Science.gov

Sample records for acetylcholinesterase inhibitor donepezil

  1. Effects of donepezil, an acetylcholinesterase inhibitor, on neurogenesis in a rat model of vascular dementia.

    PubMed

    Kwon, Kyoung Ja; Kim, Min Kyeong; Lee, Eun Joo; Kim, Jung Nam; Choi, Bo-Ryoung; Kim, Soo Young; Cho, Kyu Suk; Han, Jung-Soo; Kim, Hahn Young; Shin, Chan Young; Han, Seol-Heui

    2014-12-15

    Vascular dementia (VaD) is the second most common form of dementia caused by cerebrovascular disease. Several recent reports demonstrated that cholinergic deficits are implicated in the pathogenesis of VaD and that cholinergic therapies have shown improvement of cognitive function in patients with VaD. However, the precise mechanisms by which donepezil achieves its effects on VaD are not fully understood. Donepezil hydrochloride is an acetylcholinesterase inhibitor (AChEI) currently used for the symptomatic treatment of Alzheimer's disease (AD). Several lines of evidence have demonstrated that AChEIs such as donepezil promote neurogenesis in the central nervous system. We investigated whether donepezil regulated hippocampal neurogenesis after bilateral common carotid artery occlusion (BCCAO) in rats, a commonly used animal model of VaD. To evaluate the effect of donepezil on neurogenesis, we orally treated rats with donepezil (10mg/kg) once a day for 3weeks, and injected BrdU over the same 3-week period to label newborn cells. The doses of donepezil that we used have been reported to activate cholinergic activity in rats. After 3weeks, a water maze task was performed on these rats to test spatial learning, and a subsequent histopathological evaluation was conducted. Donepezil improved memory impairment and increased the number of BrdU-positive cells in the dentate gyrus (DG) of BCCAO animals. These results indicated that donepezil improves cognitive function and enhances the survival of newborn neurons in the DG in our animal model of VaD, possibly by enhancing the expression of choline acetyltransferase and brain-derived neurotropic factor.

  2. Donepezil, an acetylcholinesterase inhibitor, attenuates nicotine self-administration and reinstatement of nicotine seeking in rats.

    PubMed

    Kimmey, Blake A; Rupprecht, Laura E; Hayes, Matthew R; Schmidt, Heath D

    2014-07-01

    Nicotine craving and cognitive impairments represent core symptoms of nicotine withdrawal and predict relapse in abstinent smokers. Current smoking cessation pharmacotherapies have limited efficacy in preventing relapse and maintaining abstinence during withdrawal. Donepezil is an acetylcholinesterase inhibitor that has been shown previously to improve cognition in healthy non-treatment-seeking smokers. However, there are no studies examining the effects of donepezil on nicotine self-administration and/or the reinstatement of nicotine-seeking behavior in rodents. The present experiments were designed to determine the effects of acute donepezil administration on nicotine taking and the reinstatement of nicotine-seeking behavior, an animal model of relapse in abstinent human smokers. Moreover, the effects of acute donepezil administration on sucrose self-administration and sucrose seeking were also investigated in order to determine whether donepezil's effects generalized to other reinforced behaviors. Acute donepezil administration (1.0 or 3.0 mg/kg, i.p.) attenuated nicotine, but not sucrose self-administration maintained on a fixed-ratio 5 schedule of reinforcement. Donepezil administration also dose-dependently attenuated the reinstatement of both nicotine- and sucrose-seeking behaviors. Commonly reported adverse effects of donepezil treatment in humans are nausea and vomiting. However, at doses required to attenuate nicotine self-administration in rodents, no effects of donepezil on nausea/malaise as measured by pica were observed. Collectively, these results indicate that increased extracellular acetylcholine levels are sufficient to attenuate nicotine taking and seeking in rats and that these effects are not due to adverse malaise symptoms such as nausea.

  3. Donepezil, an acetylcholinesterase inhibitor, attenuates LPS-induced inflammatory response in murine macrophage cell line RAW 264.7 through inhibition of nuclear factor kappa B translocation.

    PubMed

    Arikawa, Mikihiko; Kakinuma, Yoshihiko; Noguchi, Tatsuya; Todaka, Hiroshi; Sato, Takayuki

    2016-10-15

    We have previously demonstrated that the pharmacotherapy with donepezil, an acetylcholinesterase inhibitor, suppresses cardiac remodeling in a mouse model of ischemic heart failure after myocardial infarction (MI). However, the precise mechanisms of the cardioprotective effect of donepezil have not been completely delineated. Because post-ischemic inflammation is a pathological key event in the cardiac remodeling process following MI, we investigated the hypothesis that donepezil acts as an inhibitor of inflammatory mediators. RAW 264.7 murine macrophage cells were pretreated with donepezil (100µM) prior to a pro-inflammatory stimulation by administration of lipopolysaccharide (LPS, 10ng/ml). Donepezil significantly reduced intra- and extracellular levels of various kinds of inflammatory mediators such as TNF-α, IL-1β, IL-2, IL-6 and IL-18 after the LPS stimulation, and attenuated LPS-induced nuclear translocation of nuclear factor-kappa B (NF-κB). These results indicate that donepezil possesses an anti-inflammatory property. However, the inhibitory effect of donepezil on the macrophage inflammatory responses was never reproduced by ACh, nor was disrupted by ACh receptor blockers. Moreover, other kinds of acetylcholinesterase inhibitors failed to inhibit the inflammatory responses in LPS-stimulated macrophage cells. These results suggest that a cholinergic anti-inflammatory pathway would not be involved in the anti-inflammatory effect of donepezil and that the specific characteristics of donepezil in suppressing the LPS-induced cytokine release and the NF-κB activation would be independent of its acetylcholinesterase inhibition. The present study showed that donepezil exerts an anti-inflammatory effect independently of acetylcholinesterase inhibitory action, thereby donepezil may contribute to cardioprotection during cardiac remodeling process in an ischemic heart failure after MI.

  4. Rational modification of donepezil as multifunctional acetylcholinesterase inhibitors for the treatment of Alzheimer's disease.

    PubMed

    Wang, Zhi-Min; Cai, Pei; Liu, Qiao-Hong; Xu, Ding-Qiao; Yang, Xue-Lian; Wu, Jia-Jia; Kong, Ling-Yi; Wang, Xiao-Bing

    2016-11-10

    A series of novel donepezil derivatives was designed, synthesized and evaluated as multifunctional acetylcholinesterase (AChE) inhibitors for the treatment of Alzheimer's disease (AD). The screening results indicated that most of the compounds exhibited potent inhibition of AChE with IC50 values in the nanomolar range. Moreover, these derivatives displayed good antioxidant, Aβ interaction, blood-brain barrier penetration (PAMPA-BBB+) and ADMET properties (in silico). Among them, 5c demonstrated excellent AChE inhibition (IC50: 85 nM for eeAChE, 73 nM for hAChE), metal chelation, and inhibitory effects on self-induced, hAChE-induced and Cu(2+)-induced Aβ1-42 aggregation (18.5%, 72.4% and 46.3%, at 20 μM). Kinetic analysis and molecular modeling studies suggested that 5c could bind simultaneously to the catalytic active site (CAS) and peripheral anionic site (PAS) of AChE. More importantly, 5c exhibited significant neuroprotective potency against Aβ1-42-induced PC12 cell injury. Furthermore, the step-through passive avoidance test showed 5c significantly reversed scopolamine-induced memory deficit and no hepatotoxicity in mice. These results indicated that 5c might be a promising drug candidate for AD therapy. PMID:27484514

  5. Distribution of Intravenously Administered Acetylcholinesterase Inhibitor and Acetylcholinesterase Activity in the Adrenal Gland: 11C-Donepezil PET Study in the Normal Rat

    PubMed Central

    Watabe, Tadashi; Naka, Sadahiro; Ikeda, Hayato; Horitsugi, Genki; Kanai, Yasukazu; Isohashi, Kayako; Ishibashi, Mana; Kato, Hiroki; Shimosegawa, Eku; Watabe, Hiroshi; Hatazawa, Jun

    2014-01-01

    Purpose Acetylcholinesterase (AChE) inhibitors have been used for patients with Alzheimer's disease. However, its pharmacokinetics in non-target organs other than the brain has not been clarified yet. The purpose of this study was to evaluate the relationship between the whole-body distribution of intravenously administered 11C-Donepezil (DNP) and the AChE activity in the normal rat, with special focus on the adrenal glands. Methods The distribution of 11C-DNP was investigated by PET/CT in 6 normal male Wistar rats (8 weeks old, body weight  = 220±8.9 g). A 30-min dynamic scan was started simultaneously with an intravenous bolus injection of 11C-DNP (45.0±10.7 MBq). The whole-body distribution of the 11C-DNP PET was evaluated based on the Vt (total distribution volume) by Logan-plot analysis. A fluorometric assay was performed to quantify the AChE activity in homogenized tissue solutions of the major organs. Results The PET analysis using Vt showed that the adrenal glands had the 2nd highest level of 11C-DNP in the body (following the liver) (13.33±1.08 and 19.43±1.29 ml/cm3, respectively), indicating that the distribution of 11C-DNP was the highest in the adrenal glands, except for that in the excretory organs. The AChE activity was the third highest in the adrenal glands (following the small intestine and the stomach) (24.9±1.6, 83.1±3.0, and 38.5±8.1 mU/mg, respectively), indicating high activity of AChE in the adrenal glands. Conclusions We demonstrated the whole-body distribution of 11C-DNP by PET and the AChE activity in the major organs by fluorometric assay in the normal rat. High accumulation of 11C-DNP was observed in the adrenal glands, which suggested the risk of enhanced cholinergic synaptic transmission by the use of AChE inhibitors. PMID:25225806

  6. Theoretical study of classical acetylcholinesterase inhibitors

    NASA Astrophysics Data System (ADS)

    Nascimento, Érica C. M.; Martins, João B. L.; dos Santos, Maria L.; Gargano, R.

    2008-06-01

    Semi-empirical, RHF and DFT calculations were carried out to study well known acetylcholinesterase inhibitors, i.e., tacrine, donepezil, galantamine, physostigmine, and tacrine dimer (bis-tacrine). Electronic and structural parameters were used in order to correlate the acetylcholinesterase inhibition activity with their molecular structure. The optimized geometries of these drugs were analyzed by multivariate PCA statistical method. Frontier orbital energies (HOMO and LUMO), the (HOMO-LUMO) gap and the distance between more acidic hydrogen species were used to determine principal components. The PCA results indicated that these drugs were ordered into three groups according to the first principal component: galantamine/physostigmine, donepezil/tacrine dimer and tacrine.

  7. Acetylcholinesterase Inhibitors: Pharmacology and Toxicology

    PubMed Central

    Čolović, Mirjana B; Krstić, Danijela Z; Lazarević-Pašti, Tamara D; Bondžić, Aleksandra M; Vasić, Vesna M

    2013-01-01

    Acetylcholinesterase is involved in the termination of impulse transmission by rapid hydrolysis of the neurotransmitter acetylcholine in numerous cholinergic pathways in the central and peripheral nervous systems. The enzyme inactivation, induced by various inhibitors, leads to acetylcholine accumulation, hyperstimulation of nicotinic and muscarinic receptors, and disrupted neurotransmission. Hence, acetylcholinesterase inhibitors, interacting with the enzyme as their primary target, are applied as relevant drugs and toxins. This review presents an overview of toxicology and pharmacology of reversible and irreversible acetylcholinesterase inactivating compounds. In the case of reversible inhibitors being commonly applied in neurodegenerative disorders treatment, special attention is paid to currently approved drugs (donepezil, rivastigmine and galantamine) in the pharmacotherapy of Alzheimer’s disease, and toxic carbamates used as pesticides. Subsequently, mechanism of irreversible acetylcholinesterase inhibition induced by organophosphorus compounds (insecticides and nerve agents), and their specific and nonspecific toxic effects are described, as well as irreversible inhibitors having pharmacological implementation. In addition, the pharmacological treatment of intoxication caused by organophosphates is presented, with emphasis on oxime reactivators of the inhibited enzyme activity administering as causal drugs after the poisoning. Besides, organophosphorus and carbamate insecticides can be detoxified in mammals through enzymatic hydrolysis before they reach targets in the nervous system. Carboxylesterases most effectively decompose carbamates, whereas the most successful route of organophosphates detoxification is their degradation by corresponding phosphotriesterases. PMID:24179466

  8. Possibility of Acetylcholinesterase Overexpression in Alzheimer Disease Patients after Therapy with Acetylcholinesterase Inhibitors.

    PubMed

    Kračmarová, Alžběta; Drtinová, Lucie; Pohanka, Miroslav

    2015-01-01

    Acetylcholinesterase is an enzyme responsible for termination of excitatory transmission at cholinergic synapses by the hydrolyzing of a neurotransmitter acetylcholine. Nowadays, other functions of acetylcholinesterase in the organism are considered, for example its role in regulation of apoptosis. Cholinergic nervous system as well as acetylcholinesterase activity is closely related to pathogenesis of Alzheimer disease. The mostly used therapy of Alzheimer disease is based on enhancing cholinergic function using inhibitors of acetylcholinesterase like rivastigmine, donepezil or galantamine. These drugs can influence not only the acetylcholinesterase activity but also other processes in treated organism. The paper is aimed mainly on possibility of increased expression and protein level of acetylcholinesterase caused by the therapy with acetylcholinesterase inhibitors.

  9. Possibility of Acetylcholinesterase Overexpression in Alzheimer Disease Patients after Therapy with Acetylcholinesterase Inhibitors.

    PubMed

    Kračmarová, Alžběta; Drtinová, Lucie; Pohanka, Miroslav

    2015-01-01

    Acetylcholinesterase is an enzyme responsible for termination of excitatory transmission at cholinergic synapses by the hydrolyzing of a neurotransmitter acetylcholine. Nowadays, other functions of acetylcholinesterase in the organism are considered, for example its role in regulation of apoptosis. Cholinergic nervous system as well as acetylcholinesterase activity is closely related to pathogenesis of Alzheimer disease. The mostly used therapy of Alzheimer disease is based on enhancing cholinergic function using inhibitors of acetylcholinesterase like rivastigmine, donepezil or galantamine. These drugs can influence not only the acetylcholinesterase activity but also other processes in treated organism. The paper is aimed mainly on possibility of increased expression and protein level of acetylcholinesterase caused by the therapy with acetylcholinesterase inhibitors. PMID:26455564

  10. The protective role of tacrine and donepezil in the retina of acetylcholinesterase knockout mice

    PubMed Central

    Yi, Yun-Min; Cai, Li; Shao, Yi; Xu, Man; Yi, Jing-Lin

    2015-01-01

    AIM To determine the effect of different concentrations of the acetylcholinesterase (AChE) inhibitors tacrine and donepezil on retinal protection in AChE+/− mice (AChE knockout mice) of various ages. METHODS Cultured ARPE-19 cells were treated with hydrogen peroxide (H2O2) at concentrations of 0, 250, 500, 1000 and 2000 µmol/L and protein levels were measured using Western blot. Intraperitoneal injections of tacrine and donepezil (0.1 mg/mL, 0.2 mg/mL and 0.4 mg/mL) were respectively given to AChE+/− mice aged 2mo and 4mo and wild-type S129 mice for 7d; phosphate buffered saline (PBS) was administered to the control group. The mice were sacrificed after 30d by in vitro cardiac perfusion and retinal samples were taken. AChE-deficient mice were identified by polymerase chain reaction (PCR) analysis using specific genotyping protocols obtained from the Jackson Laboratory website. H&E staining, immunofluorescence and Western blot were performed to observe AChE protein expression changes in the retinal pigment epithelial (RPE) cell layer. RESULTS Different concentrations of H2O2 induced AChE expression during RPE cell apoptosis. AChE+/− mice retina were thinner than those in wild-type mice (P<0.05); the retinal structure was still intact at 2mo but became thinner with increasing age (P<0.05); furthermore, AChE+/− mice developed more slowly than wild-type mice (P<0.05). Increased concentrations of tacrine and donepezil did not significantly improve the protection of the retina function and morphology (P>0.05). CONCLUSION In vivo, tacrine and donepezil can inhibit the expression of AChE; the decrease of AChE expression in the retina is beneficial for the development of the retina. PMID:26558196

  11. Inhibitors of acetylcholinesterase and butyrylcholinesterase meet immunity.

    PubMed

    Pohanka, Miroslav

    2014-06-02

    Acetylcholinesterase (AChE) inhibitors are widely used for the symptomatic treatment of Alzheimer's disease and other dementias. More recent use is for myasthenia gravis. Many of these inhibitors interact with the second known cholinesterase, butyrylcholinesterase (BChE). Further, evidence shows that acetylcholine plays a role in suppression of cytokine release through a "cholinergic anti-inflammatory pathway" which raises questions about the role of these inhibitors in the immune system. This review covers research and discussion of the role of the inhibitors in modulating the immune response using as examples the commonly available drugs, donepezil, galantamine, huperzine, neostigmine and pyridostigmine. Major attention is given to the cholinergic anti-inflammatory pathway, a well-described link between the central nervous system and terminal effector cells in the immune system.

  12. Inhibitors of Acetylcholinesterase and Butyrylcholinesterase Meet Immunity

    PubMed Central

    Pohanka, Miroslav

    2014-01-01

    Acetylcholinesterase (AChE) inhibitors are widely used for the symptomatic treatment of Alzheimer’s disease and other dementias. More recent use is for myasthenia gravis. Many of these inhibitors interact with the second known cholinesterase, butyrylcholinesterase (BChE). Further, evidence shows that acetylcholine plays a role in suppression of cytokine release through a “cholinergic anti-inflammatory pathway” which raises questions about the role of these inhibitors in the immune system. This review covers research and discussion of the role of the inhibitors in modulating the immune response using as examples the commonly available drugs, donepezil, galantamine, huperzine, neostigmine and pyridostigmine. Major attention is given to the cholinergic anti-inflammatory pathway, a well-described link between the central nervous system and terminal effector cells in the immune system. PMID:24893223

  13. Inhibitors of acetylcholinesterase and butyrylcholinesterase meet immunity.

    PubMed

    Pohanka, Miroslav

    2014-01-01

    Acetylcholinesterase (AChE) inhibitors are widely used for the symptomatic treatment of Alzheimer's disease and other dementias. More recent use is for myasthenia gravis. Many of these inhibitors interact with the second known cholinesterase, butyrylcholinesterase (BChE). Further, evidence shows that acetylcholine plays a role in suppression of cytokine release through a "cholinergic anti-inflammatory pathway" which raises questions about the role of these inhibitors in the immune system. This review covers research and discussion of the role of the inhibitors in modulating the immune response using as examples the commonly available drugs, donepezil, galantamine, huperzine, neostigmine and pyridostigmine. Major attention is given to the cholinergic anti-inflammatory pathway, a well-described link between the central nervous system and terminal effector cells in the immune system. PMID:24893223

  14. Effect of the timing of acetylcholinesterase inhibitor ingestion on sleep.

    PubMed

    Song, Hoo Rim; Woo, Young Sup; Wang, Hee-Ryung; Jun, Tae-Youn; Bahk, Won-Myong

    2013-11-01

    Many patients with Alzheimer's disease experience sleep disturbances, and donepezil is usually prescribed for night-time administration. However, increased acetylcholine is associated with cortical arousal. We evaluated whether subjective sleep quality differed according to the timing of medication administration. Ninety-two patients with mild to moderate Alzheimer's disease who had taken donepezil at night (n=54) or galantamine in the morning (n=38) were recruited for this study. Scores on the sleep visual analogue scale (VAS) for sleep quality and daytime drowsiness were obtained. The mean sleep-quality and daytime-drowsiness VAS scores of the donepezil and galantamine groups differed significantly at baseline (44.0±26.4 vs. 55.2±27.3, respectively; P<0.001 and 48.8±28.8 vs. 38.8±25.3, respectively; P<0.001). The patients taking donepezil were then randomly assigned to take donepezil in the morning (n=24) or at night (n=30). Eight weeks later, VAS scores also differed among the three groups (P<0.001 for both sleep quality and daytime drowsiness). The VAS scores of patients taking galantamine and donepezil in the morning were different from those taking donepezil at night at week 8. Significant changes in VAS scores emerged only in the group taking donepezil in the morning (4.6±26.5, P=0.046 for sleep quality; -7.1±26.1, P<0.001 for daytime drowsiness). These results suggest that taking acetylcholinesterase inhibitors in the morning can improve the sleep states of patients with Alzheimer's disease.

  15. Imaging acetylcholinesterase density in peripheral organs in Parkinson's disease with 11C-donepezil PET.

    PubMed

    Gjerløff, Trine; Fedorova, Tatyana; Knudsen, Karoline; Munk, Ole L; Nahimi, Adjmal; Jacobsen, Steen; Danielsen, Erik H; Terkelsen, Astrid J; Hansen, John; Pavese, Nicola; Brooks, David J; Borghammer, Per

    2015-03-01

    Parkinson's disease is associated with early parasympathetic dysfunction leading to constipation and gastroparesis. It has been suggested that pathological α-synuclein aggregations originate in the gut and ascend to the brainstem via the vagus. Our understanding of the pathogenesis and time course of parasympathetic denervation in Parkinson's disease is limited and would benefit from a validated imaging technique to visualize the integrity of parasympathetic function. The positron emission tomography tracer 5-[(11)C]-methoxy-donepezil was recently validated for imaging acetylcholinesterase density in the brain and peripheral organs. Donepezil is a high-affinity ligand for acetylcholinesterase-the enzyme that catabolizes acetylcholine in cholinergic synapses. Acetylcholinesterase histology has been used for many years for visualizing cholinergic neurons. Using 5-[(11)C]-methoxy-donepezil positron emission tomography, we studied 12 patients with early-to-moderate Parkinson's disease (three female; age 64 ± 9 years) and 12 age-matched control subjects (three female; age 62 ± 8 years). We collected clinical information about motor severity, constipation, gastroparesis, and other parameters. Heart rate variability measurements and gastric emptying scintigraphies were performed in all subjects to obtain objective measures of parasympathetic function. We detected significantly decreased (11)C-donepezil binding in the small intestine (-35%; P = 0.003) and pancreas (-22%; P = 0.001) of the patients. No correlations were found between the (11)C-donepezil signal and disease duration, severity of constipation, gastric emptying time, and heart rate variability. In Parkinson's disease, the dorsal motor nucleus of the vagus undergoes severe degeneration and pathological α-synuclein aggregations are also seen in nerve fibres innervating the gastro-intestinal tract. In contrast, the enteric nervous system displays little or no loss of cholinergic neurons. Decreases in (11)C-donepezil

  16. Greater responsiveness to donepezil in Alzheimer patients with higher levels of acetylcholinesterase based on attention task scores and a donepezil PET study.

    PubMed

    Kasuya, Masashi; Meguro, Kenichi; Okamura, Nobuyuki; Funaki, Yoshihito; Ishikawa, Hiroyasu; Tanaka, Naofumi; Iwata, Ren; Yanai, Kazuhiko

    2012-01-01

    The aim of the study was to predict donepezil responders among patients with Alzheimer disease (AD) based on cognitive tests and positron emission tomography. The Mini-Mental State Examination, Digit Symbol subtest (DigSm) of Wechsler Adult Intelligence Scale Revised, and Trail-Making Test A were administered for 80 patients with AD to assess global function, attention, and executive function, respectively. The same tests and the Clinical Global Impression (CGI) scale were conducted after treatment with oral donepezil (5 mg/d) for 6 months (study 1). [C]-Donepezil positron emission tomography examinations were conducted before and after treatment for 30 randomly selected patients. The distribution volume (DV), which indicates the density of donepezil-binding sites, was calculated using Logan graphical analysis (study 2). In study 1, 35 patients were identified as responders based on the CGI and Mini-Mental State Examination changes. These patients had higher baseline DigSm scores compared with nonresponders. In study 2, 15 patients were responders. DigSm correlated with DV at baseline. DV at baseline and %DV change in responders were higher than in nonresponders, and these variables correlated with ΔDigSm and CGI scores. Higher baseline attention may predict responsiveness to donepezil in patients with AD, and higher acetylcholinesterase levels result in a greater clinical effect.

  17. Effect of Donepezil, Tacrine, Galantamine and Rivastigmine on Acetylcholinesterase Inhibition in Dugesia tigrina.

    PubMed

    Bezerra da Silva, Cristiane; Pott, Arnildo; Elifio-Esposito, Selene; Dalarmi, Luciane; Fialho do Nascimento, Kátia; Moura Burci, Ligia; de Oliveira, Maislian; de Fátima Gaspari Dias, Josiane; Warumby Zanin, Sandra Maria; Gomes Miguel, Obdulio; Dallarmi Miguel, Marilis

    2016-01-01

    Dugesia tigrina is a non-parasitic platyhelminth, which has been recently utilized in pharmacological models, regarding the nervous system, as it presents a wide sensitivity to drugs. Our trials aimed to propose a model for an in vivo screening of substances with inhibitory activity of the enzyme acetylcholinesterase. Trials were performed with four drugs commercialized in Brazil: donepezil, tacrine, galantamine and rivastigmine, utilized in the control of Alzheimer's disease, to inhibit the activity of acetylcholinesterase. We tested five concentrations of the drugs, with an exposure of 24 h, and the mortality and the inhibition of acetylcholinesterase planarian seizure-like activity (pSLA) and planarian locomotor velocity (pLMV) were measured. Galantamine showed high anticholinesterasic activity when compared to the other drugs, with a reduction of 0.05 μmol·min(-1) and 63% of convulsant activity, presenting screw-like movement and hypokinesia, with pLMV of 65 crossed lines during 5 min. Our results showed for the first time the anticholinesterasic and convulsant effect, in addition to the decrease in locomotion induced by those drugs in a model of invertebrates. The experimental model proposed is simple and low cost and could be utilized in the screening of substances with anticholinesterasic action. PMID:26760993

  18. Musical Hallucinations Treated with Acetylcholinesterase Inhibitors

    PubMed Central

    Blom, Jan Dirk; Coebergh, Jan Adriaan F.; Lauw, René; Sommer, Iris E. C.

    2015-01-01

    Musical hallucinations are relatively rare auditory percepts which, due to their intrusive nature and the accompanying fear of impending mental decline, tend to cause significant distress and impairment. Although their etiology and pathophysiology appear to be heterogeneous and no evidence-based treatment methods are available, case reports indicate that acetylcholinesterase inhibitors may yield positive results in patients with comorbid hearing loss. We present two female patients (aged 76 and 78 years) both of whom suffered from hearing impairment and practically incessant musical hallucinations. Both patients were successfully treated with the acetylcholinesterase inhibitor rivastigmine. Based on these two case descriptions and an overview of studies describing the use of acetylcholinesterase inhibitors in similar patients, we discuss possible mechanisms and propose further research on the use of acetylcholinesterase inhibitors for musical hallucinations experienced in concordance with hearing loss. PMID:25904872

  19. Withdrawal syndrome after donepezil cessation in a patient with dementia.

    PubMed

    Bidzan, Leszek; Bidzan, Mariola

    2012-12-01

    We describe a 62-year-old female diagnosed with Alzheimer's disease, who had been treated with donepezil for approximately 1 year. When she developed a low-grade fever and digestive complaints, her family physician interpreted these symptoms as side effects of the drug and ordered donepezil to be discontinued. Not only was there no improvement of the somatic symptoms after discontinuation of donepezil, but there was also a worsening of the dementia symptoms, culminating in delirium. When donepezil was re-prescribed, the delirium resolved and the patient's mental state stabilized. The authors urge great caution in discontinuing treatment with acetylcholinesterase inhibitors such as donepezil. PMID:22249402

  20. Donepezil

    MedlinePlus

    ... AD; a brain disease that slowly destroys the memory and the ability to think, learn, communicate and ... cholinesterase inhibitors. It improves mental function (such as memory, attention, the ability to interact with others, speak, ...

  1. Influence of cholinesterase inhibitors, donepezil and rivastigmine on the acquisition, expression, and reinstatement of morphine-induced conditioned place preference in rats.

    PubMed

    Gawel, Kinga; Labuz, Krzysztof; Jenda, Malgorzata; Silberring, Jerzy; Kotlinska, Jolanta H

    2014-07-15

    The influence of systemic administration of cholinesterase inhibitors, donepezil and rivastigmine on the acquisition, expression, and reinstatement of morphine-induced conditioned place preference (CPP) was examined in rats. Additionally, this study aimed to compare the effects of donepezil, which selectively inhibits acetylcholinesterase, and rivastigmine, which inhibits both acetylcholinesterase and butyrylcholinesterase on morphine reward. Morphine-induced CPP (unbiased method) was induced by four injections of morphine (5 mg/kg, i.p.). Donepezil (0.5, 1, and 3 mg/kg, i.p.) or rivastigmine (0.03, 0.5, and 1 mg/kg, i.p.) were given 20 min before morphine during conditioning phase and 20 min before the expression or reinstatement of morphine-induced CPP. Our results indicated that both inhibitors of cholinesterase attenuated the acquisition and expression of morphine CPP. The results were more significant after rivastigmine due to a broader inhibitory spectrum of this drug. Moreover, donepezil (1 mg/kg) and rivastigmine (0.5 mg/kg) attenuated the morphine CPP reinstated by priming injection of 5mg/kg morphine. These properties of both cholinesterase inhibitors were reversed by mecamylamine (3 mg/kg, i.p.), a nicotinic acetylcholine receptor antagonist but not scopolamine (0.5 mg/kg, i.p.), a muscarinic acetylcholine receptor antagonist. All effects of cholinesterase inhibitors were observed at the doses that had no effects on locomotor activity of animals. Our results suggest beneficial role of cholinesterase inhibitors in reduction of morphine reward and morphine-induced seeking behavior. Finally, we found that the efficacy of cholinesterase inhibitors in attenuating reinstatement of morphine CPP provoked by priming injection may be due to stimulation of nicotinic acetylcholine receptors.

  2. Effects of donepezil and serotonin reuptake inhibitor on acute regression during adolescence in Down syndrome.

    PubMed

    Tamasaki, Akiko; Saito, Yoshiaki; Ueda, Riyo; Ohno, Koyo; Yokoyama, Katsutoshi; Satake, Takahiro; Sakuma, Hiroshi; Takahashi, Yukitoshi; Kondoh, Tatsuro; Maegaki, Yoshihiro

    2016-01-01

    A 14-year-old boy with Down syndrome (DS) showed a gradual decline in his daily activities and feeding capacities, and a marked deterioration triggered by a streptococcal infection was observed at the age of 15 years. He became bedridden, accompanied by sleep disturbance, sustained upward gaze, and generalized rigidity. Magnetic resonance imaging showed unremarkable findings, but antiglutamate receptor autoantibodies were positive in his cerebrospinal fluid. Treatment with thiamine infusion and steroid pulse therapy showed little effect, but gross motor dysfunction and appetite loss were ameliorated by the administration of l-DOPA and serotonin reuptake inhibitors. Thereafter, autistic behaviors predominated, including loss of social interaction, oral tendency, water phobia, and aggressiveness. Initiation of donepezil, an acetylcholinesterase inhibitor, resulted in the disappearance of these symptoms and total recovery of the patient to his previous psychosocial levels. We hypothesize that the acute regression in adolescence represents a process closely related to the defects of serotonergic and cholinergic systems that are innate to DS brains and not just a nonspecific comorbidity of depression or limbic encephalitis.

  3. Synthetic conversion of ACAT inhibitor to acetylcholinesterase inhibitor.

    PubMed

    Obata, R; Sunazuka, T; Otoguro, K; Tomoda, H; Harigaya, Y; Omura, S

    2000-06-19

    Natural product acyl-CoA:cholesterol acyltransferase (ACAT) inhibitor pyripyropene A was synthetically converted to acetylcholinesterase (AChE) inhibitor via heterolitic cleavage of the 2-pyrone ring, followed by gamma-acylation/cyclization with several aroyl chlorides. The 4-pyridyl analogue selectively showed AChE inhibitory activity (IC50 7.9 microM) and no ACAT inhibitory activity IC50 = >1000 microM. PMID:10890154

  4. Cholinesterase inhibitors, donepezil and rivastigmine, attenuate spatial memory and cognitive flexibility impairment induced by acute ethanol in the Barnes maze task in rats.

    PubMed

    Gawel, Kinga; Labuz, Krzysztof; Gibula-Bruzda, Ewa; Jenda, Malgorzata; Marszalek-Grabska, Marta; Filarowska, Joanna; Silberring, Jerzy; Kotlinska, Jolanta H

    2016-10-01

    Central cholinergic dysfunction contributes to acute spatial memory deficits produced by ethanol administration. Donepezil and rivastigmine elevate acetylcholine levels in the synaptic cleft through the inhibition of cholinesterases-enzymes involved in acetylcholine degradation. The aim of our study was to reveal whether donepezil (acetylcholinesterase inhibitor) and rivastigmine (also butyrylcholinesterase inhibitor) attenuate spatial memory impairment as induced by acute ethanol administration in the Barnes maze task (primary latency and number of errors in finding the escape box) in rats. Additionally, we compared the influence of these drugs on ethanol-disturbed memory. In the first experiment, the dose of ethanol (1.75 g/kg, i.p.) was selected that impaired spatial memory, but did not induce motor impairment. Next, we studied the influence of donepezil (1 and 3 mg/kg, i.p.), as well as rivastigmine (0.5 and 1 mg/kg, i.p.), given either before the probe trial or the reversal learning on ethanol-induced memory impairment. Our study demonstrated that these drugs, when given before the probe trial, were equally effective in attenuating ethanol-induced impairment in both test situations, whereas rivastigmine, at both doses (0.5 and 1 mg/kg, i.p.), and donepezil only at a higher dose (3 mg/kg, i.p.) given prior the reversal learning, attenuated the ethanol-induced impairment in cognitive flexibility. Thus, rivastigmine appears to exert more beneficial effect than donepezil in reversing ethanol-induced cognitive impairments-probably due to its wider spectrum of activity. In conclusion, the ethanol-induced spatial memory impairment may be attenuated by pharmacological manipulation of central cholinergic neurotransmission. PMID:27376896

  5. Cholinesterase inhibitors, donepezil and rivastigmine, attenuate spatial memory and cognitive flexibility impairment induced by acute ethanol in the Barnes maze task in rats.

    PubMed

    Gawel, Kinga; Labuz, Krzysztof; Gibula-Bruzda, Ewa; Jenda, Malgorzata; Marszalek-Grabska, Marta; Filarowska, Joanna; Silberring, Jerzy; Kotlinska, Jolanta H

    2016-10-01

    Central cholinergic dysfunction contributes to acute spatial memory deficits produced by ethanol administration. Donepezil and rivastigmine elevate acetylcholine levels in the synaptic cleft through the inhibition of cholinesterases-enzymes involved in acetylcholine degradation. The aim of our study was to reveal whether donepezil (acetylcholinesterase inhibitor) and rivastigmine (also butyrylcholinesterase inhibitor) attenuate spatial memory impairment as induced by acute ethanol administration in the Barnes maze task (primary latency and number of errors in finding the escape box) in rats. Additionally, we compared the influence of these drugs on ethanol-disturbed memory. In the first experiment, the dose of ethanol (1.75 g/kg, i.p.) was selected that impaired spatial memory, but did not induce motor impairment. Next, we studied the influence of donepezil (1 and 3 mg/kg, i.p.), as well as rivastigmine (0.5 and 1 mg/kg, i.p.), given either before the probe trial or the reversal learning on ethanol-induced memory impairment. Our study demonstrated that these drugs, when given before the probe trial, were equally effective in attenuating ethanol-induced impairment in both test situations, whereas rivastigmine, at both doses (0.5 and 1 mg/kg, i.p.), and donepezil only at a higher dose (3 mg/kg, i.p.) given prior the reversal learning, attenuated the ethanol-induced impairment in cognitive flexibility. Thus, rivastigmine appears to exert more beneficial effect than donepezil in reversing ethanol-induced cognitive impairments-probably due to its wider spectrum of activity. In conclusion, the ethanol-induced spatial memory impairment may be attenuated by pharmacological manipulation of central cholinergic neurotransmission.

  6. Flavanone glycosides as acetylcholinesterase inhibitors: computational and experimental evidence.

    PubMed

    Remya, C; Dileep, K V; Tintu, I; Variyar, E J; Sadasivan, C

    2014-01-01

    Acetylcholinesterase hydrolyzes the neurotransmitter called acetylcholine and is crucially involved in the regulation of neurotransmission. One of the observable facts in the neurodegenerative disorders like Alzheimer's disease is the decrease in the level of acetylcholine. Available drugs that are used for the treatment of Alzheimer's disease are primarily acetylcholinesterase inhibitors with multiple activities. They maintain the level of acetylcholine in the brain by inhibiting the acetylcholinesterase function. Hence acetylcholinesterase inhibitors can be used as lead compounds for the development of drugs against AD. In the present study, the binding potential of four flavanone glycosides such as naringin, hesperidin, poncirin and sakuranin against acetylcholinesterase was analysed by using the method of molecular modeling and docking. The activity of the top scored compound, naringin was further investigated by enzyme inhibition studies and its inhibitory concentration (IC50) towards acetylcholinesterase was also determined. PMID:25593395

  7. A new HPLC method to determine Donepezil hydrochloride in tablets.

    PubMed

    Pappa, Horacio; Farrú, Romina; Vilanova, Paula Otaño; Palacios, Marcelo; Pizzorno, María Teresa

    2002-01-01

    A HPLC stability-indicating assay for Donepezil hydrochloride in tablets was developed and validated. Donepezil hydrochloride is a reversible inhibitor of acetylcholinesterase, indicated for the treatment of mild to moderate dementia of the Alzheimer's type. The HPLC method was performed with a reversed phase C18 column, detection at 268 nm and a mixture of methanol, phosphate buffer 0.02 M and triethylamine (50:50:0.5) as mobile phase. Typical retention time for Donepezil was 9 min. The method was statistically validated for linearity, accuracy, precision and selectivity following ICH recommendations. Due to its simplicity and accuracy, the method can be used for routine quality control analysis.

  8. Acetylcholinesterase inhibitors and Gulf War illnesses

    PubMed Central

    Golomb, Beatrice Alexandra

    2008-01-01

    Increasing evidence suggests excess illness in Persian Gulf War veterans (GWV) can be explained in part by exposure of GWV to organophosphate and carbamate acetylcholinesterase inhibitors (AChEis), including pyridostigmine bromide (PB), pesticides, and nerve agents. Evidence germane to the relation of AChEis to illness in GWV was assessed. Many epidemiological studies reported a link between AChEi exposure and chronic symptoms in GWV. The link is buttressed by a dose–response relation of PB pill number to chronic symptoms in GWV and by a relation between avidity of AChEi clearance and illness, based on genotypes, concentrations, and activity levels of enzymes that detoxify AChEis. Triangulating evidence derives from studies linking occupational exposure to AChEis to chronic health symptoms that mirror those of ill GWV. Illness is again linked to lower activity of AChEi detoxifying enzymes and genotypes conferring less-avid AChEi detoxification. AChEi exposure satisfies Hill's presumptive criteria for causality, suggesting this exposure may be causally linked to excess health problems in GWV. PMID:18332428

  9. Effects of thyroxine and donepezil on hippocampal acetylcholine content, acetylcholinesterase activity, synaptotagmin-1 and SNAP-25 expression in hypothyroid adult rats.

    PubMed

    Wang, Fen; Zeng, Xianzhong; Zhu, Yangbo; Ning, Dan; Liu, Junxia; Liu, Chunlei; Jia, Xuemei; Zhu, Defa

    2015-02-01

    A growing number of studies have revealed that neurocognitive impairment, induced by adult-onset hypothyroidism, may not be fully restored by traditional hormone substitution therapies, including thyroxine (T4). The present study has investigated the effect of T4 and donepezil (DON; an acetylcholinesterase (AChE) inhibitor) treatment on the hypothyroidism-induced alterations of acetylcholine (ACh) content and AChE activity. Furthermore, we examined synaptotagmin-1 (syt-1) and SNAP-25 expression in the hippocampus of adult rats. Adding 0.05% propylthiouracil to their drinking water for five weeks induced hypothyroidism in the rat models. From the fourth week, the rats were treated with T4, DON or a combination of both. Concentration of ACh and the activity of AChE was determined colorimetrically. The results demonstrated that hypothyroidism induced a significant decrease of Ach content and AChE activity (by 17 and 34%, respectively), which were restored to control values by T4 administration. DON treatment also restored Ach to the normal level. Protein levels of syt-1 and SNAP-25 were determined by immunohistochemistry. The results demonstrated that syt-1 was expressed at significantly lower levels in hypothyroid rats, while SNAP-25 levels were notably higher compared with the controls. Two-week treatment with T4 alone failed to normalize the expression levels of these two proteins, while co-administration of T4 and DON was able to induce this effect. These data suggested that the thyroid hormone, T4, may have a direct effect on the metabolism of hippocampal ACh in adult rats, and that the DON treatment may facilitate the recovery of synaptic protein impairments induced by hypothyroidism.

  10. Donepezil, an acetylcholine esterase inhibitor, and ABT-239, a histamine H3 receptor antagonist/inverse agonist, require the integrity of brain histamine system to exert biochemical and procognitive effects in the mouse.

    PubMed

    Provensi, Gustavo; Costa, Alessia; Passani, M Beatrice; Blandina, Patrizio

    2016-10-01

    Histaminergic H3 receptors (H3R) antagonists enhance cognition in preclinical models and modulate neurotransmission, in particular acetylcholine (ACh) release in the cortex and hippocampus, two brain areas involved in memory processing. The cognitive deficits seen in aging and Alzheimer's disease have been associated with brain cholinergic deficits. Donepezil is one of the acetylcholinesterase (AChE) inhibitor approved for use across the full spectrum of these cognitive disorders. We addressed the question if H3R antagonists and donepezil require an intact histamine neuronal system to exert their procognitive effects. The effect of the H3R antagonist ABT-239 and donepezil were evaluated in the object recognition test (ORT), and on the level of glycogen synthase kinase 3 beta (GSK-3β) phosphorylation in normal and histamine-depleted mice. Systemic administration of ABT-239 or donepezil ameliorated the cognitive performance in the ORT. However, these compounds were ineffective in either genetically (histidine decarboxylase knock-out, HDC-KO) or pharmacologically, by means of intracerebroventricular (i.c.v.) injections of the HDC irreversible inhibitor a-fluoromethylhistidine (a-FMHis), histamine-deficient mice. Western blot analysis revealed that ABT-239 or donepezil systemic treatments increased GSK-3β phosphorylation in cortical and hippocampal homogenates of normal, but not of histamine-depleted mice. Furthermore, administration of the PI3K inhibitor LY294002 that blocks GSK-3β phosphorylation, prevented the procognitive effects of both drugs in normal mice. Our results indicate that both donepezil and ABT-239 require the integrity of the brain histaminergic system to exert their procognitive effects and strongly suggest that impairments of PI3K/AKT/GSK-3β intracellular pathway activation is responsible for the inefficacy of both drugs in histamine-deficient animals. PMID:27291828

  11. Double layer structure-based virtual screening reveals 3'-Hydroxy-A-Naphthoflavone as novel inhibitor candidate of human acetylcholinesterase

    NASA Astrophysics Data System (ADS)

    Ichsan, Mochammad; Pangastuti, Ardini; Habibi, Mohammad Wildan; Juliana, Kartika

    2016-03-01

    One of the most effective target for Alzheimer's disease's (AD) treatment is the inhibition of human acetylcholinesterase (hAChE) eventhough it has many side effects. So that, this study was aimed to discover a new candidate of hAChE's inhibitor that has more negative binding affinity than existing drugs. hAChE's 3D model used in this study has a good quality according to its number of residues in most favoured regions (92%), three bad contacts, >50 ERRAT's score (85,870) and successfully passed the VERIFY 3D threshold (>80%). Based on the first layer of SBVS againts more than 12.180.630 ligands, we discovered 11.806 hits and then we found 359 hits from the second layer of SBVS. Based on our previous steps, we found that 3'-Hydroxy-a-Naphthoflavone was the only one candidate, that directly interacted with Trp286 via hydrogen bond and hydrophobic interactions and also has the most negative binding affinity (-10,6 kcal/mol) and also has more negative than existing hAChE's inhibitors, such as tacrine, donepezil, etc. 3'-Hydroxy-a-Naphthoflavone is the best candidate of hAChE's inhibitor based on its binding affinity (-10,6 kcal/mol) that is more negative than existing hAChE's inhibitors, such as tacrine, donepezil, etc.

  12. Increased libido associated with donepezil treatment: a case report.

    PubMed

    Segrec, Nusa; Zaman, Rashid; Pregelj, Peter

    2016-01-01

    Inappropriate verbal and physical sexual behaviour is not common among individuals with dementia, but when it does occur, it can have profound consequences. We report a case of 79-year-old woman with dementia of the Alzheimer's type who complained of increased libido after an increased dose of donepezil, which was being used along with tianeptine. Donepezil withdrawal led to the resolution of increased libido, but when it was reintroduced, increased libido reappeared once again (Naranjo score: 7). Increased libido was not reported by the patient during the 6-year follow-up period after donepezil withdrawal. A potential mechanism of acetylcholinesterase inhibitor-induced increased libido and the current literature on hypersexuality as a side-effect of donepezil treatment are discussed.

  13. Increased libido associated with donepezil treatment: a case report.

    PubMed

    Segrec, Nusa; Zaman, Rashid; Pregelj, Peter

    2016-01-01

    Inappropriate verbal and physical sexual behaviour is not common among individuals with dementia, but when it does occur, it can have profound consequences. We report a case of 79-year-old woman with dementia of the Alzheimer's type who complained of increased libido after an increased dose of donepezil, which was being used along with tianeptine. Donepezil withdrawal led to the resolution of increased libido, but when it was reintroduced, increased libido reappeared once again (Naranjo score: 7). Increased libido was not reported by the patient during the 6-year follow-up period after donepezil withdrawal. A potential mechanism of acetylcholinesterase inhibitor-induced increased libido and the current literature on hypersexuality as a side-effect of donepezil treatment are discussed. PMID:25735193

  14. Novel Triazole-Quinoline Derivatives as Selective Dual Binding Site Acetylcholinesterase Inhibitors.

    PubMed

    Mantoani, Susimaire P; Chierrito, Talita P C; Vilela, Adriana F L; Cardoso, Carmen L; Martínez, Ana; Carvalho, Ivone

    2016-02-05

    Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder worldwide. Currently, the only strategy for palliative treatment of AD is to inhibit acetylcholinesterase (AChE) in order to increase the concentration of acetylcholine in the synaptic cleft. Evidence indicates that AChE also interacts with the β-amyloid (Aβ) protein, acting as a chaperone and increasing the number and neurotoxicity of Aβ fibrils. It is known that AChE has two binding sites: the peripheral site, responsible for the interactions with Aβ, and the catalytic site, related with acetylcholine hydrolysis. In this work, we reported the synthesis and biological evaluation of a library of new tacrine-donepezil hybrids, as a potential dual binding site AChE inhibitor, containing a triazole-quinoline system. The synthesis of hybrids was performed in four steps using the click chemistry strategy. These compounds were evaluated as hAChE and hBChE inhibitors, and some derivatives showed IC50 values in the micro-molar range and were remarkably selective towards hAChE. Kinetic assays and molecular modeling studies confirm that these compounds block both catalytic and peripheral AChE sites. These results are quite interesting since the triazole-quinoline system is a new structural scaffold for AChE inhibitors. Furthermore, the synthetic approach is very efficient for the preparation of target compounds, allowing a further fruitful new chemical library optimization.

  15. Effects of donepezil on hERG potassium channels.

    PubMed

    Chae, Yun Ju; Lee, Hong Joon; Jeon, Ji Hyun; Kim, In-Beom; Choi, Jin-Sung; Sung, Ki-Wug; Hahn, Sang June

    2015-02-01

    Donepezil is a potent, selective inhibitor of acetylcholinesterase, which is used for the treatment of Alzheimer's disease. Whole-cell patch-clamp technique and Western blot analyses were used to study the effects of donepezil on the human ether-a-go-go-related gene (hERG) channel. Donepezil inhibited the tail current of the hERG in a concentration-dependent manner with an IC50 of 1.3 μM. The metabolites of donepezil, 6-ODD and 5-ODD, inhibited the hERG currents in a similar concentration-dependent manner; the IC50 values were 1.0 and 1.5 μM, respectively. A fast drug perfusion system demonstrated that donepezil interacted with both the open and inactivated states of the hERG. A fast application of donepezil during the tail currents inhibited the open state of the hERG in a concentration-dependent manner with an IC50 of 2.7 μM. Kinetic analysis of donepezil in an open state of the hERG yielded blocking and unblocking rate constants of 0.54 µM(-1)s(-1) and 1.82 s(-1), respectively. The block of the hERG by donepezil was voltage-dependent with a steep increase across the voltage range of channel activation. Donepezil caused a reduction in the hERG channel protein trafficking to the plasma membrane at low concentration, but decreased the channel protein expression at higher concentrations. These results suggest that donepezil inhibited the hERG at a supratherapeutic concentration, and that it did so by preferentially binding to the activated (open and/or inactivated) states of the channels and by inhibiting the trafficking and expression of the hERG channel protein in the plasma membrane.

  16. Exposure to Acetylcholinesterase Inhibitors Alters the Physiology and Motor Function of Honeybees

    PubMed Central

    Williamson, Sally M.; Moffat, Christopher; Gomersall, Martha A. E.; Saranzewa, Nastja; Connolly, Christopher N.; Wright, Geraldine A.

    2013-01-01

    Cholinergic signaling is fundamental to neuromuscular function in most organisms. Sub-lethal doses of neurotoxic pesticides that target cholinergic signaling can alter the behavior of insects in subtle ways; their influence on non-target organisms may not be readily apparent in simple mortality studies. Beneficial arthropods such as honeybees perform sophisticated behavioral sequences during foraging that, if influenced by pesticides, could impair foraging success and reduce colony health. Here, we investigate the behavioral effects on honeybees of exposure to a selection of pesticides that target cholinergic signaling by inhibiting acetylcholinesterase (AChE). To examine how continued exposure to AChE inhibitors affected motor function, we fed adult foraging worker honeybees sub-lethal concentrations of these compounds in sucrose solution for 24 h. Using an assay for locomotion in bees, we scored walking, stopped, grooming, and upside down behavior continuously for 15 min. At a 10 nM concentration, all the AChE inhibitors caused similar effects on behavior, notably increased grooming activity and changes in the frequency of bouts of behavior such as head grooming. Coumaphos caused dose-dependent effects on locomotion as well as grooming behavior, and a 1 μM concentration of coumaphos induced symptoms of malaise such as abdomen grooming and defecation. Biochemical assays confirmed that the four compounds we assayed (coumaphos, aldicarb, chlorpyrifos, and donepezil) or their metabolites acted as AChE inhibitors in bees. Furthermore, we show that transcript expression levels of two honeybee AChE inhibitors were selectively upregulated in the brain and in gut tissues in response to AChE inhibitor exposure. The results of our study imply that the effects of pesticides that rely on this mode of action have subtle yet profound effects on physiological effects on behavior that could lead to reduced survival. PMID:23386834

  17. Exposure to acetylcholinesterase inhibitors alters the physiology and motor function of honeybees.

    PubMed

    Williamson, Sally M; Moffat, Christopher; Gomersall, Martha A E; Saranzewa, Nastja; Connolly, Christopher N; Wright, Geraldine A

    2013-01-01

    Cholinergic signaling is fundamental to neuromuscular function in most organisms. Sub-lethal doses of neurotoxic pesticides that target cholinergic signaling can alter the behavior of insects in subtle ways; their influence on non-target organisms may not be readily apparent in simple mortality studies. Beneficial arthropods such as honeybees perform sophisticated behavioral sequences during foraging that, if influenced by pesticides, could impair foraging success and reduce colony health. Here, we investigate the behavioral effects on honeybees of exposure to a selection of pesticides that target cholinergic signaling by inhibiting acetylcholinesterase (AChE). To examine how continued exposure to AChE inhibitors affected motor function, we fed adult foraging worker honeybees sub-lethal concentrations of these compounds in sucrose solution for 24 h. Using an assay for locomotion in bees, we scored walking, stopped, grooming, and upside down behavior continuously for 15 min. At a 10 nM concentration, all the AChE inhibitors caused similar effects on behavior, notably increased grooming activity and changes in the frequency of bouts of behavior such as head grooming. Coumaphos caused dose-dependent effects on locomotion as well as grooming behavior, and a 1 μM concentration of coumaphos induced symptoms of malaise such as abdomen grooming and defecation. Biochemical assays confirmed that the four compounds we assayed (coumaphos, aldicarb, chlorpyrifos, and donepezil) or their metabolites acted as AChE inhibitors in bees. Furthermore, we show that transcript expression levels of two honeybee AChE inhibitors were selectively upregulated in the brain and in gut tissues in response to AChE inhibitor exposure. The results of our study imply that the effects of pesticides that rely on this mode of action have subtle yet profound effects on physiological effects on behavior that could lead to reduced survival.

  18. [Effects of the association of sulbutiamine with an acetylcholinesterase inhibitor in early stage and moderate Alzheimer disease].

    PubMed

    Ollat, H; Laurent, B; Bakchine, S; Michel, B-F; Touchon, J; Dubois, B

    2007-01-01

    The efficacy of the inhibitors of acetylcholinesterase in Alzheimer's Disease (AD) is moderated and some patients do not respond to these treatments. Sulbutiamine potentializes cholinergic and glutamatergic transmissions, mainly in hippocampus and prefrontal cortex. This multicentric, randomized and double-blind trial evaluates the effects of the association of sulbutiamine to an anticholinesterasic drug in cognitive functions in patients with AD at an early stage (episodic memory, working memory, executive functions, attention). Patients had first donepezil (D) or sulbutiamine (S) during three months. During this period, only attention improved in both groups. During the three following months, a placebo (P) in patients D and donepezil in patients S were added. Compared to entry results, episodic memory decreased in group D + P but improved in group S + D. At the same time the improvement of attention persisted in both groups. Daylife activities only improved in group S + D. In conclusion sulbutiamine can be an adjuvant to treatment in early stage and moderate AD by anticholinesterasic drugs. PMID:17675917

  19. [Effects of the association of sulbutiamine with an acetylcholinesterase inhibitor in early stage and moderate Alzheimer disease].

    PubMed

    Ollat, H; Laurent, B; Bakchine, S; Michel, B-F; Touchon, J; Dubois, B

    2007-01-01

    The efficacy of the inhibitors of acetylcholinesterase in Alzheimer's Disease (AD) is moderated and some patients do not respond to these treatments. Sulbutiamine potentializes cholinergic and glutamatergic transmissions, mainly in hippocampus and prefrontal cortex. This multicentric, randomized and double-blind trial evaluates the effects of the association of sulbutiamine to an anticholinesterasic drug in cognitive functions in patients with AD at an early stage (episodic memory, working memory, executive functions, attention). Patients had first donepezil (D) or sulbutiamine (S) during three months. During this period, only attention improved in both groups. During the three following months, a placebo (P) in patients D and donepezil in patients S were added. Compared to entry results, episodic memory decreased in group D + P but improved in group S + D. At the same time the improvement of attention persisted in both groups. Daylife activities only improved in group S + D. In conclusion sulbutiamine can be an adjuvant to treatment in early stage and moderate AD by anticholinesterasic drugs.

  20. Repeated administration of an acetylcholinesterase inhibitor attenuates nicotine taking in rats and smoking behavior in human smokers

    PubMed Central

    Ashare, R L; Kimmey, B A; Rupprecht, L E; Bowers, M E; Hayes, M R; Schmidt, H D

    2016-01-01

    Tobacco smoking remains the leading cause of preventable death worldwide and current smoking cessation medications have limited efficacy. Thus, there is a clear need for translational research focused on identifying novel pharmacotherapies for nicotine addiction. Our previous studies demonstrated that acute administration of an acetylcholinesterase inhibitor (AChEI) attenuates nicotine taking and seeking in rats and suggest that AChEIs could be repurposed for smoking cessation. Here, we expand upon these findings with experiments designed to determine the effects of repeated AChEI administration on voluntary nicotine taking in rats as well as smoking behavior in human smokers. Rats were trained to self-administer intravenous infusions of nicotine (0.03 mg kg−1 per 0.59 ml) on a fixed-ratio-5 schedule of reinforcement. Once rats maintained stable nicotine taking, galantamine or donepezil was administered before 10 consecutive daily nicotine self-administration sessions. Repeated administration of 5.0 mg kg−1 galantamine and 3.0 mg kg−1 donepezil attenuated nicotine self-administration in rats. These effects were reinforcer-specific and not due to adverse malaise-like effects of drug treatment as repeated galantamine and donepezil administration had no effects on sucrose self-administration, ad libitum food intake and pica. The effects of repeated galantamine (versus placebo) on cigarette smoking were also tested in human treatment-seeking smokers. Two weeks of daily galantamine treatment (8.0 mg (week 1) and 16.0 mg (week 2)) significantly reduced smoking rate as well as smoking satisfaction and reward compared with placebo. This translational study indicates that repeated AChEI administration reduces nicotine reinforcement in rats and smoking behavior in humans at doses not associated with tolerance and/or adverse effects. PMID:26784967

  1. Repeated administration of an acetylcholinesterase inhibitor attenuates nicotine taking in rats and smoking behavior in human smokers.

    PubMed

    Ashare, R L; Kimmey, B A; Rupprecht, L E; Bowers, M E; Hayes, M R; Schmidt, H D

    2016-01-19

    Tobacco smoking remains the leading cause of preventable death worldwide and current smoking cessation medications have limited efficacy. Thus, there is a clear need for translational research focused on identifying novel pharmacotherapies for nicotine addiction. Our previous studies demonstrated that acute administration of an acetylcholinesterase inhibitor (AChEI) attenuates nicotine taking and seeking in rats and suggest that AChEIs could be repurposed for smoking cessation. Here, we expand upon these findings with experiments designed to determine the effects of repeated AChEI administration on voluntary nicotine taking in rats as well as smoking behavior in human smokers. Rats were trained to self-administer intravenous infusions of nicotine (0.03 mg kg(-1) per 0.59 ml) on a fixed-ratio-5 schedule of reinforcement. Once rats maintained stable nicotine taking, galantamine or donepezil was administered before 10 consecutive daily nicotine self-administration sessions. Repeated administration of 5.0 mg kg(-1) galantamine and 3.0 mg kg(-1) donepezil attenuated nicotine self-administration in rats. These effects were reinforcer-specific and not due to adverse malaise-like effects of drug treatment as repeated galantamine and donepezil administration had no effects on sucrose self-administration, ad libitum food intake and pica. The effects of repeated galantamine (versus placebo) on cigarette smoking were also tested in human treatment-seeking smokers. Two weeks of daily galantamine treatment (8.0 mg (week 1) and 16.0 mg (week 2)) significantly reduced smoking rate as well as smoking satisfaction and reward compared with placebo. This translational study indicates that repeated AChEI administration reduces nicotine reinforcement in rats and smoking behavior in humans at doses not associated with tolerance and/or adverse effects.

  2. Repeated administration of an acetylcholinesterase inhibitor attenuates nicotine taking in rats and smoking behavior in human smokers.

    PubMed

    Ashare, R L; Kimmey, B A; Rupprecht, L E; Bowers, M E; Hayes, M R; Schmidt, H D

    2016-01-01

    Tobacco smoking remains the leading cause of preventable death worldwide and current smoking cessation medications have limited efficacy. Thus, there is a clear need for translational research focused on identifying novel pharmacotherapies for nicotine addiction. Our previous studies demonstrated that acute administration of an acetylcholinesterase inhibitor (AChEI) attenuates nicotine taking and seeking in rats and suggest that AChEIs could be repurposed for smoking cessation. Here, we expand upon these findings with experiments designed to determine the effects of repeated AChEI administration on voluntary nicotine taking in rats as well as smoking behavior in human smokers. Rats were trained to self-administer intravenous infusions of nicotine (0.03 mg kg(-1) per 0.59 ml) on a fixed-ratio-5 schedule of reinforcement. Once rats maintained stable nicotine taking, galantamine or donepezil was administered before 10 consecutive daily nicotine self-administration sessions. Repeated administration of 5.0 mg kg(-1) galantamine and 3.0 mg kg(-1) donepezil attenuated nicotine self-administration in rats. These effects were reinforcer-specific and not due to adverse malaise-like effects of drug treatment as repeated galantamine and donepezil administration had no effects on sucrose self-administration, ad libitum food intake and pica. The effects of repeated galantamine (versus placebo) on cigarette smoking were also tested in human treatment-seeking smokers. Two weeks of daily galantamine treatment (8.0 mg (week 1) and 16.0 mg (week 2)) significantly reduced smoking rate as well as smoking satisfaction and reward compared with placebo. This translational study indicates that repeated AChEI administration reduces nicotine reinforcement in rats and smoking behavior in humans at doses not associated with tolerance and/or adverse effects. PMID:26784967

  3. Donepezil in the Treatment of ADHD-Like Symptoms in Youths with Pervasive Developmental Disorder: A Case Series

    ERIC Educational Resources Information Center

    Doyle, Robert L.; Frazier, Jean; Spencer, Thomas J.; Geller, Daniel; Biederman, Joseph; Wilens, Timothy

    2006-01-01

    Background: Recent studies reported ADHD-like symptoms and cognitive deficits in pervasive developmental disorder (PDD). Because work in dementia documents improvement in executive function deficits with the acetylcholinesterase inhibitor donepezil, the authors reason that similar benefits could be obtained in PDD. Method: The authors describe…

  4. Donepezil across the spectrum of Alzheimer's disease: dose optimization and clinical relevance.

    PubMed

    Lee, J-H; Jeong, S-K; Kim, B C; Park, K W; Dash, A

    2015-05-01

    Alzheimer's disease (AD) is an irreversible and progressive neurodegenerative disorder. AD is the most common cause of dementia worldwide, and its incidence is increasing in line with population aging. The primary feature of AD is progressive cognitive decline, and severe AD is characterized by reduced communication skills and mobility. However, successful treatment can substantially improve quality of life. Donepezil is an acetylcholinesterase inhibitor approved for use across the full spectrum of mild, moderate, and severe AD. Donepezil has been available at doses of 5 or 10 mg once daily for more than a decade and, more recently, a single high once-daily sustained-release 23-mg dose has been approved for treatment of patients with moderate to severe AD. The rationale for the higher dose formulation was the expected increase in acetylcholinesterase inhibition given the dose-response relationship of donepezil, with the benefits of the higher dose being most apparent in patients with more advanced AD. Donepezil 5 and 10 mg/day have been well studied in mild-to-moderate AD, and a clinical trial has confirmed the benefits of donepezil 23 mg/day in patients with moderate to severe AD, particularly for language and visuospatial ability. This review presents an overview of the evidence for donepezil across the spectrum of AD, with a focus on dose optimization for disease progression.

  5. Morphology-based mammalian stem cell tests reveal potential developmental toxicity of donepezil.

    PubMed

    Lau, Caroline G Y; Marikawa, Yusuke

    2014-11-01

    Various compounds, including therapeutic drugs, can adversely impact the survival and development of embryos in the uterus. Identification of such development-interfering agents is a challenging task, although multi-angle approaches--including the use of in vitro toxicology studies involving embryonic stem cells--should alleviate some of the current difficulties. In the present study, we utilized the in vitro elongation of embryoid bodies (EBs) derived from mouse embryonal carcinoma stem cell line P19C5 as a model of early embryological events, specifically that of gastrulation and axial patterning. From our study, we identified donepezil, a medication indicated for the management of Alzheimer's disease, as a potential developmental toxicant. The extent of P19C5 EB axial elongation was diminished by donepezil in a dose-dependent manner. Although donepezil is a known inhibitor of acetylcholinesterase, interference of elongation was not mediated through this enzyme. Quantitative reverse-transcriptase PCR revealed that donepezil altered the expression pattern of a specific set of developmental regulator genes involved in patterning along the anterior-posterior body axis. When tested in mouse whole embryo culture, donepezil caused morphological abnormalities including impaired somitogenesis. Donepezil also diminished elongation morphogenesis of EBs generated from human embryonic stem cells. These results suggest that donepezil interferes with axial elongation morphogenesis of early embryos by altering the expression pattern of regulators of axial development.

  6. Flow-through enzyme immobilized amperometric detector for the rapid screening of acetylcholinesterase inhibitors by flow injection analysis.

    PubMed

    Vandeput, Marie; Parsajoo, Cobra; Vanheuverzwijn, Jérôme; Patris, Stéphanie; Yardim, Yavuz; le Jeune, Alexandre; Sarakbi, Ahmad; Mertens, Dominique; Kauffmann, Jean-Michel

    2015-01-01

    A commercially available thin-layer flow-through amperometric detector, with the sensing block customized in an original design, was applied to the screening of drug compounds known as acetylcholinesterase (AChE) inhibitors. AChE from electric eel was covalently immobilized onto a cysteamine modified gold disk adjacent to a silver disk working electrode. On-line studies were performed by flow injection analysis (FIA) in PBS buffer pH 7.4. Seven commercially available AChE inhibitors used in the medical field, namely neostigmine, eserine, tacrine, donepezil, rivastigmine, pyridostigmine and galantamine as well as two natural compounds, quercetin and berberine, were investigated. The same trend of inhibitory potency as described in the literature was observed. Of particular interest and in addition to the determination of the IC50 values, this flow-through system allowed the study of both, the stability of the enzyme-inhibitor complex and the kinetic of the enzyme activity recovery. PMID:25459923

  7. Use of a novel radiometric method to assess the inhibitory effect of donepezil on acetylcholinesterase activity in minimally diluted tissue samples

    PubMed Central

    Kikuchi, Tatsuya; Okamura, Toshimitsu; Arai, Takuya; Obata, Takayuki; Fukushi, Kiyoshi; Irie, Toshiaki; Shiraishi, Tetsuya

    2010-01-01

    Background and purpose: Cholinesterase inhibitors have been widely used for the treatment of patients with dementia. Monitoring of the cholinesterase activity in the blood is used as an indicator of the effect of the cholinesterase inhibitors in the brain. The selective measurement of cholinesterase with low tissue dilution is preferred for accurate monitoring; however, the methods have not been established. Here, we investigated the effect of tissue dilution on the action of cholinesterase inhibitors using a novel radiometric method with selective substrates, N-[14C]methylpiperidin-4-yl acetate ([14C]MP4A) and (R)-N-[14C]methylpiperidin-3-yl butyrate ([14C]MP3B_R), for AChE and butyrylcholinesterase (BChE) respectively. Experimental approach: We investigated the kinetics of hydrolysis of [14C]-MP4A and [14C]-MP3B_R by cholinesterases, and evaluated the selectivity of [14C]MP4A and [14C]MP3B_R for human AChE and BChE, respectively, compared with traditional substrates. Then, IC50 values of cholinesterase inhibitors in minimally diluted and highly diluted tissues were measured with [14C]MP4A and [14C]MP3B_R. Key results: AChE and BChE activities were selectively measured as the first-order hydrolysis rates of [14C]-MP4A and [14C]MP3B_R respectively. The AChE selectivity of [14C]MP4A was an order of magnitude higher than traditional substrates used for the AChE assay. The IC50 values of specific AChE and BChE inhibitors, donepezil and ethopropazine, in 1.2-fold diluted human whole blood were much higher than those in 120-fold diluted blood. In addition, the IC50 values of donepezil in monkey brain were dramatically decreased as the tissue was diluted. Conclusions and implications: This method would effectively monitor the activity of cholinesterase inhibitors used for therapeutics, pesticides and chemical warfare agents. PMID:20401964

  8. Synthesis of aminoalkyl-substituted aurone derivatives as acetylcholinesterase inhibitors.

    PubMed

    Lee, Young Hun; Shin, Min Cheol; Yun, Yong Don; Shin, Seo Young; Kim, Jong Min; Seo, Jeong Moo; Kim, Nam-Jung; Ryu, Jong Hoon; Lee, Yong Sup

    2015-01-01

    Alzheimer's disease (AD), a progressive and neurodegenerative disorder of the brain, is the most common cause of dementia among elderly people. To date, the successful therapeutic strategy to treat AD is maintaining the levels of acetylcholine by inhibiting acetylcholinesterase (AChE). In the present study, aurone derivatives were designed and synthesized as AChE inhibitors based on the lead structure of sulfuretin. Of those synthesized, compound 10d showed ca. 1700-fold and 6-fold higher AChE inhibitory activity than sulfuretin and galantamine, respectively. This compound also ameliorated scopolamine-induced memory deficit in mice when administered orally at the dose of 1 and 2mg/kg. PMID:25468034

  9. Freeze-frame inhibitor captures acetylcholinesterase in a unique conformation.

    PubMed

    Bourne, Yves; Kolb, Hartmuth C; Radić, Zoran; Sharpless, K Barry; Taylor, Palmer; Marchot, Pascale

    2004-02-10

    The 1,3-dipolar cycloaddition reaction between unactivated azides and acetylenes proceeds exceedingly slowly at room temperature. However, considerable rate acceleration is observed when this reaction occurs inside the active center gorge of acetylcholinesterase (AChE) between certain azide and acetylene reactants, attached via methylene chains to specific inhibitor moieties selective for the active center and peripheral site of the enzyme. AChE catalyzes the formation of its own inhibitor in a highly selective fashion: only a single syn1-triazole regioisomer with defined substitution positions and linker distances is generated from a series of reagent combinations. Inhibition measurements revealed this syn1-triazole isomer to be the highest affinity reversible organic inhibitor of AChE with association rate constants near the diffusion limit. The corresponding anti1 isomer, not formed by the enzyme, proved to be a respectable but weaker inhibitor. The crystal structures of the syn1- and anti1-mouse AChE complexes at 2.45- to 2.65-A resolution reveal not only substantial binding contributions from the triazole moieties, but also that binding of the syn1 isomer induces large and unprecedented enzyme conformational changes not observed in the anti1 complex nor predicted from structures of the apoenzyme and complexes with the precursor reactants. Hence, the freeze-frame reaction offers both a strategically original approach for drug discovery and a means for kinetically controlled capture, as a high-affinity complex between the enzyme and its self-created inhibitor, of a highly reactive minor abundance conformer of a fluctuating protein template.

  10. Freeze-frame inhibitor captures acetylcholinesterase in a unique conformation

    PubMed Central

    Bourne, Yves; Kolb, Hartmuth C.; Radić, Zoran; Sharpless, K. Barry; Taylor, Palmer; Marchot, Pascale

    2004-01-01

    The 1,3-dipolar cycloaddition reaction between unactivated azides and acetylenes proceeds exceedingly slowly at room temperature. However, considerable rate acceleration is observed when this reaction occurs inside the active center gorge of acetylcholinesterase (AChE) between certain azide and acetylene reactants, attached via methylene chains to specific inhibitor moieties selective for the active center and peripheral site of the enzyme. AChE catalyzes the formation of its own inhibitor in a highly selective fashion: only a single syn1-triazole regioisomer with defined substitution positions and linker distances is generated from a series of reagent combinations. Inhibition measurements revealed this syn1-triazole isomer to be the highest affinity reversible organic inhibitor of AChE with association rate constants near the diffusion limit. The corresponding anti1 isomer, not formed by the enzyme, proved to be a respectable but weaker inhibitor. The crystal structures of the syn1- and anti1-mouse AChE complexes at 2.45- to 2.65-Å resolution reveal not only substantial binding contributions from the triazole moieties, but also that binding of the syn1 isomer induces large and unprecedented enzyme conformational changes not observed in the anti1 complex nor predicted from structures of the apoenzyme and complexes with the precursor reactants. Hence, the freeze-frame reaction offers both a strategically original approach for drug discovery and a means for kinetically controlled capture, as a high-affinity complex between the enzyme and its self-created inhibitor, of a highly reactive minor abundance conformer of a fluctuating protein template. PMID:14757816

  11. Single dose pharmacokinetics of the novel transdermal donepezil patch in healthy volunteers

    PubMed Central

    Kim, Yo Han; Choi, Hee Youn; Lim, Hyeong-Seok; Lee, Shi Hyang; Jeon, Hae Sun; Hong, Donghyun; Kim, Seong Su; Choi, Young Kweon; Bae, Kyun-Seop

    2015-01-01

    Background Donepezil is an acetylcholinesterase inhibitor indicated for Alzheimer’s disease. The aim of this randomized, single-blind, placebo-controlled, single-dose, dose-escalation study was to investigate the safety, tolerability, and pharmacokinetics of the donepezil patch in healthy male subjects. Methods Each healthy male subject received a single transdermal donepezil patch (72 hours patch-on periods) of 43.75 mg/12.5 cm2, 87.5 mg/25 cm2, or 175 mg/50 cm2. Serial blood samples were collected up to 312 hours after patch application. The plasma concentrations of donepezil were determined by using a validated liquid chromatography–tandem mass spectrometry method. Pharmacokinetic parameters were obtained by noncompartmental analysis. Tolerability of the patches and performance of the patches (adhesion, skin irritation, residual donepezil content in the patch) were assessed throughout the study. Results The study was completed by 36 healthy subjects. After patch application, the maximal plasma donepezil concentration (Cmax) and the area under the curve (AUC) increased in a dose-proportional manner. Median time to Cmax was ~74–76 hours (~2–4 hours after patch removal), and mean t1/2β was ~63.77–93.07 hours. The average donepezil residue in the patch after 72 hours was ~73.9%–86.7% of the loading dose. There were neither serious adverse events nor adverse events that lead to discontinuation. Skin adhesion of the patch was good in 97.2% of the subjects. All skin irritations after patch removal were mild and were resolved during the study period. Conclusion The donepezil patch appeared to be generally well tolerated and adhesive. Pharmacokinetic analysis of the donepezil patch demonstrated linear kinetics. PMID:25792802

  12. Donepezil Regulates 1-Methyl-4-phenylpyridinium-Induced Microglial Polarization in Parkinson's Disease.

    PubMed

    Chen, Teng; Hou, Ruihua; Xu, Shujun; Wu, Chengyuan

    2015-10-21

    1-Methyl-4-phenylpyridinium (MPP+) induces microglial activation and degeneration of dopaminergic (DAergic) neurons. Donepezil is a well-known acetylcholinesterase inhibitor used clinically to treat cognitive dysfunction in Alzheimer's disease (AD). In the present study, we tested the hypothesis that MPP+ promotes microglial M1 polarization and suppresses M2 polarization and that this can be restored by donepezil. Results indicate that MPP+ treatment in microglial BV2 cells promotes microglial polarization toward the M1 state. However, pretreatment with donepezil inhibited MPP+-induced M1 polarization in microglia by suppressing the release of interleukin (IL)-6, IL-1β, or tumor necrosis factor (TNF)-α. Importantly, we found that MPP+ inhibited microglial M2 polarization by suppressing expression of Arg-1, Fizz1, and Ym1, which was also rescued by pretreatment with donepezil. In addition, IL-4-mediated induction of anti-inflammatory marker genes IL-10, IL-13, and transforming growth factor-β2 (TGF-β2) were significantly attenuated by MPP+ in BV2 cells, which was restored by pretreatment with donepezil in a concentration-dependent manner. Mechanistically, we found that the addition of MPP+ reduced the intensity of phosphorylated signal transducer and activator of transcription 6 (STAT6) but not total STAT6 in IL-4-stimulated BV2 cells. Importantly, pretreatment of microglial BV2 cells with donepezil 3 h prior to administration of MPP+ rescued the reduction of STAT6 phosphorylation induced by MPP+.

  13. The safety and tolerability of donepezil in patients with Alzheimer's disease

    PubMed Central

    Jackson, Stephen; Ham, Richard J; Wilkinson, David

    2004-01-01

    Cholinesterase (ChE) inhibitors, which prevent the hydrolysis of acetylcholine, have been approved for the symptomatic treatment of Alzheimer's disease (AD) for over a decade. However, the first ChE inhibitors were associated with a high incidence of side-effects and general tolerability concerns, including hepatotoxicity. Side-effects associated with increased cholinergic activity, particularly in the gastrointestinal (GI) system, can prevent patients from achieving effective doses of drug. In addition, the advanced age and frail nature of patients with AD mean that poor tolerability is a serious concern. The potential for drug–drug interactions is also an important consideration, due to the high prevalence of comorbid disease in these patients. Data both from clinical trials and studies in routine clinical practice have shown that donepezil is associated with a low incidence of GI adverse events (AEs) that is comparable with placebo. Donepezil is a potent, selective inhibitor of acetylcholinesterase, and selective inhibition of central as opposed to peripheral ChEs might be expected to reduce the incidence of AEs, thus this may explain the lower incidence of cholinergic AEs observed following treatment with donepezil, compared with nonselective ChE inhibitors. There are no differences in cardiovascular AEs, including bradycardia, between placebo and donepezil groups in the clinical trials published to date, even in a very sick vascular dementia population with high rates of comorbidity and concomitant medication use. Data from single- and multiple-dose studies of donepezil in patients with hepatic impairment and with moderately to severely impaired renal function indicate that donepezil is safe and well tolerated in these groups. Furthermore, both in vitro and clinical studies have shown that donepezil is not associated with drug–drug interactions. The incidence of weight loss is very similar between donepezil- and placebo-treated patients. Although insomnia

  14. Multipotent cholinesterase/monoamine oxidase inhibitors for the treatment of Alzheimer’s disease: design, synthesis, biochemical evaluation, ADMET, molecular modeling, and QSAR analysis of novel donepezil-pyridyl hybrids

    PubMed Central

    Bautista-Aguilera, Oscar M; Esteban, Gerard; Chioua, Mourad; Nikolic, Katarina; Agbaba, Danica; Moraleda, Ignacio; Iriepa, Isabel; Soriano, Elena; Samadi, Abdelouahid; Unzeta, Mercedes; Marco-Contelles, José

    2014-01-01

    The design, synthesis, and biochemical evaluation of donepezil-pyridyl hybrids (DPHs) as multipotent cholinesterase (ChE) and monoamine oxidase (MAO) inhibitors for the potential treatment of Alzheimer’s disease (AD) is reported. The 3D-quantitative structure-activity relationship study was used to define 3D-pharmacophores for inhibition of MAO A/B, acetylcholinesterase (AChE), and butyrylcholinesterase (BuChE) enzymes and to design DPHs as novel multi-target drug candidates with potential impact in the therapy of AD. DPH14 (Electrophorus electricus AChE [EeAChE]: half maximal inhibitory concentration [IC50] =1.1±0.3 nM; equine butyrylcholinesterase [eqBuChE]: IC50 =600±80 nM) was 318-fold more potent for the inhibition of AChE, and 1.3-fold less potent for the inhibition of BuChE than the reference compound ASS234. DPH14 is a potent human recombinant BuChE (hBuChE) inhibitor, in the same range as DPH12 or DPH16, but 13.1-fold less potent than DPH15 for the inhibition of human recombinant AChE (hAChE). Compared with donepezil, DPH14 is almost equipotent for the inhibition of hAChE, and 8.8-fold more potent for hBuChE. Concerning human monoamine oxidase (hMAO) A inhibition, only DPH9 and 5 proved active, compound DPH9 being the most potent (IC50 [MAO A] =5,700±2,100 nM). For hMAO B, only DPHs 13 and 14 were moderate inhibitors, and compound DPH14 was the most potent (IC50 [MAO B] =3,950±940 nM). Molecular modeling of inhibitor DPH14 within EeAChE showed a binding mode with an extended conformation, interacting simultaneously with both catalytic and peripheral sites of EeAChE thanks to a linker of appropriate length. Absortion, distribution, metabolism, excretion and toxicity analysis showed that structures lacking phenyl-substituent show better druglikeness profiles; in particular, DPHs13–15 showed the most suitable absortion, distribution, metabolism, excretion and toxicity properties. Novel donepezil-pyridyl hybrid DPH14 is a potent, moderately selective h

  15. BZYX, a novel acetylcholinesterase inhibitor, significantly improved chemicals-induced learning and memory impairments on rodents and protected PC12 cells from apoptosis induced by hydrogen peroxide.

    PubMed

    Zhang, Jing; Zhu, Difeng; Sheng, Rong; Wu, Honghai; Hu, Yongzhou; Wang, Feng; Cai, Tianyu; Yang, Bo; He, Qiaojun

    2009-06-24

    BZYX was designed as a dual-binding-site acetylcholinesterase (AChE) inhibitor and selected from series of indanone derivatives. The present study was designed to examine the cognition-enhanced, anti-cholinesterase, and neuroprotective effects of BZYX. In the passive avoidance performance and radial arm maze, BZYX showed a comparable effect to donepezil and rivastigmine on memory deficits in different stages induced by scopolamine, NaNO(2) and ethanol, respectively. Ellman's assay indicated BZYX exhibited high inhibition on AChE activity. IC(50) values for BZYX: 0.058+/-0.022 microM; donepezil: 0.019+/-0.004 microM; rivastigmine: 3.81+/-2.81 microM; glantamine: 3.01+/-1.85 microM and huperzine A: 0.053+/-0.016 microM. BZYX also presented great neuroprotecive function from apoptosis induced by hydrogen peroxide(H(2)O(2)) in PC12 cells. MTT assay and Annexin V-FITC Apoptosis Detection showed the viability of PC12 cells remarkably decreased with 400 microM H(2)O(2), while it significantly increased when the cells were pretreated with 0.1-1.0 microM BZYX. BZYX pretreatment remarkably reversed the loss of mitochondria membrane potential (DeltaPsim), scavenged reactive oxygen species formation induced by H(2)O(2) and resulted in up-regulation of procaspase3 and xIAP protein level and down-regulation of phosphorylated JNK protein, p53 protein level and cleavage of caspase 3. It is speculated that the mitochondrial pathway, mediated by Bcl-2 family and Mitogen-Activated Protein Kinases (MAPKs), might involved in the neuroprotection of BZYX. These results first demonstrated that BZYX had neuroprotective effects as well as cognition enhancement and acetylcholinesterase inhibition. It is hopeful that BZYX becomes a potential candidate for use in the intervention for neurodegenerative diseases. PMID:19345205

  16. Biological evaluation of synthetic α,β-unsaturated carbonyl based cyclohexanone derivatives as neuroprotective novel inhibitors of acetylcholinesterase, butyrylcholinesterase and amyloid-β aggregation.

    PubMed

    Zha, Gao-Feng; Zhang, Cheng-Pan; Qin, Hua-Li; Jantan, Ibrahim; Sher, Muhammad; Amjad, Muhammad Wahab; Hussain, Muhammad Ajaz; Hussain, Zahid; Bukhari, Syed Nasir Abbas

    2016-05-15

    A series of new α,β-unsaturated carbonyl-based cyclohexanone derivatives was synthesized by simple condensation method and all compounds were characterized by using various spectroscopic techniques. New compounds were evaluated for their effects on acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). These compounds were also screened for in vitro cytotoxicity and for inhibitory activity for self-induced Aβ1-42 aggregation. The effect of these compounds against amyloid β-induced cytotoxicity was also investigated. The findings of in vitro experiment revealed that most of these compounds exhibited potent inhibitory activity against AChE and self-induced Aβ1-42 aggregation. The compound 3o exhibited best AChE (IC50=0.037μM) inhibitory potential. Furthermore, compound 3o disassembled the Aβ fibrils produced by self-induced Aβ aggregation by 76.6%. Compounds containing N-methyl-4-piperidone linker, showed high acetylcholinesterase and self-induced Aβ aggregation inhibitory activities as compared to reference drug donepezil. The pre-treatment of cells with synthetic compounds protected them against Aβ-induced cell death by up to 92%. Collectively, these findings suggest that some compounds from this series have potential to be promising multifunctional agents for AD treatment and our study suggest the cyclohexanone derivatives as promising new inhibitors for AChE and BuChE, potentially useful to treat neurodegenerative diseases.

  17. PHOTOREGULATION OF BIOLOGICAL ACTIVITY BY PHOTOCROMIC REAGENTS, II. INHIBITORS OF ACETYLCHOLINESTERASE*†

    PubMed Central

    Bieth, Joseph; Vratsanos, Spyros M.; Wassermann, Norbert; Erlanger, Bernard F.

