Science.gov

Sample records for acetylcholinesterase biosensor based

  1. A novel biosensor method for surfactant determination based on acetylcholinesterase inhibition

    NASA Astrophysics Data System (ADS)

    Kucherenko, I. S.; Soldatkin, O. O.; Arkhypova, V. M.; Dzyadevych, S. V.; Soldatkin, A. P.

    2012-06-01

    A novel enzyme biosensor based on acetylcholinesterase inhibition for the determination of surfactants in aqueous solutions is described. Acetylcholinesterase-based bioselective element was deposited via glutaraldehyde on the surface of conductometric transducers. Different variants of inhibitory analysis of surfactants were tested, and finally surfactant's concentration was evaluated by measuring initial rate of acetylcholinesterase inhibition. Besides, we studied the effect of solution characteristics on working parameters of the biosensor for direct measurement of acetylcholine and for inhibitory determination of surfactants. The biosensor's sensitivity to anionic and cationic surfactants (0.35 mg l-1) was tested. The high operational stability of the biosensor during determination of acetylcholine (RSD 2%) and surfactants (RSD 11%) was shown. Finally, we discussed the selectivity of the biosensor toward surfactants and other AChE inhibitors. The proposed biosensor can be used as a component of the multibiosensor for ecological monitoring of toxicants.

  2. An acetylcholinesterase biosensor based on graphene-gold nanocomposite and calcined layered double hydroxide.

    PubMed

    Zhai, Chen; Guo, Yemin; Sun, Xia; Zheng, Yuhe; Wang, Xiangyou

    2014-05-10

    In this study, a novel acetylcholinesterase-based biosensor was fabricated. Acetylcholinesterase (AChE) was immobilized onto a glassy carbon electrode (GCE) with the aid of Cu-Mg-Al calcined layered double hydroxide (CLDH). CLDH can provide a bigger effective surface area for AChE loading, which could improve the precision and stability of AChE biosensor. However, the poor electroconductibility of CLDHs could lead to the low sensitivity of AChE biosensor. In order to effectively compensate the disadvantages of CLDHs, graphene-gold nanocomposites were used for improving the electron transfer rate. Thus, the graphene-gold nanocomposite (GN-AuNPs) was firstly modified onto the GCE, and then the prepared CLDH-AChE composite was immobilized onto the modified GCE to construct a sensitive AChE biosensor for pesticides detection. Relevant parameters were studied in detail and optimized, including the pH of the acetylthiocholine chloride (ATCl) solution, the amount of AChE immobilized on the biosensor and the inhibition time governing the analytical performance of the biosensor. The biosensor detected chlorpyrifos at concentrations ranging from 0.05 to 150μg/L. The detection limit for chlorpyrifos was 0.05μg/L.

  3. Fenugreek hydrogel-agarose composite entrapped gold nanoparticles for acetylcholinesterase based biosensor for carbamates detection.

    PubMed

    Kestwal, Rakesh Mohan; Bagal-Kestwal, Dipali; Chiang, Been-Huang

    2015-07-30

    A biosensor was fabricated to detect pesticides in food samples. Acetylcholinesterase was immobilized in a novel fenugreek hydrogel-agarose matrix with gold nanoparticles. Transparent thin films with superior mechanical strength and stability were obtained with 2% fenugreek hydrogel and 2% agarose. Immobilization of acetylcholinesterase on the membrane resulted in high enzyme retention efficiency (92%) and a significantly prolonged shelf life of the enzyme (half-life, 55 days). Transmission electron microscopy revealed that, gold nanoparticles (10-20 nm in diameter) were uniformly dispersed in the fenugreek hydrogel-agarose-acetylcholinesterase membrane. This immobilized enzyme-gold nanoparticle dip-strip system detected various carbamates, including carbofuran, oxamyl, methomyl, and carbaryl, with limits of detection of 2, 21, 113, and 236 nM (S/N = 3), respectively. Furthermore, the fabricated biosensor exhibited good testing capabilities when used to detect carbamates added to various fruit and vegetable samples. PMID:26320646

  4. Fenugreek hydrogel-agarose composite entrapped gold nanoparticles for acetylcholinesterase based biosensor for carbamates detection.

    PubMed

    Kestwal, Rakesh Mohan; Bagal-Kestwal, Dipali; Chiang, Been-Huang

    2015-07-30

    A biosensor was fabricated to detect pesticides in food samples. Acetylcholinesterase was immobilized in a novel fenugreek hydrogel-agarose matrix with gold nanoparticles. Transparent thin films with superior mechanical strength and stability were obtained with 2% fenugreek hydrogel and 2% agarose. Immobilization of acetylcholinesterase on the membrane resulted in high enzyme retention efficiency (92%) and a significantly prolonged shelf life of the enzyme (half-life, 55 days). Transmission electron microscopy revealed that, gold nanoparticles (10-20 nm in diameter) were uniformly dispersed in the fenugreek hydrogel-agarose-acetylcholinesterase membrane. This immobilized enzyme-gold nanoparticle dip-strip system detected various carbamates, including carbofuran, oxamyl, methomyl, and carbaryl, with limits of detection of 2, 21, 113, and 236 nM (S/N = 3), respectively. Furthermore, the fabricated biosensor exhibited good testing capabilities when used to detect carbamates added to various fruit and vegetable samples.

  5. Acetylcholinesterase Inhibition-Based Biosensor for Aluminum(III) Chronoamperometric Determination in Aqueous Media

    PubMed Central

    Barquero-Quirós, Miriam; Domínguez-Renedo, Olga; Alonso-Lomillo, Maria Asunción; Arcos-Martínez, María Julia

    2014-01-01

    A novel amperometric biosensor for the determination of Al(III) based on the inhibition of the enzyme acetylcholinesterase has been developed. The immobilization of the enzyme was performed on screen-printed carbon electrodes modified with gold nanoparticles. The oxidation signal of acetylthiocholine iodide enzyme substrate was affected by the presence of Al(III) ions leading to a decrease in the amperometric current. The developed system has a detection limit of 2.1 ± 0.1 μM for Al(III). The reproducibility of the method is 8.1% (n = 4). Main interferences include Mo(VI), W(VI) and Hg(II) ions. The developed method was successfully applied to the determination of Al(III) in spiked tap water. The analysis of a certified standard reference material was also carried out. Both results agree with the certified values considering the respective associated uncertainties. PMID:24811076

  6. An Acetylcholinesterase-Based Chronoamperometric Biosensor for Fast and Reliable Assay of Nerve Agents

    PubMed Central

    Pohanka, Miroslav; Adam, Vojtech; Kizek, Rene

    2013-01-01

    The enzyme acetylcholinesterase (AChE) is an important part of cholinergic nervous system, where it stops neurotransmission by hydrolysis of the neurotransmitter acetylcholine. It is sensitive to inhibition by organophosphate and carbamate insecticides, some Alzheimer disease drugs, secondary metabolites such as aflatoxins and nerve agents used in chemical warfare. When immobilized on a sensor (physico-chemical transducer), it can be used for assay of these inhibitors. In the experiments described herein, an AChE- based electrochemical biosensor using screen printed electrode systems was prepared. The biosensor was used for assay of nerve agents such as sarin, soman, tabun and VX. The limits of detection achieved in a measuring protocol lasting ten minutes were 7.41 × 10−12 mol/L for sarin, 6.31 × 10−12 mol/L for soman, 6.17 × 10−11 mol/L for tabun, and 2.19 × 10−11 mol/L for VX, respectively. The assay was reliable, with minor interferences caused by the organic solvents ethanol, methanol, isopropanol and acetonitrile. Isopropanol was chosen as suitable medium for processing lipophilic samples. PMID:23999806

  7. Acetylcholinesterase liquid crystal biosensor based on modulated growth of gold nanoparticles for amplified detection of acetylcholine and inhibitor.

    PubMed

    Liao, Shuzhen; Qiao, Yanan; Han, Wenting; Xie, Zhaoxia; Wu, Zhaoyang; Shen, Guoli; Yu, Ruqin

    2012-01-01

    A novel acetylcholinesterase (AChE) liquid crystal (LC) biosensor based on enzymatic growth of gold nanoparticles (Au NPs) has been developed for amplified detection of acetylcholine (ACh) and AChE inhibitor. In this method, AChE mediates the hydrolysis of acetylthiocholine (ATCl) to form thiocholine, and the latter further reduces AuCl(4)(-) to Au NPs without Au nanoseeds. This process, termed biometallization, leads to a great enhancement in the optical signal of the LC biosensor due to the large size of Au NPs, which can greatly disrupt the orientational arrangement of LCs. On the other hand, the hydrolysis of ATCl is inhibited in the presence of ACh or organophosphate pesticides (OPs, a AChE inhibitor), which will decrease the catalytic growth of Au NPs and, as a result, reduce the orientational response of LCs. On the basis of such an inhibition mechanism, the AChE LC biosensor can be used as an effective way to realize the detection of ACh and AChE inhibitors. The results showed that the AChE LC biosensor was highly sensitive to ACh with a detection limit of 15 μmol/L and OPs with a detection limit of 0.3 nmol/L. This study provides a simple and sensitive AChE LC biosensing approach and offers effective signal enhanced strategies for the development of enzyme LC biosensors. PMID:22148672

  8. Study of Inhibition, Reactivation and Aging Processes of Pesticides Using Graphene Nanosheets/Gold Nanoparticles-Based Acetylcholinesterase Biosensor

    SciTech Connect

    Zhang, Lin; Long, Linjuan; Zhang, Weiying; Du, Dan; Lin, Yuehe

    2012-09-10

    Organophosphate (OP) and carbamate pesticides exert their toxicity via attacking the hydroxyl moiety of serine in the 'active site' of acetylcholinesterase (AChE). In this paper we developed a stable AChE biosensor based on self-assembling AChE to graphene nanosheet (GN)-gold nanoparticles (AuNPs) nanocomposite electrode for investigation of inhibition, reactivation and aging processes of different pesticides. It is confirmed that pesticides can inhibit AChE in a short time. OPs poisoning is treatable with oximes while carbarmates exposure is insensitive to oximes. The proposed electrochemical approach thus provides a new simple tool for comparison of pesticide sensitivity and guide of therapeutic intervention.

  9. Acetylcholinesterase biosensor for inhibitor measurements based on glassy carbon electrode modified with carbon black and pillar[5]arene.

    PubMed

    Shamagsumova, Rezeda V; Shurpik, Dmitry N; Padnya, Pavel L; Stoikov, Ivan I; Evtugyn, Gennady A

    2015-11-01

    New acetylcholinesterase (AChE) biosensor based on unsubstituted pillar[5]arene (P[5]A) as electron mediator was developed and successfully used for highly sensitive detection of organophosphate and carbamate pesticides. The AChE from electric eel was immobilized by carbodiimide binding on carbon black (CB) placed on glassy carbon electrode. The working potential of 200mV was obtained in chronoamperometric mode with the measurement time of 180 s providing best inter-biosensors precision of the results. The AChE biosensor developed made it possible to detect 1×10(-11)-1×10(-6) M of malaoxon, 1×10(-8)-7×10(-6) M of methyl-paraoxon, 1×10(-10)-2×10(-6) M of carbofuran and 7×10(-9)-1×10(-5) M of aldicarb with 10 min incubation. The limits of detection were 4×10(-12), 5×10(-9), 2×10(-11) and 6×10(-10) M, respectively. The AChE biosensor was tested in the analysis of pesticide residuals in spiked samples of peanut and beetroot. The protecting effect of P[5]A derivative bearing quaternary ammonia groups on malaoxon inhibition was shown. PMID:26452862

  10. Acetylcholinesterase biosensor for inhibitor measurements based on glassy carbon electrode modified with carbon black and pillar[5]arene.

    PubMed

    Shamagsumova, Rezeda V; Shurpik, Dmitry N; Padnya, Pavel L; Stoikov, Ivan I; Evtugyn, Gennady A

    2015-11-01

    New acetylcholinesterase (AChE) biosensor based on unsubstituted pillar[5]arene (P[5]A) as electron mediator was developed and successfully used for highly sensitive detection of organophosphate and carbamate pesticides. The AChE from electric eel was immobilized by carbodiimide binding on carbon black (CB) placed on glassy carbon electrode. The working potential of 200mV was obtained in chronoamperometric mode with the measurement time of 180 s providing best inter-biosensors precision of the results. The AChE biosensor developed made it possible to detect 1×10(-11)-1×10(-6) M of malaoxon, 1×10(-8)-7×10(-6) M of methyl-paraoxon, 1×10(-10)-2×10(-6) M of carbofuran and 7×10(-9)-1×10(-5) M of aldicarb with 10 min incubation. The limits of detection were 4×10(-12), 5×10(-9), 2×10(-11) and 6×10(-10) M, respectively. The AChE biosensor was tested in the analysis of pesticide residuals in spiked samples of peanut and beetroot. The protecting effect of P[5]A derivative bearing quaternary ammonia groups on malaoxon inhibition was shown.

  11. An acetylcholinesterase (AChE) biosensor with enhanced solvent resistance based on chitosan for the detection of pesticides.

    PubMed

    Warner, John; Andreescu, Silvana

    2016-01-01

    Solvent tolerance of immobilized enzymes is important for many biosensing and biotechnological applications. In this paper we report an acetylcholinesterase (AChE) biosensor based on chitosan that exhibits high solvent resistance and enables sensitive detection of pesticides in presence of a high content of organic solvents. The solvent effect was established comparatively for the enzyme immobilized in chitosan and covalently cross-linked with glutaraldehyde. The activity of the immobilized AChE was dependent on the immobilization method and solvent type. The enzyme entrapped in chitosan fully conserved its activity in up to 25% methanol, 15% acetonitrile and 100% cyclohexane while the enzyme cross-linked with glutaraldehyde gradually lost its activity starting at 5% acetonitrile and methanol, and showed variable levels in cyclohexane. The detection limits of the biosensor for paraoxon were: 7.5 nM in 25% methanol, 100 nM in 15% acetonitrile and 2.5 μM in 100% cyclohexane. This study demonstrates that chitosan provides an excellent immobilization environment for AChE biosensors designed to operate in environments containing high amounts of organic solvents. It also highlights the effect of the immobilization material and solvent type on enzyme stability. These findings can enable future selection of the immobilization matrix and solvent type for the development of organic phase enzyme based systems.

  12. An acetylcholinesterase (AChE) biosensor with enhanced solvent resistance based on chitosan for the detection of pesticides.

    PubMed

    Warner, John; Andreescu, Silvana

    2016-01-01

    Solvent tolerance of immobilized enzymes is important for many biosensing and biotechnological applications. In this paper we report an acetylcholinesterase (AChE) biosensor based on chitosan that exhibits high solvent resistance and enables sensitive detection of pesticides in presence of a high content of organic solvents. The solvent effect was established comparatively for the enzyme immobilized in chitosan and covalently cross-linked with glutaraldehyde. The activity of the immobilized AChE was dependent on the immobilization method and solvent type. The enzyme entrapped in chitosan fully conserved its activity in up to 25% methanol, 15% acetonitrile and 100% cyclohexane while the enzyme cross-linked with glutaraldehyde gradually lost its activity starting at 5% acetonitrile and methanol, and showed variable levels in cyclohexane. The detection limits of the biosensor for paraoxon were: 7.5 nM in 25% methanol, 100 nM in 15% acetonitrile and 2.5 μM in 100% cyclohexane. This study demonstrates that chitosan provides an excellent immobilization environment for AChE biosensors designed to operate in environments containing high amounts of organic solvents. It also highlights the effect of the immobilization material and solvent type on enzyme stability. These findings can enable future selection of the immobilization matrix and solvent type for the development of organic phase enzyme based systems. PMID:26695264

  13. Biosensor based on acetylcholinesterase immobilized onto layered double hydroxides for flow injection/amperometric detection of organophosphate pesticides.

    PubMed

    Gong, Jingming; Guan, Zhangqiong; Song, Dandan

    2013-01-15

    We developed a highly sensitive flow injection/amperometric biosensor for the detection of organophosphate pesticides (OPs) using layered double hydroxides (LDHs) as the immobilization matrix of acetylcholinesterase (AChE). LDHs provided a biocompatible microenvironment to keep the bioactivity of AChE, due to the intrinsic properties of LDHs (such as a regular structure, good mechanical, chemical and thermal stabilities, and swelling properties). By integrating the flow injection analysis (FIA) with amperometric detection, the resulting AChE-LDHs modified electrode greatly catalyzed the oxidation of the enzymatically generated thiocholine product, and facilitated the detection automation, thus increasing the detection sensitivity. The analytical conditions for the FIA/amperometric detection of OPs were optimized by using methyl parathion (MP) as a model. The inhibition of MP was proportional to its concentration ranging from 0.005 to 0.3μg mL(-1) and 0.3 to 4.0μg mL(-1) with a detection limit 0.6ng mL(-1) (S/N=3). The developed biosensor exhibited good reproducibility and acceptable stability.

  14. Acetylcholinesterase Biosensors for Electrochemical Detection of Organophosphorus Compounds: A Review

    PubMed Central

    Dhull, Vikas; Gahlaut, Anjum; Dilbaghi, Neeraj

    2013-01-01

    The exponentially growing population, with limited resources, has exerted an intense pressure on the agriculture sector. In order to achieve high productivity the use of pesticide has increased up to many folds. These pesticides contain organophosphorus (OP) toxic compounds which interfere with the proper functioning of enzyme acetylcholinesterase (AChE) and finally affect the central nervous system (CNS). So, there is a need for routine, continuous, on spot detection of OP compounds which are the main limitations associated with conventional analytical methods. AChE based enzymatic biosensors have been reported by researchers as the most promising tool for analysis of pesticide level to control toxicity and for environment conservation. The present review summarises AChE based biosensors by discussing their characteristic features in terms of fabrication, detection limit, linearity range, time of incubation, and storage stability. Use of nanoparticles in recently reported fabrication strategies has improved the efficiency of biosensors to a great extent making them more reliable and robust. PMID:24383001

  15. Biosensor Based on Self-Assembling Acetylcholinesterase on Carbon Nanotubes for Flow injection/Amperometric Detection of Organophosphate Pesticides and Nerve Agents

    SciTech Connect

    Liu, Guodong; Lin, Yuehe

    2006-02-01

    A highly sensitive flow-injection amperometric biosensor for organophosphate pesticides and nerve agents based on self-assembly of acetylcholinesterase (AChE) on carbon nanotube (CNT)-modified glassy carbon (GC) electrode is described. AChE is immobilized on the negatively-charged CNT surface by alternatively assembling a cationic polydiallyldimethylammonium chloride (PDDA) layer and an AChE layer. Transmission electron microscopy images confirm the formation of layer-by-layer nanostructures on carboxyl functionalized CNTs. The unique sandwich-like structure (PDDA/AChE/PDDA) on the CNT surface formed by self-assembly provides a favorable microenvironment to keep the bioactivity of AChE and to prevent enzyme molecule leakage. The electrocatalytic activity of CNT leads to a greatly improved electrochemical detection of the enzymatically generated thiocholine product, including a low oxidation overvoltage (+150 mV), higher sensitivity, and stability. The developed PDDA/AChE/PDDA/CNT/GC biosensor integrated into a flow injection system was used to monitor organophosphate pesticides and nerve agents, such as paraoxon. The sensor performance, including inhibition time and regeneration conditions, was optimized with respect to operating conditions. Under the optimal conditions, the biosensor was used to measure as low as 0.4 pM paraoxon with a 6-min inhibition time. The biosensor had excellent operational lifetime stability with no decrease in the activity of enzymes for more than 20 repeated measurements over a 1-week period. The developed biosensor system is an ideal tool for online monitoring of organophosphate pesticides and nerve agents.

  16. Acetylcholinesterase biosensor based on a gold nanoparticle-polypyrrole-reduced graphene oxide nanocomposite modified electrode for the amperometric detection of organophosphorus pesticides.

    PubMed

    Yang, Yuqi; Asiri, Abdullah Mohamed; Du, Dan; Lin, Yuehe

    2014-06-21

    A nanohybrid of gold nanoparticles, polypyrrole, and reduced graphene oxide sheets (named as Au-PPy-rGO) was achieved by electrochemical deposition of reduced graphene oxide with pyrrole and the introduction of gold nanoparticles. Acetylcholinesterase (AChE) was further encapsulated in a silica matrix and immobilized on the Au-PPy-rGO nanocomposite by co-deposition with (NH4)2SiF6. The presence of PPy helped to avoid the aggregation of rGO caused by van der Waals interactions between individual sheets and significantly increased the surface area of the modified electrode. The obtained Au-PPy-rGO nanocomposite not only showed excellent conductivity but also exhibited a high electrocatalytic activity and specific affinity for thiocholine, the hydrolysis product of the enzyme, and thus an improved detection sensitivity. Since AChE molecules were protected by the circumambient silica matrix, which provided a biocompatible environment and facilitated mass transport, the fabricated AChE biosensor displayed high stability and excellent activity together with a fast response to organophosphorus pesticides. Under optimum conditions, the biosensor led to the rapid and sensitive detection of paraoxon-ethyl from 1.0 nM to 5 μM with a detection limit of 0.5 nM.

  17. Activation of phosphorothionate pesticides based on a cytochrome P450 BM-3 (CYP102 A1) mutant for expanded neurotoxin detection in food using acetylcholinesterase biosensors.

    PubMed

    Schulze, Holger; Schmid, Rolf D; Bachmann, Till T

    2004-03-15

    A novel enzymatic in vitro activation method for phosphorothionates has been developed to allow their detection with acetylcholinesterase (AChE) biosensors. Activation is necessary because this group of insecticides shows nearly no inhibitory effect toward AChE in their pure nonmetabolized form. In contrast, they exert a strong inhibitory effect on AChE after oxidation as it takes place by metabolic activation in higher organisms. Standard chemical methods to oxidize phosphorothionates showed inherent disadvantages that impede their direct use in food analysis. In contrast, a genetically engineered triple mutant of P450 BM-3 (CYP102 A1) could convert the two frequently used insecticides parathion and chlorpyrifos into their oxo variants as was confirmed by GC/MS measurements. The wild-type protein was unable to do so. In the case of chlorpyrifos, the enzymatic activation was as good as the chemical oxidation. In the case of parathion, the P450 activation was more efficient than the oxidation by NBS but neither activation method yielded an AChE inhibition that was as high as with paraoxon. The application of the method to infant food in combination with a disposable AChE biosensor enabled detection of chlorpyrifos and parathion at concentrations down to 20 microg/kg within an overall assay time of 95 min. PMID:15018574

  18. A novel and highly sensitive acetyl-cholinesterase biosensor modified with hollow gold nanospheres.

    PubMed

    Sun, Xia; Zhai, Chen; Wang, Xiangyou

    2013-03-01

    In this work, a highly sensitive acetylcholinesterase (AChE) inhibition-based amperometric biosensor has been developed. Firstly, a glassy carbon electrode (GCE) was modified with chitosan (Chits). Then, hollow gold nanospheres (HGNs) were absorbed onto the surface of chitosan based on the strong affinity through electrostatic adsorption. After that, L-cysteine (L-cys) was assembled on HGNs through Au-S bond. The hollow gold nanospheres were prepared by using Co nanoparticles as sacrificial templates and characterized by scanning electron microscopy, transmission electron microscopy and ultraviolet spectra, respectively. Finally, AChE was immobilized with covalent binding via -COOH groups of L-cysteine onto the modified GCE. The AChE biosensor fabrication process was characterized by cyclic voltammetry and electrochemical impedance spectroscopy methods with the use of ferricyanide as an electrochemical redox indicator. Under optimum conditions, the inhibition rates of pesticides were proportional to their concentrations in the range of 0.1-150 and 0.1-200 μg L(-1) for chlorpyrifos and carbofuran, respectively, the detection limits were 0.06 μg L(-1) for chlorpyrifos and 0.08 μg L(-1) for carbofuran. Moreover, the biosensor exhibited a good stability and reproducibility and was suitable for trace detection of pesticide residues in vegetables and fruits.

  19. Screen-printed electrode modified with carbon black and chitosan: a novel platform for acetylcholinesterase biosensor development.

    PubMed

    Talarico, Daria; Arduini, Fabiana; Amine, Aziz; Cacciotti, Ilaria; Moscone, Danila; Palleschi, Giuseppe

    2016-10-01

    We report a screen-printed electrode (SPE) modified with a dispersion of carbon black (CB) and chitosan by drop casting. A cyclic voltammetry technique towards ferricyanide, caffeic acid, hydroquinone, and thiocholine was performed and an improvement of the electrochemical response with respect to bare SPE as well as SPE modified only with chitosan was observed. The possibility to detect thiocholine at a low applied potential with high sensitivity was exploited and an acetylcholinesterase (AChE) biosensor was developed. A dispersion of CB, chitosan, and AChE was used to fabricate this biosensor in one step by drop casting. The enzymatic activity of the immobilized AChE was determined measuring the enzymatic product thiocholine at +300 mV. Owing to the capability of organophosphorus pesticides to inhibit AChE, this biosensor was used to detect these pollutants, and paraoxon was taken as model compound. The enzyme inhibition was linearly related to the concentration of paraoxon up to 0.5 μg L(-1), and a low detection limit equal to 0.05 μg L(-1) (calculated as 10% of inhibition) was achieved. This biosensor was challenged for paraoxon detection in drinking waters with satisfactory recovery values. The use of AChE embedded in a dispersion of CB and chitosan allowed an easy and fast production of a sensitive biosensor suitable for paraoxon detection in drinking waters at legal limit levels. Graphical Abstract Biosensors based on screen-printed electrodes modified with Acetylcholinesterase, Carbon Black, and Chitosan for organophosphorus pesticide detection.

  20. Site-specific immobilization of a (His)6-tagged acetylcholinesterase on nickel nanoparticles for highly sensitive toxicity biosensors.

    PubMed

    Ganesana, Mallikarjunarao; Istarnboulie, Georges; Marty, Jean-Louis; Noguer, Thierry; Andreescu, Silvana

    2011-12-15

    This paper reports site-specific affinity immobilization of (His)6-tagged acetylcholinesterase (AChE) onto Ni/NiO nanoparticles for the development of an electrochemical screen-printed biosensor for the detection of organophosphate pesticides. The method is based on the specific affinity binding of the His-tagged enzyme to oxidized nickel nanoparticle surfaces in the absence of metal chelators. This approach allows stable and oriented attachment of the enzyme onto the oxidized nickel through the external His residue in one-step procedure, allowing for fast and sensitive detection of paraoxon in the concentration range from 10(-8) to 10(-13) M. A detection limit of 10(-12) M for paraoxon was obtained after 20 min incubation. This method can be used as a generic approach for the immobilization of other His-tagged enzymes for the development of biosensors. PMID:21937214

  1. Evaluation of aflatoxin B1--acetylcholinesterase dissociation kinetic using the amperometric biosensor technology: prospect for toxicity mechanism.

    PubMed

    Pohanka, Miroslav; Musilek, Kamil; Kuca, Kamil

    2010-03-01

    Aflatoxins are group of secondary metabolites from moulds. The main toxic effect of aflatoxins on body is based on metabolic activation on cytochrome P450 system. Recently, some studies appointed at anticholinergic properties of aflatoxins and inhibition of acetylcholinesterases (AChE) was described. Inhibition is reversible; however, some questions arose. Is the interaction firmly enough to prevent distribution of aflatoxins in body? Could be AChE considered as a scavenger of aflatoxins? Amperometric biosensor with immobilized acetylcholinesterase was used for evaluation of aflatoxin B1 (AFB1) - AChE complex spontaneous dissociation, where AFB1 acts as an inhibitor. Displacement of solution with substrate and AFB1 by the intact one enabled estimation of dissociation kinetics. The dissociation rate constant k(dis) was found 0.0047 +/- 0.0005 s(-1). The half time (t(1/2)) of complex dissociation was 146 s. The achieved data appoint at fact that AChE could allow to distribute aflatoxins in body instead acting as a scavenger. Analytical impact of study is discussed, too.

  2. Graphene-based biosensors

    NASA Astrophysics Data System (ADS)

    Lebedev, A. A.; Davydov, V. Yu.; Novikov, S. N.; Litvin, D. P.; Makarov, Yu. N.; Klimovich, V. B.; Samoilovich, M. P.

    2016-07-01

    Results of developing and testing graphene-based sensors capable of detecting protein molecules are presented. The biosensor operation was checked using an immunochemical system comprising fluorescein dye and monoclonal antifluorescein antibodies. The sensor detects fluorescein concentration on a level of 1-10 ng/mL and bovine serum albumin-fluorescein conjugate on a level of 1-5 ng/mL. The proposed device has good prospects for use for early diagnostics of various diseases.

  3. Fiber based optofluidic biosensors

    NASA Astrophysics Data System (ADS)

    Lismont, M.; Vandewalle, N.; Joris, B.; Dreesen, L.

    2014-09-01

    Medicinal diagnosis requires the development of innovative devices allowing the detection of small amounts of biological species. Among the large variety of available biosensors, the ones based on fluorescence phenomenon are really promising. Here, we show a prototype of the basic unit of a multi-sensing biosensor combining optics and microfluidics benefits. This unit makes use of two crossed optical fibers: the first fiber is used to carry small probe molecules droplets and excite fluorescence, while the second one is devoted to target molecules droplets transport and fluorescence detection. Within this scheme, the interaction takes place in each fiber node. The main benefits of this detection setup are the absence of fibers functionalization, the use of microliter volumes of target and probe species, their separation before interaction, and a better detection limit compared to cuvettes setups.

  4. Development of novel enzyme potentiometric biosensor based on pH-sensitive field-effect transistors for aflatoxin B1 analysis in real samples.

    PubMed

    Stepurska, K V; Soldatkin, O O; Arkhypova, V M; Soldatkin, A P; Lagarde, F; Jaffrezic-Renault, N; Dzyadevych, S V

    2015-11-01

    This study aimed at the development and optimization of a potentiometric biosensor based on pH-sensitive field-effect transistors and acetylcholinesterase for aflatoxin B1 determination in real samples. Optimal conditions for bioselective elements operation were defined and analytical characteristics of the proposed biosensor were studied. The proposed biosensor characterized high operational stability and reproducibility of signal. Selectivity of acetylcholinesterase-biosensor to aflatoxins in relation to other groups of toxic substances was analyzed. The developed biosensor was applied to the determination of aflatoxin B1 in real samples (sesame, walnut and pea).

  5. Cyclic voltammetric acetylcholinesterase biosensor for the detection of captan in apple samples with the aid of chemometrics.

    PubMed

    Nesakumar, Noel; Sethuraman, Swaminathan; Krishnan, Uma Maheswari; Rayappan, John Bosco Balaguru

    2015-06-01

    The presence of captan residues in apples shows high toxicity, which often causes eye and skin irritation, dermatitis, conjunctivitis, and vomiting in humans. In this context, an electrochemical biosensor based on acetylcholinesterase (AChE) immobilized on a ZnO nanorod interface has been proposed. In this work, Hill, dose-response, and first-, second-, and third-order polynomial regression models were successfully applied and the prediction ability of these models was tested with the use of current density obtained from the cyclic voltammograms of appropriate captan solutions. The Pt/ZnO/AChE bioelectrode showed a high sensitivity of 0.538 μA cm(-2) μM(-1) in the linear range from 0.05 to 25.0 μM with a limit of detection of 107 nM. The recovery results were observed between 98.4 and 102.4 % from the apple sample. This work provides a new promising tool for the detection of captan in apple samples.

  6. Nanomaterials-based optical techniques for the detection of acetylcholinesterase and pesticides.

    PubMed

    Xia, Ning; Wang, Qinglong; Liu, Lin

    2015-01-01

    The large amount of pesticide residues in the environment is a threat to global health by inhibition of acetylcholinesterase (AChE). Biosensors for inhibition of AChE have been thus developed for the detection of pesticides. In line with the rapid development of nanotechnology, nanomaterials have attracted great attention and have been intensively studied in biological analysis due to their unique chemical, physical and size properties. The aim of this review is to provide insight into nanomaterial-based optical techniques for the determination of AChE and pesticides, including colorimetric and fluorescent assays and surface plasmon resonance.

  7. Nanomaterials-Based Optical Techniques for the Detection of Acetylcholinesterase and Pesticides

    PubMed Central

    Xia, Ning; Wang, Qinglong; Liu, Lin

    2015-01-01

    The large amount of pesticide residues in the environment is a threat to global health by inhibition of acetylcholinesterase (AChE). Biosensors for inhibition of AChE have been thus developed for the detection of pesticides. In line with the rapid development of nanotechnology, nanomaterials have attracted great attention and have been intensively studied in biological analysis due to their unique chemical, physical and size properties. The aim of this review is to provide insight into nanomaterial-based optical techniques for the determination of AChE and pesticides, including colorimetric and fluorescent assays and surface plasmon resonance. PMID:25558991

  8. Electrical Percolation Based Biosensors

    PubMed Central

    Bruck, Hugh Alan; Yang, Minghui; Kostov, Yordan; Rasooly, Avraham

    2013-01-01

    A new approach to label free biosensing has been developed based on the principle of “electrical percolation”. In electrical percolation, long-range electrical connectivity is formed in randomly oriented and distributed systems of discrete elements. By applying this principle to biological interactions, it is possible to measure biological components both directly and electronically. The main element for electrical percolation biosensor is the biological semiconductor (BSC) which is a multi-layer 3-D carbon nanotube-antibody network. In the BSC, molecular interactions, such as binding of antigens to the antibodies, disrupt the network continuity causing increased resistance of the network. BSCs can be fabricated by immobilizing conducting elements, such as pre-functionalized single-walled carbon nanotubes (SWNTs)-antibody complex, directly onto a substrate, such as a Poly(methyl methacrylate) (PMMA) surface (also known as plexi-glass or Acrylic). BSCs have been demonstrated for direct (label-free) electronic measurements of antibody-antigen binding using SWNTs. If the concentration of the SWNT network is slightly above the electrical percolation threshold, then binding of a specific antigen to the pre-functionalized SWNT dramatically increases the electrical resistance due to changes in the tunneling between the SWNTs. Using anti-Staphylococcal enterotoxin B (SEB) IgG as a “gate” and SEB as an “actuator”, it was demonstrated that the BSC was able to detect SEB at concentrations of 1 ng/ml. Based on this concept, an automated configuration for BSCs is described here that enables real time continuous detection. The new BSC configuration may permit assembly of multiple sensors on the same chip to create “Biological Central Processing Units (CPUs)” with multiple biological elements, capable of processing and sorting out information on multiple analytes simultaneously. PMID:24041756

  9. Preparation and performance of a colorimetric biosensor using acetylcholinesterase and indoxylacetate for assay of nerve agents and drugs

    PubMed Central

    Vlcek, Vitezslav

    2014-01-01

    Different toxic compounds can target the cholinergic nervous system. Acetylcholinesterase (AChE; EC 3.1.1.7) is one of the most crucial components of the cholinergic nervous system and thus many of the toxins interact with this enzyme. As to inhibitors, nerve agents used as chemical warfare, some insecticides, and drugs influencing the cholinergic system are common examples of AChE inhibitors. Once inhibited by a neurotoxic compound, a serious cholinergic crisis can occur. On the other hand, sensitivity of AChE to the inhibition can be used for analytical purposes. In this study, a simple disposable biosensor with AChE as a recognition element was devised. AChE was immobilized onto a cellulose matrix and indoxylacetate was used as a chromogenic substrate. The enzyme reaction was assessed by the naked eye using arbitrary units and pyridostigmine, tacrine, paraoxon, carbofuran, soman and VX were assayed as selected inhibitors. A good stability of the biosensors was found, with no aging over a quarter of a year and minimal sensitivity to the interference of organic solvents. The limit of detection ranged from 10 to 100 nmol/L for the compounds tested with a sample volume of 40 µL. PMID:26109903

  10. A Novel Acetylcholinesterase Biosensor: Core-Shell Magnetic Nanoparticles Incorporating a Conjugated Polymer for the Detection of Organophosphorus Pesticides.

    PubMed

    Dzudzevic Cancar, Hurija; Soylemez, Saniye; Akpinar, Yeliz; Kesik, Melis; Göker, Seza; Gunbas, Gorkem; Volkan, Murvet; Toppare, Levent

    2016-03-01

    To construct a sensing interface, in the present work, a conjugated polymer and core-shell magnetic nanoparticle containing biosensor was constructed for the pesticide analysis. The monomer 4,7-di(furan-2-yl)benzo[c][1,2,5]thiadiazole (FBThF) and core-shell magnetic nanoparticles were designed and synthesized for fabrication of the biosensing device. The magnetic nanoparticles were first treated with silica and then modified using carboxyl groups, which enabled binding of the biomolecules covalently. For the construction of the proposed sensor a two-step procedure was performed. First, the poly(FBThF) was electrochemically generated on the electrode surface. Then, carboxyl group modified magnetic nanoparticles (f-MNPs) and acetylcholinesterase (AChE), the model enzyme, were co-immobilized on the polymer-coated surface. Thereby, a robust and novel surface, conjugated polymer bearing magnetic nanoparticles with pendant carboxyl groups, was constructed, which was characterized using Fourier transform infrared spectrometer, cyclic voltammetry, scanning electron microscopy, and contact angle measurements. This novel architecture was then applied as an immobilization platform to detect pesticides. To the best of our knowledge, a sensor design that combines both conjugated polymer and magnetic nanoparticles was attempted for the first time, and this approach resulted in improved biosensor characteristics. Hence, this approach opens a new perspective in the field of enzyme immobilization and sensing applications. Paraoxon and trichlorfon were selected as the model toxicants. To obtain best biosensor performance, optimization studies were performed. Under optimized conditions, the biosensor in concern revealed a rapid response (5 s), a low detection limit (6.66 × 10(-3) mM), and high sensitivity (45.01 μA mM(-1) cm(-2)). The KM(app) value of poly(FBThF)/f-MNPs/AChE were determined as 0.73 mM. Furthermore, there was no considerable activity loss for 10 d for poly

  11. Biosensors based on nanomechanical systems.

    PubMed

    Tamayo, Javier; Kosaka, Priscila M; Ruz, José J; San Paulo, Álvaro; Calleja, Montserrat

    2013-02-01

    The advances in micro- and nanofabrication technologies enable the preparation of increasingly smaller mechanical transducers capable of detecting the forces, motion, mechanical properties and masses that emerge in biomolecular interactions and fundamental biological processes. Thus, biosensors based on nanomechanical systems have gained considerable relevance in the last decade. This review provides insight into the mechanical phenomena that occur in suspended mechanical structures when either biological adsorption or interactions take place on their surface. This review guides the reader through the parameters that change as a consequence of biomolecular adsorption: mass, surface stress, effective Young's modulus and viscoelasticity. The mathematical background needed to correctly interpret the output signals from nanomechanical biosensors is also outlined here. Other practical issues reviewed are the immobilization of biomolecular receptors on the surface of nanomechanical systems and methods to attain that in large arrays of sensors. We then describe some relevant realizations of biosensor devices based on nanomechanical systems that harness some of the mechanical effects cited above. We finally discuss the intrinsic detection limits of the devices and the limitation that arises from non-specific adsorption. PMID:23152052

  12. Biosensors based on nanomechanical systems.

    PubMed

    Tamayo, Javier; Kosaka, Priscila M; Ruz, José J; San Paulo, Álvaro; Calleja, Montserrat

    2013-02-01

    The advances in micro- and nanofabrication technologies enable the preparation of increasingly smaller mechanical transducers capable of detecting the forces, motion, mechanical properties and masses that emerge in biomolecular interactions and fundamental biological processes. Thus, biosensors based on nanomechanical systems have gained considerable relevance in the last decade. This review provides insight into the mechanical phenomena that occur in suspended mechanical structures when either biological adsorption or interactions take place on their surface. This review guides the reader through the parameters that change as a consequence of biomolecular adsorption: mass, surface stress, effective Young's modulus and viscoelasticity. The mathematical background needed to correctly interpret the output signals from nanomechanical biosensors is also outlined here. Other practical issues reviewed are the immobilization of biomolecular receptors on the surface of nanomechanical systems and methods to attain that in large arrays of sensors. We then describe some relevant realizations of biosensor devices based on nanomechanical systems that harness some of the mechanical effects cited above. We finally discuss the intrinsic detection limits of the devices and the limitation that arises from non-specific adsorption.

  13. Alginate cryogel based glucose biosensor

    NASA Astrophysics Data System (ADS)

    Fatoni, Amin; Windy Dwiasi, Dian; Hermawan, Dadan

    2016-02-01

    Cryogel is macroporous structure provides a large surface area for biomolecule immobilization. In this work, an alginate cryogel based biosensor was developed to detect glucose. The cryogel was prepared using alginate cross-linked by calcium chloride under sub-zero temperature. This porous structure was growth in a 100 μL micropipette tip with a glucose oxidase enzyme entrapped inside the cryogel. The glucose detection was based on the colour change of redox indicator, potassium permanganate, by the hydrogen peroxide resulted from the conversion of glucose. The result showed a porous structure of alginate cryogel with pores diameter of 20-50 μm. The developed glucose biosensor was showed a linear response in the glucose detection from 1.0 to 5.0 mM with a regression of y = 0.01x+0.02 and R2 of 0.994. Furthermore, the glucose biosensor was showed a high operational stability up to 10 times of uninterrupted glucose detections.

  14. Bioactive Paper Sensor Based on the Acetylcholinesterase for the Rapid Detection of Organophosphate and Carbamate Pesticides

    PubMed Central

    Badawy, Mohamed E. I.; El-Aswad, Ahmed F.

    2014-01-01

    In many countries, people are becoming more concerned about pesticide residues which are present in or on food and feed products. For this reason, several methods have been developed to monitor the pesticide residue levels in food samples. In this study, a bioactive paper-based sensor was developed for detection of acetylcholinesterase (AChE) inhibitors including organophosphate and carbamate pesticides. Based on the Ellman colorimetric assay, the assay strip is composed of a paper support (1 × 10 cm), onto which a biopolymer chitosan gel immobilized in crosslinking by glutaraldehyde with AChE and 5,5′-dithiobis(2-nitrobenzoic) acid (DTNB) and uses acetylthiocholine iodide (ATChI) as an outside reagent. The assay protocol involves introducing the sample to sensing zone via dipping of a pesticide-containing solution. Following an incubation period, the paper is placed into ATChI solution to initiate enzyme catalyzed hydrolysis of the substrate, causing a yellow color change. The absence or decrease of the yellow color indicates the levels of the AChE inhibitors. The biosensor is able to detect organophosphate and carbamate pesticides with good detection limits (methomyl = 6.16 × 10−4 mM and profenofos = 0.27 mM) and rapid response times (~5 min). The results show that the paper-based biosensor is rapid, sensitive, inexpensive, portable, disposable, and easy-to-use. PMID:25484901

  15. Study on Carrier Material of Immobilization Acetylcholinesterase For Biosensor in Detectionof Organophosphorus Pesticide Residues

    NASA Astrophysics Data System (ADS)

    Sun, Xia; Wang, Xiangyou; Jia, Chuandong

    A comparison between several immobilization materials of AChE on surface of glassy carbon electrode(GCE) was presented. The immobilization methods employed crosslinking method with glutaraldehyde as a cross-linking agent and bovine serum albumin(BSA) as a protectant, AChE was immobilized on different membranes including nylon membrane, cellulose nitrate membrane and chitosan membrane respectively. The enzyme membrane was then fixed on the surface of glassy carbon electrode(GCE) with O-ring to prepare an amperometric biosensor for the detection of organophosphorus pesticides. The activity of immobilization AChE was detected by measuring the oxidation current of thiocholine, the results showed that the activity of immobilization AChE were all different with different membrane as carrier material.Compared with nylon membrane and cellulose nitrate membrane, chitosan membrane was obviously good. So chitosan membrane can be selected as immobilized AChE carrier material.

  16. A creatinine biosensor based on admittance measurement

    NASA Astrophysics Data System (ADS)

    Ching, Congo Tak-Shing; Sun, Tai-Ping; Jheng, Deng-Yun; Tsai, Hou-Wei; Shieh, Hsiu-Li

    2015-08-01

    Regular check of blood creatinine level is very important as it is a measurement of renal function. Therefore, the objective of this study is to develop a simple and reliable creatinine biosensor based on admittance measurement for precise determination of creatinine. The creatinine biosensor was fabricated with creatinine deiminase immobilized on screen-printed carbon electrodes. Admittance measurement at a specific frequency ranges (22.80 - 84.71 Hz) showed that the biosensor has an excellent linear (r2 > 0.95) response range (50 - 250 uM), which covers the normal physiological and pathological ranges of blood creatinine levels. Intraclass correlation coefficient (ICC) showed that the biosensor has excellent reliability and validity (ICC = 0.98). In conclusion, a simple and reliable creatinine biosensor was developed and it is capable of precisely determining blood creatinine levels in both the normal physiological and pathological ranges.

  17. Nanomaterials based biosensors for cancer biomarker detection

    NASA Astrophysics Data System (ADS)

    Malhotra, Bansi D.; Kumar, Saurabh; Mouli Pandey, Chandra

    2016-04-01

    Biosensors have enormous potential to contribute to the evolution of new molecular diagnostic techniques for patients suffering with cancerous diseases. A major obstacle preventing faster development of biosensors pertains to the fact that cancer is a highly complex set of diseases. The oncologists currently rely on a few biomarkers and histological characterization of tumors. Some of the signatures include epigenetic and genetic markers, protein profiles, changes in gene expression, and post-translational modifications of proteins. These molecular signatures offer new opportunities for development of biosensors for cancer detection. In this context, conducting paper has recently been found to play an important role towards the fabrication of a biosensor for cancer biomarker detection. In this paper we will focus on results of some of the recent studies obtained in our laboratories relating to fabrication and application of nanomaterial modified paper based biosensors for cancer biomarker detection.

  18. Development, validation, and application of an acetylcholinesterase-biosensor test for the direct detection of insecticide residues in infant food.

    PubMed

    Schulze, Holger; Scherbaum, Ellen; Anastassiades, Michelangelo; Vorlová, Sandra; Schmid, Rolf D; Bachmann, Till T

    2002-12-01

    A highly sensitive and rapid food-screening test based on disposable screen-printed biosensors was developed, which is suitable for monitoring infant food. The exposure of infants and children to neurotoxic organophosphates and carbamates is of particular concern because of their higher susceptibility to adverse effects. The European Union has, therefore, set a very low limit for pesticides in infant food, which must not contain concentrations exceeding 10 microg/kg for any given pesticide. The maximum residue limit (MRL) has been set to be near the determination threshold that is typically achieved for pesticides with traditional analytical methods. The biosensor method could detect levels lower than 5 microg/kg and thus clearly fulfills the demands of the EU. To substantiate these measurements, recovery rates were determined and amounted on average to 104% in food. Matrix effects were eliminated by the introduction of a special electrode treatment. The test was compared with two traditional pesticide multiresidue analysis methods (GC-MS, LC-MS) using 26 fruit and vegetable samples from local markets and 23 samples of processed infant food from Germany, Spain, Poland and USA. Three infant food samples exceeded the MRL of 10 microg/kg when analyzed by either biosensor test or multiresidue methods.

  19. PRINCIPLES OF AFFINITY-BASED BIOSENSORS

    EPA Science Inventory

    Despite the amount of resources that have been invested by national and international academic, government, and commercial sectors to develop affinity-based biosensor products, little obvious success has been realized through commercialization of these devices for specific applic...

  20. Comparative investigation between acetylcholinesterase obtained from commercial sources and genetically modified Drosophila melanogaster: application in amperometric biosensors for methamidophos pesticide detection.

    PubMed

    de Oliveira Marques, Paulo Roberto Brasil; Nunes, Gilvanda Silva; dos Santos, Teresa Cristina Rodrigues; Andreescu, Silvana; Marty, Jean-Louis

    2004-11-01

    Genetically modified acetylcholinesterase (AChE) from Drosophila melanogaster (dm) and from commercial sources, Electric eel (ee), Bovine erythrocites (be) and Human erythrocites (he), were investigated as biological receptors for the detection of methamidophos pesticide based on inhibition studies. Most engineered variant of AChE from dm showed enhanced sensitivity toward methamidophos pesticide. Among 24 dmAChE variants tested, 12 presented a sensitivity comparable to the commercially available eeAChE, but higher than AChEs from be and he. Four were found more sensitive and six others were insensitive to methamidophos insecticide. The D375G,Y370F,Y374A,F376L mutant was the most sensitive, with a ki value of 2.2 X 10(6) mol(-1) L min(-1), three orders of magnitude higher than eeAChE (1.1 X 10(3) mol(-1) L min(-1)). The sensor constructed with genetically modified enzyme showed better characteristics with respect to detection limit and sensitivity compared with those using commercial eeAChE. Differential pulse polarography and chronoamperometry were used as electrochemical techniques to characterize the AChE biosensors. The lower detection limit of 1 ppb was obtained with D375G,Y370F,Y374A,F376L mutant of dmAChE, compared to 90 ppb for the commercial eeAChE. This study may stimulate scientists to develop more sensitive and selective procedures for organophosphorus insecticides detection by using engineered variant of dmAChE. PMID:15522598

  1. Aptamer-based biosensors: biomedical applications.

    PubMed

    Deisingh, A K

    2006-01-01

    This chapter considers the use of aptamer-based biosensors (generally termed 'aptasensors') in various biomedical applications. A comparison of antibodies and aptamers is made with respect to their use in the development of biosensors. A brief introduction to biosensor design and theory is provided to illustrate the principles of the field. Various transduction approaches, viz. optical, fluorescence, acoustic wave and electrochemical, are discussed. Specific biomedical applications described include RNA folding, high-throughput screening of drugs, use as receptors for measuring biological concentrations, detection of platelet-derived growth factor, protein binding and detection of HIV-1 Tat protein.

  2. Design strategies for aptamer-based biosensors.

    PubMed

    Han, Kun; Liang, Zhiqiang; Zhou, Nandi

    2010-01-01

    Aptamers have been widely used as recognition elements for biosensor construction, especially in the detection of proteins or small molecule targets, and regarded as promising alternatives for antibodies in bioassay areas. In this review, we present an overview of reported design strategies for the fabrication of biosensors and classify them into four basic modes: target-induced structure switching mode, sandwich or sandwich-like mode, target-induced dissociation/displacement mode and competitive replacement mode. In view of the unprecedented advantages brought about by aptamers and smart design strategies, aptamer-based biosensors are expected to be one of the most promising devices in bioassay related applications.

  3. Enzyme Nanoparticles-Based Electronic Biosensor

    SciTech Connect

    Liu, Guodong; Lin, Yuehe; Ostatna, V.; Wang, Joseph

    2005-06-28

    A novel method for fabricating electronic biosensors based on coupling enzyme nanoparticles and self assembly technology is illustrated. Redox horseradish peroxidase nanoparticles were prepared by desolvation with ethanol and subsequent crosslinking with glutaraldehyde. The cross-linked enzyme nanoparticles were functionalized by cysteine to introduce thiol groups on the nanoparticle surface. Immobilized enzyme nanoparticle on the gold electrode by self-assembly kept redox and electrocatalytic activities, and was used to develop reagentless biosensors for H2O2 detection without promoters and mediators. The new approach is simple, low cost and circumvents complications associated with solution systems. It is a universal immobilization method for biosensor, biomedical devices, biofuel cells and enzymatic bioreactors fabrication and expected to open new opportunities for biosensor, clinical diagnostics, and for bioanalysis, in general.

  4. Environmental applications of photoluminescence-based biosensors.

    PubMed

    Reardon, Kenneth F; Zhong, Zhong; Lear, Kevin L

    2009-01-01

    For monitoring and treatment of soil and water, environmental scientists and engineers require measurements of the concentration of chemical contaminants. Although laboratory-based methods relying on gas or liquid chromatography can yield very accurate measurements, they are also complex, time consuming, expensive, and require sample pretreatment. Furthermore, they are not readily adapted for in situ measurements.Sensors are devices that can provide continuous, in situ measurements, ideally without the addition of reagents. A biosensor incorporates a biological component coupled to a transducer, which translates the interaction between the analyte and the biocomponent into a signal that can be processed and reported. A wide range of transducers have been employed in biosensors, the most common of which are electrochemical and optical. In this contribution, we focus on photoluminescence-based biosensors of potential use in the applications described above.Following a review of photoluminescence and a discussion of the optoelectronic hardware part of these biosensor systems, we provide explanations and examples of optical biosensors for specific chemical groups: hydrocarbons and alcohols, halogenated organics, nitro-, phospho-, sulfo-, and other substituted organics, and metals and other inorganics. We also describe approaches that have been taken to describe chemical mixtures as a whole (biological oxygen demand and toxicity) since most environmental samples contain mixtures of unknown (and changing) composition. Finally, we end with some thoughts on future research directions that are necessary to achieve the full potential of environmental biosensors.

  5. Fiber optic-based biosensor

    NASA Technical Reports Server (NTRS)

    Ligler, Frances S.

    1991-01-01

    The NRL fiber optic biosensor is a device which measures the formation of a fluorescent complex at the surface of an optical fiber. Antibodies and DNA binding proteins provide the mechanism for recognizing an analyze and immobilizing a fluorescent complex on the fiber surface. The fiber optic biosensor is fast, sensitive, and permits analysis of hazardous materials remote from the instrumentation. The fiber optic biosensor is described in terms of the device configuration, chemistry for protein immobilization, and assay development. A lab version is being used for assay development and performance characterization while a portable device is under development. Antibodies coated on the fiber are stable for up to two years of storage prior to use. The fiber optic biosensor was used to measure concentration of toxins in the parts per billion (ng/ml) range in under a minute. Immunoassays for small molecules and whole bacteria are under development. Assays using DNA probes as the detection element can also be used with the fiber optic sensor, which is currently being developed to detect biological warfare agents, explosives, pathogens, and toxic materials which pollute the environment.

  6. Graphene-Based Optical Biosensors and Imaging

    SciTech Connect

    Tang, Zhiwen; He, Shijiang; Pei, Hao; Du, Dan; Fan, Chunhai; Lin, Yuehe

    2014-01-13

    This chapter focuses on the design, fabrication and application of graphene based optical nanobiosensors. The emerging graphene based optical nanobiosensors demonstrated the promising bioassay and biomedical applications thanking to the unique optical features of graphene. According to the different applications, the graphene can be tailored to form either fluorescent emitter or efficient fluorescence quencher. The exceptional electronic feature of graphene makes it a powerful platform for fabricating the SPR and SERS biosensors. Today the graphene based optical biosensors have been constructed to detect various targets including ions, small biomolecules, DNA/RNA and proteins. This chapter reviews the recent progress in graphene-based optical biosensors and discusses the opportunities and challenges in this field.

  7. Perspectives for the structure-based design of acetylcholinesterase reactivators.

    PubMed

    Ochoa, Rodrigo; Rodriguez, Carlos A; Zuluaga, Andres F

    2016-07-01

    Rational design of active molecules through structure-based methods has been gaining adepts during the last decades due to the wider availability of protein structures, most of them conjugated with relevant ligands. Acetylcholinesterase (AChE) is a molecular target with a considerable amount of data related to its sequence and 3-dimensional structure. In addition, there are structural insights about the mechanism of action of the natural substrate and drugs used in Alzheimer's disease, organophosphorus compounds, among others. We looked for AChE structural data useful for in silico design of potential interacting molecules. In particular, we focused on information regarding the design of ligands aimed to reactivate AChE catalytic activity. The structures of 178 AChE were annotated and categorized on different subsets according to the nature of the ligand, source organisms and experimental details. We compared sequence homology among the active site from Torpedo californica, Mus musculus and Homo sapiens with the latter two species having the closest relationship (88.9% identity). In addition, the mechanism of organophosphorus binding and the design of effective reactivators are reviewed. A curated data collection obtained with information from several sources was included for researchers working on the field. Finally, a molecular dynamics simulation with human AChE indicated that the catalytic pocket volume stabilizes around 600 Å(3), providing additional clues for drug design. PMID:27450771

  8. Device considerations for development of conductance-based biosensors

    PubMed Central

    Lee, Kangho; Nair, Pradeep R.; Scott, Adina; Alam, Muhammad A.; Janes, David B.

    2009-01-01

    Design and fabrication of electronic biosensors based on field-effect-transistor (FET) devices require understanding of interactions between semiconductor surfaces and organic biomolecules. From this perspective, we review practical considerations for electronic biosensors with emphasis on molecular passivation effects on FET device characteristics upon immobilization of organic molecules and an electrostatic model for FET-based biosensors. PMID:24753627

  9. Biosensors.

    ERIC Educational Resources Information Center

    Rechnitz, Garry A.

    1988-01-01

    Describes theory and principles behind biosensors that incorporate biological components as part of a sensor or probe. Projects major applications in medicine and veterinary medicine, biotechnology, food and agriculture, environmental studies, and the military. Surveys current use of biosensors. (ML)

  10. Enhanced efficiency of a capillary-based biosensor over an optical fiber biosensor for detecting calpastatin.

    PubMed

    Bratcher, C L; Grant, S A; Vassalli, J T; Lorenzen, C L

    2008-06-15

    A capillary-based optical biosensor has been developed to detect calpastatin, an indicator of meat tenderness. Longissimus muscle samples (n=11) were extracted from beef carcasses at 0 and 48h post-mortem. These samples were assayed for calpastatin by traditional laboratory methods and with a newly developed capillary tube biosensor as well as for Warner-Bratzler shear force (WBSF) and crude protein and the responses were compared. Additionally, the response from the capillary-based biosensor was compared to a previously developed optical fiber biosensor. When the 0 and 48h sampling periods were combined, the capillary tube biosensor was moderately accurate in predicting calpastatin activity (R(2)=0.6058). There was less variation in the 0h capillary tube biosensor compared to the 0h pre-column (P=0.006) and post-column optical fiber biosensors (P=0.047), therefore the capillary tube biosensor is a more precise system of measurement. This research further advances the development of a calpastatin biosensor and makes online assessment one step closer to reality.

  11. Fiber optic-based regenerable biosensor

    DOEpatents

    Sepaniak, Michael J.; Vo-Dinh, Tuan

    1993-01-01

    A fiber optic-based regenerable biosensor. The biosensor is particularly suitable for use in microscale work in situ. In one embodiment, the biosensor comprises a reaction chamber disposed adjacent the distal end of a waveguide and adapted to receive therein a quantity of a sample containing an analyte. Leading into the chamber is a plurality of capillary conduits suitable for introducing into the chamber antibodies or other reagents suitable for selective interaction with a predetermined analyte. Following such interaction, the contents of the chamber may be subjected to an incident energy signal for developing fluorescence within the chamber that is detectable via the optical fiber and which is representative of the presence, i.e. concentration, of the selected analyte. Regeneration of the biosensor is accomplished by replacement of the reagents and/or the analyte, or a combination of these, at least in part via one or more of the capillary conduits. The capillary conduits extend from their respective terminal ends that are in fluid communication with the chamber, away from the chamber to respective location(s) remote from the chamber thereby permitting in situ location of the chamber and remote manipulation and/or analysis of the activity with the chamber.

  12. Nanomaterial-Based Electrochemical Biosensors and Bioassays

    SciTech Connect

    Liu, Guodong; Mao, Xun; Gurung, Anant; Baloda, Meenu; Lin, Yuehe; He, Yuqing

    2010-08-31

    This book chapter summarizes the recent advance in nanomaterials for electrochemical biosensors and bioassays. Biofunctionalization of nanomaterials for biosensors fabrication and their biomedical applications are discussed.

  13. Synthesis and in vitro acetylcholinesterase and butyrylcholinesterase inhibitory potential of hydrazide based Schiff bases.

    PubMed

    Rahim, Fazal; Ullah, Hayat; Taha, Muhammad; Wadood, Abdul; Javed, Muhammad Tariq; Rehman, Wajid; Nawaz, Mohsan; Ashraf, Muhammad; Ali, Muhammad; Sajid, Muhammad; Ali, Farman; Khan, Muhammad Naseem; Khan, Khalid Mohammed

    2016-10-01

    To discover multifunctional agents for the treatment of Alzheimer's disease, a series of hydrazide based Schiff bases were designed and synthesized based on multitarget-directed strategy. We have synthesized twenty-eight analogs of hydrazide based Schiff bases, characterized by various spectroscopic techniques and evaluated in vitro for acetylcholinesterase and butyrylcholinesterase inhibition. All compounds showed varied degree of acetylcholinesterase and butyrylcholinesterase inhibition when compared with standard Eserine. Among the series, compounds 10, 3 and 24 having IC50 values 4.12±0.01, 8.12±0.01 and 8.41±0.06μM respectively showed potent acetylcholinesterase inhibition when compared with Eserine (IC50=0.85±0.0001μM). Three compounds 13, 24 and 3 having IC50 values 6.51±0.01, 9.22±0.07 and 37.82±0.14μM respectively showed potent butyrylcholinesterase inhibition by comparing with eserine (IC50=0.04±0.0001μM). The remaining compounds also exhibited moderate to weak inhibitory potential. Structure activity relationship has been established. Through molecular docking studies the binding interaction was confirmed.

  14. Fabrication of fluorescence-based biosensors from functionalized CdSe and CdTe quantum dots for pesticide detection

    NASA Astrophysics Data System (ADS)

    Tran, Thi Kim Chi; Chinh Vu, Duc; Dieu Thuy Ung, Thi; Yen Nguyen, Hai; Hai Nguyen, Ngoc; Cao Dao, Tran; Nga Pham, Thu; Liem Nguyen, Quang

    2012-09-01

    This paper presents the results on the fabrication of highly sensitive fluorescence biosensors for pesticide detection. The biosensors are actually constructed from the complex of quantum dots (QDs), acetylcholinesterase (AChE) and acetylthiocholine (ATCh). The biosensor activity is based on the change of luminescence from CdSe and CdTe QDs with pH, while the pH is changed with the hydrolysis rate of ATCh catalyzed by the enzyme AChE, whose activity is specifically inhibited by pesticides. Two kinds of QDs were used to fabricate our biosensors: (i) CdSe QDs synthesized in high-boiling non-polar organic solvent and then functionalized by shelling with two monolayers (2-ML) of ZnSe and eight monolayers (8-ML) of ZnS and finally capped with 3-mercaptopropionic acid (MPA) to become water soluble; and (ii) CdTe QDs synthesized in aqueous phase then shelled with CdS. For normal checks the fabricated biosensors could detect parathion methyl (PM) pesticide at very low contents of ppm with the threshold as low as 0.05 ppm. The dynamic range from 0.05 ppm to 1 ppm for the pesticide detection could be expandable by increasing the AChE amount in the biosensor.

  15. Simultaneous determination of pH, urea, acetylcholine and heavy metals using array-based enzymatic optical biosensor.

    PubMed

    Tsai, Hsiao-chung; Doong, Ruey-an

    2005-03-15

    An array-based optical biosensor for the simultaneous analysis of multiple samples in the presence of unrelated multi-analytes was fabricated. Urease and acetylcholinesterase (AChE) were used as model enzymes and were co-entrapped with the sensing probe, FITC-dextran, in the sol-gel matrix to measure pH, urea, acetylcholine (ACh) and heavy metals (enzyme inhibitors). Environmental and biological samples spiked with metal ions were also used to evaluate the application of the array biosensor to real samples. The biosensor exhibited high specificity in identifying multiple analytes. No obvious cross-interference was observed when a 50-spot array biosensor was used for simultaneous analysis of multiple samples in the presence of multiple analytes. The sensing system can determine pH over a dynamic range from 4 to 8.5. The limits of detection (LODs) of 2.5-50 microM with a dynamic range of 2-3 orders of magnitude for urea and ACh measurements were obtained. Moreover, the urease-encapsulated array biosensor was used to detect heavy metals. The analytical ranges of Cd(II), Cu(II), and Hg(II) were between 10 nM and 100 mM. When real samples were spiked with heavy metals, the array biosensor also exhibited potential effectiveness in screening enzyme inhibitors.

  16. Amperometric biosensors based on carbon composite transducers

    NASA Astrophysics Data System (ADS)

    Lu, Fang

    1998-12-01

    Much current work in analytical chemistry is devoted to design of biosensors. One particular area in this field is the development of enzyme-based amperometric biosensors for the quantitative determination of a series of substrates in clinical, environmental, industrial and agricultural significance. This dissertation focuses on the design of improved amperometric biosensors based on carbon composite transducers. The use of metallized carbons as transducer materials results in remarkably selective amperometric biosensors. Such enzyme-based transducers eliminate major electroactive interferences, and hence circumvent the need for mediators or membrane barriers. The remarkable selectivity of metal-dispersed carbons is attributed to their strong, preferential, electrocatalytic capacity towards the reductive detection of biologically-generated hydrogen peroxide. Such electrocatalytic activity allows metal-dispersed biosensors to be operated at the optimal potential region between +0.1 and -0.2 V, where the unwanted reactions are neglected resulting in the lowest noise level. Several new materials (e.g., ruthenium on carbon, rhodium on carbon, etc.) and constructions (e.g., carbon fiber, electrochemical co-deposition transducer, etc.) were applied in the development of novel enzyme-based transducers in order to improve the selectivity and applicability of amperometric biosensors. The susceptibility of first-generation oxidase amperometric biosensing to oxygen fluctuations can be improved by using oxygen-rich fluorocarbons as the pasting binders in carbon paste enzyme transducers. Such binders provide an internal supply of oxygen resulting in efficient detection in oxygen-deficit conditions. In particular, the use of poly-chlorotrifluorethylene (Kel-F) oil as carbon paste binder results in a well-defined response and an identical signal up to 40 mM glucose in both the presence and absence of oxygen. Comparing with mediated or wired enzyme-based transducers, such internal

  17. Sensitive-cell-based fish chromatophore biosensor

    NASA Astrophysics Data System (ADS)

    Plant, Thomas K.; Chaplen, Frank W.; Jovanovic, Goran; Kolodziej, Wojtek; Trempy, Janine E.; Willard, Corwin; Liburdy, James A.; Pence, Deborah V.; Paul, Brian K.

    2004-07-01

    A sensitive biosensor (cytosensor) has been developed based on color changes in the toxin-sensitive colored living cells of fish. These chromatophores are highly sensitive to the presence of many known and unknown toxins produced by microbial pathogens and undergo visible color changes in a dose-dependent manner. The chromatophores are immobilized and maintained in a viable state while potential pathogens multiply and fish cell-microbe interactions are monitored. Low power LED lighting is used to illuminate the chromatophores which are magnified using standard optical lenses and imaged onto a CCD array. Reaction to toxins is detected by observing changes is the total area of color in the cells. These fish chromatophores are quite sensitive to cholera toxin, Staphococcus alpha toxin, and Bordatella pertussis toxin. Numerous other toxic chemical and biological agents besides bacterial toxins also cause readily detectable color effects in chromatophores. The ability of the chromatophore cell-based biosensor to distinguish between different bacterial pathogens was examined. Toxin producing strains of Salmonella enteritis, Vibrio parahaemolyticus, and Bacillus cereus induced movement of pigmented organelles in the chromatophore cells and this movement was measured by changes in the optical density over time. Each bacterial pathogen elicited this measurable response in a distinctive and signature fashion. These results suggest a chromatophore cell-based biosensor assay may be applicable for the detection and identification of virulence activities associated with certain air-, food-, and water-borne bacterial pathogens.

  18. Recent advances in biosensor based endotoxin detection.

    PubMed

    Das, A P; Kumar, P S; Swain, S

    2014-01-15

    Endotoxins also referred to as pyrogens are chemically lipopolysaccharides habitually found in food, environment and clinical products of bacterial origin and are unavoidable ubiquitous microbiological contaminants. Pernicious issues of its contamination result in high mortality and severe morbidities. Standard traditional techniques are slow and cumbersome, highlighting the pressing need for evoking agile endotoxin detection system. The early and prompt detection of endotoxin assumes prime importance in health care, pharmacological and biomedical sectors. The unparalleled recognition abilities of LAL biosensors perched with remarkable sensitivity, high stability and reproducibility have bestowed it with persistent reliability and their possible fabrication for commercial applicability. This review paper entails an overview of various trends in current techniques available and other possible alternatives in biosensor based endotoxin detection together with its classification, epidemiological aspects, thrust areas demanding endotoxin control, commercially available detection sensors and a revolutionary unprecedented approach narrating the influence of omics for endotoxin detection. PMID:23934306

  19. Recent advances in biosensor based endotoxin detection.

    PubMed

    Das, A P; Kumar, P S; Swain, S

    2014-01-15

    Endotoxins also referred to as pyrogens are chemically lipopolysaccharides habitually found in food, environment and clinical products of bacterial origin and are unavoidable ubiquitous microbiological contaminants. Pernicious issues of its contamination result in high mortality and severe morbidities. Standard traditional techniques are slow and cumbersome, highlighting the pressing need for evoking agile endotoxin detection system. The early and prompt detection of endotoxin assumes prime importance in health care, pharmacological and biomedical sectors. The unparalleled recognition abilities of LAL biosensors perched with remarkable sensitivity, high stability and reproducibility have bestowed it with persistent reliability and their possible fabrication for commercial applicability. This review paper entails an overview of various trends in current techniques available and other possible alternatives in biosensor based endotoxin detection together with its classification, epidemiological aspects, thrust areas demanding endotoxin control, commercially available detection sensors and a revolutionary unprecedented approach narrating the influence of omics for endotoxin detection.

  20. Raman Spectroscopy Cell-based Biosensors

    PubMed Central

    Notingher, Ioan

    2007-01-01

    One of the main challenges faced by biodetection systems is the ability to detect and identify a large range of toxins at low concentrations and in short times. Cell-based biosensors rely on detecting changes in cell behaviour, metabolism, or induction of cell death following exposure of live cells to toxic agents. Raman spectroscopy is a powerful technique for studying cellular biochemistry. Different toxic chemicals have different effects on living cells and induce different time-dependent biochemical changes related to cell death mechanisms. Cellular changes start with membrane receptor signalling leading to cytoplasmic shrinkage and nuclear fragmentation. The potential advantage of Raman spectroscopy cell-based systems is that they are not engineered to respond specifically to a single toxic agent but are free to react to many biologically active compounds. Raman spectroscopy biosensors can also provide additional information from the time-dependent changes of cellular biochemistry. Since no cell labelling or staining is required, the specific time dependent biochemical changes in the living cells can be used for the identification and quantification of the toxic agents. Thus, detection of biochemical changes of cells by Raman spectroscopy could overcome the limitations of other biosensor techniques, with respect to detection and discrimination of a large range of toxic agents. Further developments of this technique may also include integration of cellular microarrays for high throughput in vitro toxicological testing of pharmaceuticals and in situ monitoring of the growth of engineered tissues.

  1. Design of nanostructured-based glucose biosensors

    NASA Astrophysics Data System (ADS)

    Komirisetty, Archana; Williams, Frances; Pradhan, Aswini; Konda, Rajini B.; Dondapati, Hareesh; Samantaray, Diptirani

    2012-04-01

    This paper presents the design of glucose sensors that will be integrated with advanced nano-materials, bio-coatings and electronics to create novel devices that are highly sensitive, inexpensive, accurate, and reliable. In the work presented, a glucose biosensor and its fabrication process flow have been designed. The device is based on electrochemical sensing using a working electrode with bio-functionalized zinc oxide (ZnO) nano-rods. Among all metal oxide nanostructures, ZnO nano-materials play a significant role as a sensing element in biosensors due to their properties such as high isoelectric point (IEP), fast electron transfer, non-toxicity, biocompatibility, and chemical stability which are very crucial parameters to achieve high sensitivity. Amperometric enzyme electrodes based on glucose oxidase (GOx) are used due to their stability and high selectivity to glucose. The device also consists of silicon dioxide and titanium layers as well as platinum working and counter electrodes and a silver/silver chloride reference electrode. Currently, the biosensors are being fabricated using the process flow developed. Once completed, the sensors will be bio-functionalized and tested to characterize their performance, including their sensitivity and stability.

  2. Electronic Biosensors Based on III-Nitride Semiconductors

    NASA Astrophysics Data System (ADS)

    Kirste, Ronny; Rohrbaugh, Nathaniel; Bryan, Isaac; Bryan, Zachary; Collazo, Ramon; Ivanisevic, Albena

    2015-07-01

    We review recent advances of AlGaN/GaN high-electron-mobility transistor (HEMT)-based electronic biosensors. We discuss properties and fabrication of III-nitride-based biosensors. Because of their superior biocompatibility and aqueous stability, GaN-based devices are ready to be implemented as next-generation biosensors. We review surface properties, cleaning, and passivation as well as different pathways toward functionalization, and critically analyze III-nitride-based biosensors demonstrated in the literature, including those detecting DNA, bacteria, cancer antibodies, and toxins. We also discuss the high potential of these biosensors for monitoring living cardiac, fibroblast, and nerve cells. Finally, we report on current developments of covalent chemical functionalization of III-nitride devices. Our review concludes with a short outlook on future challenges and projected implementation directions of GaN-based HEMT biosensors.

  3. Electronic Biosensors Based on III-Nitride Semiconductors.

    PubMed

    Kirste, Ronny; Rohrbaugh, Nathaniel; Bryan, Isaac; Bryan, Zachary; Collazo, Ramon; Ivanisevic, Albena

    2015-01-01

    We review recent advances of AlGaN/GaN high-electron-mobility transistor (HEMT)-based electronic biosensors. We discuss properties and fabrication of III-nitride-based biosensors. Because of their superior biocompatibility and aqueous stability, GaN-based devices are ready to be implemented as next-generation biosensors. We review surface properties, cleaning, and passivation as well as different pathways toward functionalization, and critically analyze III-nitride-based biosensors demonstrated in the literature, including those detecting DNA, bacteria, cancer antibodies, and toxins. We also discuss the high potential of these biosensors for monitoring living cardiac, fibroblast, and nerve cells. Finally, we report on current developments of covalent chemical functionalization of III-nitride devices. Our review concludes with a short outlook on future challenges and projected implementation directions of GaN-based HEMT biosensors.

  4. Biosensor based on electrospun blended chitosan-poly (vinyl alcohol) nanofibrous enzymatically sensitized membranes for pirimiphos-methyl detection in olive oil.

    PubMed

    El-Moghazy, A Y; Soliman, E A; Ibrahim, H Z; Marty, J-L; Istamboulie, G; Noguer, T

    2016-08-01

    An ultra-sensitive electrochemical biosensor was successfully developed for rapid detection of pirimiphos-methyl in olive oil, based of genetically-engineered acetylcholinesterase (AChE) immobilization into electrospun chitosan/poly (vinyl alcohol) blend nanofibers. Due to their unique properties such as spatial structure, high porosity, and large surface area, the use of nanofibers allowed improving the biosensor response by two folds. The developed biosensor showed a good performance for detecting pirimiphos-methyl, with a limit of detection of 0.2nM, a concentration much lower than the maximum residue limit allowed set by international regulations (164nM). The biosensor was used for the detection of pirimiphos-methyl in olive oil samples after a simple liquid-liquid extraction, and the recovery rates were close to 100%. PMID:27216682

  5. Scalable Production of Molybdenum Disulfide Based Biosensors.

    PubMed

    Naylor, Carl H; Kybert, Nicholas J; Schneier, Camilla; Xi, Jin; Romero, Gabriela; Saven, Jeffery G; Liu, Renyu; Johnson, A T Charlie

    2016-06-28

    We demonstrate arrays of opioid biosensors based on chemical vapor deposition grown molybdenum disulfide (MoS2) field effect transistors (FETs) coupled to a computationally redesigned, water-soluble variant of the μ-opioid receptor (MOR). By transferring dense films of monolayer MoS2 crystals onto prefabricated electrode arrays, we obtain high-quality FETs with clean surfaces that allow for reproducible protein attachment. The fabrication yield of MoS2 FETs and biosensors exceeds 95%, with an average mobility of 2.0 cm(2) V(-1) s(-1) (36 cm(2) V(-1) s(-1)) at room temperature under ambient (in vacuo). An atomic length nickel-mediated linker chemistry enables target binding events that occur very close to the MoS2 surface to maximize sensitivity. The biosensor response calibration curve for a synthetic opioid peptide known to bind to the wild-type MOR indicates binding affinity that matches values determined using traditional techniques and a limit of detection ∼3 nM (1.5 ng/mL). The combination of scalable array fabrication and rapid, precise binding readout enabled by the MoS2 transistor offers the prospect of a solid-state drug testing platform for rapid readout of the interactions between novel drugs and their intended protein targets.

