Science.gov

Sample records for acetylene c2h2 ethylene

  1. Theoretical and Laboratory Studies on the Interaction of Cosmic-Ray Particles with Interstellar Ices. III. Suprathermal Chemistry-Induced Formation of Hydrocarbon Molecules in Solid Methane (CH4), Ethylene (C2H4), and Acetylene (C2H2)

    NASA Astrophysics Data System (ADS)

    Kaiser, R. I.; Roessler, K.

    1998-08-01

    Methane, ethylene, and acetylene ices are irradiated in a ultra high vacuum vessel at 10 K with 9.0 MeV α-particles and 7.3 MeV protons to elucidate mechanisms to form hydrocarbon molecules upon interaction of Galactic cosmic-ray particles with extraterrestrial, organic ices. Theoretical calculations focus on computer simulations of ion-induced collision cascades in irradiated targets. Our experimental and computational investigations reveal that each MeV particle transfers its kinetic energy predominantly through inelastic encounters to the target leading to electronic excitation and ionization of the target molecules. Here electronically excited CH4 species can fragment to mobile H atoms and nonmobile CH3 radicals. The potential energy stored in Coulomb interaction of the CH+4 ions release energetic H and C atoms not in thermal equilibrium with the 10 K target (suprathermal species). Moderated to 1-10 eV kinetic energy, these carbon atoms and those triggered by the elastic energy transfer of the MeV projectile to the target are found to abstract up to two H atoms to yield suprathermal CH and CH2 species. C and CH, as well as CH2, can insert into a CH bond of a CH4 molecule to form methylcarbene (HCCH3), the ethyl radical (C2H5), and ethane (C2H6). HCCH3 either loses H2/2H to form acetylene, C2H2, rearranges to ethylene, C2H4, or adds two H atoms to form ethane, C2H6. C2H5 can abstract or lose an H atom, giving ethane and ethylene, respectively. C2H2 and C2H4 are found to react with suprathermal H atoms to form C2H3 and C2H5, respectively. Overlapping cascades and an increasing MeV ion exposure transforms C2Hx (x = 2, ..., 6) to even more complex alkanes up to C14H30. These elementary reactions of suprathermal species to insert, abstract, and add in/to bonds supply a powerful pathway to form new molecules in icy grain mantles condensed on interstellar grains or in hydrocarbon rich bodies in our solar system even at temperatures as low as 10 K.

  2. Identification of acetylene /C2H2/ in infrared atmospheric absorption spectra

    NASA Technical Reports Server (NTRS)

    Goldman, A.; Murcray, F. J.; Blatherwick, R. D.; Gillis, J. R.; Bonomo, F. S.; Murcray, F. H.; Murcray, D. G.; Cicerone, R. J.

    1981-01-01

    Infrared atmospheric absorption spectra at 0.02/cm resolution were obtained during a balloon flight on March 23, 1981 from the Holloman AFB, New Mexico. The absorption features, attributed to C2H2, were used to derive a preliminary mixing ratio of about 25 pptv near 9 km, accurate to + or - 40%. This mixing ratio falls into the range of values calculated for the upper troposphere C2H2 in a photochemical/transport model. However, previous measurements from aircraft grab sampling (Cronn and Robinson, 1979) show four to twelve times this C2H2 concentration 1.5 km below the tropopause.

  3. Identification of acetylene (C2H2) in infrared atmospheric absorption spectra

    NASA Astrophysics Data System (ADS)

    Goldman, A.; Murcray, F. J.; Blatherwick, R. D.; Gillis, J. R.; Bonomo, F. S.; Murcray, F. H.; Murcray, D. G.; Cicerone, R. J.

    1981-12-01

    Infrared atmospheric absorption spectra at ˜0.02 cm-1 resolution obtained during a balloon flight made on March 23, 1981, show absorption features attributable to C2H2. These features are used to derive a preliminary mixing ratio of ˜25 pptv near 9 km. This mixing ratio falls into the range of values we calculate for upper tropospheric C2H2 in a photochemical/transport model but well below values measured previously in samples collected by other researchers.