    1969-01-01

    The enzymic activity of acetylcholinesterase can be photoregulated through the mediation of photochromic inhibitors of the enzyme. N-p-phenylazophenyl-N-phenylcarbamyl fluoride, an irreversible inhibitor of acetylcholinesterase, exists as two geometric isomers which are interconvertible through the action of light. The cis isomer, which predominates after exposure to light of 320 nm, is more active than the trans isomer, which results from exposure to light of 420 nm. It was possible, therefore, to use light energy to regulate the inactivation of the enzyme. Similarly, levels of acetylcholinesterase activity could be photo-regulated in a completely reversible manner by means of the photochromic reversible inhibitor p-phenylazophenyltrimethylammonium chloride. These experiments can serve as models for similar phenomena observed in nature, particularly in photoperiodic rhythms of higher animals. Images PMID:5264140

  18. Pharmacokinetics and pharmacodynamics of a novel Acetylcholinesterase Inhibitor, DMNG-3.

    PubMed

    Xin-Guo, Zhang; Kou, Fei; Guo-Di, Ma; Tang, Peng; Zhong-Duo, Yang

    2016-01-01

    DMNG-3(3β-Methyl-[2-(4-nitrophenoxy)ethyl]-amino]con-5-enine), is a new and the potentially most potent acetylcholinesterase inhibitor recently obtained from conessine by N-demethylation and nucleophilic substitution reaction. In the present study, a step-down passive avoidance test was used to investigate whether DMNG-3 could modulate impairment of learning and memory induced by scopolamine, and a high performance liquid chromatography(HPLC) method for the determination of DMNG-3 in biological samples was applied to study its pharmacokinetics and tissues distribution. Separation was achieved on C18 column using a mobile phase consisting methanol-water (70:30, v/v) at a flow rate of 1.0ml/min. The intra- and inter-day precisions were good and the RSD was all lower than 1.30%. The mean absolute recovery of DMNG-3 in plasma ranged from 88.55 to 96.45 %. Our results showed oral administration of DMNG-3(10,25,50 mg/kg/day) can significantly improve the latency and number of errors and had a positive effect of improvement of learning and memory in mice in passive avoidance tests. The elimination half-life (T1/2) was 14.07±1.29, 15.87±1.03h, and the total clearance (CL) values were 0.70±0.11, 0.78±0.13 L/h/kg, respectively. The pharmacokinetic studies showed that DMNG-3 has a slowly clearance and large distribution volume in experimental animals, and its disposition is linear over the range of doses tested. The liver, small intestine, stomach, and large intestine were the major distribution tissues of DMNG-3 in mice. It was found that DMNG-3 could be detected in brain, suggesting that DMNG-3 can cross the blood-brain barrier. The present study shows that DMNG-3 can be possible developed as a new drug for the treatment of Alzheimer's disease in the future. PMID:27373949

  19. A new pharmacological role for donepezil: attenuation of morphine-induced tolerance and apoptosis in rat central nervous system

    PubMed Central

    2014-01-01

    Background Tolerance to the analgesic effect of opioids is a pharmacological phenomenon that occurs after their prolonged administration. It has been shown that morphine-induced tolerance is associated with apoptosis in the central nervous system and neuroprotective agents which prevented apoptosis signaling could attenuate tolerance to the analgesic effects. On the other hand donepezil, an acetylcholinesterase inhibitor, has been reported to have neuroprotective effects. Therefore in this study, the effect of systemic administration of donepezil on morphine-induced tolerance and apoptosis in the rat cerebral cortex and lumbar spinal cord was evaluated. Various groups of rats received morphine (ip) and different doses of donepezil (0, 0.5, 1, 1.5 mg/kg/day). Nociception was assessed using tail flick apparatus. Tail flick latency was recorded when the rat shook its tail. For apoptosis assay other groups of rats received the above treatment and apoptosis was evaluated by in situ terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling (TUNEL) method. Results The results showed that administration of donepezil (0.5, 1, 1.5 mg/kg, ip) delayed the morphine tolerance for 9, 12 and 17 days, respectively. Furthermore pretreatment injection of donepezil attenuated the number of apoptotic cells in the cerebral cortex and lumbar spinal cord compared to the control group. Conclusion In conclusion, we found that systemic administration of donepezil attenuated morphine-induced tolerance and apoptosis in the rat cerebral cortex and lumbar spinal cord. PMID:24455992

  20. Donepezil delays photoreceptor apoptosis induced by N-methyl-N-nitrosourea in mice

    PubMed Central

    WU, LONGYAN; XU, MAN; LIU, SHENGTAO; CHEN, GUO; ZHANG, FENGJUN; ZHAO, YAO; YI, JINGLIN

    2016-01-01

    Retinitis pigmentosa (RP) is a group of inherited retinal degeneration diseases characterized by photoreceptor cell death that causes visual disturbances and eventual blindness. Intraperitoneal injection of N-methyl-N-nitrosourea (MNU) causes photoreceptor loss, and is used to create an animal model for investigating the mechanisms that cause retinal degeneration diseases. Donepezil is an acetylcholinesterase inhibitor that has a protective effect on retinal ganglion cells in vitro and in vivo, and it is understood that donepezil increases the expression of a heat shock protein 70 (Hsp70), which serves to protect neurons. Hsp70 functions as a chaperone molecule that protects cells from protein aggregation and assists in the refolding of denatured proteins. In the present study, the effects of donepezil on photoreceptor survival in mice was investigated. It was observed that donepezil upregulates the expression of Hsp70, to increase resistance to MNU-induced photoreceptor cell apoptosis by using its anti-apoptotic properties. In addition, the present study observed that Hsp70 promotes photoreceptor cell survival by upregulating the expression levels of B-cell lymphoma 2 (Bcl-2). In conclusion, the results of the present study indicate that donepezil has the potential to be used as a treatment for retinal degenerative diseases. PMID:27284332

  1. Serum adipokine levels modified by donepezil treatment in Alzheimer's disease.

    PubMed

    Pákáski, Magdolna; Fehér, Agnes; Juhász, Anna; Drótos, Gergely; Fazekas, Orsike Csilla; Kovács, János; Janka, Zoltán; Kálmán, János

    2014-01-01

    Neurotransmitter enhancement therapy with acetylcholinesterase inhibitors (AChEIs) is a clinically proven approach for patients with Alzheimer's disease (AD). Donepezil is one of the three currently approved AChEIs for treating AD symptoms delaying the decline in cognitive function. In addition to cholinergic hypofunction, there are several factors in AD pathogenesis. For example, adipocytokines released from adipose tissue are also thought to play a role in the progress of dementia. Adipokines, i.e., leptin and adiponectin, are involved in the modulation of certain cognitive functions in the brain. The goal of our study was to elucidate effects of donepezil therapy on the serum levels of certain adipokines, such as leptin and adiponectin in AD patients. Clinically diagnosed mild-to-moderate AD patients (n = 26) were involved in this open-labeled, single-center, prospective self-control study. ApoE polymorphism, serum adiponectin, leptin, LDL, HDL, triglyceride levels, and BMI were determined before and at 12 and 24 weeks intervals of donepezil treatment, respectively. Twenty-four weeks of donepezil treatment induced a linear decrease of serum leptin levels (p = 0.013) and a linear elevation of serum adiponectin levels (p = 0.007). BMI (p < 0.001) and abdominal circumference (p = 0.017) were significantly lower at 24 weeks as compared to control values. None of the other examined metabolic parameters were changed during the treatment period. This previously unrecognized serum adipokine regulating potential of donepezil may be relevant in its therapeutic, disease modifying effect in AD by transferring protective (by increasing serum adiponectin levels) and detrimental (by decreasing serum leptin levels) effects onto the neurodegenerative process at the same time.

  2. Progressive cholinergic decline in Alzheimer's Disease: consideration for treatment with donepezil 23 mg in patients with moderate to severe symptomatology.

    PubMed

    Sabbagh, Marwan; Cummings, Jeffrey

    2011-02-07

    Of the estimated 5.3 million people with Alzheimer's disease in the United States, more than half would be classified as having moderate or severe disease. Alzheimer's disease is a progressive disorder with the moderate to severe stages generally characterized by significant cognitive, functional, and behavioral dysfunction. Unsurprisingly, these advanced stages are often the most challenging for both patients and their caregivers/families. Symptomatic treatments for moderate to severe Alzheimer's disease are approved in the United States and include the acetylcholinesterase inhibitor donepezil and the glutamate receptor antagonist memantine. Progressive symptomatic decline is nevertheless inevitable even with the available therapies, and therefore additional treatment options are urgently needed for this segment of the Alzheimer's disease population. An immediate-release formulation of donepezil has been available at an approved dose of 5-10 mg/d for the past decade. Recently, the United States Food and Drug Administration approved a higher-dose (23 mg/d) donepezil formulation, which provides more gradual systemic absorption, a longer time to maximum concentration (8 hours) versus the immediate-release formulation (3 hours), and higher daily concentrations. Herein, we review (1) the scientific data on the importance of cholinergic deficits in Alzheimer's disease treatment strategies, (2) the rationale for the use of higher-dose acetylcholinesterase inhibitors in patients with advanced disease, and (3) recent clinical evidence supporting the use of higher-dose donepezil in patients with moderate to severe Alzheimer's disease.

  3. Donepezil attenuates Aβ-associated mitochondrial dysfunction and reduces mitochondrial Aβ accumulation in vivo and in vitro.

    PubMed

    Ye, Chun Yan; Lei, Yun; Tang, Xi Can; Zhang, Hai Yan

    2015-08-01

    The main purpose of the present study is to investigate the influence of donepezil, a well-known acetylcholinesterase (AChE) inhibitor, on amyloid-β (Aβ)-associated mitochondrial dysfunction, in order to gain a better understanding of the neuroprotective effects of this clinically used anti-Alzheimer's disease (AD) drug. First, our study verifies the ameliorative effects of donepezil on behavioral deficits in both working memory and anxiety in APP/PS1 double transgenic mice, at a time point that AChE is not inhibited. Meanwhile, we demonstrate that donepezil enhances the resistance of brain mitochondria of APP/PS1 mice to the induction of mitochondrial permeability transition (MPT) by calcium ions. Moreover, the level of mitochondrial Aβ in the brain of donepezil-treated APP/PS1 transgenic mice is significantly lower than that of vehicle-treated APP/PS1 mice. Our in vitro study using isolated mitochondria from rat brains, which is expected as an AChE-free subcellular system, further confirms the ameliorative effects of donepezil on oligomeric Aβ1-42 induced mitochondrial swelling and ATP reduction. In addition, donepezil treatment also significantly blocks the Aβ accumulation in the isolated mitochondria. Our study reported for the first time that the protective effects of donepezil against Aβ-associated mitochondrial dysfunction are closely associated with the reduction of Aβ accumulation in the mitochondria. Above observation led us to assume that, besides potent AChE inhibitory effect, other non-cholinergic mechanisms may be involved in the neuroprotective profiles of donepezil.

  4. The anti-inflammatory effect of donepezil on experimental autoimmune encephalomyelitis in C57 BL/6 mice.

    PubMed

    Jiang, Ying; Zou, Yan; Chen, Shaoqiong; Zhu, Cansheng; Wu, Aimin; Liu, Yingying; Ma, Lili; Zhu, Dongliang; Ma, Xiaomeng; Liu, Mei; Kang, Zhuang; Pi, Rongbiao; Peng, Fuhua; Wang, Qing; Chen, Xiaohong

    2013-10-01

    Donepezil is a potent and selective acetylcholinesterase inhibitor. It has been reported to restore cognitive performance in multiple sclerosis (MS) patients and experimental autoimmune encephalomyelitis (EAE) mice, an established model of MS. However, there are no reports about the anti-inflammatory effects of donepezil on EAE. In this study, the donepezil treatments on EAE mice were initiated at day 7 post immunization (7 p.i., subclinical periods, early donepezil treatment) and day 13 p.i. (clinical periods, late donepezil treatment) with the dosage of 1, 2 and 4 mg/kg/d respectively and the treatments persisted throughout the experiments. Blood-brain barrier (BBB) permeability was detected by Evan's blue content, the expression of matrix metalloproteinase-2 (MMP-2) and MMP-9, Akt and phosphorylated Akt (p-Akt) as well as nerve growth factor (NGF) and its precursor form (proNGF) in the brains of EAE mice were detected by Western blot, and the levels of interferon-γ and interleukin-4 in the splenocytes culture supernatants and brains of EAE mice were evaluated by ELISA. The results showed that the 2 mg/kg/d late donepezil treatment was the optimal dosage and could ameliorate clinical and pathological parameters, improve magnetic resonance imaging outcomes, reduce the permeability of BBB, inhibit the production of MMP-2 and MMP-9, modulate the expression of NGF and proNGF, increase Th2 bias and the phosphorylation of Akt in the brains of EAE mice. Our data suggested that the anti-inflammatory effects of donepezil may be a novel mechanism on treating EAE and provided further insights to understand the donepezil's neuroprotective activities in MS.

  5. The ASCOMALVA (Association between the Cholinesterase Inhibitor Donepezil and the Cholinergic Precursor Choline Alphoscerate in Alzheimer's Disease) Trial: interim results after two years of treatment.

    PubMed

    Amenta, Francesco; Carotenuto, Anna; Fasanaro, Angiola Maria; Rea, Raffaele; Traini, Enea

    2014-01-01

    Cholinesterase inhibitors (ChE-Is) are used for symptomatic treatment of mild-to-moderate Alzheimer's disease (AD), but long-term effects of these compounds are mild and not always obvious. Preclinical studies have shown that combination of ChE-Is and the cholinergic precursor choline alphoscerate increases brain acetylcholine levels more effectively than single compounds alone. ASCOMALVA (Effect of association between a ChE-I and choline alphoscerate on cognitive deficits in AD associated with cerebrovascular injury) is a double-blind trial investigating if the ChE-I donepezil and choline alphoscerate in combination are more effective that donepezil alone. The trial has recruited AD patients suffering from ischemic brain damage documented by neuroimaging and has completed 2 years of observation in 113 patients of the 210 planned. Patients were randomly allotted to an active treatment group (donepezil + choline alphoscerate) or to a reference group (donepezil + placebo). Cognitive functions were assessed by the Mini-Mental State Evaluation and Alzheimer's Disease Assessment Scale Cognitive subscale. Daily activity was evaluated by the basic and instrumental activities of daily living tests. Behavioral symptoms were assessed by the Neuropsychiatric Inventory. Over the 24-month observation period, patients of the reference group showed a moderate time-dependent worsening in all the parameters investigated. Treatment with donepezil plus choline alphoscerate significantly slowed changes of the different items analyzed. These findings suggest that the combination of choline alphoscerate with a ChE-I may prolong/increase the effectiveness of cholinergic therapies in AD with concomitant ischemic cerebrovascular injury.

  6. Donepezil: an important prototype to the design of new drug candidates for Alzheimer's disease.

    PubMed

    Rodrigues Simões, Maria Cecilia; Dias Viegas, Flávia Pereira; Moreira, Marcella Soares; de Freitas Silva, Matheus; Riquiel, Mariana Máximo; da Rosa, Patrícia Mattos; Castelli, Maísa Rosa; dos Santos, Marcelo Henrique; Soares, Marisi Gomes; Viegas, Claudio

    2014-01-01

    Alzheimer's disease (AD) is a progressive and incurable neurodegenerative disorder, with a dramatic socioeconomic impact. The progress of AD is characterized by a severe loss in memory and cognition, leading to behavioral changing, depression and death. During the last decades, only a few anticholinergic drugs were launched in the market, mainly acetylcholinesterase inhibitors (AChEIs), with indications for the treatment of initial and moderate stages of AD. The search for new AChEIs, capable to overcome the limitations observed for rivastigmine and tacrine, led Sugimoto and co-workers to the discovery of donepezil. Besides its high potency, donepezil also exhibited high selectivity for AChE and a very low toxicity. In this review, we discuss the main structural and pharmacological attributes that have made donepezil the first choice medicine for AD, and a versatile structural model for the design of novel AChEIs, in spite of multipotent and multitarget-directed ligands. Many recent data from literature transdue great efforts worldwide to produce modifications in the donepezil structure that could result in new bioactive chemical entities with innovative structural pattern. Furthermore, multi-potent ligands have also been designed by molecular hybridization, affording rivastigmine-, tacrine- and huperzine-donepezil potent and selective AChEIs. In a more recent strategy, structural features of donepezil have been used as a model to design multitarget-directed ligands, aiming at the discovery of new effective drug candidates that could exhibit concomitant pharmacological activities as dual or multi- enzymatic inhibitors as genuine innovative therapeutic alternatives for the treatment of AD.

  7. Interpretation of honeybees contact toxicity associated to acetylcholinesterase inhibitors.

    PubMed

    Dulin, Fabienne; Halm-Lemeille, Marie-Pierre; Lozano, Sylvain; Lepailleur, Alban; Santos, Jana Sopkova-de Oliveira; Rault, Sylvain; Bureau, Ronan

    2012-05-01

    The widespread use of different pesticides generates adverse effects on non target organisms like honeybees. Organophosphorous and carbamates kill honeybees through the inactivation of acetylcholinesterase (AChE), thereby interfering with nerve signaling and function. For this class of pesticides, it is fundamental to understand the relationship between their structures and the contact toxicity for honeybees. A Quantitative Structure-Activity Relationship (QSAR) study was carried out on 45 derivatives by a genetic algorithm approach starting from more than 2500 descriptors. In parallel, a new 3D model of AChE associated to honeybees was defined. Physicochemical properties of the receptor and docking studies of the derivatives allow understanding the meaningful of three descriptors and the implication of several amino acids in the overall toxicity of the pesticides.

  8. Efficacy of Memantine, Donepezil, or Their Association in Moderate-Severe Alzheimer's Disease: A Review of Clinical Trials

    PubMed Central

    Molino, Ivana; Colucci, Luisa; Fasanaro, Angiola M.

    2013-01-01

    Background. Acetylcholinesterase (AChE)/cholinesterase (ChE) inhibitors (Is) and memantine are licensed for symptomatic treatment of mild-moderate and moderate-severe forms of Alzheimer's disease (AD), respectively. High doses of the AChE-I donepezil were licensed in the USA for moderate-severe AD, and the association AChE/ChE-Is plus memantine was proposed for AD at this stage. Objectives. This paper has reviewed evidence from clinical trials of the effectiveness of memantine, donepezil, or the two drugs in association in managing moderate-severe AD. Method. Double-blind, placebo-controlled randomized trials (RCTs) using memantine or donepezil alone or in association versus placebo in moderate-severe AD were reviewed. Analysis done in January 2013 considered the years 2007–2012. Results and Conclusion. Only 83 of the 941 papers selected were considered relevant, and only 13 met the criterion of “adequacy and representativeness.” Memantine and donepezil lead to improvements in moderate-to-severe AD and the choice between the compounds should be based on their contraindications more than on disease severity. No evidence was found of advantages of the association of memantine-donepezil. The heterogeneity of conditions explored by RCTs, the relatively short time of observation (24–52 weeks), and the different cognitive assessment tools used did not allow comparing properly different trials. PMID:24288512

  9. Detoxification of acetylcholinesterase inhibitors. Final report, 1 June 1984-30 November 1986

    SciTech Connect

    Wild, J.R.; O'Donovan, G.A.; Chang, T.

    1987-02-19

    The research support by ARO contract 21288-LS entitled Detoxification of acetylcholinesterase inhibitors resulted in the cloning and partial sequence of two opd genes from Pseudomonas diminuta and Flavobacterium species. It has been possible to isolate the enzyme in association with a small membrane fraction and initiate an evaluation of the organophosphate hydrolase. Collaborative interactions with research scientists at the Chemical Defense Research Command have suggested that the Pseudomonas species is competent to degrade selected types of biological neurotoxins.

  10. Acetylcholinesterase inhibitor treatment delays recovery from axotomy in cultured dorsal root ganglion neurons.

    PubMed

    Dupree, J L; Bigbee, J W

    1996-08-01

    We have previously reported that dorsal root ganglion neurons cultured in the presence of the highly specific, reversible acetylcholinesterase inhibitor 1,5-bis-(4-allyldimethylammoniumphenyl) pentan-3-one dibromide (BW284c51), showed significantly reduced neurite outgrowth and contained massive perikaryal inclusions of neurofilaments. In the present report we have more closely examined these changes in a time course study over a 21-day culture period using a combined morphological, immunocytochemical and enzymatic approach and additionally, describe, the effects of acetylcholinesterase inhibitor treatment on the state of neurofilament phosphorylation. Finally, we have examined the effects of co-administration of N6,2'-0-dibutyryladenosine 3':5'-cyclic monophosphate (dbcAMP) with BW284c51. At 1 day in culture, both control and treated cells displayed eccentrically located nuclei, numerous polysomes and perikaryal accumulations of neurofilaments which were immunoreactive with both phosphorylation- and nonphosphorylation-dependent neurofilament antibodies. These cytological changes, which are common features of the chromatolytic reaction following axotomy in vivo, rapidly resolved in the control neurons, where by 7 days in culture, the neurofilament accumulations had completely disappeared and neurite outgrowth was robust. In contrast, inhibitor-treated neurons retained the post-axotomy features up to 21 days and had significantly reduced neurite outgrowth. In addition, we have investigated a possible role of cyclic adenosine monophosphate (cAMP) in the recovery process since it has been shown to enhance neuritic outgrowth in cultured neurons. Our results demonstrate that the addition of dbcAMP, a membrane permeable analog of cAMP, significantly enhanced neuritic outgrowth and accelerated the recovery of BW284c51-treated dorsal root ganglion cells, as gauged by the disappearance of the axotomy-related cytological changes. Treatment with dbcAMP also increased

  11. Virtual Screening of Acetylcholinesterase Inhibitors Using the Lipinski's Rule of Five and ZINC Databank

    PubMed Central

    Nogara, Pablo Andrei; Saraiva, Rogério de Aquino; Caeran Bueno, Diones; Lissner, Lílian Juliana; Lenz Dalla Corte, Cristiane; Braga, Marcos M.; Rosemberg, Denis Broock; Rocha, João Batista Teixeira

    2015-01-01

    Alzheimer's disease (AD) is a progressive and neurodegenerative pathology that can affect people over 65 years of age. It causes several complications, such as behavioral changes, language deficits, depression, and memory impairments. One of the methods used to treat AD is the increase of acetylcholine (ACh) in the brain by using acetylcholinesterase inhibitors (AChEIs). In this study, we used the ZINC databank and the Lipinski's rule of five to perform a virtual screening and a molecular docking (using Auto Dock Vina 1.1.1) aiming to select possible compounds that have quaternary ammonium atom able to inhibit acetylcholinesterase (AChE) activity. The molecules were obtained by screening and further in vitro assays were performed to analyze the most potent inhibitors through the IC50 value and also to describe the interaction models between inhibitors and enzyme by molecular docking. The results showed that compound D inhibited AChE activity from different vertebrate sources and butyrylcholinesterase (BChE) from Equus ferus (EfBChE), with IC50 ranging from 1.69 ± 0.46 to 5.64 ± 2.47 µM. Compound D interacted with the peripheral anionic subsite in both enzymes, blocking substrate entrance to the active site. In contrast, compound C had higher specificity as inhibitor of EfBChE. In conclusion, the screening was effective in finding inhibitors of AChE and BuChE from different organisms. PMID:25685814

  12. Acetylcholinesterase Inhibitors with Photoswitchable Inhibition of β-Amyloid Aggregation

    PubMed Central

    2014-01-01

    Photochromic cholinesterase inhibitors were obtained from cis-1,2-α-dithienylethene-based compounds by incorporating one or two aminopolymethylene tacrine groups. All target compounds are potent acetyl- (AChE) and butyrylcholinesterase (BChE) inhibitors in the nanomolar concentration range. Compound 11b bearing an octylene linker exhibited interactions with both the catalytic active site (CAS) and the peripheral anionic site (PAS) of AChE. Yet upon irradiation with light, the mechanism of interaction varied from one photochromic form to another, which was investigated by kinetic studies and proved “photoswitchable”. The AChE-induced β-amyloid (Aβ) aggregation assay gave further experimental support to this finding: Aβ1–40 aggregation catalyzed by the PAS of AChE might be inhibited by compound 11b in a concentration-dependent manner and seems to occur only with one photochromic form. Computational docking studies provided potential binding modes of the compound. Docking studies and molecular dynamics (MD) simulations for the ring-open and -closed form indicate a difference in binding. Although both forms can interact with the PAS, more stable interactions are observed for the ring-open form based upon stabilization of a water molecule network within the enzyme, whereas the ring-closed form lacks the required conformational flexibility for an analogous binding mode. The photoswitchable inhibitor identified might serve as valuable molecular tool to investigate the different biological properties of AChE as well as its role in pathogenesis of AD in in vitro assays. PMID:24628027

  13. Some new carbacylamidophosphates as inhibitors of acetylcholinesterase and butyrylcholinesterase.

    PubMed

    Gholivand, Khodayar; Alizadehgan, Ahlam Madani; Mojahed, Fresia; Dehghan, Gholamreza; Mohammadirad, Azadeh; Abdollahi, Mohammad

    2008-01-01

    The differences in the inhibition activity of organophosphorus agents are a manifestation of different molecular properties of the inhibitors involved in the interaction with the active site of enzyme. We were interested in comparing the inhibition potency of four known synthesized carbacylamidophosphates with the general formula RC(O)NHP(O)Cl2, constituting organophosphorus compounds, where R = CCl3 (1), CHCl2 (2), CH2Cl (3) and CF3 (4), and four new ones with the general formula RC(O)NHP(O)(R')2, where R' = morpholine and R = CCl3 (5), CHCl2 (6), CH2Cl (7), CF3 (8), on AChE and BuChE activities. In addition, in vitro activities of all eight compounds on BuChE were determined. Besides, in vivo inhibition potency of compounds 2 and 6, which had the highest inhibition potency among the tested compounds, was studied. The data demonstrated that compound 2 from the compound series 1 to 4 and compound 6 from the compound series 5 to 8 are the most sensitive as AChE and BuChE inhibitors, respectively. Comparing the IC50 values of these compounds, it was clear that the inhibition potency of these compounds for AChE are 2- to 100-fold greater than for BuChE inhibition. Comparison of the kinetics (IC50, Ki, kp, KA and KD) of AChE and BuChE inactivation by these compounds resulted in no significant difference for the measured variables except for compounds 2 and 6, which appeared to be more sensitive to AChE and BuChE by significantly higher kp and Ki values and a lower IC50 value in comparison with the other compounds. The LD50 value of compounds 2 and 6, after oral administration, and the changes of erythrocyte AChE and plasma BuChE activities in albino mice were studied. The in vivo experiments, similar to the in vitro results, showed that compound 2 is a stronger AChE and BuChE inhibitor than the other synthesized carbacylamidophosphates. Furthermore, in this study, the importance of electropositivity of the phosphorus atom, steric hindrance and leaving group specificity

  14. Xanthenedione derivatives, new promising antioxidant and acetylcholinesterase inhibitor agents.

    PubMed

    Seca, Ana M L; Leal, Stephanie B; Pinto, Diana C G A; Barreto, Maria Carmo; Silva, Artur M S

    2014-01-01

    Natural and synthetic xanthone derivatives are well-known for their ability to act as antioxidants and/or enzyme inhibitors. This paper aims to present a successful synthetic methodology towards xanthenedione derivatives and the study of their aromatization to xanthones. Additionally their ability to reduce Fe(III), to scavenge DPPH radicals and to inhibit AChE was evaluated. The results demonstrated that xanthenedione derivative 5e, bearing a catechol unit, showed higher reduction capacity than BHT and similar to quercetin, strong DPPH scavenging activity (EC50 = 3.79 ± 0.06 µM) and it was also showed to be a potent AChEI (IC50 = 31.0 ± 0.09 µM) when compared to galantamine (IC50 = 211.8 ± 9.5 µM). PMID:24950437

  15. Synthesis of α, β-unsaturated carbonyl based compounds as acetylcholinesterase and butyrylcholinesterase inhibitors: characterization, molecular modeling, QSAR studies and effect against amyloid β-induced cytotoxicity.

    PubMed

    Bukhari, Syed Nasir Abbas; Jantan, Ibrahim; Masand, Vijay H; Mahajan, Devidas T; Sher, Muhammad; Naeem-ul-Hassan, M; Amjad, Muhammad Wahab

    2014-08-18

    A series of novel carbonyl compounds was synthesized by a simple, eco-friendly and efficient method. These compounds were screened for anti-oxidant activity, in vitro cytotoxicity and for inhibitory activity for acetylcholinesterase and butyrylcholinesterase. The effect of these compounds against amyloid β-induced cytotoxicity was also investigated. Among them, compound 14 exhibited strong free radical scavenging activity (18.39 μM) while six compounds (1, 3, 4, 13, 14, and 19) were found to be the most protective against Aβ-induced neuronal cell death in PC12 cells. Compounds 4 and 14, containing N-methyl-4-piperidone linker, showed high acetylcholinesterase inhibitory activity as compared to reference drug donepezil. Molecular docking and QSAR (Quantitative Structure-Activity Relationship) studies were also carried out to determine the structural features that are responsible for the acetylcholinesterase and butyrylcholinesterase inhibitory activity.

  16. Donepezil in Alzheimer’s disease: From conventional trials to pharmacogenetics

    PubMed Central

    Cacabelos, Ramón

    2007-01-01

    Donepezil is the leading compound for the treatment of Alzheimer’s disease (AD) in more than 50 countries. As compared with other conventional acetylcholinesterase inhibitors (AChEIs), donepezil is a highly selective and reversible piperidine derivative with AChEI activity that exhibits the best pharmacological profile in terms of cognitive improvement, responders rate (40%–58%), dropout cases (5%–13%), and side-effects (6%–13%) in AD. Although donepezil represents a non cost-effective treatment, most studies convey that this drug can provide a modest benefit on cognition, behavior, and activities of the daily living in both moderate and severe AD, contributing to slow down disease progression and, to a lesser exetnt, to delay institutionalization. Patients with vascular dementia might also benefit from donepezil in a similar fashion to AD patients. Some potential effects of donepezil on the AD brain, leading to reduced cortico-hippocampal atrophy, include the following: AChE inhibition, enhancement of cholinergic neurotransmission and putative modulation of other neurotransmitter systems, protection against glutamate-induced excitotoxicity, activation of neurotrophic mechanisms, promotion of non-amyloidodgenic pathways for APP processing, and indirect effects on cerebrovascular function improving brain perfusion. Recent studies demonstrate that the therapeutic response in AD is genotype-specific. Donepezil is metabolized via CYP-related enzymes, especially CYP2D6, CYP3A4, and CYP1A2. Approximately, 15%–20% of the AD population may exhibit an abnormal metabolism of AChEIs; about 50% of this population cluster would show an ultrarapid metabolism, requiring higher doses of AChEIs to reach a therapeutic threshold, whereas the other 50% of the cluster would exhibit a poor metabolism, displaying potential adverse events at low doses. In AD patients treated with a multifactorial therapy, including donepezil, the best responders are the CYP2D6-related extensive

  17. A reversed-phase compatible thin-layer chromatography autography for the detection of acetylcholinesterase inhibitors.

    PubMed

    Ramallo, I Ayelen; García, Paula; Furlan, Ricardo L E

    2015-11-01

    A dual readout autographic assay to detect acetylcholinesterase inhibitors present in complex matrices adsorbed on reversed-phase or normal-phase thin-layer chromatography plates is described. Enzyme gel entrapment with an amphiphilic copolymer was used for assay development. The effects of substrate and enzyme concentrations, pH, incubation time, and incubation temperature on the sensitivity and the detection limit of the assay were evaluated. Experimental design and response surface methodology were used to optimize conditions with a minimum number of experiments. The assay allowed the detection of 0.01% w/w of physostigmine in both a spiked Sonchus oleraceus L. extract chromatographed on normal phase and a spiked Pimenta racemosa (Mill.) J.W. Moore leaf essential oil chromatographed on reversed phase. Finally, the reversed-phase thin-layer chromatography assay was applied to reveal the presence of an inhibitor in the Cymbopogon citratus (DC.) Stapf essential oil. The developed assay is able to detect acetylcholinesterase inhibitors present in complex matrixes that were chromatographed in normal phase or reversed-phase thin-layer chromatography. The detection limit for physostigmine on both normal and reversed phase was of 1×10(-4) μg. The results can be read by a change in color and/or a change in fluorescence. PMID:26489065

  18. A reversed-phase compatible thin-layer chromatography autography for the detection of acetylcholinesterase inhibitors.

    PubMed

    Ramallo, I Ayelen; García, Paula; Furlan, Ricardo L E

    2015-11-01

    A dual readout autographic assay to detect acetylcholinesterase inhibitors present in complex matrices adsorbed on reversed-phase or normal-phase thin-layer chromatography plates is described. Enzyme gel entrapment with an amphiphilic copolymer was used for assay development. The effects of substrate and enzyme concentrations, pH, incubation time, and incubation temperature on the sensitivity and the detection limit of the assay were evaluated. Experimental design and response surface methodology were used to optimize conditions with a minimum number of experiments. The assay allowed the detection of 0.01% w/w of physostigmine in both a spiked Sonchus oleraceus L. extract chromatographed on normal phase and a spiked Pimenta racemosa (Mill.) J.W. Moore leaf essential oil chromatographed on reversed phase. Finally, the reversed-phase thin-layer chromatography assay was applied to reveal the presence of an inhibitor in the Cymbopogon citratus (DC.) Stapf essential oil. The developed assay is able to detect acetylcholinesterase inhibitors present in complex matrixes that were chromatographed in normal phase or reversed-phase thin-layer chromatography. The detection limit for physostigmine on both normal and reversed phase was of 1×10(-4) μg. The results can be read by a change in color and/or a change in fluorescence.

  19. The combination of donepezil and procyclidine protects against soman-induced seizures in rats

    SciTech Connect

    Haug, Kristin Huse . E-mail: k.h.haug@medisin.uio.no; Myhrer, Trond; Fonnum, Frode

    2007-04-15

    Current treatment of nerve agent poisoning consists of prophylactic administration of pyridostigmine and therapy using atropine, an oxime and a benzodiazepine. Pyridostigmine does however not readily penetrate the blood-brain barrier giving ineffective protection of Brain against centrally mediated seizure activity. In this study, we have evaluated donepezil hydrochloride, a partial reversible inhibitor of acetylcholinesterase (AChE) clinically used for treating Alzheimer's disease, in combination with procyclidine, used in treatment of Parkinson's disease and schizophrenia, as prophylaxis against intoxication by the nerve agent soman. The results demonstrated significant protective efficacy of donepezil (2.5 mg/kg) combined with procyclidine (3 or 6 mg/kg) when given prophylactically against a lethal dose of soman (1.6x LD{sub 50}) in Wistar rats. No neuropathological changes were found in rats treated with this combination 48 h after soman intoxication. Six hours after soman exposure cerebral AChE activity and acetylcholine (ACh) concentration was 5% and 188% of control, respectively. The ACh concentration had returned to basal levels 24 h after soman intoxication, while AChE activity had recovered to 20% of control. Loss of functioning muscarinic ACh receptors (17%) but not nicotinic receptors was evident at this time point. The recovery in brain AChE activity seen in our study may be due to the reversible binding of donepezil to the enzyme. Donepezil is well tolerated in humans, and a combination of donepezil and procyclidine may prove useful as an alternative to the currently used prophylaxis against nerve agent intoxication.

  20. The involvement of sigma1 receptors in donepezil-induced rescue of hippocampal LTP impaired by beta-amyloid peptide.

    PubMed

    Solntseva, E I; Kapai, N A; Popova, O V; Rogozin, P D; Skrebitsky, V G

    2014-07-01

    Donepezil is a potent acetylcholinesterase inhibitor used for the treatment of Alzheimer's disease (AD). Additional therapeutically relevant target for donepezil is sigma1 receptor (Sig1-R). Beta-amyloid peptide (Aβ) is believed to contribute to the pathogenesis of AD. In our previous work (Kapai et al., 2012), we have shown that donepezil antagonizes the suppressive action of Aβ(1-42) on long-term potentiation (LTP) in rat hippocampal slices. The purpose of the present study was to determine whether Sig1-R is involved into the mechanisms of donepezil action. For this purpose, we have tested whether agonist of Sig1-R PRE-084 mimics, and antagonist of Sig1-R haloperidol abolishes the effect of donepezil. Population spikes (PSs) were recorded from the pyramidal layer of the CA1 region of rat hippocampal slices. Drugs were applied by addition to the perfusate starting 15 min before and ending 5 min after the tetanus. In the control group, the amplitude of PS 30 min post-tetanus reached 153±10%. Aβ (200 nM) markedly suppressed the LTP magnitude or even caused the suppression of baseline PS (82±8%, P<0.001). This suppression of LTP could be markedly prevented when 1 μM donepezil was co-administered with Aβ (136±11%, P<0.05). Further, we co-administered three substances: Aβ, donepezil and 0.5 μM haloperidol and have found that haloperidol antagonized the stimulating effect of donepezil on LTP (92±6%, P<0.05). Agonist of Sig1-R PRE-084 (0.1-10 μM) enhanced control LTP and abolished the inhibitory effect of Aβ on LTP in a concentration-dependent manner. The amplitude of PS 30 min post-tetanus reached 183±7% (P<0.01) for 10 μM PRE-084. The results suggest that activation of Sig1-R is involved into the mechanisms of donepezil-induced rescue of hippocampal LTP impaired by Aβ.

  1. Solanocapsine derivatives as potential inhibitors of acetylcholinesterase: Synthesis, molecular docking and biological studies.

    PubMed

    García, Manuela E; Borioni, José L; Cavallaro, Valeria; Puiatti, Marcelo; Pierini, Adriana B; Murray, Ana P; Peñéñory, Alicia B

    2015-12-01

    The investigation of natural products in medicinal chemistry is essential today. In this context, acetylcholinesterase (AChE) inhibitors comprise one type of the compounds most actively studied in the search for an effective treatment of symptoms of Alzheimer's disease. This work describes the isolation of a natural compound, solanocapsine, the preparation of its chemical derivatives, the evaluation of AChE inhibitory activity, and the structure-activity analysis of relevant cases. The influence of structural variations on the inhibitory potency was carefully investigated by modifying different reactive parts of the parent molecule. A theoretical study was also carried out into the binding mode of representative compounds to the enzyme through molecular modeling. The biological properties of the series were investigated. Through this study valuable information was obtained of steroidal alkaloid-type compounds as a starting point for the synthesis of AChE inhibitors. PMID:26362598

  2. The herbicide glyphosate is a weak inhibitor of acetylcholinesterase in rats.

    PubMed

    Larsen, Karen E; Lifschitz, Adrián L; Lanusse, Carlos E; Virkel, Guillermo L

    2016-07-01

    The current work evaluated the inhibitory potency of the herbicide glyphosate (GLP) on acetylcholinesterase (AChE) activity in male and female rat tissues. The AChE activity in brain was higher (p<0.05) than those observed in kidney (females: 2.2-fold; males: 1.9-fold), liver (females: 6-fold; males: 6.9-fold) and plasma (females: 14.7-fold; males: 25.3-fold). Enzyme activities were higher in presence of 10mM GLP compared to those measured at an equimolar concentration of the potent AChE inhibitor dichlorvos (DDVP). Moreover, IC50s for GLP resulted between 6×10(4)- and 6.8×10(5)-fold higher than those observed for DDVP. In conclusion, GLP is a weak inhibitor of AChE in rats. PMID:27258137

  3. Screening of β-secretase and acetylcholinesterase inhibitors from plant resources.

    PubMed

    Murata, Kazuya; Matsumura, Shinichi; Yoshioka, Yuri; Ueno, Yoshihiro; Matsuda, Hideaki

    2015-01-01

    The therapeutic agents for dementia are limited due to the complex system underlying the mechanisms. Taking a preventive point of view, we focused on the inhibition of β-secretase and acetylcholinesterase (AChE). In addition, plant resources including herbs and spices have been widely consumed, and further, may be consumed for a long period over a lifetime. Considering this background, we screened β-secretase and AChE inhibitors from curry spices. Amongst them, curry leaf, black pepper, and turmeric extracts were effective to inhibit β-secretase. Furthermore, black pepper and turmeric extracts were also effective to inhibit AChE. Having these results in hand, we focused on the investigation of β-secretase inhibitors since the inhibitor of this enzyme has not previously been well investigated. As a result, α- and β-caryophyllene, β-caryophyllene oxide (from curry leaf), piperine (from black pepper), curcumin, demethoxycurcumin, and bisdemethoxycurcumin (from turmeric) were successfully identified as low molecular inhibitors. This is the first report to determine α- and β-caryophyllene, β-caryophyllene oxide, and piperine as β-secretase inhibitors. These compounds may pass through the blood brain barrier since their molecular weights are relatively low. PMID:25119528

  4. Inhibitor Profile of bis(n)-tacrines and N-methylcarbamates on Acetylcholinesterase from Rhipicephalus (Boophilus) microplus and Phlebotomus papatasi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cattle tick, Rhipicephalus (Boophilus) microplus (Bm), and the sand fly, Phlebotomus papatasi (Pp), are disease vectors to cattle and humans, respectively. The purpose of this study was to characterize the inhibitor profile of acetylcholinesterases from Bm (BmAChE1) and Pp (PpAchE) compared to h...

  5. Wild Argentinian Amaryllidaceae, a new renewable source of the acetylcholinesterase inhibitor galanthamine and other alkaloids.

    PubMed

    Ortiz, Javier E; Berkov, Strahil; Pigni, Natalia B; Theoduloz, Cristina; Roitman, German; Tapia, Alejandro; Bastida, Jaume; Feresin, Gabriela E

    2012-11-13

    The Amaryllidaceae family is well known for its pharmacologically active alkaloids. An important approach to treat Alzheimer’s disease involves the inhibition of the enzyme acetylcholinesterase (AChE). Galanthamine, an Amaryllidaceae alkaloid, is an effective, selective, reversible, and competitive AchE inhibitor. This work was aimed at studying the alkaloid composition of four wild Argentinian Amarillydaceae species for the first time, as well as analyzing their inhibitory activity on acetylcholinesterase. Alkaloid content was characterized by means of GC-MS analysis. Chloroform basic extracts from Habranthus jamesonii, Phycella herbertiana, Rhodophiala mendocina and Zephyranthes filifolia collected in the Argentinian Andean region all contained galanthamine, and showed a strong AChE inhibitory activity (IC50 between 1.2 and 2 µg/mL). To our knowledge, no previous reports on alkaloid profiles and AChEIs activity of wild Argentinian Amarillydaceae species have been publisihed. The demand for renewable sources of industrial products like galanthamine and the need to protect plant biodiversity creates an opportunity for Argentinian farmers to produce such crops.

  6. Screening of acetylcholinesterase inhibitors by CE after enzymatic reaction at capillary inlet.

    PubMed

    Martín-Biosca, Yolanda; Asensi-Bernardi, Lucia; Villanueva-Camañas, Rosa M; Sagrado, Salvador; Medina-Hernández, Maria J

    2009-05-01

    In this study the development of a procedure based on capillary electrophoresis after enzymatic reaction at capillary inlet methodology for the screening and in vitro evaluation of the biological activity of acetylcholinesterase (AChE) inhibitors is presented. The progress of the enzymatic reaction of the hydrolysis of acetylthiocholine at pH 8 in the presence of AChE and the inhibitor studied is determined by measuring at 230 nm the peak area of the reaction product thiocholine (TCh). In the method employed the capillary was first filled with 30 mM borate-phosphate buffer (pH 8.0) and subsequently, plugs of: (i) water, (ii) AChE solution, (iii) substrate solution with or without inhibitor, (iv) AChE solution, and (v) water, were hydrodynamically injected into the capillary, and were allowed to stand (and react) during a waiting period of 2 min. The applicability of the proposed methodology to estimate different kinetic parameters of interest such as inhibition constants K(i), identification of inhibitory action mechanism and IC(50), is evaluated using compounds with known activity, tacrine edrophonium, and neostigmine. The results obtained are compared with bibliographic values and confirm the effectiveness of the methodology proposed. Finally a method for AChE Inhibitor screening is proposed.

  7. In silico methods to assist drug developers in acetylcholinesterase inhibitor design.

    PubMed

    Bermúdez-Lugo, J A; Rosales-Hernández, M C; Deeb, O; Trujillo-Ferrara, J; Correa-Basurto, J

    2011-01-01

    Alzheimer's disease (AD) is a neurodegenerative disease characterized by a low acetylcholine (ACh) concentration in the hippocampus and cortex. ACh is a neurotransmitter hydrolyzed by acetylcholinesterase (AChE). Therefore, it is not surprising that AChE inhibitors (AChEIs) have shown better results in the treatment of AD than any other strategy. To improve the effects of AD, many researchers have focused on designing and testing new AChEIs. One of the principal strategies has been the use of computational methods (structural bioinformatics or in silico methods). In this review, we summarize the in silico methods used to enhance the understanding of AChE, particularly at the binding site, to design new AChEIs. Several computational methods have been used, such as docking approaches, molecular dynamics studies, quantum mechanical studies, electronic properties, hindrance effects, partition coefficients (Log P) and molecular electrostatic potentials surfaces, among other physicochemical methods that exhibit quantitative structure-activity relationships.

  8. Oximes: inhibitors of human recombinant acetylcholinesterase. A structure-activity relationship (SAR) study.

    PubMed

    Sepsova, Vendula; Karasova, Jana Zdarova; Korabecny, Jan; Dolezal, Rafael; Zemek, Filip; Bennion, Brian J; Kuca, Kamil

    2013-08-16

    Acetylcholinesterase (AChE) reactivators were developed for the treatment of organophosphate intoxication. Standard care involves the use of anticonvulsants (e.g., diazepam), parasympatolytics (e.g., atropine) and oximes that restore AChE activity. However, oximes also bind to the active site of AChE, simultaneously acting as reversible inhibitors. The goal of the present study is to determine how oxime structure influences the inhibition of human recombinant AChE (hrAChE). Therefore, 24 structurally different oximes were tested and the results compared to the previous eel AChE (EeAChE) experiments. Structural factors that were tested included the number of pyridinium rings, the length and structural features of the linker, and the number and position of the oxime group on the pyridinium ring.

  9. 1H NMR Relaxation Investigation of Inhibitors Interacting with Torpedo californica Acetylcholinesterase

    NASA Astrophysics Data System (ADS)

    Delfini, Maurizio; Gianferri, Raffaella; Dubbini, Veronica; Manetti, Cesare; Gaggelli, Elena; Valensin, Gianni

    2000-05-01

    Two naphthyridines interacting with Torpedo californica acetylcholinesterase (AChE) were investigated. 1H NMR spectra were recorded and nonselective, selective, and double-selective spin-lattice relaxation rates were measured. The enhancement of selective relaxation rates could be titrated by different ligand concentrations at constant AChE (yielding 0.22 and 1.53 mM for the dissociation constants) and was providing evidence of a diverse mode of interaction. The double-selective relaxation rates were used to evaluate the motional correlation times of bound ligands at 34.9 and 36.5 ns at 300 K. Selective relaxation rates of bound inhibitors could be interpreted also in terms of dipole-dipole interactions with protons in the enzyme active site.

  10. Discovery of Potent Carbonic Anhydrase and Acetylcholinesterase Inhibitors: 2-Aminoindan β-Lactam Derivatives

    PubMed Central

    Genç, Hayriye; Kalin, Ramazan; Köksal, Zeynep; Sadeghian, Nastaran; Kocyigit, Umit M.; Zengin, Mustafa; Gülçin, İlhami; Özdemir, Hasan

    2016-01-01

    β-Lactams are pharmacologically important compounds because of their various biological uses, including antibiotic and so on. β-Lactams were synthesized from benzylidene-inden derivatives and acetoxyacetyl chloride. The inhibitory effect of these compounds was examined for human carbonic anhydrase I and II (hCA I, and II) and acetylcholinesterase (AChE). The results reveal that β-lactams are inhibitors of hCA I, II and AChE. The Ki values of β-lactams (2a–k) were 0.44–6.29 nM against hCA I, 0.93–8.34 nM against hCA II, and 0.25–1.13 nM against AChE. Our findings indicate that β-lactams (2a–k) inhibit both carbonic anhydrases (CA) isoenzymes and AChE at low nanomolar concentrations. PMID:27775608

  11. 6-Methyluracil Derivatives as Bifunctional Acetylcholinesterase Inhibitors for the Treatment of Alzheimer's Disease.

    PubMed

    Semenov, Vyacheslav E; Zueva, Irina V; Mukhamedyarov, Marat A; Lushchekina, Sofya V; Kharlamova, Alexandra D; Petukhova, Elena O; Mikhailov, Anatoly S; Podyachev, Sergey N; Saifina, Lilya F; Petrov, Konstantin A; Minnekhanova, Oksana A; Zobov, Vladimir V; Nikolsky, Evgeny E; Masson, Patrick; Reznik, Vladimir S

    2015-11-01

    Novel 6-methyluracil derivatives with ω-(substituted benzylethylamino)alkyl chains at the nitrogen atoms of the pyrimidine ring were designed and synthesized. The numbers of methylene groups in the alkyl chains were varied along with the electron-withdrawing substituents on the benzyl rings. The compounds are mixed-type reversible inhibitors of cholinesterases, and some of them show remarkable selectivity for human acetylcholinesterase (hAChE), with inhibitory potency in the nanomolar range, more than 10,000-fold higher than that for human butyrylcholinesterase (hBuChE). Molecular modeling studies indicate that these compounds are bifunctional AChE inhibitors, spanning the enzyme active site gorge and binding to its peripheral anionic site (PAS). In vivo experiments show that the 6-methyluracil derivatives are able to penetrate the blood-brain barrier (BBB), inhibiting brain-tissue AChE. The most potent AChE inhibitor, 3 d (1,3-bis[5-(o-nitrobenzylethylamino)pentyl]-6-methyluracil), was found to improve working memory in scopolamine and transgenic APP/PS1 murine models of Alzheimer's disease, and to significantly decrease the number and area of β-amyloid peptide plaques in the brain. PMID:26412714

  12. Role of acetylcholinesterase inhibitors in the metabolism of amyloid precursor protein.

    PubMed

    Pakaski, M; Kasa, P

    2003-06-01

    Potentiation of central cholinergic activity has been proposed as a therapeutic approach for improving the cognitive function in patients with Alzheimer's disease (AD). Increasing the acetylcholine concentration in the brain by modulating acetylcholine-sterase (AChE) activity is among the most promising therapeutic strategies. Efforts to treat the underlying pathology based on the modulation of amyloid precursor protein (APP) processing in order to decrease the accumulation of beta-amyloid are also very important. Alterations in APP metabolism have recently been proposed to play a key role in the long-lasting effects of AChE inhibitors. This review surveys recent data from in vivo and in vitro studies that have contributed to our understanding of the role of AChE inhibitors in APP processing. The regulatory mechanisms relating to the muscarinic agonist effect, protein kinase C activation and mitogen-activated protein kinase phosphorylation, involving the alpha-secretase or the 5 -UTR region of the APP gene, are also discussed. Further work is warranted to elucidate the exact roles in APP metabolism of the AChE inhibitors used in AD therapy at present. PMID:12769797

  13. Effects of Donepezil on Cognitive Functioning in Down Syndrome.

    ERIC Educational Resources Information Center

    Johnson, N.; Fahey, C.; Chicoine, B.; Chong, G.; Gitelman, D.

    2003-01-01

    Donepezil, an acetycholinesterase inhibitor, or a placebo were given to 29 subjects with Down syndrome and no dementia. Measures of cognitive functioning and caregiver ratings indicated no improvement in any cognitive subtests (with the exception of language), behavioral scores, or caregiver ratings. Results suggest donepezil may improve language…

  14. Neuroprotective effects of donepezil against Aβ42-induced neuronal toxicity are mediated through not only enhancing PP2A activity but also regulating GSK-3β and nAChRs activity.

    PubMed

    Noh, Min-Young; Koh, Seong H; Kim, Sung-Min; Maurice, Tangui; Ku, Sae-Kwang; Kim, Seung H

    2013-11-01

    The main purpose of this study was to evaluate whether donepezil, acetylcholinesterase inhibitor, shown to play a protective role through inhibiting glycogen synthesis kinase-3β (GSK-3β) activity, could also exert neuroprotective effects by stimulating protein phosphatase 2A (PP2A) activity in the amyloid-beta (Aβ)42-induced neuronal toxicity model of Alzheimer's disease. In Aβ42-induced toxic conditions, each PP2A and GSK-3β activity measured at different times showed time-dependent reverse pattern toward the direction of accelerating neuronal deaths with the passage of time. In addition, donepezil pre-treatment showed dose-dependent stepwise increase of neuronal viability and stimulation of PP2A activity. However, such effects on them were significantly reduced through the depletion of PP2A activity with either okadaic acid or PP2Ac siRNA. In spite of blocked PP2A activity in this Aβ42 insult, however, donepezil pretreatment showed additional significant recovering effect on neuronal viability when compared to the value without donepezil. Moreover, donepezil partially recovered its dephosphorylating effect on hyperphosphorylated tau induced by Aβ42. This observation led us to assume that additional mechanisms of donepezil, including its inhibitory effect on GSK-3β activity and/or the activation role of nicotinic acetylcholine receptors (nAChRs), might be involved. Taken together, our results suggest that the neuroprotective effects of donepezil against Aβ42-induced neurotoxicity are mediated through activation of PP2A, but its additional mechanisms including regulation of GSK-3β and nAChRs activity would partially contribute to its effects. We investigated neuroprotective mechanisms of donepezil against Aβ42 toxicity: Donepezil increased neuronal viability with reduced p-tau by enhancing PP2A activity. Despite of blocked PP2A activity, donepezil showed additional recovering effect on neuronal viability, which findings led us to assume that additional

  15. Conformational remodeling of femtomolar inhibitor-acetylcholinesterase complexes in the crystalline state

    PubMed Central

    Bourne, Yves; Radic, Zoran; Taylor, Palmer; Marchot, Pascale

    2010-01-01

    The active center of acetylcholinesterase (AChE), a target site for competitive inhibitors, resides centrosymmetric to the subunit at the base of a deep, narrow gorge lined by aromatic residues. At the gorge entry, a peripheral site encompasses overlapping binding loci for non-competitive inhibitors, which alter substrate access to the gorge. The click-chemistry inhibitor TZ2PA6 links the active center ligand, tacrine, to the peripheral site ligand, propidium, through a biorthogonal reaction of an acetylene and an azide that forms either a syn1 or an anti1 triazole. Compared with wild-type mouse AChE, a Tyr337Ala mutant displays full catalytic activity, albeit with two to three orders of magnitude higher affinities for the TZ2PA6 syn1 and anti1 regioisomers, reflected in low femtomolar Kd values, diffusion-limited association and dissociation half-times greater than one month and one week, respectively. Three structures of each of the co-crystallized syn1 and anti1 complexes of the Tyr337Ala mutant were solved at three distinct times of crystal maturation, consistent with or exceeding the half-lives of the complexes in solution, while crystalline complexes obtained from soaked Tyr337Ala crystals led to picturing “freshly formed” complexes. The structures, at 2.55-2.75Å resolution, reveal a range of unprecedented conformations of the bound regioisomers, not observed in the wild-type AChE complexes, associated with concerted positional rearrangements of side chains in the enzyme gorge. Moreover, time-dependent conformational remodeling of the crystalline complexes appears to correlate with the dissociation half-times of the solution complexes. Hence for the tight-binding TZ2PA6 inhibitors, the initial complexes kinetically driven in solution slowly form more stable complexes governed by thermodynamic equilibrium and observable in mature crystals. PMID:21090615

  16. Identification of non-alkaloid acetylcholinesterase inhibitors from Ferulago campestris (Besser) Grecescu (Apiaceae).

    PubMed

    Dall'Acqua, Stefano; Maggi, Filippo; Minesso, Paola; Salvagno, Marina; Papa, Fabrizio; Vittori, Sauro; Innocenti, Gabbriella

    2010-12-01

    Inhibition of Acetylcholinesterase (AChE) is still considered as a strategy for the treatment of neurological disorders such as Alzheimer's disease. Many plant derived alkaloids (such as galantamine and rivastigmine) are known for their AChE inhibitory activity. Recently, other classes of natural compounds such as terpenoids, sesquiterpene glycosides and coumarins have been studied as new AChE inhibitors, with the aim to discover less toxic compounds compared to alkaloidal ones. The Ferulago campestris roots dichloromethane extract was used for a bioassay-guided fractionation for the search of AChE inhibitors. Three coumarin derivatives (umbelliprenin 1, coladonin 2 and coladin 3), three daucane ester derivatives (siol anisate 4, ferutinin 5 and 1-acetyl-5-angeloyl lapiferol 6), two phenol derivatives (2-epilaserine 7 and epielmanticine 8) and one polyacetylene (9-epoxyfalcarindiol 9) were isolated by the bioassay-guided approach. Their structures were characterized on the basis of spectral methods (1D and 2D NMR, and MS spectroscopy). All the isolated compounds were able to inhibit the AChE (IC(50) 1.2-0.1mM) although at higher doses if compared to galantamine (6.7 μM) measured in the same conditions. The most active compounds were the daucane derivative siol anisate 4 and the epielmanticine 8, with IC(50) of 0.172 and 0.175 mM respectively.

  17. Discovery of dual binding site acetylcholinesterase inhibitors identified by pharmacophore modeling and sequential virtual screening techniques.

    PubMed

    Gupta, Shikhar; Fallarero, Adyary; Järvinen, Päivi; Karlsson, Daniela; Johnson, Mark S; Vuorela, Pia M; Mohan, C Gopi

    2011-02-15

    Dual binding site acetylcholinesterase (AChE) inhibitors are promising for the treatment of Alzheimer's disease (AD). They alleviate the cognitive deficits and AD-modifying agents, by inhibiting the β-amyloid (Aβ) peptide aggregation, through binding to both the catalytic and peripheral anionic sites, the so called dual binding site of the AChE enzyme. In this Letter, chemical features based 3D-pharmacophore models were developed based on the eight potent and structurally diverse AChE inhibitors (I-VIII) obtained from high-throughput in vitro screening technique. The best 3D-pharmacophore model, Hypo1, consists of two hydrogen-bond acceptor lipid, one hydrophobe, and two hydrophobic aliphatic features obtained by Catalyst/HIPHOP algorithm adopted in Discovery studio program. Hypo1 was used as a 3D query in sequential virtual screening study to filter three small compound databases. Further, a total of nine compounds were selected and followed on in vitro analysis. Finally, we identified two leads--Specs1 (IC(50)=3.279 μM) and Spec2 (IC(50)=5.986 μM) dual binding site compounds from Specs database, having good AChE enzyme inhibitory activity. PMID:21273074

  18. Discovery of dual binding site acetylcholinesterase inhibitors identified by pharmacophore modeling and sequential virtual screening techniques.

    PubMed

    Gupta, Shikhar; Fallarero, Adyary; Järvinen, Päivi; Karlsson, Daniela; Johnson, Mark S; Vuorela, Pia M; Mohan, C Gopi

    2011-02-15

    Dual binding site acetylcholinesterase (AChE) inhibitors are promising for the treatment of Alzheimer's disease (AD). They alleviate the cognitive deficits and AD-modifying agents, by inhibiting the β-amyloid (Aβ) peptide aggregation, through binding to both the catalytic and peripheral anionic sites, the so called dual binding site of the AChE enzyme. In this Letter, chemical features based 3D-pharmacophore models were developed based on the eight potent and structurally diverse AChE inhibitors (I-VIII) obtained from high-throughput in vitro screening technique. The best 3D-pharmacophore model, Hypo1, consists of two hydrogen-bond acceptor lipid, one hydrophobe, and two hydrophobic aliphatic features obtained by Catalyst/HIPHOP algorithm adopted in Discovery studio program. Hypo1 was used as a 3D query in sequential virtual screening study to filter three small compound databases. Further, a total of nine compounds were selected and followed on in vitro analysis. Finally, we identified two leads--Specs1 (IC(50)=3.279 μM) and Spec2 (IC(50)=5.986 μM) dual binding site compounds from Specs database, having good AChE enzyme inhibitory activity.

  19. Donepezil Treatment of Older Adults with Cognitive Impairment and Depression (DOTCODE study): clinical rationale and design

    PubMed Central

    Pelton, Gregory H.; Andrews, Howard; Roose, Steven P.; Marcus, Sue M.; D’Antonio, Kristina; Husn, Hala; Petrella, Jeffrey R.; Zannas, Anthony S.; Doraiswamy, P. Murali; Devanand, D. P.

    2014-01-01

    Treatment strategies for patients with depression and cognitive impairment (DEP-CI), who are at high risk to develop a clinical diagnosis of dementia, are not established. This issue is addressed in the donepezil treatment of cognitive impairment and depression (DOTCODE) pilot clinical trial. The DOTCODE study is the first long-term treatment trial that assesses differences in conversion to dementia and cognitive change in DEP-CI patients using a study design of open antidepressant medication plus add-on randomized, double-blind, placebo-controlled treatment with the acetylcholinesterase inhibitor donepezil. In Phase 1, DEP-CI patients receive optimized antidepressant treatment for 16 weeks. In Phase 2, antidepressant treatment is continued with the addition of randomized, double-blind treatment with donepezil or placebo. The total study duration for each patient is 78 weeks (18 months). Eighty DEP-CI outpatients (age 55 to 95 years) are recruited: 40 at New York State Psychiatric Institute/Columbia University and 40 at Duke University Medical Center. The primary outcome is conversion to a clinical diagnosis of dementia. The secondary outcomes are cognitive change scores in Selective Reminding Test (SRT) total recall and the modified Alzheimer’s Disease Assessment Scale (ADAS-cog). Other key assessments include the 24-item Hamilton Depression Rating Scale and antidepressant response; Clinical Global Impression (CGI) for depression, cognition, and global status; neuropsychological test battery for diagnosis; informant report of functional abilities (Pfeffer FAQ); Treatment Emergent Symptom Scale (TESS) for somatic side effects. Apolipoprotein E ε4 status, odor identification deficits, and MRI entorhinal/hippocampal cortex atrophy at baseline are evaluated as neurobiological moderators of donepezil treatment effects. PMID:24315979

  20. Enhanced dendritic spine number of neurons of the prefrontal cortex, hippocampus and nucleus accumbens in old rats after chronic donepezil administration

    PubMed Central

    Alcantara-Gonzalez, Faviola; Juarez, Ismael; Solis, Oscar; Martinez-Tellez, Isaura; Camacho-Abrego, Israel; Masliah, Eliezer; Mena, Raul; Flores, Gonzalo

    2010-01-01

    In Alzheimer's disease brains morphological changes in the dendrites of pyramidal neurons of the prefrontal cortex (PFC) and hippocampus have been observed. These changes are particularly reflected in the decrement of both the dendritic tree and spine number. Donepezil is a potent and selective acetylcholinesterase inhibitor used in the treatment of Alzheimer's disease. We have studied the effect of oral administration of this drug on the morphology of neuronal cells from the brain of aged rats. We examined dendrites of pyramidal neurons of the PFC, dorsal or ventral hippocampus and medium spiny neurons of the nucleus accumbens (NAcc). Donepezil (1 mg/Kg, vo) was administrated every day for 60 days to rats aged 10 and 18 months. Dendritic morphology was studied by the Golgi-Cox stain procedure followed by Sholl analysis at 12 and 20 months ages, respectively. In all Donepezil treated-rats a significant increment of the dendritic spines number in pyramidal neurons of the PFC, dorsal hippocampus was observed. However, pyramidal neurons of the ventral hippocampus and medium spiny cells of the NAcc only showed an increase in the number of their spines in 12 months old-rats. Our results suggest that Donepezil prevents the alterations of the neuronal dendrite morphology caused by aging. PMID:20336627

  1. Effect of Donepezil on Wernicke Aphasia After Bilateral Middle Cerebral Artery Infarction: Subtraction Analysis of Brain F-18 Fluorodeoxyglucose Positron Emission Tomographic Images.

    PubMed

    Yoon, Seo Yeon; Kim, Je-Kyung; An, Young-Sil; Kim, Yong Wook

    2015-01-01

    Aphasia is one of the most common neurologic deficits occurring after stroke. Although the speech-language therapy is a mainstream option for poststroke aphasia, pharmacotherapy is recently being tried to modulate different neurotransmitter systems. However, the efficacy of those treatments is still controversial. We present a case of a 53-year-old female patient with Wernicke aphasia, after the old infarction in the territory of left middle cerebral artery for 8 years and the recent infarction in the right middle cerebral artery for 4 months. On the initial evaluation, the Aphasia Quotient in Korean version of the Western Aphasia Battery was 25.6 of 100. Baseline brain F-18 fluorodeoxyglucose positron emission tomographic images demonstrated a decreased cerebral metabolism in the left temporoparietal area and right temporal lobe. Donepezil hydrochloride, a reversible acetylcholinesterase inhibitor, was orally administered 5 mg/d for 6 weeks after the initial evaluation and was increased to 10 mg/d for the following 6 weeks. After the donepezil treatment, the patient showed improvement in language function, scoring 51.0 of 100 on Aphasia Quotient. A subtraction analysis of the brain F-18 fluorodeoxyglucose positron emission tomographic images after donepezil medication demonstrated increased uptake in both middle temporal gyri, extended to the occipital area and the left cerebellum. Thus, we suggest that donepezil can be an effective therapeutic choice for the treatment of Wernicke aphasia.

  2. An overview of phenserine tartrate, a novel acetylcholinesterase inhibitor for the treatment of Alzheimer's disease.

    PubMed

    Greig, Nigel H; Sambamurti, Kumar; Yu, Qian-sheng; Brossi, Arnold; Bruinsma, Gosse B; Lahiri, Debomoy K

    2005-07-01

    Existing cholinesterase (ChE) inhibitor therapies for Alzheimer's disease (AD), while effective in improving cognitive, behavioral and functional impairments, do not alter disease progression. Novel drug design studies have focused on the classical ChE inhibitor, (-)-physostigmine, producing alterations in chemical composition and three-dimensional structure, which may offer an improved therapeutic index. The phenylcarbamate derivative, (-)-phenserine, is a selective, non-competitive inhibitor of acetylcholinesterase (AChE). In vivo, (-)-phenserine produces rapid, potent, and long-lasting AChE inhibition. As a possible result of its preferential brain selectivity, (-)-phenserine is significantly less toxic than (-)-physostigmine. In studies using the Stone maze paradigm, (-)-phenserine has been shown to improve cognitive performance in both young learning-impaired and elderly rats. In addition to reducing inactivation of acetylcholine in the brain, (-)-phenserine appears to have a second mode of action. Reduced secretion of beta-amyloid (Abeta) has been observed in cell lines exposed to (-)-phenserine, occurring through translational regulation of beta-amyloid precursor protein (beta-APP) mRNA via a non-cholinergic mechanism. These in vitro findings appear to translate in vivo into animal models and humans. In a small study of patients with AD, (-)-phenserine treatment tended to reduce beta-APP and Abeta levels in plasma samples. Clinical studies also reveal that (-)-phenserine (5-10 mg b.i.d.) had a favorable safety and pharmacological profile, produced significant improvements in cognitive function and was well tolerated in patients with AD treated for 12 weeks. Further randomized, double-blind, placebo-controlled Phase III studies assessing the efficacy, safety/tolerability and potential disease-modifying effects of (-)-phenserine in patients with AD are currently ongoing.

  3. Multi-Target Directed Donepezil-Like Ligands for Alzheimer's Disease.

    PubMed

    Unzeta, Mercedes; Esteban, Gerard; Bolea, Irene; Fogel, Wieslawa A; Ramsay, Rona R; Youdim, Moussa B H; Tipton, Keith F; Marco-Contelles, José

    2016-01-01

    HIGHLIGHTS ASS234 is a MTDL compound containing a moiety from Donepezil and the propargyl group from the PF 9601N, a potent and selective MAO B inhibitor. This compound is the most advanced anti-Alzheimer agent for preclinical studies identified in our laboratory.Derived from ASS234 both multipotent donepezil-indolyl (MTDL-1) and donepezil-pyridyl hybrids (MTDL-2) were designed and evaluated as inhibitors of AChE/BuChE and both MAO isoforms. MTDL-2 showed more high affinity toward the four enzymes than MTDL-1.MTDL-3 and MTDL-4, were designed containing the N-benzylpiperidinium moiety from Donepezil, a metal- chelating 8-hydroxyquinoline group and linked to a N-propargyl core and they were pharmacologically evaluated.The presence of the cyano group in MTDL-3, enhanced binding to AChE, BuChE and MAO A. It showed antioxidant behavior and it was able to strongly complex Cu(II), Zn(II) and Fe(III).MTDL-4 showed higher affinity toward AChE, BuChE.MTDL-3 exhibited good brain penetration capacity (ADMET) and less toxicity than Donepezil. Memory deficits in scopolamine-lesioned animals were restored by MTDL-3.MTDL-3 particularly emerged as a ligand showing remarkable potential benefits for its use in AD therapy. Alzheimer's disease (AD), the most common form of adult onset dementia, is an age-related neurodegenerative disorder characterized by progressive memory loss, decline in language skills, and other cognitive impairments. Although its etiology is not completely known, several factors including deficits of acetylcholine, β-amyloid deposits, τ-protein phosphorylation, oxidative stress, and neuroinflammation are considered to play significant roles in the pathophysiology of this disease. For a long time, AD patients have been treated with acetylcholinesterase inhibitors such as donepezil (Aricept®) but with limited therapeutic success. This might be due to the complex multifactorial nature of AD, a fact that has prompted the design of new Multi-Target-Directed Ligands

  4. Multi-Target Directed Donepezil-Like Ligands for Alzheimer's Disease

    PubMed Central

    Unzeta, Mercedes; Esteban, Gerard; Bolea, Irene; Fogel, Wieslawa A.; Ramsay, Rona R.; Youdim, Moussa B. H.; Tipton, Keith F.; Marco-Contelles, José

    2016-01-01

    HIGHLIGHTS ASS234 is a MTDL compound containing a moiety from Donepezil and the propargyl group from the PF 9601N, a potent and selective MAO B inhibitor. This compound is the most advanced anti-Alzheimer agent for preclinical studies identified in our laboratory.Derived from ASS234 both multipotent donepezil-indolyl (MTDL-1) and donepezil-pyridyl hybrids (MTDL-2) were designed and evaluated as inhibitors of AChE/BuChE and both MAO isoforms. MTDL-2 showed more high affinity toward the four enzymes than MTDL-1.MTDL-3 and MTDL-4, were designed containing the N-benzylpiperidinium moiety from Donepezil, a metal- chelating 8-hydroxyquinoline group and linked to a N-propargyl core and they were pharmacologically evaluated.The presence of the cyano group in MTDL-3, enhanced binding to AChE, BuChE and MAO A. It showed antioxidant behavior and it was able to strongly complex Cu(II), Zn(II) and Fe(III).MTDL-4 showed higher affinity toward AChE, BuChE.MTDL-3 exhibited good brain penetration capacity (ADMET) and less toxicity than Donepezil. Memory deficits in scopolamine-lesioned animals were restored by MTDL-3.MTDL-3 particularly emerged as a ligand showing remarkable potential benefits for its use in AD therapy. Alzheimer's disease (AD), the most common form of adult onset dementia, is an age-related neurodegenerative disorder characterized by progressive memory loss, decline in language skills, and other cognitive impairments. Although its etiology is not completely known, several factors including deficits of acetylcholine, β-amyloid deposits, τ-protein phosphorylation, oxidative stress, and neuroinflammation are considered to play significant roles in the pathophysiology of this disease. For a long time, AD patients have been treated with acetylcholinesterase inhibitors such as donepezil (Aricept®) but with limited therapeutic success. This might be due to the complex multifactorial nature of AD, a fact that has prompted the design of new Multi-Target-Directed Ligands

  5. Novel Selective and Irreversible Mosquito Acetylcholinesterase Inhibitors for Controlling Malaria and Other Mosquito-Borne Diseases

    NASA Astrophysics Data System (ADS)

    Dou, Dengfeng; Park, Jewn Giew; Rana, Sandeep; Madden, Benjamin J.; Jiang, Haobo; Pang, Yuan-Ping

    2013-01-01

    We reported previously that insect acetylcholinesterases (AChEs) could be selectively and irreversibly inhibited by methanethiosulfonates presumably through conjugation to an insect-specific cysteine in these enzymes. However, no direct proof for the conjugation has been published to date, and doubts remain about whether such cysteine-targeting inhibitors have desirable kinetic properties for insecticide use. Here we report mass spectrometric proof of the conjugation and new chemicals that irreversibly inhibited African malaria mosquito AChE with bimolecular inhibition rate constants (kinact/KI) of 3,604-458,597 M-1sec-1 but spared human AChE. In comparison, the insecticide paraoxon irreversibly inhibited mosquito and human AChEs with kinact/KI values of 1,915 and 1,507 M-1sec-1, respectively, under the same assay conditions. These results further support our hypothesis that the insect-specific AChE cysteine is a unique and unexplored target to develop new insecticides with reduced insecticide resistance and low toxicity to mammals, fish, and birds for the control of mosquito-borne diseases.

  6. Association between acetylcholinesterase inhibitors and risk of stroke in patients with dementia

    PubMed Central

    Lin, Yi-Ting; Wu, Ping-Hsun; Chen, Cheng-Sheng; Yang, Yi-Hsin; Yang, Yuan-Han

    2016-01-01

    Patients with dementia are at increased risk of stroke. Acetylcholinesterase inhibitors (AChEIs) have endothelial function protection effects and anti-inflammatory properties. We investigated the ischemic stroke risk in AChEIs use in dementia patients without stroke history. Using Taiwan National Health Insurance Database from 1999 to 2008, 37,352 dementia patients over 50 years old without stroke history were eligible. The results were analyzed by propensity score–matched Cox proportional hazard models with competing risk adjustment. AChEIs users had lower incidence of ischemic stroke (160.3/10,000 person-years), compared to the propensity score–matched reference (240.8/10,000 person-years). The adjusted hazard ratio for ischemic stroke based on propensity score–matched Cox proportional hazard model was 0.508 (95% confidence interval, 0.434–0.594; P < 0.001). There was no significant difference in all-cause mortality between AChEIs users and nonusers. In conclusion, among dementia patients without previous ischemic stroke history, AChEIs treatment was associated with a decreased risk of ischemic stroke but not greater survival. PMID:27377212

  7. Potent acetylcholinesterase inhibitors: Synthesis, biological assay and docking study of nitro acridone derivatives.

    PubMed

    Parveen, Mehtab; Aslam, Afroz; Nami, Shahab A A; Malla, Ali Mohammed; Alam, Mahboob; Lee, Dong-Ung; Rehman, Sumbul; Silva, P S Pereira; Silva, M Ramos

    2016-08-01

    The reaction of o-halobenzoic acid with aniline derivatives and their subsequent cyclization reaction yielded the acridone derivatives. The series of nitro acridone derivatives were prepared by Ullmann condensation in presence of copper as catalyst and were characterized by FTIR, (1)H, (13)C NMR and mass spectra. The structure of 5-nitro-(2-phenyl amino) benzoic acid (4) was confirmed by X-ray crystallography and was found to crystallize in P21/c space group. The in vitro efficacy of the compounds for their acetylcholinesterase (AChE) and antimicrobial inhibitory activities have been evaluated against the standard drugs Ampicillin and Gentamicin against Gram positive and Gram negative bacteria. 1,7-Dinitroacridone was found to be the most potent AChE inhibitor (IC50=0.22μM). Moreover, the compounds have been screened for their antioxidant activity using the DPPH assay. Also, docking study results were found to be in good agreement with the results obtained through in vitro experiments. The docking study further predicted possible binding conformation. PMID:27295412

  8. Steric and Dynamic Parameters Influencing In Situ Cycloadditions to Form Triazole Inhibitors with Crystalline Acetylcholinesterase.

    PubMed

    Bourne, Yves; Sharpless, K Barry; Taylor, Palmer; Marchot, Pascale

    2016-02-10

    Ligand binding sites on acetylcholinesterase (AChE) comprise an active center, at the base of a deep and narrow gorge lined by aromatic residues, and a peripheral site at the gorge entry. These features launched AChE as a reaction vessel for in situ click-chemistry synthesis of high-affinity TZ2PA6 and TZ2PA5 inhibitors, forming a syn-triazole upon cycloaddition within the gorge from alkyne and azide reactants bound at the two sites, respectively. Subsequent crystallographic analyses of AChE complexes with the TZ2PA6 regioisomers demonstrated that syn product association is accompanied by side chain reorganization within the gorge, freezing-in-frame a conformation distinct from an unbound state or anti complex. To correlate inhibitor dimensions with reactivity and explore whether in situ cycloaddition could be accelerated in a concentrated, crystalline template, we developed crystal-soaking procedures and solved structures of AChE complexes with the TZ2PA5 regioisomers and their TZ2/PA5 precursors (2.1-2.7 Å resolution). The structures reveal motions of residue His447 in the active site and, unprecedentedly, residue Tyr341 at the gorge mouth, associated with TZ2 binding and coordinated with other side chain motions in the gorge that may guide AChE toward a transient state favoring syn-triazole formation. Despite precursor binding to crystalline AChE, coupling of rapid electric field fluctuations in the gorge with proper alignments of the azide and alkyne reactants to form the triazole remains a likely limiting step. These observations point to a prime requirement for AChE to interconvert dynamically between sequential conformations to promote favorable electrostatic factors enabling a productive apposition of the reactants for reactivity. PMID:26731630

  9. Design and prediction of new acetylcholinesterase inhibitor via quantitative structure activity relationship of huprines derivatives.

    PubMed

    Zhang, Shuqun; Hou, Bo; Yang, Huaiyu; Zuo, Zhili

    2016-05-01

    Acetylcholinesterase (AChE) is an important enzyme in the pathogenesis of Alzheimer's disease (AD). Comparative quantitative structure-activity relationship (QSAR) analyses on some huprines inhibitors against AChE were carried out using comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA), and hologram QSAR (HQSAR) methods. Three highly predictive QSAR models were constructed successfully based on the training set. The CoMFA, CoMSIA, and HQSAR models have values of r (2) = 0.988, q (2) = 0.757, ONC = 6; r (2) = 0.966, q (2) = 0.645, ONC = 5; and r (2) = 0.957, q (2) = 0.736, ONC = 6. The predictabilities were validated using an external test sets, and the predictive r (2) values obtained by the three models were 0.984, 0.973, and 0.783, respectively. The analysis was performed by combining the CoMFA and CoMSIA field distributions with the active sites of the AChE to further understand the vital interactions between huprines and the protease. On the basis of the QSAR study, 14 new potent molecules have been designed and six of them are predicted to be more active than the best active compound 24 described in the literature. The final QSAR models could be helpful in design and development of novel active AChE inhibitors.

  10. Selective and Irreversible Inhibitors of Aphid Acetylcholinesterases: Steps Toward Human-Safe Insecticides

    PubMed Central

    Pang, Yuan-Ping; Singh, Sanjay K.; Gao, Yang; Lassiter, T. Leon; Mishra, Rajesh K.; Zhu, Kun Yan; Brimijoin, Stephen

    2009-01-01

    Aphids, among the most destructive insects to world agriculture, are mainly controlled by organophosphate insecticides that disable the catalytic serine residue of acetylcholinesterase (AChE). Because these agents also affect vertebrate AChEs, they are toxic to non-target species including humans and birds. We previously reported that a cysteine residue (Cys), found at the AChE active site in aphids and other insects but not mammals, might serve as a target for insect-selective pesticides. However, aphids have two different AChEs (termed AP and AO), and only AP-AChE carries the unique Cys. The absence of the active-site Cys in AO-AChE might raise concerns about the utility of targeting that residue. Herein we report the development of a methanethiosulfonate-containing small molecule that, at 6.0 µM, irreversibly inhibits 99% of all AChE activity extracted from the greenbug aphid (Schizaphis graminum) without any measurable inhibition of the human AChE. Reactivation studies using β-mercaptoethanol confirm that the irreversible inhibition resulted from the conjugation of the inhibitor to the unique Cys. These results suggest that AO-AChE does not contribute significantly to the overall AChE activity in aphids, thus offering new insight into the relative functional importance of the two insect AChEs. More importantly, by demonstrating that the Cys-targeting inhibitor can abolish AChE activity in aphids, we can conclude that the unique Cys may be a viable target for species-selective agents to control aphids without causing human toxicity and resistance problems. PMID:19194505

  11. Esterase detoxification of acetylcholinesterase inhibitors by human or rat liver in vitro

    EPA Science Inventory

    Organophosphate (OP) and N-methylcarbamate pesticides inhibit acetylcholinesterase (AChE), but differences in metabolism and detoxification can influence potency of these pesticides across and within species. Carboxylesterase (CaE) and A-esterase (paraoxonase, PON) are considered...

  12. EEG SPECTRA, BEHAVIORAL STATES AND MOTOR ACTIVITY IN RATS EXPOSED TO ACETYLCHOLINESTERASE INHIBITOR CHLORPYRIFOS.

    EPA Science Inventory

    Exposure to organophosphate pesticides (OP) has been associated with sleep disorders: insomnia and ?excessive dreaming'. However neuronal mechanisms of these effects have not been analyzed. OP inhibit acetylcholinesterase activity leading to a hyperativity of the brain cholin...

  13. Selective and irreversible inhibitors of mosquito acetylcholinesterases for controlling malaria and other mosquito-borne diseases.

    PubMed

    Pang, Yuan-Ping; Ekström, Fredrik; Polsinelli, Gregory A; Gao, Yang; Rana, Sandeep; Hua, Duy H; Andersson, Björn; Andersson, Per Ola; Peng, Lei; Singh, Sanjay K; Mishra, Rajesh K; Zhu, Kun Yan; Fallon, Ann M; Ragsdale, David W; Brimijoin, Stephen

    2009-01-01

    New insecticides are urgently needed because resistance to current insecticides allows resurgence of disease-transmitting mosquitoes while concerns for human toxicity from current compounds are growing. We previously reported the finding of a free cysteine (Cys) residue at the entrance of the active site of acetylcholinesterase (AChE) in some insects but not in mammals, birds, and fish. These insects have two AChE genes (AP and AO), and only AP-AChE carries the Cys residue. Most of these insects are disease vectors such as the African malaria mosquito (Anopheles gambiae sensu stricto) or crop pests such as aphids. Recently we reported a Cys-targeting small molecule that irreversibly inhibited all AChE activity extracted from aphids while an identical exposure caused no effect on the human AChE. Full inhibition of AChE in aphids indicates that AP-AChE contributes most of the enzymatic activity and suggests that the Cys residue might serve as a target for developing better aphicides. It is therefore worth investigating whether the Cys-targeting strategy is applicable to mosquitocides. Herein, we report that, under conditions that spare the human AChE, a methanethiosulfonate-containing molecule at 6 microM irreversibly inhibited 95% of the AChE activity extracted from An. gambiae s. str. and >80% of the activity from the yellow fever mosquito (Aedes aegypti L.) or the northern house mosquito (Culex pipiens L.) that is a vector of St. Louis encephalitis. This type of inhibition is fast ( approximately 30 min) and due to conjugation of the inhibitor to the active-site Cys of mosquito AP-AChE, according to our observed reactivation of the methanethiosulfonate-inhibited AChE by 2-mercaptoethanol. We also note that our sulfhydryl agents partially and irreversibly inhibited the human AChE after prolonged exposure (>4 hr). This slow inhibition is due to partial enzyme denaturation by the inhibitor and/or micelles of the inhibitor, according to our studies using atomic force

  14. Isolation and characterisation of acetylcholinesterase inhibitors from Aquilaria subintegra for the treatment of Alzheimer's disease (AD).

    PubMed

    Bahrani, Hirbod; Mohamad, Jamaludin; Paydar, Mohammad Javad; Rothan, Hussin A

    2014-02-01

    Aquilaria subintegra, locally known as "Gaharu", belongs to the Thymelaeceae family. This plant's leaves have been claimed to be effective for the treatment of Alzheimer's disease (AD) by Malay traditional practitioner in Malaysia. In this research, the chloroform extracts of the leaves and stem of A. subintegra were tested for acetylcholinesterase (AChE) inhibitory activity. The Thin Layer Chromatography (TLC) results indicated the presence of phenols, flavonoids, terpenoids, and alkaloids compounds in the extracts. Analysis of the stem chloroform extracts with LCMS/MS displayed that it contains kaempferol 3,4,7-trimethyl ether. The AChE inhibitory activity of leaves and stem chloroform extracts and kaempferol were 80%, 93% and 85.8%, respectively. The Brine Shrimp Lethality Assay (BSLA) exhibited low to moderate toxicity of the chloroform extract from leaves (LC50=531.18 ± 49.53 μg/ml), the stem chloroform extract (LC50=407.34 ± 68.05 μg/ml) and kaempferol (LC50=762.41 ± 45.09 μg/ml). The extracts and kaempferol were not cytotoxic to human umbilical vein endothelial cells (HUVEC), human normal gastric epithelial cell line (GES-1) and human normal hepatic cell line (WRL-68). The effect of leaf and stem chloroform extracts and kaempferol were determined in the Radial Arm Maze (RAM) after administration by oral gavage to ICR male and female mice with valium-impaired memory. Administration of kaempferol to the mice significantly reduced the number of repeated entries into the arms of maze in males and females. In conclusion, the inhibition of AChE by leaf and stem chloroform extracts of A. subintegra could be due to the presence of kaempferol. This extract is safe for use as a natural AChE inhibitor as an alternative to berberine for the treatment of AD. PMID:24479629

  15. Isolation and characterisation of acetylcholinesterase inhibitors from Aquilaria subintegra for the treatment of Alzheimer's disease (AD).

    PubMed

    Bahrani, Hirbod; Mohamad, Jamaludin; Paydar, Mohammad Javad; Rothan, Hussin A

    2014-02-01

    Aquilaria subintegra, locally known as "Gaharu", belongs to the Thymelaeceae family. This plant's leaves have been claimed to be effective for the treatment of Alzheimer's disease (AD) by Malay traditional practitioner in Malaysia. In this research, the chloroform extracts of the leaves and stem of A. subintegra were tested for acetylcholinesterase (AChE) inhibitory activity. The Thin Layer Chromatography (TLC) results indicated the presence of phenols, flavonoids, terpenoids, and alkaloids compounds in the extracts. Analysis of the stem chloroform extracts with LCMS/MS displayed that it contains kaempferol 3,4,7-trimethyl ether. The AChE inhibitory activity of leaves and stem chloroform extracts and kaempferol were 80%, 93% and 85.8%, respectively. The Brine Shrimp Lethality Assay (BSLA) exhibited low to moderate toxicity of the chloroform extract from leaves (LC50=531.18 ± 49.53 μg/ml), the stem chloroform extract (LC50=407.34 ± 68.05 μg/ml) and kaempferol (LC50=762.41 ± 45.09 μg/ml). The extracts and kaempferol were not cytotoxic to human umbilical vein endothelial cells (HUVEC), human normal gastric epithelial cell line (GES-1) and human normal hepatic cell line (WRL-68). The effect of leaf and stem chloroform extracts and kaempferol were determined in the Radial Arm Maze (RAM) after administration by oral gavage to ICR male and female mice with valium-impaired memory. Administration of kaempferol to the mice significantly reduced the number of repeated entries into the arms of maze in males and females. In conclusion, the inhibition of AChE by leaf and stem chloroform extracts of A. subintegra could be due to the presence of kaempferol. This extract is safe for use as a natural AChE inhibitor as an alternative to berberine for the treatment of AD.

  16. Donepezil is ineffective in promoting motor and cognitive benefits after controlled cortical impact injury in male rats.