  6. Scalable Production of Molybdenum Disulfide Based Biosensors.

    PubMed

    Naylor, Carl H; Kybert, Nicholas J; Schneier, Camilla; Xi, Jin; Romero, Gabriela; Saven, Jeffery G; Liu, Renyu; Johnson, A T Charlie

    2016-06-28

    We demonstrate arrays of opioid biosensors based on chemical vapor deposition grown molybdenum disulfide (MoS2) field effect transistors (FETs) coupled to a computationally redesigned, water-soluble variant of the μ-opioid receptor (MOR). By transferring dense films of monolayer MoS2 crystals onto prefabricated electrode arrays, we obtain high-quality FETs with clean surfaces that allow for reproducible protein attachment. The fabrication yield of MoS2 FETs and biosensors exceeds 95%, with an average mobility of 2.0 cm(2) V(-1) s(-1) (36 cm(2) V(-1) s(-1)) at room temperature under ambient (in vacuo). An atomic length nickel-mediated linker chemistry enables target binding events that occur very close to the MoS2 surface to maximize sensitivity. The biosensor response calibration curve for a synthetic opioid peptide known to bind to the wild-type MOR indicates binding affinity that matches values determined using traditional techniques and a limit of detection ∼3 nM (1.5 ng/mL). The combination of scalable array fabrication and rapid, precise binding readout enabled by the MoS2 transistor offers the prospect of a solid-state drug testing platform for rapid readout of the interactions between novel drugs and their intended protein targets. PMID:27227361

  7. Recent advances in biosensors based on enzyme inhibition.

    PubMed

    Amine, A; Arduini, F; Moscone, D; Palleschi, G

    2016-02-15

    Enzyme inhibitors like drugs and pollutants are closely correlated to human and environmental health, thus their monitoring is of paramount importance in analytical chemistry. Enzymatic biosensors represent cost-effective, miniaturized and easy to use devices; particularly biosensors based on enzyme inhibition are useful analytical tools for fast screening and monitoring of inhibitors. The present review will highlight the research carried out in the last 9 years (2006-2014) on biosensors based on enzyme inhibition. We underpin the recent advances focused on the investigation in new theoretical approachs and in the evaluation of biosensor performances for reversible and irreversible inhibitors. The use of nanomaterials and microfluidic systems as well as the applications of the various biosensors in real samples is critically reviewed, demonstrating that such biosensors allow the development of useful devices for a fast and reliable alarm system.

  8. Biosensor based on Prussian blue nanocubes/reduced graphene oxide nanocomposite for detection of organophosphorus pesticides

    SciTech Connect

    Zhang, Lin; Zhang, Aidong; Du, Dan; Lin, Yuehe

    2012-07-13

    We demonstrate a facile procedure to efficiently prepare Prussian blue nanocubes/reduced graphene oxide (PBNCs/rGO) nanocomposite by directly mixing Fe3+ and [Fe(CN)6]3 in the presence of GO in polyethyleneimine aqueous solution, resulting in a novel acetylcholinesterase (AChE) biosensor for detection of organophosphorus pesticides (OPs). The obtained nanocomposite was characterized by X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and energy dispersive X-ray (EDX) microanalysis. It was clearly observed that the nanosheet has been decorated with cubic PB nanoparticles and nearly all the nanoparticles are distributed uniformly only on the surface of the reduced GO. No isolated PB nanoparticles were observed, indicating the strong interaction between PB nanocubes and the reduced GO and the formation of PBNCs/rGO nanocomposite. The obtained PBNCs/rGO based AChE biosensor make the peak potential shift negatively to 220 mV. The AChE biosensor shows rapid response and high sensitivity for detection of monocrotophos. These results suggest that the PBNCs/rGO hybrids nanocomposite exhibited high electrocatalytic activity towards the oxidation of thiocholine, which lead to the sensitive detection of OP pesticides.

  9. Mixed-valence compound-based biosensor.

    PubMed

    Lin, M S; Wu, Y C; Jan, B I

    1999-01-01

    A cobalt(II)hexacyanoferrate-based biosensor has been prepared simply by codeposition of an enzyme, together with the electrochemical formation of a cobalt (II)hexacyanoferrate compound electrochemically. The compound can be generated at a constant potential of -0.05 V (vs. Ag/AgCl). This compound possesses the catalytic property of reducing hydrogen peroxide to water at the operating potential of 0.0 V vs. Ag/AgCl. The mixed-valence compound-based biosensor possesses an unique interference-independent feature, which is important for biomedical application; this feature is attributed to the low overvoltage characteristic of cobalt (II)hexacyanoferrate. The electrochemical glucose biosensor responds to a series of glucose injections with linearity up to 5 mM (with correlation coefficient R = 0.9999) and the sensitivity of the linear portion is 733 nA/(cm2 x mM). The detection limit is 2 x 10(-6)M (S/N = 3). Both the potential-dependent electron transfer rate constant and the apparent Michaelis-Menten constant were studied in rotating disk experiments. The apparent Michaelis-Menten constant, Km' calculated from the slope of the "Lineweaver-Burke" type reciprocal plot is 28 mM. A fast-response characteristic is observed in the rotating disk experiment and the 95% response time is 14.5 sec. No response was observed from the addition of either 2 x 10(-4)M galactose, acetaminophen, ascorbic acid, uric acid, cysteine, tyrosine, dopamine, or 1,4-dihydroxyquinone in the absence and/or in the presence of 5 x 10(-4)M glucose. PMID:10099513

  10. Highly sensitive electrochemiluminescenc assay of acetylcholinesterase activity based on dual biomarkers using Pd-Au nanowires as immobilization platform.

    PubMed

    Ye, Cui; Wang, Min-Qiang; Zhong, Xia; Chen, Shihong; Chai, Yaqin; Yuan, Ruo

    2016-05-15

    One-dimensional Pd-Au nanowires (Pd-Au NWs) were prepared and applied to fabricate an electrochemiluminescence (ECL) biosensor for the detection of acetylcholinesterase (AChE) activity. Compared with single-component of Pd or Au, the bimetallic nanocomposite of Pd-Au NWs offers a larger surface area for the immobilization of enzyme, and displays superior electrocatalytic activity and efficient electron transport capacity. In the presence of AChE and choline oxidase (ChOx), acetylcholine (ATCl) is hydrolyzed by AChE to generate thiocholine, then thiocholine is catalyzed by ChOx to produce H2O2 in situ, which serves as the coreactant to effectively enhance the ECL intensity in luminol-ECL system. The detection principle is based on the inhibited AChE and reactivated AChE as dual biomarkers, in which AChE was inhibited by organophosphorus (OP) agents, and then reactivated by obidoxime. Such dual biomarkers method can achieve credible evaluation for AChE activity via providing AChE activity before and after reactivation. The liner range for AChE activity detection was from 0.025 U L(-1) to 25 KU L(-1) with a low detection limit down to 0.0083 U L(-1). PMID:26686921

  11. Highly sensitive electrochemiluminescenc assay of acetylcholinesterase activity based on dual biomarkers using Pd-Au nanowires as immobilization platform.

    PubMed

    Ye, Cui; Wang, Min-Qiang; Zhong, Xia; Chen, Shihong; Chai, Yaqin; Yuan, Ruo

    2016-05-15

    One-dimensional Pd-Au nanowires (Pd-Au NWs) were prepared and applied to fabricate an electrochemiluminescence (ECL) biosensor for the detection of acetylcholinesterase (AChE) activity. Compared with single-component of Pd or Au, the bimetallic nanocomposite of Pd-Au NWs offers a larger surface area for the immobilization of enzyme, and displays superior electrocatalytic activity and efficient electron transport capacity. In the presence of AChE and choline oxidase (ChOx), acetylcholine (ATCl) is hydrolyzed by AChE to generate thiocholine, then thiocholine is catalyzed by ChOx to produce H2O2 in situ, which serves as the coreactant to effectively enhance the ECL intensity in luminol-ECL system. The detection principle is based on the inhibited AChE and reactivated AChE as dual biomarkers, in which AChE was inhibited by organophosphorus (OP) agents, and then reactivated by obidoxime. Such dual biomarkers method can achieve credible evaluation for AChE activity via providing AChE activity before and after reactivation. The liner range for AChE activity detection was from 0.025 U L(-1) to 25 KU L(-1) with a low detection limit down to 0.0083 U L(-1).

  12. Microwave-Based Biosensor for Glucose Detection

    NASA Astrophysics Data System (ADS)

    Salim, N. S. M.; Khalid, K.; Yusof, N. A.

    2010-07-01

    In this project, microwave-based biosensor for glucose detection has been studied. The study is based on the dielectric properties changes at microwave frequency for glucose-enzyme reaction. Glucose interaction with glucose oxidase (GOD) produced gluconic acid and hydrogen peroxide. The reaction of the glucose solutions with an enzyme was carried out in 1:3 of glucose and enzyme respectively. The measurements were done using the Open Ended Coaxial Probe (OECP) coupled with computer controlled software automated network analyzer (ANA) with frequency range from 200MHz to 20GHz at room temperature (25 °C). The differences of enzyme and glucose-enzyme reaction were calculated and plotted. In the microwave interaction with the glucose-enzyme reaction, ionic conduction and dipole molecules was detected at 0.99GHz and 16.44GHz respectively based on changes of dielectric loss factor.

  13. Biosensor method and system based on feature vector extraction

    SciTech Connect

    Greenbaum, Elias; Rodriguez, Jr., Miguel; Qi, Hairong; Wang, Xiaoling

    2012-04-17

    A method of biosensor-based detection of toxins comprises the steps of providing at least one time-dependent control signal generated by a biosensor in a gas or liquid medium, and obtaining a time-dependent biosensor signal from the biosensor in the gas or liquid medium to be monitored or analyzed for the presence of one or more toxins selected from chemical, biological or radiological agents. The time-dependent biosensor signal is processed to obtain a plurality of feature vectors using at least one of amplitude statistics and a time-frequency analysis. At least one parameter relating to toxicity of the gas or liquid medium is then determined from the feature vectors based on reference to the control signal.

  14. Biosensor method and system based on feature vector extraction

    DOEpatents

    Greenbaum, Elias; Rodriguez, Jr., Miguel; Qi, Hairong; Wang, Xiaoling

    2013-07-02

    A system for biosensor-based detection of toxins includes providing at least one time-dependent control signal generated by a biosensor in a gas or liquid medium, and obtaining a time-dependent biosensor signal from the biosensor in the gas or liquid medium to be monitored or analyzed for the presence of one or more toxins selected from chemical, biological or radiological agents. The time-dependent biosensor signal is processed to obtain a plurality of feature vectors using at least one of amplitude statistics and a time-frequency analysis. At least one parameter relating to toxicity of the gas or liquid medium is then determined from the feature vectors based on reference to the control signal.

  15. Immobilization of Acetylcholinesterase on Screen-Printed Electrodes. Application to the Determination of Arsenic(III)

    PubMed Central

    Sanllorente-Méndez, Silvia; Domínguez-Renedo, Olga; Arcos-Martínez, M. Julia

    2010-01-01

    Enzymatic amperometric procedures for measuring arsenic, based on the inhibitive action of this metal on acetylcholinesterase enzyme activity, have been developed. Screen-printed carbon electrodes (SPCEs) were used with acetylcholinesterase covalently bonded directly to its surface. The amperometric response of acetylcholinesterase was affected by the presence of arsenic ions, which caused a decrease in the current intensity. The experimental optimum working conditions of pH, substrate concentration and potential applied, were established. Under these conditions, repeatability and reproducibility of biosensors were determined, reaching values below 4% in terms of relative standard deviation. The detection limit obtained for arsenic was 1.1 × 10−8 M for Ach/SPCE biosensor. Analysis of the possible effect of the presence of foreign ions in the solution was performed. The method was applied to determine levels of arsenic in spiked tap water samples. PMID:22294918

  16. Docking-based Design of Galantamine Derivatives with Dual-site Binding to Acetylcholinesterase.

    PubMed

    Stavrakov, Georgi; Philipova, Irena; Zheleva, Dimitrina; Atanasova, Mariyana; Konstantinov, Spiro; Doytchinova, Irini

    2016-07-01

    The enzyme acetylcholinesterase is a key target in the treatment of Alzheimer's disease because of its ability to hydrolyze acetylcholine via the catalytic binding site and to accelerate the aggregation of amyloid-β peptide via the peripheral anionic site (PAS). Using docking-based predictions, in the present study we design 20 novel galantamine derivatives with alkylamide spacers of different length ending with aromatic fragments. The galantamine moiety blocks the catalytic site, while the terminal aromatic fragments bind in PAS. The best predicted compounds are synthesized and tested for acetylcholinesterase inhibitory activity. The experimental results confirm the predictions and show that the heptylamide spacer is of optimal length to bridge the galantamine moiety bound in the catalytic site and the aromatic fragments interacting with PAS. Among the tested terminal aromatic fragments, the phenethyl substituent is the most suitable for binding in PAS. PMID:27492242

  17. Fabrication of a miniature CMOS-based optical biosensor.

    PubMed

    Ho, Wei-Jen; Chen, Jung-Sheng; Ker, Ming-Dou; Wu, Tung-Kung; Wu, Chung-Yu; Yang, Yuh-Shyong; Li, Yaw-Kuen; Yuan, Chiun-Jye

    2007-06-15

    This work presents a novel, miniature optical biosensor by immobilizing horseradish peroxidase (HRP) or the HRP/glucose oxidase (GOx) coupled enzyme pair on a CMOS photosensing chip with a detection area of 0.5 mm x 0.5 mm. A highly transparent TEOS/PDMS Ormosil is used to encapsulate and immobilize enzymes on the surface of the photosensor. Interestingly, HRP-catalyzed luminol luminescence can be detected in real time on optical H(2)O(2) and glucose biosensors. The minimum reaction volume of the developed optical biosensors is 10 microL. Both optical H(2)O(2) and glucose biosensors have an optimal operation temperature and pH of 20-25 degrees C and pH 8.4, respectively. The linear dynamic range of optical H(2)O(2) and glucose biosensors is 0.05-20 mM H(2)O(2) and 0.5-20 mM glucose, respectively. The miniature optical glucose biosensor also exhibits good reproducibility with a relative standard deviation of 4.3%. Additionally, ascorbic acid and uric acid, two major interfering substances in the serum during electrochemical analysis, cause only slight interference with the fabricated optical glucose biosensor. In conclusion, the CMOS-photodiode-based optical biosensors proposed herein have many advantages, such as a short detection time, a small sample volume requirement, high reproducibility and wide dynamic range.

  18. Current Trends in Nanomaterial-Based Amperometric Biosensors

    PubMed Central

    Hayat, Akhtar; Catanante, Gaëlle; Marty, Jean Louis

    2014-01-01

    The last decade has witnessed an intensive research effort in the field of electrochemical sensors, with a particular focus on the design of amperometric biosensors for diverse analytical applications. In this context, nanomaterial integration in the construction of amperometric biosensors may constitute one of the most exciting approaches. The attractive properties of nanomaterials have paved the way for the design of a wide variety of biosensors based on various electrochemical detection methods to enhance the analytical characteristics. However, most of these nanostructured materials are not explored in the design of amperometric biosensors. This review aims to provide insight into the diverse properties of nanomaterials that can be possibly explored in the construction of amperometric biosensors. PMID:25494347

  19. Biosensors based on DNA-Functionalized Graphene

    NASA Astrophysics Data System (ADS)

    Vishnubhotla, Ramya; Ping, Jinglei; Vrudhula, Amey; Johnson, A. T. Charlie

    Since its discovery, graphene has been used for sensing applications due to its outstanding electrical properties and biocompatibility. Here, we demonstrate the capabilities of field effect transistors (FETs) based on CVD-grown graphene functionalized with commercially obtained DNA oligomers and aptamers for detection of various biomolecular targets (e.g., complementary DNA and small molecule drug targets). Graphene FETs were created with a scalable photolithography process that produces arrays consisting of 50-100 FETs with a layout suitable for multiplexed detection of four molecular targets. FETs were characterized via AFM to confirm the presence of the aptamer. From the measured electrical characteristics, it was determined that binding of molecular targets by the DNA chemical recognition element led to a reproducible, concentration-dependent shift in the Dirac voltage. This biosensor class is potentially suitable for applications in drug detection. This work is funded by NIH through the Center for AIDS Research at the University of Pennsylvania.

  20. Gated Ion Channel-Based Biosensor Device

    NASA Astrophysics Data System (ADS)

    Separovic, Frances; Cornell, Bruce A.

    A biosensor device based on the ion channel gramicidin A (gA) incorporated into a bilayer membrane is described. This generic immunosensing device utilizes gA coupled to an antibody and assembled in a lipid membrane. The membrane is chemically tethered to a gold electrode, which reports on changes in the ionic conduction of the lipid bilayer. Binding of a target molecule in the bathing solution to the antibody causes the gramicidin channels to switch from predominantly conducting dimers to predominantly nonconducting monomers. Conventional a.c. impedance spectroscopy between the gold and a counter electrode in the bathing solution is used to measure changes in the ionic conductivity of the membrane. This approach permits the quantitative detection of a range of target species, including bacteria, proteins, toxins, DNA sequences, and drug molecules.

  1. Synthesis and application of quantum dots-based biosensor

    NASA Astrophysics Data System (ADS)

    Hai Nguyen, Ngoc; Giang Duong, Thi; Hoang, Van Nong; Thang Pham, Nam; Cao Dao, Tran; Nga Pham, Thu

    2015-03-01

    Trichlorfon (TF) is one of the organophosphorus pesticides used widely in agriculture. The content of this paper includes the exploitation of dominant optical properties of the quantum dots consisting of a core and multilayer shell CdSe/ZnSe/ZnS (QD). A biosensor was fabricated on the basis of this QD for rapidly detecting the residues of trichlofon pesticide with concentrations of 0.01 ppm to 5 ppm. The measurements were carried out to examine the morphology of the QD structure and fluorescent properties such as transmission electron microscopy, x-ray diffraction, absorption spectroscopy and fluorescence spectroscopy. The linking mechanism among biological agents and the specificity of the acetylcholinesterase enzymes in hydrolysis reaction of acetylthiolcholine was applied to create the changes in surroundings, affecting the fluorescence of the QD. In particular, the mechanism of bioluminescence resonance energy transfer (BRET) is discussed to clearly explain the recombination of electrons and holes in the QD.

  2. Resistance-based biosensor of Multi-Walled Carbon Nanotubes.

    PubMed

    Kolosovas-Machuca, E S; Vera-Reveles, G; Rodríguez-Aranda, M C; Ortiz-Dosal, L C; Segura-Cardenas, Emmanuel; Gonzalez, Francisco J

    2015-01-01

    Multi-Walled Carbon Nanotubes (MWNTs) are a good choice for resistive biosensors due to their great resistance changes when immunoreactions take place, they are also low-cost, more biocompatible than single-walled carbon nanotubes, and resistive measurement equipment is usually not expensive and readily available. In this work a novel resistive biosensor based on the immobilization of an antigen through a silanization process over the surface of Multi-Walled Carbon Nanotubes (MWNTs) is reported. Results show that the biosensor increases its conductivity when adding the antigen and decreases when adding the antibody making them good candidates for disease diagnosis.

  3. Non-antibody protein-based biosensors

    PubMed Central

    2016-01-01

    Biosensors that depend on a physical or chemical measurement can be adversely affected by non-specific interactions. For example, a biosensor designed to measure specifically the levels of a rare analyte can give false positive results if there is even a small amount of interaction with a highly abundant but irrelevant molecule. To overcome this limitation, the biosensor community has frequently turned to antibody molecules as recognition elements because they are renowned for their exquisite specificity. Unfortunately antibodies can often fail when immobilised on inorganic surfaces, and alternative biological recognition elements are needed. This article reviews the available non-antibody-binding proteins that have been successfully used in electrical and micro-mechanical biosensor platforms. PMID:27365032

  4. Progress in chemical luminescence-based biosensors: A critical review.

    PubMed

    Roda, Aldo; Mirasoli, Mara; Michelini, Elisa; Di Fusco, Massimo; Zangheri, Martina; Cevenini, Luca; Roda, Barbara; Simoni, Patrizia

    2016-02-15

    Biosensors are a very active research field. They have the potential to lead to low-cost, rapid, sensitive, reproducible, and miniaturized bioanalytical devices, which exploit the high binding avidity and selectivity of biospecific binding molecules together with highly sensitive detection principles. Of the optical biosensors, those based on chemical luminescence detection (including chemiluminescence, bioluminescence, electrogenerated chemiluminescence, and thermochemiluminescence) are particularly attractive, due to their high-to-signal ratio and the simplicity of the required measurement equipment. Several biosensors based on chemical luminescence have been described for quantitative, and in some cases multiplex, analysis of organic molecules (such as hormones, drugs, pollutants), proteins, and nucleic acids. These exploit a variety of miniaturized analytical formats, such as microfluidics, microarrays, paper-based analytical devices, and whole-cell biosensors. Nevertheless, despite the high analytical performances described in the literature, the field of chemical luminescence biosensors has yet to demonstrate commercial success. This review presents the main recent advances in the field and discusses the approaches, challenges, and open issues, with the aim of stimulating a broader interest in developing chemical luminescence biosensors and improving their commercial exploitation.

  5. Biosensor based on Prussian blue nanocubes/reduced graphene oxide nanocomposite for detection of organophosphorus pesticides.

    PubMed

    Zhang, Lin; Zhang, Aidong; Du, Dan; Lin, Yuehe

    2012-08-01

    We demonstrate a facile procedure to efficiently prepare Prussian blue nanocubes/reduced graphene oxide (PBNCs/rGO) nanocomposite by directly mixing Fe(3+) and [Fe(CN)(6)]((3)-) in the presence of GO in polyethyleneimine aqueous solution, resulting in a novel acetylcholinesterase (AChE) biosensor for detection of organophosphorus pesticides (OPs). The obtained nanocomposite was characterized by X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and energy-dispersive X-ray (EDX) microanalysis. It was clearly observed that the nanosheet has been decorated with cubic PB nanoparticles and nearly all the nanoparticles are distributed uniformly only on the surface of the reduced GO. No isolated PB nanoparticles were observed, indicating the strong interaction between PB nanocubes and the reduced GO and the formation of PBNCs/rGO nanocomposite. The obtained PBNCs/rGO based AChE biosensor make the peak potential shift negatively to 220 mV. The over-potential decreases ∼460 mV compared to that on a bare electrode, suggesting that PBNCs/rGO has a high electrocatalytic activity towards the oxidation of thiocholine. The AChE biosensor shows rapid response and high sensitivity for detection of monocrotophos with a linear range from 1.0 to 600 ng mL(-1) and a detection limit of 0.1 ng mL(-1). These results suggest that the PBNCs/rGO hybrids nanocomposite exhibited high electrocatalytic activity towards the oxidation of thiocholine, which lead to the sensitive detection of OP pesticides.

  6. AChE biosensor based on zinc oxide sol-gel for the detection of pesticides.

    PubMed

    Sinha, Ravi; Ganesana, Mallikarjunarao; Andreescu, Silvana; Stanciu, Lia

    2010-02-28

    Zinc oxide has been used as a matrix for immobilization of acetylcholinesterase (AChE) and detection of the pesticide paraoxon. The immobilized enzyme retained its enzymatic activity up to three months when stored in phosphate buffered saline (pH 7.4) at 4 degrees C. An amperometric biosensor for the detection of paraoxon was designed. The biosensor detected paraoxon in the range 0.035-1.38 ppm and can be used to detect other AChE inhibiting organophosphate pesticides. PMID:20113735

  7. A Disposable Organophosphorus Pesticides Enzyme Biosensor Based on Magnetic Composite Nano-Particles Modified Screen Printed Carbon Electrode

    PubMed Central

    Gan, Ning; Yang, Xin; Xie, Donghua; Wu, Yuanzhao; Wen, Weigang

    2010-01-01

    A disposable organophosphorus pesticides (OPs) enzyme biosensor based on magnetic composite nanoparticle-modified screen printed carbon electrodes (SPCE) has been developed. Firstly, an acetylcholinesterase (AChE)-coated Fe3O4/Au (GMP) magnetic nanoparticulate (GMP-AChE) was synthesized. Then, GMP-AChE was absorbed on the surface of a SPCE modified by carbon nanotubes (CNTs)/nano-ZrO2/prussian blue (PB)/Nafion (Nf) composite membrane by an external magnetic field. Thus, the biosensor (SPCE│CNTs/ZrO2/PB/Nf│GMP-AChE) for OPs was fabricated. The surface of the biosensor was characterized by scanning electron micrography (SEM) and X-ray fluorescence spectrometery (XRFS) and its electrochemical properties were studied by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The degree of inhibition (A%) of the AChE by OPs was determined by measuring the reduction current of the PB generated by the AChE-catalyzed hydrolysis of acetylthiocholine (ATCh). In pH = 7.5 KNO3 solution, the A was related linearly to the concentration of dimethoate in the range from 1.0 × 10−3–10 ng·mL−1 with a detection limit of 5.6 × 10−4 ng·mL−1. The recovery rates in Chinese cabbage exhibited a range of 88%–105%. The results were consistent with the standard gas chromatography (GC) method. Compared with other enzyme biosensors the proposed biosensor exhibited high sensitivity, good selectivity with disposable, low consumption of sample. In particular its surface can be easily renewed by removal of the magnet. The convenient, fast and sensitive voltammetric measurement opens new opportunities for OPs analysis. PMID:22315558

  8. Nanopillar based electrochemical biosensor for monitoring microfluidic based cell culture

    NASA Astrophysics Data System (ADS)

    Gangadharan, Rajan

    In-vitro assays using cultured cells have been widely performed for studying many aspects of cell biology and cell physiology. These assays also form the basis of cell based sensing. Presently, analysis procedures on cell cultures are done using techniques that are not integrated with the cell culture system. This approach makes continuous and real-time in-vitro measurements difficult. It is well known that the availability of continuous online measurements for extended periods of time will help provide a better understanding and will give better insight into cell physiological events. With this motivation we developed a highly sensitive, selective and stable microfluidic electrochemical glucose biosensor to make continuous glucose measurements in cell culture media. The performance of the microfluidic biosensor was enhanced by adding 3D nanopillars to the electrode surfaces. The microfluidic glucose biosensor consisted of three electrodes---Enzyme electrode, Working electrode, and Counter electrode. All these electrodes were enhanced with nanopillars and were optimized in their respective own ways to obtain an effective and stable biosensing device in cell culture media. For example, the 'Enzyme electrode' was optimized for enzyme immobilization via either a polypyrrole-based or a self-assembled-monolayer-based immobilization method, and the 'Working electrode' was modified with Prussian Blue or electropolymerized Neutral Red to reduce the working potential and also the interference from other interacting electro-active species. The complete microfluidic biosensor was tested for its ability to monitor glucose concentration changes in cell culture media. The significance of this work is multifold. First, the developed device may find applications in continuous and real-time measurements of glucose concentrations in in-vitro cell cultures. Second, the development of a microfluidic biosensor will bring technical know-how toward constructing continuous glucose

  9. Printable Ultrathin Metal Oxide Semiconductor-Based Conformal Biosensors.

    PubMed

    Rim, You Seung; Bae, Sang-Hoon; Chen, Huajun; Yang, Jonathan L; Kim, Jaemyung; Andrews, Anne M; Weiss, Paul S; Yang, Yang; Tseng, Hsian-Rong

    2015-12-22

    Conformal bioelectronics enable wearable, noninvasive, and health-monitoring platforms. We demonstrate a simple and straightforward method for producing thin, sensitive In2O3-based conformal biosensors based on field-effect transistors using facile solution-based processing. One-step coating via aqueous In2O3 solution resulted in ultrathin (3.5 nm), high-density, uniform films over large areas. Conformal In2O3-based biosensors on ultrathin polyimide films displayed good device performance, low mechanical stress, and highly conformal contact determined using polydimethylsiloxane artificial skin having complex curvilinear surfaces or an artificial eye. Immobilized In2O3 field-effect transistors with self-assembled monolayers of NH2-terminated silanes functioned as pH sensors. Functionalization with glucose oxidase enabled d-glucose detection at physiologically relevant levels. The conformal ultrathin field-effect transistor biosensors developed here offer new opportunities for future wearable human technologies. PMID:26498319

  10. Printable Ultrathin Metal Oxide Semiconductor-Based Conformal Biosensors.

    PubMed

    Rim, You Seung; Bae, Sang-Hoon; Chen, Huajun; Yang, Jonathan L; Kim, Jaemyung; Andrews, Anne M; Weiss, Paul S; Yang, Yang; Tseng, Hsian-Rong

    2015-12-22

    Conformal bioelectronics enable wearable, noninvasive, and health-monitoring platforms. We demonstrate a simple and straightforward method for producing thin, sensitive In2O3-based conformal biosensors based on field-effect transistors using facile solution-based processing. One-step coating via aqueous In2O3 solution resulted in ultrathin (3.5 nm), high-density, uniform films over large areas. Conformal In2O3-based biosensors on ultrathin polyimide films displayed good device performance, low mechanical stress, and highly conformal contact determined using polydimethylsiloxane artificial skin having complex curvilinear surfaces or an artificial eye. Immobilized In2O3 field-effect transistors with self-assembled monolayers of NH2-terminated silanes functioned as pH sensors. Functionalization with glucose oxidase enabled d-glucose detection at physiologically relevant levels. The conformal ultrathin field-effect transistor biosensors developed here offer new opportunities for future wearable human technologies.

  11. Flexible Molybdenum Electrodes towards Designing Affinity Based Protein Biosensors.

    PubMed

    Kamakoti, Vikramshankar; Panneer Selvam, Anjan; Radha Shanmugam, Nandhinee; Muthukumar, Sriram; Prasad, Shalini

    2016-01-01

    Molybdenum electrode based flexible biosensor on porous polyamide substrates has been fabricated and tested for its functionality as a protein affinity based biosensor. The biosensor performance was evaluated using a key cardiac biomarker; cardiac Troponin-I (cTnI). Molybdenum is a transition metal and demonstrates electrochemical behavior upon interaction with an electrolyte. We have leveraged this property of molybdenum for designing an affinity based biosensor using electrochemical impedance spectroscopy. We have evaluated the feasibility of detection of cTnI in phosphate-buffered saline (PBS) and human serum (HS) by measuring impedance changes over a frequency window from 100 mHz to 1 MHz. Increasing changes to the measured impedance was correlated to the increased dose of cTnI molecules binding to the cTnI antibody functionalized molybdenum surface. We achieved cTnI detection limit of 10 pg/mL in PBS and 1 ng/mL in HS medium. The use of flexible substrates for designing the biosensor demonstrates promise for integration with a large-scale batch manufacturing process. PMID:27438863

  12. Flexible Molybdenum Electrodes towards Designing Affinity Based Protein Biosensors

    PubMed Central

    Kamakoti, Vikramshankar; Panneer Selvam, Anjan; Radha Shanmugam, Nandhinee; Muthukumar, Sriram; Prasad, Shalini

    2016-01-01

    Molybdenum electrode based flexible biosensor on porous polyamide substrates has been fabricated and tested for its functionality as a protein affinity based biosensor. The biosensor performance was evaluated using a key cardiac biomarker; cardiac Troponin-I (cTnI). Molybdenum is a transition metal and demonstrates electrochemical behavior upon interaction with an electrolyte. We have leveraged this property of molybdenum for designing an affinity based biosensor using electrochemical impedance spectroscopy. We have evaluated the feasibility of detection of cTnI in phosphate-buffered saline (PBS) and human serum (HS) by measuring impedance changes over a frequency window from 100 mHz to 1 MHz. Increasing changes to the measured impedance was correlated to the increased dose of cTnI molecules binding to the cTnI antibody functionalized molybdenum surface. We achieved cTnI detection limit of 10 pg/mL in PBS and 1 ng/mL in HS medium. The use of flexible substrates for designing the biosensor demonstrates promise for integration with a large-scale batch manufacturing process. PMID:27438863

  13. Graphene Based Electrochemical Sensors and Biosensors: A Review

    SciTech Connect

    Shao, Yuyan; Wang, Jun; Wu, Hong; Liu, Jun; Aksay, Ilhan A.; Lin, Yuehe

    2010-05-01

    Graphene, emerging as a true 2-dimensional material, has received increasing attention due to its unique physicochemical properties (high surface area, excellent conductivity, high mechanical strength, and ease of functionalization and mass production). This article selectively reviews recent advances in graphene-based electrochemical sensors and biosensors. In particular, graphene for direct electrochemistry of enzyme, its electrocatalytic activity toward small biomolecules (hydrogen peroxide, NADH, dopamine, etc.), and graphene-based enzyme biosensors have been summarized in more detail; Graphene-based DNA sensing and environmental analysis have been discussed. Future perspectives in this rapidly developing field are also discussed.

  14. Vertically Aligned Carbon Nanofiber based Biosensor Platform for Glucose Sensor

    SciTech Connect

    Al Mamun, Khandaker A.; Tulip, Fahmida S.; MacArthur, Kimberly; McFarlane, Nicole; Islam, Syed K.; Hensley, Dale

    2014-03-01

    Vertically aligned carbon nanofibers (VACNFs) have recently become an important tool for biosensor design. Carbon nanofibers (CNF) have excellent conductive and structural properties with many irregularities and defect sites in addition to exposed carboxyl groups throughout their surfaces. These properties allow a better immobilization matrix compared to carbon nanotubes and offer better resolution when compared with the FET-based biosensors. VACNFs can be deterministically grown on silicon substrates allowing optimization of the structures for various biosensor applications. Two VACNF electrode architectures have been employed in this study and a comparison of their performances has been made in terms of sensitivity, sensing limitations, dynamic range, and response time. The usage of VACNF platform as a glucose sensor has been verified in this study by selecting an optimum architecture based on the VACNF forest density. Read More: http://www.worldscientific.com/doi/abs/10.1142/S0129156414500062

  15. A glucose biosensor based on partially unzipped carbon nanotubes.

    PubMed

    Hu, Huifang; Feng, Miao; Zhan, Hongbing

    2015-08-15

    An amperometric glucose biosensor based on direct electron transfer of glucose oxidase (GOD) self-assembled on the surface of partially unzipped carbon nanotubes (PUCNTs) modified glassy carbon electrode (GCE) has been successfully fabricated. PUCNTs were synthesized via a facile chemical oxidative etching CNTs and used as a novel immobilization matrix for GOD. The cyclic voltammetric result of the PUCNT/GOD/GCE showed a pair of well-defined and quasi-reversible redox peaks with a formal potential of -0.470V and a peak to peak separation of 37mV, revealing that the fast direct electron transfer between GOD and the electrode has been achieved. It is notable that the glucose determination has been achieved in mediator-free condition. The developed biosensor displayed satisfactory analytical performance toward glucose including high sensitivity (19.50μA mM(-1)cm(-2)), low apparent Michaelis-Menten (5.09mM), a wide linear range of 0-17mM, and also preventing the interference from ascorbic acid, uric acid and dopamine usually coexisting with glucose in human blood. In addition, the biosensor acquired excellent storage stabilities. This facile, fast, environment-friendly and economical preparation strategy of PUCNT-GOD may provide a new platform for the fabrication of biocompatible glucose biosensors and other types of biosensors. PMID:25966382

  16. A glucose biosensor based on partially unzipped carbon nanotubes.

    PubMed

    Hu, Huifang; Feng, Miao; Zhan, Hongbing

    2015-08-15

    An amperometric glucose biosensor based on direct electron transfer of glucose oxidase (GOD) self-assembled on the surface of partially unzipped carbon nanotubes (PUCNTs) modified glassy carbon electrode (GCE) has been successfully fabricated. PUCNTs were synthesized via a facile chemical oxidative etching CNTs and used as a novel immobilization matrix for GOD. The cyclic voltammetric result of the PUCNT/GOD/GCE showed a pair of well-defined and quasi-reversible redox peaks with a formal potential of -0.470V and a peak to peak separation of 37mV, revealing that the fast direct electron transfer between GOD and the electrode has been achieved. It is notable that the glucose determination has been achieved in mediator-free condition. The developed biosensor displayed satisfactory analytical performance toward glucose including high sensitivity (19.50μA mM(-1)cm(-2)), low apparent Michaelis-Menten (5.09mM), a wide linear range of 0-17mM, and also preventing the interference from ascorbic acid, uric acid and dopamine usually coexisting with glucose in human blood. In addition, the biosensor acquired excellent storage stabilities. This facile, fast, environment-friendly and economical preparation strategy of PUCNT-GOD may provide a new platform for the fabrication of biocompatible glucose biosensors and other types of biosensors.

  17. Mechanism-Based Analysis of Acetylcholinesterase Inhibitory Potency of Organophosphates, Carbamates, and Their Analogs

    EPA Science Inventory

    Acetylcholinesterase (AChE) is a key enzyme in the nervous system of animals, terminating impulse transmission by rapid hydrolysis of the neurotransmitter acetylcholine. Organophosphate (OP) and carbamate esters can inhibit acetylcholinesterase (AChE) by binding covalently to a s...

  18. Tin Oxide Nanorod Array-Based Electrochemical Hydrogen Peroxide Biosensor

    NASA Astrophysics Data System (ADS)

    Liu, Jinping; Li, Yuanyuan; Huang, Xintang; Zhu, Zhihong

    2010-07-01

    SnO2 nanorod array grown directly on alloy substrate has been employed as the working electrode of H2O2 biosensor. Single-crystalline SnO2 nanorods provide not only low isoelectric point and enough void spaces for facile horseradish peroxidase (HRP) immobilization but also numerous conductive channels for electron transport to and from current collector; thus, leading to direct electrochemistry of HRP. The nanorod array-based biosensor demonstrates high H2O2 sensing performance in terms of excellent sensitivity (379 μA mM-1 cm-2), low detection limit (0.2 μM) and high selectivity with the apparent Michaelis-Menten constant estimated to be as small as 33.9 μM. Our work further demonstrates the advantages of ordered array architecture in electrochemical device application and sheds light on the construction of other high-performance enzymatic biosensors.

  19. Titanium dioxide-cellulose hybrid nanocomposite based conductometric glucose biosensor

    NASA Astrophysics Data System (ADS)

    Maniruzzaman, Mohammad; Mahadeva, Suresha K.; Khondoker, Abu Hasan; Kim, Jaehwan

    2012-04-01

    This paper investigates the feasibility of conductometric glucose biosensor based on glucose oxidase (GOx) immobilized TiO2-cellulose hybrid nanocomposite. TiO2 nanoparticles were blended with cellulose solution prepared by dissolving cotton pulp with lithium chloride/N, N-dimethylacetamide solvent to fabricate TiO2-cellulose hybrid nanocomposite. The enzyme (GOx) was immobilized into this hybrid material by physical adsorption method. The successful immobilization of GOx into TiO2-cellulose hybrid nanocomposite via covalent bonding between TiO2 and GOx was confirmed by X-ray photoelectron analysis. The linear response of our propose glucose biosensor is obtained in the range of 1-10mM with correlation coefficient of 0.93. Our study demonstrates TiO2-cellulose hybrid material as a potential candidate for an inexpensive, flexible and disposable glucose biosensor.

  20. Last Advances in Silicon-Based Optical Biosensors

    PubMed Central

    Fernández Gavela, Adrián; Grajales García, Daniel; Ramirez, Jhonattan C.; Lechuga, Laura M.

    2016-01-01

    We review the most important achievements published in the last five years in the field of silicon-based optical biosensors. We focus specially on label-free optical biosensors and their implementation into lab-on-a-chip platforms, with an emphasis on developments demonstrating the capability of the devices for real bioanalytical applications. We report on novel transducers and materials, improvements of existing transducers, new and improved biofunctionalization procedures as well as the prospects for near future commercialization of these technologies. PMID:26927105

  1. Highly sensitive bovine serum albumin biosensor based on liquid crystal

    NASA Astrophysics Data System (ADS)

    Sharma, Vikash; Kumar, Ajay; Ganguly, Prasun; Biradar, A. M.

    2014-01-01

    A highly sensitive liquid crystal (LC) based bovine serum albumin (BSA) protein biosensor is designed. A uniform homeotropic alignment of nematic LC was observed in BSA free substrate which changed into homogeneous in presence of BSA. The change in the LC orientation is found to depend strongly on BSA concentration. This change in the LC alignment is attributed to the modification in the surface conditions which is verified by contact angle measurements. We have detected an ultra low concentration (0.5 μg/ml) of BSA. The present study demonstrates the utilization of LC in the realization of high sensitivity biosensors.

  2. Detection of glycoalkaloids using disposable biosensors based on genetically modified enzymes.

    PubMed

    Espinoza, Michelle Arredondo; Istamboulie, Georges; Chira, Ana; Noguer, Thierry; Stoytcheva, Margarita; Marty, Jean-Louis

    2014-07-15

    In this work we present a rapid, selective, and highly sensitive detection of α-solanine and α-chaconine using cholinesterase-based sensors. The high sensitivity of the devices is brought by the use of a genetically modified acetylcholinesterase (AChE), combined with a one-step detection method based on the measurement of inhibition slope. The selectivity was obtained by using butyrylcholinesterase (BChE), an enzyme able to detect these two toxins with differential inhibition kinetics. The enzymes were immobilized via entrapment in PVA-AWP polymer directly on the working electrode surface. The analysis of the resulting inhibition slope was performed employing linear regression function included in Matlab. The high toxicity of α-chaconine compared to α-solanine due to a better affinity to the active site was proved. The inhibition of glycoalkaloids (GAs) mixture was performed over AChE enzyme wild-type AChE and BChE biosensors resulting in the detection of synergism effect. The developed method allows the detection of (GAs) at 50 ppb in potato matrix.

  3. Improvement of up-converting phosphor technology-based biosensor

    NASA Astrophysics Data System (ADS)

    Xie, Chengke; Huang, Lihua; Zhang, Youbao; Guo, Xiaoxian; Qu, Jianfeng; Huang, Huijie

    2008-12-01

    A novel biosensor based on up-converting phosphor technology (UPT) was developed several years ago. It is a kind of optical biosensor using up-converting phosphor (UCP) particles as the biological marker. From then on, some improvements have been made for this UPT-based biosensor. The primary aspects of the improvement lie in the control system. On one hand, the hardware of the control system has been optimized, including replacing two single chip microcomputers (SCM) with only one, the optimal design of the keyboard interface circuit and the liquid crystal module (LCM) control circuit et al.. These result in lower power consumption and higher reliability. On the other hand, a novel signal processing algorithm is proposed in this paper, which can improve the automation and operating simplicity of the UPT-based biosensor. It has proved to have high sensitivity (~ng/ml), high stability and good repeatability (CV<5%), which is better than the former system. It can meet the need of some various applications such as rapid immunoassay, chemical and biological detection and so on.

  4. Amperometric urea biosensors based on sulfonated graphene/polyaniline nanocomposite

    PubMed Central

    Das, Gautam; Yoon, Hyon Hee

    2015-01-01

    An electrochemical biosensor based on sulfonated graphene/polyaniline nanocomposite was developed for urea analysis. Oxidative polymerization of aniline in the presence of sulfonated graphene oxide was carried out by electrochemical methods in an aqueous environment. The structural properties of the nanocomposite were characterized by Fourier-transform infrared, Raman spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy techniques. The urease enzyme-immobilized sulfonated graphene/polyaniline nanocomposite film showed impressive performance in the electroanalytical detection of urea with a detection limit of 0.050 mM and a sensitivity of 0.85 (μA · cm−2·mM−1. The biosensor achieved a broad linear range of detection (0.12–12.3 mM) with a notable response time of approximately 5 seconds. Moreover, the fabricated biosensor retained 81% of its initial activity (based on sensitivity) after 15 days of storage at 4°C. The ease of fabrication coupled with the low cost and good electrochemical performance of this system holds potential for the development of solid-state biosensors for urea detection. PMID:26346240

  5. Amperometric urea biosensors based on sulfonated graphene/polyaniline nanocomposite.

    PubMed

    Das, Gautam; Yoon, Hyon Hee

    2015-01-01

    An electrochemical biosensor based on sulfonated graphene/polyaniline nanocomposite was developed for urea analysis. Oxidative polymerization of aniline in the presence of sulfonated graphene oxide was carried out by electrochemical methods in an aqueous environment. The structural properties of the nanocomposite were characterized by Fourier-transform infrared, Raman spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy techniques. The urease enzyme-immobilized sulfonated graphene/polyaniline nanocomposite film showed impressive performance in the electroanalytical detection of urea with a detection limit of 0.050 mM and a sensitivity of 0.85 (μA · cm(-2)·mM(-1). The biosensor achieved a broad linear range of detection (0.12-12.3 mM) with a notable response time of approximately 5 seconds. Moreover, the fabricated biosensor retained 81% of its initial activity (based on sensitivity) after 15 days of storage at 4°C. The ease of fabrication coupled with the low cost and good electrochemical performance of this system holds potential for the development of solid-state biosensors for urea detection.

  6. Recent advances in electrochemical biosensors based on graphene two-dimensional nanomaterials.

    PubMed

    Song, Yang; Luo, Yanan; Zhu, Chengzhou; Li, He; Du, Dan; Lin, Yuehe

    2016-02-15

    Graphene as a star among two-dimensional nanomaterials has attracted tremendous research interest in the field of electrochemistry due to their intrinsic properties, including the electronic, optical, and mechanical properties associated with their planar structure. The marriage of graphene and electrochemical biosensors has created many ingenious biosensing strategies for applications in the areas of clinical diagnosis and food safety. This review provides a comprehensive overview of the recent advances in the development of graphene based electrochemical biosensors. Special attention is paid to graphene-based enzyme biosensors, immunosensors, and DNA biosensors. Future perspectives on high-performance graphene-based electrochemical biosensors are also discussed.

  7. Nanoelectronic biosensors based on CVD grown graphene

    NASA Astrophysics Data System (ADS)

    Huang, Yinxi; Dong, Xiaochen; Shi, Yumeng; Li, Chang Ming; Li, Lain-Jong; Chen, Peng

    2010-08-01

    Graphene, a single-atom-thick and two-dimensional carbon material, has attracted great attention recently. Because of its unique electrical, physical, and optical properties, graphene has great potential to be a novel alternative to carbon nanotubes in biosensing. We demonstrate the use of large-sized CVD grown graphene films configured as field-effect transistors for real-time biomolecular sensing. Glucose or glutamate molecules were detected by the conductance change of the graphene transistor as the molecules are oxidized by the specific redox enzyme (glucose oxidase or glutamic dehydrogenase) functionalized onto the graphene film. This study indicates that graphene is a promising candidate for the development of real-time nanoelectronic biosensors.Graphene, a single-atom-thick and two-dimensional carbon material, has attracted great attention recently. Because of its unique electrical, physical, and optical properties, graphene has great potential to be a novel alternative to carbon nanotubes in biosensing. We demonstrate the use of large-sized CVD grown graphene films configured as field-effect transistors for real-time biomolecular sensing. Glucose or glutamate molecules were detected by the conductance change of the graphene transistor as the molecules are oxidized by the specific redox enzyme (glucose oxidase or glutamic dehydrogenase) functionalized onto the graphene film. This study indicates that graphene is a promising candidate for the development of real-time nanoelectronic biosensors. Electronic supplementary information (ESI) available: AFM images of graphene film before and after functionalization, transfer curves of graphene after every step, SEM image of CNT-net, and detection results using CNT-net devices. See DOI: 10.1039/c0nr00142b

  8. Analytical modeling of glucose biosensors based on carbon nanotubes

    PubMed Central

    2014-01-01

    In recent years, carbon nanotubes have received widespread attention as promising carbon-based nanoelectronic devices. Due to their exceptional physical, chemical, and electrical properties, namely a high surface-to-volume ratio, their enhanced electron transfer properties, and their high thermal conductivity, carbon nanotubes can be used effectively as electrochemical sensors. The integration of carbon nanotubes with a functional group provides a good and solid support for the immobilization of enzymes. The determination of glucose levels using biosensors, particularly in the medical diagnostics and food industries, is gaining mass appeal. Glucose biosensors detect the glucose molecule by catalyzing glucose to gluconic acid and hydrogen peroxide in the presence of oxygen. This action provides high accuracy and a quick detection rate. In this paper, a single-wall carbon nanotube field-effect transistor biosensor for glucose detection is analytically modeled. In the proposed model, the glucose concentration is presented as a function of gate voltage. Subsequently, the proposed model is compared with existing experimental data. A good consensus between the model and the experimental data is reported. The simulated data demonstrate that the analytical model can be employed with an electrochemical glucose sensor to predict the behavior of the sensing mechanism in biosensors. PMID:24428818

  9. EQCM Immunoassay for Phosphorylated Acetylcholinesterase as a Biomarker for Organophosphate Exposures Based on Selective Zirconia Adsorption and Enzyme-Catalytic Precipitation

    SciTech Connect

    Wang, Hua; Wang, Jun; Choi, Daiwon; Tang, Zhiwen; Wu, Hong; Lin, Yuehe

    2009-03-01

    A zirconia (ZrO2) adsorption-based immunoassay by electrochemical quartz crystal microbalance (EQCM) has been initially developed, aiming at the detection of phosphorylated acetylcholinesterase (AChE) as a potential biomarker for bio-monitoring exposures to organophosphate (OP) pesticides and chemical warfare agents. Hydroxyl-derivatized monolayer was preferably chosen to modify the crystal serving as the template for directing the electro-deposition of ZrO2 film with uniform nanostructures. The resulting ZrO2 film was utilized to selectively capture phosphorylated AChE from the sample media. Horseradish peroxidase (HRP)-labeled anti-AChE antibodies were further employed to recognize the captured phosphorylated protein. Enzyme-catalytic oxidation of the benzidine substrate resulted in the accumulation of insoluble product on the functionalized crystal. Ultrasensitive EQCM quantification by mass-amplified frequency responses as well as rapid qualification by visual color changes of product could be thus achieved. Moreover, 4-chloro-1-naphthol (CN) was comparably studied as an ideal chromogenic substrate for the enzyme-catalytic precipitation. Experimental results show that the developed EQCM technique can allow for the detection of phosphorylated AChE in human plasma. Such an EQCM immunosensing format opens a new door towards the development of simple, sensitive, and field-applicable biosensor for biologically monitoring low-level OP exposures.

  10. A nanocomposite/crude extract enzyme-based xanthine biosensor.

    PubMed

    Sadeghi, Susan; Fooladi, Ebrahim; Malekaneh, Mohammad

    2014-11-01

    A novel amperometric biosensor for xanthine was developed based on covalent immobilization of crude xanthine oxidase (XOD) extracted from bovine milk onto a hybrid nanocomposite film via glutaraldehyde. Toward the preparation of the film, a stable colloids solution of core-shell Fe3O4/polyaniline nanoparticles (PANI/Fe3O4 NPs) was dispersed in solution containing chitosan (CHT) and H2PtCl6 and electrodeposited over the surface of a carbon paste electrode (CPE) in one step. Scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectrophotometry, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) were used for characterization of the electrode surface. The developed biosensor (XOD/CHT/Pt NPs/PANI/Fe3O4/CPE) was employed for determination of xanthine based on amperometric detection of hydrogen peroxide (H2O2) reduction at -0.35V (vs. Ag/AgCl). The biosensor exhibited a fast response time to xanthine within 8s and a linear working concentration range from 0.2 to 36.0μM (R(2)=0.997) with a detection limit of 0.1μM (signal/noise [S/N]=3). The sensitivity of the biosensor was 13.58μAμM(-1)cm(-2). The apparent Michaelis-Menten (Km) value for xanthine was found to be 4.7μM. The fabricated biosensor was successfully applied for measurement of fish and chicken meat freshness, which was in agreement with the standard method at the 95% confidence level. PMID:25062853

  11. Optical biosensors

    PubMed Central

    Damborský, Pavel; Švitel, Juraj

    2016-01-01

    Optical biosensors represent the most common type of biosensor. Here we provide a brief classification, a description of underlying principles of operation and their bioanalytical applications. The main focus is placed on the most widely used optical biosensors which are surface plasmon resonance (SPR)-based biosensors including SPR imaging and localized SPR. In addition, other optical biosensor systems are described, such as evanescent wave fluorescence and bioluminescent optical fibre biosensors, as well as interferometric, ellipsometric and reflectometric interference spectroscopy and surface-enhanced Raman scattering biosensors. The optical biosensors discussed here allow the sensitive and selective detection of a wide range of analytes including viruses, toxins, drugs, antibodies, tumour biomarkers and tumour cells. PMID:27365039

  12. Fiber Optic Surface Plasmon Resonance-Based Biosensor Technique: Fabrication, Advancement, and Application.

    PubMed

    Liang, Gaoling; Luo, Zewei; Liu, Kunping; Wang, Yimin; Dai, Jianxiong; Duan, Yixiang

    2016-05-01

    Fiber optic-based biosensors with surface plasmon resonance (SPR) technology are advanced label-free optical biosensing methods. They have brought tremendous progress in the sensing of various chemical and biological species. This review summarizes four sensing configurations (prism, grating, waveguide, and fiber optic) with two ways, attenuated total reflection (ATR) and diffraction, to excite the surface plasmons. Meanwhile, the designs of different probes (U-bent, tapered, and other probes) are also described. Finally, four major types of biosensors, immunosensor, DNA biosensor, enzyme biosensor, and living cell biosensor, are discussed in detail for their sensing principles and applications. Future prospects of fiber optic-based SPR sensor technology are discussed.

  13. Fluorescent Biosensors Based on Single-Molecule Counting.

    PubMed

    Ma, Fei; Li, Ying; Tang, Bo; Zhang, Chun-Yang

    2016-09-20

    Biosensors for highly sensitive, selective, and rapid quantification of specific biomolecules make great contributions to biomedical research, especially molecular diagnostics. However, conventional methods for biomolecular assays often suffer from insufficient sensitivity and poor specificity. In some case (e.g., early disease diagnostics), the concentration of target biomolecules is too low to be detected by these routine approaches, and cumbersome procedures are needed to improve the detection sensitivity. Therefore, there is an urgent need for rapid and ultrasensitive analytical tools. In this respect, single-molecule fluorescence approaches may well satisfy the requirement and hold promising potential for the development of ultrasensitive biosensors. Encouragingly, owing to the advances in single-molecule microscopy and spectroscopy over past decades, the detection of single fluorescent molecule comes true, greatly boosting the development of highly sensitive biosensors. By in vitro/in vivo labeling of target biomolecules with proper fluorescent tags, the quantification of certain biomolecule at the single-molecule level is achieved. In comparison with conventional ensemble measurements, single-molecule detection-based analytical methods possess the advantages of ultrahigh sensitivity, good selectivity, rapid analysis time, and low sample consumption. Consequently, single-molecule detection may be potentially employed as an ideal analytical approach to quantify low-abundant biomolecules with rapidity and simplicity. In this Account, we will summarize our efforts for developing a series of ultrasensitive biosensors based on single-molecule counting. Single-molecule counting is a member of single-molecule detection technologies and may be used as a very simple and ultrasensitive method to quantify target molecules by simply counting the individual fluorescent bursts. In the fluorescent sensors, the signals of target biomolecules may be translated to the

  14. Fluorescent Biosensors Based on Single-Molecule Counting.

    PubMed

    Ma, Fei; Li, Ying; Tang, Bo; Zhang, Chun-Yang

    2016-09-20

    Biosensors for highly sensitive, selective, and rapid quantification of specific biomolecules make great contributions to biomedical research, especially molecular diagnostics. However, conventional methods for biomolecular assays often suffer from insufficient sensitivity and poor specificity. In some case (e.g., early disease diagnostics), the concentration of target biomolecules is too low to be detected by these routine approaches, and cumbersome procedures are needed to improve the detection sensitivity. Therefore, there is an urgent need for rapid and ultrasensitive analytical tools. In this respect, single-molecule fluorescence approaches may well satisfy the requirement and hold promising potential for the development of ultrasensitive biosensors. Encouragingly, owing to the advances in single-molecule microscopy and spectroscopy over past decades, the detection of single fluorescent molecule comes true, greatly boosting the development of highly sensitive biosensors. By in vitro/in vivo labeling of target biomolecules with proper fluorescent tags, the quantification of certain biomolecule at the single-molecule level is achieved. In comparison with conventional ensemble measurements, single-molecule detection-based analytical methods possess the advantages of ultrahigh sensitivity, good selectivity, rapid analysis time, and low sample consumption. Consequently, single-molecule detection may be potentially employed as an ideal analytical approach to quantify low-abundant biomolecules with rapidity and simplicity. In this Account, we will summarize our efforts for developing a series of ultrasensitive biosensors based on single-molecule counting. Single-molecule counting is a member of single-molecule detection technologies and may be used as a very simple and ultrasensitive method to quantify target molecules by simply counting the individual fluorescent bursts. In the fluorescent sensors, the signals of target biomolecules may be translated to the

  15. Development of a BLM-based intelligent biosensor

    NASA Astrophysics Data System (ADS)

    Liu, Sheng; Wei, Yunlong; Cai, Shaoxi; Tien, H. Ti; Ottova, Angelica L.

    2001-09-01

    Bilayer lipid membranes (BLMs) are promising 'smart' materials for biosensor and biomolecules. A novel pH-microbe of an acupuncture needle support with BLM modified by electron mediators was fabricated. An intelligent biosensor system BLM-based was developed. The intelligent system can automatically measure and analyze pH value of aqueous solution with probes BLMs-based and Si-chips thin-film as sensing elements. It can also give a warning message when the pH value of aqueous solution is over one threshold value. The intelligent system has communication interface of computer. A monitoring system based network can be constructed by connection the intelligence system with computers.

  16. Encapsulation of FRET-based glucose and maltose biosensors to develop functionalized silica nanoparticles.

    PubMed

    Faccio, G; Bannwarth, M B; Schulenburg, C; Steffen, V; Jankowska, D; Pohl, M; Rossi, R M; Maniura-Weber, K; Boesel, L F; Richter, M

    2016-06-20

    Silicate nanoparticles with immobilized FRET-based biosensors were developed for the detection of glucose and maltose. Immobilization of the protein biosensor in the nanoparticle was achieved through specific interaction between the hexa-histidine tag of the protein and a calcium-silicate complex of the silica matrix. Encapsulation of the biosensors preserved the affinity for the respective sugar. Compared to the free biosensors, encapsulation had a stabilizing effect on the biosensor towards chemical and thermal denaturation. The demonstrated immobilization strategy for specific sensing proteins paves the way towards the development of protein-inorganic nanostructures for application in metabolite analyses. PMID:26811852

  17. MEMS-based biosensors for environmental monitoring

    NASA Astrophysics Data System (ADS)

    Endo, Tatsuro; Morita, Yasutaka; Tamiya, Eiichi

    2004-03-01

    Biosensors in connection with enzyme linked immunosorbent assay (ELISA) can be applied in many fields of research. In this paper, the reduction in the size of ELISA utilizing micro-chemical reaction is described in a microchamber array chip, and also a micro-flow antibody chip. The chips were fabricated by micro electromechanical system (MEMS) technology. The quantitative determination of dioxins was performed by using the chips. Glass or polystyrene beads were used for immobilization of an antibody at these chips. The antibody-immobilized beads were introduced into micro-flow channel or microchamber. As a competitive ELISA, sample solution mixed with horseradish peroxidase (HRP)-conjugated antigen, and non-HRP conjugated antigen was allowed to react in the microchamber or flow channel. As a sandwich assay, sample solution and HRP-conjugated antibody were sequentially added to the chamber. After the antigen-antibody reaction, addition of PBS buffer, hydrogen peroxide, and fluorogenic substrate produced the fluorescent dye. The resulting change in the fluorescence intensity was monitored by a fluorescence microscope.

  18. Enzymatic amplification detection of DNA based on "molecular beacon" biosensors.

    PubMed

    Mao, Xun; Jiang, Jianhui; Xu, Xiangmin; Chu, Xia; Luo, Yan; Shen, Guoli; Yu, Ruqin

    2008-05-15

    We described a novel electrochemical DNA biosensor based on molecular beacon (MB) probe and enzymatic amplification protocol. The MB modified with a thiol at its 5' end and a biotin at its 3' end was immobilized on the gold electrode through mixed self-assembly process. Hybridization events between MB and target DNA cause the conformational change of the MB, triggering the attached biotin group on the electrode surface. Following the specific interaction between the conformation-triggered biotin and streptavidin-horseradish peroxidase (HRP), subsequent quantification of DNA was realized by electrochemical detection of enzymatic product in the presence of substrate. The detection limit is obtained as low as 0.1nM. The presented DNA biosensor has good selectivity, being able to differentiate between a complementary target DNA sequence and one containing G-G single-base mismatches.

  19. Plant Esterase-Chitosan/Gold Nanoparticles-Graphene Nanosheet Composite-Based Biosensor for the Ultrasensitive Detection of Organophosphate Pesticides.

    PubMed

    Bao, Jing; Hou, Changjun; Chen, Mei; Li, Junjie; Huo, Danqun; Yang, Mei; Luo, Xiaogang; Lei, Yu

    2015-12-01

    As broad-spectrum pesticides, organophosphates (OPs) are widely used in agriculture all over the world. However, due to their neurotoxicity in humans and their increasing occurrence in the environment, there is growing interest in their sensitive and selective detection. This paper reports a new cost-effective plant esterase-chitosan/gold nanoparticles-graphene nanosheet (PLaE-CS/AuNPs-GNs) biosensor for the sensitive detection of methyl parathion and malathion. Highly pure plant esterase is produced from plants at low cost and shares the same inhibition mechanism with OPs as acetylcholinesterase, and then it was used to prepare PLaE-CS/AuNPs-GNs nanocomposites, which were systematically characterized using SEM, TEM, and UV-vis. The PLaE-CS/AuNPs-GNs composite-based biosensor measured as low as 50 ppt (0.19 nM) of methyl parathion and 0.5 ppb (1.51 nM) of malathion (S/N = 3) with a calibration curve up to 200 ppb (760 nM) and 500 ppb (1513.5 nM) for methyl parathion and malathion, respectively. There is also no interference observed from most of common species such as metal ions, inorganic ions, glucose, and citric acid. In addition, its applicability to OPs-contaminated real samples (carrot and apple) was also demonstrated with excellent response recovery. The developed simple, sensitive, and reliable PLaE-CS/AuNPs-GNs composite-based biosensor holds great potential in OPs detection for food and environmental safety.

  20. Plant Esterase-Chitosan/Gold Nanoparticles-Graphene Nanosheet Composite-Based Biosensor for the Ultrasensitive Detection of Organophosphate Pesticides.

    PubMed

    Bao, Jing; Hou, Changjun; Chen, Mei; Li, Junjie; Huo, Danqun; Yang, Mei; Luo, Xiaogang; Lei, Yu

    2015-12-01

    As broad-spectrum pesticides, organophosphates (OPs) are widely used in agriculture all over the world. However, due to their neurotoxicity in humans and their increasing occurrence in the environment, there is growing interest in their sensitive and selective detection. This paper reports a new cost-effective plant esterase-chitosan/gold nanoparticles-graphene nanosheet (PLaE-CS/AuNPs-GNs) biosensor for the sensitive detection of methyl parathion and malathion. Highly pure plant esterase is produced from plants at low cost and shares the same inhibition mechanism with OPs as acetylcholinesterase, and then it was used to prepare PLaE-CS/AuNPs-GNs nanocomposites, which were systematically characterized using SEM, TEM, and UV-vis. The PLaE-CS/AuNPs-GNs composite-based biosensor measured as low as 50 ppt (0.19 nM) of methyl parathion and 0.5 ppb (1.51 nM) of malathion (S/N = 3) with a calibration curve up to 200 ppb (760 nM) and 500 ppb (1513.5 nM) for methyl parathion and malathion, respectively. There is also no interference observed from most of common species such as metal ions, inorganic ions, glucose, and citric acid. In addition, its applicability to OPs-contaminated real samples (carrot and apple) was also demonstrated with excellent response recovery. The developed simple, sensitive, and reliable PLaE-CS/AuNPs-GNs composite-based biosensor holds great potential in OPs detection for food and environmental safety. PMID:26554573

  1. A Nanofluidic Biosensor Based on Nanoreplica Molding Photonic Crystal

    NASA Astrophysics Data System (ADS)

    Peng, Wang; Chen, Youping; Ai, Wu; Zhang, Dailin

    2016-09-01

    A nanofluidic biosensor based on nanoreplica molding photonic crystal (PC) was proposed. UV epoxy PC was fabricated by nanoreplica molding on a master PC wafer. The nanochannels were sealed between the gratings on the PC surface and a taped layer. The resonance wavelength of PC-based nanofluidic biosensor was used for testing the sealing effect. According to the peak wavelength value of the sensor, an initial label-free experiment was realized with R6g as the analyte. When the PC-based biosensor was illuminated by a monochromatic light source with a specific angle, the resonance wavelength of the sensor will match with the light source and amplified the electromagnetic field. The amplified electromagnetic field was used to enhance the fluorescence excitation result. The enhancement effect was used for enhancing fluorescence excitation and emission when matched with the resonance condition. Alexa Fluor 635 was used as the target dye excited by 637-nm laser source on a configured photonic crystal enhanced fluorescence (PCEF) setup, and an initial PCEF enhancement factor was obtained.

  2. A Nanofluidic Biosensor Based on Nanoreplica Molding Photonic Crystal.

    PubMed

    Peng, Wang; Chen, Youping; Ai, Wu; Zhang, Dailin

    2016-12-01

    A nanofluidic biosensor based on nanoreplica molding photonic crystal (PC) was proposed. UV epoxy PC was fabricated by nanoreplica molding on a master PC wafer. The nanochannels were sealed between the gratings on the PC surface and a taped layer. The resonance wavelength of PC-based nanofluidic biosensor was used for testing the sealing effect. According to the peak wavelength value of the sensor, an initial label-free experiment was realized with R6g as the analyte. When the PC-based biosensor was illuminated by a monochromatic light source with a specific angle, the resonance wavelength of the sensor will match with the light source and amplified the electromagnetic field. The amplified electromagnetic field was used to enhance the fluorescence excitation result. The enhancement effect was used for enhancing fluorescence excitation and emission when matched with the resonance condition. Alexa Fluor 635 was used as the target dye excited by 637-nm laser source on a configured photonic crystal enhanced fluorescence (PCEF) setup, and an initial PCEF enhancement factor was obtained. PMID:27664018

  3. Whole-cell-based biosensors for environmental biomonitoring and application.

    PubMed

    Gu, Man Bock; Mitchell, Robert J; Kim, Byoung Chan

    2004-01-01

    A variety of whole-cell-based biosensors has been developed using numerous native and recombinant biosensing cells. The use of reporter genes, for example bacterial luciferase and gfp, to monitor gene expression is discussed in terms of each reporters' benefits and disadvantages, including their possible use on-line, their sensitivity, the need for extra substrate, etc. All biosensing cells in use can be classified into two groups in terms of their biosensing mechanisms--constitutive expression and stress- or chemical-specific inducible expression. In this review several examples of each are presented and discussed. The use of recombinant whole-cell biosensors in the field requires three components--biosensing cells, a measurement device, and a signal-transducing apparatus, the last two depending on the first and the final applications of the system. The use of different immobilization techniques in several studies to maintain the cells and their viability is also discussed, in particular their use in the development of both high-throughput and chip-based biosensing systems. Finally the application of whole-cell-based biosensors to different environmental media, such as water, soil, and atmospheric monitoring is discussed; particular attention is given to their use for detection of various stressors, including dioxins, endocrine-disrupting chemicals, and ionizing radiation.

  4. Biosensors based on GaN nanoring optical cavities

    NASA Astrophysics Data System (ADS)

    Kouno, Tetsuya; Takeshima, Hoshi; Kishino, Katsumi; Sakai, Masaru; Hara, Kazuhiko

    2016-05-01

    Biosensors based on GaN nanoring optical cavities were demonstrated using room-temperature photoluminescence measurements. The outer diameter, height, and thickness of the GaN nanorings were approximately 750-800, 900, and 130-180 nm, respectively. The nanorings functioned as whispering-gallery-mode (WGM)-type optical cavities and exhibited sharp resonant peaks like lasing actions. The evanescent component of the WGM was strongly affected by the refractive index of the ambient environment, the type of liquid, and the sucrose concentration of the analyzed solution, resulting in shifts of the resonant wavelengths. The results indicate that the GaN nanorings can potentially be used in sugar sensors of the biosensors.

  5. Glucose Biosensors Based on Carbon Nanotube Nanoelectrode Ensembles

    SciTech Connect

    Lin, Yuehe ); Lu, Fang; Tu, Yi; Ren, Zhifeng

    2004-02-12

    This paper describes the development of glucose biosensors based on carbon nanotube (CNT) nanoelectrode ensembles (NEEs) for the selective detection of glucose. Glucose oxidase was covalently immobilized on CNT NEEs via carbodiimide chemistry by forming amide linkages between their amine residues and carboxylic acid groups on the CNT tips. The catalytic reduction of hydrogen peroxide liberated from the enzymatic reaction of glucose oxidase upon the glucose and oxygen on CNT NEEs leads to the selective detection of glucose. The biosensor effectively performs selective electrochemical analysis of glucose in the presence of common interferents (e.g. acetaminophen, uric and ascorbic acids), avoiding the generation of an overlapping signal from such interferents. Such an operation eliminates the need for permselective membrane barriers or artificial electron mediators, thus greatly simplifying the sensor design and fabrication.

  6. Biosensors based on GaN nanoring optical cavities

    NASA Astrophysics Data System (ADS)

    Kouno, Tetsuya; Takeshima, Hoshi; Kishino, Katsumi; Sakai, Masaru; Hara, Kazuhiko

    2016-05-01

    Biosensors based on GaN nanoring optical cavities were demonstrated using room-temperature photoluminescence measurements. The outer diameter, height, and thickness of the GaN nanorings were approximately 750–800, 900, and 130–180 nm, respectively. The nanorings functioned as whispering-gallery-mode (WGM)-type optical cavities and exhibited sharp resonant peaks like lasing actions. The evanescent component of the WGM was strongly affected by the refractive index of the ambient environment, the type of liquid, and the sucrose concentration of the analyzed solution, resulting in shifts of the resonant wavelengths. The results indicate that the GaN nanorings can potentially be used in sugar sensors of the biosensors.

  7. Nanomaterial-Based Biosensors for Detection of Pesticides and Explosives

    SciTech Connect

    Wang, Jun; Lin, Yuehe

    2009-01-01

    In this chapter, we describe nanomaterial-based biosensors for detecting OP pesticides and explosives. CNTs and functionalized silica nanoparticles have been chosen for this study. The biosensors were combined with the flow-injection system, providing great advantages for onsite, real-time, and continuous detection of environmental pollutants such as OPs and TNT. The sensors take advantage of the electrocatalytic properties of CNTs, which makes it feasible to achieve a sensitive electrochemical detection of the products from enzymatic reactions at low potential. This approach uses a large aspect ratio of silica nanoparticles, which can be used as a carrier for loading a large amount of electroactive species, such as poly(guanine), for amplified detection of explosives. These methods offer a new environmental monitoring tool for rapid, inexpensive, and highly sensitive detection of OPs or TNT compounds.

  8. Effects of food surface topography on phage-based magnetoelastic biosensor detection

    NASA Astrophysics Data System (ADS)

    Horikawa, Shin; Chai, Yating; Zhao, Ruiting; Wikle, Howard C.; Chin, Bryan A.

    2014-05-01

    Phage-based magnetoelastic (ME) biosensors have proven useful in rapidly and inexpensively detecting food surface con- tamination. These biosensors are wireless, mass-sensitive biosensors and can be placed directly on food surfaces to detect the presence of target pathogens. Previously, millimeter-scale strip-shaped ME biosensors have been used to demonstrate direct detection of Salmonella Typhimurium on various fresh produce surfaces, including tomatoes, shell eggs, watermel- ons, and spinach leaves. Since the topography of these produce surfaces are different, and the biosensor must come into direct contact with Salmonella bacteria, food surfaces with large roughness and curvatures (e.g., spinach leaf surfaces) may allow the bacteria to avoid direct contact, thereby avoiding detection. The primary objective of this paper is, hence, to investigate the effects of food surface topography on the detection capabilities of the biosensors. Spinach leaf surfaces were selected as model surfaces, and detection experiments were conducted with differently sized biosensors (2 mm, 0.5 mm, and 150 μm in length). Spinach leaf roughness and curvatures of both adaxial (top) and abaxial (underside) surfaces were measured using a confocal laser scanning microscope. The experimental results showed that in spinach as the sen- sor was made smaller, the physical contact between the biosensors and bacteria were improved. Smaller sensors thereby enhance detection capabilities. When proper numbers of biosensors are used, micron-scale biosensors are anticipated to yield improved limits of detection over previously investigated millimeter-scale biosensors.

  9. Nanoparticle-based immunosensor with apoferritin templated metallic phosphate label for quantification of phosphorylated acetylcholinesterase

    SciTech Connect

    Du, Dan; Chen, Aiqiong; Xie, Yunying; Zhang, Aidong; Lin, Yuehe

    2011-05-15

    A new sandwich-like electrochemical immunosensor has been developed for quantification of organophosphorylated acetylcholinesterase (OP-AChE), an exposure biomarker of organophosphate pesticides and nerve agents. Zirconia nanoparticles (ZrO2 NPs) were anchored on a screen printed electrode (SPE) to preferably capture OP-AChE adducts by metal chelation with phospho-moieties, which was selectively recognized by lead phosphate-apoferritin labeled anti-AChE antibody (LPA-anti-AChE). The sandwich-like immunoreactions were performed among ZrO2 NPs, OP-AChE and LPA-anti-AChE to form ZrO2/OP-AChE/LPA-anti-AChE complex and the released lead ions were detected on a disposable SPE. The binding affinity was investigated by both square wave voltammetry (SWV) and quartz crystal microbalance (QCM) measurements. The proposed immunosensor yielded a linear response current over a broad OP-AChE concentrations range from 0.05 nM to 10 nM, with detection limit of 0.02 nM, which has enough sensitivity for monitoring of low-dose exposure to OPs. This method avoids the drawback of unavailability of commercial OP-specific antibody as well as amplifies detection signal by using apoferritin encoded metallic phosphate nanoparticle tags. This nanoparticle-based immunosensor offers a new method for rapid, sensitive, selective and inexpensive quantification of phosphorylated adducts for monitoring of OP pesticides and nerve agents exposures.

  10. DNA nanostructures based biosensor for the determination of aromatic compounds.

    PubMed

    Gayathri, S Baby; Kamaraj, P; Arthanareeswari, M; Devikala, S

    2015-10-15

    Graphite electrode was modified using multi-walled carbon nanotubes (MWCNT), chitosan (CS), glutaraldehyde (GTA) and DNA nanostructures (nsDNA). DNA nanostructures of 50 nm in size were produced from single DNA template sequence using a simple two step procedure and were confirmed using TEM and AFM analysis. The modified electrode was applied to the electrochemical detection of aromatic compounds using EIS. The modified electrode was characterized using differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). For comparison, electrochemical results derived from single stranded (50 bp length) and double stranded (50 bp length) DNA based biosensors were used. The results indicate that the modified electrode prior to nsDNA immobilization provides a viable platform that effectively promotes electron transfer between nsDNA and the electrode. The mode of binding between the nsDNA and aromatic compounds was investigated using EIS, indicating that the dominant interaction is non-covalent. nsDNA based biosensor was observed to act as an efficient biosensor in selective and sensitive identification of aromatic compounds.

  11. Electrochemiluminescence biosensor for determination of organophosphorous pesticides based on bimetallic Pt-Au/multi-walled carbon nanotubes modified electrode.

