmission by an alternative mechanism of action. Isocomene was further investigated with behavioural tasks in mice. It restored object recognition in scopolamine-impaired mice and showed nootropic effects in the T-maze alternation task in normal and scopolamine-treated mice. Additionally, this sesquiterpene reduced locomotor activity of untreated mice in the open field task, while the activity induced by scopolamine was abolished. The enhancement of synaptic availability of ACh, the promotion of alternation, and the amelioration of scopolamine-induced deficit are in accordance with a substance that amplifies cholinergic transmission. Whether the mechanism of action is inhibition of AChE or another pro-cholinergic property remains to be elucidated. Taken together, isocomene and related constituents of L. alpinum deserve further interest as potential antidementia agents in brain diseases associated with cholinergic deficits. PMID:18541221

  3. Chemical Composition and Acetylcholinesterase Inhibitory Activity of Essential Oils from Piper Species.

    PubMed

    Xiang, Cai-Peng; Han, Jia-Xin; Li, Xing-Cong; Li, Yun-Hui; Zhang, Yi; Chen, Lin; Qu, Yan; Hao, Chao-Yun; Li, Hai-Zhou; Yang, Chong-Ren; Zhao, San-Jun; Xu, Min

    2017-05-10

    The essential oils (EOs) derived from aromatic plants such as Piper species are considered to play a role in alleviating neuronal ailments that are associated with inhibition of acetylcholinesterase (AChE). The chemical compositions of 23 EOs prepared from 16 Piper spp. were analyzed by both gas chromatography with a flame ionization detector (GC-FID) and gas chromatography-mass spectrometry (GC-MS). A total of 76 compounds were identified in the EOs from the leaves and stems of 19 samples, while 30 compounds were detected in the EOs from the fruits of four samples. Sesquiterpenes and phenylpropanoids were found to be rich in these EOs, of which asaricin, caryophyllene, caryophyllene oxide, isospathulenol, (+)-spathulenol, and β-bisabolene are the major constituents. The EOs from the leaves and stems of Piper austrosinense, P. puberulum, P. flaviflorum, P. betle, and P. hispidimervium showed strong AChE inhibitory activity with IC 50 values in the range of 1.51 to 13.9 mg/mL. A thin-layer chromatography (TLC) bioautography assay was employed to identify active compound(s) in the most active EO from P. hispidimervium. The active compound was isolated and identified as asaricin, which gave an IC 50 value of 0.44 ± 0.02 mg/mL against AChE, comparable to galantamine with an IC 50 0.15 ± 0.01 mg/mL.

  4. Molecular and Kinetic Properties of Two Acetylcholinesterases from the Western Honey Bee, Apis mellifera

    PubMed Central

    Kim, Young Ho; Cha, Deok Jea; Jung, Je Won; Kwon, Hyung Wook; Lee, Si Hyeock

    2012-01-01

    We investigated the molecular and kinetic properties of two acetylcholinesterases (AmAChE1 and AmAChE2) from the Western honey bee, Apis mellifera. Western blot analysis revealed that AmAChE2 has most of catalytic activity rather than AmAChE1, further suggesting that AmAChE2 is responsible for synaptic transmission in A. mellifera, in contrast to most other insects. AmAChE2 was predominately expressed in the ganglia and head containing the central nervous system (CNS), while AmAChE1 was abundantly observed not only in the CNS but also in the peripheral nervous system/non-neuronal tissues. Both AmAChEs exist as homodimers; the monomers are covalently connected via a disulfide bond under native conditions. However, AmAChE2 was associated with the cell membrane via the glycophosphatidylinositol anchor, while AmAChE1 was present as a soluble form. The two AmAChEs were functionally expressed with a baculovirus system. Kinetic analysis revealed that AmAChE2 has approximately 2,500-fold greater catalytic efficiency toward acetylthiocholine and butyrylthiocholine than AmAChE1, supporting the synaptic function of AmAChE2. In addition, AmAChE2 likely serves as the main target of the organophosphate (OP) and carbamate (CB) insecticides as judged by the lower IC50 values against AmAChE2 than against AmAChE1. When OP and CB insecticides were pre-incubated with a mixture of AmAChE1 and AmAChE2, a significant reduction in the inhibition of AmAChE2 was observed, suggesting a protective role of AmAChE1 against xenobiotics. Taken together, based on their tissue distribution pattern, molecular and kinetic properties, AmAChE2 plays a major role in synaptic transmission, while AmAChE1 has non-neuronal functions, including chemical defense. PMID:23144990

  5. Mouse Acetylcholinesterase Unliganded and in Complex with Huperzine A: A Comparison of Molecular Dynamics Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tara, Sylvia; Straatsma, TP; Mccammon, Andy

    1999-06-01

    A 1 ns molecular dynamics simulation of unliganded mouse acetylcholinesterase (AChE) is compared to a previous simulation of mouse AChE complexed with Huperzine A (HupA). Several common features are observed. In both simulations, the active site gorge fluctuates in size during the 1 ns trajectory, and is completely pinched off several times. Many of the residues in the gorge that formed hydrogen bonds with HupA in the simulation of the complex, now form hydrogen bonds with other protein residues and water molecules in the gorge. The opening of a "backdoor" entrance to the active site that was found in themore » simulation of the complex is also observed in the unliganded simulation. Differences between the two simulations include overall lower structural RMS deviations for residues in the gorge in the unliganded simulation, a smaller diameter of the gorge in the absence of HupA, and the disappearance of a side channel that was frequently present in the liganded simulation. The differences between the two simulations can be attributed, in part, to the interaction of AChE with HupA.« less

  6. Novel acetylcholinesterase inhibitors from Zijuan tea and biosynthetic pathway of caffeoylated catechin in tea plant.

    PubMed

    Wang, Wei; Fu, Xi-Wen; Dai, Xin-Long; Hua, Fang; Chu, Gang-Xiu; Chu, Ming-Jie; Hu, Feng-Lin; Ling, Tie-Jun; Gao, Li-Ping; Xie, Zhong-Wen; Wan, Xiao-Chun; Bao, Guan-Hu

    2017-12-15

    Zijuan tea is a special cultivar of Yunnan broad-leaf tea (Camellia sinensis var. assamica) with purple buds, leaves, and stems. Phytochemical study on this tea led to the discovery of three hydroxycinnamoylated catechins (HCCs) (1-3), seven other catechins (4-10), three proanthocyanidins (11-13), five flavones and flavone glycosides (14-18), two alkaloids (19, 20), one steroid (21), and one phenylpropanoid glycoside (22). The isolation and structural elucidation of the caffeoylated catechin (1) by means of spectroscopic techniques were described. We also provide the first evidence that 1 is synthesized via a two-step pathway in tea plant. The three HCCs (1-3) were investigated on their bioactivity through molecular modeling simulation and biochemical experiments. Our results show that they bind acetylcholinesterase (AChE) tightly and have strong AChE inhibitory activity with IC 50 value at 2.49, 11.41, 62.26μM, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Nanoparticle-based immunosensor with apoferritin templated metallic phosphate label for quantification of phosphorylated acetylcholinesterase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Dan; Chen, Aiqiong; Xie, Yunying

    2011-05-15

    A new sandwich-like electrochemical immunosensor has been developed for quantification of organophosphorylated acetylcholinesterase (OP-AChE), an exposure biomarker of organophosphate pesticides and nerve agents. Zirconia nanoparticles (ZrO2 NPs) were anchored on a screen printed electrode (SPE) to preferably capture OP-AChE adducts by metal chelation with phospho-moieties, which was selectively recognized by lead phosphate-apoferritin labeled anti-AChE antibody (LPA-anti-AChE). The sandwich-like immunoreactions were performed among ZrO2 NPs, OP-AChE and LPA-anti-AChE to form ZrO2/OP-AChE/LPA-anti-AChE complex and the released lead ions were detected on a disposable SPE. The binding affinity was investigated by both square wave voltammetry (SWV) and quartz crystal microbalance (QCM) measurements. Themore » proposed immunosensor yielded a linear response current over a broad OP-AChE concentrations range from 0.05 nM to 10 nM, with detection limit of 0.02 nM, which has enough sensitivity for monitoring of low-dose exposure to OPs. This method avoids the drawback of unavailability of commercial OP-specific antibody as well as amplifies detection signal by using apoferritin encoded metallic phosphate nanoparticle tags. This nanoparticle-based immunosensor offers a new method for rapid, sensitive, selective and inexpensive quantification of phosphorylated adducts for monitoring of OP pesticides and nerve agents exposures.« less

  8. New derivatives of 3,4-dihydroisoquinoline-3-carboxylic acid with free-radical scavenging, D-amino acid oxidase, acetylcholinesterase and butyrylcholinesterase inhibitory activity.

    PubMed

    Solecka, Jolanta; Guśpiel, Adam; Postek, Magdalena; Ziemska, Joanna; Kawęcki, Robert; Lęczycka, Katarzyna; Osior, Agnieszka; Pietrzak, Bartłomiej; Pypowski, Krzysztof; Wyrzykowska, Agata

    2014-09-30

    A series of 3,4-dihydroisoquinoline-3-carboxylic acid derivatives were synthesised and tested for their free-radical scavenging activity using 2,2-diphenyl-1-picrylhydrazyl radical (DPPH·), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical (ABTS·+), superoxide anion radical (O2·-) and nitric oxide radical (·NO) assays. We also studied d-amino acid oxidase (DAAO), acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory activity. Almost each of newly synthesised compounds exhibited radical scavenging capabilities. Moreover, several compounds showed moderate inhibitory activities against DAAO, AChE and BuChE. Compounds with significant free-radical scavenging activity may be potential candidates for therapeutics used in oxidative-stress-related diseases.

  9. In silico development of new acetylcholinesterase inhibitors.

    PubMed

    Pascoini, A L; Federico, L B; Arêas, A L F; Verde, B A; Freitas, P G; Camps, I

    2018-04-19

    In this work, we made use of fragment-based drug design (FBDD) and de novo design to obtain more powerful acetylcholinesterase (AChE) inhibitors. AChE is associated with Alzheimer's disease (AD). It was found that the cholinergic pathways in the cerebral cortex are compromised in AD and the accompanying cholinergic deficiency contributes to the cognitive deterioration of AD patients. In the FBDD approach, fragments are docked into the active site of the protein. As fragments are molecular groups with a low number of atoms, it is possible to study their interaction with localized amino acids. Once the interactions are measured, the fragments are organized by affinity and then linked together to form new molecules with a high degree of interaction with the active site. In the other approach, we used the de novo design technique starting from reference drugs used in the AD treatment. These drugs were broken into fragments (seeds). In the growing strategy, fragments were added to each seed, growing new molecules. In the linking strategy, two or more separated seeds were linked with different fragments. Both strategies combined produced a library of more than 2 million compounds. This library was filtered using absorption, distribution, metabolism, and excretion properties. The resulting library with around six thousand compounds was filtered again. In this case, structures with Tanimoto coefficients >.85 were discarded. The final library with 1500 compounds was submitted to docking studies. As a result, 10 compounds with better interaction energy than the reference drugs were obtained.

  10. A Novel Application of Multiscale Entropy in Electroencephalography to Predict the Efficacy of Acetylcholinesterase Inhibitor in Alzheimer's Disease

    PubMed Central

    Tsai, Ping-Huang; Liu, Fang-Chun; Tsao, Jenho; Wang, Yung-Hung; Lo, Men-Tzung

    2015-01-01

    Alzheimer's disease (AD) is the most common form of dementia. According to one hypothesis, AD is caused by the reduced synthesis of the neurotransmitter acetylcholine. Therefore, acetylcholinesterase (AChE) inhibitors are considered to be an effective therapy. For clinicians, however, AChE inhibitors are not a predictable treatment for individual patients. We aimed to disclose the difference by biosignal processing. In this study, we used multiscale entropy (MSE) analysis, which can disclose the embedded information in different time scales, in electroencephalography (EEG), in an attempt to predict the efficacy of AChE inhibitors. Seventeen newly diagnosed AD patients were enrolled, with an initial minimental state examination (MMSE) score of 18.8 ± 4.5. After 12 months of AChE inhibitor therapy, 7 patients were responsive and 10 patients were nonresponsive. The major difference between these two groups is Slope 2 (MSE6 to 20). The area below the receiver operating characteristic (ROC) curve of Slope 2 is 0.871 (95% CI = 0.69–1). The sensitivity is 85.7% and the specificity is 60%, whereas the cut-off value of Slope 2 is −0.024. Therefore, MSE analysis of EEG signals, especially Slope 2, provides a potential tool for predicting the efficacy of AChE inhibitors prior to therapy. PMID:26120358

  11. Wnt3a induces the expression of acetylcholinesterase during osteoblast differentiation via the Runx2 transcription factor.

    PubMed

    Xu, Miranda L; Bi, Cathy W C; Liu, Etta Y L; Dong, Tina T X; Tsim, Karl W K

    2017-07-28

    Acetylcholinesterase (AChE) hydrolyzes acetylcholine to terminate cholinergic transmission in neurons. Apart from this AChE activity, emerging evidence suggests that AChE could also function in other, non-neuronal cells. For instance, in bone, AChE exists as a proline-rich membrane anchor (PRiMA)-linked globular form in osteoblasts, in which it is proposed to play a noncholinergic role in differentiation. However, this hypothesis is untested. Here, we found that in cultured rat osteoblasts, AChE expression was increased in parallel with osteoblastic differentiation. Because several lines of evidence indicate that AChE activity in osteoblast could be triggered by Wnt/β-catenin signaling, we added recombinant human Wnt3a to cultured osteoblasts and found that this addition induced expression of the ACHE gene and protein product. This Wnt3a-induced AChE expression was blocked by the Wnt-signaling inhibitor Dickkopf protein-1 (DKK-1). We hypothesized that the Runt-related transcription factor 2 (Runx2), a downstream transcription factor in Wnt/β-catenin signaling, is involved in AChE regulation in osteoblasts, confirmed by the identification of a Runx2-binding site in the ACHE gene promoter, further corroborated by ChIP. Of note, Runx2 overexpression in osteoblasts induced AChE expression and activity of the ACHE promoter tagged with the luciferase gene. Moreover, deletion of the Runx2-binding site in the ACHE promoter reduced its activity during osteoblastic differentiation, and addition of 5-azacytidine and trichostatin A to differentiating osteoblasts affected AChE expression, suggesting epigenetic regulation of the ACHE gene. We conclude that AChE plays a role in osteoblastic differentiation and is regulated by both Wnt3a and Runx2. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Lead identification of acetylcholinesterase inhibitors-histamine H3 receptor antagonists from molecular modeling.

    PubMed

    Bembenek, Scott D; Keith, John M; Letavic, Michael A; Apodaca, Richard; Barbier, Ann J; Dvorak, Lisa; Aluisio, Leah; Miller, Kirsten L; Lovenberg, Timothy W; Carruthers, Nicholas I

    2008-03-15

    Currently, the only clinically effective treatment for Alzheimer's disease (AD) is the use of acetylcholinesterase (AChE) inhibitors. These inhibitors have limited efficacy in that they only treat the symptoms and not the disease itself. Additionally, they often have unpleasant side effects. Here we consider the viability of a single molecule having the actions of both an AChE inhibitor and histamine H(3) receptor antagonist. Both histamine H(3) receptor antagonists and AChE inhibitors improve and augment cholinergic neurotransmission in the cortex. However, whereas an AChE inhibitor will impart its effect everywhere, a histamine H(3) antagonist will raise acetylcholine levels mostly in the brain as its mode of action will primarily be on the central nervous system. Therefore, the combination of both activities in a single molecule could be advantageous. Indeed, studies suggest an appropriate dual-acting compound may offer the desired therapeutic effect with fewer unpleasant side effects [CNS Drugs2004, 18, 827]. Further, recent studies(2) indicate the peripheral anionic site (PAS) of AChE interacts with the beta-amyloid (betaA) peptide. Consequently, a molecule capable of disrupting this interaction may have a significant impact on the production of or the aggregation of betaA. This may result in slowing down the progression of the disease rather than only treating the symptoms as current therapies do. Here, we detail how the use of the available crystal structure information, pharmacophore modeling and docking (automated, manual, classical, and QM/MM) lead to the identification of an AChE inhibitor-histamine H(3) receptor antagonist. Further, based on our models we speculate that this dual-acting compound may interact with the PAS. Such a dual-acting compound may be able to affect the pathology of AD in addition to providing symptomatic relief.

  13. ELECTRON MICROSCOPIC LOCALIZATION OF ACETYLCHOLINESTERASE AND NONSPECIFIC CHOLINESTERASE AT THE NEUROMUSCULAR JUNCTION BY THE GOLD-THIOCHOLINE AND GOLD-THIOLACETIC ACID METHODS

    PubMed Central

    Davis, Richard; Koelle, George B.

    1967-01-01

    By means of the gold-thiocholine (AuThCh) and gold-thiolacetic acid (AuThAc) methods, it has been demonstrated electron microscopically that acetylcholinesterase (AChE) is located at the prejunctional axoplasmic membrane and the postjunctional sarcoplasmic membrane, including the full lengths of its invaginations, at the motor end plate of mouse intercostal muscle. Nonspecific cholinesterase (ChE) is present in relatively low concentrations at the same sites, and in greater concentrations in the teloglial Schwann sheath cells. Significant amounts of reaction product appeared in the junctional cleft only after prolonged incubation with both methods. The identification of AChE and ChE was confirmed by the use of appropriate concentrations of several selective inhibitors. In confirmation of previous studies by light microscopy, the AuThCh method is more specific for AChE and ChE, whereas the AuThAc method allows greater accuracy of localization. PMID:6033530

  14. An Amperometric Acetylcholinesterase Sensor Based on the Bio-templated Synthesis of Hierarchical Mesoporous Bioactive Glass Microspheres

    NASA Astrophysics Data System (ADS)

    Lv, Zhuo; Luo, Ruiping; Xi, Lijuan; Chen, Yang; Wang, Hongsu

    2017-11-01

    This work describes the synthesis of three-dimensional hollow hierarchical mesoporous bioactive glass (HMBG) microspheres based on Herba leonuri pollen grains via a hydrothermal method. The HMBG microspheres perfectly copied the hierarchical porous structure and inner hollow structure constituting the double-layer surface of the natural Herba leonuri pollen grains. This structural mimicry of the pollen grains resulted in a higher degree of adsorption of acetylcholinesterase (AChE) on HMBG microspheres in comparison with mesoporous bioactive glass. Subsequently, an amperometric biosensor for the detection of Malathion was fabricated by immobilizing AChE onto an HMBG microspheres-modified carbon paste electrode. The biosensor response exhibited two good linear ranges during an incubation time of 10 min in the malathion concentration ranges of 0.02-50 ppb and 50-600 ppb, with a detection limit of 0.0135 ppb ( S/ N = 3). Overall, the prepared enzymatic biosensor showed high sensitivity in the rapid detection of Malathion and could be applied to detect pesticide residues in vegetable matter.

  15. Effects of Anticholinesterases on Catalysis and Induced Conformational Change of the Peripheral Anionic Site of Murine Acetylcholinesterase

    PubMed Central

    Tong, Fan; Islam, Rafique M.; Carlier, Paul R.; Ma, Ming; Ekström, Fredrik; Bloomquist, Jeffrey R.

    2013-01-01

    Conventional insecticides targeting acetylcholinesterase (AChE) typically show high mammalian toxicities and because there is resistance to these compounds in many insect species, alternatives to established AChE inhibitors used for pest control are needed. Here we used a fluorescence method to monitor interactions between various AChE inhibitors and the AChE peripheral anionic site, which is a novel target for new insecticides acting on this enzyme. The assay uses thioflavin-T as a probe, which binds to the peripheral anionic site of AChE and yields an increase in fluorescent signal. Three types of AChE inhibitors were studied: catalytic site inhibitors (carbamate insecticides, edrophonium, and benzylpiperidine), peripheral site inhibitors (tubocurarine, ethidium bromide, and propidium iodide), and bivalent inhibitors (donepezil, BW284C51, and a series of bis(n)-tacrines). All were screened on murine AChE to compare and contrast changes of peripheral site conformation in the TFT assay with catalytic inhibition. All the inhibitors reduced thioflavin-T fluorescence in a concentration-dependent manner with potencies (IC50) ranging from 8 nM for bis(6)-tacrine to 159 μM for benzylpiperidine. Potencies in the fluorescence assay were correlated well with their potencies for enzyme inhibition (R2 = 0.884). Efficacies for reducing thioflavin-T fluorescence ranged from 23–36% for catalytic site inhibitors and tubocurarine to near 100% for ethidium bromide and propidium iodide. Maximal efficacies could be reconciled with known mechanisms of interaction of the inhibitors with AChE. When extended to pest species, we anticipate these findings will assist in the discovery and development of novel, selective bivalent insecticides acting on AChE. PMID:24003261

  16. A benzothiazole/piperazine derivative with acetylcholinesterase inhibitory activity: Improvement in streptozotocin-induced cognitive deficits in rats.

    PubMed

    Demir Özkay, Ümide; Can, Özgür Devrim; Sağlık, Begüm Nurpelin; Turan, Nazlı

    2017-12-01

    Acetylcholinesterase (AChE) inhibitors are frequently prescribed to mitigate the cognitive decline in Alzheimer's disease. Thus, we investigated the possible efficacy of the AChE inhibitor 2-[(6-Nitro-2-benzothiazolyl)amino]-2-oxoethyl4-[2-(N,N-dimethylamino)ethyl] piperazine-1 carbodithioate (BPCT) in a streptozotocin (STZ)-induced Alzheimer's disease model (SADM). First, we analyzed the molecular interaction of BPCT with AChE via a docking study. Then, the cognitive effects of BPCT (10 and 20mg/kg) were evaluated in intracerebroventricular STZ- and vehicle-administered rats with the elevated plus maze (EPM), Morris water maze (MWM), and active avoidance (AA) tests. Locomotor activity was also assessed. Docking analysis indicated significant binding of BPCT to the AChE active site. In behavioral tests, STZ administration impaired cognitive performance in SADM rats versus control rats. Treatment with donepezil or BPCT significantly decreased the prolonged 2nd retention transfer latency and 2nd retention latency time values of the SADM group in the EPM and MWM tests, respectively. Further, prolonged latency times were decreased and reduced frequency of avoidance events were increased in the AA test. Locomotor activity between groups was not different. BPCT appears to function as a central AChE inhibitor, and its improvement of deficits in SADM rats suggests that it has therapeutic potential in Alzheimer's disease. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  17. Acetylcholinesterase Inhibitors: Pharmacology and Toxicology

    PubMed Central

    Čolović, Mirjana B; Krstić, Danijela Z; Lazarević-Pašti, Tamara D; Bondžić, Aleksandra M; Vasić, Vesna M

    2013-01-01

    Acetylcholinesterase is involved in the termination of impulse transmission by rapid hydrolysis of the neurotransmitter acetylcholine in numerous cholinergic pathways in the central and peripheral nervous systems. The enzyme inactivation, induced by various inhibitors, leads to acetylcholine accumulation, hyperstimulation of nicotinic and muscarinic receptors, and disrupted neurotransmission. Hence, acetylcholinesterase inhibitors, interacting with the enzyme as their primary target, are applied as relevant drugs and toxins. This review presents an overview of toxicology and pharmacology of reversible and irreversible acetylcholinesterase inactivating compounds. In the case of reversible inhibitors being commonly applied in neurodegenerative disorders treatment, special attention is paid to currently approved drugs (donepezil, rivastigmine and galantamine) in the pharmacotherapy of Alzheimer’s disease, and toxic carbamates used as pesticides. Subsequently, mechanism of irreversible acetylcholinesterase inhibition induced by organophosphorus compounds (insecticides and nerve agents), and their specific and nonspecific toxic effects are described, as well as irreversible inhibitors having pharmacological implementation. In addition, the pharmacological treatment of intoxication caused by organophosphates is presented, with emphasis on oxime reactivators of the inhibited enzyme activity administering as causal drugs after the poisoning. Besides, organophosphorus and carbamate insecticides can be detoxified in mammals through enzymatic hydrolysis before they reach targets in the nervous system. Carboxylesterases most effectively decompose carbamates, whereas the most successful route of organophosphates detoxification is their degradation by corresponding phosphotriesterases. PMID:24179466

  18. Inhibition and Larvicidal Activity of Phenylpropanoids from Piper sarmentosum on Acetylcholinesterase against Mosquito Vectors and Their Binding Mode of Interaction.

    PubMed

    Hematpoor, Arshia; Liew, Sook Yee; Chong, Wei Lim; Azirun, Mohd Sofian; Lee, Vannajan Sanghiran; Awang, Khalijah

    2016-01-01

    Aedes aegypti, Aedes albopictus and Culex quinquefasciatus are vectors of dengue fever and West Nile virus diseases. This study was conducted to determine the toxicity, mechanism of action and the binding interaction of three active phenylpropanoids from Piper sarmentosum (Piperaceae) toward late 3rd or early 4th larvae of above vectors. A bioassay guided-fractionation on the hexane extract from the roots of Piper sarmentosum led to the isolation and identification of three active phenylpropanoids; asaricin 1, isoasarone 2 and trans-asarone 3. The current study involved evaluation of the toxicity and acetylcholinesterase (AChE) inhibition of these compounds against Aedes aegypti, Aedes albopictus and Culex quinquefasciatus larvae. Asaricin 1 and isoasarone 2 were highly potent against Aedes aegypti, Aedes albopictus and Culex quinquefasciatus larvae causing up to 100% mortality at ≤ 15 μg/mL concentration. The ovicidal activity of asaricin 1, isoasarone 2 and trans-asarone 3 were evaluated through egg hatching. Asaricin 1 and isoasarone 2 showed potent ovicidal activity. Ovicidal activity for both compounds was up to 95% at 25μg/mL. Asaricin 1 and isoasarone 2 showed strong inhibition on acetylcholinesterase with relative IC50 values of 0.73 to 1.87 μg/mL respectively. These findings coupled with the high AChE inhibition may suggest that asaricin 1 and isoasarone 2 are neuron toxic compounds toward Aedes aegypti, Aedes albopictus and Culex quinquefasciatus. Further computational docking with Autodock Vina elaborates the possible interaction of asaricin 1 and isoasarone 2 with three possible binding sites of AChE which includes catalytic triads (CAS: S238, E367, H480), the peripheral sites (PAS: E72, W271) and anionic binding site (W83). The binding affinity of asaricin 1 and isoasarone 2 were relatively strong with asaricin 1 showed a higher binding affinity in the anionic pocket.

  19. Taspine: bioactivity-guided isolation and molecular ligand-target insight of a potent acetylcholinesterase inhibitor from Magnolia x soulangiana.

    PubMed

    Rollinger, Judith M; Schuster, Daniela; Baier, Elisabeth; Ellmerer, Ernst P; Langer, Thierry; Stuppner, Hermann

    2006-09-01

    A bioactivity-guided approach was taken to identify the acetylcholinesterase (AChE, EC 3.1.1.7) inhibitory agent in a Magnolia x soulangiana extract using a microplate enzyme assay with Ellman's reagent. This permitted the isolation of the alkaloids taspine (1) and (-)-asimilobine (2), which were detected for the first time in this species. Compound 1 showed a significantly higher effect on AChE than the positive control galanthamine and selectively inhibited the enzyme in a long-lasting and concentration-dependent fashion with an IC(50) value of 0.33 +/- 0.07 muM. Extensive molecular docking studies were performed with human and Torpedo californica-AChE employing Gold software to rationalize the binding interaction. The results suggested ligand 1 to bind in an alternative binding orientation when compared to galanthamine. While this is located in close vicinity to the catalytic amino acid triad, the 1-AChE complex was found to be stabilized by (i) sandwich-like pi-stacking interactions between the planar aromatic ligand (1) and the Trp84 and Phe330 of the enzyme, (ii) an esteratic site anchoring with the amino side chain, and (iii) a hydrogen-bonding network.

  20. The effect of curcumin in the ectonucleotidases and acetylcholinesterase activities in synaptosomes from the cerebral cortex of cigarette smoke-exposed rats.

    PubMed

    Jaques, Jeandre Augusto Dos Santos; Rezer, João Felipe Peres; Gonçalves, Jamile Fabbrin; Spanevello, Rosélia Maria; Gutierres, Jessié Martins; Pimentel, Victor Câmera; Thomé, Gustavo Roberto; Morsch, Vera Maria; Schetinger, Maria Rosa Chitolina; Leal, Daniela Bitencourt Rosa

    2011-12-01

    With the evidence that curcumin may be a potent neuroprotective agent and that cigarette smoke is associated with a decline in the cognitive performance as our bases, we investigated the activities of Ecto-Nucleoside Triphosphate Diphosphohydrolase (NTPDase), 5'-nucleotidase and acetylcholinesterase (AChE) in cerebral cortex synaptosomes from cigarette smoke-exposed rats treated with curcumin (Cur). The experimental procedures entailed two sets of experiments. In the first set, the groups were vehicle, Cur 12·5, 25 and 50 mg·kg(-1) ; those in the second set were vehicle, smoke, smoke and Cur 12·5, 25 and 50 mg·kg(-1) . Curcumin prevented the increased NTPDase, 5'-nucleotidase and AChE activities caused by smoke exposure. We suggest that treatment with Cur was protective because the decrease of ATP and acetylcholine (ACh) concentrations is responsible for cognitive impairment, and both ATP and ACh have key roles in neurotransmission. Copyright © 2011 John Wiley & Sons, Ltd.

  1. Silibinin inhibits acetylcholinesterase activity and amyloid β peptide aggregation: a dual-target drug for the treatment of Alzheimer's disease.

    PubMed

    Duan, Songwei; Guan, Xiaoyin; Lin, Runxuan; Liu, Xincheng; Yan, Ying; Lin, Ruibang; Zhang, Tianqi; Chen, Xueman; Huang, Jiaqi; Sun, Xicui; Li, Qingqing; Fang, Shaoliang; Xu, Jun; Yao, Zhibin; Gu, Huaiyu

    2015-05-01

    Alzheimer's disease (AD) is characterized by amyloid β (Aβ) peptide aggregation and cholinergic neurodegeneration. Therefore, in this paper, we examined silibinin, a flavonoid extracted from Silybum marianum, to determine its potential as a dual inhibitor of acetylcholinesterase (AChE) and Aβ peptide aggregation for AD treatment. To achieve this, we used molecular docking and molecular dynamics simulations to examine the affinity of silibinin with Aβ and AChE in silico. Next, we used circular dichroism and transmission electron microscopy to study the anti-Aβ aggregation capability of silibinin in vitro. Moreover, a Morris Water Maze test, enzyme-linked immunosorbent assay, immunohistochemistry, 5-bromo-2-deoxyuridine double labeling, and a gene gun experiment were performed on silibinin-treated APP/PS1 transgenic mice. In molecular dynamics simulations, silibinin interacted with Aβ and AChE to form different stable complexes. After the administration of silibinin, AChE activity and Aβ aggregations were down-regulated, and the quantity of AChE also decreased. In addition, silibinin-treated APP/PS1 transgenic mice had greater scores in the Morris Water Maze. Moreover, silibinin could increase the number of newly generated microglia, astrocytes, neurons, and neuronal precursor cells. Taken together, these data suggest that silibinin could act as a dual inhibitor of AChE and Aβ peptide aggregation, therefore suggesting a therapeutic strategy for AD treatment. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. The interactions of azure B, a metabolite of methylene blue, with acetylcholinesterase and butyrylcholinesterase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petzer, Anél, E-mail: 12264954@nwu.ac.za; Harvey, Brian H.; Petzer, Jacobus P.

    Methylene blue (MB) is reported to possess diverse pharmacological actions and is attracting increasing attention for the treatment of neurodegenerative disorders such as Alzheimer's disease. Among the pharmacological actions of MB, is the significant inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). These activities may, at least in part, underlie MB's beneficial effects in Alzheimer's disease. MB is metabolized to yield N-demethylated products of which azure B, the monodemethyl metabolite, is the predominant species. Azure B has been shown to be pharmacologically active and also possesses a variety of biological actions. Azure B therefore may contribute to the pharmacological profile ofmore » MB. Based on these considerations, the present study investigates the possibility that azure B may, similar to MB, act as an inhibitor of human AChE and BuChE. The results document that azure B inhibits AChE and BuChE with IC{sub 50} values of 0.486 μM and 1.99 μM, respectively. The results further show that azure B inhibits AChE and BuChE reversibly, and that the modes of inhibition are most likely competitive. Although the AChE and BuChE inhibitory activities of azure B are twofold and fivefold, respectively, less potent than those recorded for MB [IC{sub 50}(AChE) = 0.214 μM; IC{sub 50}(BuChE) = 0.389 μM] under identical conditions, azure B may be a contributor to MB's in vivo activation of the cholinergic system and beneficial effects in Alzheimer's disease. - Highlights: • Methylene blue (MB) is a known inhibitor of AChE and BuChE. • Azure B, the major metabolite of MB, also is an inhibitor of AChE and BuChE. • Azure B may be a contributor to MB's in vivo activation of the cholinergic system. • Azure B may contribute to MB's potential in Alzheimer's disease therapy.« less

  3. An Acetylcholinesterase-Based Chronoamperometric Biosensor for Fast and Reliable Assay of Nerve Agents

    PubMed Central

    Pohanka, Miroslav; Adam, Vojtech; Kizek, Rene

    2013-01-01

    The enzyme acetylcholinesterase (AChE) is an important part of cholinergic nervous system, where it stops neurotransmission by hydrolysis of the neurotransmitter acetylcholine. It is sensitive to inhibition by organophosphate and carbamate insecticides, some Alzheimer disease drugs, secondary metabolites such as aflatoxins and nerve agents used in chemical warfare. When immobilized on a sensor (physico-chemical transducer), it can be used for assay of these inhibitors. In the experiments described herein, an AChE- based electrochemical biosensor using screen printed electrode systems was prepared. The biosensor was used for assay of nerve agents such as sarin, soman, tabun and VX. The limits of detection achieved in a measuring protocol lasting ten minutes were 7.41 × 10−12 mol/L for sarin, 6.31 × 10−12 mol/L for soman, 6.17 × 10−11 mol/L for tabun, and 2.19 × 10−11 mol/L for VX, respectively. The assay was reliable, with minor interferences caused by the organic solvents ethanol, methanol, isopropanol and acetonitrile. Isopropanol was chosen as suitable medium for processing lipophilic samples. PMID:23999806

  4. Inhibition of acetylcholinesterase and cytochrome oxidase activity in Fasciola gigantica cercaria by phytoconstituents.

    PubMed

    Sunita, Kumari; Habib, Maria; Kumar, P; Singh, Vinay Kumar; Husain, Syed Akhtar; Singh, D K

    2016-02-01

    Fasciolosis is an important cattle and human disease caused by Fasciola hepatica and Fasciola gigantica. One of the possible methods to control this problem is to interrupt the life cycle of Fasciola by killing its larva (redia and cercaria) in host snail. Molecular identification of cercaria larva of F. gigantica was done by comparing the nucleotide sequencing with adult F. gigantica. It was noted that nucleotide sequencing of cercaria larva and adult F. gigantica were 99% same. Every month during the year 2011-2012, in vivo treatment with 60% of 4 h LC50 of phyto cercaricides citral, ferulic acid, umbelliferone, azadirachtin and allicin caused significant inhibition of acetylcholinesterase (AChE) and cytochrome oxidase activity in the treated cercaria larva of F. gigantica. Whereas, activity of both enzymes were not significantly altered in the nervous tissues of vector snail Lymnaea acuminata exposed to same treatments. Maximum reduction in AChE (1.35% of control in month of June) and cytochrome oxidase (3.71% of control in the month of July) activity were noted in the cercaria exposed to 60% of 4 h LC50 of azadirachtin and allicin, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Acetylcholinesterase inhibition in cognition-relevant brain areas of mice treated with a nootropic Amazonian herbal (Marapuama).

    PubMed

    Figueiró, M; Ilha, J; Pochmann, D; Porciúncula, L O; Xavier, L L; Achaval, M; Nunes, D S; Elisabetsky, E

    2010-10-01

    The goal of acetylcholinesterase inhibitors (AChEIs) used to treat Alzheimer's patients is an improvement in cholinergic transmission. While currently available AChEIs have limited success, a huge impediment to the development of newer ones is access to the relevant brain areas. Promnesic, anti-amnesic and AChEI properties were identified in a standardized ethanol extract from Ptychopetalum olacoides (POEE), a medicinal plant favored by the elderly in Amazon communities. The purpose of this study was to provide conclusive evidence that orally given POEE induces AChE inhibition in brain areas relevant to cognition. Histochemistry experiments confirmed that the anticholinesterase compound(s) present in POEE are orally bioavailable, inducing meaningful AChE inhibition in the hippocampus CA1 (∼33%) and CA3 (∼20%), and striatum (∼17%). Ellman's colorimetric analysis revealed that G1 and G4 AChE isoforms activities were markedly inhibited (66 and 72%, respectively) in hippocampus and frontal cortex (50 and 63%, respectively), while G4 appeared to be selectively inhibited (72%) in the striatum. Western blotting showed that POEE did not induce significant changes in the AChE immunocontent suggesting that its synthesis is not extensively modified. This study provides definitive proof of meaningful anticholinesterase activity compatible with the observed promnesic and anti-amnesic effects of POEE in mice, reaffirming the potential of this extract for treating neurodegenerative conditions where a hypofunctioning cholinergic neurotransmission is prominent. Adequate assessment of the safety and efficacy of this extract and/or its isolated active compound(s) are warranted. 2010 Elsevier GmbH. All rights reserved.

  6. [Distribution of acetylcholinesterase activity in the digestive system of the gastropod molluscs Littorina littorea and Achatina fulica].

    PubMed

    Zaĭtseva, O V; Kuznetsova, T V

    2008-01-01

    With the use of the histochemical procedure for the demonstration of acetylcholinesterase (AchE) activity, the distribution cholinergic regulatory elements was studied in the esophagus, the pharynx, the stomach, the liver (the digestive gland) and the intestine in sea and terrestrial gastropod molluscs that differed in their general organization level, lifestyle, habitat and feeding type. In both molluscs, all the parts of the digestive tract contained the significant amount of intraepithelial AchE-positive cells of the open type, single subepithelial neurons and the nervous fibers localized among the muscle cells of the wall of the organs. The basal processes of the AchE-positive intraepithelial cells were shown to form the intraepithelial nerve plexus and to pass under the epithelium. The peculiarities and common principles in the distribution of the nervous elements detected, their possible function and the regulatory role in the digestion in gastropod molluscs and other animals are discussed.

  7. Mouse auditory cortex differs from visual and somatosensory cortices in the laminar distribution of cytochrome oxidase and acetylcholinesterase.

    PubMed

    Anderson, L A; Christianson, G B; Linden, J F

    2009-02-03

    Cytochrome oxidase (CYO) and acetylcholinesterase (AChE) staining density varies across the cortical layers in many sensory areas. The laminar variations likely reflect differences between the layers in levels of metabolic activity and cholinergic modulation. The question of whether these laminar variations differ between primary sensory cortices has never been systematically addressed in the same set of animals, since most studies of sensory cortex focus on a single sensory modality. Here, we compared the laminar distribution of CYO and AChE activity in the primary auditory, visual, and somatosensory cortices of the mouse, using Nissl-stained sections to define laminar boundaries. Interestingly, for both CYO and AChE, laminar patterns of enzyme activity were similar in the visual and somatosensory cortices, but differed in the auditory cortex. In the visual and somatosensory areas, staining densities for both enzymes were highest in layers III/IV or IV and in lower layer V. In the auditory cortex, CYO activity showed a reliable peak only at the layer III/IV border, while AChE distribution was relatively homogeneous across layers. These results suggest that laminar patterns of metabolic activity and cholinergic influence are similar in the mouse visual and somatosensory cortices, but differ in the auditory cortex.

  8. Novel multipotent tacrine-dihydropyridine hybrids with improved acetylcholinesterase inhibitory and neuroprotective activities as potential drugs for the treatment of Alzheimer's disease.

    PubMed

    Marco-Contelles, José; León, Rafael; de Los Ríos, Cristóbal; Guglietta, Antonio; Terencio, José; López, Manuela G; García, Antonio G; Villarroya, Mercedes

    2006-12-28

    In this work we describe the synthesis and biological evaluation of the tacrine-1,4-dihydropyridine (DHP) hybrids (3-11). These multipotent molecules are the result of the juxtaposition of an acetylcholinesterase inhibitor (AChEI) such as tacrine (1) and a 1,4-DHP such as nimodipine (2). Compounds 3-11 are very selective and potent AChEIs and show an excellent neuroprotective profile and a moderate Ca2+ channel blockade effect. Consequently, these molecules are new potential drugs for the treatment of Alzheimer's disease.

  9. Competitive regulation of alternative splicing and alternative polyadenylation by hnRNP H and CstF64 determines acetylcholinesterase isoforms.

    PubMed

    Nazim, Mohammad; Masuda, Akio; Rahman, Mohammad Alinoor; Nasrin, Farhana; Takeda, Jun-Ichi; Ohe, Kenji; Ohkawara, Bisei; Ito, Mikako; Ohno, Kinji

    2017-02-17

    Acetylcholinesterase (AChE), encoded by the ACHE gene, hydrolyzes the neurotransmitter acetylcholine to terminate synaptic transmission. Alternative splicing close to the 3΄ end generates three distinct isoforms of AChET, AChEH and AChER. We found that hnRNP H binds to two specific G-runs in exon 5a of human ACHE and activates the distal alternative 3΄ splice site (ss) between exons 5a and 5b to generate AChET. Specific effect of hnRNP H was corroborated by siRNA-mediated knockdown and artificial tethering of hnRNP H. Furthermore, hnRNP H competes for binding of CstF64 to the overlapping binding sites in exon 5a, and suppresses the selection of a cryptic polyadenylation site (PAS), which additionally ensures transcription of the distal 3΄ ss required for the generation of AChET. Expression levels of hnRNP H were positively correlated with the proportions of the AChET isoform in three different cell lines. HnRNP H thus critically generates AChET by enhancing the distal 3΄ ss and by suppressing the cryptic PAS. Global analysis of CLIP-seq and RNA-seq also revealed that hnRNP H competitively regulates alternative 3΄ ss and alternative PAS in other genes. We propose that hnRNP H is an essential factor that competitively regulates alternative splicing and alternative polyadenylation.

  10. Assessing joint toxicity of four organophosphate and carbamate insecticides in common carp (Cyprinus carpio) using acetylcholinesterase activity as an endpoint.

    PubMed

    Wang, Yanhua; Chen, Chen; Zhao, Xueping; Wang, Qiang; Qian, Yongzhong

    2015-07-01

    Mixtures of organophosphate (OP) and carbamate (CB) pesticides are commonly detected in freshwater ecosystems. These pesticides inhibit the activity of acetylcholinesterase (AChE) and have potential to interfere with behaviors that may be essential for the survival of species. Although the effects of individual anticholinesterase insecticides on aquatic species have been studied for decades, the neurotoxicity of mixtures is still poorly understood. In the present study, brain AChE inhibition in carp (Cyprinus carpio) exposed to a series of concentrations of the organophosphates (malathion and triazophos) as well as the carbamates (fenobucarb and carbosulfan) was measured. In equitoxic mixtures, the observed AChE activity inhibition of the malathion plus triazophos, and triazophos plus carbosulfan mixtures, was synergism. In equivalent concentration mixtures, the combination of malathion plus fenobucarb mixture conformed to synergism, while the observed AChE activity inhibition of the remaining pairings was less than additive. Single pesticide risk assessments are likely to underestimate the impacts of these insecticides on carps in aquatic environment where mixtures occur. Moreover, mixtures of pesticides that have been commonly reported in aquatic ecosystems may pose a more important challenge than previously anticipated. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Design and prediction of new acetylcholinesterase inhibitor via quantitative structure activity relationship of huprines derivatives.

    PubMed

    Zhang, Shuqun; Hou, Bo; Yang, Huaiyu; Zuo, Zhili

    2016-05-01

    Acetylcholinesterase (AChE) is an important enzyme in the pathogenesis of Alzheimer's disease (AD). Comparative quantitative structure-activity relationship (QSAR) analyses on some huprines inhibitors against AChE were carried out using comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA), and hologram QSAR (HQSAR) methods. Three highly predictive QSAR models were constructed successfully based on the training set. The CoMFA, CoMSIA, and HQSAR models have values of r (2) = 0.988, q (2) = 0.757, ONC = 6; r (2) = 0.966, q (2) = 0.645, ONC = 5; and r (2) = 0.957, q (2) = 0.736, ONC = 6. The predictabilities were validated using an external test sets, and the predictive r (2) values obtained by the three models were 0.984, 0.973, and 0.783, respectively. The analysis was performed by combining the CoMFA and CoMSIA field distributions with the active sites of the AChE to further understand the vital interactions between huprines and the protease. On the basis of the QSAR study, 14 new potent molecules have been designed and six of them are predicted to be more active than the best active compound 24 described in the literature. The final QSAR models could be helpful in design and development of novel active AChE inhibitors.

  12. Age-related cognitive decline in hypercholesterolemic LDL receptor knockout mice (LDLr-/-): evidence of antioxidant imbalance and increased acetylcholinesterase activity in the prefrontal cortex.

    PubMed

    Moreira, Eduardo Luiz Gasnhar; de Oliveira, Jade; Nunes, Jean Costa; Santos, Danúbia Bonfanti; Nunes, Fernanda Costa; Vieira, Daniella Serafim Couto; Ribeiro-do-Valle, Rosa Maria; Pamplona, Fabrício Alano; de Bem, Andreza Fabro; Farina, Marcelo; Walz, Roger; Prediger, Rui Daniel

    2012-01-01

    There is increasing evidence that hypercholesterolemia during midlife may represent a predictor of subsequent mild cognitive impairments and dementia decades later. However, the exact mechanism underlying this phenomenon remains unknown since plasmatic cholesterol is not able to cross the blood-brain barrier. In the present study, we evaluated the hypothesis that cognitive impairments triggered by hypercholesterolemia during aging may be related to brain oxidative stress and altered brain acetylcholinesterase (AChE) activity. We also performed a neuropathological investigation in order to analyze whether the cognitive impairments may be associated with stroke-related features. To address these questions we used three- and fourteen-month-old low-density lipoprotein receptor-deficient mice (LDLr-/-). The current findings provide new evidence that aged LDLr-/- mice, exposed to over three-fold cholesterol levels from early life, show working, spatial reference, and procedural memory impairments, without alterations in motor function. Antioxidant imbalance and oxidative damage were evidenced by a marked increase in lipid peroxidation (thiobarbituric acid reactive substances levels) and glutathione metabolism (increase in glutathione levels, glutathione reductase, and glutathione peroxidase activities) together with a significant increase in the AChE activity in the prefrontal cortex of aged hypercholesterolemic LDLr-/- mice. Notably, hypercholesterolemia was not related to brain infarcts and neurodegeneration in mice, independent of their age. These observations provide new evidence that hypercholesterolemia during aging triggers cognitive impairments on different types of learning and memory, accompanied by antioxidant imbalance, oxidative damage, and alterations of cholinergic signaling in brain areas associated with learning and memory processes, particularly in the prefrontal cortex.

  13. The action of two ethyl carbamates on acetylcholinesterase and reproductive organs of Rhipicephalus microplus.

    PubMed

    Prado-Ochoa, M G; Ramírez-Noguera, P; Díaz-Torres, R; Garrido-Fariña, G I; Vázquez-Valadez, V H; Velázquez-Sánchez, A M; Muñoz-Guzmán, M A; Angeles, E; Alba-Hurtado, F

    2014-01-31

    The effects produced by the new synthetic carbamates ethyl-(4-bromophenyl) carbamate and ethyl-(4-chlorophenyl) carbamate on the acetylcholinesterase (AChE) activity, egg structure and reproductive organs of two Rhipicephalus microplus strains were evaluated. Inhibition kinetic parameters showed that the studied carbamates are weak inhibitors and have a low affinity for R. microplus AChE. Histologically, in oocytes from carbamate-treated engorged female ticks, a loss of shape, cytoplasmic vacuoles, decreased chorion deposition, alterations in cytoplasmic granularity and irregular membranes were observed. In oocyte germinal vesicles, a loss of shape, nucleolar fragmentation and membrane alterations with degenerative signs were observed. The ovarian epithelium was vacuolated, flattened, eroded and contained pyknotic nuclei. These alterations were observed from the first day and persisted and increased in severity until day 7 post-treatment. The ovaries from carbamate-treated ticks had fewer stage IV-V oocytes and more stage I-II oocytes. Additionally, eggs produced by the treated ticks had a modified appearance, decreased size, a reduced superficial waxy layer and a loss of viability. The results of this study show that the effects of carbamates on R. microplus were independent of AChE inhibition and show that the morphological alterations in the reproductive organs were due to carbamate actions on the vitellogenesis and viability of the ovarian cells. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Carnitine modulates crucial myocardial adenosine triphosphatases and acetylcholinesterase enzyme activities in choline-deprived rats.