    PubMed

    Shaw, Kaitlyn E; Bondi, Corina O; Light, Samuel H; Massimino, Lire A; McAloon, Rose L; Monaco, Christina M; Kline, Anthony E

    2013-04-01

    The acetylcholinesterase (AChE) inhibitor donepezil is used as a therapy for Alzheimer's disease and has been recommended as a treatment for enhancing attention and memory after traumatic brain injury (TBI). Although select clinical case studies support the use of donepezil for enhancing cognition, there is a paucity of experimental TBI studies assessing the potential efficacy of this pharmacotherapy. Hence, the aim of this pre-clinical study was to evaluate several doses of donepezil to determine its effect on functional outcome after TBI. Ninety anesthetized adult male rats received a controlled cortical impact (CCI; 2.8 mm cortical depth at 4 m/sec) or sham injury, and then were randomly assigned to six TBI and six sham groups (donepezil 0.25, 0.5, 1.0, 2.0, or 3.0 mg/kg, and saline vehicle 1.0 mL/kg). Treatments began 24 h after surgery and were administered i.p. once daily for 19 days. Function was assessed by motor (beam balance/walk) and cognitive (Morris water maze) tests on days 1-5 and 14-19, respectively. No significant differences were observed among the sham control groups in any evaluation, regardless of dose, and therefore the data were pooled. Furthermore, no significant differences were revealed among the TBI groups in acute neurological assessments (e.g., righting reflex), suggesting that all groups received the same level of injury severity. None of the five doses of donepezil improved motor or cognitive function relative to vehicle-treated controls. Moreover, the two highest doses significantly impaired beam-balance (3.0 mg/kg), beam-walk (2.0 mg/kg and 3.0 mg/kg), and cognitive performance (3.0 mg/kg) versus vehicle. These data indicate that chronic administration of donepezil is not only ineffective in promoting functional improvement after moderate CCI injury, but depending on the dose is actually detrimental to the recovery process. Further work is necessary to determine if other AChE inhibitors exert similar effects after

  17. Donepezil is ineffective in promoting motor and cognitive benefits after controlled cortical impact injury in male rats.

    PubMed

    Shaw, Kaitlyn E; Bondi, Corina O; Light, Samuel H; Massimino, Lire A; McAloon, Rose L; Monaco, Christina M; Kline, Anthony E

    2013-04-01

    The acetylcholinesterase (AChE) inhibitor donepezil is used as a therapy for Alzheimer's disease and has been recommended as a treatment for enhancing attention and memory after traumatic brain injury (TBI). Although select clinical case studies support the use of donepezil for enhancing cognition, there is a paucity of experimental TBI studies assessing the potential efficacy of this pharmacotherapy. Hence, the aim of this pre-clinical study was to evaluate several doses of donepezil to determine its effect on functional outcome after TBI. Ninety anesthetized adult male rats received a controlled cortical impact (CCI; 2.8 mm cortical depth at 4 m/sec) or sham injury, and then were randomly assigned to six TBI and six sham groups (donepezil 0.25, 0.5, 1.0, 2.0, or 3.0 mg/kg, and saline vehicle 1.0 mL/kg). Treatments began 24 h after surgery and were administered i.p. once daily for 19 days. Function was assessed by motor (beam balance/walk) and cognitive (Morris water maze) tests on days 1-5 and 14-19, respectively. No significant differences were observed among the sham control groups in any evaluation, regardless of dose, and therefore the data were pooled. Furthermore, no significant differences were revealed among the TBI groups in acute neurological assessments (e.g., righting reflex), suggesting that all groups received the same level of injury severity. None of the five doses of donepezil improved motor or cognitive function relative to vehicle-treated controls. Moreover, the two highest doses significantly impaired beam-balance (3.0 mg/kg), beam-walk (2.0 mg/kg and 3.0 mg/kg), and cognitive performance (3.0 mg/kg) versus vehicle. These data indicate that chronic administration of donepezil is not only ineffective in promoting functional improvement after moderate CCI injury, but depending on the dose is actually detrimental to the recovery process. Further work is necessary to determine if other AChE inhibitors exert similar effects after

  18. Donepezil inhibits the amyloid-beta oligomer-induced microglial activation in vitro and in vivo.

    PubMed

    Kim, Hyo Geun; Moon, Minho; Choi, Jin Gyu; Park, Gunhyuk; Kim, Ae-Jung; Hur, Jinyoung; Lee, Kyung-Tae; Oh, Myung Sook

    2014-01-01

    Recent studies on Alzheimer's disease (AD) have focused on soluble oligomeric forms of amyloid-beta (Aβ oligomer, AβO) that are directly associated with AD-related pathologies, such as cognitive decline, neurodegeneration, and neuroinflammation. Donepezil is a well-known anti-dementia agent that increases acetylcholine levels through inhibition of acetylcholinesterase. However, a growing body of experimental and clinical studies indicates that donepezil may also provide neuroprotective and disease-modifying effects in AD. Additionally, donepezil has recently been demonstrated to have anti-inflammatory effects against lipopolysaccharides and tau pathology. However, it remains unknown whether donepezil has anti-inflammatory effects against AβO in cultured microglial cells and the brain in animals. Further, the effects of donepezil against AβO-mediated neuronal death, astrogliosis, and memory impairment have also not yet been investigated. Thus, in the present study, we examined the anti-inflammatory effect of donepezil against AβO and its neuroinflammatory mechanisms. Donepezil significantly attenuated the release of inflammatory mediators (prostaglandin E2, interleukin-1 beta, tumor necrosis factor-α, and nitric oxide) from microglia. Donepezil also decreased AβO-induced up-regulation of inducible nitric oxide synthase and cyclooxygenase-2 protein and phosphorylation of p38 mitogen-activated protein kinase as well as translocation of nuclear factor-kappa B. We next showed that donepezil suppresses activated microglia-mediated toxicity in primary hippocampal cells using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. In intrahippocampal AβO-injected mice, donepezil significantly inhibited microgliosis and astrogliosis. Furthermore, behavioral tests revealed that donepezil (2 mg/kg/day, 5 days, p.o.) significantly ameliorated AβO-induced memory impairment. These results suggest that donepezil directly inhibits microglial activation

  19. Differential efficacy of treatment with acetylcholinesterase inhibitors in patients with mild and moderate Alzheimer's disease over a 6-month period.

    PubMed

    López-Pousa, S; Turon-Estrada, A; Garre-Olmo, J; Pericot-Nierga, I; Lozano-Gallego, M; Vilalta-Franch, M; Hernández-Ferràndiz, M; Morante-Muñoz, V; Isern-Vila, A; Gelada-Batlle, E; Majó-Llopart, J

    2005-01-01

    There are various anticholinesterase inhibitors (AChEIs) for the symptomatic treatment of mild to moderate Alzheimer's disease (AD). All AChEIs have shown greater efficacy than placebo in randomized, double-blind, parallel-group clinical trials. No differential studies have yet been made of the efficacy between all AChEIs. The study aims to determine the differential efficacy of the AChEIs with respect to a historical sample of patients with AD that were not treated with AChEIs. An open-label, prospective, observational study with a retrospective control group was undertaken to examine the evolution of the cognitive function over a 6-month period. The patients were assessed with the Mini-Mental State Examination (MMSE) at study entry and at 6 months. A general linear model was applied for repeated measurements with the MMSE score as the dependent variable, treatment type as an independent variable and the severity of the deterioration, age and the MMSE baseline score as covariables. Of the sample of 147 patients, 40 initiated treatment with donepezil, 32 with galantamine, 30 with rivastigmine and 45 were part of a historical sample of the memory clinic patients between 1991 and 1996 that had not been treated with AChEIs. The average age was 73.7 years (SD = 6.9; range = 52-86), 67.3% were women, 78.2% of the cases were mild and the MMSE baseline score was 18.1 points (range = 11-27). No significant intergroup differences were observed in these variables. The average doses of donepezil, galantamine and rivastigmine were 5.87 mg/day (SD = 1.92), 14.81 mg/day (SD = 6.25) and 6.41 mg/day (SD = 1.82), respectively. At 6 months, the difference in the MMSE score with respect to the untreated group was 1.6 points for donepezil (95% CI 0.79-2.37; p < 0.001), 0.99 points for galantamine (95% CI 0.14-1.85; p = 0.01) and 0.90 points for rivastigmine (95% CI 0.05-1.74; p = 0.03). No significant differences were observed in the efficacy among the groups treated with AChEIs (p

  20. Esterase detoxication of acetylcholinesterase inhibitors using human liver samples in vitro.

    PubMed

    Moser, Virginia C; Padilla, Stephanie

    2016-04-15

    Organophosphorus (OP) and N-methylcarbamate pesticides inhibit acetylcholinesterase (AChE), but differences in metabolism and detoxication can influence potency of these pesticides across and within species. Carboxylesterase (CaE) and A-esterase (paraoxonase, PON1) are considered factors underlying age-related sensitivity differences. We used an in vitro system to measure detoxication of AChE-inhibiting pesticides mediated via these esterases. Recombinant human AChE was used as a bioassay of inhibitor concentration following incubation with detoxifying tissue: liver plus Ca(+2) (to stimulate PON1s, measuring activity of both esterases) or EGTA (to inhibit PON1s, thereby measuring CaE activity). AChE inhibitory concentrations of aldicarb, chlorpyrifos oxon, malaoxon, methamidophos, oxamyl, paraoxon, and methylparaoxon were incubated with liver homogenates from adult male rat or one of 20 commercially provided human (11-83 years of age) liver samples. Detoxication was defined as the difference in inhibition produced by the pesticide alone and inhibition measured in combination with liver plus Ca(+2) or liver plus EGTA. Generally, rat liver produced more detoxication than did the human samples. There were large detoxication differences across human samples for some pesticides (especially malaoxon, chlorpyrifos oxon) but not for others (e.g., aldicarb, methamidophos); for the most part these differences did not correlate with age or sex. Chlorpyrifos oxon was fully detoxified only in the presence of Ca(+2) in both rat and human livers. Detoxication of paraoxon and methylparaoxon in rat liver was greater with Ca(+2), but humans showed less differentiation than rats between Ca(+2) and EGTA conditions. This suggests the importance of PON1 detoxication for these three OPs in the rat, but mostly only for chlorpyrifos oxon in human samples. Malaoxon was detoxified similarly with Ca(+2) or EGTA, and the differences across humans correlated with metabolism of p

  1. The pharmacology of novel acetylcholinesterase inhibitors, (+/-)-huprines Y and X, on the Torpedo electric organ.

    PubMed

    Ros, E; Aleu, J; Gómez de Aranda, I; Muñoz-Torrero, D; Camps, P; Badia, A; Marsal, J; Solsona, C

    2001-06-01

    The effects of the tacrine-huperzine A hybrid acetylcholinesterase inhibitors, (+/-)-12-amino-3-chloro-9-methyl-6,7,10,11-tetrahydro-7,11-methanocycloocta[b]quinoline hydrochloride ((+/-)-huprine Y) and (+/-)-12-amino-3-chloro-9-ethyl-6,7,10,11-tetrahydro-7,11-methanocycloocta[b]quinoline hydrochloride ((+/-)-huprine X), were tested on spontaneous synaptic activity by measuring the amplitude, the rise time, the rate of rise, the half-width and the area or the electrical charge of the miniature endplate potentials (m.e.p.ps) recorded extracellularly on Torpedo electric organ fragments. (+/-)-Huprine Y and (+/-)-huprine X at a concentration of 500 nM increased all the m.e.p.p. variables analyzed. The effect of (+/-)-huprine Y was smaller than that of (+/-)-huprine X for all the variables except for the rate of rise where there was no significant difference. The effects of these drugs were also tested on nicotinic receptors by analyzing the currents elicited by acetylcholine (100 microM) in Xenopus laevis oocytes, transplanted with membranes from Torpedo electric organ. Both drugs inhibited the currents in a reversible manner, (+/-)-huprine Y (IC(50)=452 nM) being more effective than (+/-)-huprine X (IC(50)=4865 nM). The Hill coefficient was 0.5 for both drugs. The inhibition of the nicotinic receptor was voltage-dependent and decreased at depolarizing potentials, and there was no significant difference in the effects between (+/-)-huprine Y and (+/-)-huprine X at concentrations near to their IC(50) values. At depolarizing potentials between -20 and +15 mV, these drugs did not have any detectable effect on the blockade of the nicotinic receptor. Both huprines increased the desensitization of the nicotinic receptors since the current closed quickly in the presence of the drugs, and there was no significant difference in this effect between (+/-)-huprine Y (500 nM) and (+/-)-huprine X (5 microM). We conclude that (+/-)-huprine Y and (+/-)-huprine X increase the level of

  2. Esterase detoxification of acetylcholinesterase inhibitors using human liver samples in vitro

    EPA Science Inventory

    Organophosphate (OP) and N-methylcarbamate pesticides inhibit acetylcholinesterase (AChE), but differences in metabolism and detoxification can influence potency of these pesticides across and within species. Carboxylesterase (CaE) and A-esterase (paraoxonase, PON1) are consider...

  3. Nicotinic acetylcholine receptors mediate donepezil-induced oligodendrocyte differentiation.

    PubMed

    Imamura, Osamu; Arai, Masaaki; Dateki, Minori; Ogata, Toru; Uchida, Ryuji; Tomoda, Hiroshi; Takishima, Kunio

    2015-12-01

    Oligodendrocytes are the myelin-forming cells of the central nervous system (CNS). Failure of myelin development and oligodendrocyte loss results in serious human disorders, including multiple sclerosis. Here, we show that donepezil, an acetlycholinesterase inhibitor developed for the treatment of Alzheimer's disease, can stimulate oligodendrocyte differentiation and maturation of neural stem cell-derived oligodendrocyte progenitor cells without affecting proliferation or cell viability. Transcripts for essential myelin-associated genes, such as PLP, MAG, MBP, CNPase, and MOG, in addition to transcription factors that regulate oligodendrocyte differentiation and myelination, were rapidly increased after treatment with donepezil. Furthermore, luciferase assays confirmed that both MAG and MBP promoters display increased activity upon donepezil-induced oligodendrocytes differentiation, suggesting that donepezil increases myelin gene expression mainly through enhanced transcription. We also found that the increase in the number of oligodendrocytes observed following donepezil treatment was significantly inhibited by the nicotinic acetylcholine receptor (nAChR) antagonist mecamylamine, but not by the muscarinic acetylcholine receptor antagonist scopolamine. Moreover, donepezil-induced myelin-related gene expression was suppressed by mecamylamine at both the mRNA and protein level. These results suggest that donepezil stimulates oligodendrocyte differentiation and myelin-related gene expression via nAChRs in neural stem cell-derived oligodendrocyte progenitor cells. We show that donepezil, a drug for the treatment of Alzheimer disease, can stimulate oligodendrocyte differentiation and maturation of oligodendrocyte progenitor cells. Transcripts for essential myelin-associated genes, such as PLP, MAG, MBP, CNPase and MOG in addition to transcripton factors that regulate oligodendrocyte differentiation and myelination were rapidly increased after treatment with donepezil

  4. Diverse age-related effects of Bacopa monnieri and donepezil in vitro on cytokine production, antioxidant enzyme activities, and intracellular targets in splenocytes of F344 male rats.

    PubMed

    Priyanka, Hannah P; Singh, Ran Vijay; Mishra, Miti; ThyagaRajan, Srinivasan

    2013-02-01

    Aged people are more prone to developing neurodegenerative and infectious diseases, autoimmune disorders, and cancer due to impairment of neuroendocrine-immune functions. Neuronal degeneration and immunosuppression aided by increased generation of reactive oxygen species combined with loss of antioxidant enzyme activities promote the aging process. Bacopa monnieri (brahmi), an Ayurvedic herb, and donepezil, a reversible acetylcholinesterase inhibitor, have been used to reverse cognitive dysfunctions in several neurodegenerative diseases. The aim of this study was to investigate the effects of in vitro incubation of lymphocytes from spleens of young (3-month-old), early middle-aged (8- to 9-month-old), and old (18-month-old) F344 rats with brahmi (0.001%, 0.01%, 0.05%, 0.1%, and 1%) and donepezil (5, 10, 25, 50, and 100 μg/ml) on Concanavalin (Con A)-induced proliferation of T lymphocytes and cytokine production, and the activities of antioxidant enzymes [superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione-S-transferase (GST)]. In addition, the effects of these compounds on the expression of intracellular signaling pathway markers (ERK, p-ERK, CREB, p-CREB, Akt and p-Akt), nitric oxide (NO) production, and the extent of lipid peroxidation were measured in the splenocytes. Age-related decline in Con A-induced proliferation of T lymphocytes was not reversed by treatment with brahmi and donepezil but donepezil alone further reduced the lymphocyte proliferation in young rats. Lower doses of brahmi treatment reversed the age-related decrease in Con A-induced IL-2 and IFN-γ production by the splenocytes while their production by splenocytes was suppressed by treatment with donepezil in the young and early middle-aged rats. An age-associated decline in the activities of SOD, CAT, GPx, and GST was evident in the lymphocytes of spleen. Brahmi enhanced CAT activity of lymphocytes in all the age groups while donepezil increased SOD

  5. Affinity binding-guided fluorescent nanobiosensor for acetylcholinesterase inhibitors via distance modulation between the fluorophore and metallic nanoparticle.

    PubMed

    Zhang, Yaodong; Hei, Tingting; Cai, Yanan; Gao, Qunqun; Zhang, Qi

    2012-03-20

    The magnitude of fluorescence enhancement was found to depend strongly on the distance between fluorophores and metal nanostructures in metal-enhanced fluorescence (MEF). However, the precise placement of the particle in front of the molecule with nanometer accuracy and distance control is a great challenge. We describe a method using acetylcholinesterase (AChE) to modulate the distance between a gold nanoparticle (AuNP) and the fluorophore 7-hydroxy-9H-(1,3-dichloro-9,9-dimethylacridin-2-one) (DDAO). We found that DDAO is a reversible mixed type-I AChE inhibitor. DDAO binds to the peripheral anionic site and penetrates into the active gorge site of AChE via inhibition kinetics test and molecular docking study. The affinity ligand DDAO bound to AChE which was immobilized onto AuNPs, and its fluorescence was sharply enhanced due to MEF. The fluorescence was reduced by distance variations between the AuNP and DDAO, which resulted from other inhibitors competitively binding with AChE and partly or completely displacing DDAO. Experimental results show that changes in fluorescence intensity are related to the concentration of inhibitors present in the solution. In addition, the nanobiosensor has high sensitivity, with detection limits as low as 0.4 μM for paraoxon and 10 nM for tacrine, and also exhibits different reduction efficiencies for the two types of inhibitor. Thus, instead of an inhibition test, a new type of affinity binding-guided fluorescent nanobiosensor was fabricated to detect AChE inhibitors, determine AChE inhibitor binding mode, and screen more potent AChE inhibitors. The proposed strategy may be applied to other proteins or protein domains via changes in the affinity ligand.

  6. Automated Docking with Protein Flexibility in the Design of Femtomolar “Click Chemistry” Inhibitors of Acetylcholinesterase

    PubMed Central

    Morris, Garrett M.; Green, Luke G.; Radić, Zoran; Taylor, Palmer; Sharpless, K. Barry; Olson, Arthur J.; Grynszpan, Flavio

    2013-01-01

    The use of computer-aided structure-based drug design prior to synthesis has proven to be generally valuable in suggesting improved binding analogues of existing ligands.1 Here we describe the application of the program AutoDock2 to the design of a focused library that was used in the “click chemistry in-situ” generation of the most potent non-covalent inhibitor of the enzyme acetylcholinesterase (AChE) yet developed (Kd = ~100 fM).3 AutoDock version 3.0.5 has been widely distributed and successfully used to predict bound conformations of flexible ligands. Here, we also used a version of AutoDock which permits additional conformational flexibility in selected amino acid sidechains of the target protein. PMID:23451944

  7. Galantamine, an acetylcholinesterase inhibitor and positive allosteric modulator of nicotinic acetylcholine receptors, attenuates nicotine taking and seeking in rats.

    PubMed

    Hopkins, Thomas J; Rupprecht, Laura E; Hayes, Matthew R; Blendy, Julie A; Schmidt, Heath D

    2012-09-01

    Current smoking cessation pharmacotherapies have limited efficacy in preventing relapse and maintaining abstinence during withdrawal. Galantamine is an acetylcholinesterase inhibitor that also acts as a positive allosteric modulator of nicotinic acetylcholine receptors. Galantamine has recently been shown to reverse nicotine withdrawal-induced cognitive impairments in mice, which suggests that galantamine may function to prevent relapse in human smokers. However, there are no studies examining whether galantamine administration modulates nicotine self-administration and/or reinstatement of nicotine seeking in rodents. The present experiments were designed to determine the effects of galantamine administration on nicotine taking and reinstatement of nicotine-seeking behavior, an animal model of relapse. Moreover, the effects of galantamine on sucrose-maintained responding and sucrose seeking were also examined to determine whether galantamine's effects generalized to other reinforced behaviors. An inverted U-shaped dose-response curve was obtained when animals self-administered different unit doses of nicotine with the highest responding for 0.03 mg/kg per infusion of nicotine. Acute galantamine administration (5.0 mg/kg, i.p.) attenuated nicotine self-administration when animals were maintained on either a fixed-ratio 5 (FR5) or progressive ratio (PR) schedule of reinforcement. Galantamine administration also attenuated the reinstatement of nicotine-seeking behavior. No significant effects of galantamine on sucrose self-administration or sucrose reinstatement were noted. Acetylcholinesterase inhibitors have also been shown to produce nausea and vomiting in humans. However, at doses required to attenuate nicotine self-administration, no effects of galantamine on nausea/malaise as measured by pica were noted. These results indicate that increased extracellular acetylcholine levels and/or nicotinic acetylcholine receptor stimulation is sufficient to attenuate

  8. Synthesis, Pharmacological Assessment, and Molecular Modeling of Acetylcholinesterase/Butyrylcholinesterase Inhibitors: Effect against Amyloid-β-Induced Neurotoxicity

    PubMed Central

    2013-01-01

    The synthesis, molecular modeling, and pharmacological analysis of phenoxyalkylamino-4-phenylnicotinates (2–7), phenoxyalkoxybenzylidenemalononitriles (12, 13), pyridonepezils (14–18), and quinolinodonepezils (19–21) are described. Pyridonepezils 15–18 were found to be selective and moderately potent regarding the inhibition of hAChE, whereas quinolinodonepezils 19–21 were found to be poor inhibitors of hAChE. The most potent and selective hAChE inhibitor was ethyl 6-(4-(1-benzylpiperidin-4-yl)butylamino)-5-cyano-2-methyl-4-phenylnicotinate (18) [IC50 (hAChE) = 0.25 ± 0.02 μM]. Pyridonepezils 15–18 and quinolinodonepezils 20–21 are more potent selective inhibitors of EeAChE than hAChE. The most potent and selective EeAChE inhibitor was ethyl 6-(2-(1-benzylpiperidin-4-yl)ethylamino)-5-cyano-2-methyl-4-phenylnicotinate (16) [IC50 (EeAChE) = 0.0167 ± 0.0002 μM], which exhibits the same inhibitory potency as donepezil against hAChE. Compounds 2, 7, 13, 17, 18, 35, and 36 significantly prevented the decrease in cell viability caused by Aβ1–42. All compounds were effective in preventing the enhancement of AChE activity induced by Aβ1–42. Compounds 2–7 caused a significant reduction whereas pyridonepezils 17 and 18, and compound 16 also showed some activity. The pyrazolo[3,4-b]quinolines 36 and 38 also prevented the upregulation of AChE induced by Aβ1–42. Compounds 2, 7, 12, 13, 17, 18, and 36 may act as antagonists of voltage sensitive calcium channels, since they significantly prevented the Ca2+ influx evoked by KCl depolarization. Docking studies show that compounds 16 and 18 adopted different orientations and conformations inside the active-site gorges of hAChE and hBuChE. The structural and energetic features of the 16-AChE and 18-AChE complexes compared to the 16-BuChE and 18-BuChE complexes account for a higher affinity of the ligand toward AChE. The present data indicate that compounds 2, 7, 17, 18, and 36 may represent attractive

  9. Designing Second Generation Anti-Alzheimer Compounds as Inhibitors of Human Acetylcholinesterase: Computational Screening of Synthetic Molecules and Dietary Phytochemicals

    PubMed Central

    Amat-ur-Rasool, Hafsa; Ahmed, Mehboob

    2015-01-01

    Alzheimer's disease (AD), a big cause of memory loss, is a progressive neurodegenerative disorder. The disease leads to irreversible loss of neurons that result in reduced level of acetylcholine neurotransmitter (ACh). The reduction of ACh level impairs brain functioning. One aspect of AD therapy is to maintain ACh level up to a safe limit, by blocking acetylcholinesterase (AChE), an enzyme that is naturally responsible for its degradation. This research presents an in-silico screening and designing of hAChE inhibitors as potential anti-Alzheimer drugs. Molecular docking results of the database retrieved (synthetic chemicals and dietary phytochemicals) and self-drawn ligands were compared with Food and Drug Administration (FDA) approved drugs against AD as controls. Furthermore, computational ADME studies were performed on the hits to assess their safety. Human AChE was found to be most approptiate target site as compared to commonly used Torpedo AChE. Among the tested dietry phytochemicals, berberastine, berberine, yohimbine, sanguinarine, elemol and naringenin are the worth mentioning phytochemicals as potential anti-Alzheimer drugs The synthetic leads were mostly dual binding site inhibitors with two binding subunits linked by a carbon chain i.e. second generation AD drugs. Fifteen new heterodimers were designed that were computationally more efficient inhibitors than previously reported compounds. Using computational methods, compounds present in online chemical databases can be screened to design more efficient and safer drugs against cognitive symptoms of AD. PMID:26325402

  10. Designing Second Generation Anti-Alzheimer Compounds as Inhibitors of Human Acetylcholinesterase: Computational Screening of Synthetic Molecules and Dietary Phytochemicals.

    PubMed

    Amat-Ur-Rasool, Hafsa; Ahmed, Mehboob

    2015-01-01

    Alzheimer's disease (AD), a big cause of memory loss, is a progressive neurodegenerative disorder. The disease leads to irreversible loss of neurons that result in reduced level of acetylcholine neurotransmitter (ACh). The reduction of ACh level impairs brain functioning. One aspect of AD therapy is to maintain ACh level up to a safe limit, by blocking acetylcholinesterase (AChE), an enzyme that is naturally responsible for its degradation. This research presents an in-silico screening and designing of hAChE inhibitors as potential anti-Alzheimer drugs. Molecular docking results of the database retrieved (synthetic chemicals and dietary phytochemicals) and self-drawn ligands were compared with Food and Drug Administration (FDA) approved drugs against AD as controls. Furthermore, computational ADME studies were performed on the hits to assess their safety. Human AChE was found to be most approptiate target site as compared to commonly used Torpedo AChE. Among the tested dietry phytochemicals, berberastine, berberine, yohimbine, sanguinarine, elemol and naringenin are the worth mentioning phytochemicals as potential anti-Alzheimer drugs The synthetic leads were mostly dual binding site inhibitors with two binding subunits linked by a carbon chain i.e. second generation AD drugs. Fifteen new heterodimers were designed that were computationally more efficient inhibitors than previously reported compounds. Using computational methods, compounds present in online chemical databases can be screened to design more efficient and safer drugs against cognitive symptoms of AD. PMID:26325402

  11. A cationic surfactant-decorated liquid crystal sensing platform for simple and sensitive detection of acetylcholinesterase and its inhibitor.

    PubMed

    Wang, Yi; Hu, Qiongzheng; Guo, Yongxian; Yu, Li

    2015-10-15

    In this paper, construction of the liquid crystal (LC)-based sensing platform for simple and sensitive detection of acetylcholinesterase (AChE) and its inhibitor using a cationic surfactant-decorated LC interface was demonstrated. A change of the optical images of LCs from bright to dark appearance was observed when the cationic surfactant, myristoylcholine chloride (Myr), was transferred onto the aqueous/LC interface, due to the formation of a stable surfactant monolayer at the interface. A dark-to-bright change of the optical appearance was then observed when AChE was transferred onto the Myr-decorated LC interface. The sensitivity of this new type of LC-based sensor is 3 orders of magnitude higher in the serum albumin solution than that only in the buffer solution. Noteworthy is that the AChE LC sensor shows a very high sensitivity for the detection of the enzyme inhibitor, which is around 1 fM. The constructed low-cost LC-based sensor is quite simple and convenient, showing high promise for label-free detection of AChE and its inhibitors. PMID:25957073

  12. Acetylcholinesterase liquid crystal biosensor based on modulated growth of gold nanoparticles for amplified detection of acetylcholine and inhibitor.

    PubMed

    Liao, Shuzhen; Qiao, Yanan; Han, Wenting; Xie, Zhaoxia; Wu, Zhaoyang; Shen, Guoli; Yu, Ruqin

    2012-01-01

    A novel acetylcholinesterase (AChE) liquid crystal (LC) biosensor based on enzymatic growth of gold nanoparticles (Au NPs) has been developed for amplified detection of acetylcholine (ACh) and AChE inhibitor. In this method, AChE mediates the hydrolysis of acetylthiocholine (ATCl) to form thiocholine, and the latter further reduces AuCl(4)(-) to Au NPs without Au nanoseeds. This process, termed biometallization, leads to a great enhancement in the optical signal of the LC biosensor due to the large size of Au NPs, which can greatly disrupt the orientational arrangement of LCs. On the other hand, the hydrolysis of ATCl is inhibited in the presence of ACh or organophosphate pesticides (OPs, a AChE inhibitor), which will decrease the catalytic growth of Au NPs and, as a result, reduce the orientational response of LCs. On the basis of such an inhibition mechanism, the AChE LC biosensor can be used as an effective way to realize the detection of ACh and AChE inhibitors. The results showed that the AChE LC biosensor was highly sensitive to ACh with a detection limit of 15 μmol/L and OPs with a detection limit of 0.3 nmol/L. This study provides a simple and sensitive AChE LC biosensing approach and offers effective signal enhanced strategies for the development of enzyme LC biosensors. PMID:22148672

  13. Inhibitor profile of bis(n)-tacrines and N-methylcarbamates on acetylcholinesterase from Rhipicephalus (Boophilus) microplus and Phlebotomus papatasi

    PubMed Central

    Swale, Daniel R.; Tong, Fan; Temeyer, Kevin B.; Li, Andrew; Lam, Polo C-H.; Totrov, Maxim M.; Carlier, Paul R.; Pérez de León, Adalberto A.; Bloomquist, Jeffrey R.

    2013-01-01

    The cattle tick, Rhipicephalus (Boophilus) microplus (Bm), and the sand fly, Phlebotomus papatasi (Pp), are disease vectors to cattle and humans, respectively. The purpose of this study was to characterize the inhibitor profile of acetylcholinesterases from Bm (BmAChE1) and Pp (PpAChE) compared to human and bovine AChE, in order to identify divergent pharmacology that might lead to selective inhibitors. Results indicate that BmAChE has low sensitivity (IC50 = 200 μM) toward tacrine, a monovalent catalytic site inhibitor with sub micromolar blocking potency in all previous species tested. Similarly, a series of bis(n)-tacrine dimer series, bivalent inhibitors and peripheral site AChE inhibitors possess poor potency toward BmAChE. Molecular homology models suggest the rBmAChE enzyme possesses a W384F orthologous substitution near the catalytic site, where the larger tryptophan side chain obstructs the access of larger ligands to the active site, but functional analysis of this mutation suggests it only partially explains the low sensitivity to tacrine. In addition, BmAChE1 and PpAChE have low nanomolar sensitivity to some experimental carbamate anticholinesterases originally designed for control of the malaria mosquito, Anopheles gambiae. One experimental compound, 2-((2-ethylbutyl)thio)phenyl methylcarbamate, possesses >300-fold selectivity for BmAChE1 and PpAChE over human AChE, and a mouse oral LD50 of >1500 mg/kg, thus providing an excellent new lead for vector control. PMID:24187393

  14. Primary Investigation for the Mechanism of Biatractylolide from Atractylodis Macrocephalae Rhizoma as an Acetylcholinesterase Inhibitor.

    PubMed

    Xie, Yong-Chao; Ning, Ning; Zhu, Li; Li, Dan-Ning; Feng, Xing; Yang, Xiao-Ping

    2016-01-01

    Biatractylolide was isolated from ethyl acetate extract of dried Atractylodis Macrocephalae Rhizoma root by multistep chromatographic processing. Structure of biatractylolide was confirmed by (1)H-NMR and (13)C-NMR. The IC50 on acetylcholinesterase (AChE) activity was 6.5458 μg/mL when the control IC50 value of huperzine A was 0.0192 μg/mL. Molecular Docking Software (MOE) was used to discover molecular sites of action between biatractylolide and AChE protein by regular molecular docking approaches. Moreover, biatractylolide downregulated the expression of AChE of MEF and 293T cells in a dose-dependent manner. These results demonstrated that the molecular mechanisms of inhibitory activities of biatractylolide on AChE are not only through binding to AChE, but also via reducing AChE expression by inhibiting the activity of GSK3β. PMID:27642355

  15. Primary Investigation for the Mechanism of Biatractylolide from Atractylodis Macrocephalae Rhizoma as an Acetylcholinesterase Inhibitor

    PubMed Central

    Xie, Yong-Chao; Ning, Ning; Zhu, Li; Li, Dan-Ning

    2016-01-01

    Biatractylolide was isolated from ethyl acetate extract of dried Atractylodis Macrocephalae Rhizoma root by multistep chromatographic processing. Structure of biatractylolide was confirmed by 1H-NMR and 13C-NMR. The IC50 on acetylcholinesterase (AChE) activity was 6.5458 μg/mL when the control IC50 value of huperzine A was 0.0192 μg/mL. Molecular Docking Software (MOE) was used to discover molecular sites of action between biatractylolide and AChE protein by regular molecular docking approaches. Moreover, biatractylolide downregulated the expression of AChE of MEF and 293T cells in a dose-dependent manner. These results demonstrated that the molecular mechanisms of inhibitory activities of biatractylolide on AChE are not only through binding to AChE, but also via reducing AChE expression by inhibiting the activity of GSK3β.

  16. Primary Investigation for the Mechanism of Biatractylolide from Atractylodis Macrocephalae Rhizoma as an Acetylcholinesterase Inhibitor

    PubMed Central

    Xie, Yong-Chao; Ning, Ning; Zhu, Li; Li, Dan-Ning

    2016-01-01

    Biatractylolide was isolated from ethyl acetate extract of dried Atractylodis Macrocephalae Rhizoma root by multistep chromatographic processing. Structure of biatractylolide was confirmed by 1H-NMR and 13C-NMR. The IC50 on acetylcholinesterase (AChE) activity was 6.5458 μg/mL when the control IC50 value of huperzine A was 0.0192 μg/mL. Molecular Docking Software (MOE) was used to discover molecular sites of action between biatractylolide and AChE protein by regular molecular docking approaches. Moreover, biatractylolide downregulated the expression of AChE of MEF and 293T cells in a dose-dependent manner. These results demonstrated that the molecular mechanisms of inhibitory activities of biatractylolide on AChE are not only through binding to AChE, but also via reducing AChE expression by inhibiting the activity of GSK3β. PMID:27642355

  17. Graphene quantum dots for ultrasensitive detection of acetylcholinesterase and its inhibitors

    NASA Astrophysics Data System (ADS)

    Li, Nan; Wang, Xuewan; Chen, Jie; Sun, Lei; Chen, Peng

    2015-09-01

    Graphene quantum dots (GQDs) are emerging zero-dimensional materials promising a wide spectrum of novel applications including development of optical sensors. Herein, a GQD-based fluorometric sensor is devised to detect acetylcholinesterase (AChE, a critical enzyme in central nervous system and neuromuscular junctions) with an ultralow detection limit (0.58 pM with S/N of 5.0), using a photoluminescence ‘turn-off’ mechanism. This simple ‘mix-and-detect’ platform can also be employed to sense a variety of compounds that can directly or indirectly inhibit the enzymatic activities of AChE, such as nerve gases, pesticides, and therapeutic drugs. As the proof-of-concept demonstrations, we show the sensitive detection of paraoxon (a pesticide), tacrine (a drug to treat Alzheimer’s disease), and dopamine (an important neurotransmitter).

  18. Synthesis of imperatorin analogs and their evaluation as acetylcholinesterase and butyrylcholinesterase inhibitors.

    PubMed

    Granica, Sebastian; Kiss, Anna K; Jarończyk, Małgorzata; Maurin, Jan K; Mazurek, Aleksander P; Czarnocki, Zbigniew

    2013-11-01

    In this study, we synthesized several imperatorin analogs using imperatorin and xanthotoxin as substrates. The anti-cholinesterase activities of all compounds were evaluated in in vitro experiments according to the modified Ellman's method. For each synthesized compound, IC50 values for both enzymes were established. Galantamine hydrobromide was used as a positive control in the enzymatic experiments. All active compounds showed selectivity toward butyrylcholinesterase (BuChE) rather than acetylcholinesterase. The most active ones were 8-(3-methylbutoxy)-psoralen and 8-hexoxypsoralen with IC50 values for BuChE of around 16.5 and 16.4 µM, respectively. The results of our study may be considered as the beginning of a search for potential anti-Alzheimer's disease drugs based on the structure of natural furocoumarins. PMID:24123207

  19. TMPyP4, a Stabilizer of Nucleic Acid Secondary Structure, Is a Novel Acetylcholinesterase Inhibitor

    PubMed Central

    Fujiwara, Nana; Mazzola, Michael; Cai, Elizabeth; Wang, Meng; Cave, John W.

    2015-01-01

    The porphyrin compound, TMPyP4 (5,10,15,20-Tetrakis-(N-methyl-4-pyridyl)porphine), is widely used as a photosensitizer and a modulator of nucleic acid secondary structure stability. Our group recently showed in cultured cells and forebrain slice cultures that this compound can also down regulate expression of Tyrosine hydroxylase (Th), which encodes the rate-limiting enzyme in catecholamine biosynthesis, by stabilizing DNA secondary structures in the Th proximal promoter. The current study sought to establish whether treatment with TMPyP4 could modify mouse Th expression levels in vivo. Intraperitoneal administration of low TMPyP4 doses (10mg/kg), similar to those used for photosensitization, did not significantly reduce Th transcript levels in several catecholaminergic regions. Administration of a high dose (40 mg/kg), similar to those used for tumor xenograph reduction, unexpectedly induced flaccid paralysis in an age and sex-dependent manner. In vitro analyses revealed that TMPyP4, but not putative metabolites, inhibited Acetylcholinesterase activity and pre-treatment of TMPyP4 with Hemeoxygenase-2 (HO-2) rescued Acetylcholinesterase function. Age-dependent differences in HO-2 expression levels may account for some of the variable in vivo effects of high TMPyP4 doses. Together, these studies indicate that only low doses of TMPyP4, such as those typically used for photosensitization, are well tolerated in vivo. Thus, despite its widespread use in vitro, TMPyP4 is not ideal for modifying neuronal gene expression in vivo by manipulating nucleic acid secondary structure stability, which highlights the need to identify more clinically suitable compounds that can modulate nucleic acid secondary structure and gene expression. PMID:26402367

  20. TMPyP4, a Stabilizer of Nucleic Acid Secondary Structure, Is a Novel Acetylcholinesterase Inhibitor.

    PubMed

    Fujiwara, Nana; Mazzola, Michael; Cai, Elizabeth; Wang, Meng; Cave, John W

    2015-01-01

    The porphyrin compound, TMPyP4 (5,10,15,20-Tetrakis-(N-methyl-4-pyridyl)porphine), is widely used as a photosensitizer and a modulator of nucleic acid secondary structure stability. Our group recently showed in cultured cells and forebrain slice cultures that this compound can also down regulate expression of Tyrosine hydroxylase (Th), which encodes the rate-limiting enzyme in catecholamine biosynthesis, by stabilizing DNA secondary structures in the Th proximal promoter. The current study sought to establish whether treatment with TMPyP4 could modify mouse Th expression levels in vivo. Intraperitoneal administration of low TMPyP4 doses (10mg/kg), similar to those used for photosensitization, did not significantly reduce Th transcript levels in several catecholaminergic regions. Administration of a high dose (40 mg/kg), similar to those used for tumor xenograph reduction, unexpectedly induced flaccid paralysis in an age and sex-dependent manner. In vitro analyses revealed that TMPyP4, but not putative metabolites, inhibited Acetylcholinesterase activity and pre-treatment of TMPyP4 with Hemeoxygenase-2 (HO-2) rescued Acetylcholinesterase function. Age-dependent differences in HO-2 expression levels may account for some of the variable in vivo effects of high TMPyP4 doses. Together, these studies indicate that only low doses of TMPyP4, such as those typically used for photosensitization, are well tolerated in vivo. Thus, despite its widespread use in vitro, TMPyP4 is not ideal for modifying neuronal gene expression in vivo by manipulating nucleic acid secondary structure stability, which highlights the need to identify more clinically suitable compounds that can modulate nucleic acid secondary structure and gene expression. PMID:26402367

  1. Rapid and sustained cognitive recovery in APP/PS1 transgenic mice by co-administration of EPPS and donepezil

    PubMed Central

    Kim, Hye Yun; Kim, Hyunjin Vincent; Lee, Dongkeun K.; Yang, Seung-Hoon; Kim, YoungSoo

    2016-01-01

    Alzheimer’s disease (AD) is a neurodegenerative disease characterized by sequential progression of pathological events, such as aggregation of amyloid-β proteins, followed by outward symptoms of cognitive impairments. Given that a combination of different therapeutic strategies often provides more rapid and effective outcomes in diverse areas of clinical treatment, we hypothesized that administration of anti-amyloid drugs with cognitive enhancers would result in synergistic effects in AD treatment. Here, we co-administered 4-(2-hydroxyethyl)-1-piperazinepropane-sulphonic acid (EPPS), an amyloid-clearing chemical, and donepezil, an acetylcholinesterase inhibitor, to determine whether they could serve complementary roles for each other in regards to AD treatment. We found that oral administration of these two molecules led to a rapid and consistent cognitive improvement in APP/PS1 transgenic mice. Although there was no evidence for synergistic effects, our results indicated that EPPS and donepezil function complementary to each other without altering their individual effects. Thus, the combined use of disease-modifying and symptomatic relief drugs may be a promising approach in the treatment of AD. PMID:27796293

  2. Donepezil Improved Cognitive Deficits in a Patient With Neurosyphilis.

    PubMed

    Wu, Yi-Shan; Lane, Hsien-Yuan; Lin, Chieh-Hsin

    2015-01-01

    A large number of patients with neurosyphilis present dementia with a progressive course and psychiatric symptoms such as depression, mania, and psychosis. Despite prompt and proper antibiotic treatment, the recovery is often incomplete, especially when tissue damage has occurred. We reported a patient with persisted cognitive decline associated with neurosyphilis that improved substantially after donepezil therapy. A 43-year-old man manifested significant psychiatric symptoms such as mania, psychosis, and cognitive impairment due to neurosyphilis. Subsequently, the patient was treated with antipsychotics and donepezil concurrent with an adequate antibiotic treatment for neurosyphilis. During the 1-year follow-up, his rapid plasma reagin titer approached from 1:256 to 1:64. His Mini-Mental State Examination (MMSE) and Alzheimer's Disease Assessment Scale-cognitive subscale scores improved from 12 to 25 and 42.3 to 6.3, respectively, after a 6-month donepezil treatment. Donepezil was discontinued. Three months later, worsening of cognitive impairment (MMSE score, 23) was noted. After donepezil was started again for 3 months, his MMSE score improved to 26. Persistent cognitive impairment is commonly associated with neurosyphilis despite adequate penicillin treatment. Treatment of the cognitive impairment is important but difficult. Cholinergic pathways are considered as involving in the cognitive deficit induced by neurosyphilis and donepezil, a cholinesterase inhibitor, which may be useful for the improvement of cognition. In this case report, we described for the first time the successful use of donepezil in treating cognitive impairment associated with neurosyphilis. The role of cholinesterase inhibitors in the treatment of cognitive impairments caused by neurosyphilis needs further studies.

  3. Characterization of cognitive deficits in a transgenic mouse model of Alzheimer's disease and effects of donepezil and memantine.

    PubMed

    Nagakura, Akira; Shitaka, Yoshitsugu; Yarimizu, Junko; Matsuoka, Nobuya

    2013-03-01

    Alzheimer's disease is characterized by a progressive decline in cognitive function and involves β-amyloid (Aβ) in its pathogenesis. To characterize cognitive deficits associated with Aβ accumulation, we analyzed PS1/APP mice overexpressing mutant presenilin-1 (PS1, M146L; line 6.2) and amyloid precursor protein (APP, K670N/M671L; line Tg2576), a mouse model of Alzheimer's disease with accelerated Aβ production. Age-dependent changes in working and spatial memory behaviors were investigated using Y-maze and Morris water maze tasks, respectively, in female PS1/APP mice at ages of 2, 4, 6, and 12 months. Significant deficits in working and spatial memory were observed from 4 and 6 months of age, respectively. Acute single-dose administrations of memantine, a low-to-moderate-affinity N-methyl-d-aspartate (NMDA) antagonist, showed improvements in working memory deficits at 4 months of age, whereas donepezil, an acetylcholinesterase (AChE) inhibitor, did not. However, both drugs improved spatial memory dysfunction at 6 months of age at therapeutically relevant doses. No age-related dramatic changes were observed in expression levels of several proteins relating to memory dysfunction and also the mechanisms of donepezil and memantine in the cerebral cortex of PS1/APP mice until 6 months of age. Taken together, these results suggest dysfunctions in cholinergic and/or glutamatergic transmissions may be involved in the cognitive deficits associated with Aβ toxicity. Since donepezil and memantine have been widely used for treating patients of Alzheimer's disease, these results also suggest that cognitive deficits in PS1/APP mice assessed in the Y-maze and Morris water maze tasks are a useful animal model for evaluating novel Alzheimer's disease therapeutics.

  4. Molecular evaluation of herbal compounds as potent inhibitors of acetylcholinesterase for the treatment of Alzheimer's disease.

    PubMed

    Chen, Yan-Xiu; Li, Guan-Zeng; Zhang, Bin; Xia, Zhang-Yong; Zhang, Mei

    2016-07-01

    Alzheimer's disease (AD) is a progressive disease and the predominant cause of dementia. Common symptoms include short-term memory loss, and confusion with time and place. Individuals with AD depend on their caregivers for assistance, and may pose a burden to them. The acetylcholinesterase (AChE) enzyme is a key target in AD and inhibition of this enzyme may be a promising strategy in the drug discovery process. In the present study, an inhibitory assay was carried out against AChE using total alkaloidal plants and herbal extracts commonly available in vegetable markets. Subsequently, molecular docking simulation analyses of the bioactive compounds present in the plants were conducted, as well as a protein‑ligand interaction analysis. The stability of the docked protein‑ligand complex was assessed by 20 ns molecular dynamics simulation. The inhibitory assay demonstrated that Uncaria rhynchophylla and Portulaca oleracea were able to inhibit AChE. In addition, molecular docking simulation analyses indicated that catechin present in Uncaria rhynchophylla, and dopamine and norepinephrine present in Portulaca oleracea, had the best docking scores and interaction energy. In conclusion, catechin in Uncaria rhynchophylla, and dopamine and norepinephrine in Portulaca oleracea may be used to treat AD.

  5. EEG spectra, behavioral states and motor activity in rats exposed to acetylcholinesterase inhibitor chlorpyrifos.

    PubMed

    Timofeeva, Olga A; Gordon, Christopher J

    2002-06-01

    Exposure to organophosphates (OP) has been associated with sleep disorders such as insomnia and "excessive dreaming." The central mechanisms of these effects are not well understood. OPs inhibit acetylcholinesterase (AChE) activity, leading to a hyperactivity of the brain cholinergic systems that are involved in sleep regulation. We studied alterations in the EEG, behavioral states, motor activity and core temperature in rats orally administered with 10 or 40 mg/kg of the OP insecticide chlorpyrifos (CHP). Occipital EEG, motor activity and core temperature were recorded with telemetric transmitters. Behavioral sleep-wake states were visually scored. Both doses of CHP produced alterations of the EEG (decrease in power of sigma/beta and increase in slow theta and fast gamma bands) characteristic of arousal. EEG alterations were consistent with behavioral changes such as an increase in wakefulness and a decrease in sleep. Waking immobility was a prevalent behavior. We did not detect any overt signs of CHP toxicity, such as an abnormal posture or gait, suggesting that reduced locomotion can be a result of central effects of CHP (such as activation of cholinergic motor inhibitory system) rather than peripheral (such as an impairment of neuromuscular function). Changes in the EEG and behavior occurred independently of the decrease in core temperature. Increased wakefulness together with reduced motor activity after exposure to CHP seems to be a result of hyperactivity in brain cholinergic neuronal networks. PMID:12175464

  6. Virtual Screening and Biological Evaluation of Piperazine Derivatives as Human Acetylcholinesterase Inhibitors

    PubMed Central

    Varadaraju, Kavitha Raj; Kumar, Jajur Ramanna; Mallesha, Lingappa; Muruli, Archana; Mohana, Kikkeri Narasimha Shetty; Mukunda, Chethan Kumar; Sharanaiah, Umesha

    2013-01-01

    The piperazine derivatives have been shown to inhibit human acetylcholinesterase. Virtual screening by molecular docking of piperazine derivatives 1-(1,4-benzodioxane-2-carbonyl) piperazine (K), 4-(4-methyl)-benzenesulfonyl-1-(1,4-benzodioxane-2-carbonyl) piperazine (S1), and 4-(4-chloro)-benzenesulfonyl-1-(1,4-benzodioxane-2-carbonyl) piperazine (S3) has been shown to bind at peripheral anionic site and catalytic sites, whereas 4-benzenesulfonyl-1-(1,4-benzodioxane-2-carbonyl) piperazine (S4) and 4-(2,5-dichloro)-benzenesulfonyl-1-(1,4-benzodioxane-2-carbonyl) piperazine (S7) do not bind either to peripheral anionic site or catalytic site with hydrogen bond. All the derivatives have differed in number of H-bonds and hydrophobic interactions. The peripheral anionic site interacting molecules have proven to be potential therapeutics in inhibiting amyloid peptides aggregation in Alzheimer's disease. All the piperazine derivatives follow Lipinski's rule of five. Among all the derivatives 1-(1,4-benzodioxane-2-carbonyl) piperazine (K) was found to have the lowest TPSA value. PMID:24288651

  7. The discovery of potential acetylcholinesterase inhibitors: A combination of pharmacophore modeling, virtual screening, and molecular docking studies

    PubMed Central

    2011-01-01

    Background Alzheimer's disease (AD) is the most common cause of dementia characterized by progressive cognitive impairment in the elderly people. The most dramatic abnormalities are those of the cholinergic system. Acetylcholinesterase (AChE) plays a key role in the regulation of the cholinergic system, and hence, inhibition of AChE has emerged as one of the most promising strategies for the treatment of AD. Methods In this study, we suggest a workflow for the identification and prioritization of potential compounds targeted against AChE. In order to elucidate the essential structural features for AChE, three-dimensional pharmacophore models were constructed using Discovery Studio 2.5.5 (DS 2.5.5) program based on a set of known AChE inhibitors. Results The best five-features pharmacophore model, which includes one hydrogen bond donor and four hydrophobic features, was generated from a training set of 62 compounds that yielded a correlation coefficient of R = 0.851 and a high prediction of fit values for a set of 26 test molecules with a correlation of R2 = 0.830. Our pharmacophore model also has a high Güner-Henry score and enrichment factor. Virtual screening performed on the NCI database obtained new inhibitors which have the potential to inhibit AChE and to protect neurons from Aβ toxicity. The hit compounds were subsequently subjected to molecular docking and evaluated by consensus scoring function, which resulted in 9 compounds with high pharmacophore fit values and predicted biological activity scores. These compounds showed interactions with important residues at the active site. Conclusions The information gained from this study may assist in the discovery of potential AChE inhibitors that are highly selective for its dual binding sites. PMID:21251245

  8. Donepezil improves learning and memory deficits in APP/PS1 mice by inhibition of microglial activation.

    PubMed

    Guo, H B; Cheng, Y F; Wu, J G; Wang, C M; Wang, H T; Zhang, C; Qiu, Z K; Xu, J P

    2015-04-01

    Donepezil, a cholinesterase inhibitor, is a representative symptomatic therapy for Alzheimer's disease (AD). Recent studies have reported the anti-inflammatory effects of donepezil. However, limited studies that investigate its anti-inflammatory effect in AD have been reported. Considering the role of proinflammatory molecules and microglial activation in the pathogenesis of AD, the current study aimed to elucidate the effects of donepezil on microglial activation induced by amyloid deposition in transgenic mice. Our results showed that chronic treatment with donepezil significantly improved the cognitive function in the novel object recognition test and Morris water maze test in amyloid precursor protein (APP)/presenilin-1 (PS1) transgenic mice. We further demonstrated that these cognitive enhancements were related to the anti-inflammatory effect of donepezil. We found that donepezil could inhibit the expression of CD68, a specific marker of microglial activation, and reduce the release of proinflammatory cytokines including tumor necrosis factor-α and interleukin-1β. Immunohistochemistry and Congo red co-staining revealed that congophilic amyloid and activated microglia around plaques were also reduced by donepezil treatment. Enzyme-linked immunosorbent assay (ELISA) analysis showed that donepezil decreased insoluble Aβ40/Aβ42 and soluble Aβ40 levels. Moreover, donepezil reversed the impaired expression of insulin-degrading enzyme in the hippocampus of APP/PS1 mice. Our findings indicated that donepezil improves cognitive deficits in APP/PS1 mice by a mechanism that may be associated with its inhibition of microglial activation and release of proinflammatory cytokines.

  9. Safety and Preliminary Efficacy of the Acetylcholinesterase Inhibitor Huperzine A as a Treatment for Cocaine Use Disorder

    PubMed Central

    Verrico, Christopher D.; Newton, Thomas F.; Mahoney, James J.; Thompson-Lake, Daisy G. Y.

    2016-01-01

    Background: Cholinergic transmission is altered by drugs of abuse and contributes to psychostimulant reinforcement. In particular, acetylcholinesterase inhibitors, like huperzine A, may be effective as treatments for cocaine use disorder. Methods: The current report describes results from a double-blind, placebo-controlled study in which participants (n=14–17/group) were randomized to huperzine A (0.4 or 0.8mg) or placebo. Participants received randomized infusions of cocaine (0 and 40mg, IV) on days 1 and 9. On day 10, participants received noncontingent, randomized infusions of cocaine (0 and 20mg, IV) before making 5 choices to receive additional infusions. Results: Huperzine A was safe and well-tolerated and compared with placebo, treatment with huperzine A did not cause significant changes in any cocaine pharmacokinetic parameters (all P>.05). Time-course and peak effects analyses show that treatment with 0.4mg of huperzine A significantly attenuated cocaine-induced increases of “Any Drug Effect,” “High,” “Stimulated,” “Willing to Pay,” and “Bad Effects” (all P>.05). Conclusions: The current study represents a significant contribution to the addiction field since it serves as the first published report on the safety and potential efficacy of huperzine A as a treatment for cocaine use disorder. PMID:26364275

  10. Difluoromethyl ketones: Potent inhibitors of wild type and carbamate-insensitive G119S mutant Anopheles gambiae acetylcholinesterase.

    PubMed

    Camerino, Eugene; Wong, Dawn M; Tong, Fan; Körber, Florian; Gross, Aaron D; Islam, Rafique; Viayna, Elisabet; Mutunga, James M; Li, Jianyong; Totrov, Maxim M; Bloomquist, Jeffrey R; Carlier, Paul R

    2015-10-15

    Malaria is a devastating disease in sub-Saharan Africa, and current vector control measures are threatened by emerging resistance mechanisms. With the goal of developing new, selective, resistance-breaking insecticides we explored α-fluorinated methyl ketones as reversible covalent inhibitors of Anopheles gambiae acetylcholinesterase (AgAChE). Trifluoromethyl ketones 5 demonstrated remarkable volatility in microtiter plate assays, but 5c,e-h exhibited potent (1-100 nM) inhibition of wild type (WT) AgAChE and weak inhibition of resistant mutant G119S mutant AgAChE. Fluoromethyl ketones 10c-i exhibited submicromolar to micromolar inhibition of WT AgAChE, but again only weakly inhibited G119S AgAChE. Interestingly, difluoromethyl ketone inhibitors 9c and 9g had single digit nanomolar inhibition of WT AgAChE, and 9g had excellent potency against G119S AgAChE. Approach to steady-state inhibition was quite slow, but after 23 h incubation an IC50 value of 25.1 ± 1.2 nM was measured. We attribute the slow, tight-binding G119S AgAChE inhibition of 9g to a balance of steric size and electrophilicity. However, toxicities of 5g, 9g, and 10g to adult A. gambiae in tarsal contact, fumigation, and injection assays were lower than expected based on WT AgAChE inhibition potency and volatility. Potential toxicity-limiting factors are discussed. PMID:26386602

  11. Memantine ER/Donepezil: A Review in Alzheimer's Disease.

    PubMed

    Greig, Sarah L

    2015-11-01

    A once-daily, fixed-dose combination of memantine extended-release (ER)/donepezil 28/10 mg (Namzaric™) is available in the USA for patients with moderate to severe Alzheimer's disease (AD) on stable memantine and donepezil therapy. The fixed-dose formulation is bioequivalent to coadministration of the individual drugs. In a 24-week, phase III trial in patients with moderate to severe AD, addition of memantine ER 28 mg once daily to stable cholinesterase inhibitor (ChEI) therapy was more effective than add-on placebo on measures of cognition, global clinical status, dementia behaviour and semantic processing ability, although between-group differences on a measure of daily function did not significantly differ. In subgroup analyses in donepezil-treated patients, add-on memantine ER was more effective than add-on placebo on measures of cognition, dementia behaviour and semantic processing, although there were no significant between-group differences on measures of global clinical status and daily function. Memantine ER plus ChEI combination therapy was generally well tolerated in the phase III trial, with diarrhoea, dizziness and influenza occurring at least twice as often with add-on memantine ER as add-on placebo in donepezil-treated patients. Thus, memantine ER plus donepezil combination therapy is an effective and well tolerated treatment option for patients with moderate to severe AD. The fixed-dose combination is potentially more convenient than coadministration of the individual agents.

  12. Design of donecopride, a dual serotonin subtype 4 receptor agonist/acetylcholinesterase inhibitor with potential interest for Alzheimer's disease treatment

    PubMed Central

    Lecoutey, Cédric; Hedou, Damien; Freret, Thomas; Giannoni, Patrizia; Gaven, Florence; Since, Marc; Bouet, Valentine; Ballandonne, Céline; Corvaisier, Sophie; Malzert Fréon, Aurélie; Mignani, Serge; Cresteil, Thierry; Boulouard, Michel; Claeysen, Sylvie; Rochais, Christophe; Dallemagne, Patrick

    2014-01-01

    RS67333 is a partial serotonin subtype 4 receptor (5-HT4R) agonist that has been widely studied for its procognitive effect. More recently, it has been shown that its ability to promote the nonamyloidogenic cleavage of the precursor of the neurotoxic amyloid-β peptide leads to the secretion of the neurotrophic protein sAPPα. This effect has generated great interest in RS67333 as a potential treatment for Alzheimer’s disease (AD). We show herein that RS67333 is also a submicromolar acetylcholinesterase (AChE) inhibitor and therefore, could contribute, through this effect, to the restoration of the cholinergic neurotransmission that becomes altered in AD. We planned to pharmacomodulate RS67333 to enhance its AChE inhibitory activity to take advantage of this pleiotropic pharmacological profile in the design of a novel multitarget-directed ligand that is able to exert not only a symptomatic but also, a disease-modifying effect against AD. These efforts allowed us to select donecopride as a valuable dual (h)5-HT4R partial agonist (Ki = 10.4 nM; 48.3% of control agonist response)/(h)AChEI (IC50 = 16 nM) that further promotes sAPPα release (EC50 = 11.3 nM). Donecopride, as a druggable lead, was assessed for its in vivo procognitive effects (0.1, 0.3, 1, and 3 mg/kg) with an improvement of memory performances observed at 0.3 and 1 mg/kg on the object recognition test. On the basis of these in vitro and in vivo activities, donecopride seems to be a promising drug candidate for AD treatment. PMID:25157130

  13. Identification of Potential Herbal Inhibitor of Acetylcholinesterase Associated Alzheimer's Disorders Using Molecular Docking and Molecular Dynamics Simulation

    PubMed Central

    Seniya, Chandrabhan; Khan, Ghulam Jilani; Uchadia, Kuldeep

    2014-01-01

    Cholinesterase inhibitors (ChE-Is) are the standard for the therapy of AD associated disorders and are the only class of approved drugs by the Food and Drug Administration (FDA). Additionally, acetylcholinesterase (AChE) is the target for many Alzheimer's dementia drugs which block the function of AChE but have some side effects. Therefore, in this paper, an attempt was made to elucidate cholinesterase inhibition potential of secondary metabolite from Cannabis plant which has negligible or no side effect. Molecular docking of 500 herbal compounds, against AChE, was performed using Autodock 4.2 as per the standard protocols. Molecular dynamics simulations have also been carried out to check stability of binding complex in water for 1000 ps. Our molecular docking and simulation have predicted high binding affinity of secondary metabolite (C28H34N2O6) to AChE. Further, molecular dynamics simulations for 1000 ps suggest that ligand interaction with the residues Asp72, Tyr70-121-334, and Phe288 of AChE, all of which fall under active site/subsite or binding pocket, might be critical for the inhibitory activity of AChE. This approach might be helpful to understand the selectivity of the given drug molecule in the treatment of Alzheimer's disease. The study provides evidence for consideration of C28H34N2O6 as a valuable small ligand molecule in treatment and prevention of AD associated disorders and further in vitro and in vivo investigations may prove its therapeutic potential. PMID:25054066

  14. Donepezil attenuates high glucose-accelerated senescence in human umbilical vein endothelial cells through SIRT1 activation.

    PubMed

    Zhang, Tao; Tian, Feng; Wang, Jing; Zhou, Shanshan; Dong, Xueqing; Guo, Kai; Jing, Jing; Zhou, Ying; Chen, Yundai

    2015-09-01

    Cellular senescence of endothelial cells is a damage and stress response which induces pro-inflammatory, pro-atherosclerotic, and pro-thrombotic phenotypes. Donepezil is a drug used for the treatment of mild to moderate dementia of the Alzheimer's disease (AD). The aim of the present study was to investigate the attenuation of endothelial cell senescence by donepezil and to explore the mechanisms underlying the anti-aging effects of donepezil. Our results indicated that high glucose (HG) markedly decreased cell viability of human umbilical vein endothelial cells (HUVECs), and this phenomenon was reversed by treatment with donepezil. Importantly, our results displayed that the frequency of senescent (SA-ß-gal-positive) cells and the expression level of senescence genes (PAI-1 and p21) were significantly higher in the HG group compared with the normal glucose (NG) group, and these changes were blocked by treatment with donepezil. Also, our results showed that donepezil inhibits the generation of reactive oxygen species (ROS), which promotes cellular senescence. Pretreatment with nicotinamide (NAM), a sirtuin 1 (SIRT1) inhibitor, inhibited the reduction in senescence associated with donepezil. Indeed, our results indicated that donepezil increased the SIRT1 enzyme activity. Therefore, these results show that donepezil delays cellular senescence that is promoted under HG condition via activation of SIRT1.

  15. 2-Benzoyl-6-benzylidenecyclohexanone analogs as potent dual inhibitors of acetylcholinesterase and butyrylcholinesterase.

    PubMed

    Leong, Sze Wei; Abas, Faridah; Lam, Kok Wai; Shaari, Khozirah; Lajis, Nordin H

    2016-08-15

    In the present study, a series of 2-benzoyl-6-benzylidenecyclohexanone analogs have been synthesized and evaluated for their anti-cholinesterase activity. Among the forty-one analogs, four compounds (38, 39, 40 and 41) have been identified as lead compounds due to their highest inhibition on both AChE and BChE activities. Compounds 39 and 40 in particular exhibited highest inhibition on both AChE and BChE with IC50 values of 1.6μM and 0.6μM, respectively. Further structure-activity relationship study suggested that presence of a long-chain heterocyclic in one of the rings played a critical role in the dual enzymes' inhibition. The Lineweaver-Burk plots and docking results suggest that both compounds could simultaneously bind to the PAS and CAS regions of the enzyme. ADMET analysis further confirmed the therapeutic potential of both compounds based upon their high BBB-penetrating. Thus, 2-benzoyl-6-benzylidenecyclohexanone containing long-chain heterocyclic amine analogs represent a new class of cholinesterase inhibitor, which deserve further investigation for their development into therapeutic agents for cognitive diseases such as Alzheimer. PMID:27328658

  16. Syntheses of coumarin-tacrine hybrids as dual-site acetylcholinesterase inhibitors and their activity against butylcholinesterase, Aβ aggregation, and β-secretase.

    PubMed

    Sun, Qi; Peng, Da-Yong; Yang, Sheng-Gang; Zhu, Xiao-Lei; Yang, Wen-Chao; Yang, Guang-Fu

    2014-09-01

    Exploring small-molecule acetylcholinesterase (AChE) inhibitors to slow the breakdown of acetylcholine (Ach) represents the mainstream direction for Alzheimer's disease (AD) therapy. As the first acetylcholinesterase inhibitor approved for the clinical treatment of AD, tacrine has been widely used as a pharmacophore to design hybrid compounds in order to combine its potent AChE inhibition with other multi-target profiles. In present study, a series of novel tacrine-coumarin hybrids were designed, synthesized and evaluated as potent dual-site AChE inhibitors. Moreover, compound 1g was identified as the most potent candidate with about 2-fold higher potency (Ki=16.7nM) against human AChE and about 2-fold lower potency (Ki=16.1nM) against BChE than tacrine (Ki=35.7nM for AChE, Ki=8.7nM for BChE), respectively. In addition, some of the tacrine-coumarin hybrids showed simultaneous inhibitory effects against both Aβ aggregation and β-secretase. We therefore conclude that tacrine-coumarin hybrid is an interesting multifunctional lead for the AD drug discovery.

  17. Protection by sigma-1 receptor agonists is synergic with donepezil, but not with memantine, in a mouse model of amyloid-induced memory impairments.

    PubMed

    Maurice, Tangui

    2016-01-01

    Drugs activating the sigma-1 (σ1) chaperone protein are anti-amnesic and neuroprotective in neurodegenerative pathologies like Alzheimer's disease (AD). Since these so-called σ1 receptor (σ1R) agonists modulate cholinergic and glutamatergic systems in a variety of physiological responses, we addressed their putative additive/synergistic action in combination with cholinergic or glutamatergic drugs. The selective σ1 agonist PRE-084, or the non-selective σ1 drug ANAVEX2-73 was combined with the acetylcholinesterase inhibitor donepezil or the NMDA receptor antagonist memantine in the nontransgenic mouse model of AD-like memory impairments induced by intracerebroventricular injection of oligomeric Aβ25-35 peptide. Two behavioral tests, spontaneous alternation and passive avoidance response, were used in parallel and both protective and symptomatic effects were examined. After determination of the minimally active doses for each compound, the combinations were tested and the combination index (CI) calculated. Combinations between the σ1 agonists and donepezil showed a synergic protective effect, with CI<1, whereas the combinations with memantine showed an antagonist effect, with CI>1. Symptomatic effects appeared only additive for all combinations, with CI=1. A pharmacological analysis of the PRE-084+donepezil combination revealed that the synergy could be due to an inter-related mechanism involving α7 nicotinic ACh receptors and σ1R. These results demonstrated that σ1 drugs do not only offer a protective potential alone but also in combination with other therapeutic agents. The nature of neuromodulatory molecular chaperone of the σ1R could eventually lead to synergistic combinations.

  18. Cholinergic Neurotransmission in the Posterior Insular Cortex Is Altered in Preclinical Models of Neuropathic Pain: Key Role of Muscarinic M2 Receptors in Donepezil-Induced Antinociception

    PubMed Central

    Ferrier, Jérémy; Bayet-Robert, Mathilde; Dalmann, Romain; El Guerrab, Abderrahim; Aissouni, Youssef; Graveron-Demilly, Danielle; Chalus, Maryse; Pinguet, Jérémy; Eschalier, Alain; Richard, Damien; Daulhac, Laurence; Balayssac, David

    2015-01-01

    Neuropathic pain is one of the most debilitating pain conditions, yet no therapeutic strategy has been really effective for its treatment. Hence, a better understanding of its pathophysiological mechanisms is necessary to identify new pharmacological targets. Here, we report important metabolic variations in brain areas involved in pain processing in a rat model of oxaliplatin-induced neuropathy using HRMAS 1H-NMR spectroscopy. An increased concentration of choline has been evidenced in the posterior insular cortex (pIC) of neuropathic animal, which was significantly correlated with animals' pain thresholds. The screening of 34 genes mRNA involved in the pIC cholinergic system showed an increased expression of the high-affinity choline transporter and especially the muscarinic M2 receptors, which was confirmed by Western blot analysis in oxaliplatin-treated rats and the spared nerve injury model (SNI). Furthermore, pharmacological activation of M2 receptors in the pIC using oxotremorine completely reversed oxaliplatin-induced mechanical allodynia. Consistently, systemic treatment with donepezil, a centrally active acetylcholinesterase inhibitor, prevented and reversed oxaliplatin-induced cold and mechanical allodynia as well as social interaction impairment. Intracerebral microdialysis revealed a lower level of acetylcholine in the pIC of oxaliplatin-treated rats, which was significantly increased by donepezil. Finally, the analgesic effect of donepezil was markedly reduced by a microinjection of the M2 antagonist, methoctramine, within the pIC, in both oxaliplatin-treated rats and spared nerve injury rats. These findings highlight the crucial role of cortical cholinergic neurotransmission as a critical mechanism of neuropathic pain, and suggest that targeting insular M2 receptors using central cholinomimetics could be used for neuropathic pain treatment. SIGNIFICANCE STATEMENT Our study describes a decrease in cholinergic neurotransmission in the posterior insular

  19. Early postnatal maternal deprivation in rats induces memory deficits in adult life that can be reversed by donepezil and galantamine.

    PubMed

    Benetti, Fernando; Mello, Pâmela Billig; Bonini, Juliana Sartori; Monteiro, Siomara; Cammarota, Martín; Izquierdo, Iván

    2009-02-01

    Early postnatal maternal deprivation is known to cause long-lasting neurobiological effects. Here, we investigated whether some of the cognitive aspects of these deficits might be related to a disruption of the cholinergic system. Pregnant Wistar rats were individually housed and maintained on a 12:12h light/dark cycle with food and water freely available. The mothers were separated from their pups for 3h per day from postnatal day 1 (PND-1) to PND-10. To do that, the dams were moved to a different cage and the pups maintained in the original home cage, which was transferred to a different room kept at 32 degrees C. After they reached 120-150 days of age, maternal-deprived and non-deprived animals were either sacrificed for brain acetylcholinesterase measurement, or trained and tested in an object recognition task and in a social recognition task as described by Rossato et al. (2007) [Rossato, J.I., Bevilaqua, L. R.M., Myskiw, J.C., Medina, J.H., Izquierdo, I., Cammarota, M. 2007. On the role hippocampal synthesis in the consolidation and reconsolidation of object recognition memory. Learn. Mem. 14, 36-46] and Lévy et al. (2003) [Lévy, F., Melo. A.I., Galef. B.G. Jr., Madden, M., Fleming. A.S. 2003. Complete maternal deprivation affects social, but not spatial, learning in adult rats. Dev. Psychobiol. 43, 177-191], respectively. There was increased acetylcholinesterase activity in hippocampus and perirhinal cortex of the deprived animals. In addition, they showed a clear impairment in memory of the two recognition tasks measured 24h after training. Oral administration of the acetylcholinesterase inhibitors, donepezil or galantamine (1mg/kg) 30min before training reversed the memory impairments caused by maternal deprivation. The findings suggest that maternal deprivation affects memory processing at adulthood through a change in brain cholinergic systems.

  20. The non-competitive acetylcholinesterase inhibitor APS12-2 is a potent antagonist of skeletal muscle nicotinic acetylcholine receptors

    SciTech Connect

    Grandič, Marjana; Aráoz, Romulo; Molgó, Jordi; Turk, Tom; Sepčić, Kristina; Benoit, Evelyne; Frangež, Robert

    2012-12-01

    APS12-2, a non-competitive acetylcholinesterase inhibitor, is one of the synthetic analogs of polymeric alkylpyridinium salts (poly-APS) isolated from the marine sponge Reniera sarai. In the present work the effects of APS12-2 were studied on isolated mouse phrenic nerve–hemidiaphragm muscle preparations, using twitch tension measurements and electrophysiological recordings. APS12-2 in a concentration-dependent manner blocked nerve-evoked isometric muscle contraction (IC{sub 50} = 0.74 μM), without affecting directly-elicited twitch tension up to 2.72 μM. The compound (0.007–3.40 μM) decreased the amplitude of miniature endplate potentials until a complete block by concentrations higher than 0.68 μM, without affecting their frequency. Full size endplate potentials, recorded after blocking voltage-gated muscle sodium channels, were inhibited by APS12-2 in a concentration-dependent manner (IC{sub 50} = 0.36 μM) without significant change in the resting membrane potential of the muscle fibers up to 3.40 μM. The compound also blocked acetylcholine-evoked inward currents in Xenopus oocytes in which Torpedo (α1{sub 2}β1γδ) muscle-type nicotinic acetylcholine receptors (nAChRs) have been incorporated (IC{sub 50} = 0.0005 μM), indicating a higher affinity of the compound for Torpedo (α1{sub 2}β1γδ) than for the mouse (α1{sub 2}β1γε) nAChR. Our data show for the first time that APS12-2 blocks neuromuscular transmission by a non-depolarizing mechanism through an action on postsynaptic nAChRs of the skeletal neuromuscular junction. -- Highlights: ► APS12-2 produces concentration-dependent inhibition of nerve-evoked muscle contraction in vitro. ► APS12-2 blocks MEPPs and EPPs at the neuromuscular junction. APS12-2 blocks ACh-activated current in Xenopus oocytes incorporated with Torpedo nAChRs.

  1. Caffeine inhibits acetylcholinesterase, but not butyrylcholinesterase.

    PubMed

    Pohanka, Miroslav; Dobes, Petr

    2013-05-08

    Caffeine is an alkaloid with a stimulant effect in the body. It can interfere in transmissions based on acetylcholine, epinephrine, norepinephrine, serotonin, dopamine and glutamate. Clinical studies indicate that it can be involved in the slowing of Alzheimer disease pathology and some other effects. The effects are not well understood. In the present work, we focused on the question whether caffeine can inhibit acetylcholinesterase (AChE) and/or, butyrylcholinesterase (BChE), the two enzymes participating in cholinergic neurotransmission. A standard Ellman test with human AChE and BChE was done for altering concentrations of caffeine. The test was supported by an in silico examination as well. Donepezil and tacrine were used as standards. In compliance with Dixon's plot, caffeine was proved to be a non-competitive inhibitor of AChE and BChE. However, inhibition of BChE was quite weak, as the inhibition constant, Ki, was 13.9 ± 7.4 mol/L. Inhibition of AChE was more relevant, as Ki was found to be 175 ± 9 µmol/L. The predicted free energy of binding was -6.7 kcal/mol. The proposed binding orientation of caffeine can interact with Trp86, and it can be stabilize by Tyr337 in comparison to the smaller Ala328 in the case of human BChE; thus, it can explain the lower binding affinity of caffeine for BChE with reference to AChE. The biological relevance of the findings is discussed.

  2. Computational analysis of novel drugs designed for use as acetylcholinesterase inhibitors and histamine H3 receptor antagonists for Alzheimer's disease by docking, scoring and de novo evolution

    PubMed Central

    CHEN, PO-YUAN; TSAI, CHING-TSAN; OU, CHE-YEN; HSU, WEI-TSE; JHUO, MIEN-DE; WU, CHIEH-HSI; SHIH, TZU-CHING; CHENG, TZU-HURNG; CHUNG, JING-GUNG

    2012-01-01

    Alzheimer's disease (AD) was first described by Alois Alzheimer in 1907. AD is the most prevalent dementia- related disease, affecting over 20 million individuals worldwide. Currently, however, only a handful of drugs are available and they are at best only able to offer some relief of symptoms. Acetylcholinesterase (AChE) inhibitors, antioxidants, metal chelators, monoamine oxidase inhibitors, anti-inflammatory drugs and NMDA inhibitors are usually used to attempt to cure this disease. AChE inhibitors are the most effective therapy for AD at present. Researchers have found that histamine H3 receptor antagonists decrease re-uptake of acetylcholine and the nervous transmitter substance acetylcholine increases. In this study, we designed compounds by using docking, de novo evolution and adsorption, distribution, metabolism, excretion and toxicity (ADMET) analysis to AChE inhibitors as well as histamine H3 receptor antagonists to forward drug research and investigate the potent compounds which can pass through the blood-brain barrier. The novel drugs may be useful for the treatment of AD, based on the results of this theoretical calculation study. We will subsequently examine them in future experiments. PMID:22267207

  3. Computational analysis of novel drugs designed for use as acetylcholinesterase inhibitors and histamine H3 receptor antagonists for Alzheimer's disease by docking, scoring and de novo evolution.

    PubMed

    Chen, Po-Yuan; Tsai, Ching-Tsan; Ou, Che-Yen; Hsu, Wei-Tse; Jhuo, Mien-De; Wu, Chieh-Hsi; Shih, Tzu-Ching; Cheng, Tzu-Hurng; Chung, Jing-Gung

    2012-04-01

    Alzheimer's disease (AD) was first described by Alois Alzheimer in 1907. AD is the most prevalent dementia- related disease, affecting over 20 million individuals worldwide. Currently, however, only a handful of drugs are available and they are at best only able to offer some relief of symptoms. Acetylcholinesterase (AChE) inhibitors, antioxidants, metal chelators, monoamine oxidase inhibitors, anti-inflammatory drugs and NMDA inhibitors are usually used to attempt to cure this disease. AChE inhibitors are the most effective therapy for AD at present. Researchers have found that histamine H3 receptor antagonists decrease re-uptake of acetylcholine and the nervous transmitter substance acetylcholine increases. In this study, we designed compounds by using docking, de novo evolution and adsorption, distribution, metabolism, excretion and toxicity (ADMET) analysis to AChE inhibitors as well as histamine H3 receptor antagonists to forward drug research and investigate the potent compounds which can pass through the blood-brain barrier. The novel drugs may be useful for the treatment of AD, based on the results of this theoretical calculation study. We will subsequently examine them in future experiments.

  4. Interaction with sigma(1) protein, but not N-methyl-D-aspartate receptor, is involved in the pharmacological activity of donepezil.

    PubMed

    Maurice, Tangui; Meunier, Johann; Feng, Bihua; Ieni, John; Monaghan, Daniel T

    2006-05-01

    In the present study, we examined the interaction of (+/-)-2,3-dihydro-5,6-dimethoxy-2-[[1-(phenylmethyl)-4-piperidinyl]-methyl]-1H-inden-1-one hydrochloride (donepezil), a potent cholinesterase inhibitor, with two additional therapeutically relevant targets, N-methyl-d-aspartate (NMDA) and sigma(1) receptors. Donepezil blocked the responses of recombinant NMDA receptors expressed in Xenopus oocytes. The blockade was voltage-dependent, suggesting a channel blocker mechanism of action, and was not competitive at either the l-glutamate or glycine binding sites. The low potency of donepezil (IC(50) = 0.7-3 mM) suggests that NMDA receptor blockade does not contribute to the therapeutic actions of donepezil. Of potential therapeutic relevance, donepezil binds to the sigma(1) receptor with high affinity (K(i) = 14.6 nM) in an in vitro preparation (Neurosci Lett 260:5-8, 1999). Thus, we sought to determine whether an interaction with the sigma(1) receptor may occur in vivo under physiologically relevant conditions by evaluating the sigma(1) receptor dependence effects of donepezil in behavioral tasks. Donepezil showed antidepressant-like activity in the mouse-forced swimming test as did the sigma(1) receptor agonist igmesine. This effect was not displayed by the other cholinesterase inhibitors, rivastigmine and tacrine. The donepezil and igmesine effects were blocked by preadministration of the sigma(1) receptor antagonist N-[2-(3,4-dichlorophenyl)ethyl]-N-methyl-2-(dimethylamino) ethylamine (BD1047) and an in vivo antisense probe treatment. The memory-enhancing effect of donepezil was also investigated. All cholinesterase inhibitors attenuated dizocilpine-induced learning impairments. However, only the donepezil and igmesine effects were blocked by BD1047 or the antisense treatment. Therefore, donepezil behaved as an effective sigma(1) receptor agonist on these behavioral responses, and an interaction of the drug with the sigma(1) receptor must be considered in its

  5. Vesicular acetylcholine transporter (VAChT) in the brain of spontaneously hypertensive rats (SHR): effect of treatment with an acetylcholinesterase inhibitor.

    PubMed

    Tayebati, S K; Di Tullio, M A; Amenta, F

    2008-11-01

    The cholinergic marker vesicular acetylcholine transporter (VAChT) was investigated in different cerebral areas of spontaneously hypertensive rats (SHR) by immunochemistry (Western blot analysis) and by immunohistochemistry. SHR were used as an animal model of hypertensive brain damage. The sensitivity of manipulation of cholinergic system on VAChT was assessed in rats treated for four weeks with the acetylcholinesterase (AChE) inhibitor galantamine (3 mg/Kg/day). VAChT concentrations were increased in the brain of control SHR compared to age-matched normotensive Wistar-Kyoto rats. This increase probably represents an up-regulation of VAChT to oppose cholinergic deficits reported in SHR and is countered by galantamine administration. The possibility that cholinergic neurotransmission enhancement may represent a therapeutic strategy in cerebrovascular disease is discussed.

  6. Combined 3D-QSAR, molecular docking, and molecular dynamics study of tacrine derivatives as potential acetylcholinesterase (AChE) inhibitors of Alzheimer's disease.

    PubMed

    Zhou, An; Hu, Jianping; Wang, Lirong; Zhong, Guochen; Pan, Jian; Wu, Zeyu; Hui, Ailing

    2015-10-01

    Acetylcholinesterase (AChE) is one of the key targets of drugs for treating Alzheimer's disease (AD). Tacrine is an approved drug with AChE-inhibitory activity. In this paper, 3D-QSAR, molecular docking, and molecular dynamics were carried out in order to study 60 tacrine derivatives and their AChE-inhibitory activities. 3D-QSAR modeling resulted in an optimal CoMFA model with q(2) = 0.552 and r(2) = 0.983 and an optimal CoMSIA model with q(2) = 0.581 and r(2) = 0.989. These QSAR models also showed that the steric and H-bond fields of these compounds are important influences on their activities. The interactions between these inhibitors and AChE were further explored through molecular docking and molecular dynamics simulation. A few key residues (Tyr70, Trp84, Tyr121, Trp279, and Phe330) at the binding site of AChE were identified. The results of this study improve our understanding of the mechanisms of AChE inhibitors and afford valuable information that should aid the design of novel potential AChE inhibitors. Graphical Abstract Superposition of backbone atoms of the lowest-energy structure obtained from MD simulation (magenta) onto those of the structure of the initial molecular docking model (green).

  7. The natural product dihydrotanshinone I provides a prototype for uncharged inhibitors that bind specifically to the acetylcholinesterase peripheral site with nanomolar affinity.

    PubMed

    Beri, Veena; Wildman, Scott A; Shiomi, Kazuro; Al-Rashid, Ziyad F; Cheung, Jonah; Rosenberry, Terrone L

    2013-10-22

    Cholinergic synaptic transmission often requires extremely rapid hydrolysis of acetylcholine by acetylcholinesterase (AChE). AChE is inactivated by organophosphates (OPs) in chemical warfare nerve agents. The resulting accumulation of acetylcholine disrupts cholinergic synaptic transmission and can lead to death. A potential long-term strategy for preventing AChE inactivation by OPs is based on evidence that OPs must pass through a peripheral site or P-site near the mouth of the AChE active site gorge before reacting with a catalytic serine in an acylation site or A-site at the base of the gorge. An ultimate goal of this strategy is to design compounds that bind tightly at or near the P-site and exclude OPs from the active site while interfering minimally with the passage of acetylcholine. However, to target the AChE P-site with ligands and potential drugs that selectively restrict access, much more information must be gathered about the structure-activity relationships of ligands that bind specifically to the P-site. We apply here an inhibitor competition assay that can correctly determine whether an AChE inhibitor binds to the P-site, the A-site, or both sites. We have used this assay to examine three uncharged, natural product inhibitors of AChE, including aflatoxin B1, dihydrotanshinone I, and territrem B. The first two of these inhibitors are predicted by the competition assay to bind selectively to the P-site, while territrem B is predicted to span both the P- and A-sites. These predictions have recently been confirmed by X-ray crystallography. Dihydrotanshinone I, with an observed binding constant (KI) of 750 nM, provides a good lead compound for the development of high-affinity, uncharged inhibitors with specificity for the P-site. PMID:24040835

  8. Effects of memantine and donepezil on cortical and hippocampal acetylcholine levels and object recognition memory in rats.

    PubMed

    Ihalainen, Jouni; Sarajärvi, Timo; Rasmusson, Doug; Kemppainen, Susanna; Keski-Rahkonen, Pekka; Lehtonen, Marko; Banerjee, Pradeep K; Semba, Kazue; Tanila, Heikki

    2011-01-01

    This preclinical study investigated the ability of memantine (MEM) to stimulate brain acetylcholine (ACh) release, potentially acting synergistically with donepezil (DON, an acetylcholinesterase inhibitor). Acute systemic administration of either MEM or DON to anesthetized rats caused dose-dependent increases of ACh levels in neocortex and hippocampus, and the combination of MEM (5 mg/kg) and DON (0.5 mg/kg) produced significantly greater increases than either drug alone. To determine whether ACh release correlated with cognitive improvement, rats with partial fimbria-fornix (FF) lesions were treated with acute or chronic MEM or DON. Acute MEM treatment significantly elevated baseline hippocampal ACh release but did not significantly improve task performance on a delayed non-match-to-sample (DNMS) task, whereas chronic MEM treatment significantly improved DNMS performance but only marginally elevated baseline ACh levels. Acute or chronic treatment with DON (in the presence of neostigmine to allow ACh collection) did not significantly improve DNMS performance or alter ACh release. In order to investigate the effect of adding MEM to ongoing DON therapy, lesioned rats pretreated with DON for 3 weeks were given a single intraperitoneal dose of MEM. MEM significantly elevated baseline hippocampal ACh levels, but did not significantly improve DNMS task scores compared to chronic DON-treated animals. These data indicate that MEM, in addition to acting as an NMDA receptor antagonist, can also augment ACh release; however, in this preclinical model, increased ACh levels did not directly correlate with improved cognitive performance.

  9. Dihydroquinoline Carbamate Derivatives as "Bio-oxidizable" Prodrugs for Brain Delivery of Acetylcholinesterase Inhibitors: [¹¹C] Radiosynthesis and Biological Evaluation.