    PubMed

    Miao, Shan Shan; Wu, Mei Sheng; Ma, Li Ya; He, Xiao Jing; Yang, Hong

    2016-09-01

    A novel and highly sensitive electrochemiluminescence (ECL) biosensing system was designed and developed for individual detection of different organophosphorous pesticides (OPs) in food samples. Bimetallic Pt-Au nanoparticles were electrodeposited on multi-walled carbon nanotubes (MWNTs)-modified glass carbon electrode (GCE) to increase the surface area of electrode and ECL signals of luminol. Biocomposites of enzymes from acetylcholinesterase and choline oxidase (AChE and ChOx) were immobilized onto the electrode surface to produce massive hydrogen peroxides (H2O2), thus amplifying ECL signals. Based on the dual-amplification effects of nanoparticles and H2O2 produced by enzymatic reactions, the proposed biosensor exhibits highly sensitivity. The proposed biosensing approach was then used for detecting OPs by inhibition of OPs on AChE. Under optimized experimental conditions, the ECL intensity decreased accordingly with the increase in concentration of OPs, and the inhibition rates of OPs were proportional to their concentrations in the range of 0.1-50nmolL(-1) for malathion, methyl parathion and chlorpyrifos, with detection limit of 0.16nmolL(-1), 0.09nmolL(-1) and 0.08nmolL(-1), respectively. The linearity range of the biosensor for pesticide dufulin varied from 50 to 500nmolL(-1), with the detection limit of 29.7nmolL(-1). The resulting biosensor was further validated by assessment of OPs residues in cabbage, which showed a fine applicability for the detection of OPs in the realistic sample. PMID:27343588

  12. Paper-based acetylcholinesterase inhibition assay combining a wet system for organophosphate and carbamate pesticides detection

    PubMed Central

    Apilux, Amara; Isarankura-Na-Ayudhya, Chartchalerm; Tantimongcolwat, Tanawut; Prachayasittikul, Virapong

    2015-01-01

    A dramatic increase in pesticide usage in agriculture highlights the need for on-site monitoring for public health and safety. Here, a paper-based sensor combined with a wet system was developed for the simple and rapid screening of organophosphate (OP) and carbamate (CM) pesticides based on the inhibition of acetylcholinesterase (AChE). The paper-based sensor was designed as a foldable device consisting of a cover and detection sheets pre-prepared with indoxyl acetate and AChE, respectively. The paper-based sensor requires only the incubation of a sample on the test zone for 10 minutes, followed by closing of the foldable sheet to initiate the enzymatic reaction. Importantly, the buffer loading hole was additionally designed on the cover sheet to facilitate the interaction of the coated substrate and the immobilized enzyme. This subsequently facilitates the mixing of indoxyl acetate with AChE, resulting in the improved analytical performance of the sensor. The absence or decrease in blue color produced by the AChE hydrolysis of indoxyl acetate can be observed in the presence of OPs and CMs. Under optimized conditions and using image analysis, the limit of detection (LOD) of carbofuran, dichlorvos, carbaryl, paraoxon, and pirimicarb are 0.003, 0.3, 0.5, 0.6, and 0.6 ppm, respectively. The assay could be applied to determine OP and CM residues in spiked food samples. Visual interpretation of the color signal was clearly observed at the concentration of 5 mg/kg. Furthermore, a self-contained sample pre-concentration approach greatly enhanced the detection sensitivity. The paper-based device developed here is low-cost, requires minimal reagents and is easy to handle. As such, it would be practically useful for pesticide screening by non-professional end-users. PMID:26417364

  13. Paper-based acetylcholinesterase inhibition assay combining a wet system for organophosphate and carbamate pesticides detection.

    PubMed

    Apilux, Amara; Isarankura-Na-Ayudhya, Chartchalerm; Tantimongcolwat, Tanawut; Prachayasittikul, Virapong

    2015-01-01

    A dramatic increase in pesticide usage in agriculture highlights the need for on-site monitoring for public health and safety. Here, a paper-based sensor combined with a wet system was developed for the simple and rapid screening of organophosphate (OP) and carbamate (CM) pesticides based on the inhibition of acetylcholinesterase (AChE). The paper-based sensor was designed as a foldable device consisting of a cover and detection sheets pre-prepared with indoxyl acetate and AChE, respectively. The paper-based sensor requires only the incubation of a sample on the test zone for 10 minutes, followed by closing of the foldable sheet to initiate the enzymatic reaction. Importantly, the buffer loading hole was additionally designed on the cover sheet to facilitate the interaction of the coated substrate and the immobilized enzyme. This subsequently facilitates the mixing of indoxyl acetate with AChE, resulting in the improved analytical performance of the sensor. The absence or decrease in blue color produced by the AChE hydrolysis of indoxyl acetate can be observed in the presence of OPs and CMs. Under optimized conditions and using image analysis, the limit of detection (LOD) of carbofuran, dichlorvos, carbaryl, paraoxon, and pirimicarb are 0.003, 0.3, 0.5, 0.6, and 0.6 ppm, respectively. The assay could be applied to determine OP and CM residues in spiked food samples. Visual interpretation of the color signal was clearly observed at the concentration of 5 mg/kg. Furthermore, a self-contained sample pre-concentration approach greatly enhanced the detection sensitivity. The paper-based device developed here is low-cost, requires minimal reagents and is easy to handle. As such, it would be practically useful for pesticide screening by non-professional end-users. PMID:26417364

  14. Papers Based Electrochemical Biosensors: From Test Strips to Paper-Based Microfluidics

    SciTech Connect

    Liu, Bingwen; Du, Dan; Hua, Xin; Yu, Xiao-Ying; Lin, Yuehe

    2014-05-08

    Papers based biosensors such as lateral flow test strips and paper-based microfluidic devices (or paperfluidics) are inexpensive, rapid, flexible, and easy-to-use analytical tools. An apparent trend in their detection is to interpret sensing results from qualitative assessment to quantitative determination. Electrochemical detection plays an important role in quantification. This review focuses on electrochemical (EC) detection enabled biosensors. The first part provides detailed examples in paper test strips. The second part gives an overview of paperfluidics engaging EC detections. The outlook and recommendation of future directions of EC enabled biosensors are discussed in the end.

  15. Resonant energy transfer based biosensor for detection of multivalent proteins.

    SciTech Connect

    Song, X.; Swanson, Basil I.

    2001-01-01

    We have developed a new fluorescence-based biosensor for sensitive detection of species involved in a multivslent interaction. The biosensor system utilizes specific interactions between proteins and cell surface receptors, which trigger a receptor aggregation process. Distance-dependent fluorescence self-quenching and resonant energy transfer mechanisms were coupled with a multivalent interaction to probe the receptor aggregation process, providing a sensitive and specific signal transduction method for such a binding event. The fluorescence change induced by the aggregation process can be monitored by different instrument platforms, e.g. fluorimetry and flow cytometry. In this article, a sensitive detection of pentavalent cholera toxin which recognizes ganglioside GM1 has been demonstrated through the resonant energy transfer scheme, which can achieve a double color change simultaneously. A detection sensitivity as high as 10 pM has been achieved within a few minutes (c.a. 5 minutes). The simultaneous double color change (an increase of acceptor fluorescence and a decrease of donor fluorescence intensity) of two similar fluorescent probes provides particularly high detection reliability owing to the fact that they act as each other's internal reference. Any external perturbation such as environmental temperature change causes no significant change in signal generation. Besides the application for biological sensing, the method also provides a useful tool for investigation of kinetics and thermodynamics of a multivalent interaction. Keywords: Biosensor, Fluorescence resonant energy transfer, Multivalent interaction, Cholera Toxin, Ganglioside GM1, Signal Transduction

  16. A liquid-crystal-based DNA biosensor for pathogen detection

    PubMed Central

    Khan, Mashooq; Khan, Abdur Rahim; Shin, Jae-Ho; Park, Soo-Young

    2016-01-01

    A liquid-crystal (LC)-filled transmission electron microscopy (TEM) grid cell coated with the cationic surfactant dodecyltrimethylammonium bromide (DTAB), to which a single-stranded deoxyribonucleic acid probe (ssDNAprobe) was adsorbed at the LC/aqueous interface (TEMDTAB/DNA), was applied for the highly specific detection of target DNA molecules. The DTAB-coated E7 (used LC mixture) in the TEM grid (TEMDTAB) exhibited a homeotropic orientation, and changed to a planar orientation upon adsorption of the ssDNAprobe. The TEMDTAB/DNA was then exposed to complementary (target) ssDNA, which resulted in a planar-to-homeotropic configurational change of E7 that could be observed through a polarized optical microscope under crossed polarizers. The optimum adsorption density (2 μM) of ssDNAprobe enabled the detection of ≥0.05 nM complementary ssDNA. This TEMDTAB/DNA biosensor could differentiate complementary ssDNA from mismatched ssDNA as well as double-stranded DNA. It also successfully detected the genomic DNAs of the bacterium Erwinia carotovora and the fungi Rhazictonia solani. Owe to the high specificity, sensitivity, and label-free detection, this biosensor may broaden the applications of LC-based biosensors to pathogen detection. PMID:26940532

  17. Aptamer-based electrochemical biosensor for interferon gamma detection.

    PubMed

    Liu, Ying; Tuleouva, Nazgul; Ramanculov, Erlan; Revzin, Alexander

    2010-10-01

    In this paper, we describe the development of an electrochemical DNA aptamer-based biosensor for detection of interferon (IFN)-γ. A DNA hairpin containing IFN-γ-binding aptamer was thiolated, conjugated with methylene blue (MB) redox tag, and immobilized on a gold electrode by self-assembly. Binding of IFN-γ caused the aptamer hairpin to unfold, pushing MB redox molecules away from the electrode and decreasing electron-transfer efficiency. The change in redox current was quantified using square wave voltammetry (SWV) and was found to be highly sensitive to IFN-γ concentration. The limit of detection for optimized biosensor was 0.06 nM with linear response extending to 10 nM. This aptasensor was specific to IFN-γ in the presence of overabundant serum proteins. Importantly, the same aptasensor could be regenerated by disrupting aptamer-IFN-γ complex in urea buffer and reused multiple times. Unlike standard sandwich immunoassays, the aptasensor described here allowed one to detect IFN-γ binding directly without the need for multiple washing steps and reagents. An electrochemical biosensor for simple and sensitive detection of IFN-γ demonstrated in this paper will have future applications in immunology, cancer research, and infectious disease monitoring.

  18. A liquid-crystal-based DNA biosensor for pathogen detection.

    PubMed

    Khan, Mashooq; Khan, Abdur Rahim; Shin, Jae-Ho; Park, Soo-Young

    2016-01-01

    A liquid-crystal (LC)-filled transmission electron microscopy (TEM) grid cell coated with the cationic surfactant dodecyltrimethylammonium bromide (DTAB), to which a single-stranded deoxyribonucleic acid probe (ssDNAprobe) was adsorbed at the LC/aqueous interface (TEMDTAB/DNA), was applied for the highly specific detection of target DNA molecules. The DTAB-coated E7 (used LC mixture) in the TEM grid (TEMDTAB) exhibited a homeotropic orientation, and changed to a planar orientation upon adsorption of the ssDNAprobe. The TEMDTAB/DNA was then exposed to complementary (target) ssDNA, which resulted in a planar-to-homeotropic configurational change of E7 that could be observed through a polarized optical microscope under crossed polarizers. The optimum adsorption density (2 μM) of ssDNAprobe enabled the detection of ≥0.05 nM complementary ssDNA. This TEMDTAB/DNA biosensor could differentiate complementary ssDNA from mismatched ssDNA as well as double-stranded DNA. It also successfully detected the genomic DNAs of the bacterium Erwinia carotovora and the fungi Rhazictonia solani. Owe to the high specificity, sensitivity, and label-free detection, this biosensor may broaden the applications of LC-based biosensors to pathogen detection.

  19. A liquid-crystal-based DNA biosensor for pathogen detection.

    PubMed

    Khan, Mashooq; Khan, Abdur Rahim; Shin, Jae-Ho; Park, Soo-Young

    2016-01-01

    A liquid-crystal (LC)-filled transmission electron microscopy (TEM) grid cell coated with the cationic surfactant dodecyltrimethylammonium bromide (DTAB), to which a single-stranded deoxyribonucleic acid probe (ssDNAprobe) was adsorbed at the LC/aqueous interface (TEMDTAB/DNA), was applied for the highly specific detection of target DNA molecules. The DTAB-coated E7 (used LC mixture) in the TEM grid (TEMDTAB) exhibited a homeotropic orientation, and changed to a planar orientation upon adsorption of the ssDNAprobe. The TEMDTAB/DNA was then exposed to complementary (target) ssDNA, which resulted in a planar-to-homeotropic configurational change of E7 that could be observed through a polarized optical microscope under crossed polarizers. The optimum adsorption density (2 μM) of ssDNAprobe enabled the detection of ≥0.05 nM complementary ssDNA. This TEMDTAB/DNA biosensor could differentiate complementary ssDNA from mismatched ssDNA as well as double-stranded DNA. It also successfully detected the genomic DNAs of the bacterium Erwinia carotovora and the fungi Rhazictonia solani. Owe to the high specificity, sensitivity, and label-free detection, this biosensor may broaden the applications of LC-based biosensors to pathogen detection. PMID:26940532

  20. A liquid-crystal-based DNA biosensor for pathogen detection

    NASA Astrophysics Data System (ADS)

    Khan, Mashooq; Khan, Abdur Rahim; Shin, Jae-Ho; Park, Soo-Young

    2016-03-01

    A liquid-crystal (LC)-filled transmission electron microscopy (TEM) grid cell coated with the cationic surfactant dodecyltrimethylammonium bromide (DTAB), to which a single-stranded deoxyribonucleic acid probe (ssDNAprobe) was adsorbed at the LC/aqueous interface (TEMDTAB/DNA), was applied for the highly specific detection of target DNA molecules. The DTAB-coated E7 (used LC mixture) in the TEM grid (TEMDTAB) exhibited a homeotropic orientation, and changed to a planar orientation upon adsorption of the ssDNAprobe. The TEMDTAB/DNA was then exposed to complementary (target) ssDNA, which resulted in a planar-to-homeotropic configurational change of E7 that could be observed through a polarized optical microscope under crossed polarizers. The optimum adsorption density (2 μM) of ssDNAprobe enabled the detection of ≥0.05 nM complementary ssDNA. This TEMDTAB/DNA biosensor could differentiate complementary ssDNA from mismatched ssDNA as well as double-stranded DNA. It also successfully detected the genomic DNAs of the bacterium Erwinia carotovora and the fungi Rhazictonia solani. Owe to the high specificity, sensitivity, and label-free detection, this biosensor may broaden the applications of LC-based biosensors to pathogen detection.

  1. Ultrasensitive detection of influenza viruses with a glycan-based impedimetric biosensor

    PubMed Central

    Hushegyi, András; Pihíková, Dominika; Bertók, Tomáš; Adam, Vojtech; Kizek, René; Tkac, Jan

    2016-01-01

    An ultrasensitive impedimetric glycan-based biosensor for reliable and selective detection of inactivated, but intact influenza viruses H3N2 was developed. Such glycan-based approach has a distinct advantage over antibody-based detection of influenza viruses since glycans are natural viral receptors with a possibility to selectively distinguish between potentially pathogenic influenza subtypes by the glycan-based biosensors. Build-up of the biosensor was carefully optimized with atomic force microscopy applied for visualization of the biosensor surface after binding of viruses with the topology of an individual viral particle H3N2 analyzed. The glycan biosensor could detect a glycan binding lectin with a limit of detection (LOD) of 5 aM. The biosensor was finally applied for analysis of influenza viruses H3N2 with LOD of 13 viral particles in 1 μl, what is the lowest LOD for analysis of influenza viral particles by the glycan-based device achieved so far. The biosensor could detect H3N2 viruses selectively with a sensitivity ratio of 30 over influenza viruses H7N7. The impedimetric biosensor presented here is the most sensitive glycan-based device for detection of influenza viruses and among the most sensitive antibody or aptamer based biosensor devices. PMID:26765527

  2. Ultrasensitive detection of influenza viruses with a glycan-based impedimetric biosensor.

    PubMed

    Hushegyi, András; Pihíková, Dominika; Bertok, Tomas; Adam, Vojtech; Kizek, René; Tkac, Jan

    2016-05-15

    An ultrasensitive impedimetric glycan-based biosensor for reliable and selective detection of inactivated, but intact influenza viruses H3N2 was developed. Such glycan-based approach has a distinct advantage over antibody-based detection of influenza viruses since glycans are natural viral receptors with a possibility to selectively distinguish between potentially pathogenic influenza subtypes by the glycan-based biosensors. Build-up of the biosensor was carefully optimized with atomic force microscopy applied for visualization of the biosensor surface after binding of viruses with the topology of an individual viral particle H3N2 analyzed. The glycan biosensor could detect a glycan binding lectin with a limit of detection (LOD) of 5 aM. The biosensor was finally applied for analysis of influenza viruses H3N2 with LOD of 13 viral particles in 1 μl, what is the lowest LOD for analysis of influenza viral particles by the glycan-based device achieved so far. The biosensor could detect H3N2 viruses selectively with a sensitivity ratio of 30 over influenza viruses H7N7. The impedimetric biosensor presented here is the most sensitive glycan-based device for detection of influenza viruses and among the most sensitive antibody or aptamer based biosensor devices.

  3. Development of mercury (II) ion biosensors based on mercury-specific oligonucleotide probes.

    PubMed

    Li, Lanying; Wen, Yanli; Xu, Li; Xu, Qin; Song, Shiping; Zuo, Xiaolei; Yan, Juan; Zhang, Weijia; Liu, Gang

    2016-01-15

    Mercury (II) ion (Hg(2+)) contamination can be accumulated along the food chain and cause serious threat to the public health. Plenty of research effort thus has been devoted to the development of fast, sensitive and selective biosensors for monitoring Hg(2+). Thymine was demonstrated to specifically combine with Hg(2+) and form a thymine-Hg(2+)-thymine (T-Hg(2+)-T) structure, with binding constant even higher than T-A Watson-Crick pair in DNA duplex. Recently, various novel Hg(2+) biosensors have been developed based on T-rich Mercury-Specific Oligonucleotide (MSO) probes, and exhibited advanced selectivity and excellent sensitivity for Hg(2+) detection. In this review, we explained recent development of MSO-based Hg(2+) biosensors mainly in 3 groups: fluorescent biosensors, colorimetric biosensors and electrochemical biosensors.

  4. A novel PDMS micro membrane biosensor based on the analysis of surface stress.

    PubMed

    Sang, Shengbo; Witte, Hartmut

    2010-07-15

    The biological and medical application of biosensors is more and more important with the development of technology and society. Detection of cells and biological molecules utilizing biosensors based on the analysis of surface stress would facilitate inexpensive and high-throughput test and diagnosis. This paper presents a biocompatible surface stress-based polydimethylsiloxane (PDMS) micro membrane biosensor. Each biosensor chip consists of two available PDMS micro membranes, one acts as active membrane and the other as reference. Biosensors were functionalized using different functional materials respectively: MUA (11 Mercapto 1 undecanoicacid), MUO (11 Mercapto 1 undecanol) and DOT (Dodecane thiol). Two biosensor test systems were built based on a white light interferometer and a fiber optic interferometer respectively. Finally, testing experiments using Escherichia coli (E. coli) were performed based on the biosensor test systems we built. The results of the experiments showed that the MUA is a better functional material to functionalize the biosensor membranes than MUO and DOT for E. coli detection, some properties of E. coli, such as healthily living and dead status, can be analyzed based on the PDMS micro membrane biosensors.

  5. Sulfite determination by an inhibitor biosensor-based mushroom (Agaricus bisporus) tissue homogenate.

    PubMed

    Sezgintürk, Mustafa Kemal; Dinçkaya, Erhan

    2012-02-01

    The aim of the study presented here is to develop a biosensor based on mushroom (Agaricus bisporus) tissue homogenate for sensitive and economical determination of sulfite in foods. The working principle of the biosensor is based on an inhibition effect of sulfite on polyphenol oxidases in mushroom. Mushroom tissue homogenate was immobilized by gelatin and glutaraldehyde on a Clark-type oxygen electrode. Some optimization studies related to the bioactive layer components and working conditions were identified. The biosensor was applied to the food samples. The biosensor reported here was successfully allowed to analyze sulfite, which was a food additive in real food samples.

  6. Possibility of Acetylcholinesterase Overexpression in Alzheimer Disease Patients after Therapy with Acetylcholinesterase Inhibitors.

    PubMed

    Kračmarová, Alžběta; Drtinová, Lucie; Pohanka, Miroslav

    2015-01-01

    Acetylcholinesterase is an enzyme responsible for termination of excitatory transmission at cholinergic synapses by the hydrolyzing of a neurotransmitter acetylcholine. Nowadays, other functions of acetylcholinesterase in the organism are considered, for example its role in regulation of apoptosis. Cholinergic nervous system as well as acetylcholinesterase activity is closely related to pathogenesis of Alzheimer disease. The mostly used therapy of Alzheimer disease is based on enhancing cholinergic function using inhibitors of acetylcholinesterase like rivastigmine, donepezil or galantamine. These drugs can influence not only the acetylcholinesterase activity but also other processes in treated organism. The paper is aimed mainly on possibility of increased expression and protein level of acetylcholinesterase caused by the therapy with acetylcholinesterase inhibitors.

  7. Possibility of Acetylcholinesterase Overexpression in Alzheimer Disease Patients after Therapy with Acetylcholinesterase Inhibitors.

    PubMed

    Kračmarová, Alžběta; Drtinová, Lucie; Pohanka, Miroslav

    2015-01-01

    Acetylcholinesterase is an enzyme responsible for termination of excitatory transmission at cholinergic synapses by the hydrolyzing of a neurotransmitter acetylcholine. Nowadays, other functions of acetylcholinesterase in the organism are considered, for example its role in regulation of apoptosis. Cholinergic nervous system as well as acetylcholinesterase activity is closely related to pathogenesis of Alzheimer disease. The mostly used therapy of Alzheimer disease is based on enhancing cholinergic function using inhibitors of acetylcholinesterase like rivastigmine, donepezil or galantamine. These drugs can influence not only the acetylcholinesterase activity but also other processes in treated organism. The paper is aimed mainly on possibility of increased expression and protein level of acetylcholinesterase caused by the therapy with acetylcholinesterase inhibitors. PMID:26455564

  8. Visualization of small GTPase activity with fluorescence resonance energy transfer-based biosensors.

    PubMed

    Aoki, Kazuhiro; Matsuda, Michiyuki

    2009-01-01

    Small GTPases act as molecular switches that regulate a variety of cellular functions, such as proliferation, cell movement and vesicle trafficking. Genetically encoded biosensors based on the principle of fluorescence resonance energy transfer (FRET) can visualize a spatio-temporal activity of small GTPases in living cells, thereby helping us to understand the role of small GTPases intuitively and vividly. Here we describe protocols of live cell imaging with the FRET biosensors. There are several types of FRET biosensors; this protocol focuses on intramolecular or unimolecular FRET biosensors of small GTPases that are made up of donor and acceptor fluorescence proteins, a small GTPase, its binding partner, and, if necessary, a subcellular localization signal. These FRET biosensors uncover the spatio-temporal activity of the small GTPases in living cells, which could not be obtained by conventional biochemical methods. Preparation of FRET biosensors and cell culture takes 6 d. Imaging and processing take 3-4 d to complete.

  9. Photonic crystal biosensor based on optical surface waves.

    PubMed

    Konopsky, Valery N; Karakouz, Tanya; Alieva, Elena V; Vicario, Chiara; Sekatskii, Sergey K; Dietler, Giovanni

    2013-01-01

    A label-free biosensor device based on registration of photonic crystal surface waves is described. Angular interrogation of the optical surface wave resonance is used to detect changes in the thickness of an adsorbed layer, while an additional simultaneous detection of the critical angle of total internal reflection provides independent data of the liquid refractive index. The abilities of the device are demonstrated by measuring of biotin molecule binding to a streptavidin monolayer, and by measuring association and dissociation kinetics of immunoglobulin G proteins. Additionally, deposition of PSS / PAH polyelectrolytes is recorded in situ resulting calculation of PSS and PAH monolayer thicknesses separately. PMID:23429517

  10. Nano-yarn carbon nanotube fiber based enzymatic glucose biosensor

    NASA Astrophysics Data System (ADS)

    Zhu, Zhigang; Song, Wenhui; Burugapalli, Krishna; Moussy, Francis; Li, Ya-Li; Zhong, Xiao-Hua

    2010-04-01

    A novel brush-like electrode based on carbon nanotube (CNT) nano-yarn fiber has been designed for electrochemical biosensor applications and its efficacy as an enzymatic glucose biosensor demonstrated. The CNT nano-yarn fiber was spun directly from a chemical-vapor-deposition (CVD) gas flow reaction using a mixture of ethanol and acetone as the carbon source and an iron nano-catalyst. The fiber, 28 µm in diameter, was made of bundles of double walled CNTs (DWNTs) concentrically compacted into multiple layers forming a nano-porous network structure. Cyclic voltammetry study revealed a superior electrocatalytic activity for CNT fiber compared to the traditional Pt-Ir coil electrode. The electrode end tip of the CNT fiber was freeze-fractured to obtain a unique brush-like nano-structure resembling a scale-down electrical 'flex', where glucose oxidase (GOx) enzyme was immobilized using glutaraldehyde crosslinking in the presence of bovine serum albumin (BSA). An outer epoxy-polyurethane (EPU) layer was used as semi-permeable membrane. The sensor function was tested against a standard reference electrode. The sensitivities, linear detection range and linearity for detecting glucose for the miniature CNT fiber electrode were better than that reported for a Pt-Ir coil electrode. Thermal annealing of the CNT fiber at 250 °C for 30 min prior to fabrication of the sensor resulted in a 7.5 fold increase in glucose sensitivity. The as-spun CNT fiber based glucose biosensor was shown to be stable for up to 70 days. In addition, gold coating of the electrode connecting end of the CNT fiber resulted in extending the glucose detection limit to 25 µM. To conclude, superior efficiency of CNT fiber for glucose biosensing was demonstrated compared to a traditional Pt-Ir sensor.

  11. Nano-yarn carbon nanotube fiber based enzymatic glucose biosensor.

    PubMed

    Zhu, Zhigang; Song, Wenhui; Burugapalli, Krishna; Moussy, Francis; Li, Ya-Li; Zhong, Xiao-Hua

    2010-04-23

    A novel brush-like electrode based on carbon nanotube (CNT) nano-yarn fiber has been designed for electrochemical biosensor applications and its efficacy as an enzymatic glucose biosensor demonstrated. The CNT nano-yarn fiber was spun directly from a chemical-vapor-deposition (CVD) gas flow reaction using a mixture of ethanol and acetone as the carbon source and an iron nano-catalyst. The fiber, 28 microm in diameter, was made of bundles of double walled CNTs (DWNTs) concentrically compacted into multiple layers forming a nano-porous network structure. Cyclic voltammetry study revealed a superior electrocatalytic activity for CNT fiber compared to the traditional Pt-Ir coil electrode. The electrode end tip of the CNT fiber was freeze-fractured to obtain a unique brush-like nano-structure resembling a scale-down electrical 'flex', where glucose oxidase (GOx) enzyme was immobilized using glutaraldehyde crosslinking in the presence of bovine serum albumin (BSA). An outer epoxy-polyurethane (EPU) layer was used as semi-permeable membrane. The sensor function was tested against a standard reference electrode. The sensitivities, linear detection range and linearity for detecting glucose for the miniature CNT fiber electrode were better than that reported for a Pt-Ir coil electrode. Thermal annealing of the CNT fiber at 250 degrees C for 30 min prior to fabrication of the sensor resulted in a 7.5 fold increase in glucose sensitivity. The as-spun CNT fiber based glucose biosensor was shown to be stable for up to 70 days. In addition, gold coating of the electrode connecting end of the CNT fiber resulted in extending the glucose detection limit to 25 microM. To conclude, superior efficiency of CNT fiber for glucose biosensing was demonstrated compared to a traditional Pt-Ir sensor. PMID:20348597

  12. Electrochemical Sensors and Biosensors Based on Nanomaterials and Nanostructures

    SciTech Connect

    Zhu, Chengzhou; Yang, Guohai; Li, He; Du, Dan; Lin, Yuehe

    2014-10-29

    We report that considerable attention has been devoted to the integration of recognition elements with electronic elements to develop electrochemical sensors and biosensors.Various electrochemical devices, such as amperometric sensors, electrochemical impedance sensors, and electrochemical luminescence sensors as well as photoelectrochemical sensors, provide wide applications in the detection of chemical and biological targets in terms of electrochemical change of electrode interfaces. Here, this review focuses on recent advances in electrochemical sensors and biosensors based on nanomaterials and nanostructures during 2013 to 2014. The aim of this effort is to provide the reader with a clear and concise view of new advances in areas ranging from electrode engineering, strategies for electrochemical signal amplification, and novel electroanalytical techniques used in the miniaturization and integration of the sensors. Moreover, the authors have attempted to highlight areas of the latest and significant development of enhanced electrochemical nanosensors and nanobiosensors that inspire broader interests across various disciplines. Electrochemical sensors for small molecules, enzyme-based biosensors, genosensors, immunosensors, and cytosensors are reviewed herein (Figure 1). Such novel advances are important for the development of electrochemical sensors that open up new avenues and methods for future research. In conclusion, we recommend readers interested in the general principles of electrochemical sensors and electrochemical methods to refer to other excellent literature for a broad scope in this area.(3, 4) However, due to the explosion of publications in this active field, we do not claim that this Review includes all of the published works in the past two years and we apologize to the authors of excellent work, which is unintentionally left out.

  13. Electrochemical Sensors and Biosensors Based on Nanomaterials and Nanostructures

    DOE PAGES

    Zhu, Chengzhou; Yang, Guohai; Li, He; Du, Dan; Lin, Yuehe

    2014-10-29

    We report that considerable attention has been devoted to the integration of recognition elements with electronic elements to develop electrochemical sensors and biosensors.Various electrochemical devices, such as amperometric sensors, electrochemical impedance sensors, and electrochemical luminescence sensors as well as photoelectrochemical sensors, provide wide applications in the detection of chemical and biological targets in terms of electrochemical change of electrode interfaces. Here, this review focuses on recent advances in electrochemical sensors and biosensors based on nanomaterials and nanostructures during 2013 to 2014. The aim of this effort is to provide the reader with a clear and concise view of new advancesmore » in areas ranging from electrode engineering, strategies for electrochemical signal amplification, and novel electroanalytical techniques used in the miniaturization and integration of the sensors. Moreover, the authors have attempted to highlight areas of the latest and significant development of enhanced electrochemical nanosensors and nanobiosensors that inspire broader interests across various disciplines. Electrochemical sensors for small molecules, enzyme-based biosensors, genosensors, immunosensors, and cytosensors are reviewed herein (Figure 1). Such novel advances are important for the development of electrochemical sensors that open up new avenues and methods for future research. In conclusion, we recommend readers interested in the general principles of electrochemical sensors and electrochemical methods to refer to other excellent literature for a broad scope in this area.(3, 4) However, due to the explosion of publications in this active field, we do not claim that this Review includes all of the published works in the past two years and we apologize to the authors of excellent work, which is unintentionally left out.« less

  14. Gold nanoparticle based signal enhancement liquid crystal biosensors for DNA hybridization assays.

    PubMed

    Yang, Shengyuan; Liu, Yanmei; Tan, Hui; Wu, Chao; Wu, Zhaoyang; Shen, Guoli; Yu, Ruqin

    2012-03-18

    A novel signal enhanced liquid crystal biosensor based on using AuNPs for highly sensitive DNA detection has been developed. This biosensor not only significantly decreases the detection limit, but also offers a simple detection process and shows a good selectivity to distinguish perfectly matched target DNA from two-base mismatched DNA. PMID:22302154

  15. Surface Plasmon Resonance Biosensor Based on Smart Phone Platforms.

    PubMed

    Liu, Yun; Liu, Qiang; Chen, Shimeng; Cheng, Fang; Wang, Hanqi; Peng, Wei

    2015-01-01

    We demonstrate a fiber optic surface plasmon resonance (SPR) biosensor based on smart phone platforms. The light-weight optical components and sensing element are connected by optical fibers on a phone case. This SPR adaptor can be conveniently installed or removed from smart phones. The measurement, control and reference channels are illuminated by the light entering the lead-in fibers from the phone's LED flash, while the light from the end faces of the lead-out fibers is detected by the phone's camera. The SPR-sensing element is fabricated by a light-guiding silica capillary that is stripped off its cladding and coated with 50-nm gold film. Utilizing a smart application to extract the light intensity information from the camera images, the light intensities of each channel are recorded every 0.5 s with refractive index (RI) changes. The performance of the smart phone-based SPR platform for accurate and repeatable measurements was evaluated by detecting different concentrations of antibody binding to a functionalized sensing element, and the experiment results were validated through contrast experiments with a commercial SPR instrument. This cost-effective and portable SPR biosensor based on smart phones has many applications, such as medicine, health and environmental monitoring. PMID:26255778

  16. Surface Plasmon Resonance Biosensor Based on Smart Phone Platforms

    NASA Astrophysics Data System (ADS)

    Liu, Yun; Liu, Qiang; Chen, Shimeng; Cheng, Fang; Wang, Hanqi; Peng, Wei

    2015-08-01

    We demonstrate a fiber optic surface plasmon resonance (SPR) biosensor based on smart phone platforms. The light-weight optical components and sensing element are connected by optical fibers on a phone case. This SPR adaptor can be conveniently installed or removed from smart phones. The measurement, control and reference channels are illuminated by the light entering the lead-in fibers from the phone’s LED flash, while the light from the end faces of the lead-out fibers is detected by the phone’s camera. The SPR-sensing element is fabricated by a light-guiding silica capillary that is stripped off its cladding and coated with 50-nm gold film. Utilizing a smart application to extract the light intensity information from the camera images, the light intensities of each channel are recorded every 0.5 s with refractive index (RI) changes. The performance of the smart phone-based SPR platform for accurate and repeatable measurements was evaluated by detecting different concentrations of antibody binding to a functionalized sensing element, and the experiment results were validated through contrast experiments with a commercial SPR instrument. This cost-effective and portable SPR biosensor based on smart phones has many applications, such as medicine, health and environmental monitoring.

  17. Numerical simulation on development of a SAW based biosensor

    NASA Astrophysics Data System (ADS)

    Ten, S. T.; Hashim, U.; Sudin, A.; Arshad, M. K. Md.; Liu, W. W.; Foo, K. L.; Voon, C. H.; Wee, F. H.; Lee, Y. S.; Salleh, N. H. M.; Nazwa, T.

    2016-07-01

    Surface acoustic waves can be generated at the free surface of an elastic solid. For this property, surface acoustic based devices were initially developed for the telecommunication purpose such as signal filters and resonators. The acoustic energy is strongly confined on the surface of the surface acoustic waves (SAW) based devices and consequent their ultra-sensitivity to the surface perturbation. This has made SAW permits the highly sensitive detection of utterly diminutive charges on the surface. Hence, SAW based devices have been modified to be sensors for the mass loading effect on its surface and this is perfectly for biosensor development. There have been a lot of complicated theoretical models for the SAW devices development since 1960 as signal filters and resonators such as from delta function model, equivalent circuit model, to the current SAW models such as coupling-of-modes (COM) model, P-matrix model and Computer Simulation Technology Studio Suite (CST). However, these models are more tailored for the telecommunication application purposes and very complex. Thus, this paper presents the finite element analysis (FEA) modeling, COMSOL Multiphysics which is used to study the mass loading effect on SAW which will be used as biosensor. This study managed to simulate the mass loading sensitivity of 8.71×107 kHz/g mm-2.

  18. Surface Plasmon Resonance Biosensor Based on Smart Phone Platforms

    PubMed Central

    Liu, Yun; Liu, Qiang; Chen, Shimeng; Cheng, Fang; Wang, Hanqi; Peng, Wei

    2015-01-01

    We demonstrate a fiber optic surface plasmon resonance (SPR) biosensor based on smart phone platforms. The light-weight optical components and sensing element are connected by optical fibers on a phone case. This SPR adaptor can be conveniently installed or removed from smart phones. The measurement, control and reference channels are illuminated by the light entering the lead-in fibers from the phone’s LED flash, while the light from the end faces of the lead-out fibers is detected by the phone’s camera. The SPR-sensing element is fabricated by a light-guiding silica capillary that is stripped off its cladding and coated with 50-nm gold film. Utilizing a smart application to extract the light intensity information from the camera images, the light intensities of each channel are recorded every 0.5 s with refractive index (RI) changes. The performance of the smart phone-based SPR platform for accurate and repeatable measurements was evaluated by detecting different concentrations of antibody binding to a functionalized sensing element, and the experiment results were validated through contrast experiments with a commercial SPR instrument. This cost-effective and portable SPR biosensor based on smart phones has many applications, such as medicine, health and environmental monitoring. PMID:26255778

  19. Diamond nanoparticles based biosensors for efficient glucose and lactate determination.

    PubMed

    Briones, M; Casero, E; Petit-Domínguez, M D; Ruiz, M A; Parra-Alfambra, A M; Pariente, F; Lorenzo, E; Vázquez, L

    2015-06-15

    In this work, we report the modification of a gold electrode with undoped diamond nanoparticles (DNPs) and its applicability to the fabrication of electrochemical biosensing platforms. DNPs were immobilized onto a gold electrode by direct adsorption and the electrochemical behavior of the resulting DNPs/Au platform was studied. Four well-defined peaks were observed corresponding to the DNPs oxidation/reduction at the underlying gold electrode, which demonstrate that, although undoped DNPs have an insulating character, they show electrochemical activity as a consequence of the presence of different functionalities with unsaturated bonding on their surface. In order to develop a DNPs-based biosensing platform, we have selected glucose oxidase (GOx), as a model enzyme. We have performed an exhaustive study of the different steps involved in the biosensing platform preparation (DNPs/Au and GOx/DNPs/Au systems) by atomic force microscopy (AFM), field emission scanning electron microscopy (FE-SEM) and cyclic voltammetry (CV). The glucose biosensor shows a good electrocatalytic response in the presence of (hydroxymethyl)ferrocene as redox mediator. Once the suitability of the prototype system to determine glucose was verified, in a second step, we prepared a similar biosensor, but employing the enzyme lactate oxidase (LOx/DNPs/Au). As far as we know, this is the first electrochemical biosensor for lactate determination that includes DNPs as nanomaterial. A linear concentration range from 0.05 mM to 0.7 mM, a sensitivity of 4.0 µA mM(-1) and a detection limit of 15 µM were obtained. PMID:25636025

  20. Diamond nanoparticles based biosensors for efficient glucose and lactate determination.

    PubMed

    Briones, M; Casero, E; Petit-Domínguez, M D; Ruiz, M A; Parra-Alfambra, A M; Pariente, F; Lorenzo, E; Vázquez, L

    2015-06-15

    In this work, we report the modification of a gold electrode with undoped diamond nanoparticles (DNPs) and its applicability to the fabrication of electrochemical biosensing platforms. DNPs were immobilized onto a gold electrode by direct adsorption and the electrochemical behavior of the resulting DNPs/Au platform was studied. Four well-defined peaks were observed corresponding to the DNPs oxidation/reduction at the underlying gold electrode, which demonstrate that, although undoped DNPs have an insulating character, they show electrochemical activity as a consequence of the presence of different functionalities with unsaturated bonding on their surface. In order to develop a DNPs-based biosensing platform, we have selected glucose oxidase (GOx), as a model enzyme. We have performed an exhaustive study of the different steps involved in the biosensing platform preparation (DNPs/Au and GOx/DNPs/Au systems) by atomic force microscopy (AFM), field emission scanning electron microscopy (FE-SEM) and cyclic voltammetry (CV). The glucose biosensor shows a good electrocatalytic response in the presence of (hydroxymethyl)ferrocene as redox mediator. Once the suitability of the prototype system to determine glucose was verified, in a second step, we prepared a similar biosensor, but employing the enzyme lactate oxidase (LOx/DNPs/Au). As far as we know, this is the first electrochemical biosensor for lactate determination that includes DNPs as nanomaterial. A linear concentration range from 0.05 mM to 0.7 mM, a sensitivity of 4.0 µA mM(-1) and a detection limit of 15 µM were obtained.

  1. Optical Biosensors Based on Semiconductor Nanostructures

    PubMed Central

    Martín-Palma, Raúl J.; Manso, Miguel; Torres-Costa, Vicente

    2009-01-01

    The increasing availability of semiconductor-based nanostructures with novel and unique properties has sparked widespread interest in their use in the field of biosensing. The precise control over the size, shape and composition of these nanostructures leads to the accurate control of their physico-chemical properties and overall behavior. Furthermore, modifications can be made to the nanostructures to better suit their integration with biological systems, leading to such interesting properties as enhanced aqueous solubility, biocompatibility or bio-recognition. In the present work, the most significant applications of semiconductor nanostructures in the field of optical biosensing will be reviewed. In particular, the use of quantum dots as fluorescent bioprobes, which is the most widely used application, will be discussed. In addition, the use of some other nanometric structures in the field of biosensing, including porous semiconductors and photonic crystals, will be presented. PMID:22346691

  2. An Effective Amperometric Biosensor Based on Gold Nanoelectrode Arrays

    NASA Astrophysics Data System (ADS)

    Liu, Yanyan; Zhu, Yingchun; Zeng, Yi; Xu, Fangfang

    2009-03-01

    A sensitive amperometric biosensor based on gold nanoelectrode array (NEA) was investigated. The gold nanoelectrode array was fabricated by template-assisted electrodeposition on general electrodes, which shows an ordered well-defined 3D structure of nanowires. The sensitivity of the gold NEA to hydrogen peroxide is 37 times higher than that of the conventional electrode. The linear range of the platinum NEA toward H2O2 is from 1 × 10-6 to 1 × 10-2 M, covering four orders of magnitudes with detection limit of 1 × 10-7 M and a single noise ratio (S/N) of four. The enzyme electrode exhibits an excellent response performance to glucose with linear range from 1 × 10-5 to 1 × 10-2 M and a fast response time within 8 s. The Michaelis-Menten constant km and the maximum current density i max of the enzyme electrode were 4.97 mM and 84.60 μA cm-2, respectively. This special nanoelectrode may find potential application in other biosensors based on amperometric signals.

  3. Development of Biosensors Based on Carbon Nanotube Nanoelectrode Arrays

    SciTech Connect

    Lin, Yuehe; Tu, Yi; Lu, Fang; Ren, Zhifeng

    2004-12-28

    The fabrication, electrochemical characterization, and sensing applications of low-site density carbon nanotubes based nanoelectrode arrays (CNT-NEAs) are reported in this work. Spin-coating of an epoxy resin provides a new way to create the electrode passivation layer that effectively reduces the current leakage and eliminates the electrode capacitance by sealing the side-wall of CNTs. The CNT-NEAs fabricated in our work effectively use the open ends of CNTs for electrochemical sensing. The open ends of the CNTs have fast electron transfer rates similar to a graphite edge-plane electrode, while the side-walls present very slow electron transfer rates similar to the graphitic basal plane. Cyclic voltammetry showed the sigmoidal shape curves with low capacitive current and scan-rate-independent limiting current. The successful development of a glucose biosensor based on CNT-NEAs for the selective detection of glucose is also described. Glucose oxidase was covalently immobilized on the CNTs tips via carbodiimide chemistry by forming amide linkages between the amine residues and carboxylic acid groups on the open ends of CNTs. The biosensor effectively performs selective electrochemical detections of glucose in the presence of common interferences.

  4. Angle-resolved diffraction grating biosensor based on porous silicon

    NASA Astrophysics Data System (ADS)

    Lv, Changwu; Jia, Zhenhong; Liu, Yajun; Mo, Jiaqing; Li, Peng; Lv, Xiaoyi

    2016-03-01

    In this study, an optical biosensor based on a porous silicon composite structure was fabricated using a simple method. This structure consists of a thin, porous silicon surface diffraction grating and a one-dimensional porous silicon photonic crystal. An angle-resolved diffraction efficiency spectrum was obtained by measuring the diffraction efficiency at a range of incident angles. The angle-resolved diffraction efficiency of the 2nd and 3rd orders was studied experimentally and theoretically. The device was sensitive to the change of refractive index in the presence of a biomolecule indicated by the shift of the diffraction efficiency spectrum. The sensitivity of this sensor was investigated through use of an 8 base pair antifreeze protein DNA hybridization. The shifts of the angle-resolved diffraction efficiency spectrum showed a relationship with the change of the refractive index, and the detection limit of the biosensor reached 41.7 nM. This optical device is highly sensitive, inexpensive, and simple to fabricate. Using shifts in diffraction efficiency spectrum to detect biological molecules has not yet been explored, so this study establishes a foundation for future work.

  5. Waveguide-Based Biosensors for Pathogen Detection

    PubMed Central

    Mukundan, Harshini; Anderson, Aaron S.; Grace, W. Kevin; Grace, Karen M.; Hartman, Nile; Martinez, Jennifer S.; Swanson, Basil I.

    2009-01-01

    Optical phenomena such as fluorescence, phosphorescence, polarization, interference and non-linearity have been extensively used for biosensing applications. Optical waveguides (both planar and fiber-optic) are comprised of a material with high permittivity/high refractive index surrounded on all sides by materials with lower refractive indices, such as a substrate and the media to be sensed. This arrangement allows coupled light to propagate through the high refractive index waveguide by total internal reflection and generates an electromagnetic wave—the evanescent field—whose amplitude decreases exponentially as the distance from the surface increases. Excitation of fluorophores within the evanescent wave allows for sensitive detection while minimizing background fluorescence from complex, “dirty” biological samples. In this review, we will describe the basic principles, advantages and disadvantages of planar optical waveguide-based biodetection technologies. This discussion will include already commercialized technologies (e.g., Corning’s EPIC® Ô, SRU Biosystems’ BIND™, Zeptosense®, etc.) and new technologies that are under research and development. We will also review differing assay approaches for the detection of various biomolecules, as well as the thin-film coatings that are often required for waveguide functionalization and effective detection. Finally, we will discuss reverse-symmetry waveguides, resonant waveguide grating sensors and metal-clad leaky waveguides as alternative signal transducers in optical biosensing. PMID:22346727

  6. Graphene- and aptamer-based electrochemical biosensor.

    PubMed

    Xu, Ke; Meshik, Xenia; Nichols, Barbara M; Zakar, Eugene; Dutta, Mitra; Stroscio, Michael A

    2014-05-23

    This study investigated the effectiveness of a graphene- and aptamer-based field-effect-transistor-like (FET-like) sensor in detecting lead and potassium ions. The sensor consists of a graphene-covered Si/SiO2 wafer with thrombin binding aptamer (TBA) attached to the graphene layer and terminated by a methylene blue (MB) molecule. K(+) and Pb(2+) both bind to TBA and cause a conformational change, which results in MB moving closer to the graphene surface and donating an electron. Thus, the abundance of K(+) and Pb(2+) can be determined by monitoring the current across the source and drain channel. Device transfer curves were obtained with ambipolar field effect observed. Current readings were taken for K(+) concentrations of 100 μM to 50 mM and Pb(2+) concentrations of 10 μM to 10 mM. As expected, I d decreased as ion concentration increased. In addition, there was a negative shift in V Dirac in response to increased ion concentration.

  7. GMR-based PhC biosensor: FOM analysis and experimental studies

    SciTech Connect

    Syamprasad, Jagadeesh; Narayanan, Roshni; Joseph, Joby; Takahashi, Hiroki; Sandhu, Adarsh; Jindal, Rajeev

    2014-02-20

    Guided Mode Resonance based Photonic crystal biosensor has a lot of potential applications. In our work, we are trying to improve their figure of merit values in order to achieve an optimum level through design and fabrication techniques. A robust and low-cost alternative for current biosensors is also explored through this research.

  8. A simple enzyme based biosensor on flexible plastic substrate

    NASA Astrophysics Data System (ADS)

    Kanakamedala, Senaka K.; Alshakhouri, Haidar T.; Agarwal, Mangilal; Fang, Ji; DeCoster, Mark A.

    2010-08-01

    An enzyme based biosensor was fabricated by employing a simple, inexpensive and rapid xurography fabrication process. The electrodes and channel were made from the conducting polymer poly(3,4-ethyelenedioxythiphene) poly(styrene sulfonate) (PEDOT:PSS). PEDOT:PSS was selectively deposited using a polyimide tape mask. The tape mask was peeled off from the substrate after annealing the polymer in vacuum. Polymer wells of defined dimensions were made and were attached to the device to accommodate the solutions. This sensor utilizes the change in current as a parameter to measure different analyte concentrations. Initial experiments were done by using the sensor for glucose detection. The sensor is able to detect the glucose concentrations approximately from 1 μM to 10 mM range covering glucose in human saliva (8-210 μM). The glucose oxidase activity was independently measured using colorimetric method and the results indicate that the sensor retains the enzyme activity and can be used as a biosensor to detect various analytes. The analyte of interest can be measured by preloading the corresponding enzyme into the wells.

  9. Disposable amperometric biosensor based on nanostructured bacteriophages for glucose detection

    NASA Astrophysics Data System (ADS)

    Kang, Yu Ri; Hwang, Kyung Hoon; Kim, Ju Hwan; Nam, Chang Hoon; Kim, Soo Won

    2010-10-01

    The selection of electrode material profoundly influences biosensor science and engineering, as it heavily influences biosensor sensitivity. Here we propose a novel electrochemical detection method using a working electrode consisting of bio-nanowires from genetically modified filamentous phages and nanoparticles. fd-tet p8MMM filamentous phages displaying a three-methionine (MMM) peptide on the major coat protein pVIII (designated p8MMM phages) were immobilized on the active area of an electrochemical sensor through physical adsorption and chemical bonding. Bio-nanowires composed of p8MMM phages and silver nanoparticles facilitated sensitive, rapid and selective detection of particular molecules. We explored whether the composite electrode with bio-nanowires was an effective platform to detect the glucose oxidase. The current response of the bio-nanowire sensor was high at various glucose concentrations (0.1 µm-0.1 mM). This method provides a considerable advantage to demonstrate analyte detection over low concentration ranges. Especially, phage-enabled bio-nanowires can serve as receptors with high affinity and specificity for the detection of particular biomolecules and provide a convenient platform for designing site-directed multifunctional scaffolds based on bacteriophages and may serve as a simple method for label-free detection.

  10. A two dimensional silicon-based photonic crystal microcavity biosensor

    NASA Astrophysics Data System (ADS)

    Lee, Mindy; Fauchet, Philippe M.

    2006-08-01

    The optical properties of photonic bandgap (PBG) structures are highly sensitive to environmental variation. PBG structures thus are an attractive platform for biosensing applications. We experimentally demonstrate a label-free biosensor based on a two-dimensional (2-D) photonic crystal microcavity slab. The microcavity is fabricated on a silicon-on-insulator substrate and integrated with tapered ridge waveguides for light coupling. The Finite-Difference Time-Domain (FDTD) method is used to model the sensor. The resonance of the microcavity is designed to be around 1.58 μm. In order to capture the target biological materials, the internal surface of the photonic crystal is first functionalized. Binding of the targets is monitored by observing a red shift of the transmission resonance. The magnitude of the shift depends on the amount of material captured by the internal surface. Compared to 1-D PBG biosensors, 2-D devices require a smaller amount of target material and can accommodate larger targets. Experimental results are compared with the predictions obtained from the FDTD simulations.

  11. Liquid crystal-based proton sensitive glucose biosensor.

    PubMed

    Khan, Mashooq; Park, Soo-Young

    2014-02-01

    A transmission electron microscopy (TEM) grid filled with 4-cyno-4-pentylbiphenyl (5CB) on the octadecyltrichloro silane-coated glass in an aqueous medium was developed to construct a glucose biosensor by coating poly(acrylicacid-b-4-cynobiphenyl-4-oxyundecylacrylate) (PAA-b-LCP) at the aqueous/5CB interface and immobilizing glucose oxidase (GOx) covalently to the PAA chains. The glucose was detected from a homeotropic to planar orientational transition of 5CB by polarized optical microscopy under crossed polarizers. The maximum immobilization density of the GOx, 1.3 molecules/nm(2) obtained in this TEM grid cell enabled the detection of glucose at concentrations as low as 0.02 mM with a response time of 10 s. This liquid crystal-based glucose sensor provided a linear response of birefringence of the 5CB to glucose concentrations ranging from 0.05 to 2 mM with a Michaelis-Menten constant (Km) of 0.32 mM. This new and sensitive glucose biosensor has the merits of low production cost and easy detection through the naked eye and might be useful for prescreening the glucose level in the human body. PMID:24432733

  12. Graphene patterned polyaniline-based biosensor for glucose detection

    NASA Astrophysics Data System (ADS)

    Binh Nguyen, Hai; Chuc Nguyen, Van; Nguyen, Van Tu; Thanh Tam Ngo, Thi; Thinh Nguyen, Ngoc; Thu Huyen Dang, Thi; Tran, Dai Lam; Do, Phuc Quan; Nghia Nguyen, Xuan; Phuc Nguyen, Xuan; Khoi Phan, Hong; Phan, Ngoc Minh

    2012-06-01

    This paper describes a glucose electrochemical biosensor, layer-by-layer fabricated from graphene and polyaniline films. Graphene sheets (0.5×0.5 cm2) with the thickness of 5 nm (15 layers) were synthesized by thermal chemical vapor deposition (CVD) under ambient pressure on copper tapes. Then they were transferred into integrated Fe3O4-doped polyaniline (PANi) based microelectrodes. The properties of the nanocomposite films were thoroughly characterized by scanning electron microscopy (SEM), Raman spectroscopy, atomic force microscopy (AFM) and electrochemical methods, such as square wave voltametry (SWV) and chronoamperometry. The above graphene patterned sensor (denoted as Graphene/Fe3O4/PANi/GOx) shows much improved glucose sensitivity (as high as 47 μA mM‑1 cm‑2) compared to a non-graphene one (10–30 μA mM‑1 cm‑2, as previously reported in the literature). It can be expected that this proof-of-concept biosensor could be extended for other highly sensitive biodetection.

  13. Magnetite nanoparticles for biosensor model based on bacteria fluorescence

    NASA Astrophysics Data System (ADS)

    Poita, A.; Creanga, D.-E.; Airinei, A.; Tupu, P.; Goiceanu, C.; Avadanei, O.

    2009-06-01

    Fluorescence emission of pyoverdine - the siderophore synthesized by iron scavenger bacteria - was studied using in vitro cultures of Pseudomonas aeruginosa with the aim to design a biosensor system for liquid sample iron loading. Diluted suspensions of colloidal magnetite nanoparticles were supplied in the culture medium (10 microl/l and 100 microl/l) to simulate magnetic loading with iron oxides of either environmental waters or human body fluids. The electromagnetic exposure to radiofrequency waves of bacterial samples grown in the presence of magnetic nanoparticles was also carried out. Cell density diminution but fluorescence stimulation following 10 microl/l ferrofluid addition and simultaneous exposure to radiofrequency waves was evidenced. The inhibitory influence of 100 microl/l ferrofluid combined with RF exposure was evidenced by fluorescence data. Mathematical model was proposed to approach quantitatively the dynamics of cell density and fluorescence emission in relation with the consumption of magnetite nanoparticle supplied medium. The biosensor scheme was shaped based on the response to iron loading of bacterial sample fluorescence.

  14. Optical biosensor based on silicon nanowire ridge waveguide

    NASA Astrophysics Data System (ADS)

    Gamal, Rania; Ismail, Yehia; Swillam, Mohamed A.

    2015-02-01

    Optical biosensors present themselves as an attractive solution for integration with the ever-trending lab-on-a-chip devices. This is due to their small size, CMOS compatibility, and invariance to electromagnetic interference. Despite their many benefits, typical optical biosensors rely on evanescent field detection, where only a small portion of the light interacts with the analyte. We propose to use a silicon nanowire ridge waveguide (SNRW) for optical biosensing. This structure is comprised of an array of silicon nanowires, with the envelope of a ridge, on an insulator substrate. The SNRW maximizes the overlap between the analyte and the incident light wave by introducing voids to the otherwise bulk structure, and strengthens the contribution of the material under test to the overall modal effective index will greatly augment the sensitivity. Additionally, the SNRW provides a fabrication convenience as it covers the entire substrate, ensuring that the etching process would not damage the substrate. FDTD simulations were conducted and showed that the percentage change in the effective index due to a 1% change in the surrounding environment was more than 170 times the amount of change perceived in an evanescent detection based bulk silicon ridge waveguide.

  15. Electrochemical DNA biosensor based on the BDD nanograss array electrode

    PubMed Central

    2013-01-01

    Background The development of DNA biosensor has attracted considerable attention due to their potential applications, including gene analysis, clinical diagnostics, forensic study and more medical applications. Using electroactive daunomycin as an indicator, the hybridization detection was measured by differential pulse voltammetry in this study. Results Electrochemical DNA biosensor was developed based on the BDD film electrode (fBDD) and BDD nanograss array electrode (nBDD). In comparison with fBDD and AuNPs/CA/fBDD electrode, the lower semicircle diameter of electrochemical impedance spectroscopy obtained on nBDD and AuNPs/CA/nBDD electrode indicated that the presence of nanograss array improved the reactive site, reduced the interfacial resistance, and made the electron transfer easier. Using electroactive daunomycin as an indicator, the hybridization detection was measured by differential pulse voltammetry. Conclusions The experimental results demonstrated that the prepared AuNPs/CA/nBDD electrode was suitable for DNA hybridization with favorable performance of faster response, higher sensitivity, lower detection limit and satisfactory selectivity, reproducibility and stability. PMID:23575250

  16. Fiber Optic Surface Plasmon Resonance-Based Biosensor Technique: Fabrication, Advancement, and Application.

    PubMed

    Liang, Gaoling; Luo, Zewei; Liu, Kunping; Wang, Yimin; Dai, Jianxiong; Duan, Yixiang

    2016-05-01

    Fiber optic-based biosensors with surface plasmon resonance (SPR) technology are advanced label-free optical biosensing methods. They have brought tremendous progress in the sensing of various chemical and biological species. This review summarizes four sensing configurations (prism, grating, waveguide, and fiber optic) with two ways, attenuated total reflection (ATR) and diffraction, to excite the surface plasmons. Meanwhile, the designs of different probes (U-bent, tapered, and other probes) are also described. Finally, four major types of biosensors, immunosensor, DNA biosensor, enzyme biosensor, and living cell biosensor, are discussed in detail for their sensing principles and applications. Future prospects of fiber optic-based SPR sensor technology are discussed. PMID:27119268

  17. Recent approaches to improving selectivity and sensitivity of enzyme-based biosensors for organophosphorus pesticides: A review.

    PubMed

    Songa, Everlyne A; Okonkwo, Jonathan O

    2016-08-01

    Pesticide determination has attracted great attention due to the fact that they exhibit high acute toxicity and can cause long-term damage to the environment and human lives even at trace levels. Although classical analytical methods (including gas chromatography, high performance liquid chromatography, capillary electrophoresis and mass spectrometry) have been effectively used for analysis of pesticides in contaminated samples, they present certain limitations such as time-consuming sample preparation, complexity, and the requirement of expensive instrumentation and highly skilled personnel. For these reasons, there is an expanding need for analytical methods able to provide simple, rapid, sensitive, selective, low cost and reliable detection of pesticides at trace levels. Over the past decades, acetylcholinesterase (AChE) biosensors have emerged as simple, rapid and ultra-sensitive tools for toxicity detection of pesticides in the environment and food. These biosensors have the potential to complement or replace the classical analytical methods by simplifying or eliminating sample preparation and making field-testing easier and faster with significant decrease in cost per analysis. With the recent engineering of more sensitive AChE enzymes, the development of more reliable immobilization matrices and the progress in the area of microelectronics, AChE biosensors could become competitive for multi-analyte screening and soon be used for the development of portable instrumentation for rapid toxicity testing of samples. The enzymes organophosphorus hydrolase (OPH) and organophosphorus acid anhydrolase (OPAA) have also shown considerable potential in OP biosensor applications and they have been used for direct detection of OPs. This review presents the recent advances in the fabrication of enzyme biosensors for organophosphorus pesticides (OPs) and their possible applications for toxicity monitoring of organophosphorus pesticide residues in real samples. The focus will

  18. Recent approaches to improving selectivity and sensitivity of enzyme-based biosensors for organophosphorus pesticides: A review.

    PubMed

    Songa, Everlyne A; Okonkwo, Jonathan O

    2016-08-01

    Pesticide determination has attracted great attention due to the fact that they exhibit high acute toxicity and can cause long-term damage to the environment and human lives even at trace levels. Although classical analytical methods (including gas chromatography, high performance liquid chromatography, capillary electrophoresis and mass spectrometry) have been effectively used for analysis of pesticides in contaminated samples, they present certain limitations such as time-consuming sample preparation, complexity, and the requirement of expensive instrumentation and highly skilled personnel. For these reasons, there is an expanding need for analytical methods able to provide simple, rapid, sensitive, selective, low cost and reliable detection of pesticides at trace levels. Over the past decades, acetylcholinesterase (AChE) biosensors have emerged as simple, rapid and ultra-sensitive tools for toxicity detection of pesticides in the environment and food. These biosensors have the potential to complement or replace the classical analytical methods by simplifying or eliminating sample preparation and making field-testing easier and faster with significant decrease in cost per analysis. With the recent engineering of more sensitive AChE enzymes, the development of more reliable immobilization matrices and the progress in the area of microelectronics, AChE biosensors could become competitive for multi-analyte screening and soon be used for the development of portable instrumentation for rapid toxicity testing of samples. The enzymes organophosphorus hydrolase (OPH) and organophosphorus acid anhydrolase (OPAA) have also shown considerable potential in OP biosensor applications and they have been used for direct detection of OPs. This review presents the recent advances in the fabrication of enzyme biosensors for organophosphorus pesticides (OPs) and their possible applications for toxicity monitoring of organophosphorus pesticide residues in real samples. The focus will

  19. Highly Sensitive Nanoparticle-based Multifunctional Biosensor for Antigen Detection

    NASA Astrophysics Data System (ADS)

    Siavoshi, Salome

    electrophoresis technique to assemble the cancer specific anti-PSA, mAb-2C5 and CEA coated nanoparticles to show that the nanoparticle-based biochip can successfully measure low concentrations of various antigen. The principle of operation of these biosensors is the fluorescence based ELISA. Testing results of the nanoparticle-based biochips indicate very high specificity and the detection limit 200 times smaller than the commercially available devices for antigen detection, laying the foundation for early detection of various diseases. The optimized assembly of antibody coated particles and selective assembly techniques introduced in this work provide the necessary tools for fabricating a miniaturized nanoparticle-based in-vivo multiplex biosensor. The antigen detection results show the great potential for early detection of various diseases using the fabricated in-vivo device.

  20. Nanomaterial-based biosensors for food toxin detection.

    PubMed

    Malhotra, Bansi D; Srivastava, Saurabh; Ali, Md Azahar; Singh, Chandan

    2014-10-01

    There is an increased interest toward the development of bioelectronic devices for food toxin (mycotoxins) detection. Mycotoxins are highly toxic secondary metabolites produced by fungi like Fusarium, Aspergillus, and Penicillium that are frequently found in crops or during storage of food including cereals, nuts, fruits, etc. The contamination of food by mycotoxins has become a matter of increasing concern. High levels of mycotoxins in the diet can cause adverse, acute, and chronic effects on human health and a variety of animal species. Side effects may particularly affect the liver, kidney, nervous system, endocrine system, and immune system. Among 300 mycotoxins known till date, there are a few that are considered to play an important part in food safety, and for these, a range of analytical methods have been developed. Some of the important mycotoxins include aflatoxins, ochratoxins, fumonisins, citreoviridin, patulin, citrinin, and zearalenon. The conventional methods of analysis of mycotoxins normally require sophisticated instrumentation, e.g., liquid chromatography with fluorescence or mass detectors, combined with extraction procedures for sample preparation. Hence, new analysis tools are necessary to attain more sensitive, specific, rapid, and reliable information about the desired toxin. For the last about two decades, the research and development of simpler and faster analytical procedures based on affinity biosensors has aroused much interest due to their simplicity and sensitivity. The nanomaterials have recently had a great impact on the development of biosensors. The functionalized nanomaterials are used as catalytic tools, immobilization platforms, or as optical or electroactive labels to improve the biosensing performance to obtain higher sensitivity, stability, and selectivity. Nanomaterials, such as carbon nanomaterials (carbon nanotubes and graphene), metal nanoparticles, nanowires, nanocomposites, and nanostructured metal oxide nanoparticles

  1. A novel conductometric biosensor based on hexokinase for determination of adenosine triphosphate.

    PubMed

    Kucherenko, I S; Kucherenko, D Yu; Soldatkin, O O; Lagarde, F; Dzyadevych, S V; Soldatkin, A P

    2016-04-01

    The paper presents a simple and inexpensive reusable biosensor for determination of the concentration of adenosine-5'-triphosphate (ATP) in aqueous samples. The biosensor is based on a conductometric transducer which contains two pairs of gold interdigitated electrodes. An enzyme hexokinase was immobilized onto one pair of electrodes, and bovine serum albumin-onto another pair (thus, a differential mode of measurement was used). Conditions of hexokinase immobilization on the transducer by cross-linking via glutaraldehyde were optimized. Influence of experimental conditions (concentration of magnesium ions, ionic strength and concentration of the working buffer) on the biosensor work was studied. The reproducibility of biosensor responses and operational stability of the biosensor were checked during one week. Dry storage at -18 °C was shown to be the best conditions to store the biosensor. The biosensor was successfully applied for measurements of ATP concentration in pharmaceutical samples. The proposed biosensor may be used in future for determination of ATP and/or glucose in water samples. PMID:26838432

  2. Variation of Cholinesterase-Based Biosensor Sensitivity to Inhibition by Organophosphate Due To Ionizing Radiation

    PubMed Central

    Pohanka, Miroslav; Koch, Miroslav

    2009-01-01

    A cholinesterase based biosensor was constructed in order to assess the effects of ionizing radiation on exposed AChE. Although the primary objective of the experiment was to investigate the effect of ionizing radiation on the activity of the biosensor, no changes in cholinesterase activity were observed. Current provided by oxidation of thiocholine previously created from acetylthiocholine by enzyme catalyzed reaction was in a range 395–455 nA. No significant influence of radiation on AChE activity was found, despite the current variation. However, a surprising phenomenon was observed when a model organophosphate paraoxon was assayed. Irradiated biosensors seem to be more susceptible to the inhibitory effects of paraoxon. Control biosensors provided a 94 ± 5 nA current after exposure to 1 ppm paraoxon. The biosensors irradiated by a 5 kGy radiation dose and exposed to paraoxon provided a current of 49 ± 6 nA. Irradiation by doses ranging from 5 mGy to 100 kGy were investigated and the mentioned effect was confirmed at doses above 50 Gy. After the first promising experiments, biosensors irradiated by 5 kGy were used for calibration on paraoxon and compared with the control biosensors. Limits of detection 2.5 and 3.8 ppb were achieved for irradiated and non-irradiated biosensors respectively. The overall impact of this effect is discussed. PMID:22346715

  3. Amperometric biosensor based on diamond paste for the enantioanalysis of L-lysine.

    PubMed

    Stefan-van Staden, Raluca-Ioana; Nejem, R'afat Mahmoud; van Staden, Jacobus Frederick; Aboul-Enein, Hassan Y

    2012-05-15

    An amperometric biosensor was proposed for the enantioanalysis of L-lysine. The biosensor is based on the impregnation of L-lysine oxidase in diamond paste. The potential used for the determination of l-lysine was 650 mV. The biosensor exhibited a linear concentration range between 1 and 100 nmol/L with a limit of detection of 4 pmol/L. The selectivity of the biosensor is high over other amino acids, such as L-serine, L-leucine, L-aspartic acid, L-glutamic acid, histamine, glycine. The proposed biosensor can be applied for the determination of L-lysine in serum samples and pharmaceutical compounds.

  4. Nanomolar detection of methylparaben by a cost-effective hemoglobin-based biosensor.

    PubMed

    Hajian, A; Ghodsi, J; Afraz, A; Yurchenko, O; Urban, G

    2016-12-01

    This work describes the development of a new biosensor for methylparaben determination using electrocatalytic properties of hemoglobin in the presence of hydrogen peroxide. The voltammetric oxidation of methylparaben by the proposed biosensor in phosphate buffer (pH=7.0), a physiological pH, was studied and it was confirmed that methylparaben undergoes a one electron-one proton reaction in a diffusion-controlled process. The biosensor was fabricated by carbon paste electrode modified with hemoglobin and multiwalled carbon nanotube. Based on the excellent electrochemical properties of the modified electrode, a sensitive voltammetric method was used for determination of methylparaben within a linear range from 0.1 to 13μmolL(-1) and detection limit of 25nmolL(-1). The developed biosensor possessed accurate and rapid response to methylparaben and showed good sensitivity, stability, and repeatability. Finally, the applicability of the proposed biosensor was verified by methylparaben evaluation in various real samples. PMID:27612696

  5. An impedance-based integrated biosensor for suspended DNA characterization

    PubMed Central

    Ma, Hanbin; Wallbank, Richard W. R.; Chaji, Reza; Li, Jiahao; Suzuki, Yuji; Jiggins, Chris; Nathan, Arokia

    2013-01-01

    Herein, we describe a novel integrated biosensor for performing dielectric spectroscopy to analyze biological samples. We analyzed biomolecule samples with different concentrations and demonstrated that the solution's impedance is highly correlated with the concentration, indicating that it may be possible to use this sensor as a concentration sensor. In contrast with standard spectrophotometers, this sensor offers a low-cost and purely electrical solution for the quantitative analysis of biomolecule solutions. In addition to determining concentrations, we found that the sample solution impedance is highly correlated with the length of the DNA fragments, indicating that the sizes of PCR products could be validated with an integrated chip-based, sample-friendly system within a few minutes. The system could be the basis of a rapid, low-cost platform for DNA characterization with broad applications in cancer and genetic disease research. PMID:24060937

  6. Diagnosis of Dengue Infection Using Conventional and Biosensor Based Techniques.

    PubMed

    Parkash, Om; Shueb, Rafidah Hanim

    2015-10-19

    Dengue is an arthropod-borne viral disease caused by four antigenically different serotypes of dengue virus. This disease is considered as a major public health concern around the world. Currently, there is no licensed vaccine or antiviral drug available for the prevention and treatment of dengue disease. Moreover, clinical features of dengue are indistinguishable from other infectious diseases such as malaria, chikungunya, rickettsia and leptospira. Therefore, prompt and accurate laboratory diagnostic test is urgently required for disease confirmation and patient triage. The traditional diagnostic techniques for the dengue virus are viral detection in cell culture, serological testing, and RNA amplification using reverse transcriptase PCR. This paper discusses the conventional laboratory methods used for the diagnosis of dengue during the acute and convalescent phase and highlights the advantages and limitations of these routine laboratory tests. Subsequently, the biosensor based assays developed using various transducers for the detection of dengue are also reviewed.

  7. A permalloy zigzag structure based magnetic bio-sensor

    NASA Astrophysics Data System (ADS)

    Ger, Tzong-Rong; Xu, You-Ren; Huang, Hao-Ting; Wei, Zung-Hang

    2012-04-01

    A magnetic fluid consisting of Fe3O4 magnetic nanoparticles is embedded inside cells by intracellular uptake. A micro-fabricated magnetic zigzag-shaped surface structure is studied for use as a biosensor. We have developed a MOKE magnetometer based methodology to measure the different hysteresis loop signals between cells with and without being placed on zigzag sensors. Adding the magnetic cells on the structure decreases the coercivity from the magneto-optical Kerr effect (MOKE) signal of zigzag magnetic thin films because of the magnetic properties of superparamagnetic nanoparticles. The magnetoresistance measurement observed is that the switching fields of the zigzag structure with magnetic cells are significantly increased compared to the case without cells in the hard axis of the external field applied.

  8. Analysis of an integrated optic micro racetrack resonator based biosensor

    NASA Astrophysics Data System (ADS)

    Malathi, S.; Hegde, Gopalkrishna; Srinivas, T.; Roy, Ugra M.

    2014-06-01

    Silicon-On- Insulator (SOI) technology has huge potential in fabricating compact devices for various applications such as integrated optic waveguides, directional couplers, resonators etc. In this work, we present the analysis of a biosensor based on an integrated optic racetrack resonator, interrogated by a bus waveguide. The biomaterial is applied as a cladding layer. Here we analyze the coupling between the resonator and the bus waveguide, and its dependence on the bio layer. In traditional analysis, the effective refractive index and resonator total path length are the factors influencing the resonant wavelength. Our analysis shows that all parametric values decrease with increase in waveguide width and spacing. The inclusion of waveguide mode overlap and perturbation in coupled mode equation results in enhanced resonator sensitivity of an order of magnitude

  9. Biosensor based on nanocomposite material for pathogenic virus detection.

    PubMed

    Van Thu, Vu; Dung, Phuong Trung; Tam, Le Thi; Tam, Phuong Dinh

    2014-03-01

    This paper introduces a DNA biosensor based on a DNA/chitosan/multi-walled carbon nanotube nanocomposite for pathogenic virus detection. An easy, cost-effective approach to the immobilization of probe DNA sequences on the sensor surface was performed. Cyclic voltammograms were used to characterize the probe DNA sequence immobilization. Complementary sequence hybridization was examined by electrochemical impedance spectroscopy. Results revealed that the developed DNA sensor can detect a target DNA concentration as low as 0.01×10(-12) M. The sensitivity of the prepared sensor was 52.57 kΩ/fM. The reusability and storage stability of the DNA sensor were also investigated. Results showed that the electron-transfer resistance decreased to approximately 35% after 8 weeks and to approximately 80% after 12 weeks of storage.

  10. Diagnosis of Dengue Infection Using Conventional and Biosensor Based Techniques

    PubMed Central

    Parkash, Om; Hanim Shueb, Rafidah

    2015-01-01

    Dengue is an arthropod-borne viral disease caused by four antigenically different serotypes of dengue virus. This disease is considered as a major public health concern around the world. Currently, there is no licensed vaccine or antiviral drug available for the prevention and treatment of dengue disease. Moreover, clinical features of dengue are indistinguishable from other infectious diseases such as malaria, chikungunya, rickettsia and leptospira. Therefore, prompt and accurate laboratory diagnostic test is urgently required for disease confirmation and patient triage. The traditional diagnostic techniques for the dengue virus are viral detection in cell culture, serological testing, and RNA amplification using reverse transcriptase PCR. This paper discusses the conventional laboratory methods used for the diagnosis of dengue during the acute and convalescent phase and highlights the advantages and limitations of these routine laboratory tests. Subsequently, the biosensor based assays developed using various transducers for the detection of dengue are also reviewed. PMID:26492265

  11. Fluorescent protein-based biosensors: resolving spatiotemporal dynamics of signaling

    PubMed Central

    DiPilato, Lisa M.; Zhang, Jin

    2009-01-01

    Summary Cellular processes are orchestrated by the precise coordination and regulation of molecular events in the cell. Fluorescent protein-based biosensors coupled with live-cell imaging have enabled the visualization of these events in real time and helped shape some of the current concepts of signal transduction, such as spatial compartmentation. The quantitative information produced by these tools has been incorporated into mathematical models that are capable of predicting highly complex and dynamic behaviors of cellular signaling networks, thus providing a systems level understanding of how pathways interact to produce a functional response. Finally, with technological advances in high throughput and in vivo imaging, these molecular tools promise to continually engender significant contributions to our understanding of cellular processes under normal and diseased conditions. PMID:19910237

  12. Hydrodynamic focusing of conducting fluids for conductivity-based biosensors.

    PubMed

    Nasir, Mansoor; Ateya, Daniel A; Burk, Diana; Golden, Joel P; Ligler, Frances S

    2010-02-15

    Hydrodynamic focusing of a conducting fluid by a non-conducting fluid to form a constricted current path between two sensing electrodes is implemented in order to enhance the sensitivity of a 4-electrode conductance-based biosensor. The sensor has a simple two-inlet T-junction design and performs four-point conductivity measurements to detect particles immobilized between the sensing electrode pair. Computational simulations conducted in conjunction with experimental flow studies using confocal microscopy show that a flat profile for the focused layer is dependent on the Reynolds number for the chosen flow parameters. The results also indicate that a flat focused layer is desirable for both increased sensitivity as well as surface-binding efficiency. Proof of concept for conductance measurements in a hydrodynamically focused conducting fluid was demonstrated with entrapped magnetic beads. PMID:19932019

  13. Fluorescent protein-based biosensors: resolving spatiotemporal dynamics of signaling.

    PubMed

    DiPilato, Lisa M; Zhang, Jin

    2010-02-01

    Cellular processes are orchestrated by the precise coordination and regulation of molecular events in the cell. Fluorescent protein-based biosensors coupled with live-cell imaging have enabled the visualization of these events in real time and helped shape some of the current concepts of signal transduction, such as spatial compartmentation. The quantitative information produced by these tools has been incorporated into mathematical models that are capable of predicting highly complex and dynamic behaviors of cellular signaling networks, thus providing a systems level understanding of how pathways interact to produce a functional response. Finally, with technological advances in high-throughput and in vivo imaging, these molecular tools promise to continually engender significant contributions to our understanding of cellular processes under normal and diseased conditions.