    PubMed

    Strilakou, Athina A; Tsakiris, Stylianos T; Kalafatakis, Konstantinos G; Stylianaki, Aikaterini T; Karkalousos, Petros L; Koulouris, Andreas V; Mourouzis, Iordanis S; Liapi, Charis A

    2014-01-01

    Choline is an essential nutrient, and choline deficiency has been associated with cardiovascular morbidity. Choline is also the precursor of acetylcholine (cholinergic component of the heart's autonomic nervous system), whose levels are regulated by acetylcholinesterase (AChE). Cardiac contraction-relaxation cycles depend on ion gradients established by pumps like the adenosine triphosphatases (ATPases) Na(+)/K(+)-ATPase and Mg(2+)-ATPase. This study aimed to investigate the impact of dietary choline deprivation on the activity of rat myocardial AChE (cholinergic marker), Na(+)/K(+)-ATPase, and Mg(2+)-ATPase, and the possible effects of carnitine supplementation (carnitine, structurally relevant to choline, is used as an adjunct in treating cardiac diseases). Adult male albino Wistar rats were distributed among 4 groups, and were fed a standard or choline-deficient diet for one month with or without carnitine in their drinking water (0.15% w/v). The enzyme activities were determined spectrophotometrically in the myocardium homogenate. Choline deficiency seems to affect the activity of the aforementioned parameters, but only the combination of choline deprivation and carnitine supplementation increased myocardial Na(+)/K(+)-ATPase activity along with a concomitant decrease in the activities of Mg(2+)-ATPase and AChE. The results suggest that carnitine, in the setting of choline deficiency, modulates cholinergic myocardial neurotransmission and the ATPase activity in favour of cardiac work efficiency.

  15. Antioxidant and anti-acetylcholinesterase activities of extracts from Rapistrum rugosum in Tunisia

    PubMed Central

    Amel, Omri Hichri; Malek, Besbes Hlila; Hichem, Ben Jannet; Ali, Lamari; Mahjoub, Aouni; Boulbaba, Selmi

    2013-01-01

    Objective To investigate the antioxidant potential and anti-acetylcholinesterase activity of Rapistrum rugosum extracts. Methods The crude, ethyl acetate, butanol and water extracts prepared from flowers, roots, stems and leaves of Rapistrum rugosum were tested at 1 mg/mL to determine their total polyphenol content, total flavonoid content and total condensed tannin content. Their antioxidant activity was assessed at different concentrations (0.0312, 0.0625, 0.1250, 0.25, 0.50 and 1.00 mg/mL) by using DPPH, ABTS, reducing power and β-carotene bleAChIng inhibition activity. Anti-acetylcholinesterase activity was also determined. Results The extract of leaves and stems had the highest total phenolic content [(110.45±0.03) mg gallic acid equivalent/g dry weight]. The ethyl acetate extract of flowers had the highest total flavonoid content [(24.62±0.13) mg quercetin equivalent/g dry weight]. The butanolic fraction of flowers had the highest total condensed tannin content [(317.85±0.01) mg catechin equivalent/g dry weight]. The crude extracts of flowers exhibited an interesting antioxidant activity for DPPH assay (93.00±0.01)% at 1 mg/mL. The greatest acetylcholinesterase inhibitory activity (IC50=1.60 mg/mL) was exhibited by the crude extracts from the flowers. Conclusions The results demonstrated that Rapistrum rugosum contains active constituents which possess antioxidant and anti-acetylcholinesterase activities.

  16. Identification of potential herbal inhibitor of acetylcholinesterase associated Alzheimer's disorders using molecular docking and molecular dynamics simulation.

    PubMed

    Seniya, Chandrabhan; Khan, Ghulam Jilani; Uchadia, Kuldeep

    2014-01-01

    Cholinesterase inhibitors (ChE-Is) are the standard for the therapy of AD associated disorders and are the only class of approved drugs by the Food and Drug Administration (FDA). Additionally, acetylcholinesterase (AChE) is the target for many Alzheimer's dementia drugs which block the function of AChE but have some side effects. Therefore, in this paper, an attempt was made to elucidate cholinesterase inhibition potential of secondary metabolite from Cannabis plant which has negligible or no side effect. Molecular docking of 500 herbal compounds, against AChE, was performed using Autodock 4.2 as per the standard protocols. Molecular dynamics simulations have also been carried out to check stability of binding complex in water for 1000 ps. Our molecular docking and simulation have predicted high binding affinity of secondary metabolite (C28H34N2O6) to AChE. Further, molecular dynamics simulations for 1000 ps suggest that ligand interaction with the residues Asp72, Tyr70-121-334, and Phe288 of AChE, all of which fall under active site/subsite or binding pocket, might be critical for the inhibitory activity of AChE. This approach might be helpful to understand the selectivity of the given drug molecule in the treatment of Alzheimer's disease. The study provides evidence for consideration of C28H34N2O6 as a valuable small ligand molecule in treatment and prevention of AD associated disorders and further in vitro and in vivo investigations may prove its therapeutic potential.

  17. Identification of Potential Herbal Inhibitor of Acetylcholinesterase Associated Alzheimer's Disorders Using Molecular Docking and Molecular Dynamics Simulation

    PubMed Central

    Seniya, Chandrabhan; Khan, Ghulam Jilani; Uchadia, Kuldeep

    2014-01-01

    Cholinesterase inhibitors (ChE-Is) are the standard for the therapy of AD associated disorders and are the only class of approved drugs by the Food and Drug Administration (FDA). Additionally, acetylcholinesterase (AChE) is the target for many Alzheimer's dementia drugs which block the function of AChE but have some side effects. Therefore, in this paper, an attempt was made to elucidate cholinesterase inhibition potential of secondary metabolite from Cannabis plant which has negligible or no side effect. Molecular docking of 500 herbal compounds, against AChE, was performed using Autodock 4.2 as per the standard protocols. Molecular dynamics simulations have also been carried out to check stability of binding complex in water for 1000 ps. Our molecular docking and simulation have predicted high binding affinity of secondary metabolite (C28H34N2O6) to AChE. Further, molecular dynamics simulations for 1000 ps suggest that ligand interaction with the residues Asp72, Tyr70-121-334, and Phe288 of AChE, all of which fall under active site/subsite or binding pocket, might be critical for the inhibitory activity of AChE. This approach might be helpful to understand the selectivity of the given drug molecule in the treatment of Alzheimer's disease. The study provides evidence for consideration of C28H34N2O6 as a valuable small ligand molecule in treatment and prevention of AD associated disorders and further in vitro and in vivo investigations may prove its therapeutic potential. PMID:25054066

  18. Self assembly of acetylcholinesterase on a gold nanoparticles–graphene nanosheet hybrid for organophosphate pesticide detection using polyelectrolyte as a linker

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ying; Zhang, Sheng; Du, Dan

    A nanohybrid of gold nanoparticles (Au NPs) and chemically reduced graphene oxide nanosheets (cr-Gs) was synthesized by in situ growth of Au NPs on the surface of graphene nanosheets in the presence of poly(diallyldimethylammonium chloride) (PDDA), which not only improved the dispersion of Au NPs but also stabilized cholinesterase with high activity and loading efficiency. The obtained nanohybrid was characterized by TEM, XRD, XPS, and electrochemistry. Then an enzyme nanoassembly (AChE/Au NPs/cr-Gs) was prepared by self-assembling acetylcholinesterase (AChE) on Au NP/cr-Gs nanohybrid. An electrochemical sensor based on AChE/Au NPs/cr-Gs was further developed for ultrasensitive detection of organophosphate pesticide. The resultsmore » demonstrate that the developed approach provides a promising strategy to improve the sensitivity and enzyme activity of electrochemical biosensors.« less

  19. Free energy landscape for the binding process of Huperzine A to acetylcholinesterase

    PubMed Central

    Bai, Fang; Xu, Yechun; Chen, Jing; Liu, Qiufeng; Gu, Junfeng; Wang, Xicheng; Ma, Jianpeng; Li, Honglin; Onuchic, José N.; Jiang, Hualiang

    2013-01-01

    Drug-target residence time (t = 1/koff, where koff is the dissociation rate constant) has become an important index in discovering better- or best-in-class drugs. However, little effort has been dedicated to developing computational methods that can accurately predict this kinetic parameter or related parameters, koff and activation free energy of dissociation (). In this paper, energy landscape theory that has been developed to understand protein folding and function is extended to develop a generally applicable computational framework that is able to construct a complete ligand-target binding free energy landscape. This enables both the binding affinity and the binding kinetics to be accurately estimated. We applied this method to simulate the binding event of the anti-Alzheimer’s disease drug (−)−Huperzine A to its target acetylcholinesterase (AChE). The computational results are in excellent agreement with our concurrent experimental measurements. All of the predicted values of binding free energy and activation free energies of association and dissociation deviate from the experimental data only by less than 1 kcal/mol. The method also provides atomic resolution information for the (−)−Huperzine A binding pathway, which may be useful in designing more potent AChE inhibitors. We expect this methodology to be widely applicable to drug discovery and development. PMID:23440190

  20. Free energy landscape for the binding process of Huperzine A to acetylcholinesterase.

    PubMed

    Bai, Fang; Xu, Yechun; Chen, Jing; Liu, Qiufeng; Gu, Junfeng; Wang, Xicheng; Ma, Jianpeng; Li, Honglin; Onuchic, José N; Jiang, Hualiang

    2013-03-12

    Drug-target residence time (t = 1/k(off), where k(off) is the dissociation rate constant) has become an important index in discovering better- or best-in-class drugs. However, little effort has been dedicated to developing computational methods that can accurately predict this kinetic parameter or related parameters, k(off) and activation free energy of dissociation (ΔG(off)≠). In this paper, energy landscape theory that has been developed to understand protein folding and function is extended to develop a generally applicable computational framework that is able to construct a complete ligand-target binding free energy landscape. This enables both the binding affinity and the binding kinetics to be accurately estimated. We applied this method to simulate the binding event of the anti-Alzheimer's disease drug (-)-Huperzine A to its target acetylcholinesterase (AChE). The computational results are in excellent agreement with our concurrent experimental measurements. All of the predicted values of binding free energy and activation free energies of association and dissociation deviate from the experimental data only by less than 1 kcal/mol. The method also provides atomic resolution information for the (-)-Huperzine A binding pathway, which may be useful in designing more potent AChE inhibitors. We expect this methodology to be widely applicable to drug discovery and development.

  1. Molecular evaluation of herbal compounds as potent inhibitors of acetylcholinesterase for the treatment of Alzheimer's disease.

    PubMed

    Chen, Yan-Xiu; Li, Guan-Zeng; Zhang, Bin; Xia, Zhang-Yong; Zhang, Mei

    2016-07-01

    Alzheimer's disease (AD) is a progressive disease and the predominant cause of dementia. Common symptoms include short-term memory loss, and confusion with time and place. Individuals with AD depend on their caregivers for assistance, and may pose a burden to them. The acetylcholinesterase (AChE) enzyme is a key target in AD and inhibition of this enzyme may be a promising strategy in the drug discovery process. In the present study, an inhibitory assay was carried out against AChE using total alkaloidal plants and herbal extracts commonly available in vegetable markets. Subsequently, molecular docking simulation analyses of the bioactive compounds present in the plants were conducted, as well as a protein‑ligand interaction analysis. The stability of the docked protein‑ligand complex was assessed by 20 ns molecular dynamics simulation. The inhibitory assay demonstrated that Uncaria rhynchophylla and Portulaca oleracea were able to inhibit AChE. In addition, molecular docking simulation analyses indicated that catechin present in Uncaria rhynchophylla, and dopamine and norepinephrine present in Portulaca oleracea, had the best docking scores and interaction energy. In conclusion, catechin in Uncaria rhynchophylla, and dopamine and norepinephrine in Portulaca oleracea may be used to treat AD.

  2. Photolabeling a Nicotinic Acetylcholine Receptor (nAChR) with an (α4)3(β2)2 nAChR-Selective Positive Allosteric Modulator

    PubMed Central

    Deba, Farah; Wang, Ze-Jun; Cohen, Jonathan B.

    2016-01-01

    Positive allosteric modulators (PAMs) of nicotinic acetylcholine (ACh) receptors (nAChRs) have potential clinical applications in the treatment of nicotine dependence and many neuropsychiatric conditions associated with decreased brain cholinergic activity, and 3-(2-chlorophenyl)-5-(5-methyl-1-(piperidin-4-yl)-1H-pyrrazol-4-yl)isoxazole (CMPI) has been identified as a PAM selective for neuronal nAChRs containing the α4 subunit. In this report, we compare CMPI interactions with low-sensitivity (α4)3(β2)2 and high-sensitivity (α4)2(β2)3 nAChRs, and with muscle-type nAChRs. In addition, we use the intrinsic reactivity of [3H]CMPI upon photolysis at 312 nm to identify its binding sites in Torpedo nAChRs. Recording from Xenopus oocytes, we found that CMPI potentiated maximally the responses of (α4)3(β2)2 nAChR to 10 μM ACh (EC10) by 400% and with an EC50 of ∼1 µM. CMPI produced a left shift of the ACh concentration-response curve without altering ACh efficacy. In contrast, CMPI inhibited (∼35% at 10 µM) ACh responses of (α4)2(β2)3 nAChRs and fully inhibited human muscle and Torpedo nAChRs with IC50 values of ∼0.5 µM. Upon irradiation at 312 nm, [3H]CMPI photoincorporated into each Torpedo [(α1)2β1γδ] nAChR subunit. Sequencing of peptide fragments isolated from [3H]CMPI-photolabeled nAChR subunits established photolabeling of amino acids contributing to the ACh binding sites (αTyr190, αTyr198, γTrp55, γTyr111, γTyr117, δTrp57) that was fully inhibitable by agonist and lower-efficiency, state-dependent [3H]CMPI photolabeling within the ion channel. Our results establish that CMPI is a potent potentiator of nAChRs containing an α4:α4 subunit interface, and that its intrinsic photoreactivy makes it of potential use to identify its binding sites in the (α4)3(β2)2 nAChR. PMID:26976945

  3. Cyperus rotundus extract inhibits acetylcholinesterase activity from animal and plants as well as inhibits germination and seedling growth in wheat and tomato.

    PubMed

    Sharma, Rashmi; Gupta, Rajendra

    2007-05-30

    Cyperus rotundus (nutgrass) is the world's worst invasive weed through tubers. Its success in dominating natural habitats depends on its ability to prevent herbivory, and to kill or suppress other plants growing in its vicinity. The present study was done to investigate whether chemicals in nutgrass target neuronal and non-neuronal acetylcholinesterases to affect surrounding animals and plants respectively. Methanolic extract of tubers of nutgrass strongly inhibited activity of AChE from electric eel, wheat and tomato. It also inhibited seed germination and seedling growth in wheat and tomato. Our results suggest that inhibitor of AChE in nutgrass possibly acts as agent of plant's war against (a) herbivore animals, and (b) other plants trying to grow in the same habitat. An antiAChE from nutgrass has been purified by employing chromatography and crystallization. The structural determination of the purified inhibitor is in progress.

  4. Identification of molecular descriptors for design of novel Isoalloxazine derivatives as potential Acetylcholinesterase inhibitors against Alzheimer's disease.

    PubMed

    Gurung, Arun Bahadur; Aguan, Kripamoy; Mitra, Sivaprasad; Bhattacharjee, Atanu

    2017-06-01

    In Alzheimer's disease (AD), the level of Acetylcholine (ACh) neurotransmitter is reduced. Since Acetylcholinesterase (AChE) cleaves ACh, inhibitors of AChE are very much sought after for AD treatment. The side effects of current inhibitors necessitate development of newer AChE inhibitors. Isoalloxazine derivatives have proved to be promising (AChE) inhibitors. However, their structure-activity relationship studies have not been reported till date. In the present work, various quantitative structure-activity relationship (QSAR) building methods such as multiple linear regression (MLR), partial least squares ,and principal component regression were employed to derive 3D-QSAR models using steric and electrostatic field descriptors. Statistically significant model was obtained using MLR coupled with stepwise selection method having r 2  = .9405, cross validated r 2 (q 2 ) = .6683, and a high predictability (pred_r 2  = .6206 and standard error, pred_r 2 se = .2491). Steric and electrostatic contribution plot revealed three electrostatic fields E_496, E_386 and E_577 and one steric field S_60 contributing towards biological activity. A ligand-based 3D-pharmacophore model was generated consisting of eight pharmacophore features. Isoalloxazine derivatives were docked against human AChE, which revealed critical residues implicated in hydrogen bonds as well as hydrophobic interactions. The binding modes of docked complexes (AChE_IA1 and AChE_IA14) were validated by molecular dynamics simulation which showed their stable trajectories in terms of root mean square deviation and molecular mechanics/Poisson-Boltzmann surface area binding free energy analysis revealed key residues contributing significantly to overall binding energy. The present study may be useful in the design of more potent Isoalloxazine derivatives as AChE inhibitors.

  5. Exposure to radio-frequency electromagnetic waves alters acetylcholinesterase gene expression, exploratory and motor coordination-linked behaviour in male rats.

    PubMed

    Obajuluwa, Adejoke Olukayode; Akinyemi, Ayodele Jacob; Afolabi, Olakunle Bamikole; Adekoya, Khalid; Sanya, Joseph Olurotimi; Ishola, Azeez Olakunle

    2017-01-01

    Humans in modern society are exposed to an ever-increasing number of electromagnetic fields (EMFs) and some studies have demonstrated that these waves can alter brain function but the mechanism still remains unclear. Hence, this study sought to investigate the effect of 2.5 Ghz band radio-frequency electromagnetic waves (RF-EMF) exposure on cerebral cortex acetylcholinesterase (AChE) activity and their mRNA expression level as well as locomotor function and anxiety-linked behaviour in male rats. Animals were divided into four groups namely; group 1 was control (without exposure), group 2-4 were exposed to 2.5 Ghz radiofrequency waves from an installed WI-FI device for a period of 4, 6 and 8 weeks respectively. The results revealed that WiFi exposure caused a significant increase in anxiety level and affect locomotor function. Furthermore, there was a significant decrease in AChE activity with a concomitant increase in AChE mRNA expression level in WiFi exposed rats when compared with control. In conclusions, these data showed that long term exposure to WiFi may lead to adverse effects such as neurodegenerative diseases as observed by a significant alteration on AChE gene expression and some neurobehavioral parameters associated with brain damage.

  6. Expression and evolutionary analyses of three acetylcholinesterase genes (Mi-ace-1, Mi-ace-2, Mi-ace-3) in the root-knot nematode Meloidogyne incognita.

    PubMed

    Cui, Ruqiang; Zhang, Lei; Chen, Yuyan; Huang, Wenkun; Fan, Chengming; Wu, Qingsong; Peng, Deliang; da Silva, Washington; Sun, Xiaotang

    2017-05-01

    The full cDNA of Mi-ace-3 encoding an acetylcholinesterase (AChE) in Meloidogyne incognita was cloned and characterized. Mi-ace-3 had an open reading frame of 1875 bp encoding 624 amino acid residues. Key residues essential to AChE structure and function were conserved. The deduced Mi-ACE-3 protein sequence had 72% amino acid similarity with that of Ditylenchus destructor Dd-AChE-3. Phylogenetic analyses using 41 AChEs from 24 species showed that Mi-ACE-3 formed a cluster with 4 other nematode AChEs. Our results revealed that the Mi-ace-3 cloned in this study, which is orthologous to Caenorhabditis elegans AChE, belongs to the nematode ACE-3/4 subgroup. There was a significant reduction in the number of galls in transgenic tobacco roots when Mi-ace-1, Mi-ace-2, and Mi-ace-3 were knocked down simultaneously, whereas little or no effect were observed when only one or two of these genes were knocked down. This is an indication that the functions of these three genes are redundant. Copyright © 2017. Published by Elsevier Inc.

  7. The binding sites of inhibitory monoclonal antibodies on acetylcholinesterase. Identification of a novel regulatory site at the putative "back door".

    PubMed

    Simon, S; Le Goff, A; Frobert, Y; Grassi, J; Massoulié, J

    1999-09-24

    We investigated the target sites of three inhibitory monoclonal antibodies on Electrophorus acetylcholinesterase (AChE). Previous studies showed that Elec-403 and Elec-410 are directed to overlapping but distinct epitopes in the peripheral site, at the entrance of the catalytic gorge, whereas Elec-408 binds to a different region. Using Electrophorus/rat AChE chimeras, we identified surface residues that differed between sensitive and insensitive AChEs: the replacement of a single Electrophorus residue by its rat homolog was able to abolish binding and inhibition, for each antibody. Reciprocally, binding and inhibition by Elec-403 and by Elec-410 could be conferred to rat AChE by the reverse mutation. Elec-410 appears to bind to one side of the active gorge, whereas Elec-403 covers its opening, explaining why the AChE-Elec-410 complex reacts faster than the AChE-Elec-403 or AChE-fasciculin complexes with two active site inhibitors, m-(N,N, N-trimethyltammonio)trifluoro-acetophenone and echothiophate. Elec-408 binds to the region of the putative "back door," distant from the peripheral site, and does not interfere with the access of inhibitors to the active site. The binding of an antibody to this novel regulatory site may inhibit the enzyme by blocking the back door or by inducing a conformational distortion within the active site.

  8. Efficacy of acetylcholinesterase inhibitors versus nootropics in Alzheimer's disease: a retrospective, longitudinal study.

    PubMed

    Tsolaki, M; Pantazi, T; Kazis, A

    2001-01-01

    The aim of this study was to investigate the efficacy of nootropics (piracetam, aniracetam, nimodopine and dihydroergicristine) versus acetylcholinesterase inhibitors (AChE-Is) (tacrine and donepezil) in the treatment of Alzheimer's disease. This is a retrospective study of 510 patients with Alzheimer's disease. To determine clinical efficacy of treatment, we used the mean change over time in scores for the following tests: the Mini-Mental State Examination (MMSE); the Cambridge Cognitive Examination for the Elderly; and the Functional Rating Scale for Symptoms of Dementia. In all patients and in patients with severe Alzheimer's disease (baseline MMSE < 11), no significant differences were seen in the neuropsychological test scores between the two treatment groups. In patients with moderate dementia (baseline MMSE between 11 and 20), however, there was a significantly greater deterioration, as shown on the CAMCOG scale, after 12 months' treatment for patients receiving AChE-Is compared with those receiving nootropics (-4.38 for AChE-Is group versus 1.48 for nootropics group). For patients with mild dementia (baseline MMSE score between 21 and 26), there was a significantly greater deterioration on the MMSE scale for each time-point in the nootropics group compared with the AChE-Is group. In conclusion, we did not find any strong evidence that a difference in efficacy exists between AChE-Is and nootropics in the treatment of Alzheimer's disease.

  9. Acetylcholinesterase inhibition and locomotor function after motor-sensory cortex impact injury.

    PubMed

    Holschneider, Daniel P; Guo, Yumei; Roch, Margareth; Norman, Keith M; Scremin, Oscar U

    2011-09-01

    Traumatic brain injury (TBI) induces transient or persistent dysfunction of gait and balance. Enhancement of cholinergic transmission has been reported to accelerate recovery of cognitive function after TBI, but the effects of this intervention on locomotor activity remain largely unexplored. The hypothesis that enhancement of cholinergic function by inhibition of acetylcholinesterase (AChE) improves locomotion following TBI was tested in Sprague-Dawley male rats after a unilateral controlled cortical impact (CCI) injury of the motor-sensory cortex. Locomotion was tested by time to fall on the constant speed and accelerating Rotarod, placement errors and time to cross while walking through a horizontal ladder, activity monitoring in the home cages, and rearing behavior. Assessments were performed the 1st and 2nd day and the 1st, 2nd, and 3rd week after TBI. The AChE inhibitor physostigmine hemisulfate (PHY) was administered continuously via osmotic minipumps implanted subcutaneously at the rates of 1.6-12.8 μmol/kg/day. All measures of locomotion were impaired by TBI and recovered to initial levels between 1 and 3 weeks post-TBI, with the exception of the maximum speed achievable on the accelerating Rotarod, as well as rearing in the open field. PHY improved performance in the accelerating Rotarod at 1.6 and 3.2 μmol/kg/day (AChE activity 95 and 78% of control, respectively), however, higher doses induced progressive deterioration. No effect or worsening of outcomes was observed at all PHY doses for home cage activity, rearing, and horizontal ladder walking. Potential benefits of cholinesterase inhibition on locomotor function have to be weighed against the evidence of the narrow range of useful doses.

  10. Strain dependent effects of conditioned fear in adult C57Bl/6 and Balb/C mice following postnatal exposure to chlorpyrifos: relation to expression of brain acetylcholinesterase mRNA

    PubMed Central

    Oriel, Sarit; Kofman, Ora

    2015-01-01

    Following reports of emotional psychopathology in children and adults exposed to organophosphates, the effects of postnatal chlorpyrifos (CPF) on fear-conditioning and depression-like behaviors were tested in adult mice. Concomitant changes in expression of mRNA for synaptic and soluble splice variants of acetylcholinesterase (AChE) were examined in mouse pups and adults of the Balb/C and C57Bl/6 (B6) strains, which differ in their behavioral and hormonal stress response. Mice were injected subcutaneously with 1 mg/kg CPF on postnatal days 4–10 and tested as adults for conditioned fear, sucrose preference, and forced swim. Acetylcholinesterase activity was assessed in the brains of pups on the first and last day of treatment. Expression of soluble and synaptic AChE mRNA was assessed in brains of treated pups and fear-conditioned adults using real-time PCR. Adult Balb/C mice exposed postnatally to CPF showed exacerbated fear-conditioning and impaired active avoidance. Adult B6 mice exposed postnatally to CPF showed a more specific fear response to tones and less freezing in the inter-tone intervals, in contrast to the vehicle-pretreated mice. Chlorpyrifos also attenuated sweet preference and enhanced climbing in the forced swim test. Chlorpyrifos-treated mice had increased expression of both synaptic and readthrough AChE transcripts in the hippocampus of Balb/C mice and decreased expression in the amygdala following fear-conditioning. In conclusion, postnatal CPF had long-term effects on fear and depression, as well as on expression of AChE mRNA. These changes may be related to alteration in the interaction between hippocampus and amygdala in regulating negative emotions. PMID:25972795

  11. Competitive regulation of alternative splicing and alternative polyadenylation by hnRNP H and CstF64 determines acetylcholinesterase isoforms

    PubMed Central

    Nazim, Mohammad; Masuda, Akio; Rahman, Mohammad Alinoor; Nasrin, Farhana; Takeda, Jun-ichi; Ohe, Kenji; Ohkawara, Bisei; Ito, Mikako

    2017-01-01

    Abstract Acetylcholinesterase (AChE), encoded by the ACHE gene, hydrolyzes the neurotransmitter acetylcholine to terminate synaptic transmission. Alternative splicing close to the 3΄ end generates three distinct isoforms of AChET, AChEH and AChER. We found that hnRNP H binds to two specific G-runs in exon 5a of human ACHE and activates the distal alternative 3΄ splice site (ss) between exons 5a and 5b to generate AChET. Specific effect of hnRNP H was corroborated by siRNA-mediated knockdown and artificial tethering of hnRNP H. Furthermore, hnRNP H competes for binding of CstF64 to the overlapping binding sites in exon 5a, and suppresses the selection of a cryptic polyadenylation site (PAS), which additionally ensures transcription of the distal 3΄ ss required for the generation of AChET. Expression levels of hnRNP H were positively correlated with the proportions of the AChET isoform in three different cell lines. HnRNP H thus critically generates AChET by enhancing the distal 3΄ ss and by suppressing the cryptic PAS. Global analysis of CLIP-seq and RNA-seq also revealed that hnRNP H competitively regulates alternative 3΄ ss and alternative PAS in other genes. We propose that hnRNP H is an essential factor that competitively regulates alternative splicing and alternative polyadenylation. PMID:28180311

  12. Acetylcholinesterase inhibition reveals endogenous nicotinic modulation of glutamate inputs to CA1 stratum radiatum interneurons in hippocampal slices

    PubMed Central

    Alkondon, Manickavasagom; Albuquerque, Edson X.; Pereira, Edna F.R.

    2013-01-01

    The involvement of brain nicotinic acetylcholine receptors (nAChRs) in the neurotoxicological effects of soman, a potent acetylcholinesterase (AChE) inhibitor and a chemical warfare agent, is not clear. This is partly due to a poor understanding of the role of AChE in brain nAChR-mediated functions. To test the hypothesis that AChE inhibition builds sufficient acetylcholine (ACh) in the brain and facilitates nAChR-dependent glutamate transmission, we used whole-cell patch-clamp technique to record spontaneous glutamate excitatory postsynaptic currents (EPSCs) from CA1 stratum radiatum interneurons (SRI) in hippocampal slices. First, the frequency, amplitude and kinetics of EPSCs recorded from slices of control guinea pigs were compared to those recorded from slices of guinea pigs after a single injection of the irreversible AChE inhibitor soman (25.2 μg/kg, s.c.). Second, EPSCs were recorded from rat hippocampal slices before and after their superfusion with the reversible AChE inhibitor donepezil (100 nM). The frequency of EPSCs was significantly higher in slices taken from guinea pigs 24 h but not 7 days after the soman injection than in slices from control animals. In 52% of the rat hippocampal slices tested, bath application of donepezil increased the frequency of EPSCs. Further, exposure to donepezil increased both burst-like and large-amplitude EPSCs, and increased the proportion of short (20–100 ms) inter-event intervals. Donepezil’s effects were suppressed significantly in presence of 10 μM mecamylamine or 10 nM methyllycaconitine. These results support the concept that AChE inhibition is able to recruit nAChR-dependent glutamate transmission in the hippocampus and such a mechanism can contribute to the acute neurotoxicological actions of soman. PMID:23511125

  13. Benefits of statistical molecular design, covariance analysis, and reference models in QSAR: a case study on acetylcholinesterase

    NASA Astrophysics Data System (ADS)

    Andersson, C. David; Hillgren, J. Mikael; Lindgren, Cecilia; Qian, Weixing; Akfur, Christine; Berg, Lotta; Ekström, Fredrik; Linusson, Anna

    2015-03-01

    Scientific disciplines such as medicinal- and environmental chemistry, pharmacology, and toxicology deal with the questions related to the effects small organic compounds exhort on biological targets and the compounds' physicochemical properties responsible for these effects. A common strategy in this endeavor is to establish structure-activity relationships (SARs). The aim of this work was to illustrate benefits of performing a statistical molecular design (SMD) and proper statistical analysis of the molecules' properties before SAR and quantitative structure-activity relationship (QSAR) analysis. Our SMD followed by synthesis yielded a set of inhibitors of the enzyme acetylcholinesterase (AChE) that had very few inherent dependencies between the substructures in the molecules. If such dependencies exist, they cause severe errors in SAR interpretation and predictions by QSAR-models, and leave a set of molecules less suitable for future decision-making. In our study, SAR- and QSAR models could show which molecular sub-structures and physicochemical features that were advantageous for the AChE inhibition. Finally, the QSAR model was used for the prediction of the inhibition of AChE by an external prediction set of molecules. The accuracy of these predictions was asserted by statistical significance tests and by comparisons to simple but relevant reference models.

  14. Molecular Characterization of Monoclonal Antibodies that Inhibit Acetylcholinesterase by Targeting the Peripheral Site and Backdoor Region

    PubMed Central

    Essono, Sosthène; Mondielli, Grégoire; Lamourette, Patricia; Boquet, Didier; Grassi, Jacques; Marchot, Pascale

    2013-01-01

    The inhibition properties and target sites of monoclonal antibodies (mAbs) Elec403, Elec408 and Elec410, generated against Electrophorus electricus acetylcholinesterase (AChE), have been defined previously using biochemical and mutagenesis approaches. Elec403 and Elec410, which bind competitively with each other and with the peptidic toxin inhibitor fasciculin, are directed toward distinctive albeit overlapping epitopes located at the AChE peripheral anionic site, which surrounds the entrance of the active site gorge. Elec408, which is not competitive with the other two mAbs nor fasciculin, targets a second epitope located in the backdoor region, distant from the gorge entrance. To characterize the molecular determinants dictating their binding site specificity, we cloned and sequenced the mAbs; generated antigen-binding fragments (Fab) retaining the parental inhibition properties; and explored their structure-function relationships using complementary x-ray crystallography, homology modeling and flexible docking approaches. Hypermutation of one Elec403 complementarity-determining region suggests occurrence of antigen-driven selection towards recognition of the AChE peripheral site. Comparative analysis of the 1.9Å-resolution structure of Fab408 and of theoretical models of its Fab403 and Fab410 congeners evidences distinctive surface topographies and anisotropic repartitions of charges, consistent with their respective target sites and inhibition properties. Finally, a validated, data-driven docking model of the Fab403-AChE complex suggests a mode of binding at the PAS that fully correlates with the functional data. This comprehensive study documents the molecular peculiarities of Fab403 and Fab410, as the largest peptidic inhibitors directed towards the peripheral site, and those of Fab408, as the first inhibitor directed toward the backdoor region of an AChE and a unique template for the design of new, specific modulators of AChE catalysis. PMID:24146971

  15. 2-Hydroxyethyl substituted NHC precursors: Synthesis, characterization, crystal structure and carbonic anhydrase, α-glycosidase, butyrylcholinesterase, and acetylcholinesterase inhibitory properties

    NASA Astrophysics Data System (ADS)

    Erdemir, Fatoş; Barut Celepci, Duygu; Aktaş, Aydın; Taslimi, Parham; Gök, Yetkin; Karabıyık, Hasan; Gülçin, İlhami

    2018-03-01

    This study contains novel a serie synthesis of N-heterocyclic carbene (NHC) precursors that 2-hydroxyethyl substituted. The NHC precursors have been prepared from 1-(2- hydroxyethyl)benzimidazole and alkyl halides. The novel NHC precursors have been characterized by using 1H NMR, 13C NMR, FTIR spectroscopy and elemental analysis techniques. Molecular and crystal structures of 2a, 2d, 2e, 2f and 2g were obtained with single-crystal X-ray diffraction studies. These novel NHC precursor's derivatives effectively inhibited the α-glycosidase, cytosolic carbonic anhydrase I and II isoforms (hCA I and II), butyrylcholinesterase (BChE) and acetylcholinesterase (AChE). Inhibition constant (Ki) were found in the range of 0.30-9.22 nM for α-glycosidase, 13.90-41.46 nM for hCA I, 12.82-49.95 nM for hCA II, 145.82-882.01 nM for BChE, and 280.92-1370.01 nM for AChE, respectively.

  16. Blood and bronchoalveolar lavage fluid acetylcholinesterase levels following microinstillation inhalation exposure to sarin in Guinea pigs.

    PubMed

    Che, Magnus M; Conti, Michele; Boylan, Megan; Sciuto, Alfred M; Gordon, Richard K; Nambiar, Madhusoodana P

    2008-07-01

    We determined acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibition in the bronchoalveolar lavage fluid (BALF) following inhalation exposure to chemical threat nerve agent (CTNA) sarin. Age- and weight-matched male guinea pigs were exposed to five different doses of sarin (169.3, 338.7, 508, 677.4, and 846.5 mg/m(3)) using a microinstillation inhalation exposure technique for 4 min. The technique involves aerosolization of the agent in the trachea using a microcatheter with a center hole that delivers the agent and multiple peripheral holes that pumps air to aerosolize the agent at the tip. Animals exposed to higher doses of sarin occasionally developed seizures and succumbed to death within 15 min after exposure. The LCt(50) for sarin using the microinstillation technique was determined to be close to 677.4 mg/m(3). Ear blood AChE activity showed a dose-dependent inhibition at 15 min postexposure. The inhibition of blood AChE remained constant over 35 and 55 min after sarin exposure indicating that there was no lung depot effect. Cardiac blood AChE and butyrylcholinesterase (BChE) activity in surviving animals euthanized at 24 h postexposure showed a dose-dependent inhibition with an inhibition of 60% at 677.4 and 846.5 mg/m(3) sarin exposure. AChE and BChE activity in bronchoalveolar lavage fluid (BALF) showed a slight increase at 338.7 to 677.4 mg/m(3) sarin exposure but a marginal inhibition at 169.3 mg/m(3). In contrast, the AChE protein levels determined by immunoblotting showed an increase at 169.3 mg/m(3) in the BALF. The BALF protein level, a biomarker of lung injury, was increased maximally at 338.7 mg/m(3) and that increase was dropped with an increase in the dose of sarin. The BALF protein levels correlated with the AChE and BChE activity. These data suggest that sarin microinstillation inhalation exposure results in respiratory toxicity and lung injury characterized by changes in lavage AChE, BChE, and protein levels.

  17. The activity of detoxifying enzymes in the infective juveniles of Heterorhabditis bacteriophora strains: Purification and characterization of two acetylcholinesterases.

    PubMed

    Mohamed, Magda A; Mahdy, El-Sayed M E; Ghazy, Abd-El-Hady M; Ibrahim, Nihal M; El-Mezayen, Hatem A; Ghanem, Manal M E

    2016-02-01

    The infectivity and detoxifying enzyme activities including glutathione-S-transferase (GST), acetylcholinesterase (AChE) and carboxylesterase (CaE) are investigated in the infective juveniles (IJs) of six different strains of Heterorhabditis bacteriophora as a biocontrol agent against insect pests. The specific activities ranged from 10.8-29.8 and 50-220units/mg protein for GST and AChE, respectively; and from 24.7-129 and 22.6-77.3units/mg protein for CaE as estimated by P-nitrophenyl and α-naphthyl acetates, respectively. H. bacteriophora EM2 strain has the highest infectivity and the highest enzymatic activities as well. AChE is the predominant detoxifying enzyme that might imply its major role in the detoxification of insecticide(s). The isoenzyme pattern demonstrated two major slow-moving isoforms in all EPN strains examined. Purification of two AChE isoforms, AChEAII and AChEBI, from H. bacteriophora EM2 strain is performed by ammonium sulfate precipitation, gel filtration on Sephacryl S-200 and chromatography on DEAE-Sepharose. AChEAII and AChEBII have specific activities of 1207 and 1560unit/mg protein, native molecular weights of 180 and 68kDa, and are found in dimeric and monomeric forms, respectively. Both isoforms showed optimum activity at pH8.5 and 35°C. AChEBI exhibited higher thermal stability and higher activation energy than AChEAII. The enzymatic activities of purified AChEs are completely inhibited by Hg(+2) and Ni(+2) and greatly enhanced by Mn(+2). The substrate specificity, the relative efficiency of substrates hydrolysis, substrate inhibition and inhibition by BW284C51, but not by iso-OMPA, clearly indicated that they are true AChEs; their properties are compared with those recorded for insects as target hosts for H. bacteriophora EM2. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Designing Second Generation Anti-Alzheimer Compounds as Inhibitors of Human Acetylcholinesterase: Computational Screening of Synthetic Molecules and Dietary Phytochemicals

    PubMed Central

    Amat-ur-Rasool, Hafsa; Ahmed, Mehboob

    2015-01-01

    Alzheimer's disease (AD), a big cause of memory loss, is a progressive neurodegenerative disorder. The disease leads to irreversible loss of neurons that result in reduced level of acetylcholine neurotransmitter (ACh). The reduction of ACh level impairs brain functioning. One aspect of AD therapy is to maintain ACh level up to a safe limit, by blocking acetylcholinesterase (AChE), an enzyme that is naturally responsible for its degradation. This research presents an in-silico screening and designing of hAChE inhibitors as potential anti-Alzheimer drugs. Molecular docking results of the database retrieved (synthetic chemicals and dietary phytochemicals) and self-drawn ligands were compared with Food and Drug Administration (FDA) approved drugs against AD as controls. Furthermore, computational ADME studies were performed on the hits to assess their safety. Human AChE was found to be most approptiate target site as compared to commonly used Torpedo AChE. Among the tested dietry phytochemicals, berberastine, berberine, yohimbine, sanguinarine, elemol and naringenin are the worth mentioning phytochemicals as potential anti-Alzheimer drugs The synthetic leads were mostly dual binding site inhibitors with two binding subunits linked by a carbon chain i.e. second generation AD drugs. Fifteen new heterodimers were designed that were computationally more efficient inhibitors than previously reported compounds. Using computational methods, compounds present in online chemical databases can be screened to design more efficient and safer drugs against cognitive symptoms of AD. PMID:26325402

  19. Designing Second Generation Anti-Alzheimer Compounds as Inhibitors of Human Acetylcholinesterase: Computational Screening of Synthetic Molecules and Dietary Phytochemicals.

    PubMed

    Amat-Ur-Rasool, Hafsa; Ahmed, Mehboob

    2015-01-01

    Alzheimer's disease (AD), a big cause of memory loss, is a progressive neurodegenerative disorder. The disease leads to irreversible loss of neurons that result in reduced level of acetylcholine neurotransmitter (ACh). The reduction of ACh level impairs brain functioning. One aspect of AD therapy is to maintain ACh level up to a safe limit, by blocking acetylcholinesterase (AChE), an enzyme that is naturally responsible for its degradation. This research presents an in-silico screening and designing of hAChE inhibitors as potential anti-Alzheimer drugs. Molecular docking results of the database retrieved (synthetic chemicals and dietary phytochemicals) and self-drawn ligands were compared with Food and Drug Administration (FDA) approved drugs against AD as controls. Furthermore, computational ADME studies were performed on the hits to assess their safety. Human AChE was found to be most approptiate target site as compared to commonly used Torpedo AChE. Among the tested dietry phytochemicals, berberastine, berberine, yohimbine, sanguinarine, elemol and naringenin are the worth mentioning phytochemicals as potential anti-Alzheimer drugs The synthetic leads were mostly dual binding site inhibitors with two binding subunits linked by a carbon chain i.e. second generation AD drugs. Fifteen new heterodimers were designed that were computationally more efficient inhibitors than previously reported compounds. Using computational methods, compounds present in online chemical databases can be screened to design more efficient and safer drugs against cognitive symptoms of AD.

  20. Acotiamide hydrochloride (Z-338) enhances gastric motility and emptying by inhibiting acetylcholinesterase activity in rats.

    PubMed

    Kawachi, Masanao; Matsunaga, Yugo; Tanaka, Takao; Hori, Yuko; Ito, Katsunori; Nagahama, Kenji; Ozaki, Tomoko; Inoue, Naonori; Toda, Ryoko; Yoshii, Kazuyoshi; Hirayama, Masamichi; Kawabata, Yoshihiro; Takei, Mineo

    2011-09-01

    In clinical trials, acotiamide hydrochloride (acotiamide: Z-338) has been reported to be useful in the treatment of functional dyspepsia. Here, we investigated the effects of acotiamide on gastric contraction and emptying activities in rats in comparison with itopride hydrochloride (itopride) and mosapride citrate (mosapride). We also examined in vitro the compound's inhibitory effect on acetylcholinesterase (AChE) activity derived from rat stomach. In in vivo studies, acotiamide (30 and 100mg/kg s.c.) and itopride (100mg/kg s.c.) markedly enhanced normal gastric antral motility in rats. In gastric motility dysfunction models, acotiamide (100mg/kg s.c.) and itopride (100mg/kg s.c.) improved both gastric antral hypomotility and the delayed gastric emptying induced by clonidine, an α(2)-adrenoceptor agonist. In contrast, mosapride (10mg/kg s.c.) had no effect on these models. Like the AChE inhibitors itopride (30 mg/kg s.c.) and neostigmine (10 μg/kg s.c.), acotiamide (10mg/kg s.c.) also clearly enhanced gastric body contractions induced by electrical stimulation of the vagus, which were abolished by atropine and hexamethonium, whereas mosapride (3 and 10mg/kg s.c.) did not. In in vitro studies, acotiamide concentration-dependently inhibited rat stomach-derived AChE activity (IC(50)=2.3 μmol/l). In addition, stomach tissue concentrations of acotiamide after administration at 10mg/kg s.c. were sufficient to produce inhibition of AChE activity in rat stomach. These results suggest that acotiamide stimulates gastric motility and improves gastric motility dysfunction in rats by inhibiting AChE activity, and may suggest a role for acotiamide in improving gastric motility dysfunction in patients with functional dyspepsia. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Correlation between 96-h mortality and 24-h acetylcholinesterase inhibition in three grass shrimp larval life stages.

    PubMed

    Key, Peter B; Fulton, Michael H

    2006-03-01

    Three life stages of larval grass shrimp were tested to determine whether acetylcholinesterase (AChE) activity expressed as 24-h sublethal effect endpoints (EC20 and EC50) could be used to predict 96-h mortality (lowest observable effect concentration (LOEC) and LC50) for shrimp exposed to three organophosphate insecticides. With regard to mortality, newly hatched larvae and 18-day-old larvae were the most sensitive in the malathion and azinphosmethyl exposures. In the chlorpyrifos exposures, newly hatched larvae and postlarvae were the most sensitive life stages. Results of the 24-h AChE inhibition tests showed that newly hatched larvae were generally more sensitive in the three organophosphate exposures. A regression analysis of the EC50's and LC50's yielded the strongest correlation with R2=0.987 (correlation coefficient=0.994 and 95% confidence intervals 0.969-0.999). The LOEC/EC20 relationship yielded R2=0.962. For these grass shrimp life stages and pesticides, sublethal effect endpoints could be used as a predictor of 96-h mortality.

  2. Bioactive Paper Sensor Based on the Acetylcholinesterase for the Rapid Detection of Organophosphate and Carbamate Pesticides

    PubMed Central

    Badawy, Mohamed E. I.; El-Aswad, Ahmed F.

    2014-01-01

    In many countries, people are becoming more concerned about pesticide residues which are present in or on food and feed products. For this reason, several methods have been developed to monitor the pesticide residue levels in food samples. In this study, a bioactive paper-based sensor was developed for detection of acetylcholinesterase (AChE) inhibitors including organophosphate and carbamate pesticides. Based on the Ellman colorimetric assay, the assay strip is composed of a paper support (1 × 10 cm), onto which a biopolymer chitosan gel immobilized in crosslinking by glutaraldehyde with AChE and 5,5′-dithiobis(2-nitrobenzoic) acid (DTNB) and uses acetylthiocholine iodide (ATChI) as an outside reagent. The assay protocol involves introducing the sample to sensing zone via dipping of a pesticide-containing solution. Following an incubation period, the paper is placed into ATChI solution to initiate enzyme catalyzed hydrolysis of the substrate, causing a yellow color change. The absence or decrease of the yellow color indicates the levels of the AChE inhibitors. The biosensor is able to detect organophosphate and carbamate pesticides with good detection limits (methomyl = 6.16 × 10−4 mM and profenofos = 0.27 mM) and rapid response times (~5 min). The results show that the paper-based biosensor is rapid, sensitive, inexpensive, portable, disposable, and easy-to-use. PMID:25484901

  3. 9-Substituted acridine derivatives as acetylcholinesterase and butyrylcholinesterase inhibitors possessing antioxidant activity for Alzheimer's disease treatment.

    PubMed

    Makhaeva, Galina F; Lushchekina, Sofya V; Boltneva, Natalia P; Serebryakova, Olga G; Rudakova, Elena V; Ustyugov, Alexey A; Bachurin, Sergey O; Shchepochkin, Alexander V; Chupakhin, Oleg N; Charushin, Valery N; Richardson, Rudy J

    2017-11-01

    We investigated the inhibitory activity of 4 groups of novel acridine derivatives against acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and carboxylesterase (CaE) using the methods of enzyme kinetics and molecular docking. Antioxidant activity of the compounds was determined using the 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS + ) radical decolorization assay as their ability to scavenge free radicals. Analysis of the esterase profiles and antiradical activities of the acridine derivatives showed that 9-aryl(heteroaryl)-N-methyl-9,10-dihydroacridines have a high radical-scavenging activity but low potency as AChE and BChE inhibitors, whereas 9-aryl(heteroaryl)-N-methyl-acridinium tetrafluoroborates effectively inhibit cholinesterases but do not exhibit antiradical activity. In contrast, a group of derivatives of 9-heterocyclic amino-N-methyl-9,10-dihydroacridine has been found that combine effective inhibition of AChE and BChE with rather high radical-scavenging activity. The results of molecular docking well explain the observed features in the efficacy, selectivity, and mechanism of cholinesterase inhibition by the acridine derivatives. Thus, in a series of acridine derivatives we have found compounds possessing dual properties of effective and selective cholinesterase inhibition together with free radical scavenging, which makes promising the use of the acridine scaffold to create multifunctional drugs for the therapy of neurodegenerative diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Gold nanoclusters-Cu(2+) ensemble-based fluorescence turn-on and real-time assay for acetylcholinesterase activity and inhibitor screening.