    PubMed

    Bohn, Pierre; Gourand, Fabienne; Papamicaël, Cyril; Ibazizène, Méziane; Dhilly, Martine; Gembus, Vincent; Alix, Florent; Ţînţaş, Mihaela-Liliana; Marsais, Francis; Barré, Louisa; Levacher, Vincent

    2015-05-20

    With the aim of improving the efficiency of marketed acetylcholinesterase (AChE) inhibitors in the symptomatic treatment of Alzheimer's disease, plagued by adverse effects arising from peripheral cholinergic activation, this work reports a biological evaluation of new central AChE inhibitors based on an original "bio-oxidizable" prodrug strategy. After peripheral injection of the prodrug 1a [IC50 > 1 mM (hAChE)] in mice, monitoring markers of central and peripheral cholinergic activation provided in vivo proof-of-concept for brain delivery of the drug 2a [IC50 = 20 nM (hAChE)] through central redox activation of 1a. Interestingly, peripheral cholinergic activation has been shown to be limited in time, likely due to the presence of a permanent positive charge in 2a promoting rapid elimination of the AChE inhibitor from the circulation of mice. To support these assumptions, the radiosynthesis with carbon-11 of prodrug 1a was developed for additional ex vivo studies in rats. Whole-body biodistribution of radioactivity revealed high accumulation in excretory organs along with moderate but rapid brain uptake. Radio-HPLC analyses of brain samples confirm rapid CNS penetration of [(11)C]1a, while identification of [(11)C]2a and [(11)C]3a both accounts for central redox activation of 1a and pseudoirreversible inhibition of AChE, respectively. Finally, Caco-2 permeability assays predicted metabolite 3a as a substrate for efflux transporters (P-gp inter alia), suggesting that metabolite 3a might possibly be actively transported out of the brain. Overall, a large body of evidence from in vivo and ex vivo studies on small animals has been collected to validate this "bio-oxidizable" prodrug approach, emerging as a very promising strategy in the rational design of selective central AChE inhibitors. PMID:25695305

  10. Exploration of a Library of 3,4-(Methylenedioxy)aniline-Derived Semicarbazones as Dual Inhibitors of Monoamine Oxidase and Acetylcholinesterase: Design, Synthesis, and Evaluation.

    PubMed

    Tripathi, Rati K P; Rai, Gopal K; Ayyannan, Senthil R

    2016-06-01

    A library of 3,4-(methylenedioxy)aniline-derived semicarbazones was designed, synthesized, and evaluated as monoamine oxidase (MAO) and acetylcholinesterase (AChE) inhibitors for the treatment of neurodegenerative diseases. Most of the new compounds selectively inhibited MAO-B and AChE, with IC50 values in the micro- or nanomolar ranges. Compound 16, 1-(2,6-dichlorobenzylidene)-4-(benzo[1,3]dioxol-5-yl)semicarbazide presented a balanced multifunctional profile of MAO-A (IC50 =4.52±0.032 μm), MAO-B (IC50 =0.059±0.002 μm), and AChE (IC50 =0.0087±0.0002 μm) inhibition without neurotoxicity. Kinetic studies revealed that compound 16 exhibits competitive and reversible inhibition against MAO-A and MAO-B, and mixed-type inhibition against AChE. Molecular docking studies further revealed insight into the possible interactions within the enzyme-inhibitor complexes. The most active compounds were found to interact with the enzymes through hydrogen bonding and hydrophobic interactions. Additionally, in silico molecular properties and ADME properties of the synthesized compounds were calculated to explore their drug-like characteristics.

  11. Exploration of a Library of 3,4-(Methylenedioxy)aniline-Derived Semicarbazones as Dual Inhibitors of Monoamine Oxidase and Acetylcholinesterase: Design, Synthesis, and Evaluation.

    PubMed

    Tripathi, Rati K P; Rai, Gopal K; Ayyannan, Senthil R

    2016-06-01

    A library of 3,4-(methylenedioxy)aniline-derived semicarbazones was designed, synthesized, and evaluated as monoamine oxidase (MAO) and acetylcholinesterase (AChE) inhibitors for the treatment of neurodegenerative diseases. Most of the new compounds selectively inhibited MAO-B and AChE, with IC50 values in the micro- or nanomolar ranges. Compound 16, 1-(2,6-dichlorobenzylidene)-4-(benzo[1,3]dioxol-5-yl)semicarbazide presented a balanced multifunctional profile of MAO-A (IC50 =4.52±0.032 μm), MAO-B (IC50 =0.059±0.002 μm), and AChE (IC50 =0.0087±0.0002 μm) inhibition without neurotoxicity. Kinetic studies revealed that compound 16 exhibits competitive and reversible inhibition against MAO-A and MAO-B, and mixed-type inhibition against AChE. Molecular docking studies further revealed insight into the possible interactions within the enzyme-inhibitor complexes. The most active compounds were found to interact with the enzymes through hydrogen bonding and hydrophobic interactions. Additionally, in silico molecular properties and ADME properties of the synthesized compounds were calculated to explore their drug-like characteristics. PMID:27135466

  12. Combined administration of cerebrolysin and donepezil induces plastic changes in prefrontal cortex in aged mice.

    PubMed

    Alcántara-González, Faviola; Mendoza-Perez, Claudia Rebeca; Zaragoza, Néstor; Juarez, Ismael; Arroyo-García, Luis Enrique; Gamboa, Citlalli; De La Cruz, Fidel; Zamudio, Sergio; Garcia-Dolores, Fernando; Flores, Gonzalo

    2012-11-01

    Cerebrolysin (Cbl) shows neurotrophic and neuroprotective properties while donepezil (Dnp) is a potent acetylcholinesterase (AChE) inhibitor, both drugs are prescribed for Alzheimer's disease (AD) treatment. Previous studies have shown that the Dnp and Cbl administered separately, modify dendritic morphology of neurons in the prefrontal cortex and hippocampus in senile rodents. Since the deficit of neurotrophic factor activity is implicated in the degeneration of cholinergic neurons of basal forebrain, a combination therapy of Dnp and Cbl has been tested recently in Alzheimer's patients. However, the plastic changes that may underlie this combined treatment have not yet been explored. We present here the effect of the combined administration of Cbl and Dnp on dendritic morphology in brain regions related to learning and memory in aged mice. The Golgi-Cox staining protocol and Sholl analysis were used for studying dendritic changes. Cbl and Dnp were administrated daily for 2 months to 9-months-old mice. Locomotor activity was assessed, as well as the dendritic morphology of neurons in several limbic regions was analyzed. Results showed that Cbl and Dnp induced an increase in locomotor activity without synergistic effect. The Cbl or Dnp treatment modified the dendritic morphology of neurons from prefrontal cortex (PFC), dorsal hippocampus (DH), dentate gyrus (DG), and the shell of nucleus accumbens (NAcc). These changes show an increase in the total dendritic length and spine density, resulting in an improvement of dendritic arborization. Prominently, a synergistic effect of Cbl and Dnp was observed on branching order and total dendritic length of pyramidal neurons from PFC. These results suggest that Dnp and Cbl may induce plastic changes in a manner independent of each other, but could enhance their effect in target cells from PFC.

  13. Donepezil for the Treatment of Language Deficits in Adults With Down Syndrome: A Preliminary 24-Week Open Trial

    PubMed Central

    Heller, James H.; Spiridigliozzi, Gail A.; Sullivan, Jennifer A.; Doraiswamy, P. Murali; Krishnan, Ranga R.; Kishnani, Priya S.

    2009-01-01

    At present, there is no proven pharmacologic treatment for cognitive or language impairments in Down syndrome (DS). Cholinergic deficits have been documented in DS and linked to cognitive deficits. This study is a 24-week open-label clinical trial of donepezil hydrochloride for the treatment of language deficits in adults with DS. To our knowledge, this is the first prospective study to evaluate systematically the effects of donepezil, a cholinesterase inhibitor, on specific language domains in DS. The main finding that emerged was an improvement in expressive language performance following donepezil therapy. Despite the multiple methodological limitations, the results raise important questions regarding the role of the cholinergic system in language function and the specific effect of cholinergic therapy in the treatment of language impairment in DS. The results support the need for large-scale controlled studies of the effects of donepezil treatment on language and on other cognitive domains in DS. PMID:12494428

  14. Acetylcholinesterase biosensor for inhibitor measurements based on glassy carbon electrode modified with carbon black and pillar[5]arene.

    PubMed

    Shamagsumova, Rezeda V; Shurpik, Dmitry N; Padnya, Pavel L; Stoikov, Ivan I; Evtugyn, Gennady A

    2015-11-01

    New acetylcholinesterase (AChE) biosensor based on unsubstituted pillar[5]arene (P[5]A) as electron mediator was developed and successfully used for highly sensitive detection of organophosphate and carbamate pesticides. The AChE from electric eel was immobilized by carbodiimide binding on carbon black (CB) placed on glassy carbon electrode. The working potential of 200mV was obtained in chronoamperometric mode with the measurement time of 180 s providing best inter-biosensors precision of the results. The AChE biosensor developed made it possible to detect 1×10(-11)-1×10(-6) M of malaoxon, 1×10(-8)-7×10(-6) M of methyl-paraoxon, 1×10(-10)-2×10(-6) M of carbofuran and 7×10(-9)-1×10(-5) M of aldicarb with 10 min incubation. The limits of detection were 4×10(-12), 5×10(-9), 2×10(-11) and 6×10(-10) M, respectively. The AChE biosensor was tested in the analysis of pesticide residuals in spiked samples of peanut and beetroot. The protecting effect of P[5]A derivative bearing quaternary ammonia groups on malaoxon inhibition was shown. PMID:26452862

  15. Taspine: Bioactivity-Guided Isolation and Molecular Ligand–Target Insight of a Potent Acetylcholinesterase Inhibitor from Magnolia x soulangiana

    PubMed Central

    Rollinger, Judith M.; Schuster, Daniela; Baier, Elisabeth; Ellmerer, Ernst P.; Langer, Thierry; Stuppner, Hermann

    2012-01-01

    A bioactivity-guided approach was taken to identify the acetylcholinesterase (AChE, EC 3.1.1.7) inhibitory agent in a Magnolia x soulangiana extract using a microplate enzyme assay with Ellman’s reagent. This permitted the isolation of the alkaloids taspine (1) and (−)-asimilobine (2), which were detected for the first time in this species. Compound 1 showed a significantly higher effect on AChE than the positive control galanthamine and selectively inhibited the enzyme in a long-lasting and concentration-dependent fashion with an IC50 value of 0.33 ± 0.07 μM. Extensive molecular docking studies were performed with human and Torpedo californica-AChE employing Gold software to rationalize the binding interaction. The results suggested ligand 1 to bind in an alternative binding orientation when compared to galanthamine. While this is located in close vicinity to the catalytic amino acid triad, the 1–AChE complex was found to be stabilized by (i) sandwich-like π-stacking interactions between the planar aromatic ligand (1) and the Trp84 and Phe330 of the enzyme, (ii) an esteratic site anchoring with the amino side chain, and (iii) a hydrogen-bonding network. PMID:16989531

  16. Acetylcholinesterase biosensor for inhibitor measurements based on glassy carbon electrode modified with carbon black and pillar[5]arene.

    PubMed

    Shamagsumova, Rezeda V; Shurpik, Dmitry N; Padnya, Pavel L; Stoikov, Ivan I; Evtugyn, Gennady A

    2015-11-01

    New acetylcholinesterase (AChE) biosensor based on unsubstituted pillar[5]arene (P[5]A) as electron mediator was developed and successfully used for highly sensitive detection of organophosphate and carbamate pesticides. The AChE from electric eel was immobilized by carbodiimide binding on carbon black (CB) placed on glassy carbon electrode. The working potential of 200mV was obtained in chronoamperometric mode with the measurement time of 180 s providing best inter-biosensors precision of the results. The AChE biosensor developed made it possible to detect 1×10(-11)-1×10(-6) M of malaoxon, 1×10(-8)-7×10(-6) M of methyl-paraoxon, 1×10(-10)-2×10(-6) M of carbofuran and 7×10(-9)-1×10(-5) M of aldicarb with 10 min incubation. The limits of detection were 4×10(-12), 5×10(-9), 2×10(-11) and 6×10(-10) M, respectively. The AChE biosensor was tested in the analysis of pesticide residuals in spiked samples of peanut and beetroot. The protecting effect of P[5]A derivative bearing quaternary ammonia groups on malaoxon inhibition was shown.

  17. In vivo labelling of hippocampal beta-amyloid in triple-transgenic mice with a fluorescent acetylcholinesterase inhibitor released from nanoparticles.

    PubMed

    Härtig, Wolfgang; Kacza, Johannes; Paulke, Bernd-Reiner; Grosche, Jens; Bauer, Ute; Hoffmann, Anke; Elsinghorst, Paul W; Gütschow, Michael

    2010-01-01

    The drastic loss of cholinergic projection neurons in the basal forebrain is a hallmark of Alzheimer's disease (AD), and drugs most frequently applied for the treatment of dementia include inhibitors of the acetylcholine-degrading enzyme acetylcholinesterase (AChE). This protein is known to act as a ligand of beta-amyloid (Abeta) in senile plaques, a further neuropathological sign of AD. Recently, we have shown that the fluorescent, heterodimeric AChE inhibitor PE154 allows for the histochemical staining of cortical Abeta plaques in triple-transgenic (TTG) mice with age-dependent beta-amyloidosis and tau hyperphosphorylation, an established animal model for aspects of AD. In the present study, we have primarily demonstrated the targeting of Abeta-immunopositive plaques with PE154 in vivo for 4 h up to 1 week after injection into the hippocampi of 13-20-month-old TTG mice. Numerous plaques, double-stained for PE154 and Abeta-immunoreactivity, were revealed by confocal laser-scanning microscopy. Additionally, PE154 targeted hippocampal Abeta deposits in aged TTG mice after injection of carboxylated polyglycidylmethacrylate nanoparticles delivering the fluorescent marker in vivo. Furthermore, biodegradable core-shell polystyrene/polybutylcyanoacrylate nanoparticles were found to be suitable, alternative vehicles for PE154 as a useful in vivo label of Abeta. Moreover, we were able to demonstrate that PE154 targeted Abeta, but neither phospho-tau nor reactive astrocytes surrounding the plaques. In conclusion, nanoparticles appear as versatile carriers of AChE inhibitors and other promising drugs for the treatment of AD.

  18. Brain regional acetylcholinesterase activity and muscarinic acetylcholine receptors in rats after repeated administration of cholinesterase inhibitors and its withdrawal

    SciTech Connect

    Kobayashi, Haruo . E-mail: hk1664@iwate-u.ac.jp; Suzuki, Tadahiko; Sakamoto, Maki; Hashimoto, Wataru; Kashiwada, Keiko; Sato, Itaru; Akahori, Fumiaki; Satoh, Tetsuo

    2007-03-15

    Activity of acetylcholinesterase (AChE) and specific binding of [{sup 3}H]quinuclidinyl benzilate (QNB), [{sup 3}H]pirenzepine (PZP) and [{sup 3}H]AF-DX 384 to muscarinic acetylcholine receptor (mAChR) preparations in the striatum, hippocampus and cortex of rats were determined 1, 6 and 11 days after the last treatment with an organophosphate DDVP, a carbamate propoxur or a muscarinic agonist oxotremorine as a reference for 7 and 14 days. AChE activity was markedly decreased in the three regions 1 day after the treatment with DDVP for 7 and 14 days with a gradual recovery 6 to 11 days, and much less decreased 1, 6 and 11 days after the treatment with propoxur for 7 days but not for 14 days in the hippocampus and cortex. The binding of [{sup 3}H]-QNB, PZP and AF-DX 384 in the three regions was generally decreased by the treatment with DDVP for 7 and 14 days. Such down-regulations were generally restored 6 or 11 days after the treatment for 7 but not for 14 days. The down-regulation or up-regulation as measured by [{sup 3}H]-QNB, PZP and AF-DX 384 was observed 1, 6 or 11 days after treatment with propoxur for 7 days and/or 14 days. Repeated treatment with oxotremorine produced similar effects except AChE activity to DDVP. These results suggest that repeated inhibition of AChE activity may usually cause down-regulation of mAChRs with some exception in the hippocampus when a reversible antiChE propoxur is injected.

  19. Changes in EEG power spectra and behavioral states in rats exposed to the acetylcholinesterase inhibitor chlorpyrifos and muscarinic agonist oxotremorine.

    PubMed

    Timofeeva, O A; Gordon, C J

    2001-03-01

    Organophosphates (OPs) inhibit acetylcholinesterase (AChE) activity causing cholinergic stimulation in the central nervous system (CNS). Cholinergic systems are crucial in electroencephalogram (EEG) generation and regulation of behavior; however, little is known about how OP exposure affects the EEG and behavioral states. We recorded EEG, core temperature and motor activity before and after exposure to the OP pesticide chlorpyrifos (CHP) in adult female rats implanted with telemetric transmitters. The recording and reference electrodes were placed in the occipital and frontal bones, respectively. The animals received CHP, 25 mg/kg, p.o., or oxotremorine (OX), 0.2 mg/kg, s.c. CHP led to a significant increase in delta (0.1-3.5 Hz), slow theta (4-6.5 Hz), gamma 2 (35.5-50 Hz), reduction in fast theta (7-8.5 Hz), alpha/sigma (9-14 Hz), beta 1 (14.5-24 Hz), beta 2 (24.5-30 Hz) and gamma 1 (30.5-35 Hz) powers, slowing of peak frequencies in 1-9 Hz range, hypothermia and decrease in motor activity. The drop in 7-14 Hz was associated with cholinergic suppression of sleep spindles. Changes in behavioral state were characterized by dramatic diminution of sleep postures and exploring activity and prolongation of quiet waking. There was recovery in all bands in spite of continued inhibition of AChE activity [44,45] in rats exposed to CHP. OX-induced EEG and behavioral alterations were similar to CHP except there was no increase in delta and the onset and recovery were more rapid. We did not find a correlation between the EEG and core temperature alterations. Overall, changes in EEG (except in delta band) and behavior following CHP were attributable to muscarinic stimulation. Cortical arousal together with increased quiet waking and decreased sleep after CHP occurred independently from inhibition of motor activity and lowering of core temperature. PMID:11223004

  20. Digestibility and Bioavailability of the Active Components of Erica australis L. Aqueous Extracts and Their Therapeutic Potential as Acetylcholinesterase Inhibitors

    PubMed Central

    Dias, Pilar; Falé, Pedro L.; Martins, Alice; Rauter, Amélia P.

    2015-01-01

    Erica australis L. (Ericaceae) is used in traditional medicine to treat many free-radical related ailments. In the present work, the stability and biological activity of the plant aqueous extracts submitted to an in vitro digestive process were investigated. Chemical stability was monitored by HPLC-DAD and LC-MS/MS, while the bioactivities were evaluated through the inhibition of acetylcholinesterase (AChE) and DPPH radical scavenging activity. Both extracts, whose main components were flavonol glycosides, inhibited AChE, showing IC50 values of 257.9 ± 6.2 µg/mL and 296.8 ± 8.8 µg/mL for the decoction and for the infusion, respectively. Significant radical scavenging activities were also revealed by both extracts, as denoted by the IC50 values for the decoction, 6.7 ± 0.1 µg/mL, and for the infusion, 10.5 ± 0.3 µg/mL. After submission to gastric and pancreatic juices, no remarkable alterations in the composition or in the bioactivities were observed, suggesting that the extracts may pass through the gastrointestinal tract, keeping their composition and therefore their biological properties. Moreover, the bioavailability of the components of both extracts, as studied in a Caco-2 cell model, showed that compounds can permeate the membrane, which is a condition to exert their biological activities. Our results add further support to the potential of E. australis for its antioxidant and neuroprotective properties. PMID:26347794

  1. 3-Oxoisoxazole-2(3H)-carboxamides and isoxazol-3-yl carbamates: Resistance-breaking acetylcholinesterase inhibitors targeting the malaria mosquito, Anopheles gambiae

    PubMed Central

    Verma, Astha; Wong, Dawn M.; Islam, Rafique; Tong, Fan; Ghavami, Maryam; Mutunga, James M.; Slebodnick, Carla; Li, Jianyong; Viayna, Elisabet; Lam, Polo C.-H.; Totrov, Maxim M.; Bloomquist, Jeffrey R.; Carlier, Paul R.

    2015-01-01

    To identify potential selective and resistance-breaking mosquitocides against the African malaria vector Anopheles gambiae, we investigated the acetylcholinesterase (AChE) inhibitory and mosquitocidal properties of isoxazol-3-yl dimethylcarbamates (15), and the corresponding 3-oxoisoxazole-2(3H)-dimethylcarboxamide isomers (14). In both series, compounds were found with excellent contact toxicity to wild-type susceptible (G3) strain and multiply resistant (Akron) strain mosquitoes that carry the G119S resistance mutation of AChE. Compounds possessing good to excellent toxicity to Akron strain mosquitoes inhibit the G119S mutant of An. gambiae AChE (AgAChE) with ki values at least 10- to 600-fold higher than that of propoxur, a compound that does not kill Akron mosquitoes at the highest concentration tested. On average, inactivation of WT AgAChE by dimethylcarboxamides 14 was 10-20 fold faster than that of the corresponding isoxazol-3-yl dimethylcarbamates 15. X-ray crystallography of dimethylcarboxamide 14d provided insight into that reactivity, a finding that may explain the inhibitory power of structurally-related inhibitors of hormone-sensitive lipase. Finally, human/An. gambiae AChE inhibition selectivities of these compounds were low, suggesting the need for additional structural modification. PMID:25684426

  2. Exploring Basic Tail Modifications of Coumarin-Based Dual Acetylcholinesterase-Monoamine Oxidase B Inhibitors: Identification of Water-Soluble, Brain-Permeant Neuroprotective Multitarget Agents.

    PubMed

    Pisani, Leonardo; Farina, Roberta; Catto, Marco; Iacobazzi, Rosa Maria; Nicolotti, Orazio; Cellamare, Saverio; Mangiatordi, Giuseppe Felice; Denora, Nunzio; Soto-Otero, Ramon; Siragusa, Lydia; Altomare, Cosimo Damiano; Carotti, Angelo

    2016-07-28

    Aiming at modulating two key enzymatic targets for Alzheimer's disease (AD), i.e., acetylcholinesterase (AChE) and monoamine oxidase B (MAO B), a series of multitarget ligands was properly designed by linking the 3,4-dimethylcoumarin scaffold to 1,3- and 1,4-substituted piperidine moieties, thus modulating the basicity to improve the hydrophilic/lipophilic balance. After in vitro enzymatic inhibition assays, multipotent inhibitors showing potencies in the nanomolar and in the low micromolar range for hMAO B and eeAChE, respectively, were prioritized and evaluated in human SH-SY5Y cell-based models for their cytotoxicity and neuroprotective effect against oxidative toxins (H2O2, rotenone, and oligomycin-A). The present study led to the identification of a promising multitarget hit compound (5b) exhibiting high hMAO B inhibitory activity (IC50 = 30 nM) and good MAO B/A selectivity (selectivity index, SI = 94) along with a micromolar eeAChE inhibition (IC50 = 1.03 μM). Moreover, 5b behaves as a water-soluble, brain-permeant neuroprotective agent against oxidative insults without interacting with P-gp efflux system. PMID:27347731

  3. Phenserine, a novel acetylcholinesterase inhibitor, attenuates impaired learning of rats in a 14-unit T-maze induced by blockade of the N-methyl-D-aspartate receptor.

    PubMed

    Patel, N; Spangler, E L; Greig, N H; Yu, Q S; Ingram, D K; Meyer, R C

    1998-01-01

    The present study evaluated the interaction of the glutamatergic and acetylcholinergic systems in memory formation, with an overall emphasis on developing multi-system approaches for treating age-related cognitive decline and Alzheimer' s disease. Specifically, we used a 14-unit T-maze to investigate whether phenserine (PHEN), a long-acting acetylcholinesterase inhibitor, could overcome a learning deficit in rats induced by the NMDA receptor antagonist, 3-(+/-) 2-carboxypiperzin-4-yl) propyl phosphonic acid (CPP). Prior to drug treatment, 3-month-old male Fischer-344 rats were trained to criterion (13 of 15 shock avoidances) in a straight runway. Twenty-four hours later, rats were given i.p. injections of saline (SAL), CPP (9 mg/kg) + SAL or CPP + PHEN (0.25, 0.5 or 0.75 mg/kg) and received 15 massed training trials in a 14-unit T-maze. CPP significantly increased the number of errors made in the maze relative to controls, and phenserine significantly reduced the number of errors made relative to rats receiving CPP only, with the lowest dose being the most effective. These results provide further support of phenserine's potent, cognitive-enhancing properties, and suggest that combined modulation of glutamatergic and acetylcholinergic systems may be of potential benefit in developing new pharmacotherapies for Alzheimer's disease and age-related cognitive decline. PMID:9592071

  4. Insect-specific irreversible inhibitors of acetylcholinesterase in pests including the bed bug, the eastern yellowjacket, German and American cockroaches, and the confused flour beetle.

    PubMed

    Polsinelli, Gregory A; Singh, Sanjay K; Mishra, Rajesh K; Suranyi, Robert; Ragsdale, David W; Pang, Yuan-Ping; Brimijoin, Stephen

    2010-09-01

    Insecticides directed against acetylcholinesterase (AChE) are facing increased resistance among target species as well as increasing concerns for human toxicity. The result has been a resurgence of disease vectors, insects destructive to agriculture, and residential pests. We previously reported a free cysteine (Cys) residue at the entrance to the AChE active site in some insects but not higher vertebrates. We also reported Cys-targeting methanethiosulfonate molecules (AMTSn), which, under conditions that spared human AChE, caused total irreversible inhibition of aphid AChE, 95% inhibition of AChE from the malaria vector mosquito (Anopheles gambia), and >80% inhibition of activity from the yellow fever mosquito (Aedes aegypti) and northern house mosquito (Culex pipiens). We now find the same compounds inhibit AChE from cockroaches (Blattella germanica and Periplaneta americana), the flour beetle (Tribolium confusum), the multi-colored Asian ladybird beetle (Harmonia axyridis), the bed bug (Cimex lectularius), and a wasp (Vespula maculifrons), with IC(50) values of approximately 1-11muM. Our results support further study of Cys-targeting inhibitors as conceptually novel insecticides that may be free of resistance in a range of insect pests and disease vectors and, compared with current compounds, should demonstrate much lower toxicity to mammals, birds, and fish. PMID:20109441

  5. Nicotinic receptor-dependent and -independent effects of galantamine, an acetylcholinesterase inhibitor, on the non-neuronal acetylcholine system in C2C12 cells.

    PubMed

    Oikawa, Shino; Mano, Asuka; Iketani, Mitsue; Kakinuma, Yoshihiko

    2015-11-01

    We previously reported that satellite cells possess the ability to produce angiogenic factors, including fibroblast growth factor (FGF)-2 and vascular endothelial growth factor (VEGF) in vivo. However, whether C2C12 cells possess a non-neuronal cholinergic system (NNCS) or non-neuronal ACh (NNA) remains to be studied; therefore, we investigated the system using C2C12 cells and its regulatory mechanisms. C2C12 cells synthesized ACh, the level of which was comparable with that of cardiomyocytes, and the synthesis was augmented by the acetylcholinesterase inhibitor galantamine. The ChAT promoter activity was upregulated by nicotine or galantamine, partly through nicotinic receptors for both agents as well as through a non-nicotinic receptor pathway for galantamine. Further, VEGF secretion by C2C12 cells was also increased by nicotine or galantamine through nicotinic receptors as well as partly through non-nicotinic pathways in the case of galantamine. These results suggest that C2C12 cells are equipped with NNCS or NNA, which is positively regulated through nicotinic or non-nicotinic pathways, particularly in the case of galantamine. These results provide a novel concept that myogenic cells expressing NNA can be a therapeutic target for regulating angiogenic factor synthesis. PMID:25979761

  6. Synthesis and evaluation of multi-target-directed ligands for the treatment of Alzheimer's disease based on the fusion of donepezil and melatonin.

    PubMed

    Wang, Jin; Wang, Zhi-Min; Li, Xue-Mei; Li, Fan; Wu, Jia-Jia; Kong, Ling-Yi; Wang, Xiao-Bing

    2016-09-15

    A novel series of compounds obtained by fusing the acetylcholinesterase (AChE) inhibitor donepezil and the antioxidant melatonin were designed as multi-target-directed ligands for the treatment of Alzheimer's disease (AD). In vitro assay indicated that most of the target compounds exhibited a significant ability to inhibit acetylcholinesterase (eeAChE and hAChE), butyrylcholinesterase (eqBuChE and hBuChE), and β-amyloid (Aβ) aggregation, and to act as potential antioxidants and biometal chelators. Especially, 4u displayed a good inhibition of AChE (IC50 value of 193nM for eeAChE and 273nM for hAChE), strong inhibition of BuChE (IC50 value of 73nM for eqBuChE and 56nM for hBuChE), moderate inhibition of Aβ aggregation (56.3% at 20μM) and good antioxidant activity (3.28trolox equivalent by ORAC assay). Molecular modeling studies in combination with kinetic analysis revealed that 4u was a mixed-type inhibitor, binding simultaneously to catalytic anionic site (CAS) and the peripheral anionic site (PAS) of AChE. In addition, 4u could chelate metal ions, reduce PC12 cells death induced by oxidative stress and penetrate the blood-brain barrier (BBB). Taken together, these results strongly indicated the hybridization approach is an efficient strategy to identify novel scaffolds with desired bioactivities, and further optimization of 4u may be helpful to develop more potent lead compound for AD treatment. PMID:27460699

  7. A DKP Cyclo(L-Phe-L-Phe) Found in Chicken Essence Is a Dual Inhibitor of the Serotonin Transporter and Acetylcholinesterase

    PubMed Central

    Tsuruoka, Nobuo; Beppu, Yoshinori; Koda, Hirofumi; Doe, Nobutaka; Watanabe, Hiroshi; Abe, Keiichi

    2012-01-01

    Diketopiperazines (DKPs) are naturally-occurring cyclic dipeptides with a small structure and are found in many organisms and in large amounts in some foods and beverages. We found that a chicken essence beverage, which is popular among Southeast Asians as a traditional remedy and a rich source of DKPs, inhibited the serotonin transporter (SERT) and suppressed serotonin uptake from rat brain synaptosomes, which prompted us to isolate and identify the active substance(s). We purified a SERT inhibitor from the chicken essence beverage and identified it as the DKP cyclo(L-Phe-L-Phe). Interestingly, it was a naturally occurring dual inhibitor that inhibited both SERT and acetylcholinesterase (AChE) in vitro. The DKP increased extracellular levels of the cerebral monoamines serotonin, norepinephrine, and dopamine in the medial prefrontal cortex and acetylcholine in the ventral hippocampus of freely moving rats when administered orally. Moreover, cyclo(L-Phe-L-Phe) significantly shortened escape latency in the water maze test in depressed mice previously subjected to a repeated open-space swimming task, which induces a depression-like state. Cyclo(L-Phe-L-Phe) also significantly improved accuracy rates in a radial maze test in rats and increased step-through latencies in a passive avoidance test in mice with scopolamine-induced amnesia. These animal test results suggest that cyclo(L-Phe-L-Phe), which is present abundantly in some foods such as chicken essence, may abrogate the onset of depression and, thus, contribute to preventing the development of Alzheimer’s disease and other dementia, because senile depression is a risk factor for dementia. PMID:23209830

  8. Carbon dots-assisted colorimetric and fluorometric dual-mode protocol for acetylcholinesterase activity and inhibitors screening based on the inner filter effect of silver nanoparticles.

    PubMed

    Zhao, Dan; Chen, Chuanxia; Sun, Jian; Yang, Xiurong

    2016-06-01

    In this work, we proposed an original and versatile dual-readout (colorimetric and fluorometric) protocol by means of silver nanoparticles (AgNPs) and fluorescent carbon dots (CDs), which was amenable to rapid, ultrasensitive assay of acetylcholinesterase (AChE) activity and its inhibitors. The sensing mechanism was based on the non-fluorescence state of CDs resulting from the inner filter effect (IFE) of AgNPs and the specific AChE-catalyzed hydrolysis of acetylthiocholine (ATCh) into thiocholine (TCh). Herein, the generated positively-charged and thiol-bearing TCh at trace concentration levels could trigger the aggregation of AgNPs through the well-known electrostatic and Ag-SH interactions, thereby turning the sensing solutions grey and recovering the IFE-quenched fluorescence simultaneously. Furthermore, the existence of IFE mechanism was conceivably confirmed by combining the zeta potentials, fluorescence spectra, UV-vis spectra, fluorescence lifetime and TEM measurements. As far as we know, the present study has reported the first dual-mode proposal for assessing AChE activity by using a CDs-based IFE sensing strategy, where the detection limit was as low as 0.021 mU mL(-1) and 0.016 mU mL(-1) by colorimetric and fluorometric measurements, respectively. On the other hand, the proposed assay was feasible to screen AChE inhibitors such as tacrine and carbaryl. Meanwhile, this rationally designed dual-mode sensing platform featured simplicity, rapidity, flexibility and diversity, which was demonstrated by the quantitative detection of spiked carbaryl in apple juice samples with satisfactory results. PMID:27099097

  9. Molecular Docking Guided Comparative GFA, G/PLS, SVM and ANN Models of Structurally Diverse Dual Binding Site Acetylcholinesterase Inhibitors.

    PubMed

    Gupta, Shikhar; Fallarero, Adyary; Vainio, Mikko J; Saravanan, P; Santeri Puranen, J; Järvinen, Päivi; Johnson, Mark S; Vuorela, Pia M; Mohan, C Gopi

    2011-08-01

    Recently discovered 42 AChE inhibitors binding at the catalytic and peripheral anionic site were identified on the basis of molecular docking approach, and its comparative quantitative structure-activity relationship (QSAR) models were developed. These structurally diverse inhibitors were obtained by our previously reported high-throughput in vitro screening technique using 384-well plate's assay based on colorimetric method of Ellman. QSAR models were developed using (i) genetic function algorithm, (ii) genetic partial least squares, (iii) support vector machine and (iv) artificial neural network techniques. The QSAR model robustness and significance was critically assessed using different cross-validation techniques on test data set. The generated QSAR models using thermodynamic, electrotopological and electronic descriptors showed that nonlinear methods are more robust than linear methods, and provide insight into the structural features of compounds that are important for AChE inhibition.

  10. Effects of Anticholinesterases on Catalysis and Induced Conformational Change of the Peripheral Anionic Site of Murine Acetylcholinesterase

    PubMed Central

    Tong, Fan; Islam, Rafique M.; Carlier, Paul R.; Ma, Ming; Ekström, Fredrik; Bloomquist, Jeffrey R.

    2013-01-01

    Conventional insecticides targeting acetylcholinesterase (AChE) typically show high mammalian toxicities and because there is resistance to these compounds in many insect species, alternatives to established AChE inhibitors used for pest control are needed. Here we used a fluorescence method to monitor interactions between various AChE inhibitors and the AChE peripheral anionic site, which is a novel target for new insecticides acting on this enzyme. The assay uses thioflavin-T as a probe, which binds to the peripheral anionic site of AChE and yields an increase in fluorescent signal. Three types of AChE inhibitors were studied: catalytic site inhibitors (carbamate insecticides, edrophonium, and benzylpiperidine), peripheral site inhibitors (tubocurarine, ethidium bromide, and propidium iodide), and bivalent inhibitors (donepezil, BW284C51, and a series of bis(n)-tacrines). All were screened on murine AChE to compare and contrast changes of peripheral site conformation in the TFT assay with catalytic inhibition. All the inhibitors reduced thioflavin-T fluorescence in a concentration-dependent manner with potencies (IC50) ranging from 8 nM for bis(6)-tacrine to 159 μM for benzylpiperidine. Potencies in the fluorescence assay were correlated well with their potencies for enzyme inhibition (R2 = 0.884). Efficacies for reducing thioflavin-T fluorescence ranged from 23–36% for catalytic site inhibitors and tubocurarine to near 100% for ethidium bromide and propidium iodide. Maximal efficacies could be reconciled with known mechanisms of interaction of the inhibitors with AChE. When extended to pest species, we anticipate these findings will assist in the discovery and development of novel, selective bivalent insecticides acting on AChE. PMID:24003261

  11. Investigating the binding interactions of the anti-Alzheimer's drug donepezil with CYP3A4 and P-glycoprotein.

    PubMed

    McEneny-King, Alanna; Edginton, Andrea N; Rao, Praveen P N

    2015-01-15

    The anti-Alzheimer's agent donepezil is known to bind to the hepatic enzyme CYP3A4, but its relationship with the efflux transporter P-glycoprotein (P-gp) is not as well elucidated. We conducted in vitro inhibition studies of donepezil using human recombinant CYP3A4 and P-gp. These studies show that donepezil is a weak inhibitor of CYP3A4 (IC50=54.68±1.00μM) whereas the reference agent ketoconazole exhibited potent inhibition (CYP3A4 IC50=0.20±0.01μM). P-gp inhibition studies indicate that donepezil exhibits better inhibition relative to CYP3A4 (P-gp EC50=34.85±4.63μM) although it was less potent compared to ketoconazole (P-gp EC50=9.74±1.23μM). At higher concentrations, donepezil exhibited significant inhibition of CYP3A4 (69%, 84% and 87% inhibition at 100, 250 and 500μM, respectively). This indicates its potential to cause drug-drug interactions with other CYP3A4 substrates upon co-administration; however, this scenario is unlikely in vivo due to the low therapeutic concentrations of donepezil. Similarly, donepezil co-administration with P-gp substrates or inhibitors is unlikely to result in beneficial or adverse drug interactions. The molecular docking studies show that the 5,6-dimethoxyindan-1-one moiety of donepezil was oriented closer to the heme center in CYP3A4 whereas in the P-gp binding site, the protonated benzylpiperidine pharmacophore of donepezil played a major role in its binding ability. Energy parameters indicate that donepezil complex with both CYP3A4 and P-gp was less stable (CDOCKER energies=-15.05 and -4.91kcal/mol, respectively) compared to the ketoconazole-CYP3A4 and P-gp complex (CDOCKER energies=-41.89 and -20.03kcal/mol, respectively).

  12. Development of 3D-QSAR Model for Acetylcholinesterase Inhibitors Using a Combination of Fingerprint, Molecular Docking, and Structure-Based Pharmacophore Approaches.

    PubMed

    Lee, Sehan; Barron, Mace G

    2015-11-01

    Acetylcholinesterase (AChE), a serine hydrolase vital for regulating the neurotransmitter acetylcholine in animals, has been used as a target for drugs and pesticides. With the increasing availability of AChE crystal structures, with or without ligands bound, structure-based approaches have been successfully applied to AChE inhibitors (AChEIs). The major limitation of these approaches has been the small applicability domain due to the lack of structural diversity in the training set. In this study, we developed a 3 dimensional quantitative structure-activity relationship (3D-QSAR) for inhibitory activity of 89 reversible and irreversible AChEIs including drugs and insecticides. A 3D-fingerprint descriptor encoding protein-ligand interactions was developed using molecular docking and structure-based pharmacophore to rationalize the structural requirements responsible for the activity of these compounds. The obtained 3D-QSAR model exhibited high correlation value (R(2) = 0.93) and low mean absolute error (MAE = 0.32 log units) for the training set (n = 63). The model was predictive across a range of structures as shown by the leave-one-out cross-validated correlation coefficient (Q(2) = 0.89) and external validation results (n = 26, R(2) = 0.89, and MAE = 0.38 log units). The model revealed that the compounds with high inhibition potency had proper conformation in the active site gorge and interacted with key amino acid residues, in particular Trp84 and Phe330 at the catalytic anionic site, Trp279 at the peripheral anionic site, and Gly118, Gly119, and Ala201 at the oxyanion hole. The resulting universal 3D-QSAR model provides insight into the multiple molecular interactions determining AChEI potency that may guide future chemical design and regulation of toxic AChEIs.

  13. Clinical Significance of Repetitive Compound Muscle Action Potentials in Patients with Myasthenia Gravis: A Predictor for Cholinergic Side Effects of Acetylcholinesterase Inhibitors

    PubMed Central

    Lee, Hyo Eun; Kim, Yool-hee; Kim, Seung Min

    2016-01-01

    Background and Purpose Acetylcholinesterase inhibitors (AChEIs) are widely used to treat myasthenia gravis (MG). Although AChEIs are usually tolerated well, some MG patients suffer from side effects. Furthermore, a small proportion of MG patients show cholinergic hypersensitivity and cannot tolerate AChEIs. Because repetitive compound muscle action potentials (R-CMAPs) are an electrophysiologic feature of cholinergic neuromuscular hyperactivity, we investigated the clinical characteristics of MG patients with R-CMAPs to identify their clinical usefulness in therapeutic decision-making. Methods We retrospectively reviewed the clinical records and electrodiagnostic findings of MG patients who underwent electrodiagnostic studies and diagnostic neostigmine testing (NT). Results Among 71 MG patients, 9 could not tolerate oral pyridostigmine bromide (PB) and 17 experienced side effects of PB. R-CMAPs developed in 24 patients after NT. The highest daily dose of PB was lower in the patients with R-CMAPs (240 mg/day vs. 480 mg/day, p<0.001). The frequencies of PB intolerance and side effects were higher in the patients with R-CMAPs than in those without R-CMAPs [37.5% vs. 0% (p<0.001) and 45.8% vs. 12.8% (p=0.002), respectively]. The MG Foundation of America postintervention status did not differ significantly between MG patients with and without R-CMAPs, and the response to immunotherapy was also good in both groups. Conclusions Side effects of and intolerance to AChEIs are more common in MG patients with R-CMAPs than in those without R-CMAPs. AChEIs should be used carefully in MG patients with R-CMAPs. The presence of R-CMAPs after NT may be a good indicator of the risks of PB side effects and intolerance.

  14. Gold nanoclusters-Cu(2+) ensemble-based fluorescence turn-on and real-time assay for acetylcholinesterase activity and inhibitor screening.

    PubMed

    Sun, Jian; Yang, Xiurong

    2015-12-15

    Based on the specific binding of Cu(2+) ions to the 11-mercaptoundecanoic acid (11-MUA)-protected AuNCs with intense orange-red emission, we have proposed and constructed a novel fluorescent nanomaterials-metal ions ensemble at a nonfluorescence off-state. Subsequently, an AuNCs@11-MUA-Cu(2+) ensemble-based fluorescent chemosensor, which is amenable to convenient, sensitive, selective, turn-on and real-time assay of acetylcholinesterase (AChE), could be developed by using acetylthiocholine (ATCh) as the substrate. Herein, the sensing ensemble solution exhibits a marvelous fluorescent enhancement in the presence of AChE and ATCh, where AChE hydrolyzes its active substrate ATCh into thiocholine (TCh), and then TCh captures Cu(2+) from the ensemble, accompanied by the conversion from fluorescence off-state to on-state of the AuNCs. The AChE activity could be detected less than 0.05 mU/mL within a good linear range from 0.05 to 2.5 mU/mL. Our proposed fluorescence assay can be utilized to evaluate the AChE activity quantitatively in real biological sample, and furthermore to screen the inhibitor of AChE. As far as we know, the present study has reported the first analytical proposal for sensing AChE activity in real time by using a fluorescent nanomaterials-Cu(2+) ensemble or focusing on the Cu(2+)-triggered fluorescence quenching/recovery. This strategy paves a new avenue for exploring the biosensing applications of fluorescent AuNCs, and presents the prospect of AuNCs@11-MUA-Cu(2+) ensemble as versatile enzyme activity assay platforms by means of other appropriate substrates/analytes. PMID:26141104

  15. Development of 3D-QSAR Model for Acetylcholinesterase Inhibitors Using a Combination of Fingerprint, Molecular Docking, and Structure-Based Pharmacophore Approaches.

    PubMed

    Lee, Sehan; Barron, Mace G

    2015-11-01

    Acetylcholinesterase (AChE), a serine hydrolase vital for regulating the neurotransmitter acetylcholine in animals, has been used as a target for drugs and pesticides. With the increasing availability of AChE crystal structures, with or without ligands bound, structure-based approaches have been successfully applied to AChE inhibitors (AChEIs). The major limitation of these approaches has been the small applicability domain due to the lack of structural diversity in the training set. In this study, we developed a 3 dimensional quantitative structure-activity relationship (3D-QSAR) for inhibitory activity of 89 reversible and irreversible AChEIs including drugs and insecticides. A 3D-fingerprint descriptor encoding protein-ligand interactions was developed using molecular docking and structure-based pharmacophore to rationalize the structural requirements responsible for the activity of these compounds. The obtained 3D-QSAR model exhibited high correlation value (R(2) = 0.93) and low mean absolute error (MAE = 0.32 log units) for the training set (n = 63). The model was predictive across a range of structures as shown by the leave-one-out cross-validated correlation coefficient (Q(2) = 0.89) and external validation results (n = 26, R(2) = 0.89, and MAE = 0.38 log units). The model revealed that the compounds with high inhibition potency had proper conformation in the active site gorge and interacted with key amino acid residues, in particular Trp84 and Phe330 at the catalytic anionic site, Trp279 at the peripheral anionic site, and Gly118, Gly119, and Ala201 at the oxyanion hole. The resulting universal 3D-QSAR model provides insight into the multiple molecular interactions determining AChEI potency that may guide future chemical design and regulation of toxic AChEIs. PMID:26202430

  16. Pharmacological treatments of behavioral and psychological symptoms of dementia in Alzheimer's disease: role of acetylcholinesterase inhibitors and memantine.

    PubMed

    Desmidt, Thomas; Hommet, Caroline; Camus, Vincent

    2016-09-01

    Behavioral and psychological symptoms of dementia (BPSD) are frequent in Alzheimer's disease (AD). They are associated with disability and suffering for both the patients and their caregivers. Even if BPSD are now well diagnosed and characterized by standardized tools, their treatment remains often challenging in clinical setting because of the frequent and severe side effects of the psychotropic drugs when used in this indication. Evidence-based data confirm that antipsychotics and antidepressants are efficient for the treatment of BPSD but have a poor tolerance profile and their use is problematic. Use of cholinesterase inhibitors and memantine, whom French authorities have questioned the relevance in 2008, also have a significant efficacy on non-cognitive symptoms of AD. Therefore, and although their tolerance profile is considered unsatisfying, they keep an indication in patients with AD and BPSD. PMID:27651011

  17. Design, synthesis and biological evaluation of novel 6H-benzo[c]chromen-6-one, and 7,8,9,10-tetrahydro-benzo[c]chromen-6-one derivatives as potential cholinesterase inhibitors.

    PubMed

    Gulcan, Hayrettin Ozan; Unlu, Serdar; Esiringu, Ilker; Ercetin, Tugba; Sahin, Yasemin; Oz, Demet; Sahin, Mustafa Fethi

    2014-10-01

    Hydroxylated 6H-benzo[c]chromen-6-one derivatives (i.e., urolithins) are the main bioavailable metabolites, and biomarkers of ellagitannins present in various nutrition. Although these dietaries, the sources of urolithins, are employed in folk medicine as cognitive enhancer in the treatment of Alzheimer's Disease, urolithins have negligible potential to inhibit acetylcholinesterase and butyrylcholinesterase enzymes, the validated targets of Alzheimer's Disease. Therefore, within this research, a series of 6H-benzo[c]chromen-6-one, and 7,8,9,10-tetrahydro-benzo[c]chromen-6-one derivatives has been designed, synthesized, and their biological activities were evaluated as potential acetylcholinesterase and butyrylcholinesterase inhibitors. The compounds synthesized exerted comparable activity in comparison to rivastigmine, galantamine, and donepezil both in in vitro and in vivo studies.

  18. Design, synthesis and biological evaluation of novel 6H-benzo[c]chromen-6-one, and 7,8,9,10-tetrahydro-benzo[c]chromen-6-one derivatives as potential cholinesterase inhibitors.

    PubMed

    Gulcan, Hayrettin Ozan; Unlu, Serdar; Esiringu, Ilker; Ercetin, Tugba; Sahin, Yasemin; Oz, Demet; Sahin, Mustafa Fethi

    2014-10-01

    Hydroxylated 6H-benzo[c]chromen-6-one derivatives (i.e., urolithins) are the main bioavailable metabolites, and biomarkers of ellagitannins present in various nutrition. Although these dietaries, the sources of urolithins, are employed in folk medicine as cognitive enhancer in the treatment of Alzheimer's Disease, urolithins have negligible potential to inhibit acetylcholinesterase and butyrylcholinesterase enzymes, the validated targets of Alzheimer's Disease. Therefore, within this research, a series of 6H-benzo[c]chromen-6-one, and 7,8,9,10-tetrahydro-benzo[c]chromen-6-one derivatives has been designed, synthesized, and their biological activities were evaluated as potential acetylcholinesterase and butyrylcholinesterase inhibitors. The compounds synthesized exerted comparable activity in comparison to rivastigmine, galantamine, and donepezil both in in vitro and in vivo studies. PMID:25189690

  19. Expression of APP, BACE1, AChE and ChAT in an AD model in rats and the effect of donepezil hydrochloride treatment.

    PubMed

    Li, Qiang; Chen, Min; Liu, Hongmin; Yang, Liqun; Yang, Guiying

    2012-12-01

    The aim of this study was to investigate the pathological changes in a rat model of Alzheimer's disease (AD) and the effect of donepezil hydrochloride (HCl) treatment. The rat model of AD was established by the bilateral injection of amyloid β₁₋₄₀ (Aβ₁₋₄₀) into the hippocampus. Changes in spatial learning and memory functions were examined using the Morris water maze test and changes in catalase (CAT) and glutathione peroxidase (GSH-Px) activities were determined using chemical colorimetry. Moreover, the changes in acetylcholinesterase (AChE) and choline acetyltransferase (ChAT) expression were analyzed using immunohistochemical staining. The mRNA expression levels of the amyloid precursor protein (APP) and β-secreted enzyme 1 (BACE1) were evaluated using RT-PCR. The effects of donepezil HCl on the aforementioned indices were also observed. The rat memories of the platform quadrants in the blank, sham and donepezil HCl groups were improved compared with those of the rats in the model group. The ratio of swim distance in the fourth platform quadrant (l₄) to the total swim distance (l total) for the model group rats (l₄/l total) was significantly decreased compared with that for the blank and sham group rats. Following donepezil HCl treatment, the ratio of l₄/l total significantly increased. AD modeling caused a significant decrease in the CAT and GSH-Px activities in the brain tissues of the rats. The CAT and GSH-Px activities in the AD model rats significantly increased following donepezil HCl treatment. Moreover, donepezil HCl treatment significantly decreased the AChE, APP and BACE1 mRNA expression levels and increased the ChAT expression levels. Therefore, donepezil HCl was able to significantly decrease learning and memory damage in a rat model of AD.

  20. Invokana (Canagliflozin) as a dual inhibitor of acetylcholinesterase and sodium glucose co-transporter 2: advancement in Alzheimer's disease- diabetes type 2 linkage via an enzoinformatics study.

    PubMed

    Rizvi, Syed M D; Shakil, Shahnawaz; Biswas, Deboshree; Shakil, Shazi; Shaikh, Sibhghatulla; Bagga, Paramdeep; Kamal, Mohammad A

    2014-04-01

    Acetylcholinesterase (AChE) is a primary target for Alzheimer's therapy while recently sodium glucose cotransporter 2 (SGLT2) has gained importance as a potential target for Type 2 Diabetes Mellitus (T2DM) therapy. The present study emphasizes the molecular interactions between a new Food and Drug Administration (FDA) approved antidiabetic drug 'Invokana' (chemically known as Canagliflozin) with AChE and SGLT2 to establish a link between the treatment of T2DM and Alzheimer's Disease (AD). Docking study was performed using 'Autodock4.2'. Both hydrophobic and π-π interactions play an important role in the correct positioning of Canagliflozin within SGLT2 and catalytic site (CAS) of AChE to permit docking. Free energy of binding (ΔG) for 'Canagliflozin-SGLT2' interaction and 'Canagliflozin - CAS domain of AChE' interaction were found to be -10.03 kcal/mol and -9.40 kcal/mol, respectively. During 'Canagliflozin-SGLT2' interaction, Canagliflozin was found to interact with the most important amino acid residue Q457 of SGLT2. This residue is known for its interaction with glucose during reabsorption in kidney. However, 'Canagliflozin-CAS domain of AChE' interaction revealed that out of the three amino acids constituting the catalytic triad (S203, H447 and E334), two amino acid residues (S203 and H447) interact with Canagliflozin. Hence, Invokana (Canagliflozin) might act as a potent dual inhibitor of AChE and SGLT2. However, scope still remains in the determination of the three-dimensional structure of SGLT2-Canagliflozin and AChE-Canagliflozin complexes by X-ray crystallography to validate the described data. Since the development of diabetes is associated with AD, the design of new AChE inhibitors based on antidiabetic drug scaffolds would be particularly beneficial. Moreover, the present computational study reveals that Invokana (Canagliflozin) is expected to form the basis of a future dual therapy against diabetes associated neurological disorders.

  1. Tacrine, an oral acetylcholinesterase inhibitor, induced hepatic oxidative damage, which was blocked by liquiritigenin through GSK3-beta inhibition.

    PubMed

    Park, Sang Mi; Ki, Sung Hwan; Han, Nu Ri; Cho, Il Je; Ku, Sae Kwang; Kim, Sang Chan; Zhao, Rong Jie; Kim, Young Woo

    2015-01-01

    Although the cholinesterase inhibitor tacrine has been successfully used for the treatment of Alzheimer's disease, it is known to have hepatotoxic effects. Liquiritigenin (LQ), an active flavonoid in Glycyrrhizae radix, exerts protective effects against liver damage. This study investigated the toxic effect of tacrine on hepatocytes and the beneficial effect of LQ on tacrine intoxication in vivo and in vitro, and the underlying mechanism involved. In hepatocyte cell lines, tacrine induced cell death and oxidative stress, as indicated by decreases in cell viability and glutathione (GSH) contents, which were blocked by pretreatment with LQ. Fluorescent activated cell sorter (FACS) analysis revealed that LQ inhibited cellular H2O2 production and mitochondrial dysfunction induced by tacrine in HepG2 cells. Furthermore, LQ promoted inhibitory phosphorylation of glycogen synthase kinase-3β (GSK3β) and prevented decreases in GSK3β phosphorylation induced by tacrine. In rats treatment with tacrine at 30 mg/kg increased hepatic damage as assessed by blood biochemistry and histopathology. Administration of LQ (10 or 30 mg/kg/d, per os (p.o.)) or the hepatoprotective drug sylimarin (100 mg/kg/d) for 3 d inhibited elevations in alanine aminotransferase, aspartate aminotransferase, and histological changes induced by tacrine. These results show that LQ efficaciously protects the rat liver against tacrine-induced liver damage, and suggest that LQ is a therapeutic candidate for ameliorating the hepatotoxic effects of tacrine. PMID:25747977

  2. Inhibitory effect of ebselen on cerebral acetylcholinesterase activity in vitro: kinetics and reversibility of inhibition.

    PubMed

    Martini, Franciele; Bruning, César Augusto; Soares, Suelen Mendonca; Nogueira, Cristina Wayne; Zeni, Gilson

    2015-01-01

    Ebselen is a synthetic organoselenium compound that has been considered a potential pharmacological agent with low toxicity, showing antioxidant, anti-inflammatory and neuroprotective effects. It is bioavailable, blood-brain barrier permeant and safe based on cellular toxicity and Phase I-III clinical trials. There is evidence that ebselen inhibits acetylcholinesterase (AChE) activity, an enzyme that plays a key role in the cholinergic system by hydrolyzing acetylcholine (ACh), in vitro and ex vivo. This system has a well-known relationship with cognitive process, and AChE inhibitors, such as donepezil and galantamine, have been used to treat cognitive deficits, mainly in the Alzheimer's Disease (AD). However, these drugs have poor bioavailability and a number of side effects, including gastrointestinal upsets and hepatotoxicity. In this way, this study aimed to evaluate the effect of ebselen on cerebral AChE activity in vitro and to determine the kinetic profile and the reversibility of inhibition by dialysis. Ebselen inhibited the cerebral AChE activity with an IC50 of 29 µM, similar to IC50 found with pure AChE from electric eel, demonstrating a mixed and reversible inhibition of AChE, since it increased Km and decreased Vmax. The AChE activity was recovered within 60 min of dialysis. Therefore, the use of ebselen as a therapeutic agent for treatment of AD should be considered, although memory behavior tasks are needed to support such hypothesis. PMID:25312723

  3. Combination treatment in Alzheimer's disease: results of a randomized, controlled trial with cerebrolysin and donepezil.

    PubMed

    Alvarez, X Antón; Cacabelos, R; Sampedro, C; Couceiro, V; Aleixandre, M; Vargas, M; Linares, C; Granizo, E; García-Fantini, M; Baurecht, W; Doppler, E; Moessler, H

    2011-08-01

    Treatment with neurotrophic agents might enhance and/or prolong the effects of cholinesterase inhibitors (ChEIs) in Alzheimer's disease (AD). We compared the safety and efficacy of the neurotrophic compound Cerebrolysin (10 ml; n=64), donepezil (10 mg; n=66) and a combination of both treatments (n=67) in mild-to-moderate (mini-mental state examination-MMSE score 12-25) probable AD patients enrolled in a randomized, double-blind trial. Primary endpoints were global outcome (Clinician's Interview-Based Impression of Change plus caregiver input; CIBIC+) and cognition (change from baseline in AD Assessment Scale-cognitive subscale+; ADAS-cog+) at week 28. Changes in functioning (AD Cooperative Study-Activities of Daily Living scale, ADCS-ADL) and behaviour (Neuropsychiatric Inventory, NPI) were secondary endpoints. Treatment effects in cognitive, functional and behavioral domains showed no significant group differences; whereas improvements in global outcome favored Cerebrolysin and the combination therapy. Cognitive performance improved in all treatment groups (mean±SD for Cerebrolysin: -1.7±7.5; donepezil: -1.2±6.1; combination: -2.3±6.0) with best scores in the combined therapy group at all study visits. Cerebrolysin was as effective as donepezil, and the combination of neurotrophic (Cerebrolysin) and cholinergic (donepezil) treatment was safe in mild-to-moderate AD. The convenience of exploring long-term synergistic effects of this combined therapy is suggested.

  4. Effects of harmine, an acetylcholinesterase inhibitor, on spatial learning and memory of APP/PS1 transgenic mice and scopolamine-induced memory impairment mice.

    PubMed

    He, Dandan; Wu, Hui; Wei, Yue; Liu, Wei; Huang, Fei; Shi, Hailian; Zhang, Beibei; Wu, Xiaojun; Wang, Changhong

    2015-12-01

    Harmine, a β-carboline alkaloid present in Peganum harmala with a wide spectrum of pharmacological activities, has been shown to exert strong inhibition against acetylcholinesterase in vitro. However, whether it can rescue the impaired cognition has not been elucidated yet. In current study, we examined its effects on scopolamine-induced memory impairment mice and APP/PS1 transgenic mice, one of the models for Alzheimer's disease, using Morris Water Maze test. In addition, whether harmine could penetrate blood brain barrier, interact with and inhibit acetylcholinesterase, and activate downstream signaling network was also investigated. Our results showed that harmine (20mg/kg) administered by oral gavage for 2 weeks could effectively enhance the spatial cognition of C57BL/6 mice impaired by intraperitoneal injection of scopolamine (1mg/kg). Meanwhile, long-term consumption of harmine (20mg/kg) for 10 weeks also slightly benefited the impaired memory of APP/PS1 mice. Furthermore, harmine could pass through blood brain barrier, penetrate into the brain parenchyma shortly after oral administration, and modulate the expression of Egr-1, c-Jun and c-Fos. Molecular docking assay disclosed that harmine molecule could directly dock into the catalytic active site of acetylcholinesterase, which was partially confirmed by its in vivo inhibitory activity on acetylcholinesterase. Taken together, all these results suggested that harmine could ameliorate impaired memory by enhancement of cholinergic neurotransmission via inhibiting the activity of acetylcholinesterase, which may contribute to its clinical use in the therapy of neurological diseases characterized with acetylcholinesterase deficiency.

  5. Development of 3D-QSAR model for acetylcholinesterase inhibitors using a combination of fingerprint, molecular docking, and structure-based pharmacophore approaches

    EPA Science Inventory

    Acetylcholinesterase (AChE), a serine hydrolase vital for regulating the neurotransmitter acetylcholine in animals, has been used as a target for drugs and pesticides. With the increasing availability of AChE crystal structures, with or without ligands bound, structure-based appr...

  6. Development of a 3D-QSAR model for acetylcholinesterase inhibitors using a combination of fingerprint, docking, and structure-based pharmacophore approaches - Conference Abstract

    EPA Science Inventory

    Acetylcholinesterase (AChE), a serine hydrolase vital for regulating the neurotransmitter acetylcholine in animals, has been used as a target for drugs and pesticides. With the increasing availability of AChE crystal structures, with or without ligands bound, structure-based appr...

  7. A review on cholinesterase inhibitors for Alzheimer's disease.

    PubMed

    Anand, Preet; Singh, Baldev

    2013-04-01

    Alzheimer's disease (AD), a progressive neurodegenerative disorder, is characterized by the deficits in the cholinergic system and deposition of beta amyloid (Aβ) in the form of neurofibrillary tangles and amyloid plaques. Since the cholinergic system plays an important role in the regulation of learning and memory processes, it has been targetted for the design of anti-Alzheimer's drugs. Cholinesterase inhibitors enhance cholinergic transmission directly by inhibiting the enzyme acetylcholinesterase (AChE) which hydrolyses acetylcholine. Furthermore, it has been also demonstrated that both acetylcholinesterase and butrylcholinesterase (BuChE) play an important role in Aβ-aggregation during the early stages of senile plaque formation. Therefore, AChE and BuChE inhibition have been documented as critical targets for the effective management of AD by an increase in the availability of acetylcholine in the brain regions and decrease in the Aβ deposition. This review discusses the different classes of cholinesterase inhibitors including tacrine, donepezil, rivastigmine, galantamine, xanthostigmine, para-aminobenzoic acid, coumarin, flavonoid, and pyrrolo-isoxazole analogues developed for the treatment of AD.

  8. Rapid binding of a cationic active site inhibitor to wild type and mutant mouse acetylcholinesterase: Brownian dynamics simulation including diffusion in the active site gorge.

    PubMed

    Tara, S; Elcock, A H; Kirchhoff, P D; Briggs, J M; Radic, Z; Taylor, P; McCammon, J A

    1998-12-01

    It is known that anionic surface residues play a role in the long-range electrostatic attraction between acetylcholinesterase and cationic ligands. In our current investigation, we show that anionic residues also play an important role in the behavior of the ligand within the active site gorge of acetylcholinesterase. Negatively charged residues near the gorge opening not only attract positively charged ligands from solution to the enzyme, but can also restrict the motion of the ligand once it is inside of the gorge. We use Brownian dynamics techniques to calculate the rate constant kon, for wild type and mutant acetylcholinesterase with a positively charged ligand. These calculations are performed by allowing the ligand to diffuse within the active site gorge. This is an extension of previously reported work in which a ligand was allowed to diffuse only to the enzyme surface. By setting the reaction criteria for the ligand closer to the active site, better agreement with experimental data is obtained. Although a number of residues influence the movement of the ligand within the gorge, Asp74 is shown to play a particularly important role in this function. Asp74 traps the ligand within the gorge, and in this way helps to ensure a reaction.

  9. Memantine and donepezil: a fixed drug combination for the treatment of moderate to severe Alzheimer's dementia.

    PubMed

    Owen, R T

    2016-04-01

    Donepezil (and other cholinesterase inhibitors [ChEIs]) and memantine are the mainstays of treatment in Alzheimer's dementia, addressing respectively, the cholinergic and glutamatergic dysregulation which underlies or results from its pathophysiology. To alleviate the pill burden and swallowing difficulties associated with the condition, a fixed drug combination of extended-release memantine and donepezil was developed. This combination was shown to be both bioequivalent to the components administered separately and could be administered sprinkled over soft food. The mode of action, pharmacokinetics, clinical efficacy and safety and tolerability of the combination are discussed together with the wider, often conflicting trial literature of combination versus monotherapy with memantine and ChEIs, their meta-analyses and treatment guidelines.

  10. Donepezil-related intractable hiccups: a case report.

    PubMed

    McGrane, Ian R; Shuman, Michael D; McDonald, Robert W

    2015-03-01

    This case report describes a man with intractable hiccups probably caused by donepezil. The patient's symptoms were not responsive to commonly used medications for hiccups, but they were improved and completely relieved upon donepezil dose deescalation and discontinuation. We report two occasions in which the discontinuation of donepezil resulted in hiccup resolution and three occasions in which initiation of donepezil was associated with the onset of hiccups. This report contributes to the growing body of literature that describes an association between centrally acting medications and intractable hiccups.

  11. DOMINO-AD protocol: donepezil and memantine in moderate to severe Alzheimer's disease – a multicentre RCT

    PubMed Central

    Jones, Rob; Sheehan, Bart; Phillips, Patrick; Juszczak, Ed; Adams, Jessica; Baldwin, Ashley; Ballard, Clive; Banerjee, Sube; Barber, Bob; Bentham, Peter; Brown, Richard; Burns, Alistair; Dening, Tom; Findlay, David; Gray, Richard; Griffin, Mary; Holmes, Clive; Hughes, Alan; Jacoby, Robin; Johnson, Tony; Jones, Roy; Knapp, Martin; Lindesay, James; McKeith, Ian; McShane, Rupert; Macharouthu, Ajay; O'Brien, John; Onions, Caroline; Passmore, Peter; Raftery, James; Ritchie, Craig; Howard, Rob

    2009-01-01

    Background Alzheimer's disease (AD) is the commonest cause of dementia. Cholinesterase inhibitors, such as donepezil, are the drug class with the best evidence of efficacy, licensed for mild to moderate AD, while the glutamate antagonist memantine has been widely prescribed, often in the later stages of AD. Memantine is licensed for moderate to severe dementia in AD but is not recommended by the England and Wales National Institute for Health and Clinical Excellence. However, there is little evidence to guide clinicians as to what to prescribe as AD advances; in particular, what to do as the condition progresses from moderate to severe. Options include continuing cholinesterase inhibitors irrespective of decline, adding memantine to cholinesterase inhibitors, or prescribing memantine instead of cholinesterase inhibitors. The aim of this trial is to establish the most effective drug option for people with AD who are progressing from moderate to severe dementia despite treatment with donepezil. Method DOMINO-AD is a pragmatic, 15 centre, double-blind, randomized, placebo controlled trial. Patients with AD, currently living at home, receiving donepezil 10 mg daily, and with Standardized Mini-Mental State Examination (SMMSE) scores between 5 and 13 are being recruited. Each is randomized to one of four treatment options: continuation of donepezil with memantine placebo added; switch to memantine with donepezil placebo added; donepezil and memantine together; or donepezil placebo with memantine placebo. 800 participants are being recruited and treatment continues for one year. Primary outcome measures are cognition (SMMSE) and activities of daily living (Bristol Activities of Daily Living Scale). Secondary outcomes are non-cognitive dementia symptoms (Neuropsychiatric Inventory), health related quality of life (EQ-5D and DEMQOL-proxy), carer burden (General Health Questionnaire-12), cost effectiveness (using Client Service Receipt Inventory) and institutionalization

  12. Procognitive effect of AC-3933 in aged mice, and synergistic effect of combination with donepezil in scopolamine-treated mice.

    PubMed

    Hashimoto, Takashi; Hatayama, Yuki; Nakamichi, Keiko; Yoshida, Naoyuki

    2014-12-15

    We have previously reported that AC-3933, a newly developed benzodiazepine receptor partial inverse agonist, facilitates acetylcholine release in the hippocampus and ameliorates scopolamine-induced memory deficits in rats. To further confirm the procognitive effect of AC-3933, we assessed in this study the beneficial effects of this compound in aged mice using the Y-maze and object recognition tests. In addition, we investigated the synergistic effect of AC-3933 and donepezil, a cholinesterase inhibitor, on scopolamine-induced memory impairment in mice. In aged mice, oral administration of AC-3933 at doses of 0.05-0.1 mg/kg and 0.05 mg/kg significantly improved spatial working memory and episodic memory, respectively. In scopolamine-treated mice, both AC-3933 and donepezil significantly ameliorated memory deficits in the Y-maze test at doses of 0.3-3 mg/kg and 10-15 mg/kg, respectively. The beneficial effect of AC-3933, but not that of donepezil, on scopolamine-induced memory impairment was antagonized by flumazenil, a benzodiazepine receptor antagonist, indicating that the procognitive action of AC-3933 arises via a mechanism different from that of donepezil. Co-administration of donepezil at the suboptimal dose of 3 mg/kg with AC-3933 at doses of 0.1-1 mg/kg significantly ameliorated scopolamine-induced memory impairment, suggesting that AC-3933 potentiates the effect of donepezil on memory impairment induced by cholinergic hypofunction. These findings indicate that AC-3933 not only has good potential as a cognitive enhancer by itself, but also is useful as a concomitant drug for the treatment of Alzheimer׳s disease.

  13. Quantitative measurement of cerebral acetylcholinesterase using.

    PubMed

    Blomqvist, G; Tavitian, B; Pappata, S; Crouzel, C; Jobert, A; Doignon, I; Di Giamberardino, L

    2001-02-01

    [11C]physostigmine, an acetylcholinesterase inhibitor, has been shown to be a promising positron emission tomography ligand to quantify the cerebral concentration of the enzyme in animals and humans in vivo. Here, a quantitative and noninvasive method to measure the regional acetylcholinesterase concentration in the brain is presented. The method is based on the observation that the ratio between regions rich in acetylcholinesterase and white matter, a region almost entirely deprived of this enzyme, was found to become approximately constant after 20 to 30 minutes, suggesting that at late time points the uptake mainly contains information about the distribution volume. Taking the white matter as the reference region, a simplified reference tissue model, with effectively one reversible tissue compartment and three parameters, was found to give a good description of the data in baboons. One of these parameters, the ratio between the total distribution volumes in the target and reference regions, showed a satisfactory correlation with the acetylcholinesterase concentration measured postmortem in two baboon brains. Eight healthy male subjects were also analyzed and the regional enzyme concentrations obtained again showed a good correlation with the known acetylcholinesterase concentrations measured in postmortem studies of human brain.

  14. Virtual screening using MTiOpenScreen and PyRx 0,8 revealed ZINC95486216 as a human acetylcholinesterase inhibitor candidate

    NASA Astrophysics Data System (ADS)

    Sulistyo Dwi K., P.; Arindra Trisna, W.; Vindri Catur P., W.; Wijayanti, Erna; Ichsan, Mochammad

    2016-03-01

    One of the efforts to prevent Alzheimer's disease becomes more severe is by inhibiting the activity of Human acetylcholinesterase enzyme (PDB ID: 4BDT). In this study, virtual screening againts 885 natural compounds from AfroDB has been done using MTIOpenScreen and this step has been successful in identifying ZINC15121024 (-12,9) and ZINC95486216 (-12,7) as the top rank compounds. This data then strengthened by the results of second docking step using Autodock software that has been integrated in PyRx 0.8 software. From this stage, ZINC95486216 (-11,3 kcal/mol) is a compound with the most negative binding affinity compared with four Alzheimer's drugs that have been officially used to date including Rivastigmine (-6,3 Kcal/mol), Donepenzil (-7.9 kcal/mol), Galantamine (-8.4 kcal/mol), and Huprine W (-7.3 kcal/mol). In addition, based on the results of the 2D and 3D visualization using LigPlus and PyMol softwares, respectively, known that the five compounds above are equally capable of binding to several amino acids (Trp 286, Phe295, and Tyr341) located in the active site of Human Acetylcholinesterase enzyme.

  15. Temporal trends for donepezil utilization among older people.

    PubMed

    Ndukwe, Henry C; Nishtala, Prasad S

    2016-05-01

    To examine and characterize overall donepezil and concomitant utilization with β-blockers, yearly, in older New Zealanders. Deidentified data from the Pharmaceutical claims database and the National Minimum Dataset were obtained for 2011 to 2013 from the Ministry of Health. Population-level data were extracted for donepezil and β-blockers utilization, measured by defined daily dose (DDD) per thousand older people per day (TOPD). Donepezil utilization increased from 5.2 to 8.2 DDD/TOPD between 2011 and 2013. In 2011, the number of prevalent users was 4634, the mean age was 79.4±6.6 years and 57.5% were women. Highest use by age for donepezil was in those aged 85 years or older (2.3 DDD/TOPD), followed by those aged 80-84 years (2.2 DDD/TOPD). The mean utilization volumes were significantly lower for donepezil 5 mg (Student t-test=9.86; P<0.05) and 10 mg (10.90; P<0.05) in the 65- to 69-year age group compared with the 80- to 84-year age group, whereas the proportion of concomitant utilization of donepezil with β-blockers decreased (17.9% to 5.1%). Donepezil utilization in DDD/TOPD increased by three-fifths between 2011 and 2013. Prescribers appear to be aware of the potential risk of bradycardia with the concomitant use of donepezil and β-blockers.

  16. AOP description: Acetylcholinesterase inhibition

    EPA Science Inventory

    This adverse outcome pathway (AOP) leverages existing knowledge in the open literature to describe the linkage between inhibition of acetylcholinesterase (AChE) and the subsequent mortality resulting from impacts at cholinergic receptors. The AOP takes a chemical category approa...

  17. Acetylcholinesterase and butyrylcholinesterase--important enzymes of human body.

    PubMed

    Patocka, Jirí; Kuca, Kamil; Jun, Daniel

    2004-01-01

    The serine hydrolases and proteases are a ubiquitous group of enzymes that is fundamental to many critical life-functions. Human tissues have two distinct cholinesterase activities: acetylcholinesterase and butyrylcholinesterase. Acetylcholinesterase functions in the transmission of nerve impulses, whereas the physiological function of butyrylcholinesterase remains unknown. Acetylcholinesterase is one of the crucial enzymes in the central and peripheral nerve system. Organophosphates and carbamates are potent inhibitors of serine hydrolases and well suited probes for investigating the chemical reaction mechanism of the inhibition. Understanding the enzyme's chemistry is essential in preventing and/or treating organophosphate and carbamate poisoning as well as designing new medicaments for cholinergic-related diseases like as Alzheimer's disease.

  18. Acetylcholinesterase inhibition by flavonoids from Agrimonia pilosa.

    PubMed

    Jung, Mankil; Park, Moonso

    2007-09-03

    In a bioassay-guided search for acetylcholinesterase (AChE) inhibitors from 180 medicinal plants, an ethyl acetate extract of whole plants of Agrimonia pilosa ledeb yielded tiliroside (1), 3-methoxy quercetin (2), quercitrin (3) and quercetin (4). We report herein for the first time that all four flavonol compounds showed significant inhibitory effects on AChE, particularly quercetin (4), which showed twice the activity of dehydroevodiamine (DHED).

  19. Donepezil delays progression to AD in MCI subjects with depressive symptoms

    PubMed Central

    Lu, P H.; Edland, S D.; Teng, E; Tingus, K; Petersen, R C.; Cummings, J L.

    2009-01-01

    Objective: To determine whether the presence of depression predicts higher rate of progression to Alzheimer disease (AD) in patients with amnestic mild cognitive impairment (aMCI) and whether donepezil treatment beneficially affect this relationship. Methods: The study sample was composed of 756 participants with aMCI from the 3-year, double-blind, placebo-controlled Alzheimer's Disease Cooperative Study drug trial of donepezil and vitamin E. Beck Depression Inventory (BDI) was used to assess depressive symptoms at baseline and participants were followed either to the end of study or to the primary endpoint of progression to probable or possible AD. Results: Cox proportional hazards regression, adjusted for age at baseline, gender, apolipoprotein genotype, and NYU paragraph delayed recall score, showed that higher BDI scores were associated with progression to AD (p = 0.03). The sample was stratified into depressed (BDI score ≥10; n = 208) and nondepressed (BDI <10; n = 548) groups. Kaplan-Meier analysis showed that among the depressed subjects, the proportion progressing to AD was lower for the donepezil group than the combined vitamin E and placebo groups at 1.7 years (p = 0.023), at 2.2 years (p = 0.025), and remained marginally lower at 2.7 years (p = 0.070). The survival curves among the three treatment groups did not differ within the nondepressed participants. Conclusions: Results suggest that depression is predictive of progression from amnestic mild cognitive impairment (aMCI) to Alzheimer disease (AD) and treatment with donepezil delayed progression to AD among depressed subjects with aMCI. Donepezil appears to modulate the increased risk of AD conferred by the presence of depressive symptoms. GLOSSARY AD = Alzheimer disease; ADCS = Alzheimer's Disease Cooperative Study; aMCI = amnestic mild cognitive impairment; BDI = Beck Depression Inventory; CDR = Clinical Dementia Rating; ChEI = cholinesterase inhibitors; DSM-IV = Diagnostic and Statistical Manual

  20. Effects of Cognitive-Communication Stimulation for Alzheimer's Disease Patients Treated with Donepezil.

    ERIC Educational Resources Information Center

    Chapman, Sandra Bond; Weiner, Myron F.; Rackley, Audette; Hynan, Linda S.; Zientz, Jennifer

    2004-01-01

    ds to growing evidence that active cognitive stimulation may slow the rate of verbal and functional decline and decrease negative emotional symptoms in AD when combined with acetylcholinesterase inhibitors, indicating a need to advance research in the area of cognitive treatments. The fact that AD is a progressive brain disease should not preclude…

  1. Naturally Occurring Genetic Variants of Human Acetylcholinesterase and Butyrylcholinesterase and Their Potential Impact on the Risk of Toxicity from Cholinesterase Inhibitors

    PubMed Central

    2016-01-01

    Acetylcholinesterase (AChE) is the physiologically important target for organophosphorus toxicants (OP) including nerve agents and pesticides. Butyrylcholinesterase (BChE) in blood serves as a bioscavenger that protects AChE in nerve synapses from inhibition by OP. Mass spectrometry methods can detect exposure to OP by measuring adducts on the active site serine of plasma BChE. Genetic variants of human AChE and BChE do exist, but loss of function mutations have been identified only in the BCHE gene. The most common AChE variant, His353Asn (H322N), also known as the Yt blood group antigen, has normal AChE activity. The most common BChE variant, Ala567Thr (A539T) or the K-variant in honor of Werner Kalow, has 33% reduced plasma BChE activity. The genetic variant most frequently associated with prolonged response to muscle relaxants, Asp98Gly (D70G) or atypical BChE, has reduced activity and reduced enzyme concentration. Early studies in young, healthy males, performed at a time when it was legal to test nerve agents in humans, showed that individuals responded differently to the same low dose of sarin with toxic symptoms ranging in severity from minimal to moderate. Additionally, animal studies indicated that BChE protects from toxicants that have a higher reactivity with AChE than with BChE (e.g., nerve agents) but not from toxicants that have a higher reactivity with BChE than with AChE (e.g., OP pesticides). As a corollary, we hypothesize that individuals with genetic variants of BChE may be at increased risk of toxicity from nerve agents but not from OP pesticides. PMID:27551784

  2. Naturally Occurring Genetic Variants of Human Acetylcholinesterase and Butyrylcholinesterase and Their Potential Impact on the Risk of Toxicity from Cholinesterase Inhibitors.

    PubMed

    Lockridge, Oksana; Norgren, Robert B; Johnson, Rudolph C; Blake, Thomas A

    2016-09-19

    Acetylcholinesterase (AChE) is the physiologically important target for organophosphorus toxicants (OP) including nerve agents and pesticides. Butyrylcholinesterase (BChE) in blood serves as a bioscavenger that protects AChE in nerve synapses from inhibition by OP. Mass spectrometry methods can detect exposure to OP by measuring adducts on the active site serine of plasma BChE. Genetic variants of human AChE and BChE do exist, but loss of function mutations have been identified only in the BCHE gene. The most common AChE variant, His353Asn (H322N), also known as the Yt blood group antigen, has normal AChE activity. The most common BChE variant, Ala567Thr (A539T) or the K-variant in honor of Werner Kalow, has 33% reduced plasma BChE activity. The genetic variant most frequently associated with prolonged response to muscle relaxants, Asp98Gly (D70G) or atypical BChE, has reduced activity and reduced enzyme concentration. Early studies in young, healthy males, performed at a time when it was legal to test nerve agents in humans, showed that individuals responded differently to the same low dose of sarin with toxic symptoms ranging in severity from minimal to moderate. Additionally, animal studies indicated that BChE protects from toxicants that have a higher reactivity with AChE than with BChE (e.g., nerve agents) but not from toxicants that have a higher reactivity with BChE than with AChE (e.g., OP pesticides). As a corollary, we hypothesize that individuals with genetic variants of BChE may be at increased risk of toxicity from nerve agents but not from OP pesticides. PMID:27551784

  3. Synthesis of new N-benzylpiperidine derivatives as cholinesterase inhibitors with β-amyloid anti-aggregation properties and beneficial effects on memory in vivo.

    PubMed

    Więckowska, Anna; Więckowski, Krzysztof; Bajda, Marek; Brus, Boris; Sałat, Kinga; Czerwińska, Paulina; Gobec, Stanislav; Filipek, Barbara; Malawska, Barbara

    2015-05-15

    Due to the complex nature of Alzheimer's disease, multi-target-directed ligand approaches are one of the most promising strategies in the search for effective treatments. Acetylcholinesterase, butyrylcholinesterase and β-amyloid are the predominant biological targets in the search for new anti-Alzheimer's agents. Our aim was to combine both anticholinesterase and β-amyloid anti-aggregation activities in one molecule, and to determine the therapeutic potential in vivo. We designed and synthesized 28 new compounds as derivatives of donepezil that contain the N-benzylpiperidine moiety combined with the phthalimide or indole moieties. Most of these test compounds showed micromolar activities against cholinesterases and aggregation of β-amyloid, combined with positive results in blood-brain barrier permeability assays. The most promising compound 23 (2-(8-(1-(3-chlorobenzyl)piperidin-4-ylamino)octyl)isoindoline-1,3-dione) is an inhibitor of butyrylcholinesterase (IC50=0.72 μM) that has β-amyloid anti-aggregation activity (72.5% inhibition at 10 μM) and can cross the blood-brain barrier. Moreover, in an animal model of memory impairment induced by scopolamine, the activity of 23 was comparable to that of donepezil. The selected compound 23 is an excellent lead structure in the further search for new anti-Alzheimer's agents. PMID:25868744

  4. Steady-state plasma concentration of donepezil enantiomers and its stereoselective metabolism and transport in vitro.

    PubMed

    Lili, Wan; Cheng, Guo; Zhiyong, Zhou; Qi, Yu; Yan, Li; Dan, Li; Xueli, Zheng; Yuan, Zhong

    2013-09-01

    The aim of the present study was to elucidate the differences in the plasma concentration of two enantiomers of donepezil in Chinese patients with Alzheimer's disease (AD) and investigate in vitro stereoselective metabolism and transport. Donepezil enantiomers were separated and determined by LC-MS/MS using D5-donepezil as an internal standard on a Sepax Chiralomix SB-5 column. In vitro stereoselective metabolism and transport of donepezil were investigated in human liver microsomes and MDCKII-MDR1 cell monolayer. Pre-dose (Css-min) plasma concentrations were determined in 52 patients. The mean plasma level of (R)-donepezil was 14.94 ng/ml and that of (S)-donepezil was 23.37 ng/ml. One patient's plasma concentration of (R)-donepezil was higher than (S)-donepezil and the ratio is 1.51. The mean plasma levels of (S)-donepezil were found to be higher than those of (R)-donepezil in 51 patients and the ratio of plasma (R)- to (S)-donepezil varies from 0.34 to 0.85. In the in vitro microsomal system, (R)-donepezil degraded faster than (S)-donepezil. V(max) of (R)-donepezil was significantly higher than (S)-donepezil. The P-gp inhibition experiment shown that the P(app) of the two enantiomers was higher than 200 and the efflux ratios were 1.11 and 0.99. The results of the P-gp inhibition identification experiment showed IC50 values of 35.5 and 20.4 μM, respectively, for the two enantiomers. The results indicate that donepezil exhibits stereoselective hepatic metabolism that may explain the differences in the steady-state plasma concentrations observed. Neither (R)- nor (S)-donepezil was a P-gp substance and the two enantiomers are highly permeable through the blood-brain barrier.

  5. Acetylcholinesterases of Blood-feeding Flies and Ticks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acetylcholinesterase (AChE) is the biochemical target of organophosphate (OP) and carbamate pesticides for invertebrates, vertebrate nerve agents, and AChE inhibitors used to reduce effects of Alzheimer’s disease. Organophosphate pesticides (OPs) are widely used to control blood-feeding arthropods, ...

  6. Complexity of acetylcholinesterases in biting flies and ticks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acetylcholinesterase (AChE) inhibitors function as pesticides for invertebrates, vertebrate nerve agents, and medicine to reduce cognitive effects of Alzheimer’s disease. Organophosphate (OP) pesticides have been widely used to control biting flies and ticks, however, OP-resistance has compromised c...

  7. A clinical study of lupron depot in the treatment of women with Alzheimer's disease: preservation of cognitive function in patients taking an acetylcholinesterase inhibitor and treated with high dose lupron over 48 weeks.

    PubMed

    Bowen, Richard L; Perry, George; Xiong, Chengjie; Smith, Mark A; Atwood, Craig S

    2015-01-01

    To test the efficacy and safety of leuprolide acetate (Lupron Depot) in the treatment of Alzheimer's disease (AD), we conducted a 48-week, double-blind, placebo-controlled, dose-ranging study in women aged 65 years or older with mild to moderate AD. A total of 109 women with mild to moderate AD and a Mini-Mental State Examination score between 12 and 24 inclusive were randomized to low dose Lupron Depot (11.25 mg leuprolide acetate), high dose Lupron Depot (22.5 mg leuprolide acetate), or placebo injections every 12 weeks. There were no statistically significant differences in primary efficacy parameters (ADAS-Cog and ADCS-CGIC), although there was a non-statistically significant trend in favor of the high dose Lupron group on the ADAS-Cog. There were no statistically significant differences in secondary efficacy parameters (NPI, ADCS-ADL, BI, and ADCS-Severity Rating). However, in the a priori designated subgroup analysis of patients taking an acetylcholinesterase inhibitor (AChEI), there was a statistically significant benefit in the high dose group compared to both the low dose and placebo groups as determined by ADAS-Cog (mean decline: 0.18, 4.21, and 3.30), ADCS-CGIC (% subjects experiencing decline: 38, 82, and 63), and ADCS-ADL (mean decline: -0.54, -8.00, and -6.85), respectively. No differences between treatment groups were seen on the NPI, ADCS-CGI Severity Rating, or the BI in the subgroup analysis. These data indicate that cognitive function is preserved in patients treated with high dose Lupron who were already using AChEIs. The positive interaction between Lupron and AChEIs warrants further investigation for the treatment of AD. PMID:25310993

  8. 1,2,3,4-Tetrahydrobenzo[h][1,6]naphthyridines as a new family of potent peripheral-to-midgorge-site inhibitors of acetylcholinesterase: synthesis, pharmacological evaluation and mechanistic studies.