  14. Function-based Biosensor for Hazardous Waste Toxin Detection

    SciTech Connect

    James J Hickman

    2008-07-09

    There is a need for new types of toxicity sensors in the DOE and other agencies that are based on biological function as the toxins encountered during decontamination or waste remediation may be previously unknown or their effects subtle. Many times the contents of the environmental waste, especially the minor components, have not been fully identified and characterized. New sensors of this type could target unknown toxins that cause death as well as intermediate levels of toxicity that impair function or cause long term impairment that may eventually lead to death. The primary question posed in this grant was to create an electronically coupled neuronal cellular circuit to be used as sensor elements for a hybrid non-biological/biological toxin sensor system. A sensor based on the electrical signals transmitted between two mammalian neurons would allow the marriage of advances in solid state electronics with a functioning biological system to develop a new type of biosensor. Sensors of this type would be a unique addition to the field of sensor technology but would also be complementary to existing sensor technology that depends on knowledge of what is to be detected beforehand. We integrated physics, electronics, surface chemistry, biotechnology, and fundamental neuroscience in the development of this biosensor. Methods were developed to create artificial surfaces that enabled the patterning of discrete cells, and networks of cells, in culture; the networks were then aligned with transducers. The transducers were designed to measure electromagnetic fields (EMF) at low field strength. We have achieved all of the primary goals of the project. We can now pattern neurons routinely in our labs as well as align them with transducers. We have also shown the signals between neurons can be modulated by different biochemicals. In addition, we have made another significant advance where we have repeated the patterning results with adult hippocampal cells. Finally, we

  15. Nanoelectrode and nanoparticle based biosensors for environmental and health monitoring

    NASA Astrophysics Data System (ADS)

    Syed, Lateef Uddin

    Reduction in electrode size down to nanometers dramatically enhances the detection sensitivity and temporal resolution. Here we explore nanoelectrode arrays (NEAs) and nanoparticles in building high performance biosensors. Vertically aligned carbon nanofibers (VACNFs) of diameter ˜100 nm were grown on a Si substrate using plasma enhanced chemical vapor deposition. SiO2 embedded CNF NEAs were then fabricated using techniques like chemical vapor deposition, mechanical polishing, and reactive ion etching, with CNF tips exposed at the final step. The effect of the interior structure of CNFs on electron transfer rate (ETR) was investigated by covalently attaching ferrocene molecules to the exposed end of CNFs. Anomalous differences in the ETR were observed between DC voltammetry (DCV) and AC voltammetry (ACV). The findings from this study are currently being extended to develop an electrochemical biosensor for the detection of cancerous protease (legumain). Preliminary results with standard macro glassy carbon electrodes show a significant decrease in ACV signal, which is encouraging. In another study, NEA was employed to capture and detect pathogenic bacteria using AC dielectrophoresis (DEP) and electrochemical impedance spectroscopy (EIS). A nano-DEP device was fabricated using photolithography processes to define a micro patterned exposed active region on NEA and a microfluidic channel on macro-indium tin oxide electrode. Enhanced electric field gradient at the exposed CNF tips was achieved due to the nanometer size of the electrodes, because of which each individual exposed tip can act as a potential DEP trap to capture the pathogen. Significant decrease in the absolute impedance at the NEA was also observed by EIS experiments. In a final study, we modified gold nanoparticles (GNPs) with luminol to develop chemiluminescence (CL) based blood biosensor. Modified GNPs were characterized by UV-Vis, IR spectroscopy and TEM. We have applied this CL method for the

  16. Biosensors based on enzyme field-effect transistors for determination of some substrates and inhibitors.

    PubMed

    Dzyadevych, Sergei V; Soldatkin, Alexey P; Korpan, Yaroslav I; Arkhypova, Valentyna N; El'skaya, Anna V; Chovelon, Jean-Marc; Martelet, Claude; Jaffrezic-Renault, Nicole

    2003-10-01

    This paper is a review of the authors' publications concerning the development of biosensors based on enzyme field-effect transistors (ENFETs) for direct substrates or inhibitors analysis. Such biosensors were designed by using immobilised enzymes and ion-selective field-effect transistors (ISFETs). Highly specific, sensitive, simple, fast and cheap determination of different substances renders them as promising tools in medicine, biotechnology, environmental control, agriculture and the food industry. The biosensors based on ENFETs and direct enzyme analysis for determination of concentrations of different substrates (glucose, urea, penicillin, formaldehyde, creatinine, etc.) have been developed and their laboratory prototypes were fabricated. Improvement of the analytical characteristics of such biosensors may be achieved by using a differential mode of measurement, working solutions with different buffer concentrations and specific agents, negatively or positively charged additional membranes, or genetically modified enzymes. These approaches allow one to decrease the effect of the buffer capacity influence on the sensor response in an aim to increase the sensitivity of the biosensors and to extend their dynamic ranges. Biosensors for the determination of concentrations of different toxic substances (organophosphorous pesticides, heavy metal ions, hypochlorite, glycoalkaloids, etc.) were designed on the basis of reversible and/or irreversible enzyme inhibition effect(s). The conception of an enzymatic multibiosensor for the determination of different toxic substances based on the enzyme inhibition effect is also described. We will discuss the respective advantages and disadvantages of biosensors based on the ENFETs developed and also demonstrate their practical application.

  17. Biosensors based on enzyme field-effect transistors for determination of some substrates and inhibitors.

    PubMed

    Dzyadevych, Sergei V; Soldatkin, Alexey P; Korpan, Yaroslav I; Arkhypova, Valentyna N; El'skaya, Anna V; Chovelon, Jean-Marc; Martelet, Claude; Jaffrezic-Renault, Nicole

    2003-10-01

    This paper is a review of the authors' publications concerning the development of biosensors based on enzyme field-effect transistors (ENFETs) for direct substrates or inhibitors analysis. Such biosensors were designed by using immobilised enzymes and ion-selective field-effect transistors (ISFETs). Highly specific, sensitive, simple, fast and cheap determination of different substances renders them as promising tools in medicine, biotechnology, environmental control, agriculture and the food industry. The biosensors based on ENFETs and direct enzyme analysis for determination of concentrations of different substrates (glucose, urea, penicillin, formaldehyde, creatinine, etc.) have been developed and their laboratory prototypes were fabricated. Improvement of the analytical characteristics of such biosensors may be achieved by using a differential mode of measurement, working solutions with different buffer concentrations and specific agents, negatively or positively charged additional membranes, or genetically modified enzymes. These approaches allow one to decrease the effect of the buffer capacity influence on the sensor response in an aim to increase the sensitivity of the biosensors and to extend their dynamic ranges. Biosensors for the determination of concentrations of different toxic substances (organophosphorous pesticides, heavy metal ions, hypochlorite, glycoalkaloids, etc.) were designed on the basis of reversible and/or irreversible enzyme inhibition effect(s). The conception of an enzymatic multibiosensor for the determination of different toxic substances based on the enzyme inhibition effect is also described. We will discuss the respective advantages and disadvantages of biosensors based on the ENFETs developed and also demonstrate their practical application. PMID:12904953

  18. Optical biosensor for simultaneous detection of captan and organophosphorus compounds.

    PubMed

    Choi, Jeong-Woo; Kim, Young-Kee; Oh, Byung-Keun; Song, Sun-Young; Lee, Won Hong

    2003-05-01

    The optical biosensor consisting of GST and acetylcholinesterase (AChE)-immobilized gel film was developed to detect captan and organophosphorus compounds simultaneously in contaminated water. The sensing scheme was based on the measurement of decrease of products formation (s-(2,4-dinitrobenzene) glutathione and alpha-naphthol by GST and AChE, respectively) due to the inhibition by captan and organophosphorus compounds. The absorbance of s-(2,4-dinitrobenzene) glutathione and alpha-naphthol was detected at 400 and 500 nm, respectively, by a proposed optical biosensor system. It was observed that AChE was inhibited by both captan and organophosphorus compounds, and GST was inhibited only by captan. The simultaneous detection and quantification of captan and organophosphorus compounds could be successfully achieved by the proposed sensor system. The proposed biosensor could successfully detect the captan and organophosphorus compounds concentration from 0 to 2 ppm.

  19. Optical detection of sepsis markers using liquid crystal based biosensors

    NASA Astrophysics Data System (ADS)

    McCamley, Maureen K.; Artenstein, Andrew W.; Opal, Steven M.; Crawford, Gregory P.

    2007-02-01

    A liquid crystal based biosensor for the detection and diagnosis of sepsis is currently in development. Sepsis, a major clinical syndrome with a significant public health burden in the US due to a large elderly population, is the systemic response of the body to a localized infection and is defined as the combination of pathologic infection and physiological changes. Bacterial infections are responsible for 90% of cases of sepsis in the US. Currently there is no bedside diagnostic available to positively identify sepsis. The basic detection scheme employed in a liquid crystal biosensor contains attributes that would find value in a clinical setting, especially for the early detection of sepsis. Utilizing the unique properties of liquid crystals, such as birefringence, a bedside diagnostic is in development which will optically report the presence of biomolecules. In a septic patient, an endotoxin known as lipopolysaccharide (LPS) is released from the outer membrane of Gram-negative bacteria and can be found in the blood stream. It is hypothesized that this long chained molecule will cause local disruptions to the open surface of a sensor containing aligned liquid crystal. The bulk liquid crystal ampli.es these local changes at the surface due to the presence of the sepsis marker, providing an optical readout through polarizing microscopy images. Liquid crystal sensors consisting of both square and circular grids, 100-200 μm in size, have been fabricated and filled with a common liquid crystal material, 5CB. Homeotropic alignment was confirmed using polarizing microscopy. The grids were then contacted with either saline only (control), or saline with varying concentrations of LPS. Changes in the con.guration of the nematic director of the liquid crystal were observed through the range of concentrations tested (5mg/mL - 1pg/mL) which have been confirmed by a consulting physician as clinically relevant levels.

  20. Development of 3D-QSAR model for acetylcholinesterase inhibitors using a combination of fingerprint, molecular docking, and structure-based pharmacophore approaches

    EPA Science Inventory

    Acetylcholinesterase (AChE), a serine hydrolase vital for regulating the neurotransmitter acetylcholine in animals, has been used as a target for drugs and pesticides. With the increasing availability of AChE crystal structures, with or without ligands bound, structure-based appr...

  1. Development of a 3D-QSAR model for acetylcholinesterase inhibitors using a combination of fingerprint, docking, and structure-based pharmacophore approaches - Conference Abstract

    EPA Science Inventory

    Acetylcholinesterase (AChE), a serine hydrolase vital for regulating the neurotransmitter acetylcholine in animals, has been used as a target for drugs and pesticides. With the increasing availability of AChE crystal structures, with or without ligands bound, structure-based appr...

  2. Bi nanowire-based thermal biosensor for the detection of salivary cortisol using the Thomson effect

    NASA Astrophysics Data System (ADS)

    Lee, Seunghyun; Hyun Lee, Jung; Kim, MinGin; Kim, Jeongmin; Song, Min-Jung; Jung, Hyo-Il; Lee, Wooyoung

    2013-09-01

    We present a study of a thermal biosensor based on bismuth nanowire that is fabricated for the detection of the human stress hormone cortisol using the Thomson effect. The Bi nanowire was grown using the On-Film Formation of Nanowires (OFF-ON) method. The thermal device was fabricated using photolithography, and the sensing area was modified with immobilized anti-cortisol antibodies conjugated with protein G for the detection of cortisol. The voltages were measured with two probe tips during surface modification to investigate the biochemical reactions in the fabricated thermal biosensor. The Bi nanowire-based thermal biosensor exhibited low detection limit and good selectivity for the detection of cortisol.

  3. A simple electrochemical biosensor based on AuNPs/MPS/Au electrode sensing layer for monitoring carbamate pesticides in real samples.

    PubMed

    Song, Yonghai; Chen, Jingyi; Sun, Min; Gong, Coucong; Shen, Yuan; Song, Yonggui; Wang, Li

    2016-03-01

    A simple electrochemical biosensor for quantitative determination of carbamate pesticide was developed based on a sensing interface of citrate-capped gold nanoparticles (AuNPs)/(3-mercaptopropyl)-trimethoxysilane (MPS)/gold electrode (Au). The biosensor was fabricated by firstly assembling three-dimensional (3D) MPS networks on Au electrode and subsequently assembling citrate-capped AuNPs on 3D MPS network via AuS bond. The interface of AuNPs/MPS/Au was negatively charged originating from the citrate coated on AuNPs that would repulse the negatively charged ferricyanide ([Fe(CN)6](3-/4-)) to produce a negative response. In the presence of acetylcholinesterase (AChE) and acetylthiocholine (ATCl), the AChE catalyzes the hydrolysis of ATCl into positively charged thiocholine which would replace the citrate on AuNPs through the strong AuS bond and convert the negative charged surface to be positively charged. The resulted positively charged AuNPs/MPS/Au then attracted the [Fe(CN)6](3-/4-) to produce a positive response. Based on the inhibition of carbamate pesticides on the activity of AChE, the pesticide could be quantitatively determined at a very low potential. The linear range was from 0.003 to 2.00 μM. The sensing platform was also proved to be suitable for carbamate pesticides detection in practical sample.

  4. A Bioanalytical Chemistry Experiment for Undergraduate Students: Biosensors Based on Metal Nanoparticles

    ERIC Educational Resources Information Center

    Niagi, John; Warner, John; Andreesco, Silvana

    2007-01-01

    The study describes the development of new biosensors based on metal nanoparticles because of its high surface area and large binding ability. The adopted procedure is extremely simple and versatile and can be used in various applications of electrochemistry.

  5. Recent Advances on Luminescent Enhancement-Based Porous Silicon Biosensors.

    PubMed

    Jenie, S N Aisyiyah; Plush, Sally E; Voelcker, Nicolas H

    2016-10-01

    Luminescence-based detection paradigms have key advantages over other optical platforms such as absorbance, reflectance or interferometric based detection. However, autofluorescence, low quantum yield and lack of photostability of the fluorophore or emitting molecule are still performance-limiting factors. Recent research has shown the need for enhanced luminescence-based detection to overcome these drawbacks while at the same time improving the sensitivity, selectivity and reducing the detection limits of optical sensors and biosensors. Nanostructures have been reported to significantly improve the spectral properties of the emitting molecules. These structures offer unique electrical, optic and magnetic properties which may be used to tailor the surrounding electrical field of the emitter. Here, the main principles behind luminescence and luminescence enhancement-based detections are reviewed, with an emphasis on europium complexes as the emitting molecule. An overview of the optical porous silicon microcavity (pSiMC) as a biosensing platform and recent proof-of-concept examples on enhanced luminescence-based detection using pSiMCs are provided and discussed.

  6. The Simulation of the Recharging Method Based on Solar Radiation for an Implantable Biosensor.

    PubMed

    Li, Yun; Song, Yong; Kong, Xianyue; Li, Maoyuan; Zhao, Yufei; Hao, Qun; Gao, Tianxin

    2016-01-01

    A method of recharging implantable biosensors based on solar radiation is proposed. Firstly, the models of the proposed method are developed. Secondly, the recharging processes based on solar radiation are simulated using Monte Carlo (MC) method and the energy distributions of sunlight within the different layers of human skin have been achieved and discussed. Finally, the simulation results are verified experimentally, which indicates that the proposed method will contribute to achieve a low-cost, convenient and safe method for recharging implantable biosensors.

  7. Oxygen biosensor based on bilirubin oxidase immobilized on a nanostructured gold electrode.

    PubMed

    Pita, Marcos; Gutierrez-Sanchez, Cristina; Toscano, Miguel D; Shleev, Sergey; De Lacey, Antonio L

    2013-12-01

    Gold disk electrodes modified with gold nanoparticles have been used as a scaffold for the covalent immobilization of bilirubin oxidase. The nanostructured bioelectrodes were tested as mediator-less biosensors for oxygen in a buffer that mimics the content and the composition of human physiological fluids. Chronoamperometry measurements showed a detection limit towards oxygen of 6 ± 1 μM with a linear range of 6-300 μM, i.e. exceeding usual physiological ranges of oxygen in human tissues and fluids. The biosensor presented is the first ever-reported oxygen amperometric biosensor based on direct electron transfer of bilirubin oxidase. PMID:23973738

  8. Acetylcholinesterase-reduced graphene oxide hybrid films for organophosphorus neurotoxin sensing via quartz crystal microbalance

    NASA Astrophysics Data System (ADS)

    Tang, Shi; Ma, Wenying; Xie, Guangzhong; Su, Yuanjie; Jiang, Yadong

    2016-09-01

    An acetylcholinesterase (AChE)-reduced graphene oxide (RGO) hybrid films based biosensor enabled by quartz crystal microbalance (QCM) has been developed for the detection of organophosphorus neurotoxin in gas phase at room temperature. To improve the sensing performance, RGO was used to immobilize large quantities of enzyme and provide a favorable microenvironment to maintain the enzyme activity. The experimental results reveal that the response of AChE-RGO/glutaraldehyde based sensors is about 8 times larger than that of the AChE with the sensitivity of 1.583 Hz/mg/m3. 1.0 mg amount of RGO, 5% concentration of glutaraldehyde and pH 6.8 is the optimal condition of this biosensor.

  9. Immune biosensors based on the SPR and TIRE: efficiency of their application for bacteria determination

    NASA Astrophysics Data System (ADS)

    Starodub, N. F.; Ogorodniichuk, J.; Lebedeva, T.; Shpylovyy, P.

    2013-11-01

    In this work we have designed high-specific biosensors for Salmonella typhimurium detection based on the surface plasmon resonance (SPR) and total internal reflection ellipsometry (TIRE). It has been demonstrated high selectivity and sensitivity of analysis. As a registering part for our experiments the Spreeta (USA) and "Plasmonotest" (Ukraine) with flowing cell have been applied among of SPR device. Previous researches confirmed an efficiency of SPR biosensors using for detecting of specific antigen-antibody interactions therefore this type of reactions with some previous preparations of surface binding layer was used as reactive part. It has been defined that in case with Spreeta sensitivity was on the level 103 - 107 cells/ml. Another biosensor based on the SPR has shown the sensitivity within 101 - 106 cells/ml. Maximal sensitivity was on the level of several cells in 10 ml (up to the fact that less than 5 cells) which has been obtained using the biosensor based on TIRE.

  10. Electrochemical biosensors based on nanofibres for cardiac biomarker detection: A comprehensive review.

    PubMed

    Rezaei, Babak; Ghani, Mozhdeh; Shoushtari, Ahmad Mousavi; Rabiee, Mohammad

    2016-04-15

    The vital importance of early and accurate diagnosis of cardiovascular diseases (CVDs) to prevent the irreversible damage or even death of patients has driven the development of biosensor devices for detection and quantification of cardiac biomarkers. Electrochemical biosensors offer rapid sensing, low cost, portability and ease of use. Over the past few years, nanotechnology has contributed to a tremendous improvement in the sensitivity of biosensors. In this review, the authors summarise the state-of-the-art of the application of one particular type of nanostructured material, i.e. nanofibres, for use in electrochemical biosensors for the ultrasensitive detection of cardiac biomarkers. A new way of classifying the nanofibre-based electrochemical biosensors according to the electrical conductance and the type of nanofibres is presented. Some key data from each article reviewed are highlighted, including the mechanism of detection, experimental conditions and the response range of the biosensor. The primary aim of this review is to emphasise the prospects for nanofibres for the future development of biosensors in diagnosis of CVDs as well as considering how to improve their characteristics for application in medicine.

  11. Preparation of Amperometric Glucose Biosensor Based on 4-Mercaptobenzoic Acid

    NASA Astrophysics Data System (ADS)

    Wang, Huihui; Ohnuki, Hitoshi; Endo, Hideaki; Izumi, Mitsuru

    A novel glucose biosensor was fabricated by a combination of a self-assembled monolayer (SAM) of 4-mercaptobenzoic acid and the Langmuir-Blodgett (LB) technique. Because of the catalysis of Prussian Blue contained in the LB film layers, the prepared amperometric biosensor worked at a very low potential range around 0.0 V vs. Ag/AgCl. The optimum operating conditions for glucose biosensor were investigated by varying the glucose oxidase immobilization time, the applied potential and the pH of buffer solution. The steady-state current responses of the glucose biosensor showed a good linear relationship to glucose concentrations from 0.1 mM to 154 mM.

  12. Fluorescence Resonance Energy Transfer-based Biosensor Composed of Nitrogen-doped Carbon Dots and Gold Nanoparticles for the Highly Sensitive Detection of Organophosphorus Pesticides.

    PubMed

    Gong, Nian Chun; Li, Yan Le; Jiang, Xi; Zheng, Xiao Fang; Wang, Ya Ya; Huan, Shuang Yan

    2016-01-01

    The present article reports a novel biosensor for organophosphorus pesticides based on fluorescence resonance energy transfer (FRET) between nitrogen-doped carbon dots (NC-dots) and gold nanoparticles (AuNPs). The effective NC-dots/AuNPs assembly through the Au-N interaction results in good fluorescence quenching. Active acetylcholinesterase (AChE) catalyzes the hydrolysis of acetylthiocholine into -SH containing thiocholine to replace the NC-dots and trigger the aggregation of AuNPs. In the presence of paraoxon, the activity of AChE is inhibited, and thus preventing the generation of thiocholine, causing fewer NC-dots to be replaced. As a consequence, the fluorescence intensity gradually decreases with increasing amount of paraoxon. This biosensor does not require any complex synthesis or modification, and the results show a wide detection range of from 10(-4) to 10(-9) g/L with a detection limit of 1.0 × 10(-9) g/L (3.6 × 10(-12) mol/L). Two linear response regions have been reported with a turning point at about 10(-6) g/L and three different factors that would influence the response behavior. These phenomena discussed in detail so as to explain the special response mechanism. PMID:27682399

  13. General purpose, field-portable cell-based biosensor platform.

    PubMed

    Gilchrist, K H; Barker, V N; Fletcher, L E; DeBusschere, B D; Ghanouni, P; Giovangrandi, L; Kovacs, G T

    2001-09-01

    There are several groups of researchers developing cell-based biosensors for chemical and biological warfare agents based on electrophysiologic monitoring of cells. In order to transition such sensors from the laboratory to the field, a general-purpose hardware and software platform is required. This paper describes the design, implementation, and field-testing of such a system, consisting of cell-transport and data acquisition instruments. The cell-transport module is a self-contained, battery-powered instrument that allows various types of cell-based modules to be maintained at a preset temperature and ambient CO(2) level while in transit or in the field. The data acquisition module provides 32 channels of action potential amplification, filtering, and real-time data streaming to a laptop computer. At present, detailed analysis of the data acquired is carried out off-line, but sufficient computing power is available in the data acquisition module to enable the most useful algorithms to eventually be run real-time in the field. Both modules have sufficient internal power to permit realistic field-testing, such as the example presented in this paper. PMID:11544049

  14. Gold nanostar-enhanced surface plasmon resonance biosensor based on carboxyl-functionalized graphene oxide.

    PubMed

    Wu, Qiong; Sun, Ying; Ma, Pinyi; Zhang, Di; Li, Shuo; Wang, Xinghua; Song, Daqian

    2016-03-24

    A new high-sensitivity surface plasmon resonance (SPR) biosensor based on biofunctional gold nanostars (AuNSs) and carboxyl-functionalized graphene oxide (cGO) sheets was described. Compared with spherical gold nanoparticles (AuNPs), the anisotropic structure of AuNSs, which concentrates the electric charge density on its sharp tips, could enhance the local electromagnetic field and the electronic coupling effect significantly. cGO was obtained by a diazonium reaction of graphene oxide (GO) with 4-aminobenzoic acid. Compared with GO, cGO could immobilize more antibodies due to the abundant carboxylic groups on its surface. Testing results show that there are fairly large improvements in the analytical performance of the SPR biosensor using cGO/AuNSs-antigen conjugate, and the detection limit of the proposed biosensor is 0.0375 μg mL(-1), which is 32 times lower than that of graphene oxide-based biosensor. PMID:26944998

  15. Gold nanostar-enhanced surface plasmon resonance biosensor based on carboxyl-functionalized graphene oxide.

    PubMed

    Wu, Qiong; Sun, Ying; Ma, Pinyi; Zhang, Di; Li, Shuo; Wang, Xinghua; Song, Daqian

    2016-03-24

    A new high-sensitivity surface plasmon resonance (SPR) biosensor based on biofunctional gold nanostars (AuNSs) and carboxyl-functionalized graphene oxide (cGO) sheets was described. Compared with spherical gold nanoparticles (AuNPs), the anisotropic structure of AuNSs, which concentrates the electric charge density on its sharp tips, could enhance the local electromagnetic field and the electronic coupling effect significantly. cGO was obtained by a diazonium reaction of graphene oxide (GO) with 4-aminobenzoic acid. Compared with GO, cGO could immobilize more antibodies due to the abundant carboxylic groups on its surface. Testing results show that there are fairly large improvements in the analytical performance of the SPR biosensor using cGO/AuNSs-antigen conjugate, and the detection limit of the proposed biosensor is 0.0375 μg mL(-1), which is 32 times lower than that of graphene oxide-based biosensor.

  16. Strategies towards advanced ion track-based biosensors

    NASA Astrophysics Data System (ADS)

    Alfonta, L.; Bukelman, O.; Chandra, A.; Fahrner, W. R.; Fink, D.; Fuks, D.; Golovanov, V.; Hnatowicz, V.; Hoppe, K.; Kiv, A.; Klinkovich, I.; Landau, M.; Morante, J. R.; Tkachenko, N. V.; Vacík, J.; Valden, M.

    Three approaches towards ion track-based biosensors appear to be feasible. The development of the first one began a decade ago [Siwy, Z.; Trofin, L.; Kohl, P.; Baker, L.A.; Martin, C.R.; Trautmann, C. J. Am. Chem. Soc. 2005, 127, 5000-5001; Siwy, Z.S.; Harrell, C.C.; Heins, E.; Martin, C.R.; Schiedt, B.; Trautmann, C.; Trofin, L.; Polman, A. Presented at the 6th International Conference on Swift Heavy Ions in Matter, Aschaffenburg, Germany, May 28-31, 2005] and makes use of the concept that the presence of certain biomolecules within liquids can block the passage through narrow pores if being captured there, thus switching off the pore's electrical conductivity. The second, having been successfully tested half a year ago [Fink, D.; Klinkovich, I.; Bukelman, O.; Marks, R.S.; Fahrner, W.; Kiv, A.; Fuks, D.; Alfonta, L. Biosens. Bioelectron. 2009, 24, 2702-2706], is based on the accumulation of enzymatic reaction products within the confined volume of narrow etched ion tracks which modifies the pore's electrical conductivity. The third and most elegant, at present under development, will exploit the charge transfer from enzymes to semiconductors embedded within etched tracks, enabling the enzymes undergoing specific reactions with the biomolecules to be detected. These strategies can be realized either within carrier-free nanoporous polymeric membranes embedded in the corresponding bioliquids, or within contacted nanoporous insulating layers on semiconducting substrates, the so-called TEMPOS structures [Fink, D.; Petrov, A.; Hoppe, H.; Fahrner, W.R.; Papaleo, R.M.; Berdinsky, A.; Chandra, A.; Biswas, A.; Chadderton, L.T. Nucl. Instrum. Methods B 2004, 218, 355-361]. The latter have the advantage of exhibiting a number of peculiar electronic properties, such as the ability for logic and/or combination of input signals, tunable polarity, negative differential resistances, tunability by external parameters such as light, magnetic fields, etc. and self-pulsations, which

  17. Urea biosensor based on an extended-base bipolar junction transistor.

    PubMed

    Sun, Tai-Ping; Shieh, Hsiu-Li; Liu, Chun-Lin; Chen, Chung-Yuan

    2014-01-01

    In this study, a urea biosensor was prepared by the immobilization of urease onto the sensitive membrane of an extended-base bipolar junction transistor. The pH variation was used to detect the concentration of urea. The SnO2/ITO glass, fabricated by sputtering SnO2 on the conductive ITO glass, was used as a pH-sensitive membrane, which was connected with a commercial bipolar junction transistor device. The gels, fabricated by the poly vinyl alcohol with pendent styrylpyridinium groups, were used to immobilize the urease. This readout circuit, fabricated in a 0.35-um CMOS 2P4M process, operated at 3.3V supply voltage. This circuit occupied an area of 1.0 mm × 0.9 mm. The dynamic range of the urea biosensor was from 1.4 to 64 mg/dl at the 10 mM phosphate buffer solution and the sensitivity of this range was about 65.8 mV/pUrea. The effect of urea biosensors with different pH values was considered, and the characteristics of urea biosensors based on EBBJT were described. PMID:24211878

  18. Urea biosensor based on an extended-base bipolar junction transistor.

    PubMed

    Sun, Tai-Ping; Shieh, Hsiu-Li; Liu, Chun-Lin; Chen, Chung-Yuan

    2014-01-01

    In this study, a urea biosensor was prepared by the immobilization of urease onto the sensitive membrane of an extended-base bipolar junction transistor. The pH variation was used to detect the concentration of urea. The SnO2/ITO glass, fabricated by sputtering SnO2 on the conductive ITO glass, was used as a pH-sensitive membrane, which was connected with a commercial bipolar junction transistor device. The gels, fabricated by the poly vinyl alcohol with pendent styrylpyridinium groups, were used to immobilize the urease. This readout circuit, fabricated in a 0.35-um CMOS 2P4M process, operated at 3.3V supply voltage. This circuit occupied an area of 1.0 mm × 0.9 mm. The dynamic range of the urea biosensor was from 1.4 to 64 mg/dl at the 10 mM phosphate buffer solution and the sensitivity of this range was about 65.8 mV/pUrea. The effect of urea biosensors with different pH values was considered, and the characteristics of urea biosensors based on EBBJT were described.

  19. Reducing the temperature sensitivity of SOI waveguide-based biosensors

    NASA Astrophysics Data System (ADS)

    Gylfason, Kristinn B.; Mola Romero, Albert; Sohlström, Hans

    2012-06-01

    Label-free photonic biosensors fabricated on silicon-on-insulator (SOI) can provide compact size, high evanescent field strength at the silicon waveguide surface, and volume fabrication potential. However, due to the large thermo optic coefficient of water-based biosamples, the sensors are temperature-sensitive. Consequently, active temperature control is usually used. However, for low cost applications, active temperature control is often not feasible. Here, we use the opposite polarity of the thermo-optic coefficients of silicon and water to demonstrate a photonic slot waveguide with a distribution of power between sample and silicon that aims to give athermal operation in water. Based on simulations, we made three waveguide designs close to the athermal point, and asymmetric integrated Mach- Zehnder interferometers for their characterization. The devices were fabricated on SOI with a 220 nm device layer and 2 μm buried oxide, by electron beam lithography of hydrogen silsesquioxane (HSQ) resist, and etching in a Cl2/HBr/O2/He plasma. With Cargile 50350 fused silica matching oil as top cladding, the group index of the three guides varies from 1.9 to 2.8 at 1550 nm. The temperature sensitivity of the devices varied from -70 to -160 pm/K under the same conditions. A temperature sensitivity of -2 pm/K is projected with water as top cladding.

  20. Surface plasmon resonance based fiber optic glucose biosensor

    NASA Astrophysics Data System (ADS)

    Srivastava, Sachin K.; Verma, Roli; Gupta, Banshi D.

    2012-02-01

    A surface plasmon resonance (SPR) based fiber optic biosensor has been fabricated and characterized for the detection of blood glucose. Optical fiber sensor was fabricated by first coating a 50 nm thick gold film on the bare core of optical fiber and then immobilizing glucose oxidase (GOx) over it. Aqueous glucose solutions of different concentrations were prepared. To mimic the blood glucose levels, the concentration of glucose solutions were kept equal to that in human blood. The refractive indices of these sample solutions were equal to that of water up to third decimal place. SPR spectra for the sensor were recorded for these glucose solutions. When the glucose comes in contact to glucose oxidase, chemical reactions take place and as a result, the refractive index of the immobilized GOx film changes, giving rise to a shift in the resonance wavelength. Unlike electrochemical sensors, the present sensor is based on optics and can be miniaturized because of optical fiber. The present study provides a different approach for blood glucose sensing and may be commercialized after optimization of certain parameters.

  1. Analytical investigation of bilayer lipid biosensor based on graphene.

    PubMed

    Akbari, Elnaz; Buntat, Zolkafle; Shahraki, Elmira; Parvaz, Ramtin; Kiani, Mohammad Javad

    2016-01-01

    Graphene is another allotrope of carbon with two-dimensional monolayer honeycomb. Owing to its special characteristics including electrical, physical and optical properties, graphene is known as a more suitable candidate compared to other materials to be used in the sensor application. It is possible, moreover, to use biosensor by using electrolyte-gated field effect transistor based on graphene (GFET) to identify the alterations in charged lipid membrane properties. The current article aims to show how thickness and charges of a membrane electric can result in a monolayer graphene-based GFET while the emphasis is on the conductance variation. It is proposed that the thickness and electric charge of the lipid bilayer (LLP and QLP) are functions of carrier density, and to find the equation relating these suitable control parameters are introduced. Artificial neural network algorithm as well as support vector regression has also been incorporated to obtain other models for conductance characteristic. The results comparison between analytical models, artificial neural network and support vector regression with the experimental data extracted from previous work show an acceptable agreement.

  2. Response enhancement of olfactory sensory neurons-based biosensors for odorant detection*

    PubMed Central

    Wu, Chun-sheng; Chen, Pei-hua; Yuan, Qing; Wang, Ping

    2009-01-01

    This paper presents a novel strategy for the response enhancement of olfactory sensory neurons (OSNs)-based biosensors by monitoring the enhancive responses of OSNs to odorants. An OSNs-based biosensor was developed on the basis of the light addressable potentiometric sensor (LAPS), in which rat OSNs were cultured on the surface of LAPS chip and served as sensing elements. LY294002, the specific inhibitor of phosphatidylinositol 3-kinase (PI3K), was used to enhance the responses of OSNs to odorants. The responses of OSNs to odorants with and without the treatment of LY294002 were recorded by LAPS. The results show that the enhancive effect of LY294002 was recorded efficiently by LAPS and the responses of this OSNs-LAPS hybrid biosensor were enhanced by LY294002 by about 1.5-fold. We conclude that this method can enhance the responses of OSNs-LAPS hybrid biosensors, which may provide a novel strategy for the bioelectrical signal monitor of OSNs in biosensors. It is also suggested that this strategy may be applicable to other kinds of OSNs-based biosensors for cellular activity detection, such as microelectrode array (MEA) and field effect transistor (FET). PMID:19353747

  3. New biosensor for detection of copper ions in water based on immobilized genetically modified yeast cells.

    PubMed

    Vopálenská, Irena; Váchová, Libuše; Palková, Zdena

    2015-10-15

    Contamination of water by heavy metals represents a potential risk for both aquatic and terrestrial organisms, including humans. Heavy metals in water resources can come from various industrial activities, and drinking water can be ex-post contaminated by heavy metals such as Cu(2+) from house fittings (e.g., water reservoirs) and pipes. Here, we present a new copper biosensor capable of detecting copper ions at concentrations of 1-100 μM. This biosensor is based on cells of a specifically modified Saccharomyces cerevisiae strain immobilized in alginate beads. Depending on the concentration of copper, the biosensor beads change color from white, when copper is present in concentrations below the detection limit, to pink or red based on the increase in copper concentration. The biosensor was successfully tested in the determination of copper concentrations in real samples of water contaminated with copper ions. In contrast to analytical methods or other biosensors based on fluorescent proteins, the newly designed biosensor does not require specific equipment and allows the quick detection of copper in many parallel samples.

  4. Sulfite determination by a biosensor based on bay leaf tissue homogenate: very simple and economical method.

    PubMed

    Teke, Mustafa; Sezgintürk, Mustafa Kemal; Dinçkaya, Erhan

    2009-01-01

    Of all the food additives for which the FDA has received adverse reaction reports, the ones that most closely resemble true allergens are sulfur-based preservatives. Sulfites are used primarily as antioxidants to prevent or reduce discoloration of light-colored fruits and vegetables, such as dried apples and potatoes, and to inhibit the growth of microorganisms in fermented foods such as wine. This work aims to prepare an electrochemical biosensor based on bay leaf tissue homogenate that contains polyphenol oxidase enzyme abundantly for sulfite detection in foods. The principle of the biosensor is based on the inhibition effect of sulfites on polyphenol oxidase in the bioactive layer. Optimum conditions for the biosensor, such as temperature and pH, were investigated. Some stability parameters of the biosensor were also identified. The biosensor showed a linear calibration graph in the range of 25-100 microM sulfite. The biosensor presents a very simple, economical, reliable, and feasible method for sulfite detection in foods. PMID:19418312

  5. Sulfite determination by a biosensor based on bay leaf tissue homogenate: very simple and economical method.

    PubMed

    Teke, Mustafa; Sezgintürk, Mustafa Kemal; Dinçkaya, Erhan

    2009-01-01

    Of all the food additives for which the FDA has received adverse reaction reports, the ones that most closely resemble true allergens are sulfur-based preservatives. Sulfites are used primarily as antioxidants to prevent or reduce discoloration of light-colored fruits and vegetables, such as dried apples and potatoes, and to inhibit the growth of microorganisms in fermented foods such as wine. This work aims to prepare an electrochemical biosensor based on bay leaf tissue homogenate that contains polyphenol oxidase enzyme abundantly for sulfite detection in foods. The principle of the biosensor is based on the inhibition effect of sulfites on polyphenol oxidase in the bioactive layer. Optimum conditions for the biosensor, such as temperature and pH, were investigated. Some stability parameters of the biosensor were also identified. The biosensor showed a linear calibration graph in the range of 25-100 microM sulfite. The biosensor presents a very simple, economical, reliable, and feasible method for sulfite detection in foods.

  6. Oxygen sensing glucose biosensors based on alginate nano-micro systems

    NASA Astrophysics Data System (ADS)

    Chaudhari, Rashmi; Joshi, Abhijeet; Srivastava, Rohit

    2014-04-01

    Clinically glucose monitoring in diabetes management is done by point-measurement. However, an accurate, continuous glucose monitoring, and minimally invasive method is desirable. The research aims at developing fluorescence-mediated glucose detecting biosensors based on near-infrared radiation (NIR) oxygen sensitive dyes. Biosensors based on Glucose oxidase (GOx)-Rudpp loaded alginate microspheres (GRAM) and GOx-Platinum-octaethylporphyrin (PtOEP)-PLAalginate microsphere system (GPAM) were developed using air-driven atomization and characterized using optical microscopy, CLSM, fluorescence spectro-photometry etc. Biosensing studies were performed by exposing standard solutions of glucose. Uniform sized GRAM and GPAM with size 50+/-10μm were formed using atomization. CLSM imaging of biosensors suggests that Rudpp and PtOEP nanoparticles are uniformly distributed in alginate microspheres. The GRAM and GPAM showed a good regression constant of 0.974 and of 0.9648 over a range of 0-10 mM of glucose with a high sensitivity of 3.349%/mM (625 nm) and 2.38%/mM (645 nm) at 10 mM of glucose for GRAM and GPAM biosensor. GRAM and GPAM biosensors show great potential in development of an accurate and minimally invasive glucose biosensor. NIR dye based assays can aid sensitive, minimally-invasive and interference-free detection of glucose in diabetic patients.

  7. New biosensor for detection of copper ions in water based on immobilized genetically modified yeast cells.

    PubMed

    Vopálenská, Irena; Váchová, Libuše; Palková, Zdena

    2015-10-15

    Contamination of water by heavy metals represents a potential risk for both aquatic and terrestrial organisms, including humans. Heavy metals in water resources can come from various industrial activities, and drinking water can be ex-post contaminated by heavy metals such as Cu(2+) from house fittings (e.g., water reservoirs) and pipes. Here, we present a new copper biosensor capable of detecting copper ions at concentrations of 1-100 μM. This biosensor is based on cells of a specifically modified Saccharomyces cerevisiae strain immobilized in alginate beads. Depending on the concentration of copper, the biosensor beads change color from white, when copper is present in concentrations below the detection limit, to pink or red based on the increase in copper concentration. The biosensor was successfully tested in the determination of copper concentrations in real samples of water contaminated with copper ions. In contrast to analytical methods or other biosensors based on fluorescent proteins, the newly designed biosensor does not require specific equipment and allows the quick detection of copper in many parallel samples. PMID:25982723

  8. Electrochemical glucose biosensor based on nickel oxide nanoparticle-modified carbon paste electrode.

    PubMed

    Erdem, Ceren; Zeybek, Derya Koyuncu; Aydoğdu, Gözde; Zeybek, Bülent; Pekyardımcı, Sule; Kılıç, Esma

    2014-08-01

    In the present work, we designed an amperometric glucose biosensor based on nickel oxide nanoparticles (NiONPs)-modified carbon paste electrode. The biosensor was prepared by incorporation of glucose oxidase and NiONPs into a carbon paste matrix. It showed good analytical performances such as high sensitivity (367 μA mmolL(-1)) and a wide linear response from 1.9×10(-3) mmolL(-1) to 15.0 mmolL(-1) with a limit of detection (0.11 μmolL(-1)). The biosensor was used for the determination of glucose in human serum samples. The results illustrate that NiONPs have enormous potential in the construction of biosensor for determination of glucose.

  9. Tyrosinase-based biosensor for determination of bisphenol A in a flow-batch system.

    PubMed

    Kochana, J; Wapiennik, K; Kozak, J; Knihnicki, P; Pollap, A; Woźniakiewicz, M; Nowak, J; Kościelniak, P

    2015-11-01

    A tyrosinase-based amperometric biosensor is proposed for determination of bisphenol A (BPA) in a flow-batch monosegmented sequential injection system. The enzyme was entrapped in a sol-gel TiO2 matrix modified with multi-walled carbon nanotubes (MWCNTs), polycationic polymer poly(diallyldimethylammonium chloride), (PDDA) and Nafion. Morphology of TYR/TiO2/MWCNTs/PDDA/Nafion matrix composite was studied via scanning electron microscopy (SEM). Electrochemical behavior of the developed biosensor towards bisphenol A was examined and analytical characteristics were assessed with respect to linear range, biosensor sensitivity, limit of detection, long term stability, repeatability and reproducibility. Linear range of biosensor response was found between 0.28 and 45.05 µM with high sensitivity of 3263 µA mM(-1) cm(-2) and detection limit 0.066 µM. The approach was successfully employed for determination of BPA in natural samples.

  10. Phenol determination by an amperométrico biosensor based on lyophilized mushroom (Agaricus bisporus) tissue.

    PubMed

    Silva, L M C; de Mello, A C C; Salgado, A M

    2014-01-01

    A simple and inexpensive biosensor based on lyophilized mushroom tissue (Agaricus bisporus) was developed for amperometric determination of phenol. This fungi tissue contains tyrosinase (EC 1.14.18.1) enzyme that catalysis two sequential oxidation reactions with phenolic substrates. Both reactions involve molecular oxygen; therefore, the commercial Clark-type oxygen electrode was selected as a transducer. The lyophilized biocomponent was tested in two different forms: cubes (at two positions in the biosensor system) or powder. In characterization studies of the biosensor, some parameters such as time reaction, linear range and repeatability were investigated. For the best biosensor configuration, a linear response was observed from 0.1 to 10.0mg L(-1) phenol; variation coefficient and standard deviation were calculated as 0.02% and +/- 0.11mg L(-1), respectively.

  11. Tyrosinase-based biosensor for determination of bisphenol A in a flow-batch system.

    PubMed

    Kochana, J; Wapiennik, K; Kozak, J; Knihnicki, P; Pollap, A; Woźniakiewicz, M; Nowak, J; Kościelniak, P

    2015-11-01

    A tyrosinase-based amperometric biosensor is proposed for determination of bisphenol A (BPA) in a flow-batch monosegmented sequential injection system. The enzyme was entrapped in a sol-gel TiO2 matrix modified with multi-walled carbon nanotubes (MWCNTs), polycationic polymer poly(diallyldimethylammonium chloride), (PDDA) and Nafion. Morphology of TYR/TiO2/MWCNTs/PDDA/Nafion matrix composite was studied via scanning electron microscopy (SEM). Electrochemical behavior of the developed biosensor towards bisphenol A was examined and analytical characteristics were assessed with respect to linear range, biosensor sensitivity, limit of detection, long term stability, repeatability and reproducibility. Linear range of biosensor response was found between 0.28 and 45.05 µM with high sensitivity of 3263 µA mM(-1) cm(-2) and detection limit 0.066 µM. The approach was successfully employed for determination of BPA in natural samples. PMID:26452806

  12. Nano-optic label-free biosensors based on photonic crystal platform with negative refraction

    NASA Astrophysics Data System (ADS)

    Aroua, W.; Haxha, S.; AbdelMalek, F.

    2012-04-01

    In this paper, a novel biosensor based on hetero photonic crystal (PC) structures is proposed. The biosensor consists of photonic crystals with negative refraction (PCNR) embedded between two ordinary PC structures. The PCNR is employed in order to produce an image that is as similar as the light source, which is located in the first ordinary PC. Significant enhancement of the image is achieved when a nanocavity is introduced into the PCNR. It is found that the transmission peak shifts when the nanocavity is filled with blood plasma, liquid and dry air. It is shown that by careful selection of the radius of the nanocavity, the sensitivity of the proposed biosensor can be enhanced. The presented PCNR biosensor is investigated by employing the finite-difference time-domain method (FDTD).

  13. Sub-chronic effect of neem based pesticide (Vepacide) on acetylcholinesterase and ATPases in rat.

    PubMed

    Rahman, M F; Siddiqui, M K; Jamil, K

    1999-09-01

    Acetylcholinesterases (AChE), Na(+)-K+, Mg2+ and Ca(2+)-ATPases were monitored in rat brain when treated orally with 80, 160 and 320 mg/kg of Vepacide, an active ingredient from neem seed oil, daily for 90 days. Brain AChE, Na(+)-K+ and Ca(2+)-ATPases were inhibited whereas Mg(2+)-ATPase levels were enhanced in both the sexes after 45 and 90 days of treatment. The relative sensitivities of these ATPases to Vepacide indicated that Ca(2+)-ATPase being more sensitive than Na(+)-K(+)-ATPase in both the sexes. The magnitude of Ca(2+)-ATPase inhibited by this compound was higher than that of brain AChE. It appears to be sexual dimorphism in the alterations of brain AChE, Na(+)-K+ and Mg(2+)-ATPases by Vepacide with females being significant when compared with males. After 28 days of post treatment the alterations observed were approached to those of controls both in male and female rats showing reversal of the toxicity. These results indicated that the ATPases were potently inhibited by Vepacide and seemed to be its precise target among the enzyme studied. This can be used as biochemical marker of exposure to this neem derived product. PMID:10466107

  14. A Graphene-Based Biosensing Platform Based on Regulated Release of an Aptameric DNA Biosensor

    PubMed Central

    Mao, Yu; Chen, Yongli; Li, Song; Lin, Shuo; Jiang, Yuyang

    2015-01-01

    A novel biosensing platform was developed by integrating an aptamer-based DNA biosensor with graphene oxide (GO) for rapid and facile detection of adenosine triphosphate (ATP, as a model target). The DNA biosensor, which is locked by GO, is designed to contain two sensing modules that include recognition site for ATP and self-replication track that yields the nicking domain for Nt.BbvCI. By taking advantage of the different binding affinity of single-stranded DNA, double-stranded DNA and aptamer-target complex toward GO, the DNA biosensor could be efficiently released from GO in the presence of target with the help of a complementary DNA strand (CPDNA) that partially hybridizes to the DNA biosensor. Then, the polymerization/nicking enzyme synergetic isothermal amplification could be triggered, leading to the synthesis of massive DNA amplicons, thus achieving an enhanced sensitivity with a wide linear dynamic response range of four orders of magnitude and good selectivity. This biosensing strategy expands the applications of GO-DNA nanobiointerfaces in biological sensing, showing great potential in fundamental research and biomedical diagnosis. PMID:26569239

  15. Quantum dot-based microfluidic biosensor for cancer detection

    NASA Astrophysics Data System (ADS)

    Ghrera, Aditya Sharma; Pandey, Chandra Mouli; Ali, Md. Azahar; Malhotra, Bansi Dhar

    2015-05-01

    We report results of the studies relating to fabrication of an impedimetric microfluidic-based nucleic acid sensor for quantification of DNA sequences specific to chronic myelogenous leukemia (CML). The sensor chip is prepared by patterning an indium-tin-oxide (ITO) coated glass substrate via wet chemical etching method followed by sealing with polydimethylsiloxane (PDMS) microchannel for fluid control. The fabricated microfluidic chip comprising of a patterned ITO substrate is modified by depositing cadmium selenide quantum dots (QCdSe) via Langmuir-Blodgett technique. Further, the QCdSe surface has been functionalized with specific DNA probe for CML detection. The probe DNA functionalized QCdSe integrated miniaturized system has been used to monitor target complementary DNA concentration by measuring the interfacial charge transfer resistance via hybridization. The presence of complementary DNA in buffer solution significantly results in decreased electro-conductivity of the interface due to presence of a charge barrier for transport of the redox probe ions. The microfluidic DNA biosensor exhibits improved linearity in the concentration range of 10-15 M to 10-11 M.

  16. Development of electrical biosensors based on nanostructured porous silicon

    NASA Astrophysics Data System (ADS)

    Recio-Sánchez, G.; Manso, M.; Torres-Costa, V.; Gallach, D.; Martín-Palma, R. J.

    2009-08-01

    Nanostructured porous silicon (nanoPS) can be described as a network of silicon crystals with sizes in the range of a few nanometers. The typical large specific surface area and high reactivity of nanoPS make this material very suitable for many different applications in the field of sensing. Moreover, its biocompatibility and biodegradability opens the way to the development of biosensors. Within this context, in the present work the use of nanoPS in the field of electrical biosensing is explored. More specifically, nanoPS-based devices with the structure Al/nanoPS/silicon/Al and AuNiCr/nanoPS/silicon/Al were fabricated for the electrical detection of glucose and the bacteria Escherichia Coli. The experimental results show that the current-voltage characteristics of the metal/nanoPS/silicon/metal structures show a strong dependence on the presence/absence and surface concentration of glucose and the bacteria Escherichia Coli. The present work describes our findings in the correlation between surface concentration of glucose and bacteria E. Coli and current for a given voltage.

  17. Microfabricated, amperometric, enzyme-based biosensors for in vivo applications.

    PubMed

    Weltin, Andreas; Kieninger, Jochen; Urban, Gerald A

    2016-07-01

    Miniaturized electrochemical in vivo biosensors allow the measurement of fast extracellular dynamics of neurotransmitter and energy metabolism directly in the tissue. Enzyme-based amperometric biosensing is characterized by high specificity and precision as well as high spatial and temporal resolution. Aside from glucose monitoring, many systems have been introduced mainly for application in the central nervous system in animal models. We compare the microsensor principle with other methods applied in biomedical research to show advantages and drawbacks. Electrochemical sensor systems are easily miniaturized and fabricated by microtechnology processes. We review different microfabrication approaches for in vivo sensor platforms, ranging from simple modified wires and fibres to fully microfabricated systems on silicon, ceramic or polymer substrates. The various immobilization methods for the enzyme such as chemical cross-linking and entrapment in polymer membranes are discussed. The resulting sensor performance is compared in detail. We also examine different concepts to reject interfering substances by additional membranes, aspects of instrumentation and biocompatibility. Practical considerations are elaborated, and conclusions for future developments are presented. Graphical Abstract ᅟ. PMID:26935934

  18. Quantum dot-based microfluidic biosensor for cancer detection

    SciTech Connect

    Ghrera, Aditya Sharma; Pandey, Chandra Mouli; Ali, Md. Azahar; Malhotra, Bansi Dhar

    2015-05-11

    We report results of the studies relating to fabrication of an impedimetric microfluidic–based nucleic acid sensor for quantification of DNA sequences specific to chronic myelogenous leukemia (CML). The sensor chip is prepared by patterning an indium–tin–oxide (ITO) coated glass substrate via wet chemical etching method followed by sealing with polydimethylsiloxane (PDMS) microchannel for fluid control. The fabricated microfluidic chip comprising of a patterned ITO substrate is modified by depositing cadmium selenide quantum dots (QCdSe) via Langmuir–Blodgett technique. Further, the QCdSe surface has been functionalized with specific DNA probe for CML detection. The probe DNA functionalized QCdSe integrated miniaturized system has been used to monitor target complementary DNA concentration by measuring the interfacial charge transfer resistance via hybridization. The presence of complementary DNA in buffer solution significantly results in decreased electro-conductivity of the interface due to presence of a charge barrier for transport of the redox probe ions. The microfluidic DNA biosensor exhibits improved linearity in the concentration range of 10{sup −15} M to 10{sup −11} M.

  19. Biosensor-based fragment screening using FastStep injections.

    PubMed

    Rich, Rebecca L; Quinn, John G; Morton, Tom; Stepp, J David; Myszka, David G

    2010-12-15

    We have developed a novel analyte injection method for the SensíQ Pioneer surface plasmon resonance-based biosensor referred to as "FastStep." By merging buffer and sample streams immediately prior to the reaction flow cells, the instrument is capable of automatically generating a two- or threefold dilution series (of seven or five concentrations, respectively) from a single analyte sample. Using sucrose injections, we demonstrate that the production of each concentration within the step gradient is highly reproducible. For kinetic studies, we developed analysis software that utilizes the sucrose responses to automatically define the concentration of analyte at any point during the association phase. To validate this new approach, we compared the results of standard and FastStep injections for ADP binding to a target kinase and a panel of compounds binding to carbonic anhydrase II. Finally, we illustrate how FastStep can be used in a primary screening mode to obtain a full concentration series of each compound in a fragment library.

  20. Biosensor-based fragment screening using FastStep injections

    PubMed Central

    Rich, Rebecca L.; Quinn, John G.; Morton, Tom; Stepp, J. David; Myszka, David G.

    2010-01-01

    We have developed a novel analyte injection method for the SensíQ Pioneer surface plasmon resonance-based biosensor referred to as ‘FastStep™’. By merging buffer and sample streams immediately prior to the reaction flow cells, the instrument is capable of automatically generating a two- or three-fold dilution series (of seven or five concentrations, respectively) from a single analyte sample. Using sucrose injections, we demonstrate that the production of each concentration within the step gradient is highly reproducible. For kinetic studies, we developed analysis software that utilizes the sucrose responses to automatically define the concentration of analyte at any point during the association phase. To validate this new approach, we compared the results of standard and FastStep injections for ADP binding to a target kinase and a panel of compounds binding to carbonic anhydrase II. Finally, we illustrate how FastStep can be used in a primary screening mode to obtain a full concentration series of each compound in a fragment library. PMID:20800052

  1. Liquid crystal based biosensors for bile acid detection

    NASA Astrophysics Data System (ADS)

    He, Sihui; Liang, Wenlang; Tanner, Colleen; Fang, Jiyu; Wu, Shin-Tson

    2013-03-01

    The concentration level of bile acids is a useful indicator for early diagnosis of liver diseases. The prevalent measurement method in detecting bile acids is the chromatography coupled with mass spectrometry, which is precise yet expensive. Here we present a biosensor platform based on liquid crystal (LC) films for the detection of cholic acid (CA). This platform has the advantage of low cost, label-free, solution phase detection and simple analysis. In this platform, LC film of 4-Cyano-4'-pentylbiphenyl (5CB) was hosted by a copper grid supported with a polyimide-coated glass substrate. By immersing into sodium dodecyl sulfate (SDS) solution, the LC film was coated with SDS which induced a homeotropic anchoring of 5CB. Addition of CA introduced competitive adsorption between CA and SDS at the interface, triggering a transition from homeotropic to homogeneous anchoring. The detection limit can be tuned by changing the pH value of the solution from 12uM to 170uM.

  2. Design and Characterization of Auxotrophy-Based Amino Acid Biosensors

    PubMed Central

    Bertels, Felix; Merker, Holger; Kost, Christian

    2012-01-01

    Efficient and inexpensive methods are required for the high-throughput quantification of amino acids in physiological fluids or microbial cell cultures. Here we develop an array of Escherichia coli biosensors to sensitively quantify eleven different amino acids. By using online databases, genes involved in amino acid biosynthesis were identified that – upon deletion – should render the corresponding mutant auxotrophic for one particular amino acid. This rational design strategy suggested genes involved in the biosynthesis of arginine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, threonine, tryptophan, and tyrosine as potential genetic targets. A detailed phenotypic characterization of the corresponding single-gene deletion mutants indeed confirmed that these strains could neither grow on a minimal medium lacking amino acids nor transform any other proteinogenic amino acid into the focal one. Site-specific integration of the egfp gene into the chromosome of each biosensor decreased the detection limit of the GFP-labeled cells by 30% relative to turbidometric measurements. Finally, using the biosensors to determine the amino acid concentration in the supernatants of two amino acid overproducing E. coli strains (i.e. ΔhisL and ΔtdcC) both turbidometrically and via GFP fluorescence emission and comparing the results to conventional HPLC measurements confirmed the utility of the developed biosensor system. Taken together, our study provides not only a genotypically and phenotypically well-characterized set of publicly available amino acid biosensors, but also demonstrates the feasibility of the rational design strategy used. PMID:22829942

  3. A low cost color-based bacterial biosensor for measuring arsenic in groundwater.

    PubMed

    Huang, Chi-Wei; Wei, Chia-Cheng; Liao, Vivian Hsiu-Chuan

    2015-12-01

    Using arsenic (As) contaminated groundwater for drinking or irrigation has caused major health problems for humans around the world, raising a need to monitor As level efficiently and economically. This study developed a color-based bacterial biosensor which is easy-to-use and inexpensive for measuring As and could be complementary to current As detecting techniques. The arsR-lacZ recombinant gene cassette in nonpathogenic strain Escherichia coli DH5α was used in the color-based biosensor which could be observed by eyes or measured by spectrometer. The developed bacterial biosensor demonstrates a quantitative range from 10 to 500μgL(-1) of As in 3-h reaction time. Furthermore, the biosensor was able to successfully detect and estimate As concentration in groundwater sample by measuring optical density at 595nm (OD595). Among different storage methods used in this study, biosensor in liquid at 4°C showed the longest shelf life about 9d, and liquid storage at RT and cell pellet could also be stored for about 3-5d. In conclusion, this study showed that the As biosensor with reliable color signal and economical preservation methods is useful for rapid screening of As pollutant, providing the potential for large scale screening and better management strategies for environmental quality control.

  4. A potentiometric formaldehyde biosensor based on immobilization of alcohol oxidase on acryloxysuccinimide-modified acrylic microspheres.

    PubMed

    Ling, Yew Pei; Heng, Lee Yook

    2010-01-01

    A new alcohol oxidase (AOX) enzyme-based formaldehyde biosensor based on acrylic microspheres has been developed. Hydrophobic poly(n-butyl acrylate-N-acryloxy-succinimide) [poly(nBA-NAS)] microspheres, an enzyme immobilization matrix, was synthesized using photopolymerization in an emulsion form. AOX-poly(nBA-NAS) microspheres were deposited on a pH transducer made from a layer of photocured and self-plasticized polyacrylate membrane with an entrapped pH ionophore coated on a Ag/AgCl screen printed electrode (SPE). Oxidation of formaldehyde by the immobilized AOX resulted in the production of protons, which can be determined via the pH transducer. Effects of buffer concentrations, pH and different amount of immobilization matrix towards the biosensor's analytical performance were investigated. The formaldehyde biosensor exhibited a dynamic linear response range to formaldehyde from 0.3-316.2 mM and a sensitivity of 59.41 ± 0.66 mV/decade (R(2) = 0.9776, n = 3). The lower detection limit of the biosensor was 0.3 mM, while reproducibility and repeatability were 3.16% RSD (relative standard deviation) and 1.11% RSD, respectively (n = 3). The use of acrylic microspheres in the potentiometric formaldehyde biosensor improved the biosensor's performance in terms of response time, linear response range and long term stability when compared with thick film immobilization methods.

  5. Biosensors based on the plasmonic properties of Au microhole arrays

    NASA Astrophysics Data System (ADS)

    Live, Ludovic S.; Breault-Turcot, Julien; Bolduc, Olivier; Masson, Jean-Francois

    2011-08-01

    The plasmonic properties of metallic nanoparticles and macroscopic Au film have been thoroughly investigated for the development of biosensors based on surface plasmon resonance (SPR). Nanoparticle based localized surface plasmon resonance (LSPR) is a technique extremely sensitive to molecular adsorbate, whilst conventional SPR based on the Kretschmann configuration (macroscopic smooth Au film) is especially sensitive to bulk refractive index. SPR currently provides the best RI resolution, a measure typically used for comparison of the potential of plasmonic sensor. A technique that could combine high bulk refractive index resolution and high sensitivity to molecular adsorbate would increase the scope of SPR-based technique by providing lower detection limits. A potential solution may exploit micro-structured Au films. However, the plasmonic properties of micropatterned metallic films are still relatively unknown. We have undertaken the study of the plasmonic properties from Au film with features on the order of 1 to 3 μm. Microtriangle and microhole arrays were fabricated by modified nanosphere lithography, consisting of a polymer microsphere mask deposited in a close-packed hexagonal monolayer, etched by oxygen plasma. Etch time controls the diameter of the microhole and the initial microsphere diameter sets the periodicity. Investigation of the SPR properties in the Kretschmann configuration was undertaken using a SPR with a dove prism and a multi-wavelength scanning angle SPR. The sensitivity of SPR with microhole arrays exhibits an improvement by a factor of 3 in comparison to SPR using a smooth Au film. This is accomplished by tuning the angle to near 73 degrees (with a BK7 glass prism). Moreover, the sensitivity to the immobilization of an antibody was improved by at least a factor of 4 as demonstrated with the kinetics of immobilization for IgY, without employing secondary amplification techniques. No modification to the instrumentation is required and

  6. Amperometric ATP biosensor based on polymer entrapped enzymes.

    PubMed

    Kueng, Angelika; Kranz, Christine; Mizaikoff, Boris

    2004-05-15

    A dual enzyme electrode for the detection of adenosine-5'-triphosphate (ATP) at physiologically relevant pH levels was developed by co-immobilization of the enzymes glucose oxidase (GOD) and hexokinase (HEX) using pH-shift induced deposition of enzyme containing polymer films. Application of a simple electrochemical procedure for the co-immobilization of the enzymes at electrode surfaces exhibits a major improvement of sensitivity, response time, reproducibility, and ease of fabrication of ATP biosensors. Competition between glucose oxidase and hexokinase for the substrate glucose involving ATP as a co-substrate allows the determination of ATP concentrations. Notable control on the immobilization process enables fabrication of micro biosensors with a diameter of 25 microm. The presented concept provides the technological basis for a new generation of fast responding, sensitive, and robust biosensors for the detection of ATP at physiological pH values with a detection limit of 10 nmol l(-1). PMID:15046763

  7. Biosensor based on Butyrylcholinesterase for Detection of Carbofuran

    NASA Astrophysics Data System (ADS)

    Dey, Mousumi; Bhuvanagayathri, R.; Daniel, David K.

    2015-04-01

    Esterase enzymes play an important role in biology because they are responsible for the hydrolysis of choline esters. In their absence, the original state of the post synaptic membranes cannot be reestablished. Therefore, the aim of the work is to study the inhibiting action exerted by the group of compounds on these enzymes. Among these class of inhibiting compounds, pesticides are important because of the potential danger as a result of their large scale use in agriculture. Pesticides are generally determined using liquid or gas chromatography methods with various detection techniques. These methods are very sensitive and discriminating, however they require sample pretreatment such as extraction, preconcentration and clean up, which are skilled techniques and high cost treatment and also time consuming. In this study, acetyl cholinesterase and butyrylcholinesterase based biosensors have emerged as a promising tool for the detection and characterization of pesticides which are inhibitors of these enzymes. Although the physiological function of butyrylcholinesterase in comparison with acetyl cholinesterase is ambiguous, it has larger substrate specificity towards choline esters. Therefore, the development of a more selective electrode against choline, can lead to more sensitive determination of the inhibitor being investigated. Hence in the present work, a method based on inhibition of butyrylcholinesterase was attempted for quantification of carbofuran on the basis of cholinesterase inhibition. Butyrylcholinesterase with an activity of 10.2 units/mg was immobilized on a solid surface by cross linking with glutaraldehyde. The immobilized system was calibrated by correlating the inhibition of the butyrylcholinesterase activity with varying concentrations of the butyryl choline chloride and carbofuran. The sensing mechanism was investigated for its response to carbofuran concentrations ranging from 125 to 1,000 ppm. The effects of butyryl choline chloride

  8. A Review of Membrane-Based Biosensors for Pathogen Detection

    PubMed Central

    van den Hurk, Remko; Evoy, Stephane

    2015-01-01

    Biosensors are of increasing interest for the detection of bacterial pathogens in many applications such as human, animal and plant health, as well as food and water safety. Membranes and membrane-like structures have been integral part of several pathogen detection platforms. Such structures may serve as simple mechanical support, function as a part of the transduction mechanism, may be used to filter out or concentrate pathogens, and may be engineered to specifically house active proteins. This review focuses on membrane materials, their associated biosensing applications, chemical linking procedures, and transduction mechanisms. The sensitivity of membrane biosensors is discussed, and the state of the field is evaluated and summarized. PMID:26083229

  9. Amperometric choline biosensor based on multiwalled carbon nanotubes/zirconium oxide nanoparticles electrodeposited on glassy carbon electrode.

    PubMed

    Pundir, S; Chauhan, N; Narang, J; Pundir, C S

    2012-08-01

    A bienzymatic choline biosensor was constructed by coimmobilizing acetylcholinesterase (AChE) and choline oxidase (ChO) onto nanocomposite of carboxylated multiwalled carbon nanotubes (c-MWCNTs) and zirconium oxide nanoparticles (ZrO(2)NPs) electrodeposited on the surface of a glassy carbon electrode (GCE) and using it (AChE-ChO/c-MWCNT/ZrO(2)NPs/GCE) as working electrode, Ag/AgCl as reference electrode, and Pt wire as auxiliary electrode connected through a potentiostat. The enzyme electrode was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and cyclic voltammetry (CV) studies, optimized, and evaluated. The biosensor exhibited optimum response within 4 s at +0.2V, pH 7.4, and 25 °C. The detection limit and working range of the biosensor were 0.01 μM and 0.05 to 200 μM, respectively. The half-life of the enzyme electrode was 60 days at 4 °C. The serum choline level, as measured by the biosensor, was 9.0 to 12.8 μmol/L (with a mean of 10.81 μmol/L) in apparently healthy persons and 5.0 to 8.4 μmol/L (with a mean of 6.53 μmol/L) in persons suffering from Alzheimer's disease. The enzyme electrode was unaffected by a number of serum substances.

  10. Musical Hallucinations Treated with Acetylcholinesterase Inhibitors

    PubMed Central

    Blom, Jan Dirk; Coebergh, Jan Adriaan F.; Lauw, René; Sommer, Iris E. C.

    2015-01-01

    Musical hallucinations are relatively rare auditory percepts which, due to their intrusive nature and the accompanying fear of impending mental decline, tend to cause significant distress and impairment. Although their etiology and pathophysiology appear to be heterogeneous and no evidence-based treatment methods are available, case reports indicate that acetylcholinesterase inhibitors may yield positive results in patients with comorbid hearing loss. We present two female patients (aged 76 and 78 years) both of whom suffered from hearing impairment and practically incessant musical hallucinations. Both patients were successfully treated with the acetylcholinesterase inhibitor rivastigmine. Based on these two case descriptions and an overview of studies describing the use of acetylcholinesterase inhibitors in similar patients, we discuss possible mechanisms and propose further research on the use of acetylcholinesterase inhibitors for musical hallucinations experienced in concordance with hearing loss. PMID:25904872

  11. Graphene Electronic Device Based Biosensors and Chemical Sensors

    NASA Astrophysics Data System (ADS)

    Jiang, Shan

    Two-dimensional layered materials, such as graphene and MoS2, are emerging as an exciting material system for a new generation of atomically thin electronic devices. With their ultrahigh surface to volume ratio and excellent electrical properties, 2D-layered materials hold the promise for the construction of a generation of chemical and biological sensors with unprecedented sensitivity. In my PhD thesis, I mainly focus on graphene based electronic biosensors and chemical sensors. In the first part of my thesis, I demonstrated the fabrication of graphene nanomesh (GNM), which is a graphene thin film with a periodic array of holes punctuated in it. The periodic holes introduce long periphery active edges that provide a high density of functional groups (e.g. carboxylic groups) to allow for covalent grafting of specific receptor molecules for chemical and biosensor applications. After covalently functionalizing the GNM with glucose oxidase, I managed to make a novel electronic sensor which can detect glucose as well as pH change. In the following part of my thesis I demonstrate the fabrication of graphene-hemin conjugate for nitric oxide detection. The non-covalent functionalization through pi-pi stacking interaction allows reliable immobilization of hemin molecules on graphene without damaging the graphene lattice to ensure the highly sensitive and specific detection of nitric oxide. The graphene-hemin nitric oxide sensor is capable of real-time monitoring of nitric oxide concentrations, which is of central importance for probing the diverse roles of nitric oxide in neurotransmission, cardiovascular systems, and immune responses. Our studies demonstrate that the graphene-hemin sensors can respond rapidly to nitric oxide in physiological environments with sub-nanomolar sensitivity. Furthermore, in vitro studies show that the graphene-hemin sensors can be used for the detection of nitric oxide released from macrophage cells and endothelial cells, demonstrating their

  12. A stable and high resolution optical waveguide biosensor based on dense TiO2/Ag multilayer film

    NASA Astrophysics Data System (ADS)

    Jin, Zhao; Guan, Weiming; Liu, Chang; Xue, Tianyu; Wang, Qiyu; Zheng, Weitao; Cui, Xiaoqiang

    2016-07-01

    Optical waveguide (OWG) biosensor has attracted much attention according to the high sensitivity and resolution compared with conventional surface plasmon resonance (SPR) biosensor. Nanoporous materials are usually used as the waveguide layer for absorbing analytes into the porous structure and enhancing the sensor signal. However, this kind of waveguide layer provides poor protection to the metal film and leads to the damage of the biosensor. Ag film can provide great sensitivity in SPR sensing comparing to other metal but was rarely used because of its poor chemical stability. Fabricating high stability Ag based SPR biosensor is still a challenge. In this work we produce an OWG biosensor using a dense TiO2 film as the waveguide layer which provides high resolution and remarkable protection to the metal film. This waveguide structure makes long time detection possible using Ag as the metal layer and is able to lead an enhancement of sensitivity comparing to the Au-based biosensor.

  13. Double layer structure-based virtual screening reveals 3'-Hydroxy-A-Naphthoflavone as novel inhibitor candidate of human acetylcholinesterase

    NASA Astrophysics Data System (ADS)

    Ichsan, Mochammad; Pangastuti, Ardini; Habibi, Mohammad Wildan; Juliana, Kartika

    2016-03-01

    One of the most effective target for Alzheimer's disease's (AD) treatment is the inhibition of human acetylcholinesterase (hAChE) eventhough it has many side effects. So that, this study was aimed to discover a new candidate of hAChE's inhibitor that has more negative binding affinity than existing drugs. hAChE's 3D model used in this study has a good quality according to its number of residues in most favoured regions (92%), three bad contacts, >50 ERRAT's score (85,870) and successfully passed the VERIFY 3D threshold (>80%). Based on the first layer of SBVS againts more than 12.180.630 ligands, we discovered 11.806 hits and then we found 359 hits from the second layer of SBVS. Based on our previous steps, we found that 3'-Hydroxy-a-Naphthoflavone was the only one candidate, that directly interacted with Trp286 via hydrogen bond and hydrophobic interactions and also has the most negative binding affinity (-10,6 kcal/mol) and also has more negative than existing hAChE's inhibitors, such as tacrine, donepezil, etc. 3'-Hydroxy-a-Naphthoflavone is the best candidate of hAChE's inhibitor based on its binding affinity (-10,6 kcal/mol) that is more negative than existing hAChE's inhibitors, such as tacrine, donepezil, etc.

  14. A microfluidic paper-based electrochemical biosensor array for multiplexed detection of metabolic biomarkers

    NASA Astrophysics Data System (ADS)

    Zhao, Chen; Thuo, Martin M.; Liu, Xinyu

    2013-10-01

    Paper-based microfluidic devices have emerged as simple yet powerful platforms for performing low-cost analytical tests. This paper reports a microfluidic paper-based electrochemical biosensor array for multiplexed detection of physiologically relevant metabolic biomarkers. Different from existing paper-based electrochemical devices, our device includes an array of eight electrochemical sensors and utilizes a handheld custom-made electrochemical reader (potentiostat) for signal readout. The biosensor array can detect several analytes in a sample solution and produce multiple measurements for each analyte from a single run. Using the device, we demonstrate simultaneous detection of glucose, lactate and uric acid in urine, with analytical performance comparable to that of the existing commercial and paper-based platforms. The paper-based biosensor array and its electrochemical reader will enable the acquisition of high-density, statistically meaningful diagnostic information at the point of care in a rapid and cost-efficient way.

  15. A novel sensitive cell-based Love Wave biosensor for marine toxin detection.

    PubMed

    Zhang, Xi; Fang, Jiaru; Zou, Ling; Zou, Yingchang; Lang, Lang; Gao, Fan; Hu, Ning; Wang, Ping

    2016-03-15

    A novel HepG2 cell-based biosensor using Love Wave sensor was developed to implement the real-time and sensitive detection of a diarrheic shellfish poisoning (DSP) toxin, Okadaic acid (OA). Detachable Love Wave sensor unit and miniaturized 8-channel recording instrument were designed for the convenient experimental preparation and sensor response signal measurement. The Love Wave sensor, whose synchronous frequency is around 160 MHz, was fabricated with ST-cut quartz substrate. To establish a cell-based biosensor, HepG2 cells as sensing elements were cultured onto the Love Wave sensor surface, and the cell attachment process was recorded by this biosensor. Results showed this sensor could monitor the cell attachment process in real time and response signals were related to the initial cell seeding densities. Furthermore, cell-based Love Wave sensor was treated with OA toxin. This biosensor presented a good performance to various OA concentrations, with a wide linear detection range (10-100 μg/L). Based on the ultrasensitive acoustic wave platform, this cell-based biosensor will be a promising tool for real-time and convenient OA screening.

  16. A novel sensitive cell-based Love Wave biosensor for marine toxin detection.

    PubMed

    Zhang, Xi; Fang, Jiaru; Zou, Ling; Zou, Yingchang; Lang, Lang; Gao, Fan; Hu, Ning; Wang, Ping

    2016-03-15

    A novel HepG2 cell-based biosensor using Love Wave sensor was developed to implement the real-time and sensitive detection of a diarrheic shellfish poisoning (DSP) toxin, Okadaic acid (OA). Detachable Love Wave sensor unit and miniaturized 8-channel recording instrument were designed for the convenient experimental preparation and sensor response signal measurement. The Love Wave sensor, whose synchronous frequency is around 160 MHz, was fabricated with ST-cut quartz substrate. To establish a cell-based biosensor, HepG2 cells as sensing elements were cultured onto the Love Wave sensor surface, and the cell attachment process was recorded by this biosensor. Results showed this sensor could monitor the cell attachment process in real time and response signals were related to the initial cell seeding densities. Furthermore, cell-based Love Wave sensor was treated with OA toxin. This biosensor presented a good performance to various OA concentrations, with a wide linear detection range (10-100 μg/L). Based on the ultrasensitive acoustic wave platform, this cell-based biosensor will be a promising tool for real-time and convenient OA screening. PMID:26476015

  17. Electrochemical biosensor based on immobilized enzymes and redox polymers

    DOEpatents

    Skotheim, Terje A.; Okamoto, Yoshiyuki; Hale, Paul D.

    1992-01-01

    The present invention relates to an electrochemical enzyme biosensor for use in liquid mixtures of components for detecting the presence of, or measuring the amount of, one or more select components. The enzyme electrode of the present invention is comprised of an enzyme, an artificial redox compound covalently bound to a flexible polymer backbone and an electron collector.

  18. Lignin and silicate based hydrogels for biosensor applications

    NASA Astrophysics Data System (ADS)

    Burrs, S. L.; Jairam, S.; Vanegas, D. C.; Tong, Z.; McLamore, E. S.

    2013-05-01

    Advances in biocompatible materials and electrocatalytic nanomaterials have extended and enhanced the field of biosensors. Immobilization of biorecognition elements on nanomaterial platforms is an efficient technique for developing high fidelity biosensors. Single layer (i.e., Langmuir-Blodgett) protein films are efficient, but disadvantages of this approach include high cost, mass transfer limitations, and Vromer competition for surface binding sites. There is a need for simple, user friendly protein-nanomaterial sensing membranes that can be developed in laboratories or classrooms (i.e., outside of the clean room). In this research, we develop high fidelity nanomaterial platforms for developing electrochemical biosensors using sustainable biomaterials and user-friendly deposition techniques. Catalytic nanomaterial platforms are developed using a combination of self assembled monolayer chemistry and electrodeposition. High performance biomaterials (e.g., nanolignin) are recovered from paper pulp waste and combined with proteins and nanomaterials to form active sensor membranes. These methods are being used to develop electrochemical biosensors for studying physiological transport in biomedical, agricultural, and environmental applications.