    PubMed

    Sun, Jian; Yang, Xiurong

    2015-12-15

    Based on the specific binding of Cu(2+) ions to the 11-mercaptoundecanoic acid (11-MUA)-protected AuNCs with intense orange-red emission, we have proposed and constructed a novel fluorescent nanomaterials-metal ions ensemble at a nonfluorescence off-state. Subsequently, an AuNCs@11-MUA-Cu(2+) ensemble-based fluorescent chemosensor, which is amenable to convenient, sensitive, selective, turn-on and real-time assay of acetylcholinesterase (AChE), could be developed by using acetylthiocholine (ATCh) as the substrate. Herein, the sensing ensemble solution exhibits a marvelous fluorescent enhancement in the presence of AChE and ATCh, where AChE hydrolyzes its active substrate ATCh into thiocholine (TCh), and then TCh captures Cu(2+) from the ensemble, accompanied by the conversion from fluorescence off-state to on-state of the AuNCs. The AChE activity could be detected less than 0.05 mU/mL within a good linear range from 0.05 to 2.5 mU/mL. Our proposed fluorescence assay can be utilized to evaluate the AChE activity quantitatively in real biological sample, and furthermore to screen the inhibitor of AChE. As far as we know, the present study has reported the first analytical proposal for sensing AChE activity in real time by using a fluorescent nanomaterials-Cu(2+) ensemble or focusing on the Cu(2+)-triggered fluorescence quenching/recovery. This strategy paves a new avenue for exploring the biosensing applications of fluorescent AuNCs, and presents the prospect of AuNCs@11-MUA-Cu(2+) ensemble as versatile enzyme activity assay platforms by means of other appropriate substrates/analytes. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Exploration of a Library of 3,4-(Methylenedioxy)aniline-Derived Semicarbazones as Dual Inhibitors of Monoamine Oxidase and Acetylcholinesterase: Design, Synthesis, and Evaluation.

    PubMed

    Tripathi, Rati K P; Rai, Gopal K; Ayyannan, Senthil R

    2016-06-06

    A library of 3,4-(methylenedioxy)aniline-derived semicarbazones was designed, synthesized, and evaluated as monoamine oxidase (MAO) and acetylcholinesterase (AChE) inhibitors for the treatment of neurodegenerative diseases. Most of the new compounds selectively inhibited MAO-B and AChE, with IC50 values in the micro- or nanomolar ranges. Compound 16, 1-(2,6-dichlorobenzylidene)-4-(benzo[1,3]dioxol-5-yl)semicarbazide presented a balanced multifunctional profile of MAO-A (IC50 =4.52±0.032 μm), MAO-B (IC50 =0.059±0.002 μm), and AChE (IC50 =0.0087±0.0002 μm) inhibition without neurotoxicity. Kinetic studies revealed that compound 16 exhibits competitive and reversible inhibition against MAO-A and MAO-B, and mixed-type inhibition against AChE. Molecular docking studies further revealed insight into the possible interactions within the enzyme-inhibitor complexes. The most active compounds were found to interact with the enzymes through hydrogen bonding and hydrophobic interactions. Additionally, in silico molecular properties and ADME properties of the synthesized compounds were calculated to explore their drug-like characteristics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Effect of Several New and Currently Available Oxime Cholinesterase Reactivators on Tabun-intoxicated Rats

    PubMed Central

    Karasova, Jana Zdarova; Kassa, Jiri; Jung, Young-Sik; Musilek, Kamil; Pohanka, Miroslav; Kuca, Kamil

    2008-01-01

    The therapeutical efficacies of eleven oxime-based acetylcholinesterase reactivators were compared in an in vivo (rat model) study of treatment of intoxication caused by tabun. In this group there were some currently available oximes (obidoxime, trimedoxime and HI-6) and the rest were newly synthesized compounds. The best reactivation efficacy for acetylcholinesterase in blood (expressed as percent of reactivation) among the currently available oximes was observed after administration of trimedoxime (16%) and of the newly synthesized K127 (22432) (25%). The reactivation of butyrylcholinesterase in plasma was also studied; the best reactivators were trimedoxime, K117 (22435), and K127 (22432), with overall reactivation efficacies of approximately 30%. Partial protection of brain ChE against tabun inhibition was observed after administration of trimedoxime (acetylcholinesterase 20%; butyrylcholinesterase 30%) and obidoxime (acetylcholinesterase 12%; butyrylcholinesterase 16%). PMID:19330072

  7. Glutathione regulation-based dual-functional upconversion sensing-platform for acetylcholinesterase activity and cadmium ions.

    PubMed

    Fang, Aijin; Chen, Hongyu; Li, Haitao; Liu, Meiling; Zhang, Youyu; Yao, Shouzhuo

    2017-01-15

    A dual-functional platform for the sensing of acetylcholinesterase (AChE) activity and cadmium ions (Cd 2+ ) was developed based on the fluorescence resonance energy transfer (FRET) between NaYF 4 :Yb,Er upconversion nanoparticles (UCNPs) and gold nanoparticles (AuNPs) via glutathione regulation. The detection mechanism is based on the fact that AuNPs can quench the fluorescence of UCNPs. AChE catalyzes the hydrolysis of acetylthiocholine (ATC) into thiocholine which reacts with AuNPs by S-Au conjunction and results the aggregation of AuNPs and change in fluorescence of UCNPs. Therefore, the AChE activity can be detected through the changes of the color of solution and fluorescence recovery of UCNPs. However, the presence of glutathione (GSH) can protect AuNPs from aggregation and enlarge the inter-particle distance between AuNPs and UCNPs. When Cd 2+ is added into the stable mixture of AuNPs, GSH and AChE/ATC, Cd 2+ could interact with GSH to form a spherical shaped (GSH) 4 Cd complex, which decreases the free GSH on the surface of AuNPs to weaken the stability of AuNPs and lead to the easily aggregation of them in the system. The aggregated-AuNPs are released from the surface of UCNPs, which results in the fluorescence of UCNPs gradually recovered. Under the optimized conditions, the detection limits of AChE activity and Cd 2+ are estimated to be 0.015mU/mL and 0.2µM, respectively. The small molecules regulated dual-functional platform based on UCNPs/AuNPs is a simple, label-free method and can be applied for the turn-on fluorescence detection of AChE activity in human serum and Cd 2+ in real water samples. The present work demonstrates a general strategy for the design of small molecules regulated multifunctional platform and will be expanded for different areas in the future. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Beneficial effects of Urtica dioica on scopolamine-induced memory impairment in rats: protection against acetylcholinesterase activity and neuronal oxidative damage.

    PubMed

    Ghasemi, Simagol; Moradzadeh, Malihe; Hosseini, Mahmoud; Beheshti, Farimah; Sadeghnia, Hamid Reza

    2018-05-10

    This study was conducted to investigate protective effects of Urtica dioica extract on acetylcholinesterase (AChE) activity and the oxidative damage of brain tissues in scopolamine-induced memory impairment model. The rats were treated with (1) saline (control), (2) scopolamine, and (3-5) the plant extract (20, 50, or 100 mg/kg) before scopolamine. The traveled distance and the latency to find the platform in Morris water maze (MWM) by scopolamine-treated group were longer while the time spent in target quadrant was shorter than those of the control. Scopolamine decreased the latency to enter the dark in passive avoidance test. Besides, it also increased AChE activity and malondialdehyde (MDA) concentration in the hippocampal and cortical tissues while decreased thiols content and superoxide dismutase (SOD) and catalase (CAT) activities in the brain (p < 0.01-p <0.001). Treatment by the extract reversed all the effects of scopolamine (p < 0.05-p <0.001). According to the results of present study, the beneficial effects of U. dioica on memory can be attributed to its protective effects on oxidative damage of brain tissue and AChE activity.

  9. Taspine: Bioactivity-Guided Isolation and Molecular Ligand–Target Insight of a Potent Acetylcholinesterase Inhibitor from Magnolia x soulangiana

    PubMed Central

    Rollinger, Judith M.; Schuster, Daniela; Baier, Elisabeth; Ellmerer, Ernst P.; Langer, Thierry; Stuppner, Hermann

    2012-01-01

    A bioactivity-guided approach was taken to identify the acetylcholinesterase (AChE, EC 3.1.1.7) inhibitory agent in a Magnolia x soulangiana extract using a microplate enzyme assay with Ellman’s reagent. This permitted the isolation of the alkaloids taspine (1) and (−)-asimilobine (2), which were detected for the first time in this species. Compound 1 showed a significantly higher effect on AChE than the positive control galanthamine and selectively inhibited the enzyme in a long-lasting and concentration-dependent fashion with an IC50 value of 0.33 ± 0.07 μM. Extensive molecular docking studies were performed with human and Torpedo californica-AChE employing Gold software to rationalize the binding interaction. The results suggested ligand 1 to bind in an alternative binding orientation when compared to galanthamine. While this is located in close vicinity to the catalytic amino acid triad, the 1–AChE complex was found to be stabilized by (i) sandwich-like π-stacking interactions between the planar aromatic ligand (1) and the Trp84 and Phe330 of the enzyme, (ii) an esteratic site anchoring with the amino side chain, and (iii) a hydrogen-bonding network. PMID:16989531

  10. Interaction of “readthrough” acetylcholinesterase with RACK1 and PKCβII correlates with intensified fear-induced conflict behavior

    PubMed Central

    Birikh, Klara R.; Sklan, Ella H.; Shoham, Shai; Soreq, Hermona

    2003-01-01

    Behavioral reactions to stress are altered in numerous psychiatric and neurodegenerative syndromes, but the corresponding molecular processes and signal transduction pathways are yet unknown. Here, we report that, in mice, the stress-induced splice variant of acetylcholinesterase, AChE-R, interacts intraneuronally with the scaffold protein RACK1 and through it, with its target, protein kinase CβII (PKCβII), which is known to be involved in fear conditioning. In stress-responsive brain regions of normal FVB/N mice, the mild stress of i.p. injection increased AChE and PKCβII levels in a manner suppressible by antisense prevention of AChE-R accumulation. Injection stress also prolonged conflict between escape and hiding in the emergence into an open field test. Moreover, transgenic FVB/N mice overexpressing AChE-R displayed prolonged delay to emerge into another field (fear-induced behavioral inhibition), associated with chronically intensified neuronal colabeling of RACK1 and PKCβII in stress-responsive brain regions. These findings are consistent with the hypothesis that stress-associated changes in cholinergic gene expression regulate neuronal PKCβII functioning, promoting fear-induced conflict behavior after stress. PMID:12509514

  11. Automated Docking with Protein Flexibility in the Design of Femtomolar “Click Chemistry” Inhibitors of Acetylcholinesterase

    PubMed Central

    Morris, Garrett M.; Green, Luke G.; Radić, Zoran; Taylor, Palmer; Sharpless, K. Barry; Olson, Arthur J.; Grynszpan, Flavio

    2013-01-01

    The use of computer-aided structure-based drug design prior to synthesis has proven to be generally valuable in suggesting improved binding analogues of existing ligands.1 Here we describe the application of the program AutoDock2 to the design of a focused library that was used in the “click chemistry in-situ” generation of the most potent non-covalent inhibitor of the enzyme acetylcholinesterase (AChE) yet developed (Kd = ~100 fM).3 AutoDock version 3.0.5 has been widely distributed and successfully used to predict bound conformations of flexible ligands. Here, we also used a version of AutoDock which permits additional conformational flexibility in selected amino acid sidechains of the target protein. PMID:23451944

  12. Acetylcholinesterase inhibitors for electroconvulsive therapy-induced cognitive side effects: a systematic review.

    PubMed

    Henstra, Marieke J; Jansma, Elise P; van der Velde, Nathalie; Swart, Eleonora L; Stek, Max L; Rhebergen, Didi

    2017-05-01

    Electroconvulsive therapy (ECT) is an effective treatment for severe late-life depression; however, ECT-induced cognitive side effects frequently occur. The cholinergic system is thought to play an important role in the pathogenesis. We systematically reviewed the evidence for acetylcholinesterase inhibitors (Ache-I) to prevent or reduce ECT-induced cognitive side effects. A systematic search was performed in Pubmed, EMBASE, PsychINFO, and the Cochrane database to identify clinical trials investigating the effect of Ache-I on ECT-induced cognitive side effects. Key search terms included all synonyms for ECT and Ache-I. Risk of bias assessment was conducted by using the Cochrane Collaboration's tool. Five clinical trials were eligible for inclusion. All studies focused on cognitive functioning as primary endpoint, but assessment of cognitive functioning varied widely in time point of assessment and in cognitive tests that were used. There was also great variety in study medication, route and time of administration and dosages, duration of drug administration, and ECT techniques. Finally, only two out of five studies were considered at low risk of bias. Despite the aforementioned shortcomings, without exception, all studies demonstrated significantly better cognitive performance in individuals treated with Ache-I. Despite large heterogeneity in studies, Ache-I appear to have beneficial effects on ECT-induced cognitive side effects, supporting an association with the cholinergic system in ECT-induced cognitive impairment. Methodological sound studies controlling for putative confounders are warranted. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Regional acetylcholinesterase activity and its correlation with behavioral performances in 15-month old transgenic mice expressing the human C99 fragment of APP.

    PubMed

    Dumont, M; Lalonde, R; Ghersi-Egea, J-F; Fukuchi, K; Strazielle, C

    2006-09-01

    In addition to Abeta plaques and neurofibrillary tangles, Alzheimer's disease (AD) is characterized by increased brain levels of APP C-terminal fragments. In the present investigation, the cholinergic innervation in forebrain regions of transgenic mice (Tg13592) expressing the human betaAPP C99 fragment was compared to that of non-transgenic controls by measuring the activity of the non-specific catabolic enzyme, acetylcholinesterase (AChE). The AchE activity of Tg13592 mice was altered in several regions implicated in the functional loop of regulation between septum and hippocampus, vulnerable in Alzheimer pathology and critically involved in cognitive functions. In particular, AChE activity was upregulated in three basal forebrain regions containing cholinergic cell bodies, prelimbic cortex, anterior subiculum, and paraventricular thalamus, but downregulated in lateral septum and reticular thalamus. The increased activity in medial septum and anterior subiculum was linearly correlated with poor performances in a spatial learning task, possibly due to cell stress mechanisms. Because of some similarities in terms of neurochemistry and behavior, this mouse model may be of use for studying prodromal AD.

  14. Monoterpenoids (thymol, carvacrol and S-(+)-linalool) with anesthetic activity in silver catfish (Rhamdia quelen): evaluation of acetylcholinesterase and GABAergic activity

    PubMed Central

    Bianchini, A.E.; Garlet, Q.I.; da Cunha, J.A.; Bandeira, G.; Brusque, I.C.M.; Salbego, J.; Heinzmann, B.M.; Baldisserotto, B.

    2017-01-01

    This study evaluated the anesthetic potential of thymol and carvacrol, and their influence on acetylcholinesterase (AChE) activity in the muscle and brain of silver catfish (Rhamdia quelen). The AChE activity of S-(+)-linalool was also evaluated. We subsequently assessed the effects of thymol and S-(+)-linalool on the GABAergic system. Fish were exposed to thymol and carvacrol (25, 50, 75, and 100 mg/L) to evaluate time for anesthesia and recovery. Both compounds induced sedation at 25 mg/L and anesthesia with 50–100 mg/L. However, fish exposed to carvacrol presented strong muscle contractions and mortality. AChE activity was increased in the brain of fish at 50 mg/L carvacrol and 100 mg/L thymol, and decreased in the muscle at 100 mg/L carvacrol. S-(+)-linalool did not alter AChE activity. Anesthesia with thymol was reversed by exposure to picrotoxin (GABAA antagonist), similar to the positive control propofol, but was not reversed by flumazenil (antagonist of benzodiazepine binding site), as observed for the positive control diazepam. Picrotoxin did not reverse the effect of S-(+)-linalool. Thymol exposure at 50 mg/L is more suitable than carvacrol for anesthesia in silver catfish, because this concentration did not cause any mortality or interference with AChE activity. Thymol interacted with GABAA receptors, but not with the GABAA/benzodiazepine site. In contrast, S-(+)-linalool did not act in GABAA receptors in silver catfish. PMID:29069225

  15. Monoterpenoids (thymol, carvacrol and S-(+)-linalool) with anesthetic activity in silver catfish (Rhamdia quelen): evaluation of acetylcholinesterase and GABAergic activity.

    PubMed

    Bianchini, A E; Garlet, Q I; da Cunha, J A; Bandeira, G; Brusque, I C M; Salbego, J; Heinzmann, B M; Baldisserotto, B

    2017-10-19

    This study evaluated the anesthetic potential of thymol and carvacrol, and their influence on acetylcholinesterase (AChE) activity in the muscle and brain of silver catfish (Rhamdia quelen). The AChE activity of S-(+)-linalool was also evaluated. We subsequently assessed the effects of thymol and S-(+)-linalool on the GABAergic system. Fish were exposed to thymol and carvacrol (25, 50, 75, and 100 mg/L) to evaluate time for anesthesia and recovery. Both compounds induced sedation at 25 mg/L and anesthesia with 50-100 mg/L. However, fish exposed to carvacrol presented strong muscle contractions and mortality. AChE activity was increased in the brain of fish at 50 mg/L carvacrol and 100 mg/L thymol, and decreased in the muscle at 100 mg/L carvacrol. S-(+)-linalool did not alter AChE activity. Anesthesia with thymol was reversed by exposure to picrotoxin (GABAA antagonist), similar to the positive control propofol, but was not reversed by flumazenil (antagonist of benzodiazepine binding site), as observed for the positive control diazepam. Picrotoxin did not reverse the effect of S-(+)-linalool. Thymol exposure at 50 mg/L is more suitable than carvacrol for anesthesia in silver catfish, because this concentration did not cause any mortality or interference with AChE activity. Thymol interacted with GABAA receptors, but not with the GABAA/benzodiazepine site. In contrast, S-(+)-linalool did not act in GABAA receptors in silver catfish.

  16. A highly stable acetylcholinesterase biosensor based on chitosan-TiO2-graphene nanocomposites for detection of organophosphate pesticides.

    PubMed

    Cui, Hui-Fang; Wu, Wen-Wen; Li, Meng-Meng; Song, Xiaojie; Lv, Yuanxu; Zhang, Ting-Ting

    2018-01-15

    A highly stable electrochemical acetylcholinesterase (AChE) biosensor for detection of organophosphorus pesticides (OPs) was developed simply by adsorption of AChE on chitosan (CS), TiO 2 sol-gel, and reduced graphene oxide (rGO) based multi-layered immobilization matrix (denoted as CS @ TiO 2 -CS/rGO). The biosensor fabrication conditions were optimized, and the fabrication process was probed and confirmed by scanning electron microscopy and electrochemical techniques. The matrix has a mesoporous nanostructure. Incorporation of CS and electrodeposition of a CS layer into/on the TiO 2 sol-gel makes the gel become mechanically strong. The catalytic activity of the AChE immobilized CS @ TiO 2 -CS/rGO/glassy carbon electrode to acetylthiocholine is significantly higher than those missing any one of the component in the matrix. The detection linear range of the biosensor to dichlorvos, a model OP compound, is from 0.036μM (7.9 ppb) to 22.6μM, with a limit of detection of 29nM (6.4 ppb) and a total detection time of about 25min. The biosensor is very reproducibly and stable both in detection and in storage, and can accurately detect the dichlorvos levels in cabbage juice samples, providing an efficient platform for immobilization of AChE, and a promisingly applicable OPs biosensor with high reliability, simplicity, and rapidness. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. A comparison of the efficacy of newly developed reversible inhibitors of acetylcholinesterase with commonly used pyridostigmine as pharmacological pre-treatment of soman-poisoned mice.

    PubMed

    Kassa, Jiri; Musilek, Kamil; Koomlova, Marketa; Bajgar, Jiri

    2012-04-01

    The ability of three newly developed reversible inhibitors of acetylcholinesterase (AChE) (K298, K344 and K474) and currently available carbamate pyridostigmine to increase the resistance of mice against soman and the efficacy of antidotal treatment of soman-poisoned mice was compared. Neither pyridostigmine nor new reversible inhibitors of AChE were able to increase the LD(50) value of soman. Thus, the pharmacological pre-treatment with pyridostigmine or newly synthesized inhibitors of AChE was not able to protect mice against soman-induced lethal acute toxicity. The pharmacological pre-treatment with pyridostigmine alone or with K474 was able to slightly increase the efficacy of antidotal treatment (the oxime HI-6 in combination with atropine) of soman-poisoned mice, but the increase in the efficacy of antidotal treatment was not significant. The other newly developed reversible inhibitors of AChF (K298, K344) were completely ineffective. These findings demonstrate that pharmacological pre-treatment of soman-poisoned mice with tested reversible inhibitors of AChF is not promising. © 2011 The Authors. Basic & Clinical Pharmacology & Toxicology © 2011 Nordic Pharmacological Society.

  18. Kinetics of Huperzine A Dissociation from Acetylcholinesterase via Multiple Unbinding Pathways.

    PubMed

    Rydzewski, J; Jakubowski, R; Nowak, W; Grubmüller, H

    2018-06-12

    The dissociation of huperzine A (hupA) from Torpedo californica acetylcholinesterase ( TcAChE) was investigated by 4 μs unbiased and biased all-atom molecular dynamics (MD) simulations in explicit solvent. We performed our study using memetic sampling (MS) for the determination of reaction pathways (RPs), metadynamics to calculate free energy, and maximum-likelihood estimation (MLE) to recover kinetic rates from unbiased MD simulations. Our simulations suggest that the dissociation of hupA occurs mainly via two RPs: a front door along the axis of the active-site gorge (pwf) and through a new transient side door (pws), i.e., formed by the Ω-loop (residues 67-94 of TcAChE). An analysis of the inhibitor unbinding along the RPs suggests that pws is opened transiently after hupA and the Ω-loop reach a low free-energy transition state characterized by the orientation of the pyridone group of the inhibitor directed toward the Ω-loop plane. Unlike pws, pwf does not require large structural changes in TcAChE to be accessible. The estimated free energies and rates agree well with available experimental data. The dissociation rates along the unbinding pathways are similar, suggesting that the dissociation of hupA along pws is likely to be relevant. This indicates that perturbations to hupA- TcAChE interactions could potentially induce pathway hopping. In summary, our results characterize the slow-onset inhibition of TcAChE by hupA, which may provide the structural and energetic bases for the rational design of the next-generation slow-onset inhibitors with optimized pharmacokinetic properties for the treatment of Alzheimer's disease.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Worek, Franz, E-mail: franzworek@bundeswehr.org; Wille, Timo; Aurbek, Nadine

    Treatment of poisoning by highly toxic organophosphorus compounds (OP, nerve agents) is a continuous challenge. Standard treatment with atropine and a clinically used oxime, obidoxime or pralidoxime is inadequate against various nerve agents. For ethical reasons testing of oxime efficacy has to be performed in animals. Now, it was tempting to investigate the reactivation kinetics of MMB-4, a candidate oxime to replace pralidoxime, with nerve agent-inhibited acetylcholinesterase (AChE) from human and animal origin in order to provide a kinetic basis for the proper assessment of in vivo data. By applying a modified kinetic approach, allowing the use of necessary highmore » MMB-4 concentrations, it was possible to determine the reactivation constants with sarin-, cyclosarin-, VX-, VR- and tabun-inhibited AChE. MMB-4 exhibited a high reactivity and low affinity towards OP-inhibited AChE, except of tabun-inhibited enzyme where MMB-4 had an extremely low reactivity. Species differences between human and animal AChE were low (Cynomolgus) to moderate (swine, guinea pig). Due to the high reactivity of MMB-4 a rapid reactivation of inhibited AChE can be anticipated at adequate oxime concentrations which are substantially higher compared to HI-6. Additional studies are necessary to determine the in vivo toxicity, tolerability and pharmacokinetics of MMB-4 in humans in order to enable a proper assessment of the value of this oxime as an antidote against nerve agent poisoning.« less

  20. Protection by pyridostigmine bromide of marmoset hemi-diaphragm acetylcholinesterase activity after soman exposure.

    PubMed

    Haigh, Julian R; Adler, Michael; Apland, James P; Deshpande, Sharad S; Barham, Charles B; Desmond, Patrick; Koplovitz, Irwin; Lenz, David E; Gordon, Richard K

    2010-09-06

    Pyridostigmine bromide (PB) was approved by the U.S. Food and Drug Administration (FDA) in 2003 as a pretreatment in humans against the lethal effects of the irreversible nerve agent soman (GD). Organophosphate (OP) chemical warfare agents such as GD exert their toxic effects by inhibiting acetylcholinesterase (AChE) from terminating the action of acetylcholine at postsynaptic sites in cholinergic nerve terminals (including crucial peripheral muscle such as diaphragm). As part of the post-marketing approval of PB, the FDA required (under 21CFR314, the "two animal rule") the study of a non-human primate model (the common marmoset Callithrix jacchus jacchus) to demonstrate increased survival against lethal GD poisoning, and protection of physiological hemi-diaphragm function after PB pretreatment and subsequent GD exposure. Marmosets (male and female) were placed in the following experimental groups: (i) control (saline pretreatment only), (ii) low dose PB (12.5 microg/kg), or (iii) high dose (39.5 microg/kg) PB. Thirty minutes after the PB dose, animals were challenged with either saline (control) or soman (GD, 45 microg/kg), followed 1 min later by atropine (2mg/kg) and 2-PAM (25mg/kg). After a further 16 min, animals were euthanized and the complete diaphragm removed; the right hemi-diaphragm was frozen immediately at -80 degrees C, and the left hemi-diaphragm was placed in a tissue bath for 4h (to allow for decarbamylation to occur), then frozen. AChE activities were determined using the automated WRAIR cholinesterase assay. Blood samples were collected for AChE activities prior to PB, before GD challenge, and after sacrifice. RBC-AChE was inhibited by approximately 18% and 50% at the low and high doses of PB, respectively, compared to control (baseline) activity. In the absence of PB pretreatment, the inhibition of RBC-AChE by GD was 98%. The recovery of hemi-diaphragm AChE activity after the 4h wash period (decarbamylation) was approximately 8% and 17%, at the

  1. Acetylcholinesterase and carbonic anhydrase inhibitory properties of novel urea and sulfamide derivatives incorporating dopaminergic 2-aminotetralin scaffolds.

    PubMed

    Özgeriş, Bünyamin; Göksu, Süleyman; Polat Köse, Leyla; Gülçin, İlhami; Salmas, Ramin Ekhteiari; Durdagi, Serdar; Tümer, Ferhan; Supuran, Claudiu T

    2016-05-15

    In the present study a series of urea and sulfamide compounds incorporating the tetralin scaffolds were synthesized and evaluated for their acetylcholinesterase (AChE), human carbonic anhydrase (CA, EC 4.2.1.1) isoenzyme I, and II (hCA I and hCA II) inhibitory properties. The urea and their sulfamide analogs were synthesized from the reactions of 2-aminotetralins with N,N-dimethylcarbamoyl chloride and N,N-dimethylsulfamoyl chloride, followed by conversion to the corresponding phenols via O-demethylation with BBr3. The novel urea and sulfamide derivatives were tested for inhibition of hCA I, II and AChE enzymes. These derivatives exhibited excellent inhibitory effects, in the low nanomolar range, with Ki values of 2.61-3.69nM against hCA I, 1.64-2.80nM against hCA II, and in the range of 0.45-1.74nM against AChE. In silico techniques such as, atomistic molecular dynamics (MD) and molecular docking simulations, were used to understand the scenario of the inhibition mechanism upon approaching of the ligands into the active site of the target enzymes. In light of the experimental and computational results, crucial amino acids playing a role in the stabilization of the enzyme-inhibitor adducts were identified. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Insect-specific irreversible inhibitors of acetylcholinesterase in pests including the bed bug, the eastern yellowjacket, German and American cockroaches, and the confused flour beetle.

    PubMed

    Polsinelli, Gregory A; Singh, Sanjay K; Mishra, Rajesh K; Suranyi, Robert; Ragsdale, David W; Pang, Yuan-Ping; Brimijoin, Stephen

    2010-09-06

    Insecticides directed against acetylcholinesterase (AChE) are facing increased resistance among target species as well as increasing concerns for human toxicity. The result has been a resurgence of disease vectors, insects destructive to agriculture, and residential pests. We previously reported a free cysteine (Cys) residue at the entrance to the AChE active site in some insects but not higher vertebrates. We also reported Cys-targeting methanethiosulfonate molecules (AMTSn), which, under conditions that spared human AChE, caused total irreversible inhibition of aphid AChE, 95% inhibition of AChE from the malaria vector mosquito (Anopheles gambia), and >80% inhibition of activity from the yellow fever mosquito (Aedes aegypti) and northern house mosquito (Culex pipiens). We now find the same compounds inhibit AChE from cockroaches (Blattella germanica and Periplaneta americana), the flour beetle (Tribolium confusum), the multi-colored Asian ladybird beetle (Harmonia axyridis), the bed bug (Cimex lectularius), and a wasp (Vespula maculifrons), with IC(50) values of approximately 1-11muM. Our results support further study of Cys-targeting inhibitors as conceptually novel insecticides that may be free of resistance in a range of insect pests and disease vectors and, compared with current compounds, should demonstrate much lower toxicity to mammals, birds, and fish. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  3. How does huperzine A enter and leave the binding gorge of acetylcholinesterase? Steered molecular dynamics simulations.

    PubMed

    Xu, Yechun; Shen, Jianhua; Luo, Xiaomin; Silman, Israel; Sussman, Joel L; Chen, Kaixian; Jiang, Hualiang

    2003-09-17

    The entering and leaving processes of Huperzine A (HupA) binding with the long active-site gorge of Torpedo californica acetylcholinesterase (TcAChE) have been investigated by using steered molecular dynamics simulations. The analysis of the force required along the pathway shows that it is easier for HupA to bind to the active site of AChE than to disassociate from it, which for the first time interprets at the atomic level the previous experimental result that unbinding process of HupA is much slower than its binding process to AChE. The direct hydrogen bonds, water bridges, and hydrophobic interactions were analyzed during two steered molecular dynamics (SMD) simulations. Break of the direct hydrogen bond needs a great pulling force. The steric hindrance of bottleneck might be the most important factor to produce the maximal rupture force for HupA to leave the binding site but it has a little effect on the binding process of HupA with AChE. Residue Asp72 forms a lot of water bridges with HupA leaving and entering the AChE binding gorge, acting as a clamp to take out HupA from or put HupA into the active site. The flip of the peptide bond between Gly117 and Gly118 has been detected during both the conventional MD and SMD simulations. The simulation results indicate that this flip phenomenon could be an intrinsic property of AChE and the Gly117-Gly118 peptide bond in both HupA bound and unbound AChE structures tends to adopt the native enzyme structure. At last, in a vacuum the rupture force is increased up to 1500 pN while in water solution the greatest rupture force is about 800 pN, which means water molecules in the binding gorge act as lubricant to facilitate HupA entering or leaving the binding gorge.

  4. Effect of adult onset hypothyroidism on behavioral parameters and acetylcholinesterase isoforms activity in specific brain regions of male mice.

    PubMed

    Vasilopoulou, Catherine G; Constantinou, Caterina; Giannakopoulou, Dimitra; Giompres, Panagiotis; Margarity, Marigoula

    2016-10-01

    Thyroid hormones (TH) are essential for normal development and function of mammalian central nervous system (CNS); TH dysregulation has been implicated in several cognitive and behavioral deficits related to dysfunctions of neurotransmitter systems. In the present study, we investigated the effects of adult onset hypothyroidism on the activity of acetylcholinesterase (AChE) and on related behavioral parameters. For this purpose we used adult male Balb/cJ mice that were divided randomly into euthyroid and hypothyroid animal groups. Animals were rendered hypothyroid through administration of 1% w/v KClO4 in their drinking water for 8weeks. At the end of the treatment, learning/memory procedures were examined through step-through passive avoidance task while fear/anxiety was assessed using elevated plus-maze (EPM) and open-field (OF) tests. AChE activity was determined colorimetrically in two different fractions, salt-soluble fraction (SS) (containing mainly the G1 isoform) and detergent-soluble fraction (DS) (containing mainly the G4 isoform) in cerebral cortex, cerebellum, midbrain, hippocampus and striatum. Our results indicate that adult onset hypothyroidism caused significant memory impairment and increased fear/anxiety. Moreover, the activity of both isoforms of AChE was reduced in all brain regions examined in a brain region- and isoform-specific manner. Copyright © 2016. Published by Elsevier Inc.

  5. Inhibitory effects of oxytocin and oxytocin receptor antagonist atosiban on the activities of carbonic anhydrase and acetylcholinesterase enzymes in the liver and kidney tissues of rats.

    PubMed

    Kocyigit, Umit M; Taşkıran, Ahmet Şevki; Taslimi, Parham; Yokuş, Ahmet; Temel, Yusuf; Gulçin, İlhami

    2017-11-01

    The aim of this study was to investigate the effects of oxytocin (OT), atosiban, which is an OT receptor antagonist, and OT-atosiban chemicals injected to rats on the activities of carbonic anhydrase (CA) and acetylcholinesterase (AChE) enzymes in liver and kidney tissues of rats. For this purpose, four different groups, each consisting of six rats (n = 6), were formed (control group, OT administered group, atosiban administered group, and both OT and atosiban administered group). The rats were necropsied 60 min after intraperitoneal injection of chemicals into the rats. Liver tissues of rats were extracted. CA and AChE enzyme activities were measured for each tissue by using hydratase, esterase, and acetylcholiniodide methods. Activity values for each enzyme obtained were statistically calculated. © 2017 Wiley Periodicals, Inc.

  6. Comparison of Human and Guinea Pig Acetylcholinesterase Sequences and Rates of Oxime-Assisted Reactivation

    DTIC Science & Technology

    2010-01-01

    of appropriate animal model systems. For OP poisoning, the guinea pig (Cavia porcellus) is a commonly used animal model because guinea pigs more...endogenous bioscavenger in vivo. Although guinea pigs historically have been used to test OP poisoning therapies, it has been found recently that guinea pig AChE...transcribed mRNA encoding guinea pig AChE, amplified the resulting cDNA, and sequenced this product. The nucleotide and deduced amino acid sequences of

  7. Acetylcholinesterase and neuropathy target esterase activities in 11 cases of symptomatic flight crew members after fume events.

    PubMed

    Heutelbeck, Astrid R R; Bornemann, Catherine; Lange, Martina; Seeckts, Anke; Müller, Michael M

    2016-01-01

    In modern aviation, so-called fume events such as exposure to an unknown mixture of chemicals introduced into the aircraft cabin with bleed air drawn off at the engines may occur. Human exposure may result in (neuro)toxic symptoms described as so-called "aerotoxic syndrome." Currently, among other agents organophosphates (OP) are regarded as a likely cause of the observed adverse effects. After fume events 11 flight crew members (9 female/2 male; ages 23-58 yr) were admitted for a medical examination within 5 d post exposure. Individual acetylcholinesterase (AChE) and neuropathy target esterase (NTE) activities were determined. Anamnesis and clinical findings confirmed prominent symptoms of an intoxication, including headache, cognitive difficulties, and neurological disorders, among others. Patient AChE activities ranged from 37 to 50 U/g hemoglobin (reference values: 26.7-50.9 U/g hemoglobin). Ten individuals showed NTE activities ranging from 3.14 to 6.3 nmol phenyl valerate/(min × mg protein) (reference values: 3.01-24), with one patient exhibiting low NTE activity of 1.4. Biochemical effect monitoring was applied to encompass a broad range of AChE-inhibiting compounds such as OP, carbamates, and isocyanates, or to detect inhibition of NTE. The measured AChE activities indicated a subordinate contribution of OP or related compounds to the observed symptoms. All noted NTE activities were clustered at low levels. Our data suggest a likely inhibition of NTE activities in patients after fume events, which warrants further investigation. The observed symptoms may be linked to known chemical compounds in fume events, and it is not possible to infer a direct correlation between manifestations and AChE -inhibiting compounds at this time.

  8. Zephycandidine A, the First Naturally Occurring Imidazo[1,2-f]phenanthridine Alkaloid from Zephyranthes candida, Exhibits Significant Anti-tumor and Anti-acetylcholinesterase Activities

    NASA Astrophysics Data System (ADS)

    Zhan, Guanqun; Qu, Xiaolan; Liu, Junjun; Tong, Qingyi; Zhou, Junfei; Sun, Bin; Yao, Guangmin

    2016-09-01

    Zephycandidine A (1), the first naturally occurring imidazo[1,2-f]phenanthridine alkaloid, was isolated from Zephyranthes candida (Amaryllidaceae). The structure of 1 was elucidated by spectroscopic analyses and NMR calculation, and a plausible biogenetic pathway for zephycandidine A (1) was proposed. Zephycandidine A (1) exhibited significant cytotoxicity against five cancer cell lines with IC50 values ranging from 1.98 to 7.03 μM with selectivity indices as high as 10 when compared to the normal Beas-2B cell. Further studies suggested that zephycandidine A (1) induces apoptosis in leukemia cells by the activation of caspase-3, upregulation of Bax, downregulation of Bcl-2, and degradation of PARP expression. In addition, zephycandidine A (1) showed acetylcholinesterase (AChE) inhibitory activity, and the docking studies of zephycandidine A (1) and galanthamine (2) with AChE revealed that interactions with W286 and Y337 are necessary.

  9. Possibility of Acetylcholinesterase Overexpression in Alzheimer Disease Patients after Therapy with Acetylcholinesterase Inhibitors.

    PubMed

    Kračmarová, Alžběta; Drtinová, Lucie; Pohanka, Miroslav

    2015-01-01

    Acetylcholinesterase is an enzyme responsible for termination of excitatory transmission at cholinergic synapses by the hydrolyzing of a neurotransmitter acetylcholine. Nowadays, other functions of acetylcholinesterase in the organism are considered, for example its role in regulation of apoptosis. Cholinergic nervous system as well as acetylcholinesterase activity is closely related to pathogenesis of Alzheimer disease. The mostly used therapy of Alzheimer disease is based on enhancing cholinergic function using inhibitors of acetylcholinesterase like rivastigmine, donepezil or galantamine. These drugs can influence not only the acetylcholinesterase activity but also other processes in treated organism. The paper is aimed mainly on possibility of increased expression and protein level of acetylcholinesterase caused by the therapy with acetylcholinesterase inhibitors.

  10. APS8, a Polymeric Alkylpyridinium Salt Blocks α7 nAChR and Induces Apoptosis in Non-Small Cell Lung Carcinoma

    PubMed Central

    Zovko, Ana; Viktorsson, Kristina; Lewensohn, Rolf; Kološa, Katja; Filipič, Metka; Xing, Hong; Kem, William R.; Paleari, Laura; Turk, Tom

    2013-01-01

    Naturally occurring 3-alkylpyridinium polymers (poly-APS) from the marine sponge Reniera sarai, consisting of monomers containing polar pyridinium and nonpolar alkyl chain moieties, have been demonstrated to exert a wide range of biological activities, including a selective cytotoxicity against non-small cell lung cancer (NSCLC) cells. APS8, an analog of poly-APS with defined alkyl chain length and molecular size, non-competitively inhibits α7 nicotinic acetylcholine receptors (nAChRs) at nanomolar concentrations that are too low to be acetylcholinesterase (AChE) inhibitory or generally cytotoxic. In the present study we show that APS8 inhibits NSCLC tumor cell growth and activates apoptotic pathways. APS8 was not toxic for normal lung fibroblasts. Furthermore, in NSCLC cells, APS8 reduced the adverse anti-apoptotic, proliferative effects of nicotine. Our results suggest that APS8 or similar compounds might be considered as lead compounds to develop antitumor therapeutic agents for at least certain types of lung cancer. PMID:23880932

  11. Point mutations in acetylcholinesterase 1 associated with chlorpyrifos resistance in the brown planthopper, Nilaparvata lugens Stål.

    PubMed

    Zhang, Y; Yang, B; Li, J; Liu, M; Liu, Z

    2017-08-01

    Insecticide resistance frequently results from target-site insensitivity, such as point mutations in acetylcholinesterases (AChEs) for resistance to organophosphates and carbamates. From a field-originated population of Nilaparvata lugens, a major rice pest, a resistant population (R9) was obtained by nine-generation continuous selection with chlorpyrifos. From the same field population, a relatively susceptible population (S9) was also constructed through rearing without any insecticides. Compared to the susceptible strain, Sus [medium lethal dose (LC 50 ) = 0.012 mg/l], R9 had a resistance ratio (RR) of 253.08-fold, whereas the RR of S9 was only 2.25-fold. Piperonyl butoxide and triphenyl phosphate synergized chlorpyrifos in R9 less than three-fold, indicating other important mechanisms for high resistance. The target-site insensitivity was supported by the key property differences of crude AChEs between R9 and S9. Compared to S9, three mutations (G119S, F331C and I332L) were detected in NlAChE1 from individuals of the R9 and field populations, but no mutation was detected in NlAChE2. G119S and F331C could decreased insecticide sensitivities in recombinant NlAChE1, whereas I332L took effect through increasing the influence of F331C on target insensitivity. F331C might be deleterious because of its influence on the catalytic efficiency of NlAChE1, whereas I332L would decrease these adverse effects and maintain the normal functions of AChEs. © 2017 The Royal Entomological Society.

  12. Acute and chronic effects of clofibrate and clofibric acid on the enzymes acetylcholinesterase, lactate dehydrogenase and catalase of the mosquitofish, Gambusia holbrooki.

    PubMed

    Nunes, B; Carvalho, F; Guilhermino, L

    2004-12-01

    The objective of this study was to investigate both acute and chronic effects of clofibrate and clofibric acid on the enzymes acetylcholinesterase (AChE), lactate dehydrogenase (LDH) and catalase (CAT) of the mosquitofish (Gambusia holbrooki). AChE, commonly used as a biomarker of neurotoxicity, was determined in the total head. LDH, an important enzyme of anaerobic metabolism, was quantified in dorsal muscle, and CAT, enzyme which has been used as indicative parameter of peroxisome proliferation, was determined in the liver. Furthermore, alterations of body and liver weight were also determined, through the calculation of the ratios final body weight/initial body weight, liver weight/final body weight, liver weight/gills weight and liver weight/head weight. Acute exposure of G. holbrooki to both clofibrate and clofibric acid induced a decrease in liver CAT activity, an increase in muscle LDH activity, while no effects were observed on AChE activity. However, chronic exposure did not alter significantly the enzymatic activities, suggesting reduced or null effects over these pathways, relative to effects reported in other species. No effects were observed for the calculated ratios, except a significant weight reduction for males chronically exposed to clofibrate.

  13. Highly Sensitive and Selective Immuno-capture/Electrochemical Assay of Acetylcholinesterase Activity in Red Blood Cells: A Biomarker of Exposure to Organophosphorus Pesticides and Nerve Agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Aiqiong; Du, Dan; Lin, Yuehe

    Acetylcholinesterase (AChE) enzyme activity in red blood cells (RBCs) is a useful biomarker for biomonitoring of exposures to organophosphorus (OP) pesticides and chemical nerve agents. In this paper, we reported a new method for AChE activity assay based on selective immuno-capture of AChE from biological samples followed by enzyme activity assay of captured AChE using a disposable electrochemical sensor. The electrochemical sensor is based on multiwalled carbon nanotubes-gold nanocomposites (MWCNTs-Au) modified screen printed carbon electrode (SPCE). Upon the completion of immunoreaction, the target AChE (including active and inhibited) is captured onto the electrode surface and followed by an electrochemical detectionmore » of enzymatic activity in the presence of acetylthiocholine. A linear response is obtained over standard AChE concentration range from 0.1 to 10 nM. To demonstrate the capability of this new biomonitoring method, AChE solutions dosed with different concentration of paraoxon were used to validate the new AChE assay method. AChE inhibition in OP dosed solutions was proportional to its concentration from 0.2 to 50 nM. The new AChE activity assay method for biomonitoring of OP exposure was further validated with in-vitro paraoxon-dosed RBC samples. The established electrochemical sensing platform for AChE activity assay not only avoids the problem of overlapping substrate specificity with esterases by using selective antibody, but also eliminates potential interference from other electroactive species in biological samples. It offers a new approach for sensitive, selective, and rapid AChE activity assay for biomonitoring of exposures to OPs.« less

  14. Acetylcholinesterase enzyme inhibitory potential of standardized extract of Trigonella foenum graecum L and its constituents.

    PubMed

    Satheeshkumar, N; Mukherjee, Pulok K; Bhadra, S; Saha, B P

    2010-03-01

    Ethno pharmacological approach has provided several leads to identify potential new drugs from plant sources, including those for memory disorders. Acetylcholinesterase inhibitors (AChEI) give a symptomatic relief to some of the clinical manifestations of the disease. The main objective of this study is to standardize the extract of Trigonella foenum graecum L with trigonelline by HPTLC method and determine the in vitro AChE inhibitory activity of Trigonella foenum graecum L and its constituents using galanthamine as a reference. Different concentrations of hydro alcoholic extract of Trigonella foenum graecum and trigonelline were subjected to HPTLC analysis using the mobile phase n propanol, methanol and water (4:1:2, v/v). The R(f) of trigonelline was found to be 0.43, and the correlation coefficient of 0.99 was indicative of good linear dependence of peak area on concentration. The concentration of trigonelline was found to be 13mgg(-1)w/w in the hydro alcoholic extract of Trigonella foenum graecum. The AChE inhibitory activity of crude fenugreek seed extracts, fractions and trigonelline was evaluated using Ellman's method in 96-well micro plate's assay and TLC bioassay detection. The ethyl acetate fraction of the alcohol extract (IC50 53.00 +/- 17.33microg/ml), and total alkaloid fraction (IC50 9.23+/-6.08microg/ml) showed potential AChE inhibition. Trigonelline showed IC50 233+/-0.12microM. Galanthamine was used as standard and it showed inhibition of acetyl cholinesterase with an IC50 value of 1.27+/-0.21microM. Copyright 2009 Elsevier GmbH. All rights reserved.

  15. In vitro characterization of pralidoxime transport and acetylcholinesterase reactivation across MDCK cells and stem cell-derived human brain microvascular endothelial cells (BC1-hBMECs).

    PubMed

    Gallagher, Erin; Minn, Il; Chambers, Janice E; Searson, Peter C

    2016-07-11

    Current therapies for organophosphate poisoning involve administration of oximes, such as pralidoxime (2-PAM), that reactivate the enzyme acetylcholinesterase. Studies in animal models have shown a low concentration in the brain following systemic injection. To assess 2-PAM transport, we studied transwell permeability in three Madin-Darby canine kidney (MDCKII) cell lines and stem cell-derived human brain microvascular endothelial cells (BC1-hBMECs). To determine whether 2-PAM is a substrate for common brain efflux pumps, experiments were performed in the MDCKII-MDR1 cell line, transfected to overexpress the P-gp efflux pump, and the MDCKII-FLuc-ABCG2 cell line, transfected to overexpress the BCRP efflux pump. To determine how transcellular transport influences enzyme reactivation, we developed a modified transwell assay where the inhibited acetylcholinesterase enzyme, substrate, and reporter are introduced into the basolateral chamber. Enzymatic activity was inhibited using paraoxon and parathion. The permeability of 2-PAM is about 2 × 10(-6) cm s(-1) in MDCK cells and about 1 × 10(-6) cm s(-1) in BC1-hBMECs. Permeability is not influenced by pre-treatment with atropine. In addition, 2-PAM is not a substrate for the P-gp or BCRP efflux pumps. The low permeability explains poor brain penetration of 2-PAM and therefore the slow enzyme reactivation. This elucidates one of the reasons for the necessity of sustained intravascular (IV) infusion in response to organophosphate poisoning.