    PubMed

    Di Pietro, Ornella; Viayna, Elisabet; Vicente-García, Esther; Bartolini, Manuela; Ramón, Rosario; Juárez-Jiménez, Jordi; Clos, M Victòria; Pérez, Belén; Andrisano, Vincenza; Luque, F Javier; Lavilla, Rodolfo; Muñoz-Torrero, Diego

    2014-02-12

    A series of 1,2,3,4-tetrahydrobenzo[h][1,6]naphthyridines differently substituted at positions 1, 5, and 9 have been designed from the pyrano[3,2-c]quinoline derivative 1, a weak inhibitor of acetylcholinesterase (AChE) with predicted ability to bind to the AChE peripheral anionic site (PAS), at the entrance of the catalytic gorge. Fourteen novel benzonaphthyridines have been synthesized through synthetic sequences involving as the key step a multicomponent Povarov reaction between an aldehyde, an aniline and an enamine or an enamide as the activated alkene. The novel compounds have been tested against Electrophorus electricus AChE (EeAChE), human recombinant AChE (hAChE), and human serum butyrylcholinesterase (hBChE), and their brain penetration has been assessed using the PAMPA-BBB assay. Also, the mechanism of AChE inhibition of the most potent compounds has been thoroughly studied by kinetic studies, a propidium displacement assay, and molecular modelling. We have found that a seemingly small structural change such as a double O → NH bioisosteric replacement from the hit 1 to 16a results in a dramatic increase of EeAChE and hAChE inhibitory activities (>217- and >154-fold, respectively), and in a notable increase in hBChE inhibitory activity (>11-fold), as well. An optimized binding at the PAS besides additional interactions with AChE midgorge residues seem to account for the high hAChE inhibitory potency of 16a (IC50 = 65 nM), which emerges as an interesting anti-Alzheimer lead compound with potent dual AChE and BChE inhibitory activities. PMID:24389509

  9. A clinical study of lupron depot in the treatment of women with Alzheimer's disease: preservation of cognitive function in patients taking an acetylcholinesterase inhibitor and treated with high dose lupron over 48 weeks.

    PubMed

    Bowen, Richard L; Perry, George; Xiong, Chengjie; Smith, Mark A; Atwood, Craig S

    2015-01-01

    To test the efficacy and safety of leuprolide acetate (Lupron Depot) in the treatment of Alzheimer's disease (AD), we conducted a 48-week, double-blind, placebo-controlled, dose-ranging study in women aged 65 years or older with mild to moderate AD. A total of 109 women with mild to moderate AD and a Mini-Mental State Examination score between 12 and 24 inclusive were randomized to low dose Lupron Depot (11.25 mg leuprolide acetate), high dose Lupron Depot (22.5 mg leuprolide acetate), or placebo injections every 12 weeks. There were no statistically significant differences in primary efficacy parameters (ADAS-Cog and ADCS-CGIC), although there was a non-statistically significant trend in favor of the high dose Lupron group on the ADAS-Cog. There were no statistically significant differences in secondary efficacy parameters (NPI, ADCS-ADL, BI, and ADCS-Severity Rating). However, in the a priori designated subgroup analysis of patients taking an acetylcholinesterase inhibitor (AChEI), there was a statistically significant benefit in the high dose group compared to both the low dose and placebo groups as determined by ADAS-Cog (mean decline: 0.18, 4.21, and 3.30), ADCS-CGIC (% subjects experiencing decline: 38, 82, and 63), and ADCS-ADL (mean decline: -0.54, -8.00, and -6.85), respectively. No differences between treatment groups were seen on the NPI, ADCS-CGI Severity Rating, or the BI in the subgroup analysis. These data indicate that cognitive function is preserved in patients treated with high dose Lupron who were already using AChEIs. The positive interaction between Lupron and AChEIs warrants further investigation for the treatment of AD.

  10. From Bitopic Inhibitors to Multitarget Drugs for the Future Treatment of Alzheimer's Disease.

    PubMed

    Pérez, Daniel I; Martínez, Ana; Gil, Carmen; Campillo, Nuria E

    2015-01-01

    Dementia is one of the main causes of the disease burden in developed regions. According to the World Health Organization (WHO), it will become the world's second leading cause of death by the middle of the century, overtaking cancer. This will have a dramatic impact on medical care, and have important social and economic implications, unless more effective preventive procedures or treatments become available. Alzheimer's disease (AD) is the most common cause of dementia, accounting for approximately 50-75% of all dementias worldwide, followed by vascular dementia, mixed dementia, and Lewy body dementia. Currently, acetylcholinesterase (AChE) inhibitors, such as donepezil, rivastigmine and galantamine are used to treat mild to moderate AD. An alternative therapy for severe AD is memantine, an antagonist of the NMDA-subtype of glutamate receptors. However, these drugs provide only temporary symptom improvement, and do not alter disease progression, except temporarily in some patients. In recent years different approaches have been developed to provide a more effective treatment for AD. These approached include the discovery of emerging targets and new drugs aiming at a single target, but given the complexity of the disease, different targets may need to be engaged simultaneously. New strategies have explored bitopic inhibitors, for example a single drug that acts on different sites of the acetylcholinesterase enzyme to produce at least two different activities, and multitarget drugs that act on multiple therapeutic targets. In this review, we explore the journey from a bitopic inhibitor strategy to multitarget drugs for the future treatment of AD. PMID:26264921

  11. The impact of memantine in combination with acetylcholinesterase inhibitors on admission of patients with Alzheimer's disease to nursing homes: cost-effectiveness analysis in France.

    PubMed

    Touchon, Jacques; Lachaine, Jean; Beauchemin, Catherine; Granghaud, Anna; Rive, Benoit; Bineau, Sébastien

    2014-11-01

    The costs associated with the care of Alzheimer's disease patients are very high, particularly those associated with nursing home placement. The combination of a cholinesterase inhibitor (ChEI) and memantine has been shown to significantly delay admission to nursing homes as compared to treatment with a ChEI alone. The objective of this cost-effectiveness analysis was to evaluate the economic impact of the concomitant use of memantine and ChEI compared to ChEI alone. Markov modelling was used in order to simulate transitions over time among three discrete health states (non-institutionalised, institutionalised and deceased). Transition probabilities were obtained from observational studies and French national statistics, utilities from a previous US survey and costs from French national statistics. The analysis was conducted from societal and healthcare system perspectives. Mean time to nursing home admission was 4.57 years for ChEIs alone and 5.54 years for combination therapy, corresponding to 0.98 additional years, corresponding to a gain in quality adjusted life years (QALYs) of 0.25. From a healthcare system perspective, overall costs were €98,609 for ChEIs alone and €90,268 for combination therapy, representing cost savings of €8,341. From a societal perspective, overall costs were €122,039 and €118,721, respectively, representing cost savings of €3,318. Deterministic and probabilistic (Monte Carlo simulations) sensitivity analyses indicated that combination therapy would be the dominant strategy in most scenarios. In conclusion, combination therapy with memantine and a ChEI is a cost-saving alternative compared to ChEI alone as it is associated with lower cost and increased QALYs from both a societal and a healthcare perspective.

  12. Effect of tissue-specific acetylcholinesterase inhibitor C-547 on α3β4 and αβεδ acetylcholine receptors in COS cells.

    PubMed

    Lindovský, Jiří; Petrov, Konstantin; Krůšek, Jan; Reznik, Vladimir S; Nikolsky, Eugeny E; Vyskočil, František

    2012-08-01

    The C-547 is the most effective muscle and tissue-specific anticholinesterase among alkylammonium derivatives of 6-methyluracil (ADEMS) acting in nanomolar concentrations on locomotor muscles but not on respiratory muscles, smooth muscles and heart and brain acetylcholine esterases (AChE). When applied systematically it could influence peripheral acetylcholine receptors. The aim of the present study was to investigate the effect of C-547 on rat α3β4 (ganglionic type) and αβεδ (muscle type) nicotinic receptors expressed in COS cells. Currents evoked by rapid application of acetylcholine or nicotine were recorded in whole-cell mode by electrophysiological patch-clamp technique 2-4 days after cell transfection by plasmids coding the α3β4 or αβεδ combination of receptor subunits. In cells sensitive to acetylcholine, the application of C-547 evoked no responses. When acetylcholine was applied during an already running application of C-547, acetylcholine responses were only inhibited at concentrations higher than 10(-7)M. This inhibition is not voltage-dependent, but is accompanied by an increased rate of desensitization. Thus in both types of receptors, effective doses are approximately 100 times higher than those inhibiting AChE in leg muscles and similar to those inhibiting respiratory diaphragm muscles and external intercostal muscles. These observations show that C-547 can be considered for symptomatic treatment of myasthenia gravis and other congenital myasthenic syndromes as an inhibitor of AChE in leg muscles at concentrations much lower than those inhibiting muscle and ganglion types of acetylcholine receptors.

  13. Kinetics and Molecular Docking Study of an Anti-diabetic Drug Glimepiride as Acetylcholinesterase Inhibitor: Implication for Alzheimer's Disease-Diabetes Dual Therapy.

    PubMed

    Rizvi, Syed Mohd Danish; Shaikh, Sibhghatulla; Naaz, Deeba; Shakil, Shazi; Ahmad, Adnan; Haneef, Mohd; Abuzenadah, Adel M

    2016-06-01

    At the present time, treatment of two most common degenerative disorders of elderly population i.e., Type 2 Diabetes Mellitus (T2DM) and Alzheimer's disease (AD) is a major concern worldwide. As there are several evidences that proved strong linkages between these two disorders, the idea of using dual therapeutic agent for both the diseases might be considered as a good initiative. Earlier reports have revealed that oral anti-diabetic drugs such as peroxisome proliferator activated receptor γ (PPARγ) agonists (thiazolidinediones) when used in T2DM patients suffering from AD showed improved memory and cognition. However, the underlying mechanism still needs to be deciphered. Therefore, the present study was carried out to find whether glimepiride, an oral antidiabetic drug which is a PPARγ agonist could inhibit the activity of acetylcholine esterase (AChE) enzyme. Actually, AChE inhibitors seize the breakdown of acetylcholine which forms the main therapeutic strategy for AD. Here, glimepiride showed dose dependent inhibitory activity against AChE enzyme with IC50 value of 235 μM. Kinetic analysis showed competitive inhibition, which was verified by in silico docking studies. Glimepiride was found to interact with AChE enzyme at the same locus as that of substrate acetylcholine iodide (AChI). Interestingly, amino acid residues, Q71, Y72, V73, D74, W86, N87, Y124, S125, W286, F295, F297, Y337, F338 and Y341 of AChE were found to be common for 'glimepiride-AChE interaction' as well as 'AChI-AChE interaction'. Thus the present computational and kinetics study concludes that glimepiride and other thiazolidinediones derivatives could form the basis of future dual therapy against diabetes associated neurological disorders. PMID:26886763

  14. Increased iPLA2 activity and levels of phosphorylated GSK3B in platelets are associated with donepezil treatment in Alzheimer's disease patients.

    PubMed

    Talib, L L; Hototian, S R; Joaquim, H P G; Forlenza, O V; Gattaz, W F

    2015-12-01

    Reduced phospholipase A2 (PLA2) activity and increased phosphorylation of glycogen synthase kinase 3B (GSK3B) participate in the production of beta-amyloid plaques and of neurofibrillary tangles, which are two neuropathological hallmarks of Alzheimer's disease (AD). Experimental evidences suggest a neuroprotective effect of the cholinesterase inhibitor donepezil in the treatment the disease. The aims of the present study were to evaluate in AD patients the effects of treatment with donepezil on PLA2 activity and GSK3B level. Thirty patients with AD were treated during 6 months with 10 mg daily of donepezil. Radio-enzymatic assays were used to measure PLA2 activity and Elisa assays for GSK3B level, both in platelets. Before treatment and after 3 and 6 months on donepezil, AD patients underwent a cognitive assessment and platelet samples were collected. Values were compared to a healthy control group of 42 sex- and age-matched elderly individuals. Before treatment, iPLA2 activity was lower in patients with AD as compared to controls (p < 0.001). At baseline, no differences were found in GSK3B level between both groups. After 3 and 6 months of treatment, we found a significant increase in iPLA2 activity (p = 0.015 and p < 0.001, respectively). iPLA2 increment was related to the cognitive improvement during treatment (p = 0.037). After 6 months, we found an increase in phosphorylated GSK3B (p = 0.02). The present findings suggest two possible mechanisms by which donepezil delays the progression of AD. The increment of iPLA2 activity may reduce the production of beta-amyloid plaques, whereas the phosphorylation of GSK3B inactivates the enzyme, reducing thus the phosphorylation of tau protein. PMID:25920742

  15. Increased iPLA2 activity and levels of phosphorylated GSK3B in platelets are associated with donepezil treatment in Alzheimer's disease patients.

    PubMed

    Talib, L L; Hototian, S R; Joaquim, H P G; Forlenza, O V; Gattaz, W F

    2015-12-01

    Reduced phospholipase A2 (PLA2) activity and increased phosphorylation of glycogen synthase kinase 3B (GSK3B) participate in the production of beta-amyloid plaques and of neurofibrillary tangles, which are two neuropathological hallmarks of Alzheimer's disease (AD). Experimental evidences suggest a neuroprotective effect of the cholinesterase inhibitor donepezil in the treatment the disease. The aims of the present study were to evaluate in AD patients the effects of treatment with donepezil on PLA2 activity and GSK3B level. Thirty patients with AD were treated during 6 months with 10 mg daily of donepezil. Radio-enzymatic assays were used to measure PLA2 activity and Elisa assays for GSK3B level, both in platelets. Before treatment and after 3 and 6 months on donepezil, AD patients underwent a cognitive assessment and platelet samples were collected. Values were compared to a healthy control group of 42 sex- and age-matched elderly individuals. Before treatment, iPLA2 activity was lower in patients with AD as compared to controls (p < 0.001). At baseline, no differences were found in GSK3B level between both groups. After 3 and 6 months of treatment, we found a significant increase in iPLA2 activity (p = 0.015 and p < 0.001, respectively). iPLA2 increment was related to the cognitive improvement during treatment (p = 0.037). After 6 months, we found an increase in phosphorylated GSK3B (p = 0.02). The present findings suggest two possible mechanisms by which donepezil delays the progression of AD. The increment of iPLA2 activity may reduce the production of beta-amyloid plaques, whereas the phosphorylation of GSK3B inactivates the enzyme, reducing thus the phosphorylation of tau protein.

  16. Effects of thyroxin and donepezil on hippocampal acetylcholine content and syntaxin-1 and munc-18 expression in adult rats with hypothyroidism

    PubMed Central

    WANG, NAN; CAI, YAOJUN; WANG, FEN; ZENG, XIANZHONG; JIA, XUEMEI; TAO, FANGBIAO; ZHU, DEFA

    2014-01-01

    Adult-onset hypothyroidism induces various impairments in hippocampus-dependent cognitive function, in which numerous synaptic proteins and neurotransmitters are involved. Donepezil (DON), an acetylcholinesterase inhibitor, has been shown to be efficient in improving cognitive function. The aim of the present study was to investigate the effects of adult-onset hypothyroidism on the expression levels of the synaptic proteins syntaxin-1 and munc-18, as well as the content of the neurotransmitter acetylcholine (ACh) in the hippocampus. In addition, the study explored the effects of thyroxin (T4) and DON treatment on the altered parameters. The study involved 55 Sprague-Dawley rats that were randomly divided into five groups: Control, hypothyroid (0.05% 6-n-propyl-2-thiouracil; added to the drinking water), hypothyroid treated with T4 (6 μg/100 g body weight once daily; intraperitoneal injection), hypothyroid treated with DON (0.005%; added to the drinking water) and hypothyroid treated with a combination of the two drugs (6 μg/100 g T4 and 0.005% DON). The concentration of ACh was determined in the homogenized hippocampus of each animal by alkaline hydroxylamine colorimetry. The protein levels of syntaxin-1 and munc-18 were determined by immunohistochemistry. The results showed that the content of ACh in the hippocampi of the hypothyroid rats was significantly decreased compared with that in the controls and that T4 monotherapy and DON administration restored the ACh content to normal values. In the hippocampi of the hypothyroid group, munc-18 was expressed at significantly lower levels, while the expression levels of syntaxin-1 were increased compared with the levels in the control group. Treatment with T4 alone restored the expression of syntaxin-1 but failed to normalize munc-18 expression levels. The co-administration of T4 and DON returned the munc-18 levels to normal values. These observations indicate that adult-onset hypothyroidism induces alterations in the

  17. Spectral studies of Donepezil release from streched PVA polymer films

    NASA Astrophysics Data System (ADS)

    Nechifor, Cristina-Delia; Zelinschi, Carmen-Beatrice; Stoica, Iuliana; Closca, Valentina; Dorohoi, Dana-Ortansa

    2013-07-01

    The focus of this research is to obtain poly vinyl alcohol (PVA) polymer foils containing Donepezil in different concentration, in order to be used in controlled drug release as a palliative treatment of mild to moderate Alzheimer's disease. The influence of polymeric foil stretching degree on drug release was analyzed using spectral measurements.

  18. Synthesis and biological evaluation of a series of dithiocarbamates as new cholinesterase inhibitors.

    PubMed

    Altıntop, Mehlika D; Gurkan-Alp, A Selen; Ozkay, Yusuf; Kaplancıklı, Zafer A

    2013-08-01

    In the present paper, a novel series of dithiocarbamates was synthesized via the treatment of 4-(trifluoromethyl)benzyl chloride with appropriate sodium salts of N,N-disubstituted dithiocarbamic acids. The chemical structures of the compounds were elucidated by (1) H NMR, mass spectral data, and elemental analyses. Each derivative was evaluated for its ability to inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) using a modification of Ellman's spectrophotometric method. The most potent AChE inhibitor was found as compound 2g (IC50  = 0.53 ± 0.001 µM) followed by compounds 2f (IC50  = 0.74 ± 0.001 µM) and 2j (IC50  = 0.89 ± 0.002 µM) when compared with donepezil (IC50  = 0.048 ± 0.001 µM). Compounds 2f and 2g were more effective than donepezil (IC50  = 7.88 ± 0.52 µM) on BuChE inhibition. Compounds 2f and 2g exhibited the inhibitory effect on BuChE with IC50 values of 1.39 ± 0.041 and 3.64 ± 0.072 µM, respectively. PMID:23881696

  19. Preliminary studies of acetylcholinesterase activity in the rat brain using N-phenylferrocenecarboxamide labelled by the technetium-99m.

    PubMed

    Mejri, Najoua; Said, Nadia Malek; Guizani, Sihem; Essouissi, Imen; Saidi, Mouldi

    2013-05-01

    There is currently great interest in developing radiolabeled substrates for acetylcholinesterase that would be useful in the in vivo imaging of patients with Alzheimer's disease. The reduction of acetylcholinesterase (AChE) activity in the brain has been measured in dementia disorders such as Alzheimer's disease and dementia with Lewy bodies using (11)C and (18)F-labeled acetylcholine analogues. Our aim was to develop a new 99mTc-labeled acetylcholine analogue: N-phenylferrocenecarboxamide labelled with technetium-99m (99mTc-TPCC) to study acetylcholinesterase activity. In vivo and in vitro studies demonstrated that the labelled compound was a substrate for acetylcholinesterase. The hydrolytic rate of this substrate was measured and the specificity was evaluated using the inhibitor BW 284 C51. In rat experiments, the 99mTc-TPCC showed desirable properties for studying the acetylcholinesterase in the rat brain: high hydrolytic rate and a moderate specificity of the substrate for acetylcholinesterase.

  20. Stereoselective metabolism of donepezil and steady-state plasma concentrations of S-donepezil based on CYP2D6 polymorphisms in the therapeutic responses of Han Chinese patients with Alzheimer's disease.

    PubMed

    Lu, Jin; Wan, Lili; Zhong, Yuan; Yu, Qi; Han, Yonglong; Chen, Pengguo; Wang, Beiyun; Li, Wei; Miao, Ya; Guo, Cheng

    2015-11-01

    The therapeutic response rates of patients to donepezil vary from 20% to 60%, one of the reasons is their genetic differences in donepezil-metabolizing enzymes, which directly influence liver metabolism. However, the mechanism of donepezil metabolism and that of its enantiomers is unknown. This study evaluated CYP2D6 polymorphisms to elucidate the stereoselective metabolism of donepezil and to confirm the association between the steady-state plasma concentrations of the pharmaco-effective S-donepezil and the therapeutic responses of Han Chinese patients with Alzheimer's disease. The in vitro study of the stereoselective metabolism demonstrated that CYP2D6 is the predominant P450 enzyme that metabolizes donepezil and that different CYP2D6 alleles differentially affect donepezil enantiomers metabolism. A total of 77 Han Chinese patients with Alzheimer's disease were recruited to confirm these results, by measuring their steady-state plasma concentrations of S-donepezil. The related CYP2D6 genes were genotyped. Plasma concentrations of S-donepezil (based on CYP2D6 polymorphisms) were significantly associated with therapeutic responses. This finding suggests that plasma concentrations of S-donepezil influence therapeutic outcomes following treatment with donepezil in Han Chinese patients with Alzheimer's disease. Therefore, determining a patient's steady-state plasma concentration of S-donepezil in combination with their CYP2D6 genotype might be useful for clinically monitoring the therapeutic efficacy of donepezil.

  1. In silico analysis of binding of neurotoxic venom ligands with acetylcholinesterase for therapeutic use in treatment of Alzheimer's disease.

    PubMed

    Waqar, Maleeha; Batool, Sidra

    2015-05-01

    Acetylcholinesterases (AChE) are enzymes that function in hydrolyzing the neurotransmitter acetylcholine. Diminished levels of acetylcholine have been reported for various neurodegenerative diseases, especially Alzheimer's. Therefore, acetylcholinesterase inhibitors are being considered quite effective in treating these diseases. Fasciculin 2 is a toxin isolated from Eastern green mamba that had been reported as a reversible acetylcholinesterase inhibitor. In this study, we have reported the in silico analysis of venom toxins via various computational tools used for drug designing, to find out the protein-protein interaction of these toxins in complex with acetylcholinesterase enzyme. In total 15 toxins have been selected from the venoms of various species as ligand dataset, to study their binding interactions with the acetylcholinesterase enzyme. PMID:25747777

  2. Synthesis and evaluation of (-)- and (+)-[¹¹C]galanthamine as PET tracers for cerebral acetylcholinesterase imaging.

    PubMed

    Kimura, Hiroyuki; Kawai, Tomoki; Hamashima, Yoshio; Kawashima, Hidekazu; Miura, Kenji; Nakaya, Yuta; Hirasawa, Makoto; Arimitsu, Kenji; Kajimoto, Tetsuya; Ohmomo, Yoshiro; Ono, Masahiro; Node, Manabu; Saji, Hideo

    2014-01-01

    Improved radiopharmaceuticals for imaging cerebral acetylcholinesterase (AChE) are needed for the diagnosis of Alzheimer's disease (AD). Thus, (11)C-labeled (-)-galanthamine and its enantiomers were synthesized as novel agents for imaging the localization and activity of AChE by positron emission tomography (PET). C-11 was incorporated into (-)- and (+)-[(11)C]galanthamine by N-methylation of norgalanthamines with [(11)C]methyl triflate. Simple accumulation of (11)C in the brain was measured in an in vivo biodistribution study using mice, whilst donepezil was used as a blocking agent in analogous in vivo blocking studies. In vitro autoradiography of rat brain tissue was performed to investigate the distribution of (-)-[(11)C]galanthamine, and confirmed the results of PET studies in mice. The radiochemical yields of N-methylation of (-)- and (+)-norgalanthamines were 13.7% and 14.4%, respectively. The highest level of accumulation of (11)C in the brains of mice was observed at 10 min after administration (2.1% ID/g). Intravenous pretreatment with donepezil resulted in a 30% decrease in accumulation of (-)-[(11)C]galanthamine in the striatum; however, levels in the cerebellum were unchanged. In contrast, use of (+)-[(11)C]galanthamine led to accumulation of radioactivity in the striatum equal to that in the cerebellum, and these levels were unaffected by pretreatment with donepezil. In in vitro autoradiography of regional radioactive signals of brain sections showed that pretreatment with either (-)-galanthamine or donepezil blocked the binding of (-)-[(11)C]galanthamine to the striatum, while sagittal PET imaging revealed accumulation of (-)-[(11)C]galanthamine in the brain. These results indicate that (-)-[(11)C]galanthamine showed specific binding to AChE, whereas (+)-[(11)C]-galanthamine accumulated in brain tissue by non-specific binding. Thus, optically pure (-)-[(11)C]galanthamine could be a useful PET tracer for imaging cerebral AChE.

  3. The effect of memory blocking antibiotics and their analogs on acetylcholinesterase.

    PubMed

    Springer, A D; Schacht, J; Agranoff, B W

    1976-07-01

    The ability of antibiotics to inhibit acetylcholinesterase was measured in homogenates of goldfish brain. Puromycin aminonucleoside was the most potent inhibitor followed by puromycin, cycloheximide and acetoxycycloheximide. Puromycin effectively impaired retention of active-avoidance learning in goldfish when injected either immediately before or after training, while puromycin aminonucleoside did not regardless of injection time. These results suggest that the known amnestic effects of puromycin, cycloheximide and acetoxycycloheximide are not a consequence of interference with acetylcholinesterase.

  4. Plant-insect coevolution and inhibition of acetylcholinesterase.

    PubMed

    Ryan, M F; Byrne, O

    1988-10-01

    The theory of plant-insect coevolution provides for diffuse coevolution and the expectation that plants evolve broad-spectrum chemical defenses with which some insects coevolve by detoxifying and using the compounds as host-location cues. Specific biochemical modes of action have been assigned to relatively few such defense chemicals and one major class, the terpenoids, is investigated here. Six terpenoids inhibited the enzyme acetylcholinesterase (derived from electric eel) and elicited the appropriate in vivo effects of insect paralysis and mortality. The diterpene gossypol was a reversible uncompetitive inhibitor. Five monoterpenes, representing a range of functional groups, were reversible competitive inhibitors apparently occupying at least the hydrophobic site of the enzyme's active center. Such data suggest the involvement of acetylcholinesterase in the coevolved insect response to terpenoids.

  5. Disulfide bonds of acetylcholinesterase

    SciTech Connect

    MacPhee-Quigley, K.; Vedvick, T.; Taylor, P.; Taylor, S.

    1986-05-01

    The positions of the inter- and intrasubunit disulfide bridges were established for the 11S form of acetylcholinesterase (AChE) isolated from Torpedo californica. A major form of AChE localized within the basal lamina of the synapse is a dimensionally asymmetric molecule which contains either two (13S) or three (17S) sets of catalytic subunits linked to collagenous and non-collagenous structural subunits. Limited proteolysis yields a tetramer of catalytic subunits which sediments at 11S. Each catalytic subunit contains 8 cysteine residues. Initially, these Cys residues were identified following trypsin digestion of the reduced protein alkylated with (/sup 14/C)-iodoacetate. Peptides were resolved by gel filtration followed by reverse phase HPLC. To determine the disulfide bonding profile, native non-reduced 11S AChE was treated with a fluorescent, sulfhydryl-specific reagent, monobromobimane, prior to proteolytic digestion. One fluorescent Cys peptide was identified indicating that a single sulfhydryl residue was present in its reduced form. Three pairs of disulfide bonded peptides were identified, sequenced, and localized in the polypeptide chain. The Cys residue that is located in the C-terminal tryptic peptide was disulfide bonded to an identical peptide and thus forms the intersubunit crosslink. Finally, the cysteine positions have been compared with the sequence of the homologous protein, thyroglobulin. Both likely share a common pattern of folding.

  6. The acetylcholinesterase inhibitor rivastigmine does not alter total choices for methamphetamine, but may reduce positive subjective effects, in a laboratory model of intravenous self-administration in human volunteers.

    PubMed

    De La Garza, R; Mahoney, J J; Culbertson, C; Shoptaw, S; Newton, T F

    2008-04-01

    A human laboratory model of intravenous methamphetamine self-administration may facilitate study of putative treatments for methamphetamine addiction. We conducted a double-blind, placebo-controlled, between groups investigation of the acetylcholinesterase (AChE) inhibitor rivastigmine in non-treatment-seeking volunteers who met criteria for methamphetamine abuse or dependence. Safety and subjective effects data derived from days 1-10 of this protocol are described in a separate publication. In this report, we describe self-administration outcomes in participants randomized to treatment with rivastigmine (0 mg, N=7; 1.5 mg, N=6; 3 mg, N=9); data that were collected on days 11-15 of the inpatient protocol. On day 11, participants sampled two infusions of methamphetamine (0 and 30 mg, i.v.). On days 12-15, participants made ten choices each day to receive an infusion of either methamphetamine (3 mg, IV) or saline or a monetary alternative ($0.05-$16). The study design allowed for evaluation of differences in behavior on days in which infusions were performed by the physician (experimenter-administered) versus by the participant using a PCA pump (self-administered), and when monetary alternatives were presented in either ascending or descending sequence. The data show that rivastigmine (1.5 and 3 mg), as compared to placebo, did not significantly alter total choices for methamphetamine (p=0.150). Importantly, the number of infusion choices was greater when methamphetamine was available then when saline was available (p<0.0001), and the number of money choices was greater when saline was available then when methamphetamine was available (p<0.0001). The total number of choices for methamphetamine was not altered as a function of a participant's preferred route of methamphetamine use (p=0.57), and did not differ significantly whether they were experimenter-administered or self-administered (p=0.30). In addition, total choices for methamphetamine were similar made when

  7. Results, rhetoric, and randomized trials: the case of donepezil.

    PubMed

    Gilstad, John R; Finucane, Thomas E

    2008-08-01

    Whether donepezil provides meaningful benefit to patients with Alzheimer's disease (AD) is controversial, but drug sales annually total billions of dollars. A review of data from published randomized clinical trials (RCTs) found rhetorical patterns that may encourage use of this drug. To create a reproducible observation, the sentences occurring at five specific text sites in all 18 RCTs of donepezil for AD were tabulated, as were study design, sources of financial support, and outcomes that could be compared between trials. Rhetoric in the 13 vendor-supported trials (15 publications) was strongly positive. Three early trials used the motif "efficacious (or effective) ... treating ... symptoms" four times. "Well-tolerated and efficacious" or an equivalent motif appeared 11 times in five RCTs. Nine RCTs referred 15 times to previously proven effectiveness. Seven trials encourage off-label use, for "early" cognitive impairment, severe dementia in advance of the Food and Drug Administration labeling change, or behavioral symptoms. These rhetorical motifs and themes appeared only in the vendor-supported trials. Trials without vendor support described the drug's effects as "small" or absent; two emphasized the need for better treatments. RCT results were highly consistent in all trials; the small differences do not explain differences in rhetoric. At these text sites in the primary research literature on donepezil for AD, uniformly positive rhetoric is present in all vendor-supported RCTs. Reference to the limited benefit of donepezil is confined to RCTs without vendor support. Data in the trials are highly consistent. This observation generates the hypothesis that rhetoric in vendor-supported published RCTs may promote vendors' products. PMID:18662199

  8. Neuroprotection against vascular dementia after acupuncture combined with donepezil hydrochloride: P300 event related potential

    PubMed Central

    Liu, Qiang; Wang, Xiu-juan; Zhang, Zhe-cheng; Xue, Rong; Li, Ping; Li, Bo

    2016-01-01

    Acupuncture can be used to treat various nervous system diseases. Here, 168 vascular dementia patients were orally administered donepezil hydrochloride alone (5 mg/day, once a day for 56 days), or combined with acupuncture at Shenting (DU24), Tianzhu (BL10), Sishencong (Extra), Yintang (Extra), Renzhong (DU26), Neiguan (PC6), Shenmen (HT7), Fengchi (GB20), Wangu (GB12) and Baihui (DU20) (once a day for 56 days). Compared with donepezil hydrochloride alone, P300 event related potential latency was shorter with an increased amplitude in patients treated with donepezil hydrochloride and acupuncture. Mini-Mental State Examination score was also higher. Moreover, these differences in P300 latency were identified within different infarcted regions in patients treated with donepezil hydrochloride and acupuncture. These findings indicate that acupuncture combined with donepezil hydrochloride noticeably improves cognitive function in patients with vascular dementia, and exerts neuroprotective effects against vascular dementia. PMID:27127486

  9. PET Evidence of the Effect of Donepezil on Cognitive Performance in an Animal Model of Chemobrain.

    PubMed

    Lim, Ilhan; Joung, Hye-Young; Yu, A Ram; Shim, Insop; Kim, Jin Su

    2016-01-01

    A considerable number of patients with breast cancer complain of cognitive impairment after chemotherapy. In this study, we showed that donepezil enhanced memory function and increased brain glucose metabolism in a rat model of cognitive impairment after chemotherapy using behavioral analysis and positron emission tomography (PET). We found that chemotherapy affected spatial learning ability, reference memory, and working memory and that donepezil improved these cognitive impairments. According to PET analysis, chemotherapy reduced glucose metabolism in the medial prefrontal cortex and hippocampus, and donepezil increased glucose metabolism in the bilateral frontal lobe, parietal lobe, and hippocampus. Reduced glucose metabolism was more prominent after treatment with doxorubicin than cyclophosphamide. Our results demonstrated the neural mechanisms for cognitive impairment after chemotherapy and show that cognition was improved after donepezil intervention using both behavioral and imaging methods. Our results suggested that donepezil can be employed clinically for the treatment of cognitive deficits after chemotherapy. PMID:27556039

  10. PET Evidence of the Effect of Donepezil on Cognitive Performance in an Animal Model of Chemobrain

    PubMed Central

    Lim, Ilhan; Yu, A Ram

    2016-01-01

    A considerable number of patients with breast cancer complain of cognitive impairment after chemotherapy. In this study, we showed that donepezil enhanced memory function and increased brain glucose metabolism in a rat model of cognitive impairment after chemotherapy using behavioral analysis and positron emission tomography (PET). We found that chemotherapy affected spatial learning ability, reference memory, and working memory and that donepezil improved these cognitive impairments. According to PET analysis, chemotherapy reduced glucose metabolism in the medial prefrontal cortex and hippocampus, and donepezil increased glucose metabolism in the bilateral frontal lobe, parietal lobe, and hippocampus. Reduced glucose metabolism was more prominent after treatment with doxorubicin than cyclophosphamide. Our results demonstrated the neural mechanisms for cognitive impairment after chemotherapy and show that cognition was improved after donepezil intervention using both behavioral and imaging methods. Our results suggested that donepezil can be employed clinically for the treatment of cognitive deficits after chemotherapy. PMID:27556039

  11. Characterization of acetylcholinesterases, and their genes, from the hemipteran species Myzus persicae (Sulzer), Aphis gossypii (Glover), Bemisia tabaci (Gennadius) and Trialeurodes vaporariorum (Westwood).

    PubMed

    Javed, N; Viner, R; Williamson, M S; Field, L M; Devonshire, A L; Moores, G D

    2003-12-01

    Gene sequences encoding putative acetylcholinesterases have been reported for four hemipteran insect species. Although acetylcholinesterase insensitivity occurs in insecticide-resistant populations of each of these species, no mutations were detected in the gene sequences from the resistant insects. This, coupled with a series of experiments using novel reversible inhibitors to compare the biochemical characteristics of acetylcholinesterase from a range of insect species, showed that the cloned cDNA fragments are unlikely to encode the hemipteran synaptic acetylcholinesterases, and there is likely to be a second ace locus.

  12. Inhibitors

    MedlinePlus

    ... Community Counts Blood Safety Inhibitors Articles & Key Findings Free Materials Videos Starting the Conversation Playing it Safe A Look at Hemophilia Joint Range of Motion My Story Links to Other Websites ...

  13. The Effect of Parathion on Red Blood Cell Acetylcholinesterase in the Wistar Rat

    PubMed Central

    Bunya, Naofumi; Sawamoto, Keigo; Benoit, Hanif

    2016-01-01

    Organophosphorus (OP) pesticide poisoning is a significant problem worldwide. Research into new antidotes for these acetylcholinesterase inhibitors, and even optimal doses for current therapies, is hindered by a lack of standardized animal models. In this study, we sought to characterize the effects of the OP pesticide parathion on acetylcholinesterase in a Wistar rat model that included comprehensive medical care. Methods. Male Wistar rats were intubated and mechanically ventilated and then poisoned with between 20 mg/kg and 60 mg/kg of intravenous parathion. Upon developing signs of poisoning, the rats were treated with standard critical care, including atropine, pralidoxime chloride, and midazolam, for up to 48 hours. Acetylcholinesterase activity was determined serially for up to 8 days after poisoning. Results. At all doses of parathion, maximal depression of acetylcholinesterase occurred at 3 hours after poisoning. Acetylcholinesterase recovered to nearly 50% of baseline activity by day 4 in the 20 mg/kg cohort and by day 5 in the 40 and 60 mg/kg cohorts. At day 8, most rats' acetylcholinesterase had recovered to roughly 70% of baseline. These data should be useful in developing rodent models of acute OP pesticide poisoning. PMID:27418928

  14. The Effect of Parathion on Red Blood Cell Acetylcholinesterase in the Wistar Rat.

    PubMed

    Bunya, Naofumi; Sawamoto, Keigo; Benoit, Hanif; Bird, Steven B

    2016-01-01

    Organophosphorus (OP) pesticide poisoning is a significant problem worldwide. Research into new antidotes for these acetylcholinesterase inhibitors, and even optimal doses for current therapies, is hindered by a lack of standardized animal models. In this study, we sought to characterize the effects of the OP pesticide parathion on acetylcholinesterase in a Wistar rat model that included comprehensive medical care. Methods. Male Wistar rats were intubated and mechanically ventilated and then poisoned with between 20 mg/kg and 60 mg/kg of intravenous parathion. Upon developing signs of poisoning, the rats were treated with standard critical care, including atropine, pralidoxime chloride, and midazolam, for up to 48 hours. Acetylcholinesterase activity was determined serially for up to 8 days after poisoning. Results. At all doses of parathion, maximal depression of acetylcholinesterase occurred at 3 hours after poisoning. Acetylcholinesterase recovered to nearly 50% of baseline activity by day 4 in the 20 mg/kg cohort and by day 5 in the 40 and 60 mg/kg cohorts. At day 8, most rats' acetylcholinesterase had recovered to roughly 70% of baseline. These data should be useful in developing rodent models of acute OP pesticide poisoning. PMID:27418928

  15. Characterization of oral disintegrating film containing donepezil for Alzheimer disease.

    PubMed

    Liew, Kai Bin; Tan, Yvonne Tze Fung; Peh, Kok Khiang

    2012-03-01

    The aim of this study was to develop a taste-masked oral disintegrating film (ODF) containing donepezil, with fast disintegration time and suitable mechanical strength, for the treatment of Alzheimer's disease. Hydroxypropyl methylcellulose, corn starch, polyethylene glycol, lactose monohydrate and crosspovidone served as the hydrophilic polymeric bases of the ODF. The uniformity, in vitro disintegration time, drug release and the folding endurance of the ODF were examined. The in vitro results showed that 80% of donepezil hydrochloride was released within 5 minutes with mean disintegration time of 44 seconds. The result of the film flexibility test showed that the number of folding time to crack the film was 40 times, an indication of sufficient mechanical property for patient use. A single-dose, fasting, four-period, eight-treatment, double-blind study involving 16 healthy adult volunteers was performed to evaluate the in situ disintegration time and palatability of ODF. Five parameters, namely taste, aftertaste, mouthfeel, ease of handling and acceptance were evaluated. The mean in situ disintegration time of ODF was 49 seconds. ODF containing 7 mg of sucralose were more superior than saccharin and aspartame in terms of taste, aftertaste, mouthfeel and acceptance. Furthermore, the ODF was stable for at least 6 months when stored at 40°C and 75% relative humidity.

  16. Bioequivalence Study of Donepezil Hydrochloride Tablets in Healthy Male Volunteers

    PubMed Central

    Rojanasthien, Noppamas; Aunmuang, Siriluk; Hanprasertpong, Nutthiya; Roongapinun, Sukit; Teekachunhatean, Supanimit

    2012-01-01

    The objective of this study was to investigate the bioequivalence of two formulations of 5 mg donepezil HCL tablets: Tonizep as the test and Aricept as the reference. The two products were administered as a single oral dose according to a randomized two-phase crossover with a 3-week washout period in 20 healthy Thai Male volunteers. After drug administration, serial blood samples were collected over a period of 216 hours. Plasma donepezil concentrations were measured by high performance liquid chromatography with UV detection. Pharmacokinetic parameters were analyzed based on noncompartmental analysis. The logarithmically transformed data of AUC0–∞ and Cmax were analyzed for 90% confidence intervals (CI) using ANOVA. The mean (90% CI) values for the ratio of AUC0–∞ and Cmax values of the test product over those of the reference product were 1.08 (1.02–1.14) and 1.08 (0.99–1.17), respectively (within the bioequivalence range of 0.8–1.25). The median Tmax for the test product was similar to that of the reference product (2.0 hr), and the 90% CI for the Tmax difference between the two preparations was –0.19 to 0.29 hr and within the bioequivalence range of ± 20% of the Tmax of the reference formulation. Our study demonstrated the bioequivalence of the two preparations. PMID:23209934

  17. Highly efficient, selective and sensitive molecular screening of acetylcholinesterase inhibitors of natural origin by solid-phase extraction-liquid chromatography/electrospray ionisation-octopole-orthogonal acceleration time-of-flight-mass spectrometry and novel thin-layer chromatography-based bioautography.

    PubMed

    Mroczek, Tomasz

    2009-03-20

    Highly efficient, selective and sensitive molecular screening of natural acetylcholinesterase (AChE) inhibitors was developed and comprised optimized pressurized liquid extraction (PLE) of plant materials followed by highly selective solid-phase extraction (SPE) using Oasis HLB cartridges. Pure alkaloidal fractions were analyzed by a newly developed high-performance liquid-chromatography (HPLC) on a 3 microm Atlantis HILIC silica stationary phase combined with recently introduced electrospray ionisation (ESI) octopole-orthogonal acceleration time-of-flight (oa TOF)-mass spectrometry (MS) with high mass accuracy (about 2 ppm) and high sensitivity (absolute limit of detection (LOD) for galanthamine was about 43 fg at signal-to-noise 13:1). Moreover, a newly developed and validated TLC-bioautography permit galanthamine sensitivities at pg levels. In this way, more potent than galanthamine AChE inhibitor namely 1,2-dihydrogalanthamine in Narcissus jonquilla 'Pipit' extract could be found (with IC(50) value 0.19 microM lower of about 42% than that of galanthamine).

  18. Galantamine derivatives with indole moiety: Docking, design, synthesis and acetylcholinesterase inhibitory activity.

    PubMed

    Atanasova, Mariyana; Stavrakov, Georgi; Philipova, Irena; Zheleva, Dimitrina; Yordanov, Nikola; Doytchinova, Irini

    2015-09-01

    The inhibitors of acetylcholinesterase are the main therapy against Alzheimer's disease. Among them, galantamine is the best tolerated and the most prescribed drug. In the present study, 41 galantamine derivatives with known acetylcholinesterase inhibitory activities expressed as IC50 were selected from the literature and docked into a recombinant human acetylcholinesterase by GOLD. A linear relationship between GoldScores and pIC50 values was found and used to design and predict novel galantamine derivatives with indole moiety in the side chain. The four best predicted compounds were synthesized and tested for inhibitory activity. All of them were between 11 and 95 times more active than galantamine. The novel galantamine derivatives with indole moiety have dual site binding to the enzyme--the galantamine moiety binds to the catalytic anionic site and the indole moiety binds to peripheral anionic site. Additionally, the indole moiety of one of the novel inhibitors binds in a region, close to the peripheral anionic site of the enzyme, where the Ω-loop of amyloid beta peptide adheres to acetylcholinesterase. This compound emerges as a promising lead compound for multi-target anti-Alzheimer therapy not only because of the strong inhibitory activity, but also because it is able to block the amyloid beta deposition on acetylcholinesterase. PMID:26260334

  19. Ligand exclusion on acetylcholinesterase.

    PubMed

    Berman, H A; Leonard, K

    1990-11-27

    This paper examines covalent reactivity of AchE with respect to cationic and uncharged methylphosphonates and substrates in the absence and presence of cationic ligands selective for the active center and the peripheral anionic site. The organophosphorus inhibitors are enantiomeric alkyl methylphosphonothioates (1-5) containing cycloheptyl and isopropyl phosphono ester groups and S-methyl, S-n-pentyl, and S-[beta-(trimethylammonio)ethyl] leaving groups; these agents differ in their configuration about phosphorus and their steric, hydrophobic, and electrostatic characteristics. The synthetic substrates examined are acetylthiocholine, p-nitrophenyl acetate, and 7-acetoxy-4-methylcoumarin (7AMC). Antagonism of the methylphosphonothioate reaction by cationic ligands is strongly dependent on the nature of both the cation and the methylphosphonate but independent of the configuration about phosphorus. While all cations cause linear mixed inhibition of acetylthiocholine hydrolysis, there are observed a variety of inhibition patterns of 7AMC and p-nitrophenyl acetate hydrolysis that are distinctly nonlinear, as well as patterns in which the reciprocal plots intersect in the upper right quadrant. Strong antagonism of cationic (methylphosphonyl)thiocholines correlates very well with linear inhibition of acetylthiocholine. Ligands that cause only negligible antagonism of the uncharged methylphosphonates display nonlinear inhibition of uncharged substrates. These relationships, since they are most pronounced for peripheral site ligands and are strongly dependent on the charge carried by the reactant, suggest that the peripheral anionic site alters enzyme reactivity through an electrostatic interaction with the net negative active center. Such behavior indicates a potential role for the peripheral anionic site in conserving AchE catalytic efficiency within a narrow range of values. PMID:2271673

  20. Effectiveness and Tolerability of High-Dose (23 mg/d) Versus Standard-Dose (10 mg/d) Donepezil in Moderate to Severe Alzheimer’s Disease: A 24-Week, Randomized, Double-Blind Study

    PubMed Central

    Farlow, Martin R.; Salloway, Stephen; Tariot, Pierre N.; Yardley, Jane; Moline, Margaret L.; Wang, Qin; Brand-Schieber, Elimor; Zou, Heng; Hsu, Timothy; Satlin, Andrew

    2010-01-01

    Background Currently approved Alzheimer’s disease (AD) treatments have been reported to provide symptomatic benefit, without proven impact on clinical progression. We hypothesized that the loss of initial therapeutic benefit over time may be mitigated by higher doses of a cholinesterase inhibitor. Objective The aim of this study was to determine the effectiveness and tolerability of increasing donepezil from 10 to 23 mg/d in patients with moderate to severe AD. Methods This randomized, double-blind study was conducted at 219 sites in Asia, Europe, Australia, North America, South Africa, and South America from June 6, 2007, to March 27, 2009. Patients aged 45 to 90 years with probable AD, Mini-Mental State Examination score 0 to 20 (moderate to severe impairment), and who were receiving donepezil 10 mg once daily for ≥12 weeks before the start of the study were eligible. Patients (n = 1467) were randomly assigned to receive high-dose donepezil (23 mg once daily) or standard-dose donepezil (10 mg once daily) for 24 weeks. Coprimary effectiveness measures were changes in cognition and global functioning, as assessed using least squares mean changes from baseline (LSM [SE] Δ) scores (last observation carried forward) on the Severe Impairment Battery (SIB; cognition) and the Clinician’s Interview-Based Impression of Change Plus Caregiver Input scale (CIBIC+; global function rating) overall change score (mean [SD]) at week 24. Treatment-emergent adverse events (TEAEs) were assessed using spontaneous patient/caregiver reporting and open-ended questioning; clinical laboratory testing (hematology, biochemistry, and urinalysis panels analyzed by a central laboratory); 12-lead ECG; and physical and neurologic examinations, including vital sign measurements. Results The effectiveness analyses included 1371 patients (mean age, 73.8 years; 62.8% female; 73.5% white; weight range, 34.0–138.7 kg). A total of 296 of 981 patients (30.2%) withdrew from the donepezil 23-mg

  1. Effectiveness of Donepezil, Rivastigmine, and (±)Huperzine A in Counteracting the Acute Toxicity of Organophosphorus Nerve Agents: Comparison with Galantamine

    PubMed Central

    Aracava, Yasco; Pereira, Edna F. R.; Akkerman, Miriam; Adler, Michael

    2009-01-01

    Galantamine, a centrally acting cholinesterase (ChE) inhibitor and a nicotinic allosteric potentiating ligand used to treat Alzheimer's disease, is an effective and safe antidote against poisoning with nerve agents, including soman. Here, the effectiveness of galantamine was compared with that of the centrally active ChE inhibitors donepezil, rivastigmine, and (±)huperzine A as a pre- and/or post-treatment to counteract the acute toxicity of soman. In the first set of experiments, male prepubertal guinea pigs were treated intramuscularly with one of the test drugs and 30 min later challenged with 1.5 × LD50 soman (42 μg/kg s.c.). All animals that were pretreated with galantamine (6–8 mg/kg), 3 mg/kg donepezil, 6 mg/kg rivastigmine, or 0.3 mg/kg (±)huperzine A survived the soman challenge, provided that they were also post-treated with atropine (10 mg/kg i.m.). However, only galantamine was well tolerated. In subsequent experiments, the effectiveness of specific treatment regimens using 8 mg/kg galantamine, 3 mg/kg donepezil, 6 mg/kg rivastigmine, or 0.3 mg/kg (±)huperzine A was compared in guinea pigs challenged with soman. In the absence of atropine, only galantamine worked as an effective and safe pretreatment in animals challenged with 1.0 × LD50 soman. Galantamine was also the only drug to afford significant protection when given to guinea pigs after 1.0 × LD50 soman. Finally, all test drugs except galantamine reduced the survival of the animals when administered 1 or 3 h after the challenge with 0.6 or 0.7 × LD50 soman. Thus, galantamine emerges as a superior antidotal therapy against the toxicity of soman. PMID:19741148

  2. Alzheimer disease. Donepezil and nursing home placement--benefits and costs.

    PubMed

    Jelic, Vesna; Winblad, Bengt

    2016-01-01

    The recent DOMINO-AD trial suggests that continued treatment with donepezil delays nursing home placement for patients with severe Alzheimer disease, but more work is needed to support strong conclusions about whether the benefits outweigh the costs.

  3. Tissue distribution of human acetylcholinesterase and butyrylcholinesterase messenger RNA

    SciTech Connect

    Jbilo, O.; Barteles, C.F.; Chatonnet, A.; Toutant, J.P.; Lockridge, O.

    1994-12-31

    Tissue distribution of human acetyicholinesterase and butyryicholinesterase messenger RNA. 1 Cholinesterase inhibitors occur naturally in the calabar bean (eserine), green potatoes (solanine), insect-resistant crab apples, the coca plant (cocaine) and snake venom (fasciculin). There are also synthetic cholinesterase inhibitors, for example man-made insecticides. These inhibitors inactivate acetyicholinesterase and butyrylcholinesterase as well as other targets. From a study of the tissue distribution of acetylcholinesterase and butyrylcholinesterase mRNA by Northern blot analysis, we have found the highest levels of butyrylcholinesterase mRNA in the liver and lungs, tissues known as the principal detoxication sites of the human body. These results indicate that butyrylcholinesterase may be a first line of defense against poisons that are eaten or inhaled.

  4. Acetylcholinesterase inhibitory properties of some benzoic acid derivatives

    NASA Astrophysics Data System (ADS)

    Yildiz, Melike; Kiliç, Deryanur; Ünver, Yaǧmur; Şentürk, Murat; Askin, Hakan; Küfrevioǧlu, Ömer Irfan

    2016-04-01

    Acetylcholinesterase (AChE) hydrolyses the neurotransmitter acetylcholine to acetic acid and choline. AChE inhibitors are used in treatment of several neurodegeneartive disorder and Alzheimer's disease. In the present study, inhibition of AChE with some benzoic acid derivatives were investigated. 3-Chloro-benzoic acid (1), 2-hydroxy-5-sulfobenzoic acid (2), 2-(sulfooxy) benzoic acid (3), 2-hydroxybenzoic acid (4), 2,3-dimethoxybenzoic (5), and 3,4,5-trimethoxybenzoic (6) were calculated IC50 values AChE enzyme. Kinetic investigations showed that similarly to AChE inhibitors. Benzoic acid derivatives (1-6) investigated are encouraging agents which may be used as lead molecules in order to derivative novel AChE inhibitors that might be useful in medical applications.

  5. The Effects of Donepezil on 15-Item Geriatric Depression Scale Structure in Patients with Alzheimer Disease

    PubMed Central

    Yang, Youngsoon; Kwak, Yong Tae

    2016-01-01

    Background/Aims In Alzheimer disease (AD), depression is among the most common accompanying neuropsychiatric symptoms and has different clinical manifestations when compared with early-life depression. In patients with drug-naïve AD, we tried to explore the structure of the 15-item Geriatric Depression Scale (GDS15) and the effect of donepezil on these substructures. Methods GDS15, cognitive function, and activities of daily living function tests were administered to 412 patients with probable AD who had not been medicated before visiting the hospital. Using principal component analysis, three factors were identified. The patients with AD who received only donepezil were retrospectively analyzed and we compared the change of cognition and GDS15 subgroup after donepezil medication. Results Our study identified three factors and revealed that the GDS15 may be comprised of a heterogeneous scale. The Barthel index was significantly correlated with factor 1 (positively) and factor 2 (negatively). The Korean version of the MMSE (K-MMSE) was significantly correlated with factor 2 and factor 3. Compared to the baseline state, K-MMSE and GDS15 showed significant improvement after taking donepezil. Among GDS15 subgroups, factor 2 and factor 3 showed significant improvement after donepezil treatment. Conclusions These results suggest that the GDS15 may be comprised of a heterogeneous scale and donepezil differentially affects the GDS15 subgroup in AD. PMID:27790242

  6. Deterioration in donepezil-induced PR prolongation after a coadministration of memantine in a patient with Alzheimer's disease.

    PubMed

    Igeta, Hirofumi; Suzuki, Yutaro; Motegi, Takaharu; Sasaki, Aiko; Yokoyama, Yuichi; Someya, Toshiyuki

    2013-01-01

    The side effects and interaction of memantine and donepezil hydrochloride when used concomitantly are currently unknown. We encountered a case of a 77-year-old female with Alzheimer's disease in which the concomitant use of memantine exacerbated the prolonged electrocardiogram PR interval which appeared while donepezil hydrochloride was being orally administered. In terms of the cardiac circulation system side effects caused by donepezil hydrochloride and memantine, bradycardia has been reported. However, clinicians should be also aware of PR prolongation associated with the concomitant use of donepezil and memantine.

  7. Design of multi-target compounds as AChE, BACE1, and amyloid-β(1-42) oligomerization inhibitors: in silico and in vitro studies.

    PubMed

    Hernández-Rodríguez, Maricarmen; Correa-Basurto, José; Martínez-Ramos, Federico; Padilla-Martínez, Itzia Irene; Benítez-Cardoza, Claudia G; Mera-Jiménez, Elvia; Rosales-Hernández, Martha Cecilia

    2014-01-01

    Despite great efforts to develop new therapeutic strategies against Alzheimer's disease (AD), the acetylcholinesterase inhibitors (AChEIs): donepezil, rivastigmine, and galantamine, have been used only as a palliative therapeutic approach. However, the pathogenesis of AD includes several factors such as cholinergic hypothesis, amyloid-β (Aβ) aggregation, and oxidative stress. For this reason, the design of compounds that target the genesis and progression of AD could offer a therapeutic benefit. We have designed a set of compounds (M-1 to M-5) with pharmacophore moieties to inhibit the release, aggregation, or toxicity of Aβ, act as AChEIs and have antioxidant properties. Once the compounds were designed, we analyzed their physicochemical parameters and performed docking studies to determine their affinity values for AChE, β-site amyloid-protein precursor cleaving enzyme 1 (BACE1), and the Aβ monomer. The best ligands, M-1 and M-4, were then synthesized, chemically characterized, and evaluated in vitro. The in vitro studies showed that these compounds inhibit AChE (M-1 Ki = 0.12 and M-4 Ki = 0.17 μM) and BACE1 (M-1 IC50 = 15.1 and M-4 IC50 = 15.4 nM). They also inhibit Aβ oligomerization and exhibit antioxidant activity. In addition, these compounds showed low cytotoxicity in microglial cells. For these reasons, they are promising for future use as drugs in AD mice transgenic models.

  8. Design of multi-target compounds as AChE, BACE1, and amyloid-β(1-42) oligomerization inhibitors: in silico and in vitro studies.

    PubMed

    Hernández-Rodríguez, Maricarmen; Correa-Basurto, José; Martínez-Ramos, Federico; Padilla-Martínez, Itzia Irene; Benítez-Cardoza, Claudia G; Mera-Jiménez, Elvia; Rosales-Hernández, Martha Cecilia

    2014-01-01

    Despite great efforts to develop new therapeutic strategies against Alzheimer's disease (AD), the acetylcholinesterase inhibitors (AChEIs): donepezil, rivastigmine, and galantamine, have been used only as a palliative therapeutic approach. However, the pathogenesis of AD includes several factors such as cholinergic hypothesis, amyloid-β (Aβ) aggregation, and oxidative stress. For this reason, the design of compounds that target the genesis and progression of AD could offer a therapeutic benefit. We have designed a set of compounds (M-1 to M-5) with pharmacophore moieties to inhibit the release, aggregation, or toxicity of Aβ, act as AChEIs and have antioxidant properties. Once the compounds were designed, we analyzed their physicochemical parameters and performed docking studies to determine their affinity values for AChE, β-site amyloid-protein precursor cleaving enzyme 1 (BACE1), and the Aβ monomer. The best ligands, M-1 and M-4, were then synthesized, chemically characterized, and evaluated in vitro. The in vitro studies showed that these compounds inhibit AChE (M-1 Ki = 0.12 and M-4 Ki = 0.17 μM) and BACE1 (M-1 IC50 = 15.1 and M-4 IC50 = 15.4 nM). They also inhibit Aβ oligomerization and exhibit antioxidant activity. In addition, these compounds showed low cytotoxicity in microglial cells. For these reasons, they are promising for future use as drugs in AD mice transgenic models. PMID:24762947

  9. A novel biosensor method for surfactant determination based on acetylcholinesterase inhibition

    NASA Astrophysics Data System (ADS)

    Kucherenko, I. S.; Soldatkin, O. O.; Arkhypova, V. M.; Dzyadevych, S. V.; Soldatkin, A. P.

    2012-06-01

    A novel enzyme biosensor based on acetylcholinesterase inhibition for the determination of surfactants in aqueous solutions is described. Acetylcholinesterase-based bioselective element was deposited via glutaraldehyde on the surface of conductometric transducers. Different variants of inhibitory analysis of surfactants were tested, and finally surfactant's concentration was evaluated by measuring initial rate of acetylcholinesterase inhibition. Besides, we studied the effect of solution characteristics on working parameters of the biosensor for direct measurement of acetylcholine and for inhibitory determination of surfactants. The biosensor's sensitivity to anionic and cationic surfactants (0.35 mg l-1) was tested. The high operational stability of the biosensor during determination of acetylcholine (RSD 2%) and surfactants (RSD 11%) was shown. Finally, we discussed the selectivity of the biosensor toward surfactants and other AChE inhibitors. The proposed biosensor can be used as a component of the multibiosensor for ecological monitoring of toxicants.

  10. Efficacy of Galantamine on Cognition in Mild-to-Moderate Alzheimer's Dementia after Failure to Respond to Donepezil

    PubMed Central

    Hwang, Tae-Young; Ahn, Inn-Sook; Kim, Seonwoo

    2016-01-01

    Objective This study compares the efficacy of the cholinesterase inhibitor (ChEI) galantamine on cognition in patients with mild-to-moderate Alzheimer's dementia (AD) who were either naïve to ChEI drugs or who had failed a trial of the ChEI donepezil. Methods Outpatients with AD were sequentially referred for screening and enrollment. Current outpatients who had taken donepezil for at least 6 months without demonstrated efficacy on cognition were switched to galantamine (switched group). New outpatients with no ChEI prescription history were classified as the naïve group and were given galantamine. The primary outcome measures for the between-group comparison were response rate on cognition at 26 and 52 weeks (categorical) and change on the Korean version of the Alzheimer's Disease Assessment Scale-cognitive subscale (dimensional). Secondary cognitive outcomes were measured using the subset of frontal executive function and the Korean Mini-Mental State Examination. Results Seventy outpatients were enrolled and 66 were analyzed by Intent-to-treat (ITT). There were 42 cases in the naïve group and 24 in the switched group. Response rates did not differ at 26 weeks (71.4% naïve vs. 58.3% switched; p=0.277) or at 52 weeks (59.5% naïve vs. 41.6% switched; p=0.162). No significant differences were observed in the pattern of change over the 52 weeks on the primary and secondary cognitive scales. Conclusion As the efficacy of galantamine on cognition was not inferior in the switched group compared to that in the naïve group, switching ChEI drugs is clinically feasible for non-responding patients with mild-to-moderate AD. PMID:27247602

  11. A fixed-dose combination of memantine extended-release and donepezil in the treatment of moderate-to-severe Alzheimer’s disease

    PubMed Central

    Deardorff, William James; Grossberg, George T

    2016-01-01

    Currently available therapies for the treatment of Alzheimer’s disease (AD) consist of cholinesterase inhibitors (ChEIs), such as donepezil, and the N-methyl-D-aspartate receptor antagonist memantine. In December 2014, the US Food and Drug Administration approved Namzaric™, a once-daily, fixed-dose combination (FDC) of memantine extended-release (ER) and donepezil for patients with moderate-to-severe AD. The FDC capsule is bioequivalent to the coadministered individual drugs, and its bioavailability is similar when taken fasting, with food, or sprinkled onto applesauce. The combination of memantine and ChEIs in moderate-to-severe AD provides additional benefits to ChEI monotherapy across multiple domains and may delay the time to nursing home admission. A dedicated study of memantine ER compared to placebo in patients on a stable dose of a ChEI found statistically significant benefits on cognition and global status but not functioning. Treatment with memantine ER and donepezil is generally well tolerated, although higher doses of ChEIs are associated with more serious adverse events such as vomiting, syncope, and weight loss. Potential advantages of the FDC include a simpler treatment regimen, reduction in pill burden, and the ability to sprinkle the capsule onto soft foods. Patients who may benefit from the FDC include those with significant dysphagia, a history of poor compliance, or limited caregiver interaction. However, available evidence that these advantages would increase treatment adherence and persistence is conflicting, meaning that the added cost of switching patients from generic options to an FDC may not always be justified. PMID:27757016

  12. Acetylcholinesterase inhibitory activity and molecular docking study of 1-nitro-2-phenylethane, the main constituent of Aniba canelilla essential oil.

    PubMed

    Silva, Nayla N S; Silva, José R A; Alves, Claudio N; Andrade, Eloisa H A; da Silva, Joyce K R; Maia, José G S

    2014-08-01

    The odoriferous principle of Aniba canelilla (H.B.K.) Mez is due 1-nitro-2-phenylethane, the main constituent of its essential oil and also responsible for the plant's cinnamon scent. This nitroderivative was previously reported by their antioxidant, antinociception, cardiovascular, and vasorelaxant properties, and now it was tested as the inhibitor of acetylcholinesterase using bioautography on TLC plates. The oil and a purified fraction containing 1-nitro-2-phenylethane were analyzed by GC and GC-MS. The percentage content of 1-nitro-2-phenylethane in the oil and after fractionation was 70.2% and 98.0%, respectively. The results showed that the oil and 1-nitro-2-phenylethane are strong acetylcholinesterase inhibitors with the detection limit of 0.01 ng, equivalent to physostigmine used as the positive control. A molecular docking study was used to determine the position and conformation of the 1-nitro-2-phenylethane inhibitor in the receptor-binding pocket of the acetylcholinesterase enzyme. The nitrogroup of 1-nitro-2-phenylethane was positioned near of the catalytic serine residue of acetylcholinesterase, forming strong hydrogen bond with its hydroxyl group. Therefore, the electronegative character of 1-nitro-2-phenylethane may explain the interaction that occurs with the catalytic serine residue and its significant inhibitory activity of acetylcholinesterase.

  13. In situ monitoring of myenteric neuron activity using acetylcholinesterase-modified AlGaN/GaN solution-gate field-effect transistors.

    PubMed

    Müntze, Gesche Mareike; Pouokam, Ervice; Steidle, Julia; Schäfer, Wladimir; Sasse, Alexander; Röth, Kai; Diener, Martin; Eickhoff, Martin

    2016-03-15

    The response characteristics of acetylcholinesterase-modified AlGaN/GaN solution-gate field-effect transistors (AcFETs) are quantitatively analyzed by means of a kinetic model. The characterization shows that the covalent enzyme immobilization process yields reproducible AcFET characteristics with a Michaelis constant KM of (122 ± 4) μM for the immobilized enzyme layer. The increase of KM by a factor of 2.4 during the first four measurement cycles is attributed to partial denaturation of the enzyme. The AcFETs were used to record the release of acetylcholine (ACh) by neuronal tissue cultivated on the gate area upon stimulation by rising the extracellular K(+) concentration. The neuronal tissue constituted of isolated myenteric neurons from four to 12 days old Wistar rats, or sections from the muscularis propria containing the myenteric plexus from adult rats. For both cases the AcFET response was demonstrated to be related to the activity of the immobilized acetylcholinesterase using the reversible acetylcholinesterase blocker donepezil. A concentration response curve of this blocking agent revealed a half maximal inhibitory concentration of 40 nM which is comparable to values measured by complementary in vitro methods.

  14. Randomized, Placebo-Controlled, Clinical Trial of Donepezil in Vascular Dementia

    PubMed Central

    Román, Gustavo C.; Salloway, Stephen; Black, Sandra E.; Royall, Donald R.; DeCarli, Charles; Weiner, Michael W.; Moline, Margaret; Kumar, Dinesh; Schindler, Rachel; Posner, Holly

    2010-01-01

    Background and Purpose We sought to assess the efficacy and safety of donepezil in patients with vascular dementia (VaD) fulfilling National Institute of Neurological Disorders and Stroke–Association Internationale pour la Recherche et l’Enseignement en Neurosciences criteria. Methods This international, multicenter, 24-week trial was conducted from March 2003 to August 2005. Patients (N=974; mean age, 73.0 years) with probable or possible VaD were randomized 2:1 to receive donepezil 5 mg/d or placebo. Coprimary outcome measures were scores on the Vascular-Alzheimer Disease Assessment Scale–Cognitive Subscale and Clinician’s Interview–Based Impression of Change, plus carer interview. Analyses were performed for the intent-to-treat population with the last-observation-carried-forward method. Results Compared with placebo, donepezil-treated patients showed significant improvement from baseline to end point on the Vascular-Alzheimer Disease Assessment Scale–Cognitive Subscale (least-squares mean difference, −1.156; 95% CI, −1.98 to −0.33; P<0.01) but not on the Clinician’s Interview–Based Impression of Change, plus carer interview. Patients with hippocampal atrophy who were treated with donepezil demonstrated stable cognition versus a decline in the placebo-treated group; in those without atrophy, cognition improved with donepezil versus relative stability with placebo. Results on secondary efficacy measures were inconsistent. The incidence of adverse events was similar across groups. Eleven deaths occurred in the donepezil group (1.7%), similar to rates previously reported for donepezil trials in VaD, whereas no deaths occurred in the placebo group. Conclusions Patients treated with donepezil 5 mg/d demonstrated significant improvement in cognitive, but not global, function. Donepezil was relatively well tolerated; adverse events were consistent with current labeling. Mortality in the placebo group was unexpectedly low. The differential

  15. Molecularly imprinted microparticles in lipid-based formulations for sustained release of donepezil.

    PubMed

    Ruela, André Luís Morais; de Figueiredo, Eduardo Costa; de Araújo, Magali Benjamim; Carvalho, Flávia Chiva; Pereira, Gislaine Ribeiro

    2016-10-10

    Donepezil is a drug administered for Alzheimer's disease treatment, and it is a potential template molecule for imprinted microparticles. The precipitation polymerization technique allows the synthesis of spherical imprinted microparticles, and the intermolecular interactions among drug and molecularly imprinted polymers (MIPs) play a promising role for delineating drug delivery systems. Once that donepezil is a poorly-water soluble compound, lipid based-formulations (LBFs) may enhance its oral administration. Based on this, LBFs are useful vehicles to incorporate imprinted microparticles synthesized by precipitation polymerization. In these formulations, the drug dissolved in lipids is accessible to adsorbate in the polymers, and the hydrophobic environment of lipids increases the molecular recognition of MIPs. The formulations based on MIPs using pure oleic acid as vehicle prolong the in vitro release of donepezil up to several hours by a Fickian diffusion mechanism, and it provides a multiphasic release pattern related to the heterogeneity of the binding sites. The modulation of donepezil release from MIPs-based formulations using oil vehicles may contribute to decrease its side effects, possibly regulating its absorption rate in the gastrointestinal tract. These systems represent a novel technological platform to prolong the delivery not only for donepezil, but also for a variety of therapeutics.

  16. Microneedle-mediated delivery of donepezil: Potential for improved treatment options in Alzheimer's disease.

    PubMed

    Kearney, Mary-Carmel; Caffarel-Salvador, Ester; Fallows, Steven J; McCarthy, Helen O; Donnelly, Ryan F

    2016-06-01

    Transdermal drug delivery is an attractive route of drug administration; however, there are relatively few marketed transdermal products. To increase delivery across the skin, strategies to enhance skin permeability are widely investigated, with microneedles demonstrating particular promise. Hydrogel-forming microneedles are inserted into the skin, and following dissolution of a drug loaded reservoir and movement of the drug through the created channels, the microneedle array is removed intact, and can then be readily and safely discarded. This study presents the formulation and evaluation of an integrated microneedle patch containing the Alzheimer's drug, donepezil hydrochloride. The integrated patch consisted of hydrogel-forming microneedles in combination with a donepezil hydrochloride containing film. Formulation and characterisation of plasticised films, prepared from poly(vinylpyrrolidone) or poly (methyl vinyl ether co-maleic anhydride/acid) (Gantrez®) polymers, is presented. Furthermore, in vitro permeation of donepezil hydrochloride across neonatal porcine skin from the patches was investigated, with 854.71μg±122.71μg donepezil hydrochloride delivered after 24h, using the optimum patch formulation. Following administration of the patch to an animal model, plasma concentrations of 51.8±17.6ng/mL were obtained, demonstrating the success of this delivery platform for donepezil hydrochloride. PMID:27018330

  17. Donepezil rescues spatial learning and memory deficits following traumatic brain injury independent of its effects on neurogenesis.

    PubMed

    Yu, Tzong-Shiue; Kim, Ahleum; Kernie, Steven G

    2015-01-01

    Traumatic brain injury (TBI) is ubiquitous and effective treatments for it remain supportive largely due to uncertainty over how endogenous repair occurs. Recently, we demonstrated that hippocampal injury-induced neurogenesis is one mechanism underlying endogenous repair following TBI. Donepezil is associated with increased hippocampal neurogenesis and has long been known to improve certain aspects of cognition following many types of brain injury through unknown mechanisms. By coupling donepezil therapy with temporally regulated ablation of injury-induced neurogenesis using nestin-HSV transgenic mice, we investigated whether the pro-cognitive effects of donepezil following injury might occur through increasing neurogenesis. We demonstrate that donepezil itself enhances neurogenesis and improves cognitive function following TBI, even when injury-induced neurogenesis was inhibited. This suggests that the therapeutic effects of donepezil in TBI occur separately from its effects on neurogenesis.

  18. Altered Levels of Acetylcholinesterase in Alzheimer Plasma

    PubMed Central

    García-Ayllón, María-Salud; Riba-Llena, Iolanda; Serra-Basante, Carol; Alom, Jordi; Boopathy, Rathnam; Sáez-Valero, Javier

    2010-01-01

    Background Many studies have been conducted in an extensive effort to identify alterations in blood cholinesterase levels as a consequence of disease, including the analysis of acetylcholinesterase (AChE) in plasma. Conventional assays using selective cholinesterase inhibitors have not been particularly successful as excess amounts of butyrylcholinesterase (BuChE) pose a major problem. Principal Findings Here we have estimated the levels of AChE activity in human plasma by first immunoprecipitating BuChE and measuring AChE activity in the immunodepleted plasma. Human plasma AChE activity levels were ∼20 nmol/min/mL, about 160 times lower than BuChE. The majority of AChE species are the light G1+G2 forms and not G4 tetramers. The levels and pattern of the molecular forms are similar to that observed in individuals with silent BuChE. We have also compared plasma AChE with the enzyme pattern obtained from human liver, red blood cells, cerebrospinal fluid (CSF) and brain, by sedimentation analysis, Western blotting and lectin-binding analysis. Finally, a selective increase of AChE activity was detected in plasma from Alzheimer's disease (AD) patients compared to age and gender-matched controls. This increase correlates with an increase in the G1+G2 forms, the subset of AChE species which are increased in Alzheimer's brain. Western blot analysis demonstrated that a 78 kDa immunoreactive AChE protein band was also increased in Alzheimer's plasma, attributed in part to AChE-T subunits common in brain and CSF. Conclusion Plasma AChE might have potential as an indicator of disease progress and prognosis in AD and warrants further investigation. PMID:20090844

  19. The 3D-QSAR study of 110 diverse, dual binding, acetylcholinesterase inhibitors based on alignment independent descriptors (GRIND-2). The effects of conformation on predictive power and interpretability of the models.

    PubMed

    Vitorović-Todorović, Maja D; Cvijetić, Ilija N; Juranić, Ivan O; Drakulić, Branko J

    2012-09-01

    The 3D-QSAR analysis based on alignment independent descriptors (GRIND-2) was performed on the set of 110 structurally diverse, dual binding AChE reversible inhibitors. Three separate models were built, based on different conformations, generated following next criteria: (i) minimum energy conformations, (ii) conformation most similar to the co-crystalized ligand conformation, and (iii) docked conformation. We found that regardless on conformation used, all the three models had good statistic and predictivity. The models revealed the importance of protonated pyridine nitrogen of tacrine moiety for anti AChE activity, and recognized HBA and HBD interactions as highly important for the potency. This was revealed by the variables associated with protonated pyridinium nitrogen, and the two amino groups of the linker. MIFs calculated with the N1 (pyridinium nitrogen) and the DRY GRID probes in the AChE active site enabled us to establish the relationship between amino acid residues within AChE active site and the variables having high impact on models. External predictive power of the models was tested on the set of 40 AChE reversible inhibitors, most of them structurally different from the training set. Some of those compounds were tested on the different enzyme source. We found that external predictivity was highly sensitive on conformations used. Model based on docked conformations had superior predictive ability, emphasizing the need for the employment of conformations built by taking into account geometrical restrictions of AChE active site gorge.

  20. Flavoring extracts of Hemidesmus indicus roots and Vanilla planifolia pods exhibit in vitro acetylcholinesterase inhibitory activities.

    PubMed

    Kundu, Anish; Mitra, Adinpunya

    2013-09-01

    Acetylcholinesterase inhibitors (AChEIs) are important for treatment of Alzheimer's disease and other neurological disorders. Search for potent and safe AChEIs from plant sources still continues. In the present work, we explored fragrant plant extracts that are traditionally used in flavoring foods, namely, Hemidesmus indicus and Vanilla planifolia, as possible sources for AChEI. Root and pod extracts of H. indicus and V. planifolia, respectively, produce fragrant phenolic compounds, 2-hydroxy-4-methoxybenzaldehyde (MBALD) and 4-hydroxy-3-methoxybenzaldehyde (vanillin). These methoxybenzaldehydes were shown to have inhibitory potential against acetylcholinesterase (AChE). Vanillin (IC50 = 0.037 mM) was detected as more efficient inhibitor than MBALD (IC50 = 0.047 mM). This finding was supported by kinetic analysis. Thus, plant-based food flavoring agents showed capacity in curing Alzheimer's disease and other neurological dysfunctions.

  1. Synthesis of organophosphates with fluorine-containing leaving groups as serine esterase inhibitors with potential for Alzheimer disease therapeutics.

    PubMed

    Makhaeva, Galina F; Aksinenko, Alexey Y; Sokolov, Vladimir B; Serebryakova, Olga G; Richardson, Rudy J

    2009-10-01

    Acetylcholinesterase and butyrylcholinesterase inhibitors are potential cognition enhancers in Alzheimer disease. O,O-Dialkylphosphate inhibitors with 1-substituted 2,2,2-trifluoroethoxy leaving groups were synthesized by phosphonate-phosphate rearrangement. Substituents in the 1-position of the leaving group along with the O-alkyl groups modulated potency and selectivity against acetylcholinesterase, butyrylcholinesterase, and carboxylesterase.

  2. Relevance of Donepezil in Enhancing Learning and Memory in Special Populations: A Review of the Literature

    ERIC Educational Resources Information Center

    Yoo, J. Helen; Valdovinos, Maria G.; Williams, Dean C.

    2007-01-01

    This review discusses the laboratory and clinical research supporting the rationale for the efficacy of donepezil (Aricept[R] USA) in enhancing cognition in autism, Alzheimer disease, Down syndrome, traumatic brain injury, Attention Deficit Hyperactivity Disorder (ADHD), and schizophrenia. While preliminary animal models have shown effective,…

  3. Donepezil increases contrast sensitivity for the detection of objects in scenes.

    PubMed

    Boucart, Muriel; Bubbico, Giovanna; Szaffarczyk, Sebastien; Defoort, Sabine; Ponchel, Amelie; Waucquier, Nawal; Deplanque, Dominique; Deguil, Julie; Bordet, Régis

    2015-10-01

    We assessed the effects of donepezil, a drug that stimulates cholinergic transmission, and scopolamine, an antagonist of cholinergic transmission, on contrast sensitivity. 30 young male participants were tested under three treatment conditions: placebo, donepezil, and scopolamine in a random order. Pairs of photographs varying in contrast were displayed left and right of fixation for 50 ms. Participants were asked to locate the scene containing an animal. Accuracy was better under donepezil than under scopolamine, particularly for signals of high intensity (at higher levels of contrast). A control experiment showed that the lower performance under scopolamine did not result from the mydriasis induced by scopolamine. The results suggest that cholinergic stimulation, through donepezil, facilitates signal detection in agreement with studies on animals showing that the pharmacological activation of cholinergic receptors controls the gain in the relationship between the stimulus contrast (intensity of the visual input) and visual response. As Alzheimer disease is associated to depletion in acetylcholine, and there is evidence of deficits in contrast sensitivity in Alzheimer, it might be interesting to integrate such rapid and sensitive visual tasks in the biomarkers at early stage of drug development.

  4. A novel electronic skin patch for delivery and pharmacokinetic evaluation of donepezil following transdermal iontophoresis.

    PubMed

    Saluja, Sonal; Kasha, Purna C; Paturi, Jyotsna; Anderson, Carter; Morris, Russell; Banga, Ajay K

    2013-09-10

    The nature of Alzheimer's disease limits the effectiveness of available oral treatments. The aim of this study was to assess the feasibility of transdermal iontophoretic delivery of donepezil in a hairless rat model as a potential treatment modality in Alzheimer's and to evaluate the effect of current densities on its pharmacokinetics. Donepezil loaded integrated Wearable Electronic Drug Delivery (WEDD(®)) patches supplied current levels of 0, 0.13, 0.26 and 0.39 mA. Plasma extracted donepezil was analyzed by HPLC. Noncompartmental analysis was used to characterize disposition of the drug. The amount delivered across hairless rat skin and areas under the curve (AUC) were found to rise in proportion to the current levels. Peak plasma levels of 0.094, 0.237 and 0.336 μg/ml were achieved at 0.13, 0.26 and 0.39 mA respectively. Time to peak plasma concentrations was after termination of current and same for all current levels. Transdermal elimination half-life was significantly increased from the true value of 3.2h due to depot formation, prolonging complete absorption of the drug. Donepezil was successfully delivered iontophoretically at levels sufficient to produce pharmacodymanic effect. Pharmacokinetic analysis demonstrated linear kinetics at the current levels used and flip flop kinetics following iontophoretic administration.

  5. Acetylcholinesterase activity in Clytia hemisphaerica (Cnidaria).

    PubMed

    Denker, Elsa; Chatonnet, Arnaud; Rabet, Nicolas

    2008-09-25

    Cholinesterase activity is known in representatives of all living organisms phyla but the origin of the cholinergic system as known in bilaterian animals is still undeciphered. In particular the implication of cholinesterases in the nervous system of non-bilaterian Metazoa is not well known. We thus chose to investigate this activity in the Clytia hemisphaerica (Cnidaria) medusa. In toto histochemical staining revealed an acetylcholinesterase activity in the tentacle bulbs but not in the nervous system. Sequences homologous to acetylcholinesterase were searched within Clytia ESTs and compared to other sequences found in public databases.

  6. Role of acetylcholinesterase in lung cancer

    PubMed Central

    Xi, Hui-Jun; Wu, Ren-Pei; Liu, Jing-Jing; Zhang, Ling-Juan; Li, Zhao-Shen

    2015-01-01

    Acetylcholinesterase (AChE) plays a key role in catalytic hydrolysis of cholinergic neurotransmitters. Intensive research has proven the involvement of this protein in novel functions, such as cell adhesion, differentiation, and proliferation. In addition, several recent studies have indicated that acetylcholinesterase is potentially a marker and regulator of apoptosis. Importantly, AChE is also a promising tumor suppressor. In this review, we briefly summarize the involvement of AChE in apoptosis and cancer, focusing on the role of AChE in lung cancer, as well as the therapeutic consideration of AChE for cancer therapy. PMID:26273392

  7. Neuroprotection of donepezil against morphine-induced apoptosis is mediated through Toll-like receptors.

    PubMed

    Shafie, Alireza; Moradi, Farshid; Izadpanah, Esmael; Mokarizadeh, Aram; Moloudi, Mohammad Raman; Nikzaban, Mehrnoush; Hassanzadeh, Kambiz

    2015-10-01

    Previously, we had shown that donepezil provides anti-apoptotic effects associated with the prevention of morphine tolerance to the analgesic effect. In this regard, the present study aimed to evaluate the molecular mechanisms involved in this effect considering the possible role of Toll-like receptor (TLR) 2,4, and the balance between pre-apoptotic and anti-apoptotic Bcl family proteins. To this end, male Wistar rats received daily morphine in combination with either normal saline or donepezil (0.5, 1, or 1.5 mg/kg, ip). The analgesic effect was assessed by the plantar test apparatus. The latency was recorded when the animal responded to the light stimulus. On the 15th day, when no significant difference was observed between morphine and saline groups in terms of analgesia, the frontal cortex and lumbar spinal cord of the animals were dissected. Then, TLR2 and 4, Bcl2, and Bax mRNA fold changes were calculated using Real-time PCR method. The results indicated no significant analgesic effect in the morphine group compared with the saline treated animals after 15 days of injection, while daily co-administration of donepezil with morphine preserved significant analgesia. Moreover, Quantitative PCR showed that morphine significantly increased TLRs and Bax gene expressions and decreased the anti-apoptotic Bcl2. In contrast, donepezil prevented these morphine induced changes in the mentioned gene expressions. Taken together, the results suggest that the neuroprotective effects of donepezil in attenuating morphine-induced tolerance and apoptosis are mediated by preventing morphine-induced changes in TLR2 and 4 gene expressions.

  8. Rat brain acetylcholinesterase visualized with [11C]physostigmine.

    PubMed

    Planas, A M; Crouzel, C; Hinnen, F; Jobert, A; Né, F; DiGiamberardino, L; Tavitian, B

    1994-06-01

    Physostigmine, a powerful cholinesterase inhibitor, has recently been labelled with 11C in view of its potential application for in vivo imaging of cerebral acetylcholinesterase (AChE) using positron emission tomography. Here we carried out autoradiography of the rat brain using [11C]physostigmine in order to characterize the cerebral targets of this ligand. Autoradiograms were obtained using phosphor storage plates which, compared to autoradiographic films, greatly improved the quality of 11C images. Following autoradiography, brain sections were stained for AChE activity, allowing a direct comparison of autoradiographic and histoenzymatic localizations. The distributions of 11C label and of AChE activity were found to be essentially super-imposable, both after in vivo injection of and after in vitro incubation with [11C]physostigmine. Densitometric analysis showed that radioactivity and enzymatic activity distributions were regionally correlated. The fixation of [11C]physostigmine to cerebral tissue was abolished after incubation of the rat brain sections with BW 284C51, a specific AChE inhibitor, but not after incubation with iso-OMPA, a specific inhibitor of butyrylcholinesterase. Unilateral excitotoxic lesions of the striatum that eliminated local AChE expression concomitantly reduced the binding of the ligand in the lesioned area. These results indicate that autoradiographic images of the rat brain obtained with [11C]physostigmine reflect AChE distribution, thus supporting the use of this radioligand to trace cerebral AChE activity in humans with positron emission tomography.