  19. A global benchmark study using affinity-based biosensors.

    PubMed

    Rich, Rebecca L; Papalia, Giuseppe A; Flynn, Peter J; Furneisen, Jamie; Quinn, John; Klein, Joshua S; Katsamba, Phini S; Waddell, M Brent; Scott, Michael; Thompson, Joshua; Berlier, Judie; Corry, Schuyler; Baltzinger, Mireille; Zeder-Lutz, Gabrielle; Schoenemann, Andreas; Clabbers, Anca; Wieckowski, Sebastien; Murphy, Mary M; Page, Phillip; Ryan, Thomas E; Duffner, Jay; Ganguly, Tanmoy; Corbin, John; Gautam, Satyen; Anderluh, Gregor; Bavdek, Andrej; Reichmann, Dana; Yadav, Satya P; Hommema, Eric; Pol, Ewa; Drake, Andrew; Klakamp, Scott; Chapman, Trevor; Kernaghan, Dawn; Miller, Ken; Schuman, Jason; Lindquist, Kevin; Herlihy, Kara; Murphy, Michael B; Bohnsack, Richard; Andrien, Bruce; Brandani, Pietro; Terwey, Danny; Millican, Rohn; Darling, Ryan J; Wang, Liann; Carter, Quincy; Dotzlaf, Joe; Lopez-Sagaseta, Jacinto; Campbell, Islay; Torreri, Paola; Hoos, Sylviane; England, Patrick; Liu, Yang; Abdiche, Yasmina; Malashock, Daniel; Pinkerton, Alanna; Wong, Melanie; Lafer, Eileen; Hinck, Cynthia; Thompson, Kevin; Primo, Carmelo Di; Joyce, Alison; Brooks, Jonathan; Torta, Federico; Bagge Hagel, Anne Birgitte; Krarup, Janus; Pass, Jesper; Ferreira, Monica; Shikov, Sergei; Mikolajczyk, Malgorzata; Abe, Yuki; Barbato, Gaetano; Giannetti, Anthony M; Krishnamoorthy, Ganeshram; Beusink, Bianca; Satpaev, Daulet; Tsang, Tiffany; Fang, Eric; Partridge, James; Brohawn, Stephen; Horn, James; Pritsch, Otto; Obal, Gonzalo; Nilapwar, Sanjay; Busby, Ben; Gutierrez-Sanchez, Gerardo; Gupta, Ruchira Das; Canepa, Sylvie; Witte, Krista; Nikolovska-Coleska, Zaneta; Cho, Yun Hee; D'Agata, Roberta; Schlick, Kristian; Calvert, Rosy; Munoz, Eva M; Hernaiz, Maria Jose; Bravman, Tsafir; Dines, Monica; Yang, Min-Hsiang; Puskas, Agnes; Boni, Erica; Li, Jiejin; Wear, Martin; Grinberg, Asya; Baardsnes, Jason; Dolezal, Olan; Gainey, Melicia; Anderson, Henrik; Peng, Jinlin; Lewis, Mark; Spies, Peter; Trinh, Quyhn; Bibikov, Sergei; Raymond, Jill; Yousef, Mohammed; Chandrasekaran, Vidya; Feng, Yuguo; Emerick, Anne; Mundodo, Suparna; Guimaraes, Rejane; McGirr, Katy; Li, Yue-Ji; Hughes, Heather; Mantz, Hubert; Skrabana, Rostislav; Witmer, Mark; Ballard, Joshua; Martin, Loic; Skladal, Petr; Korza, George; Laird-Offringa, Ite; Lee, Charlene S; Khadir, Abdelkrim; Podlaski, Frank; Neuner, Phillippe; Rothacker, Julie; Rafique, Ashique; Dankbar, Nico; Kainz, Peter; Gedig, Erk; Vuyisich, Momchilo; Boozer, Christina; Ly, Nguyen; Toews, Mark; Uren, Aykut; Kalyuzhniy, Oleksandr; Lewis, Kenneth; Chomey, Eugene; Pak, Brian J; Myszka, David G

    2009-03-15

    To explore the variability in biosensor studies, 150 participants from 20 countries were given the same protein samples and asked to determine kinetic rate constants for the interaction. We chose a protein system that was amenable to analysis using different biosensor platforms as well as by users of different expertise levels. The two proteins (a 50-kDa Fab and a 60-kDa glutathione S-transferase [GST] antigen) form a relatively high-affinity complex, so participants needed to optimize several experimental parameters, including ligand immobilization and regeneration conditions as well as analyte concentrations and injection/dissociation times. Although most participants collected binding responses that could be fit to yield kinetic parameters, the quality of a few data sets could have been improved by optimizing the assay design. Once these outliers were removed, the average reported affinity across the remaining panel of participants was 620 pM with a standard deviation of 980 pM. These results demonstrate that when this biosensor assay was designed and executed appropriately, the reported rate constants were consistent, and independent of which protein was immobilized and which biosensor was used.

  20. Microfabricated Electrochemical Cell-Based Biosensors for Analysis of Living Cells In Vitro

    PubMed Central

    Wang, Jun; Wu, Chengxiong; Hu, Ning; Zhou, Jie; Du, Liping; Wang, Ping

    2012-01-01

    Cellular biochemical parameters can be used to reveal the physiological and functional information of various cells. Due to demonstrated high accuracy and non-invasiveness, electrochemical detection methods have been used for cell-based investigation. When combined with improved biosensor design and advanced measurement systems, the on-line biochemical analysis of living cells in vitro has been applied for biological mechanism study, drug screening and even environmental monitoring. In recent decades, new types of miniaturized electrochemical biosensor are emerging with the development of microfabrication technology. This review aims to give an overview of the microfabricated electrochemical cell-based biosensors, such as microelectrode arrays (MEA), the electric cell-substrate impedance sensing (ECIS) technique, and the light addressable potentiometric sensor (LAPS). The details in their working principles, measurement systems, and applications in cell monitoring are covered. Driven by the need for high throughput and multi-parameter detection proposed by biomedicine, the development trends of electrochemical cell-based biosensors are also introduced, including newly developed integrated biosensors, and the application of nanotechnology and microfluidic technology. PMID:25585708

  1. Nanostructured enzymatic biosensor based on fullerene and gold nanoparticles: preparation, characterization and analytical applications.

    PubMed

    Lanzellotto, C; Favero, G; Antonelli, M L; Tortolini, C; Cannistraro, S; Coppari, E; Mazzei, F

    2014-05-15

    In this work a novel electrochemical biosensing platform based on the coupling of two different nanostructured materials (gold nanoparticles and fullerenols) displaying interesting electrochemical features, has been developed and characterized. Gold nanoparticles (AuNPs) exhibit attractive electrocatalytic behavior stimulating in the last years, several sensing applications; on the other hand, fullerene and its derivatives are a very promising family of electroactive compounds although they have not yet been fully employed in biosensing. The methodology proposed in this work was finalized to the setup of a laccase biosensor based on a multilayer material consisting in AuNPs, fullerenols and Trametes versicolor Laccase (TvL) assembled layer by layer onto a gold (Au) electrode surface. The influence of different modification step procedures on the electroanalytical performance of biosensors has been evaluated. Cyclic voltammetry, chronoamperometry, surface plasmon resonance (SPR) and scanning tunneling microscopy (STM) were used to characterize the modification of surface and to investigate the bioelectrocatalytic biosensor response. This biosensor showed fast amperometric response to gallic acid, which is usually considered a standard for polyphenols analysis of wines, with a linear range 0.03-0.30 mmol L(-1) (r(2)=0.9998), with a LOD of 0.006 mmol L(-1) or expressed as polyphenol index 5.0-50 mg L(-1) and LOD 1.1 mg L(-1). A tentative application of the developed nanostructured enzyme-based biosensor was performed evaluating the detection of polyphenols either in buffer solution or in real wine samples.

  2. Nanostructured enzymatic biosensor based on fullerene and gold nanoparticles: preparation, characterization and analytical applications.

    PubMed

    Lanzellotto, C; Favero, G; Antonelli, M L; Tortolini, C; Cannistraro, S; Coppari, E; Mazzei, F

    2014-05-15

    In this work a novel electrochemical biosensing platform based on the coupling of two different nanostructured materials (gold nanoparticles and fullerenols) displaying interesting electrochemical features, has been developed and characterized. Gold nanoparticles (AuNPs) exhibit attractive electrocatalytic behavior stimulating in the last years, several sensing applications; on the other hand, fullerene and its derivatives are a very promising family of electroactive compounds although they have not yet been fully employed in biosensing. The methodology proposed in this work was finalized to the setup of a laccase biosensor based on a multilayer material consisting in AuNPs, fullerenols and Trametes versicolor Laccase (TvL) assembled layer by layer onto a gold (Au) electrode surface. The influence of different modification step procedures on the electroanalytical performance of biosensors has been evaluated. Cyclic voltammetry, chronoamperometry, surface plasmon resonance (SPR) and scanning tunneling microscopy (STM) were used to characterize the modification of surface and to investigate the bioelectrocatalytic biosensor response. This biosensor showed fast amperometric response to gallic acid, which is usually considered a standard for polyphenols analysis of wines, with a linear range 0.03-0.30 mmol L(-1) (r(2)=0.9998), with a LOD of 0.006 mmol L(-1) or expressed as polyphenol index 5.0-50 mg L(-1) and LOD 1.1 mg L(-1). A tentative application of the developed nanostructured enzyme-based biosensor was performed evaluating the detection of polyphenols either in buffer solution or in real wine samples. PMID:24441023

  3. pH-based fiber optic biosensors for use in clinical and biotechnological applications

    NASA Astrophysics Data System (ADS)

    Mueller, Cord; Hitzmann, Bernd; Schubert, Florian; Scheper, Thomas

    1995-05-01

    The development of pH-based fiber optic biosensors and their uses in clinical and biotechnological applications are described. Based on a pH-sensitive optode, different biosensors for urea, penicillin, glucose and creatinine were developed. A multichannel modular fluorimeter was used to measure signals from up to three optodes simultaneously. The pH value and the buffer capacity are critical factors for biosensors based on pH probes and influence the biosensor signal. A flow injection analysis (FIA) system is used to eliminate the latter influences. With this integrated system, samples can be analyzed sequentially by the injection of a defined volume of each sample into a continuously flowing buffer stream that transports the samples to the sensors. The complex signal is transformed and analyzed by a computer system. Characteristic features of the FIA peak give information about the buffer capacity in the solution. With the help of intelligent computing (neural networks) it is possible to recognize these features and relate them to the respective buffer capacity to obtain more accurate values. Various applications of these biosensors are discussed. The pH optode is also used to monitor enzymatic reactions in non aqueous solvents. In this case the production of acetic acid can be detected on line.

  4. Optical waveguide biosensor based on cascaded Mach-Zehnder interferometer and ring resonator with Vernier effect

    NASA Astrophysics Data System (ADS)

    Jiang, Xianxin; Tang, Longhua; Song, Jinyan; Li, Mingyu; He, Jian-Jun

    2014-03-01

    Optical waveguide biosensors based on silicon-on-insulator (SOI) have been extensively investigated owing to its various advantages and many potential applications. In this article, we demonstrate a novel highly sensitive biosensor based on cascaded Mach-Zehnder interferometer (MZI) and ring resonator with the Vernier effect using wavelength interrogation. The experimental results show that the sensitivity reached 1,960 nm/RIU and 19,100 nm/RIU for sensors based on MZI alone and cascaded MZI-ring with Vernier effect, respectively. A biosensing application was also demonstrated by monitoring the interaction between goat and antigoat immunoglobulin G (IgG) pairs. This integrated high sensitivity biosensor has great potential for medical diagnostic applications.

  5. Effect of a glyphosate-based herbicide in Cyprinus carpio: assessment of acetylcholinesterase activity, hematological responses and serum biochemical parameters.

    PubMed

    Gholami-Seyedkolaei, Seyed Jalil; Mirvaghefi, Alireza; Farahmand, Hamid; Kosari, Ali Asghar

    2013-12-01

    The objective of this study was to investigate the toxicity effects of acute and sublethal of Roundup® as a glyphosate-based herbicide on acetylcholinesterase (AChE) activity and several hematological and biochemical parameters of Cyprinus carpio. The LC₅₀-96 h of Roundup® to C. carpio was found to be 22.19 ppm. Common carp was subjected to Roundup® at 0 (control), 3.5, 7 and 14 ppm for 16 days, and the AChE activity is verified in tissues of gill, muscle, brain and liver. After 5 days, a significant decrease was observed in the AChE activity of muscle, brain and liver tissues. Besides, a time- and dose-dependent increase in mean cell hemoglobin (MCH) and mean cell volume (MCV) was observed. In contrast, a significant decrease was found in the quantities of hemoglobin (Hb), hematocrit (HCT) and, red (RBC) and white (WBC) blood cell count. Also, the activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) in Roundup® treated groups were significantly higher than the controlled group at experimental periods. However, the level of alkaline phosphatase (ALP) had a significant reduction behavior during the sampling days. It seems that the changes in hematological and biochemical parameters as well as AChE activity could be used as efficient biomarkers in order to determine Roundup® toxicity in aquatic environment.

  6. Alkaline phosphatase inhibition based conductometric biosensor for phosphate estimation in biological fluids.

    PubMed

    Upadhyay, Lata Sheo Bachan; Verma, Nishant

    2015-06-15

    Determination of phosphate ions concentration is very important from both, environmental and clinical point of view. In this study, a simple and novel conductometric biosensor for indirect determination of the phosphate ions in aqueous solution has been developed. The developed biosensor is based on the inhibition of immobilized alkaline phosphatase activity, in the presence of the phosphate ions. This is the first time we developed a mono-enzymatic biosensor for indirect estimation of phosphate ions. The developed biosensor showed a broad linear response (as compared to other reported biosensors) for phosphate ions in the range of 0.5-5.0 mM (correlation coefficient=0.995), with a detection limit of 50 µM. Different optimized parameters were obtained as the buffer concentration of 30 mM, substrate concentration of 1.0mM, and a pH of 9.0. All the optimized parameters were analyzed by analysis of variance, and were found to be statistically significant at a level of α=0.05. The developed biosensor is also suitable to determine the serum phosphate concentration, with a recovery of 86-104%, while a recovery of 102% was obtained from the water samples that were spiked with 500 µM phosphate. A relative standard deviation in the conductance response for five successive measurements (n=5) did not exceed 7%, with a shelf life of 30 days. With a lower detection limit and a higher recovery, the biosensor provides a facile approach for phosphate estimation in biological fluids.

  7. Luminescent Iridium(III) Complex Labeled DNA for Graphene Oxide-Based Biosensors.

    PubMed

    Zhao, Qingcheng; Zhou, Yuyang; Li, Yingying; Gu, Wei; Zhang, Qi; Liu, Jian

    2016-02-01

    There has been growing interest in utilizing highly photostable iridium(III) complexes as new luminescent probes for biotechnology and life science. Herein, iridium(III) complex with carboxyl group was synthesized and activated with N-hydroxysuccinimide, followed by tagging to the amino terminate of single-stranded DNA (ssDNA). The Ir-ssDNA probe was further combined with graphene oxide (GO) nanosheets to develop a GO-based biosensor for target ssDNA detection. The quenching efficiency of GO, and the photostability of iridium(III) complex and GO-Ir-ssDNA biosensor, were also investigated. On the basis of the high luminescence quenching efficiency of GO toward iridium(III) complex, the GO-Ir-ssDNA biosensor exhibited minimal background signals, while strong emission was observed when Ir-ssDNA desorbed from GO nanosheets and formed a double helix with the specific target, leading to a high signal-to-background ratio. Moreover, it was found that luminescent intensities of iridium(III) complex and GO-Ir-ssDNA biosensor were around 15 and 3 times higher than those of the traditional carboxyl fluorescein (FAM) dye and the GO-FAM-ssDNA biosensor after UV irradiation, respectively. Our study suggested the sensitive and selective Ir-ssDNA probe was suitable for the development of highly photostable GO-based detection platforms, showing promise for application beyond the OLED (organic light emitting diode) area. PMID:26753824

  8. Design of a toxicity biosensor based on Aliivibrio fischeri entrapped in a disposable card.

    PubMed

    Jouanneau, Sulivan; Durand-Thouand, Marie-José; Thouand, Gérald

    2016-03-01

    The degradation of the marine environment is a subject of concern for the European authorities primarily because of its contamination by hydrocarbons. The traditional methods (ISO 11348 standard) of general toxicity assessment are unsuitable in a context of in situ monitoring, such as seaports or bathing zones. Consequently, to address this issue, bacterial biosensors appear to be pertinent tools. This article presents the design of an innovative bioluminescent biosensor dedicated to in situ toxicity monitoring. This biosensor is based on the entrapment of the wild marine bioluminescent bacterial strain Aliivibrio fischeri ATCC® 49387™ in an agarose matrix within a disposable card. A pre-study was needed to select the most biological parameters. In particular, the regenerating medium's composition and the hydrogel concentration needed for the bacterial entrapment (mechanical resistance) were optimized. Based on these data, the ability of the bacterial reporter to assess the sample toxicity was demonstrated using naphthalene as a chemical model. The biosensor's results show a lower sensitivity to naphthalene (EC50 = 95 mg/L) compared with the results obtained using the reference method (EC50 = 43 mg/L). With this architecture, the biosensor is an interesting compromise among low maintenance, ease of use, appropriate sensitivity, relatively low cost and the ability to control online toxicity.

  9. Detection of parathyroid hormone using an electrochemical impedance biosensor based on PAMAM dendrimers.

    PubMed

    Özcan, Hakkı Mevlüt; Sezgintürk, Mustafa Kemal

    2015-01-01

    This paper presents a novel hormone-based impedimetric biosensor to determine parathyroid hormone (PTH) level in serum for diagnosis and monitoring treatment of hyperparathyroidism, hypoparathyroidism and thyroid cancer. The interaction between PTH and the biosensor was investigated by an electrochemical method. The biosensor was based on the gold electrode modified by 12-mercapto dodecanoic (12MDDA). Antiparathyroid hormone (anti-PTH) was covalently immobilized on to poly amidoamine dendrimer (PAMAM) which was bound to a 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide/N-hydroxysuccinimide (EDC/NHS) couple, self-assembled monolayer structure from one of the other NH2 sites. The immobilization of anti-PTH was monitored by electrochemical impedance spectroscopy, cyclic voltammetry and scanning electron microscope techniques. After the optimization studies of immobilization materials such as 12MDDA, EDC-NHS, PAMAM, and glutaraldehyde, the performance of the biosensor was investigated in terms of linearity, sensitivity, repeatability, and reproducibility. PTH was detected within a linear range of 10-60 fg/mL. Finally the described biosensor was used to monitor PTH levels in artificial serum samples.

  10. Amperometric nitrate biosensor based on Carbon nanotube/Polypyrrole/Nitrate reductase biofilm electrode.

    PubMed

    Can, Faruk; Korkut Ozoner, Seyda; Ergenekon, Pinar; Erhan, Elif

    2012-01-01

    This study describes the construction and characterization of an amperometric nitrate biosensor based on the Polypyrrole (PPy)/Carbon nanotubes (CNTs) film. Nitrate reductase (NR) was both entrapped into the growing PPy film and chemically immobilized via the carboxyl groups of CNTs to the CNT/PPy film electrode. The optimum amperometric response for nitrate was obtained in 0.1 M phosphate buffer solution (PBS), pH 7.5 including 0.1 M lithium chloride and 7 mM potassium ferricyanide with an applied potential of 0.13 V (vs. Ag/AgCl, 3 M NaCl). Sensitivity was found to be 300 nA/mM in a linear range of 0.44-1.45 mM with a regression coefficient of 0.97. The biosensor response showed a higher linear range in comparison to standard nitrate analysis methods which were tested in this study and NADH based nitrate biosensors. A minimum detectable concentration of 0.17 mM (S/N=3) with a relative standard deviation (RSD) of 5.4% (n=7) was obtained for the biosensor. Phenol and glucose inhibit the electrochemical reaction strictly at a concentration of 1 μg/L and 20 mg/L, respectively. The biosensor response retained 70% of its initial response over 10 day usage period when used everyday.

  11. Biosensors Based on Carbon Nanotubes/Nickel Hexacyanoferrate/Glucose Oxidase Nanocomposites

    SciTech Connect

    Cui, Xiaoli; Liu, Guodong; Lin, Yuehe

    2005-09-01

    Novel hybrid films based on carbon nanotubes (CNTs)/nickel hexacyanoferrate (NiHCF) nanocomposites were synthesized, characterized, and evaluated for chemical and bio-sensing properties. Nickel hexacyanoferrate particles were electrodeposited on the porous CNT thin-film to fabricate electrochemical sensors with improved sensitivity toward hydrogen peroxide. Transmission electron microscopy illustrated the deposition of nickel hexacyanoferrate nanoparticles on the surface of carbon nanotubes. The experimental results show the electrode modified with the hybrid nanocomposite film has higher electrocatalytic activity and stability for detection of hydrogen peroxide than the electrodes modified with carbon nanotube or nickel hexacyanoferrate alone. With glucose oxidase (GOx) as an enzyme model, we constructed a biosensor based on the CNTs/NiHCF/GOx nanocomposite. Excellent linear relationship up to 1.2 mM has been attained with a slope of 5.3 μA/mM for the glucose biosensor. The response time and detection limit (S/N = 3) of the biosensor was determined to be 10 s and 1 μM, respectively. The high sensitivity to glucose of the biosensor resulted from the high surface area of carbon nanotubes and excellent electrocatalytic activity of the modifiers. The biosensor also performed with excellent reproducibility and good stability.

  12. The Simulation of the Recharging Method Based on Solar Radiation for an Implantable Biosensor

    PubMed Central

    Li, Yun; Song, Yong; Kong, Xianyue; Li, Maoyuan; Zhao, Yufei; Hao, Qun; Gao, Tianxin

    2016-01-01

    A method of recharging implantable biosensors based on solar radiation is proposed. Firstly, the models of the proposed method are developed. Secondly, the recharging processes based on solar radiation are simulated using Monte Carlo (MC) method and the energy distributions of sunlight within the different layers of human skin have been achieved and discussed. Finally, the simulation results are verified experimentally, which indicates that the proposed method will contribute to achieve a low-cost, convenient and safe method for recharging implantable biosensors. PMID:27626422

  13. The Simulation of the Recharging Method Based on Solar Radiation for an Implantable Biosensor.

    PubMed

    Li, Yun; Song, Yong; Kong, Xianyue; Li, Maoyuan; Zhao, Yufei; Hao, Qun; Gao, Tianxin

    2016-01-01

    A method of recharging implantable biosensors based on solar radiation is proposed. Firstly, the models of the proposed method are developed. Secondly, the recharging processes based on solar radiation are simulated using Monte Carlo (MC) method and the energy distributions of sunlight within the different layers of human skin have been achieved and discussed. Finally, the simulation results are verified experimentally, which indicates that the proposed method will contribute to achieve a low-cost, convenient and safe method for recharging implantable biosensors. PMID:27626422

  14. New trends in instrumental design for surface plasmon resonance-based biosensors

    PubMed Central

    Abbas, Abdennour; Linman, Matthew J.; Cheng, Quan

    2010-01-01

    Surface plasmon resonance (SPR)-based biosensing is one of the most advanced label free, real time detection technologies. Numerous research groups with divergent scientific backgrounds have investigated the application of SPR biosensors and studied the fundamental aspects of surface plasmon polaritons that led to new, related instrumentation. As a result, this field continues to be at the forefront of evolving sensing technology. This review emphasizes the new developments in the field of SPR-related instrumentation including optical platforms, chips design, nanoscale approach and new materials. The current tendencies in SPR-based biosensing are identified and the future direction of SPR biosensor technology is broadly discussed. PMID:20951566

  15. Highly efficient potentiometric glucose biosensor based on functionalized InN quantum dots

    NASA Astrophysics Data System (ADS)

    Alvi, N. H.; Soto Rodriguez, P. E. D.; Gómez, V. J.; Kumar, Praveen; Amin, G.; Nur, O.; Willander, M.; Nötzel, R.

    2012-10-01

    We present a fast, highly sensitive, and efficient potentiometric glucose biosensor based on functionalized InN quantum-dots (QDs). The InN QDs are grown by molecular beam epitaxy. The InN QDs are bio-chemically functionalized through physical adsorption of glucose oxidase (GOD). GOD enzyme-coated InN QDs based biosensor exhibits excellent linear glucose concentration dependent electrochemical response against an Ag/AgCl reference electrode over a wide logarithmic glucose concentration range (1 × 10-5 M to 1 × 10-2 M) with a high sensitivity of 80 mV/decade. It exhibits a fast response time of less than 2 s with good stability and reusability and shows negligible response to common interferents such as ascorbic acid and uric acid. The fabricated biosensor has full potential to be an attractive candidate for blood sugar concentration detection in clinical diagnoses.

  16. Biosensors and Bio-Bar Code Assays Based on Biofunctionalized Magnetic Microbeads

    PubMed Central

    Jaffrezic-Renault, Nicole; Martelet, Claude; Chevolot, Yann; Cloarec, Jean-Pierre

    2007-01-01

    This review paper reports the applications of magnetic microbeads in biosensors and bio-bar code assays. Affinity biosensors are presented through different types of transducing systems: electrochemical, piezo electric or magnetic ones, applied to immunodetection and genodetection. Enzymatic biosensors are based on biofunctionalization through magnetic microbeads of a transducer, more often amperometric, potentiometric or conductimetric. The bio-bar code assays relie on a sandwich structure based on specific biological interaction of a magnetic microbead and a nanoparticle with a defined biological molecule. The magnetic particle allows the separation of the reacted target molecules from unreacted ones. The nanoparticles aim at the amplification and the detection of the target molecule. The bio-bar code assays allow the detection at very low concentration of biological molecules, similar to PCR sensitivity.

  17. Enzyme-based electrochemical biosensors for determination of organophosphorus and carbamate pesticides

    SciTech Connect

    Everett, W.R.; Rechnitz, G.A.

    1999-01-01

    A mini review of enzyme-based electrochemical biosensors for inhibition analysis of organophosphorus and carbamate pesticides is presented. Discussion includes the most recent literature to present advances in detection limits, selectivity and real sample analysis. Recent reviews on the monitoring of pesticides and their residues suggest that the classical analytical techniques of gas and liquid chromatography are the most widely used methods of detection. These techniques, although very accurate in their determinations, can be quite time consuming and expensive and usually require extensive sample clean up and pro-concentration. For these and many other reasons, the classical techniques are very difficult to adapt for field use. Numerous researchers, in the past decade, have developed and made improvements on biosensors for use in pesticide analysis. This mini review will focus on recent advances made in enzyme-based electrochemical biosensors for the determinations of organophosphorus and carbamate pesticides.

  18. Nanoscale Biosensor Based on Silicon Photonic Cavity for Home Healthcare Diagnostic Application

    NASA Astrophysics Data System (ADS)

    Ebrahimy, Mehdi N.; Moghaddam, Aydin B.; Andalib, Alireza; Naziri, Mohammad; Ronagh, Nazli

    2015-09-01

    In this paper, a new ultra-compact optical biosensor based on photonic crystal (phc) resonant cavity is proposed. This sensor has ability to work in chemical optical processes for the determination and analysis of liquid material. Here, we used an optical filter based on two-dimensional phc resonant cavity on a silicon layer and an active area is created in center of cavity. According to results, with increasing the refractive index of cavity, resonant wavelengths shift so that this phenomenon provides the ability to measure the properties of materials. This novel designed biosensor has more advantage to operate in the biochemical process for example sensing protein and DNA molecule refractive index. This nanoscale biosensor has quality factor higher than 1.5 × 104 and it is suitable to be used in the home healthcare diagnostic applications.

  19. Plasmonic Biosensors

    PubMed Central

    Hill, Ryan T.

    2015-01-01

    The unique optical properties of plasmon resonant nanostructures enable exploration of nanoscale environments using relatively simple optical characterization techniques. For this reason, the field of plasmonics continues to garner the attention of the biosensing community. Biosensors based on propagating surface plasmon resonances (SPRs) in films are the most well-recognized plasmonic biosensors, but there is great potential for the new, developing technologies to surpass the robustness and popularity of film-based SPR sensing. This review surveys the current plasmonic biosensor landscape with emphasis on the basic operating principles of each plasmonic sensing technique and the practical considerations when developing a sensing platform with the various techniques. The “gold standard” film SPR technique is reviewed briefly, but special emphasis is devoted to the up-and-coming LSPR-based and plasmonically coupled sensor technology. PMID:25377594

  20. AOP description: Acetylcholinesterase inhibition

    EPA Science Inventory

    This adverse outcome pathway (AOP) leverages existing knowledge in the open literature to describe the linkage between inhibition of acetylcholinesterase (AChE) and the subsequent mortality resulting from impacts at cholinergic receptors. The AOP takes a chemical category approa...

  1. A Simple Visual Ethanol Biosensor Based on Alcohol Oxidase Immobilized onto Polyaniline Film for Halal Verification of Fermented Beverage Samples

    PubMed Central

    Kuswandi, Bambang; Irmawati, Titi; Hidayat, Moch Amrun; Jayus; Ahmad, Musa

    2014-01-01

    A simple visual ethanol biosensor based on alcohol oxidase (AOX) immobilised onto polyaniline (PANI) film for halal verification of fermented beverage samples is described. This biosensor responds to ethanol via a colour change from green to blue, due to the enzymatic reaction of ethanol that produces acetaldehyde and hydrogen peroxide, when the latter oxidizes the PANI film. The procedure to obtain this biosensor consists of the immobilization of AOX onto PANI film by adsorption. For the immobilisation, an AOX solution is deposited on the PANI film and left at room temperature until dried (30 min). The biosensor was constructed as a dip stick for visual and simple use. The colour changes of the films have been scanned and analysed using image analysis software (i.e., ImageJ) to study the characteristics of the biosensor's response toward ethanol. The biosensor has a linear response in an ethanol concentration range of 0.01%–0.8%, with a correlation coefficient (r) of 0.996. The limit detection of the biosensor was 0.001%, with reproducibility (RSD) of 1.6% and a life time up to seven weeks when stored at 4 °C. The biosensor provides accurate results for ethanol determination in fermented drinks and was in good agreement with the standard method (gas chromatography) results. Thus, the biosensor could be used as a simple visual method for ethanol determination in fermented beverage samples that can be useful for Muslim community for halal verification. PMID:24473284

  2. Creatinine and urea biosensors based on a novel ammonium ion-selective copper-polyaniline nano-composite.

    PubMed

    Zhybak, M; Beni, V; Vagin, M Y; Dempsey, E; Turner, A P F; Korpan, Y

    2016-03-15

    The use of a novel ammonium ion-specific copper-polyaniline nano-composite as transducer for hydrolase-based biosensors is proposed. In this work, a combination of creatinine deaminase and urease has been chosen as a model system to demonstrate the construction of urea and creatinine biosensors to illustrate the principle. Immobilisation of enzymes was shown to be a crucial step in the development of the biosensors; the use of glycerol and lactitol as stabilisers resulted in a significant improvement, especially in the case of the creatinine, of the operational stability of the biosensors (from few hours to at least 3 days). The developed biosensors exhibited high selectivity towards creatinine and urea. The sensitivity was found to be 85 ± 3.4 mAM(-1)cm(-2) for the creatinine biosensor and 112 ± 3.36 mAM(-1)cm(-2) for the urea biosensor, with apparent Michaelis-Menten constants (KM,app), obtained from the creatinine and urea calibration curves, of 0.163 mM for creatinine deaminase and 0.139 mM for urease, respectively. The biosensors responded linearly over the concentration range 1-125 µM, with a limit of detection of 0.5 µM and a response time of 15s. The performance of the biosensors in a real sample matrix, serum, was evaluated and a good correlation with standard spectrophotometric clinical laboratory techniques was found.

  3. A simple visual ethanol biosensor based on alcohol oxidase immobilized onto polyaniline film for halal verification of fermented beverage samples.

    PubMed

    Kuswandi, Bambang; Irmawati, Titi; Hidayat, Moch Amrun; Jayus; Ahmad, Musa

    2014-01-27

    A simple visual ethanol biosensor based on alcohol oxidase (AOX) immobilised onto polyaniline (PANI) film for halal verification of fermented beverage samples is described. This biosensor responds to ethanol via a colour change from green to blue, due to the enzymatic reaction of ethanol that produces acetaldehyde and hydrogen peroxide, when the latter oxidizes the PANI film. The procedure to obtain this biosensor consists of the immobilization of AOX onto PANI film by adsorption. For the immobilisation, an AOX solution is deposited on the PANI film and left at room temperature until dried (30 min). The biosensor was constructed as a dip stick for visual and simple use. The colour changes of the films have been scanned and analysed using image analysis software (i.e., ImageJ) to study the characteristics of the biosensor's response toward ethanol. The biosensor has a linear response in an ethanol concentration range of 0.01%-0.8%, with a correlation coefficient (r) of 0.996. The limit detection of the biosensor was 0.001%, with reproducibility (RSD) of 1.6% and a life time up to seven weeks when stored at 4 °C. The biosensor provides accurate results for ethanol determination in fermented drinks and was in good agreement with the standard method (gas chromatography) results. Thus, the biosensor could be used as a simple visual method for ethanol determination in fermented beverage samples that can be useful for Muslim community for halal verification.

  4. Disposable bioluminescence-based biosensor for detection of bacterial count in food.

    PubMed

    Luo, Jinping; Liu, Xiaohong; Tian, Qing; Yue, Weiwei; Zeng, Jing; Chen, Guangquan; Cai, Xinxia

    2009-11-01

    A biosensor for rapid detection of bacterial count based on adenosine 5'-triphosphate (ATP) bioluminescence has been developed. The biosensor is composed of a key sensitive element and a photomultiplier tube used as a detector element. The disposable sensitive element consists of a sampler, a cartridge where intracellular ATP is chemically extracted from bacteria, and a microtube where the extracted ATP reacts with the luciferin-luciferase reagent to produce bioluminescence. The bioluminescence signal is transformed into relevant electrical signal by the detector and further measured with a homemade luminometer. Parameters affecting the amount of the extracted ATP, including the types of ATP extractants, the concentrations of ATP extractant, and the relevant neutralizing reagent, were optimized. Under the optimal experimental conditions, the biosensor showed a linear response to standard bacteria in a concentration range from 10(3) to 10(8) colony-forming units (CFU) per milliliter with a correlation coefficient of 0.925 (n=22) within 5min. Moreover, the bacterial count of real food samples obtained by the biosensor correlated well with those by the conventional plate count method. The proposed biosensor, with characteristics of low cost, easy operation, and fast response, provides potential application to rapid evaluation of bacterial contamination in the food industry, environment monitoring, and other fields.

  5. An immuno-biosensor system based on quartz crystal microbalance for avian influenza virus detection

    NASA Astrophysics Data System (ADS)

    Liu, Shengping; Chen, Guoming; Zhou, Qi; Wei, Yunlong

    2007-12-01

    For the quick detection of Avian Influenza Virus (AIV), a biosensor based on Quartz Crystal Microbalance (QCM) was fabricated according to the specific bonding principle between antibody and antigen. Staphylococcal Protein A (SPA) was extracted from Staphylococcus and purified. Then SPA was coated on the surface of QCM for immobilizing AIV monoclonal antibodies. The use of AIV monoclonal antibody could enhance the specificity of the immuno-biosensor. A multi-channel piezoelectricity detection system for the immuno-biosensor was developed. The system can work for the quick detection of AIV antigen in the case of the entirely aqueous status owe to one special oscillating circuit designed in this work. The optimum conditions of SPA coating and AIV monoclonal antibody immobilization were investigated utilizing the multi-channel detection system. The preliminary application of the immuno-biosensor system for detection of AIV was evaluated. Results indicate that the immuno-biosensor system can detect the AIV antigens with a linear range of 3-200ng/ml. The system can accomplish the detection of AIV antigens around 40 minutes.

  6. Development of glucose biosensors based on nanostructured graphene-conducting polyaniline composite.

    PubMed

    Feng, Xue; Cheng, Huijun; Pan, Yiwen; Zheng, Hao

    2015-08-15

    A biosensor was fabricated by immobilizing glucose oxidase (GOD) into nanostructured graphene (GRA)-conducting polyaniline (PANI) nanocomposite, which was based on electrochemical polymerization of aniline in GRA synthesized by using electrochemical expansion of graphite in propylene carbonate electrolyte. Scanning electron spectroscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to characterize the morphology and performance of the as-prepared biosensor, respectively. Amperometric measurements were carried out to optimize test conditions (pH and applied potential) of the biosensor. Under the optimal conditions, the biosensor showed a linear range from 10.0 μM to 1.48 mM (R(2)=0.9988) with a sensitivity of 22.1 μA mM(-1) cm(-2), and a detection limit of 2.769 μM (S/N=3). The apparent Michaelis-Menten constant (KM(a)) was estimated to be 3.26 mM. The interference from glycine (Gly), D-galactose (D-Gal), urea (Urea), L-phenylalanine (L-Phe), ascorbic acid (AA), and L-tyrosine (L-Tyr) was also investigated. The results indicated that the biosensor exhibit high sensitivity and superior selectivity, providing a hopeful candidate for glucose biosensing. PMID:25845333

  7. Selective Patterning of Si-based Biosensor Surfaces Using Isotropic Silicon Etchants

    PubMed Central

    Biggs, Bradley W.; Hunt, Heather K.; Armani, Andrea M.

    2011-01-01

    Ultra-sensitive, label-free biosensors have the potential to have a tremendous impact on fields like medical diagnostics. For the majority of these Si-based integrated devices, it is necessary to functionalize the surface with a targeting ligand in order to perform both specific biodetection. To do this, silane coupling agents are commonly used to immobilize the targeting ligand. However, this method typically results in the bioconjugation of the entire device surface, which is undesirable. To compensate for this effect, researchers have developed complex blocking strategies that result in selective patterning of the sensor surface. Recently, silane coupling agents were used to attach biomolecules to the surface of silica toroidal biosensors integrated on a silicon wafer. Interestingly, only the silica biosensor surface was conjugated. Here, we hypothesize why this selective patterning occurred. Specifically, the silicon etchant (xenon difluoride), which is used in the fabrication of the biosensor, appears to reduce the efficiency of the silane coupling attachment to the underlying silicon wafer. These results will enable future researchers to more easily control the bioconjugation of their sensor surfaces, thus improving biosensor device performance. PMID:22196345

  8. Development of glucose biosensors based on nanostructured graphene-conducting polyaniline composite.

    PubMed

    Feng, Xue; Cheng, Huijun; Pan, Yiwen; Zheng, Hao

    2015-08-15

    A biosensor was fabricated by immobilizing glucose oxidase (GOD) into nanostructured graphene (GRA)-conducting polyaniline (PANI) nanocomposite, which was based on electrochemical polymerization of aniline in GRA synthesized by using electrochemical expansion of graphite in propylene carbonate electrolyte. Scanning electron spectroscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to characterize the morphology and performance of the as-prepared biosensor, respectively. Amperometric measurements were carried out to optimize test conditions (pH and applied potential) of the biosensor. Under the optimal conditions, the biosensor showed a linear range from 10.0 μM to 1.48 mM (R(2)=0.9988) with a sensitivity of 22.1 μA mM(-1) cm(-2), and a detection limit of 2.769 μM (S/N=3). The apparent Michaelis-Menten constant (KM(a)) was estimated to be 3.26 mM. The interference from glycine (Gly), D-galactose (D-Gal), urea (Urea), L-phenylalanine (L-Phe), ascorbic acid (AA), and L-tyrosine (L-Tyr) was also investigated. The results indicated that the biosensor exhibit high sensitivity and superior selectivity, providing a hopeful candidate for glucose biosensing.

  9. Current trends in nanomaterial embedded field effect transistor-based biosensor.

    PubMed

    Nehra, Anuj; Pal Singh, Krishna

    2015-12-15

    Recently, as metal-, polymer-, and carbon-based biocompatible nanomaterials have been increasingly incorporated into biosensing applications, with various nanostructures having been used to increase the efficacy and sensitivity of most of the detecting devices, including field effect transistor (FET)-based devices. These nanomaterial-based methods also became the ideal for the amalgamation of biomolecules, especially for the fabrication of ultrasensitive, low-cost, and robust FET-based biosensors; these are categorically very successful at binding the target specified entities in the confined gated micro-region for high functionality. Furthermore, the contemplation of nanomaterial-based FET biosensors to various applications encompasses the desire for detection of many targets with high selectivity, and specificity. We assess how such devices have empowered the achievement of elevated biosensor performance in terms of high sensitivity, selectivity and low detection limits. We review the recent literature here to illustrate the diversity of FET-based biosensors, based on various kinds of nanomaterials in different applications and sum up that graphene or its assisted composite based FET devices are comparatively more efficient and sensitive with highest signal to noise ratio. Lastly, the future prospects and limitations of the field are also discussed. PMID:26210471

  10. Lipid A-based affinity biosensor for screening anti-sepsis components from herbs.

    PubMed

    Yao, Jie; Chen, Yiguo; Wang, Ning; Jiang, Dongneng; Zheng, Jiang

    2014-01-01

    LPS (lipopolysaccharide), an outer membrane component of Gram-negative bacteria, plays an important role in the pathogenesis of sepsis and lipid A is known to be essential for its toxicity. Therefore it could be an effective measure to prevent sepsis by neutralizing or destroying LPS. Numerous studies have indicated that many traditional Chinese medicines are natural antagonists of LPS in vitro and in vivo. The goal of this study is to develop a rapid method to screen anti-sepsis components from Chinese herbs by use of a direct lipid A-based affinity biosensor technology based on a resonant mirror. The detergent OG (n-octyl β-D-glucopyranoside) was immobilized on a planar non-derivatized cuvette which provided an alternative surface to bind the terminal hydrophilic group of lipid A. A total of 78 herbs were screened based on the affinity biosensor with a target of lipid A. The aqueous extract of PSA (Paeonia suffruticosa Andr) was found to possess the highest capability of binding lipid A. Therefore an aqueous extraction from this plant was investigated further by our affinity biosensor, polyamide chromatography and IEC-HPLC. Finally, we obtained a component (PSA-I-3) from Paeonia suffruticosa Andr that was evaluated with the affinity biosensor. We also studied the biological activities of PSA-I-3 against sepsis in vitro and in vivo to further confirm the component we screened with the biosensor. In vitro, we found that PSA-I-3 could decrease TNFα (tumour necrosis factor α) release from RAW264.7 cells induced by LPS in a dose-dependent manner. In vivo, it increased remarkably the survival of KM (KunMing) mice by challenging both lethal-dose LPS and heat-killed Escherichia coli compared with control groups. Our results suggest that the constructed affinity biosensor can successfully screen the anti-sepsis component from Chinese herbs. PMID:24654965

  11. Detection of Neisseria meningitidis using surface plasmon resonance based DNA biosensor.

    PubMed

    Kaur, Gurpreet; Paliwal, Ayushi; Tomar, Monika; Gupta, Vinay

    2016-04-15

    Herein, we report the development of a surface plasmon resonance (SPR) based biosensor for the detection of Neisseria meningitidis DNA employing Kretschmann configuration. Highly c-axis oriented ZnO thin film of thickness 200nm was deposited on gold coated glass prisms by RF sputtering technique. Single stranded probe DNA was immobilized on the surface of ZnO thin film by physical adsorption method. SPR reflectance curves were recorded as a function of incident angle of He-Ne laser beam using a laboratory assembled SPR setup. The prepared biosensor exhibits a linear response towards target meningitidis DNA over the concentration range from 10 to 180 ng/μl with a high sensitivity of about 0.03°/(ng/μl) and a low limit of detection of 5 ng/μl. The SPR biosensor demonstrated high specificity and long shelf life thus, pointing towards a promising application in the field of meningitidis diagnosis. PMID:26599479

  12. A protease-based biosensor for the detection of schistosome cercariae

    PubMed Central

    Webb, A. J.; Kelwick, R.; Doenhoff, M. J.; Kylilis, N.; MacDonald, J. T.; Wen, K. Y.; McKeown, C.; Baldwin, G.; Ellis, T.; Jensen, K.; Freemont, P. S.

    2016-01-01

    Parasitic diseases affect millions of people worldwide, causing debilitating illnesses and death. Rapid and cost-effective approaches to detect parasites are needed, especially in resource-limited settings. A common signature of parasitic diseases is the release of specific proteases by the parasites at multiple stages during their life cycles. To this end, we engineered several modular Escherichia coli and Bacillus subtilis whole-cell-based biosensors which incorporate an interchangeable protease recognition motif into their designs. Herein, we describe how several of our engineered biosensors have been applied to detect the presence and activity of elastase, an enzyme released by the cercarial larvae stage of Schistosoma mansoni. Collectively, S. mansoni and several other schistosomes are responsible for the infection of an estimated 200 million people worldwide. Since our biosensors are maintained in lyophilised cells, they could be applied for the detection of S. mansoni and other parasites in settings without reliable cold chain access. PMID:27090566

  13. Detection of Neisseria meningitidis using surface plasmon resonance based DNA biosensor.

    PubMed

    Kaur, Gurpreet; Paliwal, Ayushi; Tomar, Monika; Gupta, Vinay

    2016-04-15

    Herein, we report the development of a surface plasmon resonance (SPR) based biosensor for the detection of Neisseria meningitidis DNA employing Kretschmann configuration. Highly c-axis oriented ZnO thin film of thickness 200nm was deposited on gold coated glass prisms by RF sputtering technique. Single stranded probe DNA was immobilized on the surface of ZnO thin film by physical adsorption method. SPR reflectance curves were recorded as a function of incident angle of He-Ne laser beam using a laboratory assembled SPR setup. The prepared biosensor exhibits a linear response towards target meningitidis DNA over the concentration range from 10 to 180 ng/μl with a high sensitivity of about 0.03°/(ng/μl) and a low limit of detection of 5 ng/μl. The SPR biosensor demonstrated high specificity and long shelf life thus, pointing towards a promising application in the field of meningitidis diagnosis.

  14. Enzyme biosensor for urea based on a novel pH bulk optode membrane.

    PubMed

    Koncki, R; Mohr, G J; Wolfbeis, O S

    1995-01-01

    A new, absorbance-based enzymatic biosensor membrane for determination of urea is described. A lipophilic, fully LED- and diode laser-compatible pH sensitive dye was incorporated into a plasticized, carboxylated poly(vinyl chloride) membrane and served as the optical transducer of the sensor. Urease was covalently linked to the surface of the pH bulk optode membrane to form a very thin cover. The resulting biosensor membrane allows rapid determination of urea over the 0.3 to 100 mM range. The reproducibility, stability, and effects of pH and buffer concentration on the response of sensor are reported. The preparation of the pH transducer and the immobilization of the enzyme are simple and may easily be adopted to other biosensor types.

  15. Label-free aptamer-based electrochemical impedance biosensor for 17β-estradiol.

    PubMed

    Lin, Zhenyu; Chen, Lifen; Zhang, Guiyun; Liu, Qida; Qiu, Bin; Cai, Zongwei; Chen, Guonan

    2012-02-21

    A novel aptamer-based label-free electrochemical impedance spectroscopy biosensor for 17β-estradiol has been fabricated. The aptamers were firstly immobilized on the gold electrode through Au-S interaction; the aptamer probe was then bound with the addition of 17β-estradiol to form the estradiol/aptamer complex on the electrode surface. This leads to a significantly larger interfacial electron transfer resistance than that without the addition of 17β-estradiol. The change in the resistance had a linear relationship with 17β-estradiol concentration in the range of 1.0 × 10(-8) to 1.0 × 10(-11) mol L(-1), with a detection limit of 2.0 × 10(-12) mol L(-1). The biosensor showed high selectivity to 17β-estradiol and good stability. The designed biosensor has been applied to detect 17β-estradiol in human urine with satisfactory results.

  16. A protease-based biosensor for the detection of schistosome cercariae.

    PubMed

    Webb, A J; Kelwick, R; Doenhoff, M J; Kylilis, N; MacDonald, J T; Wen, K Y; McKeown, C; Baldwin, G; Ellis, T; Jensen, K; Freemont, P S

    2016-01-01

    Parasitic diseases affect millions of people worldwide, causing debilitating illnesses and death. Rapid and cost-effective approaches to detect parasites are needed, especially in resource-limited settings. A common signature of parasitic diseases is the release of specific proteases by the parasites at multiple stages during their life cycles. To this end, we engineered several modular Escherichia coli and Bacillus subtilis whole-cell-based biosensors which incorporate an interchangeable protease recognition motif into their designs. Herein, we describe how several of our engineered biosensors have been applied to detect the presence and activity of elastase, an enzyme released by the cercarial larvae stage of Schistosoma mansoni. Collectively, S. mansoni and several other schistosomes are responsible for the infection of an estimated 200 million people worldwide. Since our biosensors are maintained in lyophilised cells, they could be applied for the detection of S. mansoni and other parasites in settings without reliable cold chain access. PMID:27090566

  17. A yeast co-culture-based biosensor for determination of waste water contamination levels.

    PubMed

    Yudina, N Yu; Arlyapov, V A; Chepurnova, M A; Alferov, S V; Reshetilov, A N

    2015-10-01

    Artificial microbial co-cultures were formed to develop the receptor element of a biosensor for assessment of biological oxygen demand (BOD). The co-cultures possessed broad substrate specificities and enabled assays of water and fermentation products within a broad BOD range (2.4-80 mg/dm(3)) with a high correlation to the standard method (R = 0.9988). The use of the co-cultures of the yeasts Pichia angusta, Arxula adeninivorans and Debaryomyces hansenii immobilized in N-vinylpyrrolidone-modified poly(vinyl alcohol) enabled developing a BOD biosensor possessing the characteristics not inferior to those in the known biosensors. The results are indicative of a potential of using these co-cultures as the receptor element base in prototype models of instruments for broad application.

  18. The detection of Salmonella typhimurium on shell eggs using a phage-based biosensor

    NASA Astrophysics Data System (ADS)

    Chai, Yating; Li, Suiqiong; Horikawa, Shin; Shen, Wen; Park, Mi-Kyung; Vodyanoy, Vitaly J.; Chin, Bryan A.

    2011-06-01

    This paper presents the direct detection of Salmonella typhimurium on shell eggs using a phage-based magnetoelastic (ME) biosensor. The ME biosensor consists of a ME resonator as the sensor platform and E2 phage as the biorecognition element that is genetically engineered to specifically bind with Salmonella typhimurium. The ME biosensor, which is a wireless sensor, vibrates with a characteristic resonant frequency under an externally applied magnetic field. Multiple sensors can easily be remotely monitored. Multiple measurement and control sensors were placed on the shell eggs contaminated by Salmonella typhimurium solutions with different known concentrations. The resonant frequency of sensors before and after the exposure to the spiked shell eggs was measured. The frequency shift of the measurement sensors was significantly different than the control sensors indicating Salmonella contamination. Scanning electron microscopy was used to confirm binding of Salmonella to the sensor surface and the resulting frequency shift results.

  19. A Multi-Walled Carbon Nanotube-based Biosensor for Monitoring Microcystin-LR in Sources of Drinking Water Supplies

    EPA Science Inventory

    A multi-walled carbon nanotube-based electrochemical biosensor is developed for monitoring microcystin-LR (MC-LR), a toxic cyanobacterial toxin, in sources of drinking water supplies. The biosensor electrodes are fabricated using dense, mm-long multi-walled CNT (MWCNT) arrays gro...

  20. Examining the effects of self-assembled monolayers on nanoporous gold based amperometric glucose biosensors.

    PubMed

    Xiao, Xinxin; Li, Hui; Wang, Meng'en; Zhang, Kai; Si, Pengchao

    2014-01-21

    Nanoporous gold (NPG) based biosensors have been constructed by covalently immobilizing glucose oxidase (GOx) onto self-assembled monolayers (SAMs). With p-benzoquinone (BQ) as a mediator, diffusion behavior and amperometric biosensor performance are evaluated by electrochemical characterization. The enzyme modified electrodes are demonstrated to show a thickness-sensitive behavior. Compared with planar polycrystalline gold, the unique porous structure of NPG has also been characterized via an electrochemical surface reconstruction process. Single-crystal gold-like electrochemical behavior on NPG and a comprehensive understanding of its impacts on sensor performance have been proposed. PMID:24256634

  1. On the origin of enhanced sensitivity in nanoscale FET-based biosensors

    PubMed Central

    Shoorideh, Kaveh; Chui, Chi On

    2014-01-01

    Electrostatic counter ion screening is a phenomenon that is detrimental to the sensitivity of charge detection in electrolytic environments, such as in field-effect transistor-based biosensors. Using simple analytical arguments, we show that electrostatic screening is weaker in the vicinity of concave curved surfaces, and stronger in the vicinity of convex surfaces. We use this insight to show, using numerical simulations, that the enhanced sensitivity observed in nanoscale biosensors is due to binding of biomolecules in concave corners where screening is reduced. We show that the traditional argument, that increased surface area-to-volume ratio for nanoscale sensors is responsible for their increased sensitivity, is incorrect. PMID:24706861

  2. Francisella tularensis detection using magnetic labels and a magnetic biosensor based on frequency mixing

    NASA Astrophysics Data System (ADS)

    Meyer, Martin H. F.; Krause, Hans-Joachim; Hartmann, Markus; Miethe, Peter; Oster, Jürgen; Keusgen, Michael

    2007-04-01

    A biosensor that uses resonant coils with a special frequency-mixing technique and magnetic beads as detectable labels has been established for the detection of Francisella tularensis, the causative agent for tularemia. The detection principle is based on a sandwich immunoassay using an anti-Ft antibody for immunofiltration immobilized to ABICAP ® polyethylene filters, and biotinylated with streptavidin-coated magnetic beads as labels. The linear detection range of this biosensor was found to be 10 4-10 6 cfu F. tularensis lipopolysaccharide (LPS) per ml. Tested sample matrices were physiological PBS buffer and rabbit serum.

  3. 40 GHz RF biosensor based on microwave coplanar waveguide transmission line for cancer cells (HepG2) dielectric characterization.

    PubMed

    Chen, Yu-Fu; Wu, Hung-Wei; Hong, Yong-Han; Lee, Hsin-Ying

    2014-11-15

    This paper presents a 40-GHz RF biosensor that involves using a microwave coplanar waveguide (CPW) transmission line for the dielectric characterization of cancer cells (Hepatoma G2, HepG2). In the past, conventional resonator-based biosensors were designed to operate at a specific resonant peak; however, the dielectric sensitivity of the cells was restricted to a narrow bandwidth. To provide a very wide bandwidth (1-40 GHz), biosensors were based on a microwave CPW transmission line. The proposed biosensor can rapidly measure two frequency-dependent cell-based dielectric parameters of HepG2 cells, microwave attenuation (α(f)cell) and the dielectric constant (εr(f)cell), while removing the microwave parasitic effects (including the cultured medium and substrate materials). The proposed biosensor can be applied in postoperative cancer diagnosis.

  4. Voltammetric detection of As(III) with Porphyridium cruentum based modified carbon paste electrode biosensor.

    PubMed

    Zaib, M; Saeed, A; Hussain, I; Athar, M M; Iqbal, M

    2014-12-15

    A novel biosensor based on carbon paste electrode modified with Porphyridium cruentum biomass was developed for the determination of As(III) in contaminated water. As(III) was first biosorbed-accumulated on the electrode surface at open circuit potential and then stripped off by applying anodic scan range of -0.8 to +0.8 V using differential pulse anodic stripping voltammetric technique. The best result was obtained at pH 6.0 with 0.1M HNO3 solution as stripping medium, allowing biosorption-accumulation time of 8 min using 5% P. cruentum biomass in graphite-mineral oil paste. Linear range for As(III) detection with the modified electrode-biosensor was observed between 2.5 and 20 µg L(-1). The FTIR spectrum of P. cruentum biomass confirmed the presence of active functional groups that participate in the binding of As(III). Scanning Electron Microscopy (SEM) indulged the surface morphology of modified electrode-biosensor before and after As(III) adsorption. Similarly, Atomic Force Microscopy (AFM) showed that the average roughness of the modified electrode decreased indicating the successful incorporation of P. cruentum biomass. Efficiency of the biosensor in the presence of different interfering metal (Na(+), K(+), Ca(2+), and Mg(2+)) ions were also evaluated. The application of P. cruentum modified biosensor was successfully used for the detection of As(III) in the binary metal (Fe(3+), Mn(2+), Cd(2+), Cu(2+), Ni(2+), Hg(2+), and Pb(2+)) contaminated system. The accuracy of application of biosorption based biosensor for the detection of As(III) is as low as 2.5 µg L(-1).

  5. Analysis of diazinon pesticide using potentiometric biosensor based on enzyme immobilized cellulose acetate membrane in gold electrode

    NASA Astrophysics Data System (ADS)

    Mashuni; Ramadhan, L. O. A. N.; Jahiding, M.; Herniati

    2016-02-01

    Biosensor for analysis of diazinon pesticide using Potentiometric transducer has been developed. The basic element of this biosensor was a gold electrode modified with an immobilized acetylcholinesterase enzyme layer formed by entrapment with glutaraldehyde crosslinked-cellulose acetate. The aim of the research is to determine the composition of glutaraldehyde crosslinked-cellulose acetate in the gold electrode which provide optimum performance of biosensors of diazinon pesticide analysis on characterization include a range of working concentration, sensitivity, and detection limit. The results showed the composition of the cellulose acetate 15% and glutaraldehyde 25% that obtain optimum performance in the measurement of diazinon pesticide with a range of working concentration of 10-6 ppm to 1 ppm, the value of sensitivity 20.275 mV/decade and detection limit 10-6 ppm. The use of cellulose acetate provides highly sensitive devices allowing the efficient analysis of pesticides. The response time of electrode is on the measurement of pesticide diazinon with concentration variation of 10-6 ppm to 1 ppm with response time is about 5 minutes.

  6. Quantitative detection of bovine and porcine gelatin difference using surface plasmon resonance based biosensor

    NASA Astrophysics Data System (ADS)

    Wardani, Devy P.; Arifin, Muhammad; Suharyadi, Edi; Abraha, Kamsul

    2015-05-01

    Gelatin is a biopolymer derived from collagen that is widely used in food and pharmaceutical products. Due to some religion restrictions and health issues regarding the gelatin consumption which is extracted from certain species, it is necessary to establish a robust, reliable, sensitive and simple quantitative method to detect gelatin from different parent collagen species. To the best of our knowledge, there has not been a gelatin differentiation method based on optical sensor that could detect gelatin from different species quantitatively. Surface plasmon resonance (SPR) based biosensor is known to be a sensitive, simple and label free optical method for detecting biomaterials that is able to do quantitative detection. Therefore, we have utilized SPR-based biosensor to detect the differentiation between bovine and porcine gelatin in various concentration, from 0% to 10% (w/w). Here, we report the ability of SPR-based biosensor to detect difference between both gelatins, its sensitivity toward the gelatin concentration change, its reliability and limit of detection (LOD) and limit of quantification (LOQ) of the sensor. The sensor's LOD and LOQ towards bovine gelatin concentration are 0.38% and 1.26% (w/w), while towards porcine gelatin concentration are 0.66% and 2.20% (w/w), respectively. The results show that SPR-based biosensor is a promising tool for detecting gelatin from different raw materials quantitatively.

  7. Large-Scale `Linker-Free Assembly' of swCNT-Based Biosensor Arrays

    NASA Astrophysics Data System (ADS)

    Sohn, Donghee; Lee, Byung Yang; Hong, Seunghun

    2008-03-01

    Biosensors based on single-walled carbon nanotubes (swCNTs) have received a great deal of attention due to their potential applications such as genotyping, disease diagnosis, food analysis, etc. However, a lack of reliable mass-production method for such swCNT-based biosensor has been holding back their practical applications. One promising mass-production method for swCNT-based biosensor arrays can be `linker-free assembly' process (Nature Nanotechnology 1, 66 (2006)), where non-polar patterns guide the `selective assembly' and `precision alignment' of carbon nanotubes on bare substrates without using any external forces such as liquid flow, etc. We used this method to fabricate large-scale assembly of swCNT-based integrated devices on virtually general substrates including SiO2, Si, Al, Au, etc. To utilize swCNT devices for biosensors, we functionalized swCNT devices on SiO2 with receptor biomolecules such as enzyme L-glutamate oxidase or biotin. And then, we could detect the target biomolecules (L-glutamate or streptavidin, respectively) with high sensitivity and selectivity by monitoring the conductance change of swCNT junctions in aqueous environment. These studies provide biological implications on neurotransmitters and proteins onto swCNT patterned surface.

  8. Carbon nanofiber-based composites for the construction of mediator-free biosensors.

    PubMed

    Lu, Xianbo; Zhou, Jianhua; Lu, Wu; Liu, Qing; Li, Jinghong

    2008-03-14

    Carbon nanofibers (CNFs), with typical diameters of approximately 80 nm and lengths of the order of micrometers, are extremely attractive in bioanalytical area as they can combine properties of high surface area, non-toxicity, acceptable biocompatibility, ease of fabrication, chemical and electrochemical stability, good electrical conductivity. In this work, CNF-based composites were successfully used as an immobilization matrix for the construction of a reagentless mediator-free hemoglobin-based H2O2 biosensor. The results revealed that hemoglobin retained its essential secondary structure in the CNF-based composite film. With the advantages of organic-inorganic hybrid materials, dramatically facilitated direct electron transfer of hemoglobin and good bioelectrocatalytic activity towards H2O2 were demonstrated. The biosensor displayed good performance along with good long-term stability. The CNF-based composites were proved to be a promising biosensing platform for the construction of mediator-free biosensors, and may find wide potential applications in biosensors, biocatalysis, bioelectronics and biofuel cell.

  9. Electronically type-sorted carbon nanotube-based electrochemical biosensors with glucose oxidase and dehydrogenase.

    PubMed

    Muguruma, Hitoshi; Hoshino, Tatsuya; Nowaki, Kohei

    2015-01-14

    An electrochemical enzyme biosensor with electronically type-sorted (metallic and semiconducting) single-walled carbon nanotubes (SWNTs) for use in aqueous media is presented. This research investigates how the electronic types of SWNTs influence the amperometric response of enzyme biosensors. To conduct a clear evaluation, a simple layer-by-layer process based on a plasma-polymerized nano thin film (PPF) was adopted because a PPF is an inactive matrix that can form a well-defined nanostructure composed of SWNTs and enzyme. For a biosensor with the glucose oxidase (GOx) enzyme in the presence of oxygen, the response of a metallic SWNT-GOx electrode was 2 times larger than that of a semiconducting SWNT-GOx electrode. In contrast, in the absence of oxygen, the response of the semiconducting SWNT-GOx electrode was retained, whereas that of the metallic SWNT-GOx electrode was significantly reduced. This indicates that direct electron transfer occurred with the semiconducting SWNT-GOx electrode, whereas the metallic SWNT-GOx electrode was dominated by a hydrogen peroxide pathway caused by an enzymatic reaction. For a biosensor with the glucose dehydrogenase (GDH; oxygen-independent catalysis) enzyme, the response of the semiconducting SWNT-GDH electrode was 4 times larger than that of the metallic SWNT-GDH electrode. Electrochemical impedance spectroscopy was used to show that the semiconducting SWNT network has less resistance for electron transfer than the metallic SWNT network. Therefore, it was concluded that semiconducting SWNTs are more suitable than metallic SWNTs for electrochemical enzyme biosensors in terms of direct electron transfer as a detection mechanism. This study makes a valuable contribution toward the development of electrochemical biosensors that employ sorted SWNTs and various enzymes. PMID:25522366

  10. Electronically type-sorted carbon nanotube-based electrochemical biosensors with glucose oxidase and dehydrogenase.

    PubMed

    Muguruma, Hitoshi; Hoshino, Tatsuya; Nowaki, Kohei

    2015-01-14

    An electrochemical enzyme biosensor with electronically type-sorted (metallic and semiconducting) single-walled carbon nanotubes (SWNTs) for use in aqueous media is presented. This research investigates how the electronic types of SWNTs influence the amperometric response of enzyme biosensors. To conduct a clear evaluation, a simple layer-by-layer process based on a plasma-polymerized nano thin film (PPF) was adopted because a PPF is an inactive matrix that can form a well-defined nanostructure composed of SWNTs and enzyme. For a biosensor with the glucose oxidase (GOx) enzyme in the presence of oxygen, the response of a metallic SWNT-GOx electrode was 2 times larger than that of a semiconducting SWNT-GOx electrode. In contrast, in the absence of oxygen, the response of the semiconducting SWNT-GOx electrode was retained, whereas that of the metallic SWNT-GOx electrode was significantly reduced. This indicates that direct electron transfer occurred with the semiconducting SWNT-GOx electrode, whereas the metallic SWNT-GOx electrode was dominated by a hydrogen peroxide pathway caused by an enzymatic reaction. For a biosensor with the glucose dehydrogenase (GDH; oxygen-independent catalysis) enzyme, the response of the semiconducting SWNT-GDH electrode was 4 times larger than that of the metallic SWNT-GDH electrode. Electrochemical impedance spectroscopy was used to show that the semiconducting SWNT network has less resistance for electron transfer than the metallic SWNT network. Therefore, it was concluded that semiconducting SWNTs are more suitable than metallic SWNTs for electrochemical enzyme biosensors in terms of direct electron transfer as a detection mechanism. This study makes a valuable contribution toward the development of electrochemical biosensors that employ sorted SWNTs and various enzymes.

  11. Evanescent field absorption based photonic polymer waveguide biosensor

    NASA Astrophysics Data System (ADS)

    Boiragi, Indrajit; Makkar, Roshan; Choudhury, Bikash Dev; Mukherji, Soumyo; Chalapathi, K.

    2011-08-01

    This paper details the design and fabrication of an integrated optical waveguide biosensor for antibody/antigen detection. SU-8 polymer is used as the core material to have a bi-conical tapered waveguide fabricated on a silicon substrate. PDMS is used as a buffer layer. The waist diameter of the biconical tapered waveguide has been optimized using Opti-BPM CAD software before fabrication. In addition, the fabrication technique employs simultaneous and single-step formation of the polymer waveguide structures for the guidance of light with V-grooves for low-cost passive alignment of glass optical fiber. The designed biosensor chip demonstrates sensing of FITC tagged goat anti human IgG (GaHIgG) and HIgG immobilized over the sensor surface was the bio receptor. The sensor uses the evanescent field that is present at the surface of the core for rapid and accurate sensing of antibody/antigen in the range of few micrograms per ml.

  12. Evanescent field absorption based photonic polymer waveguide biosensor

    NASA Astrophysics Data System (ADS)

    Boiragi, Indrajit; Makkar, Roshan; Choudhury, Bikash Dev; Mukherji, Soumyo; Chalapathi, K.

    2010-12-01

    This paper details the design and fabrication of an integrated optical waveguide biosensor for antibody/antigen detection. SU-8 polymer is used as the core material to have a bi-conical tapered waveguide fabricated on a silicon substrate. PDMS is used as a buffer layer. The waist diameter of the biconical tapered waveguide has been optimized using Opti-BPM CAD software before fabrication. In addition, the fabrication technique employs simultaneous and single-step formation of the polymer waveguide structures for the guidance of light with V-grooves for low-cost passive alignment of glass optical fiber. The designed biosensor chip demonstrates sensing of FITC tagged goat anti human IgG (GaHIgG) and HIgG immobilized over the sensor surface was the bio receptor. The sensor uses the evanescent field that is present at the surface of the core for rapid and accurate sensing of antibody/antigen in the range of few micrograms per ml.

  13. A novel OFET-based biosensor for the selective and sensitive detection of lactate levels.

    PubMed

    Minami, Tsuyoshi; Sato, Tsubasa; Minamiki, Tsukuru; Fukuda, Kenjiro; Kumaki, Daisuke; Tokito, Shizuo

    2015-12-15

    Biosensors based on organic field effect transistors (OFETs) are one of the more promising device applications in organic electronics. However, OFET-based biosensors are still in their early stages of development compared to other electrochemical biosensors. This study is the first to report on an extended-gate type organic field effect transistor (OFET) for lactate detection in aqueous media. Here, the extended-gate electrode of the OFET was modified with layers of a lactate oxidase and a horseradish peroxidase osmium-redox polymer on a flexible plastic film substrate for an enzymatic redox reaction of lactate. The device exhibited both high selectivity and sensitivity. The limit of detection (LOD) and the limit of quantification (LOQ) were estimated to be 66 nM and 220 nM, respectively, which are the sufficient detection limit for practical sensor applications. The obtained results confirm that extended-gate type OFET devices are applicable to enzyme-based biosensors for detecting lactate levels. PMID:26101795

  14. Design and testing of aptamer-based electrochemical biosensors for proteins and small molecules.

    PubMed

    Cheng, Alan K H; Sen, Dipankar; Yu, Hua-Zhong

    2009-11-01

    The fabrication of aptamer-based electrochemical biosensors as an emerging technology has made the detection of small and macromolecular analytes easier, faster, and more suited for the ongoing transition from fundamental analytical science to the early detection of protein biomarkers. Aptamers are synthetic oligonucleotides that have undergone iterative rounds of in vitro selection for binding with high affinity to specific analytes of choice; a sensitive yet simple method to utilize aptamers as recognition entities for the development of biosensors is to transduce the signal electrochemically. In this review article, we attempt to summarize the state-of-the-art research progresses that have been published in recent years; in particular, we focus on the electrochemical biosensors that incorporate aptamers for sensing small organic molecules and proteins. Based on differences in the design of the DNA/RNA-modified electrodes, we classify aptamer-based electrochemical sensors into three categories, for which the analyte detection relies on: (a) configurational change, i.e., the analyte binding induces either an assembly or dissociation of the sensor construct; (b) conformational change, i.e., the analyte binding induces an alteration in the conformation (folding) of the surface immobilized aptamer strands; and (c) conductivity change, i.e., the analyte binding "switches on" the conductivity of the surface-bound aptamer-DNA constructs. In each section, we will discuss the performance of these novel biosensors with representative examples reported in recent literature.

  15. A luminescent hybridoma-based biosensor for rapid detection of V. cholerae upon induction of calcium signaling pathway.

    PubMed

    Zamani, Parichehr; Sajedi, Reza H; Hosseinkhani, Saman; Zeinoddini, Mehdi; Bakhshi, Bita

    2016-05-15

    In this study, a hybridoma based biosensor was developed for rapid, sensitive and selective detection of Vibrio cholerae O1 which converts the antibody-antigen binding to bioluminescence light. After investigation on hybridoma performance, the biosensor was constructed by transfecting specific hybridoma cells with aequorin reporter gene and the bioluminescence activities of stable biosensor were measured. The sensitivity of biosensor was as few as 50 CFU/ml and it showed no responses to other entric bacteria. Moreover, the response time of biosensor was estimated in 7th second which means this method is considerably faster than many available detection assays. In addition, this biosensor was successfully applied to V. cholerae detection in environmental samples with no significant loss in sensitivity, demonstrating our proposed biosensor provides a sensitive and reliable method for detection of V. cholerae in natural samples. The application of whole hybridoma cell directly as a sensing element in biosensor construction which mentioned for the first time in present study suggests that hybridoma cells could provide a valuable tool for future studies in both basic and diagnostic sciences and could be considered as a fast and specific sensing element for detection of other pathogens in different applications.

  16. Whole‐cell biosensors for detection of heavy metal ions in environmental samples based on metallothionein promoters from Tetrahymena thermophila

    PubMed Central

    Amaro, Francisco; Turkewitz, Aaron P.; Martín‐González, Ana; Gutiérrez, Juan‐Carlos

    2011-01-01

    Summary Heavy metals are among the most serious pollutants, and thus there is a need to develop sensitive and rapid biomonitoring methods for heavy metals in the environment. Critical parameters such as bioavailability, toxicity and genotoxicity cannot be tested using chemical analysis, but only can be assayed using living cells. A whole‐cell biosensor uses the whole cell as a single reporter incorporating both bioreceptor and transducer elements. In the present paper, we report results with two gene constructs using the Tetrahymena thermophila MTT1 and MTT5 metallothionein promoters linked with the eukaryotic luciferase gene as a reporter. This is the first report of a ciliated protozoan used as a heavy metal whole‐cell biosensor. T. thermophila transformed strains were created as heavy metal whole‐cell biosensors, and turn on bioassays were designed to detect, in about 2 h, the bioavailable heavy metals in polluted soil or aquatic samples. Validation of these whole‐cell biosensors was carried out using both artificial and natural samples, including methods for detecting false positives and negatives. Comparison with other published cell biosensors indicates that the Tetrahymena metallothionein promoter‐based biosensors appear to be the most sensitive eukaryotic metal biosensors and compare favourably with some prokaryotic biosensors as well. PMID:21366892

  17. New CNT/poly(brilliant green) and CNT/poly(3,4-ethylenedioxythiophene) based electrochemical enzyme biosensors.

    PubMed

    Barsan, Madalina M; Pifferi, Valentina; Falciola, Luigi; Brett, Christopher M A

    2016-07-13

    A combination of the electroactive polymer poly(brilliant green) (PBG) or conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) with carbon nanotubes to obtain CNT/PBG and CNT/PEDOT modified carbon film electrodes (CFE) has been investigated as a new biosensor platform, incorporating the enzymes glucose oxidase (GOx) as test enzyme, alcohol oxidase (AlcOx) or alcohol dehydrogenase (AlcDH). The sensing parameters were optimized for all biosensors based on CNT/PBG/CFE, CNT/PEDOT/CFE platforms. Under optimized conditions, both GOx biosensors exhibited very similar sensitivities, while in the case of AlcOx and AlcDH biosensors, AlcOx/CNT/PBG/CFE was found to give a higher sensitivity and lower detection limit. The influence of dissolved O2 on oxidase-biosensor performance was investigated and was shown to be different for each enzyme. Comparisons were made with similar reported biosensors, showing the advantages of the new biosensors, and excellent selectivity against potential interferents was successfully demonstrated. Finally, alcohol biosensors were successfully used for the determination of ethanol in alcoholic beverages. PMID:27237835

  18. Novel phenol biosensor based on laccase immobilized on reduced graphene oxide supported palladium-copper alloyed nanocages.

    PubMed

    Mei, Li-Ping; Feng, Jiu-Ju; Wu, Liang; Zhou, Jia-Ying; Chen, Jian-Rong; Wang, Ai-Jun

    2015-12-15

    Developing new nanomaterials is of key importance to improve the analytical performances of electrochemical biosensors. In this work, palladium-copper alloyed nanocages supported on reduced graphene oxide (RGO-PdCu NCs) were facilely prepared by a simple one-pot solvothermal method. A novel phenol biosensor based on laccase has been constructed for rapid detection of catachol, using RGO-PdCu NCs as electrode material. The as-developed phenol biosensor greatly enhanced the electrochemical signals for catechol. Under the optimal conditions, the biosensor has two linear ranges from 0.005 to 1.155 mM and 1.655 to 5.155 mM for catachol detection at 0.6 V, the sensitivity of 12.65 µA mM(-1) and 5.51 µA mM(-1), respectively. This biosensor showed high selectivity, low detection limit, good reproducibility, and high anti-interference ability.

  19. A Novel Conductometric Urea Biosensor with Improved Analytical Characteristic Based on Recombinant Urease Adsorbed on Nanoparticle of Silicalite.

    PubMed

    Velychko, T P; Soldatkin, О О; Melnyk, V G; Marchenko, S V; Kirdeciler, S K; Akata, B; Soldatkin, A P; El'skaya, A V; Dzyadevych, S V

    2016-12-01

    Development of a conductometric biosensor for the urea detection has been reported. It was created using a non-typical method of the recombinant urease immobilization via adsorption on nanoporous particles of silicalite. It should be noted that this biosensor has a number of advantages, such as simple and fast performance, the absence of toxic compounds during biosensor preparation, and high reproducibility (RSD = 5.1 %). The linear range of urea determination by using the biosensor was 0.05-15 mM, and a lower limit of urea detection was 20 μM. The bioselective element was found to be stable for 19 days. The characteristics of recombinant urease-based biomembranes, such as dependence of responses on the protein and ion concentrations, were investigated. It is shown that the developed biosensor can be successfully used for the urea analysis during renal dialysis.

  20. A Novel Conductometric Urea Biosensor with Improved Analytical Characteristic Based on Recombinant Urease Adsorbed on Nanoparticle of Silicalite

    NASA Astrophysics Data System (ADS)

    Velychko, T. P.; Soldatkin, O. O.; Melnyk, V. G.; Marchenko, S. V.; Kirdeciler, S. K.; Akata, B.; Soldatkin, A. P.; El'skaya, A. V.; Dzyadevych, S. V.