  4. Terahertz Spectroscopy of the Bending Vibrations of Acetylene 12C2H2 and 12C2D2

    NASA Astrophysics Data System (ADS)

    Yu, Shanshan; Drouin, B.; Pearson, J.

    2009-12-01

    Several fundamental interstellar molecules, e.g., C2H2, CH4 and C3, are completely symmetric molecules and feature no permanent dipole moment and no pure rotation spectrum. As a result they have only previously been observed in the infrared. However, directly observing them with the rest of the molecular column especially when the source is spatially resolved would be very valuable in understanding chemical evolution. Vibrational difference bands provide a means to detect symmetric molecules with microwave precision using terahertz techniques. Herschel, SOFIA and ALMA have the potential to identify a number of vibrational difference bands of light symmetric species. This paper reports laboratory results on 12C2H2 and 12C2D2. Symmetric acetylene isotopologues have two bending modes, the trans bending and the cis bending. Their difference bands are allowed and occur in the microwave, terahertz, and far-infrared wavelengths, with band origins at 3500 GHz for 12C2H2 and 900 GHz for 12C2D2. Twenty 12C2H2 P branch high-J transitions and two hundred and fifty-one 12C2D2 P Q and R branch transitions have been measured in the 0.2 - 1.6 THz region with precision of 50 to 100 kHz. These lines were modeled together with prior data on the pure bending levels. Significantly improved molecular parameters were obtained for 12C2H2 and 12C2D2 with the combined data set, and new frequency and intensity predictions were made to support astrophysics applications. The research was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. S. Y. was supported by an appointment to the NASA Postdoctoral Program, administrated by Oak Ridge Associated Universities through a contract with NASA.

  5. Vibration-rotation spectroscopic database on acetylene, X ˜ 1 Σg + (12C2H2)

    NASA Astrophysics Data System (ADS)

    Amyay, B.; Fayt, A.; Herman, M.; Vander Auwera, J.

    2016-06-01

    A complete set of calculated vibration-rotation energies of 12C2H2 ( X ˜ 1 Σg + ) is provided for all vibrational states up to 13 000 cm-1 and some at higher energies, with rotational (J) and vibrational angular momentum (l) quantum numbers such that 0 ≤ J ≤ 100 and 0 ≤ |l| ≤ 20, respectively. The calculation is performed using a global effective Hamiltonian and related spectroscopic constants from the literature [B. Amyay et al., J. Mol. Spectrosc. 267, 80 (2011)], based on the polyad model. The numerical values of all related polyad matrix elements are also provided. The model and equations for the Hamiltonian matrix elements are gathered. The experimental acetylene database used for determining the parameters is listed.

  6. Untangling the reaction dynamics of the silylidyne radical (SiH; X2Π) with acetylene (C2H2; X1Σg+)

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Dangi, Beni B.; Thomas, Aaron M.; Kaiser, Ralf I.

    2016-06-01

    The chemical reaction dynamics of silylidyne (SiH; X2Π) with acetylene (C2H2; X1Σg+) were studied exploiting the crossed molecular beam approach, and compared with previous studies on D1-silylidyne with acetylene. The reaction is initiated by a barrierless addition of silylidyne to one or both carbons of acetylene leading to 1-sila-1-propene-1,3-diylidene and/or the cyclic 1-silacyclopropenyl with the former isomerizing to the latter. 1-Silacyclopropenyl eventually loses atomic hydrogen yielding silacyclopropenylidene (c-SiC2H2) in an overall exoergic reaction (experiment: -14.7 ± 8.5 kJ mol-1; theory: -13 ± 3 kJ mol-1). The enthalpy of formation for silacyclopropenylidene is determined to be 421.4 ± 9.3 kJ mol-1.