  16. Biosensor Based on Self-Assembling Acetylcholinesterase on Carbon Nanotubes for Flow injection/Amperometric Detection of Organophosphate Pesticides and Nerve Agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Guodong; Lin, Yuehe

    A highly sensitive flow-injection amperometric biosensor for organophosphate pesticides and nerve agents based on self-assembly of acetylcholinesterase (AChE) on carbon nanotube (CNT)-modified glassy carbon (GC) electrode is described. AChE is immobilized on the negatively-charged CNT surface by alternatively assembling a cationic polydiallyldimethylammonium chloride (PDDA) layer and an AChE layer. Transmission electron microscopy images confirm the formation of layer-by-layer nanostructures on carboxyl functionalized CNTs. The unique sandwich-like structure (PDDA/AChE/PDDA) on the CNT surface formed by self-assembly provides a favorable microenvironment to keep the bioactivity of AChE and to prevent enzyme molecule leakage. The electrocatalytic activity of CNT leads to a greatlymore » improved electrochemical detection of the enzymatically generated thiocholine product, including a low oxidation overvoltage (+150 mV), higher sensitivity, and stability. The developed PDDA/AChE/PDDA/CNT/GC biosensor integrated into a flow injection system was used to monitor organophosphate pesticides and nerve agents, such as paraoxon. The sensor performance, including inhibition time and regeneration conditions, was optimized with respect to operating conditions. Under the optimal conditions, the biosensor was used to measure as low as 0.4 pM paraoxon with a 6-min inhibition time. The biosensor had excellent operational lifetime stability with no decrease in the activity of enzymes for more than 20 repeated measurements over a 1-week period. The developed biosensor system is an ideal tool for online monitoring of organophosphate pesticides and nerve agents.« less

  17. Effects of hyper- and hypothyroidism on acetylcholinesterase, (Na(+), K (+))- and Mg ( 2+ )-ATPase activities of adult rat hypothalamus and cerebellum.

    PubMed

    Carageorgiou, Haris; Pantos, Constantinos; Zarros, Apostolos; Stolakis, Vasileios; Mourouzis, Iordanis; Cokkinos, Dennis; Tsakiris, Stylianos

    2007-03-01

    Thyroid hormones (THs) are recognized as key metabolic hormones, and the metabolic rate increases in hyperthyroidism, while it decreases in hypothyroidism. The aim of this work was to investigate how changes in metabolism induced by THs could affect the activities of acetylcholinesterase (AChE), (Na(+), K(+))- and Mg(2+)-ATPase in the hypothalamus and the cerebellum of adult rats. Hyperthyroidism was induced by subcutaneous administration of thyroxine (25 microg/100 g body weight) once daily for 14 days, while hypothyroidism was induced by oral administration of propylthiouracil (0.05%) for 21 days. All enzyme activities were evaluated spectrophotometrically in the homogenated brain regions of 10 three-animal pools. Neither hyper-, nor hypothyroidism had any effect on the examined hypothalamic enzyme activities. In the cerebellum, hyperthyroidism provoked a significant decrease in both the AChE (-23%, p < 0.001) and the Na(+), K(+)-ATPase activities (-26%, p < 0.001). Moreover, hypothyroidism had a similar effect on the examined enzyme activities: AChE (-17%, p < 0.001) and Na(+), K(+)-ATPase (-27%, p < 0.001). Mg(2+)-ATPase activity was found unaltered in both the hyper- and the hypothyroid brain regions. neither hyper-, nor hypothyroidism had any effect on the examined hypothalamic enzyme activities. In the cerebellum, hyperthyroidism provoked a significant decrease in both the AChE and the Na(+), K(+)-ATPase activities. The decreased (by the THs) Na(+), K(+)-ATPase activities may increase the synaptic acetylcholine release, and thus, could result in a decrease in the cerebellar AChE activity. Moreover, the above TH-induced changes may affect the monoamine neurotransmitter systems.

  18. Analysis of the activation of acetylcholinesterase by carbon nanoparticles using a monolithic immobilized enzyme microreactor: role of the water molecules in the active site gorge.

    PubMed

    Ibrahim, Firas; Andre, Claire; Iutzeler, Anne; Guillaume, Yves Claude

    2013-10-01

    A biochromatographic system was used to study the direct effect of carbon nanoparticles (CNPs) on the acetylcholinesterase (AChE) activity. The AChE enzyme was covalently immobilized on a monolithic CIM-disk via its NH2 residues. Our results showed an increase in the AChE activity in presence of CNPs. The catalytic constant (k(cat)) was increased while the Michaelis constant (K(m)) was slightly decreased. This indicated an increase in the enzyme efficiency with increase of the substrate affinity to the active site. The thermodynamic data of the activation mechanism of the enzyme, i.e. ΔH* and ΔS*, showed no change in the substrate interaction mechanism with the anionic binding site. The increase of the enthalpy (ΔH*) and the entropy (ΔS*) with decrease in the free energy of activation (Ea) was related to structural conformation change in the active site gorge. This affected the stability of water molecules in the active site gorge and facilitated water displacement by substrate for entering to the active site of the enzyme.

  19. Continuum simulations of acetylcholine consumption by acetylcholinesterase: a Poisson-Nernst-Planck approach.

    PubMed

    Zhou, Y C; Lu, Benzhuo; Huber, Gary A; Holst, Michael J; McCammon, J Andrew

    2008-01-17

    The Poisson-Nernst-Planck (PNP) equation provides a continuum description of electrostatic-driven diffusion and is used here to model the diffusion and reaction of acetylcholine (ACh) with acetylcholinesterase (AChE) enzymes. This study focuses on the effects of ion and substrate concentrations on the reaction rate and rate coefficient. To this end, the PNP equations are numerically solved with a hybrid finite element and boundary element method at a wide range of ion and substrate concentrations, and the results are compared with the partially coupled Smoluchowski-Poisson-Boltzmann model. The reaction rate is found to depend strongly on the concentrations of both the substrate and ions; this is explained by the competition between the intersubstrate repulsion and the ionic screening effects. The reaction rate coefficient is independent of the substrate concentration only at very high ion concentrations, whereas at low ion concentrations the behavior of the rate depends strongly on the substrate concentration. Moreover, at physiological ion concentrations, variations in substrate concentration significantly affect the transient behavior of the reaction. Our results offer a reliable estimate of reaction rates at various conditions and imply that the concentrations of charged substrates must be coupled with the electrostatic computation to provide a more realistic description of neurotransmission and other electrodiffusion and reaction processes.

  20. EQCM Immunoassay for Phosphorylated Acetylcholinesterase as a Biomarker for Organophosphate Exposures Based on Selective Zirconia Adsorption and Enzyme-Catalytic Precipitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hua; Wang, Jun; Choi, Daiwon

    2009-03-01

    A zirconia (ZrO2) adsorption-based immunoassay by electrochemical quartz crystal microbalance (EQCM) has been initially developed, aiming at the detection of phosphorylated acetylcholinesterase (AChE) as a potential biomarker for bio-monitoring exposures to organophosphate (OP) pesticides and chemical warfare agents. Hydroxyl-derivatized monolayer was preferably chosen to modify the crystal serving as the template for directing the electro-deposition of ZrO2 film with uniform nanostructures. The resulting ZrO2 film was utilized to selectively capture phosphorylated AChE from the sample media. Horseradish peroxidase (HRP)-labeled anti-AChE antibodies were further employed to recognize the captured phosphorylated protein. Enzyme-catalytic oxidation of the benzidine substrate resulted in the accumulationmore » of insoluble product on the functionalized crystal. Ultrasensitive EQCM quantification by mass-amplified frequency responses as well as rapid qualification by visual color changes of product could be thus achieved. Moreover, 4-chloro-1-naphthol (CN) was comparably studied as an ideal chromogenic substrate for the enzyme-catalytic precipitation. Experimental results show that the developed EQCM technique can allow for the detection of phosphorylated AChE in human plasma. Such an EQCM immunosensing format opens a new door towards the development of simple, sensitive, and field-applicable biosensor for biologically monitoring low-level OP exposures.« less

  1. [Comparison of the reactivating effect of BI-6, a new asymmetrical bispyridinium oxime, with oxime HI-6 and obidoxime on soman-inhibited acetylcholinesterase in the diaphragm and various parts of the brain in rats].

    PubMed

    Kassa, J; Bajgar, J

    1999-08-30

    Acute poisoning with the highly toxic organophosphorus agent, soman, is not treated satisfactorily even by the most modern antidotes. In experiments on rats, the reactivating effect of a new asymmetric bispyridinium oxime BI-6 was compared with widely used oximes HI-6 and obidoxime by investigating the changes of soman-inhibited acetylcholinesterase activity in the diaphragm and various parts of the brain in rats up to three hours following soman challenge. Our findings confirm that the new oxime BI-6 is a more effective reactivator of soman-inhibited acetylcholinesterase than obidoxime but not as effective as the oxime HI-6 especially in the peripheral compartment. The new oxime BI-6 is not as effective as HI-6 which seems to have definite advantages over other oximes in the treatment of soman poisoning.

  2. Effects of intralipid and caffeic acid phenethyl ester on neurotoxicity, oxidative stress, and acetylcholinesterase activity in acute chlorpyriphos intoxication

    PubMed Central

    Ozkan, Umit; Osun, Arif; Basarslan, Kagan; Senol, Serkan; Kaplan, Ibrahim; Alp, Harun

    2014-01-01

    Chlorpyriphos is one of the most widely used organophosphate (OP) insecticide in agriculture with potential toxicity. Current post-exposure treatments consist of anti-cholinergic drugs and oxime compounds. We studied the effects of intralipid and caffeic acid phenethyl ester (CAPE) on chlorpyriphos toxicity to compose an alternative or supportive treatment for OP poisoning. Methods: Forty-nine rats were randomly divided into seven groups. Chlorpyriphos was administered for toxicity. Intralipid (IL) and CAPE administered immediately after chlorpyriphos. Serum acetylcholinesterase (AChE) level, total oxidant status (TOS), total antioxidant response (TAR), and histologic examination of cerebellum and brain tissue with Hematoxylin-Eosin and immunohistochemical dyes were examined. Results: Serum enzym levels showed that chlorpyriphos and CAPE inhibited AChE while IL alone had no effect, chlorpyriphos and CAPE intensifies the inhibition effect. Significant difference at AChE levels between the chlorpyriphos+IL and chlorpyriphos+CAPE verified that IL has a protective effect on AChE inhibition. TAR levels were significantly increased in all groups except chlorpyriphos group, TOS levels revealed that CAPE and IL decrease the amount of oxidative stress. Histologic examination revealed that neuronal degeneration was slightly decreased at chlorpyriphos+IL group, but CAPE had a significant effect on protection of neuronal degeneration. Conclusion: The results of this study gave us three key points. 1) AChE activity is important for diagnosis of OP intoxication but it has no value for determining the neuro-degeneration. 2) CAPE inhibits AChE activity and may increase the muscarinic-nicotinic hyperactivation. Therefore it should not be used for treatment of OP intoxication. 3) IL decreases the severity of neurodegeneration and symptoms of OP intoxication and it can be used as a supportive agent. PMID:24955152

  3. Recent advances in evaluation of oxime efficacy in nerve agent poisoning by in vitro analysis.

    PubMed

    Worek, F; Eyer, P; Aurbek, N; Szinicz, L; Thiermann, H

    2007-03-01

    The availability of highly toxic organophosphorus (OP) warfare agents (nerve agents) underlines the necessity for an effective medical treatment. Acute OP toxicity is primarily caused by inhibition of acetylcholinesterase (AChE). Reactivators (oximes) of inhibited AChE are a mainstay of treatment, however, the commercially available compounds, obidoxime and pralidoxime, are considered to be rather ineffective against various nerve agents, e.g. soman and cyclosarin. This led to the synthesis and investigation of numerous oximes in the past decades. Reactivation of OP-inhibited AChE is considered to be the most important reaction of oximes. Clinical data from studies with pesticide-poisoned patients support the assumption that the various reactions between AChE, OP and oxime, i.e. inhibition, reactivation and aging, can be investigated in vitro with human AChE. In contrast to animal experiments such in vitro studies with human tissue enable the evaluation of oxime efficacy without being affected by species differences. In the past few years numerous in vitro studies were performed by different groups with a large number of oximes and methods were developed for extrapolating in vitro data to different scenarios of human nerve agent poisoning. The present status in the evaluation of new oximes as antidotes against nerve agent poisoning will be discussed.

  4. Brain regional acetylcholinesterase activity and muscarinic acetylcholine receptors in rats after repeated administration of cholinesterase inhibitors and its withdrawal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, Haruo; Suzuki, Tadahiko; Sakamoto, Maki

    Activity of acetylcholinesterase (AChE) and specific binding of [{sup 3}H]quinuclidinyl benzilate (QNB), [{sup 3}H]pirenzepine (PZP) and [{sup 3}H]AF-DX 384 to muscarinic acetylcholine receptor (mAChR) preparations in the striatum, hippocampus and cortex of rats were determined 1, 6 and 11 days after the last treatment with an organophosphate DDVP, a carbamate propoxur or a muscarinic agonist oxotremorine as a reference for 7 and 14 days. AChE activity was markedly decreased in the three regions 1 day after the treatment with DDVP for 7 and 14 days with a gradual recovery 6 to 11 days, and much less decreased 1, 6 andmore » 11 days after the treatment with propoxur for 7 days but not for 14 days in the hippocampus and cortex. The binding of [{sup 3}H]-QNB, PZP and AF-DX 384 in the three regions was generally decreased by the treatment with DDVP for 7 and 14 days. Such down-regulations were generally restored 6 or 11 days after the treatment for 7 but not for 14 days. The down-regulation or up-regulation as measured by [{sup 3}H]-QNB, PZP and AF-DX 384 was observed 1, 6 or 11 days after treatment with propoxur for 7 days and/or 14 days. Repeated treatment with oxotremorine produced similar effects except AChE activity to DDVP. These results suggest that repeated inhibition of AChE activity may usually cause down-regulation of mAChRs with some exception in the hippocampus when a reversible antiChE propoxur is injected.« less

  5. Pharmacological characterization of RS-1259, an orally active dual inhibitor of acetylcholinesterase and serotonin transporter, in rodents: possible treatment of Alzheimer's disease.

    PubMed

    Abe, Yasuyuki; Aoyagi, Atsushi; Hara, Takao; Abe, Kazumi; Yamazaki, Reina; Kumagae, Yoshihiro; Naruto, Shunji; Koyama, Kazuo; Marumoto, Shinji; Tago, Keiko; Toda, Narihiro; Takami, Kazuko; Yamada, Naho; Ori, Mayuko; Kogen, Hiroshi; Kaneko, Tsugio

    2003-09-01

    A dual inhibitor of acetylcholinesterase (AChE) and serotonin transporter (SERT), RS-1259 (4-[1S)-methylamino-3-(4-nitrophenoxy)]propylphenyl N,N-dimethylcarbamate (fumaric acid)(1/2)salt), was newly synthesized. RS-1259 simultaneously inhibited AChE and SERT in the brain following an oral administration in mice and rats. Actual simultaneous elevation of extracellular levels of 5-HT and ACh in the rat hippocampus was confirmed by microdialysis. The compound was as effective as SERT inhibitors such as fluoxetine and fluvoxamine in a 5-hydroxytryptophan-enhancing test in mice. Spatial memory deficits in the two-platform task of a water maze in aged rats were ameliorated by RS-1259 as well as donepezil. Both RS-1259 and donepezil increased the awake episodes in the daytime electroencephalogram of rats. Although RS-1259 was weaker than donepezil in enhancing central cholinergic transmission, as observed by ACh elevation in the hippocampus and memory enhancement in aged rats, the efficacy of RS-1259 on the consciousness level, which reflects the whole activity in the brain, was almost the same as that of donepezil. These results suggest that both cholinergic and serotonergic systems are involved in maintaining brain arousal and that a dual inhibitor of AChE and SERT may be useful for the treatment of cognitive disorders associated with reduced brain activity such as in Alzheimer's disease.

  6. Anti-acetylcholinesterase activity and antioxidant properties of extracts and fractions of Carpolobia lutea.

    PubMed

    Nwidu, Lucky Legbosi; Elmorsy, Ekramy; Thornton, Jack; Wijamunige, Buddhika; Wijesekara, Anusha; Tarbox, Rebecca; Warren, Averil; Carter, Wayne Grant

    2017-12-01

    There is an unmet need to discover new treatments for Alzheimer's disease. This study determined the anti-acetylcholinesterase (AChE) activity, DPPH free radical scavenging and antioxidant properties of Carpolobia lutea G. Don (Polygalaceae). The objective of this study is to quantify C. lutea anti-AChE, DPPH free radical scavenging, and antioxidant activities and cell cytotoxicity. Plant stem, leaves and roots were subjected to sequential solvent extractions, and screened for anti-AChE activity across a concentration range of 0.02-200 μg/mL. Plant DPPH radical scavenging activity, reducing power, and total phenolic and flavonoid contents were determined, and cytotoxicity evaluated using human hepatocytes. Carpolobia lutea exhibited concentration-dependent anti-AChE activity. The most potent inhibitory activity for the stem was the crude ethanol extract and hexane stem fraction oil (IC 50  = 140 μg/mL); for the leaves, the chloroform leaf fraction (IC 50  = 60 μg/mL); and for roots, the methanol, ethyl acetate and aqueous root fractions (IC 50  = 0.3-3 μg/mL). Dose-dependent free radical scavenging activity and reducing power were observed with increasing stem, leaf or root concentration. Total phenolic contents were the highest in the stem: ∼632 mg gallic acid equivalents/g for a hexane stem fraction oil. Total flavonoid content was the highest in the leaves: ∼297 mg quercetin equivalents/g for a chloroform leaf fraction. At 1 μg/mL, only the crude ethanol extract oil was significantly cytotoxic to hepatocytes. Carpolobia lutea possesses anti-AChE activity and beneficial antioxidant capacity indicative of its potential development as a treatment of Alzheimer's and other diseases characterized by a cholinergic deficit.

  7. Acotiamide Hydrochloride, a Therapeutic Agent for Functional Dyspepsia, Enhances Acetylcholine-induced Contraction via Inhibition of Acetylcholinesterase Activity in Circular Muscle Strips of Guinea Pig Stomach.

    PubMed

    Ito, K; Kawachi, M; Matsunaga, Y; Hori, Y; Ozaki, T; Nagahama, K; Hirayama, M; Kawabata, Y; Shiraishi, Y; Takei, M; Tanaka, T

    2016-04-01

    Acotiamide is a first-in-class prokinetic drug approved in Japan for the treatment of functional dyspepsia. Given that acotiamide enhances gastric motility in conscious dogs and rats, we assessed the in vitro effects of this drug on the contraction of guinea pig stomach strips and on acetylcholinesterase (AChE) activity in stomach homogenate following fundus removal. We also investigated the serotonin 5-HT4 receptor agonist mosapride, dopamine D2 receptor and AChE inhibitor itopride, and representative AChE inhibitor neostigmine. Acotiamide (0.3 and 1 μM) and itopride (1 and 3 μM) significantly enhanced the contraction of gastric body strips induced by electrical field stimulation (EFS), but mosapride (1 and 10 μM) did not. Acotiamide and itopride significantly enhanced the contraction of gastric body and antrum strips induced by acetylcholine (ACh), but not that induced by carbachol (CCh). Neostigmine also significantly enhanced the contraction of gastric body strips induced by ACh, but not that by CCh. In contrast, mosapride failed to enhance contractions induced by either ACh or CCh in gastric antrum strips. Acotiamide exerted mixed inhibition of AChE, and the percentage inhibition of acotiamide (100 μM) against AChE activity was markedly reduced after the reaction mixture was dialyzed. In contrast, itopride exerted noncompetitive inhibition on AChE activity. These results indicate that acotiamide enhances ACh-dependent contraction in gastric strips of guinea pigs via the inhibition of AChE activity, and that it exerts mixed and reversible inhibition of AChE derived from guinea pig stomach. © Georg Thieme Verlag KG Stuttgart · New York.

  8. Prediction of the binding site of 1-benzyl-4-[(5,6-dimethoxy-1-indanon-2-yl)methyl]piperidine in acetylcholinesterase by docking studies with the SYSDOC program

    NASA Astrophysics Data System (ADS)

    Pang, Yuan-Ping; Kozikowski, Alan P.

    1994-12-01

    In the preceding paper we reported on a docking study with the SYSDOC program for predicting the binding sites of huperzine A in acetylcholinesterase (AChE) [Pang, Y.-P. and Kozikowski, A.P., J. Comput.-Aided Mol. Design, 8 (1994) 669]. Here we present a prediction of the binding sites of 1-benzyl-4-[(5,6-dimethoxy-1-indanon-2-yl)methyl]piperidine (E2020) in AChE by the same method. E2020 is one of the most potent and selective reversible inhibitors of AChE, and this molecule has puzzled researchers, partly due to its flexible structure, in understanding how it binds to AChE. Based on the results of docking 1320 different conformers of E2020 into 69 different conformers of AChE and on the pharmacological data reported for E2020 and its analogs, we predict that both the R- and the S-isomer of E2020 span the whole binding cavity of AChE, with the ammonium group interacting mainly with Trp84, Phe330 and Asp72, the phenyl group interacting mainly with Trp84 and Phe330, and the indanone moiety interacting mainly with Tyr70 and Trp279. The topography of the calculated E2020 binding sites provides insights into understanding the high potency of E2020 in the inhibition of AChE and provides hints as to possible structural modifications for identifying improved AChE inhibitors as potential therapeutics for the palliative treatment of Alzheimer's disease.

  9. A novel acetylcholinesterase gene in mosquitoes codes for the insecticide target and is non-homologous to the ace gene in Drosophila.

    PubMed Central

    Weill, Mylène; Fort, Philippe; Berthomieu, Arnaud; Dubois, Marie Pierre; Pasteur, Nicole; Raymond, Michel

    2002-01-01

    Acetylcholinesterase (AChE) is the target of two major insecticide families, organophosphates (OPs) and carbamates. AChE insensitivity is a frequent resistance mechanism in insects and responsible mutations in the ace gene were identified in two Diptera, Drosophila melanogaster and Musca domestica. However, for other insects, the ace gene cloned by homology with Drosophila does not code for the insensitive AChE in resistant individuals, indicating the existence of a second ace locus. We identified two AChE loci in the genome of Anopheles gambiae, one (ace-1) being a new locus and the other (ace-2) being homologous to the gene previously described in Drosophila. The gene ace-1 has no obvious homologue in the Drosophila genome and was found in 15 mosquito species investigated. In An. gambiae, ace-1 and ace-2 display 53% similarity at the amino acid level and an overall phylogeny indicates that they probably diverged before the differentiation of insects. Thus, both genes are likely to be present in the majority of insects and the absence of ace-1 in Drosophila is probably due to a secondary loss. In one mosquito (Culex pipiens), ace-1 was found to be tightly linked with insecticide resistance and probably encodes the AChE OP target. These results have important implications for the design of new insecticides, as the target AChE is thus encoded by distinct genes in different insect groups, even within the Diptera: ace-2 in at least the Drosophilidae and Muscidae and ace-1 in at least the Culicidae. Evolutionary scenarios leading to such a peculiar situation are discussed. PMID:12396499

  10. Intraperitoneal Exposure to Nano/Microparticles of Fullerene (C60) Increases Acetylcholinesterase Activity and Lipid Peroxidation in Adult Zebrafish (Danio rerio) Brain

    PubMed Central

    Dal Forno, Gonzalo Ogliari; Kist, Luiza Wilges; de Azevedo, Mariana Barbieri; Fritsch, Rachel Seemann; Pereira, Talita Carneiro Brandão; Britto, Roberta Socoowski; Guterres, Sílvia Stanisçuaski; Külkamp-Guerreiro, Irene Clemes; Bonan, Carla Denise; Monserrat, José María; Bogo, Maurício Reis

    2013-01-01

    Even though technologies involving nano/microparticles have great potential, it is crucial to determine possible toxicity of these technological products before extensive use. Fullerenes C60 are nanomaterials with unique physicochemical and biological properties that are important for the development of many technological applications. The aim of this study was to evaluate the consequences of nonphotoexcited fullerene C60 exposure in brain acetylcholinesterase expression and activity, antioxidant responses, and oxidative damage using adult zebrafish as an animal model. None of the doses tested (7.5, 15, and 30 mg/kg) altered AChE activity, antioxidant responses, and oxidative damage when zebrafish were exposed to nonphotoexcited C60 nano/microparticles during 6 and 12 hours. However, adult zebrafish exposed to the 30 mg/kg dose for 24 hours have shown enhanced AChE activity and augmented lipid peroxidation (TBARS assays) in brain. In addition, the up-regulation of brain AChE activity was neither related to the transcriptional control (RT-qPCR analysis) nor to the direct action of nonphotoexcited C60 nano/microparticles on the protein (in vitro results) but probably involved a posttranscriptional or posttranslational modulation of this enzymatic activity. Taken together these findings provided further evidence of toxic effects on brain after C60 exposure. PMID:23865059

  11. Physiologically-Based Pharmacokinetic and Pharmacodynamic Modeling for the Inhibition of Acetylcholinesterase by Acotiamide, A Novel Gastroprokinetic Agent for the Treatment of Functional Dyspepsia, in Rat Stomach.

    PubMed

    Yoshii, Kazuyoshi; Iikura, Minami; Hirayama, Masamichi; Toda, Ryoko; Kawabata, Yoshihiro

    2016-02-01

    Acotiamide, a gastroprokinetic agent used to treat functional dyspepsia, is transported to at least two compartments in rat stomach. However, the role of these stomach compartments in pharmacokinetics and pharmacodynamics of acotiamide remains unclear. Thus, the purpose of this study was to elucidate the relationship of the blood and stomach concentration of acotiamide with its inhibitory effect on acetylcholinesterase (AChE). Concentration profiles of acotiamide and acetylcholine (ACh) were determined after intravenous administration to rats and analyzed by physiologically-based pharmacokinetic and pharmacodynamic (PBPK/PD) model containing vascular space, precursor pool and deep pool of stomach. Acotiamide was eliminated from the blood and stomach in a biexponential manner. Our PBPK/PD model estimated that acotiamide concentration in the precursor pool exceeded 2 μM at approximately 2 h after administration. Acotiamide inhibited AChE activity in vitro with a 50% inhibitory concentration of 1.79 μM. ACh reached the maximum concentration at 2 h after administration. Our PBPK model well described the profile of acotiamide and ACh concentration in the stomach in the assumption that acotiamide was distributed by carrier mediated process and inhibited AChE in the precursor pool of stomach. Thus, Acotiamide in the precursor pool plays an important role for producing the pharmacological action.

  12. Sublethal Effects of Insecticide Exposure on Megacopta cribraria (Fabricius) Nymphs: Key Biological Traits and Acetylcholinesterase Activity.

    PubMed

    Miao, Jin; Reisig, Dominic D; Li, Guoping; Wu, Yuqing

    2016-01-01

    Megacopta cribraria F. (Hemiptera: Plataspidae), the kudzu bug, is an invasive insect pest of U.S. soybean. At present, insecticide application is the primary and most effective control option for M. cribraria In this study, the potential effects of sublethal and low-lethal concentrations (LC10 and LC40) of three common insecticides on key biological traits and acetylcholinesterase (AChE) activity of the treated nymphal stage of insect were assessed. The results show that the sublethal concentration of imidacloprid significantly reduced adult emergence rate of M. cribraria A low-lethal concentration of imidacloprid significantly increased nymphal development time, but significantly decreased adult emergence rate and adult longevity. Both sublethal and low-lethal concentrations of acephate caused an increase in nymphal development time and a reduction in adult emergence rate and adult longevity. Fecundity of females was significantly reduced only by exposure to low-lethal concentrations of acephate. Sublethal and low-lethal concentrations of bifenthrin increased nymphal development time, but significantly decreased adult emergence rate. In addition, we found that the AChE activity of M. cribraria was significantly increased only by LC40 imidacloprid, but strongly inhibited by acephate. © The Author 2016. Published by Oxford University Press on behalf of the Entomological Society of America.

  13. Ultrasensitive Determination of Malathion Using Acetylcholinesterase Immobilized on Chitosan-Functionalized Magnetic Iron Nanoparticles

    PubMed Central

    Rodrigues, Núbia Fernanda Marinho; Neto, Sakae Yotsumoto; Luz, Rita de Cássia Silva; Yamanaka, Hideko

    2018-01-01

    A renewable, disposable, low cost, and sensitive sensor for the detection of organophosphorus pesticides was constructed by immobilizing the acetylcholinesterase enzyme (AChE), via glutaraldehyde, on magnetic iron nanoparticles (Fe3O4) previously synthesized and functionalized with chitosan (CS). The sensor was denoted AChE/CS/Fe3O4. The magnetic nanoparticles were characterized by Fourier transform infrared spectroscopy and transmission electron microscopy. Acetylthiocholine (ATCh) was incubated with AChE/CS/Fe3O4 and attached to a screen-printed electrode using a magnet. The oxidation of thiocholine (from ATCh hydrolysis) was monitored at an applied potential of +0.5 V vs. Ag/AgCl(KClsat) in 0.1 mol L−1 phosphate buffer solution (pH 7.5) as the supporting electrolyte. A mixture of the pesticide malathion and ATCh was investigated using the same procedure, and the results were compared and expressed as inhibition percentages. For determination of malathion, the proposed sensor presented a linear response in the range from 0.5 to 20 nmol L−1 (R = 0.9942). The limits of detection (LOD) and quantification (LOQ) were 0.3 and 0.8 nmol L−1, respectively. Real samples were also investigated, with recovery values of 96.0% and 108.3% obtained for tomato and pond water samples, respectively. The proposed sensor is a feasible option for malathion detection, offering a linear response, good sensitivity, and a low detection limit. PMID:29438301

  14. Unmasking tandem site interaction in human acetylcholinesterase. Substrate activation with a cationic acetanilide substrate.

    PubMed

    Johnson, Joseph L; Cusack, Bernadette; Davies, Matthew P; Fauq, Abdul; Rosenberry, Terrone L

    2003-05-13

    Acetylcholinesterase (AChE) contains a narrow and deep active site gorge with two sites of ligand binding, an acylation site (or A-site) at the base of the gorge, and a peripheral site (or P-site) near the gorge entrance. The P-site contributes to catalytic efficiency by transiently binding substrates on their way to the acylation site, where a short-lived acyl enzyme intermediate is produced. A conformational interaction between the A- and P-sites has recently been found to modulate ligand affinities. We now demonstrate that this interaction is of functional importance by showing that the acetylation rate constant of a substrate bound to the A-site is increased by a factor a when a second molecule of substrate binds to the P-site. This demonstration became feasible through the introduction of a new acetanilide substrate analogue of acetylcholine, 3-(acetamido)-N,N,N-trimethylanilinium (ATMA), for which a = 4. This substrate has a low acetylation rate constant and equilibrates with the catalytic site, allowing a tractable algebraic solution to the rate equation for substrate hydrolysis. ATMA affinities for the A- and P-sites deduced from the kinetic analysis were confirmed by fluorescence titration with thioflavin T as a reporter ligand. Values of a >1 give rise to a hydrolysis profile called substrate activation, and the AChE site-specific mutant W86F, and to a lesser extent wild-type human AChE itself, showed substrate activation with acetylthiocholine as the substrate. Substrate activation was incorporated into a previous catalytic scheme for AChE in which a bound P-site ligand can also block product dissociation from the A-site, and two additional features of the AChE catalytic pathway were revealed. First, the ability of a bound P-site ligand to increase the substrate acetylation rate constant varied with the structure of the ligand: thioflavin T accelerated ATMA acetylation by a factor a(2) of 1.3, while propidium failed to accelerate. Second, catalytic rate

  15. Analysis of the reaction of carbachol with acetylcholinesterase using thioflavin T as a coupled fluorescence reporter.

    PubMed

    Rosenberry, Terrone L; Sonoda, Leilani K; Dekat, Sarah E; Cusack, Bernadette; Johnson, Joseph L

    2008-12-09

    Acetylcholinesterase (AChE) contains a narrow and deep active site gorge with two sites of ligand binding, an acylation site (or A-site) at the base of the gorge and a peripheral site (or P-site) near the gorge entrance. The P-site contributes to catalytic efficiency by transiently binding substrates on their way to the acylation site, where a short-lived acylated enzyme intermediate is produced. Carbamates are very poor substrates that, like other AChE substrates, form an initial enzyme-substrate complex with free AChE (E) and proceed to an acylated enzyme intermediate (EC), which is then hydrolyzed. However, the hydrolysis of EC is slow enough to resolve the acylation and deacylation steps on the catalytic pathway. Here, we focus on the reaction of carbachol (carbamoylcholine) with AChE. The kinetics and thermodynamics of this reaction are of special interest because carbachol is an isosteric analogue of the physiological substrate acetylcholine. We show that the reaction can be monitored with thioflavin T as a fluorescent reporter group. The fluorescence of thioflavin T is strongly enhanced when it binds to the P-site of AChE, and this fluorescence is partially quenched when a second ligand binds to the A-site to form a ternary complex. Analysis of the fluorescence reaction profiles was challenging because four thermodynamic parameters and two fluorescence coefficients were fitted from the combined data both for E and for EC. Respective equilibrium dissociation constants of 6 and 26 mM were obtained for carbachol binding to the A- and P-sites in E and of 2 and 32 mM for carbachol binding to the A- and P-sites in EC. These constants for the binding of carbachol to the P-site are about an order of magnitude larger (i.e., indicating lower affinity) than previous estimates for the binding of acetylthiocholine to the P-site.

  16. Analysis of the reaction of carbachol with acetylcholinesterase with thioflavin T as a coupled fluorescence reporter†

    PubMed Central

    Rosenberry, Terrone L.; Sonoda, Leilani K.; Dekat, Sarah E.; Cusack, Bernadette; Johnson, Joseph L.

    2009-01-01

    Acetylcholinesterase (AChE) contains a narrow and deep active site gorge with two sites of ligand binding, an acylation site (or A-site) at the base of the gorge and a peripheral site (or P-site) near the gorge entrance. The P-site contributes to catalytic efficiency by transiently binding substrates on their way to the acylation site, where a short-lived acylated enzyme intermediate is produced. Carbamates are very poor substrates that, like other AChE substrates, form an initial enzyme-substrate complex with free AChE (E) and proceed to an acylated enzyme intermediate (EC) which is then hydrolyzed. However, the hydrolysis of EC is slow enough to resolve the acylation and deacylation steps on the catalytic pathway. Here we focus on the reaction of carbachol (carbamoylcholine) with AChE. The kinetics and thermodynamics of this reaction are of special interest because carbachol is an isosteric analog of the physiological substrate acetylcholine. We show that the reaction can be monitored with thioflavin T as a fluorescent reporter group. The fluorescence of thioflavin T is strongly enhanced when it binds to the P-site of AChE, and this fluorescence is partially quenched when a second ligand binds to the A-site to form a ternary complex. Analysis of the fluorescence reaction profiles was challenging, because four thermodynamic parameters and two fluorescence coefficients were fitted from the combined data both for E and for EC. Respective equilibrium dissociation constants of 6 and 26 mM were obtained for carbachol binding to the A- and P-sites in E and of 2 and 32 mM for carbachol binding to the A- and P-sites in EC. These constants for the binding of carbachol to the P-site are about an order of magnitude larger (i.e., indicating lower affinity) than previous estimates for the binding of acetylthiocholine to the P-site. PMID:19006330

  17. Acetylcholinesterase complexed with bivalent ligands related to huperzine a: experimental evidence for species-dependent protein-ligand complementarity.

    PubMed

    Wong, Dawn M; Greenblatt, Harry M; Dvir, Hay; Carlier, Paul R; Han, Yi-Fan; Pang, Yuan-Ping; Silman, Israel; Sussman, Joel L

    2003-01-15

    Acetylcholinesterase (AChE) inhibitors improve the cognitive abilities of Alzheimer patients. (-)-Huperzine A [(-)-HupA], an alkaloid isolated from the club moss, Huperzia serrata, is one such inhibitor, but the search for more potent and selective drugs continues. Recently, alkylene-linked dimers of 5-amino-5,6,7,8-tetrahydroquinolinone (hupyridone, 1a), a fragment of HupA, were shown to serve as more potent inhibitors of AChE than (-)-HupA and monomeric 1a. We soaked two such dimers, (S,S)-(-)-bis(10)-hupyridone [(S,S)-(-)-2a] and (S,S)-(-)-bis(12)-hupyridone [(S,S)-(-)-2b] containing, respectively, 10 and 12 methylenes in the spacer, into trigonal TcAChE crystals, and solved the X-ray structures of the resulting complexes using the difference Fourier technique, both to 2.15 A resolution. The structures revealed one HupA-like 1a unit bound to the "anionic" subsite of the active-site, near the bottom of the active-site gorge, adjacent to Trp84, as seen for the TcAChE/(-)-HupA complex, and the second 1a unit near Trp279 in the "peripheral" anionic site at the top of the gorge, both bivalent molecules thus spanning the active-site gorge. The results confirm that the increased affinity of the dimeric HupA analogues for AChE is conferred by binding to the two "anionic" sites of the enzyme. Inhibition data show that (-)-2a binds to TcAChE approximately 6-7- and > 170-fold more tightly than (-)-2b and (-)-HupA, respectively. In contrast, previous data for rat AChE show that (-)-2b binds approximately 3- and approximately 2-fold more tightly than (-)-2a and (-)-HupA, respectively. Structural comparison of TcAChE with rat AChE, as represented by the closely related mouse AChE structure (1maa.pdb), reveals a narrower gorge for rat AChE, a perpendicular alignment of the Tyr337 ring to the gorge axis, and its conformational rigidity, as a result of hydrogen bonding between its hydroxyl group and that of Tyr341, relative to TcAChE Phe330. These structural differences in the

  18. Nanoparticle-Based Electrochemical Immunosensor for the Detection of Phosphorylated Acetylcholinesterase: An Exposure Biomarker of Organophosphate Pesticides and Nerve AgentsOrganophosphate Pesticides and Nerve Agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Guodong; Wang, Jun; Barry, Richard C.

    A nanoparticle-based electrochemical immunosensor has been developed for the detection of phosphorylated acetylcholinesterase (AChE) adducts, which is a potential exposure biomarker for organophosphate pesticides (OP) and chemical warfare nerve agent exposures. Zirconia nanoparticles (ZrO2 NPs) were used as selective sorbents to capture the phosphorylated AChE adduct, and quantum dots (ZnS@CdS, QDs) were used as tags to label monoclonal anti-AChE antibody to track the immunorecognition events. The sandwich-like immunoreactions were performed among the ZrO2 NPs, which were pre-coated on a screen printed electrode (SPE) by electrodeposition, phosphorylated AChE and QD-anti-AChE. The captured QD tags were determined on the SPE by electrochemicalmore » stripping analysis of its metallic component (cadmium) after an acid-dissolution step. Paraoxon was used as a model OP insecticide to prepare the phosphorylated AChE adduct to demonstrate the proof of principle for this sensor technology. The paraoxon-AChE adduct was characterized by Fourier Transform Infrared Spectrum, and the binding affinity of anti-AChE to the paraoxon-AChE was validated with an enzyme-linked immunosorbent assay. The parameters (e.g., amount of ZrO2 NP, QD-anti-AChE concentration,) that govern the electrochemical response of immunosensors were optimized. The voltammetric response of the immunosensor is highly linear over the range of 10 pM to 4 nM paraoxon-AChE, and the limit of detection is estimated to be 8 pM. This new nanoparticle-based electrochemical immunosensor thus provides a sensitive and quantitative tool for biomonitoring exposure to OP pesticides and nerve agents.« less

  19. Acute toxicity of organophosphorus compounds in guinea pigs is sex- and age-dependent and cannot be solely accounted for by acetylcholinesterase inhibition.

    PubMed

    Fawcett, William P; Aracava, Yasco; Adler, Michael; Pereira, Edna F R; Albuquerque, Edson X

    2009-02-01

    This study was designed to test the hypothesis that the acute toxicity of the nerve agents S-[2-(diisopropylamino)ethyl]-O-ethyl methylphosphonothioate (VX), O-pinacolyl methylphosphonofluoridate (soman), and O-isopropyl methylphosphonofluoridate (sarin) in guinea pigs is age- and sex-dependent and cannot be fully accounted for by the irreversible inhibition of acetylcholinesterase (AChE). The subcutaneous doses of nerve agents needed to decrease 24-h survival of guinea pigs by 50% (LD(50) values) were estimated by probit analysis. In all animal groups, the rank order of LD(50) values was sarin > soman > VX. The LD(50) value of soman was not influenced by sex or age of the animals. In contrast, the LD(50) values of VX and sarin were lower in adult male than in age-matched female or younger guinea pigs. A colorimetric assay was used to determine the concentrations of nerve agents that inhibit in vitro 50% of AChE activity (IC(50) values) in guinea pig brain extracts, plasma, red blood cells, and whole blood. A positive correlation between LD(50) values and IC(50) values for AChE inhibition would support the hypothesis that AChE inhibition is a major determinant of the acute toxicity of the nerve agents. However, such a positive correlation was found only between LD(50) values and IC(50) values for AChE inhibition in brain extracts from neonatal and prepubertal guinea pigs. These results demonstrate for the first time that the lethal potencies of some nerve agents in guinea pigs are age- and sex-dependent. They also support the contention that mechanisms other than AChE inhibition contribute to the lethality of nerve agents.

  20. Antioxidant and acetylcholinesterase-inhibitory properties of long-term stored medicinal plants

    PubMed Central

    2012-01-01

    Background Medicinal plants are possible sources for future novel antioxidant compounds in food and pharmaceutical formulations. Recent attention on medicinal plants emanates from their long historical utilisation in folk medicine as well as their prophylactic properties. However, there is a dearth of scientific data on the efficacy and stability of the bioactive chemical constituents in medicinal plants after prolonged storage. This is a frequent problem in African Traditional Medicine. Methods The phytochemical, antioxidant and acetylcholinesterase-inhibitory properties of 21 medicinal plants were evaluated after long-term storage of 12 or 16 years using standard in vitro methods in comparison to freshly harvested materials. Results The total phenolic content of Artemisia afra, Clausena anisata, Cussonia spicata, Leonotis intermedia and Spirostachys africana were significantly higher in stored compared to fresh materials. The flavonoid content were also significantly higher in stored A. afra, C. anisata, C. spicata, L. intermedia, Olea europea and Tetradenia riparia materials. With the exception of Ekebergia capensis and L. intermedia, there were no significant differences between the antioxidant activities of stored and fresh plant materials as measured in the β-carotene-linoleic acid model system. Similarly, the EC50 values based on the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay were generally lower for stored than fresh material. Percentage inhibition of acetylcholinesterase was generally similar for both stored and fresh plant material. Stored plant material of Tetradenia riparia and Trichilia dregeana exhibited significantly higher AChE inhibition than the fresh material. Conclusions The current study presents evidence that medicinal plants can retain their biological activity after prolonged storage under dark conditions at room temperature. The high antioxidant activities of stable bioactive compounds in these medicinal plants

  1. New flavone-cyanoacetamide hybrids with combination of cholinergic, antioxidant, modulation β-amyloid aggregation and neuroprotection properties as innovative multifunctional therapeutic candidates for Alzheimer's disease and unraveling their mechanism of action with acetylcholinesterase.

    PubMed

    Jeelan Basha, Shaik; Mohan, Penumala; Yeggoni, Daniel Pushparaju; Babu, Zinka Raveendra; Kumar, Palaka Bhagath; Dinakara Rao, Ampasala; Subramanyam, Rajagopal; Damu, Amooru Gangaiah

    2018-05-10

    In line with the modern multi target-directed ligand paradigm of Alzheimer's disease (AD), a series of nineteen compounds composed of flavone and cyanoacetamide groups have been synthesized and evaluated as multifunctional agents against AD. Biological evaluation demonstrated that compounds 7j, 7n, 7o, 7r and 7s exhibited excellent inhibitory potency (AChE, IC50 0.271 ± 0.012 to ± 0.075 M) and good selectivity toward acetylcholinesterase, significant antioxidant activity, good modulation effects on self-induced A aggregation, low cytotoxicity and neuroprotection in human neuroblastoma SK-N-SH cells. Further, an inclusive study on the interaction of 7j, 7n, 7o, 7r and 7s with AChE at physiological pH 7.2 using fluorescence, circular dichroism and molecular docking methods suggesting that these derivatives bind strongly to peripheral anionic site of AChE mostly through hydrophobic interactions. Overall, the multifunctional profiles and strong AChE binding affinity highlight these compounds as promising prototypes for further pursuit of innovative multifunctional drugs for AD.

  2. Rivastigmine: the advantages of dual inhibition of acetylcholinesterase and butyrylcholinesterase and its role in subcortical vascular dementia and Parkinson's disease dementia.

    PubMed

    Kandiah, Nagaendran; Pai, Ming-Chyi; Senanarong, Vorapun; Looi, Irene; Ampil, Encarnita; Park, Kyung Won; Karanam, Ananda Krishna; Christopher, Stephen

    2017-01-01

    Several studies have demonstrated clinical benefits of sustained cholinesterase inhibition with rivastigmine in Alzheimer's disease (AD) and Parkinson's disease dementia (PDD). Unlike donepezil and galantamine that selectively inhibit acetylcholinesterase (AChE; EC 3.1.1.7), rivastigmine is a unique cholinesterase inhibitor with both AChE and butyrylcholinesterase (BuChE; EC 3.1.1.8) inhibitory activity. Rivastigmine is also available as transdermal patch that has been approved by the US Food and Drug Administration for the treatment of mild, moderate, and severe AD as well as mild-to-moderate PDD. In this review, we explore the role of BuChE inhibition in addition to AChE inhibition with rivastigmine in the outcomes of cognition, global function, behavioral symptoms, and activities of daily living. Additionally, we review the evidence supporting the use of dual AChE-BuChE inhibitory activity of rivastigmine as a therapeutic strategy in the treatment of neurological disorders, with a focus on the role of rivastigmine in subcortical dementias such as vascular dementia (VaD) and PDD. Toward this objective, we performed a literature search in PubMed and Ovid with limits to articles published in the English language before June 2016. The available evidence from the literature suggests that the dual inhibition of AChE and BuChE may afford additional therapeutic potential of rivastigmine in subcortical dementias (subcortical VaD and PDD) with benefits on cognition and behavioral symptoms. Rivastigmine was found to specifically benefit executive dysfunction frequently observed in subcortical dementias; however, large randomized clinical studies are warranted to support these observations.

  3. A molecular dynamics study of components of the ginger (Zingiber officinale) extract inside human acetylcholinesterase: implications for Alzheimer disease.

    PubMed

    Cuya, Teobaldo; Baptista, Leonardo; Celmar Costa França, Tanos

    2017-11-23

    Components of ginger (Zingiber officinale) extracts have been described as potential new drug candidates against Alzheimer disease (AD), able to interact with several molecular targets related to the AD treatment. However, there are very few theoretical studies in the literature on the possible mechanisms of action by which these compounds can work as potential anti-AD drugs. For this reason, we performed here docking, molecular dynamic simulations and mmpbsa calculations on four components of ginger extracts former reported as active inhibitors of human acetylcholinesterase (HssAChE), and compared our results to the known HssAChE inhibitor and commercial drug in use against AD, donepezil (DNP). Our findings points to two among the compounds studied: (E)-1,7-bis(4-hydroxy-3-methoxyphenyl)hept-4-en-3-on and 1-(3,4-dihydroxy-5-methoxyphenyl)-7-(4-hydroxy-3- ethoxyphenyl) heptane-3,5-diyl diacetate, as promising new HssAChE inhibitors that could be as effective as DNP. We also mapped the binding of the studied compounds in the different binding pockets inside HssAChE and established the preferred interactions to be favored in the design of new and more efficient inhibitors.