    2016-02-01

    Development of a conductometric biosensor for the urea detection has been reported. It was created using a non-typical method of the recombinant urease immobilization via adsorption on nanoporous particles of silicalite. It should be noted that this biosensor has a number of advantages, such as simple and fast performance, the absence of toxic compounds during biosensor preparation, and high reproducibility (RSD = 5.1 %). The linear range of urea determination by using the biosensor was 0.05-15 mM, and a lower limit of urea detection was 20 μM. The bioselective element was found to be stable for 19 days. The characteristics of recombinant urease-based biomembranes, such as dependence of responses on the protein and ion concentrations, were investigated. It is shown that the developed biosensor can be successfully used for the urea analysis during renal dialysis.

  1. A Novel Conductometric Urea Biosensor with Improved Analytical Characteristic Based on Recombinant Urease Adsorbed on Nanoparticle of Silicalite.

    PubMed

    Velychko, T P; Soldatkin, О О; Melnyk, V G; Marchenko, S V; Kirdeciler, S K; Akata, B; Soldatkin, A P; El'skaya, A V; Dzyadevych, S V

    2016-12-01

    Development of a conductometric biosensor for the urea detection has been reported. It was created using a non-typical method of the recombinant urease immobilization via adsorption on nanoporous particles of silicalite. It should be noted that this biosensor has a number of advantages, such as simple and fast performance, the absence of toxic compounds during biosensor preparation, and high reproducibility (RSD = 5.1 %). The linear range of urea determination by using the biosensor was 0.05-15 mM, and a lower limit of urea detection was 20 μM. The bioselective element was found to be stable for 19 days. The characteristics of recombinant urease-based biomembranes, such as dependence of responses on the protein and ion concentrations, were investigated. It is shown that the developed biosensor can be successfully used for the urea analysis during renal dialysis. PMID:26911570

  2. Synthesis of Polydopamine Functionalized Reduced Graphene Oxide-Palladium Nanocomposite for Laccase Based Biosensor

    PubMed Central

    Luo, Lei; Lv, Peng-Fei; Wang, Qing-Qing; Wei, An-Fang

    2016-01-01

    Graphene based 2D nanomaterials have attracted increasing attention in biosensing application due to the outstanding physicochemical properties of graphene. In this work, palladium nanoparticles (Pd) loaded reduced graphene oxide (rGO) hybrid (rGO-Pd) was synthesized through a facile method. Laccase (Lac) was immobilized on rGO-Pd by utilizing the self-polymerization of dopamine, which generated polydopamine (PDA). The PDA-Lac-rGO-Pd nanocomposites were further modified on electrode surface to construct novel biosensing platform. The obtained electrochemical biosensor was applied in the detection of catechol, achieving excellent analytic results. Under the optimum condition, this biosensor possessed a linear range from 0.1 µM to 263 µM for catechol detection, the sensitivity reached 18.4 µA mM−1, and the detection limit was as low as 0.03 µM. In addition, the biosensor also showed good repeatability, reproducibility, anti-interference, and stability. Moreover, the novel Lac based biosensor was successfully used in the trace detection of catechol existing in real water environment. PMID:27478426

  3. Next-generation RNA-based fluorescent biosensors enable anaerobic detection of cyclic di-GMP

    PubMed Central

    Wang, Xin C.; Wilson, Stephen C.; Hammond, Ming C.

    2016-01-01

    Bacteria occupy a diverse set of environmental niches with differing oxygen availability. Anaerobic environments such as mammalian digestive tracts and industrial reactors harbor an abundance of both obligate and facultative anaerobes, many of which play significant roles in human health and biomanufacturing. Studying bacterial function under partial or fully anaerobic conditions, however, is challenging given the paucity of suitable live-cell imaging tools. Here, we introduce a series of RNA-based fluorescent biosensors that respond selectively to cyclic di-GMP, an intracellular bacterial second messenger that controls cellular motility and biofilm formation. We demonstrate the utility of these biosensors in vivo under both aerobic and anaerobic conditions, and we show that biosensor expression does not interfere with the native motility phenotype. Together, our results attest to the effectiveness and versatility of RNA-based fluorescent biosensors, priming further development and application of these and other analogous sensors to study host–microbial and microbial–microbial interactions through small molecule signals. PMID:27382070

  4. A novel signal-off electrochemiluminescence biosensor for the determination of glucose based on double nanoparticles.

    PubMed

    Liu, Linlin; Ma, Qiang; Li, Yang; Liu, ZiPing; Su, Xingguang

    2015-01-15

    In this work, a novel facile signal-off electrochemiluminescence (ECL) biosensor has been developed for the determination of glucose based on the integration of chitosan (CHIT), CdTe quantum dots (CdTe QDs) and Au nanoparticles (Au NPs) on the glassy carbon electrode (GCE). Chitosan displays high water permeability, hydrophilic property, strong hydrogel ability and good adhesion to load the double nanoparticles to the glassy carbon electrode surfaces. Au NPs are efficient glucose oxidase (GOx)-mimickess to catalytically oxidize glucose, similar to the natural process. Upon the addition of glucose, the Au NPs catalyzed glucose to produce gluconic acid and hydrogen peroxide (H2O2) based on the consumption of dissolved oxygen (O2), which resulted in a quenching effect on the ECL emission. Therefore, the determination of glucose could be achieved by monitoring the signal-off ECL biosensor. Under the optimum conditions, the ECL intensity of CdTe QDs and the concentration of glucose have a good linear relationship in the range of 0.01-10 mmol L(-1). The limit of detection for glucose was 5.28 μmol L(-1) (S/N=3). The biosensor showed good sensitivity, selectivity, reproducibility and stability. The proposed biosensor has been employed for the detection of glucose in human serum samples with satisfactory results. PMID:25145985

  5. Synthesis of Polydopamine Functionalized Reduced Graphene Oxide-Palladium Nanocomposite for Laccase Based Biosensor.

    PubMed

    Li, Da-Wei; Luo, Lei; Lv, Peng-Fei; Wang, Qing-Qing; Lu, Ke-Yu; Wei, An-Fang; Wei, Qu-Fu

    2016-01-01

    Graphene based 2D nanomaterials have attracted increasing attention in biosensing application due to the outstanding physicochemical properties of graphene. In this work, palladium nanoparticles (Pd) loaded reduced graphene oxide (rGO) hybrid (rGO-Pd) was synthesized through a facile method. Laccase (Lac) was immobilized on rGO-Pd by utilizing the self-polymerization of dopamine, which generated polydopamine (PDA). The PDA-Lac-rGO-Pd nanocomposites were further modified on electrode surface to construct novel biosensing platform. The obtained electrochemical biosensor was applied in the detection of catechol, achieving excellent analytic results. Under the optimum condition, this biosensor possessed a linear range from 0.1 µM to 263 µM for catechol detection, the sensitivity reached 18.4 µA mM(-1), and the detection limit was as low as 0.03 µM. In addition, the biosensor also showed good repeatability, reproducibility, anti-interference, and stability. Moreover, the novel Lac based biosensor was successfully used in the trace detection of catechol existing in real water environment. PMID:27478426

  6. RNA-Based Fluorescent Biosensors for Live Cell Imaging of Second Messenger Cyclic di-AMP.

    PubMed

    Kellenberger, Colleen A; Chen, Chen; Whiteley, Aaron T; Portnoy, Daniel A; Hammond, Ming C

    2015-05-27

    Cyclic di-AMP (cdiA) is a second messenger predicted to be widespread in Gram-positive bacteria, some Gram-negative bacteria, and Archaea. In the human pathogen Listeria monocytogenes, cdiA is an essential molecule that regulates metabolic function and cell wall homeostasis, and decreased levels of cdiA result in increased antibiotic susceptibility. We have generated fluorescent biosensors for cdiA through fusion of the Spinach2 aptamer to ligand-binding domains of cdiA riboswitches. The biosensor was used to visualize intracellular cdiA levels in live L. monocytogenes strains and to determine the catalytic domain of the phosphodiesterase PdeA. Furthermore, a flow cytometry assay based on this biosensor was used to screen for diadenylate cyclase activity and confirmed the enzymatic activity of DisA-like proteins from Clostridium difficile and Methanocaldococcus jannaschii. Thus, we have expanded the development of RNA-based biosensors for in vivo metabolite imaging in Gram-positive bacteria and have validated the first dinucleotide cyclase from Archaea.

  7. a High-Performance Glucose Biosensor Based on Zno Nanorod Arrays Modified with AU Nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhang, Gong; Lei, Yang; Yan, Xiaoqin

    2012-08-01

    An amperometric glucose biosensor based on vertically aligned ZnO nanorod (NR) arrays modified with Au nanoparticles (NPs) was constructed in a channel-limited way. Au NPs with diameters in the range of 8-10 nm have been successfully synthesized by photoreduction method and were uniformly loaded onto the surface of ZnO NRs that was hydrothermally deposited on the Fluorine doped SnO2 conductive glass (FTO) via electrostatic self-assembly technique. The morphology and structure of Au/ZnO NR arrays were characterized by field-emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectrum analyzer (XPS). The electrocatalytic properties of glucose oxidase (GOD)- immobilized Au/ZnO NR arrays were evaluated by amperometry. Compared with the biosensor based on ZnO NR arrays, the resulting Au/ZnO NR arrays modified biosensor exhibited an expanded linear range from 3 μM to 3 mM with the detection limit of 30 nM and a smaller Michaelis-Menten constant of 0.7836 mM. All these results suggest that the Au NPs can greatly improve the biosensing properties of ZnO NR arrays and therefore Au/ZnO NR arrays provide a promising material for the biosensor designs and other biological applications.

  8. Investigation of a Photoelectrochemical Passivated ZnO-Based Glucose Biosensor

    PubMed Central

    Lee, Ching-Ting; Chiu, Ying-Shuo; Ho, Shu-Ching; Lee, Yao-Jung

    2011-01-01

    A vapor cooling condensation system was used to deposit high quality intrinsic ZnO thin films and intrinsic ZnO nanorods as the sensing membrane of extended-gate field-effect-transistor (EGFET) glucose biosensors. The sensing sensitivity of the resulting glucose biosensors operated in the linear range was 13.4 μA mM−1 cm−2. To improve the sensing sensitivity of the ZnO-based glucose biosensors, the photoelectrochemical method was utilized to passivate the sidewall surfaces of the ZnO nanorods. The sensing sensitivity of the ZnO-based glucose biosensors with passivated ZnO nanorods was significantly improved to 20.33 μA mM−1 cm−2 under the same measurement conditions. The experimental results verified that the sensing sensitivity improvement was the result of the mitigation of the Fermi level pinning effect caused by the dangling bonds and the surface states induced on the sidewall surface of the ZnO nanorods. PMID:22163867

  9. A Potentiometric Formaldehyde Biosensor Based on Immobilization of Alcohol Oxidase on Acryloxysuccinimide-modified Acrylic Microspheres

    PubMed Central

    Ling, Yew Pei; Heng, Lee Yook

    2010-01-01

    A new alcohol oxidase (AOX) enzyme-based formaldehyde biosensor based on acrylic microspheres has been developed. Hydrophobic poly(n-butyl acrylate-N-acryloxy-succinimide) [poly(nBA-NAS)] microspheres, an enzyme immobilization matrix, was synthesized using photopolymerization in an emulsion form. AOX-poly(nBA-NAS) microspheres were deposited on a pH transducer made from a layer of photocured and self-plasticized polyacrylate membrane with an entrapped pH ionophore coated on a Ag/AgCl screen printed electrode (SPE). Oxidation of formaldehyde by the immobilized AOX resulted in the production of protons, which can be determined via the pH transducer. Effects of buffer concentrations, pH and different amount of immobilization matrix towards the biosensor’s analytical performance were investigated. The formaldehyde biosensor exhibited a dynamic linear response range to formaldehyde from 0.3–316.2 mM and a sensitivity of 59.41 ± 0.66 mV/decade (R2 = 0.9776, n = 3). The lower detection limit of the biosensor was 0.3 mM, while reproducibility and repeatability were 3.16% RSD (relative standard deviation) and 1.11% RSD, respectively (n = 3). The use of acrylic microspheres in the potentiometric formaldehyde biosensor improved the biosensor’s performance in terms of response time, linear response range and long term stability when compared with thick film immobilization methods. PMID:22163450

  10. Next-generation RNA-based fluorescent biosensors enable anaerobic detection of cyclic di-GMP.

    PubMed

    Wang, Xin C; Wilson, Stephen C; Hammond, Ming C

    2016-09-30

    Bacteria occupy a diverse set of environmental niches with differing oxygen availability. Anaerobic environments such as mammalian digestive tracts and industrial reactors harbor an abundance of both obligate and facultative anaerobes, many of which play significant roles in human health and biomanufacturing. Studying bacterial function under partial or fully anaerobic conditions, however, is challenging given the paucity of suitable live-cell imaging tools. Here, we introduce a series of RNA-based fluorescent biosensors that respond selectively to cyclic di-GMP, an intracellular bacterial second messenger that controls cellular motility and biofilm formation. We demonstrate the utility of these biosensors in vivo under both aerobic and anaerobic conditions, and we show that biosensor expression does not interfere with the native motility phenotype. Together, our results attest to the effectiveness and versatility of RNA-based fluorescent biosensors, priming further development and application of these and other analogous sensors to study host-microbial and microbial-microbial interactions through small molecule signals.

  11. Ultrasensitive Electrochemical Biosensor for HIV Gene Detection Based on Graphene Stabilized Gold Nanoclusters with Exonuclease Amplification.

    PubMed

    Wang, Yijia; Bai, Xiaoning; Wen, Wei; Zhang, Xiuhua; Wang, Shengfu

    2015-08-26

    Because human immunodeficiency virus (HIV) has been one of the most terrible viruses in recent decades, early diagnosis of the HIV gene is of great importance for all scientists around the world. In our work, we developed a novel electrochemical biosensor based on one-step ultrasonic synthesized graphene stabilized gold nanocluster (GR/AuNC) modified glassy carbon electrode (GCE) with an exonuclease III (Exo III)-assisted target recycling amplification strategy for the detection of HIV DNA. It is the first time that GR/AuNCs have been used as biosensor platform and aptamer with cytosine-rich base set as capture probe to construct the biosensor. With the combination of cytosine-rich capture probe, good conductivity and high surfaces of GR/AuNCs, and Exo III-assisted target recycling amplification, we realized high sensitivity and good selectivity detection of target HIV DNA with a detection limit of 30 aM (S/N = 3). Furthermore, the proposed biosensor has a promising potential application for target detection in human serum analysis.

  12. Next-generation RNA-based fluorescent biosensors enable anaerobic detection of cyclic di-GMP.

    PubMed

    Wang, Xin C; Wilson, Stephen C; Hammond, Ming C

    2016-09-30

    Bacteria occupy a diverse set of environmental niches with differing oxygen availability. Anaerobic environments such as mammalian digestive tracts and industrial reactors harbor an abundance of both obligate and facultative anaerobes, many of which play significant roles in human health and biomanufacturing. Studying bacterial function under partial or fully anaerobic conditions, however, is challenging given the paucity of suitable live-cell imaging tools. Here, we introduce a series of RNA-based fluorescent biosensors that respond selectively to cyclic di-GMP, an intracellular bacterial second messenger that controls cellular motility and biofilm formation. We demonstrate the utility of these biosensors in vivo under both aerobic and anaerobic conditions, and we show that biosensor expression does not interfere with the native motility phenotype. Together, our results attest to the effectiveness and versatility of RNA-based fluorescent biosensors, priming further development and application of these and other analogous sensors to study host-microbial and microbial-microbial interactions through small molecule signals. PMID:27382070

  13. Preparation of graphene oxide-based surface plasmon resonance biosensor with Au bipyramid nanoparticles as sensitivity enhancer.

    PubMed

    Zhang, Jia; Sun, Ying; Wu, Qiong; Gao, Yan; Zhang, Hua; Bai, Yu; Song, Daqian

    2014-04-01

    A sensitive and selective wavelength-modulation surface plasmon resonance (SPR) biosensor based on graphene oxide (GO) and Au bipyramids (AuBPs) is reported for determination of bovine IgM. GO sheets with lengths of 100-300 nm are synthesized and assembled on amine-modified Au film. The large surface area and abundant functional groups of GO allow the efficient immobilization of antibody. AuBPs are nanoparticles with a penta-twinned crystal structure, which have a sharp localized surface plasmon resonance (LSPR) band because of their high monodispersity. In the optimal conditions, the GO-based biosensor with AuBPs as sensitivity enhancers shows a satisfactory response to bovine IgM in the concentration range of 0.03-32 μg mL(-1). For contrast, traditional biosensor, GO-based biosensor and GO-based biosensor with Au nanorods (AuNRs) as sensitivity enhancers for antigen detection were also investigated. Consequently, the as-prepared GO sheets function as promising support for antibody and GO-based SPR biosensor using AuBPs as enhancers has the highest sensitivity among the four types of biosensors.

  14. Design of a macroalgae amperometric biosensor; application to the rapid monitoring of organophosphate insecticides in an agroecosystem.

    PubMed

    Nunes, G S; Lins, J A P; Silva, F G S; Araujo, L C; Silva, F E P S; Mendonça, C D; Badea, M; Hayat, A; Marty, J-L

    2014-09-01

    The immobilization of enzymes onto transducer support is a mature technology and has been successfully implemented to improve biocatalytic processes for diverse applications. However, there exists still need to design more sophisticated and specialized strategies to enhance the functional properties of the biosensors. In this work, a biosensor platform based on innovative fabrication strategy was designed, and employed for the detection of organophosphate (OP) in natural waters. The biosensor was prepared by incorporating acetylcholinesterase enzyme (AChE) to the graphite paste modified with tetracyanoquinodimethane (TCNQ) mediator, along with the use of a macroalgae (Cladaphropsis membranous) as a functional immobilization support. The novel immobilization design resulted in a synergic effect, and led to enhanced stability and sensitivity of the biosensor. The designed biosensor was used to analyze methyl parathion OP insecticide in water samples collected from a demonstrably contaminated lake of São Luis Island, Maranhão, Northeast of Brazil. Water analysis revealed that the aquatic ecosystem was polluted by sub-ppm concentrations of the OP insecticide, and a good correlation was found between values obtained through biosensor and GC-MS techniques. Our results demonstrated that macroalgae-biosensor could be used as a low-cost and sensitive screening method to detect target analyte. PMID:24997974

  15. The stabilization of Au NP-AChE nanocomposites by biosilica encapsulation for the development of a thiocholine biosensor.

    PubMed

    Buiculescu, Raluca; Chaniotakis, Nikos A

    2012-08-01

    We report on the construction of an amperometric biosensor based on the immobilization of the enzyme acetylcholinesterase (AChE) onto gold nanoparticles (Au NPs). The active enzyme is covalently bound directly onto the surface of the Au NPs via a thiol bond. This immobilization provides increased stability and high electron-transfer between the colloidal Au NPs, the catalyst and the transducer surface. To further increase the biosensor stability by protecting the enzyme from denaturation and protease attack, a layer of biosilica was grown around the Au NP enzyme nanocomposite. All steps, i.e., the conjugation of the enzyme to the gold nanoparticles and the encapsulation into biosilica, are monitored and confirmed by ATR-FT-IR spectroscopy. The stabilizing effect of the entrapment was evaluated amperometrically, while the operation of the biosensor was monitored over a period of 4 months. The initial sensitivity of the biosensor was calculated to be 27.58 nA mM(-1) with a linear response to the concentration of the substrate in the range from 0.04 to 0.4 mM. It is thus shown that the biosilica nanocomposites doped with Au NPs-AChE conjugates create a system that provides both signal mediation and significant enzyme stabilization over the existing AChE biosensor. The biosensor had retained all its activity at the end of the 4 months, compared with the normal AChE biosensor whose activity reached 50% after only 42 days of operation.

  16. Design of a macroalgae amperometric biosensor; application to the rapid monitoring of organophosphate insecticides in an agroecosystem.

    PubMed

    Nunes, G S; Lins, J A P; Silva, F G S; Araujo, L C; Silva, F E P S; Mendonça, C D; Badea, M; Hayat, A; Marty, J-L

    2014-09-01

    The immobilization of enzymes onto transducer support is a mature technology and has been successfully implemented to improve biocatalytic processes for diverse applications. However, there exists still need to design more sophisticated and specialized strategies to enhance the functional properties of the biosensors. In this work, a biosensor platform based on innovative fabrication strategy was designed, and employed for the detection of organophosphate (OP) in natural waters. The biosensor was prepared by incorporating acetylcholinesterase enzyme (AChE) to the graphite paste modified with tetracyanoquinodimethane (TCNQ) mediator, along with the use of a macroalgae (Cladaphropsis membranous) as a functional immobilization support. The novel immobilization design resulted in a synergic effect, and led to enhanced stability and sensitivity of the biosensor. The designed biosensor was used to analyze methyl parathion OP insecticide in water samples collected from a demonstrably contaminated lake of São Luis Island, Maranhão, Northeast of Brazil. Water analysis revealed that the aquatic ecosystem was polluted by sub-ppm concentrations of the OP insecticide, and a good correlation was found between values obtained through biosensor and GC-MS techniques. Our results demonstrated that macroalgae-biosensor could be used as a low-cost and sensitive screening method to detect target analyte.

  17. Research and fabrication of integrated bio-sensor for blood analysis based on µTAS

    NASA Astrophysics Data System (ADS)

    En, De; Wei, Jianxia; Tong, Zhengrong; Chen, Caihe; Cui, Yuming; Xu, Kexin; Si, Qin; Li, Chao; Liu, Jie

    2007-01-01

    For simultaneously detecting multi-parameters of blood in the clinical diagnosis, the analysis apparatus should be smaller in size, more reliable and sensitive. So a kind of integrated bio-sensor for blood analysis based on Micro Total Analysis System (μTAS) is presented. It provides modern bio-sensor prospect with a novel technology. A multi-parameters of blood analysis integration sensor is μTAS bio-sensor based on 4 groups of interdigital array (IDA)microelectrodes. The IDA microelectrodes are fabricated on glass substrates by photography, film deposition and other microfabrication techniques. Thin-film gold microelectrode with a thickness of 250nm is deposited on a chromium-adhesion layer. The finger microelectrode width and space are both 10μm. The work space is 2×2cm2. The concentration of Blood sugar, Total Cholesterol, Acetone body and Lactic acid is measured by detecting steady-state limiting currents in IDA microelectrodes modified with enzymes on the "generate-collect" mode. Blood distribution structure is designed and fabricated, to distribute blood and isolate reaction areas. By contrasting two kinds of process flow based on lift-off and etching, etching is adopted to preparation method of microelectrode. A multi-channel apparatus for current measurement is accompleted. The system characteristics of the bio-sensor are tested. The curve of the apparatus time to current response is achieved by testing on real-time. The relationships between parameter concentration and current are analyzed in detail. The experimental data indicates: current measurement dimension 0~40μA, certainty of measurement 0.1μA, the performances of the bio-sensor meets design requirement.

  18. Plasmon based biosensor for distinguishing different peptides mutation states.

    PubMed

    Das, Gobind; Chirumamilla, Manohar; Toma, Andrea; Gopalakrishnan, Anisha; Zaccaria, Remo Proietti; Alabastri, Alessandro; Leoncini, Marco; Di Fabrizio, Enzo

    2013-01-01

    Periodic and reproducible gold nanocuboids with various matrix dimensions and with different inter-particle gaps were fabricated by means of top-down technique. Rhodamine 6G was used as a probe molecule to optimize the design and the fabrication of the cuboid nanostructures. The electric field distribution for the nanocuboids with varying matrix dimensions/inter-particle gap was also investigated. These SERS devices were employed as biosensors through the investigation of both myoglobin and wild/mutated peptides. The results demonstrate the probing and the screening of wild/mutated BRCA1 peptides, thus opening a path for the fabrication of simple and cheap SERS device capable of early detection of several diseases.

  19. Zirconia grafted carbon nanotubes based biosensor for M. Tuberculosis detection

    NASA Astrophysics Data System (ADS)

    Das, Maumita; Dhand, Chetna; Sumana, G.; Srivastava, A. K.; Vijayan, N.; Nagarajan, R.; Malhotra, B. D.

    2011-10-01

    Zirconia (ZrO2) grafted multiwalled carbon nanotubes (CNTs) (crystallite size of ZrO2 ˜ 28.63 nm), obtained via isothermal hydrolysis of zirconium oxychloride in presence of CNT, have been electrophoretically deposited onto indium-tin-oxide (ITO) coated glass plate. High resolution electron microscopic investigations reveal assemblage of the ZrO2 nanostructure inside and around CNT cavities. Electrochemical impedance spectroscopic studies indicate ˜3.5 fold enhancement in charge transfer behaviour of NanoZrO2-CNT/ITO electrode compared to that of NanoZrO2/ITO electrode. Considering the synergy between biocompatible ZrO2 and electrochemically superior CNT, this nanobiocomposite has been explored to develop an impedimetric nucleic acid biosensor for M. Tuberculosis detection.

  20. Plasmon based biosensor for distinguishing different peptides mutation states

    NASA Astrophysics Data System (ADS)

    Das, Gobind; Chirumamilla, Manohar; Toma, Andrea; Gopalakrishnan, Anisha; Zaccaria, Remo Proietti; Alabastri, Alessandro; Leoncini, Marco; di Fabrizio, Enzo

    2013-05-01

    Periodic and reproducible gold nanocuboids with various matrix dimensions and with different inter-particle gaps were fabricated by means of top-down technique. Rhodamine 6G was used as a probe molecule to optimize the design and the fabrication of the cuboid nanostructures. The electric field distribution for the nanocuboids with varying matrix dimensions/inter-particle gap was also investigated. These SERS devices were employed as biosensors through the investigation of both myoglobin and wild/mutated peptides. The results demonstrate the probing and the screening of wild/mutated BRCA1 peptides, thus opening a path for the fabrication of simple and cheap SERS device capable of early detection of several diseases.

  1. Nuclear track-based biosensors with the enzyme laccase

    NASA Astrophysics Data System (ADS)

    García-Arellano, H.; Fink, D.; Muñoz Hernández, G.; Vacík, J.; Hnatowicz, V.; Alfonta, L.

    2014-08-01

    A new type of biosensors for detecting phenolic compounds is presented here. These sensors consist of thin polymer foils with laccase-clad etched nuclear tracks. The presence of suitable phenolic compounds in the sensors leads to the formation of enzymatic reaction products in the tracks, which differ in their electrical conductivities from their precursor materials. These differences correlate with the concentrations of the phenolic compounds. Corresponding calibration curves have been established for a number of compounds. The sensors thus produced are capable to cover between 5 and 9 orders of magnitude in concentration - in the best case down to some picomoles. The sensor's detection sensitivity strongly depends on the specific compound. It is highest for caffeic acid and acid blue 74, followed by ABTS and ferulic acid.

  2. Aptamer-based competitive electrochemical biosensor for brevetoxin-2.

    PubMed

    Eissa, Shimaa; Siaj, Mohamed; Zourob, Mohammed

    2015-07-15

    Brevetoxins (BTXs) are very potent marine neurotoxins that increased in geographical distribution in the past decade causing the illness clinically described as neurological shellfish poisoning (NSP). The ethical problems as well as the technical difficulties associated with the currently employed analysis methods for marine toxins are encouraging the research for suitable alternatives to be applied in a regulatory monitoring regime. Here, we report an electrochemical biosensor platform for BTX-2 detection utilising aptamer as specific receptor. Using in vitro selection, high affinity DNA aptamers to BTX-2 were successfully selected for the first time from a large pool of random sequences. The binding of BTX-2 to aptamer pools/clones was monitored using fluorescence and electrochemical impedance spectroscopy (EIS). The aptamer BT10 exhibited the highest binding affinity to BTX-2, with a dissociation constant of 42nM. The effects of the incubation time, pH and metal ions concentrations on the aptamer-toxin binding were studied. The aptamer BT10 was used to construct a label-free competitive impedimetric biosensor for BTX-2 achieving a detection limit of 106pg/ml. We observed a high degree of cross reactivity of the selected aptamer to the two similar congeners, BTX-2 and -3, whereas no cross reactivity to other marine toxins was obtained. Moreover, the aptasensor was applied for the detection of BTX-2 in spiked shellfish extract showing a very high recovery percentage. We believe that the proposed aptasensor will facilitate the routine detection of BTX-2 in food samples.

  3. Nanoparticle-based lateral flow biosensor for visual detection of fish nervous necrosis virus amplification products.

    PubMed

    Toubanaki, Dimitra K; Margaroni, Maritsa; Karagouni, Evdokia

    2015-06-01

    Lateral flow paper biosensors are an attractive analytical platform for detection of human and veterinary disease pathogens because they are optimal for accurate, rapid and sensitive analysis in research laboratory setups, as well as field analysis. Since diseases of viral etiology have been wreaking havoc in aquaculture industry, as well as the environment, the present study aims at the development of a gold nanoparticle-based biosensor for fish nervous necrosis virus (Nodavirus) nucleic acids detection. Total viral RNA, isolated from fish samples was subjected to reverse transcription PCR amplification. The PCR products were mixed with a specific oligonucleotide probe and applied next to oligonucleotide conjugated Au NPs. A red test line was formed when nodavirus product was present. The visual detection of the RT-PCR product was completed within 20 min. Following optimization, the biosensor was able to visually detect 270 pg of nodavirus initial total RNA. The present study describes a simple, accurate, robust and low cost method for nodavirus detection in biological samples. Apart contribution on basic research, the proposed biosensor offers great potential for commercial kit development for use on the site of fish culture by fish farmers. This fact will have great impact on environmental safety and disease monitoring without time consuming and costly procedures. PMID:25797786

  4. Amperometric Glucose Biosensor Based on Self-Assembling Glucose Oxidase on Carbon Nanotubes

    SciTech Connect

    Liu, Guodong; Lin, Yuehe

    2006-01-01

    A flow injection amperometric glucose biosensor based on electrostatic self-assembling glucose oxidase (GOx) on a carbon nanotube (CNT)-modified glassy carbon transducer is described. GOx is immobilized on the negatively charged CNT surface by alternatively assembling a cationic polydiallyldimethylammonium chloride (PDDA) layer and a GOx layer. The unique sandwich-like layer structure (PDDA/GOx/PDDA/CNT) formed by self-assembling provides a favorable microenvironment to keep the bioactivity of GOx and to prevent enzyme molecule leakage. The direct electrochemistry behavior of GOx and electrocatalysis of H2O2 on the fabricated PDDA/GOx/PDDA/CNT electrode demonstrated that such a biosensor fabrication method preserves the activity of enzyme molecules and the mechanical and electrocatalytic properties of carbon nanotubes, enabling sensitive determination of glucose. Flow injection amperometric detection of glucose is carried out at -100 mV (vs Ag/AgCl) in 0.05 M phosphate buffer solution (pH 7.4) with wide linear response range of 15 uM- 6 mM and a detection limit of 7 uM. The PDDA/GOx/PDDA/CNT/GC biosensor showed excellent properties for the sensitive determination of glucose with good reproducibility, remarkable stability, and free of interference from other co-existing electroactive species. The present methods can be applied to assemble other enzyme molecules and biological molecules, such as antibody, antigen, and DNA, to the CNT surface for wide biosensor and bioassay applications.

  5. Amperometric Enzyme-Based Biosensors for Application in Food and Beverage Industry

    NASA Astrophysics Data System (ADS)

    Csöoregi, Elisabeth; Gáspñr, Szilveszter; Niculescu, Mihaela; Mattiasson, Bo; Schuhmann, Wolfgang

    Continuous, sensitive, selective, and reliable monitoring of a large variety of different compounds in various food and beverage samples is of increasing importance to assure a high-quality and tracing of any possible source of contamination of food and beverages. Most of the presently used classical analytical methods are often requiring expensive instrumentation, long analysis times and well-trained staff. Amperometric enzyme-based biosensors on the other hand have emerged in the last decade from basic science to useful tools with very promising application possibilities in food and beverage industry. Amperometric biosensors are in general highly selective, sensitive, relatively cheap, and easy to integrate into continuous analysis systems. A successful application of such sensors for industrial purposes, however, requires a sensor design, which satisfies the specific needs of monitoring the targeted analyte in the particular application, Since each individual application needs different operational conditions and sensor characteristics, it is obvious that biosensors have to be tailored for the particular case. The characteristics of the biosensors are depending on the used biorecognition element (enzyme), nature of signal transducer (electrode material) and the communication between these two elements (electron-transfer pathway).

  6. Poly(neutral red) based hydrogen peroxide biosensor for chromium determination by inhibition measurements.

    PubMed

    Attar, Aisha; Emilia Ghica, M; Amine, Aziz; Brett, Christopher M A

    2014-08-30

    Amperometric hydrogen peroxide enzyme inhibition biosensors based on horseradish peroxidase (HRP) immobilised on electropolymerised neutral red (NR) or directly on the surface of carbon film electrodes (CFE) have been successfully applied to the determination of toxic Cr(III) and Cr(VI). Parameters influencing the performance of the biosensor including the enzyme immobilisation method, the amount of hydrogen peroxide, applied potential and electrolyte pH were optimised. The inhibition of horseradish peroxidase by the chromium species was studied under the optimised conditions. Results from the quantitative analysis of chromium ions are discussed in terms of detection limit, linear range and sensitivity. The HRP kinetic interactions reveal mixed binding of Cr(III) with I50=3.8μM and inhibition binding constant Ki=11.3μM at HRP/PNR/CFE biosensors and uncompetitive binding of Cr(VI) with I50=3.9μM and Ki=0.78μM at HRP/CFE biosensors in the presence of H2O2 substrate. Interferences from other heavy metal ions were studied and the inhibition show very good selectivity towards Cr(III) and Cr(VI).

  7. Zirconia-poly(propylene imine) dendrimer nanocomposite based electrochemical urea biosensor.

    PubMed

    Shukla, Sudheesh K; Mishra, Ajay K; Mamba, Bhekie B; Arotiba, Omotayo A

    2014-11-01

    In this article we report a selective urea electrochemical biosensor based on electro-co-deposited zirconia-polypropylene imine dendrimer (ZrO2-PPI) nanocomposite modified screen printed carbon electrode (SPCE). ZrO2 nanoparticles, prepared by modified sol-gel method were dispersed in PPI solution, and electro-co-deposited by cyclic voltammetry onto a SPCE surface. The material and the modified electrodes were characterised using FTIR, electron microscopy and electrochemistry. The synergistic effect of the high active surface area of both materials, i.e. PPI and ZrO2 nanoparticles, gave rise to a remarkable improvement in the electrocatalytic properties of the biosensor and aided the immobilisation of the urease enzyme. The biosensor has an ampereometric response time of ∼4 s in urea concentration ranging from 0.01 mM to 2.99 mM with a correlation coefficient of 0.9985 and sensitivity of 3.89 μA mM(-1) cm(-2). The biosensor was selective in the presence of interferences. Photochemical study of the immobilised enzyme revealed high stability and reactivity.

  8. High-throughput determination of biochemical oxygen demand (BOD) by a microplate-based biosensor.

    PubMed

    Pang, Hei-Leung; Kwok, Nga-Yan; Chan, Pak-Ho; Yeung, Chi-Hung; Lo, Waihung; Wong, Kwok-Yin

    2007-06-01

    The use of the conventional 5-day biochemical oxygen demand (BOD5) method in BOD determination is greatly hampered by its time-consuming sampling procedure and its technical difficulty in the handling of a large pool of wastewater samples. Thus, it is highly desirable to develop a fast and high-throughput biosensor for BOD measurements. This paper describes the construction of a microplate-based biosensor consisting of an organically modified silica (ORMOSIL) oxygen sensing film for high-throughput determination of BOD in wastewater. The ORMOSIL oxygen sensing film was prepared by reacting tetramethoxysilane with dimethyldimethoxysilane in the presence of the oxygen-sensitive dye tris(4,7-diphenyl-1,10-phenanthroline)ruthenium-(II) chloride. The silica composite formed a homogeneous, crack-free oxygen sensing film on polystyrene microtiter plates with high stability, and the embedded ruthenium dye interacted with the dissolved oxygen in wastewater according to the Stern-Volmer relation. The bacterium Stenotrophomonas maltophilia was loaded into the ORMOSIL/ PVA composite (deposited on the top of the oxygen sensing film) and used to metabolize the organic compounds in wastewater. This BOD biosensor was found to be able to determine the BOD values of wastewater samples within 20 min by monitoring the dissolved oxygen concentrations. Moreover, the BOD values determined by the BOD biosensor were in good agreement with those obtained by the conventional BOD5 method.

  9. Superior long-term stability of a glucose biosensor based on inserted barrel plating gold electrodes.

    PubMed

    Hsu, Cheng-Teng; Hsiao, Hung-Chan; Fang, Mei-Yen; Zen, Jyh-Myng

    2009-10-15

    Disposable one shot usage blood glucose strips are routinely used in the diagnosis and management of diabetes mellitus and their performance can vary greatly. In this paper we critically evaluated the long-term stability of glucose strips made of barrel plating gold electrodes. Compared to other glucose biosensing platforms of vapor deposited palladium and screen printed carbon electrodes, the proposed glucose biosensor was found to show the best stability among the three biosensing platforms in thermal acceleration experiments at 40 degrees C for 6 months with an average bias of 3.4% at glucose concentrations of 5-20 mM. The precision test of this barrel plating gold glucose biosensor also showed the best performance (coefficients of variation in the range of 1.4-2.4%) in thermal acceleration experiments at 40 degrees C, 50 degrees C and 70 degrees C for 27 days. Error grid analysis revealed that all measurements fell in zone A and zone B. Regression analysis showed no significant difference between the proposed biosensor and the reference method at 99% confidence level. The amperometric glucose biosensor fabricated by inserting two barrel plating gold electrodes onto an injection-molding plastic base followed by immobilizing with a bio-reagent layer and membrane was very impressive with a long-term stability up to 2.5 years at 25 degrees C. Overall, these results indicated that the glucose oxidase/barrel plating gold biosensing platform is ideal for long-term accurate glycemic control.

  10. Characterization of an organic phase peroxide biosensor based on horseradish peroxidase immobilized in Eastman AQ.

    PubMed

    Konash, Anastassija; Magner, Edmond

    2006-07-15

    Due to their frequent occurrence in food, cosmetics and pharmaceutical products, and their poor solubility in water, the detection of peroxides in organic solvents has aroused significant interest. For diagnostics or on-site testing, a fast and specific experimental approach is required. Although aqueous peroxide biosensors are well known, they are usually not suitable for nonaqueous applications due to their instability. Here we describe an organic phase biosensor for hydrogen peroxide based on horseradish peroxidase immobilized in an Eastman AQ 55 polymer matrix. Rotating disc amperometry was used to examine the effect of the solvent properties, the amount and pH of added buffer, the concentration of peroxide and ferrocene dimethanol, and the amount of Eastman AQ 55 and of enzyme on the response of the biosensor to hydrogen peroxide. The response of the biosensor was limited by diffusion. Linear responses (with detection limits to hydrogen peroxide given in parentheses) were obtained in methanol (1.2 microM), ethanol (0.6 microM), 1-propanol (2.8 microM), acetone (1.4 microM), acetonitrile (2.6 microM), and ethylene glycol (13.6 microM). The rate of diffusion of ferrocene dimethanol was more constrained than the rate of diffusion of hydrogen peroxide, resulting in a comparatively narrow linear range. The main advantages of the sensor are its ease of use and a high degree of reproducibility, together with good operational and storage stability.

  11. Multianalyte pin-printed biosensor arrays based on protein-doped xerogels.

    PubMed

    Cho, Eun Jeong; Tao, Zunyu; Tehan, Elizabeth C; Bright, Frank V

    2002-12-15

    We report the first biosensor arrays based on pin printing protein-doped xerogels. The individual biosensor elements are on the order of 100 microm in diameter. Arrays are formed (1) onto a planar substrate that is excited by an external source (laser) or (2) directly on the face of a light-emitting diode. We illustrate the potential of our approach by fabricating, testing, and characterizing four types of pin-printed biosensor arrays (PPBSA) for the simultaneous detection of glucose and O2. The analytically reliable operating ranges for the PPBSAs are 0.1-10 mM for glucose and 0.1-100% for O2. The PPBSAs exhibit short- and long-term reproducibilities of no worse than 4 and 8%, respectively. The overall array-to-array response reproducibilities are < or = 12%. These results demonstrate for the first time the combination sol-gel processing and pin printing methods as a way to rapidly form ensembles of integrated, reusable, and stable biosensor arrays for simultaneous multianalyte detection. PMID:12510736

  12. A novel cell-based hybrid acoustic wave biosensor with impedimetric sensing capabilities.

    PubMed

    Liu, Fei; Li, Fang; Nordin, Anis Nurashikin; Voiculescu, Ioana

    2013-03-04

    A novel multiparametric biosensor system based on living cells will be presented. The biosensor system includes two biosensing techniques on a single device: resonant frequency measurements and electric cell-substrate impedance sensing (ECIS). The multiparametric sensor system is based on the innovative use of the upper electrode of a quartz crystal microbalance (QCM) resonator as working electrode for the ECIS technique. The QCM acoustic wave sensor consists of a thin AT-cut quartz substrate with two gold electrodes on opposite sides. For integration of the QCM with the ECIS technique a semicircular counter electrode was fabricated near the upper electrode on the same side of the quartz crystal. Bovine aortic endothelial live cells (BAECs) were successfully cultured on this hybrid biosensor. Finite element modeling of the bulk acoustic wave resonator using COMSOL simulations was performed. Simultaneous gravimetric and impedimetric measurements performed over a period of time on the same cell culture were conducted to validate the device's sensitivity. The time necessary for the BAEC cells to attach and form a compact monolayer on the biosensor was 35~45 minutes for 1.5 × 10(4) cells/cm2 BAECs; 60 minutes for 2.0 × 10(4) cells/cm2 BAECs; 70 minutes for 3.0 × 10(4) cells/cm2 BAECs; and 100 minutes for 5.0 × 104 cells/cm2 BAECs. It was demonstrated that this time is the same for both gravimetric and impedimetric measurements. This hybrid biosensor will be employed in the future for water toxicity detection.

  13. Single Walled Carbon Nanotube-Based Electrical Biosensor for the Label-Free Detection of Pathogenic Bacteria.

    PubMed

    Yoo, Seung Min; Baek, Youn-Kyoung; Shin, SunHaeRa; Kim, Ju-Hyun; Jung, Hee-Tae; Choi, Yang-Kyu; Lee, Sang Yup

    2016-06-01

    We herein describe the development of a single-walled carbon nanotube (SWNT)-based electrical biosensor consisting of a two-terminal resistor, and report its use for the specific, label-free detection of pathogenic bacteria via changes in conductance. The ability of this biosensor to recognize different pathogenic bacteria was analyzed, and conditions were optimized with different probe concentrations. Using this system, the reference strains and clinical isolates of Staphylococcus aureus and Escherichia coli were successfully detected; in both cases, the sensor showed a detection limit of 10 CFU. This SWNT-based electrical biosensor will prove useful for the development of highly sensitive and specific handheld pathogen detectors.

  14. Quantitative measurement of cerebral acetylcholinesterase using.

    PubMed

    Blomqvist, G; Tavitian, B; Pappata, S; Crouzel, C; Jobert, A; Doignon, I; Di Giamberardino, L

    2001-02-01

    [11C]physostigmine, an acetylcholinesterase inhibitor, has been shown to be a promising positron emission tomography ligand to quantify the cerebral concentration of the enzyme in animals and humans in vivo. Here, a quantitative and noninvasive method to measure the regional acetylcholinesterase concentration in the brain is presented. The method is based on the observation that the ratio between regions rich in acetylcholinesterase and white matter, a region almost entirely deprived of this enzyme, was found to become approximately constant after 20 to 30 minutes, suggesting that at late time points the uptake mainly contains information about the distribution volume. Taking the white matter as the reference region, a simplified reference tissue model, with effectively one reversible tissue compartment and three parameters, was found to give a good description of the data in baboons. One of these parameters, the ratio between the total distribution volumes in the target and reference regions, showed a satisfactory correlation with the acetylcholinesterase concentration measured postmortem in two baboon brains. Eight healthy male subjects were also analyzed and the regional enzyme concentrations obtained again showed a good correlation with the known acetylcholinesterase concentrations measured in postmortem studies of human brain.

  15. High-efficient and high-content cytotoxic recording via dynamic and continuous cell-based impedance biosensor technology.

    PubMed

    Hu, Ning; Fang, Jiaru; Zou, Ling; Wan, Hao; Pan, Yuxiang; Su, Kaiqi; Zhang, Xi; Wang, Ping

    2016-10-01

    Cell-based bioassays were effective method to assess the compound toxicity by cell viability, and the traditional label-based methods missed much information of cell growth due to endpoint detection, while the higher throughputs were demanded to obtain dynamic information. Cell-based biosensor methods can dynamically and continuously monitor with cell viability, however, the dynamic information was often ignored or seldom utilized in the toxin and drug assessment. Here, we reported a high-efficient and high-content cytotoxic recording method via dynamic and continuous cell-based impedance biosensor technology. The dynamic cell viability, inhibition ratio and growth rate were derived from the dynamic response curves from the cell-based impedance biosensor. The results showed that the biosensors has the dose-dependent manners to diarrhetic shellfish toxin, okadiac acid based on the analysis of the dynamic cell viability and cell growth status. Moreover, the throughputs of dynamic cytotoxicity were compared between cell-based biosensor methods and label-based endpoint methods. This cell-based impedance biosensor can provide a flexible, cost and label-efficient platform of cell viability assessment in the shellfish toxin screening fields. PMID:27647147

  16. High-efficient and high-content cytotoxic recording via dynamic and continuous cell-based impedance biosensor technology.

    PubMed

    Hu, Ning; Fang, Jiaru; Zou, Ling; Wan, Hao; Pan, Yuxiang; Su, Kaiqi; Zhang, Xi; Wang, Ping

    2016-10-01

    Cell-based bioassays were effective method to assess the compound toxicity by cell viability, and the traditional label-based methods missed much information of cell growth due to endpoint detection, while the higher throughputs were demanded to obtain dynamic information. Cell-based biosensor methods can dynamically and continuously monitor with cell viability, however, the dynamic information was often ignored or seldom utilized in the toxin and drug assessment. Here, we reported a high-efficient and high-content cytotoxic recording method via dynamic and continuous cell-based impedance biosensor technology. The dynamic cell viability, inhibition ratio and growth rate were derived from the dynamic response curves from the cell-based impedance biosensor. The results showed that the biosensors has the dose-dependent manners to diarrhetic shellfish toxin, okadiac acid based on the analysis of the dynamic cell viability and cell growth status. Moreover, the throughputs of dynamic cytotoxicity were compared between cell-based biosensor methods and label-based endpoint methods. This cell-based impedance biosensor can provide a flexible, cost and label-efficient platform of cell viability assessment in the shellfish toxin screening fields.

  17. Determination of Ammonium Ion Using a Reagentless Amperometric Biosensor Based on Immobilized Alanine Dehydrogenase

    PubMed Central

    Tan, Ling Ling; Musa, Ahmad; Lee, Yook Heng

    2011-01-01

    The use of the enzyme alanine dehydrogenase (AlaDH) for the determination of ammonium ion (NH4+) usually requires the addition of pyruvate substrate and reduced nicotinamide adenine dinucleotide (NADH) simultaneously to effect the reaction. This addition of reagents is inconvenient when an enzyme biosensor based on AlaDH is used. To resolve the problem, a novel reagentless amperometric biosensor using a stacked methacrylic membrane system coated onto a screen-printed carbon paste electrode (SPE) for NH4+ ion determination is described. A mixture of pyruvate and NADH was immobilized in low molecular weight poly(2-hydroxyethyl methacrylate) (pHEMA) membrane, which was then deposited over a photocured pHEMA membrane (photoHEMA) containing alanine dehydrogenase (AlaDH) enzyme. Due to the enzymatic reaction of AlaDH and the pyruvate substrate, NH4+ was consumed in the process and thus the signal from the electrocatalytic oxidation of NADH at an applied potential of +0.55 V was proportional to the NH4+ ion concentration under optimal conditions. The stacked methacrylate membranes responded rapidly and linearly to changes in NH4+ ion concentrations between 10–100 mM, with a detection limit of 0.18 mM NH4+ ion. The reproducibility of the amperometrical NH4+ biosensor yielded low relative standard deviations between 1.4–4.9%. The stacked membrane biosensor has been successfully applied to the determination of NH4+ ion in spiked river water samples without pretreatment. A good correlation was found between the analytical results for NH4+ obtained from the biosensor and the Nessler spectrophotometric method. PMID:22163699

  18. Protein-Based Graphene Biosensors: Optimizing Artificial Chemoreception in Bilayer Lipid Membranes.

    PubMed

    Siontorou, Christina G; Georgopoulos, Konstantinos N; Nikoleli, Georgia-Paraskevi; Nikolelis, Dimitrios P; Karapetis, Stefanos K; Bratakou, Spyridoula

    2016-09-07

    Proteinaceous moieties are critical elements in most detection systems, including biosensing platforms. Their potential is undoubtedly vast, yet many issues regarding their full exploitation remain unsolved. On the other hand, the biosensor formats with the higher marketability probabilities are enzyme in nature and electrochemical in concept. To no surprise, alternative materials for hosting catalysis within an electrode casing have received much attention lately to demonstrate a catalysis-coated device. Graphene and ZnO are presented as ideal materials to modify electrodes and biosensor platforms, especially in protein-based detection. Our group developed electrochemical sensors based on these nanomaterials for the sensitive detection of cholesterol using cholesterol oxidase incorporated in stabilized lipid films. A comparison between the two platforms is provided and discussed. In a broader sense, the not-so-remote prospect of quickly assembling a protein-based flexible biosensing detector to fulfill site-specific requirements is appealing to both university researchers and industry developers.

  19. A Critical Review of Glucose Biosensors Based on Carbon Nanomaterials: Carbon Nanotubes and Graphene

    PubMed Central

    Zhu, Zhigang; Garcia-Gancedo, Luis; Flewitt, Andrew J.; Xie, Huaqing; Moussy, Francis; Milne, William I.

    2012-01-01

    There has been an explosion of research into the physical and chemical properties of carbon-based nanomaterials, since the discovery of carbon nanotubes (CNTs) by Iijima in 1991. Carbon nanomaterials offer unique advantages in several areas, like high surface-volume ratio, high electrical conductivity, chemical stability and strong mechanical strength, and are thus frequently being incorporated into sensing elements. Carbon nanomaterial-based sensors generally have higher sensitivities and a lower detection limit than conventional ones. In this review, a brief history of glucose biosensors is firstly presented. The carbon nanotube and grapheme-based biosensors, are introduced in Sections 3 and 4, respectively, which cover synthesis methods, up-to-date sensing approaches and nonenzymatic hybrid sensors. Finally, we briefly outline the current status and future direction for carbon nanomaterials to be used in the sensing area. PMID:22778628

  20. Protein-Based Graphene Biosensors: Optimizing Artificial Chemoreception in Bilayer Lipid Membranes.

    PubMed

    Siontorou, Christina G; Georgopoulos, Konstantinos N; Nikoleli, Georgia-Paraskevi; Nikolelis, Dimitrios P; Karapetis, Stefanos K; Bratakou, Spyridoula

    2016-01-01

    Proteinaceous moieties are critical elements in most detection systems, including biosensing platforms. Their potential is undoubtedly vast, yet many issues regarding their full exploitation remain unsolved. On the other hand, the biosensor formats with the higher marketability probabilities are enzyme in nature and electrochemical in concept. To no surprise, alternative materials for hosting catalysis within an electrode casing have received much attention lately to demonstrate a catalysis-coated device. Graphene and ZnO are presented as ideal materials to modify electrodes and biosensor platforms, especially in protein-based detection. Our group developed electrochemical sensors based on these nanomaterials for the sensitive detection of cholesterol using cholesterol oxidase incorporated in stabilized lipid films. A comparison between the two platforms is provided and discussed. In a broader sense, the not-so-remote prospect of quickly assembling a protein-based flexible biosensing detector to fulfill site-specific requirements is appealing to both university researchers and industry developers. PMID:27618113

  1. Protein-Based Graphene Biosensors: Optimizing Artificial Chemoreception in Bilayer Lipid Membranes

    PubMed Central

    Siontorou, Christina G.; Georgopoulos, Konstantinos N.; Nikoleli, Georgia-Paraskevi; Nikolelis, Dimitrios P.; Karapetis, Stefanos K.; Bratakou, Spyridoula

    2016-01-01

    Proteinaceous moieties are critical elements in most detection systems, including biosensing platforms. Their potential is undoubtedly vast, yet many issues regarding their full exploitation remain unsolved. On the other hand, the biosensor formats with the higher marketability probabilities are enzyme in nature and electrochemical in concept. To no surprise, alternative materials for hosting catalysis within an electrode casing have received much attention lately to demonstrate a catalysis-coated device. Graphene and ZnO are presented as ideal materials to modify electrodes and biosensor platforms, especially in protein-based detection. Our group developed electrochemical sensors based on these nanomaterials for the sensitive detection of cholesterol using cholesterol oxidase incorporated in stabilized lipid films. A comparison between the two platforms is provided and discussed. In a broader sense, the not-so-remote prospect of quickly assembling a protein-based flexible biosensing detector to fulfill site-specific requirements is appealing to both university researchers and industry developers. PMID:27618113

  2. Glucose biosensor based on multisegment nanowires exhibiting reversible magnetic control.

    PubMed

    Gerola, Gislaine P; Takahashi, Giovanna S; Perez, Geraldo G; Recco, Lucas C; Pedrosa, Valber A

    2014-11-01

    We describe the amperometric detection of glucose using oriented nanowires with magnetic switching of the bioelectrochemical process. The fabrication process of the nanowires was prepared through controlled nucleation and growth during a stepwise electrochemical deposition, and it was characterized using scanning electron microscopy. Cyclic voltammetry and amperometry were used to study the magnetoswitchable property; this control was accomplished by changing the surface orientation of nanowires. Under the optimal condition, the amperometric response was also linear up to a glucose concentration of 0.1-16.0 mmol L(-1) with a sensitivity of 81 μA mM(-1). The detection limit was estimated for 4.8×10(-8) mol L(-1), defined from a signal/noise ratio of 3. It also exhibits good reproducibility and high selectivity with insignificant interference from ascorbic acid, acetoaminophen, and uric acid. The resulting biosensor was applied to detect the blood sugar in human serum samples without any pretreatment, and the results were comparatively in agreement with the clinical assay. PMID:25127595

  3. Enzyme Biosensor Based on an Electropolymerized Osmium Redox Polymer

    NASA Astrophysics Data System (ADS)

    Tsujimoto, Masaki; Maruyama, Kenichi; Mishima, Yuji; Motonaka, Junko

    Electrochemical polymerizations of metal complex as electron mediator in aqueous solution have been developed. The metal complexes as electron mediator of biosensor for practical application have a rapid electron transfer rate, a chemical stability, and an accessible manipulation. The electro-polymerized redox polymer relatively decreased the enzyme and catalytic activity, although these could be treated in organic solvent. In this work, the water-soluble osmium complex-modified pyrrole derivatives with long, flexible spacer chain were synthesized. The electro-polymerized redox polymer was generally produced by potential sweep copolymerization (-400 mV -/+1200 mV (vs. Ag|AgCl(sat.KCl))) of water-soluble osmium complex-modified pyrrole monomer and glucose oxidase (GOD) on the top of a Pt electrode in aqueous solution. With the electro-polymerized osmium redox polymer modified electrode, calibration graphs for measurements of glucose and the effect of concomitant compounds, dissolved oxygen and the lifetimes of the sensor were electrochemistry examined, respectively. Under optimal conditions, the response of the sensors was in the concentration ranges of 0.6 mM-100 mM for glucose.

  4. Fabrication of polyimide based microfluidic channels for biosensor devices

    NASA Astrophysics Data System (ADS)

    Zulfiqar, Azeem; Pfreundt, Andrea; Svendsen, Winnie Edith; Dimaki, Maria

    2015-03-01

    The ever-increasing complexity of the fabrication process of Point-of-care (POC) devices, due to high demand of functional versatility, compact size and ease-of-use, emphasizes the need of multifunctional materials that can be used to simplify this process. Polymers, currently in use for the fabrication of the often needed microfluidic channels, have limitations in terms of their physicochemical properties. Therefore, the use of a multipurpose biocompatible material with better resistance to the chemical, thermal and electrical environment, along with capability of forming closed channel microfluidics is inevitable. This paper demonstrates a novel technique of fabricating microfluidic devices using polyimide (PI) which fulfills the aforementioned properties criteria. A fabrication process to pattern microfluidic channels, using partially cured PI, has been developed by using a dry etching method. The etching parameters are optimized and compared to those used for fully cured PI. Moreover, the formation of closed microfluidic channel on wafer level by bonding two partially cured PI layers or a partially cured PI to glass with high bond strength has been demonstrated. The reproducibility in uniformity of PI is also compared to the most commonly used SU8 polymer, which is a near UV sensitive epoxy resin. The potential applications of PI processing are POC and biosensor devices integrated with microelectronics.

  5. Transcription factor-based biosensors enlightened by the analyte

    PubMed Central

    Fernandez-López, Raul; Ruiz, Raul; de la Cruz, Fernando; Moncalián, Gabriel

    2015-01-01

    Whole cell biosensors (WCBs) have multiple applications for environmental monitoring, detecting a wide range of pollutants. WCBs depend critically on the sensitivity and specificity of the transcription factor (TF) used to detect the analyte. We describe the mechanism of regulation and the structural and biochemical properties of TF families that are used, or could be used, for the development of environmental WCBs. Focusing on the chemical nature of the analyte, we review TFs that respond to aromatic compounds (XylS-AraC, XylR-NtrC, and LysR), metal ions (MerR, ArsR, DtxR, Fur, and NikR) or antibiotics (TetR and MarR). Analyzing the structural domains involved in DNA recognition, we highlight the similitudes in the DNA binding domains (DBDs) of these TF families. Opposite to DBDs, the wide range of analytes detected by TFs results in a diversity of structures at the effector binding domain. The modular architecture of TFs opens the possibility of engineering TFs with hybrid DNA and effector specificities. Yet, the lack of a crisp correlation between structural domains and specific functions makes this a challenging task. PMID:26191047

  6. Determination of endotoxin through an aptamer-based impedance biosensor.

    PubMed

    Su, Wenqiong; Lin, Meng; Lee, Hyuck; Cho, MiSuk; Choe, Woo-Seok; Lee, Youngkwan

    2012-02-15

    Lipopolysaccharide (LPS) often referred to endotoxin is an undesirable impurity frequently entrained with various recombinant protein therapeutics and plasmid DNA (pDNA) vaccines of bacterial origin. The inherent toxicities (e.g. fever, hypotension, shock and death) of LPS render its early and sensitive detection essential for several biological assays and/or parenteral administrations of biotherapeutics. In this study, an electrochemical biosensor using an LPS specific single stranded DNA (ssDNA) aptamer as a probe was developed. Amine-terminated aptamer exhibiting high affinity (K(d)=11.9 nM) to LPS was immobilized on a gold electrode using 3-mercaptopropionic acid (MPA) as a linker. Each step of the modification process was characterized by cyclic voltammetry (CV) and electrochemical impendence spectroscopy (EIS). A good linear relationship of the changes in the charge-transfer resistance (ΔR(et)) and the logarithmic value of LPS concentration was demonstrated in a broad dynamic detection range of 0.001-1 ng/ml. Furthermore, the aptasensor showed a high selectivity to LPS despite the presence of pDNA, RNA and bovine serum albumin (BSA) and could be regenerated in low pH condition, offering a promising option for detecting LPS often present in a complex milieu.

  7. Glucose biosensor based on multisegment nanowires exhibiting reversible magnetic control.

    PubMed

    Gerola, Gislaine P; Takahashi, Giovanna S; Perez, Geraldo G; Recco, Lucas C; Pedrosa, Valber A

    2014-11-01

    We describe the amperometric detection of glucose using oriented nanowires with magnetic switching of the bioelectrochemical process. The fabrication process of the nanowires was prepared through controlled nucleation and growth during a stepwise electrochemical deposition, and it was characterized using scanning electron microscopy. Cyclic voltammetry and amperometry were used to study the magnetoswitchable property; this control was accomplished by changing the surface orientation of nanowires. Under the optimal condition, the amperometric response was also linear up to a glucose concentration of 0.1-16.0 mmol L(-1) with a sensitivity of 81 μA mM(-1). The detection limit was estimated for 4.8×10(-8) mol L(-1), defined from a signal/noise ratio of 3. It also exhibits good reproducibility and high selectivity with insignificant interference from ascorbic acid, acetoaminophen, and uric acid. The resulting biosensor was applied to detect the blood sugar in human serum samples without any pretreatment, and the results were comparatively in agreement with the clinical assay.

  8. Determination of endotoxin through an aptamer-based impedance biosensor.

    PubMed

    Su, Wenqiong; Lin, Meng; Lee, Hyuck; Cho, MiSuk; Choe, Woo-Seok; Lee, Youngkwan

    2012-02-15

    Lipopolysaccharide (LPS) often referred to endotoxin is an undesirable impurity frequently entrained with various recombinant protein therapeutics and plasmid DNA (pDNA) vaccines of bacterial origin. The inherent toxicities (e.g. fever, hypotension, shock and death) of LPS render its early and sensitive detection essential for several biological assays and/or parenteral administrations of biotherapeutics. In this study, an electrochemical biosensor using an LPS specific single stranded DNA (ssDNA) aptamer as a probe was developed. Amine-terminated aptamer exhibiting high affinity (K(d)=11.9 nM) to LPS was immobilized on a gold electrode using 3-mercaptopropionic acid (MPA) as a linker. Each step of the modification process was characterized by cyclic voltammetry (CV) and electrochemical impendence spectroscopy (EIS). A good linear relationship of the changes in the charge-transfer resistance (ΔR(et)) and the logarithmic value of LPS concentration was demonstrated in a broad dynamic detection range of 0.001-1 ng/ml. Furthermore, the aptasensor showed a high selectivity to LPS despite the presence of pDNA, RNA and bovine serum albumin (BSA) and could be regenerated in low pH condition, offering a promising option for detecting LPS often present in a complex milieu. PMID:22182428

  9. Red fluorescent proteins (RFPs) and RFP-based biosensors for neuronal imaging applications

    PubMed Central

    Shen, Yi; Lai, Tiffany; Campbell, Robert E.

    2015-01-01

    Abstract. The inherent advantages of red-shifted fluorescent proteins and fluorescent protein-based biosensors for the study of signaling processes in neurons and other tissues have motivated the development of a plethora of new tools. Relative to green fluorescent proteins (GFPs) and other blue-shifted alternatives, red fluorescent proteins (RFPs) provide the inherent advantages of lower phototoxicity, lower autofluorescence, and deeper tissue penetration associated with longer wavelength excitation light. All other factors being the same, the multiple benefits of using RFPs make these tools seemingly ideal candidates for use in neurons and, ultimately, the brain. However, for many applications, the practical utility of RFPs still falls short of the preferred GFPs. We present an overview of RFPs and RFP-based biosensors, with an emphasis on their reported applications in neuroscience. PMID:26158012

  10. Aptamer-based biosensor for detection of phenylalanine at physiological pH.

    PubMed

    Omidinia, Eskandar; Shadjou, Nasrin; Hasanzadeh, Mohammad

    2014-02-01

    A simple, sensitive aptamer-based biosensor for the detection of phenylalanine is developed using the electrochemical transduction method. For this proposed aptasensor, a 5-thiol-terminated aptamer is covalently attached onto a gold electrode. At the first time, the electrode was evaluated as an electrochemical aptasensor for determination of phenylalanine in aqueous solutions. This sensor was tested in a Tris-HCl buffer with physiological pH = 7.4 by cyclic voltammetry and differential pulse voltammetry. The detection limit and sensitivity of the modified electrode toward phenylalanine were estimated to be 1 nM (S/N = 3) and 0.367 μA nM(-1), respectively. The linear range of the signal was observed between 1 and 10 nM of phenylalanine with 0.9914 correlation factor. The herein-described approach is expected to promote the exploitation of aptamer-based biosensors for protein assays in biochemical and biomedical studies.

  11. Simple method of enzyme immobilization for pH-ISFET-based urea biosensors

    NASA Astrophysics Data System (ADS)

    Pijanowska, Dorota; Torbicz, Wladislaw

    1997-02-01

    In this paper, a simple chemical method of urease immobilization on silicon nitride surface is described. As a basic structure to construct urea-biosensor, a pH-sensitive Si3N4-gate ISFET was used. The developed method of chemical immobilization of urease is based on Schiff's base formation. The developed EnFET type urea biosensor are characterized by the following parameters: (1) maximum analytical signal: 120 divided by 140 mV in 10 mM phosphate buffer solution, (2) linear range of the (Delta) Ugs equals f(logCurea): pCurea(2 divided by 3.5) in 10 mM phosphate buffer, (3) response time: 80 s and (4) lifetime: 35 days with the stable analytical signal then after 52 days this signal decreased by at least 40%. The influence of the concentration as well as the pH of the buffer solution on EnFET response were investigated.

  12. A Comprehensive Review of Glucose Biosensors Based on Nanostructured Metal-Oxides

    PubMed Central

    Rahman, Md. Mahbubur; Saleh Ahammad, A. J.; Jin, Joon-Hyung; Ahn, Sang Jung; Lee, Jae-Joon

    2010-01-01

    Nanotechnology has opened new and exhilarating opportunities for exploring glucose biosensing applications of the newly prepared nanostructured materials. Nanostructured metal-oxides have been extensively explored to develop biosensors with high sensitivity, fast response times, and stability for the determination of glucose by electrochemical oxidation. This article concentrates mainly on the development of different nanostructured metal-oxide [such as ZnO, Cu(I)/(II) oxides, MnO2, TiO2, CeO2, SiO2, ZrO2, and other metal-oxides] based glucose biosensors. Additionally, we devote our attention to the operating principles (i.e., potentiometric, amperometric, impedimetric and conductometric) of these nanostructured metal-oxide based glucose sensors. Finally, this review concludes with a personal prospective and some challenges of these nanoscaled sensors. PMID:22399911

  13. Pt@AuNPs integrated quantitative capillary-based biosensors for point-of-care testing application.

    PubMed

    Wu, Ze; Fu, Qiangqiang; Yu, Shiting; Sheng, Liangrong; Xu, Meng; Yao, Cuize; Xiao, Wei; Li, Xiuqing; Tang, Yong

    2016-11-15

    Current diagnostic technologies primarily rely on bulky and costly analytical instruments. Therefore, cost-effective and portable diagnosis tools that can be used for point-of-care tests (POCT) are highly desirable. In this study, we report a cost-effective, portable capillary-based biosensor for quantitative detection of biomarkers by the naked eye. This capillary-based biosensor was tested by measuring the distance of blue ink movement, which was directly correlated with the oxygen (O2) produced by efficient core-shell Pt@Au nanoparticles (Pt@AuNPs) catalysts decomposed hydrogen peroxide (H2O2). By linking the Pt@AuNPs with antibodies, capillary-based biosensor sandwich immunoassays were constructed. The concentrations of the target proteins were positively correlated with the distances of ink movement. To demonstrate their performance, the biosensors were used to detect the cancer biomarker sprostate-specific antigen (PSA) and carcinoembryonic antigen (CEA). The linear detection range (LDR) of the capillary-based biosensor for detecting PSA was from 0.02 to 2.5ng/mL, and the limit of detection (LOD) was 0.017ng/mL. LDR of the biosensor for detecting CEA was from 0.063 to 16ng/mL, and the LOD was 0.044ng/mL. For detection of PSA and CEA in clinical serum samples, the detection results of the capillary-based biosensor were well correlate with the results from of chemiluminescence immunoassays (CLIAs). Thus, the capillary-based biosensor may potentially be a useful strategy for point-of-care testing, in addition to being portable and cost effective. PMID:27240013

  14. Biosensor-based microRNA detection: techniques, design, performance, and challenges.

    PubMed

    Johnson, Blake N; Mutharasan, Raj

    2014-04-01

    The current state of biosensor-based techniques for amplification-free microRNA (miRNA) detection is critically reviewed. Comparison with non-sensor and amplification-based molecular techniques (MTs), such as polymerase-based methods, is made in terms of transduction mechanism, associated protocol, and sensitivity. Challenges associated with miRNA hybridization thermodynamics which affect assay selectivity and amplification bias are briefly discussed. Electrochemical, electromechanical, and optical classes of miRNA biosensors are reviewed in terms of transduction mechanism, limit of detection (LOD), time-to-results (TTR), multiplexing potential, and measurement robustness. Current trends suggest that biosensor-based techniques (BTs) for miRNA assay will complement MTs due to the advantages of amplification-free detection, LOD being femtomolar (fM)-attomolar (aM), short TTR, multiplexing capability, and minimal sample preparation requirement. Areas of future importance in miRNA BT development are presented which include focus on achieving high measurement confidence and multiplexing capabilities.

  15. Electrochemical DNA biosensors based on thin gold films sputtered on capacitive nanoporous niobium oxide.

    PubMed

    Rho, Sangchul; Jahng, Deokjin; Lim, Jae Hoon; Choi, Jinsub; Chang, Jeong Ho; Lee, Sang Cheon; Kim, Kyung Ja

    2008-01-18

    Electrochemical DNA biosensors based on a thin gold film sputtered on anodic porous niobium oxide (Au@Nb(2)O(5)) are studied in detail here. We found that the novel DNA biosensor based on Au@Nb(2)O(5) is superior to those based on the bulk gold electrode or niobium oxide electrode. For example, the novel method does not require any time-consuming cleaning step in order to obtain reproducible results. The adhesion of gold films on the substrate is very stable during electrochemical biosensing, when the thin gold films are deposited on anodically prepared nanoporous niobium oxide. In particular, the novel biosensor shows enhanced biosensing performance with a 2.4 times higher resolution and a three times higher sensitivity. The signal enhancement is in part attributed to capacitive interface between gold films and nanoporous niobium oxide, where charges are accumulated during the anodic and cathodic scanning, and is in part ascribed to the structural stability of DNA immobilized at the sputtered gold films. The method allows for the detection of single-base mismatch DNA as well as for the discrimination of mismatch positions.

  16. Locked nucleic acid based beacons for surface interaction studies and biosensor development.

    PubMed

    Martinez, Karen; Estevez, M-Carmen; Wu, Yanrong; Phillips, Joseph A; Medley, Colin D; Tan, Weihong

    2009-05-01

    DNA sensors and microarrays permit fast, simple, and real-time detection of nucleic acids through the design and use of increasingly sensitive, selective, and robust molecular probes. Specifically, molecular beacons (MBs) have been employed for this purpose; however, their potential in the development of solid-surface-based biosensors has not been fully realized. This is mainly a consequence of the beacon's poor stability because of the hairpin structure once immobilized onto a solid surface, commonly resulting in a low signal enhancement. Here, we report the design of a new MB that overcomes some of the limitations of MBs for surface immobilization. Essentially, this new design adds locked nucleic acid bases (LNAs) to the beacon structure, resulting in a LNA molecular beacon (LMB) with robust stability after surface immobilization. To test the efficacy of LMBs against that of regular molecular beacons (RMBs), the properties of selectivity, sensitivity, thermal stability, hybridization kinetics, and robustness for the detection of target sequences were compared and evaluated. A 25-fold enhancement was achieved for the LMB on surface with detection limits reaching the low nanomolar range. In addition, the LMB-based biosensor was shown to possess better stability, reproducibility, selectivity, and robustness when compared to the RMB. Therefore, as an alternative to conventional DNA and as a prospective tool for use in both DNA microarrays and biosensors, these results demonstrate the potential of the locked nucleic acid bases for nucleic acid design for surface immobilization.

  17. Locked nucleic acid based beacons for surface interaction studies and biosensor development

    PubMed Central

    Martinez, Karen; Estevez, M.-Carmen; Wu, Yanrong; Phillips, Joseph A.; Medley, Colin D.; Tan, Weihong

    2011-01-01

    DNA sensors and microarrays permit fast, simple and real-time detection of nucleic acids through the design and use of increasingly sensitive, selective and robust molecular probes. Specifically, molecular beacons (MBs) have been employed for this purpose; however, their potential in the development of solid-surface-based biosensors has not been fully realized. This is mainly a consequence of the beacon’s poor stability due to the hairpin structure once immobilized onto a solid surface, commonly resulting in a low signal enhancement. Here, we report the design of a new MB that overcomes some of the limitations of MBs for surface immobilization. Essentially, this new design adds locked nucleic acid bases (LNAs) to the beacon structure, resulting in a LNA molecular beacon (LMB) with robust stability after surface immobilization. To test the efficacy of LMBs against that of regular molecular beacons (RMBs), the properties of selectivity, sensitivity, thermal stability, hybridization kinetics and robustness for the detection of target sequences were compared and evaluated. A 25-fold enhancement was achieved for the LMB on surface with detection limits reaching the low nanomolar range. In addition, the LMB-based biosensor was shown to possess better stability, reproducibility, selectivity and robustness when compared to the RMB. Therefore, as an alternative to conventional DNA and as a prospective tool for use in both DNA microarrays and biosensors, these results demonstrate the potential of the locked nucleic acid bases for nucleic acid design for surface immobilization. PMID:19351140

  18. Antibody-based fiberoptics biosensor for the carcinogen benzo(a)pyrene

    SciTech Connect

    Vo-Dinh, T.; Tromberg, B.J.; Griffin, G.D.; Ambrose, K.R.; Sepaniak, M.J.; Gardenhire, E.M.

    1987-07-01

    A new antibody-based fiberoptics biosensor was used to detect the important carcinogen benzo(a)pyrene (BaP). The fiberoptics sensor utilizes anti-BaP antibodies covalently bound to its tip. A helium cadmium laser was used as the excitation source to induce fluorescence from BaP conjugated to the bound anti-BaP antibodies. The fiberoptics device can detect 1 femtomole of BaP in a 5-..mu..L sample drop.

  19. High-sensitive label-free biosensors based on single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Maehashi, Kenzo; Matsumoto, Kazuhiko

    2006-02-01

    DNA hybridization has sensitively been detected using carbon nanotube field-effect transistors (CNTFETs) in real time. After full-complementary DNA introduction, the source-drain current gradually increased while monitoring in real time. Full-complementary DNA with concentration as low as 1 fmol/L solution could be effectively detected. Our CNTFET-based biochip is a promising candidate for the development of an integrated, high-throughput, multiplexed DNA biosensor for medical, forensic and environmental diagnostics.

  20. Biological evaluation of synthetic α,β-unsaturated carbonyl based cyclohexanone derivatives as neuroprotective novel inhibitors of acetylcholinesterase, butyrylcholinesterase and amyloid-β aggregation.

    PubMed

    Zha, Gao-Feng; Zhang, Cheng-Pan; Qin, Hua-Li; Jantan, Ibrahim; Sher, Muhammad; Amjad, Muhammad Wahab; Hussain, Muhammad Ajaz; Hussain, Zahid; Bukhari, Syed Nasir Abbas

    2016-05-15

    A series of new α,β-unsaturated carbonyl-based cyclohexanone derivatives was synthesized by simple condensation method and all compounds were characterized by using various spectroscopic techniques. New compounds were evaluated for their effects on acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). These compounds were also screened for in vitro cytotoxicity and for inhibitory activity for self-induced Aβ1-42 aggregation. The effect of these compounds against amyloid β-induced cytotoxicity was also investigated. The findings of in vitro experiment revealed that most of these compounds exhibited potent inhibitory activity against AChE and self-induced Aβ1-42 aggregation. The compound 3o exhibited best AChE (IC50=0.037μM) inhibitory potential. Furthermore, compound 3o disassembled the Aβ fibrils produced by self-induced Aβ aggregation by 76.6%. Compounds containing N-methyl-4-piperidone linker, showed high acetylcholinesterase and self-induced Aβ aggregation inhibitory activities as compared to reference drug donepezil. The pre-treatment of cells with synthetic compounds protected them against Aβ-induced cell death by up to 92%. Collectively, these findings suggest that some compounds from this series have potential to be promising multifunctional agents for AD treatment and our study suggest the cyclohexanone derivatives as promising new inhibitors for AChE and BuChE, potentially useful to treat neurodegenerative diseases.

  1. An absolute calibration method of an ethyl alcohol biosensor based on wavelength-modulated differential photothermal radiometry.