  9. An evaluation of the inhibition of human butyrylcholinesterase and acetylcholinesterase by the organophosphate chlorpyrifos oxon

    SciTech Connect

    Shenouda, Josephine; Green, Paula; Sultatos, Lester

    2009-12-01

    Acetylcholinesterase (EC 3.1.1.7) and butyrylcholinesterase (EC 3.1.1.8) are enzymes that belong to the superfamily of alpha/beta-hydrolase fold proteins. While they share many characteristics, they also possess many important differences. For example, whereas they have about 54% amino acid sequence identity, the active site gorge of acetylcholinesterase is considerably smaller than that of butyrylcholinesterase. Moreover, both have been shown to display simple and complex kinetic mechanisms, depending on the particular substrate examined, the substrate concentration, and incubation conditions. In the current study, incubation of butyrylthiocholine in a concentration range of 0.005-3.0 mM, with 317 pM human butyrylcholinesterase in vitro, resulted in rates of production of thiocholine that were accurately described by simple Michaelis-Menten kinetics, with a K{sub m} of 0.10 mM. Similarly, the inhibition of butyrylcholinesterase in vitro by the organophosphate chlorpyrifos oxon was described by simple Michaelis-Menten kinetics, with a k{sub i} of 3048 nM{sup -1} h{sup -1}, and a K{sub D} of 2.02 nM. In contrast to inhibition of butyrylcholinesterase, inhibition of human acetylcholinesterase by chlorpyrifos oxon in vitro followed concentration-dependent inhibition kinetics, with the k{sub i} increasing as the inhibitor concentration decreased. Chlorpyrifos oxon concentrations of 10 and 0.3 nM gave k{sub i}s of 1.2 and 19.3 nM{sup -1} h{sup -1}, respectively. Although the mechanism of concentration-dependent inhibition kinetics is not known, the much smaller, more restrictive active site gorge of acetylcholinesterase almost certainly plays a role. Similarly, the much larger active site gorge of butyrylcholinesterase likely contributes to its much greater reactivity towards chlorpyrifos oxon, compared to acetylcholinesterase.

  10. Concentration-dependent interactions of the organophosphates chlorpyrifos oxon and methyl paraoxon with human recombinant acetylcholinesterase

    SciTech Connect

    Kaushik, R.; Rosenfeld, Clint A.; Sultatos, L.G. . E-mail: sultatle@umdnj.edu

    2007-06-01

    For many decades it has been thought that oxygen analogs (oxons) of organophosphorus insecticides phosphorylate the catalytic site of acetylcholinesterase by a mechanism that follows simple Michaelis-Menten kinetics. More recently, the interactions of at least some oxons have been shown to be far more complex and likely involve binding of oxons to a second site on acetylcholinesterase that modulates the inhibitory capacity of other oxon molecules at the catalytic site. The current study has investigated the interactions of chlorpyrifos oxon and methyl paraoxon with human recombinant acetylcholinesterase. Both chlorpyrifos oxon and methyl paraoxon were found to have k {sub i}'s that change as a function of oxon concentration. Furthermore, 10 nM chlorpyrifos oxon resulted in a transient increase in acetylthiocholine hydrolysis, followed by inhibition. Moreover, in the presence of 100 nM chlorpyrifos oxon, acetylthiocholine was found to influence both the K {sub d} (binding affinity) and k {sub 2} (phosphorylation constant) of this oxon. Collectively, these results demonstrate that the interactions of chlorpyrifos oxon and methyl paraoxon with acetylcholinesterase cannot be described by simple Michaelis-Menten kinetics but instead support the hypothesis that these oxons bind to a secondary site on acetylcholinesterase, leading to activation/inhibition of the catalytic site, depending on the nature of the substrate and inhibitor. Additionally, these data raise questions regarding the adequacy of estimating risk of low levels of insecticide exposure from direct extrapolation of insecticide dose-response curves since the capacity of individual oxon molecules at low oxon levels could be greater than individual oxon molecules in vivo associated with the dose-response curve.

  11. Spectroscopic studies of solid-state forms of donepezil free base and salt forms with various salicylic acids

    NASA Astrophysics Data System (ADS)

    Brittain, Harry G.

    2014-12-01

    The polymorphic forms of donepezil free base have been studied using X-ray powder diffraction, Fourier transform infrared absorption spectroscopy, and differential scanning calorimetry. None of the free base crystal forms was observed to exhibit detectable fluorescence in the solid state under ambient conditions. Crystalline salt products were obtained by the reaction of donepezil with salicylic and methyl-substituted salicylic acids, with the salicylate and 4-methylsalicylate salts being obtained as non-solvated products, and the 3-methylsalicylate and 5-methylsalicylate salts being obtained as methanol solvated products. The intensity of solid-state fluorescence from donepezil salicylate and donepezil 4-methylsalicylate was found to be reduced relative to the fluorescence intensity of the corresponding free acids, while the solid-state fluorescence intensity of donepezil 3-methylsalicylate methanolate and donepezil 5-methylsalicylate methanolate was greatly increased relative to the fluorescence intensity of the corresponding free acids. Desolvation of the solvated salt products led to formation of glassy solids that exhibited strong green fluorescence.

  12. In vitro inhibition of acetylcholinesterase from four marine species by organophosphates and carbamates

    SciTech Connect

    Galgani, F.; Bocquene, G. )

    1990-08-01

    The literature on the biological, physical, and pharmaceutical chemistry of cholinesterase is considerable and includes data on activators and inhibitors. Most of the work on specific anticholinesterasic agents has been concerned with carbamates and organophosphates. Because of the sensitivity of acetylcholinesterase to carbamates and organophosphates, the enzyme has been used as a biochemical indicator of pollution by these agents. However, the chemical reactivity of such chemicals has not been correlated with their effect on Ache and it is impossible to accurately predict biological effects based only on structure. The objectives of this study were to investigate the sensitivity of various marine animals to both organo-phosphates and carbamates. The study was conducted by assessing the in vitro effect of five organophosphates and three carbamates on acetylcholinesterase activity from the muscle of the shrimp Palaemon serratus, the fishes Scomber and Pleuronectes platessa, and from the whole mussels Mytilus edulis. All these species could be used for the monitoring of effect of pollutants.

  13. Spectrophotometry in vivo, a technique for local and direct enzymatic assays: application to brain acetylcholinesterase.

    PubMed Central

    Testylier, G; Gourmelon, P

    1987-01-01

    In vivo enzymology is not widely studied due to the lack of a well-adapted technology. We have developed a system that allows local and long-term spectrophotometric assays in brain tissue of live animals. It utilizes a miniaturized optical probe consisting of a multibarrel micropipette for reagent injections and optical fibers for light absorption measurements. We have applied this system to the colorimetric determination of brain acetylcholinesterase activity in rats. The reproducibility of the assay was demonstrated by repetitive assays over 24 hr, its specificity was established through the use of a highly specific organophosphorus inhibitor, and the activities measured in different brain areas agreed with the known distribution of acetylcholinesterase. No electroencephalographic abnormalities and no change in vigilance level were observed in the experimental animals. This methodology should prove to be useful for the colorimetric measurement of different enzymes or metabolites in various organs. PMID:3479782

  14. Some enzymatic properties of brain Acetylcholinesterase from bluegill and channel catfish

    USGS Publications Warehouse

    Hogan, James W.; Knowles, Charles O.

    1968-01-01

    Using a manometric technique an acetylcholinesterase (EC 3.1.1.7, acetylcholine acetyl-hydrolase) was demonstrated in brain tissue from the bluegill, Lepomis macrochirus Rafinesque, and the channel catfish, Ictalurus punctatus (Walbaum). The activities were 19 and 37 μmoles acetylcholine hydrolyzed/milligram protein per hour for the bluegill and channel catfish enzymes, respectively. The optimum substrate concentration for the hydrolysis of acetylcholine was 10 mMfor the enzymes from both species. Generally, the catfish acetylcholinesterase was somewhat more susceptible than the bluegill to the inhibitors tested; however, the bluegill enzyme was more susceptible to inhibition by malathion and malaoxon.

  15. Synthesis and acetylcholinesterase inhibitory activity of polyhydroxylated sulfated steroids: structure/activity studies.

    PubMed

    Richmond, Victoria; Murray, Ana P; Maier, Marta S

    2013-11-01

    Disulfated and trisulfated steroids have been synthesized from cholesterol and their acetylcholinesterase inhibitory activity has been evaluated. In our studies we have found that the activity was not only dependent on the location of the sulfate groups but on their configurations. 2β,3α,6α-trihydroxy-5α-cholestan-6-one trisulfate (18) was the most active steroid with an IC50 value of 15.48 μM comparable to that of 2β,3α-dihydroxy-5α-cholestan-6-one disulfate (1). Both compounds were found to be less active than the reference compound eserine. The butyrylcholinesterase activity of 1 and 18 was one magnitude lower than that against acetylcholinesterase revealing a selective inhibitor profile.

  16. Clinical Recommendations for the Use of Donepezil 23 mg in Moderate-to-Severe Alzheimer's Disease in the Asia-Pacific Region

    PubMed Central

    Sabbagh, Marwan; Han, SeolHeui; Kim, SangYun; Na, Hae-Ri; Lee, Jae-Hong; Kandiah, Nagaendran; Phanthumchinda, Kammant; Suthisisang, Chuthamanee; Senanarong, Vorapun; Pai, Ming-Chyi; Narilastri, Diatri; Sowani, Ajit M.; Ampil, Encarnita; Dash, Amitabh

    2016-01-01

    Background The ‘Asia-Pacific Expert Panel (APEX) for donepezil 23 mg’ met in November 2015 to review evidence for the recently approved high dose of donepezil and to provide recommendations to help physicians in Asia make informed clinical decisions about using donepezil 23 mg in patients with moderate-to-severe Alzheimer's disease (AD). Summary In a global phase III study (study 326) in patients with moderate-to-severe AD, donepezil 23 mg/day demonstrated significantly greater cognitive benefits versus donepezil 10 mg/day, with a between-treatment difference in mean change in the Severe Impairment Battery score of 2.2 points (p < 0.001) in the overall population and 3.1 points (p < 0.001) in patients with advanced AD. A subanalysis of study 326 demonstrated that the benefits and risks associated with donepezil 23 mg/day versus donepezil 10 mg/day in Asian patients with moderate-to-severe AD were comparable to those in the global study population. Key Message Donepezil 23 mg is a valuable treatment for patients with AD, particularly those with advanced disease. The APEX emphasized the importance of patient selection (AD severity, tolerability of lower doses of donepezil, and absence of contraindications), a stepwise titration strategy for dose escalation, and appropriate monitoring and counseling of patients and caregivers in the management of patients with AD. PMID:27703471

  17. Population pharmacokinetic approach to evaluate the effect of CYP2D6, CYP3A, ABCB1, POR and NR1I2 genotypes on donepezil clearance

    PubMed Central

    Noetzli, Muriel; Guidi, Monia; Ebbing, Karsten; Eyer, Stephan; Wilhelm, Laurence; Michon, Agnès; Thomazic, Valérie; Stancu, Ioana; Alnawaqil, Abdel-Messieh; Bula, Christophe; Zumbach, Serge; Gaillard, Michel; Giannakopoulos, Panteleimon; von Gunten, Armin; Csajka, Chantal; Eap, Chin B

    2014-01-01

    Aims A large interindividual variability in plasma concentrations has been reported in patients treated with donepezil, the most frequently prescribed antidementia drug. We aimed to evaluate clinical and genetic factors influencing donepezil disposition in a patient population recruited from a naturalistic setting. Methods A population pharmacokinetic study was performed including data from 129 older patients treated with donepezil. The patients were genotyped for common polymorphisms in the metabolic enzymes CYP2D6 and CYP3A, in the electron transferring protein POR and the nuclear factor NR1I2 involved in CYP activity and expression, and in the drug transporter ABCB1. Results The average donepezil clearance was 7.3 l h−1 with a 30% interindividual variability. Gender markedly influenced donepezil clearance (P < 0.01). Functional alleles of CYP2D6 were identified as unique significant genetic covariate for donepezil clearance (P < 0.01), with poor metabolizers and ultrarapid metabolizers demonstrating, respectively, a 32% slower and a 67% faster donepezil elimination compared with extensive metabolizers. Conclusion The pharmacokinetic parameters of donepezil were well described by the developed population model. Functional alleles of CYP2D6 significantly contributed to the variability in donepezil disposition in the patient population and should be further investigated in the context of individual dose optimization to improve clinical outcome and tolerability of the treatment. PMID:24433464

  18. Protective effects of NMDA receptor antagonist, memantine, against senescence of PC12 cells: A possible role of nNOS and combined effects with donepezil.

    PubMed

    Ota, Hidetaka; Ogawa, Sumito; Ouchi, Yasuyoshi; Akishita, Masahiro

    2015-12-01

    Alzheimer disease (AD) is a neurodegenerative disorder characterized by cognitive dysfunction. The pathology of AD is mainly related to amyloid ß (Aß)-peptides, but glutamate-mediated toxicity is also one of the main processes of memory impairment in AD. Glutamate is the main excitatory neurotransmitter in the central nervous system (CNS) and is particularly involved in synaptic plasticity, memory, and learning. Memantine is a low-affinity voltage-dependent noncompetitive antagonist at glutamatergic NMDA receptors. Here,we investigated whether memantine protects against glutamate-induced senescence. In PC12 cells, treatment with glutamate induced senescent phenotypes as judged by the cell appearance and senescence-associated ß-galactosidase (SA-ßgal) in parallel with decreased SIRT1 and increased p53 expression. However, treatment with memantine decreased glutamate-induced senescent PC12 cells and reversed the changes in SIRT1 and p53 expression. Glutamate is known to stimulate the production of NO and O2(-) and has the capacity to generate ONOO(-) in the CNS. Therefore, we investigated whether glutamate activates nNOS and memantine reverses it. Treatment with glutamate increased nNOS expression, activity, and production of NO,whereas memantine blocked them. Next, the in vivo effects of memantine on cognitive function in senescence-accelerated mouse prone 8 (SAMP8), as a model of AD, were investigated. In the Morris water maze test, SAMP8 showed a marked decline in performance, but memantine administration improved it. Moreover, neuronal senescence and the level of oxidative stress in the hippocampus were decreased by memantine. Finally, the effects of combination treatment with memantine and donepezil, a cholinesterase inhibitor, were investigated. We observed additive effects of memantine and donepezil on the senescent phenotype of PC12 cells and the hippocampus of SAMP8. These results indicate that inhibition of the NMDA receptor by memantine leads to a

  19. Protective effects of NMDA receptor antagonist, memantine, against senescence of PC12 cells: A possible role of nNOS and combined effects with donepezil.

    PubMed

    Ota, Hidetaka; Ogawa, Sumito; Ouchi, Yasuyoshi; Akishita, Masahiro

    2015-12-01

    Alzheimer disease (AD) is a neurodegenerative disorder characterized by cognitive dysfunction. The pathology of AD is mainly related to amyloid ß (Aß)-peptides, but glutamate-mediated toxicity is also one of the main processes of memory impairment in AD. Glutamate is the main excitatory neurotransmitter in the central nervous system (CNS) and is particularly involved in synaptic plasticity, memory, and learning. Memantine is a low-affinity voltage-dependent noncompetitive antagonist at glutamatergic NMDA receptors. Here,we investigated whether memantine protects against glutamate-induced senescence. In PC12 cells, treatment with glutamate induced senescent phenotypes as judged by the cell appearance and senescence-associated ß-galactosidase (SA-ßgal) in parallel with decreased SIRT1 and increased p53 expression. However, treatment with memantine decreased glutamate-induced senescent PC12 cells and reversed the changes in SIRT1 and p53 expression. Glutamate is known to stimulate the production of NO and O2(-) and has the capacity to generate ONOO(-) in the CNS. Therefore, we investigated whether glutamate activates nNOS and memantine reverses it. Treatment with glutamate increased nNOS expression, activity, and production of NO,whereas memantine blocked them. Next, the in vivo effects of memantine on cognitive function in senescence-accelerated mouse prone 8 (SAMP8), as a model of AD, were investigated. In the Morris water maze test, SAMP8 showed a marked decline in performance, but memantine administration improved it. Moreover, neuronal senescence and the level of oxidative stress in the hippocampus were decreased by memantine. Finally, the effects of combination treatment with memantine and donepezil, a cholinesterase inhibitor, were investigated. We observed additive effects of memantine and donepezil on the senescent phenotype of PC12 cells and the hippocampus of SAMP8. These results indicate that inhibition of the NMDA receptor by memantine leads to a

  20. Tacrine derivatives-acetylcholinesterase interaction: 1H NMR relaxation study.

    PubMed

    Delfini, Maurizio; Di Cocco, Maria Enrica; Piccioni, Fabiana; Porcelli, Fernando; Borioni, Anna; Rodomonte, Andrea; Del Giudice, Maria Rosaria

    2007-06-01

    Two acetylcholinesterase (AChE) inhibitors structurally related to Tacrine, 6-methoxytacrine (1a) and 9-heptylamino-6-methoxytacrine (1b), and their interaction with Electrophorus Electricus AChE were investigated. The complete assignment of the 1H and 13C NMR spectra of 1a and 1b was performed by mono-dimensional and homo- and hetero-correlated two-dimensional NMR experiments. This study was undertaken to elucidate the interaction modes between AChE and 1a and 1b in solution, using NMR. The interaction between the two inhibitors and AChE was studied by the analysis of the motional parameters non-selective and selective spin-lattice relaxation times, thereby allowing the motional state of 1a and 1b, both free and bound with AChE, to be defined. The relaxation data pointed out the ligands molecular moiety most involved in the binding with AChE. The relevant ligand/enzyme interaction constants were also evaluated for both compounds and resulted to be 859 and 5412M(-1) for 1a and1b, respectively.

  1. Effect of Moringa oleifera flower extract on larval trypsin and acetylcholinesterase activities in Aedes aegypti.

    PubMed

    Pontual, Emmanuel Viana; Napoleão, Thiago Henrique; Dias de Assis, Caio Rodrigo; de Souza Bezerra, Ranilson; Xavier, Haroudo Satiro; Navarro, Daniela Maria do Amaral Ferraz; Coelho, Luana Cassandra Breitenbach Barroso; Paiva, Patrícia Maria Guedes

    2012-03-01

    Aedes aegypti control is crucial to reducing dengue fever. Aedes aegypti larvae have developed resistance to organophosporous insecticides and the use of natural larvicides may help manage larval resistance by increasing elements in insecticide rotation programs. Here, we report on larvicidal activity of Moringa oleifera flower extract against A. aegypti L(1), L(2), L(3), and L(4) as well as the effect of flower extract on gut trypsin and whole-larval acetylcholinesterase from L(4.) In addition, the heated flower extract was investigated for larvicidal activity against L(4) and effect on larval gut trypsin. Moringa oleifera flower extract contains a proteinaceous trypsin inhibitor (M. oleifera flower trypsin inhibitor, MoFTI), triterpene (β-amyrin), sterol (β-sitosterol) as well as flavonoids (kaempferol and quercetin). Larvicidal activity was detected against L(2), L(3), and L(4) (LC(50) of 1.72%, 1.67%, and 0.92%, respectively). Flower extract inhibited L(4) gut trypsin (MoFTI K(i) = 0.6 nM) and did not affect acetylcholinesterase activity. In vivo assay showed that gut trypsin activity from L(4) treated with M. oleifera flower extract decreased over time (0-1,440 min) and was strongly inhibited (98.6%) after 310 min incubation; acetylcholinesterase activity was not affected. Thermal treatment resulted in a loss of trypsin inhibitor and larvicidal activities, supporting the hypothesis that flower extract contains a proteinaceous trypsin inhibitor that may be responsible for the deleterious effects on larval mortality. PMID:22392801

  2. [Hydrogen peroxide inhibits acetylcholinesterase of myometrium sarcolemma].

    PubMed

    Danylovych, Iu V

    2009-01-01

    The action of hydrogen peroxide on acetylcholinesterase enzymatic activity in myometrium sarcolemma fraction is investigated. Hydrogen peroxide (0.1-26 microM), depending on the concentration, suppressed the activity. Acetylcholinesterase proved to be highly sensitive to the action of H2O2, making Ki = 2.4 +/- 0.4 microM, nH = 0.65 +/- 0.08 (n = 4-5). It is established, that hydrogen peroxide in the range of 1.6 - 6.4 microM essentially reduce V(0,max) and K(M). In the presence of dithiothreitole (a reducer of SH-groups of the membrane surface) the investigated substance effect considerably decreased.

  3. Isolation and characterization of acetylcholinesterase from Drosophila.

    PubMed

    Gnagey, A L; Forte, M; Rosenberry, T L

    1987-09-25

    The purification and characterization of acetylcholinesterase from heads of the fruit fly Drosophila are described. Sequential extraction procedures indicated that approximately 40% of the activity was soluble and 60% membrane-bound and that virtually none (less than 4%) corresponded to collagen-tailed forms. The membrane-bound enzyme was extracted with Triton X-100 and purified over 4000-fold by affinity chromatography on acridinium resin. Hydrodynamic analysis by both sucrose gradient centrifugation and chromatography on Sepharose CL-4B revealed an Mr of 165,000 similar to that observed for dimeric (G2) forms of the enzyme in mammalian tissues. In contrast, the purified enzyme gave predominant bands of about 100 kDa prior to disulfied reduction and 55 kDa after reduction on polyacrylamide gel electrophoresis in sodium dodecyl sulfate, values that are significantly lower than those reported for purified G2 enzymes from other species. However, the presence of a faint band at 70 kDa which could be labeled by [3H]diisopropyl fluorophosphate prior to denaturation suggested that the 55-kDa band as well as a 16-kDa species arose from proteolysis. This was confirmed by reductive radiomethylation and amine analysis of the 70-, 55-, and 16-kDa bands. All three contained ethanolamine and glucosamine residues that are characteristic of a C-terminal glycolipid anchor in other G2 acetylcholinesterases. The catalytic properties of the enzyme were examined by titration with a fluorogenic reagent which revealed a turnover number for acetylthiocholine that was 6-fold lower than eel and 3-fold lower than human erythrocyte acetylcholinesterase. Furthermore, the Drosophila enzyme hydrolyzed butyrylthiocholine much more efficiently than these eel or human enzymes, an indication that the fly head enzyme has a substrate specificity intermediate between mammalian acetylcholinesterases and butyrylcholinesterases.

  4. Irreversible thermal denaturation of Torpedo californica acetylcholinesterase.

    PubMed Central

    Kreimer, D. I.; Shnyrov, V. L.; Villar, E.; Silman, I.; Weiner, L.

    1995-01-01

    Thermal denaturation of Torpedo californica acetylcholinesterase, a disulfide-linked homodimer with 537 amino acids in each subunit, was studied by differential scanning calorimetry. It displays a single calorimetric peak that is completely irreversible, the shape and temperature maximum depending on the scan rate. Thus, thermal denaturation of acetylcholinesterase is an irreversible process, under kinetic control, which is described well by the two-state kinetic scheme N-->D, with activation energy 131 +/- 8 kcal/mol. Analysis of the kinetics of denaturation in the thermal transition temperature range, by monitoring loss of enzymic activity, yields activation energy of 121 +/- 20 kcal/mol, similar to the value obtained by differential scanning calorimetry. Thermally denatured acetylcholinesterase displays spectroscopic characteristics typical of a molten globule state, similar to those of partially unfolded enzyme obtained by modification with thiol-specific reagents. Evidence is presented that the partially unfolded states produced by the two different treatments are thermodynamically favored relative to the native state. PMID:8563632

  5. Possible Overlapping Time Frames of Acquisition and Consolidation Phases in Object Memory Processes: A Pharmacological Approach

    ERIC Educational Resources Information Center

    Akkerman, Sven; Blokland, Arjan; Prickaerts, Jos

    2016-01-01

    In previous studies, we have shown that acetylcholinesterase inhibitors and phosphodiesterase inhibitors (PDE-Is) are able to improve object memory by enhancing acquisition processes. On the other hand, only PDE-Is improve consolidation processes. Here we show that the cholinesterase inhibitor donepezil also improves memory performance when…

  6. Acetylcholinesterase inhibition by biofumigant (Coumaran) from leaves of Lantana camara in stored grain and household insect pests.

    PubMed

    Rajashekar, Yallappa; Raghavendra, Anjanappa; Bakthavatsalam, Nandagopal

    2014-01-01

    Recent studies proved that the biofumigants could be an alternative to chemical fumigants against stored grain insect pests. For this reason, it is necessary to understand the mode of action of biofumigants. In the present study the prospectus of utilising Lantana camara as a potent fumigant insecticide is being discussed. Inhibition of acetylcholinesterase (AChE) by Coumaran, an active ingredient extracted from the plant L. camara, was studied. The biofumigant was used as an enzyme inhibitor and acetylthiocholine iodide as a substrate along with Ellman's reagent to carry out the reactions. The in vivo inhibition was observed in both dose dependent and time dependent in case of housefly, and the nervous tissue (ganglion) and the whole insect homogenate of stored grain insect exposed to Coumaran. The possible mode of action of Coumaran as an acetylcholinesterase inhibitor is discussed.

  7. Influence of acetylcholinesterase immobilization on the photoluminescence properties of mesoporous silicon surface

    NASA Astrophysics Data System (ADS)

    Saleem, Muhammad; Rafiq, Muhammad; Seo, Sung-Yum; Lee, Ki Hwan

    2014-07-01

    Acetylcholinesterase immobilized p-type porous silicon surface was prepared by covalent attachment. The immobilization procedure was based on support surface chemical oxidation, silanization, surface activation with cyanuric chloride and finally covalent attachment of free enzyme on the cyanuric chloride activated porous silicon surface. Different pore diameter of porous silicon samples were prepared by electrochemical etching in HF based electrolyte solution and appropriate sample was selected suitable for enzyme immobilization with maximum trapping ability. The surface modification was studied through field emission scanning electron microscope, EDS, FT-IR analysis, and photoluminescence measurement by utilizing the fluctuation in the photoluminescence of virgin and enzyme immobilized porous silicon surface. Porous silicon showed strong photoluminescence with maximum emission at 643 nm and immobilization of acetylcholinesterase on porous silicon surface cause considerable increment on the photoluminescence of porous silicon material while acetylcholinesterase free counterpart did not exhibit any fluorescence in the range of 635-670 nm. The activities of the free and immobilized enzymes were evaluated by spectrophotometric method by using neostigmine methylsulfate as standard enzyme inhibitor. The immobilized enzyme exhibited considerable response toward neostigmine methylsulfate in a dose dependent manner comparable with that of its free counterpart alongside enhanced stability, easy separation from the reaction media and significant saving of enzyme. It was believed that immobilized enzyme can be exploited in organic and biomolecule synthesis possessing technical and economical prestige over free enzyme and prominence of easy separation from the reaction mixture.

  8. Concurrent administration of donepezil HCl and sertraline HCl in healthy volunteers: assessment of pharmacokinetic changes and safety following single and multiple oral doses

    PubMed Central

    Nagy, Christa F; Kumar, Dinesh; Perdomo, Carlos A; Wason, Suman; Cullen, Edward I; Pratt, Raymond D

    2004-01-01

    Aim This study evaluated the safety and pharmacokinetics (PK) of donepezil HCl and sertraline HCl when administered separately and in combination. Methods This was a randomized, open-label, three-period crossover study. In consecutive dosing periods separated by washout periods of ≥3 weeks, healthy volunteers received either oral donepezil HCI 5 mg once daily for 15 days, oral sertraline HCl 50 mg once daily for 5 days followed by 10 days of once-daily sertraline HCl 100 mg, or the simultaneous administration of oral donepezil HCl and sertraline HCl. Plasma donepezil and sertraline concentrations were determined by high performance liquid chromatography/mass spectrometry. Safety was evaluated by physical and laboratory evaluations and the monitoring of adverse events (AEs). Results A total of 19 volunteers (16 male and three female) were enrolled. Three male subjects withdrew from the study prematurely due to AEs (one case of nausea/stomach cramps and one case of eosinophilia during combination treatment, and one upper respiratory tract infection during treatment with sertraline HCl alone). In subjects who completed all three treatment periods (n = 16), the concurrent administration of donepezil HCl and sertraline HCl did not alter the steady-state (day 15) PK parameters of donepezil HCl. A small (<12%) but statistically significant (P = 0.02) increase in donepezil Cmax was seen after single doses of sertraline HCl and donepezil HCl on day 1 but this was not thought to be clinically meaningful. No significant differences in the tmax or AUC0–24 h of donepezil were observed between the donepezil HCl only or donepezil HCl plus sertraline HCl groups on day 1. No significant changes in sertraline PK parameters were observed either on day 1 (single dose) or on day 15 (steady state) when sertraline HCl was co-administered with donepezil HCl. Generally, the concurrent administration of donepezil HCl and sertraline HCl was well tolerated, with no serious AEs reported

  9. Computational studies of acetylcholinesterase complexed with fullerene derivatives: a new insight for Alzheimer disease treatment.

    PubMed

    da Silva Gonçalves, Arlan; França, Tanos Celmar Costa; Vital de Oliveira, Osmair

    2016-06-01

    Here, we propose five fullerene (C60) derivatives as new drugs against Alzheimer's disease (AD). These compounds were designed to act as new human acetylcholinesterase (HssAChE) inhibitors by blocking its fasciculin II (FASII) binding site. Docking and molecular dynamic results show that our proposals bind to the HssAChE tunnel entrance, forming stable complex, and further binding free energy calculations suggest that three of the derivatives proposed here could be potent HssAChE inhibitors. We found a region formed by a set of residues (Tyr72, Asp74, Trp286, Gln291, Tyr341, and Pro344) which can be further exploited in the drug design of new inhibitors of HssAChE based on C60 derivatives. Results presented here report for the first time by a new class of molecules that can become effective drugs against AD.

  10. Nature: A Substantial Source of Auspicious Substances with Acetylcholinesterase Inhibitory Action

    PubMed Central

    Orhan, Ilkay Erdogan

    2013-01-01

    Acetylcholinesterase (AChE) (EC 3.1.1.7) is an important enzyme that breaks down of acetylcholine in synaptic cleft in neuronal junctions. Inhibition of AChE is associated with treatment of several diseases such as Alzheimer’s disease (AD), myasthenia gravis, and glaucoma as well as the mechanisms of insecticide and anthelmintic drugs. Several AChE inhibitors are available in clinical use currently for the treatment of AD; however, none of them has ability, yet, to seize progress of the disease. Consequently, an extensive research has been going on finding new AChE inhibitors. In this sense, natural inhibitors have gained great attention due to their encouraging effects toward AChE. In this review, promising candidate molecules with marked AChE inhibition from both plant and animal sources will be underlined. PMID:24381529

  11. Acetylcholinesterase-inhibiting activity of salicylanilide N-alkylcarbamates and their molecular docking.

    PubMed

    Imramovsky, Ales; Stepankova, Sarka; Vanco, Jan; Pauk, Karel; Monreal-Ferriz, Juana; Vinsova, Jarmila; Jampilek, Josef

    2012-08-24

    A series of twenty-five novel salicylanilide N-alkylcarbamates were investigated as potential acetylcholinesterase inhibitors. The compounds were tested for their ability to inhibit acetylcholinesterase (AChE) from electric eel (Electrophorus electricus L.). Experimental lipophilicity was determined, and the structure-activity relationships are discussed. The mode of binding in the active site of AChE was investigated by molecular docking. All the discussed compounds expressed significantly higher AChE inhibitory activity than rivastigmine and slightly lower than galanthamine. Disubstitution by chlorine in C'(₃,₄) of the aniline ring and the optimal length of hexyl-undecyl alkyl chains in the carbamate moiety provided the most active AChE inhibitors. Monochlorination in C'(₄) exhibited slightly more effective AChE inhibitors than in C'(₃). Generally it can be stated that compounds with higher lipophilicity showed higher inhibition, and the activity of the compounds is strongly dependent on the length of the N-alkyl chain.

  12. Rubus coreanus Miquel Inhibits Acetylcholinesterase Activity and Prevents Cognitive Impairment in a Mouse Model of Dementia

    PubMed Central

    Kim, Cho Rong; Choi, Soo Jung; Oh, Seung Sang; Kwon, Yoon Kyung; Lee, Na Young; Park, Gwi Gun; Kim, Youn-Jung; Heo, Ho Jin; Jun, Woo Jin; Park, Cheung-Seog; Shin, Dong-Hoon

    2013-01-01

    Abstract To find acetylcholinesterase (AChE) inhibitors for the prevention of neurological disorders, such as Alzheimer's disease, ethanol extracts of promising traditional edible Korean plants were tested. Among them, Rubus coreanus Miquel extract exhibited the most significant AChE inhibitory activity. The effect of R. coreanus extract on trimethyltin-induced memory impairment in mice was investigated using Y-maze and passive avoidance tests. Our results showed that administration of R. coreanus extract significantly improved alternation behavior and step-through latency. In addition, R. coreanus extract was sequentially fractionated, and the purified constituent was determined to be 3,4,5-trihydroxybenzoic acid. PMID:24044488

  13. A novel role for synaptic acetylcholinesterase as an apoptotic deoxyribonuclease

    PubMed Central

    Du, Aiying; Xie, Jing; Guo, Kaijie; Yang, Lei; Wan, Yihan; OuYang, Qi; Zhang, Xuejin; Niu, Xin; Lu, Lu; Wu, Jun; Zhang, Xuejun

    2015-01-01

    In addition to terminating neurotransmission by hydrolyzing acetylcholine, synaptic acetylcholinesterase (AChES) has been found to have a pro-apoptotic role. However, the underlying mechanism has rarely been investigated. Here, we report a nuclear translocation-dependent role for AChES as an apoptotic deoxyribonuclease (DNase). AChES polypeptide binds to and cleaves naked DNA at physiological pH in a Ca2+–Mg2+-dependent manner. It also cleaves chromosomal DNA both in pre-fixed and in apoptotic cells. In the presence of a pan-caspase inhibitor, the cleavage still occurred after nuclear translocation of AChES, implying that AChES-DNase acts in a CAD- and EndoG-independent manner. AChE gene knockout impairs apoptotic DNA cleavage; this impairment is rescued by overexpression of the wild-type but not (aa 32–138)-deleted AChES. Furthermore, in comparison with the nuclear-localized wild-type AChES, (aa 32–138)-deleted AChES loses the capacity to initiate apoptosis. These observations confirm that AChES mediates apoptosis via its DNase activity. PMID:27462404

  14. Asymmetric distribution of acetylcholinesterase in gravistimulated maize seedlings.

    PubMed

    Momonoki, Y S

    1997-05-01

    Acetylcholinesterase (AChE) activity has previously been studied by this laboratory and shown to occur at the interface between the stele and cortex of the mesocotyl of maize (Zea mays L.) seedlings. In this work we studied the distribution of AChE activity in 5-d-old maize seedlings following a gravity stimulus. After the stimulus, we found an asymmetric distribution of the enzyme in the coleoptile, the coleoptile node, and the mesocotyl of the stimulated seedlings using both histochemical and colorimetric methods for measuring the hydrolysis of acetylthiocholine. The hydrolytic capability of the esterase was greater on the lower side of the horizontally placed seedlings. Using the histochemical method, we localized the hydrolytic capability in the cortical cells around the vascular stele of the tissues. The hydrolytic activity was inhibited 80 to 90% by neostigmine, an inhibitor of AChE. When neostigmine was applied to the corn kernel, the gravity response of the seedling was inhibited and no enzyme-positive spots appeared in the gravity-stimulated seedlings. We believe these results indicate a role for AChE in the gravity response of maize seedlings. PMID:11536808

  15. Molecular Dynamics of Mouse Acetylcholinesterase Complexed with Huperzine A

    SciTech Connect

    Tara, Sylvia; Helms, Volkhard H.; Straatsma, TP; Mccammon, J Andrew A.

    1999-03-16

    Two molecular dynamics simulations were performed for a modeled complex of mouse acetylcholinesterase liganded with huperzine A (HupA). Analysis of these simulations shows that HupA shifts in the active site toward Tyr 337 and Phe 338, and that several residues in the active site area reach out to make hydrogen bonds with the inhibitor. Rapid fluctuations of the gorge width are observed, ranging from widths that allow substrate access to the active site, to pinched structures that do not allow access of molecules as small as water. Additional openings or channels to the active site are found. One opening is formed in the side wall of the active site gorge by residues Val 73, Asp 74, Thr 83, Glu 84, and Asn 87. Another opening is formed at the base of the gorge by residues Trp 86, Val 132, Glu 202, Gly 448, and Ile 451. Both of these openings have been observed separately in the Torpedo californica form of the enzyme. These channels could allow transport of waters and ions to and from the bulk solution.

  16. Inactivation of acetylcholinesterase by various fluorophores

    PubMed Central

    Guo, Lilu; Suarez, Alirica I.; Thompson, Charles M.

    2012-01-01

    The inhibition of recombinant mouse acetylcholinesterase (rMAChE) and electric eel acetylcholinesterase (EEAChE) by seven, structurally different chromophore-based (dansyl, pyrene, dabsyl, diethylamino- and methoxycoumarin, Lissamine rhodamine B, and Texas Red) propargyl carboxamides or sulfonamides was studied. Diethylaminocoumarin, Lissamine, and Texas Red amides inhibited rMAChE with IC50 values of 1.00 µM, 0.05 µM, and 0.70 µM, respectively. Lissamine and Texas Red amides inhibited EEAChE with IC50 values of 3.57 and 10.4 µM, respectively. The other chromophore amides did not inhibit either AChE. The surprising inhibitory potency of Lissamine was examined in further detail against EEAChE and revealed a mixed-type inhibition with Ki = 11.7 µM (competitive) and Ki′ = 24.9 µM (noncompetitive), suggesting that Lissamine binds to free enzyme and enzyme–substrate complex. PMID:19842944

  17. Mutagenesis of essential functional residues in acetylcholinesterase.

    PubMed Central

    Gibney, G; Camp, S; Dionne, M; MacPhee-Quigley, K; Taylor, P

    1990-01-01

    The cholinesterases are serine hydrolases that show no global similarities in sequence with either the trypsin or the subtilisin family of serine proteases. The cholinesterase superfamily includes several esterases with distinct functions and other proteins devoid of the catalytic serine and known esterase activity. To identify the residues involved in catalysis and conferring specificity on the enzyme, we have expressed wild-type Torpedo acetylcholinesterase (EC 3.1.1.7) and several site-directed mutants in a heterologous system. Mutation of serine-200 to cysteine results in diminished activity, while its mutation to valine abolishes detectable activity. Two conserved histidines can be identified at positions 425 and 440 in the cholinesterase family; glutamine replacement at position 440 eliminates activity whereas the mutation at 425 reduces activity only slightly. The assignment of the catalytic histidine to position 440 defines a rank ordering of catalytic residues in cholinesterases distinct from trypsin and subtilisin and suggests a convergence of a catalytic triad to form a third, distinct family of serine hydrolases. Mutation of glutamate-199 to glutamine yields an enzyme with a higher Km and without the substrate-inhibition behavior characteristic of acetylcholinesterase. Hence, modification of the acidic amino acid adjacent to the serine influences substrate association and the capacity of a second substrate molecule to affect catalysis. Images PMID:2217185

  18. Cholinesterase inhibitors from botanicals

    PubMed Central

    Ahmed, Faiyaz; Ghalib, Raza Murad; Sasikala, P.; Ahmed, K. K. Mueen

    2013-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease, wherein a progressive loss of cholinergic synapses occurs in hippocampus and neocortex. Decreased concentration of the neurotransmitter, acetylcholine (ACh), appears to be critical element in the development of dementia, and the most appropriate therapeutic approach to treat AD and other form of dementia is to restore acetylcholine levels by inhibiting both major form of cholinesterase: Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Consequently, researches have focused their attention towards finding cholinesterase inhibitors from natural products. A large number of such inhibitors have been isolated from medicinal plants. This review presents a comprehensive account of the advances in field of cholinesterase inhibitor phytoconstituents. The structures of some important phytoconstituents (collected through www.Chemspider.com) are also presented and the scope for future research is discussed. PMID:24347920

  19. Cholinesterase inhibitors from botanicals.

    PubMed

    Ahmed, Faiyaz; Ghalib, Raza Murad; Sasikala, P; Ahmed, K K Mueen

    2013-07-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease, wherein a progressive loss of cholinergic synapses occurs in hippocampus and neocortex. Decreased concentration of the neurotransmitter, acetylcholine (ACh), appears to be critical element in the development of dementia, and the most appropriate therapeutic approach to treat AD and other form of dementia is to restore acetylcholine levels by inhibiting both major form of cholinesterase: Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Consequently, researches have focused their attention towards finding cholinesterase inhibitors from natural products. A large number of such inhibitors have been isolated from medicinal plants. This review presents a comprehensive account of the advances in field of cholinesterase inhibitor phytoconstituents. The structures of some important phytoconstituents (collected through www.Chemspider.com) are also presented and the scope for future research is discussed. PMID:24347920

  20. Temperature and pressure adaptation of the binding site of acetylcholinesterase.

    PubMed

    Hochachka, P W

    1974-12-01

    1. Studies with a carbon substrate analogue, 3,3-dimethylbutyl acetate, indicate that the hydrophobic contribution to binding at the anionic site of acetylcholinesterase is strongly disrupted at low temperatures and high pressures. 2. Animals living in different physical environments circumvent this problem by adjusting the enthalpic and entropic contributions to binding. 3. An extreme example of this adaptational strategy is supplied by brain acetylcholinesterase extracted from an abyssal fish living at 2 degrees C and up to several hundred atmospheres of pressure. This acetylcholinesterase appears to have a smaller hydrophobic binding region in the anionic site, playing a measurably decreased role in ligand binding. PMID:4462739

  1. Temperature and pressure adaptation of the binding site of acetylcholinesterase

    PubMed Central

    Hochachka, Peter W.

    1974-01-01

    1. Studies with a carbon substrate analogue, 3,3-dimethylbutyl acetate, indicate that the hydrophobic contribution to binding at the anionic site of acetylcholinesterase is strongly disrupted at low temperatures and high pressures. 2. Animals living in different physical environments circumvent this problem by adjusting the enthalpic and entropic contributions to binding. 3. An extreme example of this adaptational strategy is supplied by brain acetylcholinesterase extracted from an abyssal fish living at 2°C and up to several hundred atmospheres of pressure. This acetylcholinesterase appears to have a smaller hydrophobic binding region in the anionic site, playing a measurably decreased role in ligand binding. PMID:4462739

  2. Donepezil provides greater benefits in mild compared to moderate Alzheimer's disease: implications for early diagnosis and treatment.

    PubMed

    Molinuevo, J L; Berthier, M L; Rami, L

    2011-01-01

    We assessed the cognitive and functional outcomes of donepezil treatment in mild versus moderate Alzheimer's disease (AD) patients. We performed a 6-month prospective, observational, multicenter study of the progression of cognitive and functionality abilities in a large sample patients with AD who initiated treatment with donepezil in monotherapy. According to baseline mini mental state examination (MMSE), patients were divided in two groups: mild AD (MMSE ≥ 21) and moderate AD (MMSE <21). Patients were evaluated with the memory alteration test (M@T) and the Alzheimer's disease functional assessment and change scale (ADFACS) at baseline and at 6 months. A total of 403 patients finished the study (mild AD=152; moderate AD=251). The MMSE total score and M@T score remained stable at 6 months in the whole sample, with MMSE memory domain and M@T free and cued recall domains improving significantly from baseline. Total ADFACS, instrumental (IADL) and basic activities of daily living (BADL) got significantly worse, with the worsening being significantly greater in the moderate AD group. Significant differences between the groups favoring mild AD were observed for MMSE memory, orientation and language domains, M@T temporal orientation and semantic memory domains, and for IADL. We concluded that in AD patients on donepezil, cognition remains stable at 6 months. The beneficial effect of donepezil treatment, in terms of cognition and functionality, is greater for mild than for moderate AD. PMID:19948364

  3. Donepezil-like multifunctional agents: Design, synthesis, molecular modeling and biological evaluation.

    PubMed

    Wu, Ming-Yu; Esteban, Gerard; Brogi, Simone; Shionoya, Masahi; Wang, Li; Campiani, Giuseppe; Unzeta, Mercedes; Inokuchi, Tsutomu; Butini, Stefania; Marco-Contelles, Jose

    2016-10-01

    Currently available drugs against Alzheimer's disease (AD) are only able to ameliorate the disease symptoms resulting in a moderate improvement in memory and cognitive function without any efficacy in preventing and inhibiting the progression of the pathology. In an effort to obtain disease-modifying anti-Alzheimer's drugs (DMAADs) following the multifactorial nature of AD, we have recently developed multifunctional compounds. We herein describe the design, synthesis, molecular modeling and biological evaluation of a new series of donepezil-related compounds possessing metal chelating properties, and being capable of targeting different enzymatic systems related to AD (cholinesterases, ChEs, and monoamine oxidase A, MAO-A). Among this set of analogues compound 5f showed excellent ChEs inhibition potency and a selective MAO-A inhibition (vs MAO-B) coupled to strong complexing properties for zinc and copper ions, both known to be involved in the progression of AD. Moreover, 5f exhibited moderate antioxidant properties as found by in vitro assessment. This compound represents a novel donepezil-hydroxyquinoline hybrid with DMAAD profile paving the way to the development of a novel class of drugs potentially able to treat AD.

  4. Effect of local acetylcholinesterase inhibition on sweat rate in humans

    NASA Technical Reports Server (NTRS)

    Shibasaki, M.; Crandall, C. G.

    2001-01-01

    ACh is the neurotransmitter responsible for increasing sweat rate (SR) in humans. Because ACh is rapidly hydrolyzed by acetylcholinesterase (AChE), it is possible that AChE contributes to the modulation of SR. Thus the primary purpose of this project was to identify whether AChE around human sweat glands is capable of modulating SR during local application of various concentrations of ACh in vivo, as well as during a heat stress. In seven subjects, two microdialysis probes were placed in the intradermal space of the forearm. One probe was perfused with the AChE inhibitor neostigmine (10 microM); the adjacent membrane was perfused with the vehicle (Ringer solution). SR over both membranes was monitored via capacitance hygrometry during microdialysis administration of various concentrations of ACh (1 x 10(-7)-2 M) and during whole body heating. SR was significantly greater at the neostigmine-treated site than at the control site during administration of lower concentrations of ACh (1 x 10(-7)-1 x 10(-3) M, P < 0.05), but not during administration of higher concentrations of ACh (1 x 10(-2)-2 M, P > 0.05). Moreover, the core temperature threshold for the onset of sweating at the neostigmine-treated site was significantly reduced relative to that at the control site. However, no differences in SR were observed between sites after 35 min of whole body heating. These results suggest that AChE is capable of modulating SR when ACh concentrations are low to moderate (i.e., when sudomotor activity is low) but is less effective in governing SR after SR has increased substantially.

  5. Local Drug-Drug Interaction of Donepezil with Cilostazol at Breast Cancer Resistance Protein (ABCG2) Increases Drug Accumulation in Heart.

    PubMed

    Takeuchi, Ryota; Shinozaki, Kohki; Nakanishi, Takeo; Tamai, Ikumi

    2016-01-01

    Clinical reports indicate that cardiotoxicity due to donepezil can occur after coadministration with cilostazol. We speculated that the concentration of donepezil in heart tissue might be increased as a result of interaction with cilostazol at efflux transporters such as P-glycoprotein (P-gp, ABCB1) and breast cancer resistance protein (BCRP, ABCG2), which are expressed in many tissues including the heart, and our study tested this hypothesis. First, donepezil was confirmed to be a substrate of both BCRP and P-glycoprotein in transporter-transfected cells in vitro. Cilostazol inhibited BCRP and P-glycoprotein with half-inhibitory concentrations of 130 nM and 12.7 μM, respectively. Considering the clinically achievable unbound plasma concentration of cilostazol (about 200 nM), it is plausible that BCRP-mediated transport of donepezil would be affected by cilostazol in vivo. Indeed, in an in vivo rat study, we found that coadministration of cilostazol significantly increased the concentrations of donepezil in the heart and brain, where BCRP functions as a part of the blood-tissue barrier, whereas the plasma concentration of donepezil was unaffected. In addition, in vitro accumulation of donepezil in heart tissue slices of rats was significantly increased in the presence of cilostazol. These results indicate that donepezil-cilostazol interaction at BCRP may be clinically relevant in heart and brain tissues. In other words, the tissue distribution of drugs can be influenced by drug-drug interaction (DDI) at efflux transporters in certain tissues (local DDI) without any apparent change in plasma concentration (systemic DDI).

  6. Effect of fatty acids on the transdermal delivery of donepezil: in vitro and in vivo evaluation.

    PubMed

    Choi, Joonho; Choi, Min-Koo; Chong, Saeho; Chung, Suk-Jae; Shim, Chang-Koo; Kim, Dae-Duk

    2012-01-17

    The effect of fatty acids on the skin permeation of donepezil base (DPB) and its hydrochloride salt (DPH) were studied in vitro using hairless mouse and human cadaver skin. DPB and DPH were solubilized in propylene glycol (PG) containing 1% (w/v) fatty acid, after which the in vitro permeation through hairless mouse skin and human cadaver skin were evaluated using Keshary-Chien diffusion cells. The optimized formulation obtained from the in vitro study was then tested in rats for an in vivo pharmacokinetic study. The relative in vitro skin permeation rate of donepezil (DP) through the hairless mouse skin showed a parabolic relationship with increased carbon length of the fatty acid enhancers. Among the fatty acids tested, oleic acid for DPB and palmitoleic acid for DPH showed the highest enhancing effect, respectively. Both the permeation rates of DPB and DPH evaluated in human cadaver skin were in good correlation with those in hairless mouse skin, regardless of the presence of fatty acids. This suggests that the mouse skin model serves as a useful in vitro system that satisfactorily represents the characteristics of the human skin. Moreover, based on the in vitro results, the optimal formulation that could maintain the human plasma concentration of 50 ng/mL was determined to be 10mg DP with 1% (w/v) enhancer. When the DP transdermal formulations were applied to the abdominal skin of rats (2.14 cm(2)), the C(ss) was maintained for 48 h, among which the highest value of 52.21 ± 2.09 ng/mL was achieved with the DPB formulation using oleic acid. These results showed that fatty acids could enhance the transdermal delivery of DP and suggested the feasibility of developing a novel transdermal delivery system for clinical use.

  7. RP-HPLC analytical method development and optimization for quantification of donepezil hydrochloride in orally disintegrating tablet.

    PubMed

    Liew, Kai Bin; Peh, Kok Khiang; Fung Tan, Yvonne Tze

    2013-09-01

    An easy, fast and validated RV-HPLC method was invented to quantify donepezil hydrochloride in drug solution and orally disintegrating tablet. The separation was carried out using reversed phase C-18 column (Agilent Eclipse Plus C-18) with UV detection at 268 nm. Method optimization was tested using various composition of organic solvent. The mobile phase comprised of phosphate buffer (0.01M), methanol and acetonitrile (50:30:20, v/v) adjusted to pH 2.7 with phosphoric acid (80%) was found as the optimum mobile phase. The method showed intraday precision and accuracy in the range of 0.24% to -1.83% and -1.83% to 1.99% respectively, while interday precision and accuracy ranged between 1.41% to 1.81% and 0.11% to 1.90% respectively. The standard calibration curve was linear from 0.125 μg/mL to 16 μg/mL, with correlation coefficient of 0.9997±0.00016. The drug solution was stable under room temperature at least for 6 hours. System suitability studies were done. The average plate count was > 2000, tailing factor <1, and capacity factor of 3.30. The retention time was 5.6 min. The HPLC method was used to assay donepezil hydrochloride in tablet and dissolution study of in-house manufactured donepezil orally disintegrating tablet and original Aricept.

  8. Cognitive Results of CANTAB Tests and Their Change Due to the First Dose of Donepezil May Predict Treatment Efficacy in Alzheimer Disease

    PubMed Central

    Kuzmickienė, Jurgita; Kaubrys, Gintaras

    2015-01-01

    Background Ability to predict the efficacy of treatment in Alzheimer disease (AD) may be very useful in clinical practice. Cognitive predictors should be investigated alongside with the demographic, genetic, and other predictors of treatment efficacy. The aim of this study was to establish whether the baseline measures of CANTAB tests and their changes due to the first donepezil dose are able to predict the efficacy of treatment after 4 months of therapy. We also compared the predictive value of cognitive, clinical, and demographic predictors of treatment efficacy in AD. Material/Methods Seventy-two AD patients (62 treatment-naïve and 10 donepezil-treated) and 30 controls were enrolled in this prospective, randomized, rater-blinded, follow-up study. Treatment-naïve AD patients were randomized to 2 groups to take the first donepezil dose after the first or second CANTAB testing, separated by 4 hours. Follow-up Test 3 was performed 4 months after the initial assessment. Results The groups were similar in age, education, gender, Hachinski index, and depression. General Regression Models (GRM) have shown that cognitive changes after the first dose of donepezil in PAL (t-values for regression coefficients from 3.43 to 6.44), PRMd (t=4.33), SWM (t=5.85) test scores, and baseline results of PAL (t=2.57–2.86), PRM (t=3.08), and CRT (t=3.42) tests were significant predictors of long-term donepezil efficacy in AD (p<0.05). Conclusions The cognitive changes produced by the first donepezil dose in CANTAB PAL, PRM, and SWM test measures are able to predict the long-term efficacy of donepezil in AD. Baseline PAL, PRM, and CRT test results were significant predictors. PMID:26656642

  9. Cognitive Results of CANTAB Tests and Their Change Due to the First Dose of Donepezil May Predict Treatment Efficacy in Alzheimer Disease.

    PubMed

    Kuzmickienė, Jurgita; Kaubrys, Gintaras

    2015-12-14

    BACKGROUND Ability to predict the efficacy of treatment in Alzheimer disease (AD) may be very useful in clinical practice. Cognitive predictors should be investigated alongside with the demographic, genetic, and other predictors of treatment efficacy. The aim of this study was to establish whether the baseline measures of CANTAB tests and their changes due to the first donepezil dose are able to predict the efficacy of treatment after 4 months of therapy. We also compared the predictive value of cognitive, clinical, and demographic predictors of treatment efficacy in AD. MATERIAL AND METHODS Seventy-two AD patients (62 treatment-naïve and 10 donepezil-treated) and 30 controls were enrolled in this prospective, randomized, rater-blinded, follow-up study. Treatment-naïve AD patients were randomized to 2 groups to take the first donepezil dose after the first or second CANTAB testing, separated by 4 hours. Follow-up Test 3 was performed 4 months after the initial assessment. RESULTS The groups were similar in age, education, gender, Hachinski index, and depression. General Regression Models (GRM) have shown that cognitive changes after the first dose of donepezil in PAL (t-values for regression coefficients from 3.43 to 6.44), PRMd (t=4.33), SWM (t=5.85) test scores, and baseline results of PAL (t=2.57-2.86), PRM (t=3.08), and CRT (t=3.42) tests were significant predictors of long-term donepezil efficacy in AD (p<0.05). CONCLUSIONS The cognitive changes produced by the first donepezil dose in CANTAB PAL, PRM, and SWM test measures are able to predict the long-term efficacy of donepezil in AD. Baseline PAL, PRM, and CRT test results were significant predictors.

  10. Characterisation of acetylcholinesterase release from neuronal cells.

    PubMed

    Hicks, David A; Makova, Natalia Z; Nalivaeva, Natalia N; Turner, Anthony J

    2013-03-25

    Although acetylcholinesterase (AChE) is primarily a hydrolytic enzyme, metabolising the neurotransmitter acetylcholine in cholinergic synapses, it also has some non-catalytic functions in the brain which are far less well characterised. AChE was shown to be secreted or shed from the neuronal cell surface like several other membrane proteins, such as the amyloid precursor protein (APP). Since AChE does not possess a transmembrane domain, its anchorage in the membrane is established via the Proline Rich Membrane Anchor (PRiMA), a transmembrane protein. Both the subunit oligomerisation and membrane anchor of AChE are shared by a related enzyme, butyrylcholinesterase (BChE), the physiological function of which in the brain is unclear. In this work, we have assayed the relative activities of AChE and BChE in membrane fractions and culture medium of three different neuronal cell lines, namely the neuroblastoma cell lines SH-SY5Y and NB7 and the mouse basal forebrain cell line SN56. In an effort to understand the shedding process of AChE, we have used several pharmacological treatments, which showed that it is likely to be mediated in part by an EDTA- and batimastat-sensitive, but GM6001-insensitive metalloprotease, with the possible additional involvement of a thiol isomerase. Cellular release of AChE by SH-SY5Y is significantly enhanced by the muscarinic acetylcholine receptor (mAChR) agonists carbachol or muscarine, with the effect of carbachol blocked by the mAChR antagonist atropine. AChE has been implicated in the pathogenesis of Alzheimer's disease and it has been shown that it accelerates formation and increases toxicity of amyloid fibrils, which have been closely linked to the pathology of AD. In light of this, greater understanding of AChE and BChE physiology may also benefit AD research.

  11. Altered expression of acetylcholinesterase gene in rice results in enhancement or suppression of shoot gravitropism

    PubMed Central

    Yamamoto, Kosuke; Sakamoto, Hikaru; Momonoki, Yoshie S.

    2016-01-01

    ABSTRACT Acetylcholinesterase (AChE), an acetylcholine-hydrolyzing enzyme, exists widely in plants, although its role in plant signal transduction is still unclear. We have hypothesized that the plant AChE regulates asymmetric distribution of hormones and substrates due to gravity stimulus, based on indirect pharmacological experiments using an AChE inhibitor. As a direct evidence for this hypothesis, our recent study has shown that AChE overexpression causes an enhanced gravitropic response in rice seedlings and suggested that the function of the rice AChE relates to the promotion of shoot gravitropism in the seedlings. Here, we report that AChE suppression inhibited shoot gravitropism in rice seedlings, as supportive evidence demonstrating the role of AChE as a positive regulator of shoot gravitropic response in plants. PMID:26979939

  12. Evaluation of acetylcholinesterase source from fish, Tor tambroides for detection of carbamate.

    PubMed

    Ahmad, Siti Aqlima; Sabullah, Mohd Khalizan; Shamaan, Nor Aripin; Abd Shukor, Mohd Yunus; Jirangon, Hussain; Khalid, Ariff; Syed, Mohd Arif

    2016-07-01

    Acetylcholinesterase (AChE) from the brain tissue of local freshwater fish, Tor tambroides was isolated through affinity purification. Acetylthiocholine iodide (ATCi) was preferable synthetic substrate to purified AChE with highest maximal velocity (V(max)) and lowest biomolecular constant (K(m)) at 113.60 Umg(-1) and 0.0689 mM, respectively, with highest catalytic efficiency ratio (V(max)/K(m)) of 1648.77. The optimum pH was 7.5 with sodium phosphate buffer as medium, while optimal temperature was in the range of 25 to 35 degrees C. Bendiocarp, carbofuran, carbaryl, methomyl and propoxur significantly lowered the AChE activity greater than 50%, and the IC50 value was estimated at inhibitor concentration of 0.0758, 0.0643, 0.0555, 0.0817 and 0.0538 ppm, respectively. PMID:27498490

  13. Nutritional and Physicochemical Characteristics of the Antidementia Acetylcholinesterase-Inhibiting Methanol Extracts from Umbilicaria esculenta

    PubMed Central

    Lee, Ji-Su; Min, Gyung-Hun

    2009-01-01

    To develop new antidementia nutraceuticals, a potent acetylcholinesterase (AChE)-inhibiting extract was screened from various extracts of nutritional mushrooms and lichens nutritional and its physicochemical properties were investigated. Among the several extracts tested, methanol extracts of Umbilicaria esculenta fruiting body showed the highest AChE inhibitory activity of 22.4%. U. esculenta AChE inhibitor was maximally extracted when fruiting bodies were treated with 80% methanol at 40℃ for 18 h. The methanol extracts contained 18.9% crude lipid, 18.8% crude protein, and 11.6% total sugar. In addition, they contained 444 mg/g glutamic acid, 44 mg/g histidine, and 41 mg/g aspartic acid. The methanol extracts were soluble in a solution of methanol and 20% dimethylsulfoxide, insoluble in n-hexane, chloroform, and water, and were stable at 20~60℃ and pH 1.0~5.0 for 1 h. PMID:23983533

  14. Antioxidative/acetylcholinesterase inhibitory activity of some Asteraceae plants.

    PubMed

    Mekinić, Ivana Generalić; Burcul, Franko; Blazević, Ivica; Skroza, Danijela; Kerum, Daniela; Katalinić, Visnja

    2013-04-01

    The extracts obtained by 80% EtOH from some Asteraceae plants (Calendula officinalis, Inula helenium, Arctium lappa, Artemisia absinthium and Achillea millefolium) were studied. Rosmarinic acid, one of the main compounds identified in all extracts, was determined quantitatively by using HPLC. In addition, spectrophotometric methods were evaluated as an alternative for rosmarinic acid content determination. Total phenolic content was also established for all extracts. A. millefolium extract was found to have the highest content of rosmarinic acid as well as total phenols. All extracts were tested for antioxidant and acetylcholinesterase inhibitory activity. A. millefolium was shown to possess the best antioxidant activity (for all tested methods) as well as acetylcholinesterase inhibitory activity. Highly positive linear relationships were obtained between antioxidant/acetylcholinesterase inhibitory activity and the determined rosmarinic acid content indicating its significance for the observed activities. PMID:23738456

  15. Centrophenoxine activates acetylcholinesterase activity in hippocampus of aged rats.

    PubMed

    Sharma, D; Singh, R

    1995-05-01

    Age-related changes in the acetylcholinesterase activity were measured in the hippocampus, brain stem and cerebellum of rats (aged 4, 8, 16 and 24 months). The age-dependent decrease in the enzyme activity first appeared in the hippocampus; the brain stem was affected later while the cerebellum remained unaffected. Centrophenoxine, usually considered as an ageing reversal drug and also regarded as a neuroenergeticum in human therapy, increased the acetylcholinesterase activity in the hippocampus of aged rats, the activity was also elevated in the brain stem but no in the cerebellum. The acetylcholinesterase-stimulating influence of the drug is likely to be implicated in the pharmacological reversal of the age related decline of the cholinergic system. This effect of the drug may also mediate its effects on cognitive and neuronal synaptic functions.

  16. Lower Acetylcholinesterase Activity among Children Living with Flower Plantation Workers

    PubMed Central

    Suarez-Lopez, Jose R.; Jacobs, David R.; Himes, John H.; Alexander, Bruce H.; Lazovich, DeAnn; Gunnar, Megan

    2012-01-01

    BACKGROUND Children of workers exposed to pesticides are at risk of secondary pesticide exposure. We evaluated the potential for lower acetylcholinesterase activity in children cohabiting with fresh-cut flower plantation workers, which would be expected from organophosphate and carbamate insecticide exposure. Parental home surveys were performed and acetylcholinesterase activity was measured in 277 children aged 4–9 years in the study of Secondary Exposure to Pesticides among Infants, Children and Adolescents (ESPINA). Participants lived in a rural county in Ecuador with substantial flower plantation activity. RESULTS Mean acetylcholinesterase activity was 3.14 U/ml, standard deviation (SD): 0.49. It was lower by 0.09 U/ml (95% confidence interval (CI) −0.19, −0.001) in children of flower workers (57% of participants) than non-flower workers’ children, after adjustment for gender, age, height-for-age, hemoglobin concentration, income, pesticide use within household lot, pesticide use by contiguous neighbors, examination date and residence distance to nearest flower plantation. Using a 4 level polychotomous acetylcholinesterase activity dependent variable, flower worker cohabitation (vs. not) had odds ratio 3.39 (95% CI 1.19, 9.64) for being <15th percentile compared to the highest tertile. Children cohabitating for ≥5 years (vs. never) had OR of 4.11 (95% CI: 1.17, 14.38) of AChE activity within <15th percentile compared to the highest tertile. CONCLUSIONS Cohabitation with a flower worker was related to lower acetylcholinesterase activity in children. This supports the hypothesis that the amount of take-home pesticides from flower workers suffices to decrease acetylcholinesterase activity, with lower activity associated with longer exposure. PMID:22405996

  17. Screening the methanol extracts of some Iranian plants for acetylcholinesterase inhibitory activity

    PubMed Central

    Gholamhoseinian, A.; Moradi, M.N.; Sharifi-far, F.

    2009-01-01

    Acetylcholinesterase (AChE) is the main enzyme for the breakdown of acetylcholine. Nowadays, usage of the inhibitors of this enzyme is one of the most important types of treatment of mild to moderate neurodegenerative diseases such as Alzheimer’s disease. Herbal medicines can be a new source of inhibitors of this enzyme. In this study we examined around 100 different plants to evaluate their inhibitory properties for AChE enzyme. Plants were scientifically identified and their extracts were prepared by methanol percolation. Acetylcholinesterase activity was measured using a colorimetric method in the presence or absence of the extracts. Eserine was used as a positive control. Methanol extracts of the Levisticum officinale, Bergeris integrima and Rheum ribes showed more than 50% AChE inhibitory activity. The inhibition kinetics were studied in the presence of the most effective extracts. L. officinale and B. integrima inhibited AChE activity in a non-competitive manner, while R. ribes competitively inhibitied the enzyme as revealed by double-reciprocal Linweaver-Burk plot analysis. Under controlled condition, Km and Vmax values of the enzyme were found to be 9.4 mM and 0.238 mM/min, respectively. However, in the presence of L. officinale, B. integrima, and R. ribes extracts, Vmax values were 0.192, 0.074 and 0.238 mM/min, respectively. Due to the competitive inhibition of the enzyme by R. ribes extract, the Km value of 21.2 mM was obtained. The concentration required for 50% enzyme inhibition (IC50 value) was 0.5, 0.9, and 0.95 mg/ml for the L. officinale, B. integrima and R. ribes extracts, respectively. The IC50 of the eserine was determined to be 0.8 mg/ml. PMID:21589805

  18. Extracts from Traditional Chinese Medicinal Plants Inhibit Acetylcholinesterase, a Known Alzheimer's Disease Target.

    PubMed

    Kaufmann, Dorothea; Kaur Dogra, Anudeep; Tahrani, Ahmad; Herrmann, Florian; Wink, Michael

    2016-01-01

    Inhibition of acetylcholinesterase (AChE) is a common treatment for early stages of the most general form of dementia, Alzheimer's Disease (AD). In this study, methanol, dichloromethane and aqueous crude extracts from 80 Traditional Chinese Medical (TCM) plants were tested for their in vitro anti-acetylcholinesterase activity based on Ellman's colorimetric assay. All three extracts of Berberis bealei (formerly Mahonia bealei), Coptis chinensis and Phellodendron chinense, which contain numerous isoquinoline alkaloids, substantially inhibited AChE. The methanol and aqueous extracts of Coptis chinensis showed IC50 values of 0.031 µg/mL and 2.5 µg/mL, therefore having an up to 100-fold stronger AChE inhibitory activity than the already known AChE inhibitor galantamine (IC50 = 4.33 µg/mL). Combinations of individual alkaloids berberine, coptisine and palmatine resulted in a synergistic enhancement of ACh inhibition. Therefore, the mode of AChE inhibition of crude extracts of Coptis chinensis, Berberis bealei and Phellodendron chinense is probably due to of this synergism of isoquinoline alkaloids. All extracts were also tested for their cytotoxicity in COS7 cells and none of the most active extracts was cytotoxic at the concentrations which inhibit AChE. Based on these results it can be stated that some TCM plants inhibit AChE via synergistic interaction of their secondary metabolites. The possibility to isolate pure lead compounds from the crude extracts or to administer these as nutraceuticals or as cheap alternative to drugs in third world countries make TCM plants a versatile source of natural inhibitors of AChE. PMID:27589716

  19. The Dynamics of Ligand Barrier Crossing Inside the Acetylcholinesterase Gorge

    SciTech Connect

    Bui, Jennifer M.; Henchman, Richard H.; Mccammon, Andy

    2003-10-01

    The dynamics of ligand movement through the constricted region of the acetylcholinesterase gorge is important in understanding how the ligand gains access to and is released from the active site of the enzyme. Molecular dynamics simulations of the simple ligand, tetramethylammonium, crossing this bottleneck region are conducted using umbrella potential sampling and activated .ux techniques. The low potential of mean force obtained is consistent with the fast reaction rate of acetylcholinesterase observed experimentally. From the results of the activated dynamics simulations, local conformational .uctuations of the gorge residues and larger scale collective motions of the protein are found to correlate highly with the ligand crossing.

  20. acetylcholinesterase inhibitory potential and insecticidal activity of an endophytic Alternaria sp. from Ricinus communis.

    PubMed

    Singh, Bahaderjeet; Thakur, Abhinay; Kaur, Sanehdeep; Chadha, B S; Kaur, Amarjeet

    2012-11-01

    Keeping in view the vast potential of endophytic fungi to produce bioactive molecules, this study aimed at isolating and screening endophytes for the production of acetylcholinesterase inhibitors. Fifty-four endophytic fungi were isolated from Ricinus communis and screened for their AChE inhibitory activity using Ellman's colorimetric assay method. Six isolates were found to possess AChE inhibitory activity with maximum inhibition of 78 % being evinced by culture Cas1 which was identified to be Alternaria sp. on the basis of molecular as well as microscopic methods. Optimization of inhibitor production was carried out using one factor at a time approach. Maximum production of inhibitor was obtained on potato dextrose broth after 10 days incubation. The IC(50) of the chloroform extract was observed to be 40 μg/ml. The extract was purified on silica gel and eluted stepwise with a gradient of chloroform/methanol. The insecticidal potential of the extract was evaluated by feeding the larvae of Spodoptera litura on diet containing varying concentrations of the extract. It was observed that with increase in the concentration of the extract, mortality of the larvae increased. The culture has the potential of being exploited in medicine as well as a biocontrol agent.

  1. Structure of acetylcholinesterase complexed with (-)-galanthamine at 2.3 A resolution.

    PubMed

    Greenblatt, H M; Kryger, G; Lewis, T; Silman, I; Sussman, J L

    1999-12-17

    (-)-Galanthamine (GAL), an alkaloid from the flower, the common snowdrop (Galanthus nivalis), shows anticholinesterase activity. This property has made GAL the target of research as to its effectiveness in the treatment of Alzheimer's disease. We have solved the X-ray crystal structure of GAL bound in the active site of Torpedo californica acetylcholinesterase (TcAChE) to 2.3 A resolution. The inhibitor binds at the base of the active site gorge of TcAChE, interacting with both the choline-binding site (Trp-84) and the acyl-binding pocket (Phe-288, Phe-290). The tertiary amine group of GAL does not interact closely with Trp-84; rather, the double bond of its cyclohexene ring stacks against the indole ring. The tertiary amine appears to make a non-conventional hydrogen bond, via its N-methyl group, to Asp-72, near the top of the gorge. The hydroxyl group of the inhibitor makes a strong hydrogen bond (2.7 A) with Glu-199. The relatively tight binding of GAL to TcAChE appears to arise from a number of moderate to weak interactions with the protein, coupled to a low entropy cost for binding due to the rigid nature of the inhibitor.

  2. Introducing Dynamic Combinatorial Chemistry: Probing the Substrate Selectivity of Acetylcholinesterase

    ERIC Educational Resources Information Center

    Angelin, Marcus; Larsson, Rikard; Vongvilai, Pornrapee; Ramstrom, Olof

    2010-01-01

    In this laboratory experiment, college students are introduced to dynamic combinatorial chemistry (DCC) and apply it to determine the substrate selectivity of acetylcholinesterase (AChE). Initially, the students construct a chemical library of dynamically interchanging thioesters and thiols. Then, AChE is added and allowed to select and hydrolyze…

  3. Inhibition of acetylcholinesterase activity by essential oil from Citrus paradisi.

    PubMed

    Miyazawa, M; Tougo, H; Ishihara, M

    2001-01-01

    Inhibition of acetylcholinesterase (AChE) activity by essential oils of Citrus paradisi (grapefruit pink in USA) was studied. Inhibition of AChE was measured by the colorimetric method. Nootkatone and auraptene were isolated from C. paradisi oil and showed 17-24% inhibition of AChE activity at the concentration of 1.62 microg/mL. PMID:11858553

  4. L-tyrosine administration increases acetylcholinesterase activity in rats.

    PubMed

    Ferreira, Gabriela K; Carvalho-Silva, Milena; Gonçalves, Cinara L; Vieira, Júlia S; Scaini, Giselli; Ghedim, Fernando V; Deroza, Pedro F; Zugno, Alexandra I; Pereira, Talita C B; Oliveira, Giovanna M T; Kist, Luiza W; Bogo, Maurício R; Schuck, Patrícia F; Ferreira, Gustavo C; Streck, Emilio L

    2012-12-01

    Tyrosinemia is a rare genetic disease caused by mutations on genes that codify enzymes responsible for tyrosine metabolism. Considering that tyrosinemics patients usually present symptoms associated with central nervous system alterations that ranges from slight decreases in intelligence to severe mental retardation, we decided to investigate whether acute and chronic administration of L-tyrosine in rats would affect acetylcholinesterase mRNA expression and enzymatic activity during their development. In our acute protocol, Wistar rats (10 and 30 days old) were killed one hour after a single intraperitoneal L-tyrosine injection (500 mg/kg) or saline. Chronic administration consisted of L-tyrosine (500 mg/kg) or saline injections 12 h apart for 24 days in Wistar rats (7 days old) and rats were killed 12 h after last injection. Acetylcholinesterase activity was measured by Ellman's method and acetylcholinesterase expression was carried out by a semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR) assay. We observed that acute (10 and 30 days old rats) and chronic L-tyrosine administration increased acetylcholinesterase activity in serum and all tested brain areas (hippocampus, striatum and cerebral cortex) when compared to control group. Moreover, there was a significant decrease in mRNA levels of acetylcholinesterase in hippocampus was observed after acute protocol (10 and 30 days old rats) and in striatum after chronic protocol. In case these alterations also occur in the brain of the patients, our results may explain, at least in part, the neurological sequelae associated with high plasma concentrations of tyrosine seen in patients affected by tyrosinemia type II. PMID:23046746

  5. L-tyrosine administration increases acetylcholinesterase activity in rats.

    PubMed

    Ferreira, Gabriela K; Carvalho-Silva, Milena; Gonçalves, Cinara L; Vieira, Júlia S; Scaini, Giselli; Ghedim, Fernando V; Deroza, Pedro F; Zugno, Alexandra I; Pereira, Talita C B; Oliveira, Giovanna M T; Kist, Luiza W; Bogo, Maurício R; Schuck, Patrícia F; Ferreira, Gustavo C; Streck, Emilio L

    2012-12-01

    Tyrosinemia is a rare genetic disease caused by mutations on genes that codify enzymes responsible for tyrosine metabolism. Considering that tyrosinemics patients usually present symptoms associated with central nervous system alterations that ranges from slight decreases in intelligence to severe mental retardation, we decided to investigate whether acute and chronic administration of L-tyrosine in rats would affect acetylcholinesterase mRNA expression and enzymatic activity during their development. In our acute protocol, Wistar rats (10 and 30 days old) were killed one hour after a single intraperitoneal L-tyrosine injection (500 mg/kg) or saline. Chronic administration consisted of L-tyrosine (500 mg/kg) or saline injections 12 h apart for 24 days in Wistar rats (7 days old) and rats were killed 12 h after last injection. Acetylcholinesterase activity was measured by Ellman's method and acetylcholinesterase expression was carried out by a semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR) assay. We observed that acute (10 and 30 days old rats) and chronic L-tyrosine administration increased acetylcholinesterase activity in serum and all tested brain areas (hippocampus, striatum and cerebral cortex) when compared to control group. Moreover, there was a significant decrease in mRNA levels of acetylcholinesterase in hippocampus was observed after acute protocol (10 and 30 days old rats) and in striatum after chronic protocol. In case these alterations also occur in the brain of the patients, our results may explain, at least in part, the neurological sequelae associated with high plasma concentrations of tyrosine seen in patients affected by tyrosinemia type II.

  6. Preparation, characterization, and in vivo evaluation of intranasally administered liposomal formulation of donepezil.

    PubMed

    Al Asmari, Abdulrahman K; Ullah, Zabih; Tariq, Mohammad; Fatani, Amal

    2016-01-01

    The adequate amount of drug delivery to the brain in neurological patients is a major problem faced by the physicians. Recent studies suggested that intranasal administration of liposomal formulation may improve the drug delivery to the brain. In the present study, an attempt was made to study the brain bioavailability of commonly used anti-Alzheimer drug donepezil (DNP) liposomal formulation by intranasal route in rats. We adopted the thin layer hydration technique for the preparation of liposomes by using cholesterol, polyethylene glycol, and 1,2-distearyl-sn-glycero-3-phosphocholine (DSPC). The prepared liposomes were characterized by determining particle size, shape, surface morphology, zeta potential, encapsulation efficiency, and in vitro release of DNP. The pharmacokinetic parameters of liposomal DNP in plasma and brain of rats were determined following oral and nasal administration. The results of this study showed that the DNP liposomal formulation was stable with a consistent size (102 ± 3.3 nm) and shape. The prepared liposomes showed high encapsulation efficiency (84.91% ±3 .31%) and sustained-release behavior. The bioavailability of DNP in plasma and brain increased significantly (P<0.05) after administration of liposomal formulation by the intranasal route. Histopathological examination showed that the formulation was safe and free from toxicity. It can be concluded that the nasal administration of liposomal preparation may provide an efficient and reliable mode of drug delivery to the central nervous system.

  7. Preparation, characterization, and in vivo evaluation of intranasally administered liposomal formulation of donepezil.

    PubMed

    Al Asmari, Abdulrahman K; Ullah, Zabih; Tariq, Mohammad; Fatani, Amal

    2016-01-01

    The adequate amount of drug delivery to the brain in neurological patients is a major problem faced by the physicians. Recent studies suggested that intranasal administration of liposomal formulation may improve the drug delivery to the brain. In the present study, an attempt was made to study the brain bioavailability of commonly used anti-Alzheimer drug donepezil (DNP) liposomal formulation by intranasal route in rats. We adopted the thin layer hydration technique for the preparation of liposomes by using cholesterol, polyethylene glycol, and 1,2-distearyl-sn-glycero-3-phosphocholine (DSPC). The prepared liposomes were characterized by determining particle size, shape, surface morphology, zeta potential, encapsulation efficiency, and in vitro release of DNP. The pharmacokinetic parameters of liposomal DNP in plasma and brain of rats were determined following oral and nasal administration. The results of this study showed that the DNP liposomal formulation was stable with a consistent size (102 ± 3.3 nm) and shape. The prepared liposomes showed high encapsulation efficiency (84.91% ±3 .31%) and sustained-release behavior. The bioavailability of DNP in plasma and brain increased significantly (P<0.05) after administration of liposomal formulation by the intranasal route. Histopathological examination showed that the formulation was safe and free from toxicity. It can be concluded that the nasal administration of liposomal preparation may provide an efficient and reliable mode of drug delivery to the central nervous system. PMID:26834457

  8. Genetic factors potentially reducing fitness cost of organophosphate-insensitive acetylcholinesterase(s) in Rhipicephalus (Boophilus) microplus (Acari: Ixodidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acaricidal activity of organophosphate (OP) and carbamate acaricides is believed to result from inhibition of acetylcholinesterase (AChE). Previous studies in Rhipicephalus (Boophilus) microplus demonstrated the presence of three presumptive AChE genes (BmAChEs). Biochemical characterization of re...

  9. The effect of a combination of gabapentin and donepezil in an experimental pain model in healthy volunteers: Results of a randomized controlled trial.

    PubMed

    Boyle, Yvonne; Fernando, Disala; Kurz, Hazel; Miller, Sam R; Zucchetto, Mauro; Storey, James

    2014-12-01

    This double-blind, placebo-controlled, 3-period cross-over, 4-treatment option, incomplete block study (ClinicalTrials.gov number NCT01485185), with an adaptive design for sample size re-estimation, was designed to evaluate gabapentin plus donepezil in an established experimental model of electrical hyperalgesia. Thirty healthy male subjects aged 18-55 years were randomized to receive gabapentin 900 mg or gabapentin 900 mg+donepezil 5mg for 2 of the 3 treatment periods, with 50% of subjects randomized to receive placebo (negative control) and 50% to gabapentin 1800 mg (positive control) for the remaining period. Each treatment period was 14 days. Gabapentin or corresponding placebo was administered on Day 13 and the morning of Day 14. Donepezil or corresponding placebo was administered nocturnally from Day 1-13 and the morning of Day 14. Co-primary endpoints were the area of pinprick hyperalgesia (260 mN von Frey filament) and allodynia (stroking by cotton bud) evoked by electrical hyperalgesia on Day 14. Gabapentin 1800 mg (n=14) significantly reduced the area of allodynia vs placebo (n=14; -12.83 cm(2); 95% confidence interval [CI] -23.14 to -2.53; P=0.015) with supportive results for hyperalgesia (-14.04 cm(2); 95% CI -28.49-0.41; P=0.057), validating the electrical hyperalgesia model. Gabapentin+donepezil (n=30) significantly reduced the area of hyperalgesia vs gabapentin 900 mg (n=30; -11.73 cm(2); 95% CI -21.04 to -2.42; P=0.014), with supportive results for allodynia (-6.62 cm(2); 95% CI -13.29-0.04; P=0.052). The adverse event profile for gabapentin+donepezil was similar to the same dose of gabapentin. Data are supportive of further clinical investigation of a gabapentin-and-donepezil combination in patients with an inadequate response to gabapentin.

  10. Protease inhibitors and indoleamines selectively inhibit cholinesterases in the histopathologic structures of Alzheimer disease.

    PubMed Central

    Wright, C I; Guela, C; Mesulam, M M

    1993-01-01

    Neurofibrillary tangles and amyloid plaques express acetylcholinesterase and butyrylcholinesterase activity in Alzheimer disease. We previously reported that traditional acetylcholinesterase inhibitors such as BW284C51, tacrine, and physostigmine were more potent inhibitors of the acetylcholinesterase in normal axons and cell bodies than of the acetylcholinesterase in plaques and tangles. We now report that the reverse pattern is seen with indoleamines (such as serotonin and its precursor 5-hydroxytryptophan), carboxypeptidase inhibitor, and the nonspecific protease inhibitor bacitracin. These substances are more potent inhibitors of the cholinesterases in plaques and tangles than of those in normal axons and cell bodies. These results show that the enzymatic properties of plaque and tangle-associated cholinesterases diverge from those of normal axons and cell bodies. The selective susceptibility to bacitracin and carboxypeptidase inhibitor indicates that the catalytic sites of plaque and tangle-bound cholinesterases are more closely associated with peptidase or protease-like properties than the catalytic sites of cholinesterases in normal axons and cell bodies. This shift in enzymatic affinity may lead to the abnormal protein processing that is thought to play a major role in the pathogenesis of Alzheimer disease. The availability of pharmacological and dietary means for altering brain indoleamines raises therapeutic possibilities for inhibiting the abnormal cholinesterase activity associated with Alzheimer disease. Images PMID:8421706

  11. Effects of donepezil on brain morphometric and metabolic changes in patients with Alzheimer's disease: A DARTEL-based VBM and (1)H-MRS.

    PubMed

    Moon, Chung-Man; Kim, Byeong-Chae; Jeong, Gwang-Woo

    2016-09-01

    A few studies have performed on the brain morphometric changes over the whole brain structure following donepezil treatment in patients with Alzheimer's disease (AD). We evaluated the gray matter (GM) and white matter (WM) volume alterations and cellular metabolic changes in patients with AD before and after donepezil treatment, and further to reveal the correlations of the scores of various neuropsychological scales with the volumetric and metabolic changes. Twenty-one subjects comprising of 11 patients with AD and 10 age-matched healthy controls participated in this study. All of the patients participated in the follow-up study 24weeks following donepezil treatment. In this study, a combination of voxel-based morphometry (VBM) and proton magnetic resonance spectroscopy ((1)H-MRS) was used to assess the brain morphometric and metabolic alterations in AD. In the GM volumetric analysis, both of the untreated and treated patients with donepezil showed significantly reduced volumes in the hippocampus (Hip), parahippocampal gyrus (PHG), precuneus (PCu) and middle frontal gyrus compared with healthy controls. However, donepezil-treated patients showed significantly increased volumes in the Hip, PCu, fusiform gyrus and caudate nucleus compared to untreated patients. In the WM volumetric analysis, untreated and treated patients showed significant volume reductions in the posterior limb of internal capsule (PLIC), cerebral peduncle of the midbrain and PHG compared to healthy controls. However, there was no significant WM morphological change after donepezil treatment in patients with AD. In MRS study, untreated patients with AD showed decreased N-acetylaspartate/creatine (NAA/Cr) and increased myo-inositol (mI)/Cr compared to healthy controls, while treated patients showed only decreased NAA/Cr in the same comparison. However, the treated patients showed simultaneously increased NAA/Cr and decreased mI/Cr and choline (Cho)/Cr ratios compared to untreated patients. This

  12. Structural and functional characterization of the interaction of the photosensitizing probe methylene blue with Torpedo californica acetylcholinesterase

    PubMed Central

    Paz, Aviv; Roth, Esther; Ashani, Yacov; Xu, Yechun; Shnyrov, Valery L; Sussman, Joel L; Silman, Israel; Weiner, Lev

    2012-01-01

    The photosensitizer, methylene blue (MB), generates singlet oxygen that irreversibly inhibits Torpedo californica acetylcholinesterase (TcAChE). In the dark, it inhibits reversibly. Binding is accompanied by a bathochromic absorption shift, used to demonstrate displacement by other acetylcholinesterase inhibitors interacting with the catalytic “anionic” subsite (CAS), the peripheral “anionic” subsite (PAS), or bridging them. MB is a noncompetitive inhibitor of TcAChE, competing with reversible inhibitors directed at both “anionic” subsites, but a single site is involved in inhibition. MB also quenches TcAChE's intrinsic fluorescence. It binds to TcAChE covalently inhibited by a small organophosphate (OP), but not an OP containing a bulky pyrene. Differential scanning calorimetry shows an ∼8° increase in the denaturation temperature of the MB/TcAChE complex relative to native TcAChE, and a less than twofold increase in cooperativity of the transition. The crystal structure reveals a single MB stacked against Trp279 in the PAS, oriented down the gorge toward the CAS; it is plausible that irreversible inhibition is associated with photooxidation of this residue and others within the active-site gorge. The kinetic and spectroscopic data showing that inhibitors binding at the CAS can impede binding of MB are reconciled by docking studies showing that the conformation adopted by Phe330, midway down the gorge, in the MB/TcAChE crystal structure, precludes simultaneous binding of a second MB at the CAS. Conversely, binding of ligands at the CAS dislodges MB from its preferred locus at the PAS. The data presented demonstrate that TcAChE is a valuable model for understanding the molecular basis of local photooxidative damage. PMID:22674800

  13. Altered binding of thioflavin t to the peripheral anionic site of acetylcholinesterase after phosphorylation of the active site by chlorpyrifos oxon or dichlorvos

    SciTech Connect

    Sultatos, L.G. Kaushik, R.