  4. Acetylcholinesterase genes within the Diptera: takeover and loss in true flies

    PubMed Central

    Huchard, Elise; Martinez, Michel; Alout, Haoues; Douzery, Emmanuel J.P; Lutfalla, Georges; Berthomieu, Arnaud; Berticat, Claire; Raymond, Michel; Weill, Mylène

    2006-01-01

    It has recently been reported that the synaptic acetylcholinesterase (AChE) in mosquitoes is encoded by the ace-1 gene, distinct and divergent from the ace-2 gene, which performs this function in Drosophila. This is an unprecedented situation within the Diptera order because both ace genes derive from an old duplication and are present in most insects and arthropods. Nevertheless, Drosophila possesses only the ace-2 gene. Thus, a secondary loss occurred during the evolution of Diptera, implying a vital function switch from one gene (ace-1) to the other (ace-2). We sampled 78 species, representing 50 families (27% of the Dipteran families) spread over all major subdivisions of the Diptera, and looked for ace-1 and ace-2 by systematic PCR screening to determine which taxonomic groups within the Diptera have this gene change. We show that this loss probably extends to all true flies (or Cyclorrhapha), a large monophyletic group of the Diptera. We also show that ace-2 plays a non-detectable role in the synaptic AChE in a lower Diptera species, suggesting that it has non-synaptic functions. A relative molecular evolution rate test showed that the intensity of purifying selection on ace-2 sequences is constant across the Diptera, irrespective of the presence or absence of ace-1, confirming the evolutionary importance of non-synaptic functions for this gene. We discuss the evolutionary scenarios for the takeover of ace-2 and the loss of ace-1, taking into account our limited knowledge of non-synaptic functions of ace genes and some specific adaptations of true flies. PMID:17002944

  5. Natural monomeric form of fetal bovine serum acetylcholinesterase lacks the C-terminal tetramerization domain.

    PubMed

    Saxena, Ashima; Hur, Regina S; Luo, Chunyuan; Doctor, Bhupendra P

    2003-12-30

    Acetylcholinesterase isolated from fetal bovine serum (FBS AChE) was previously characterized as a globular tetrameric form. Analysis of purified preparations of FBS AChE by gel permeation chromatography revealed the presence of a stable, catalytically active, monomeric form of this enzyme. The two forms could be distinguished from each other based on their molecular weight, hydrodynamic properties, kinetic properties, thermal stability, and the type of glycans they carry. No differences between the two forms were observed for the binding of classical inhibitors such as edrophonium and propidium or inhibitors that are current or potential drugs for the treatment of Alzheimer's disease such as (-) huperzine A and E2020; tacrine inhibited the monomeric form 2-3-fold more potently than the tetrameric form. Sequencing of peptides obtained from an in-gel tryptic digest of the monomer and tetramer by tandem mass spectrometry indicated that the tetramer consists of 583 amino acid residues corresponding to the mature form of the enzyme, whereas the monomer consists of 543-547 amino acid residues. The subunit molecular weight of the protein component of the monomer (major species) was determined to be 59 414 Da and that of the tetramer as 64 239 Da. The N-terminal of the monomer and the tetramer was Glu, suggesting that the monomer is not a result of truncation at the N-terminal. The only differences detected were at the C-terminus. The tetramer yielded the expected C-terminus, CSDL, whereas the C-terminus of the monomer yielded a mixture of peptides, of which LLSATDTLD was the most abundant. These results suggest that monomeric FBS AChE is trimmed at the C-terminus, and the results are consistent with the involvement of C-terminal amino acids in the assembly of monomers into tetramers.

  6. The role of the read through variant of acetylcholinesterase in anxiogenic effects of predator stress in mice.

    PubMed

    Adamec, Robert; Head, David; Soreq, Hermona; Blundell, Jacqueline

    2008-05-16

    This study examined the role of the read through variant of acetylcholinesterase (AChE-R) in lasting changes in murine affective behavior produced by a brief predator stress. AChE-R is elevated by stress in limbic cholinergic circuits implicated in anxiogenic effects of predator stress. The expression of AChE-R was blocked with a systemically administered central acting antisense oligonucleotide for AChE-R (EN101). EN101 was injected at multiple points prior to and after a predator stress in male C57 mice. Seven days after the last injection, behavior was tested. Predator stress caused a significant increase in startle amplitude, which EN101 blocked. This effect was specific to EN101, as the negative control inactive form of EN101, INVEN101 was without effect on stress effects on startle. Neither EN101 nor INVEN101 altered the anxiogenic effects of predator stress on behavior in the elevated plus maze, and both drugs partially reduced stress suppression of time active in the hole board. In the light dark box test, INVEN101 exhibited a weak block of stress effects on behavior for reasons which are unclear. Taken together, findings support the view that multiple neural systems are responsible for the different changes in behavior produced by predator stress. Present findings also suggest a role for AChE-R in specific anxiogenic (hyperarousal) effects following predator stress. Since AChE-R manipulations took place starting 23 h prior to predator stress and continued 48 h after predator stress, further research is necessary to determine the role of AChE-R in initiation and/or consolidation of hyperarousal effects of predator stress.

  7. Effects of sub-lethal neurite outgrowth inhibitory concentrations of chlorpyrifos oxon on cytoskeletal proteins and acetylcholinesterase in differentiating N2a cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flaskos, J., E-mail: flaskos@vet.auth.gr; Nikolaidis, E.; Harris, W.

    2011-11-15

    Previous work in our laboratory has shown that sub-lethal concentrations (1-10 {mu}M) of chlorpyrifos (CPF), diazinon (DZ) and diazinon oxon (DZO) inhibit the outgrowth of axon-like neurites in differentiating mouse N2a neuroblastoma cells concomitant with altered levels and/or phosphorylation state of axonal cytoskeleton and growth-associated proteins. The aim of the present work was to determine whether chlorpyrifos oxon (CPO) was capable of inhibiting N2a cell differentiation in a similar manner. Using experimental conditions similar to our previous work, sub-lethal concentrations (1-10 {mu}M) of CPO were found to inhibit N2a cell differentiation. However, unlike previous studies with DZ and DZO, theremore » was a high level of sustained inhibition of acetylcholinesterase (AChE) in CPO treated cells. Impairment of neurite outgrowth was also associated with reduced levels of growth associated protein-43 and neurofilament heavy chain (NFH), and the distribution of NFH in cells stained by indirect immunofluorescence was disrupted. However, in contrast to previous findings for DZO, the absolute level of phosphorylated NFH was unaffected by CPO exposure. Taken together, the findings suggest that sub-lethal concentrations of CPO inhibit axon outgrowth in differentiating N2a cells and that this effect involves reduced levels of two proteins that play key roles in axon outgrowth and maintenance. Although the inhibition of neurite outgrowth is unlikely to involve AChE inhibition directly, further work will help to determine whether the persistent inhibition of AChE by CPO can account for the different effects induced by CPO and DZO on the levels of total and phosphorylated NFH. -- Highlights: Black-Right-Pointing-Pointer Sub-lethal levels of chlorpyrifos oxon inhibit neurite outgrowth in N2a cells Black-Right-Pointing-Pointer Acetylcholinesterase exhibits sustained inhibition throughout exposure Black-Right-Pointing-Pointer The levels of neurofilament heavy chain and

  8. Rosuvastatin ameliorates cognitive impairment in rats fed with high-salt and cholesterol diet via inhibiting acetylcholinesterase activity and amyloid beta peptide aggregation.

    PubMed

    Husain, I; Akhtar, M; Abdin, M Zainul; Islamuddin, M; Shaharyar, M; Najmi, A K

    2018-04-01

    Amyloid beta (Aβ) peptide aggregation and cholinergic neurodegeneration are involved in the development of cognitive impairment. Therefore, in this article, we examined rosuvastatin (RSV), an oral hypolipidemic drug, to determine its potential as a dual inhibitor of acetylcholinesterase (AChE) and Aβ peptide aggregation for the treatment of cognitive impairment. Molecular docking study was done to examine the affinity of RSV with Aβ 1-42 and AChE in silico. We also employed neurobehavioral activity tests, biochemical estimation, and histopathology to study the anti-Aβ 1-42 aggregation capability of RSV in vivo. Molecular docking study provided evidence that RSV has the best binding conformer at its receptor site or active site of an enzyme. The cognitive impairment in female Wistar rats was induced by high-salt and cholesterol diet (HSCD) ad libitum for 8 weeks. RSV ameliorated serum cholesterol level, AChE activity, and Aβ 1-42 peptide aggregations in HSCD induced cognitive impairment. In addition, RSV-treated rats showed greater scores in the open field (locomotor activity) test. Moreover, the histopathological studies in the hippocampus and cortex of rat brain also supported that RSV markedly reduced the cognitive impairment and preserved the normal histoarchitectural pattern of the hippocampus and cortex. Taken together, these data indicate that RSV may act as a dual inhibitor of AChE and Aβ 1-42 peptide aggregation, therefore suggesting a therapeutic strategy for cognitive impairment treatment.

  9. Curcumin protects against cigarette smoke-induced cognitive impairment and increased acetylcholinesterase activity in rats.

    PubMed

    Jaques, Jeandre Augusto dos Santos; Rezer, João Felipe Peres; Carvalho, Fabiano Barbosa; da Rosa, Michelle Melgarejo; Gutierres, Jessié Martins; Gonçalves, Jamile Fabbrin; Schmatz, Roberta; de Bairros, André Valle; Mazzanti, Cinthia Melazzo; Rubin, Maribel Antonello; Schetinger, Maria Rosa Chitolina; Leal, Daniela Bitencourt Rosa

    2012-07-16

    Cigarette smoke, a widely spread habit, is associated with a decline in cognitive function and studies have demonstrated that curcumin (Cur), an Indian spice, possesses a strong neuroprotective potential. Considering the relevance of investigating dietary compounds this study aimed to investigate the effect of Cur on memory and acetylcholinesterase (AChE) activity in brain structures and blood of cigarette smoke-exposed rats. Male Wistar rats were treated with curcumin and cigarette smoke, once a day, 5 days each week, for 30 days. The experimental procedures were divided in two sets of experiments. In the first, the animals were divided into 4 groups: Vehicle (corn oil), Cur 12.5 mg/kg, Cur 25 mg/kg and Cur 50 mg/kg. In the second, the animals were divided into 5 groups: Vehicle (corn oil), Smoke, Smoke plus Cur 12.5 mg/kg, Smoke plus Cur 25 mg/kg and Smoke plus Cur 50 mg/kg. Treatment with Cur significantly prevented the decreased latency and cholinergic alterations in cigarette smoke-exposed rats. These AChE alterations could suggest a role in the memory impairment promoted by cigarette smoke-exposure and point toward the potential of Cur to modulate cholinergic neurotransmission and, consequently, improve cognition deficits induced by smoke. This study suggests that the dietary compound Cur may be involved in cholinergic system modulation and as a consequence exert an effect on learning and memory. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Chlorpyrifos pollution: its effect on brain acetylcholinesterase activity in rat and treatment of polluted soil by indigenous Pseudomonas sp.

    PubMed

    Sharma, Shelly; Singh, Partap Bir; Chadha, Pooja; Saini, Harvinder Singh

    2017-01-01

    The study was aimed to evaluate the levels of chlorpyrifos (CPF) pollution in agricultural soil of Punjab, India, its detrimental effects on acetylcholinesterase (AChE) activity in rat brain and bioremediation of soils polluted with CPF using indigenous and adapted bacterial lab isolate. The analysis revealed that soil samples of Bathinda and Amritsar regions are highly contaminated with chlorpyrifos showing 19 to 175 mg/kg concentrations of CPF. The non-targeted animals may get poisoned with CPF by its indirect dermal absorption, inhalation of toxic fumes and regular consumption of soiled food grains. The study indicated that even the lowermost concentrations of CPF, 19 and 76 mg/kg of soil found in the Amritsar and Bathinda regions respectively can significantly inhibit the AChE activity in rat brain within 24 h of its treatment. This represents the antagonistic effect of CPF on AChE which is a prime neurotransmitter present in all living beings including humans. In light of this, an attempt was made to remediate the polluted soil, a major reservoir of CPF, using Pseudomonas sp. (ChlD), an indigenous bacterial isolate. The culture efficiently degraded 10 to 100 mg/kg chlorpyrifos supplemented in the soil and utilized it as sole source of carbon and energy for its growth. Thus, this study provides a detailed insight regarding the level of CPF pollution in Punjab, its detrimental effects on mammals and bio-based solution to remediate the sites polluted with CPF.

  11. Role of aqueous extract of Cynodon dactylon in prevention of carbofuran- induced oxidative stress and acetylcholinesterase inhibition in rat brain.

    PubMed

    Rai, D K; Sharma, R K; Rai, P K; Watal, G; Sharma, B

    2011-02-12

    The present study was designed to investigate the ameliorating effect of aqueous extract of C. dactylon on carbofuran induced oxidative stress (OS) and alterations in the activity of acetylcholinesterase (AChE) in the brain of rats. Vitamin C was used as a positive control. Wistar rats were administered with single sub-acute oral dose (1.6 mgkg-1 b.wt.) of carbofuran for 24 h. The OS parameters such as lipid peroxidation (LPO) and the activities of antioxidant enzymes including super oxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST), and that of AChE were studied in brain. Carbofuran treatment significantly increased the activities of SOD and CAT by 75 and 60%, respectively. It also induced the level of LPO by 113%. In contrast, the activities of GST and AChE were recorded to be diminished by 25 and 33%, respectively. Pretreatment of the rats with aqueous extract of C. dactylon (oral; 500mgkg-1) restored SOD activity completely but CAT activity only partially (7%). Carbofuran induced LPO was moderated by 95% in the brain of C. dactylon treated rats. The observed changes in OS parameters in C. dactylon treated group were comparable to that observed in vitamin C (200 mg-kg-1 b. wt.) treated group. Surprisingly, C. dactylon treatment significantly recovered the activity of AChE to a similar level as observed in the brain of control group. In contrast vitamin C treatment did not cause significant change in the activity of AChE in carbofuran treated group. There were no noticeable changes in the aforementioned study parameters in the brain of rats receiving C. dactylon and vitamin C, only. The results suggest that the study is extremely important in the context of development of new anticholinestesterase and antioxidant antidotes against carbofuran from C. dactylon.

  12. Parkinson's disease (PD) with dementia and falls is improved by AChEI? A preliminary study report.

    PubMed

    Lauretani, Fulvio; Galuppo, Laura; Costantino, Cosimo; Ticinesi, Andrea; Ceda, Gianpaolo; Ruffini, Livio; Nardelli, Anna; Maggio, Marcello

    2016-06-01

    Advanced PD is often associated with cognitive impairment and frequent falls. We describe a suggestive case report of PD associated with mild cognitive impairment (MCI) and falls. The aim of our study was to test alteration in balance potentially related to use of acetylcholinesterase inhibitor (AchEI). We address this hypothesis after keeping the patient in stable dosage of dopamine agonist. We describe an initial pharmacological management in a 78-year-old man affected by Parkinson disease (PD) associated with mild cognitive impairment (MCI) and history of falls. The diagnosis of PD was also confirmed by SPECT with DATSCAN, after CT-brain exclusion of potential other causes of the symptoms. Cognitive and motor performances of the patient were initially evaluated by Mini Mental Examination State Examination (MMSE), Short Physical Performance Battery (SPPB) and Romberg test. We also recorded gait parameters using an accelerometer, while balance and stability were assessed by stabilometric platform with open and closed eyes. We repeated cognitive and motor tests and gait and balance evaluation after stable dosage of dopamine agonist before and after introduction of AchEI. After starting dopamine agonist therapy, there was a significant improvement in gait parameters (speed, stride/min, stride length, swing duration, and decrease in gait cycle duration and rolling duration). When stable dosage of dopamine agonist was reached, AchEI was introduced obtaining not only a significant improvement of cognitive performance, but also a significant positive change in balance. We hypothesize that AchEI could improve stability, balance and postural instability in addition to cognitive performance in PD with MCI and balance deficits.

  13. Receptor-mediated presynaptic facilitation of quantal release of acetylcholine induced by pralidoxime in Aplysia.

    PubMed

    Fossier, P; Baux, G; Poulain, B; Tauc, L

    1990-09-01

    1. Possible interactions of contrathion (pralidoxime sulfomethylate), a reactivator of phosphorylated acetylcholinesterase (AChE), with the regulation of cholinergic transmission were investigated on an identified synapse in the buccal ganglion of Aplysia californica. 2. Transmitter release was evoked either by a presynaptic action potential or, under voltage clamp, by a long depolarization of the presynaptic cell. At concentrations higher than 10(-5) M, bath-applied contrathion decreased the amplitude of miniature postsynaptic currents and increased their decay time. At the same time, the quantal release of ACh was transiently facilitated. The facilitatory effect of contrathion was prevented by tubocurarine but not by atropine. Because in this preparation, these drugs block, respectively, the presynaptic nicotinic-like and muscarinic-like receptors involved in positive and negative feedback of ACh release, we proposed that contrathion activates presynaptic nicotinic-like receptors. 3. Differential desensitization of the presynaptic receptors is proposed to explain the transience of the facilitatory action of contrathion on ACh release. 4. The complexity of the synaptic action of contrathion raises the possibility that its therapeutic effects in AChE poisonings are not limited to AChE reactivation.

  14. Hypothyroidism Enhanced Ectonucleotidases and Acetylcholinesterase Activities in Rat Synaptosomes can be Prevented by the Naturally Occurring Polyphenol Quercetin.

    PubMed

    Baldissarelli, Jucimara; Santi, Adriana; Schmatz, Roberta; Abdalla, Fátima Husein; Cardoso, Andréia Machado; Martins, Caroline Curry; Dias, Glaecir R Mundstock; Calgaroto, Nicéia Spanholi; Pelinson, Luana Paula; Reichert, Karine Paula; Loro, Vania Lucia; Morsch, Vera Maria Melchiors; Schetinger, Maria Rosa Chitolina

    2017-01-01

    Thyroid hormones have an influence on the functioning of the central nervous system. Furthermore, the cholinergic and purinergic systems also are extensively involved in brain function. In this context, quercetin is a polyphenol with antioxidant and neuroprotective properties. This study investigated the effects of (MMI)-induced hypothyroidism on the NTPDase, 5'-nucleotidase, adenosine deaminase (ADA), and acetylcholinesterase (AChE) activities in synaptosomes of rats and whether the quercetin can prevent it. MMI at a concentration of 20 mg/100 mL was administered for 90 days in the drinking water. The animals were divided into six groups: control/water (CT/W), control/quercetin 10 mg/kg, control/quercetin 25 mg/kg, methimazole/water (MMI/W), methimazole/quercetin 10 mg/kg (MMI/Q10), and methimazole/quercetin 25 mg/kg (MMI/Q25). On the 30th day, hormonal dosing was performed to confirm hypothyroidism, and the animals were subsequently treated with 10 or 25 mg/kg quercetin for 60 days. NTPDase activity was not altered in the MMI/W group. However, treatment with quercetin decreased ATP and ADP hydrolysis in the MMI/Q10 and MMI/Q25 groups. 5'-nucleotidase activity increased in the MMI/W group, but treatments with 10 or 25 mg/kg quercetin decreased 5'-nucleotidase activity. ADA activity decreased in the CT/25 and MMI/Q25 groups. Furthermore, AChE activity was reduced in all groups with hypothyroidism. In vitro tests also demonstrated that quercetin per se decreased NTPDase, 5'-nucleotidase, and AChE activities. This study demonstrated changes in the 5'-nucleotidase and AChE activities indicating that purinergic and cholinergic neurotransmission are altered in this condition. In addition, quercetin can alter these parameters and may be a promising natural compound with important neuroprotective actions in hypothyroidism.

  15. Competitive Inhibition Mechanism of Acetylcholinesterase without Catalytic Active Site Interaction: Study on Functionalized C60 Nanoparticles via in Vitro and in Silico Assays.

    PubMed

    Liu, Yanyan; Yan, Bing; Winkler, David A; Fu, Jianjie; Zhang, Aiqian

    2017-06-07

    Acetylcholinesterase (AChE) activity regulation by chemical agents or, potentially, nanomaterials is important for both toxicology and pharmacology. Competitive inhibition via direct catalytic active sites (CAS) binding or noncompetitive inhibition through interference with substrate and product entering and exiting has been recognized previously as an AChE-inhibition mechanism for bespoke nanomaterials. The competitive inhibition by peripheral anionic site (PAS) interaction without CAS binding remains unexplored. Here, we proposed and verified the occurrence of a presumed competitive inhibition of AChE without CAS binding for hydrophobically functionalized C 60 nanoparticles (NPs) by employing both experimental and computational methods. The kinetic inhibition analysis distinguished six competitive inhibitors, probably targeting the PAS, from the pristine and hydrophilically modified C 60 NPs. A simple quantitative nanostructure-activity relationship (QNAR) model relating the pocket accessible length of substituent to inhibition capacity was then established to reveal how the geometry of the surface group decides the NP difference in AChE inhibition. Molecular docking identified the PAS as the potential binding site interacting with the NPs via a T-shaped plug-in mode. Specifically, the fullerene core covered the enzyme gorge as a lid through π-π stacking with Tyr72 and Trp286 in the PAS, while the hydrophobic ligands on the fullerene surface inserted into the AChE active site to provide further stability for the complexes. The modeling predicted that inhibition would be severely compromised by Tyr72 and Trp286 deletions, and the subsequent site-directed mutagenesis experiments proved this prediction. Our results demonstrate AChE competitive inhibition of NPs without CAS participation to gain further understanding of both the neurotoxicity and the curative effect of NPs.

  16. Nicotine increases fear responses and brain acetylcholinesterase activity in a context-dependent manner in zebrafish.

    PubMed

    Ziani, Paola R; Müller, Talise E; Stefanello, Flavia V; Fontana, Barbara D; Duarte, Tâmie; Canzian, Julia; Rosemberg, Denis B

    2018-07-01

    Nicotine is an alkaloid with positive effects on learning and memory processes. Exposure to conspecific alarm substance (CAS) elicits fear responses in zebrafish, but the effects of nicotine on aversive behaviors and associative learning in this species remain unclear. Here, we evaluated whether nicotine enhances contextual fear responses in zebrafish and investigated a putative involvement of brain acetylcholinesterase (AChE) in associative learning. Fish were exposed to 1 mg/L nicotine for 3 min and then kept in non-chlorinated water for 20 min. Later, animals were transferred to experimental tanks in the absence or presence of 3.5 mL/L CAS for 5 min (training session). After 24 h, fish were tested in tanks with similar or altered context in the absence of CAS (post-training session) and brain AChE activity was further assessed. At training, CAS increased freezing, erratic movements, and decreased the time spent in top area, while nicotine abolished the effects of CAS on erratic movements. Nicotine/CAS group tested in a similar context showed exacerbated freezing and reduced transitions to top area. Moreover, a decrease in distance traveled was observed in control, nicotine, and nicotine/CAS groups at post-training. Nicotine also stimulated brain AChE activity in CAS-exposed animals reintroduced in tanks with similar context. Although freezing bouts and time spent in top could serve as behavioral endpoints that reflect CAS-induced sensitization, the effects of nicotine occurred in a context-dependent manner. Collectively, our data suggest an involvement of cholinergic signaling in aversive learning, reinforcing the growing utility of zebrafish models to explore the neurobehavioral effects of nicotine in vertebrates. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. RNA interference of acetylcholinesterase in the Asian citrus psyllid, Diaphorina citri, increases its susceptibility to carbamate and organophosphate insecticides.

    PubMed

    Kishk, Abdelaziz; Hijaz, Faraj; Anber, Helmy A I; AbdEl-Raof, Tsamoh K; El-Sherbeni, AbdEl-Hakeem D; Hamed, Sobhy; Killiny, Nabil

    2017-11-01

    The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Lividae) transmits the Candidatus Liberibacter asiaticus, which causes citrus greening disease or Huanglongbing, (HLB). To date, there is no efficient cure for HLB disease and the control of D. citri using insecticides became the most important tools for the management of HLB. However, the extensive use of insecticides could increase D. citri resistance to these insecticides. The objective of this study was to investigate the effect of RNA interference of acetylcholinesterase (AChE) on the mortality and susceptibility of D. citri to the four major insecticides used in Florida. In this study, we used a consensus sequence derived from the two AChE genes and cholinesterase 2-like (ChE-2-like) gene to target all of the three genes. Treatment with dsRNA-AChE increased the mortality percentages of both nymphs and adults of D. citri. The mortality percentage increased with the increase in the concentration of applied dsRNA-AChE, and the highest mortality (> 60%) was observed at the highest applied concentration (125ng/μl). Treatments of nymphs or adults with dsRNA-AChE down-regulated the expression of the three targeted genes of D. citri. Silencing of AChE and ChE in D. citri nymphs increased the susceptibility of emerged adults to chlorpyrifos and carbaryl, which act as AChE inhibitors. However, treatment with dsRNA-AChE did not increase the susceptibility of emerged adults to imidacloprid, which acts as an agonist of nicotinic acetylcholine receptors. In the same manner, treatment of adults with dsRNA-AChE increased their susceptibility to chlorpyrifos and carbaryl, but did not affect their susceptibility to imidacloprid. The ANOVA did not show any significant increase in susceptibility of D. citri adults to fenpropathrin after treatment with dsRNA-AChE, either as nymphs or as adults. However, simple linear regression showed that treatment with dsRNA-AChE increased D. citri susceptibility to fenpropathrin

  18. Are linear AChR epitopes the real culprit in ocular myasthenia gravis?

    PubMed

    Wu, Xiaorong; Tüzün, Erdem

    2017-02-01

    Extraocular muscle weakness occurs in most of the myasthenia gravis (MG) patients and it is often the initial complaint. Approximately 10-20% of MG patients with extraocular muscle weakness display only ocular symptoms and rest of the patients subsequently develop generalized muscle weakness. It is not entirely clear why some MG patients develop only ocular symptoms and why extraocular muscle weakness almost always precedes generalized muscle weakness. These facts are often explained by increased susceptibility of extraocular muscles due to their reduced endplate safety factor and lower complement inhibitor expression. Findings of a recently developed animal model of ocular MG suggest that additional factors might be in play. While immunization of HLA transgenic and wild-type (WT) mice with the native acetylcholine receptor (AChR) pentamer carrying conformational epitopes generates severe generalized muscle weakness, immunization of the same mouse strains with recombinant unfolded AChR subunits containing linear epitopes induces ptosis with or without mild generalized muscle weakness. Notably, immunization of mice with deficient T helper cell-mediated antigen presentation with recombinant AChR subunits or whole native AChR pentamer also induces ocular symptoms, AChR-reactive B cells and AChR antibodies. Based on these findings, we hypothesize that ocular symptoms observed in the earlier stages of MG might be triggered by linear and non-conformational AChR epitopes expressed by thymic cells or invading microorganisms. This initial AChR autoimmunity might be managed by T cell-independent and B cell mediated mechanisms yielding low affinity AChR antibodies. These antibodies are putatively capable of inducing muscle weakness only in extraocular muscles which have increased vulnerability due to their inherent biological properties. After this initial attack, as AChR bearing immune complexes form and the immune system gains access to the native AChR expressed by muscle

  19. Acetylcholinesterase immobilized capillary reactors coupled to protein coated magnetic beads: A new tool for plant extract ligand screening

    PubMed Central

    Vanzolini, Kenia Lourenço; Jiang, Zhengjin; Zhang, Xiaoqi; Vieira, Lucas Campos Curcino; Corrêa, Arlene Gonçalvez; Cardoso, Carmen Lucia; Cass, Quezia Bezerra; Moaddel, Ruin

    2013-01-01

    The use of immobilized capillary enzyme reactors (ICERs) and enzymes coated to magnetic beads ((NT or CT)-MB) for ligand screening has been adopted as a new technique of high throughput screening (HTS). In this work the selected target was the enzyme acetylcholinesterase (AChE), which acts on the central nervous system and is a validated target for the treatment of Alzheimer’s disease, as well as for new insecticides. A new approach for the screening of plant extracts was developed based on the ligand fishing experiments and zonal chromatography. For that, the magnetic beads were used for the ligand fishing experiments and capillary bioreactors for the activity assays. The latter was employed also under non-linear conditions to determine the affinity constants of known ligands, for the first time, as well as for the active fished ligand. PMID:24148457

  20. Sulforaphane alleviates scopolamine-induced memory impairment in mice.

    PubMed

    Lee, Siyoung; Kim, Jisung; Seo, Sang Gwon; Choi, Bo-Ryoung; Han, Jung-Soo; Lee, Ki Won; Kim, Jiyoung

    2014-07-01

    Sulforaphane, an organosulfur compound present in cruciferous vegetables, has been shown to exert neuroprotective effects in experimental in vitro and in vivo models of neurodegeneration. To determine whether sulforaphane can preserve cognitive function, we examined its effects on scopolamine-induced memory impairment in mice using the Morris water maze test. Sulforaphane (10 or 50mg/kg) was administered to C57BL/6 mice by oral gavage for 14 days (days 1-14), and memory impairment was induced by intraperitoneal injection of scopolamine (1mg/kg) for 7 days (days 8-14). Mice that received scopolamine alone showed impaired learning and memory retention and considerably decreased cholinergic system reactivity in the hippocampus and frontal cortex, as indicated by a decreased acetylcholine (ACh) level and an increased acetylcholinesterase (AChE) activity. Sulforaphane significantly attenuated the scopolamine-induced memory impairment and improved cholinergic system reactivity, as indicated by an increased ACh level, decreased AChE activity, and increased choline acetyltransferase (ChAT) expression in the hippocampus and frontal cortex. These effects of sulforaphane on cholinergic system reactivity were confirmed in vitro. Sulforaphane (10 or 20μM) increased the ACh level, decreased the AChE activity, and increased ChAT expression in scopolamine-treated primary cortical neurons. These observations suggest that sulforaphane might exert a significant neuroprotective effect on cholinergic deficit and cognitive impairment. Copyright © 2014. Published by Elsevier Ltd.

  1. Subchronic atrazine exposure changes defensive behaviour profile and disrupts brain acetylcholinesterase activity of zebrafish.

    PubMed

    Schmidel, Ademir J; Assmann, Karla L; Werlang, Chariane C; Bertoncello, Kanandra T; Francescon, Francini; Rambo, Cassiano L; Beltrame, Gabriela M; Calegari, Daiane; Batista, Cibele B; Blaser, Rachel E; Roman Júnior, Walter A; Conterato, Greicy M M; Piato, Angelo L; Zanatta, Leila; Magro, Jacir Dal; Rosemberg, Denis B

    2014-01-01

    Animal behaviour is the interaction between environment and an individual organism, which also can be influenced by its neighbours. Variations in environmental conditions, as those caused by contaminants, may lead to neurochemical impairments altering the pattern of the behavioural repertoire of the species. Atrazine (ATZ) is an herbicide widely used in agriculture that is frequently detected in surface water, affecting non-target species. The zebrafish is a valuable model organism to assess behavioural and neurochemical effects of different contaminants since it presents a robust behavioural repertoire and also all major neurotransmitter systems described for mammalian species. The goal of this study was to evaluate the effects of subchronic ATZ exposure in defensive behaviours of zebrafish (shoaling, thigmotaxis, and depth preference) using the split depth tank. Furthermore, to investigate a putative role of cholinergic signalling on ATZ-mediated effects, we tested whether this herbicide alters acetylcholinesterase (AChE) activity in brain and muscle preparations. Fish were exposed to ATZ for 14days and the following groups were tested: control (0.2% acetone) and ATZ (10 and 1000μg/L). The behaviour of four animals in the same tank was recorded for 6min and biological samples were prepared. Our results showed that 1000μg/L ATZ significantly increased the inter-fish distance, as well as the nearest and farthest neighbour distances. This group also presented an increase in the shoal area with decreased social interaction. No significant differences were detected for the number of animals in the shallow area, latency to enter the shallow and time spent in shallow and deep areas of the apparatus, but the ATZ 1000 group spent significantly more time near the walls. Although ATZ did not affect muscular AChE, it significantly reduced AChE activity in brain. Exposure to 10μg/L ATZ did not affect behaviour or AChE activity. These data suggest that ATZ impairs defensive

  2. Preclinical and first-in-human evaluation of PRX-105, a PEGylated, plant-derived, recombinant human acetylcholinesterase-R

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atsmon, Jacob; Sackler Faculty of Medicine, Tel Aviv University; Brill-Almon, Einat

    PRX-105 is a plant-derived recombinant version of the human ‘read-through’ acetylcholinesterase splice variant (AChE-R). Its active site structure is similar to that of the synaptic variant, and it displays the same affinity towards organophosphorus (OP) compounds. As such, PRX-105 may serve as a bio-scavenger for OP pesticides and chemical warfare agents. To assess its potential use in prophylaxis and treatment of OP poisoning we conducted several preliminary tests, reported in this paper. Intravenous (IV) PRX-105 was administered to mice either before or after exposure to an OP toxin. All mice who received an IV dose of 50 nmol/kg PRX-105, 2more » min before being exposed to 1.33 × LD{sub 50} and 1.5 × LD{sub 50} of toxin and 10 min after exposure to 1.5 × LD{sub 50} survived. The pharmacokinetic and toxicity profiles of PRX-105 were evaluated in mice and mini-pigs. Following single and multiple IV doses (50 to 200 mg/kg) no deaths occurred and no significant laboratory and histopathological changes were observed. The overall elimination half-life (t{sub ½}) in mice was 994 (± 173) min. Additionally, a first-in-human study, to assess the safety, tolerability and pharmacokinetics of the compound, was conducted in healthy volunteers. The t{sub ½} in humans was substantially longer than in mice (average 26.7 h). Despite the small number of animals and human subjects who were assessed, the fact that PRX-105 exerts a protective and therapeutic effect following exposure to lethal doses of OP, its favorable safety profile and its relatively long half-life, renders it a promising candidate for treatment and prophylaxis against OP poisoning and warrants further investigation. - Highlights: • PRX-105 is a PEGylated plant-derived recombinant human acetylcholinesterase-R. • PRX-105 is a promising bio-scavenger for organophosphorous toxins at lethal doses. • PRX-105 was shown to protect animals both prophylactically and post-poisoning. • First

  3. Coconut (Cocos nucifera) Ethanolic Leaf Extract Reduces Amyloid-β (1-42) Aggregation and Paralysis Prevalence in Transgenic Caenorhabditis elegans Independently of Free Radical Scavenging and Acetylcholinesterase Inhibition

    PubMed Central

    Manalo, Rafael Vincent; Silvestre, Maries Ann; Barbosa, Aza Lea Anne; Medina, Paul Mark

    2017-01-01

    Virgin coconut oil (VCO) has been the subject of several studies which have aimed to alleviate Alzheimer’s disease (AD) pathology, focusing on in vitro antioxidant and acetylcholinesterase (AChE) inhibitory activities. Here, we studied an underutilized and lesser-valued part of the coconut tree, specifically the leaves, using in vitro and in vivo approaches. Coconut leaf extract (CLE) was screened for antioxidant and AChE inhibitory properties in vitro and therapeutic effects in two strains of transgenic Caenorhabditis elegans expressing amyloid-β1–42 (Aβ1-42) in muscle cells. CLE demonstrated free radical scavenging activity with an EC50 that is 79-fold less compared to ascorbic acid, and an AChE inhibitory activity that is 131-fold less compared to Rivastigmine. Surprisingly, in spite of its low antioxidant activity and AChE inhibition, CLE reduced Aβ deposits by 30.31% in CL2006 in a dose-independent manner, and reduced the percentage of paralyzed nematodes at the lowest concentration of CLE (159.38 μg/mL), compared to dH2O/vehicle (control). Phytochemical analysis detected glycosides, anthocyanins, and hydrolyzable tannins in CLE, some of which are known to be anti-amyloidogenic. Taken together, these findings suggest that CLE metabolites alternatively decrease AB1–42 aggregation and paralysis prevalence independently of free radical scavenging and AChE inhibition, and this warrants further investigation on the bioactive compounds of CLE. PMID:28536360

  4. Coconut (Cocos nucifera) Ethanolic Leaf Extract Reduces Amyloid-β (1-42) Aggregation and Paralysis Prevalence in Transgenic Caenorhabditis elegans Independently of Free Radical Scavenging and Acetylcholinesterase Inhibition.

    PubMed

    Manalo, Rafael Vincent; Silvestre, Maries Ann; Barbosa, Aza Lea Anne; Medina, Paul Mark

    2017-04-21

    Virgin coconut oil (VCO) has been the subject of several studies which have aimed to alleviate Alzheimer's disease (AD) pathology, focusing on in vitro antioxidant and acetylcholinesterase (AChE) inhibitory activities. Here, we studied an underutilized and lesser-valued part of the coconut tree, specifically the leaves, using in vitro and in vivo approaches. Coconut leaf extract (CLE) was screened for antioxidant and AChE inhibitory properties in vitro and therapeutic effects in two strains of transgenic Caenorhabditis elegans expressing amyloid-β 1-42 (Aβ 1-42 ) in muscle cells. CLE demonstrated free radical scavenging activity with an EC 50 that is 79-fold less compared to ascorbic acid, and an AChE inhibitory activity that is 131-fold less compared to Rivastigmine. Surprisingly, in spite of its low antioxidant activity and AChE inhibition, CLE reduced Aβ deposits by 30.31% in CL2006 in a dose-independent manner, and reduced the percentage of paralyzed nematodes at the lowest concentration of CLE (159.38 μg/mL), compared to dH₂O/vehicle (control). Phytochemical analysis detected glycosides, anthocyanins, and hydrolyzable tannins in CLE, some of which are known to be anti-amyloidogenic. Taken together, these findings suggest that CLE metabolites alternatively decrease AB 1-42 aggregation and paralysis prevalence independently of free radical scavenging and AChE inhibition, and this warrants further investigation on the bioactive compounds of CLE.

  5. Biphasic photoelectrochemical sensing strategy based on in situ formation of CdS quantum dots for highly sensitive detection of acetylcholinesterase activity and inhibition.

    PubMed

    Hou, Ting; Zhang, Lianfang; Sun, Xinzhi; Li, Feng

    2016-01-15

    Herein, we reported a facile and highly sensitive biphasic photoelectrochemical (PEC) sensing strategy based on enzymatic product-mediated in situ formation of CdS quantum dots (QDs), and assayed the activity and inhibition of acetylcholinesterase (AChE) in its optimal state. Upon the hydrolysis of acetylthiocholine catalyzed by AChE, the product thiocholine stabilizes the in situ formation of CdS QDs in homogenous solution. Due to the electrostatic attraction, the resulting tertiary amino group-functionalized CdS QDs are attached to the surface of the negatively charged indium tin oxide (ITO) electrode, generating significant PEC response upon illumination in the presence of electron donors. By taking full advantage of the in situ formation of CdS QDs in homogenous solution, this strategy is capable of detecting AChE activity and inhibition in its optimal state. A directly measured detection limit of 0.01mU/mL for AChE activity is obtained, which is superior to those obtained by some fluorescence methods. The inhibition of AChE activity by aldicarb is successfully detected, and the corresponding IC50 is determined to be 13μg/L. In addition to high sensitivity and good selectivity, this strategy also exhibits additional advantages of simplicity, low cost and easy operation. To the best of our knowledge, the as-proposed strategy is the first example demonstrating the application of CdS QDs formed in situ for biphasic PEC detection of enzyme activity and inhibition. More significantly, it opens up a new horizon for the development of homogenous PEC sensing platforms, and has great potential in probing many other analytes. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Amino acid substitutions and intron polymorphism of acetylcholinesterase1 associated with mevinphos resistance in diamondback moth, Plutella xylostella (L.).

    PubMed

    Yeh, Shih-Chia; Lin, Chia-Li; Chang, Cheng; Feng, Hai-Tung; Dai, Shu-Mei

    2014-06-01

    The diamondback moth, Plutella xylostella L., is the most destructive insect pest of Brassica crops in the world. It has developed resistance rapidly to almost every insecticide used for its control. Mevinphos, a fast degrading and slow resistance evocating organophosphorus insecticide, has been recommended for controlling P. xylostella in Taiwan for more than 40years. SHM strain of P. xylostella, with ca. 22-fold resistance to this chemical, has been established from a field SH strain by selecting with mevinphos since 1997. Three mutations, i.e., G892T, G971C, and T1156T/G leading to A298S, G324A, and F386F/V amino acid substitutions in acetylcholinesterase1 (AChE1), were identified in these two strains; along with three haplotype pairs and a polymorphic intron in AChE1 gene (ace1). Two genetically pure lines, i.e., an SHggt wild type with intron AS and an SHMTCN mutant carrying G892T, G971C, T1156T/G mutations and intron AR in ace1, were established by single pair mating and haplotype determination. The F1 of SHMTCN strain had 52-fold resistance to mevinphos in comparison with the F1 of SHggt strain. In addition, AChE1 of this SHMTCN population, which exhibited lower maximum velocity (Vmax) and affinity (Km), was less susceptible to the inhibition of mevinphos, with an I50 32-fold higher than that of the SHggt F1 population. These results imply that amino acid substitutions in AChE1 of SHMTCN strain are associated with mevinphos resistance in this insect pest, and this finding is important for insecticide resistance management of P. xylostella in the field. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Rivastigmine: the advantages of dual inhibition of acetylcholinesterase and butyrylcholinesterase and its role in subcortical vascular dementia and Parkinson’s disease dementia

    PubMed Central

    Kandiah, Nagaendran; Pai, Ming-Chyi; Senanarong, Vorapun; Looi, Irene; Ampil, Encarnita; Park, Kyung Won; Karanam, Ananda Krishna; Christopher, Stephen

    2017-01-01

    Several studies have demonstrated clinical benefits of sustained cholinesterase inhibition with rivastigmine in Alzheimer’s disease (AD) and Parkinson’s disease dementia (PDD). Unlike donepezil and galantamine that selectively inhibit acetylcholinesterase (AChE; EC 3.1.1.7), rivastigmine is a unique cholinesterase inhibitor with both AChE and butyrylcholinesterase (BuChE; EC 3.1.1.8) inhibitory activity. Rivastigmine is also available as transdermal patch that has been approved by the US Food and Drug Administration for the treatment of mild, moderate, and severe AD as well as mild-to-moderate PDD. In this review, we explore the role of BuChE inhibition in addition to AChE inhibition with rivastigmine in the outcomes of cognition, global function, behavioral symptoms, and activities of daily living. Additionally, we review the evidence supporting the use of dual AChE−BuChE inhibitory activity of rivastigmine as a therapeutic strategy in the treatment of neurological disorders, with a focus on the role of rivastigmine in subcortical dementias such as vascular dementia (VaD) and PDD. Toward this objective, we performed a literature search in PubMed and Ovid with limits to articles published in the English language before June 2016. The available evidence from the literature suggests that the dual inhibition of AChE and BuChE may afford additional therapeutic potential of rivastigmine in subcortical dementias (subcortical VaD and PDD) with benefits on cognition and behavioral symptoms. Rivastigmine was found to specifically benefit executive dysfunction frequently observed in subcortical dementias; however, large randomized clinical studies are warranted to support these observations. PMID:28458525

  8. Changes in antioxidant status, protein concentration, acetylcholinesterase, (Na+,K+)-, and Mg2+ -ATPase activities in the brain of hyper- and hypothyroid adult rats.

    PubMed

    Carageorgiou, Haris; Pantos, Constantinos; Zarros, Apostolos; Mourouzis, Iordanis; Varonos, Dennis; Cokkinos, Dennis; Tsakiris, Stylianos

    2005-06-01

    It is a common knowledge that metabolic reactions increase in hyperthyroidism and decrease in hypothyroidism. The aim of this work was to investigate how the metabolic reactions could affect the total antioxidant status (TAS), protein concentration (PC) and the activities of acetylcholinesterase (AChE), (Na+,K+)-ATPase and Mg2+ -ATPase in the brain of hyper- and hypothyroid adult male rats. Hyperthyroidism was induced in rats by subcutaneous administration of thyroxine (25 microg/l00 g body weight) once daily for 14 days, while hypothyroidism was induced by oral administration of propylthiouracil (0.05%) for 21 days. TAS, PC, and enzyme activities were evaluated spectrophotometrically in the homogenated brain of each animal. TAS, PC, and Mg2+ -ATPase activity were found unaffected in hyperthyroidism, while AChE and Na+,K+ -ATPase activities were reduced by 25% (p < 0.01). In contrast, TAS, (Na+,K+)-ATPase and Mg2+-ATPase activities were found to be increased (approx. 23-30%, p < 0.001) in the hypothyroid brain, while AChE activity and PC were shown to be inhibited (approx. 23-30%, p < 0.001). These changes on brain enzyme activities may reflect the different metabolic effects of hyper- and hypothyroidism. Such changes of the enzyme activities may differentially modulate the brain intracellular Mg2+, neural excitability, as well as the uptake and release of biogenic amines.

  9. Acetylcholinesterase inhibition and gill lesions in Rasbora caverii, an indigenous fish inhabiting rice field associated waterbodies in Sri Lanka.

    PubMed

    Wijeyaratne, W M D N; Pathiratne, Asoka

    2006-10-01

    The present study was aimed at applying condition factor (CF), brain acetylcholinesterase (AChE) and gill histology as biomarkers for detecting possible exposure/effect induced by pesticides in fish residing rice field associated waterbodies in Sri Lanka. Biomarkers of an indigenous fish, Rasbora caverii collected from five sampling sites including canals near rice fields, a river and a reservoir (the reference site) were evaluated at four sampling stages covering pesticide application periods during rice cultivation season in 2004. Results indicated that CF of the fish did not show significant alterations regardless of the sampling sites or sampling stages. Site specific differences in AChE activities of the fish were not evident either prior to application of pesticides or at 7 days after Paraquat application to the rice fields. Two days after the application of a mixture of Fenthion and Phenthoate to the rice fields, AChE activity of the fish collected from canals near rice fields was significantly depressed (65-75%) compared to the fish in the reference site. The activities remain depressed to 50-56% even at 65 days after the insecticides application. Laboratory studies showed that prior exposure of R. caverii to Paraquat (2 microg l(-1), 7 days) enhanced the extent of inhibition of brain AChE activity induced by Fenthion (3 microg l(-1)) or a mixture of Fenthion (3 microg l(-1)) and Phenthoate (5 microg l(-1)). Gills of fish collected from canals near rice fields exhibited abnormal multiple divisions at the tips of some secondary lamellae in addition to hyperplasia, hypertrophy and club shaped deformities. Results indicate that application of pesticides in rice culture could manifest a threat to native fish populations residing rice field associated waterbodies. The response of brain AChE and histological changes in the gills of R. caverii allowed differentiating sampling sites after insecticide applications to the rice fields. Hence, R. caverii may be

  10. Curcumin improves episodic memory in cadmium induced memory impairment through inhibition of acetylcholinesterase and adenosine deaminase activities in a rat model.

    PubMed

    Akinyemi, Ayodele Jacob; Okonkwo, Princess Kamsy; Faboya, Opeyemi Ayodeji; Onikanni, Sunday Amos; Fadaka, Adewale; Olayide, Israel; Akinyemi, Elizabeth Olufisayo; Oboh, Ganiyu

    2017-02-01

    Curcumin, the main polyphenolic component of turmeric (Curcuma longa) rhizomes has been reported to exert cognitive enhancing potential with limited scientific basis. Hence, this study sought to evaluate the effect of curcumin on cerebral cortex acetylcholinesterase (AChE) and adenosine deaminase (ADA) activities in cadmium (Cd)-induced memory impairment in rats. Animals were divided into six groups (n = 6): saline/vehicle, saline/curcumin 12.5 mg/kg, saline/curcumin 25 mg/kg, Cd/vehicle, Cd/curcumin 12.5 mg/kg, and Cd/curcumin 25 mg/kg. Rats received Cd (2.5 mg/kg) and curcumin (12.5 and 25 mg/kg, respectively) by gavage for 7 days. The results of this study revealed that cerebral cortex AChE and ADA activities were increased in Cd-poisoned rats, and curcumin co-treatment reversed these activities to the control levels. Furthermore, Cd intoxication increased the level of lipid peroxidation in cerebral cortex with a concomitant decreased in functional sulfuhydryl (-SH) group and nitric oxide (NO), a potent neurotransmitter and neuromodulatory agent. However, the co-treatment with curcumin at 12.5 and 25 mg/kg, respectively increased the non-enzymatic antioxidant status and NO in cerebral cortex with a decreased in malondialdehyde (MDA) level. Therefore, inhibition of AChE and ADA activities as well as increased antioxidant status by curcumin in Cd-induced memory dysfunction could suggest some possible mechanism of action for their cognitive enhancing properties.

  11. Design, synthesis and biological activity of novel donepezil derivatives bearing N-benzyl pyridinium moiety as potent and dual binding site acetylcholinesterase inhibitors.