    PubMed

    Liu, Yi Jun; Mandelis, Andreas; Guo, Xinxin

    2015-11-01

    In this work, laser-based wavelength-modulated differential photothermal radiometry (WM-DPTR) is applied to develop a non-invasive in-vehicle alcohol biosensor. WM-DPTR features unprecedented ethanol-specificity and sensitivity by suppressing baseline variations through a differential measurement near the peak and baseline of the mid-infrared ethanol absorption spectrum. Biosensor signal calibration curves are obtained from WM-DPTR theory and from measurements in human blood serum and ethanol solutions diffused from skin. The results demonstrate that the WM-DPTR-based calibrated alcohol biosensor can achieve high precision and accuracy for the ethanol concentration range of 0-100 mg/dl. The high-performance alcohol biosensor can be incorporated into ignition interlocks that could be fitted as a universal accessory in vehicles in an effort to reduce incidents of drinking and driving.

  2. An absolute calibration method of an ethyl alcohol biosensor based on wavelength-modulated differential photothermal radiometry.

    PubMed

    Liu, Yi Jun; Mandelis, Andreas; Guo, Xinxin

    2015-11-01

    In this work, laser-based wavelength-modulated differential photothermal radiometry (WM-DPTR) is applied to develop a non-invasive in-vehicle alcohol biosensor. WM-DPTR features unprecedented ethanol-specificity and sensitivity by suppressing baseline variations through a differential measurement near the peak and baseline of the mid-infrared ethanol absorption spectrum. Biosensor signal calibration curves are obtained from WM-DPTR theory and from measurements in human blood serum and ethanol solutions diffused from skin. The results demonstrate that the WM-DPTR-based calibrated alcohol biosensor can achieve high precision and accuracy for the ethanol concentration range of 0-100 mg/dl. The high-performance alcohol biosensor can be incorporated into ignition interlocks that could be fitted as a universal accessory in vehicles in an effort to reduce incidents of drinking and driving. PMID:26628164

  3. An absolute calibration method of an ethyl alcohol biosensor based on wavelength-modulated differential photothermal radiometry

    SciTech Connect

    Liu, Yi Jun; Mandelis, Andreas; Guo, Xinxin

    2015-11-15

    In this work, laser-based wavelength-modulated differential photothermal radiometry (WM-DPTR) is applied to develop a non-invasive in-vehicle alcohol biosensor. WM-DPTR features unprecedented ethanol-specificity and sensitivity by suppressing baseline variations through a differential measurement near the peak and baseline of the mid-infrared ethanol absorption spectrum. Biosensor signal calibration curves are obtained from WM-DPTR theory and from measurements in human blood serum and ethanol solutions diffused from skin. The results demonstrate that the WM-DPTR-based calibrated alcohol biosensor can achieve high precision and accuracy for the ethanol concentration range of 0-100 mg/dl. The high-performance alcohol biosensor can be incorporated into ignition interlocks that could be fitted as a universal accessory in vehicles in an effort to reduce incidents of drinking and driving.

  4. Extended-Gate Metal Oxide Semiconductor Field Effect Transistor-Based Biosensor for Detection of Deoxynivalenol

    NASA Astrophysics Data System (ADS)

    Kwon, Insu; Lee, Hee-Ho; Choi, Jinhyeon; Shin, Jang-Kyoo; Seo, Sang-Ho; Choi, Sung-Wook; Chun, Hyang Sook

    2011-06-01

    In this work, we present an extended-gate metal oxide semiconductor field effect transistor (MOSFET)-based biosensor for the detection of deoxynivalenol using a null-balancing circuit. An extended-gate MOSFET-based biosensor was fabricated by a standard complementary metal oxide semiconductor (CMOS) process and its characteristics were measured. A null-balancing circuit was used to measure the output voltage of the sensor directly, instead of measuring the drain current of the sensor. Au was used as the gate metal, which has a chemical affinity with thiol, which leads to the immobilization of a self-assembled monolayer (SAM) of mercaptohexadecanoic acid (MHDA). The SAM was used to immobilize the anti-deoxynivalenol antibody. The carboxyl group of the SAM was bound to the anti-deoxynivalenol antibody. The anti-deoxynivalenol antibody and deoxynivalenol were bound by their antigen-antibody reaction. The measurements were performed in phosphate buffered saline (PBS; pH 7.4) solution. A standard Ag/AgCl electrode was employed as a reference electrode. The bindings of a SAM, anti-deoxynivalenol antibody, and deoxynivalenol caused a variation in the output voltage of the extended-gate MOSFET-based biosensor. Surface plasmon resonance (SPR) measurement was performed to verify the interaction among the SAM, deoxynivalenol-antibody, and deoxynivalenol.

  5. Transcription factor-based biosensors in biotechnology: current state and future prospects.

    PubMed

    Mahr, Regina; Frunzke, Julia

    2016-01-01

    Living organisms have evolved a plethora of sensing systems for the intra- and extracellular detection of small molecules, ions or physical parameters. Several recent studies have demonstrated that these principles can be exploited to devise synthetic regulatory circuits for metabolic engineering strategies. In this context, transcription factors (TFs) controlling microbial physiology at the level of transcription play a major role in biosensor design, since they can be implemented in synthetic circuits controlling gene expression in dependency of, for example, small molecule production. Here, we review recent progress on the utilization of TF-based biosensors in microbial biotechnology highlighting different areas of application. Recent advances in metabolic engineering reveal TF-based sensors to be versatile tools for strain and enzyme development using high-throughput (HT) screening strategies and adaptive laboratory evolution, the optimization of heterologous pathways via the implementation of dynamic control circuits and for the monitoring of single-cell productivity in live cell imaging studies. These examples underline the immense potential of TF-based biosensor circuits but also identify limitations and room for further optimization.

  6. Glucose biosensors based on a gold nanodendrite modified screen-printed electrode

    NASA Astrophysics Data System (ADS)

    Liu, Hsi-Chien; Tsai, Chung-Che; Wang, Gou-Jen

    2013-05-01

    In this study, an enzymatic glucose biosensor based on a three-dimensional gold nanodendrite (GND) modified screen-printed electrode was developed. The GNDs were electrochemically synthesized on the working electrode component of a commercially available screen-printed electrode using a solution acquired by dissolving bulk gold in aqua regia as the precursor. The 3D GND electrode greatly enhanced the effective sensing area of the biosensor, which improved the sensitivity of glucose detection. Actual glucose detections demonstrated that the fabricated devices could perform at a sensitivity of 46.76 μA mM-1 cm-2 with a linear detection range from 28 μM-8.4 mM and detection limit of 7 μM. A fast response time (˜3 s) was also observed. Moreover, only a 20 μl glucose oxidase is required for detection owing to the incorporation of the commercially available screen-printed electrode.

  7. Amperometric biosensor based on glassy carbon electrode modified with long-length carbon nanotube and enzyme

    NASA Astrophysics Data System (ADS)

    Furutaka, Hajime; Nemoto, Kentaro; Inoue, Yuki; Hidaka, Hiroki; Muguruma, Hitoshi; Inoue, Hitoshi; Ohsawa, Tatsuya

    2016-05-01

    An amperometric biosensor based on a glassy carbon electrode modified with long-length multiwalled carbon nanotubes (MWCNTs) and enzyme nicotinamide-adenine-dinucleotide-dependent glucose dehydrogenase (GDH) is presented. We demonstrate the effect of the MWCNT length on the amperometric response of the enzyme biosensor. The long length of MWCNT is 200 µm (average), whereas the normal length of MWCNT is 1 µm (average). The response of the long MWCNT–GDH electrode is 2 times more sensitive than that of the normal-length MWCNT–GDH electrode in the concentration range from 0.25–35 mM. The result of electrochemical impedance spectroscopy measurements suggest that the long-length MWCNT–GDH electrode formed a better electron transfer network than the normal-length one.

  8. Amperometric biosensor based on glassy carbon electrode modified with long-length carbon nanotube and enzyme

    NASA Astrophysics Data System (ADS)

    Furutaka, Hajime; Nemoto, Kentaro; Inoue, Yuki; Hidaka, Hiroki; Muguruma, Hitoshi; Inoue, Hitoshi; Ohsawa, Tatsuya

    2016-05-01

    An amperometric biosensor based on a glassy carbon electrode modified with long-length multiwalled carbon nanotubes (MWCNTs) and enzyme nicotinamide-adenine-dinucleotide-dependent glucose dehydrogenase (GDH) is presented. We demonstrate the effect of the MWCNT length on the amperometric response of the enzyme biosensor. The long length of MWCNT is 200 µm (average), whereas the normal length of MWCNT is 1 µm (average). The response of the long MWCNT-GDH electrode is 2 times more sensitive than that of the normal-length MWCNT-GDH electrode in the concentration range from 0.25-35 mM. The result of electrochemical impedance spectroscopy measurements suggest that the long-length MWCNT-GDH electrode formed a better electron transfer network than the normal-length one.

  9. Label-free electrochemical monitoring of vasopressin in aptamer-based microfluidic biosensors.

    PubMed

    He, Peng; Oncescu, Vlad; Lee, Seoho; Choi, Inhee; Erickson, David

    2013-01-01

    Vasopressin is an indicating biomarker for blood pressure in the human body and low vasopressin levels can be indicative of late-phase hemorrhagic shock or other traumatic injuries. In this paper we have developed an aptamer-based label-free microfluidic biosensor for the electrochemical detection of vasopressin. The detection area consists of aptamers immobilized on carbon nanotubes which specifically capture the vasopressin molecules in solution resulting in changes in conductivity across the sensor. We report a limit of detection of 43 pM in standard solutions and demonstrate high detection specificity toward vasopressin when different interferents are present. The miniaturized microfluidic biosensor offers continuous monitoring of different vasopressin levels with good potential for portability. Ultimately such a system could serve as a point-of-care diagnostics tool for patients with excessive bleeding when standard medical infrastructure is not available.

  10. Developing trends in aptamer-based biosensor devices and their applications.

    PubMed

    MacKay, Scott; Wishart, David; Xing, James Z; Chen, Jie

    2014-02-01

    Aptamers are, in general, easier to produce, easier to store and are able to bind to a wider variety of targets than antibodies. For these reasons, aptamers are gaining increasing popularity in environmental monitoring as well as disease detection and disease management applications. This review article examines the research and design of RNA and DNA aptamer based biosensor systems and applications as well as their potential for integration in effective biosensor devices. As single stranded DNA or RNA molecules that can bind to specific targets, aptamers are well suited for biomolecular recognition and sensing applications. Beyond being able to be designed for a near endless number of specific targets, aptamers can also be made which change their conformation in a predictable and consistent way upon binding. This can lead to many unique and effective detection methods using a variety of optical and electrochemical means.

  11. Fluctuating hydrodynamics of nematics for models of liquid-crystal based biosensors via lattice Boltzmann simulations

    NASA Astrophysics Data System (ADS)

    Guzman, Orlando; Velez, Jose Antonio; Castañeda, David

    2008-03-01

    Experimental biosensors based on liquid crystals (LC) use nematics to detect the presence of specific analytes, via the optical textures exhibited by the LC at long times. Efforts to model the time evolution of these textures have relied on relaxational models, ignoring transport phenomena. In this work we include hydrodynamics into a model for these LC biosensors, using lattice Boltzmann (LB) methods and assess the effect on the lifetime of multidomain structures, characteristic of high concentrations of analyte. We apply Yeoman's et al. LB algorithm, which reproduces the hydrodynamic equations developed by Beris and Edwards for LCs. We also take into account thermal fluctuations, by adding random perturbations to the hydrodynamic modes. Following Adhikari et al., their amplitude is determined by the Fluctuation-Dissipation theorem and we excite both hydrodynamic and the sub-hydrodynamic modes (also called ghost modes). As a result, we analyze the influence of the fluctuations and hydrodynamics on the movement of topological defects.

  12. An aptamer-based electrochemical biosensor for the detection of Salmonella.

    PubMed

    Ma, Xiaoyuan; Jiang, Yihui; Jia, Fei; Yu, Ye; Chen, Jie; Wang, Zhouping

    2014-03-01

    Salmonella is one of the most common causes of food-associated disease. An electrochemical biosensor was developed for Salmonella detection using a Salmonella-specific recognition aptamer. The biosensor was based on a glassy carbon electrode modified with graphene oxide and gold nanoparticles. Then, the aptamer ssDNA sequence could be linked to the electrode. Each assembly step was accompanied by changes to the electrochemical parameters. After incubation of the modified electrode with Salmonella, the electrochemical properties between the electrode and the electrolyte changed accordingly. The electrochemical impedance spectrum was measured to quantify the Salmonella. The results revealed that, when more Salmonella were added to the reaction system, the current between the electrode and electrolyte decreased; in other words, the impendence gradually increased. A detection limit as low as 3 cfu/mL was obtained. This novel method is specific and fast, and it has the potential for real sample detection.

  13. Lead-Free Piezoelectric Diaphragm Biosensors Based on Micro-Machining Technology and Chemical Solution Deposition

    PubMed Central

    Li, Xiaomeng; Wu, Xiaoqing; Shi, Peng; Ye, Zuo-Guang

    2016-01-01

    In this paper, we present a new approach to the fabrication of integrated silicon-based piezoelectric diaphragm-type biosensors by using sodium potassium niobate-silver niobate (0.82KNN-0.18AN) composite lead-free thin film as the piezoelectric layer. The piezoelectric diaphragms were designed and fabricated by micro-machining technology and chemical solution deposition. The fabricated device was very sensitive to the mass changes caused by various targets attached on the surface of diaphragm. The measured mass sensitivity value was about 931 Hz/μg. Its good performance shows that the piezoelectric diaphragm biosensor can be used as a cost-effective platform for nucleic acid testing. PMID:26771617

  14. Lead-Free Piezoelectric Diaphragm Biosensors Based on Micro-Machining Technology and Chemical Solution Deposition.

    PubMed

    Li, Xiaomeng; Wu, Xiaoqing; Shi, Peng; Ye, Zuo-Guang

    2016-01-12

    In this paper, we present a new approach to the fabrication of integrated silicon-based piezoelectric diaphragm-type biosensors by using sodium potassium niobate-silver niobate (0.82KNN-0.18AN) composite lead-free thin film as the piezoelectric layer. The piezoelectric diaphragms were designed and fabricated by micro-machining technology and chemical solution deposition. The fabricated device was very sensitive to the mass changes caused by various targets attached on the surface of diaphragm. The measured mass sensitivity value was about 931 Hz/μg. Its good performance shows that the piezoelectric diaphragm biosensor can be used as a cost-effective platform for nucleic acid testing.

  15. Enhanced response of a proteinase K-based conductometric biosensor using nanoparticles.

    PubMed

    Nouira, Wided; Maaref, Abderrazak; Elaissari, Hamid; Vocanson, Francis; Siadat, Maryam; Jaffrezic-Renault, Nicole

    2014-07-23

    Proteinases are involved in a multitude of important physiological processes, such as protein metabolism. For this reason, a conductometric enzyme biosensor based on proteinase K was developed using two types of nanoparticles (gold and magnetic). The enzyme was directly adsorbed on negatively charged nanoparticles and then deposited and cross-linked on a planar interdigitated electrode (IDE). The biosensor was characterized with bovine serum albumin (BSA) as a standard protein. Higher sensitivity was obtained using gold nanoparticles. The linear range for BSA determination was then from 0.5 to 10 mg/L with a maximum response of 154 µs. These results are greater than that found without any nanoparticles (maximum response of 10 µs). The limit of detection (LOD) was 0.3 mg/L. An inter-sensor reproducibility of 3.5% was obtained.

  16. Enhanced Response of a Proteinase K-Based Conductometric Biosensor Using Nanoparticles

    PubMed Central

    Nouira, Wided; Maaref, Abderrazak; Elaissari, Abdelhamid; Vocanson, Francis; Siadat, Maryam; Jaffrezic-Renault, Nicole

    2014-01-01

    Proteinases are involved in a multitude of important physiological processes, such as protein metabolism. For this reason, a conductometric enzyme biosensor based on proteinase K was developed using two types of nanoparticles (gold and magnetic). The enzyme was directly adsorbed on negatively charged nanoparticles and then deposited and cross-linked on a planar interdigitated electrode (IDE). The biosensor was characterized with bovine serum albumin (BSA) as a standard protein. Higher sensitivity was obtained using gold nanoparticles. The linear range for BSA determination was then from 0.5 to 10 mg/L with a maximum response of 154 μs. These results are greater than that found without any nanoparticles (maximum response of 10 μs). The limit of detection (LOD) was 0.3 mg/L. An inter-sensor reproducibility of 3.5% was obtained. PMID:25057139

  17. Lead-Free Piezoelectric Diaphragm Biosensors Based on Micro-Machining Technology and Chemical Solution Deposition.

    PubMed

    Li, Xiaomeng; Wu, Xiaoqing; Shi, Peng; Ye, Zuo-Guang

    2016-01-01

    In this paper, we present a new approach to the fabrication of integrated silicon-based piezoelectric diaphragm-type biosensors by using sodium potassium niobate-silver niobate (0.82KNN-0.18AN) composite lead-free thin film as the piezoelectric layer. The piezoelectric diaphragms were designed and fabricated by micro-machining technology and chemical solution deposition. The fabricated device was very sensitive to the mass changes caused by various targets attached on the surface of diaphragm. The measured mass sensitivity value was about 931 Hz/μg. Its good performance shows that the piezoelectric diaphragm biosensor can be used as a cost-effective platform for nucleic acid testing. PMID:26771617

  18. RCA-Based Biosensor for Electrical and Colorimetric Detection of Pathogen DNA

    NASA Astrophysics Data System (ADS)

    Jeong, Jaepil; Kim, Hyejin; Lee, Dong Jun; Jung, Byung Jun; Lee, Jong Bum

    2016-05-01

    For the diagnosis and prevention of diseases, a range of strategies for the detection of pathogens have been developed. In this study, we synthesized the rolling circle amplification (RCA)-based biosensor that enables detection of pathogen DNA in two analytical modes. Only in the presence of the target DNA, the template DNA can be continuously polymerized by simply carrying out RCA, which gives rise to a change of surface structure of Au electrodes and the gap between the electrodes. Electrical signal was generated after introducing hydrogen tetrachloroaurate (HAuCl4) to the DNA-coated biosensor for the improvement of the conductivity of DNA, which indicates that the presence of the pathogen DNA can be detected in an electrical approach. Furthermore, the existence of the target DNA was readily detected by the naked eyes through change in colors of the electrodes from bright yellow to orange-red after RCA reaction. The RCA-based biosensor offers a new platform for monitoring of pathogenic DNA with two different detection modes in one system.

  19. A highly sensitive electrochemical biosensor based on zinc oxide nanotetrapods for L-lactic acid detection.

    PubMed

    Lei, Yang; Luo, Ning; Yan, Xiaoqin; Zhao, Yanguang; Zhang, Gong; Zhang, Yue

    2012-06-01

    An amperometric biosensor based on zinc oxide (ZnO) nanotetrapods was designed to detect L-lactic acid. The lactate oxidase was immobilized on the surface of ZnO nanotetrapods by electrostatic adsorption. Unlike traditional detectors, the special four-leg individual ZnO nanostructure, as an adsorption layer, provides multiterminal charge transfer channels. Furthermore, a large amount of ZnO tetrapods are randomly stacked to form a three-dimensional network naturally that facilitates the exchange of electrons and ions in the phosphate buffer solution. Utilizing amperometric response measurements, the prepared ZnO nanotetrapod L-lactic acid biosensor displayed a detection limit of 1.2 μM, a low apparent Michaelis-Menten constant of 0.58 mM, a high sensitivity of 28.0 μA cm(-2) mM(-1) and a good linear relationship in the range of 3.6 μM-0.6 mM for the L-lactic acid detection. This study shows that the biosensor based on ZnO tetrapod nanostructures is highly sensitive and able to respond rapidly in detecting lactic acid. PMID:22538963

  20. Biosensors and bio-based methods for the separation and detection of foodborne pathogens.

    PubMed

    Bhunia, Arun K

    2008-01-01

    The safety of our food supply is always a major concern to consumers, food producers, and regulatory agencies. A safer food supply improves consumer confidence and brings economic stability. The safety of foods from farm-to-fork through the supply chain continuum must be established to protect consumers from debilitating, sometimes fatal episodes of pathogen outbreaks. The implementation of preventive strategies like hazard analysis critical control points (HACCP) assures safety but its full utility will not be realized unless supportive tools are fully developed. Rapid, sensitive, and accurate detection methods are such essential tools that, when integrated with HACCP, will improve safety of products. Traditional microbiological methods are powerful, error-proof, and dependable but these lengthy, cumbersome methods are often ineffective because they are not compatible with the speed at which the products are manufactured and the short shelf life of products. Automation in detection methods is highly desirable, but is not achievable with traditional methods. Therefore, biosensor-based tools offer the most promising solutions and address some of the modern-day needs for fast and sensitive detection of pathogens in real time or near real time. The application of several biosensor tools belonging to the categories of optical, electrochemical, and mass-based tools for detection of foodborne pathogens is reviewed in this chapter. Ironically, geometric growth in biosensor technology is fueled by the imminent threat of bioterrorism through food, water, and air and by the funding through various governmental agencies. PMID:18291303

  1. Detection of Interferon gamma using graphene and aptamer based FET-like electrochemical biosensor.

    PubMed

    Farid, Sidra; Meshik, Xenia; Choi, Min; Mukherjee, Souvik; Lan, Yi; Parikh, Devanshi; Poduri, Shripriya; Baterdene, Undarmaa; Huang, Ching-En; Wang, Yung Yu; Burke, Peter; Dutta, Mitra; Stroscio, Michael A

    2015-09-15

    One of the primary goals in the scientific community is the specific detection of proteins for the medical diagnostics and biomedical applications. Interferon-gamma (IFN-γ) is associated with the tuberculosis susceptibility, which is one of the major health problems globally. We have therefore developed a DNA aptamer-based electrochemical biosensor that is used for the detection of IFN-γ with high selectivity and sensitivity. A graphene monolayer-based FET-like structure is incorporated on a PDMS substrate with the IFN-γ aptamer attached to graphene. Addition of target molecule induces a change in the charge distribution in the electrolyte, resulting in increase in electron transfer efficiency that was actively sensed by monitoring the change in current from the device. Change in current appears to be highly sensitive to the IFN-γ concentrations ranging from nanomolar (nM) to micromolar (μM) range. The detection limit of our IFN-γ electrochemical biosensor is found to be 83 pM. Immobilization of aptamer on graphene surface is verified using unique structural approach by Atomic Force Microscopy. Such simple and sensitive electrochemical biosensor has potential applications in infectious disease monitoring, immunology and cancer research in the future.

  2. Rapid detection of urinary polyomavirus BK by heterodyne-based surface plasmon resonance biosensor

    NASA Astrophysics Data System (ADS)

    Su, Li-Chen; Tian, Ya-Chung; Chang, Ying-Feng; Chou, Chien; Lai, Chao-Sung

    2014-01-01

    In renal transplant patients, immunosuppressive therapy may result in the reactivation of polyomavirus BK (BKV), leading to polyomavirus-associated nephropathy (PVAN), which inevitably causes allograft failure. Since the treatment outcomes of PVAN remain unsatisfactory, early identification and continuous monitoring of BKV reactivation and reduction of immunosuppressants are essential to prevent PVAN development. The present study demonstrated that the developed dual-channel heterodyne-based surface plasmon resonance (SPR) biosensor is applicable for the rapid detection of urinary BKV. The use of a symmetrical reference channel integrated with the poly(ethylene glycol)-based low-fouling self-assembled monolayer to reduce the environmental variations and the nonspecific noise was proven to enhance the sensitivity in urinary BKV detection. Experimentally, the detection limit of the biosensor for BKV detection was estimated to be around 8500 copies/mL. In addition, urine samples from five renal transplant patients were tested to rapidly distinguish PVAN-positive and PVAN-negative renal transplant patients. By virtue of its simplicity, rapidity, and applicability, the SPR biosensor is a remarkable potential to be used for continuous clinical monitoring of BKV reactivation.

  3. Biosensors and bio-based methods for the separation and detection of foodborne pathogens.

    PubMed

    Bhunia, Arun K

    2008-01-01

    The safety of our food supply is always a major concern to consumers, food producers, and regulatory agencies. A safer food supply improves consumer confidence and brings economic stability. The safety of foods from farm-to-fork through the supply chain continuum must be established to protect consumers from debilitating, sometimes fatal episodes of pathogen outbreaks. The implementation of preventive strategies like hazard analysis critical control points (HACCP) assures safety but its full utility will not be realized unless supportive tools are fully developed. Rapid, sensitive, and accurate detection methods are such essential tools that, when integrated with HACCP, will improve safety of products. Traditional microbiological methods are powerful, error-proof, and dependable but these lengthy, cumbersome methods are often ineffective because they are not compatible with the speed at which the products are manufactured and the short shelf life of products. Automation in detection methods is highly desirable, but is not achievable with traditional methods. Therefore, biosensor-based tools offer the most promising solutions and address some of the modern-day needs for fast and sensitive detection of pathogens in real time or near real time. The application of several biosensor tools belonging to the categories of optical, electrochemical, and mass-based tools for detection of foodborne pathogens is reviewed in this chapter. Ironically, geometric growth in biosensor technology is fueled by the imminent threat of bioterrorism through food, water, and air and by the funding through various governmental agencies.

  4. Fiber-optic-based biosensors utilizing long period grating (LPG) technology

    NASA Astrophysics Data System (ADS)

    Pennington, Charles; Jones, Mark E.; Evans, Mishell K.; VanTassell, Roger; Averett, Josh

    2001-05-01

    A biosensor based on long period grating (LPG) technology has been used to demonstrate the detection of large molecules (proteins) and small molecules (pesticides). The LPG sensor is a spectral loss optical fiber based system that provides direct detection of large molecules, by using an antigen or antibody modified hydrogel, without the need for secondary amplification. The binding of the specific target results in a mass increase that produces a localized refractive index change around the LPG region and thus a spectral shift in the observed wavelength loss band. The magnitude of the observed shift can be correlated to target concentration. The HIV protein p24 was directly detected at 1 ng/mL with a specific signal that was 5 - 7 times that of the system noise. A direct and indirect competitive assay was demonstrated with the target atrazine. The sensitivity of the two competitive assay formats was in the range of 10 - 50 ng/mL. In all three-assay examples, the biosensor was regenerated by treatment with 50 mM HCl and reused. The LPG biosensor offers speed (results in less than five minutes), versatility, reuse, specificity and sensitivity.

  5. Experimental demonstration of a Fresnel-reflection based optical fiber biosensor coated with polyelectrolyte multilayers

    NASA Astrophysics Data System (ADS)

    Yu, Wenjie; Lang, Tingting

    2014-11-01

    We report that the end facet of an optical fiber can be coated with polyelectrolyte multilayers (PEM) of polycation (diallyldimethyl ammonium chloride) and polyanion (styrenesulfonate sodium salt) (PDDA+PSS)n (n is the number of bilayers), which functions effectively as a Fresnel-reflection based biosensor. The experimental setup includes a broadband light source, a 3dB coupler, and an optical spectrum analyzer. Biotin and streptavidin are deposited onto the multilayers-coated end facet sequentially. The light intensity change due to variation of external refractive index is monitored. When the concentrations of streptavidin changes from 0.1mg/ml to 1mg/ml, a linear relationship between the concentration of streptavidin and the reflected optical power at the wavelength of 1530nm is observed. The sensitivity increases from -1.6262×10-3 dB/ppm to -4.7852 ×10-3 dB/ppm, when the number of PEM increases from 1 to 2. Then we confirm the optimized numbers of bilayers of PEM are 5 through experiment. Selectivity and repeatability of our proposed optical fiber biosensor are verified. When bovine serum albumin (BSA) is added instead of streptavidin, the obtained spectra overlaps with that of biotin's. The final end facet coated with PEM and biotin-streptavidin can be cleaned using microwave vibration or aqua regia. The microwave vibration method is utilized due to security concern. The optical spectra changes back to the initial one of the optical fiber in air. In conclusion, a Fresnel-reflection based optical fiber biosensor with good sensitivity, selectivity and repeatability is proposed. This biosensor has the advantages of simple structure, low cost and reliability.

  6. A sensitive DNA biosensor based on a facile sulfamide coupling reaction for capture probe immobilization.

    PubMed

    Wang, Qingxiang; Ding, Yingtao; Gao, Feng; Jiang, Shulian; Zhang, Bin; Ni, Jiancong; Gao, Fei

    2013-07-25

    A novel DNA biosensor was fabricated through a facile sulfamide coupling reaction. First, the versatile sulfonic dye molecule of 1-amino-2-naphthol-4-sulfonate (AN-SO3(-)) was electrodeposited on the surface of a glassy carbon electrode (GCE) to form a steady and ordered AN-SO3(-) layer. Then the amino-terminated capture probe was covalently grafted to the surface of SO3(-)-AN deposited GCE through the sulfamide coupling reaction between the amino groups in the probe DNA and the sulfonic groups in the AN-SO3(-). The step-by-step modification process was characterized by electrochemistry and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. Using Ru(NH3)6(3+) as probe, the probe density and the hybridization efficiency of the biosensor were determined to be 3.18×10(13) strands cm(-2) and 86.5%, respectively. The hybridization performance of the biosensor was examined by differential pulse voltammetry using Co(phen)3(3+/2+) (phen=1,10-phenanthroline) as the indicator. The selectivity experiments showed that the biosensor presented distinguishable response after hybridization with the three-base mismatched, non-complementary and complementary sequences. Under the optimal conditions, the oxidation peak currents of Co(phen)3(3+/2+) increased linearly with the logarithm values of the concentration of the complementary sequences in the range from 1.0×10(-13)M to 1.0×10(-8)M with a regression coefficient of 0.9961. The detection limit was estimated to be 7.2×10(-14)M based on 3σ. PMID:23845495

  7. Label-free detection of glycated haemoglobin in human blood using silicon-based photonic crystal nanocavity biosensor

    NASA Astrophysics Data System (ADS)

    Olyaee, Saeed; Seifouri, Mahmood; Mohsenirad, Hamideh

    2016-07-01

    In this paper, we describe a two-dimensional photonic crystal-based biosensor that consists of a waveguide and a nanocavity with high sensitivity. A new method is employed for increasing sensitivity of the biosensor. The simulation results show that biosensor is highly sensitive to the refractive index (RI) variations due to injected biomaterials, like glycated haemoglobin, into the sensing surface. The proposed biosensor is designed for the wavelength range of 1514.4-1896.3 nm. The sensitivity and the quality factor are calculated to be 3000 and 272.43 nm/RIU, respectively. The designed structure can detect a 0.002 change in the RI via resonant wavelength shift of 0.9 nm. The band diagram and transmission spectra are computed using plane wave expansion and finite difference time domain methods.

  8. Scalable Production of High-Sensitivity, Label-Free DNA Biosensors Based on Back-Gated Graphene Field Effect Transistors.

    PubMed

    Ping, Jinglei; Vishnubhotla, Ramya; Vrudhula, Amey; Johnson, A T Charlie

    2016-09-27

    Scalable production of all-electronic DNA biosensors with high sensitivity and selectivity is a critical enabling step for research and applications associated with detection of DNA hybridization. We have developed a scalable and very reproducible (>90% yield) fabrication process for label-free DNA biosensors based upon graphene field effect transistors (GFETs) functionalized with single-stranded probe DNA. The shift of the GFET sensor Dirac point voltage varied systematically with the concentration of target DNA. The biosensors demonstrated a broad analytical range and limit of detection of 1 fM for 60-mer DNA oligonucleotide. In control experiments with mismatched DNA oligomers, the impact of the mismatch position on the DNA hybridization strength was confirmed. This class of highly sensitive DNA biosensors offers the prospect of detection of DNA hybridization and sequencing in a rapid, inexpensive, and accurate way. PMID:27532480

  9. Chemical surface modifications for the development of silicon-based label-free integrated optical (IO) biosensors: a review.

    PubMed

    Bañuls, María-José; Puchades, Rosa; Maquieira, Ángel

    2013-05-13

    Increasing interest has been paid to label-free biosensors in recent years. Among them, refractive index (RI) optical biosensors enable high density and the chip-scale integration of optical components. This makes them more appealing to help develop lab-on-a-chip devices. Today, many RI integrated optical (IO) devices are made using silicon-based materials. A key issue in their development is the biofunctionalization of sensing surfaces because they provide a specific, sensitive response to the analyte of interest. This review critically discusses the biofunctionalization procedures, assay formats and characterization techniques employed in setting up IO biosensors. In addition, it provides the most relevant results obtained from using these devices for real sample biosensing. Finally, an overview of the most promising future developments in the fields of chemical surface modification and capture agent attachment for IO biosensors follows.

  10. Scalable Production of High-Sensitivity, Label-Free DNA Biosensors Based on Back-Gated Graphene Field Effect Transistors.

    PubMed

    Ping, Jinglei; Vishnubhotla, Ramya; Vrudhula, Amey; Johnson, A T Charlie

    2016-09-27

    Scalable production of all-electronic DNA biosensors with high sensitivity and selectivity is a critical enabling step for research and applications associated with detection of DNA hybridization. We have developed a scalable and very reproducible (>90% yield) fabrication process for label-free DNA biosensors based upon graphene field effect transistors (GFETs) functionalized with single-stranded probe DNA. The shift of the GFET sensor Dirac point voltage varied systematically with the concentration of target DNA. The biosensors demonstrated a broad analytical range and limit of detection of 1 fM for 60-mer DNA oligonucleotide. In control experiments with mismatched DNA oligomers, the impact of the mismatch position on the DNA hybridization strength was confirmed. This class of highly sensitive DNA biosensors offers the prospect of detection of DNA hybridization and sequencing in a rapid, inexpensive, and accurate way.

  11. Fabrication of Ultrasensitive Field-Effect Transistor DNA Biosensors by a Directional Transfer Technique Based on CVD-Grown Graphene.

    PubMed

    Zheng, Chao; Huang, Le; Zhang, Hong; Sun, Zhongyue; Zhang, Zhiyong; Zhang, Guo-Jun

    2015-08-12

    Most graphene field-effect transistor (G-FET) biosensors are fabricated through a routine process, in which graphene is transferred onto a Si/SiO2 substrate and then devices are subsequently produced by micromanufacture processes. However, such a fabrication approach can introduce contamination onto the graphene surface during the lithographic process, resulting in interference for the subsequent biosensing. In this work, we have developed a novel directional transfer technique to fabricate G-FET biosensors based on chemical-vapor-deposition- (CVD-) grown single-layer graphene (SLG) and applied this biosensor for the sensitive detection of DNA. A FET device with six individual array sensors was first fabricated, and SLG obtained by the CVD-growth method was transferred onto the sensor surface in a directional manner. Afterward, peptide nucleic acid (PNA) was covalently immobilized on the graphene surface, and DNA detection was realized by applying specific target DNA to the PNA-functionalized G-FET biosensor. The developed G-FET biosensor was able to detect target DNA at concentrations as low as 10 fM, which is 1 order of magnitude lower than those reported in a previous work. In addition, the biosensor was capable of distinguishing the complementary DNA from one-base-mismatched DNA and noncomplementary DNA. The directional transfer technique for the fabrication of G-FET biosensors is simple, and the as-constructed G-FET DNA biosensor shows ultrasensitivity and high specificity, indicating its potential application in disease diagnostics as a point-of-care tool.

  12. Sensitive determination of L-lysine with a new amperometric microbial biosensor based on Saccharomyces cerevisiae yeast cells.

    PubMed

    Akyilmaz, Erol; Erdoğan, Ali; Oztürk, Ramazan; Yaşa, Ihsan

    2007-01-15

    A new amperometric microbial biosensor based on Saccharomyces cerevisiae NRRL-12632 cells, which had been induced for lysine oxidase enzyme and immobilized in gelatin by a cross-linking agent was developed for the sensitive determination of L-lysine amino acid. To construct the microbial biosensor S. cerevisiae cells were activated and cultured in a suitable culture medium. By using gelatine (8.43 mg cm(-2)) and glutaraldehyde (0.25%), cells obtained in the logarithmic phase of the growth curve at the end of a 14 h period were immobilized and fixed on a pretreated oxygen sensitive Teflon membrane of a dissolved oxygen probe. The assay procedure of the microbial biosensor is based on the determination of the differences of the respiration activity of the cells on the oxygenmeter in the absence and the presence of L-lysine. According to the end point measurement technique used in the experiments it was determined that the microbial biosensor response depended linearly on L-lysine concentrations between 1.0 and 10.0 microM with a 1 min response time. In optimization studies of the microbial biosensor, the most suitable microorganism quantities were found to be 0.97x10(5)CFU cm(-2). In addition phosphate buffer (pH 7.5; 50 mM) and 30 degrees C were obtained as the optimum working conditions. In characterization studies of the microbial biosensor some parameters such as substrate specificity, interference effects of some substances on the microbial biosensor responses, reproducibility of the biosensor and operational and storage stability were investigated.

  13. Fabrication of Ultrasensitive Field-Effect Transistor DNA Biosensors by a Directional Transfer Technique Based on CVD-Grown Graphene.

    PubMed

    Zheng, Chao; Huang, Le; Zhang, Hong; Sun, Zhongyue; Zhang, Zhiyong; Zhang, Guo-Jun

    2015-08-12

    Most graphene field-effect transistor (G-FET) biosensors are fabricated through a routine process, in which graphene is transferred onto a Si/SiO2 substrate and then devices are subsequently produced by micromanufacture processes. However, such a fabrication approach can introduce contamination onto the graphene surface during the lithographic process, resulting in interference for the subsequent biosensing. In this work, we have developed a novel directional transfer technique to fabricate G-FET biosensors based on chemical-vapor-deposition- (CVD-) grown single-layer graphene (SLG) and applied this biosensor for the sensitive detection of DNA. A FET device with six individual array sensors was first fabricated, and SLG obtained by the CVD-growth method was transferred onto the sensor surface in a directional manner. Afterward, peptide nucleic acid (PNA) was covalently immobilized on the graphene surface, and DNA detection was realized by applying specific target DNA to the PNA-functionalized G-FET biosensor. The developed G-FET biosensor was able to detect target DNA at concentrations as low as 10 fM, which is 1 order of magnitude lower than those reported in a previous work. In addition, the biosensor was capable of distinguishing the complementary DNA from one-base-mismatched DNA and noncomplementary DNA. The directional transfer technique for the fabrication of G-FET biosensors is simple, and the as-constructed G-FET DNA biosensor shows ultrasensitivity and high specificity, indicating its potential application in disease diagnostics as a point-of-care tool. PMID:26203889

  14. Disposable urea biosensor based on nanoporous ZnO film fabricated from omissible polymeric substrate.

    PubMed

    Rahmanian, Reza; Mozaffari, Sayed Ahmad; Abedi, Mohammad

    2015-12-01

    In the present study, a facile and simple fabrication method of a semiconductor based urea biosensor was reported via three steps: (i) producing a ZnO-PVA composite film by means of a polymer assisted electrodeposition of zinc oxide (ZnO) on the F-doped SnO2 conducting glass (FTO) using water soluble polyvinyl alcohol (PVA), (ii) obtaining a nanoporous ZnO film by PVA omission via a subsequent post-treatment by annealing of the ZnO-PVA film, and (iii) preparation of a FTO/ZnO/Urs biosensor by exploiting a nanoporous ZnO film as an efficient and excellent platform area for electrostatic immobilization of urease enzyme (Urs) which was forced by the difference in their isoelectric point (IEP). The characterization techniques focused on the analysis of the ZnO-PVA film surfaces before and after annealing, which had a prominent effect on the porosity of the prepared ZnO film. The surface characterization of the nanostructured ZnO film by a field emission-scanning electron microscopy (FE-SEM), exhibited a film surface area as an effective bio-sensing matrix for enzyme immobilization. The structural characterization and monitoring of the biosensor fabrication was performed using UV-Vis, Fourier Transform Infrared (FT-IR), Raman Spectroscopy, Thermogravimetric Analysis (TGA), Cyclic Voltammetry (CV), and Electrochemical Impedance Spectroscopy (EIS) techniques. The impedimetric results of the FTO/ZnO/Urs biosensor showed a high sensitivity for urea detection within 8.0-110.0mg dL(-1) with the limit of detection as 5.0mg dL(-1).

  15. Amperometric glucose biosensor based on glucose oxidase-lectin biospecific interaction.

    PubMed

    Zhang, Juanjuan; Wang, Chengyan; Chen, Shihong; Yuan, Dehua; Zhong, Xia

    2013-03-01

    An amperometric glucose biosensor based on high electrocatalytic activity of gold/platinum hybrid functionalized zinc oxide nanorods (Pt-Au@ZnONRs) and glucose oxidase (GOx)-lectin biospecific interaction was proposed. The Pt-Au@ZnONRs, which were prepared through a multiple-step chemosynthesis, were modified onto the surface of glassy carbon electrode (GCE) by a simple casting method due to the excellent film forming ability of the Pt-Au@ZnONRs suspension. Subsequently, a layer of porous gold nanocrystals (pAu) film was assembled onto the Pt-Au@ZnONRs film by immersing the electrode in HAuCl(4) solution to perform the electrochemical deposition at a constant potential of -0.2V. Following that, Concanavalin A (ConA) was immobilized onto the surface of pAu film through physical adsorption and covalent binding interactions between gold nanomaterials and the amino groups or thiol groups of ConA protein. Finally, the GOx was easily immobilized on the ConA/pAu/Pt-Au@ZnONRs/GCE by the biospecific interaction between GOx and ConA. The Pt-Au@ZnONRs composites were characterized using transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Cyclic voltammetry (CV) was used to characterize the assembly process of the modified electrode. Proposed biosensor showed a high electrocatalytic activity to the glucose with a wide linear range covering from 1.8 μM to 5.15 mM, a low detection limit of 0.6 μM and a low apparent Michaelis-Menten constant (K(M)(app)) of 0.41 mM. Furthermore, the biosensor exhibited good reproducibility and long-term stability, as well as high selectivity. The integration of Pt-Au@ZnONRs and GOx-lectin biospecific interaction would offer potential promise for the fabrication of biosensors and biocatalysts.

  16. An amperometric uric acid biosensor based on chitosan-carbon nanotubes electrospun nanofiber on silver nanoparticles.

    PubMed

    Numnuam, Apon; Thavarungkul, Panote; Kanatharana, Proespichaya

    2014-06-01

    A novel amperometric uric acid biosensor was fabricated by immobilizing uricase on an electrospun nanocomposite of chitosan-carbon nanotubes nanofiber (Chi-CNTsNF) covering an electrodeposited layer of silver nanoparticles (AgNPs) on a gold electrode (uricase/Chi-CNTsNF/AgNPs/Au). The uric acid response was determined at an optimum applied potential of -0.35 V vs Ag/AgCl in a flow-injection system based on the change of the reduction current for dissolved oxygen during oxidation of uric acid by the immobilized uricase. The response was directly proportional to the uric acid concentration. Under the optimum conditions, the fabricated uric acid biosensor had a very wide linear range, 1.0-400 μmol L(-1), with a very low limit of detection of 1.0 μmol L(-1) (s/n = 3). The operational stability of the uricase/Chi-CNTsNF/AgNPs/Au biosensor (up to 205 injections) was excellent and the storage life was more than six weeks. A low Michaelis-Menten constant of 0.21 mmol L(-1) indicated that the immobilized uricase had high affinity for uric acid. The presence of potential common interfering substances, for example ascorbic acid, glucose, and lactic acid, had negligible effects on the performance of the biosensor. When used for analysis of uric acid in serum samples, the results agreed well with those obtained by use of the standard enzymatic colorimetric method (P > 0.05). PMID:24718436

  17. Conducting polymer based DNA biosensor for the detection of the Bacillus cereus group species

    NASA Astrophysics Data System (ADS)

    Velusamy, Vijayalakshmi; Arshak, Khalil; Korostynska, Olga; Oliwa, Kamila; Adley, Catherine

    2009-05-01

    Biosensor designs are emerging at a significant rate and play an increasingly important role in foodborne pathogen detection. Conducting polymers are excellent tools for the fabrication of biosensors and polypyrrole has been used in the detection of biomolecules due to its unique properties. The prime intention of this paper was to pioneer the design and fabrication of a single-strand (ss) DNA biosensor for the detection of the Bacillus cereus (B.cereus) group species. Growth of B. cereus, results in production of several highly active toxins. Therefore, consumption of food containing >106 bacteria/gm may results in emetic and diarrhoeal syndromes. The most common source of this bacterium is found in liquid food products, milk powder, mixed food products and is of particular concern in the baby formula industry. The electrochemical deposition technique, such as cyclic voltammetry, was used to develop and test a model DNA-based biosensor on a gold electrode electropolymerized with polypyrrole. The electrically conducting polymer, polypyrrole is used as a platform for immobilizing DNA (1μg) on the gold electrode surface, since it can be more easily deposited from neutral pH aqueous solutions of pyrrolemonomers. The average current peak during the electrodeposition event is 288μA. There is a clear change in the current after hybridization of the complementary oligonucleotide (6.35μA) and for the noncomplementary oligonucleotide (5.77μA). The drop in current after each event was clearly noticeable and it proved to be effective.

  18. Development of Amperometric Glucose Biosensor Based on Prussian Blue Functionlized TiO2 Nanotube Arrays

    NASA Astrophysics Data System (ADS)

    Gao, Zhi-Da; Qu, Yongfang; Li, Tongtong; Shrestha, Nabeen K.; Song, Yan-Yan

    2014-11-01

    Amperometric biosensors consisting of oxidase and peroxidase have attracted great attention because of their wide application. The current work demonstrates a novel approach to construct an enzymatic biosensor based on TiO2 nanotube arrays (TiNTs) as a supporting electrode on which Prussian Blue (PB)-an ``artificial enzyme peroxidase'' and enzyme glucose oxidase (GOx) have been immobilized. For this, PB nanocrystals are deposited onto the nanotube wall photocatalytically using the intrinsic photocatalytical property of TiO2, and the GOx/AuNPs nanobiocomposites are subsequently immobilized into the nanotubes via the electrodeposition of polymer. The resulting electrode exhibits a fast response, wide linear range, and good stability for glucose sensing. The sensitivity of the sensor is as high as 248 mA M-1 cm-2, and the detection limit is about 3.2 μM. These findings demonstrate a promising strategy to integrate enzymes and TiNTs, which could provide an analytical access to a large group of enzymes for bioelectrochemical applications including biosensors and biofuel cells.

  19. A portable bioluminescence engineered cell-based biosensor for on-site applications.

    PubMed

    Roda, Aldo; Cevenini, Luca; Michelini, Elisa; Branchini, Bruce R

    2011-04-15

    We have developed a portable biosensing device based on genetically engineered bioluminescent (BL) cells. Cells were immobilized on a 4 × 3 multiwell cartridge using a new biocompatible matrix that preserved their vitality. Using a fiber optic taper, the cartridge was placed in direct contact with a cooled CCD sensor to image and quantify the BL signals. Yeast and bacterial cells were engineered to express recognition elements, whose interaction with the analyte led to luciferase expression, via reporter gene technology. Three different biosensors were developed. The first detects androgenic compounds using yeast cells carrying a green-emitting P. pyralis luciferase regulated by the human androgen receptor and a red mutant of the same species as internal vitality control. The second biosensor detects two classes of compounds (androgens and estrogens) using yeast strains engineered to express green-or red-emitting mutant firefly luciferases in response to androgens or estrogens, respectively. The third biosensor detects lactose analogue isopropyl β-d-1-thiogalactopyranoside using two E. coli strains. One strain exploits the lac operon as recognition element for the expression of P. pyralis luciferase. The other strain serves as a vitality control expressing Gaussia princeps luciferase, which requires a different luciferin substrate. The immobilized cells were stable for up to 1 month. The analytes could be detected at nanomolar levels with good precision and accuracy when the specific signal was corrected using the internal vitality control. This portable device can be used for on-site multiplexed bioassays for different compound classes. PMID:21388801

  20. Laccase-based biosensor for the determination of polyphenol index in wine.

    PubMed

    Di Fusco, Massimo; Tortolini, Cristina; Deriu, Daniela; Mazzei, Franco

    2010-04-15

    In this work we have developed and characterized the use of Laccases from Trametes versicolor (TvL) and Trametes hirsuta (ThL) as biocatalytic components of electrochemical biosensors for the determination of polyphenol index in wines. Polyazetidine prepolimer (PAP) was used as immobilizing agent, multi-walled and single-walled carbon nanotubes screen-printed electrodes as sensors (MWCNTs-SPE and SWCNTs-SPE) and gallic acid as standard substrate. The amperometric measurements were carried out by using a flow system at a fixed potential of -100 mV vs. silver/silver chloride electrode in Britton-Robinson buffer 0.1 mol L(-1), pH 5. The results were compared with those obtained with the Folin-Ciocalteau reference method. The results obtained in the analysis of twelve Italian wines put in evidence the better suitability of ThL-MWCNTs-based biosensor in the determination of the polyphenol index in wines. This biosensor shows fast and reliable amperometric responses to gallic acid with a linear range 0.1-18.0 mg L(-1) (r(2)=0.999). The influence of the interferences on both spectrophotometric and electrochemical measurements have been carefully evaluated.

  1. Development of an amperometric biosensor based on peroxidases to quantify citrinin in rice samples.

    PubMed

    Zachetti, Vanesa Gimena Lourdes; Granero, Adrian Marcelo; Robledo, Sebastián Noel; Zon, María Alicia; Fernández, Héctor

    2013-06-01

    An amperometric biosensor based on horseradish peroxidase (EC1.11.1.7,H2O2-oxide-reductases) to determine the content of citrinin mycotoxin in rice samples is proposed by the first time. The method uses carbon paste electrodes filled up with multi-walled carbon nanotubes embedded in a mineral oil, horseradish peroxidase, and ferrocene as a redox mediator. The biosensor is covered externally with a dialysis membrane, which is fixed to the body side of the electrode with a Teflon laboratory film, and an O-ring. The reproducibility and the repeatability were of 7.0% and 3.0%, respectively, showing a very good biosensor performance. The calibration curve was linear in a concentration range from 1 to 11.6nM. The limits of detection and quantification were 0.25nM and 0.75nM, respectively. For comparison, the citrinin content in rice samples was also determined by fluorimetric measurements. A very good correlation was obtained between the electrochemical and spectrophotometric methods. PMID:23416359

  2. In situ microbial fuel cell-based biosensor for organic carbon.

    PubMed

    Peixoto, Luciana; Min, Booki; Martins, Gilberto; Brito, António G; Kroff, Pablo; Parpot, Pier; Angelidaki, Irini; Nogueira, Regina

    2011-06-01

    The biological oxygen demand (BOD) may be the most used test to assess the amount of pollutant organic matter in water; however, it is time and labor consuming, and is done ex-situ. A BOD biosensor based on the microbial fuel cell principle was tested for online and in situ monitoring of biodegradable organic content of domestic wastewater. A stable current density of 282±23mA/m(2) was obtained with domestic wastewater containing a BOD(5) of 317±15mg O(2)/L at 22±2°C, 1.53±0.04mS/cm and pH 6.9±0.1. The current density showed a linear relationship with BOD(5) concentration ranging from 17±0.5mg O(2)/L to 78±7.6mg O(2)/L. The current generation from the BOD biosensor was dependent on the measurement conditions such as temperature, conductivity, and pH. Thus, a correction factor should be applied to measurements done under different environmental conditions from the ones used in the calibration. These results provide useful information for the development of a biosensor for real-time in situ monitoring of wastewater quality.

  3. Development of amperometric glucose biosensor based on Prussian Blue functionlized TiO2 nanotube arrays.

    PubMed

    Gao, Zhi-Da; Qu, Yongfang; Li, Tongtong; Shrestha, Nabeen K; Song, Yan-Yan

    2014-01-01

    Amperometric biosensors consisting of oxidase and peroxidase have attracted great attention because of their wide application. The current work demonstrates a novel approach to construct an enzymatic biosensor based on TiO2 nanotube arrays (TiNTs) as a supporting electrode on which Prussian Blue (PB)-an "artificial enzyme peroxidase" and enzyme glucose oxidase (GOx) have been immobilized. For this, PB nanocrystals are deposited onto the nanotube wall photocatalytically using the intrinsic photocatalytical property of TiO2, and the GOx/AuNPs nanobiocomposites are subsequently immobilized into the nanotubes via the electrodeposition of polymer. The resulting electrode exhibits a fast response, wide linear range, and good stability for glucose sensing. The sensitivity of the sensor is as high as 248 mA M(-1) cm(-2), and the detection limit is about 3.2 μM. These findings demonstrate a promising strategy to integrate enzymes and TiNTs, which could provide an analytical access to a large group of enzymes for bioelectrochemical applications including biosensors and biofuel cells. PMID:25367086

  4. Development of Amperometric Glucose Biosensor Based on Prussian Blue Functionlized TiO2 Nanotube Arrays

    PubMed Central

    Gao, Zhi-Da; Qu, Yongfang; Li, Tongtong; Shrestha, Nabeen K.; Song, Yan-Yan

    2014-01-01

    Amperometric biosensors consisting of oxidase and peroxidase have attracted great attention because of their wide application. The current work demonstrates a novel approach to construct an enzymatic biosensor based on TiO2 nanotube arrays (TiNTs) as a supporting electrode on which Prussian Blue (PB)-an “artificial enzyme peroxidase” and enzyme glucose oxidase (GOx) have been immobilized. For this, PB nanocrystals are deposited onto the nanotube wall photocatalytically using the intrinsic photocatalytical property of TiO2, and the GOx/AuNPs nanobiocomposites are subsequently immobilized into the nanotubes via the electrodeposition of polymer. The resulting electrode exhibits a fast response, wide linear range, and good stability for glucose sensing. The sensitivity of the sensor is as high as 248 mA M−1 cm−2, and the detection limit is about 3.2 μM. These findings demonstrate a promising strategy to integrate enzymes and TiNTs, which could provide an analytical access to a large group of enzymes for bioelectrochemical applications including biosensors and biofuel cells. PMID:25367086

  5. Fresh broad (Vicia faba) tissue homogenate-based biosensor for determination of phenolic compounds.

    PubMed

    Ozcan, Hakki Mevlut; Sagiroglu, Ayten

    2014-08-01

    In this study, a novel fresh broad (Vicia faba) tissue homogenate-based biosensor for determination of phenolic compounds was developed. The biosensor was constructed by immobilizing tissue homogenate of fresh broad (Vicia faba) on to glassy carbon electrode. For the stability of the biosensor, general immobilization techniques were used to secure the fresh broad tissue homogenate in gelatin-glutaraldehyde cross-linking matrix. In the optimization and characterization studies, the amount of fresh broad tissue homogenate and gelatin, glutaraldehyde percentage, optimum pH, optimum temperature and optimum buffer concentration, thermal stability, interference effects, linear range, storage stability, repeatability and sample applications (Wine, beer, fruit juices) were also investigated. Besides, the detection ranges of thirteen phenolic compounds were obtained with the help of the calibration graphs. A typical calibration curve for the sensor revealed a linear range of 5-60 μM catechol. In reproducibility studies, variation coefficient (CV) and standard deviation (SD) were calculated as 1.59%, 0.64×10(-3) μM, respectively.

  6. Giant Magnetoresistance-based Biosensor for Detection of Influenza A Virus.

    PubMed

    Krishna, Venkatramana D; Wu, Kai; Perez, Andres M; Wang, Jian-Ping

    2016-01-01

    We have developed a simple and sensitive method for the detection of influenza A virus based on giant magnetoresistance (GMR) biosensor. This assay employs monoclonal antibodies to viral nucleoprotein (NP) in combination with magnetic nanoparticles (MNPs). Presence of influenza virus allows the binding of MNPs to the GMR sensor and the binding is proportional to the concentration of virus. Binding of MNPs onto the GMR sensor causes change in the resistance of sensor, which is measured in a real time electrical readout. GMR biosensor detected as low as 1.5 × 10(2) TCID50/mL virus and the signal intensity increased with increasing concentration of virus up to 1.0 × 10(5) TCID50/mL. This study showed that the GMR biosensor assay is relevant for diagnostic application since the virus concentration in nasal samples of influenza virus infected swine was reported to be in the range of 10(3) to 10(5) TCID50/mL. PMID:27065967

  7. RNA aptamer based electrochemical biosensor for sensitive and selective detection of cAMP.

    PubMed

    Zhao, Fulin; Xie, Qingyun; Xu, Mingfei; Wang, Shouyu; Zhou, Jiyong; Liu, Fei

    2015-04-15

    Cyclic adenosine monophosphate (cAMP) is an important small biological molecule associated with the healthy state of living organism. In order to realize highly sensitive and specific detection of cAMP, here an RNA aptamer and electrochemical impedance spectroscopy (EIS) based biosensor enhanced by gold nanoparticles electrodeposited on the surface of gold electrode is designed. The designed aptasensor has a wide effective measuring range from 50pM to 250pM with a detection limit of 50pM in PBS buffer, and an effective measuring range from 50nM to 1μM with a detection limit of 50nM in serum. The designed biosensor is also able to detect cAMP with high sensitivity, specificity, and stability. Since the biosensor can be easily fabricated with low cost and repeatedly used for at least two times, it owns great potential in wide application fields such as clinical test and food inspection, etc.

  8. Development of tyrosinase biosensor based on quantum dots/chitosan nanocomposite for detection of phenolic compounds.

    PubMed

    Han, En; Yang, Yi; He, Zheng; Cai, Jianrong; Zhang, Xinai; Dong, Xiaoya

    2015-10-01

    A sensitive and simple amperometric biosensor for phenols was developed based on the immobilization of tyrosinase into CdS quantum dots/chitosan nanocomposite matrix. The nanocomposite film with porous nanostructure, excellent hydrophilicity and biocompatibility resulted in high enzyme loading, and the tyrosinase (Tyr) immobilized in this novel matrix retained its activity to a large extent. The CdS quantum dots/chitosan nanocomposite film was characterized by scanning electron microscopy and electrochemical impedance spectroscopy, and the parameters of the various experimental variables for the biosensor were optimized. Under the optimal conditions, the designed biosensor displayed a wide linear response to catechol over a concentration range of 1.0×10(-9) to 2.0×10(-5)M with a high sensitivity of 561±9.7mAM(-1) and a low detection limit down to 0.3 nM at a signal-to-noise ratio of 3. The CdS quantum dots/chitosan nanocomposites could provide a novel matrix for enzyme immobilization to promote the development of biosensing and biocatalysis. PMID:26159737

  9. Natural polyhydroxyalkanoate-gold nanocomposite based biosensor for detection of antimalarial drug artemisinin.

    PubMed

    Phukon, Pinkee; Radhapyari, Keisham; Konwar, Bolin Kumar; Khan, Raju

    2014-04-01

    The worrisome trend of antimalarial resistance has already highlighted the importance of artemisinin as a potent antimalarial agent. The current investigation aimed at fabricating a biosensor based on natural polymer polyhydroxyalkanoate-gold nanoparticle composite mounting on an indium-tin oxide glass plate for the analysis of artemisinin. The biosensor was fabricated using an adsorbing horse-radish peroxidase enzyme on the electrode surface for which cyclic voltammetry was used to monitor the electro-catalytic reduction of artemisinin under diffusion controlled conditions. Electrochemical interfacial properties and immobilization of enzyme onto a polyhydroxyalkanoate-gold nanoparticle film were evaluated, and confirmed by cyclic voltammetry, electrochemical impedance spectroscopy and scanning electron microscopy. The differential pulse voltammetric peak current for artemisinin was increased linearly (concentration range of 0.01-0.08μg mL(-1)) with sensitivity of 0.26μAμg mL(-1). The greater sensitivity of the fabricated biosensor to artemisinin (optimum limits of detection were 0.0035μg mL(-1) and 0.0036μg mL(-1) in bulk and spiked human serum, respectively) could be of much aid in medical diagnosis. PMID:24582254

  10. Speciation of chromium using chronoamperometric biosensors based on screen-printed electrodes.

    PubMed

    Calvo-Pérez, Ana; Domínguez-Renedo, Olga; Alonso-Lomillo, M Asunción; Arcos-Martínez, M Julia

    2014-06-23

    Chronoamperometric assays based on tyrosinase and glucose oxidase (GOx) inactivation have been developed for the monitoring of Cr(III) and Cr(VI). Tyrosinase was immobilized by crosslinking on screen-printed carbon electrodes (SPCEs) containing tetrathiafulvalene (TTF) as electron transfer mediator. The tyrosinase/SPC(TTF)E response to pyrocatechol is inhibited by Cr(III). This process, that is not affected by Cr(VI), allows the determination of Cr(III) with a capability of detection of 2.0±0.2 μM and a reproducibility of 5.5%. GOx modified screen-printed carbon platinised electrodes (SPCPtEs) were developed for the selective determination of Cr(VI) using ferricyanide as redox mediator. The biosensor was able to discriminate two different oxidation states of chromium being able to reject Cr(III) and to detect the toxic species Cr(VI). Chronoamperometric response of the biosensor towards glucose decreases with the presence of Cr(VI), with a capability of detection of 90.5±7.6 nM and a reproducibility of 6.2%. A bipotentiostatic chronoamperometric biosensor was finally developed using a tyrosinase/SPC(TTF)E and a GOx/SPC(Pt)E connected in array mode for the simultaneous determination of Cr(III) and Cr(VI) in spiked tap water and in waste water from a tannery factory samples. PMID:24909769

  11. Lateral flow biosensor for multiplex detection of nitrofuran metabolites based on functionalized magnetic beads.

    PubMed

    Lu, Xuewen; Liang, Xiaoling; Dong, Jianghong; Fang, Zhiyuan; Zeng, Lingwen

    2016-09-01

    The use of potential mutagenic nitrofuran antibiotic in food animal production has been banned world-wide. Common methods for nitrofuran detection involve complex extraction procedures. In the present study, magnetic beads functionalized with antibody against nitrofuran derivative were used as both the extraction and color developing media in lateral flow biosensor. Derivatization reagent carboxybenzaldehyde is firstly modified with ractopamine. After reaction with nitrofuran metabolites, the resultant molecule has two functional groups: the metabolite moiety and the ractopamine moiety. Metabolite moiety is captured by the antibody that is coated on magnetic beads. This duplex is then loaded onto biosensor and ractopamine moiety is further captured by the antibody immobilized on the test zone of nitrocellulose membrane. Without tedious organic reagent-based extraction procedure, this biosensor was capable of visually detecting four metabolites simultaneously with a detection limit of 0.1 μg/L. No cross-reactivity was observed in the presence of 50 μg/L interferential components. Graphical abstract Derivatization of nitrofuran metabolites (AHD, AOZ, SEM, or AMOZ) and LFA detection of the derivative products. PMID:27438720

  12. A fiber-optic evanescent wave DNA biosensor based on novel molecular beacons.

    PubMed

    Liu, X; Tan, W

    1999-11-15

    We have prepared a novel optical fiber evanescent wave DNA biosensor using a newly developed molecular beacon DNA probe. The molecular beacons (MB) are oligonucleotide probes that become fluorescent upon hybridization with target DNA/RNA molecules. Biotinylated MBs have been designed and immobilized on an optical fiber core surface via biotin-avidin or biotin-streptavidin interactions. The DNA sensor based on a MB does not need labeled analyte or intercalation reagents. It can be used to directly detect, in real-time, target DNA/RNA molecules without using competitive assays. The sensor is rapid, stable, highly selective, and reproducible. We have studied the hybridization kinetics of the immobilized MB by changing the ionic strength of the hybridization solution and target DNA concentration. Our result shows divalent cations play a more important role than monovalent cations in stabilizing the MB stem hybrids and in accelerating the hybridization reaction with target DNA/RNA molecules. The concentration detection limit of the MB evanescent wave biosensor is 1.1 nM. The MB DNA biosensor has been applied to the analysis of specific gamma-actin mRNA sequences amplified by polymerase chain reaction.

  13. An ultrasensitive supersandwich electrochemical DNA biosensor based on gold nanoparticles decorated reduced graphene oxide.

    PubMed

    Wang, Jiao; Shi, Anqi; Fang, Xian; Han, Xiaowei; Zhang, Yuzhong

    2015-01-15

    In this article, a supersandwich-type electrochemical biosensor for sequence-specific DNA detection is described. In design, single-strand DNA labeled with methylene blue (MB) was used as signal probe, and auxiliary probe was designed to hybridize with two different regions of signal probe. The biosensor construction contained three steps: (i) capture DNA labeled with thiol was immobilized on the surface of gold nanoparticles decorated reduced graphene oxide (Au NPs/rGO); (ii) the sandwich structure formation contained "capture-target-signal probe"; and (iii) auxiliary probe was introduced to produce long concatamers containing signal molecule MB. Differential pulse voltammetry (DPV) was used to monitor the DNA hybridization event using peak current changes of MB in phosphate-buffered saline (PBS) containing 1.0M NaClO4. Under optimal conditions, the peak currents of MB were linear with the logarithm of the concentration of target DNA in the range of 0.1μM to 0.1fM with a detection limit of 35aM (signal/noise=3). In addition, this biosensor exhibited good selectivity even for single-base mismatched target DNA detection.

  14. Self-assembled films of dendrimers and metallophthalocyanines as FET-based glucose biosensors.

    PubMed

    Vieira, Nirton C S; Figueiredo, Alessandra; de Queiroz, Alvaro A A; Zucolotto, Valtencir; Guimarães, Francisco E G

    2011-01-01

    Separative extended gate field effect transistor (SEGFET) type devices have been used as an ion sensor or biosensor as an alternative to traditional ion sensitive field effect transistors (ISFETs) due to their robustness, ease of fabrication, low cost and possibility of FET isolation from the chemical environment. The layer-by-layer technique allows the combination of different materials with suitable properties for enzyme immobilization on simple platforms such as the extended gate of SEGFET devices enabling the fabrication of biosensors. Here, glucose biosensors based on dendrimers and metallophthalocyanines (MPcs) in the form of layer-by-layer (LbL) films, assembled on indium tin oxide (ITO) as separative extended gate material, has been produced. NH(3)(+) groups in the dendrimer allow electrostatic interactions or covalent bonds with the enzyme (glucose oxidase). Relevant parameters such as optimum pH, buffer concentration and presence of serum bovine albumin (BSA) in the immobilization process were analyzed. The relationship between the output voltage and glucose concentration shows that upon detection of a specific analyte, the sub-products of the enzymatic reaction change the pH locally, affecting the output signal of the FET transducer. In addition, dendritic layers offer a nanoporous environment, which may be permeable to H(+) ions, improving the sensibility as modified electrodes for glucose biosensing. PMID:22163704

  15. Development of an RNA-based theophylline-specific microarray biosensor

    NASA Astrophysics Data System (ADS)

    Jordan, Katherine M.

    We are developing an extremely sensitive and compact biosensor that is adaptable to a variety of target analytes. Hammerhead ribozymes have been engineered such that they rearrange from a catalytically inactive to an active conformation upon binding to a target molecule. A donor-acceptor fluorophore pair is coupled to the substrate RNA of such an aptamer, to form a complex referred to as an aptazyme, to monitor real-time cleavage activity in a fluid environment. The fluorophores interact by fluorescence resonance energy transfer (FRET) until binding of the target molecule, when the FRET signal breaks down as the substrate is cleaved and the products dissociate. FRET assays with immobilized aptazymes and using total internal reflection fluorescence (TIRF) microscopy on the single-molecule scale are presented showing an enhancement of substrate cleavage in the presence of theophylline over background. The aptazyme is hybridized onto a DNA microarray and incorporated into a chip specifically designed to allow for measurement in a controlled fluid environment. The use of these microarrays allows for either one spot, or a series of spots, to be addressed independently within the biosensor. This allows for multiple analytes to be tested simultaneously. An enhancement in the substrate cleavage is again observed in the presence of theophylline. Results are presented toward the characterization of a theophylline-specific aptamer-based biosensor using this RNA microarray platform and analogous measurement techniques.

  16. Giant Magnetoresistance-based Biosensor for Detection of Influenza A Virus

    PubMed Central

    Krishna, Venkatramana D.; Wu, Kai; Perez, Andres M.; Wang, Jian-Ping

    2016-01-01

    We have developed a simple and sensitive method for the detection of influenza A virus based on giant magnetoresistance (GMR) biosensor. This assay employs monoclonal antibodies to viral nucleoprotein (NP) in combination with magnetic nanoparticles (MNPs). Presence of influenza virus allows the binding of MNPs to the GMR sensor and the binding is proportional to the concentration of virus. Binding of MNPs onto the GMR sensor causes change in the resistance of sensor, which is measured in a real time electrical readout. GMR biosensor detected as low as 1.5 × 102 TCID50/mL virus and the signal intensity increased with increasing concentration of virus up to 1.0 × 105 TCID50/mL. This study showed that the GMR biosensor assay is relevant for diagnostic application since the virus concentration in nasal samples of influenza virus infected swine was reported to be in the range of 103 to 105 TCID50/mL. PMID:27065967

  17. Determination of total creatine kinase activity in blood serum using an amperometric biosensor based on glucose oxidase and hexokinase.

    PubMed

    Kucherenko, I S; Soldatkin, O O; Lagarde, F; Jaffrezic-Renault, N; Dzyadevych, S V; Soldatkin, A P

    2015-11-01

    Creatine kinase (CK: adenosine-5-triphosphate-creatine phosphotransferase) is an important enzyme of muscle cells; the presence of a large amount of the enzyme in blood serum is a biomarker of muscular injuries, such as acute myocardial infarction. This work describes a bi-enzyme (glucose oxidase and hexokinase based) biosensor for rapid and convenient determination of CK activity by measuring the rate of ATP production by this enzyme. Simultaneously the biosensor determines glucose concentration in the sample. Platinum disk electrodes were used as amperometric transducers. Glucose oxidase and hexokinase were co-immobilized via cross-linking with BSA by glutaraldehyde and served as a biorecognition element of the biosensor. The biosensor work at different concentrations of CK substrates (ADP and creatine phosphate) was investigated; optimal concentration of ADP was 1mM, and creatine phosphate - 10 mM. The reproducibility of the biosensor responses to glucose, ATP and CK during a day was tested (relative standard deviation of 15 responses to glucose was 2%, to ATP - 6%, to CK - 7-18% depending on concentration of the CK). Total time of CK analysis was 10 min. The measurements of creatine kinase in blood serum samples were carried out (at 20-fold sample dilution). Twentyfold dilution of serum samples was chosen as optimal for CK determination. The biosensor could distinguish healthy and ill people and evaluate the level of CK increase. Thus, the biosensor can be used as a test-system for CK analysis in blood serum or serve as a component of multibiosensors for determination of important blood substances. Determination of activity of other kinases by the developed biosensor is also possible for research purposes.

  18. Determination of total creatine kinase activity in blood serum using an amperometric biosensor based on glucose oxidase and hexokinase.

    PubMed

    Kucherenko, I S; Soldatkin, O O; Lagarde, F; Jaffrezic-Renault, N; Dzyadevych, S V; Soldatkin, A P

    2015-11-01

    Creatine kinase (CK: adenosine-5-triphosphate-creatine phosphotransferase) is an important enzyme of muscle cells; the presence of a large amount of the enzyme in blood serum is a biomarker of muscular injuries, such as acute myocardial infarction. This work describes a bi-enzyme (glucose oxidase and hexokinase based) biosensor for rapid and convenient determination of CK activity by measuring the rate of ATP production by this enzyme. Simultaneously the biosensor determines glucose concentration in the sample. Platinum disk electrodes were used as amperometric transducers. Glucose oxidase and hexokinase were co-immobilized via cross-linking with BSA by glutaraldehyde and served as a biorecognition element of the biosensor. The biosensor work at different concentrations of CK substrates (ADP and creatine phosphate) was investigated; optimal concentration of ADP was 1mM, and creatine phosphate - 10 mM. The reproducibility of the biosensor responses to glucose, ATP and CK during a day was tested (relative standard deviation of 15 responses to glucose was 2%, to ATP - 6%, to CK - 7-18% depending on concentration of the CK). Total time of CK analysis was 10 min. The measurements of creatine kinase in blood serum samples were carried out (at 20-fold sample dilution). Twentyfold dilution of serum samples was chosen as optimal for CK determination. The biosensor could distinguish healthy and ill people and evaluate the level of CK increase. Thus, the biosensor can be used as a test-system for CK analysis in blood serum or serve as a component of multibiosensors for determination of important blood substances. Determination of activity of other kinases by the developed biosensor is also possible for research purposes. PMID:26452867

  19. Mesoporous carbon nitride based biosensor for highly sensitive and selective analysis of phenol and catechol in compost bioremediation.

    PubMed

    Zhou, Yaoyu; Tang, Lin; Zeng, Guangming; Chen, Jun; Cai, Ye; Zhang, Yi; Yang, Guide; Liu, Yuanyuan; Zhang, Chen; Tang, Wangwang

    2014-11-15

    Herein, we reported here a promising biosensor by taking advantage of the unique ordered mesoporous carbon nitride material (MCN) to convert the recognition information into a detectable signal with enzyme firstly, which could realize the sensitive, especially, selective detection of catechol and phenol in compost bioremediation samples. The mechanism including the MCN based on electrochemical, biosensor assembly, enzyme immobilization, and enzyme kinetics (elucidating the lower detection limit, different linear range and sensitivity) was discussed in detail. Under optimal conditions, GCE/MCN/Tyr biosensor was evaluated by chronoamperometry measurements and the reduction current of phenol and catechol was proportional to their concentration in the range of 5.00 × 10(-8)-9.50 × 10(-6)M and 5.00 × 10(-8)-1.25 × 10(-5)M with a correlation coefficient of 0.9991 and 0.9881, respectively. The detection limits of catechol and phenol were 10.24 nM and 15.00 nM (S/N=3), respectively. Besides, the data obtained from interference experiments indicated that the biosensor had good specificity. All the results showed that this material is suitable for load enzyme and applied to the biosensor due to the proposed biosensor exhibited improved analytical performances in terms of the detection limit and specificity, provided a powerful tool for rapid, sensitive, especially, selective monitoring of catechol and phenol simultaneously. Moreover, the obtained results may open the way to other MCN-enzyme applications in the environmental field.

  20. Immobilization free electrochemical biosensor for folate receptor in cancer cells based on terminal protection.

    PubMed

    Ni, Jiancong; Wang, Qingxiang; Yang, Weiqiang; Zhao, Mengmeng; Zhang, Ying; Guo, Longhua; Qiu, Bin; Lin, Zhenyu; Yang, Huang-Hao

    2016-12-15

    The determination of folate receptor (FR) that over expressed in vast quantity of cancerous cells frequently is significant for the clinical diagnosis and treatment of cancers. Many DNA-based electrochemical biosensors have been developed for FR detection with high selectivity and sensitivity, but most of them need complicated immobilization of DNA on the electrode surface firstly, which is tedious and therefore results in the poor reproducibility. In this study, a simple, sensitive, and selective electrochemical FR biosensor in cancer cells has been proposed, which combines the advantages of the convenient immobilization-free homogeneous indium tin oxide (ITO)-based electrochemical detection strategy and the high selectivity of the terminal protection of small molecule linked DNA. The small molecule of folic acid (FA) and an electroactive molecule of ferrocence (Fc) were tethered to 3'- and 5'-end of an arbitrary single-stranded DNA (ssDNA), respectively, forming the FA-ssDNA-Fc complex. In the absence of the target FR, the FA-ssDNA-Fc was degraded by exonuclease I (Exo I) from 3'-end and produced a free Fc, diffusing freely to the ITO electrode surface and resulting in strong electrochemical signal. When the target FR was present, the FA-ssDNA-Fc was bound to FR through specific interaction with FA anchored at the 3'-end, effectively protecting the ssDNA strand from hydrolysis by Exo I. The FR-FA-ssDNA-Fc could not diffuse easily to the negatively charged ITO electrode surface due to the electrostatic repulsion between the DNA strand and the negatively charged ITO electrode, so electrochemical signal reduced. The decreased electrochemical signal has a linear relationship with the logarithm of FR concentration in range of 10fM to 10nM with a detection limit of 3.8fM (S/N=3). The proposed biosensor has been applied to detect FR in HeLa cancer cells, and the decreased electrochemical signal has a linear relationship with the logarithm of cell concentration ranging

  1. Amperometric hydrogen peroxide and glucose biosensor based on NiFe2/ordered mesoporous carbon nanocomposites.

    PubMed

    Xiang, Dong; Yin, Longwei; Ma, Jingyun; Guo, Enyan; Li, Qun; Li, Zhaoqiang; Liu, Kegao

    2015-01-21

    Nanocomposites of NiFex embedded in ordered mesoporous carbon (OMC) (x = 0, 1, 2) were prepared by a wet impregnation and hydrogen reduction process and were used to construct electrochemical biosensors for the amperometric detection of hydrogen peroxide (H2O2) or glucose. The NiFe2/OMC nanocomposites were demonstrated to have a large surface area, suitable mesoporous channels, many edge-plane-like defective sites, and a good distribution of alloyed nanoparticles. The NiFe2/OMC and Nafion modified glass carbon electrode (GCE) exhibited excellent electrocatalytic activities toward the reduction of H2O2 as well. By utilizing it as a bioplatform, GOx (glucose oxidase) cross-linked with Nafion was immobilized on the surface of the electrode for the construction of an amperometric glucose biosensor. Our results indicated that the amperometric hydrogen peroxide biosensor (NiFe2/OMC + Nafion + GCE) showed good analytical performances in term of a high sensitivity of 4.29 μA mM(-1) cm(-2), wide linearity from 6.2 to 42,710 μM and a low detection limit of 0.24 μM at a signal-to-noise ratio of 3 (S/N = 3). This biosensor exhibited excellent selectivity, high stability and negligible interference for the detection of H2O2. In addition, the immobilized enzyme on NiFe2/OMC + Nafion + GCE, retaining its bioactivity, exhibited a reversible two-proton and two-electron transfer reaction, a fast heterogeneous electron transfer rate and an effective Michaelis-Menten constant (K) (3.18 mM). The GOx + NiFe2/OMC + Nafion + GCE could be used to detect glucose based on the oxidation of glucose catalyzed by GOx and exhibited a wide detection range of 48.6-12,500 μM with a high sensitivity of 6.9 μA mM(-1) cm(-2) and a low detection limit of 2.7 μM (S/N = 3). The enzymic biosensor maintained a high selectivity and stability features, and shows great promise for application in the detection of glucose.