    2008-08-01

    The peripheral anionic site of acetylcholinesterase, when occupied by a ligand, is known to modulate reaction rates at the active site of this important enzyme. The current report utilized the peripheral anionic site specific fluorogenic probe thioflavin t to determine if the organophosphates chlorpyrifos oxon and dichlorvos bind to the peripheral anionic site of human recombinant acetylcholinesterase, since certain organophosphates display concentration-dependent kinetics when inhibiting this enzyme. Incubation of 3 nM acetylcholinesterase active sites with 50 nM or 2000 nM inhibitor altered both the B{sub max} and K{sub d} for thioflavin t binding to the peripheral anionic site. However, these changes resulted from phosphorylation of Ser203 since increasing either inhibitor from 50 nM to 2000 nM did not alter further thioflavin t binding kinetics. Moreover, the organophosphate-induced decrease in B{sub max} did not represent an actual reduction in binding sites, but instead likely resulted from conformational interactions between the acylation and peripheral anionic sites that led to a decrease in the rigidity of bound thioflavin t. A drop in fluorescence quantum yield, leading to an apparent decrease in B{sub max}, would accompany the decreased rigidity of bound thioflavin t molecules. The organophosphate-induced alterations in K{sub d} represented changes in binding affinity of thioflavin t, with diethylphosphorylation of Ser203 increasing K{sub d}, and dimethylphosphorylation of Ser203 decreasing K{sub d}. These results indicate that chlorpyrifos oxon and dichlorvos do not bind directly to the peripheral anionic site of acetylcholinesterase, but can affect binding to that site through phosphorylation of Ser203.

  14. High yield production of a mutant Nippostrongylus brasiliensis acetylcholinesterase in Pichia pastoris and its purification.

    PubMed

    Richter, Sven; Nieveler, Jens; Schulze, Holger; Bachmann, Till T; Schmid, Rolf D

    2006-04-01

    The mutant M301A of the acetylcholinesterase B from Nippostrongylus brasiliensis (NbAChE) was produced in a high-cell-density fermentation of a recombinant methylotrophic yeast Pichia pastoris. Dissolved oxygen (DO) spikes were used as an indicator for feeding the carbon source. Wet cell weight (WCW) reached after 8 days a maximum value of 316 g/L and the OD600 at this time was 280. The acetylcholinesterase activity increased up to 6,600 U/mL corresponding to an expression rate of 2 g of NbAChE per liter supernatant. The specific activity of the mutant NbAChE was determined after purification as 3,300 U/mg. Active site titration with chlorpyrifos, a strong AChE inhibitor, yielded in a specific activity of 3,400 U/mg. The enzyme was secreted by Pichia pastoris. Therefore, it could be concentrated from culture broth by cross-flow-filtration (50 kDa cut-off membrane). It was further purified in one-step anion-exchange chromatography, using a XK 50/20 column filled with 125 mL Q Sepharose HP. Mutant NbAChE was purified 1.9-fold up to a purity of 97% and a yield of 87%. The isolated enzyme was nearly homogenous, as seen on the silver stained SDS-PAGE as well as by a single peak after gel filtration. This extraordinary high expression rate and the ease of purification is an important prerequisite for their practical application, for example in biosensors for the detection of neurotoxic insecticides.

  15. Targeting Acetylcholinesterase: Identification of Chemical Leads by High Throughput Screening, Structure Determination and Molecular Modeling

    PubMed Central

    Berg, Lotta; Andersson, C. David; Artursson, Elisabet; Hörnberg, Andreas; Tunemalm, Anna-Karin; Linusson, Anna; Ekström, Fredrik

    2011-01-01

    Acetylcholinesterase (AChE) is an essential enzyme that terminates cholinergic transmission by rapid hydrolysis of the neurotransmitter acetylcholine. Compounds inhibiting this enzyme can be used (inter alia) to treat cholinergic deficiencies (e.g. in Alzheimer's disease), but may also act as dangerous toxins (e.g. nerve agents such as sarin). Treatment of nerve agent poisoning involves use of antidotes, small molecules capable of reactivating AChE. We have screened a collection of organic molecules to assess their ability to inhibit the enzymatic activity of AChE, aiming to find lead compounds for further optimization leading to drugs with increased efficacy and/or decreased side effects. 124 inhibitors were discovered, with considerable chemical diversity regarding size, polarity, flexibility and charge distribution. An extensive structure determination campaign resulted in a set of crystal structures of protein-ligand complexes. Overall, the ligands have substantial interactions with the peripheral anionic site of AChE, and the majority form additional interactions with the catalytic site (CAS). Reproduction of the bioactive conformation of six of the ligands using molecular docking simulations required modification of the default parameter settings of the docking software. The results show that docking-assisted structure-based design of AChE inhibitors is challenging and requires crystallographic support to obtain reliable results, at least with currently available software. The complex formed between C5685 and Mus musculus AChE (C5685•mAChE) is a representative structure for the general binding mode of the determined structures. The CAS binding part of C5685 could not be structurally determined due to a disordered electron density map and the developed docking protocol was used to predict the binding modes of this part of the molecule. We believe that chemical modifications of our discovered inhibitors, biochemical and biophysical characterization

  16. Cinnamomum loureirii Extract Inhibits Acetylcholinesterase Activity and Ameliorates Trimethyltin-Induced Cognitive Dysfunction in Mice.

    PubMed

    Kim, Cho Rong; Choi, Soo Jung; Kwon, Yoon Kyung; Kim, Jae Kyeom; Kim, Youn-Jung; Park, Gwi Gun; Shin, Dong-Hoon

    2016-01-01

    The pathogenesis of Alzheimer's disease (AD) has been linked to the deficiency of neurotransmitter acetylcholine (ACh) in the brain, and the main treatment strategy for improving AD symptoms is the inhibition of acetylcholinesterase (AChE) activity. In the present study, we aimed to identify potent AChE inhibitors from Cinnamomum loureirii extract via bioassay-guided fractionation. We demonstrated that the most potent AChE inhibitor present in the C. loureirii extract was 2,4-bis(1,1-dimethylethyl)phenol. To confirm the antiamnesic effects of the ethanol extract of C. loureirii, mice were intraperitoneally injected with the neurotoxin trimethyltin (2.5 mg/kg) to induce cognitive dysfunction, and performance in the Y-maze and passive avoidance tests was assessed. Treatment with C. loureirii extract significantly improved performance in both behavioral tests, suggesting that this extract may be neuroprotective and therefore beneficial in preventing or ameliorating the degenerative processes of AD, potentially by restoring cholinergic function. PMID:27374288

  17. Status of acetylcholinesterase and butyrylcholinesterase in Alzheimer's disease and type 2 diabetes mellitus.

    PubMed

    Mushtaq, Gohar; Greig, Nigel H; Khan, Jalaluddin A; Kamal, Mohammad A

    2014-01-01

    Both Alzheimer's disease (AD) and Type 2 diabetes mellitus (T2DM) share the presence of systemic and neuro-inflammation, enhanced production and accumulation of β -amyloid peptide and abnormal levels of the enzymes acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). Altered levels of AChE and BuChE both in AD as well as in T2DM imply that those two enzymes may be playing a pivotal role in the pathogenesis of the two disorders. AD and T2DM are both characterized by elevated levels of AChE and BuChE in the plasma. On the other hand, in AD the brain levels of AChE go down while those of BuChE go up, resulting in deregulation in balance between AChE and BuChE. This imbalance and change in the AChE/BuChE ratio causes cholinergic deficit in the brain, i.e. deficiency in the brain neurotransmitter acetylcholine. With better understanding of the inter-relationship of AChE and BuChE levels in normality as well as abnormality, AD and T2DM can be effectively treated. Thus, general cholinesterase inhibitors that inhibit both AChE and BuChE as well as highly selective BuChE inhibitors may have potential therapeutic benefits in the treatment of AD and other related dementias.

  18. Acetylcholinesterase in Biofouling Species: Characterization and Mode of Action of Cyanobacteria-Derived Antifouling Agents.

    PubMed

    Almeida, Joana R; Freitas, Micaela; Cruz, Susana; Leão, Pedro N; Vasconcelos, Vitor; Cunha, Isabel

    2015-07-24

    Effective and ecofriendly antifouling (AF) compounds have been arising from naturally produced chemicals. The objective of this study is to use cyanobacteria-derived agents to investigate the role of acetylcholinesterase (AChE) activity as an effect and/or mode of action of promising AF compounds, since AChE inhibitors were found to inhibit invertebrate larval settlement. To pursue this objective, in vitro quantification of AChE activity under the effect of several cyanobacterial strain extracts as potential AF agents was performed along with in vivo AF (anti-settlement) screening tests. Pre-characterization of different cholinesterases (ChEs) forms present in selected tissues of important biofouling species was performed to confirm the predominance of AChE, and an in vitro AF test using pure AChE activity was developed. Eighteen cyanobacteria strains were tested as source of potential AF and AChE inhibitor agents. Results showed effectiveness in selecting promising eco-friendly AF agents, allowing the understanding of the AF biochemical mode of action induced by different compounds. This study also highlights the potential of cyanobacteria as source of AF agents towards invertebrate macrofouling species.

  19. Carbon-11 labeling of CP-126,998*: A radiotracer for in vivo studies of acetylcholinesterase

    SciTech Connect

    Musachio, J.L.; Flesher, J.E.; Scheffel, U.

    1996-05-01

    The study of acetylcholinesterase (AChE) via PET is of interest as reduced activity of this enzyme has been observed in Alzheimer`s disease. Our efforts to develop a radiotracer for mapping of AChE have focused on the N-benzylpiperidine benzisoxazole, CP-126,998, a highly potent (IC{sub 50}=0.48 nm) and selective inhibitor of AChE. High specific activity [C-11] CP-126,998 was synthesized (14 - 24% radiochemical yield, non-decay corrected) by treatment of the desmethyl precursor, CP-118,954, with [C-11] methyl iodide and tetrabutylammonium hydroxide in DMF. In vivo studies with [C-11] CP-126,998 in mice show that this radiotracer displays highest uptake in striatum (6.2 %ID/g), a brain region known to be rich in AChE. The (striatum-cerebellum)/cerebellar radioactivity ratio reached a maximum of 4.3 at 30 min postinjection, and this ratio decreased to 2.4 at 120 min. .Radiotracer binding was saturable in vivo by pretreatment with CP-118,954. Pretreatment of mice with diisopropylfluorophosphate (4 mg/kg i.p.), a known AChE inhibitor, significantly inhibited binding in striatum in a dose-dependent manner. Initial results suggest that [C-11] CP-126,998 may prove useful as a marker for the study of AChE in humans via PET.

  20. [Effect of acetylcholine and acetylcholinesterase on the activity of contractile vacuole of Amoeba proteus].

    PubMed

    Bagrov, Ia Iu; Manusova, N B

    2011-01-01

    Acetylcholine (ACh, 1 microM) stimulates activity of the contractile vacuole of proteus. The effect of ACh is not mimicked by its analogs which are not hydrolyzed by acetylcholinesterase (AChE), i. e., carbacholine and 5-methylfurmethide. The effect of ACh is not sensitive to the blocking action of M-cholinolytics, atropine and mytolone, but is suppressed by N-cholinolytic, tubocurarine. The inhibitors of AChE, eserine (0.01 microM) and armine (0.1 microM), suppress the effect of ACh on amoeba contractile vacuole. ACh does not affect activation of contractile vacuole induced by arginine-vasopressin (1 microM), but it blocks such effect of opiate receptors agonist, dynorphin A1-13 (0.01 microM). This effect of ACh is also suppressed by the inhibitors of AChE. These results suggest that, in the above-described effects of ACh, AChE acts not as an antagonist, but rather as a synergist.

  1. Acetylcholinesterase in Biofouling Species: Characterization and Mode of Action of Cyanobacteria-Derived Antifouling Agents.

    PubMed

    Almeida, Joana R; Freitas, Micaela; Cruz, Susana; Leão, Pedro N; Vasconcelos, Vitor; Cunha, Isabel

    2015-08-01

    Effective and ecofriendly antifouling (AF) compounds have been arising from naturally produced chemicals. The objective of this study is to use cyanobacteria-derived agents to investigate the role of acetylcholinesterase (AChE) activity as an effect and/or mode of action of promising AF compounds, since AChE inhibitors were found to inhibit invertebrate larval settlement. To pursue this objective, in vitro quantification of AChE activity under the effect of several cyanobacterial strain extracts as potential AF agents was performed along with in vivo AF (anti-settlement) screening tests. Pre-characterization of different cholinesterases (ChEs) forms present in selected tissues of important biofouling species was performed to confirm the predominance of AChE, and an in vitro AF test using pure AChE activity was developed. Eighteen cyanobacteria strains were tested as source of potential AF and AChE inhibitor agents. Results showed effectiveness in selecting promising eco-friendly AF agents, allowing the understanding of the AF biochemical mode of action induced by different compounds. This study also highlights the potential of cyanobacteria as source of AF agents towards invertebrate macrofouling species. PMID:26213967

  2. Acetylcholinesterase triggers the aggregation of PrP 106-126

    SciTech Connect

    Pera, M.; Roman, S.; Ratia, M.; Camps, P.; Munoz-Torrero, D.; Colombo, L.; Manzoni, C.; Salmona, M.; Badia, A.; Clos, M.V. . E-mail: Victoria.Clos@uab.es

    2006-07-21

    Acetylcholinesterase (AChE), a senile plaque component, promotes amyloid-{beta}-protein (A{beta}) fibril formation in vitro. The presence of prion protein (PrP) in Alzheimer's disease (AD) senile plaques prompted us to assess if AChE could trigger the PrP peptides aggregation as well. Consequently, the efficacy of AChE on the PrP peptide spanning-residues 106-126 aggregation containing a coumarin fluorescence probe (coumarin-PrP 106-126) was studied. Kinetics of coumarin-PrP 106-126 aggregation showed a significant increase of maximum size of aggregates (MSA), which was dependent on AChE concentration. AChE-PrP 106-126 aggregates showed the tinctorial and optical amyloid properties as determined by polarized light and electronic microscopy analysis. A remarkable inhibition of MSA was obtained with propidium iodide, suggesting that AChE triggers PrP 106-126 and A{beta} aggregation through a similar mechanism. Huprines (AChE inhibitors) also significantly decreased MSA induced by AChE as well, unveiling the potential interest for some AChE inhibitors as a novel class of potential anti-prion drugs.

  3. Acetylcholinesterase Inhibitory Activity of Pigment Echinochrome A from Sea Urchin Scaphechinus mirabilis

    PubMed Central

    Lee, Sung Ryul; Pronto, Julius Ryan D.; Sarankhuu, Bolor-Erdene; Ko, Kyung Soo; Rhee, Byoung Doo; Kim, Nari; Mishchenko, Natalia P.; Fedoreyev, Sergey A.; Stonik, Valentin A.; Han, Jin

    2014-01-01

    Echinochrome A (EchA) is a dark-red pigment of the polyhydroxynaphthoquinone class isolated from sea urchin Scaphechinus mirabilis. Acetylcholinesterase (AChE) inhibitors are used in the treatment of various neuromuscular disorders, and are considered as strong therapeutic agents for the treatment of Alzheimer’s disease (AD). Although EchA is clinically used to treat ophthalmic diseases and limit infarct formation during ischemia/reperfusion injury, anti-AChE effect of EchA is still unknown. In this study, we investigated the anti-AChE effect of EchA in vitro. EchA and its exhausted form which lost anti-oxidant capacity did not show any significant cytotoxicy on the H9c2 and A7r5 cells. EchA inhibited AChE with an irreversible and uncompetitive mode. In addition, EchA showed reactive oxygen species scavenging activity, particularly with nitric oxide. These findings indicate new therapeutic potential for EchA in treating reduced acetylcholine-related diseases including AD and provide an insight into developing new AChE inhibitors. PMID:24918454

  4. Bioactive Paper Sensor Based on the Acetylcholinesterase for the Rapid Detection of Organophosphate and Carbamate Pesticides

    PubMed Central

    Badawy, Mohamed E. I.; El-Aswad, Ahmed F.

    2014-01-01

    In many countries, people are becoming more concerned about pesticide residues which are present in or on food and feed products. For this reason, several methods have been developed to monitor the pesticide residue levels in food samples. In this study, a bioactive paper-based sensor was developed for detection of acetylcholinesterase (AChE) inhibitors including organophosphate and carbamate pesticides. Based on the Ellman colorimetric assay, the assay strip is composed of a paper support (1 × 10 cm), onto which a biopolymer chitosan gel immobilized in crosslinking by glutaraldehyde with AChE and 5,5′-dithiobis(2-nitrobenzoic) acid (DTNB) and uses acetylthiocholine iodide (ATChI) as an outside reagent. The assay protocol involves introducing the sample to sensing zone via dipping of a pesticide-containing solution. Following an incubation period, the paper is placed into ATChI solution to initiate enzyme catalyzed hydrolysis of the substrate, causing a yellow color change. The absence or decrease of the yellow color indicates the levels of the AChE inhibitors. The biosensor is able to detect organophosphate and carbamate pesticides with good detection limits (methomyl = 6.16 × 10−4 mM and profenofos = 0.27 mM) and rapid response times (~5 min). The results show that the paper-based biosensor is rapid, sensitive, inexpensive, portable, disposable, and easy-to-use. PMID:25484901

  5. Acetylcholinesterase in Biofouling Species: Characterization and Mode of Action of Cyanobacteria-Derived Antifouling Agents

    PubMed Central

    Almeida, Joana R.; Freitas, Micaela; Cruz, Susana; Leão, Pedro N.; Vasconcelos, Vitor; Cunha, Isabel

    2015-01-01

    Effective and ecofriendly antifouling (AF) compounds have been arising from naturally produced chemicals. The objective of this study is to use cyanobacteria-derived agents to investigate the role of acetylcholinesterase (AChE) activity as an effect and/or mode of action of promising AF compounds, since AChE inhibitors were found to inhibit invertebrate larval settlement. To pursue this objective, in vitro quantification of AChE activity under the effect of several cyanobacterial strain extracts as potential AF agents was performed along with in vivo AF (anti-settlement) screening tests. Pre-characterization of different cholinesterases (ChEs) forms present in selected tissues of important biofouling species was performed to confirm the predominance of AChE, and an in vitro AF test using pure AChE activity was developed. Eighteen cyanobacteria strains were tested as source of potential AF and AChE inhibitor agents. Results showed effectiveness in selecting promising eco-friendly AF agents, allowing the understanding of the AF biochemical mode of action induced by different compounds. This study also highlights the potential of cyanobacteria as source of AF agents towards invertebrate macrofouling species. PMID:26213967

  6. Ketamine protects acetylcholinesterase against inhibition by propoxur and phoxim.

    PubMed

    Koutsoviti-Papadopoulou, M; Kounenis, G; Elezoglou, V

    1994-01-01

    In the present study the effect of ketamine on the contractions caused by propoxur and phoxim on the isolated guinea pig ileum was investigated. Ketamine was found able to inhibit in a concentration-dependent manner the contractile responses of the ileum to propoxur and phoxim, while it did not significantly modify the contractions induced by acetylcholine. Propoxur and phoxim augmented the contractile responses induced by acetylcholine in the presence of acetylcholinesterase. This augmentation was prevented by ketamine, in a concentration-dependent manner. These findings suggest that ketamine inhibits the contractile effect of propoxur and phoxim on the guinea pig ileum and this inhibition seems to be associated with the protection of acetylcholinesterase against the action of these two compounds.

  7. Active Acetylcholinesterase Immobilization on a Functionalized Silicon Surface.

    PubMed

    Khaldi, K; Sam, S; Gouget-Laemmel, A C; Henry de Villeneuve, C; Moraillon, A; Ozanam, F; Yang, J; Kermad, A; Ghellai, N; Gabouze, N

    2015-08-01

    In this work, we studied the attachment of active acetylcholinesterase (AChE) enzyme on a silicon substrate as a potential biomarker for the detection of organophosphorous (OP) pesticides. A multistep functionalization strategy was developed on a crystalline silicon surface: a carboxylic acid-terminated monolayer was grafted onto a hydrogen-terminated silicon surface by photochemical hydrosilylation, and then AChE was covalently attached through amide bonds using an activation EDC/NHS process. Each step of the modification was quantitatively characterized by ex-situ Fourier transform infrared spectroscopy in attenuated-total-reflection geometry (ATR-FTIR) and atomic force microscopy (AFM). The kinetics of enzyme immobilization was investigated using in situ real-time infrared spectroscopy. The enzymatic activity of immobilized acetylcholinesterase enzymes was determined with a colorimetric test. The surface concentration of active AChE was estimated to be Γ = 1.72 × 10(10) cm(-2).

  8. Quantitative structure-activity relationships for organophosphates binding to acetylcholinesterase.

    PubMed

    Ruark, Christopher D; Hack, C Eric; Robinson, Peter J; Anderson, Paul E; Gearhart, Jeffery M

    2013-02-01

    Organophosphates are a group of pesticides and chemical warfare nerve agents that inhibit acetylcholinesterase, the enzyme responsible for hydrolysis of the excitatory neurotransmitter acetylcholine. Numerous structural variants exist for this chemical class, and data regarding their toxicity can be difficult to obtain in a timely fashion. At the same time, their use as pesticides and military weapons is widespread, which presents a major concern and challenge in evaluating human toxicity. To address this concern, a quantitative structure-activity relationship (QSAR) was developed to predict pentavalent organophosphate oxon human acetylcholinesterase bimolecular rate constants. A database of 278 three-dimensional structures and their bimolecular rates was developed from 15 peer-reviewed publications. A database of simplified molecular input line entry notations and their respective acetylcholinesterase bimolecular rate constants are listed in Supplementary Material, Table I. The database was quite diverse, spanning 7 log units of activity. In order to describe their structure, 675 molecular descriptors were calculated using AMPAC 8.0 and CODESSA 2.7.10. Orthogonal projection to latent structures regression, bootstrap leave-random-many-out cross-validation and y-randomization were used to develop an externally validated consensus QSAR model. The domain of applicability was assessed by the William's plot. Six external compounds were outside the warning leverage indicating potential model extrapolation. A number of compounds had residuals >2 or <-2, indicating potential outliers or activity cliffs. The results show that the HOMO-LUMO energy gap contributed most significantly to the binding affinity. A mean training R (2) of 0.80, a mean test set R (2) of 0.76 and a consensus external test set R (2) of 0.66 were achieved using the QSAR. The training and external test set RMSE values were found to be 0.76 and 0.88. The results suggest that this QSAR model can be used in

  9. Non-synaptic roles of acetylcholinesterase and agrin.

    PubMed

    Gros, Katarina; Parato, Giulia; Pirkmajer, Sergej; Mis, Katarina; Podbregar, Matej; Grubic, Zoran; Lorenzon, Paola; Mars, Tomaz

    2014-07-01

    Proteins in living organisms have names that are usually derived from their function in the biochemical system their discoverer was investigating. Typical examples are acetylcholinesterase and agrin; however, for both of these, various other functions that are not related to the cholinergic system have been revealed. Our investigations have been focused on the alternative roles of acetylcholinesterase and agrin in the processes of muscle development and regeneration. Previously, we described a role for agrin in the development of excitability in muscle contraction. In this study, we report the effects of agrin on secretion of interleukin 6 in developing human muscle. At the myoblast stage, agrin increases interleukin 6 secretion. This effect seems to be general as it was observed in all of the cell models analysed (human, mouse, cell lines). After fusion of myoblasts into myotubes, the effects of agrin are no longer evident, although agrin has further effects at the innervation stage, at least in in vitro innervated human muscle. These effects of agrin are another demonstration of its non-synaptic roles that are apparently developmental-stage specific. Our data support the view that acetylcholinesterase and agrin participate in various processes during development of skeletal muscle.

  10. Synergistic Increase of Serum BDNF in Alzheimer Patients Treated with Cerebrolysin and Donepezil: Association with Cognitive Improvement in ApoE4 Cases

    PubMed Central

    Alvarez, Irene; Iglesias, Olalla; Crespo, Ignacio; Figueroa, Jesus; Aleixandre, Manuel; Linares, Carlos; Granizo, Elias; Garcia-Fantini, Manuel; Marey, Jose; Masliah, Eliezer; Winter, Stefan; Muresanu, Dafin; Moessler, Herbert

    2016-01-01

    Background: Low circulating brain derived neurotrophic factor may promote cognitive deterioration, but the effects of neurotrophic and combination drug therapies on serum brain derived neurotrophic factor were not previously investigated in Alzheimer’s disease. Methods: We evaluated the effects of Cerebrolysin, donepezil, and the combined therapy on brain derived neurotrophic factor serum levels at week 16 (end of Cerebrolysin treatment) and week 28 (endpoint) in mild-to-moderate Alzheimer’s disease patients. Results: Cerebrolysin, but not donepezil, increased serum brain derived neurotrophic factor at week 16, while the combination therapy enhanced it at both week 16 and study endpoint. Brain derived neurotrophic factor responses were significantly higher in the combination therapy group than in donepezil and Cerebrolysin groups at week 16 and week 28, respectively. Brain derived neurotrophic factor increases were greater in apolipoprotein E epsilon-4 allele carriers, and higher brain derived neurotrophic factor levels were associated with better cognitive improvements in apolipoprotein E epsilon-4 allele patients treated with Cerebrolysin and the combined therapy. Conclusion: Our results indicate a synergistic action of Cerebrolysin and donepezil to increase serum brain derived neurotrophic factor and delaying cognitive decline, particularly in Alzheimer’s disease cases with apolipoprotein E epsilon-4 allele. PMID:27207906

  11. Drug induced parkinsonism caused by the concurrent use of donepezil and risperidone in a patient with traumatic brain injuries.

    PubMed

    Kang, Si Hyun; Kim, Don-Kyu

    2013-02-01

    A 69-year-old male patient with previous history of traumatic brain injury 5 months ago was admitted to the Department of Neuropsychiatry because of aggressive behavior and delusional features. After starting on 2 mg of risperidone per day, his delusion, anxiety, and aggressive behavior gradually improved. Two weeks later, he was given 10 mg of donepezil per day for his mild cognitive impairment. After 6 weeks of admission in the Department of Neuropsychiatry, he showed parkinsonian features including difficulty in walking, decreased arm swing during walking, narrowed step width, scooped posture, bradykinesia, tremor, and sleep disorder. To rule out the primary Parkinsonism, dopamine transporter imaging technique [18F]fluoropropyl-carbomethoxy-iodopropyl-nor-β-tropane positron emission tomography-computed tomography (18F]FP(IT PET-CT)) was performed, and dopamine transporter activity was not decreased. We considered that his parkinsonian features were associated with the combination of risperidone and donepezil. Both drugs were stopped and symptoms rapidly disappeared in several days. PMID:23526695

  12. Acetylcholinesterase-Inhibition and Antibacterial Activity of Mondia whitei Adventitious Roots and Ex vitro-Grown Somatic Embryogenic-Biomass

    PubMed Central

    Baskaran, Ponnusamy; Kumari, Aloka; Ncube, Bhekumthetho; Van Staden, Johannes

    2016-01-01

    Mondia whitei (Hook.f.) Skeels is an important endangered medicinal and commercial plant in South Africa. In vitro propagation systems are required for biomass production and bioactivity analysis to supplement wild resources/stocks. Adventitious roots from somatic embryogenic explants using suspension culture and ex vitro-grown plants produced via somatic embryogenesis were established using different plant growth regulator treatments. The adventitious root biomass and different parts of ex vitro-grown and mother plants were used to investigate the potential for acetylcholinesterase (AChE) and antibacterial activities. Adventitious roots derived from 2.5 μM indole-3-acetic acid (IAA) treatments and ex vitro-grown plants derived from meta-topolin riboside and IAA treatments gave the best AChE and antibacterial activities. The in vitro-established M. whitei and ex vitro biomass have comparable ability to function as inhibitors of acetylcholinesterase and antibacterial agents, and can be used as potent bioresources in traditional medicine. PMID:27752244

  13. Evaluation of aflatoxin B1--acetylcholinesterase dissociation kinetic using the amperometric biosensor technology: prospect for toxicity mechanism.

    PubMed

    Pohanka, Miroslav; Musilek, Kamil; Kuca, Kamil

    2010-03-01

    Aflatoxins are group of secondary metabolites from moulds. The main toxic effect of aflatoxins on body is based on metabolic activation on cytochrome P450 system. Recently, some studies appointed at anticholinergic properties of aflatoxins and inhibition of acetylcholinesterases (AChE) was described. Inhibition is reversible; however, some questions arose. Is the interaction firmly enough to prevent distribution of aflatoxins in body? Could be AChE considered as a scavenger of aflatoxins? Amperometric biosensor with immobilized acetylcholinesterase was used for evaluation of aflatoxin B1 (AFB1) - AChE complex spontaneous dissociation, where AFB1 acts as an inhibitor. Displacement of solution with substrate and AFB1 by the intact one enabled estimation of dissociation kinetics. The dissociation rate constant k(dis) was found 0.0047 +/- 0.0005 s(-1). The half time (t(1/2)) of complex dissociation was 146 s. The achieved data appoint at fact that AChE could allow to distribute aflatoxins in body instead acting as a scavenger. Analytical impact of study is discussed, too.

  14. Analysis of structure and specific functional groups involved in acetylcholinesterase catalysis and inhibition. Final report, 14 June 1991-13 September 1994

    SciTech Connect

    Taylor, P.

    1994-10-01

    The interactions of substrates, inhibitors and antibodies with Torpedo and mammalian acetylcholinesterases and butyrylcholinesterases have been studied by enzyme kinetic analyses, site-specific mutagenesis, molecular modeling, and peptide and antibody titrations. The high yield expression systems we developed have enabled us to obtain sufficient wild-type and mutant enzymes for the kinetic and physical studies. These studies have benefited from the availability of a three-dimensional X-ray-derived structure of acetylcholinesterase which allows for interpretations at an atomic level of resolution. Three distinct regions in the enzyme appear responsible for conferring selectivity: the acyl pocket defined primarily by phenylalanines 295 and 297, the choline subsite primarily defined by tryptophan 86, tyrosine 337 and glutamate 202 and the peripheral anionic site defined by tryptophan 286, tyrosine 72, tyrosine 124 and aspartate 74. Through site-specific mutagenesis we have been able to modify acyl pocket specificity, selectivity toward neutral and charged substrates, substrate inhibition, organophosphate reactivity, organophosphate aging and oxime reactivation. These studies have important implications in developing superior antidotes for organophosphate poisoning and in using recombinant acetylcholinesterase as an antidote.

  15. Molecular Characterization of Monoclonal Antibodies that Inhibit Acetylcholinesterase by Targeting the Peripheral Site and Backdoor Region

    PubMed Central

    Essono, Sosthène; Mondielli, Grégoire; Lamourette, Patricia; Boquet, Didier; Grassi, Jacques; Marchot, Pascale

    2013-01-01

    The inhibition properties and target sites of monoclonal antibodies (mAbs) Elec403, Elec408 and Elec410, generated against Electrophorus electricus acetylcholinesterase (AChE), have been defined previously using biochemical and mutagenesis approaches. Elec403 and Elec410, which bind competitively with each other and with the peptidic toxin inhibitor fasciculin, are directed toward distinctive albeit overlapping epitopes located at the AChE peripheral anionic site, which surrounds the entrance of the active site gorge. Elec408, which is not competitive with the other two mAbs nor fasciculin, targets a second epitope located in the backdoor region, distant from the gorge entrance. To characterize the molecular determinants dictating their binding site specificity, we cloned and sequenced the mAbs; generated antigen-binding fragments (Fab) retaining the parental inhibition properties; and explored their structure-function relationships using complementary x-ray crystallography, homology modeling and flexible docking approaches. Hypermutation of one Elec403 complementarity-determining region suggests occurrence of antigen-driven selection towards recognition of the AChE peripheral site. Comparative analysis of the 1.9Å-resolution structure of Fab408 and of theoretical models of its Fab403 and Fab410 congeners evidences distinctive surface topographies and anisotropic repartitions of charges, consistent with their respective target sites and inhibition properties. Finally, a validated, data-driven docking model of the Fab403-AChE complex suggests a mode of binding at the PAS that fully correlates with the functional data. This comprehensive study documents the molecular peculiarities of Fab403 and Fab410, as the largest peptidic inhibitors directed towards the peripheral site, and those of Fab408, as the first inhibitor directed toward the backdoor region of an AChE and a unique template for the design of new, specific modulators of AChE catalysis. PMID:24146971

  16. Acetylcholinesterase is associated with apoptosis in β cells and contributes to insulin-dependent diabetes mellitus pathogenesis.

    PubMed

    Zhang, Bao; Yang, Lei; Yu, Luyang; Lin, Bo; Hou, Yanan; Wu, Jun; Huang, Qin; Han, Yifan; Guo, Lihe; Ouyang, Qi; Zhang, Bo; Lu, Lu; Zhang, Xuejun

    2012-03-01

    Acetylcholinesterase (AChE) expression is pivotal during apoptosis. Indeed, AChE inhibitors partially protect cells from apoptosis. Insulin-dependent diabetes mellitus (IDDM) is characterized in part by pancreatic β-cell apoptosis. Here, we investigated the role of AChE in the development of IDDM and analyzed protective effects of AChE inhibitors. Multiple low-dose streptozotocin (MLD-STZ) administration resulted in IDDM in a mouse model. Western blot analysis, cytochemical staining, and immunofluorescence staining were used to detect AChE expression in MIN6 cells, primary β cells, and apoptotic pancreatic β cells of MLD-STZ-treated mice. AChE inhibitors were administered intraperitoneally to the MLD-STZ mice for 30 days. Blood glucose, plasma insulin, and creatine levels were measured, and glucose tolerance tests were performed. The effects of AChE inhibitors on MIN6 cells were also evaluated. AChE expression was induced in the apoptotic MIN6 cells and primary β cells in vitro and pancreatic islets in vivo when treated with STZ. Induction and progressive accumulation of AChE in the pancreatic islets were associated with apoptotic β cells during IDDM development. The administration of AChE inhibitors effectively decreased hyperglycemia and incidence of diabetes, and restored plasma insulin levels and plasma creatine clearance in the MLD-STZ mice. AChE inhibitors partially protected MIN6 cells from the damage caused by STZ treatment. Induction and accumulation of AChE in pancreatic islets and the protective effects of AChE inhibitors on the onset and development of IDDM indicate a close relationship between AChE and IDDM.

  17. Surface display and bioactivity of Bombyx mori acetylcholinesterase on Pichia pastoris

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To construct the Pichia pastoris (P. pastoris) cell surface display system of Bombyx mori acetylcholinesterase (BmAChE), the gene for the anchor protein (AGa1) was obtained from Saccharomyces cerevisiae and was fused with the modified Bombyx mori acetylcholinesterase gene (bmace) and transformed int...

  18. Functional idiotypic mimicry of an adhesion- and differentiation-promoting site on acetylcholinesterase.

    PubMed

    Johnson, Glynis; Moore, Samuel W

    2004-04-01

    Acetylcholinesterase mediates cell adhesion and neurite outgrowth through a site associated with the peripheral anionic site (PAS). Monoclonal antibodies raised to this site block cell adhesion. We have raised anti-idiotypic antibodies to one of these antibodies. The anti-idiotypic antibodies recognized the immunogenic antibody and non-specific mouse IgG, but not acetylcholinesterase. Five antibodies (out of 143 clones, an incidence of 3.5%) were able to promote neurite outgrowth in human neuroblastoma cells in vitro in a similar manner to acetylcholinesterase itself, suggesting that these antibodies carry an internal image of the neuritogenic site. Two of the antibodies were significantly more effective (P < 0.01) than acetylcholinesterase in this regard. The antibodies also bound specifically to mouse laminin-1 and human collagen IV, as does acetylcholinesterase. This binding was displaced by unlabelled antibody, as well as by acetylcholinesterase itself, indicating competition with acetylcholinesterase. We have also investigated the development of anti-anti-idiotypic antibodies in mice in vivo, and have observed that four of these (out of 318 clones, an incidence of 1.26%) mimic the idiotypic antibody and abrogate adhesion in neuroblastoma cells. We have thus demonstrated functional mimicry of the neuritogenic site on acetylcholinesterase in anti-idiotypic antibodies, enhancement of this activity in one antibody, and mimicry of the idiotypic antibody site in anti-anti-idiotypic antibodies. Implications of these findings for differentiation-promoting cancer therapy are discussed.

  19. Mechanism-Based Analysis of Acetylcholinesterase Inhibitory Potency of Organophosphates, Carbamates, and Their Analogs

    EPA Science Inventory

    Acetylcholinesterase (AChE) is a key enzyme in the nervous system of animals, terminating impulse transmission by rapid hydrolysis of the neurotransmitter acetylcholine. Organophosphate (OP) and carbamate esters can inhibit acetylcholinesterase (AChE) by binding covalently to a s...

  20. Induction of plasma acetylcholinesterase activity in mice challenged with organophosphorus poisons

    SciTech Connect

    Duysen, Ellen G.; Lockridge, Oksana

    2011-09-01

    The restoration of plasma acetylcholinesterase activity in mice following inhibition by organophosphorus pesticides and nerve agents has been attributed to synthesis of new enzyme. It is generally assumed that activity levels return to normal, are stable and do not exceed the normal level. We have observed over the past 10 years that recovery of acetylcholinesterase activity levels in mice treated with organophosphorus agents (OP) exceeds pretreatment levels and remains elevated for up to 2 months. The most dramatic case was in mice treated with tri-cresyl phosphate and tri-ortho-cresyl phosphate, where plasma acetylcholinesterase activity rebounded to a level 250% higher than the pretreatment activity. The present report summarizes our observations on plasma acetylcholinesterase activity in mice treated with chlorpyrifos, chlorpyrifos oxon, diazinon, tri-ortho-cresyl phosphate, tri-cresyl phosphate, tabun thiocholine, parathion, dichlorvos, and diisopropylfluorophosphate. We have developed a hypothesis to explain the excess acetylcholinesterase activity, based on published observations. We hypothesize that acetylcholinesterase activity is induced when cells undergo apoptosis and that consequently there is a rise in the level of plasma acetylcholinesterase. - Highlights: > Acetylcholinesterase activity is induced by organophosphorus agents. > AChE induction is related to apoptosis. > Induction of AChE activity by OP is independent of BChE.

  1. Acetylcholinesterase accelerates assembly of amyloid-beta-peptides into Alzheimer's fibrils: possible role of the peripheral site of the enzyme.

    PubMed

    Inestrosa, N C; Alvarez, A; Pérez, C A; Moreno, R D; Vicente, M; Linker, C; Casanueva, O I; Soto, C; Garrido, J

    1996-04-01

    Acetylcholinesterase (AChE), an important component of cholinergic synapses, colocalizes with amyloid-beta peptide (A beta) deposits of Alzheimer's brain. We report here that bovine brain AChE, as well as the human and mouse recombinant enzyme, accelerates amyloid formation from wild-type A beta and a mutant A beta peptide, which alone produces few amyloid-like fibrils. The action of AChE was independent of the subunit array of the enzyme, was not affected by edrophonium, an active site inhibitor, but it was affected by propidium, a peripheral anionic binding site ligand. Butyrylcholinesterase, an enzyme that lacks the peripheral site, did not affect amyloid formation. Furthermore, AChE is a potent amyloid-promoting factor when compared with other A beta-associated proteins. Thus, in addition to its role in cholinergic synapses, AChE may function by accelerating A beta formation and could play a role during amyloid deposition in Alzheimer's brain.

  2. Interaction of partially unfolded forms of Torpedo acetylcholinesterase with liposomes.

    PubMed Central

    Shin, I.; Silman, I.; Weiner, L. M.

    1996-01-01

    A water-soluble dimeric form of acetylcholinesterase from electric organ tissue of Torpedo californica was obtained by solubilization with phosphatidylinositol-specific phospholipase C of the glycophosphatidylinositol-anchored species, followed by purification by affinity chromatography. The water-soluble species, in its catalytically active native conformation, did not interact with unilamellar vesicles of dimyristoylphosphatidylcholine. We previously showed that either chemical modification or exposure to low concentrations of guanidine hydrochloride converted the native enzyme to compact, partially unfolded species with the physicochemical characteristics of the molten globule state. In the present study, it was shown that such molten globule species, whether produced by mild denaturation or by chemical modification, interacted efficiently with small unilamellar vesicles. Binding was not accompanied by significant vesicle fusion, but transient leakage occurred at the time of binding. The bound acetylcholinesterase reduced the transition temperature of the vesicles slightly, and NMR data suggested that it interacted primarily with the head-group region of the bilayer. The effects of tryptic digestion of the bound acetycholinesterase were monitored by gel electrophoresis under denaturing conditions. It was found that a single polypeptide, of mass approximately 5 kDa, remained associated with the vesicles. Sequencing revealed that this is a tryptic peptide corresponding to the sequence Glu 268-Lys 315. This polypeptide contains the longest hydrophobic sequence in the protein, Leu 274-Met 308, as identified on the basis of hydropathy plots. Inspection of the three-dimensional structure of acetylcholinesterase reveals that this hydrophobic sequence is largely devoid of tertiary structure and is localized primarily on the surface of the protein. It is suggested that this hydrophobic sequence is aligned parallel to the surface of the vesicle membrane, with nonpolar

  3. The Efficacy of Licensed-Indication Use of Donepezil and Memantine Monotherapies for Treating Behavioural and Psychological Symptoms of Dementia in Patients with Alzheimer's Disease: Systematic Review and Meta-Analysis

    PubMed Central

    Lockhart, I.A.; Orme, M.E.; Mitchell, S.A.

    2011-01-01

    Background/Aims Behavioural and psychological symptoms of dementia (BPSD) in Alzheimer's disease (AD) greatly increase caregiver burden. The abilities of donepezil and memantine to manage BPSD within their licensed indications in AD were compared. Methods A systematic review, random effects meta-analysis and Bucher indirect comparison were conducted. Results Six randomised controlled studies (4 donepezil and 2 memantine) reported use within the licensed indication and had Neuropsychiatric Inventory (NPI) data suitable for meta-analysis. BPSD showed significant improvement with donepezil compared with placebo [weighted mean difference (WMD) in NPI −3.51, 95% confidence interval (CI) −5.75, −1.27], whereas this was not the case for memantine (WMD −1.65, 95% CI −4.78, 1.49). WMD in NPI for donepezil versus memantine favoured donepezil but was not statistically significant (−1.86, 95% CI −5.71, 1.99; p = 0.34). Conclusion Within its licensed indication, donepezil is efficacious for the management of BPSD in AD compared with placebo. PMID:22163246

  4. Anti-Acetylcholinesterase Alkaloids from Annona glabra Leaf.

    PubMed

    Lee, Shoei-Sheng; Wu, Dong-Yi; Tsai, Sheng-Fa; Chen, Chien-Kuang

    2015-06-01

    Bioassay guided fractionation and separation of the EtOH extract of Annona glabra leaf against acetylcholinesterse led to the characterization of 15 alkaloids. Among them, (-)-actinodaphnine (2) and (-)-(6aS,7R)-7-hydroxyactinodaphnine (9) are new aporphines, although (+)-2 and (±)-2 have been found in several plants. Their structures were established by spectroscopic analysis. (-)-Anolobine (5) and (-)-roemeroline (8) showed moderate inhibitory activity against eel acetylcholinesterase with IC50 values of 22.4 and 26.3 μM, respectively.

  5. Acetylcholinesterase immobilization and characterization, and comparison of the activity of the porous silicon-immobilized enzyme with its free counterpart

    PubMed Central

    Saleem, Muhammad; Rafiq, Muhammad; Seo, Sung-Yum; Lee, Ki Hwan

    2016-01-01

    A successful prescription is presented for acetylcholinesterase physically adsorbed on to a mesoporous silicon surface, with a promising hydrolytic response towards acetylthiocholine iodide. The catalytic behaviour of the immobilized enzyme was assessed by spectrophotometric bioassay using neostigmine methyl sulfate as a standard acetycholinesterase inhibitor. The surface modification was studied through field emission SEM, Fourier transform IR spectroscopy, energy-dispersive X-ray spectroscopy, cathode luminescence and X-ray photoelectron spectroscopy analysis, photoluminescence measurement and spectrophotometric bioassay. The porous silicon-immobilized enzyme not only yielded greater enzyme stability, but also significantly improved the native photoluminescence at room temperature of the bare porous silicon architecture. The results indicated the promising catalytic behaviour of immobilized enzyme compared with that of its free counterpart, with a greater stability, and that it aided reusability and easy separation from the reaction mixture. The porous silicon-immobilized enzyme was found to retain 50% of its activity, promising thermal stability up to 90°C, reusability for up to three cycles, pH stability over a broad pH of 4–9 and a shelf-life of 44 days, with an optimal hydrolytic response towards acetylthiocholine iodide at variable drug concentrations. On the basis of these findings, it was believed that the porous silicon-immobilized enzyme could be exploited as a reusable biocatalyst and for screening of acetylcholinesterase inhibitors from crude plant extracts and synthesized organic compounds. Moreover, the immobilized enzyme could offer a great deal as a viable biocatalyst in bioprocessing for the chemical and pharmaceutical industries, and bioremediation to enhance productivity and robustness. PMID:26839417

  6. Acetylcholinesterase immobilization and characterization, and comparison of the activity of the porous silicon-immobilized enzyme with its free counterpart.

    PubMed

    Saleem, Muhammad; Rafiq, Muhammad; Seo, Sung-Yum; Lee, Ki Hwan

    2016-01-01

    A successful prescription is presented for acetylcholinesterase physically adsorbed on to a mesoporous silicon surface, with a promising hydrolytic response towards acetylthiocholine iodide. The catalytic behaviour of the immobilized enzyme was assessed by spectrophotometric bioassay using neostigmine methyl sulfate as a standard acetycholinesterase inhibitor. The surface modification was studied through field emission SEM, Fourier transform IR spectroscopy, energy-dispersive X-ray spectroscopy, cathode luminescence and X-ray photoelectron spectroscopy analysis, photoluminescence measurement and spectrophotometric bioassay. The porous silicon-immobilized enzyme not only yielded greater enzyme stability, but also significantly improved the native photoluminescence at room temperature of the bare porous silicon architecture. The results indicated the promising catalytic behaviour of immobilized enzyme compared with that of its free counterpart, with a greater stability, and that it aided reusability and easy separation from the reaction mixture. The porous silicon-immobilized enzyme was found to retain 50% of its activity, promising thermal stability up to 90°C, reusability for up to three cycles, pH stability over a broad pH of 4-9 and a shelf-life of 44 days, with an optimal hydrolytic response towards acetylthiocholine iodide at variable drug concentrations. On the basis of these findings, it was believed that the porous silicon-immobilized enzyme could be exploited as a reusable biocatalyst and for screening of acetylcholinesterase inhibitors from crude plant extracts and synthesized organic compounds. Moreover, the immobilized enzyme could offer a great deal as a viable biocatalyst in bioprocessing for the chemical and pharmaceutical industries, and bioremediation to enhance productivity and robustness. PMID:26839417

  7. Inhibition of erythrocyte acetylcholinesterase by n-butanol at high concentrations.

    PubMed

    Arsov, Zoran; Zorko, Matjaz; Schara, Milan

    2005-05-01

    Erythrocyte acetylcholinesterase (AChE) is bound to the membrane by a complex glycosylphosphatidylinositol anchor, so the effect of alcohol on AChE activity may reflect direct and/or membrane-mediated effects. The indication of a direct interaction between n-butanol and AChE molecules is the activation/inhibition of AChE by occupation of the enzyme's active and/or regulatory sites by alcohol. The activation of AChE can occur only at low concentrations of alcohols, while at high concentrations AChE is inhibited. In this work the mechanism of inhibition of erythrocyte AChE by n-butanol at high concentrations was studied. The values of activity, calculated assuming parabolic competitive inhibition, which implies that one or two molecules of inhibitor bind to the enzyme, fit well to the experimental values. From the values of the inhibition constants it was concluded that at high n-butanol concentrations two alcohol molecules usually interact with AChE. PMID:15820219

  8. Lesions of rat skeletal muscle after local block of acetylcholinesterase and neuromuscular stimulation.

    PubMed

    Mense, S; Simons, D G; Hoheisel, U; Quenzer, B

    2003-06-01

    In skeletal muscle, a local increase of acetylcholine (ACh) in a few end plates has been hypothesized to cause the formation of contraction knots that can be found in myofascial trigger points. To test this hypothesis in rats, small amounts of an acetylcholinesterase inhibitor [diisopropylfluorophosphate (DFP)] were injected into the proximal half of the gastrocnemius muscle, and the muscle nerve was electrically stimulated for 30-60 min for induction of muscle twitches. The distal half of the muscle, which performed the same contractions, served as a control to assess the effects of the twitches without DFP. Sections of the muscle were evaluated for morphological changes in relation to the location of blocked end plates. Compared with the distal half of the muscle, the DFP-injected proximal half exhibited significantly higher numbers of abnormally contracted fibers (local contractures), torn fibers, and longitudinal stripes. DFP-injected animals in which the muscle nerve was not stimulated and that were allowed to survive for 24 h exhibited the same lesions but in smaller numbers. The data indicate that an increased concentration of ACh in a few end plates causes damage to muscle fibers. The results support the assumption that a dysfunctional end plate exhibiting increased release of ACh may be the starting point for regional abnormal contractions, which are thought to be essential for the formation of myofascial trigger points.

  9. Chemical composition of the bark of Tetrapterys mucronata and identification of acetylcholinesterase inhibitory constituents.

    PubMed

    Queiroz, Marcos Marçal Ferreira; Queiroz, Emerson Ferreira; Zeraik, Maria Luiza; Ebrahimi, Samad Nejad; Marcourt, Laurence; Cuendet, Muriel; Castro-Gamboa, Ian; Hamburger, Matthias; da Silva Bolzani, Vanderlan; Wolfender, Jean-Luc

    2014-03-28

    The secondary metabolite content of Tetrapterys mucronata, a poorly studied plant that is used occasionally in Brazil for the preparation of a psychotropic plant decoction called "Ayahuasca", was determined to establish its chemical composition and to search for acetylcholinesterase (AChE) inhibitors. The ethanolic extract of the bark of T. mucronata exhibited in vitro AChE inhibition in a TLC bioautography assay. To localize the active compounds, biological profiling for AChE inhibition was performed using at-line HPLC-microfractionation in 96-well plates and subsequent AChE inhibition bioautography. The analytical HPLC-PDA conditions were transferred geometrically to a preparative medium-pressure liquid chromatography column using chromatographic calculations for the efficient isolation of the active compounds at the milligram scale. Twenty-two compounds were isolated, of which six are new natural products. The structures of the new compounds (9, 10, 16-18, and 20) were elucidated by spectroscopic data interpretation. Compounds 1, 5, 6, 9, and 10 inhibited AChE with IC50 values below 15 μM.

  10. Acetylcholinesterase inhibitory activity of Thai traditional nootropic remedy and its herbal ingredients.

    PubMed

    Tappayuthpijarn, Pimolvan; Itharat, Arunporn; Makchuchit, Sunita

    2011-12-01

    The incidence of Alzheimer disease (AD) is increasing every year in accordance with the increasing of elderly population and could pose significant health problems in the future. The use of medicinal plants as an alternative prevention or even for a possible treatment of the AD is, therefore, becoming an interesting research issue. Acetylcholinesterase (AChE) inhibitors are well-known drugs commonly used in the treatment of AD. The aim of the present study was to screen for AChE inhibitory activity of the Thai traditional nootropic recipe and its herbal ingredients. The results showed that ethanolic extracts of four out of twenty-five herbs i.e. Stephania pierrei Diels. Kaempfera parviflora Wall. ex Baker, Stephania venosa (Blume) Spreng, Piper nigrum L at 0.1 mg/mL showed % AChE inhibition of 89, 64, 59, 50; the IC50 were 6, 21, 29, 30 microg/mL respectively. The other herbs as well as combination of the whole recipe had no synergistic inhibitory effect on AChE activity. However some plants revealed antioxidant activity. More research should have be performed on this local wisdom remedy to verify the uses in scientific term. PMID:22619927

  11. Coextracted dissolved organic carbon has a suppressive effect on the acetylcholinesterase inhibition assay.

    PubMed

    Neale, Peta A; Escher, Beate I

    2013-07-01

    The acetylcholinesterase (AChE) inhibition assay is frequently applied to detect organophosphates and carbamate pesticides in different water types, including dissolved organic carbon (DOC)-rich wastewater and surface water. The aim of the present study was to quantify the effect of coextracted DOC from different water samples on the commonly used enzyme-based AChE inhibition assay. Approximately 40% to 70% of DOC is typically recovered by solid-phase extraction, and this comprises not only organic micropollutants but also natural organic matter. The inhibition of the water extracts in the assay differed greatly from the expected mixture effects based on chemical analysis of organophosphates and carbamates. Binary mixture experiments with the known AChE inhibitor parathion and the water extracts showed reduced toxicity in comparison with predictions using the mixture models of concentration addition and independent action. In addition, the extracts and reference organic matter had a suppressive effect on a constant concentration of parathion. The present study thus indicated that concentrations of DOC as low as 2 mg carbon/L can impair the AChE inhibition assay and, consequently, that only samples with a final DOC concentration of less than 2 mgC /L are suitable for this assay. To check for potential suppression in environmental samples, standard addition experiments using an AChE-inhibiting reference compound are recommended. PMID:23424099

  12. Identification and characterization of mutations in housefly (Musca domestica) acetylcholinesterase involved in insecticide resistance.

    PubMed

    Walsh, S B; Dolden, T A; Moores, G D; Kristensen, M; Lewis, T; Devonshire, A L; Williamson, M S

    2001-10-01

    Acetylcholinesterase (AChE) insensitive to organophosphate and carbamate insecticides has been identified as a major resistance mechanism in numerous arthropod species. However, the associated genetic changes have been reported in the AChE genes from only three insect species; their role in conferring insecticide insensitivity has been confirmed, using functional expression, only for those in Drosophila melanogaster. The housefly, Musca domestica, was one of the first insects shown to have this mechanism; here we report the occurrence of five mutations (Val-180-->Leu, Gly-262-->Ala, Gly-262-->Val, Phe-327-->Tyr and Gly-365-->Ala) in the AChE gene of this species that, either singly or in combination, confer different spectra of insecticide resistance. The baculovirus expression of wild-type and mutated housefly AChE proteins has confirmed that the mutations each confer relatively modest levels of insecticide insensitivity except the novel Gly-262-->Val mutation, which results in much stronger resistance (up to 100-fold) to certain compounds. In all cases the effects of mutation combinations are additive. The mutations introduce amino acid substitutions that are larger than the corresponding wild-type residues and are located within the active site of the enzyme, close to the catalytic triad. The likely influence of these substitutions on the accessibility of the different types of inhibitor and the orientation of key catalytic residues are discussed in the light of the three-dimensional structures of the AChE protein from Torpedo californica and D. melanogaster. PMID:11563981

  13. Acetylcholinesterase inhibitory, antioxidant and phytochemical properties of selected medicinal plants of the Lamiaceae family.

    PubMed

    Vladimir-Knežević, Sanda; Blažeković, Biljana; Kindl, Marija; Vladić, Jelena; Lower-Nedza, Agnieszka D; Brantner, Adelheid H

    2014-01-09

    The present study aimed to evaluate acetylcholinesterase (AChE) inhibitory and antioxidant activities of Lamiaceae medicinal plants growing wild in Croatia. Using Ellman's colorimetric assay all tested ethanolic extracts and their hydroxycinnamic acid constituents demonstrated in vitro AChE inhibitory properties in a dose dependent manner. The extracts of Mentha x piperita, M. longifolia, Salvia officinalis, Satureja montana, Teucrium arduini, T. chamaedrys, T. montanum, T. polium and Thymus vulgaris at 1 mg/mL showed strong inhibitory activity against AChE. The antioxidant potential of the investigated Lamiaceae species was assessed by DPPH• scavenging activity and total antioxidant capacity assays, in comparison with hydroxycinnamic acids and trolox. The extracts differed greatly in their total hydroxycinnamic derivatives content, determined spectrophotometrically. Rosmarinic acid was found to be the predominant constituent in most of the investigated medicinal plants (by RP-HPLC) and had a substantial influence on their AChE inhibitory and antioxidant properties, with the exception of Teucrium species. These findings indicate that Lamiaceae species are a rich source of various natural AChE inhibitors and antioxidants that could be useful in the prevention and treatment of Alzheimer's and other related diseases.

  14. An Acetylcholinesterase-Based Chronoamperometric Biosensor for Fast and Reliable Assay of Nerve Agents

    PubMed Central

    Pohanka, Miroslav; Adam, Vojtech; Kizek, Rene

    2013-01-01

    The enzyme acetylcholinesterase (AChE) is an important part of cholinergic nervous system, where it stops neurotransmission by hydrolysis of the neurotransmitter acetylcholine. It is sensitive to inhibition by organophosphate and carbamate insecticides, some Alzheimer disease drugs, secondary metabolites such as aflatoxins and nerve agents used in chemical warfare. When immobilized on a sensor (physico-chemical transducer), it can be used for assay of these inhibitors. In the experiments described herein, an AChE- based electrochemical biosensor using screen printed electrode systems was prepared. The biosensor was used for assay of nerve agents such as sarin, soman, tabun and VX. The limits of detection achieved in a measuring protocol lasting ten minutes were 7.41 × 10−12 mol/L for sarin, 6.31 × 10−12 mol/L for soman, 6.17 × 10−11 mol/L for tabun, and 2.19 × 10−11 mol/L for VX, respectively. The assay was reliable, with minor interferences caused by the organic solvents ethanol, methanol, isopropanol and acetonitrile. Isopropanol was chosen as suitable medium for processing lipophilic samples. PMID:23999806

  15. Overexpression of acetylcholinesterase gene in rice results in enhancement of shoot gravitropism.

    PubMed

    Yamamoto, Kosuke; Shida, Satoshi; Honda, Yoshihiro; Shono, Mariko; Miyake, Hiroshi; Oguri, Suguru; Sakamoto, Hikaru; Momonoki, Yoshie S

    2015-09-25

    Acetylcholine (ACh), a known neurotransmitter in animals and acetylcholinesterase (AChE) exists widely in plants, although its role in plant signal transduction is unclear. We previously reported AChE in Zea mays L. might be related to gravitropism based on pharmacological study using an AChE inhibitor. Here we clearly demonstrate plant AChE play an important role as a positive regulator in the gravity response of plants based on a genetic study. First, the gene encoding a second component of the ACh-mediated signal transduction system, AChE was cloned from rice, Oryza sativa L. ssp. Japonica cv. Nipponbare. The rice AChE shared high homology with maize, siratro and Salicornia AChEs. Similar to animal and other plant AChEs, the rice AChE hydrolyzed acetylthiocholine and propionylthiocholine, but not butyrylthiocholine. Thus, the rice AChE might be characterized as an AChE (E.C.3.1.1.7). Similar to maize and siratro AChEs, the rice AChE exhibited low sensitivity to the AChE inhibitor, neostigmine bromide, compared with the electric eel AChE. Next, the functionality of rice AChE was proved by overexpression in rice plants. The rice AChE was localized in extracellular spaces of rice plants. Further, the rice AChE mRNA and its activity were mainly detected during early developmental stages (2 d-10 d after sowing). Finally, by comparing AChE up-regulated plants with wild-type, we found that AChE overexpression causes an enhanced gravitropic response. This result clearly suggests that the function of the rice AChE relate to positive regulation of gravitropic response in rice seedlings. PMID:26277389

  16. Inhibition of acetylcholinesterase by two genistein derivatives: kinetic analysis, molecular docking and molecular dynamics simulation.

    PubMed

    Fang, Jiansong; Wu, Ping; Yang, Ranyao; Gao, Li; Li, Chao; Wang, Dongmei; Wu, Song; Liu, Ai-Lin; Du, Guan-Hua

    2014-12-01

    In this study two genistein derivatives (G1 and G2) are reported as inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), and differences in the inhibition of AChE are described. Although they differ in structure by a single methyl group, the inhibitory effect of G1 (IC50=264 nmol/L) on AChE was 80 times stronger than that of G2 (IC50=21,210 nmol/L). Enzyme-kinetic analysis, molecular docking and molecular dynamics (MD) simulations were conducted to better understand the molecular basis for this difference. The results obtained by kinetic analysis demonstrated that G1 can interact with both the catalytic active site and peripheral anionic site of AChE. The predicted binding free energies of two complexes calculated by the molecular mechanics/generalized born surface area (MM/GBSA) method were consistent with the experimental data. The analysis of the individual energy terms suggested that a difference between the net electrostatic contributions (ΔE ele+ΔG GB) was responsible for the binding affinities of these two inhibitors. Additionally, analysis of the molecular mechanics and MM/GBSA free energy decomposition revealed that the difference between G1 and G2 originated from interactions with Tyr124, Glu292, Val294 and Phe338 of AChE. In conclusion, the results reveal significant differences at the molecular level in the mechanism of inhibition of AChE by these structurally related compounds. PMID:26579414

  17. Acetylcholinesterases from the Disease Vectors Aedes aegypti and Anopheles gambiae: Functional Characterization and Comparisons with Vertebrate Orthologues

    PubMed Central

    Engdahl, Cecilia; Knutsson, Sofie; Fredriksson, Sten-Åke; Linusson, Anna; Bucht, Göran; Ekström, Fredrik

    2015-01-01

    Mosquitoes of the Anopheles (An.) and Aedes (Ae.) genus are principal vectors of human diseases including malaria, dengue and yellow fever. Insecticide-based vector control is an established and important way of preventing transmission of such infections. Currently used insecticides can efficiently control mosquito populations, but there are growing concerns about emerging resistance, off-target toxicity and their ability to alter ecosystems. A potential target for the development of insecticides with reduced off-target toxicity is the cholinergic enzyme acetylcholinesterase (AChE). Herein, we report cloning, baculoviral expression and functional characterization of the wild-type AChE genes (ace-1) from An. gambiae and Ae. aegypti, including a naturally occurring insecticide-resistant (G119S) mutant of An. gambiae. Using enzymatic digestion and liquid chromatography-tandem mass spectrometry we found that the secreted proteins were post-translationally modified. The Michaelis-Menten constants and turnover numbers of the mosquito enzymes were lower than those of the orthologous AChEs from Mus musculus and Homo sapiens. We also found that the G119S substitution reduced the turnover rate of substrates and the potency of selected covalent inhibitors. Furthermore, non-covalent inhibitors were less sensitive to the G119S substitution and differentiate the mosquito enzymes from corresponding vertebrate enzymes. Our findings indicate that it may be possible to develop selective non-covalent inhibitors that effectively target both the wild-type and insecticide resistant mutants of mosquito AChE. PMID:26447952

  18. Acetylcholinesterases from the Disease Vectors Aedes aegypti and Anopheles gambiae: Functional Characterization and Comparisons with Vertebrate Orthologues.

    PubMed

    Engdahl, Cecilia; Knutsson, Sofie; Fredriksson, Sten-Åke; Linusson, Anna; Bucht, Göran; Ekström, Fredrik

    2015-01-01

    Mosquitoes of the Anopheles (An.) and Aedes (Ae.) genus are principal vectors of human diseases including malaria, dengue and yellow fever. Insecticide-based vector control is an established and important way of preventing transmission of such infections. Currently used insecticides can efficiently control mosquito populations, but there are growing concerns about emerging resistance, off-target toxicity and their ability to alter ecosystems. A potential target for the development of insecticides with reduced off-target toxicity is the cholinergic enzyme acetylcholinesterase (AChE). Herein, we report cloning, baculoviral expression and functional characterization of the wild-type AChE genes (ace-1) from An. gambiae and Ae. aegypti, including a naturally occurring insecticide-resistant (G119S) mutant of An. gambiae. Using enzymatic digestion and liquid chromatography-tandem mass spectrometry we found that the secreted proteins were post-translationally modified. The Michaelis-Menten constants and turnover numbers of the mosquito enzymes were lower than those of the orthologous AChEs from Mus musculus and Homo sapiens. We also found that the G119S substitution reduced the turnover rate of substrates and the potency of selected covalent inhibitors. Furthermore, non-covalent inhibitors were less sensitive to the G119S substitution and differentiate the mosquito enzymes from corresponding vertebrate enzymes. Our findings indicate that it may be possible to develop selective non-covalent inhibitors that effectively target both the wild-type and insecticide resistant mutants of mosquito AChE. PMID:26447952

  19. Preparation and performance of a colorimetric biosensor using acetylcholinesterase and indoxylacetate for assay of nerve agents and drugs

    PubMed Central

    Vlcek, Vitezslav

    2014-01-01

    Different toxic compounds can target the cholinergic nervous system. Acetylcholinesterase (AChE; EC 3.1.1.7) is one of the most crucial components of the cholinergic nervous system and thus many of the toxins interact with this enzyme. As to inhibitors, nerve agents used as chemical warfare, some insecticides, and drugs influencing the cholinergic system are common examples of AChE inhibitors. Once inhibited by a neurotoxic compound, a serious cholinergic crisis can occur. On the other hand, sensitivity of AChE to the inhibition can be used for analytical purposes. In this study, a simple disposable biosensor with AChE as a recognition element was devised. AChE was immobilized onto a cellulose matrix and indoxylacetate was used as a chromogenic substrate. The enzyme reaction was assessed by the naked eye using arbitrary units and pyridostigmine, tacrine, paraoxon, carbofuran, soman and VX were assayed as selected inhibitors. A good stability of the biosensors was found, with no aging over a quarter of a year and minimal sensitivity to the interference of organic solvents. The limit of detection ranged from 10 to 100 nmol/L for the compounds tested with a sample volume of 40 µL. PMID:26109903

  20. Interactions in vitro of some organophosphoramidates with neuropathy target esterase and acetylcholinesterase of hen brain.

    PubMed

    Jokanovic, M; Johnson, M K

    1993-03-01

    For organophosphates or phosphonates to initiate delayed neuropathy two steps are necessary: (1) progressive covalent reaction with neuropathy target esterase (NTE) to produce a form of inhibited NTE which can be reactivated by incubation with aqueous potassium fluoride (KF) and (2) progressive "aging" of inhibited NTE to a form which can no longer be reactivated by KF. However, it has been shown recently that certain N-unsubstituted organophosphoro-monoamidates (analogues of methamidophos) cause delayed neuropathy even though the inhibited NTE appeared not to have aged (Johnson et al. (1991). Arch. Toxicol., 65, 618-624). In order to study the generality of this phenomenon, we have examined some N-substituted compounds. We report in vitro studies of inhibition and reactivation and aging of both NTE and acetylcholinesterase (AChE) prior to toxicological tests. All the compounds studied were less inhibitory to both NTE and AChE in concentrated rather than in dilute suspensions of EDTA-washed brain particles without added cofactors. There was an apparent disposal of up to 100 mumoles of test compound by particles from 95 mg hen brain, which is far greater than can be explained by covalent binding. The activity is distinct from calcium-dependent "A" esterase. Several N-alkyl phosphoromonoamidates were found to be potent and selective inhibitors of NTE: second-order rate constant for O-n-pentyl N-benzylphosphoramido-fluoridate (Cmpd 6) = 5.6 x 10(7) M-1 min-1 at 37 degrees, which is about 100x higher than for acetylcholinesterase (AChE). Inhibited NTE and AChE from several chiral phosphoromono-amidates did not reactivate spontaneously (21 hours at 37 degrees). Virtually 100% reactivation by KF of AChE inhibited by phosphoromonoamidates was achieved at all times tested. Acetylcholinesterase inhibited by 2,5-dichlorophenyl N,N'-di-n-butylphosphorodiamidate was 42-56% reactivated by incubation with KF (192 mM in pH 5.2 buffer for 30 minutes at 37 degrees). We believe this

  1. Selective Ability of Some CANTAB Battery Test Measures to Detect Cognitive Response to a Single Dose of Donepezil in Alzheimer Disease

    PubMed Central

    Kuzmickienė, Jurgita; Kaubrys, Gintaras

    2015-01-01

    Background The Cambridge Neuropsychological Test Automated Battery (CANTAB) was used to explore which tests and their measures are able to detect cognitive change after a single dose of donepezil in Alzheimer disease (AD) patients. The aim of this study was to establish the ability of CANTAB tests and their measures to detect cognitive change after a single 5-mg dose of donepezil in treatment-naïve AD patients. Material/Methods We enrolled 62 treatment-naïve AD patients and 30 healthy controls in this prospective, randomized, rater-blinded study. AD patients were randomized to 2 groups: the AD+ group received donepezil after the first CANTAB testing and the AD− group remained treatment-naïve at second testing. The time period between repeated testing was 4 hours. Parallel versions of CRT, SOC, PAL, SWM, and PRM tests were used. Results All groups did not differ according to age, education, gender, or depression (p>0.05). AD+ and AD− groups did not differ according to MMSE. SOC, PAL, PRM, and SWM tests distinguished AD from controls. Eight measures of PAL and PRM had a strong correlation with MMSE (r>0.7). Repeated-measures ANOVA with Bonferroni post-hoc test showed the difference of change in AD+ and AD− groups between first and second CANTAB testing in 7 PAL measures. AD+ and AD− groups differed in the second testing by 7 PAL measures. Four PAL measures differed in first and second testing within the AD+ group. Conclusions The CANTAB PAL test measures, able to detect cognitive change after a single dose of donepezil in AD patients, are: PAL mean trials to success, total errors (adjusted), total errors (6 shapes, adjusted), and total trials (adjusted). PMID:26336931

  2. X-ray structure of a transition state analog complex reveals the molecular origins of the catalytic power and substrate specificity of acetylcholinesterase

    SciTech Connect

    Harel, M.; Silman, I.; Quinn, D.M.; Nair, H.K.; Sussman, J.L. |

    1996-03-13

    The structure of a complex of Torpedo californica acetylcholinesterase with the transition state analog inhibitor m-(N, N,N-trimethylammonio)-2,2,2-trifluoroacetophenone has been solved by X-ray crystallographic methods to 2.8 A resolution. Since the inhibitor binds to the enzyme about 10{sup 10}-fold more tightly than the substrate acetylcholine, this complex provides a visual accounting of the enzyme-ligand interactions that provide the molecular basis for the catalytic power of acetylcholinesterase. The acetyl ester hydrolytic specificity of the enzyme is revealed by the interaction of the CF{sub 3} function of the transition state analog with a concave binding site comprised of the residues G119, W233, F288, F290, and F331. The highly geometrically convergent array of enzyme-ligand interactions visualized in the complex described herein envelopes the acylation transition state and sequesters it from solvent, this being consistent with the location of the active site at the bottom of a deep and narrow gorge. 82 refs., 5 figs.

  3. Control levels of acetylcholinesterase expression in the mammalian skeletal muscle.

    PubMed

    Grubic, Z; Zajc-Kreft, K; Brank, M; Mars, T; Komel, R; Miranda, A F

    1999-05-14

    Protein expression can be controled at different levels. Understanding acetylcholinesterase (EC. 3.1.1.7, AChE) expression in the living organisms therefore necessitates: (1) determination and mapping of control levels of AChE metabolism; (2) identification of the regulatory factors acting at these levels; and (3) detailed insight into the mechanisms of action of these factors. Here we summarize the results of our studies on the regulation of AChE expression in the mammalian skeletal muscle. Three experimental models were employed: in vitro innervated human muscle, mechanically denervated adult fast rat muscle, and the glucocorticoid treated fast rat muscle. In situ hybridization of AChE mRNA, combined with AChE histochemistry, revealed that different distribution patterns of AChE, observed during in vitro ontogenesis and synaptogenesis of human skeletal muscle, reflect alterations in the distribution of AChE mRNA (Z. Grubic, R. Komel, W.F. Walker, A.F. Miranda, Myoblast fusion and innervation with rat motor nerve alter the distribution of acetylcholinesterase and its mRNA in human muscle cultures, Neuron 14 (1995) 317-327). To study the mechanisms of AChE mRNA loss in denervated adult rat skeletal muscle, we exposed deproteinated AChE mRNA to various subcellular fractions in vitro. Fractions were isolated from the normal and denervated rat sternomastoideus muscle. We found significantly increased, but non-specific AChE mRNA degradation capacities in the three fractions studied, suggesting that increased susceptibility of muscle mRNA to degradation might be at least partly responsible for the decreased AChE mRNA observed under such conditions (K. Zajc-Kreft, S. Kreft, Z. Grubic, Degradation of AChE mRNA in the normal and denervated rat skeletal muscle, Book of Abstracts, The Sixth International Meeting on Cholinesterases, La Jolla, CA, March 20-24, 1998, p. A3.). In adult fast rat muscle, treated chronically with glucocorticoids, we found the fraction of early

  4. Cyperus rotundus extract inhibits acetylcholinesterase activity from animal and plants as well as inhibits germination and seedling growth in wheat and tomato.

    PubMed

    Sharma, Rashmi; Gupta, Rajendra

    2007-05-30

    Cyperus rotundus (nutgrass) is the world's worst invasive weed through tubers. Its success in dominating natural habitats depends on its ability to prevent herbivory, and to kill or suppress other plants growing in its vicinity. The present study was done to investigate whether chemicals in nutgrass target neuronal and non-neuronal acetylcholinesterases to affect surrounding animals and plants respectively. Methanolic extract of tubers of nutgrass strongly inhibited activity of AChE from electric eel, wheat and tomato. It also inhibited seed germination and seedling growth in wheat and tomato. Our results suggest that inhibitor of AChE in nutgrass possibly acts as agent of plant's war against (a) herbivore animals, and (b) other plants trying to grow in the same habitat. An antiAChE from nutgrass has been purified by employing chromatography and crystallization. The structural determination of the purified inhibitor is in progress.

  5. Morphogenic role for acetylcholinesterase in axonal outgrowth during neural development.

    PubMed Central

    Bigbee, J W; Sharma, K V; Gupta, J J; Dupree, J L

    1999-01-01

    Acetylcholinesterase (AChE) is the enzyme that hydrolyzes the neurotransmitter acetylcholine at cholinergic synapses and neuromuscular junctions. However, results from our laboratory and others indicate that AChE has an extrasynaptic, noncholinergic role during neural development. This article is a review of our findings demonstrating the morphogenic role of AChE, using a neuronal cell culture model. We also discuss how these data suggest that AChE has a cell adhesive function during neural development. These results could have additional significance as AChE is the target enzyme of agricultural organophosphate and carbamate pesticides as well as the commonly used household organophosphate chlorpyrifos (Dursban). Prenatal exposure to these agents could have adverse effects on neural development by interfering with the morphogenic function of AChE. Images Figure 1 Figure 2 Figure 4 Figure 5 Figure 6 Figure 7 PMID:10229710

  6. Measurement of acetylcholinesterase in erythrocytes in the field.

    PubMed

    Magnotti, R A; Eberly, J P; Quarm, D E; McConnell, R S

    1987-10-01

    We describe here a field method we developed for colorimetry of erythrocytic acetylcholinesterase (EC 3.1.1.7) in capillary blood samples. Three stable, premixed assay reagents and de-ionized water (but no centrifuge or balance) are required. This method, adapted for a microplate format, is essentially that of Ellman et al. (Biochem Pharmacol 1961;7:88-95) as modified by George and Abernethy (Clin Chem 1983;29:365-8). Assays were quantified and corrected for hematocrit by using a battery-powered colorimeter with a silicon carbide (blue) light-emitting-diode source. Advantages over existing field methods include better portability, ruggedness, greater precision, and lower cost per sample. PMID:3665026

  7. Copper, aluminum, iron and calcium inhibit human acetylcholinesterase in vitro.

    PubMed

    Pohanka, Miroslav

    2014-01-01

    Acetylcholinesterase (AChE) is an important part of cholinergic nerves where it participates in termination of neurotransmission. AChE can be inhibited by e.g. some Alzheimer disease drugs, nerve agents, and secondary metabolites. In this work, metal salts aluminum chloride, calcium chloride, cupric chloride, ferric chloride, potassium chloride, magnesium chloride and sodium chloride were tested for their ability to inhibit AChE. Standard Ellman assay based on human recombinant AChE was done and inhibition was measured using Dixon plot. No inhibition was proved for sodium, potassium and magnesium ions. However, aluminum, cupric, ferric and calcium ions were able to inhibit AChE via noncompetitive mechanism of inhibition. Though the inhibition is much weaker when compared to e.g. drugs with noncompetitive mechanism of action, biological relevance of the findings can be anticipated. PMID:24473150

  8. Screening of selected Indian medicinal plants for acetylcholinesterase inhibitory activity.

    PubMed

    Vinutha, B; Prashanth, D; Salma, K; Sreeja, S L; Pratiti, D; Padmaja, R; Radhika, S; Amit, A; Venkateshwarlu, K; Deepak, M

    2007-01-19

    Seventy-six plant extracts including methanolic and successive water extracts from 37 Indian medicinal plants were investigated for acetylcholinesterase (AChE) inhibitory activity (in vitro). Results indicated that methanolic extracts to be more active than water extracts. The potent AChE inhibiting methanolic plant extracts included Withania somnifera (root), Semecarpus anacardium (stem bark), Embelia ribes (Root), Tinospora cordifolia (stem), Ficus religiosa (stem bark) and Nardostachys jatamansi (rhizome). The IC(50) values obtained for these extracts were 33.38, 16.74, 23.04, 38.36, 73.69 and 47.21mug/ml, respectively. These results partly substantiate the traditional use of these herbs for improvement of cognition. PMID:16950584

  9. Effect of fluorocarbons on acetylcholinesterase activity and some counter measures

    NASA Technical Reports Server (NTRS)

    Young, W.; Parker, J. A.

    1975-01-01

    An isolated vagal sympathetic heart system has been successfully used for the study of the effect of fluorocarbons (FCs) on cardiac performance and in situ enzyme activity. Dichlorodifluoromethane sensitizes this preparation to sympathetic stimulation and to exogenous epinephrine challenge. Partial and complete A-V block and even cardiac arrest have been induced by epinephrine challenge in the FC sensitized heart. Potassium chloride alone restores the rhythmicity but not the normal contractility of the heart in such a situation. Addition of glucose will, however, completely restore the normal function of the heart which is sensitized by dichlorodifluoromethane. The ED 50 values of acetylcholinesterase activity which are used as a measure of relative effectiveness of fluorocarbons are compared with the maximum permissible concentration. Kinetic studies indicate that all the fluorocarbons tested so far are noncompetitive.

  10. Quantitative studies on acetylcholinesterase in seven species of digenetic trematodes.

    PubMed

    Nizami, W A; Siddiqi, A H; Islam, M W

    1977-07-29

    Quantitative estimation of absolute levels and in vitro release of acetylcholinesterase (AChE) in seven species of digenetic trematodes: Isoparorchis hypselobagri from the swim bladder of catfish, Wallago attu; Srivastavaia indica and Gastrothylax crumenifer from the rumen, and Gigantocotyle explanatum from the liver of the water buffalo, Bubalus bubalis; Fasciolopsis buski, Echinostoma malayanum from the small intestine and Gastrodiscoides hominis from the caecum of the pig, Sus scrofa revealed that the enzyme is present in remarkably high quantities in species which inhibit gastrointestinal tract compared with those that parasitize liver and swim bladder. The rate of in vitro release of AChE also varies with the species which supports the view that such differential secretion probably takes place in situ as well to counteract peristalsis and it is a biochemical adaptation on the part of these trematodes.

  11. Preclinical and first-in-human evaluation of PRX-105, a PEGylated, plant-derived, recombinant human acetylcholinesterase-R

    SciTech Connect

    Atsmon, Jacob; Brill-Almon, Einat; Nadri-Shay, Carmit; Chertkoff, Raul; Alon, Sari; Shaikevich, Dimitri; Volokhov, Inna; Haim, Kirsten Y.; Bartfeld, Daniel; Shulman, Avidor; Ruderfer, Ilya; Ben-Moshe, Tehila; Shilovitzky, Orit; Soreq, Hermona; Shaaltiel, Yoseph

    2015-09-15

    PRX-105 is a plant-derived recombinant version of the human ‘read-through’ acetylcholinesterase splice variant (AChE-R). Its active site structure is similar to that of the synaptic variant, and it displays the same affinity towards organophosphorus (OP) compounds. As such, PRX-105 may serve as a bio-scavenger for OP pesticides and chemical warfare agents. To assess its potential use in prophylaxis and treatment of OP poisoning we conducted several preliminary tests, reported in this paper. Intravenous (IV) PRX-105 was administered to mice either before or after exposure to an OP toxin. All mice who received an IV dose of 50 nmol/kg PRX-105, 2 min before being exposed to 1.33 × LD{sub 50} and 1.5 × LD{sub 50} of toxin and 10 min after exposure to 1.5 × LD{sub 50} survived. The pharmacokinetic and toxicity profiles of PRX-105 were evaluated in mice and mini-pigs. Following single and multiple IV doses (50 to 200 mg/kg) no deaths occurred and no significant laboratory and histopathological changes were observed. The overall elimination half-life (t{sub ½}) in mice was 994 (± 173) min. Additionally, a first-in-human study, to assess the safety, tolerability and pharmacokinetics of the compound, was conducted in healthy volunteers. The t{sub ½} in humans was substantially longer than in mice (average 26.7 h). Despite the small number of animals and human subjects who were assessed, the fact that PRX-105 exerts a protective and therapeutic effect following exposure to lethal doses of OP, its favorable safety profile and its relatively long half-life, renders it a promising candidate for treatment and prophylaxis against OP poisoning and warrants further investigation. - Highlights: • PRX-105 is a PEGylated plant-derived recombinant human acetylcholinesterase-R. • PRX-105 is a promising bio-scavenger for organophosphorous toxins at lethal doses. • PRX-105 was shown to protect animals both prophylactically and post-poisoning. • First-in-human study

  12. Isolation, diversity and acetylcholinesterase inhibitory activity of the culturable endophytic fungi harboured in Huperzia serrata from Jinggang Mountain, China.

    PubMed

    Wang, Ya; Lai, Zheng; Li, Xi-Xi; Yan, Ri-Ming; Zhang, Zhi-Bin; Yang, Hui-Lin; Zhu, Du

    2016-02-01

    acetylcholinesterase inhibitors resources used for Alzheimer's disease treatment.

  13. Probing the origins of human acetylcholinesterase inhibition via QSAR modeling and molecular docking.

    PubMed

    Simeon, Saw; Anuwongcharoen, Nuttapat; Shoombuatong, Watshara; Malik, Aijaz Ahmad; Prachayasittikul, Virapong; Wikberg, Jarl E S; Nantasenamat, Chanin

    2016-01-01

    Alzheimer's disease (AD) is a chronic neurodegenerative disease which leads to the gradual loss of neuronal cells. Several hypotheses for AD exists (e.g., cholinergic, amyloid, tau hypotheses, etc.). As per the cholinergic hypothesis, the deficiency of choline is responsible for AD; therefore, the inhibition of AChE is a lucrative therapeutic strategy for the treatment of AD. Acetylcholinesterase (AChE) is an enzyme that catalyzes the breakdown of the neurotransmitter acetylcholine that is essential for cognition and memory. A large non-redundant data set of 2,570 compounds with reported IC50 values against AChE was obtained from ChEMBL and employed in quantitative structure-activity relationship (QSAR) study so as to gain insights on their origin of bioactivity. AChE inhibitors were described by a set of 12 fingerprint descriptors and predictive models were constructed from 100 different data splits using random forest. Generated models afforded R (2), [Formula: see text] and [Formula: see text] values in ranges of 0.66-0.93, 0.55-0.79 and 0.56-0.81 for the training set, 10-fold cross-validated set and external set, respectively. The best model built using the substructure count was selected according to the OECD guidelines and it afforded R (2), [Formula: see text] and [Formula: see text] values of 0.92 ± 0.01, 0.78 ± 0.06 and 0.78 ± 0.05, respectively. Furthermore, Y-scrambling was applied to evaluate the possibility of chance correlation of the predictive model. Subsequently, a thorough analysis of the substructure fingerprint count was conducted to provide informative insights on the inhibitory activity of AChE inhibitors. Moreover, Kennard-Stone sampling of the actives were applied to select 30 diverse compounds for further molecular docking studies in order to gain structural insights on the origin of AChE inhibition. Site-moiety mapping of compounds from the diversity set revealed three binding anchors encompassing both hydrogen bonding and van der Waals

  14. The interactions of azure B, a metabolite of methylene blue, with acetylcholinesterase and butyrylcholinesterase

    SciTech Connect

    Petzer, Anél; Harvey, Brian H.; Petzer, Jacobus P.

    2014-02-01

    Methylene blue (MB) is reported to possess diverse pharmacological actions and is attracting increasing attention for the treatment of neurodegenerative disorders such as Alzheimer's disease. Among the pharmacological actions of MB, is the significant inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). These activities may, at least in part, underlie MB's beneficial effects in Alzheimer's disease. MB is metabolized to yield N-demethylated products of which azure B, the monodemethyl metabolite, is the predominant species. Azure B has been shown to be pharmacologically active and also possesses a variety of biological actions. Azure B therefore may contribute to the pharmacological profile of MB. Based on these considerations, the present study investigates the possibility that azure B may, similar to MB, act as an inhibitor of human AChE and BuChE. The results document that azure B inhibits AChE and BuChE with IC{sub 50} values of 0.486 μM and 1.99 μM, respectively. The results further show that azure B inhibits AChE and BuChE reversibly, and that the modes of inhibition are most likely competitive. Although the AChE and BuChE inhibitory activities of azure B are twofold and fivefold, respectively, less potent than those recorded for MB [IC{sub 50}(AChE) = 0.214 μM; IC{sub 50}(BuChE) = 0.389 μM] under identical conditions, azure B may be a contributor to MB's in vivo activation of the cholinergic system and beneficial effects in Alzheimer's disease. - Highlights: • Methylene blue (MB) is a known inhibitor of AChE and BuChE. • Azure B, the major metabolite of MB, also is an inhibitor of AChE and BuChE. • Azure B may be a contributor to MB's in vivo activation of the cholinergic system. • Azure B may contribute to MB's potential in Alzheimer's disease therapy.