    PubMed

    Lan, Jin-Shuai; Zhang, Tong; Liu, Yun; Yang, Jing; Xie, Sai-Sai; Liu, Jing; Miao, Ze-Yang; Ding, Yue

    2017-06-16

    A series of new donepezil derivatives were designed synthesized and evaluated as multifunctional cholinesterase inhibitors against Alzheimer's disease (AD). In vitro studies showed that most of them exhibited significant potency to inhibit acetylcholinesterase and self-induced β-amyloid (Aβ) aggregation, and moderate antioxidant activity. Especially, compound 5b presented the greatest ability to inhibit cholinesterase (IC 50 , 1.9 nM for eeAChE and 0.8 nM for hAChE), good inhibition of Aβ aggregation (53.7% at 20 μM) and good antioxidant activity (0.54 trolox equivalents). Kinetic and molecular modeling studies indicated that compound 5b was a mixed-type inhibitor, binding simultaneously to the catalytic active site (CAS) and the peripheral anionic site (PAS) of AChE. In addition, compound 5b could reduce PC12 cells death induced by oxidative stress and Aβ (1-42). Moreover, in vivo experiments showed that compound 5b was nontoxic and tolerated at doses up to 2000 mg/kg. These results suggested that compound 5b might be an excellent multifunctional agent for AD treatment. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. A Wrench in the Works of Human Acetylcholinesterase: Soman Induced Conformational Changes Revealed by Molecular Dynamics Simulations

    PubMed Central

    Fattebert, Jean-Luc; Emigh, Aiyana

    2015-01-01

    Irreversible inactivation of human acetylcholinesterase (hAChE) by organophosphorous pesticides (OPs) and chemical weapon agents (CWA) has severe morbidity and mortality consequences. We present data from quantum mechanics/molecular mechanics (QM/MM) and 80 classical molecular dynamics (MD) simulations of the apo and soman-adducted forms of hAChE to investigate the effects on the dynamics and protein structure when the catalytic Serine 203 is phosphonylated. We find that the soman phosphonylation of the active site Ser203 follows a water assisted addition-elimination mechanism with the elimination of the fluoride ion being the highest energy barrier at 6.5 kcal/mole. We observe soman-dependent changes in backbone and sidechain motions compared to the apo form of the protein. These alterations restrict the soman-adducted hAChE to a structural state that is primed for the soman adduct to be cleaved and removed from the active site. The altered motions and resulting structures provide alternative pathways into and out of the hAChE active site. In the soman-adducted protein both side and back door pathways are viable for soman adduct access. Correlation analysis of the apo and soman adducted MD trajectories shows that the correlation of gorge entrance and back door motion is disrupted when hAChE is adducted. This supports the hypothesis that substrate and product can use two different pathways as entry and exit sites in the apo form of the protein. These alternative pathways have important implications for the rational design of medical countermeasures. PMID:25874456

  13. A wrench in the works of human acetylcholinesterase: Soman induced conformational changes revealed by molecular dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennion, Brian J.; Essiz, Sebnem G.; Lau, Edmond Y.

    Irreversible inactivation of human acetylcholinesterase (hAChE) by organophosphorous pesticides (OPs) and chemical weapon agents (CWA) has severe morbidity and mortality consequences. We present data from quantum mechanics/molecular mechanics (QM/MM) and 80 classical molecular dynamics (MD) simulations of the apo and soman-adducted forms of hAChE to investigate the effects on the dynamics and protein structure when the catalytic Serine 203 is phosphonylated. We find that the soman phosphonylation of the active site Ser203 follows a water assisted addition-elimination mechanism with the elimination of the fluoride ion being the highest energy barrier at 6.5 kcal/mole. We observe soman-dependent changes in backbone andmore » sidechain motions compared to the apo form of the protein. These alterations restrict the soman-adducted hAChE to a structural state that is primed for the soman adduct to be cleaved and removed from the active site. The altered motions and resulting structures provide alternative pathways into and out of the hAChE active site. In the soman-adducted protein both side and back door pathways are viable for soman adduct access. Correlation analysis of the apo and soman adducted MD trajectories shows that the correlation of gorge entrance and back door motion is disrupted when hAChE is adducted. This supports the hypothesis that substrate and product can use two different pathways as entry and exit sites in the apo form of the protein. These alternative pathways have important implications for the rational design of medical countermeasures.« less

  14. A wrench in the works of human acetylcholinesterase: Soman induced conformational changes revealed by molecular dynamics simulations

    DOE PAGES

    Bennion, Brian J.; Essiz, Sebnem G.; Lau, Edmond Y.; ...

    2015-04-13

    Irreversible inactivation of human acetylcholinesterase (hAChE) by organophosphorous pesticides (OPs) and chemical weapon agents (CWA) has severe morbidity and mortality consequences. We present data from quantum mechanics/molecular mechanics (QM/MM) and 80 classical molecular dynamics (MD) simulations of the apo and soman-adducted forms of hAChE to investigate the effects on the dynamics and protein structure when the catalytic Serine 203 is phosphonylated. We find that the soman phosphonylation of the active site Ser203 follows a water assisted addition-elimination mechanism with the elimination of the fluoride ion being the highest energy barrier at 6.5 kcal/mole. We observe soman-dependent changes in backbone andmore » sidechain motions compared to the apo form of the protein. These alterations restrict the soman-adducted hAChE to a structural state that is primed for the soman adduct to be cleaved and removed from the active site. The altered motions and resulting structures provide alternative pathways into and out of the hAChE active site. In the soman-adducted protein both side and back door pathways are viable for soman adduct access. Correlation analysis of the apo and soman adducted MD trajectories shows that the correlation of gorge entrance and back door motion is disrupted when hAChE is adducted. This supports the hypothesis that substrate and product can use two different pathways as entry and exit sites in the apo form of the protein. These alternative pathways have important implications for the rational design of medical countermeasures.« less

  15. H and T subunits of acetylcholinesterase from Torpedo, expressed in COS cells, generate all types of globular forms

    PubMed Central

    1992-01-01

    We analyzed the production of Torpedo marmorata acetylcholinesterase (AChE) in transfected COS cells. We report that the presence of an aspartic acid at position 397, homologous to that observed in other cholinesterases and related enzymes (Krejci, E., N. Duval, A. Chatonnet, P. Vincens, and J. Massoulie. 1991. Proc. Natl. Acad. Sci. USA. 88:6647-6651), is necessary for catalytic activity. The presence of an asparagine in the previously reported cDNA sequence (Sikorav, J.L., E. Krejci, and J. Massoulie. 1987. EMBO (Eur. Mol. Biol. Organ.) J. 6:1865-1873) was most likely due to a cloning error (codon AAC instead of GAC). We expressed the T and H subunits of Torpedo AChE, which differ in their COOH-terminal region and correspond respectively to the collagen-tailed asymmetric forms and to glycophosphatidylinositol-anchored dimers of Torpedo electric organs, as well as a truncated T subunit (T delta), lacking most of the COOH- terminal peptide. The transfected cells synthesized similar amounts of AChE immunoreactive protein at 37 degrees and 27 degrees C. However AChE activity was only produced at 27 degrees C and, even at this temperature, only a small proportion of the protein was active. We analyzed the molecular forms of active AChE produced at 27 degrees C. The H polypeptides generated glycophosphatidylinositol-anchored dimers, resembling the corresponding natural AChE form. The cells also released non-amphiphilic dimers G2na. The T polypeptides generated a series of active forms which are not produced in Torpedo electric organs: G1a, G2a, G4a, and G4na cellular forms and G2a and G4na secreted forms. The amphiphilic forms appeared to correspond to type II forms (Bon, S., J. P. Toutant, K. Meflah, and J. Massoulie. 1988. J. Neurochem. 51:776- 785; Bon, S., J. P. Toutant, K. Meflah, and J. Massoulie. 1988. J. Neurochem. 51:786-794), which are abundant in the nervous tissue and muscles of higher vertebrates (Bon, S., T. L. Rosenberry, and J. Massoulie. 1991. Cell

  16. Synthesis, docking and acetylcholinesterase inhibitory assessment of 2-(2-(4-Benzylpiperazin-1-yl)ethyl)isoindoline-1,3-dione derivatives with potential anti-Alzheimer effects

    PubMed Central

    2013-01-01

    Background Alzheimer’s disease (AD) as neurodegenerative disorder, is the most common form of dementia accounting for about 50-60% of the overall cases of dementia among persons over 65 years of age. Low acetylcholine (ACh) concentration in hippocampus and cortex areas of the brain is one of the main reasons for this disease. In recent years, acetylcholinesterase (AChE) inhibitors like donepezil with prevention of acetylcholine hydrolysis can enhance the duration of action of acetylcholine in synaptic cleft and improve the dementia associated with Alzheimer’s disease. Results Design, synthesis and assessment of anticholinesterase activity of 2-(2-(4-Benzylpiperazin-1-yl)ethyl)isoindoline-1,3-dione derivatives showed prepared compounds can function as potential acetylcholinesterase inhibitor. Among 12 synthesized derivatives, compound 4a with ortho chlorine moiety as electron withdrawing group exhibited the highest potency in these series (IC50 = 0.91 ± 0.045 μM) compared to donepezil (IC50 = 0.14 ± 0.03 μM). The results of the enzyme inhibition test (Ellman test) showed that electron withdrawing groups like Cl, F and NO2 can render the best effect at position ortho and para of the phenyl ring. But compound 4g with methoxy group at position 3(meta) afforded a favorable potency (IC50 = 5.5 ± 0.7 μM). Furthermore, docking study confirmed a same binding mode like donepezil for compound 4a. Conclusions Synthesized compounds 4a-4l could be proposed as potential anticholinesterase agents. PMID:23758724

  17. An immunoglobulin M monoclonal antibody, recognizing a subset of acetylcholinesterase molecules from electric organs of Electrophorus and Torpedo, belongs to the HNK-1 anti-carbohydrate family.

    PubMed

    Bon, S; Méflah, K; Musset, F; Grassi, J; Massoulié, J

    1987-12-01

    An immunoglobulin M (IgM) monoclonal antibody (mAb Elec-39), obtained against asymmetric acetylcholinesterase (AChE) from Electrophorus electric organs, also reacts with a fraction of globular AChE (amphiphilic G2 form) from Torpedo electric organs. This antibody does not react with asymmetric AChE from Torpedo electric organs or with the enzyme from other tissues of Electrophorus or Torpedo. The corresponding epitope is removed by endoglycosidase F, showing that it is a carbohydrate. The subsets of Torpedo G2 that react or do not react with Elec-39 (Elec-39+ and Elec-39-) differ in their electrophoretic mobility under nondenaturing conditions; the Elec-39+ component also binds the lectins from Pisum sativum and Lens culinaris. Whereas the Elec-39- component is present at the earliest developmental stages examined, an Elec-39+ component becomes distinguishable only around the 70-mm stage. Its proportion increases progressively, but later than the rapid accumulation of the total G2 form. In immunoblots, mAb Elec-39 recognizes a number of proteins other than AChE from various tissues of several species. The specificity of Elec-39 resembles that of a family of anti-carbohydrate antibodies that includes HNK-1, L2, NC-1, NSP-4, as well as IgMs that occur in human neuropathies. Although some human neuropathy IgMs that recognize the myelin-associated glycoprotein did not react with Elec-39+ AChE, mAbs HNK-1, NC-1, and NSP-4 showed the same selectivity as Elec-39 for Torpedo G2 AChE, but differed in the formation of immune complexes.

  18. Effects of chemical and thermal stress on acetylcholinesterase activity in the brain of the bank vole, Myodes glareolus.

    PubMed

    Świergosz-Kowalewska, Renata; Molenda, Patrycja; Halota, Anna

    2014-08-01

    One of the most important issues in ecotoxicology is better understanding the effects of interactions between chemical pollutants and physical environmental factors on animals. To fill this knowledge gap, changes in the activity of acetylcholinesterase (AChE) in the brain samples of bank voles Myodes (Clethrionomys) glareolus due to temperature effects, and two chemical stressors were studied in a full factorial laboratory experiment (27 treatments). The experiment was divided into three phases: acclimatisation (3 days), intoxication (42 days) and elimination (21 days). During the intoxication phase, animals were orally exposed to different concentrations of either nickel (0, 300 or 800 mg Ni/kg food), chlorpyrifos (CPF) (0, 50 or 350 mg CPF/kg food) or a mixture of both chemicals. During the acclimatisation and elimination phases, the bank voles were given uncontaminated food. The experiment was conducted at three different temperatures (10, 20 or 30 °C), and a 12 h:12 h light:dark regime. The animals were sacrificed at 0, 5, 10, 20, 42, 49 and 63 days after the beginning of the intoxication, and brain samples were obtained for chemical analysis. The nickel accumulation in the brain depended on the level of nickel exposure and on interactions between the temperature and other factors. Nickel exhibited no effect on AChE activity. In contrast, AChE was drastically inhibited by chlorpyrifos and low temperature, but interactions between all factors significantly influenced the enzyme activity during the elimination phase of the experiment. High mortality was observed in the groups exposed to high concentrations of nickel and chlorpyrifos. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Synthesis, DNA Cleavage Activity, Cytotoxicity, Acetylcholinesterase Inhibition, and Acute Murine Toxicity of Redox-Active Ruthenium(II) Polypyridyl Complexes.

    PubMed

    Alatrash, Nagham; Narh, Eugenia S; Yadav, Abhishek; Kim, Mahn-Jong; Janaratne, Thamara; Gabriel, James; MacDonnell, Frederick M

    2017-07-06

    Four mononuclear [(L-L) 2 Ru(tatpp)] 2+ and two dinuclear [(L-L) 2 Ru(tatpp)Ru(L-L) 2 ] 4+ ruthenium(II) polypyridyl complexes (RPCs) containing the 9,11,20,22-tetraazatetrapyrido[3,2-a:2',3'-c:3'',2''-l:2''',3'''-n]pentacene (tatpp) ligand were synthesized, in which L-L is a chelating diamine ligand such as 2,2'-bipyridine (bpy), 1,10-phenanthroline (phen), 3,4,7,8-tetramethyl-1,10-phenanthroline (Me 4 phen) or 4,7-diphenyl-1,10-phenanthroline (Ph 2 phen). These Ru-tatpp analogues all undergo reduction reactions with modest reducing agents, such as glutathione (GSH), at pH 7. These, plus several structurally related but non-redox-active RPCs, were screened for DNA cleavage activity, cytotoxicity, acetylcholinesterase (AChE) inhibition, and acute mouse toxicity, and their activities were examined with respect to redox activity and lipophilicity. All of the redox-active RPCs show single-strand DNA cleavage in the presence of GSH, whereas none of the non-redox-active RPCs do. Low-micromolar cytotoxicity (IC 50 ) against malignant H358, CCL228, and MCF7 cultured cell lines was mainly restricted to the redox-active RPCs; however, they were substantially less toxic toward nonmalignant MCF10 cells. The IC 50 values for AChE inhibition in cell-free assays and the acute toxicity of RPCs in mice revealed that whereas most RPCs show potent inhibitory action against AChE (IC 50 values <15 μm), Ru-tatpp complexes as a class are surprisingly well tolerated in animals relative to other RPCs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Dynamic Mechanism of a Fluorinated Oxime Reactivator Unbinding from AChE Gorge in Polarizable Water.

    PubMed

    Pathak, Arup K; Bandyopadhyay, Tusar

    2018-04-12

    A well-tempered metadynamics simulation is performed to study the unbinding process of a fluorinated oxime (FHI-6) drug from the active-site gorge of acetylcholinesterase enzyme in a polarizable water medium. Cation-π interactions and water bridge and hydrogen bridge formations between the protein and the drug molecule are found to strongly influence the unbinding process, forming basins and barriers along the gorge pathway. Distinct unbinding pathways are found when FHI-6 was compared with its recently reported nonfluorinated analogue, HI-6. For example, because of permanent positive charges on both the pyridinium rings of HI-6, it exhibits the minimum in the potential of mean force of the unbinding process in the gorge mouth (where the peripheral anion site, PAS, of the enzyme is located), which is largely caused by cation-π interactions. However, the same interaction, both in the catalytic active-site (CAS) and PAS regions, is found to be greatly enhanced in its lipophilic fluorinated analogue, FHI-6, causing a deep potential energy minimum in the bound state. This may render FHI-6 to be held more firmly in the CAS region of the gorge, as is also evidenced from the microkinetics of unbinding transitions, measured through a combination of metadynamics and hyperdynamics simulations.

  1. Postnatal growth hormone deficiency in growing rats causes marked decline in the activity of spinal cord acetylcholinesterase but not butyrylcholinesterase.

    PubMed

    Koohestani, Faezeh; Brown, Chester M; Meisami, Esmail

    2012-11-01

    The effects of growth hormone (GH) deficiency on the developmental changes in the abundance and activity of cholinesterase enzymes were studied in the developing spinal cord (SC) of postnatal rats by measuring the specific activity of acetylcholinesterase (AChE), a marker for cholinergic neurons and their synaptic compartments, and butyrylcholinesterase (BuChE), a marker for glial cells and neurovascular cells. Specific activities of these two enzymes were measured in SC tissue of 21- and 90 day-old (P21, weaning age; P90, young adulthood) GH deficient spontaneous dwarf (SpDwf) mutant rats which lack anterior pituitary and circulating plasma GH, and were compared with SC tissue of normal age-matched control animals. Assays were carried out for AChE and BuChE activity in the presence of their specific chemical inhibitors, BW284C51 and iso-OMPA, respectively. Results revealed that mean AChE activity was markedly and significantly reduced [28% at P21, 49% at P90, (p<0.01)] in the SC of GH deficient rats compared to age-matched controls. GH deficiency had a higher and more significant effect on AChE activity of the older (P90) rats than the younger ones (P21) ones. In contrast, BuChE activity in SC showed no significant changes in GH deficient rats at either of the two ages studied. Results imply that, in the absence of pituitary GH, the postnatal proliferation of cholinergic synapses in the rat SC, a CNS structure, where AChE activity is abundant, is markedly reduced during both the pre- and postweaning periods; more so in the postweaning than preweaning ages. In contrast, the absence of any effects on BuChE activity implies that GH does not affect the development of non-neuronal elements, e.g., glia, as much as the neuronal and synaptic compartments of the developing rat SC. Copyright © 2012 ISDN. Published by Elsevier Ltd. All rights reserved.

  2. Conformational energy landscape of the acyl pocket loop in acetylcholinesterase: a Monte Carlo-generalized Born model study.

    PubMed

    Carlacci, Louis; Millard, Charles B; Olson, Mark A

    2004-10-01

    The X-ray crystal structure of the reaction product of acetylcholinesterase (AChE) with the inhibitor diisopropylphosphorofluoridate (DFP) showed significant structural displacement in a loop segment of residues 287-290. To understand this conformational selection, a Monte Carlo (MC) simulation study was performed of the energy landscape for the loop segment. A computational strategy was applied by using a combined simulated annealing and room temperature Metropolis sampling approach with solvent polarization modeled by a generalized Born (GB) approximation. Results from thermal annealing reveal a landscape topology of broader basin opening and greater distribution of energies for the displaced loop conformation, while the ensemble average of conformations at 298 K favored a shift in populations toward the native by a free-energy difference in good agreement with the estimated experimental value. Residue motions along a reaction profile of loop conformational reorganization are proposed where Arg-289 is critical in determining electrostatic effects of solvent interaction versus Coulombic charging.

  3. Synthesis and acetylcholinesterase/butyrylcholinesterase inhibition activity of 4-amino-2, 3-diaryl-5, 6, 7, 8-tetrahydrofuro(and thieno)[2, 3-b]-quinolines, and 4-amino-5, 6, 7, 8, 9-pentahydro-2, 3-diphenylcyclohepta[e]furo(and thieno)-[2, 3-b]pyridines.

    PubMed

    Marco, José L; De Los Ríos, Cristóbal; Carreiras, María C; Baños, Josep E; Badia, Albert; Vivas, Nuria M

    2002-07-01

    The acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibition activities of a series of 4-amino-2, 3-diaryl-5, 6, 7, 8-tetrahydrofuro[2, 3-b]quinolines (10-12)/4-amino-5, 6, 7, 8-tetrahydro-2, 3-diphenylthieno[2, 3-b]quinoline (14) and 4-amino-5, 6, 7, 8, 9-pentahydro-2, 3-diphenylcyclohepta[e]furo[2, 3-b]pyridine (13)/4-amino-5, 6, 7, 8, 9-pentahydro-2, 3-phenylcyclohepta[e]thieno[2, 3-b]pyridine (15) are described. These compounds are tacrine (THA) analogues which have been prepared either from readily available 2-amino-3-cyano-4, 5-diarylfurans (16-18) or from 2-amino-3-cyano-4, 5-diphenylthiophene (19), via Friedländer condensation with cyclohexanone or cycloheptanone. These compounds are competitive inhibitors for acetylcholinesterase, the more potent being compound (13) which is three-fold less active than tacrine. The butyrylcholinesterase inhibition activity is significant only in compounds 10 and133, which are ten-fold less active than tacrine. It is found that the products 11 and 12 strongly inhibit acetylcholinesterase, and show excellent selectivity regarding butyrylcholinesterase.

  4. Multiple binding sites involved in the effect of choline esters on decarbamoylation of monomethylcarbamoyl- or dimethylcarbamoly-acetylcholinesterase.

    PubMed Central

    Sok, D E; Kim, Y B; Choi, S J; Jung, C H; Cha, S H

    1994-01-01

    Multiple binding sites for inhibitory choline esters in spontaneous decarbamoylation of dimethylcarbamoyl-acetylcholinesterase (AChE) were suggested from a wide range of IC50 values, in contrast with a limited range of AC50 values (concentration giving 50% of maximal activation) at a peripheral activatory site. Association of choline esters containing a long acyl chain (C7-C12) with the hydrophobic zone in the active site could be deduced from a linear relationship between the size of the acyl group and the inhibitory potency in either spontaneous decarbamoylation or acetylthiocholine hydrolysis. Direct support for laurylcholine binding to the active site might come from the competitive inhibition (Ki 33 microM) of choline-catalysed decarbamoylation by laurylcholine. Moreover, its inhibitory action was greater for monomethylcarbamoyl-AChE than for dimethylcarbamoyl-AChE, where there is a greater steric hindrance at the active centre. In further support, the inhibition of pentanoylthiocholine-induced decarbamoylation by laurylcholine was suggested to be due to laurylcholine binding to a central site rather than a peripheral site, similar to the inhibition of spontaneous decarbamoylation by laurylcholine. Supportive data for acetylcholine binding to the active site are provided by the results that acetylcholine is a competitive inhibitor (Ki 7.6 mM) of choline-catalysed decarbamoylation, and its inhibitory action was greater for monomethylcarbamoyl-AChE than for dimethylcarbamoyl-AChE. Meanwhile, choline esters with an acyl group of an intermediate size (C4-C6), more subject to steric exclusion at the active centre, and less associable with the hydrophobic zone, appear to bind preferentially to a peripheral activity site. Thus the multiple effects of choline esters may be governed by hydrophobicity and/or a steric effect exerted by the acyl moiety at the binding sites. PMID:8053896

  5. In Silico Pharmacophore Model for Tabun-Inhibites Acetylcholinesterase Reactivators: A study of Their Stereoelectronic Properties

    DTIC Science & Technology

    2009-01-01

    Army Institute of Research, 503 Robert Grant AVenue, SilVer Spring, Maryland 20910, and Center for AdVanced Studies and Department of Toxicology ...Department of Toxicology , Faculty of Military Health Sciences. Chem. Res. Toxicol. XXXX, , 000 A 10.1021/tx900192u  XXXX American Chemical Society...GA-inhibited AChE derived from theoretical stereoelectronic and three-dimensional (3D) quantitative struc- ture-activity relationship ( QSAR

  6. Effects of chlorophenoxy herbicides and their main transformation products on DNA damage and acetylcholinesterase activity.

    PubMed

    Benfeito, Sofia; Silva, Tiago; Garrido, Jorge; Andrade, Paula B; Sottomayor, M J; Borges, Fernanda; Garrido, E Manuela

    2014-01-01

    Persistent pesticide transformation products (TPs) are increasingly being detected among different environmental compartments, including groundwater and surface water. However, there is no sufficient experimental data on their toxicological potential to assess the risk associated with TPs, even if their occurrence is known. In this study, the interaction of chlorophenoxy herbicides (MCPA, mecoprop, 2,4-D and dichlorprop) and their main transformation products with calf thymus DNA by UV-visible absorption spectroscopy has been assessed. Additionally, the toxicity of the chlorophenoxy herbicides and TPs was also assessed evaluating the inhibition of acetylcholinesterase activity. On the basis of the results found, it seems that AChE is not the main target of chlorophenoxy herbicides and their TPs. However, the results found showed that the transformation products displayed a higher inhibitory activity when compared with the parent herbicides. The results obtained in the DNA interaction studies showed, in general, a slight effect on the stability of the double helix. However, the data found for 4-chloro-2-methyl-6-nitrophenol suggest that this transformation product can interact with DNA through a noncovalent mode.

  7. Effects of Chlorophenoxy Herbicides and Their Main Transformation Products on DNA Damage and Acetylcholinesterase Activity

    PubMed Central

    Benfeito, Sofia; Silva, Tiago; Garrido, Jorge; Andrade, Paula B.; Sottomayor, M. J.; Borges, Fernanda; Garrido, E. Manuela

    2014-01-01

    Persistent pesticide transformation products (TPs) are increasingly being detected among different environmental compartments, including groundwater and surface water. However, there is no sufficient experimental data on their toxicological potential to assess the risk associated with TPs, even if their occurrence is known. In this study, the interaction of chlorophenoxy herbicides (MCPA, mecoprop, 2,4-D and dichlorprop) and their main transformation products with calf thymus DNA by UV-visible absorption spectroscopy has been assessed. Additionally, the toxicity of the chlorophenoxy herbicides and TPs was also assessed evaluating the inhibition of acetylcholinesterase activity. On the basis of the results found, it seems that AChE is not the main target of chlorophenoxy herbicides and their TPs. However, the results found showed that the transformation products displayed a higher inhibitory activity when compared with the parent herbicides. The results obtained in the DNA interaction studies showed, in general, a slight effect on the stability of the double helix. However, the data found for 4-chloro-2-methyl-6-nitrophenol suggest that this transformation product can interact with DNA through a noncovalent mode. PMID:24795892

  8. Inactivation of JAK2/STAT3 Signaling Axis and Downregulation of M1 mAChR Cause Cognitive Impairment in klotho Mutant Mice, a Genetic Model of Aging

    PubMed Central

    Park, Seok-Joo; Shin, Eun-Joo; Min, Sun Seek; An, Jihua; Li, Zhengyi; Hee Chung, Yoon; Hoon Jeong, Ji; Bach, Jae-Hyung; Nah, Seung-Yeol; Kim, Won-Ki; Jang, Choon-Gon; Kim, Yong-Sun; Nabeshima, Yo-ichi; Nabeshima, Toshitaka; Kim, Hyoung-Chun

    2013-01-01

    We previously reported cognitive dysfunction in klotho mutant mice. In the present study, we further examined novel mechanisms involved in cognitive impairment in these mice. Significantly decreased janus kinase 2 (JAK2) and signal transducer and activator of transcription3 (STAT3) phosphorylation were observed in the hippocampus of klotho mutant mice. A selective decrease in protein expression and binding density of the M1 muscarinic cholinergic receptor (M1 mAChR) was observed in these mice. Cholinergic parameters (ie, acetylcholine (ACh), choline acetyltransferase (ChAT), and acetylcholinesterase (AChE)) and NMDAR-dependent long-term potentiation (LTP) were significantly impaired in klotho mutant mice. McN-A-343 (McN), an M1 mAChR agonist, significantly attenuated these impairments. AG490 (AG), a JAK2 inhibitor, counteracted the attenuating effects of McN, although AG did not significantly alter the McN-induced effect on AChE. Furthermore, AG significantly inhibited the attenuating effects of McN on decreased NMDAR-dependent LTP, protein kinase C βII, p-ERK, p-CREB, BDNF, and p-JAK2/p-STAT3-expression in klotho mutant mice. In addition, k252a, a BDNF receptor tyrosine kinase B (TrkB) inhibitor, significantly counteracted McN effects on decreased ChAT, ACh, and M1 mAChR and p-JAK2/p-STAT3 expression. McN-induced effects on cognitive impairment in klotho mutant mice were consistently counteracted by either AG or k252a. Our results suggest that inactivation of the JAK2/STAT3 signaling axis and M1 mAChR downregulation play a critical role in cognitive impairment observed in klotho mutant mice. PMID:23389690

  9. Pyridine sulfonamide as a small key organic molecule for the potential treatment of type-II diabetes mellitus and Alzheimer's disease: In vitro studies against yeast α-glucosidase, acetylcholinesterase and butyrylcholinesterase.

    PubMed

    Riaz, Sadaf; Khan, Islam Ullah; Bajda, Marek; Ashraf, Muhammad; Qurat-Ul-Ain; Shaukat, Ayesha; Rehman, Tanzeel Ur; Mutahir, Sadaf; Hussain, Sajjad; Mustafa, Ghulam; Yar, Muhammad

    2015-12-01

    This paper presents the efficient high yield synthesis of novel pyridine 2,4,6-tricarbohydrazide derivatives (4a-4i) along with their α-glucosidase, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibition activities. The enzymes inhibition results showed the potential of synthesized compounds in controlling both type-II diabetes mellitus and Alzheimer's disease. In vitro biological investigations revealed that most of compounds were more active against yeast α-glucosidase than the reference compound acarbose (IC50 38.25±0.12μM). Among the tested series the compound 4c bearing 4-flouro benzyl group was noted to be the most active (IC50 25.6±0.2μM) against α-glucosidase, and it displayed weak inhibition activities against AChE and BChE. Compound 4a exhibited the most desired results against all three enzymes, as it was significantly active against all the three enzymes; α-glucosidase (IC50 32.2±0.3μM), AChE (IC50 50.2±0.8μM) and BChE (IC50 43.8±0.8μM). Due to the most favorable activity of 4a against the tested enzymes, for molecular modeling studies this compound was selected to investigate its pattern of interaction with α-glucosidase and AChE targets. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Quaternary and tertiary aldoxime antidotes for organophosphate exposure in a zebrafish model system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, Hayden R.; Radić, Zoran; Taylor, Palmer

    The zebrafish is rapidly becoming an important model system for screening of new therapeutics. Here we evaluated the zebrafish as a potential pharmacological model for screening novel oxime antidotes to organophosphate (OP)-inhibited acetylcholinesterase (AChE). The k{sub i} values determined for chlorpyrifos oxon (CPO) and dichlorvos (DDVP) showed that CPO was a more potent inhibitor of both human and zebrafish AChE, but overall zebrafish AChE was less sensitive to OP inhibition. In contrast, aldoxime antidotes, the quaternary ammonium 2-PAM and tertiary amine RS-194B, showed generally similar overall reactivation kinetics, k{sub r}, in both zebrafish and human AChE. However, differences between themore » K{sub ox} and k{sub 2} constants suggest that zebrafish AChE associates more tightly with oximes, but has a slower maximal reactivation rate than human AChE. Homology modeling suggests that these kinetic differences result from divergences in the amino acids lining the entrance to the active site gorge. Although 2-PAM had the more favorable in vitro reactivation kinetics, RS-194B was more effective antidote in vivo. In intact zebrafish embryos, antidotal treatment with RS-194B rescued embryos from OP toxicity, whereas 2-PAM had no effect. Dechorionation of the embryos prior to antidotal treatment allowed both 2-PAM and RS-194B to rescue zebrafish embryos from OP toxicity. Interestingly, RS-194B and 2-PAM alone increased cholinergic motor activity in dechorionated embryos possibly due to the reversible inhibition kinetics, K{sub i} and αK{sub i}, of the oximes. Together these results demonstrate that the zebrafish at various developmental stages provides an excellent model for investigating membrane penetrant antidotes to OP exposure. - Highlights: • Zebrafish AChE shares significant structural similarities with human AChE. • OP-inhibited zebrafish and human AChE exhibit similar reactivation kinetics. • The zebrafish chorion is permeable to BBB penetrant

  11. Co-exposure to pyridostigmine bromide, DEET, and/or permethrin causes sensorimotor deficit and alterations in brain acetylcholinesterase activity.

    PubMed

    Abou-Donia, Mohamed B; Dechkovskaia, Anjelika M; Goldstein, Larry B; Abdel-Rahman, Ali; Bullman, Sarah L; Khan, Wasiuddin A

    2004-02-01

    Military personnel deployed in the Persian Gulf War (PGW) were exposed to a combination of chemicals, including pyridostigmine bromide (PB), DEET, and permethrin. We investigated the dose-response effects of these chemicals, alone or in combination, on the sensorimotor performance and cholinergic system of male Sprague-Dawley rats. Animals were treated with a daily dermal dose of DEET and/or permethrin for 60 days and/or PB (gavage) during the last 15 days. Neurobehavioral performance was assessed on day 60 following the beginning of the treatment with DEET and permethrin. The rats were sacrificed 24 h after the last treatment for biochemical evaluations. PB alone, or in combination with DEET, or DEET and permethrin resulted in deficits in beam-walk score and longer beam-walk times compared to controls. PB alone, or in combination with DEET, permethrin, or DEET and permethrin caused impairment in incline plane performance and forepaw grip strength. PB alone at all doses slightly inhibited plasma butyrylcholinesterase activity, whereas combination of PB with DEET or permethrin increased its activity. Brainstem acetylcholinesterase (AChE) activity significantly increased following treatment with combinations of either DEET or permethrin at all doses, whereas the cerebellum showed a significant increase in AChE activity following treatment with a combination of PB/DEET/permethrin. Co-exposure to PB, DEET, and permethrin resulted in significant inhibition in AChE in midbrain. PB alone or in combination with DEET and permethrin at all doses increased ligand binding for m2 muscarinic acetylcholine receptor in the cortex. In addition, PB and DEET together or a combination of PB, DEET, and permethrin significantly increased ligand binding for nicotinic acetylcholine receptor. These results suggest that exposure to various doses of PB, alone and in combination with DEET and permethrin, leads to sensorimotor deficits and differential alterations of the cholinergic system in

  12. Novel multitarget-directed ligands (MTDLs) with acetylcholinesterase (AChE) inhibitory and serotonergic subtype 4 receptor (5-HT4R) agonist activities as potential agents against Alzheimer's disease: the design of donecopride.

    PubMed

    Rochais, Christophe; Lecoutey, Cédric; Gaven, Florence; Giannoni, Patrizia; Hamidouche, Katia; Hedou, Damien; Dubost, Emmanuelle; Genest, David; Yahiaoui, Samir; Freret, Thomas; Bouet, Valentine; Dauphin, François; Sopkova de Oliveira Santos, Jana; Ballandonne, Céline; Corvaisier, Sophie; Malzert-Fréon, Aurélie; Legay, Remi; Boulouard, Michel; Claeysen, Sylvie; Dallemagne, Patrick

    2015-04-09

    In this work, we describe the synthesis and in vitro evaluation of a novel series of multitarget-directed ligands (MTDL) displaying both nanomolar dual-binding site (DBS) acetylcholinesterase inhibitory effects and partial 5-HT4R agonist activity, among which donecopride was selected for further in vivo evaluations in mice. The latter displayed procognitive and antiamnesic effects and enhanced sAPPα release, accounting for a potential symptomatic and disease-modifying therapeutic benefit in the treatment of Alzheimer's disease.

  13. Antioxidant activity, acetylcholinesterase inhibitory potential and phytochemical analysis of Sarcocephalus latifolius Sm. bark used in traditional medicine in Sudan.

    PubMed

    Osama, Alsiddig; Awadelkarim, Sufyan; Ali, Amna

    2017-05-18

    Sarcocephalus latifolius is used as a traditional medicine for curing many diseases in Sudan. The main objective of the current study was to determine the antioxidant activity and acetylcholinesterase inhibition (AChEI) of S. latifolius, and to estimate its total phenolic and flavonoid contents. Antioxidant activity of the tested plant extracts was carried out by determining their ability to scavenge the 2,2-diphenyl-1-picryl hydrazyl (DPPH) free radical. On the other hand, AChE inhibitory activity was determined spectrophotometrically using the Ellman's colorimetric method. The levels of total phenols and flavonoids were determined quantitatively using spectrophotometric methods. MTT assay was consumed to assess the cytotoxic effect of the most active fractions. These fractions were subjected to phytochemical analysis using GC-MS techniques to determine thier chemical composition. Hexane and chloroform fractions exhibited the highest antioxidant activity with IC 50 values of (0.098 ± 0.08 and 0.099 ± 0.029 mg/ml) respectively. Standard propyl gallate had the lowest IC 50 value of 0.0414 ± 0.11 mg/ml. The ethanolic crude extract showed low AChEI activity with 40.2 ± 0.10%. High concentrations of phenolic and flavonoid contents were observed. GCMS revealed the presence of well-known antioxidants compounds e.g. Vitamin E and caffeic acid. The ethanolic extract of bark of S. latifolius showed potent antioxidant effects and low AChEI activity, high phenolic and flavonoid contents and presence of pharmacologically active compounds. These findings explain its wide usages in traditional medicine.

  14. Binding of 2-[18F]fluoro-CP-118,954 to mouse acetylcholinesterase: microPET and ex vivo Cerenkov luminescence imaging studies.

    PubMed

    Kim, Dong Hyun; Choe, Yearn Seong; Choi, Joon Young; Lee, Kyung-Han; Kim, Byung-Tae

    2011-05-01

    Acetylcholinesterase (AChE) has been an important cholinergic factor for the diagnosis of Alzheimer's disease (AD), because of reduced AChE activity in the postmortem brains of AD patients. We previously developed 5,7-dihydro-3-(2-(1-(2-[(18)F]fluorobenzyl)-4-piperidinyl)ethyl)-6H-pyrrolo(3,2,f)-1,2-benzisoxazol-6-one (2-[(18)F]fluoro-CP-118,954) for in vivo studies of AChE in mice. In the present study, we automated the synthesis of 2-[(18)F]fluoro-CP-118,954 for the routine use and evaluated the radioligand by microPET and ex vivo Cerenkov luminescence imaging of mouse AChE. 4-[(18)F]Fluoro-donepezil, another AChE inhibitor, was used for comparison. Automated syntheses of 2-[(18)F]fluoro-CP-118,954 and 4-[(18)F]fluoro-donepezil resulted in high radiochemical yields (25-33% and 30-40%) and high specific activity (27.1-35.4 and 29.7-37.3 GBq/μmol). Brain microPET images of two ICR mice injected with 2-[(18)F]fluoro-CP-118,954 demonstrated high uptake in the striatum (ROI analysis: 5.1 %ID/g for the first 30 min and 4.1 %ID/g for another 30 min), and a blocking study with injection of CP-118,954 into one of the mice at 30 min after radioligand injection led to complete blocking of radioligand uptake in the striatum (ROI analysis: 1.9 %ID/g), whereas (18)F-labeled donepezil did not show specific uptake in the striatum. In another set of experiments, the brain tissues (striatum, parietal cortex, frontal cortex and cerebellum) were excised after brain microPET/CT imaging of mouse injected with 2-[(18)F]fluoro-CP-118,954, and a high striatal uptake was also detected in ex vivo optical and microPET images (ROI analysis: 1.4 %ID/g) and in γ-counting data (2.1 %ID/g at 50 min post-injection) of the brain tissues. Taken together, these results demonstrated that 2-[(18)F]fluoro-CP-118,954 specifically binds to AChE in mouse brains. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Changes in acetylcholinesterase, Na+,K+-ATPase, and Mg2+-ATPase activities in the frontal cortex and the hippocampus of hyper- and hypothyroid adult rats.

    PubMed

    Carageorgiou, Haris; Pantos, Constantinos; Zarros, Apostolos; Stolakis, Vasileios; Mourouzis, Iordanis; Cokkinos, Dennis; Tsakiris, Stylianos

    2007-08-01

    The thyroid hormones (THs) are crucial determinants of normal development and metabolism, especially in the central nervous system. The metabolic rate is known to increase in hyperthyroidism and decrease in hypothyroidism. The aim of this work was to investigate how changes in metabolism induced by THs could affect the activities of acetylcholinesterase (AChE), (Na+,K+)- and Mg2+-adenosinetriphosphatase (ATPase) in the frontal cortex and the hippocampus of adult rats. Hyperthyroidism was induced by subcutaneous administration of thyroxine (25 microg/100 g body weight) once daily for 14 days, and hypothyroidism was induced by oral administration of propylthiouracil (0.05%) for 21 days. All enzyme activities were evaluated spectrophotometrically in the homogenated brain regions of 10 three-animal pools. A region-specific behavior was observed concerning the examined enzyme activities in hyper- and hypothyroidism. In hyperthyroidism, AChE activity was significantly increased only in the hippocampus (+22%), whereas Na+,K+-ATPase activity was significantly decreased in the hyperthyroid rat hippocampus (-47%) and remained unchanged in the frontal cortex. In hypothyroidism, AChE activity was significantly decreased in the frontal cortex (-23%) and increased in the hippocampus (+21%). Na+,K+-ATPase activity was significantly decreased in both the frontal cortex (-35%) and the hippocampus (-43%) of hypothyroid rats. Mg2+-ATPase remained unchanged in the regions of both hyper- and hypothyroid rat brains. Our data revealed that THs affect the examined adult rat brain parameters in a region- and state-specific way. The TH-reduced Na+,K+-ATPase activity may increase the synaptic acetylcholine release and, thus, modulate AChE activity. Moreover, the above TH-induced changes may affect the monoamine neurotransmitter systems in the examined brain regions.

  16. Neurotoxic responses in brain tissues of rainbow trout exposed to imidacloprid pesticide: Assessment of 8-hydroxy-2-deoxyguanosine activity, oxidative stress and acetylcholinesterase activity.

    PubMed

    Topal, Ahmet; Alak, Gonca; Ozkaraca, Mustafa; Yeltekin, Aslı Cilingir; Comaklı, Selim; Acıl, Gurdal; Kokturk, Mine; Atamanalp, Muhammed

    2017-05-01

    The extensive use of imidacloprid, a neonicotinoid insecticide, causes undesirable toxicity in non-targeted organisms including fish in aquatic environments. We investigated neurotoxic responses by observing 8-hydroxy-2-deoxyguanosine (8-OHdG) activity, oxidative stress and acetylcholinesterase (AChE) activity in rainbow trout brain tissue after 21 days of imidacloprid exposure at levels of (5 mg/L, 10 mg/L, 20 mg/L). The obtained results indicated that 8-OHdG activity did not change in fish exposed to 5 mg/L of imidacloprid, but 10 mg/L and 20 mg/L of imidacloprid significantly increased 8-OHdG activity compared to the control (p < 0.05). An immunopositiv reaction to 8-OHdG was detected in brain tissues. The brain tissues indicated a significant increase in antioxidant enzyme activities (superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx)) compared to the control and there was a significant increase in malondialdehyde (MDA) levels (p < 0.05). High concentrations of imidacloprid caused a significant decrease in AChE enzyme activity (p < 0.05). These results suggested that imidacloprid can be neurotoxic to fish by promoting AChE inhibition, an increase in 8-OHdG activity and changes in oxidative stress parameters. Therefore, these data may reflect one of the molecular pathways that play a role in imidacloprid toxicity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Acetylcholinesterase inhibitor treatment alleviated cognitive impairment caused by delayed encephalopathy due to carbon monoxide poisoning: Two case reports and a review of the literature.

    PubMed

    Yanagiha, Kumi; Ishii, Kazuhiro; Tamaoka, Akira

    2017-02-01

    Delayed encephalopathy due to carbon monoxide (CO) poisoning can even occur in patients with mild symptoms of acute CO poisoning. Some cases taking conventional hyperbaric oxygen (HBO) therapy or steroid-pulse therapy may be insufficient, and AchEI may be effective. We report two cases of delayed encephalopathy after acute CO poisoning involving two women aged 69 (Case 1) and 60 years (Case 2) whose cognitive function improved with acetylcholinesterase inhibitor (AchEI) treatment. Delayed encephalopathy occurred 25 and 35 days after acute CO poisoning in Case 1 and Case 2, respectively. Both patients demonstrated cognitive impairment, apathy, and hypokinesia on admission. Although hyperbaric oxygen therapy did not yield any significant improvements, cognitive dysfunction improved substantially. This was evidenced by an improved Mini-Mental State Examination score ffom 9 to 28 points in Case 1 and an improved Hasegawa's dementia rating scale score from 4 to 25 points in Case 2 after administration of an AchEI. In Case 1, we administered galantamine hydrobromide, which was related with improved white matter lesions initially detected on brain magnetic resonance imaging. However, in Case 2 white matter lesions persisted despite AchEI treatment. AchEI treatment may result in improved cognitive and frontal lobe function by increasing low acetylcholine concentrations in the hippocampus and frontal lobe caused by decreased nicotinic acetylcholine receptor levels in delayed encephalopathy after CO poisoning. Physicians should consider AchEIs for patients demonstrating delayed encephalopathy due to CO poisoning.

  18. A highly stable minimally processed plant-derived recombinant acetylcholinesterase for nerve agent detection in adverse conditions

    PubMed Central

    Rosenberg, Yvonne J.; Walker, Jeremy; Jiang, Xiaoming; Donahue, Scott; Robosky, Jason; Sack, Markus; Lees, Jonathan; Urban, Lori

    2015-01-01

    Although recent innovations in transient plant systems have enabled gram quantities of proteins in 1–2 weeks, very few have been translated into applications due to technical challenges and high downstream processing costs. Here we report high-level production, using a Nicotiana benthamiana/p19 system, of an engineered recombinant human acetylcholinesterase (rAChE) that is highly stable in a minimally processed leaf extract. Lyophylized clarified extracts withstand prolonged storage at 70 °C and, upon reconstitution, can be used in several devices to detect organophosphate (OP) nerve agents and pesticides on surfaces ranging from 0 °C to 50 °C. The recent use of sarin in Syria highlights the urgent need for nerve agent detection and countermeasures necessary for preparedness and emergency responses. Bypassing cumbersome and expensive downstream processes has enabled us to fully exploit the speed, low cost and scalability of transient production systems resulting in the first successful implementation of plant-produced rAChE into a commercial biotechnology product. PMID:26268538

  19. A highly stable minimally processed plant-derived recombinant acetylcholinesterase for nerve agent detection in adverse conditions.

    PubMed

    Rosenberg, Yvonne J; Walker, Jeremy; Jiang, Xiaoming; Donahue, Scott; Robosky, Jason; Sack, Markus; Lees, Jonathan; Urban, Lori

    2015-08-13

    Although recent innovations in transient plant systems have enabled gram quantities of proteins in 1-2 weeks, very few have been translated into applications due to technical challenges and high downstream processing costs. Here we report high-level production, using a Nicotiana benthamiana/p19 system, of an engineered recombinant human acetylcholinesterase (rAChE) that is highly stable in a minimally processed leaf extract. Lyophylized clarified extracts withstand prolonged storage at 70 °C and, upon reconstitution, can be used in several devices to detect organophosphate (OP) nerve agents and pesticides on surfaces ranging from 0 °C to 50 °C. The recent use of sarin in Syria highlights the urgent need for nerve agent detection and countermeasures necessary for preparedness and emergency responses. Bypassing cumbersome and expensive downstream processes has enabled us to fully exploit the speed, low cost and scalability of transient production systems resulting in the first successful implementation of plant-produced rAChE into a commercial biotechnology product.

  20. Oxidative stress in organophosphate poisoning: role of standard antidotal therapy.

    PubMed

    Vanova, Nela; Pejchal, Jaroslav; Herman, David; Dlabkova, Alzbeta; Jun, Daniel

    2018-08-01

    Despite the main mechanism of organophosphate (OP) toxicity through inhibition of acetylcholinesterase (AChE) being well known over the years, some chronic adverse health effects indicate the involvement of additional pathways. Oxidative stress is among the most intensively studied. Overstimulation of cholinergic and glutamatergic nervous system is followed by intensified generation of reactive species and oxidative damage in many tissues. In this review, the role of oxidative stress in pathophysiology of OP poisoning and the influence of commonly used medical interventions on its levels are discussed. Current standardized therapy of OP intoxications comprises live-saving administration of the anticholinergic drug atropine accompanied by oxime AChE reactivator and diazepam. The capability of these antidotes to ameliorate OP-induced oxidative stress varies between both therapeutic groups and individual medications within the drug class. Regarding oxidative stress, atropine does not seem to have a significant effect on oxidative stress parameters in OP poisoning. In a case of AChE reactivators, pro-oxidative and antioxidative properties could be found. It is assumed that the ability of oximes to trigger oxidative stress is rather associated with their chemical structure than reactivation efficacy. The data indicating the potency of diazepam in preventing OP-induced oxidative stress are not available. Based on current knowledge on the mechanism of OP-mediated oxidative stress, alternative approaches (including antioxidants or multifunctional drugs) in therapy of OP poisoning are under consideration. Copyright © 2018 John Wiley & Sons, Ltd.

  1. The preparation, in vitro screening and molecular docking of symmetrical bisquaternary cholinesterase inhibitors containing a but-(2E)-en-1,4-diyl connecting linkage.

    PubMed

    Musilek, Kamil; Pavlikova, Ruzena; Marek, Jan; Komloova, Marketa; Holas, Ondrej; Hrabinova, Martina; Pohanka, Miroslav; Dohnal, Vlastimil; Dolezal, Martin; Gunn-Moore, Frank; Kuca, Kamil

    2011-04-01

    Carbamate inhibitors (e.g. pyridostigmine bromide) are used as a pre-treatment for the prevention of organophosphorus poisoning. They work by blocking the native function of acetylcholinesterases (AChE) and thus protect AChE against irreversible inhibition by organophosphorus compounds. However, carbamate inhibitors are known for their many undesirable side effects related to the carbamylation of AChE. In this paper, we describe 17 novel bisquaternary compounds and have analysed their effect on AChE inhibition. The newly prepared compounds were evaluated in vitro using both human erythrocyte AChE and human plasmatic butyrylcholinesterase. Their inhibitory ability was expressed as the half maximal inhibitory concentration (IC₅₀) and then compared to the standard carbamate drugs and two AChE reactivators. One of these novel compounds showed promising AChE inhibition in vitro (nM range) and was better than the currently used standards. Additionally, a kinetic assay confirmed the non-competitive inhibition of hAChE by this novel compound. Consequently, the docking results confirmed the apparent π-π or π-cationic interactions with the key amino acid residues of hAChE and the binding of the chosen compound at the enzyme catalytic site.