  2. Amperometric hydrogen peroxide and glucose biosensor based on NiFe2/ordered mesoporous carbon nanocomposites.

    PubMed

    Xiang, Dong; Yin, Longwei; Ma, Jingyun; Guo, Enyan; Li, Qun; Li, Zhaoqiang; Liu, Kegao

    2015-01-21

    Nanocomposites of NiFex embedded in ordered mesoporous carbon (OMC) (x = 0, 1, 2) were prepared by a wet impregnation and hydrogen reduction process and were used to construct electrochemical biosensors for the amperometric detection of hydrogen peroxide (H2O2) or glucose. The NiFe2/OMC nanocomposites were demonstrated to have a large surface area, suitable mesoporous channels, many edge-plane-like defective sites, and a good distribution of alloyed nanoparticles. The NiFe2/OMC and Nafion modified glass carbon electrode (GCE) exhibited excellent electrocatalytic activities toward the reduction of H2O2 as well. By utilizing it as a bioplatform, GOx (glucose oxidase) cross-linked with Nafion was immobilized on the surface of the electrode for the construction of an amperometric glucose biosensor. Our results indicated that the amperometric hydrogen peroxide biosensor (NiFe2/OMC + Nafion + GCE) showed good analytical performances in term of a high sensitivity of 4.29 μA mM(-1) cm(-2), wide linearity from 6.2 to 42,710 μM and a low detection limit of 0.24 μM at a signal-to-noise ratio of 3 (S/N = 3). This biosensor exhibited excellent selectivity, high stability and negligible interference for the detection of H2O2. In addition, the immobilized enzyme on NiFe2/OMC + Nafion + GCE, retaining its bioactivity, exhibited a reversible two-proton and two-electron transfer reaction, a fast heterogeneous electron transfer rate and an effective Michaelis-Menten constant (K) (3.18 mM). The GOx + NiFe2/OMC + Nafion + GCE could be used to detect glucose based on the oxidation of glucose catalyzed by GOx and exhibited a wide detection range of 48.6-12,500 μM with a high sensitivity of 6.9 μA mM(-1) cm(-2) and a low detection limit of 2.7 μM (S/N = 3). The enzymic biosensor maintained a high selectivity and stability features, and shows great promise for application in the detection of glucose. PMID:25429370

  3. Fabrication of Optical Devices Based on Printable Photonics Technology and Its Application for Biosensor

    NASA Astrophysics Data System (ADS)

    Endo, Tatsuro; Okuda, Norimichi; Yanagida, Yasuko; Tanaka, Satoru; Hatsuzawa, Takeshi

    The specific optical characteristics which can be observed nanostructured optical device have great potentials for applying to several applications such as lifescience, optical communications, and data storage. Application of nanostrcutured optical device to industry, we suggest “printable photonics technology” for fabrication of nanostructured optical device based on nanoimprint lithography (NIL). In this study, using printable photonics technology, fabrication of flexible photonic crystal (PC) and its application for biosensor was performed. Using printable photonics technology-based PC for biosensing application, high sensitive detection of protein adsorption (detection limit: 1 pg/ml) could be detected.

  4. Critical coagulation concentration-based salt titration for visual quantification in gold nanoparticle-based colorimetric biosensors.

    PubMed

    Li, Na; Yu, Lu; Zou, Jiaqi

    2014-02-01

    In gold nanoparticle (GNP)-based colorimetric biosensors, the gradual color shift is often used to correlate with the concentration of target molecules, and therefore a UV-vis spectrometer is usually required for accurate quantification. Here, we present a critical coagulation concentration (CCC)-based salt titration as a generic and simple way to enable accurate quantification in GNP-based colorimetric biosensors without any analytical equipment. The titration is carried out by stepwise addition of a salt titrant to the premixture of sample and GNPs until the color changes rapidly from red to blue, determined solely by visual inspection. The number of titration steps or the final salt concentration required for a rapid color shift (i.e., CCC) is then used to quantitatively correlate with the concentration of target molecules in the sample. The salt titration-based quantification has been demonstrated with two previously reported GNP-based colorimetric biosensors. Compared with quantification based on the gradual color shift with a spectrometer, the visual quantification based on the rapid color shift in the salt titration eliminates the need for any analytical equipment without sacrificing the performance (i.e., sensitivity and accuracy) and therefore is highly suitable for applications in low-resource settings.

  5. Porous nanosheet-based ZnO microspheres for the construction of direct electrochemical biosensors.

    PubMed

    Lu, Xianbo; Zhang, Haijun; Ni, Yuwen; Zhang, Qing; Chen, Jiping

    2008-09-15

    Nanosheet-based ZnO microsphere with porous nanostructures was synthesized by a facile chemical bath deposition method followed by thermal treatment, which was explored for the construction of electrochemical biosensors. Spectroscopic and electrochemical researches revealed the ZnO-based composite was a biocompatible immobilization matrix for enzymes with good enzymatic stability and bioactivity. With advantages of nanostructured inorganic-organic hybrid materials, a pair of stable and well-defined quasi-reversible redox peaks of hemoglobin was obtained with a formal potential of -0.345 V (vs. Ag/AgCl) in pH 7.0 buffer. Facilitated direct electron transfer of the metalloenzymes with an apparent heterogeneous electron transfer rate constant (k(s)) of 3.2s(-1) was achieved on the ZnO-based enzyme electrode. Comparative studies demonstrated the nanosheet-based ZnO microspheres were more effective in facilitating the electron transfer of immobilized enzyme than solid ZnO microspheres, which may result from the unique nanostructures and larger surface area of the porous ZnO. The prepared biosensor displayed good performance for the detection of H(2)O(2) and NaNO(2) with a wide linear range of 1-410 and 10-2700 microM, respectively. The entrapped hemoglobin exhibits high peroxidase-like activity for the catalytic reduction of H(2)O(2) with an apparent Michaelis-Menten constant (K(M)(app)) of 143 microM. The nanosheet-based ZnO could be a promising matrix for the fabrication of direct electrochemical biosensors, and may find wide potential applications in biomedical detection and environmental analysis.

  6. An improved sensitive assay for the detection of PSP toxins with neuroblastoma cell-based impedance biosensor.

    PubMed

    Zou, Ling; Wu, Chunsheng; Wang, Qin; Zhou, Jie; Su, Kaiqi; Li, Hongbo; Hu, Ning; Wang, Ping

    2015-05-15

    Paralytic shellfish poisoning (PSP) toxins are well-known sodium channel-blocking marine toxins, which block the conduction of nerve impulses and lead to a series of neurological disorders symptoms. However, PSP toxins can inhibit the cytotoxicity effect of compounds (e.g., ouabain and veratridine). Under the treatment of ouabain and veratridine, neuroblastoma cell will swell and die gradually, since veratridine causes the persistent inflow of Na(+) and ouabain inhibits the activity of Na(+)/K(+)-ATPases. Therefore, PSP toxins with antagonism effect can raise the chance of cell survival by blocking inflow of Na(+). Based on the antagonism effect of PSP toxins, we designed an improved cell-based assay to detect PSP toxins using a neuroblastoma cell-based impedance biosensor. The results demonstrated that this biosensor showed high sensitivity and good specificity for saxitoxins detection. The detection limit of this biosensor was as low as 0.03 ng/ml, which was lower than previous reported cell-based assays and mouse bioassays. With the improvement of biosensor performance, the neuroblastoma cell-based impedance biosensor has great potential to be a universal PSP screening method.

  7. An improved sensitive assay for the detection of PSP toxins with neuroblastoma cell-based impedance biosensor.

    PubMed

    Zou, Ling; Wu, Chunsheng; Wang, Qin; Zhou, Jie; Su, Kaiqi; Li, Hongbo; Hu, Ning; Wang, Ping

    2015-05-15

    Paralytic shellfish poisoning (PSP) toxins are well-known sodium channel-blocking marine toxins, which block the conduction of nerve impulses and lead to a series of neurological disorders symptoms. However, PSP toxins can inhibit the cytotoxicity effect of compounds (e.g., ouabain and veratridine). Under the treatment of ouabain and veratridine, neuroblastoma cell will swell and die gradually, since veratridine causes the persistent inflow of Na(+) and ouabain inhibits the activity of Na(+)/K(+)-ATPases. Therefore, PSP toxins with antagonism effect can raise the chance of cell survival by blocking inflow of Na(+). Based on the antagonism effect of PSP toxins, we designed an improved cell-based assay to detect PSP toxins using a neuroblastoma cell-based impedance biosensor. The results demonstrated that this biosensor showed high sensitivity and good specificity for saxitoxins detection. The detection limit of this biosensor was as low as 0.03 ng/ml, which was lower than previous reported cell-based assays and mouse bioassays. With the improvement of biosensor performance, the neuroblastoma cell-based impedance biosensor has great potential to be a universal PSP screening method. PMID:25223551

  8. Electrical percolation-based biosensor for real-time direct detection of staphylococcal enterotoxin B (SEB).

    PubMed

    Yang, Minghui; Sun, Steven; Bruck, Hugh Alan; Kostov, Yordan; Rasooly, Avraham

    2010-08-15

    Electrical percolation-based biosensing is a new technology. This is the first report of an electrical percolation-based biosensor for real-time detection. The label-free biosensor is based on electrical percolation through a single-walled carbon nanotubes (SWNTs)-antibody complex that forms a network functioning as a "Biological Semiconductor" (BSC). The conductivity of a BSC is directly related to the number of contacts facilitated by the antibody-antigen "connectors" within the SWNT network. BSCs are fabricated by immobilizing a pre-functionalized SWNTs-antibody complex directly on a poly(methyl methacrylate) (PMMA) and polycarbonate (PC) surface. Each BSC is connected via silver electrodes to a computerized ohmmeter, thereby enabling a continuous electronic measurement of molecular interactions (e.g. antibody-antigen binding) via the change in resistance. Using anti-staphylococcal enterotoxin B (SEB) IgG to functionalize the BSC, we demonstrate that the biosensor was able to detect SEB at concentrations as low as 5 ng/mL at a signal to baseline (S/B) ratio of 2. Such measurements were performed on the chip in wet conditions. The actuation of the chip by SEB is immediate, permitting real-time signal measurements. In addition to this "direct" label-free detection mode, a secondary antibody can be used to "label" the target molecule bound to the BSC in a manner analogous to an immunological sandwich "indirect" detection-type assay. Although a secondary antibody is not needed for direct detection, the indirect mode of detection may be useful as an additional measurement to verify or amplify signals from direct detection in clinical, food safety and other critical assays. The BSC was used to measure SEB both in buffer and in milk, a complex matrix, demonstrating the potential of electrical percolation-based biosensors for real-time label-free multi-analyte detection in clinical and complex samples. Assembly of BSCs is simple enough that multiple sensors can be

  9. Detection of mercury compounds using invertase-glucose oxidase-based biosensor

    SciTech Connect

    Amine, A.; Cremisini, C.; Palleschi, G.

    1995-12-31

    Mercury compounds have been determined with an electrochemical biosensor based on invertase inhibition. When invertase is in presence of mercury its activity decreases; this causes a decrease of glucose production which is monitored by the glucose sensor and correlated to the concentration of mercury in solution. Parameters as pH, enzyme concentration, substrate concentration, and reaction and incubation time were optimized. Mercury compounds determination using soluble or immobilized invertase were reported. Results showed that the inhibition was competitive and reversible. Mercury compounds can be detected directly in aqueous solution in the range 2--10 ppb.

  10. Multiplexed microneedle-based biosensor array for characterization of metabolic acidosis.

    PubMed

    Miller, Philip R; Skoog, Shelby A; Edwards, Thayne L; Lopez, Deanna M; Wheeler, David R; Arango, Dulce C; Xiao, Xiaoyin; Brozik, Susan M; Wang, Joseph; Polsky, Ronen; Narayan, Roger J

    2012-01-15

    The development of a microneedle-based biosensor array for multiplexed in situ detection of exercise-induced metabolic acidosis, tumor microenvironment, and other variations in tissue chemistry is described. Simultaneous and selective amperometric detection of pH, glucose, and lactate over a range of physiologically relevant concentrations in complex media is demonstrated. Furthermore, materials modified with a cell-resistant (Lipidure(®)) coating were shown to inhibit macrophage adhesion; no signs of coating delamination were noted over a 48-h period. PMID:22265568

  11. Multiplexed Microneedle-based Biosensor Array for Characterization of Metabolic Acidosis

    PubMed Central

    Miller, Philip R.; Skoog, Shelby A.; Edwards, Thayne L.; Lopez, Deanna M.; Wheeler, David R.; Arango, Dulce C.; Xiao, Xiaoyin; Brozik, Susan M.; Wang, Joseph; Polsky, Ronen; Narayan, Roger J.

    2011-01-01

    The development of a microneedle-based biosensor array for multiplexed in situ detection of exercise-induced metabolic acidosis, tumor microenvironment, and other variations in tissue chemistry is described. Simultaneous and selective amperometric detection of pH, glucose, and lactate over a range of physiologically-relevant concentrations in complex media is demonstrated. Furthermore, materials modified with a cell-resistant (Lipidure®) coating were shown to inhibit macrophage adhesion; no signs of coating delamination were noted over a 48-hour period. PMID:22265568

  12. Asymmetric Mach–Zehnder Interferometer Based Biosensors for Aflatoxin M1 Detection

    PubMed Central

    Chalyan, Tatevik; Guider, Romain; Pasquardini, Laura; Zanetti, Manuela; Falke, Floris; Schreuder, Erik; Heideman, Rene G.; Pederzolli, Cecilia; Pavesi, Lorenzo

    2016-01-01

    In this work, we present a study of Aflatoxin M1 detection by photonic biosensors based on Si3N4 Asymmetric Mach–Zehnder Interferometer (aMZI) functionalized with antibodies fragments (Fab′). We measured a best volumetric sensitivity of 104 rad/RIU, leading to a Limit of Detection below 5 × 10−7 RIU. On sensors functionalized with Fab′, we performed specific and non-specific sensing measurements at various toxin concentrations. Reproducibility of the measurements and re-usability of the sensor were also investigated. PMID:26751486

  13. Detection of mercury compounds using invertase-glucose oxidase-based biosensor

    NASA Astrophysics Data System (ADS)

    Amine, A.; Cremisini, C.; Palleschi, G.

    1995-10-01

    Mercury compounds have been determined with an electrochemical biosensor based on invertase inhibition. When invertase is in the presence of mercury its activity decreases; this causes a decrease of glucose production which is monitored by the glucose sensor and correlated to the concentration of mercury in solution. Parameters as pH, enzyme concentration, substrate concentration, and reaction and incubation time were optimized. Mercury compounds determination using soluble or immobilized invertase were reported. Results show that the inhibition was competitive and reversible. Mercury compounds can be detected directly in aqueous solution in the range 2 - 10 ppb.

  14. Sol-Gel-Based Titania-Silica Thin Film Overlay for Long Period Fiber Grating-Based Biosensors.

    PubMed

    Chiavaioli, Francesco; Biswas, Palas; Trono, Cosimo; Jana, Sunirmal; Bandyopadhyay, Somnath; Basumallick, Nandini; Giannetti, Ambra; Tombelli, Sara; Bera, Susanta; Mallick, Aparajita; Baldini, Francesco

    2015-12-15

    An evanescent wave optical fiber biosensor based on titania-silica-coated long period grating (LPG) is presented. The chemical overlay, which increases the refractive index (RI) sensitivity of the sensor, consists of a sol-gel-based titania-silica thin film, deposited along the sensing portion of the fiber by means of the dip-coating technique. Changing both the sol viscosity and the withdrawal speed during the dip-coating made it possible to adjust the thickness of the film overlay, which is a crucial parameter for the sensor performance. After the functionalization of the fiber surface using a methacrylic acid/methacrylate copolymer, an antibody/antigen (IgG/anti-IgG) assay was carried out to assess the performance of sol-gel based titania-silica-coated LPGs as biosensors. The analyte concentration was determined from the wavelength shift at the end of the binding process and from the initial binding rate. This is the first time that a sol-gel based titania-silica-coated LPG is proposed as an effective and feasible label-free biosensor. The specificity of the sensor was validated by performing the same model assay after spiking anti-IgG into human serum. With this structured LPG, detection limits of the order of tens of micrograms per liter (10(-11) M) are attained.

  15. A screen-printed, amperometric biosensor for the determination of organophosphorus pesticides in water samples.

    PubMed

    Dou, Junfeng; Fan, Fuqiang; Ding, Aizhong; Cheng, Lirong; Sekar, Raju; Wang, Hongting; Li, Shuairan

    2012-01-01

    An amperometric biosensor based on screen-printed electrodes (SPEs) was developed for the determination of organophosphorus pesticides in water samples. The extent of acetylcholinesterase (AChE) deactivation was determined and quantified for pesticide concentrations in water samples. An enzyme immobilization adsorption procedure and polyacrylamide gel matrix polymerization were used for fabrication of the biosensor, with minimal losses in enzyme activity. The optimal conditions for enzyme catalytic reaction on the SPEs surfaces were acetylthiocholine chloride (ATChCl) concentration of 5 mmol/L, pH 7 and reaction time of 4 min. The detection limits for three organophosphorus pesticides (dichlorvos, monocrotophs and parathion) were in the range of 4 to 7 microg/L when an AChE amount of 0.1 U was used for immobilization.

  16. Homo-FRET Based Biosensors and Their Application to Multiplexed Imaging of Signalling Events in Live Cells

    PubMed Central

    Warren, Sean C.; Margineanu, Anca; Katan, Matilda; Dunsby, Chris; French, Paul M. W.

    2015-01-01

    Multiplexed imaging of Förster Resonance Energy Transfer (FRET)-based biosensors potentially presents a powerful approach to monitoring the spatio-temporal correlation of signalling pathways within a single live cell. Here, we discuss the potential of homo-FRET based biosensors to facilitate multiplexed imaging. We demonstrate that the homo-FRET between pleckstrin homology domains of Akt (Akt-PH) labelled with mCherry may be used to monitor 3′-phosphoinositide accumulation in live cells and show how global analysis of time resolved fluorescence anisotropy measurements can be used to quantify this accumulation. We further present multiplexed imaging readouts of calcium concentration, using fluorescence lifetime measurements of TN-L15-a CFP/YFP based hetero-FRET calcium biosensor-with 3′-phosphoinositide accumulation. PMID:26133241

  17. Homo-FRET Based Biosensors and Their Application to Multiplexed Imaging of Signalling Events in Live Cells.

    PubMed

    Warren, Sean C; Margineanu, Anca; Katan, Matilda; Dunsby, Chris; French, Paul M W

    2015-06-30

    Multiplexed imaging of Förster Resonance Energy Transfer (FRET)-based biosensors potentially presents a powerful approach to monitoring the spatio-temporal correlation of signalling pathways within a single live cell. Here, we discuss the potential of homo-FRET based biosensors to facilitate multiplexed imaging. We demonstrate that the homo-FRET between pleckstrin homology domains of Akt (Akt-PH) labelled with mCherry may be used to monitor 3'-phosphoinositide accumulation in live cells and show how global analysis of time resolved fluorescence anisotropy measurements can be used to quantify this accumulation. We further present multiplexed imaging readouts of calcium concentration, using fluorescence lifetime measurements of TN-L15-a CFP/YFP based hetero-FRET calcium biosensor-with 3'-phosphoinositide accumulation.

  18. Highly stable and sensitive glucose biosensor based on covalently assembled high density Au nanostructures.

    PubMed

    Si, Peng; Kannan, Palanisamy; Guo, Longhua; Son, Hungsun; Kim, Dong-Hwan

    2011-05-15

    We describe the development of a highly stable and sensitive glucose biosensor based on the nanohybrid materials derived from gold nanoparticles (AuNPs) and multi-walled carbon nanotubes (MWCNT). The biosensing platform was developed by using layer-by-layer (LBL) self-assembly of the nanohybrid materials and the enzyme glucose oxidase (GOx). A high density of AuNPs and MWCNT nanocomposite materials were constructed by alternate self assembly of thiol functionalized MWCNTs and AuNPs, followed by chemisoption of GOx. The surface morphology of multilayered AuNPs/MWCNT structure was characterized by field emission-scanning electron microscope (FE-SEM), and the surface coverage of AuNPs was investigated by cyclic voltammetry (CV), showing that 5 layers of assembly achieves the maximum particle density on electrode. The immobilization of GOx was monitored by electrochemical impedance spectroscopy (EIS). CV and amperometry methods were used to study the electrochemical oxidation of glucose at physiological pH 7.4. The Au electrode modified with five layers of AuNPs/MWCNT composites and GOx exhibited an excellent electrocatalytic activity towards oxidation of glucose, which presents a wide liner range from 20 μM to 10 mM, with a sensitivity of 19.27 μA mM(-1) cm(-2). The detection limit of present modified electrode was found to be 2.3 μM (S/N=3). In addition, the resulting biosensor showed a faster amperometric current response (within 3 s) and low apparent Michaelis-Menten constant (K(m)(app)). Our present study shows that the high density of AuNPs decorated MWCNT is a promising nanohybrid material for the construction of enzyme based electrochemical biosensors.

  19. Stimulus-response mesoporous silica nanoparticle-based chemiluminescence biosensor for cocaine determination.

    PubMed

    Chen, Zhonghui; Tan, Yue; Xu, Kefeng; Zhang, Lan; Qiu, Bin; Guo, Longhua; Lin, Zhenyu; Chen, Guonan

    2016-01-15

    Mesoporous silica nanoparticles (MSN) based controlled release system had been coupled with diverse detection technologies to establish biosensors for different targets. Chemiluminescence (CL) system of luminol/H2O2 owns the characters of simplicity, low cost and high sensitivity, but the targets of which are mostly focused on some oxidants or which can participate in a chemical reaction that yields a product with a role in the CL reaction. In this study, chemiluminescent detection technique had been coupled with mesoporous silica-based controlled released system for the first time to develop a sensitive biosensor for the target which does not cause effect to the CL system itself. Cocaine had been chosen a model target, the MSN support was firstly loaded with glucose, then the positively charged MSN interacted with negatively charged oligonucleotides (the aptamer cocaine) to close the mesopores of MSN. At the present of target, cocaine binds with its aptamer with high affinity; the flexible linear aptamer structured will become stems structured through currently well-defined non-Waston-Crick interactions and causes the releasing of entrapped glucose into the solution. With the assistant of glucose oxidase (GOx), the released glucose can react with the dissolved oxgen to produce gluconic acid and H2O2, the latter can enhance the CL of luminol in the NaOH solution. The enhanced CL intensity has a relationship with the cocaine concentration in the range of 5.0-60μM with the detection limit of 1.43μM. The proposed method had been successfully applied to detect cocaine in serum samples with high selectivity. The same strategy can be applied to develop biosensors for different targets.

  20. A surface-acoustic-wave-based cantilever bio-sensor.

    PubMed

    De Simoni, Giorgio; Signore, Giovanni; Agostini, Matteo; Beltram, Fabio; Piazza, Vincenzo

    2015-06-15

    A scalable surface-acoustic-wave- (SAW-) based cantilevered device for portable bio-chemical sensing applications is presented. Even in the current, proof-of-principle implementation this architecture is shown to outperform commercial quartz-crystal microbalances in terms of sensitivity. Adhesion of analytes on a functionalized surface of the cantilever shifts the resonant frequency of a SAW-generating transducer due to the stress-induced variation of the speed of surface acoustic modes. We discuss the relevance of this approach for diagnostics applications based on miniaturized devices.

  1. An ultrasensitive electrochemical DNA biosensor based on a copper oxide nanowires/single-walled carbon nanotubes nanocomposite

    NASA Astrophysics Data System (ADS)

    Chen, Mei; Hou, Changjun; Huo, Danqun; Yang, Mei; Fa, Huanbao

    2016-02-01

    Here, we developed a novel and sensitive electrochemical biosensor to detect specific-sequence target DNA. The biosensor was based on a hybrid nanocomposite consisting of copper oxide nanowires (CuO NWs) and carboxyl-functionalized single-walled carbon nanotubes (SWCNTs-COOH). The resulting CuO NWs/SWCNTs layers exhibited a good differential pulse voltammetry (DPV) current response for the target DNA sequences, which we attributed to the properties of CuO NWs and SWCNTs. CuO NWs and SWCNTs hybrid composites with highly conductive and biocompatible nanostructure were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and cyclic voltammetry (CV). Immobilization of the probe DNA on the electrode surface was largely improved due to the unique synergetic effect of CuO NWs and SWCNTs. DPV was applied to monitor the DNA hybridization event, using adriamycin as an electrochemical indicator. Under optimal conditions, the peak currents of adriamycin were linear with the logarithm of target DNA concentrations (ranging from 1.0 × 10-14 to 1.0 × 10-8 M), with a detection limit of 3.5 × 10-15 M (signal/noise ratio of 3). The biosensor also showed high selectivity to single-base mismatched target DNA. Compared with other electrochemical DNA biosensors, we showed that the proposed biosensor is simple to implement, with good stability and high sensitivity.

  2. Development of Carbon-Based Nano-Composite Materials for Direct Electron Transfer Based Biosensors.

    PubMed

    Sanzó, Gabriella; Tortolini, Cristina; Antiochia, Riccarda; Favero, Gabriele; Mazzei, Franco

    2015-05-01

    Nafion, an ion exchange polymer that is very resistant to chemical attack, even by strong oxidant at high temperatures, has found great increasing use as a film material; however, its use as immobilizing agent in third-generation biosensors is hindered due to the low rate of charge transfer in the pure Nafion film. In this work we showed that the use of functionalized multi-walled carbon nanotubes Nafion/MWCNTs composite film for modification of the carbon-based electrode surfaces would increase the charge transfer rate greatly; the composite has proven to efficiently immobilize two different heme proteins (catalase and cytochrome c) and to enhance the electrochemical performances of several carbon electrode materials (glassy carbon, mesoporous graphite, graphite and graphene) either used as classical electrodes or screen printed ones. The electrochemical signal of both redox proteins becomes more reversible and the electron transfer kinetic constant increases. At the same time the biological activity is maintained indicating that the immobilization procedure allows the proteins to retain a native-like structure. PMID:26504961

  3. Gold and aluminum based surface plasmon resonance biosensors: sensitivity enhancement

    NASA Astrophysics Data System (ADS)

    Biednov, Mykola; Lebyedyeva, Tetyana; Shpylovyy, Pavlo

    2015-05-01

    In this work we considered Gold and Aluminum thin films coated with additional dielectric layers as sensing platforms. Operation of these sensors is based on measuring shift in the position of the reflectivity dip in angular reflectivity spectrum of the sample. Shift can be caused by changes in the refraction index of either liquid that interacts with sensors surface (refractometric measurements) or thin adjacent biolayer on top of the sensor due to immobilization of the target molecules (biosensing). Calculations based on Fresnel equations and transfer matrix formalism allowed us to make comprehensive analysis of the angular sensitivity, shape of the reflectivity dip and dynamic range of the sensors with different dielectric coatings. Calculations were performed for both cases of bio and refractometric sensing. Results showed different dependence of the sensitivity of Au an Al based sensors upon refraction index of the dielectric coating. For Au-based surface Plasmon resonance sensor up to two times increased sensitivity can be achieved using dielectric coating with high refraction index 2.3 of proper thickness. For sensors based on aluminum we were able to achieve 50% increased angular sensitivity. At the same time width of the reflectivity dip increased proportionally to the optical thickness of the dielectric coating. For estimating sensors quality we analyzed ratio of the angular sensitivity to the width of the reflectivity dip. This ratio decreased with increase in optical thickness of the dielectric, however angular sensitivity of the sensor increased significantly. Deposition of the additional dielectric layer with high refraction index such as Niobium Oxide can also improve chemical and mechanical stability of the sensor.

  4. [Determination of phenol in water by electrochemical tyrosinase biosensor based on ordered graphitized mesoporous carbon and evaluated by high performance liquid chromatography].

    PubMed

    Wu, Lidong; Liu, Huan; Li, Jincheng; Fu, Xiaochen; Song, Yi

    2014-12-01

    A novel electrochemical tyrosinase biosensor based on ordered graphitized mesoporous carbon (GMC) was obtained, which was used as a platform for phenol detection. The accuracy of tyrosinase biosensor method was comparatively evaluated by high performance liquid chromatography (HPLC). By entrapping tyrosinase molecules (6.5 nm x 9.8 nm x 5.5 nm) into the mesopores of GMC (diameter 10 nm, GMC10), the "interspace confinement effect" of GMC10 may improve the stability of tyrosinase in vitro. After 21-day storage, the GMC10-based tyrosinase biosensor retained more than 85% of its initial response. It is indicated that GMC10 with "interspace confinement effect" can significantly prolong the life of tyrosinase molecules in vitro. Furthermore, the GMC-based tyrosinase biosensor displayed excellent analytical performances for phenol detection, such as stability, repeatability, selectivity, sensitivity and limit of detection. The GMC-based tyrosinase biosensor demonstrated a linear response for phenol from 0. 1 to 10 µmol/L with a low detection limit of 20 nmol/L. The comparative study between HPLC and GMC-based tyrosinase biosensor showed that the detection of phenol in water sample by the GMC-based tyrosinase biosensor method is reliable, accurate and effective. The proposed GMC-based tyrosinase biosensor proved to be a very promising "pre-alarm" tool for rapid detecting phenol pollution in emergency accidents.

  5. Electrochemical sensors and biosensors based on redox polymer/carbon nanotube modified electrodes: a review.

    PubMed

    Barsan, Madalina M; Ghica, M Emilia; Brett, Christopher M A

    2015-06-30

    The aim of this review is to present the contributions to the development of electrochemical sensors and biosensors based on polyphenazine or polytriphenylmethane redox polymers together with carbon nanotubes (CNT) during recent years. Phenazine polymers have been widely used in analytical applications due to their inherent charge transport properties and electrocatalytic effects. At the same time, since the first report on a CNT-based sensor, their application in the electroanalytical chemistry field has demonstrated that the unique structure and properties of CNT are ideal for the design of electrochemical (bio)sensors. We describe here that the specific combination of phenazine/triphenylmethane polymers with CNT leads to an improved performance of the resulting sensing devices, because of their complementary electrical, electrochemical and mechanical properties, and also due to synergistic effects. The preparation of polymer/CNT modified electrodes will be presented together with their electrochemical and surface characterization, with emphasis on the contribution of each component on the overall properties of the modified electrodes. Their importance in analytical chemistry is demonstrated by the numerous applications based on polymer/CNT-driven electrocatalytic effects, and their analytical performance as (bio) sensors is discussed.

  6. Potential for Development of an Escherichia coli—Based Biosensor for Assessing Bioavailable Methionine: A Review

    PubMed Central

    Chalova, Vesela I.; Froelich, Clifford A.; Ricke, Steven C.

    2010-01-01

    Methionine is an essential amino acid for animals and is typically considered one of the first limiting amino acids in animal feed formulations. Methionine deficiency or excess in animal diets can lead to sub-optimal animal performance and increased environmental pollution, which necessitates its accurate quantification and proper dosage in animal rations. Animal bioassays are the current industry standard to quantify methionine bioavailability. However, animal-based assays are not only time consuming, but expensive and are becoming more scrutinized by governmental regulations. In addition, a variety of artifacts can hinder the variability and time efficacy of these assays. Microbiological assays, which are based on a microbial response to external supplementation of a particular nutrient such as methionine, appear to be attractive potential alternatives to the already established standards. They are rapid and inexpensive in vitro assays which are characterized with relatively accurate and consistent estimation of digestible methionine in feeds and feed ingredients. The current review discusses the potential to develop Escherichia coli-based microbial biosensors for methionine bioavailability quantification. Methionine biosynthesis and regulation pathways are overviewed in relation to genetic manipulation required for the generation of a respective methionine auxotroph that could be practical for a routine bioassay. A prospective utilization of Escherichia coli methionine biosensor would allow for inexpensive and rapid methionine quantification and ultimately enable timely assessment of nutritional profiles of feedstuffs. PMID:22319312

  7. Highly sensitive phage-based biosensor for the detection of beta-galactosidase.

    PubMed

    Nanduri, Viswaprakash; Balasubramanian, Shankar; Sista, Srinivas; Vodyanoy, Vitaly J; Simonian, Aleksandr L

    2007-04-25

    Development of real-time sensor based on the target-specific probe that make possible sensitive, rapid and selective detection and monitoring of the particular antigen molecules could be of substantial importance to the many applications. Because of its high specificity to the target molecules, excellent temperature stability, and easy production, bacterial phage might serve as a powerful biorecognition probe in biosensor applications. Here, we report extremely sensitive and specific label-free direct detection of model antigen, beta-galactosidase (beta-gal), based on surface plasmon resonance (SPR) spectroscopy. The beta-gal specific landscape phage 1G40 has been immobilized on the gold surface of SPR SPREETA sensor chip through physical adsorption [V. Nanduri, A.M. Samoylova, V.Petrenko, V. Vodyanoy and A.L.Simonian, Comparison of optical and acoustic wave phage biosensors, 206th Meeting of The Electrochemical Society, Honolulu, Hawaii, October 3-8, (2004)]. Another non-specific to the beta-gal phage, a wild-type phage F8-5, was used in the reference channel. The concentration-dependent binding of beta-gal in both channels were assessed by monitoring the sensor optical response as a function of time under different experimental conditions, and the concentration of beta-gal was computed in differential mode. Concentrations of beta-gal between 10(-12) M and 10(-7) M could be readily detected, with linear part of calibration curve between 10(-9) M and 10(-6) M. When beta-gal was pre-incubated with different concentrations of free 1G40 phage prior to exposure to the biosensor, concentration-dependent inhibition was observed, indicating on biosensor high specificity toward beta-gal. Apart from a flow through mode used to deliver the samples to the surface for the SPR sensor, batch mode sensing was also employed to study the binding of beta-gal to immobilized phage on the SPR sensor surface. Experiments using a flow through mode provided more consistent results in the

  8. Kohlrabi-based amperometric biosensor for hydrogen peroxide measurement

    SciTech Connect

    Lu Chen; Meng Shan Lin; Hara, Minoru; Rechnitz, G.A. )

    1991-01-01

    Hydrogen peroxide is a very important substance both in biological and environmental reactions. Hydrogen peroxide was determined amperometrically in a steady-state arrangement by utilizing a kohlrabi-ferrocene based carbon paste electrode. A very short response time (2.6 seconds) and a relatively large usable pH range (5.0-7.4) were obtained. Several important hydrogen donors were studied as possible interferences.

  9. Immobilised activated sludge based biosensor for biochemical oxygen demand measurement.

    PubMed

    Liu, J; Björnsson, L; Mattiasson, B

    2000-02-01

    A biochemical oxygen demand (BOD) sensor, based on an immobilised mixed culture of microorganisms in combination with a dissolved oxygen electrode, has been developed for the purpose of on-line monitoring of the biological treatment process for waste and wastewater. The sensor was designed for easy replacement of the biomembrane, thereby making it suitable for short-term use. The drawbacks of activated sludge based sensor, such as short sensor lifetime, were thereby circumvented. The sensor BOD measurements were carried out in the kinetic mode using a flow injection system, resulting in 25 s for one measurement followed by 4-8 min recovery time. Based on the results of normalised sensor responses, the OECD synthetic wastewater was considered to be a more suitable calibration solution in comparison with the GGA solution. Good agreement was achieved between the results of the sensor BOD measurement and those obtained from BOD5 analysis of a wastewater sample from a food-processing factory. Reproducibility of responses using one sensor was below +/- 5.6%, standard deviation. Reproducibility of responses using different sensors was within acceptable bias limits, viz. +/- 15% standard deviation.

  10. Novel charge plasma based dielectric modulated impact ionization MOSFET as a biosensor for label-free detection

    NASA Astrophysics Data System (ADS)

    Chanda, Manash; Dey, Prithu; De, Swapnadip; Sarkar, Chandan Kumar

    2015-10-01

    In this paper a charge plasma based dielectric modulated impact ionization MOSFET (CP-DIMOSFET) has been proposed for the first time to ease the label free detection of biomolecules. The concept of CP-DIMOSFET is proposed and analyzed on basis of simulated data using SILVACO ATLAS. Low thermal budgeting and thin silicon layer without any dopant implantations make the proposed structure advantageous compared to the existing MOSFET based biosensors. The results show that the proposed device is capable to detect the presence of biomolecules. Simple fabrication schemes, miniaturization, high sensitivity, dominance of dielectric modulation make the proposed biosensor a promising one that could one day revolutionize the healthcare industry.

  11. Single Walled Carbon Nanotube-Based Electrical Biosensor for the Label-Free Detection of Pathogenic Bacteria.

    PubMed

    Yoo, Seung Min; Baek, Youn-Kyoung; Shin, SunHaeRa; Kim, Ju-Hyun; Jung, Hee-Tae; Choi, Yang-Kyu; Lee, Sang Yup

    2016-06-01

    We herein describe the development of a single-walled carbon nanotube (SWNT)-based electrical biosensor consisting of a two-terminal resistor, and report its use for the specific, label-free detection of pathogenic bacteria via changes in conductance. The ability of this biosensor to recognize different pathogenic bacteria was analyzed, and conditions were optimized with different probe concentrations. Using this system, the reference strains and clinical isolates of Staphylococcus aureus and Escherichia coli were successfully detected; in both cases, the sensor showed a detection limit of 10 CFU. This SWNT-based electrical biosensor will prove useful for the development of highly sensitive and specific handheld pathogen detectors. PMID:27427746

  12. Aptamer-based electrochemical biosensor for Botulinum neurotoxin.

    PubMed

    Wei, Fang; Ho, Chih-Ming

    2009-04-01

    We have developed an aptamer-based electrochemical sensor for detection of Botulinum neurotoxin, where steric hindrance is applied to achieve specific signal amplification via conformational change of the aptamer. The incubation time and potassium concentration of the reaction buffer were found to be key parameters affecting the sensitivity of detection of the recognition of Botulinum neurotoxin by the aptamer. Under optimized experimental conditions, a high signal-to-noise ratio was obtained within 24 h with a limit of detection (LOD) of 40 pg/ml by two standard deviation cutoffs above the noise level.

  13. The development of FRET-based dual receptor optical biosensor

    NASA Astrophysics Data System (ADS)

    Xu, Juntao

    The focus of the research presented in this dissertation is the development of a new FRET-based dual receptor sensing method for detecting the human immunodeficiency virus (HIV). The new detection method presented in this dissertation imitates the way HIV infects cells. It utilizes the two receptor-binding event and integrates a chemical transducer system with two unique protein receptors, CD4 and mAb (HIV-1 gp120 monoclonal antibody), which both bind to gp120. The chemical transduction system is based on the distance-dependant principle of fluorescence resonance energy transfer (FRET). The work presented in this dissertation attempts to demonstrate the feasibility of this new sensing method both in solution and on an optical fiber. Appropriate FRET pairs which have high energy transfer efficiency as well as good conjugation properties with receptors were selected and optimized. The two receptors, CD4 and mAb which specifically bind to gp120, were conjugated to one of the optimized FRET fluorophore pairs, AMCA-NHS (succinimidyl-7-amino-4-methylcoumarin-3-acetic acid) and FITC (fluorescein isothiocyanate), respectively. For the solution test, the viral protein gp120, which is the featured protein on the surface of HIV-1, was detected by the mixed solution of the two FRET pair tagged receptors. A spectrofluorometer was used to detect the fluorescent change between AMCA-NHS and FITC peak intensities when the receptors bind to the gp120. Specific binding and non-specific binding gp120 were used to test the selectivity of this method. The results of the solution test indicated that FRET-conjugated receptors can efficiently distinguish the presence of specific and non-specific binding gp120 and proved the feasibility of the FRET-based dual receptor method in detecting the presence of gp120 with a limit of detection of 5ng/ml (0.5nM) in solution. For the optical fiber test, two FRET-conjugated receptors were immobilized onto an optical fiber silica core tip to detect the

  14. An amperometric hydrogen peroxide biosensor based on Co3O4 nanoparticles and multiwalled carbon nanotube modified glassy carbon electrode

    NASA Astrophysics Data System (ADS)

    Kaçar, Ceren; Dalkiran, Berna; Erden, Pınar Esra; Kiliç, Esma

    2014-08-01

    In this work a new type of hydrogen peroxide biosensor was fabricated based on the immobilization of horseradish peroxidase (HRP) by cross-linking on a glassy carbon electrode (GCE) modified with Co3O4 nanoparticles, multiwall carbon nanotubes (MWCNTs) and gelatin. The introduction of MWCNTs and Co3O4 nanoparticles not only enhanced the surface area of the modified electrode for enzyme immobilization but also facilitated the electron transfer rate, resulting in a high sensitivity of the biosensor. The fabrication process of the sensing surface was characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Amperometric detection of hydrogen peroxide was investigated by holding the modified electrode at -0.30 V (vs. Ag/AgCl). The biosensor showed optimum response within 5 s at pH 7.0. The optimized biosensor showed linear response range of 7.4 × 10-7-1.9 × 10-5 M with a detection limit of 7.4 × 10-7. The applicability of the purposed biosensor was tested by detecting hydrogen peroxide in disinfector samples. The average recovery was calculated as 100.78 ± 0.89.

  15. Highly sensitive amperometric biosensor based on electrochemically-reduced graphene oxide-chitosan/hemoglobin nanocomposite for nitromethane determination.

    PubMed

    Wen, Yunping; Wen, Wei; Zhang, Xiuhua; Wang, Shengfu

    2016-05-15

    Nitromethane (CH3NO2) is an important organic chemical raw material with a wide variety of applications as well as one of the most common pollutants. Therefore it is pretty important to establish a simple and sensitive detection method for CH3NO2. In our study, a novel amperometric biosensor for nitromethane (CH3NO2) based on immobilization of electrochemically-reduced graphene oxide (rGO), chitosan (CS) and hemoglobin (Hb) on a glassy carbon electrode (GCE) was constructed. Scanning electron microscopy, infrared spectroscopy and electrochemical methods were used to characterize the Hb-CS/rGO-CS composite film. The effects of scan rate and pH of phosphate buffer on the biosensor have been studied in detail and optimized. Due to the graphene and chitosan nanocomposite, the developed biosensor demonstrating direct electrochemistry with faster electron-transfer rate (6.48s(-1)) and excellent catalytic activity towards CH3NO2. Under optimal conditions, the proposed biosensor exhibited fast amperometric response (<5s) to CH3NO2 with a wide linear range of 5 μM~1.46 mM (R=0.999) and a low detection limit of 1.5 μM (S/N=3). In addition, the biosensor had high selectivity, reproducibility and stability, providing the possibility for monitoring CH3NO2 in complex real samples.

  16. Highly sensitive amperometric biosensor based on electrochemically-reduced graphene oxide-chitosan/hemoglobin nanocomposite for nitromethane determination.

    PubMed

    Wen, Yunping; Wen, Wei; Zhang, Xiuhua; Wang, Shengfu

    2016-05-15

    Nitromethane (CH3NO2) is an important organic chemical raw material with a wide variety of applications as well as one of the most common pollutants. Therefore it is pretty important to establish a simple and sensitive detection method for CH3NO2. In our study, a novel amperometric biosensor for nitromethane (CH3NO2) based on immobilization of electrochemically-reduced graphene oxide (rGO), chitosan (CS) and hemoglobin (Hb) on a glassy carbon electrode (GCE) was constructed. Scanning electron microscopy, infrared spectroscopy and electrochemical methods were used to characterize the Hb-CS/rGO-CS composite film. The effects of scan rate and pH of phosphate buffer on the biosensor have been studied in detail and optimized. Due to the graphene and chitosan nanocomposite, the developed biosensor demonstrating direct electrochemistry with faster electron-transfer rate (6.48s(-1)) and excellent catalytic activity towards CH3NO2. Under optimal conditions, the proposed biosensor exhibited fast amperometric response (<5s) to CH3NO2 with a wide linear range of 5 μM~1.46 mM (R=0.999) and a low detection limit of 1.5 μM (S/N=3). In addition, the biosensor had high selectivity, reproducibility and stability, providing the possibility for monitoring CH3NO2 in complex real samples. PMID:26800205

  17. Sensitivity Enhancement of Bead-based Electrochemical Impedance Spectroscopy (BEIS) biosensor by electric field-focusing in microwells.

    PubMed

    Shin, Kyeong-Sik; Ji, Jae Hoon; Hwang, Kyo Seon; Jun, Seong Chan; Kang, Ji Yoon

    2016-11-15

    This paper reports a novel electrochemical impedance spectroscopy (EIS) biosensors that uses magnetic beads trapped in a microwell array to improve the sensitivity of conventional bead-based EIS (BEIS) biosensors. Unloading the previously measured beads by removing the magnetic bar enables the BEIS sensor to be used repeatedly by reloading it with new beads. Despite its recyclability, the sensitivity of conventional BEIS biosensors is so low that it has not attracted much attentions from the biosensor industry. We significantly improved the sensitivity of the BEIS system by introducing of a microwell array that contains two electrodes (a working electrode and a counter electrode) to concentrate the electric field on the surfaces of the beads. We confirmed that the performance of the BEIS sensor in a microwell array using an immunoassay of prostate specific antigen (PSA) in PBS buffer and human plasma. The experimental results showed that a low concentration of PSA (a few tens or hundreds of fg/mL) were detectable as a ratio of the changes in the impedance of the PBS buffer or in human plasma. Therefore, our BEIS sensor with a microwell array could be a promising platform for low cost, high-performance biosensors for applications that require high sensitivity and recyclability.

  18. Biosensors for EVA: Improved Instrumentation for Ground-based Studies

    NASA Technical Reports Server (NTRS)

    Soller, B.; Ellerby, G.; Zou, F.; Scott, P.; Jin, C.; Lee, S. M. C.; Coates, J.

    2010-01-01

    During lunar excursions in the EVA suit, real-time measurement of metabolic rate is required to manage consumables and guide activities to ensure safe return to the base. Metabolic rate, or oxygen consumption (VO2), is normally measured from pulmonary parameters but cannot be determined with standard techniques in the oxygen-rich environment of a spacesuit. Our group has developed novel near infrared spectroscopic (NIRS) methods to calculate muscle oxygen saturation (SmO 2), hematocrit, and pH, and we recently demonstrated that we can use our NIRS sensor to measure VO 2 on the leg during cycling. Our NSBRI project has 4 objectives: (1) increase the accuracy of the metabolic rate calculation through improved prediction of stroke volume; (2) investigate the relative contributions of calf and thigh oxygen consumption to metabolic rate calculation for walking and running; (3) demonstrate that the NIRS-based noninvasive metabolic rate methodology is sensitive enough to detect decrement in VO 2 in a space analog; and (4) improve instrumentation to allow testing within a spacesuit. Over the past year we have made progress on all four objectives, but the most significant progress was made in improving the instrumentation. The NIRS system currently in use at JSC is based on fiber optics technology. Optical fiber bundles are used to deliver light from a light source in the monitor to the patient, and light reflected back from the patient s muscle to the monitor for spectroscopic analysis. The fiber optic cables are large and fragile, and there is no way to get them in and out of the test spacesuit used for ground-based studies. With complimentary funding from the US Army, we undertook a complete redesign of the sensor and control electronics to build a novel system small enough to be used within the spacesuit and portable enough to be used by a combat medic. In the new system the filament lamp used in the fiber optic system was replaced with a novel broadband near infrared

  19. Tissue-based standoff biosensors for detecting chemical warfare agents

    DOEpatents

    Greenbaum, Elias; Sanders, Charlene A.

    2003-11-18

    A tissue-based, deployable, standoff air quality sensor for detecting the presence of at least one chemical or biological warfare agent, includes: a cell containing entrapped photosynthetic tissue, the cell adapted for analyzing photosynthetic activity of the entrapped photosynthetic tissue; means for introducing an air sample into the cell and contacting the air sample with the entrapped photosynthetic tissue; a fluorometer in operable relationship with the cell for measuring photosynthetic activity of the entrapped photosynthetic tissue; and transmitting means for transmitting analytical data generated by the fluorometer relating to the presence of at least one chemical or biological warfare agent in the air sample, the sensor adapted for deployment into a selected area.

  20. Olfactory Mucosa Tissue Based Biosensor for Bioelectronic Nose

    NASA Astrophysics Data System (ADS)

    Liu, Qingjun; Ye, Weiwei; Yu, Hui; Hu, Ning; Cai, Hua; Wang, Ping

    2009-05-01

    Biological olfactory system can distinguish thousands of odors. In order to realize the biomimetic design of electronic nose on the principle of mammalian olfactory system, we have reported bioelectronic nose based on cultured olfactory cells. In this study, the electrical property of the tissue-semiconductor interface was analyzed by the volume conductor theory and the sheet conductor model. Olfactory mucosa tissue of rat was isolated and fixed on the surface of the light-addressable potentiometric sensor (LAPS), with the natural stations of the neuronal populations and functional receptor unit of the cilia well reserved. By the extracellular potentials of the olfactory receptor cells of the mucosa tissue monitored, both the simulation and the experimental results suggested that this tissue-semiconductor hybrid system was sensitive to odorants stimulation.

  1. Amperometric inhibitive biosensor based on horseradish peroxidase-nanoporous gold for sulfide determination

    PubMed Central

    Sun, Huihui; Liu, Zhuang; Wu, Chao; Xu, Ping; Wang, Xia

    2016-01-01

    As a well-known toxic pollutant, sulfide is harmful to human health. In this study, a simple and sensitive amperometric inhibitive biosensor was developed for the determination of sulfide in the environment. By immobilizing nanoporous gold (NPG) on glassy carbon electrode (GCE), and encapsulating horseradish peroxidase (HRP) onto NPG, a HRP/NPG/GCE bioelectrode for sulfide detection was successfully constructed based on the inhibition of sulfide on HRP activity with o-Phenylenediamine (OPD) as a substrate. The resulted HRP/NPG/GCE bioelectrode achieved a wide linear range of 0.1–40 μM in sulfide detection with a high sensitivity of 1720 μA mM−1 cm−2 and a low detection limit of 0.027 μM. Additionally, the inhibition of sulfide on HRP is competitive inhibition with OPD as a substrate by Michaelis-Menten analysis. Notably, the recovery of HRP activity was quickly achieved by washing the HRP/NPG/GCE bioelectrode using differential pulse voltammetry (DPV) technique in deaerated PBS (50 mM, pH 7.0) for only 60 s. Furthermore, the real sample analysis of sulfide by the HRP/NPG/GCE bioelectrode was achieved. Based on above results, the HRP/NPG/GCE bioelectrode could be a better choice for the real determination of sulfide compared to inhibitive biosensors previously reported. PMID:27515253

  2. Label-free measurements on cell apoptosis using a terahertz metamaterial-based biosensor

    NASA Astrophysics Data System (ADS)

    Zhang, Caihong; Liang, Lanju; Ding, Liang; Jin, Biaobing; Hou, Yayi; Li, Chun; Jiang, Ling; Liu, Weiwei; Hu, Wei; Lu, Yanqing; Kang, Lin; Xu, Weiwei; Chen, Jian; Wu, Peiheng

    2016-06-01

    Label-free, real-time, and in-situ measurement on cell apoptosis is highly desirable in cell biology. We propose here a design of terahertz (THz) metamaterial-based biosensor for meeting this requirement. This metamaterial consists of a planar array of five concentric subwavelength gold ring resonators on a 10 μm-thick polyimide substrate, which can sense the change of dielectric environment above the metamaterial. We employ this sensor to an oral cancer cell (SCC4) with and without cisplatin, a chemotherapy drug for cancer treatment, and find a linear relation between cell apoptosis measured by Flow Cytometry and the relative change of resonant frequencies of the metamaterial measured by THz time-domain spectroscopy. This implies that we can determine the cell apoptosis in a label-free manner. We believe that this metamaterial-based biosensor can be developed into a cheap, label-free, real-time, and in-situ detection tool, which is of significant impact on the study of cell biology.

  3. Fluorometric enzymatic autoindicating biosensor for H2O2 determination based on modified catalase.

    PubMed

    Ortega, Estefania; de Marcos, Susana; Galbán, Javier

    2013-03-15

    Our general aim is to develop reversible optical biosensors which can be used for continuous monitoring. In this paper we propose a biosensor for H(2)O(2) determination. The bioreceptor is catalase (Cat) previously linked to a Ruthenium O(2)-sensitive fluorophore (Cat-Ru). It is based on the reversible H(2)O(2) disproportionation into O(2) and H(2)O. First, the fluorescent-enzymatic system was optimized for batch measurements (linear response ranges from 1×10(-4) to, at least, 1×10(-3) M H(2)O(2)). Because of its reversibility, the same enzyme aliquot can be used for performing the whole calibration step (and the subsequent determination). Secondly, the optical sensor was prepared by Cat-Ru immobilization in a polyacrylamide film. The sensor permits H(2)O(2) determination in a similar concentration range as in batch mode and can be used during at least 1 month. A mathematical model has also been developed which permits the effect of the experimental parameters to predict. The model also explains the sensor behavior if different fluorophores are used, and shows that the analytical signal only slightly depends on the initial concentration of the O(2) in the sample. Finally an alternative sensor is presented based on a commercially available O(2) fluorescence sensor linked to catalase. This system gives an analytical behavior similar to that shown for the Cat-Ru sensor.

  4. Glycoprofiling of cancer biomarkers: Label-free electrochemical lectin-based biosensors

    PubMed Central

    Pihíková, Dominika; Kasák, Peter

    2016-01-01

    Glycosylation of biomolecules is one of the most prevalent post- and co-translational modification in a human body, with more than half of all human proteins being glycosylated. Malignant transformation of cells influences glycosylation machinery resulting in subtle changes of the glycosylation pattern within the cell populations as a result of cancer. Thus, an altered terminal glycan motif on glycoproteins could provide a warning signal about disease development and progression and could be applied as a reliable biomarker in cancer diagnostics. Among all highly effective glycoprofiling tools, label-free electrochemical impedance spectroscopy (EIS)-based biosensors have emerged as especially suitable tool for point-of-care early-stage cancer detection. Herein, we highlight the current challenges in glycoprofiling of various cancer biomarkers by ultrasensitive impedimetric-based biosensors with low sample consumption, low cost fabrication and simple miniaturization. Additionally, this review provides a short introduction to the field of glycomics and lectinomics and gives a brief overview of glycan alterations in different types of cancer. PMID:27275016

  5. ZnO nano-array-based EGFET biosensor for glucose detection

    NASA Astrophysics Data System (ADS)

    Qi, Junjie; Zhang, Huihui; Ji, Zhaoxia; Xu, Minxuan; Zhang, Yue

    2015-06-01

    Electrochemical biosensors are normally based on enzymatic catalysis of a reaction that produces or consumes electrons and the sensing membranes dominate the performance. In this work, ZnO nano-array-based EGFETs were fabricated for pH and glucose detection. The ZnO nano-arrays prepared via low-temperature hydrothermal method were well-aligned, with an average length of 2 μm and diameter of 100-150 nm, and have a typical hexagonal wurtzite structure. The sensor performed with a sensitivity of 45 mV/pH and response time of about 6-7 s from pH = 4-12. UV irradiation can improve the Vref response as a result of the formation of a depletion region at the surface of ZnO nanomaterials. Due to its high specific surface area, the ZnO nano-array EGFET sensor showed a sensitivity of -0.395 mV/μM to the glucose detection in a concentration range between 20 and 100 μM. These EGFET glucose biosensors demonstrate a low detectable concentration (20 μM) with good linearity, therefore may be used to detect glucose in saliva and tears at much lower concentrations than that in blood.

  6. Amperometric biosensors for glucose, lactate, and glycolate based on oxidases and redox-modified siloxane polymers

    NASA Astrophysics Data System (ADS)

    Hale, Paul D.; Inagaki, Toru; Lee, Hung Sui; Skotheim, Terje A.; Karan, Hiroko I.; Okamoto, Yoshi

    1989-06-01

    Amperometric biosensors based on flavin-containing oxidases undergo several steps which produce a measurable current that is related to the concentration of substrate. In the initial step, the substrate converts the oxidized flavin adenine dinucleotide (FAD) or flavin mononucleotide (FMN) into the reduced form FADH sub 2 or FMNH sub 2. Because these cofactors are located well within the enzyme molecule, direct electron transfer to the surface of a conventional electrode does not occur to a measurable degree. A common method of facilitating this electron transfer is to introduce oxygen into the system because it is the natural acceptor for the oxidases; the oxygen is reduced by the FADH sub 2 or FMNH sub 2 to hydrogen peroxide, which can then be detected electrochemically. The major drawback to this approach is the fact that oxidation of hydrogen peroxide requires a large overpotential, thus making these sensors susceptible to interference from electroactive species. To lower the necessary applied potential, several non-physiological redox couples have been employed to shuttle electrons between the flavin moieties and the electrode. The present paper describes the development of amperometric biosensors based on flavin-containing enzymes and a family of polymeric mediators.

  7. A silicon-based peptide biosensor for label-free detection of cancer cells

    NASA Astrophysics Data System (ADS)

    Martucci, Nicola M.; Rea, Ilaria; Ruggiero, Immacolata; Terracciano, Monica; De Stefano, Luca; Migliaccio, Nunzia; Dardano, Principia; Arcari, Paolo; Rendina, Ivo; Lamberti, Annalisa

    2015-05-01

    Sensitive and accurate detection of cancer cells plays a crucial role in diagnosis of cancer and minimal residual disease, so being one of the most hopeful approaches to reduce cancer death rates. In this paper, a strategy for highly selective and sensitive detection of lymphoma cells on planar silicon-based biosensor has been evaluated. In this setting an Idiotype peptide, able to specifically bind the B-cell receptor (BCR) of A20 cells in mice engrafted with A20 lymphoma, has been covalently linked to the sensor active surface and used as molecular probe. The biochip here presented showed a coverage efficiency of 85% with a detection efficiency of 8.5×10-3 cells/μm2. The results obtained suggested an efficient way for specific label-free cell detection by using a silicon-based peptide biosensor. In addition, the present recognition strategy, besides being useful for the development of sensing devices capable of monitoring minimal residual disease, could be used to find and characterize new specific receptor-ligand interactions through the screening of a recombinant phage library.

  8. Amperometric inhibitive biosensor based on horseradish peroxidase-nanoporous gold for sulfide determination.

    PubMed

    Sun, Huihui; Liu, Zhuang; Wu, Chao; Xu, Ping; Wang, Xia

    2016-01-01

    As a well-known toxic pollutant, sulfide is harmful to human health. In this study, a simple and sensitive amperometric inhibitive biosensor was developed for the determination of sulfide in the environment. By immobilizing nanoporous gold (NPG) on glassy carbon electrode (GCE), and encapsulating horseradish peroxidase (HRP) onto NPG, a HRP/NPG/GCE bioelectrode for sulfide detection was successfully constructed based on the inhibition of sulfide on HRP activity with o-Phenylenediamine (OPD) as a substrate. The resulted HRP/NPG/GCE bioelectrode achieved a wide linear range of 0.1-40 μM in sulfide detection with a high sensitivity of 1720 μA mM(-1) cm(-2) and a low detection limit of 0.027 μM. Additionally, the inhibition of sulfide on HRP is competitive inhibition with OPD as a substrate by Michaelis-Menten analysis. Notably, the recovery of HRP activity was quickly achieved by washing the HRP/NPG/GCE bioelectrode using differential pulse voltammetry (DPV) technique in deaerated PBS (50 mM, pH 7.0) for only 60 s. Furthermore, the real sample analysis of sulfide by the HRP/NPG/GCE bioelectrode was achieved. Based on above results, the HRP/NPG/GCE bioelectrode could be a better choice for the real determination of sulfide compared to inhibitive biosensors previously reported. PMID:27515253

  9. Amperometric inhibitive biosensor based on horseradish peroxidase-nanoporous gold for sulfide determination

    NASA Astrophysics Data System (ADS)

    Sun, Huihui; Liu, Zhuang; Wu, Chao; Xu, Ping; Wang, Xia

    2016-08-01

    As a well-known toxic pollutant, sulfide is harmful to human health. In this study, a simple and sensitive amperometric inhibitive biosensor was developed for the determination of sulfide in the environment. By immobilizing nanoporous gold (NPG) on glassy carbon electrode (GCE), and encapsulating horseradish peroxidase (HRP) onto NPG, a HRP/NPG/GCE bioelectrode for sulfide detection was successfully constructed based on the inhibition of sulfide on HRP activity with o-Phenylenediamine (OPD) as a substrate. The resulted HRP/NPG/GCE bioelectrode achieved a wide linear range of 0.1–40 μM in sulfide detection with a high sensitivity of 1720 μA mM‑1 cm‑2 and a low detection limit of 0.027 μM. Additionally, the inhibition of sulfide on HRP is competitive inhibition with OPD as a substrate by Michaelis-Menten analysis. Notably, the recovery of HRP activity was quickly achieved by washing the HRP/NPG/GCE bioelectrode using differential pulse voltammetry (DPV) technique in deaerated PBS (50 mM, pH 7.0) for only 60 s. Furthermore, the real sample analysis of sulfide by the HRP/NPG/GCE bioelectrode was achieved. Based on above results, the HRP/NPG/GCE bioelectrode could be a better choice for the real determination of sulfide compared to inhibitive biosensors previously reported.

  10. Electrochemical biosensors for hormone analyses.

    PubMed

    Bahadır, Elif Burcu; Sezgintürk, Mustafa Kemal

    2015-06-15

    Electrochemical biosensors have a unique place in determination of hormones due to simplicity, sensitivity, portability and ease of operation. Unlike chromatographic techniques, electrochemical techniques used do not require pre-treatment. Electrochemical biosensors are based on amperometric, potentiometric, impedimetric, and conductometric principle. Amperometric technique is a commonly used one. Although electrochemical biosensors offer a great selectivity and sensitivity for early clinical analysis, the poor reproducible results, difficult regeneration steps remain primary challenges to the commercialization of these biosensors. This review summarizes electrochemical (amperometric, potentiometric, impedimetric and conductometric) biosensors for hormone detection for the first time in the literature. After a brief description of the hormones, the immobilization steps and analytical performance of these biosensors are summarized. Linear ranges, LODs, reproducibilities, regenerations of developed biosensors are compared. Future outlooks in this area are also discussed.

  11. Fluorogenic Cell-Based Biosensors for Monitoring Microbes

    NASA Technical Reports Server (NTRS)

    Curtis, Theresa; Salazar, Noe; Tabb, Joel; Chase, Chris

    2010-01-01

    Fluorogenic cell-based sensor systems for detecting microbes (especially pathogenic ones) and some toxins and allergens are undergoing development. These systems harness the natural signaltransduction and amplification cascades that occur in mast cells upon activation with antigens. These systems include (1) fluidic biochips for automated containment of samples, reagents, and wastes and (2) sensitive, compact fluorometers for monitoring the fluorescent responses of mast cells engineered to contain fluorescent dyes. It should be possible to observe responses within minutes of adding immune complexes. The systems have been shown to work when utilizing either immunoglobulin E (IgE) antibodies or traditionally generated rat antibodies - a promising result in that it indicates that the systems could be developed to detect many target microbes. Chimeric IgE antibodies and rat immunoglobulin G (IgG) antibodies could be genetically engineered for recognizing biological and chemical warfare agents and airborne and food-borne allergens. Genetic engineering efforts thus far have yielded (1) CD14 chimeric antibodies that recognize both Grampositive and Gram-negative bacteria and bind to the surfaces of mast cells, eliciting a degranulation response and (2) rat IgG2a antibodies that act similarly in response to low levels of canine parvovirus.

  12. Glutamate biosensors based on diamond and graphene platforms.

    PubMed

    Hu, Jingping; Wisetsuwannaphum, Sirikarn; Foord, John S

    2014-01-01

    l-Glutamate is one of the most important neurotransmitters in the mammalian central nervous system, playing a vital role in many physiological processes and implicated in several neurological disorders, for which monitoring of dynamic levels of extracellular glutamate in the living brain tissues may contribute to medical understanding and treatments. Electrochemical sensing of glutamate has been developed recently mainly using platinum, carbon fibre and carbon nanotube electrodes. In the present work, we explore the fabrication and properties of electrochemical glutamate sensors fabricated on doped chemical vapour deposition diamond electrodes and graphene nanoplatelet structures. The sensors incorporate platinum nanoparticles to catalyse the electrooxidation of hydrogen peroxide, glutamate oxidase to oxidise glutamate, and a layer of poly-phenylenediamine to impart selectivity. The performance of the devices was compared to a similar sensor fabricated on glassy carbon. Both the diamond and the graphene sensor showed very competitive performance compared to the majority of existing electrochemical sensors. The graphene based sensor showed the best performance of the three investigated in terms of sensitivity, linear dynamic range and long term stability, whereas it was found that the diamond device showed the best limit of detection.

  13. Microneedle array-based carbon paste amperometric sensors and biosensors.

    PubMed

    Windmiller, Joshua Ray; Zhou, Nandi; Chuang, Min-Chieh; Valdés-Ramírez, Gabriela; Santhosh, Padmanabhan; Miller, Philip R; Narayan, Roger; Wang, Joseph

    2011-05-01

    The design and characterization of a microneedle array-based carbon paste electrode towards minimally invasive electrochemical sensing are described. Arrays consisting of 3 × 3 pyramidal microneedle structures, each with an opening of 425 µm, were loaded with a metallized carbon paste transducer. The renewable nature of carbon paste electrodes enables the convenient packing of hollow non-planar microneedles with pastes that contain assorted catalysts and biocatalysts. Smoothing the surface results in good microelectrode-to-microelectrode uniformity. Optical and scanning electron micrographs shed useful insights into the surface morphology at the microneedle apertures. The attractive performance of the novel microneedle electrode arrays is illustrated in vitro for the low-potential detection of hydrogen peroxide at rhodium-dispersed carbon paste microneedles and for lactate biosensing by the inclusion of lactate oxidase in the metallized carbon paste matrix. Highly repeatable sensing is observed following consecutive cycles of packing/unpacking the carbon paste. The operational stability of the array is demonstrated as well as the interference-free detection of lactate in the presence of physiologically relevant levels of ascorbic acid, uric acid, and acetaminophen. Upon addressing the biofouling effects associated with on-body sensing, the microneedle carbon paste platform would be attractive for the subcutaneous electrochemical monitoring of a number of physiologically relevant analytes. PMID:21412519

  14. FRET-based biosensors to detect infectious agents

    NASA Astrophysics Data System (ADS)

    Xu, Juntao; Grant, Sheila A.

    2002-02-01

    We report herein on the development of a FRET-based method to detect changes caused by viral protein-receptor binding. FRET fluorophore pairs (donor and acceptor fluorophores) were tagged to two specific receptors, both which bind to a viral protein. When the binding event occurs, the distance between the donor and acceptor FRET fluorophores is decreased, thus initiating the fluorescence resonance energy transfer (FRET). Since the binding event is unique to the viral protein, fluorescent change indicates the present of the virus. In this paper, the viral protein gp120, which is the featured protein on the surface of HIV-1, was detected. The receptors, CD4 and gp120-antibody which specifically bind to gp120, were conjugated to the FRET fluorophore pair, AMCA-NHS (succinimidyl-7-amino-4-methylcoumarin-3-acetic acid) and FITC (fluorescein isothiocyanate) respectively. Spectrofluorimetry was used to detect the fluorescent change between AMCA-NHS and FITC peak intensities when the receptors bind to the gp120. Specific binding gp120 and non-specific binding gp120 were used to test the selectivity of the sensor. The results indicated that FRET-conjugated receptors can efficiently detect the presence of gp120.

  15. Nine-analyte detection using an array-based biosensor

    NASA Technical Reports Server (NTRS)

    Taitt, Chris Rowe; Anderson, George P.; Lingerfelt, Brian M.; Feldstein, s. Mark. J.; Ligler, Frances S.

    2002-01-01

    A fluorescence-based multianalyte immunosensor has been developed for simultaneous analysis of multiple samples. While the standard 6 x 6 format of the array sensor has been used to analyze six samples for six different analytes, this same format has the potential to allow a single sample to be tested for 36 different agents. The method described herein demonstrates proof of principle that the number of analytes detectable using a single array can be increased simply by using complementary mixtures of capture and tracer antibodies. Mixtures were optimized to allow detection of closely related analytes without significant cross-reactivity. Following this facile modification of patterning and assay procedures, the following nine targets could be detected in a single 3 x 3 array: Staphylococcal enterotoxin B, ricin, cholera toxin, Bacillus anthracis Sterne, Bacillus globigii, Francisella tularensis LVS, Yersiniapestis F1 antigen, MS2 coliphage, and Salmonella typhimurium. This work maximizes the efficiency and utility of the described array technology, increasing only reagent usage and cost; production and fabrication costs are not affected.

  16. Glutamate biosensors based on diamond and graphene platforms.

    PubMed

    Hu, Jingping; Wisetsuwannaphum, Sirikarn; Foord, John S

    2014-01-01

    l-Glutamate is one of the most important neurotransmitters in the mammalian central nervous system, playing a vital role in many physiological processes and implicated in several neurological disorders, for which monitoring of dynamic levels of extracellular glutamate in the living brain tissues may contribute to medical understanding and treatments. Electrochemical sensing of glutamate has been developed recently mainly using platinum, carbon fibre and carbon nanotube electrodes. In the present work, we explore the fabrication and properties of electrochemical glutamate sensors fabricated on doped chemical vapour deposition diamond electrodes and graphene nanoplatelet structures. The sensors incorporate platinum nanoparticles to catalyse the electrooxidation of hydrogen peroxide, glutamate oxidase to oxidise glutamate, and a layer of poly-phenylenediamine to impart selectivity. The performance of the devices was compared to a similar sensor fabricated on glassy carbon. Both the diamond and the graphene sensor showed very competitive performance compared to the majority of existing electrochemical sensors. The graphene based sensor showed the best performance of the three investigated in terms of sensitivity, linear dynamic range and long term stability, whereas it was found that the diamond device showed the best limit of detection. PMID:25427169

  17. Nanopore-based instruments as biosensors for future planetary missions.

    PubMed

    Rezzonico, Fabio

    2014-04-01

    Data from automated orbiters and landers have dashed humankind's hopes of finding complex life-forms elsewhere in the Solar System. The focus of exobiological research was thus forced to shift from the detection of life through simple visual imaging to complex biochemical experiments aimed at the detection of microbial activity. Searching for biosignatures over interplanetary distances is a formidable task and poses the dilemma of what are the proper experiments that can be performed on-site to maximize the chances of success if extraterrestrial life is present but not evident. Despite their astonishing morphological diversity, all known organisms on Earth share the same basic molecular architecture; thus the vast majority of our detection and identification techniques are b(i)ased on Terran biochemistry. There is, however, a distinct possibility that life may have emerged elsewhere by using other molecular building blocks, a fact that is likely to make the outcome of most of the current molecular biological and biochemical life-detection protocols difficult to interpret if not completely ineffective. Nanopore-based sensing devices allow the analysis of single molecules, including the sequence of informational biopolymers such as DNA or RNA, by measuring current changes across an electrically resistant membrane when the analyte flows through an embedded transmembrane protein or a solid-state nanopore. Under certain basic assumptions about their physical properties, this technology has the potential to discriminate and possibly analyze biopolymers, in particular genetic information carriers, without prior detailed knowledge of their fundamental chemistry and is sufficiently portable to be used for automated analysis in planetary exploration, all of which makes it the ideal candidate for the search for life signatures in remote watery environments such as Mars, Europa, or Enceladus.

  18. Nanopore-based instruments as biosensors for future planetary missions.

    PubMed

    Rezzonico, Fabio

    2014-04-01

    Data from automated orbiters and landers have dashed humankind's hopes of finding complex life-forms elsewhere in the Solar System. The focus of exobiological research was thus forced to shift from the detection of life through simple visual imaging to complex biochemical experiments aimed at the detection of microbial activity. Searching for biosignatures over interplanetary distances is a formidable task and poses the dilemma of what are the proper experiments that can be performed on-site to maximize the chances of success if extraterrestrial life is present but not evident. Despite their astonishing morphological diversity, all known organisms on Earth share the same basic molecular architecture; thus the vast majority of our detection and identification techniques are b(i)ased on Terran biochemistry. There is, however, a distinct possibility that life may have emerged elsewhere by using other molecular building blocks, a fact that is likely to make the outcome of most of the current molecular biological and biochemical life-detection protocols difficult to interpret if not completely ineffective. Nanopore-based sensing devices allow the analysis of single molecules, including the sequence of informational biopolymers such as DNA or RNA, by measuring current changes across an electrically resistant membrane when the analyte flows through an embedded transmembrane protein or a solid-state nanopore. Under certain basic assumptions about their physical properties, this technology has the potential to discriminate and possibly analyze biopolymers, in particular genetic information carriers, without prior detailed knowledge of their fundamental chemistry and is sufficiently portable to be used for automated analysis in planetary exploration, all of which makes it the ideal candidate for the search for life signatures in remote watery environments such as Mars, Europa, or Enceladus. PMID:24684166

  19. Fluorescence biosensor based on CdTe quantum dots for specific detection of H5N1 avian influenza virus

    NASA Astrophysics Data System (ADS)

    Hoa Nguyen, Thi; Dieu Thuy Ung, Thi; Hien Vu, Thi; Tran, Thi Kim Chi; Quyen Dong, Van; Khang Dinh, Duy; Liem Nguyen, Quang

    2012-09-01

    This report highlights the fabrication of fluorescence biosensors based on CdTe quantum dots (QDs) for specific detection of H5N1 avian influenza virus. The core biosensor was composed of (i) the highly luminescent CdTe/CdS QDs, (ii) chromatophores extracted from bacteria Rhodospirillum rubrum, and (iii) the antibody of β-subunit. This core part was linked to the peripheral part of the biosensor via a biotin-streptavidin-biotin bridge and finally connected to the H5N1 antibody to make it ready for detecting H5N1 avian influenza virus. Detailed studies of each constituent were performed showing the image of QDs-labeled chromatophores under optical microscope, proper photoluminescence (PL) spectra of CdTe/CdS QDs, chromatophores and the H5N1 avian influenza viruses.

  20. Non-enzymatic glucose biosensor based on overoxidized polypyrrole nanofiber electrode modified with cobalt(II) phthalocyanine tetrasulfonate.

    PubMed

    Ozcan, Levent; Sahin, Yücel; Türk, Hayrettin

    2008-12-01

    An enzymeless biosensor, based on electrodeposition of overoxidized polypyrrole nanofiber onto pencil graphite electrode and modified with cobalt(II) phthalocyanine tetrasulfonate (CoPcTS), was investigated in this study. CoPcTS showed electrocatalytic activity for the oxidation of glucose in alkaline solution. The electrochemical performance of the modified electrodes was investigated by differential pulse voltammetric (DPV) method. The resulting biosensor exhibited excellent performance for glucose determination with a wide linear range (0.25-20mM), a highly reproducible response (R.S.D. of 2.7%), low percentage of the interferences and long-term stability. The calculated detection limit was 0.1mM at 3sigma. In order to verify the reliability of the biosensor, it was applied to the determination of glucose in serum samples. The results were satisfactory and agreed closely with those measured in a hospital.