  15. Probing the origins of human acetylcholinesterase inhibition via QSAR modeling and molecular docking.

    PubMed

    Simeon, Saw; Anuwongcharoen, Nuttapat; Shoombuatong, Watshara; Malik, Aijaz Ahmad; Prachayasittikul, Virapong; Wikberg, Jarl E S; Nantasenamat, Chanin

    2016-01-01

    Alzheimer's disease (AD) is a chronic neurodegenerative disease which leads to the gradual loss of neuronal cells. Several hypotheses for AD exists (e.g., cholinergic, amyloid, tau hypotheses, etc.). As per the cholinergic hypothesis, the deficiency of choline is responsible for AD; therefore, the inhibition of AChE is a lucrative therapeutic strategy for the treatment of AD. Acetylcholinesterase (AChE) is an enzyme that catalyzes the breakdown of the neurotransmitter acetylcholine that is essential for cognition and memory. A large non-redundant data set of 2,570 compounds with reported IC50 values against AChE was obtained from ChEMBL and employed in quantitative structure-activity relationship (QSAR) study so as to gain insights on their origin of bioactivity. AChE inhibitors were described by a set of 12 fingerprint descriptors and predictive models were constructed from 100 different data splits using random forest. Generated models afforded R (2), [Formula: see text] and [Formula: see text] values in ranges of 0.66-0.93, 0.55-0.79 and 0.56-0.81 for the training set, 10-fold cross-validated set and external set, respectively. The best model built using the substructure count was selected according to the OECD guidelines and it afforded R (2), [Formula: see text] and [Formula: see text] values of 0.92 ± 0.01, 0.78 ± 0.06 and 0.78 ± 0.05, respectively. Furthermore, Y-scrambling was applied to evaluate the possibility of chance correlation of the predictive model. Subsequently, a thorough analysis of the substructure fingerprint count was conducted to provide informative insights on the inhibitory activity of AChE inhibitors. Moreover, Kennard-Stone sampling of the actives were applied to select 30 diverse compounds for further molecular docking studies in order to gain structural insights on the origin of AChE inhibition. Site-moiety mapping of compounds from the diversity set revealed three binding anchors encompassing both hydrogen bonding and van der Waals

  16. KLHL40-related nemaline myopathy with a sustained, positive response to treatment with acetylcholinesterase inhibitors.

    PubMed

    Natera-de Benito, D; Nascimento, A; Abicht, A; Ortez, C; Jou, C; Müller, J S; Evangelista, T; Töpf, A; Thompson, R; Jimenez-Mallebrera, C; Colomer, J; Lochmüller, H

    2016-03-01

    Congenital myopathies are a group of inherited muscle disorders characterized by hypotonia, weakness and a non-dystrophic muscle biopsy with the presence of one or more characteristic histological features. Neuromuscular transmission defects have recently been reported in several patients with congenital myopathies (CM). Mutations in KLHL40 are among the most common causes of severe forms of nemaline myopathy. Clinical features of affected individuals include fetal akinesia or hypokinesia, respiratory failure, and swallowing difficulties at birth. Muscle weakness is usually severe and nearly half of the individuals have no spontaneous antigravity movement. The average age of death has been reported to be 5 months in a recent case series. Herein we present a case of a patient with a nemaline myopathy due to KLHL40 mutations (c.604delG, p.Ala202Argfs*56 and c.1513G>C, p.Ala505Pro) with an impressive and prolonged beneficial response to treatment with high-dose pyridostigmine. Myasthenic features or response to ACEI have not previously been reported as a characteristic of nemaline myopathy or KLHL40-related myopathy.

  17. KLHL40-related nemaline myopathy with a sustained, positive response to treatment with acetylcholinesterase inhibitors.

    PubMed

    Natera-de Benito, D; Nascimento, A; Abicht, A; Ortez, C; Jou, C; Müller, J S; Evangelista, T; Töpf, A; Thompson, R; Jimenez-Mallebrera, C; Colomer, J; Lochmüller, H

    2016-03-01

    Congenital myopathies are a group of inherited muscle disorders characterized by hypotonia, weakness and a non-dystrophic muscle biopsy with the presence of one or more characteristic histological features. Neuromuscular transmission defects have recently been reported in several patients with congenital myopathies (CM). Mutations in KLHL40 are among the most common causes of severe forms of nemaline myopathy. Clinical features of affected individuals include fetal akinesia or hypokinesia, respiratory failure, and swallowing difficulties at birth. Muscle weakness is usually severe and nearly half of the individuals have no spontaneous antigravity movement. The average age of death has been reported to be 5 months in a recent case series. Herein we present a case of a patient with a nemaline myopathy due to KLHL40 mutations (c.604delG, p.Ala202Argfs*56 and c.1513G>C, p.Ala505Pro) with an impressive and prolonged beneficial response to treatment with high-dose pyridostigmine. Myasthenic features or response to ACEI have not previously been reported as a characteristic of nemaline myopathy or KLHL40-related myopathy. PMID:26754003

  18. Extrapolation Factors for Derivation of Acute Aquatic Life Screening Values: Acetylcholinesterase Inhibitors

    EPA Science Inventory

    USEPA’s Office of Water (OW) and Office of Pesticide Programs (OPP) are both charged with assessing risks of chemicals to aquatic species. The offices have developed scientifically defensible methods to assess chemicals under the Clean Water Act (CWA) and the Federal Insecticide...

  19. Acetylcholinesterase Inhibition as an Indicator of Organophosphate and Carbamate Poisoning in Kenyan Agricultural Workers.

    PubMed

    Ohayo-Mitoko; Heederik; Kromhout; Omondi; Boleij

    1997-07-01

    Acetylcholinesterase inhibition was determined for 666 Kenyan agricultural workers; 390 (58.6%) mainly pesticide applicators exposed to organophosphate and carbamate pesticides and 276 (41.4%) unexposed controls from four rural agricultural areas during 1993 and 1994. Baseline levels were depressed in the exposed group (6.1 +/- 0.84; 4.09 +/- 0.84) but not in the unexposed group (5.83 +/- 0.91; 5.60 +/- 0.87). Acetylcholinesterase inhibition was found in all exposed individuals and led, on average, to a decrease of baseline acetylcholinesterase levels of 33% (+/-12%). The control groups had a nonsignificant decrease of only 4% (+/- 8%). The exposed subjects in Naivasha (flower growers) had the largest inhibition (36%), followed by Homabay (cotton growers) (35%) and Wundanyi (vegetable growers) (33%). Those in Migori (tobacco growers) had, by far, the least inhibition of acetylcholinesterase activity (26%), indicating inherent factors that led to less inhibition. Acetylcholinesterase activity levels of 115 exposed individuals (29.6%) and no controls were depressed to values below 60% of baseline levels. The dramatic inhibition observed could lead to chronic clinical and subclinical intoxication. These findings show that acetylcholinesterase inhibition can be used as an indicator of organophosphate and carbamate poisoning in occupationally exposed agricultural workers. There is, therefore, an urgent need for primary prevention programs to monitor and address occupational exposures to these hazardous substances in agriculture in Kenya and other developing countries, as well as to use integrated pest management strategies in crop protection.

  20. Insecticidal properties of essential oils against Tribolium castaneum (Herbst) and their inhibitory effects on acetylcholinesterase and adenosine triphosphatases.

    PubMed

    Abou-Taleb, Hamdy K; Mohamed, Magdy I E; Shawir, Mohamed S; Abdelgaleil, Samir A M

    2016-01-01

    Essential oils from 20 Egyptian plants were obtained by using hydrodistillation. The chemical composition of the isolated oils was identified by gas chromatograph/mass spectrometer. Fumigant and contact toxicities of the essential oils were evaluated against the adults of Tribolium castaneum. In fumigation assays, the oil of Origanum vulgare (LC50 = 9.97 mg/L air) displayed the highest toxicity towards the adults of T. castaneum. In contact assays, the oils of Artemisia monosperma (LC50 = 0.07 mg/cm(2)) and O. vulgare (LC50 = 0.07 mg/cm(2)) were the most potent toxicants against the adults of T. castaneum. Biochemical studies showed that the tested oils caused pronounced inhibition of acetylcholinesterase (AChE) and adenosine triphosphatases (ATPases) isolated from the larvae of T. castaneum. The oil Cupressus macrocarpa (IC50 = 12.3 mg/L) was the most potent inhibitor of AChE, while the oil of Calistemon viminals (IC50 = 4.4 mg/L) was the most potent inhibitor of ATPases. PMID:25978134

  1. Alkaloid metabolite profiles by GC/MS and acetylcholinesterase inhibitory activities with binding-mode predictions of five Amaryllidaceae plants.

    PubMed

    Cortes, Natalie; Alvarez, Rafael; Osorio, Edison H; Alzate, Fernando; Berkov, Strahil; Osorio, Edison

    2015-01-01

    Acetylcholinesterase (AChE) enzymatic inhibition is an important target for the management of Alzheimer disease (AD) and AChE inhibitors are the mainstay drugs for its treatment. In order to discover new sources of potent AChE inhibitors, a combined strategy is presented based on AChE-inhibitory activity and chemical profiles by GC/MS, together with in silico studies. The combined strategy was applied on alkaloid extracts of five Amaryllidaceae species that grow in Colombia. Fifty-seven alkaloids were detected using GC/MS, and 21 of them were identified by comparing their mass-spectral fragmentation patterns with standard reference spectra in commercial and private library databases. The alkaloid extracts of Zephyranthes carinata exhibited a high level of inhibitory activity (IC50 = 5.97 ± 0.24 μg/mL). Molecular modeling, which was performed using the structures of some of the alkaloids present in this extract and the three-dimensional crystal structures of AChE derived from Torpedo californica, disclosed their binding configuration in the active site of this AChE. The results suggested that the alkaloids 3-epimacronine and lycoramine might be of interest for AChE inhibition. Although the galanthamine group is known for its potential utility in treating AD, the tazettine-type alkaloids should be evaluated to find more selective compounds of potential benefit for AD. PMID:25305596

  2. Insecticidal properties of essential oils against Tribolium castaneum (Herbst) and their inhibitory effects on acetylcholinesterase and adenosine triphosphatases.

    PubMed

    Abou-Taleb, Hamdy K; Mohamed, Magdy I E; Shawir, Mohamed S; Abdelgaleil, Samir A M

    2016-01-01

    Essential oils from 20 Egyptian plants were obtained by using hydrodistillation. The chemical composition of the isolated oils was identified by gas chromatograph/mass spectrometer. Fumigant and contact toxicities of the essential oils were evaluated against the adults of Tribolium castaneum. In fumigation assays, the oil of Origanum vulgare (LC50 = 9.97 mg/L air) displayed the highest toxicity towards the adults of T. castaneum. In contact assays, the oils of Artemisia monosperma (LC50 = 0.07 mg/cm(2)) and O. vulgare (LC50 = 0.07 mg/cm(2)) were the most potent toxicants against the adults of T. castaneum. Biochemical studies showed that the tested oils caused pronounced inhibition of acetylcholinesterase (AChE) and adenosine triphosphatases (ATPases) isolated from the larvae of T. castaneum. The oil Cupressus macrocarpa (IC50 = 12.3 mg/L) was the most potent inhibitor of AChE, while the oil of Calistemon viminals (IC50 = 4.4 mg/L) was the most potent inhibitor of ATPases.

  3. Acetylcholinesterase (AChE) inhibition aggravates fasting-induced triglyceride accumulation in the mouse liver.

    PubMed

    Yokota, Shin-Ichi; Nakamura, Kaai; Ando, Midori; Kamei, Hiroyasu; Hakuno, Fumihiko; Takahashi, Shin-Ichiro; Shibata, Shigenobu

    2014-01-01

    Although fasting induces hepatic triglyceride (TG) accumulation in both rodents and humans, little is known about the underlying mechanism. Because parasympathetic nervous system activity tends to attenuate the secretion of very-low-density-lipoprotein-triglyceride (VLDL-TG) and increase TG stores in the liver, and serum cholinesterase activity is elevated in fatty liver disease, the inhibition of the parasympathetic neurotransmitter acetylcholinesterase (AChE) may have some influence on hepatic lipid metabolism. To assess the influence of AChE inhibition on lipid metabolism, the effect of physostigmine, an AChE inhibitor, on fasting-induced increase in liver TG was investigated in mice. In comparison with ad libitum-fed mice, 30 h fasting increased liver TG accumulation accompanied by a downregulation of sterol regulatory element-binding protein 1 (SREBP-1) and liver-fatty acid binding-protein (L-FABP). Physostigmine promoted the 30 h fasting-induced increase in liver TG levels in a dose-dependent manner, accompanied by a significant fall in plasma insulin levels, without a fall in plasma TG. Furthermore, physostigmine significantly attenuated the fasting-induced decrease of both mRNA and protein levels of SREBP-1 and L-FABP, and increased IRS-2 protein levels in the liver. The muscarinic receptor antagonist atropine blocked these effects of physostigmine on liver TG, serum insulin, and hepatic protein levels of SREBP-1 and L-FABP. These results demonstrate that AChE inhibition facilitated fasting-induced TG accumulation with up regulation of the hepatic L-FABP and SREBP-1 in mice, at least in part via the activation of muscarinic acetylcholine receptors. Our studies highlight the crucial role of parasympathetic regulation in fasting-induced TG accumulation, and may be an important source of information on the mechanism of hepatic disorders of lipid metabolism. PMID:25383314

  4. Acetylcholinesterase Activity, Cohabitation with Floricultural Workers, and Blood Pressure in Ecuadorian Children

    PubMed Central

    Jacobs, David R.; Himes, John H.; Alexander, Bruce H.

    2013-01-01

    Background: Acetylcholinesterase (AChE) inhibitors are commonly used pesticides that can effect hemodynamic changes through increased cholinergic stimulation. Children of agricultural workers are likely to have paraoccupational exposures to pesticides, but the potential physiological impact of such exposures is unclear. Objectives: We investigated whether secondary pesticide exposures were associated with blood pressure and heart rate among children living in agricultural Ecuadorian communities. Methods: This cross-sectional study included 271 children 4–9 years of age [51% cohabited with one or more flower plantation workers (mean duration, 5.2 years)]. Erythrocyte AChE activity was measured using the EQM Test-mate system. Linear regression models were used to estimate associations of systolic blood pressure (SBP), diastolic blood pressure (DBP), and heart rate with AChE activity, living with flower workers, duration of cohabitation with a flower worker, number of flower workers in the child’s home, and number of practices that might increase children’s exposure to pesticides. Results: Mean (± SD) AChE activity was 3.14 ± 0.49 U/mL. A 1-U/mL decrease in AChE activity was associated with a 2.86-mmHg decrease in SBP (95% CI: –5.20, –0.53) and a 2.89-mmHg decrease in DBP (95% CI: –5.00, –0.78), after adjustment for potential confounders. Children living with flower workers had lower SBP (–1.72 mmHg; 95% CI: –3.53, 0.08) than other children, and practices that might increase exposure also were associated with lower SBP. No significant associations were found between exposures and heart rate. Conclusions: Our findings suggest that subclinical secondary exposures to pesticides may affect vascular reactivity in children. Additional research is needed to confirm these findings. PMID:23359481

  5. Gastrointestinal acetylcholinesterase activity following endotracheal microinstillation inhalation exposure to sarin in guinea pigs.

    PubMed

    Chanda, Soma; Song, Jian; Rezk, Peter; Sabnekar, Praveena; Doctor, Bhupendra P; Sciuto, Alfred M; Nambiar, Madhusoodana P

    2010-09-01

    The goal of this study was to assess acetylcholinesterase (AChE) inhibition at different regions of the gastrointestinal (GI) tract following inhalation exposure to nerve agent sarin. Seven major regions of the GI tract were removed from saline control animals (n=3) and 677.4 mg/m(3) sarin-exposed animals at 4h (n=4) and 24h (n=4) post-exposure. AChE activity was determined in blood and homogenized tissue supernatant by specific Ellman's assay using Iso-OMPA, a BChE inhibitor, and expressed as activity/optical density of hemoglobin for blood and activity/mg protein for tissues. Our data showed that the AChE activity was significantly decreased for groups both 4h and 24h post-sarin exposure. Among the seven chosen regions of the guinea pig GI tract, duodenum showed the highest AChE activity in control animals. The AChE activity was significantly decreased in the stomach (p=0.03), duodenum (p=0.029), jejunum (p=0.006), and ileum (p=0.006) 4h following sarin exposure. At 24h post-sarin exposure the AChE activity of duodenum (p=0.029) and ileum (p=0.006) was significantly inhibited. Esophagus showed no inhibition following sarin exposure at both 4h and 24h groups. These results suggest that the AChE activity is different in different regions of the GI tract and highest levels of AChE inhibition following sarin exposure were seen in regions exhibiting higher overall AChE activity and cholinergic function.

  6. Acetylcholinesterase inhibition and locomotor function after motor-sensory cortex impact injury.

    PubMed

    Holschneider, Daniel P; Guo, Yumei; Roch, Margareth; Norman, Keith M; Scremin, Oscar U

    2011-09-01

    Traumatic brain injury (TBI) induces transient or persistent dysfunction of gait and balance. Enhancement of cholinergic transmission has been reported to accelerate recovery of cognitive function after TBI, but the effects of this intervention on locomotor activity remain largely unexplored. The hypothesis that enhancement of cholinergic function by inhibition of acetylcholinesterase (AChE) improves locomotion following TBI was tested in Sprague-Dawley male rats after a unilateral controlled cortical impact (CCI) injury of the motor-sensory cortex. Locomotion was tested by time to fall on the constant speed and accelerating Rotarod, placement errors and time to cross while walking through a horizontal ladder, activity monitoring in the home cages, and rearing behavior. Assessments were performed the 1st and 2nd day and the 1st, 2nd, and 3rd week after TBI. The AChE inhibitor physostigmine hemisulfate (PHY) was administered continuously via osmotic minipumps implanted subcutaneously at the rates of 1.6-12.8 μmol/kg/day. All measures of locomotion were impaired by TBI and recovered to initial levels between 1 and 3 weeks post-TBI, with the exception of the maximum speed achievable on the accelerating Rotarod, as well as rearing in the open field. PHY improved performance in the accelerating Rotarod at 1.6 and 3.2 μmol/kg/day (AChE activity 95 and 78% of control, respectively), however, higher doses induced progressive deterioration. No effect or worsening of outcomes was observed at all PHY doses for home cage activity, rearing, and horizontal ladder walking. Potential benefits of cholinesterase inhibition on locomotor function have to be weighed against the evidence of the narrow range of useful doses. PMID:21787180

  7. Hyperglycemia induces memory impairment linked to increased acetylcholinesterase activity in zebrafish (Danio rerio).

    PubMed

    Capiotti, Katiucia Marques; De Moraes, Daiani Almeida; Menezes, Fabiano Peres; Kist, Luiza Wilges; Bogo, Maurício Reis; Da Silva, Rosane Souza

    2014-11-01

    Diabetes mellitus, which causes hyperglycemia, affects the central nervous system and can impairs cognitive functions, such as memory. The aim of this study was to investigate the effects of hyperglycemia on memory as well as on the activity of acethylcholinesterase. Hyperglycemia was induced in adult zebrafish by immersion in glucose 111mM by 14 days. The animals were divided in 4 groups: control, glucose-treated, glucose-washout 7-days and glucose-washout 14-days. We evaluated the performance in inhibitory avoidance task and locomotor activity. We also determined acethylcholinesterase activity and gene expression from whole brain. In order to counteract the effect of hyperglycemia underlined by effects on acethylcholinesterase activity, we treated the animals with galantamine (0.05ng/g), an inhibitor of this enzyme. Also we evaluated the gene expression of insulin receptor and glucose transporter from zebrafish brain. The hyperglycemia promoted memory deficit in adult zebrafish, which can be explained by increased AChE activity. The ache mRNA levels from zebrafish brain were decrease in 111mM glucose group and returned to normal levels after 7 days of glucose withdrawal. Insulin receptors (insra-1, insra-2, insrb-1 and insrb-2) and glut-3 mRNA levels were not significantly changed. Our results also demonstrated that galantamine was able to reverse the memory deficit caused by hyperglycemia, demonstrating that these effects involve modulation of AChE activity. These data suggest that the memory impairment induced by hyperglycemia is underlined by the cholinergic dysfunction caused by the mechanisms involving the control of acetylcholinesterase function and gene expression. PMID:25157430

  8. A Second Class of Acetylcholinesterase-Deficient Mutants of the Nematode CAENORHABDITIS ELEGANS

    PubMed Central

    Culotti, Joseph G.; Von Ehrenstein, Gunter; Culotti, Marilyn R.; Russell, Richard L.

    1981-01-01

    In Johnson et al. (1981), the Caenorhabditis elegans mutant strain PR1000, homozygous for the ace-1 mutation p1000, is shown to be deficient in the class A subset of acetylcholinesterases, which comprises approximately one-half of the total C. elegans acetylcholinesterase activity. Beginning with this strain, we have isolated 487 new behavioral and morphological mutant strains. Two of these, independently derived, lack approximately 98% of the wild-type acetylcholinesterase activity and share the same specific uncoordinated phenotype; both move forward in a slow and uncoordinated manner, and when mechanically stimulated to induce reversal, both hypercontract and become temporarily paralyzed. In addition to the ace-1 mutation, both strains also harbor recessive mutations in the same newly identified gene, ace-2, which maps to chromosome I and is therefore not linked to ace-1. Gene dosage experiments suggest that ace-2 is a structural gene for the remaining class B acetylcholinesterases, which are not affected by ace-1.—The uncoordinated phenotype of the newly isolated, doubly mutant strains depends on both the ace-1 and ace-2 mutations; homozygosity for either mutation alone produces normally coordinated animals. This result implies functional overlap of the acetylcholinesterases controlled by ace-1 and ace-2, perhaps at common synapses. Consistent with this, light microscopic histochemical staining of permeabilized whole mounts indicates some areas of possible spatial overlap of these acetylcholinesterases (nerve ring, longitudinal nerve cords). In addition, there is at least one area where only ace-2-controlled acetylcholinesterase activity appears (pharyngeo-intestinal valve). PMID:7274655

  9. Identification and Biochemical Properties of Two New Acetylcholinesterases in the Pond Wolf Spider (Pardosa pseudoannulata).

    PubMed

    Meng, Xiangkun; Li, Chunrui; Xiu, Chunli; Zhang, Jianhua; Li, Jingjing; Huang, Lixin; Zhang, Yixi; Liu, Zewen

    2016-01-01

    Acetylcholinesterase (AChE), an important neurotransmitter hydrolase in both invertebrates and vertebrates, is targeted by organophosphorus and carbamate insecticides. In this study, two new AChEs were identified in the pond wolf spider Pardosa pseudoannulata, an important predatory natural enemy of several insect pests. In total, four AChEs were found in P. pseudoannulata (including two AChEs previously identified in our laboratory). The new putative AChEs PpAChE3 and PpAChE4 contain most of the common features of the AChE family, including cysteine residues, choline binding sites, the conserved sequence 'FGESAG' and conserved aromatic residues but with a catalytic triad of 'SDH' rather than 'SEH'. Recombinant enzymes expressed in Sf9 cells showed significant differences in biochemical properties compared to other AChEs, such as the optimal pH, substrate specificity, and catalytic efficiency. Among three test substrates, PpAChE1, PpAChE3 and PpAChE4 showed the highest catalytic efficiency (Vmax/KM) for ATC (acetylthiocholine iodide), with PpAChE3 exhibiting a clear preference for ATC based on the VmaxATC/VmaxBTC ratio. In addition, the four PpAChEs were more sensitive to the AChE-specific inhibitor BW284C51, which acts against ATC hydrolysis, than to the BChE-specific inhibitor ISO-OMPA, which acts against BTC hydrolysis, with at least a 8.5-fold difference in IC50 values for each PpAChE. PpAChE3, PpAChE4, and PpAChE1 were more sensitive than PpAChE2 to the tested Carb insecticides, and PpAChE3 was more sensitive than the other three AChEs to the tested OP insecticides. Based on all the results, two new functional AChEs were identified from P. pseudoannulata. The differences in AChE sequence between this spider and insects enrich our knowledge of invertebrate AChE diversity, and our findings will be helpful for understanding the selectivity of insecticides between insects and natural enemy spiders.

  10. Identification and Biochemical Properties of Two New Acetylcholinesterases in the Pond Wolf Spider (Pardosa pseudoannulata)

    PubMed Central

    Meng, Xiangkun; Li, Chunrui; Xiu, Chunli; Zhang, Jianhua; Li, Jingjing; Huang, Lixin; Zhang, Yixi; Liu, Zewen

    2016-01-01

    Acetylcholinesterase (AChE), an important neurotransmitter hydrolase in both invertebrates and vertebrates, is targeted by organophosphorus and carbamate insecticides. In this study, two new AChEs were identified in the pond wolf spider Pardosa pseudoannulata, an important predatory natural enemy of several insect pests. In total, four AChEs were found in P. pseudoannulata (including two AChEs previously identified in our laboratory). The new putative AChEs PpAChE3 and PpAChE4 contain most of the common features of the AChE family, including cysteine residues, choline binding sites, the conserved sequence ‘FGESAG’ and conserved aromatic residues but with a catalytic triad of ‘SDH’ rather than ‘SEH’. Recombinant enzymes expressed in Sf9 cells showed significant differences in biochemical properties compared to other AChEs, such as the optimal pH, substrate specificity, and catalytic efficiency. Among three test substrates, PpAChE1, PpAChE3 and PpAChE4 showed the highest catalytic efficiency (Vmax/KM) for ATC (acetylthiocholine iodide), with PpAChE3 exhibiting a clear preference for ATC based on the VmaxATC/VmaxBTC ratio. In addition, the four PpAChEs were more sensitive to the AChE-specific inhibitor BW284C51, which acts against ATC hydrolysis, than to the BChE-specific inhibitor ISO-OMPA, which acts against BTC hydrolysis, with at least a 8.5-fold difference in IC50 values for each PpAChE. PpAChE3, PpAChE4, and PpAChE1 were more sensitive than PpAChE2 to the tested Carb insecticides, and PpAChE3 was more sensitive than the other three AChEs to the tested OP insecticides. Based on all the results, two new functional AChEs were identified from P. pseudoannulata. The differences in AChE sequence between this spider and insects enrich our knowledge of invertebrate AChE diversity, and our findings will be helpful for understanding the selectivity of insecticides between insects and natural enemy spiders. PMID:27337188

  11. Identification and Biochemical Properties of Two New Acetylcholinesterases in the Pond Wolf Spider (Pardosa pseudoannulata).

    PubMed

    Meng, Xiangkun; Li, Chunrui; Xiu, Chunli; Zhang, Jianhua; Li, Jingjing; Huang, Lixin; Zhang, Yixi; Liu, Zewen

    2016-01-01

    Acetylcholinesterase (AChE), an important neurotransmitter hydrolase in both invertebrates and vertebrates, is targeted by organophosphorus and carbamate insecticides. In this study, two new AChEs were identified in the pond wolf spider Pardosa pseudoannulata, an important predatory natural enemy of several insect pests. In total, four AChEs were found in P. pseudoannulata (including two AChEs previously identified in our laboratory). The new putative AChEs PpAChE3 and PpAChE4 contain most of the common features of the AChE family, including cysteine residues, choline binding sites, the conserved sequence 'FGESAG' and conserved aromatic residues but with a catalytic triad of 'SDH' rather than 'SEH'. Recombinant enzymes expressed in Sf9 cells showed significant differences in biochemical properties compared to other AChEs, such as the optimal pH, substrate specificity, and catalytic efficiency. Among three test substrates, PpAChE1, PpAChE3 and PpAChE4 showed the highest catalytic efficiency (Vmax/KM) for ATC (acetylthiocholine iodide), with PpAChE3 exhibiting a clear preference for ATC based on the VmaxATC/VmaxBTC ratio. In addition, the four PpAChEs were more sensitive to the AChE-specific inhibitor BW284C51, which acts against ATC hydrolysis, than to the BChE-specific inhibitor ISO-OMPA, which acts against BTC hydrolysis, with at least a 8.5-fold difference in IC50 values for each PpAChE. PpAChE3, PpAChE4, and PpAChE1 were more sensitive than PpAChE2 to the tested Carb insecticides, and PpAChE3 was more sensitive than the other three AChEs to the tested OP insecticides. Based on all the results, two new functional AChEs were identified from P. pseudoannulata. The differences in AChE sequence between this spider and insects enrich our knowledge of invertebrate AChE diversity, and our findings will be helpful for understanding the selectivity of insecticides between insects and natural enemy spiders. PMID:27337188

  12. Sesquiterpenes and a monoterpenoid with acetylcholinesterase (AchE) inhibitory activity from Valeriana officinalis var. latiofolia in vitro and in vivo.

    PubMed

    Chen, Heng-Wen; He, Xuan-Hui; Yuan, Rong; Wei, Ben-Jun; Chen, Zhong; Dong, Jun-Xing; Wang, Jie

    2016-04-01

    Acetylcholinesterase Inhibitor (AchEI) is the most extensive in all anti-dementia drugs. The extracts and isolated compounds from the Valeriana genus have shown anti-dementia bioactivity. Four new sesquiterpenoids (1-4) and a new monoterpenoid (5) were isolated from the root of Valeriana officinalis var. latiofolia. The acetylcholinesterase (AchE) inhibitory activity of isolates was evaluated by modified Ellman method in vitro. Learning and memory ability of compound 4 on mice was evaluated by the Morris water maze. The contents of acetylcholine (Ach), acetylcholine transferase (ChAT) and AchE in mice brains were determined by colorimetry. The results showed IC50 of compound 4 was 0.161 μM in vitro. Compared with the normal group, the learning and memory ability of mice and the contents of Ach and ChAT decreased in model group mice (P<0.01), while the AchE increased (P<0.01). Compared with the model group, Ach and ChAT in the positive control group, the high-dose group and the medium-dose group increased (P<0.01), while the AchE decreased (P<0.01). Compound 4 can improve the learning and memory abilities of APPswe/PSΔE9 double-transgenic mice, and the mechanism may be related to the regulation of the relative enzyme in the cholinergic system. PMID:26976216

  13. Are soluble and membrane-bound rat brain acetylcholinesterase different

    SciTech Connect

    Andres, C.; el Mourabit, M.; Stutz, C.; Mark, J.; Waksman, A. )

    1990-11-01

    Salt-soluble and detergent-soluble acetylcholinesterases (AChE) from adult rat brain were purified to homogeneity and studied with the aim to establish the differences existing between these two forms. It was found that the enzymatic activities of the purified salt-soluble AChE as well as the detergent-soluble AChE were dependent on the Triton X-100 concentration. Moreover, the interaction of salt-soluble AChE with liposomes suggests amphiphilic behaviour of this enzyme. Serum cholinesterase (ChE) did not bind to liposomes but its activity was also detergent-dependent. Detergent-soluble AChE remained in solution below critical micellar concentrations of Triton X-100. SDS polyacrylamide gel electrophoresis of purified, Biobeads-treated and iodinated detergent-soluble 11 S AChE showed, under non reducing conditions, bands of 69 kD, 130 kD and greater than 250 kD corresponding, respectively, to monomers, dimers and probably tetramers of the same polypeptide chain. Under reducing conditions, only a 69 kD band was detected. It is proposed that an amphiphilic environment stabilizes the salt-soluble forms of AChE in the brain in vivo and that detergent-soluble Biobeads-treated 11 S AChE possess hydrophobic domain(s) different from the 20 kD peptide already described.

  14. Dual inhibition of acetylcholinesterase and butyrylcholinesterase enzymes by allicin

    PubMed Central

    Kumar, Suresh

    2015-01-01

    Objectives: The brain of mammals contains two major form of cholinesterase enzymes, acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). The dual inhibition of these enzymes is considered as a promising strategy for the treatment of neurological disorder such as Alzheimer's disease (AD), senile dementia, ataxia, and myasthenia gravis. The present study was undertaken to explore the anticholinesterase inhibition property of allicin. Materials and Methods: An assessment of cholinesterase inhibition was carried out by Ellman's assay. Results: The present study demonstrates allicin, a major ingredient of crushed garlic (Allium sativum L.) inhibited both AChE and BuChE enzymes in a concentration-dependent manner. For allicin, the IC50 concentration was 0.01 mg/mL (61.62 μM) for AChE and 0.05 ± 0.018 mg/mL (308.12 μM) for BuChE enzymes. Conclusions: Allicin shows a potential to ameliorate the decline of cognitive function and memory loss associated with AD by inhibiting cholinesterase enzymes and upregulate the levels of acetylcholine (ACh) in the brain. It can be used as a new lead to target AChE and BuChE to upregulate the level of ACh which will be useful in alleviating the symptoms associated with AD. PMID:26288480

  15. Lanostanoids with acetylcholinesterase inhibitory activity from the mushroom Haddowia longipes.

    PubMed

    Zhang, Shuang-Shuang; Ma, Qing-Yun; Huang, Sheng-Zhuo; Dai, Hao-Fu; Guo, Zhi-Kai; Yu, Zhi-Fang; Zhao, You-Xing

    2015-02-01

    Nine lanostanoids, together with nine known ones, were isolated from the ethyl acetate extract of the fruiting bodies of the mushroom Haddowia longipes. Their structures were elucidated as 11-oxo-ganoderiol D, lanosta-8-en-7,11-dioxo-3β-acetyloxy-24,25,26-trihydroxy, lanosta-8-en-7-oxo-3β-acetyloxy-11β,24,25,26-tetrahydroxy, lanosta-7,9(11)-dien-3β-acetyloxy-24,25,26-trihydroxy, lanosta-7,9(11)-dien-3β-acetyloxy-24,26-dihydroxy-25-methoxy, 11-oxo-lucidadiol, 11β-hydroxy-lucidadiol, lucidone H and lanosta-7,9(11),24E-trien-3β-acetyloxy-26,27-dihydroxy by analysing their 1D/2D NMR and MS spectra. In addition, bioassays of inhibitory activity against acetylcholinesterase (AChE) of all compounds showed that thirteen compounds possessed inhibitory activity against AChE with the percentage inhibition ranging from 10.3% to 42.1% when tested at 100 μM.

  16. Electroanalysis of amino acid substitutions in bioengineered acetylcholinesterase.

    PubMed

    Somji, Mehdi; Dounin, Vladimir; Muench, Susanne B; Schulze, Holger; Bachmann, Till T; Kerman, Kagan

    2012-12-01

    This study reports the electrochemical profiling of Nippostrongylus brasiliensis acetylcholinesterase (AChE) wild-type and mutant proteins. An irreversible oxidation signal of electro-active tyrosine (Y), tryptophan (W) and cysteine (C) residues in five mutant proteins along with the wild-type AChE were detected using square-wave voltammetry (SWV) on screen-printed carbon electrodes. Significant differences were observed in the W303L, T65Y and M301W substituted proteins showing a 25-35% higher peak current intensity compared to the Y349Y and F345Y mutants. It was predicted that AChE substituted with electrochemically active residues would produce the greatest signals and this trend was observed in the T65Y, M301W and Y349L mutants. However, conformational changes in the proteins structure as a result of the substitutions appeared to be most influential on peak current intensities. This was demonstrated by the W303L and F345Y mutant enzymes. The current intensity of W303L was greatest despite the removal of its electro-active W residue whereas the F345Y mutant had the lowest peak value despite the addition of an electro-active Y residue. The preliminary results of this study demonstrate that SWV provides a promising tool to probe the presence of electro-active amino acid residues on the surface of a protein produced through bioengineering.

  17. Cortical metabolism, acetylcholinesterase staining and pathological changes in Alzheimer's disease.

    PubMed

    McGeer, E G; McGeer, P L; Kamo, H; Tago, H; Harrop, R

    1986-11-01

    The local cerebral metabolic rate for glucose (LCMRgl) was determined by positron emission tomography (PET) using the 18F-fluorodeoxyglucose method in a series of Alzheimer patients and normal controls. The LCMRgl declined in the cerebral cortex with age, but the decrement was significantly greater in the clinically diagnosed Alzheimer's cases. Comparison of PET and psychological data indicated that, as the disease progressed clinically, the reduction in cortical LCMRgl and the number of cortical regions involved also increased. Variable regions of cortex were involved in the early stages but the temporal, parietal and frontal regions were most typically affected. One case coming to autopsy showed that the severity of the LCMRgl decline paralleled loss of neurons in the cortex and their replacement with astroglia. A case of Pick's disease coming to autopsy had shown a different and highly characteristic pattern of cortical metabolic defect. In this case also a poor metabolic rate was associated with extensive gliosis. Acetylcholinesterase (AChE) staining of the cerebral cortex in elderly normals and Alzheimer's disease cases with a new, highly sensitive method showed that in Alzheimer's disease there was an extensive loss of AChE-positive fibers with senile plaques frequently incorporating AChE-positive fiber debris. AChE staining of the substantia innominata area, where the cells giving rise to these neocortical fibers are presumably located, also showed evidence of degenerating cells and fibers.

  18. Perspectives for the structure-based design of acetylcholinesterase reactivators.

    PubMed

    Ochoa, Rodrigo; Rodriguez, Carlos A; Zuluaga, Andres F

    2016-07-01

    Rational design of active molecules through structure-based methods has been gaining adepts during the last decades due to the wider availability of protein structures, most of them conjugated with relevant ligands. Acetylcholinesterase (AChE) is a molecular target with a considerable amount of data related to its sequence and 3-dimensional structure. In addition, there are structural insights about the mechanism of action of the natural substrate and drugs used in Alzheimer's disease, organophosphorus compounds, among others. We looked for AChE structural data useful for in silico design of potential interacting molecules. In particular, we focused on information regarding the design of ligands aimed to reactivate AChE catalytic activity. The structures of 178 AChE were annotated and categorized on different subsets according to the nature of the ligand, source organisms and experimental details. We compared sequence homology among the active site from Torpedo californica, Mus musculus and Homo sapiens with the latter two species having the closest relationship (88.9% identity). In addition, the mechanism of organophosphorus binding and the design of effective reactivators are reviewed. A curated data collection obtained with information from several sources was included for researchers working on the field. Finally, a molecular dynamics simulation with human AChE indicated that the catalytic pocket volume stabilizes around 600 Å(3), providing additional clues for drug design. PMID:27450771

  19. Efforts toward treatments against aging of organophosphorus-inhibited acetylcholinesterase.

    PubMed

    Zhuang, Qinggeng; Young, Amneh; Callam, Christopher S; McElroy, Craig A; Ekici, Özlem Dogan; Yoder, Ryan J; Hadad, Christopher M

    2016-06-01

    Aging is a dealkylation reaction of organophosphorus (OP)-inhibited acetylcholinesterase (AChE). Despite many studies to date, aged AChE cannot be reactivated directly by traditional pyridinium oximes. This review summarizes strategies that are potentially valuable in the treatment against aging in OP poisoning. Among them, retardation of aging seeks to lower the rate of aging through the use of AChE effectors. These drugs should be administered before AChE is completely aged. For postaging treatment, realkylation of aged AChE by appropriate alkylators may pave the way for oxime treatment by neutralizing the oxyanion at the active site of aged AChE. The other two strategies, upregulation of AChE expression and introduction of exogenous AChE, cannot resurrect aged AChE but may compensate for lowered active AChE levels by in situ production or external introduction of active AChE. Upregulation of AChE expression can be triggered by some peptides. Sources of exogenous AChE can be whole blood or purified AChE, either from human or nonhuman species. PMID:27327269

  20. The spectrum of mutations causing end-plate acetylcholinesterase deficiency.

    PubMed

    Ohno, K; Engel, A G; Brengman, J M; Shen, X M; Heidenreich, F; Vincent, A; Milone, M; Tan, E; Demirci, M; Walsh, P; Nakano, S; Akiguchi, I

    2000-02-01

    The end-plate species of acetylcholinesterase (AChE) is an asymmetric enzyme consisting of a collagenic tail subunit composed of three collagenic strands (ColQ), each attached to a tetramer of the T isoform of the catalytic subunit (AChE(T)) via a proline-rich attachment domain. The principal function of the tail subunit is to anchor asymmetric AChE in the synaptic basal lamina. Human end-plate AChE deficiency was recently shown to be caused by mutations in COLQ. We here report nine novel COLQ mutations in 7 patients with end-plate AChE deficiency. We examine the effects of the mutations on the assembly of asymmetric AChE by coexpressing each genetically engineered COLQ mutant with ACHE(T) in COS cells. We classify the newly recognized and previously reported COLQ mutations into four classes according to their position in ColQ and their effect on AChE expression. We find that missense mutations in the proline-rich attachment domain abrogate attachment of catalytic subunits, that truncation mutations in the ColQ collagen domain prevent the assembly of asymmetric AChE, that hydrophobic missense residues in the C-terminal domain prevent triple helical assembly of the ColQ collagen domain, and that other mutations in the C-terminal region produce asymmetric species of AChE that are likely insertion incompetent. PMID:10665486

  1. Acetylcholinesterase Biosensors for Electrochemical Detection of Organophosphorus Compounds: A Review

    PubMed Central

    Dhull, Vikas; Gahlaut, Anjum; Dilbaghi, Neeraj

    2013-01-01

    The exponentially growing population, with limited resources, has exerted an intense pressure on the agriculture sector. In order to achieve high productivity the use of pesticide has increased up to many folds. These pesticides contain organophosphorus (OP) toxic compounds which interfere with the proper functioning of enzyme acetylcholinesterase (AChE) and finally affect the central nervous system (CNS). So, there is a need for routine, continuous, on spot detection of OP compounds which are the main limitations associated with conventional analytical methods. AChE based enzymatic biosensors have been reported by researchers as the most promising tool for analysis of pesticide level to control toxicity and for environment conservation. The present review summarises AChE based biosensors by discussing their characteristic features in terms of fabrication, detection limit, linearity range, time of incubation, and storage stability. Use of nanoparticles in recently reported fabrication strategies has improved the efficiency of biosensors to a great extent making them more reliable and robust. PMID:24383001

  2. Polyproline Tetramer Organizing Peptides in Fetal Bovine Serum Acetylcholinesterase

    PubMed Central

    Biberoglu, Kevser; Schopfer, Lawrence M.; Saxena, Ashima; Tacal, Ozden; Lockridge, Oksana

    2013-01-01

    Acetylcholinesterase (AChE) in the serum of fetal cow is a tetramer. The related enzyme, butyrylcholinesterase (BChE), in the sera of humans and horse requires polyproline peptides for assembly into tetramers. Our goal was to determine whether soluble tetrameric AChE includes tetramer organizing peptides in its structure. Fetal bovine serum AChE was denatured by boiling to release non-covalently bound peptides. Bulk protein was separated from peptides by filtration and by high performance liquid chromatography. Peptide mass and amino acid sequence of the released peptides were determined by MALDI-TOF-TOF and LTQ-Orbitrap mass spectrometry. Twenty polyproline peptides, divided into 5 families, were identified. The longest peptide contained 25 consecutive prolines and no other amino acid. Other polyproline peptides included one non-proline amino acid, for example serine at the C-terminus of 20 prolines. A search of the mammalian proteome database suggested that this assortment of polyproline peptides originated from at least 5 different precursor proteins, none of which were the ColQ or PRiMA of membrane-anchored AChE. To date, AChE and BChE are the only proteins known that include polyproline tetramer organizing peptides in their tetrameric structure. PMID:23352838

  3. Acetylcholinesterase immobilized onto PEI-coated silica nanoparticles.

    PubMed

    Tumturk, Hayrettin; Yüksekdag, Hazer

    2016-01-01

    Polyethyleneimine (PEI) coated-silica nanoparticles were prepared by the Stöber method. The formation and the structure of the nanoparticles were characterized by ATR-FT-IR spectroscopy and transmission electron microscopy (TEM). TEM images of the silica and PEI-coated nanoparticles revealed that they were well dispersed and that there was no agglomeration. The acetylcholineesterase enzyme was immobilized onto these nanoparticles. The effects of pH and temperature on the storage stability of the free and immobilized enzyme were investigated. The optimum pHs for free and immobilized enzymes were determined as 7.0 and 8.0, respectively. The optimum temperatures for free and immobilized enzymes were found to be 30.0 and 35.0°C, respectively. The maximum reaction rate (Vmax) and the Michaelis-Menten constant (Km) were investigated for the free and immobilized enzyme. The storage stability of acetylcholinesterase was increased when immobilized onto the novel PEI-coated silica nanoparticles. The reuse numbers of immobilized enzyme were also studied. These hybrid nanoparticles are desirable as carriers for biomedical applications.

  4. Proteasome inhibitors.

    PubMed

    Teicher, Beverly A; Tomaszewski, Joseph E

    2015-07-01

    Proteasome inhibitors have a 20 year history in cancer therapy. The first proteasome inhibitor, bortezomib (Velcade, PS-341), a break-through multiple myeloma treatment, moved rapidly through development from bench in 1994 to first approval in 2003. Bortezomib is a reversible boronic acid inhibitor of the chymotrypsin-like activity of the proteasome. Next generation proteasome inhibitors include carfilzomib and oprozomib which are irreversible epoxyketone proteasome inhibitors; and ixazomib and delanzomib which are reversible boronic acid proteasome inhibitors. Two proteasome inhibitors, bortezomib and carfilzomib are FDA approved drugs and ixazomib and oprozomib are in late stage clinical trials. All of the agents are potent cytotoxics. The disease focus for all the proteasome inhibitors is multiple myeloma. This focus arose from clinical observations made in bortezomib early clinical trials. Later preclinical studies confirmed that multiple myeloma cells were indeed more sensitive to proteasome inhibitors than other tumor cell types. The discovery and development of the proteasome inhibitor class of anticancer agents has progressed through a classic route of serendipity and scientific investigation. These agents are continuing to have a major impact in their treatment of hematologic malignancies and are beginning to be explored as potential treatment agent for non-cancer indications. PMID:25935605

  5. Nonenzymatic role of acetylcholinesterase in neuritic sprouting: regional changes in acetylcholinesterase and choline acetyltransferase after neonatal 6-hydroxydopamine lesions.

    PubMed

    Slotkin, Theodore A; Ryde, Ian T; Wrench, Nicola; Card, Jennifer A; Seidler, Frederic J

    2009-01-01

    Acetylcholinesterase (AChE) is postulated to play a nonenzymatic role in the development of neuritic projections. We gave the specific neurotoxin, 6-OHDA to rats on postnatal day (PN) 1, a treatment that destroys noradrenergic nerve terminals in the forebrain while producing reactive sprouting in the brainstem. AChE showed profound decreases in the forebrain that persisted in males over the entire phase of major synaptogenesis, from PN4 through PN21; in the brainstem, AChE was increased. Parallel examinations of choline acetyltransferase, an enzymatic marker for cholinergic nerve terminals, showed a different pattern of 6-OHDA-induced alterations, with initial decreases in both forebrain and brainstem in males and regression toward normal by PN21; females were far less affected. The sex differences are in accord with the greater plasticity of the female brain and its more rapid recovery from neurotoxic injury; our findings indicate that these differences are present well before puberty. These results support the view that AChE is involved in neurite formation, unrelated to its enzymatic role in cholinergic neurotransmission. Further, the results for choline acetyltransferase indicate that early depletion of norepinephrine compromises development of acetylcholine systems, consistent with a trophic role for this neurotransmitter.

  6. Nonenzymatic role of acetylcholinesterase in neuritic sprouting: regional changes in acetylcholinesterase and choline acetyltransferase after neonatal 6-hydroxydopamine lesions.

    PubMed

    Slotkin, Theodore A; Ryde, Ian T; Wrench, Nicola; Card, Jennifer A; Seidler, Frederic J

    2009-01-01

    Acetylcholinesterase (AChE) is postulated to play a nonenzymatic role in the development of neuritic projections. We gave the specific neurotoxin, 6-OHDA to rats on postnatal day (PN) 1, a treatment that destroys noradrenergic nerve terminals in the forebrain while producing reactive sprouting in the brainstem. AChE showed profound decreases in the forebrain that persisted in males over the entire phase of major synaptogenesis, from PN4 through PN21; in the brainstem, AChE was increased. Parallel examinations of choline acetyltransferase, an enzymatic marker for cholinergic nerve terminals, showed a different pattern of 6-OHDA-induced alterations, with initial decreases in both forebrain and brainstem in males and regression toward normal by PN21; females were far less affected. The sex differences are in accord with the greater plasticity of the female brain and its more rapid recovery from neurotoxic injury; our findings indicate that these differences are present well before puberty. These results support the view that AChE is involved in neurite formation, unrelated to its enzymatic role in cholinergic neurotransmission. Further, the results for choline acetyltransferase indicate that early depletion of norepinephrine compromises development of acetylcholine systems, consistent with a trophic role for this neurotransmitter. PMID:19452616

  7. Platelet Inhibitors.

    PubMed

    Shifrin, Megan M; Widmar, S Brian

    2016-03-01

    Antithrombotic medications have become standard of care for management of acute coronary syndrome. Platelet adhesion, activation, and aggregation are essential components of platelet function; platelet-inhibiting medications interfere with these components and reduce incidence of thrombosis. Active bleeding is a contraindication for administration of platelet inhibitors. There is currently no reversal agent for platelet inhibitors, although platelet transfusion may be used to correct active bleeding after administration of platelet inhibitors. PMID:26897422

  8. Pharmacodynamic, pharmacokinetic and pharmacogenetic aspects of drugs used in the treatment of Alzheimer's disease.

    PubMed

    Noetzli, Muriel; Eap, Chin B

    2013-04-01

    With the aging population and its rapidly increasing prevalence, dementia has become an important public health concern in developed and developing countries. To date, the pharmacological treatment is symptomatic and based on the observed neurotransmitter disturbances. The four most commonly used drugs are donepezil, galantamine, rivastigmine and memantine. Donepezil, galantamine and rivastigmine are acetylcholinesterase inhibitors with different pharmacodynamic and pharmacokinetic profiles. Donepezil inhibits selectively the acetylcholinesterase and has a long elimination half-life (t(1/2)) of 70 h. Galantamine is also a selective acetylcholinesterase inhibitor, but also modulates presynaptic nicotinic receptors. It has a t(1/2) of 6-8 h. Donepezil and galantamine are mainly metabolised by cytochrome P450 (CYP) 2D6 and CYP3A4 in the liver. Rivastigmine is a so-called 'pseudo-irreversible' inhibitor of acetylcholinesterase and butyrylcholinesterase. The t(1/2) of the drug is very short (1-2 h), but the duration of action is longer as the enzymes are blocked for around 8.5 and 3.5 h, respectively. Rivastigmine is metabolised by esterases in liver and intestine. Memantine is a non-competitive low-affinity antagonist of the NMDA receptor with a t(1/2) of 70 h. Its major route of elimination is unchanged via the kidneys. Addressing the issue of inter-patient variability in treatment response might be of special importance for the vulnerable population taking anti-dementia drugs. Pharmacogenetic considerations might help to avoid multiple medication changes due to non-response and/or adverse events. Some pharmacogenetic studies conducted on donepezil and galantamine reported an influence of the CYP2D6 genotype on the pharmacokinetics of the drugs and/or on the response to treatment. Moreover, polymorphisms in genes of the cholinergic markers acetylcholinesterase, butyrylcholinesterase, choline acetyltransferase and paraoxonase were found to be associated with better

  9. Differential binding of bispyridinium oxime drugs with acetylcholinesterase

    PubMed Central

    Kesharwani, Manoj K; Ganguly, Bishwajit; Das, Amit; Bandyopadhyay, Tusar

    2010-01-01

    Aim: To performe a time-dependent topographical delineation of protein-drug interactions to gain molecular insight into the supremacy of Ortho-7 over HI-6 in reactivating tabun-conjugated mouse acetylcholinesterase (mAChE). Methods: We conducted all-atom steered molecular dynamics simulations of the two protein-drug complexes. Through a host of protein-drug interaction parameters (rupture force profiles, hydrogen bonds, water bridges, hydrophobic interactions), geometrical, and orientation ordering of the drugs, we monitored the enzyme's response during the release of the drugs from its active-site. Results: The results show the preferential binding of the drugs with the enzyme. The pyridinium ring of HI-6 shows excellent complementary binding with the peripheral anionic site, whereas one of two identical pyridinium rings of Ortho-7 has excellent binding compatibility in the enzyme active-site where it can orchestrate the reactivation process. We found that the active pyridinium ring of HI-6 undergoes a complete turn along the active site axis, directed away from the active-site region during the course of the simulation. Conclusion: Due to excellent cooperative binding of Ortho-7, as rendered by several cation-π interactions with the active-site gorge of the enzyme, Ortho-7 may be a more efficient reactivator than HI-6. Our work supports the growing body of evidence that the efficacy of the drugs is due to the differential bindings of the oximes with AChE and can aid to the rational design of oxime drugs. PMID:20140002

  10. Acetylcholinesterase Activity and Neurodevelopment in Boys and Girls

    PubMed Central

    Himes, John H.; Jacobs, David R.; Alexander, Bruce H.; Gunnar, Megan R.

    2013-01-01

    BACKGROUND: Organophosphate exposures can affect children’s neurodevelopment, possibly due to neurotoxicity induced by acetylcholinesterase (AChE) inhibition, and may affect boys more than girls. We tested the hypothesis that lower AChE activity is associated with lower neurobehavioral development among children living in Ecuadorian floricultural communities. METHODS: In 2008, we examined 307 children (age: 4–9 years; 52% male) and quantified AChE activity and neurodevelopment in 5 domains: attention/executive functioning, language, memory/learning, visuospatial processing, and sensorimotor (NEPSY-II test). Associations were adjusted for demographic and socioeconomic characteristics and height-for-age, flower worker cohabitation, and hemoglobin concentration. RESULTS: Mean ± standard deviation AChE activity was 3.14 ± 0.49 U/mL (similar for both genders). The range of scores among neurodevelopment subtests was 5.9 to 10.7 U (standard deviation: 2.6–4.9 U). Girls had a greater mean attention/executive functioning domain score than boys. In boys only, there were increased odds ratios of low (<9th percentile) neurodevelopment among those in the lowest tertile versus the highest tertile of AChE activity (odds ratios: total neurodevelopment: 5.14 [95% confidence interval (CI): 0.84 to 31.48]; attention/executive functioning domain: 4.55 [95% CI: 1.19 to 17.38], memory/learning domain: 6.03 [95% CI: 1.17 to 31.05]) after adjustment for socioeconomic and demographic factors, height-for-age, and hemoglobin. Within these domains, attention, inhibition and long-term memory subtests were most affected. CONCLUSIONS: Low AChE activity was associated with deficits in neurodevelopment, particularly in attention, inhibition, and memory in boys but not in girls. These critical cognitive skills affect learning and academic performance. Added precautions regarding secondary occupational pesticide exposure would be prudent. PMID:24249815

  11. Comparative effect of pesticides on brain acetylcholinesterase in tropical fish.

    PubMed

    Assis, Caio Rodrigo Dias; Linhares, Amanda Guedes; Oliveira, Vagne Melo; França, Renata Cristina Penha; Carvalho, Elba Veronica Matoso Maciel; Bezerra, Ranilson Souza; de Carvalho, Luiz Bezerra

    2012-12-15

    Monitoring of pesticides based on acetylcholinesterase (AChE; EC 3.1.1.7) inhibition in vitro avoids interference of detoxification defenses and bioactivation of some of those compounds in non-target tissues. Moreover, environmental temperature, age and stress are able to affect specific enzyme activities when performing in vivo studies. Few comparative studies have investigated the inter-specific differences in AChE activity in fish. Screening studies allow choosing the suitable species as source of AChE to detect pesticides in a given situation. Brain AChE from the tropical fish: pirarucu (Arapaima gigas), cobia (Rachycentron canadum) and Nile tilapia (Oreochromis niloticus) were characterized and their activities were assayed in the presence of pesticides (the organophosphates: dichlorvos, diazinon, chlorpyrifos, temephos, tetraethyl pyrophosphate- TEPP and the carbamates: carbaryl and carbofuran). Inhibition parameters (IC₅₀ and Ki) for each species were found and compared with commercial AChE from electric eel (Electrophorus electricus). Optimal pH and temperature were found to be 8.0 and 35-45 °C, respectively. A. gigas AChE retained 81% of the activity after incubation at 50 °C for 30 min. The electric eel enzyme was more sensitive to the compounds (mainly carbofuran, IC₅₀ of 5 nM), excepting the one from A. gigas (IC₅₀ of 9 nM) under TEPP inhibition. These results show comparable sensitivity between purified and non-purified enzymes suggesting them as biomarkers for organophosphorus and carbamate detection in routine environmental and food monitoring programs for pesticides.

  12. Fenugreek hydrogel-agarose composite entrapped gold nanoparticles for acetylcholinesterase based biosensor for carbamates detection.

    PubMed

    Kestwal, Rakesh Mohan; Bagal-Kestwal, Dipali; Chiang, Been-Huang

    2015-07-30

    A biosensor was fabricated to detect pesticides in food samples. Acetylcholinesterase was immobilized in a novel fenugreek hydrogel-agarose matrix with gold nanoparticles. Transparent thin films with superior mechanical strength and stability were obtained with 2% fenugreek hydrogel and 2% agarose. Immobilization of acetylcholinesterase on the membrane resulted in high enzyme retention efficiency (92%) and a significantly prolonged shelf life of the enzyme (half-life, 55 days). Transmission electron microscopy revealed that, gold nanoparticles (10-20 nm in diameter) were uniformly dispersed in the fenugreek hydrogel-agarose-acetylcholinesterase membrane. This immobilized enzyme-gold nanoparticle dip-strip system detected various carbamates, including carbofuran, oxamyl, methomyl, and carbaryl, with limits of detection of 2, 21, 113, and 236 nM (S/N = 3), respectively. Furthermore, the fabricated biosensor exhibited good testing capabilities when used to detect carbamates added to various fruit and vegetable samples. PMID:26320646

  13. Fenugreek hydrogel-agarose composite entrapped gold nanoparticles for acetylcholinesterase based biosensor for carbamates detection.

    PubMed

    Kestwal, Rakesh Mohan; Bagal-Kestwal, Dipali; Chiang, Been-Huang

    2015-07-30

    A biosensor was fabricated to detect pesticides in food samples. Acetylcholinesterase was immobilized in a novel fenugreek hydrogel-agarose matrix with gold nanoparticles. Transparent thin films with superior mechanical strength and stability were obtained with 2% fenugreek hydrogel and 2% agarose. Immobilization of acetylcholinesterase on the membrane resulted in high enzyme retention efficiency (92%) and a significantly prolonged shelf life of the enzyme (half-life, 55 days). Transmission electron microscopy revealed that, gold nanoparticles (10-20 nm in diameter) were uniformly dispersed in the fenugreek hydrogel-agarose-acetylcholinesterase membrane. This immobilized enzyme-gold nanoparticle dip-strip system detected various carbamates, including carbofuran, oxamyl, methomyl, and carbaryl, with limits of detection of 2, 21, 113, and 236 nM (S/N = 3), respectively. Furthermore, the fabricated biosensor exhibited good testing capabilities when used to detect carbamates added to various fruit and vegetable samples.

  14. Immobilization of Acetylcholinesterase on Screen-Printed Electrodes. Application to the Determination of Arsenic(III)

    PubMed Central

    Sanllorente-Méndez, Silvia; Domínguez-Renedo, Olga; Arcos-Martínez, M. Julia

    2010-01-01

    Enzymatic amperometric procedures for measuring arsenic, based on the inhibitive action of this metal on acetylcholinesterase enzyme activity, have been developed. Screen-printed carbon electrodes (SPCEs) were used with acetylcholinesterase covalently bonded directly to its surface. The amperometric response of acetylcholinesterase was affected by the presence of arsenic ions, which caused a decrease in the current intensity. The experimental optimum working conditions of pH, substrate concentration and potential applied, were established. Under these conditions, repeatability and reproducibility of biosensors were determined, reaching values below 4% in terms of relative standard deviation. The detection limit obtained for arsenic was 1.1 × 10−8 M for Ach/SPCE biosensor. Analysis of the possible effect of the presence of foreign ions in the solution was performed. The method was applied to determine levels of arsenic in spiked tap water samples. PMID:22294918

  15. Properties of bovine erythrocyte acetylcholinesterase solubilized by phosphatidylinositol-specific phospholipase C1.

    PubMed

    Taguchi, R; Ikezawa, H

    1987-10-01

    The properties of acetylcholinesterase solubilized from bovine erythrocyte membrane by phosphatidylinositol (PI)-specific phospholipase C of Bacillus thuringiensis or with a detergent, Lubrol-PX, were studied. The activity of Lubrol-PX-solubilized acetylcholinesterase was broadly distributed in the fractions having Ve/Vo = 1.0-2.0 in gel filtration on a Sepharose 6B column. The intermediary fractions (Ve/Vo = 1.3-1.7) were collected as "the middle active Sepharose 6B eluate" and characterized on the basis of enzymology and protein chemistry. When this eluate was treated with PI-specific phospholipase C, the major activity peak was obtained in the later fractions with Ve/Vo = 1.75-2.0 on the same column chromatography. Lubrol-solubilized and phospholipase C-treated acetylcholinesterase preparations were different in the thermostability, the elution profiles of chromatography on Mono Q, butyl-Toyopearl and phenyl-Sepharose columns, and the affinity to phospholipid micelles. On treatment with PI-specific phospholipase C, Lubrol-solubilized acetylcholinesterase became more thermostable. The phospholipase C-treated enzyme was eluted at lower NaCl concentration from the Mono Q column than the Lubrol-solubilized enzyme. The most important difference was observed in the hydrophobicity of these two enzyme preparations. The Lubrol-solubilized enzyme shows high affinity to phospholipid micelles and hydrophobic adsorbents such as butyl-Toyopearl and phenyl-Sepharose. However, this hydrophobicity was lost when acetylcholinesterase was solubilized from bovine erythrocyte membrane by PI-specific phospholipase C. The presence of myo-inositol was confirmed in the purified preparation of acetylcholinesterase by gas chromatography (GC)-mass spectrometry (MS).(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Targeting copper(II)-induced oxidative stress and the acetylcholinesterase system in Alzheimer's disease using multifunctional tacrine-coumarin hybrid molecules.

    PubMed

    Hamulakova, Slavka; Poprac, Patrik; Jomova, Klaudia; Brezova, Vlasta; Lauro, Peter; Drostinova, Lenka; Jun, Daniel; Sepsova, Vendula; Hrabinova, Martina; Soukup, Ondrej; Kristian, Pavol; Gazova, Zuzana; Bednarikova, Zuzana; Kuca, Kamil; Valko, Marian

    2016-08-01

    Alzheimer's disease is a multifactorial disease that is characterized mainly by Amyloid-β (A-β) deposits, cholinergic deficit and extensive metal (copper, iron)-induced oxidative stress. In this work we present details of the synthesis, antioxidant and copper-chelating properties, DNA protection study, cholinergic activity and amyloid-antiaggregation properties of new multifunctional tacrine-7-hydroxycoumarin hybrids. The mode of interaction between copper(II) and hybrids and interestingly, the reduction of Cu(II) to Cu(I) species (for complexes Cu-5e-g) were confirmed by EPR measurements. EPR spin trapping on the model Fenton reaction, using 5,5-dimethyl-1-pyrroline N-oxide (DMPO) as a spin trap, demonstrated a significantly suppressed formation of hydroxyl radicals for the Cu-5e complex in comparison with free copper(II). This suggests that compound 5e upon coordination to free copper ion prevents the Cu(II)-catalyzed decomposition of hydrogen peroxide, which in turn may alleviate oxidative stress-induced damage. Protective activity of hybrids 5c and 5e against DNA damage in a Fenton system (copper catalyzed) was found to be in excellent agreement with the EPR spin trapping study. Compound 5g was the most effective in the inhibition of acetylcholinesterase (hAChE, IC50=38nM) and compound 5b was the most potent inhibitor of butyrylcholinesterase (hBuChE, IC50=63nM). Compound 5c was the strongest inhibitor of A-β1-40 aggregation, although a significant inhibition (>50%) was detected for compounds 5b, 5d, 5e and 5g. Collectively, these results suggest that the design and investigation of multifunctional agents containing along with the acetylcholinesterase inhibitory segment also an antioxidant moiety capable of alleviating metal (copper)-induced oxidative stress, may be of importance in the treatment of Alzheimer's disease. PMID:27230386

  17. Corrosion inhibitor

    SciTech Connect

    Wisotsky, M.J.; Metro, S.J.

    1989-10-31

    A corrosion inhibitor for use in synthetic ester lubricating oils is disclosed. It comprises an effective amount of: at least one aromatic amide; and at least one hydroxy substituted aromatic compound. The corrosion inhibitor thus formed is particularly useful in synthetic ester turbo lubricating oils.

  18. Correlation of the dynamics of native human acetylcholinesterase and its inhibited huperzine A counterpart from sub-picoseconds to nanoseconds

    PubMed Central

    Trapp, M.; Tehei, M.; Trovaslet, M.; Nachon, F.; Martinez, N.; Koza, M. M.; Weik, M.; Masson, P.; Peters, J.

    2014-01-01

    It is a long debated question whether catalytic activities of enzymes, which lie on the millisecond timescale, are possibly already reflected in variations in atomic thermal fluctuations on the pico- to nanosecond timescale. To shed light on this puzzle, the enzyme human acetylcholinesterase in its wild-type form and complexed with the inhibitor huperzine A were investigated by various neutron scattering techniques and molecular dynamics simulations. Previous results on elastic neutron scattering at various timescales and simulations suggest that dynamical processes are not affected on average by the presence of the ligand within the considered time ranges between 10 ps and 1 ns. In the work presented here, the focus was laid on quasi-elastic (QENS) and inelastic neutron scattering (INS). These techniques give access to different kinds of individual diffusive motions and to the density of states of collective motions at the sub-picoseconds timescale. Hence, they permit going beyond the first approach of looking at mean square displacements. For both samples, the autocorrelation function was well described by a stretched-exponential function indicating a linkage between the timescales of fast and slow functional relaxation dynamics. The findings of the QENS and INS investigation are discussed in relation to the results of our earlier elastic incoherent neutron scattering and molecular dynamics simulations. PMID:24872501

  19. A 1-methyl-4-piperidinyl cytectrene carboxylate labeled by the technetium 99m, a radiotracer for rat brain acetylcholinesterase activity.

    PubMed

    Mejri, Najoua; Barhoumi, Chokri; Trabelsi, Moez; Mekni, Abdelkader; Said, Nadia Malek; Saidi, Mouldi

    2010-02-01

    Alzheimer's disease (AD) is a degenerative neurological disorder that causes progressive and irreversible loss of connections between brain cells and loss of mental functions. Clinical and postmortem studies show that the biochemical changes in brains of AD patients include decrease in acetylcholinesterase (AChE) activity. Our aim was to study AChE activity using piperidinyl ester labelled with technetium-99m. In vivo and in vitro studies demonstrated that labelled piperidinyl ester was a substrate for AChE. The hydrolytic rate of this substrate was measured and the specificity was evaluated using the inhibitor BW284c51. The rhenium analogues of the technetium-labelled substrate were used to determine the affinity constant (K(m)) and the maximum reaction velocity (V(max)) because of the high specific activity of technetium. The high hydrolytic rate and high specificity of the substrate for AChE make it suitable as an in vivo radiotracer for studying AChE activity in the brain.

  20. Acetylcholinesterase-Fc Fusion Protein (AChE-Fc): A Novel Potential Organophosphate Bioscavenger with Extended Plasma Half-Life.

    PubMed

    Noy-Porat, Tal; Cohen, Ofer; Ehrlich, Sharon; Epstein, Eyal; Alcalay, Ron; Mazor, Ohad

    2015-08-19

    Acetylcholinesterase (AChE) is the physiological target of organophosphate nerve agent compounds. Currently, the development of a formulation for prophylactic administration of cholinesterases as bioscavengers in established risk situations of exposure to nerve agents is the incentive for many efforts. While cholinesterase bioscavengers were found to be highly effective in conferring protection against nerve agent exposure in animal models, their therapeutic use is complicated by short circulatory residence time. To create a bioscavenger with prolonged plasma half-life, compatible with biotechnological production and purification, a chimeric recombinant molecule of HuAChE coupled to the Fc region of human IgG1 was designed. The novel fusion protein, expressed in cultured cells under optimized conditions, maintains its full enzymatic activity, at levels similar to those of the recombinant AChE enzyme. Thus, this novel fusion product retained its binding affinity toward BW284c5 and propidium, and its bioscavenging reactivity toward the organophosphate-AChE inhibitors sarin and VX. Furthermore, when administered to mice, AChE-Fc exhibits exceptional circulatory residence longevity (MRT of 6000 min), superior to any other known cholinesterase-based recombinant bioscavengers. Owing to its optimized pharmacokinetic performance, high reactivity toward nerve agents, and ease of production, AChE-Fc emerges as a promising next-generation organophosphate bioscavenger.

  1. Co-administration of memantine has no effect on the in vitro or ex vivo determined acetylcholinesterase inhibition of rivastigmine in the rat brain.

    PubMed

    Enz, Albert; Gentsch, Conrad

    2004-09-01

    Rivastigmine, a cholinesterase inhibitor, is successfully used for the symptomatic therapy of Alzheimer's disease (AD) in the clinic. The drug has a very low potential for drug-drug interactions, as has been demonstrated within large clinical trials. Memantine, recently approved by the FDA for the treatment of moderate to severe AD, acts as a low affinity, non-competitive NMDA-antagonist, on a completely different neurotransmitter system, the glutamatergic system. Given the different sites of action, the possibility to combine a cholinergic with a glutamatergic intervention as potentially superior AD therapy has recently been proposed. In vitro studies have demonstrated that memantine, when added to reversible AChE inhibitors, such as tacrine, donepezil or galantamine, did not interfere with the inhibitory action of any of these drugs. The results from the present study provide evidence that rivastigmine as a pseudo-irreversible (or slow-reversible) AChE inhibitor shares this property described for reversible inhibitors, since memantine (1-100 microM), irrespective of whether given prior to or after rivastigmine did not influence rivastigmine's AChE inhibition in vitro. A similar observation was also made under in vivo conditions (ex vivo measurements): following a 21 day chronic, oral administration of 6 micromol/kg rivastigmine alone or of a combination of rivastigmine plus memantine (6 micromol/kg p.o. of either of the two compounds), an identical degree of AChE inhibition was observed. The concentrations of rivastigmine, its metabolite NAP 226-90 and memantine were measured in the brain of the same animals. Following an equimolar oral dose (6 micromol/kg) of both compounds, the brain level of memantine exceeded that of rivastigmine + metabolite, by a factor of around 30, when measured 2 h after the final dosing, irrespective of the duration of treatment (acute, for 3 or 21 days). This indicates that neither of the two drugs showed accumulation but also, and

  2. Probing the origins of human acetylcholinesterase inhibition via QSAR modeling and molecular docking

    PubMed Central

    Shoombuatong, Watshara; Malik, Aijaz Ahmad; Prachayasittikul, Virapong; Wikberg, Jarl E.S.

    2016-01-01

    Alzheimer’s disease (AD) is a chronic neurodegenerative disease which leads to the gradual loss of neuronal cells. Several hypotheses for AD exists (e.g., cholinergic, amyloid, tau hypotheses, etc.). As per the cholinergic hypothesis, the deficiency of choline is responsible for AD; therefore, the inhibition of AChE is a lucrative therapeutic strategy for the treatment of AD. Acetylcholinesterase (AChE) is an enzyme that catalyzes the breakdown of the neurotransmitter acetylcholine that is essential for cognition and memory. A large non-redundant data set of 2,570 compounds with reported IC50 values against AChE was obtained from ChEMBL and employed in quantitative structure-activity relationship (QSAR) study so as to gain insights on their origin of bioactivity. AChE inhibitors were described by a set of 12 fingerprint descriptors and predictive models were constructed from 100 different data splits using random forest. Generated models afforded R2, \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${Q}_{\\mathrm{CV }}^{2}$\\end{document}QCV2 and \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${Q}_{\\mathrm{Ext}}^{2}$\\end{document}QExt2 values in ranges of 0.66–0.93, 0.55–0.79 and 0.56–0.81 for the training set, 10-fold cross-validated set and external set, respectively. The best model built using the substructure count was selected according to the OECD guidelines and it afforded R2, \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage

  3. Probing the origins of human acetylcholinesterase inhibition via QSAR modeling and molecular docking

    PubMed Central

    Shoombuatong, Watshara; Malik, Aijaz Ahmad; Prachayasittikul, Virapong; Wikberg, Jarl E.S.

    2016-01-01

    Alzheimer’s disease (AD) is a chronic neurodegenerative disease which leads to the gradual loss of neuronal cells. Several hypotheses for AD exists (e.g., cholinergic, amyloid, tau hypotheses, etc.). As per the cholinergic hypothesis, the deficiency of choline is responsible for AD; therefore, the inhibition of AChE is a lucrative therapeutic strategy for the treatment of AD. Acetylcholinesterase (AChE) is an enzyme that catalyzes the breakdown of the neurotransmitter acetylcholine that is essential for cognition and memory. A large non-redundant data set of 2,570 compounds with reported IC50 values against AChE was obtained from ChEMBL and employed in quantitative structure-activity relationship (QSAR) study so as to gain insights on their origin of bioactivity. AChE inhibitors were described by a set of 12 fingerprint descriptors and predictive models were constructed from 100 different data splits using random forest. Generated models afforded R2, \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${Q}_{\\mathrm{CV }}^{2}$\\end{document}QCV2 and \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${Q}_{\\mathrm{Ext}}^{2}$\\end{document}QExt2 values in ranges of 0.66–0.93, 0.55–0.79 and 0.56–0.81 for the training set, 10-fold cross-validated set and external set, respectively. The best model built using the substructure count was selected according to the OECD guidelines and it afforded R2, \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage

  4. Solubilization, molecular forms, purification and substrate specificity of two acetylcholinesterases in the medicinal leech (Hirudo medicinalis).

    PubMed Central

    Talesa, V; Grauso, M; Giovannini, E; Rosi, G; Toutant, J P

    1995-01-01

    Two acetylcholinesterases (AChE) differing in substrate and inhibitor specificities have been characterized in the medical leech (Hirudo medicinalis). A 'spontaneously-soluble' portion of AChE activity (SS-AChE) was recovered from haemolymph and from tissues dilacerated in low-salt buffer. A second portion of AChE activity was obtained after extraction of tissues in low-salt buffer alone or containing 1% Triton X-100 [detergent-soluble (DS-) AChE). Both enzymes were purified to homogeneity by affinity chromatography on edrophonium- and concanavalin A-Sepharose columns. Denaturing SDS/PAGE under reducing conditions gave one band at 30 kDa for purified SS-AChE and 66 kDa for DS-AChE. Sephadex G-200 chromatography indicated a molecular mass of 66 kDa for native SS-AChE and of 130 kDa for DS-AChE. SS-AChE showed a single peak sedimenting at 5.0 S in sucrose gradients with or without Triton X-100, suggesting that it was a hydrophylic monomer (G1). DS-AChE sedimented as a single 6.1-6.5 S peak in the presence of Triton X-100 and aggregated in the absence of detergent. A treatment with phosphatidylinositol-specific phospholipase C suppressed aggregation and gave a 7 S peak. DS-AChE was thus an amphiphilic glycolipid-anchored dimer. Substrate specificities were studied using p-nitrophenyl esters (acetate, propionate and butyrate) and corresponding thiocholine esters as substrates. SS-AChE displayed only limited variations in Km values with charged and uncharged substrates, suggesting a reduced influence of electrostatic interactions in the enzyme substrate affinity. By contrast, DS-AChE displayed higher Km values with uncharged than with charged substrates. SS-AChE was more sensitive to eserine and di-isopropyl fluorophosphate (IC50 5 x 10(-8) and 10(-8) M respectively) than DS-AChE (5 x 10(-7) and 5 x 10(-5) M. Images Figure 2 Figure 3 Figure 4 PMID:7702560

  5. Interaction of human brain acetylcholinesterase with cyclophosphamide: a molecular modeling and docking study.

    PubMed

    Shakil, Shazi; Khan, Rosina; Tabrez, Shams; Alam, Qamre; Jabir, Nasimudeen R; Sulaiman, Mansour I; Greig, Nigel H; Kamal, Mohammad A

    2011-11-01

    This study describes the interaction between human acetylcholinesterase (AChE), a key regulator of central and peripheral cholinergic function, and the widely used nitrogen mustard alkylating agent, cyclophosphamide (CP). Modeling of the AChE sequence (NCBI Accession No: AAI05061.1) was performed using 'Swiss Model Workspace'. The protein-model was submitted to the Protein Model Database and was assigned accession number PM0077393. A plot showing normalized QMEAN scores versus protein size was made to compare the model with a non-redundant set of Protein Data Bank structures, which gave a Z-score QMEAN as -0.58. The predicted local error for the modeled structure was found to be well within tolerable limits. Z-score values for Cβ interaction, all atom interaction, solvation and torsion were found to be -1.10, -0.90, -0.06 and -0.40, respectively. Docking between CP and AChE was performed using 'Autodock4.2'. Apart from other interaction-types, six carbon atoms of CP (C1, C2, C3, C4, C6 and C7) were determined to be involved in hydrophobic interactions with amino acid residues Y121, W233, L323, F331, F335 and Y338 of the 'acyl pocket' within AChE. Five carbon atoms of CP (C2, C4, C5, C6 and C7) were involved in hydrophobic interactions with 3 amino acid residues within the enzyme's 'catalytic site'. In conclusion, hydrophobic interactions play a major role in the appropriate positioning of CP within the 'acyl pocket' as well as 'catalytic site' of AChE to permit suitable orientation and allow docking. This information may aid the design of more potent and versatile AChE-inhibitors as pharmacologic tools and drugs to characterize and treat neurological disorders, and additionally provides a model whose value can be quantitatively assessed by X-ray crystallographic analysis of the AChECP three-dimensional structure.

  6. Molecular cloning and construction of the coding region for human acetylcholinesterase reveals a G + C-rich attenuating structure

    SciTech Connect

    Soreq, H.; Ben-Aziz, R.; Prody, C.A.; Seidman, S.; Gnatt, A.; Neville, L.; Lieman-Hurwitz, J.; Lev-Lehman, E.; Ginzberg, D. ); Lapidot-Lifson, Y. Tel Aviv Univ. ); Zakut, H. )

    1990-12-01

    To study the primary structure of human acetylcholinesterase and its gene expression and amplification, cDNA libraries from human tissues expressing oocyte-translatable AcChoEase mRNA were constructed and screened with labeled oligodeoxynucleotide probes. Several cDNA clones were isolated that encoded a polypeptide with {ge}50% identically aligned amino acids to Torpedo AcChoEase and human butyrylcholinesterase. However, these cDNA clones were all truncated within a 300-nucleotide-long G + C-rich region with a predicted pattern of secondary structure having a high Gibbs free energy downstream from the expected 5{prime} end of the coding region. Screening of a genomic DNA library revealed the missing 5{prime} domain. When ligated to the cDNA and constructed into a transcription vector, this sequence encoded a synthetic mRNA translated in microinjected oocytes into catalytically active AcChoEase with marked preference for acetylthiocholine over butyrylthiocholine as a substrate, susceptibility to inhibition by the AcChoEase inhibitor BW284C51, and resistance to the AcChoEase inhibitor tetraisopropylpyrophosphoramide. Blot hybridization of genomic DNA from different individuals carrying amplified AcChoEase genes revealed variable intensities and restriction patterns with probes from the regions upstream and downstream from the predicted G + C-rich structure. Thus, the human AcChoEase gene includes a putative G + C-rich attenuator domain and is subject to structural alterations in cases of AcChoEase gene amplification.

  7. Acetylcholinesterase staining differentiates functionally distinct auditory pathways in the barn owl.

    PubMed

    Adolphs, R

    1993-03-15

    The aim of this study was to examine how the functional specialization of the barn owl's auditory brainstem might correlate with histochemical compartmentalization. The barn owl uses interaural intensity and time differences to encode, respectively, the vertical and azimuthal positions of sound sources in space. These two auditory cues are processed in parallel ascending pathways that separate from each other at the level of the cochlear nuclei. Sections through the auditory brainstem were stained for acetylcholinesterase (AChE) to examine whether nuclei that process different auditory cues stain differentially for this enzyme. Of the two cochlear nuclei, angularis showed more intense staining than nucleus magnocellularis. Nucleus angularis projects to all of the nuclei and subdivisions of nuclei that belong to the intensity processing pathway. Acetylcholinesterase stained all regions that contain terminal fields of nucleus angularis and thus provided discrimination between the time and intensity pathways. Moreover, staining patterns with acetylcholinesterase were complementary to those previously reported with an anti-calbindin antibody, which stains terminal fields of nucleus laminaris, and thus stains all the nuclei and subdivisions of nuclei that belong to the time pathway. Some of the gross staining patterns observed with AChE were similar to those reported with antibodies to glutamate decarboxylase. However, AChE is a more convenient and definitive marker in discriminating between these pathways than is calbindin or glutamate decarboxylase. Acetylcholinesterase staining of the intensity pathway in the owl may be related to encoding of sound intensity by spike rate over large dynamic ranges. PMID:7681456

  8. Inhibition of acetylcholinesterase in guppies (Poecilia reticulata) by chlorpyrifos at sublethal concentrations: Methodological aspects

    SciTech Connect

    van der Wel, H.; Welling, W.

    1989-04-01

    Acetylcholinesterase activity is a potential biochemical indicator of toxic stress in fish and a sensitive parameter for testing water for the presence of organophosphates. A number of methodological aspects regarding the determination of the in vivo effect of chlorpyrifos on acetylcholinesterase in guppies have been investigated. It was found that with acetylthiocholine as a substrate, the contribution of pseudocholinesterase to the total cholinesterase activity can be neglected. Protection of acetylcholinesterase of guppies exposed to chlorpyrifos from additional, artifactual in vitro enzyme inhibition during homogenization is necessary. Very low concentrations of acetone in the exposure medium, resulting from dilution of the stock solution of chlorpyrifos in acetone, can result in large decreases in the oxygen content of this medium. This may affect the uptake rate of the toxic compound and, thereby, cholinesterase inhibition. Very low, sublethal concentrations of chlorpyrifos result in high inhibition levels of acetylcholinesterase (80-90%) in guppies within 2 weeks of continuous exposure. Recovery of the enzyme activity occurs after the exposed animals are kept in clean medium for 4 days, but the rate of recovery is considerably lower than the rate of inhibition.

  9. Acetylcholinesterase of Haematobia irritans (Diptera: Muscidae): Baculovirus expression, biochemical properties and organophosphate insensitivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study reports the baculovirus expression and biochemical characterization of recombinant acetylcholinesterase from Haematobia irritans (L) (rHiAChE) and the effect of the previously described G262A mutation on enzyme activity and sensitivity to selected organophosphates. The rHiAChE was confirm...

  10. Novel N-allyl/propargyl tetrahydroquinolines: Synthesis via Three-component Cationic Imino Diels-Alder Reaction, Binding Prediction, and Evaluation as Cholinesterase Inhibitors.

    PubMed

    Rodríguez, Yeray A; Gutiérrez, Margarita; Ramírez, David; Alzate-Morales, Jans; Bernal, Cristian C; Güiza, Fausto M; Romero Bohórquez, Arnold R

    2016-10-01

    New N-allyl/propargyl 4-substituted 1,2,3,4-tetrahydroquinolines derivatives were efficiently synthesized using acid-catalyzed three components cationic imino Diels-Alder reaction (70-95%). All compounds were tested in vitro as dual acetylcholinesterase and butyryl-cholinesterase inhibitors and their potential binding modes, and affinity, were predicted by molecular docking and binding free energy calculations (∆G) respectively. The compound 4af (IC50 = 72 μm) presented the most effective inhibition against acetylcholinesterase despite its poor selectivity (SI = 2), while the best inhibitory activity on butyryl-cholinesterase was exhibited by compound 4ae (IC50 = 25.58 μm) with considerable selectivity (SI = 0.15). Molecular docking studies indicated that the most active compounds fit in the reported acetylcholinesterase and butyryl-cholinesterase active sites. Moreover, our computational data indicated a high correlation between the calculated ∆G and the experimental activity values in both targets.

  11. Salicylanilide diethyl phosphates as cholinesterases inhibitors.

    PubMed

    Krátký, Martin; Štěpánková, Šárka; Vorčáková, Katarína; Vinšová, Jarmila

    2015-02-01

    Based on the presence of dialkyl phosphate moiety, we evaluated twenty-seven salicylanilide diethyl phosphates (diethyl [2-(phenylcarbamoyl)phenyl] phosphates) for the inhibition of acetylcholinesterase (AChE) from electric eel (Electrophorus electricus L.) and butyrylcholinesterase (BChE) from equine serum. Ellman's spectrophotometric method was used. The inhibitory activity (expressed as IC50 values) was compared with that of the established drugs galantamine and rivastigmine. Salicylanilide diethyl phosphates showed significant activity against both cholinesterases with IC50 values from 0.903 to 86.3 μM. IC50s for BChE were comparatively lower than those obtained for AChE. All of the investigated compounds showed higher inhibition of AChE than rivastigmine, and six of them inhibited BChE more effectively than both rivastigmine and galantamine. In general, derivatives of 4-chlorosalicylic acid showed enhanced activity when compared to derivatives of 5-halogenated salicylic acids, especially against BChE. The most effective inhibitor of AChE was O-{5-chloro-2-[(3-bromophenyl)carbamoyl]phenyl} O,O-diethyl phosphate with IC50 of 35.4 μM, which is also one of the most potent inhibitors of BChE. O-{5-Chloro-2-[(3,4-dichlorophenyl)carbamoyl]phenyl} O,O-diethyl phosphate exhibited in vitro the strongest inhibition of BChE (0.90 μM). Salicylanilide diethyl phosphates act as pseudo-irreversible cholinesterases inhibitors. PMID:25462625

  12. Acetylcholinesterase of the sand fly, Phlebotomus papatasi (Scopoli): construction, expression and biochemical properties of the G119S orthologous mutant

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phlebotomus papatasi vectors zoonotic cutaneous leishmaniasis, widespread in intertropical and temperate regions of the world. Previous cloning, expression, and biochemical characterization of recombinant P. papatasi acetylcholinesterase 1 (PpAChE1) revealed 85% amino acid sequence identity to mosq...

  13. A fluorescence assay for measuring acetylcholinesterase activity in rat blood and a human neuroblastoma cell line (SH-SY5Y).

    PubMed

    Santillo, Michael F; Liu, Yitong

    2015-01-01

    Acetylcholinesterase (AChE) is an enzyme responsible for metabolism of the neurotransmitter acetylcholine, and inhibition of AChE can have therapeutic applications (e.g., drugs for Alzheimer's disease) or neurotoxic