  7. Particle Generation And Evolution In Silane (SiH4)/Acetylene (C2H2) Flames In Microgravity

    NASA Technical Reports Server (NTRS)

    Keil, D. G.

    2003-01-01

    The objective of this experimental program is to advance the understanding of the coupling of particle formation with gas phase combustion processes. The work utilizes the unique SiH4/C2H2 combustion system which generates particulate products ranging from high purity, white SiC to carbonaceous soot depending on equivalence ratio (Ref. 1). A goal of this work is to identify gas phase or particle formation processes that provide the enthalpy release needed to drive the combustion wave, and to locate the steps of the particle formation process that determine SiC stoichiometry and crystallinity. In a real sense, these SiH4/C2H2 flames act like highly sooty hydrocarbon flames, but with simpler chemistry. This simplification is expected to allow them to be used as surrogates to advance understanding of soot formation in such rich hydrocarbon flames. It is also expected that this improved understanding of SiC particle generation and evolution in these self-sustaining flames will advance the commercial potential of the flame process for the generation of high purity SiC powders.

  8. Vibration-rotation alchemy in acetylene (12C2H2), ? at low vibrational excitation: from high resolution spectroscopy to fast intramolecular dynamics

    NASA Astrophysics Data System (ADS)

    Perry, David S.; Miller, Anthony; Amyay, Badr; Fayt, André; Herman, Michel

    2010-04-01

    The link between energy-resolved spectra and time-resolved dynamics is explored quantitatively for acetylene (12C2H2), ? with up to 8600 cm-1 of vibrational energy. This comparison is based on the extensive and reliable knowledge of the vibration-rotation energy levels and on the model Hamiltonian used to fit them to high precision [B. Amyay, S. Robert, M. Herman, A. Fayt, B. Raghavendra, A. Moudens, J. Thiévin, B. Rowe, and R. Georges, J. Chem. Phys. 131, 114301 (2009)]. Simulated intensity borrowing features in high resolution absorption spectra and predicted survival probabilities in intramolecular vibrational redistribution (IVR) are first investigated for the v 4 + v 5 and v 3 bright states, for J = 2, 30 and 100. The dependence of the results on the rotational quantum number and on the choice of vibrational bright state reflects the interplay of three kinds of off-diagonal resonances: anharmonic, rotational l-type, and Coriolis. The dynamical quantities used to characterize the calculated time-dependent dynamics are the dilution factor φ d, the IVR lifetime τ IVR , and the recurrence time τ rec. For the two bright states v 3 + 2v 4 and 7v 4, the collisionless dynamics for thermally averaged rotational distributions at T = 27, 270 and 500 K were calculated from the available spectroscopic data. For the 7v 4 bright state, an apparent irreversible decay of is found. In all cases, the model Hamiltonian allows a detailed calculation of the energy flow among all of the coupled zeroth-order vibration-rotation states.

  9. Synthesis of 1,2,3-tripnictolide anions by reaction of group 15 Zintl ions with acetylene. Isolation of [E3C2H2](-) (E = P, As) and preliminary reactivity studies.

    PubMed

    Turbervill, Robert S P; Goicoechea, Jose M

    2012-06-21

    Dimethylformamide solutions of K(3)E(7) (E = P, As) react with acetylene yielding the 1,2,3-tripnictolide anions [E(3)C(2)H(2)](-) (R = P (1), As (2)). Preliminary studies have shown that 1 and 2 displace labile ligands in [Ru(COD){η(3)-CH(3)C(CH(2))(2)}(2)] (COD = 1,5-cyclooctadiene) to yield the novel complexes [Ru(η(5)-E(3)C(2)H(2)){CH(3)C(CH(2))(2)}(2)}](-) (E = P (3), As (4)).

  10. Vertical column abundances and seasonal cycle of acetylene, C2H2, above the Jungfraujoch station, derived from IR solar observations

    NASA Technical Reports Server (NTRS)

    Zander, R.; Rinsland, C. P.; Ehhalt, D. H.; Rudolph, J.; Demoulin, PH.