  2. In situ monitoring of myenteric neuron activity using acetylcholinesterase-modified AlGaN/GaN solution-gate field-effect transistors.

    PubMed

    Müntze, Gesche Mareike; Pouokam, Ervice; Steidle, Julia; Schäfer, Wladimir; Sasse, Alexander; Röth, Kai; Diener, Martin; Eickhoff, Martin

    2016-03-15

    The response characteristics of acetylcholinesterase-modified AlGaN/GaN solution-gate field-effect transistors (AcFETs) are quantitatively analyzed by means of a kinetic model. The characterization shows that the covalent enzyme immobilization process yields reproducible AcFET characteristics with a Michaelis constant KM of (122 ± 4) μM for the immobilized enzyme layer. The increase of KM by a factor of 2.4 during the first four measurement cycles is attributed to partial denaturation of the enzyme. The AcFETs were used to record the release of acetylcholine (ACh) by neuronal tissue cultivated on the gate area upon stimulation by rising the extracellular K(+) concentration. The neuronal tissue constituted of isolated myenteric neurons from four to 12 days old Wistar rats, or sections from the muscularis propria containing the myenteric plexus from adult rats. For both cases the AcFET response was demonstrated to be related to the activity of the immobilized acetylcholinesterase using the reversible acetylcholinesterase blocker donepezil. A concentration response curve of this blocking agent revealed a half maximal inhibitory concentration of 40 nM which is comparable to values measured by complementary in vitro methods. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Functional characterisation of a cyst nematode acetylcholinesterase gene using Caenorhabditis elegans as a heterologous system.

    PubMed

    Costa, Joana C; Lilley, Catherine J; Atkinson, Howard J; Urwin, Peter E

    2009-06-01

    Migration of plant-parasitic nematode infective larval stages through soil and invasion of roots requires perception and integration of sensory cues culminating in particular responses that lead to root penetration and parasite establishment. Components of the chemoreceptive neuronal circuitry involved in these responses are targets for control measures aimed at preventing infection. Here we report, to our knowledge, the first isolation of cyst nematode ace-2 genes encoding acetylcholinesterase (AChE). The ace-2 genes from Globodera pallida (Gp-ace-2) and Heterodera glycines (Hg-ace-2) show homology to ace-2 of Caenorhabditis elegans (Ce-ace-2). Gp-ace-2 is expressed most highly in the infective J2 stage with lowest expression in the early parasitic stages. Expression and functional analysis of the Globodera gene were carried out using the free-living nematode C. elegans in order to overcome the refractory nature of the obligate parasite G. pallida to many biological studies. Caenorhabditis elegans transformed with a GFP reporter construct under the control of the Gp-ace-2 promoter exhibited specific and restricted GFP expression in neuronal cells in the head ganglia. Gp-ACE-2 protein can functionally complement its C. elegans homologue. A chimeric construct containing the Ce-ace-2 promoter region and the Gp-ace-2 coding region and 3' untranslated region was able to restore a normal phenotype to the uncoordinated C. elegans double mutant ace-1;ace-2. This study demonstrates conservation of AChE function and expression between free-living and plant-parasitic nematode species, and highlights the utility of C. elegans as a heterologous system to study neuronal aspects of plant-parasitic nematode biology.

  4. Effects of Acetylcholinesterase Inhibitors on Nutritional Status in Elderly Patients with Dementia: A 6-month Follow-up Study.

    PubMed

    Soysal, P; Isik, A T

    2016-04-01

    Nutritional status is one of the factors that affects disease progression, morbidity and mortality in elderly patients with dementia. The present study aimed to evaluate the effect of acetylcholinesterase inhibitor (AchEI) therapy on nutritional status and food intake in the elderly. Newly diagnosed patients with dementia, who underwent comprehensive geriatric assessment (CGA) and were followed at regular intervals, were retrospectively evaluated. A total of 116 patients, who began to receive AchEI therapy and completed 6-month follow-up period under this treatment, were enrolled in the study. Socio-demographic characteristics and data on comorbidity, polypharmacy, cognitive function, depression, activities of daily living and nutritional status (weight, Body Mass Index (BMI), Mini Nutritional Assessment (MNA)-Short Form) were recorded. The mean age of the patients was 78.0±8.9 years. There was no significant difference between baseline and 6-month BMI, weight and MNA scores of dementia patients who received AchEI therapy (p>0.05). With regard to the relation between changes in BMI, weight and MNA on the 6th month versus baseline, and donepezil, rivastigmine and galantamine therapies, no difference was determined (p>0.05). However, no worsening in food intake was observed (kappa: 0.377). When the effects of each AchEI on food intake were compared, food intake in rivastigmine treated patients was not decreased as much as it was in galantamine or donepezil treated patients (p<0.05). AchEI therapy has no unfavorable effect on nutritional status or weight in elderly patients with different types of dementia, but it seems that food intake is better in those treated by rivastigmine patch.

  5. Unequal Efficacy of Pyridinium Oximes in Acute Organophosphate Poisoning

    PubMed Central

    Antonijevic, Biljana; Stojiljkovic, Milos P.

    2007-01-01

    The use of organophosphorus pesticides results in toxicity risk to non-target organisms. Organophosphorus compounds share a common mode of action, exerting their toxic effects primarily via acetylcholinesterase (AChE) inhibition. Consequently, acetylcholine accumulates in the synaptic clefts of muscles and nerves, leading to overstimulation of cholinergic receptors. Acute cholinergic crisis immediately follows exposure to organophosphate and includes signs and symptoms resulting from hyperstimulation of central and peripheral muscarinic and nicotinic receptors. The current view of the treatment of organophosphate poisoning includes three strategies, i.e. the use of an anticholinergic drug (e.g., atropine), cholinesterase-reactivating agents (e.g., oximes) and anticonvulsant drugs (e.g., benzodiazepines). Oximes, as a part of antidotal therapy, ensure the recovery of phosphylated enzymes via a process denoted as reactivation of inhibited AChE. However, both experimental results and clinical findings have demonstrated that different oximes are not equally effective against poisonings caused by structurally different organophosphorus compounds. Therefore, antidotal characteristics of conventionally used oximes can be evaluated regarding how close the certain substance is to the theoretical concept of the universal oxime. Pralidoxime (PAM-2), trimedoxime (TMB-4), obidoxime (LüH-6), HI-6 and HLö-7 have all been demonstrated to be very effective in experimental poisonings with sarin and VX. TMB-4 and LüH-6 may reactivate tabun-inhibited AChE, whereas HI-6 possesses the ability to reactivate the soman-inhibited enzyme. An oxime HLö-7 seems to be an efficient reactivator of AChE inhibited by any of the four organophosphorus warfare agents. According to the available literature, the oximes LüH-6 and TMB-4, although relatively toxic, are the most potent to induce reactivation of AChE inhibited by the majority of organophosphorus pesticides. Since there are no reports of

  6. Fumigant toxicity and acetylcholinesterase inhibitory activity of 4 Asteraceae plant essential oils and their constituents against Japanese termite (Reticulitermes speratus Kolbe).

    PubMed

    Seo, Seon-Mi; Kim, Junheon; Kang, Jaesoon; Koh, Sang-Hyun; Ahn, Young-Joon; Kang, Kyu-Suk; Park, Il-Kwon

    2014-07-01

    This study investigated the fumigant toxicity of 4 Asteraceae plant essential oils and their constituents against the Japanese termite Reticulitermes speratus Kolbe. Fumigant toxicity varied with plant essential oils or constituents, exposure time, and concentration. Among the tested essential oils, those from Chamaemelum nobile exhibited the strongest fumigant toxicity, followed by those from Santolina chamaecyparissus, Ormenis multicaulis, and Eriocephalus punctulatus at 2 days after treatment. In all, 15, 24, 19, and 9 compounds were identified in the essential oils from C. nobile, E. punctulatus, O. multicaulis, and S. chamaecyparissus, respectively, by using gas chromatography, gas chromatography-mass spectrometry, or open-column chromatography. The identified compounds were tested individually for their fumigant toxicity against Japanese termites. Among the test compounds, trans-pinocarveol, caryophyllene oxide, sabinene hydrate, and santolina alcohol showed strong fumigant toxicity against Japanese termites. Acetylcholinesterase (AChE) inhibition activity of the identified compounds from C. nobile, E. punctulatus, O. multicaulis, and S. chamaecyparissus essential oils were tested to determine the mode of their action. The IC50 values of (+)-α-pinene, (-)-limonene, (-)-α-pinene, β-pinene, and β-phellandrene against Japanese termite AChE were 0.03, 0.13, 0.41, 0.42, and 0.67mg/mL, respectively. Further studies are warranted to determine the potential of these essential oils and their constituents as fumigants for termite control. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Assisted inhibition effect of acetylcholinesterase with n-octylphosphonic acid and application in high sensitive detection of organophosphorous pesticides by matrix-assisted laser desorption/ionization Fourier transform mass spectrometry.

    PubMed

    Cai, Tingting; Zhang, Li; Wang, Haoyang; Zhang, Jing; Guo, Yinlong

    2011-11-14

    A simple and practical approach to improve the sensitivity of acetylcholinesterase (AChE)-inhibited method has been developed for monitoring organophosphorous (OP) pesticide residues. In this work, matrix-assisted laser desorption/ionization Fourier transform mass spectrometry (MALDI-FTMS) was used to detect AChE activity. Due to its good salt-tolerance and low sample consumption, MALDI-FTMS facilitates rapid and high-throughput screening of OP pesticides. Here we describe a new method to obtain low detection limits via employing external reagents. Among candidate compounds, n-octylphosphonic acid (n-Octyl-PA) displays assistant effect to enhance AChE inhibition by OP pesticides. In presence of n-Octyl-PA, the percentages of AChE inhibition still kept correlation with OP pesticide concentrations. The detection limits were improved significantly even by 10(2)-10(3) folds in comparison with conventional enzyme-inhibited methods. Different detection limits of OP pesticides with different toxicities were as low as 0.005 μg L(-1) for high toxic pesticides and 0.05 μg L(-1) for low toxic pesticides. Besides, the reliability of results from this method to analyze cowpea samples had been demonstrated by liquid-chromatography tandem mass spectrometry (LC-MS/MS). The application of this commercial available assistant agent shows great promise to detect OP compounds in complicated biological matrix and broadens the mind for high sensitivity detection of OP pesticide residues in agricultural products. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Differential effects of developmental hypo- and hyperthyroidism on acetylcholinesterase and butyrylcholinesterase activity in the spinal cord of developing postnatal rat pups.

    PubMed

    Koohestani, Faezeh; Brown, Chester M; Meisami, Esmail

    2012-11-01

    The plasticity and vulnerability of the rat spinal cord (SC) during postnatal development has been less investigated compared to other CNS structures. In this study, we determined the effects of thyroid hormonal (TH) deficiency and excess on postnatal growth and neurochemical development of the rat SC. The growth as well as the specific and total activity of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzymes of the SC were determined in hypo- and hyperthyroid rat pups at postnatal (P) days P1, P5, P10 and P21 (weaning), and were compared to age-matched untreated normal controls. AChE is a cholinergic synaptic enzyme while BuChE is a metabolic enzyme mainly found in glial cells and neurovascular cells. The SC is rich in somatic motor, autonomic cholinergic neurons and associated interneurons. Daily subcutaneous injection of pups with thyroxine (T4) and administration of antithyroid goitrogen propylthiouracil (PTU) in the litter's drinking water were used to induce hyper- and hypothyroidism, respectively. Enzyme assays were carried out spectrophotometrically at the above-mentioned ages, using SC homogenates with acetylthiocholine-chloride as the substrate, together with specific cholinesterase inhibitors, which specifically target AChE and BuChE. SC weights were significantly lower at P10 and P21 in hypothyroid pups but unchanged in the hyperthyroid ones. Hypothyroidism significantly reduced both specific and total AChE activity in SC of P10 and P21 rat pups, while having no effects on the BuChE activity, although total BuChE activity was decreased due to reduced total tissue weight. In contrast both specific and total AChE activities were markedly and significantly increased (>100%) in the P10 and P21 hyperthyroid pups. However, BuChE specific activity was unaffected by this treatment. The results indicate that hypothyroid condition significantly reduces, while hyperthyroidism increases, the postnatal development of cholinergic synapses, thereby

  9. Acotiamide hydrochloride (Z-338), a new selective acetylcholinesterase inhibitor, enhances gastric motility without prolonging QT interval in dogs: comparison with cisapride, itopride, and mosapride.

    PubMed

    Matsunaga, Yugo; Tanaka, Takao; Yoshinaga, Koji; Ueki, Shigeru; Hori, Yuko; Eta, Runa; Kawabata, Yoshihiro; Yoshii, Kazuyoshi; Yoshida, Kenji; Matsumura, Toshihiro; Furuta, Shigeru; Takei, Mineo; Tack, Jan; Itoh, Zen

    2011-03-01

    Acotiamide hydrochloride (acotiamide; N-[2-[bis(1-methylethyl) amino]ethyl]-2-[(2-hydroxy-4,5-dimethoxybenzoyl) amino] thiazole-4-carboxamide monohydrochloride trihydrate, Z-338) has been reported to improve meal-related symptoms of functional dyspepsia in clinical studies. Here, we examined the gastroprokinetic effects of acotiamide and its antiacetylcholinesterase activity as a possible mechanism of action in conscious dogs. Acotiamide increased postprandial gastric motor activity in conscious dogs with chronically implanted force transducers and, like itopride, mosapride, and cisapride, exhibited gastroprokinetic activity in these dogs. Furthermore, acotiamide improved clonidine-induced hypomotility and delayed gastric emptying. Acotiamide-enhanced postprandial gastroduodenal motility was suppressed completely by pretreatment with atropine, a muscarinic receptor antagonist. In in vitro studies, acotiamide enhanced acetylcholine- but not carbachol-induced contractile responses of guinea pig gastric antrum strips. Moreover, like itopride and neostigmine, acotiamide inhibited recombinant human and canine stomach-derived acetylcholinesterase (AChE) activity in vitro. The mode of the AChE inhibitory action of acotiamide was selective and reversible. Unlike itopride or mosapride, acotiamide showed no affinity for dopamine D(2) or serotonin 5-HT(4) receptors. With regard to cardiovascular side effects, unlike cisapride, acotiamide did not affect myocardial monophasic action potential duration, QT interval, or corrected QT interval in anesthetized dogs. These results suggest that acotiamide stimulates gastric motility in vivo by inhibiting AChE activity without affecting QT interval. Acotiamide thus represents a beneficial new drug for the treatment of functional dyspepsia involving gastric motility dysfunction, with differences from other prokinetic agents.

  10. Design and synthesis of some new carboxamide and propanamide derivatives bearing phenylpyridazine as a core ring and the investigation of their inhibitory potential on in-vitro acetylcholinesterase and butyrylcholinesterase.

    PubMed

    Kilic, Burcu; Gulcan, Hayrettin O; Aksakal, Fatma; Ercetin, Tugba; Oruklu, Nihan; Umit Bagriacik, E; Dogruer, Deniz S

    2018-05-08

    A series of new carboxamide and propanamide derivatives bearing phenylpyridazine as a core ring were designed, synthesized and evaluated for their ability to inhibit both cholinesterase enzymes. In addition, a series of carboxamide and propanamide derivatives bearing biphenyl instead of phenylpyridazine were also synthesized to examine the inhibitory effect of pyridazine moiety on both cholinesterase enzymes. The inhibitory activity results revealed that compounds 5b, 5f, 5h, 5j, 5l pyridazine-3-carboxamide derivative, exhibited selective acetylcholinesterase (AChE) inhibition with IC 50 values ranging from 0.11 to 2.69 µM. Among them, compound 5h was the most active one (IC 50  = 0.11 µM) without cytotoxic effect at its effective concentration against AChE. Additionally, pyridazine-3-carboxamide derivative 5d (IC 50 for AChE = 0.16 µM and IC 50 for BChE = 9.80 µM) and biphenyl-4-carboxamide derivative 6d (IC 50 for AChE = 0.59 µM and IC 50 for BChE = 1.48 µM) displayed dual cholinesterase inhibitory activity. Besides, active compounds were also tested for their ability to inhibit Aβ aggregation. Theoretical physicochemical properties of the compounds were calculated by using Molinspiration Program as well. The Lineweaver-Burk plot and docking study showed that compound 5 h targeted both the catalytic active site (CAS) and the peripheral anionic site (PAS) of AChE. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Effect of high fat diets on the NTPDase, 5'-nucleotidase and acetylcholinesterase activities in the central nervous system.

    PubMed

    Kaizer, Rosilene Rodrigues; Spanevello, Rosélia Maria; Costa, Eduarda; Morsch, Vera Maria; Schetinger, Maria Rosa Chitolina

    2018-02-01

    High fat diets are associated with the promotion of neurological diseases, such as Alzheimer disease (AD). This study aim investigate the high fat diets role to promotion of AD using as biochemistry parameter of status of central nervous system through the NTPDase, 5'-nucleotidase and acetylcholinesterase (AChE) activities in brain of young rats. The intake of high fat diets promotes an inhibition of purinergic and cholinergic functions, mainly in the long-term exposure to saturated and saturated/unsaturated diets. The AChE activity was decreased to supernatant and synaptosomes tissues preparations obtained from cerebral cortex in average of 20%, to both groups exposed to saturated and saturated/unsaturated diets, when compared to the control group. Very similar results were found in hippocampus and cerebellum brain areas. At same time, the adenine nucleotides hydrolysis in synaptosomes of cerebral cortex were decreased to ATP, ADP and AMP after the long-term exposure to high fat diets, as saturated and saturated/unsaturated. The inhibition of ATP hydrolysis was of 26% and 39% to saturated and saturated/unsaturated diets, respectively. ADP hydrolysis was decreased in 20% to saturated diet, and AMP hydrolysis was decreased in 25% and 33% to saturated and saturated/unsaturated diets, respectively, all in comparison to the control. Thus, we can suggest that the effects of high diets on the purinergic and cholinergic nervous system may contribute to accelerate the progressive memory loss, to decline in language and other cognitive disruptions, such as AD patients presents. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.

  12. AChE Inhibitors and NMDA Receptor Antagonists in Advanced Alzheimer's Disease.

    PubMed

    Glynn-Servedio, Brianna E; Ranola, Trisha Seys

    2017-09-01

    The objective of this article is to review the available evidence for duration of treatment with, and considerations for discontinuation of, acetylcholinesterase inhibitors and N-methyl-d-aspartate receptor antagonists in Alzheimer's disease. Literature searches of clinical trials and meta-analyses were conducted using PubMed with the search terms Alzheimer's, dementia, donepezil, galantamine, memantine, and rivastigmine. References from included trials were also used to find additional citations. 2,925 articles were initially identified. Twenty-one studies were included that looked at the use of acetylcholinesterase inhibitors and/or memantine in the treatment of moderate-to-severe Alzheimer's dementia. Several clinical trials have demonstrated small improvements in measures of cognition and activities of daily living with medications used to treat dementia. However, not all patients will benefit from treatment, and the impact of treatment on long-term outcomes, including institutionalization, remains unclear. This paper reviews the available data to support the use of acetylcholinesterase inhibitors and/or memantine in patients with advanced Alzheimer's disease, including those in nursing facilities, and reviews recommendations for consideration of therapy discontinuation. The evidence to support a specific time frame for discontinuation of Alzheimer's disease treatment is limited. It is reasonable to stop a medication if there is no noticeable benefit after the first three months of treatment or once a patient's dementia progresses to a point where there would be no meaningful benefit from continued therapy.

  13. Neuroinflammatory Pathobiology in Gulf War Illness: Characterization with an Animal Model

    DTIC Science & Technology

    2013-08-01

    GFAP,IL6,CCL2, TNF, L118, Lif, IL10 Hip, Ctx Ctx Ctx CORT=corticosterone;(200mg/L) for days 7-14 P8= pyridostigmine bromide ;P8(2.5 mg/kg/day, s.c...reversible acetylcholinesterase (AChE) inhibitor pyridostigmine bromide (PB), the insect repellent DEET and, potentially, the nerve agent, sarin. These...acetylcholinesterase (AChE) inhibitor, pyridostigmine bromide (PB), the insect repellent, DEET, and, potentially, acutely to the nerve agent sarin. Previously, we

  14. The efficacy of HI-6 DMS in a sustained infusion against percutaneous VX poisoning in the guinea-pig.

    PubMed

    Whitmore, C; Cook, A R; Mann, T; Price, M E; Emery, E; Roughley, N; Flint, D; Stubbs, S; Armstrong, S J; Rice, H; Tattersall, J E H

    2018-09-01

    Post-exposure nerve agent treatment usually includes administration of an oxime, which acts to restore function of the enzyme acetylcholinesterase (AChE). For immediate treatment of military personnel, this is usually administered with an autoinjector device, or devices containing the oxime such as pralidoxime, atropine and diazepam. In addition to the autoinjector, it is likely that personnel exposed to nerve agents, particularly by the percutaneous route, will require further treatment at medical facilities. As such, there is a need to understand the relationship between dose rate, plasma concentration, reactivation of AChE activity and efficacy, to provide supporting evidence for oxime infusions in nerve agent poisoning. Here, it has been demonstrated that intravenous infusion of HI-6, in combination with atropine, is efficacious against a percutaneous VX challenge in the conscious male Dunkin-Hartley guinea-pig. Inclusion of HI-6, in addition to atropine in the treatment, improved survival when compared to atropine alone. Additionally, erythrocyte AChE activity following poisoning was found to be dose dependent, with an increased dose rate of HI-6 (0.48mg/kg/min) resulting in increased AChE activity. As far as we are aware, this is the first study to correlate the pharmacokinetic profile of HI-6 with both its pharmacodynamic action of reactivating nerve agent inhibited AChE and with its efficacy against a persistent nerve agent exposure challenge in the same conscious animal. Copyright © 2017 Crown Copyright. Published by Elsevier B.V. All rights reserved.

  15. 6-Methyluracil derivatives as acetylcholinesterase inhibitors for treatment of Alzheimer's disease.

    PubMed

    Zueva, I V; Semenov, V E; Mukhamedyarov, M A; Lushchekina, S V; Kharlamova, A D; Petukhova, E O; Mikhailov, A S; Podyachev, S N; Saifina, L F; Petrov, K A; Minnekhanova, O A; Zobov, V V; Nikolsky, E E; Masson, P; Reznik, V S

    2015-01-01

    Alzheimer's disease (AD) is the major age-related progressive neurodegenerative disorder. The brain of AD patients suffers from loss of cholinergic neurons and decreased number of synapses [1]. AD is caused by an imbalance between Aβ production and clearance, resulting in increased amount of Aβ in various forms [2]. Reduction of Aβ production and increasing clearance of Aβ pathogenic forms are key targets in the development of potential therapeutic agents for AD treatment. Unfortunately, only nosotropic approaches for treatment of AD are currently effective in humans. These approaches mainly focus on the inhibition of brain acetyl-cholinesterase (AChE) to increase lifetime of cerebral acetylcholine [3]. It is important to emphasize that AChE itself promotes the formation of Aβ fibrils in vitro and Aβ plaques in the cerebral cortex of transgenic mouse models of AD [4]. This property of AChE results from interaction between Aβ and the peripheral anionic site of the enzyme (PAS) [5]. Dual binding site inhibitors of both catalytic active site (CAS) and PAS can simultaneously improve cognition and slow down the rate of Aβ-induced neural degeneration. Unfortunately, the assortment of AChE PAS ligands is still extremely limited. To study putative advantages of AChE non-charged PAS inhibitors based on 6-methyluracil derivatives for the treatment of Alzheimer's disease. In vitro studies. Concentration of drug producing 50% of AChE/BuChE activity inhibition (IC50) was measured using the method of Ellman et al. [6]. Toxicological experiments were performed using IP injection of the different compounds in mice. LD50, dose (in mg/kg) causing lethal effects in 50% of animals was taken as a criterion of toxicity [7]. The ability of compound to block in vitro AChE-induced Aβ1-40 aggregation was studied using a thioflavin T (ThT) fluorescent probe [8].In vivo biological assays. For in vivo blood-brain barrier permeation assay brains were removed 30 min after IP injection

  16. Inhibition of acetylcholinesterase activity in the central nervous system of the red swamp crayfish, Procambarus clarkii, by mercury, cadmium, and lead

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devi, M.; Fingerman, M.

    The toxicological, physiological and biochemical responses of aquatic crustaceans to heavy metals have been reported by several investigators. Levels of glucose, lactic acid, sodium, potassium, aspartate aminotransferase and alanine aminotransferase in the blood of the crab Scylla serrata increased, while glycogen levels in hepatopancreas and muscle decreased after a four-week exposure to mercuric chloride. In fiddler crab, Uca pugilator, enzyme activity was observed to decrease in the hepatopancreas but increased in abdominal muscle after 48 hr cadmium exposure. In the red swamp crayfish, Procambarus clarkii, exposed for 96 hr to cadmium, glutahione (GSH) level and GSH S-transferase activity deceased inmore » the midgut. In crayfish Astacus astacus exposed to sublethal concentrations of lead and cadmium, oxidative enzyme (succine dehydrogenase and NADPH-cytochrome P450 reductase) activities in gills and hepatopancrease decreased. Acetylcholinesterase (AChE) inhibition by organophosphates and organocarbamates in various crustaceans has bee reported. In vivo cadmium exposure caused increases in esterase activities, but mercury exposure decreases these activities in the hepatopancreas of the shrimp Callianassa tyrrhena. The freshwater crab, Barytelphusa guerini, exposed to 0.6 ppm cadmium showed reduced oxygen consumption throughout the experiment whereas AChE activity increased after 4 days but decreased after 15 days. The authors wanted to determine the effects of cadmium, lead and mercury on AChE activity in central nervous tissue of Procambarus clarkii. This enzyme has the potential for serving both as a biochemical indicator of toxic stress and a sensitive parameter for testing water for the presence of toxicants. These three biologically silent metals have, according to Schweinsberg and Karsa great toxicological significance to humans because their use is widespread. 14 refs., 4 figs.« less

  17. Integrated Lateral Flow Test Strip with Electrochemical Sensor for Quantification of Phosphorylated Cholinesterase: Biomarker of Exposure to Organophosphorus Agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Dan; Wang, Jun; Wang, Limin

    An integrated lateral flow test strip with electrochemical sensor (LFTSES) device with rapid, selective and sensitive response for quantification of exposure to organophosphorus (OP) pesticides and nerve agents has been developed. The principle of this approach is based on parallel measurements of post-exposure and baseline acetylcholinesterase (AChE) enzyme activity, where reactivation of the phosphorylated AChE is exploited to enable measurement of total amount of AChE (including inhibited and active) which is used as a baseline for calculation of AChE inhibition. Quantitative measurement of phosphorylated adduct (OP-AChE) was realized by subtracting the active AChE from the total amount of AChE. Themore » proposed LFTSES device integrates immunochromatographic test strip technology with electrochemical measurement using a disposable screen printed electrode which is located under the test zone. It shows linear response between AChE enzyme activity and enzyme concentration from 0.05 to 10 nM, with detection limit of 0.02 nM. Based on this reactivation approach, the LFTSES device has been successfully applied for in vitro red blood cells inhibition studies using chlorpyrifos oxon as a model OP agent. This approach not only eliminates the difficulty in screening of low-dose OP exposure because of individual variation of normal AChE values, but also avoids the problem in overlapping substrate specificity with cholinesterases and avoids potential interference from other electroactive species in biological samples. It is baseline free and thus provides a rapid, sensitive, selective and inexpensive tool for in-field and point-of-care assessment of exposures to OP pesticides and nerve agents.« less

  18. In Vitro and In Vivo Metabolism and Inhibitory Activities of Vasicine, a Potent Acetylcholinesterase and Butyrylcholinesterase Inhibitor

    PubMed Central

    Liu, Wei; Shi, Xiaoyuan; Yang, Yadi; Cheng, Xuemei; Liu, Qing; Han, Han; Yang, Baohua; He, Chunyong; Wang, Yongli; Jiang, Bo; Wang, Zhengtao; Wang, Changhong

    2015-01-01

    Vasicine (VAS), a potential natural cholinesterase inhibitor, exhibited promising anticholinesterase activity in preclinical models and has been in development for treatment of Alzheimer’s disease. This study systematically investigated the in vitro and in vivo metabolism of VAS in rat using ultra performance liquid chromatography combined with electrospray ionization quadrupole time-of-flight mass spectrometry. A total of 72 metabolites were found based on a detailed analysis of their 1H- NMR and 13C NMR data. Six key metabolites were isolated from rat urine and elucidated as vasicinone, vasicinol, vasicinolone, 1,2,3,9-tetrahydropyrrolo [2,1-b] quinazolin-3-yl hydrogen sulfate, 9-oxo-1,2,3,9-tetrahydropyrrolo [2,1-b] quinazolin-3-yl hydrogen sulfate, and 1,2,3,9-tetrahydropyrrolo [2,1-b] quinazolin-3-β-D-glucuronide. The metabolic pathway of VAS in vivo and in vitro mainly involved monohydroxylation, dihydroxylation, trihydroxylation, oxidation, desaturation, sulfation, and glucuronidation. The main metabolic soft spots in the chemical structure of VAS were the 3-hydroxyl group and the C-9 site. All 72 metabolites were found in the urine sample, and 15, 25, 45, 18, and 11 metabolites were identified from rat feces, plasma, bile, rat liver microsomes, and rat primary hepatocyte incubations, respectively. Results indicated that renal clearance was the major excretion pathway of VAS. The acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities of VAS and its main metabolites were also evaluated. The results indicated that although most metabolites maintained potential inhibitory activity against AChE and BChE, but weaker than that of VAS. VAS undergoes metabolic inactivation process in vivo in respect to cholinesterase inhibitory activity. PMID:25849329

  19. Template-based de novo design for type II kinase inhibitors and its extented application to acetylcholinesterase inhibitors.

    PubMed

    Su, Bo-Han; Huang, Yi-Syuan; Chang, Chia-Yun; Tu, Yi-Shu; Tseng, Yufeng J

    2013-10-31

    There is a compelling need to discover type II inhibitors targeting the unique DFG-out inactive kinase conformation since they are likely to possess greater potency and selectivity relative to traditional type I inhibitors. Using a known inhibitor, such as a currently available and approved drug or inhibitor, as a template to design new drugs via computational de novo design is helpful when working with known ligand-receptor interactions. This study proposes a new template-based de novo design protocol to discover new inhibitors that preserve and also optimize the binding interactions of the type II kinase template. First, sorafenib (Nexavar) and nilotinib (Tasigna), two type II inhibitors with different ligand-receptor interactions, were selected as the template compounds. The five-step protocol can reassemble each drug from a large fragment library. Our procedure demonstrates that the selected template compounds can be successfully reassembled while the key ligand-receptor interactions are preserved. Furthermore, to demonstrate that the algorithm is able to construct more potent compounds, we considered kinase inhibitors and other protein dataset, acetylcholinesterase (AChE) inhibitors. The de novo optimization was initiated using a template compound possessing a less than optimal activity from a series of aminoisoquinoline and TAK-285 inhibiting type II kinases, and E2020 derivatives inhibiting AChE respectively. Three compounds with greater potency than the template compound were discovered that were also included in the original congeneric series. This template-based lead optimization protocol with the fragment library can help to design compounds with preferred binding interactions of known inhibitors automatically and further optimize the compounds in the binding pockets.

  20. Rapid-releasing of HI-6 via brain-targeted mesoporous silica nanoparticles for nerve agent detoxification

    NASA Astrophysics Data System (ADS)

    Yang, Jun; Fan, Lixue; Wang, Feijian; Luo, Yuan; Sui, Xin; Li, Wanhua; Zhang, Xiaohong; Wang, Yongan

    2016-05-01

    The toxic nerve agent (NA) soman is the most toxic artificially synthesized compound that can rapidly penetrate into the brain and irreversibly inhibit acetylcholinesterase (AChE) activity, leading to immediate death. However, there are currently few brain-targeted nanodrugs that can treat acute chemical brain poisoning owing to the limited drug-releasing speed. The present study investigated the effectiveness of a nanodrug against NA toxicity that has high blood-brain barrier penetration and is capable of rapid drug release. Transferrin-modified mesoporous silica nanoparticles (TF-MSNs) were conjugated with the known AChE reactivator HI-6. This nanodrug rapidly penetrated the blood-brain barrier in zebrafish and mice and restored cerebral AChE activity via the released HI-6, preventing the brain damage caused by soman poisoning and increasing the survival rate in mice. Furthermore, there was no toxicity associated with the MSNs in mice or rats. These results demonstrate that TF-MSNs loaded with HI-6 represent the most effective antidote against NA poisoning by soman reported to date, and suggest that MSNs are a safe alternative to conventional drugs and an optimal nanocarrier for treating brain poisoning, which requires acute pulse cerebral administration.The toxic nerve agent (NA) soman is the most toxic artificially synthesized compound that can rapidly penetrate into the brain and irreversibly inhibit acetylcholinesterase (AChE) activity, leading to immediate death. However, there are currently few brain-targeted nanodrugs that can treat acute chemical brain poisoning owing to the limited drug-releasing speed. The present study investigated the effectiveness of a nanodrug against NA toxicity that has high blood-brain barrier penetration and is capable of rapid drug release. Transferrin-modified mesoporous silica nanoparticles (TF-MSNs) were conjugated with the known AChE reactivator HI-6. This nanodrug rapidly penetrated the blood-brain barrier in zebrafish and

  1. Efficient method for high-throughput virtual screening based on flexible docking: discovery of novel acetylcholinesterase inhibitors.

    PubMed

    Mizutani, Miho Yamada; Itai, Akiko

    2004-09-23

    A method of easily finding ligands, with a variety of core structures, for a given target macromolecule would greatly contribute to the rapid identification of novel lead compounds for drug development. We have developed an efficient method for discovering ligand candidates from a number of flexible compounds included in databases, when the three-dimensional (3D) structure of the drug target is available. The method, named ADAM&EVE, makes use of our automated docking method ADAM, which has already been reported. Like ADAM, ADAM&EVE takes account of the flexibility of each molecule in databases, by exploring the conformational space fully and continuously. Database screening has been made much faster than with ADAM through the tuning of parameters, so that computational screening of several hundred thousand compounds is possible in a practical time. Promising ligand candidates can be selected according to various criteria based on the docking results and characteristics of compounds. Furthermore, we have developed a new tool, EVE-MAKE, for automatically preparing the additional compound data necessary for flexible docking calculation, prior to 3D database screening. Among several successful cases of lead discovery by ADAM&EVE, the finding of novel acetylcholinesterase (AChE) inhibitors is presented here. We performed a virtual screening of about 160 000 commercially available compounds against the X-ray crystallographic structure of AChE. Among 114 compounds that could be purchased and assayed, 35 molecules with various core structures showed inhibitory activities with IC(50) values less than 100 microM. Thirteen compounds had IC(50) values between 0.5 and 10 microM, and almost all their core structures are very different from those of known inhibitors. The results demonstrate the effectiveness and validity of the ADAM&EVE approach and provide a starting point for development of novel drugs to treat Alzheimer's disease.

  2. Brain acetylcholinesterase of jaguar cichlid (Parachromis managuensis): From physicochemical and kinetic properties to its potential as biomarker of pesticides and metal ions.

    PubMed

    Araújo, Marlyete Chagas de; Assis, Caio Rodrigo Dias; Silva, Luciano Clemente; Machado, Dijanah Cota; Silva, Kaline Catiely Campos; Lima, Ana Vitória Araújo; Carvalho, Luiz Bezerra; Bezerra, Ranilson de Souza; Oliveira, Maria Betânia Melo de

    2016-08-01

    This contribution aimed to characterize physicochemical and kinetic parameters of the brain cholinesterases (ChEs) from Parachromis managuensis and investigate the in vitro effects of pesticides and metal ions on its activity intending to propose as biomarker. This species is suitable for this investigation because (1) it was recently introduced in Brazil becoming invasive (no restrictions on capture) and (2) occupies the top of the food chain (being subject to bioaccumulation). The enzyme extract was exposed to 10 metal ions (Al(3+), Ba(2+), Cd(2+), Cu(2+), Hg(2+), Mg(2+), Mn(2+), Pb(2+), Fe(2+) and Zn(2+)) and ChEs selective inhibitors (BW284c51, Iso-OMPA, neostigmine and serine). The extract was also incubated with organophosphate (dichlorvos) and carbamate pesticides (carbaryl and carbofuran). Inhibition parameters (IC20, IC50 and ki) were determined. Selective inhibitors and kinetic parameters confirmed acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) -like as responsible for the ChE activities, most AChE. The IC50 values for pesticides were: 1.68μM (dichlorvos); 4.35μM (carbaryl) and 0.28μM (carbofuran). Most of the analyzed ions did not show significant effect at 1mM (p=0.05), whereas the following ions inhibited the enzyme activity in the order: Hg(2+)>Cu(2+)>Cd(2+)>Zn(2+). Mercury ion strongly inhibited the enzyme activity (IC20=0.7μM). The results about allow to conclude that P. managuensis brain AChE is a potential biomarker for heavy metals and pesticides under study, mainly for the carbamate carbofuran once it was capable to detect 6-fold lower levels than the limit concentration internationally recommended. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Efficacy of Recommended Pre-Hospital Human Equivalent Doses of Atropine and Pralidoxime against the Toxic Effects of Carbamate Poisoning in the Hartley Guinea Pig

    PubMed Central

    Brittain, Matthew K.; McGarry, Kevin G.; Moyer, Robert A.; Babin, Michael C.; Jett, David A.; Platoff, Gennady E.; Yeung, David T.

    2016-01-01

    Purpose Aldicarb and methomyl are carbamate pesticides commonly implicated in human poisonings. The primary toxic mechanism of action for carbamate poisoning is cholinesterase (ChE) inhibition. As such, it is logical to assume that the currently accepted therapies for organophosphate poisoning [muscarinic antagonist atropine and the oxime acetylcholinesterase reactivator pralidoxime chloride (2-PAM Cl),], could afford therapeutic protection. However, oximes have been shown to be contraindicated for poisoning by some carbamates. Methods A protective ratio study was conducted in guinea pigs to evaluate the efficacy of atropine and 2-PAM Cl. ChE activity was determined in both the blood and cerebral cortex.. Results Co-administration of atropine free base (0.4 mg/kg) and 2-PAM Cl (25.7 mg/kg) demonstrated protective ratios of 2 and 3 against aldicarb and methomyl, respectively, relative to saline. The data reported here show that this protection was primarily mediated by the action of atropine. The reactivator 2-PAM Cl had neither positive nor negative effects on survival. Both blood acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities were significantly reduced at 15 minutes post-challenge but gradually returned to normal within 24 h. Analysis of cerebral cortex showed that BChE, but not AChE, activity was reduced in animals that succumbed prior to 24 h after challenge. Conclusion The results suggest that co-administration of atropine and 2-PAM Cl at the currently recommended human equivalent doses for use in the pre-hospital setting to treat organophosphorus nerve agent and pesticide poisoning would likely also be effective against aldicarb or methomyl poisoning. PMID:27102179

  4. Donepezil, an acetylcholinesterase inhibitor against Alzheimer's dementia, promotes angiogenesis in an ischemic hindlimb model.

    PubMed

    Kakinuma, Yoshihiko; Furihata, Mutsuo; Akiyama, Tsuyoshi; Arikawa, Mikihiko; Handa, Takemi; Katare, Rajesh G; Sato, Takayuki

    2010-04-01

    Our recent studies have indicated that acetylcholine (ACh) protects cardiomyocytes from prolonged hypoxia through activation of the PI3K/Akt/HIF-1alpha/VEGF pathway and that cardiomyocyte-derived VEGF promotes angiogenesis in a paracrine fashion. These results suggest that a cholinergic system plays a role in modulating angiogenesis. Therefore, we assessed the hypothesis that the cholinergic modulator donepezil, an acetylcholinesterase inhibitor utilized in Alzheimer's disease, exhibits beneficial effects, especially on the acceleration of angiogenesis. We evaluated the effects of donepezil on angiogenic properties in vitro and in vivo, using an ischemic hindlimb model of alpha7 nicotinic receptor-deleted mice (alpha7 KO) and wild-type mice (WT). Donepezil activated angiogenic signals, i.e., HIF-1alpha and VEGF expression, and accelerated tube formation in human umbilical vein endothelial cells (HUVECs). ACh and nicotine upregulated signal transduction with acceleration of tube formation, suggesting that donepezil promotes a common angiogenesis pathway. Moreover, donepezil-treated WT exhibited rich capillaries with enhanced VEGF and PCNA endothelial expression, recovery from impaired tissue perfusion, prevention of ischemia-induced muscular atrophy with sustained surface skin temperature in the limb, and inhibition of apoptosis independent of the alpha7 receptor. Donepezil exerted comparably more effects in alpha7 KO in terms of angiogenesis, tissue perfusion, biochemical markers, and surface skin temperature. Donepezil concomitantly elevated VEGF expression in intracardiac endothelial cells of WT and alpha7 KO and further increased choline acetyltransferase (ChAT) protein expression, which is critical for ACh synthesis in endothelial cells. The present study concludes that donepezil can act as a therapeutic tool to accelerate angiogenesis in cardiovascular disease patients. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  5. Genistein improves 3-NPA-induced memory impairment in ovariectomized rats: impact of its antioxidant, anti-inflammatory and acetylcholinesterase modulatory properties.

    PubMed

    Menze, Esther T; Esmat, Ahmed; Tadros, Mariane G; Abdel-Naim, Ashraf B; Khalifa, Amani E

    2015-01-01

    Huntington's disease (HD) is a progressive neurodegenerative disorder. The pre-motor symptomatic stages of the disease are commonly characterized by cognitive problems including memory loss. 3-Nitropropionic acid (3-NPA) is a mitochondrial toxin that produces selective lesions in the brain similar to that of HD and was proven to cause memory impairment in rodents. Phytoestrogens have well-established neuroprotective and memory enhancing effects with fewer side effects in comparison to estrogens. This study investigated the potential neuroprotective and memory enhancing effect of genistein (5, 10 and 20 mg/kg), a phytoestrogen, in ovariectomized rats challenged with 3-NPA (20 mg/kg). These potential effects were compared to those of 17β-estradiol (2.5 mg/kg). Systemic administration of 3-NPA for 4 consecutive days impaired locomotor activity, decreased retention latencies in the passive avoidance task, decreased striatal, cortical and hippocampal ATP levels, increased oxidative stress, acetylcholinesterase (AChE) activity, cycloxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expressions. Pretreatment with genistein and 17β-estradiol attenuated locomotor hypoactivity, increased retention latencies in the passive avoidance task, increased ATP levels, improved the oxidative stress profile, attenuated the increase in AChE activity and decreased the expression of COX-2 and iNOS. Overall, the higher genistein dose (20 mg/kg) was the most effective. In conclusion, this study suggests neuroprotective and memory enhancing effects for genistein in a rat model of HD. These effects might be attributed to its antioxidant, anti-inflammatory and cholinesterase inhibitory activities.

  6. Phytochemical compositions of extract from peel of hawthorn fruit, and its antioxidant capacity, cell growth inhibition, and acetylcholinesterase inhibitory activity.

    PubMed

    Wu, Panpan; Li, Fajie; Zhang, Jianyong; Yang, Bin; Ji, Zhaojie; Chen, Weidong

    2017-03-11

    Hawthorn fruit (HF) is a well-known traditional medicine in China with the effects of improving digestion and regulating qi-flowing for removing blood stasis. Modern pharmacological experiments showed that HF extract has various pharmaceutical properties and flavonoids are considered as the main bioactive compounds. In this paper, Diaion HP-20 adsorption chromatography was used to enrich flavonoids in PHF, and the phytochemical composition of EPHF was analyzed by high performance liquid chromatography (HPLC) and liquid chromatography tandem mass spectrometry (LC-MS). In addition, EPHF's antioxidant capacity, acetylcholinesterase (AChE) inhibitory activity and cytotoxic activity were evaluated. EPHF was obtained by Diaion HP-20 adsorption chromatography. Phytochemical composition of EPHF was analyzed qualitatively and quantitatively using HPLC and LC-MS. Radical scavenging capacity of EPHF was estimated using 2,2-diphenyl-1-picryhydrazyl (DPPH) assay and oxygen radical absorbance capacity (ORAC) assay. The AChE inhibitory activity of EPHF was evaluated by Ellman method. Cytotoxic activity of EPHF was assessed by means of MTT assay. Eight kinds of components were identified, in which ideain with the value of 179.4 mg/g was identified to be present in the highest level in EPHF, followed by (-)-epicatechin, chlorogenic acid, cyanidin 3-arabinoside, hyperoside and isoquercitrin at the concentrations of 40.9, 10.0, 1.4, 0.4 and 0.2 mg/g, respectively. The contents of these compounds in EPHF were much higher than those in PHF and HF. In addition, EPHF exhibited strong antioxidant and AChE inhibitory activity (ORAC value: 11.65 ± 2.37 μM Trolox equivalents (TE)/mg, DPPH IC 50 value: 6.72 μg/mL, anti-AChE activity IC 50 value: 11.72 μg/mL) compared with PHF and HF. Moreover, EPHF exhibited high levels of cytotoxicity on MCF-7 and SKOV-3 human tumour cell lines in a dose-dependent manner with the IC 50 of 2.76 and 80.11 μg/mL, respectively. Macroporous resin

  7. Repeated administration of an acetylcholinesterase inhibitor attenuates nicotine taking in rats and smoking behavior in human smokers

    PubMed Central

    Ashare, R L; Kimmey, B A; Rupprecht, L E; Bowers, M E; Hayes, M R; Schmidt, H D

    2016-01-01

    Tobacco smoking remains the leading cause of preventable death worldwide and current smoking cessation medications have limited efficacy. Thus, there is a clear need for translational research focused on identifying novel pharmacotherapies for nicotine addiction. Our previous studies demonstrated that acute administration of an acetylcholinesterase inhibitor (AChEI) attenuates nicotine taking and seeking in rats and suggest that AChEIs could be repurposed for smoking cessation. Here, we expand upon these findings with experiments designed to determine the effects of repeated AChEI administration on voluntary nicotine taking in rats as well as smoking behavior in human smokers. Rats were trained to self-administer intravenous infusions of nicotine (0.03 mg kg−1 per 0.59 ml) on a fixed-ratio-5 schedule of reinforcement. Once rats maintained stable nicotine taking, galantamine or donepezil was administered before 10 consecutive daily nicotine self-administration sessions. Repeated administration of 5.0 mg kg−1 galantamine and 3.0 mg kg−1 donepezil attenuated nicotine self-administration in rats. These effects were reinforcer-specific and not due to adverse malaise-like effects of drug treatment as repeated galantamine and donepezil administration had no effects on sucrose self-administration, ad libitum food intake and pica. The effects of repeated galantamine (versus placebo) on cigarette smoking were also tested in human treatment-seeking smokers. Two weeks of daily galantamine treatment (8.0 mg (week 1) and 16.0 mg (week 2)) significantly reduced smoking rate as well as smoking satisfaction and reward compared with placebo. This translational study indicates that repeated AChEI administration reduces nicotine reinforcement in rats and smoking behavior in humans at doses not associated with tolerance and/or adverse effects. PMID:26784967

  8. Pro-2-PAM Therapy for Central and Peripheral Cholinesterases

    PubMed Central

    DeMar, James C.; Clarkson, Edward D.; Ratcliffe, Ruthie H.; Campbell, Amy J.; Thangavelu, Sonia G.; Herdman, Christine A.; Leader, Haim; Schulz, Susan M.; Marek, Elizabeth; Medynets, Marie A.; Ku, Theresa C.; Evans, Sarah A.; Khan, Farhat A.; Owens, Roberta R.; Nambiar, Madhusoodana P.; Gordon, Richard K.

    2010-01-01

    Novel therapeutics to overcome the toxic effects of organophosphorus (OP) chemical agents are needed due to the documented use of OPs in warfare (e.g. 1980–1988 Iran/Iraq war) and terrorism (e.g. 1995 Tokyo subway attacks). Standard OP exposure therapy in the United States consists of atropine sulfate (to block muscarinic receptors), the acetylcholinesterase (AChE) reactivator (oxime) pralidoxime chloride (2-PAM), and a benzodiazepine anticonvulsant to ameliorate seizures. A major disadvantage is that quaternary nitrogen charged oximes, including 2-PAM, do not cross the blood brain barrier (BBB) to treat brain AChE. Therefore, we have synthesized and evaluated pro-2-PAM (a lipid permeable 2-PAM derivative) that can enter the brain and reactivate CNS AChE, preventing seizures in guinea pigs after exposure to OPs. The protective effects of the pro-2-PAM after OP exposure were shown using a) surgically-implanted radiotelemetry probes for electroencephalogram (EEG) b) neurohistopathology of brain, c) cholinesterase activities in the PNS and CNS, and d) survivability. The PNS oxime 2-PAM was ineffective at reducing seizures/status epilepticus (SE) in diisopropyl-fluorophosphate (DFP)-exposed animals. In contrast, pro-2-PAM significantly suppressed and then eliminated seizure activity. In OP-exposed guinea pigs, there was a significant reduction in neurological damage with pro-2-PAM, but not 2-PAM. Distinct regional areas of the brains showed significantly higher AChE activity 1.5 h after OP exposure in pro-2-PAM treated animals compared to the 2-PAM treated ones. However, blood and diaphragm showed similar AChE activities in animals treated with either oxime, as both 2-PAM and pro 2-PAM are PNS active oximes. In conclusion, pro-2-PAM can cross the BBB, is rapidly metabolized inside the brain to 2-PAM, and protects against OP-induced SE through restoration of brain AChE activity. Pro-2-PAM represents the first non-invasive means of administering a CNS therapeutic for

  9. Menthol Alone Upregulates Midbrain nAChRs, Alters nAChR Subtype Stoichiometry, Alters Dopamine Neuron Firing Frequency, and Prevents Nicotine Reward.

    PubMed

    Henderson, Brandon J; Wall, Teagan R; Henley, Beverley M; Kim, Charlene H; Nichols, Weston A; Moaddel, Ruin; Xiao, Cheng; Lester, Henry A

    2016-03-09

    Upregulation of β2 subunit-containing (β2*) nicotinic acetylcholine receptors (nAChRs) is implicated in several aspects of nicotine addiction, and menthol cigarette smokers tend to upregulate β2* nAChRs more than nonmenthol cigarette smokers. We investigated the effect of long-term menthol alone on midbrain neurons containing nAChRs. In midbrain dopaminergic (DA) neurons from mice containing fluorescent nAChR subunits, menthol alone increased the number of α4 and α6 nAChR subunits, but this upregulation did not occur in midbrain GABAergic neurons. Thus, chronic menthol produces a cell-type-selective upregulation of α4* nAChRs, complementing that of chronic nicotine alone, which upregulates α4 subunit-containing (α4*) nAChRs in GABAergic but not DA neurons. In mouse brain slices and cultured midbrain neurons, menthol reduced DA neuron firing frequency and altered DA neuron excitability following nAChR activation. Furthermore, menthol exposure before nicotine abolished nicotine reward-related behavior in mice. In neuroblastoma cells transfected with fluorescent nAChR subunits, exposure to 500 nm menthol alone also increased nAChR number and favored the formation of (α4)3(β2)2 nAChRs; this contrasts with the action of nicotine itself, which favors (α4)2(β2)3 nAChRs. Menthol alone also increases the number of α6β2 receptors that exclude the β3 subunit. Thus, menthol stabilizes lower-sensitivity α4* and α6 subunit-containing nAChRs, possibly by acting as a chemical chaperone. The abolition of nicotine reward-related behavior may be mediated through menthol's ability to stabilize lower-sensitivity nAChRs and alter DA neuron excitability. We conclude that menthol is more than a tobacco flavorant: administered alone chronically, it alters midbrain DA neurons of the nicotine reward-related pathway. Copyright © 2016 the authors 0270-6474/16/362957-18$15.00/0.

  10. Mucosal tolerance to experimental autoimmune myasthenia gravis is associated with down-regulation of AChR-specific IFN-gamma-expressing Th1-like cells and up-regulation of TGF-beta mRNA in mononuclear cells.

    PubMed

    Ma, C G; Zhang, G X; Xiao, B G; Wang, Z Y; Link, J; Olsson, T; Link, H

    1996-02-13

    Oral and nasal administration of nicotinic acetylcholine receptor (AChR) to Lewis rats prior to myasthenogenic immunization with AChR and complete Freund's adjuvant (CFA) resulted in prevention or marked decrease of the severity of experimental autoimmune myasthenia gravis (EAMG) and suppression of AChR-specific B-cell responses and of AChR-reactive T-cell function. To examine the involvement of immunoregulatory cytokines and the underlying mechanisms involved in tolerance induction, in situ hybridization with radiolabeled cDNA oligonucleotide proves was adopted to enumerate mononuclear cells (MNC) expressing mRNA for the proinflammatory cytokine interferon-gamma (IFN-gamma), the B cell-stimulating interleukin-4 (IL-4), and the immunosuppressive transforming growth factor-beta (TGF-beta). Popliteal and inguinal lymph nodes from EAMG rats contained elevated numbers of AChR-reactive IFN-gamma, IL-4, and TGF-beta mRNA-expressing cells, compared to control rats receiving PBS orally or nasally and injected with CFA only. Oral and nasal tolerance was accompanied by decreased numbers of AChR-reactive IFN-gamma and IL-4 mRNA-expressing cells and strong up-regulation of TGF-beta mRNA-positive cells in lymphoid organs when compared to nontolerized EAMG control rats. The results suggest that IFN-gamma and IL-4 are central effector molecules in the development of EAMG and that TGF-beta plays an important role in tolerance induction to EAMG.

  11. Lead finding for acetyl cholinesterase inhibitors from natural origin: structure activity relationship and scope.

    PubMed

    Mukherjee, P K; Satheeshkumar, N; Venkatesh, P; Venkatesh, M

    2011-03-01

    Acetylcholinesterase (AChE) inhibitors are considered as promising therapeutic agents for the treatment of several neurological disorders such as Alzheimer's disease (AD), senile dementia, ataxia and myasthenia gravis. There are only few synthetic medicines with adverse effects, available for treatment of cognitive dysfunction and memory loss associated with these diseases. A variety of plants has been reported to possess AChE inhibitory activity and so may be relevant to the treatment of neurodegenerative disorders such as AD. Hence, developing potential AChE inhibitors from botanicals is the need of the day. This review will cover some of the promising acetylcholinesterase inhibitors isolated from plants with proven in vitro and in vivo activities with concern to their structure activity relationship.

  12. The non-competitive acetylcholinesterase inhibitor APS12-2 is a potent antagonist of skeletal muscle nicotinic acetylcholine receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grandič, Marjana; Aráoz, Romulo; Molgó, Jordi

    APS12-2, a non-competitive acetylcholinesterase inhibitor, is one of the synthetic analogs of polymeric alkylpyridinium salts (poly-APS) isolated from the marine sponge Reniera sarai. In the present work the effects of APS12-2 were studied on isolated mouse phrenic nerve–hemidiaphragm muscle preparations, using twitch tension measurements and electrophysiological recordings. APS12-2 in a concentration-dependent manner blocked nerve-evoked isometric muscle contraction (IC{sub 50} = 0.74 μM), without affecting directly-elicited twitch tension up to 2.72 μM. The compound (0.007–3.40 μM) decreased the amplitude of miniature endplate potentials until a complete block by concentrations higher than 0.68 μM, without affecting their frequency. Full size endplate potentials,more » recorded after blocking voltage-gated muscle sodium channels, were inhibited by APS12-2 in a concentration-dependent manner (IC{sub 50} = 0.36 μM) without significant change in the resting membrane potential of the muscle fibers up to 3.40 μM. The compound also blocked acetylcholine-evoked inward currents in Xenopus oocytes in which Torpedo (α1{sub 2}β1γδ) muscle-type nicotinic acetylcholine receptors (nAChRs) have been incorporated (IC{sub 50} = 0.0005 μM), indicating a higher affinity of the compound for Torpedo (α1{sub 2}β1γδ) than for the mouse (α1{sub 2}β1γε) nAChR. Our data show for the first time that APS12-2 blocks neuromuscular transmission by a non-depolarizing mechanism through an action on postsynaptic nAChRs of the skeletal neuromuscular junction. -- Highlights: ► APS12-2 produces concentration-dependent inhibition of nerve-evoked muscle contraction in vitro. ► APS12-2 blocks MEPPs and EPPs at the neuromuscular junction. APS12-2 blocks ACh-activated current in Xenopus oocytes incorporated with Torpedo nAChRs.« less

  13. Menthol Alone Upregulates Midbrain nAChRs, Alters nAChR Subtype Stoichiometry, Alters Dopamine Neuron Firing Frequency, and Prevents Nicotine Reward

    PubMed Central

    Henderson, Brandon J.; Wall, Teagan R.; Henley, Beverley M.; Kim, Charlene H.; Nichols, Weston A.; Moaddel, Ruin; Xiao, Cheng

    2016-01-01

    Upregulation of β2 subunit-containing (β2*) nicotinic acetylcholine receptors (nAChRs) is implicated in several aspects of nicotine addiction, and menthol cigarette smokers tend to upregulate β2* nAChRs more than nonmenthol cigarette smokers. We investigated the effect of long-term menthol alone on midbrain neurons containing nAChRs. In midbrain dopaminergic (DA) neurons from mice containing fluorescent nAChR subunits, menthol alone increased the number of α4 and α6 nAChR subunits, but this upregulation did not occur in midbrain GABAergic neurons. Thus, chronic menthol produces a cell-type-selective upregulation of α4* nAChRs, complementing that of chronic nicotine alone, which upregulates α4 subunit-containing (α4*) nAChRs in GABAergic but not DA neurons. In mouse brain slices and cultured midbrain neurons, menthol reduced DA neuron firing frequency and altered DA neuron excitability following nAChR activation. Furthermore, menthol exposure before nicotine abolished nicotine reward-related behavior in mice. In neuroblastoma cells transfected with fluorescent nAChR subunits, exposure to 500 nm menthol alone also increased nAChR number and favored the formation of (α4)3(β2)2 nAChRs; this contrasts with the action of nicotine itself, which favors (α4)2(β2)3 nAChRs. Menthol alone also increases the number of α6β2 receptors that exclude the β3 subunit. Thus, menthol stabilizes lower-sensitivity α4* and α6 subunit-containing nAChRs, possibly by acting as a chemical chaperone. The abolition of nicotine reward-related behavior may be mediated through menthol's ability to stabilize lower-sensitivity nAChRs and alter DA neuron excitability. We conclude that menthol is more than a tobacco flavorant: administered alone chronically, it alters midbrain DA neurons of the nicotine reward-related pathway. SIGNIFICANCE STATEMENT Menthol, the most popular flavorant for tobacco products, has been considered simply a benign flavor additive. However, as we show here

  14. Inhibition of acetylcholinesterase activity by rivastigmine decreases lipopolysaccharide-induced IL-1β expression in the hypothalamus of ewes.

    PubMed

    Herman, A P; Krawczyńska, A; Bochenek, J; Haziak, K; Antushevitch, H; Herman, A; Tomaszewska-Zaremba, D

    2013-04-01

    The present study was designed to determine the effect of subcutaneous rivastigmine treatment on IL-1β expression and IL-1 type I receptor (IL-1R1) gene expression in the hypothalamic structures (preoptic area [POA], anterior hypothalamus [AHA], and medial basal hypothalamus [MBH]) of ewes after lipopolysaccharide (LPS) treatment. Endotoxin treatment increased (P ≤ 0.01) both IL-1β and IL-1R1 gene expression in the POA, AHA, and MBH compared with the control group, whereas concomitant rivastigmine and LPS injection abolished this stimulatory effect. It was also found that LPS elevated (P ≤ 0.01) IL-1β concentration in the hypothalamus (71.0 ± 2.3 pg/mg) compared with controls (16.1 ± 3.6 pg/mg). The simultaneous injection of LPS and rivastigmine did not increase IL-1β concentration in the hypothalamus (24.6 ± 13.0 pg/mg). This central change in IL-1β synthesis seems to be an effect of acetylcholinesterase (AChE) inhibition by rivastigmine, which decreases (P ≤ 0.01) the activity of this enzyme from 78.5 ± 15.0 μmol · min(-1) · g(-1) of total protein in the control and 68.8 ± 9.8 μmol · min(-1) · g(-1) of total protein in LPS-treated animals to 45.2 ± 5.6 μmol · min(-1) · g(-1) of total protein in the rivastigmine and LPS-treated group. Our study showed that rivastigmine could effectively reverse the stimulatory effect of immune stress induced by LPS injection on IL-1β synthesis through a decrease in AChE activity in the hypothalamic area of sheep. Our results also proved that the cholinergic anti-inflammatory pathway could directly modulate the central response to endotoxin. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Clinical Significance of Repetitive Compound Muscle Action Potentials in Patients with Myasthenia Gravis: A Predictor for Cholinergic Side Effects of Acetylcholinesterase Inhibitors

    PubMed Central

    Lee, Hyo Eun; Kim, Yool-hee; Kim, Seung Min

    2016-01-01

    Background and Purpose Acetylcholinesterase inhibitors (AChEIs) are widely used to treat myasthenia gravis (MG). Although AChEIs are usually tolerated well, some MG patients suffer from side effects. Furthermore, a small proportion of MG patients show cholinergic hypersensitivity and cannot tolerate AChEIs. Because repetitive compound muscle action potentials (R-CMAPs) are an electrophysiologic feature of cholinergic neuromuscular hyperactivity, we investigated the clinical characteristics of MG patients with R-CMAPs to identify their clinical usefulness in therapeutic decision-making. Methods We retrospectively reviewed the clinical records and electrodiagnostic findings of MG patients who underwent electrodiagnostic studies and diagnostic neostigmine testing (NT). Results Among 71 MG patients, 9 could not tolerate oral pyridostigmine bromide (PB) and 17 experienced side effects of PB. R-CMAPs developed in 24 patients after NT. The highest daily dose of PB was lower in the patients with R-CMAPs (240 mg/day vs. 480 mg/day, p<0.001). The frequencies of PB intolerance and side effects were higher in the patients with R-CMAPs than in those without R-CMAPs [37.5% vs. 0% (p<0.001) and 45.8% vs. 12.8% (p=0.002), respectively]. The MG Foundation of America postintervention status did not differ significantly between MG patients with and without R-CMAPs, and the response to immunotherapy was also good in both groups. Conclusions Side effects of and intolerance to AChEIs are more common in MG patients with R-CMAPs than in those without R-CMAPs. AChEIs should be used carefully in MG patients with R-CMAPs. The presence of R-CMAPs after NT may be a good indicator of the risks of PB side effects and intolerance. PMID:27819419

  16. 3D MI-DRAGON: new model for the reconstruction of US FDA drug- target network and theoretical-experimental studies of inhibitors of rasagiline derivatives for AChE.

    PubMed

    Prado-Prado, Francisco; García-Mera, Xerardo; Escobar, Manuel; Alonso, Nerea; Caamaño, Olga; Yañez, Matilde; González-Díaz, Humberto

    2012-01-01

    The number of neurodegenerative diseases has been increasing in recent years. Many of the drug candidates to be used in the treatment of neurodegenerative diseases present specific 3D structural features. An important protein in this sense is the acetylcholinesterase (AChE), which is the target of many Alzheimer's dementia drugs. Consequently, the prediction of Drug-Protein Interactions (DPIs/nDPIs) between new drug candidates and specific 3D structure and targets is of major importance. To this end, we can use Quantitative Structure-Activity Relationships (QSAR) models to carry out a rational DPIs prediction. Unfortunately, many previous QSAR models developed to predict DPIs take into consideration only 2D structural information and codify the activity against only one target. To solve this problem we can develop some 3D multi-target QSAR (3D mt-QSAR) models. In this study, using the 3D MI-DRAGON technique, we have introduced a new predictor for DPIs based on two different well-known software. We have used the MARCH-INSIDE (MI) and DRAGON software to calculate 3D structural parameters for drugs and targets respectively. Both classes of 3D parameters were used as input to train Artificial Neuronal Network (ANN) algorithms using as benchmark dataset the complex network (CN) made up of all DPIs between US FDA approved drugs and their targets. The entire dataset was downloaded from the DrugBank database. The best 3D mt-QSAR predictor found was an ANN of Multi-Layer Perceptron-type (MLP) with profile MLP 37:37-24-1:1. This MLP classifies correctly 274 out of 321 DPIs (Sensitivity = 85.35%) and 1041 out of 1190 nDPIs (Specificity = 87.48%), corresponding to training Accuracy = 87.03%. We have validated the model with external predicting series with Sensitivity = 84.16% (542/644 DPIs; Specificity = 87.51% (2039/2330 nDPIs) and Accuracy = 86.78%. The new CNs of DPIs reconstructed from US FDA can be used to explore large DPI databases in order to discover both new drugs

  17. Novel potent pyridoxine-based inhibitors of AChE and BChE, structural analogs of pyridostigmine, with improved in vivo safety profile.

    PubMed

    Strelnik, Alexey D; Petukhov, Alexey S; Zueva, Irina V; Zobov, Vladimir V; Petrov, Konstantin A; Nikolsky, Evgeny E; Balakin, Konstantin V; Bachurin, Sergey O; Shtyrlin, Yurii G

    2016-08-15

    We report a novel class of carbamate-type ChE inhibitors, structural analogs of pyridostigmine. A small library of congeneric pyridoxine-based compounds was designed, synthesized and evaluated for AChE and BChE enzymes inhibition in vitro. The most active compounds have potent enzyme inhibiting activity with IC50 values in the range of 0.46-2.1μM (for AChE) and 0.59-8.1μM (for BChE), with moderate selectivity for AChE comparable with that of pyridostigmine and neostigmine. Acute toxicity studies using mice models demonstrated excellent safety profile of the obtained compounds with LD50 in the range of 22-326mg/kg, while pyridostigmine and neostigmine are much more toxic (LD50 3.3 and 0.51mg/kg, respectively). The obtained results pave the way to design of novel potent and safe cholinesterase inhibitors for symptomatic treatment of neuromuscular disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Exposure to sublethal concentrations of copper changes biochemistry parameters in silver catfish, Rhamdia quelen, Quoy & Gaimard.

    PubMed

    Pretto, Alexandra; Loro, Vania Lucia; Silva, Vera M Machado; Salbego, Joseânia; de Menezes, Charlene Cavalheiro; Souza, Carine de Freitas; Gioda, Carolina Rosa; Baldisserotto, Bernardo

    2014-04-01

    The effects of Cu exposure on catalase (CAT) and acetylcholinesterase (AChE) activity, formation of thiobarbituric acid-reactive species (TBARS) and metabolic parameters were evaluated in silver catfish (Rhamdia quelen). The fish were exposed for 45 days to 0, 16 and 29 μg/L Cu. The fish that were exposed to Cu exhibited lower TBARS levels in the muscle and higher TBARS levels in the liver. They also showed lower CAT activity in the liver and lower AChE activity in the brain and muscle. Higher glucose and lactate and lower protein plasma levels were observed in the fish exposed to Cu. The changes in the hepatic metabolic parameters were Cu concentration dependent. In the muscle, lower glycogen and higher lactate levels were observed in the fish exposed to Cu. Alterations in the metabolic parameters showed a preference for the anaerobic pathway of energy production and liver protein catabolism to supply the energy demand.

  19. An evaluation of the inhibition of human butyrylcholinesterase and acetylcholinesterase by the organophosphate chlorpyrifos oxon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shenouda, Josephine; Green, Paula; Sultatos, Lester, E-mail: sultatle@umdnj.ed

    2009-12-01

    Acetylcholinesterase (EC 3.1.1.7) and butyrylcholinesterase (EC 3.1.1.8) are enzymes that belong to the superfamily of alpha/beta-hydrolase fold proteins. While they share many characteristics, they also possess many important differences. For example, whereas they have about 54% amino acid sequence identity, the active site gorge of acetylcholinesterase is considerably smaller than that of butyrylcholinesterase. Moreover, both have been shown to display simple and complex kinetic mechanisms, depending on the particular substrate examined, the substrate concentration, and incubation conditions. In the current study, incubation of butyrylthiocholine in a concentration range of 0.005-3.0 mM, with 317 pM human butyrylcholinesterase in vitro, resulted inmore » rates of production of thiocholine that were accurately described by simple Michaelis-Menten kinetics, with a K{sub m} of 0.10 mM. Similarly, the inhibition of butyrylcholinesterase in vitro by the organophosphate chlorpyrifos oxon was described by simple Michaelis-Menten kinetics, with a k{sub i} of 3048 nM{sup -1} h{sup -1}, and a K{sub D} of 2.02 nM. In contrast to inhibition of butyrylcholinesterase, inhibition of human acetylcholinesterase by chlorpyrifos oxon in vitro followed concentration-dependent inhibition kinetics, with the k{sub i} increasing as the inhibitor concentration decreased. Chlorpyrifos oxon concentrations of 10 and 0.3 nM gave k{sub i}s of 1.2 and 19.3 nM{sup -1} h{sup -1}, respectively. Although the mechanism of concentration-dependent inhibition kinetics is not known, the much smaller, more restrictive active site gorge of acetylcholinesterase almost certainly plays a role. Similarly, the much larger active site gorge of butyrylcholinesterase likely contributes to its much greater reactivity towards chlorpyrifos oxon, compared to acetylcholinesterase.« less

  20. Theoretical NMR and conformational analysis of solvated oximes for organophosphates-inhibited acetylcholinesterase reactivation

    NASA Astrophysics Data System (ADS)

    da Silva, Jorge Alberto Valle; Modesto-Costa, Lucas; de Koning, Martijn C.; Borges, Itamar; França, Tanos Celmar Costa

    2018-01-01

    In this work, quaternary and non-quaternary oximes designed to bind at the peripheral site of acetylcholinesterase previously inhibited by organophosphates were investigated theoretically. Some of those oximes have a large number of degrees of freedom, thus requiring an accurate method to obtain molecular geometries. For this reason, the density functional theory (DFT) was employed to refine their molecular geometries after conformational analysis and to compare their 1H and 13C nuclear magnetic resonance (NMR) theoretical signals in gas-phase and in solvent. A good agreement with experimental data was achieved and the same theoretical approach was employed to obtain the geometries in water environment for further studies.

  1. Effects of chlorpyrifos on the transcription of CYP3A cDNA, activity of acetylcholinesterase, and oxidative stress response of goldfish (Carassius auratus).

    PubMed

    Ma, Junguo; Liu, Yang; Niu, Daichun; Li, Xiaoyu

    2015-04-01

    Chlorpyrifos (CPF) is the widely used organophosphate pesticide in agriculture throughout the world. It has been found that CPF is relatively safe to human but highly toxic to fish. In this study, acute toxicity of CPF on goldfish was determined and then the transcription of goldfish cytochrome P450 (CYP) 3A was evaluated after 96 h of CPF exposure at concentrations of 15.3 [1/10 50% lethal concentration (LC50 )] or 51 μg L(-1) (1/3 LC50 ) of CPF. Meanwhile, the enzymatic activities of acetylcholinesterase (AChE), superoxide dismutase (SOD), and catalase (CAT), total antioxidant activity (T-AOC), and the contents of malondialdehyde (MDA) in the liver or brain of goldfish were also determined. The results of acute toxicity testing showed that the 96-h LC50 of CPF to the goldfish was 153 μg L(-1) . Moreover, a length sequence of 1243 bp CYP3A cDNA encoding for 413 amino acids from goldfish liver was cloned. Polymerase chain reaction results reveal that CPF exposure downregulates CYP 3A transcription in goldfish liver, suggesting that goldfish CYP 3A may be not involved in CPF bioactivation. Finally, the results of biochemical assays indicate that 96 h of CPF exposure remarkably inhibits AChE activity in fish liver or brain, alters hepatic antioxidant enzyme activities, decreases brain T-AOC, and causes lipid peroxidation in fish liver. These results suggest that oxidative stress might be involved in CPF toxicity on goldfish. Copyright © 2013 Wiley Periodicals, Inc.

  2. In vitro screening for anti-cholinesterase and antioxidant activity of methanolic extracts of ayurvedic medicinal plants used for cognitive disorders.

    PubMed

    Mathew, Maya; Subramanian, Sarada

    2014-01-01

    Inhibition of Acetylcholinesterase (AChE) is still considered as the main therapeutic strategy against Alzheimer's disease (AD). Many plant derived phytochemicals have shown AChE inhibitory activity in addition to the currently approved drugs for AD. In the present study, methanolic extracts of 20 plants used in Indian Ayurvedic system of medicine for improving cognitive function were screened for acetylcholinesterase inhibitory activity by Ellman's microplate colorimetric method. Out of 20 extracts, Emblica officinalis, Nardostachys jatamansi, Nelumbo nucifera, Punica granatum and Raulfia Serpentina showed IC50 values <100 µg/ml for acetylcholinesterase inhibitory activity. Antioxidant activities of these plants were assessed by DPPH scavenging assay. Among the extracts used, antioxidant activity was highest for Terminalia chebula and Emblica officinalis with IC50 values <10 µg/ml. Considering the complex multifactorial etiology of AD, these plant extracts will be safer and better candidates for the future disease modifying therapies against this devastating disease.

  3. Analogous β-Carboline Alkaloids Harmaline and Harmine Ameliorate Scopolamine-Induced Cognition Dysfunction by Attenuating Acetylcholinesterase Activity, Oxidative Stress, and Inflammation in Mice

    PubMed Central

    Li, Shu-Ping; Wang, Yu-Wen; Qi, Sheng-Lan; Zhang, Yun-Peng; Deng, Gang; Ding, Wen-Zheng; Ma, Chao; Lin, Qi-Yan; Guan, Hui-Da; Liu, Wei; Cheng, Xue-Mei; Wang, Chang-Hong

    2018-01-01

    The analogous β-carboline alkaloids, harmaline (HAL) and harmine (HAR), possess a variety of biological properties, including acetylcholinesterase (AChE) inhibitory activity, antioxidant, anti-inflammatory, and many others, and have great potential for treating Alzheimer’s disease (AD). However, studies have showed that the two compounds have similar structures and in vitro AChE inhibitory activities but with significant difference in bioavailability. The objective of this study was to comparatively investigate the effects of HAL and HAR in memory deficits of scopolamine-induced mice. In the present study, mice were pretreated with HAL (2, 5, and 10 mg/kg), HAR (10, 20, and 30 mg/kg) and donepezil (5 mg/kg) by intragastrically for 7 days, and were daily intraperitoneal injected with scopolamine (1 mg/kg) to induce memory deficits and then subjected to behavioral evaluation by Morris water maze. To further elucidate the underlying mechanisms of HAL and HAR in improving learning and memory, the levels of various biochemical factors and protein expressions related to cholinergic function, oxidative stress, and inflammation were examined. The results showed that HAL and HAR could effectively ameliorate memory deficits in scopolamine-induced mice. Both of them exhibited an enhancement in cholinergic function by inhibiting AChE and inducing choline acetyltransferase (ChAT) activities, and antioxidant defense via increasing the antioxidant enzymes activities of superoxide dismutase and glutathione peroxidase, and reducing maleic diadehyde production, and anti-inflammatory effects through suppressing myeloperoxidase, tumor necrosis factor α, and nitric oxide as well as modulation of critical neurotransmitters such as acetylcholine (ACh), choline (Ch), L-tryptophan (L-Trp), 5-hydroxytryptamine (5-HT), γ-aminobutyric acid (γ-GABA), and L-glutamic acid (L-Glu). Furthermore, the regulations of HAL on cholinergic function, inflammation, and neurotransmitters were more

  4. BEHAVIORAL AND NEUROCHEMICAL CHANGES IN RATS DOSED REPEATEDLY WITH DIISOPROPYLFLUOROPHOSPHATE (DFP)

    EPA Science Inventory

    Behavioral effects of organophosphates (OPs) typically decrease with repeated exposure, despite persistence of OP-induced inhibition of acetylcholinesterase (AChE) and downregulation of muscarinic acetylcholine (ACh) receptors. o characterize this tolerance phenomenon, rats were ...

  5. A novel amperometric biosensor based on covalently attached multilayer assemblies of gold nanoparticles, diazo-resins and acetylcholinesterase for the detection of organophosphorus pesticides.

    PubMed

    Jiang, Bin; Dong, Pei; Zheng, Jianbin

    2018-06-01

    Using an ionic layer-by-layer self-assembly technique, colloidal gold nanoparticles (AuNPs) and diazo-resins (DAR) were immobilised on the surface of a p-aminobenzenesulfonic acid-modified glassy carbon electrode to form a matrix composite membrane for acetylcholinesterase (AChE) immobilisation. Photo-sensitive DAR was used as the assembly interlayer to convert the ionic bond into a covalent bond to improve the biosensor stability. These fabrication processes were followed by electrochemical impedance spectroscopy and cyclic voltammetry to verify the membrane formation. Because of the introduction of AuNPs/DAR/AChE biofilms, the modified electrode exhibited excellent electron transfer mediation and electrical conductivity. In addition, it exhibited high sensitivity in the range of linear concentration from 1.0 × 10 -8 to 1.0 × 10 -12 g L -1 with the detection limit of 5.12 × 10 -13 and 5.85 × 10 -13 g L -1 for malathion and methyl parathion, respectively. More importantly, the presented biosensor considerably improved stability because the electrostatic interaction was converted into covalent bonds by UV irradiation. It is a simple, cheap and stable method for quantitative detection of organophosphorus pesticides, and this method may pave a way for the sensitive, simple detection of different analytes without the need of expensive instrumentation. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Effect of PCB and DES on rat monoamine oxidase, acetylcholinesterase, testosterone, and estradiol ontogeny

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vincent, D.R.; Bradshaw, W.S.; Booth, G.M.

    1992-06-01

    Diethylstilbestrol (DES) and polychlorinated biphenyl (PCB) have been documented as potentially hazardous environmental agents. In utero exposure to DES produces human vaginal adenocarcinoma, male reproductive tract lesions in mice, and has been correlated with personality changes in human males. PCB (Kanechlor) was found to be the major toxin in the {open_quotes}Yusho{close_quotes} rice oil poisoning in Japan in 1968. Other investigators have shown in rats that PCB (Arochlor) causes liver adenofibrosis, thyroid dysfunction, atypical mitochondria, and dilation of both smooth and rough endoplasmic reticulum. Matthews et al. (1978) also reported that 4, 4{prime} chlorinated biphenyl was the most potent inducer ofmore » monooxygenases, irrespective of chlorination at other sites. Although these compounds have been studied extensively in mammals, there is a paucity of data examining their effects when non-fetotoxic amounts are administered chronically and orally during gestation. The present study is part of a larger effort designed to establish a protocol for testing the developmental effects of xenobiotics such as DES and PCB. Levels of acetylcholinesterase (AChE) were measured as an indicator of the integrity of nerve transmission in the central nervous system. Monoamine oxidase (MAO) is a marker for the outer mitochondrial membrane and is an important amine metabolizing enzyme. Testosterone and estradiol are important sex steroids in mammals, and effects upon levels of the two hormones may signal anomalies in development of sex characteristics. 35 refs., 3 figs., 1 tab.« less

  7. Brain acetycholinesterase activity in botulism-intoxicated mallards

    USGS Publications Warehouse

    Rocke, T.E.; Samuel, M.D.

    1991-01-01

    Brain acetylcholinesterase (AChE) activity in captive-reared mallards (Anas platyrhynchos) that died of botulism was compared with euthanized controls. AChE levels for both groups were within the range reported for normal mallards, and there was no significant difference in mean AChE activity between birds that ingested botulism toxin and died and those that did not.

  8. Synthesis, biological evaluation, and computational studies of Tri- and tetracyclic nitrogen-bridgehead compounds as potent dual-acting AChE inhibitors and hH3 receptor antagonists.

    PubMed

    Darras, Fouad H; Pockes, Steffen; Huang, Guozheng; Wehle, Sarah; Strasser, Andrea; Wittmann, Hans-Joachim; Nimczick, Martin; Sotriffer, Christoph A; Decker, Michael

    2014-03-19

    Combination of AChE inhibiting and histamine H3 receptor antagonizing properties in a single molecule might show synergistic effects to improve cognitive deficits in Alzheimer's disease, since both pharmacological actions are able to enhance cholinergic neurotransmission in the cortex. However, whereas AChE inhibitors prevent hydrolysis of acetylcholine also peripherally, histamine H3 antagonists will raise acetylcholine levels mostly in the brain due to predominant occurrence of the receptor in the central nervous system. In this work, we designed and synthesized two novel classes of tri- and tetracyclic nitrogen-bridgehead compounds acting as dual AChE inhibitors and histamine H3 antagonists by combining the nitrogen-bridgehead moiety of novel AChE inhibitors with a second N-basic fragment based on the piperidinylpropoxy pharmacophore with different spacer lengths. Intensive structure-activity relationships (SARs) with regard to both biological targets led to compound 41 which showed balanced affinities as hAChE inhibitor with IC50 = 33.9 nM, and hH3R antagonism with Ki = 76.2 nM with greater than 200-fold selectivity over the other histamine receptor subtypes. Molecular docking studies were performed to explain the potent AChE inhibition of the target compounds and molecular dynamics studies to explain high affinity at the hH3R.

  9. A comparison of the reactivating and therapeutic efficacy of two novel bispyridinium oximes (K727, K733) with the oxime HI-6 and obidoxime in sarin-poisoned rats and mice.

    PubMed

    Kassa, Jiri; Sepsova, Vendula; Matouskova, Lenka; Horova, Anna; Musilek, Kamil

    2015-03-01

    The ability of two novel bispyridinium oximes K727 and K733 and currently available oximes (HI-6, obidoxime) to reactivate sarin-inhibited acetylcholinesterase and to reduce acute toxicity of sarin was evaluated. To investigate the reactivating efficacy of the oximes, the rats were administered intramuscularly with atropine and oximes in equitoxic doses corresponding to 5% of their LD50 values at 1 min after the intramuscular administration of sarin at a dose of 24 µg/kg (LD50). The activity of acetylcholinesterase was measured at 60 min after sarin poisoning. The LD50 value of sarin in non-treated and treated mice was assessed using probit-logarithmical analysis of death occurring within 24 h after intramuscular administration of sarin at five different doses. In vivo determined percentage of reactivation of sarin-inhibited rat blood, diaphragm and brain acetylcholinesterase showed that the potency of both novel oximes K727 and K733 to reactivate sarin-inhibited acetylcholinesterase roughly corresponds to the reactivating efficacy of obidoxime. On the other hand, the oxime HI-6 was found to be the most efficient reactivator of sarin-inhibited acetylcholinesterase. While the oxime HI-6 was able to reduce the acute toxicity of sarin >3 times, both novel oximes and obidoxime decreased the acute toxicity of sarin <2 times. Based on the results, we can conclude that the reactivating and therapeutic efficacy of both novel oximes K727 and K733 is significantly lower compared to the oxime HI-6 and, therefore, they are not suitable for the replacement of the oxime HI-6 for the antidotal treatment of acute sarin poisoning.

  10. Changes in EEG power spectra and behavioral states in rats exposed to the acetylcholinesterase inhibitor chlorpyrifos and muscarinic agonist oxotremorine.

    PubMed

    Timofeeva, O A; Gordon, C J

    2001-03-02

    Organophosphates (OPs) inhibit acetylcholinesterase (AChE) activity causing cholinergic stimulation in the central nervous system (CNS). Cholinergic systems are crucial in electroencephalogram (EEG) generation and regulation of behavior; however, little is known about how OP exposure affects the EEG and behavioral states. We recorded EEG, core temperature and motor activity before and after exposure to the OP pesticide chlorpyrifos (CHP) in adult female rats implanted with telemetric transmitters. The recording and reference electrodes were placed in the occipital and frontal bones, respectively. The animals received CHP, 25 mg/kg, p.o., or oxotremorine (OX), 0.2 mg/kg, s.c. CHP led to a significant increase in delta (0.1-3.5 Hz), slow theta (4-6.5 Hz), gamma 2 (35.5-50 Hz), reduction in fast theta (7-8.5 Hz), alpha/sigma (9-14 Hz), beta 1 (14.5-24 Hz), beta 2 (24.5-30 Hz) and gamma 1 (30.5-35 Hz) powers, slowing of peak frequencies in 1-9 Hz range, hypothermia and decrease in motor activity. The drop in 7-14 Hz was associated with cholinergic suppression of sleep spindles. Changes in behavioral state were characterized by dramatic diminution of sleep postures and exploring activity and prolongation of quiet waking. There was recovery in all bands in spite of continued inhibition of AChE activity [44,45] in rats exposed to CHP. OX-induced EEG and behavioral alterations were similar to CHP except there was no increase in delta and the onset and recovery were more rapid. We did not find a correlation between the EEG and core temperature alterations. Overall, changes in EEG (except in delta band) and behavior following CHP were attributable to muscarinic stimulation. Cortical arousal together with increased quiet waking and decreased sleep after CHP occurred independently from inhibition of motor activity and lowering of core temperature.

  11. International Meeting on Cholinesterases (5th) Held in Madras, India on 24-28 September, 1994.

    DTIC Science & Technology

    1994-09-01

    AChE activity . 67 Session F: Structure-Function Relationship of Anticholinesterase Agents: Pesticides and Therapeutic Agents; Noncholinergic Function... plants . The activity of two cholinesterases: acetylcholinesterase [E.C. 3.1.1.7] and butyrylcholinesterase [E.C. 3.1.1.81 was found in homogenates from...was tested in vitro. POSTER NO. 27: ACETYLCHOLINESTERASE ACTIVITY IN PLANTS . S. Madhavan and Gautam Sarath. Department of Biochemistry, University of

  12. In Vitro Screening for Anti-Cholinesterase and Antioxidant Activity of Methanolic Extracts of Ayurvedic Medicinal Plants Used for Cognitive Disorders

    PubMed Central

    Mathew, Maya; Subramanian, Sarada

    2014-01-01

    Inhibition of Acetylcholinesterase (AChE) is still considered as the main therapeutic strategy against Alzheimer’s disease (AD). Many plant derived phytochemicals have shown AChE inhibitory activity in addition to the currently approved drugs for AD. In the present study, methanolic extracts of 20 plants used in Indian Ayurvedic system of medicine for improving cognitive function were screened for acetylcholinesterase inhibitory activity by Ellman’s microplate colorimetric method. Out of 20 extracts, Emblica officinalis, Nardostachys jatamansi, Nelumbo nucifera, Punica granatum and Raulfia Serpentina showed IC50 values <100 µg/ml for acetylcholinesterase inhibitory activity. Antioxidant activities of these plants were assessed by DPPH scavenging assay. Among the extracts used, antioxidant activity was highest for Terminalia chebula and Emblica officinalis with IC50 values <10 µg/ml. Considering the complex multifactorial etiology of AD, these plant extracts will be safer and better candidates for the future disease modifying therapies against this devastating disease. PMID:24466247

  13. Complex alternative splicing of acetylcholinesterase transcripts in Torpedo electric organ; primary structure of the precursor of the glycolipid-anchored dimeric form.

    PubMed Central

    Sikorav, J L; Duval, N; Anselmet, A; Bon, S; Krejci, E; Legay, C; Osterlund, M; Reimund, B; Massoulié, J

    1988-01-01

    In this paper, we show the existence of alternative splicing in the 3' region of the coding sequence of Torpedo acetylcholinesterase (AChE). We describe two cDNA structures which both diverge from the previously described coding sequence of the catalytic subunit of asymmetric (A) forms (Schumacher et al., 1986; Sikorav et al., 1987). They both contain a coding sequence followed by a non-coding sequence and a poly(A) stretch. Both of these structures were shown to exist in poly(A)+ RNAs, by S1 mapping experiments. The divergent region encoded by the first sequence corresponds to the precursor of the globular dimeric form (G2a), since it contains the expected C-terminal amino acids, Ala-Cys. These amino acids are followed by a 29 amino acid extension which contains a hydrophobic segment and must be replaced by a glycolipid in the mature protein. Analyses of intact G2a AChE showed that the common domain of the protein contains intersubunit disulphide bonds. The divergent region of the second type of cDNA consists of an adjacent genomic sequence, which is removed as an intron in A and Ga mRNAs, but may encode a distinct, less abundant catalytic subunit. The structures of the cDNA clones indicate that they are derived from minor mRNAs, shorter than the three major transcripts which have been described previously (14.5, 10.5 and 5.5 kb). Oligonucleotide probes specific for the asymmetric and globular terminal regions hybridize with the three major transcripts, indicating that their size is determined by 3'-untranslated regions which are not related to the differential splicing leading to A and Ga forms. Images PMID:3181125

  14. AGE-RELATED EFFECTS OF CHLORPYRIFOS ON ACETYLCHOLINE RELEASE IN RAT BRAIN. (R825811)

    EPA Science Inventory

    Chlorpyrifos (CPF) is an organophosphorus insecticide that elicits toxicity through inhibition of acetylcholinesterase (AChE). Young animals are markedly more sensitive than adults to the acute toxicity of CPF. We evaluated acetylcholine (ACh) release and its muscarinic recept...

  15. The specific interaction of the photosensitizer methylene blue with acetylcholinesterase provides a model system for studying the molecular consequences of photodynamic therapy.

    PubMed

    Silman, Israel; Roth, Esther; Paz, Aviv; Triquigneaux, Mathilde M; Ehrenshaft, Marilyn; Xu, Yechun; Shnyrov, Valery L; Sussman, Joel L; Deterding, Leesa J; Ashani, Yacov; Mason, Ronald P; Weiner, Lev

    2013-03-25

    The photosensitizer, methylene blue (MB), generates singlet oxygen ((1)O2) that irreversibly inhibits Torpedo californica acetylcholinesterase (TcAChE). In the dark MB inhibits reversibly, binding being accompanied by a bathochromic shift that can be used to show its displacement by other reversible inhibitors binding to the catalytic 'anionic' subsite (CAS), the peripheral 'anionic' subsite (PAS), or bridging them. Data concerning both reversible and irreversible inhibition are here reviewed. MB protects TcAChE from thermal denaturation, and differential scanning calorimetry reveals a ~8 °C increase in the denaturation temperature. The crystal structure of the MB/TcAChE complex reveals a single MB stacked against W279 in the PAS, pointing down the gorge towards the CAS. The intrinsic fluorescence of the irreversibly inhibited enzyme displays new emission bands that can be ascribed to N'-formylkynurenine (NFK); this was indeed confirmed using anti-NFK antibodies. Mass spectroscopy revealed that two Trp residues, Trp84 in the CAS, and Trp279 in the PAS, were the only Trp residues, out of a total of 14, significantly modified by photo-oxidation, both being converted to NFK. In the presence of competitive inhibitors that displace MB from the gorge, their modification is completely prevented. Thus, photo-oxidative damage caused by MB involves targeted release of (1)O2 by the bound photosensitizer within the aqueous milieu of the active-site gorge. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  16. Alteration in cellular acetylcholine influences dauer formation in Caenorhabditis elegans.

    PubMed

    Lee, Jeeyong; Kim, Kwang-Youl; Paik, Young-Ki

    2014-02-01

    Altered acetylcholine (Ach) homeostasis is associated with loss of viability in flies, developmental defects in mice, and cognitive deficits in human. Here, we assessed the importance of Ach in Caenorhabditis elegans development, focusing on the role of Ach during dauer formation. We found that dauer formation was disturbed in choline acetyltransferase (cha-1) and acetylcholinesterase (ace) mutants defective in Ach biosynthesis and degradation, respectively. When examined the potential role of G-proteins in dauer formation, goa-1 and egl-30 mutant worms, expressing mutated versions of mammalian G(o) and G(q) homolog, respectively, showed some abnormalities in dauer formation. Using quantitative mass spectrometry, we also found that dauer larvae had lower Ach content than did reproductively grown larvae. In addition, a proteomic analysis of acetylcholinesterase mutant worms, which have excessive levels of Ach, showed differential expression of metabolic genes. Collectively, these results indicate that alterations in Ach release may influence dauer formation in C. elegans.

  17. Inhibition pathways of the potent organophosphate CBDP with cholinesterases revealed by X-ray crystallographic snapshots and mass spectrometry.

    PubMed

    Carletti, Eugénie; Colletier, Jacques-Philippe; Schopfer, Lawrence M; Santoni, Gianluca; Masson, Patrick; Lockridge, Oksana; Nachon, Florian; Weik, Martin

    2013-02-18

    Tri-o-cresyl-phosphate (TOCP) is a common additive in jet engine lubricants and hydraulic fluids suspected to have a role in aerotoxic syndrome in humans. TOCP is metabolized to cresyl saligenin phosphate (CBDP), a potent irreversible inhibitor of butyrylcholinesterase (BChE), a natural bioscavenger present in the bloodstream, and acetylcholinesterase (AChE), the off-switch at cholinergic synapses. Mechanistic details of cholinesterase (ChE) inhibition have, however, remained elusive. Also, the inhibition of AChE by CBDP is unexpected, from a structural standpoint, i.e., considering the narrowness of AChE active site and the bulkiness of CBDP. In the following, we report on kinetic X-ray crystallography experiments that provided 2.7-3.3 Å snapshots of the reaction of CBDP with mouse AChE and human BChE. The series of crystallographic snapshots reveals that AChE and BChE react with the opposite enantiomers and that an induced-fit rearrangement of Phe297 enlarges the active site of AChE upon CBDP binding. Mass spectrometry analysis of aging in either H(2)(16)O or H(2)(18)O furthermore allowed us to identify the inhibition steps, in which water molecules are involved, thus providing insights into the mechanistic details of inhibition. X-ray crystallography and mass spectrometry show the formation of an aged end product formed in both AChE and BChE that cannot be reactivated by current oxime-based therapeutics. Our study thus shows that only prophylactic and symptomatic treatments are viable to counter the inhibition of AChE and BChE by CBDP.

  18. Modulation of Cholinergic Pathways and Inflammatory Mediators in Blast-Induced Traumatic Brain Injury

    DTIC Science & Technology

    2013-01-01

    matic brain injury (TBI). Centrally acting acetylcholinesterase (AChE) inhibitors are also being considered as potential therapeutic candidates...repeated blast exposures [12]. AChE inhibitors are possible therapeutic candidates against Alzheimer’s disease and TBI [13–15]. In this study, we...esterase inhibitor , as described earlier [12,17–19]. Brain AChE activity was expressed as milliunits/mg protein. 2.3. Microarray analysis Various

  19. Laboratory and Simulated Field Bioassays to Evaluate Larvicidal Activity of Pinus densiflora Hydrodistillate, Its Constituents and Structurally Related Compounds against Aedes albopictus, Aedes aegypti and Culex pipiens pallens in Relation to Their Inhibitory Effects on Acetylcholinesterase Activity

    PubMed Central

    Lee, Dong Chan; Ahn, Young-Joon

    2013-01-01

    The toxicity of Pinus densiflora (red pine) hydrodistillate, its 19 constituents and 28 structurally related compounds against early third-instar larvae of Aedes albopictus (Ae. albopictus), Aedes aegypti (Ae. aegypti) and Culex pipiens palles (Cx. p. pallens) was examined using direct-contact bioassays. The efficacy of active compounds was further evaluated in semi-field bioassays using field-collected larval Cx. p. pallens. Results were compared with those of two synthetic larvicides, temephos and fenthion. In laboratory bioassays, Pinus densiflora hydrodistillate was found to have 24 h LC50 values of 20.33, 21.01 and 22.36 mg/L against larval Ae. albopictus, Ae. aegypti and Cx. p. pallens respectively. Among the identified compounds, thymol, δ-3-carene and (+)-limonene exhibited the highest toxicity against all three mosquito species. These active compounds were found to be nearly equally effective in field trials as well. In vitro bioassays were conducted to examine the acetylcholinesterase (AChE) inhibitory activity of 10 selected compounds. Results showed that there is a noticeable correlation between larvicidal activity and AChE inhibitory activity. In light of global efforts to find alternatives for currently used insecticides against disease vector mosquitoes, Pinus densiflora hydrodistillate and its constituents merit further research as potential mosquito larvicides. PMID:26464387

  20. Cholinergic Neurotransmission in the Mammalian Retina.

    DTIC Science & Technology

    1988-01-30

    acetylcholinesterase (AChE), which terminates the action of acetylcholine (ACh), is more widespread in its distribution than the enzyme choline ...interaction in the retina. Autoradiographic studies showed that both the muscarinic receptor ligand (3H)propylbenzilyl choline mustard and the putative...action of acetylcholine (ACh) is more widespread in its distribution than the enzyme choline acetyltransferase (ChAT), which is responsible for ACh