    1991-01-01

    Results derived from a spectroscopic analysis of the nu5 band R19 transition of C2H2 observed in solar spectra recorded at the Jungfraujoch station, Switzerland, between June 1986 and April 1991 are reported. A least-squares sine fit to the data reveals a seasonal variability with an amplitude of about +/-40 percent of the mean; the maximum occurs during mid-winter and the minimum in summer. In general, the observed seasonal observations are comparable with those derived from airborne in-situ measurements and those reported from ground-based stations.

  11. Darling-Dennison resonance and Coriolis coupling in the bending overtones of the A 1A(u) state of acetylene, C2H2.

    PubMed

    Merer, Anthony J; Yamakita, Nami; Tsuchiya, Soji; Steeves, Adam H; Bechtel, Hans A; Field, Robert W

    2008-08-07

    Rotational analyses have been carried out for the overtones of the nu(4) (torsion) and nu(6) (in-plane cis-bend) vibrations of the A (1)A(u) state of C(2)H(2). The v(4)+v(6)=2 vibrational polyad was observed in high-sensitivity one-photon laser-induced fluorescence spectra and the v(4)+v(6)=3 polyad was observed in IR-UV double resonance spectra via the ground state nu(3) (Sigma(+) (u)) and nu(3)+nu(4) (Pi(u)) vibrational levels. The structures of these polyads are dominated by the effects of vibrational angular momentum: Vibrational levels of different symmetry interact via strong a-and b-axis Coriolis coupling, while levels of the same symmetry interact via Darling-Dennison resonance, where the interaction parameter has the exceptionally large value K(4466)=-51.68 cm(-1). The K-structures of the polyads bear almost no resemblance to the normal asymmetric top patterns, and many local avoided crossings occur between close-lying levels with nominal K-values differing by one or more units. Least squares analysis shows that the coupling parameters change only slightly with vibrational excitation, which has allowed successful predictions of the structures of the higher polyads: A number of weak bands from the v(4)+v(6)=4 and 5 polyads have been identified unambiguously. The state discovered by Scherer et al. [J. Chem. Phys. 85, 6315 (1986)], which appears to interact with the K=1 levels of the 3(3) vibrational state at low J, is identified as the second highest of the five K=1 members of the v(4)+v(6)=4 polyad. After allowing for the Darling-Dennison resonance, the zero-order bending structure can be represented by omega(4)=764.71, omega(6)=772.50, x(44)=0.19, x(66)=-4.23, and x(46)=11.39 cm(-1). The parameters x(46) and K(4466) are both sums of contributions from the vibrational angular momentum and from the anharmonic force field. For x(46) these contributions are 14.12 and -2.73 cm(-1), respectively, while the corresponding values for K(4466) are -28.24 and -23

  12. Improved rovibrational constants for the v7 = 1 state of ethylene-cis-1,2-d2 (cis-C2H2D2) by high-resolution synchrotron FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Tan, T. L.; Ng, L. L.; Gabona, M. G.; Aruchunan, G.; Wong, Andy; Appadoo, Dominique R. T.; McNaughton, Don

    2017-01-01

    Using the far-infrared beamline of the Australian Synchrotron, the spectrum of the ν7 band of ethylene-cis-1,2-d2 (cis-C2H2D2) was recorded in the 640-990 cm-1 region at an unapodized resolution of 0.00096 cm-1. A rovibrational analysis of a total of 2823 infrared transitions of the ν7 band was carried out using an asymmetric rotor fitting program based on the Watson's A-reduced Hamiltonian in the Ir representation to derive up to four sextic constants with a rms deviation of 0.00035 cm-1. From the fitting of 2634 ground state combination differences (GSCDs) of cis-C2H2D2 which were derived from the infrared transitions of the ν7 band of this work, and ν10 and ν12 bands of previous studies, together with 22 microwave frequencies, accurate ground state constants of cis-C2H2D2 up to four sextic terms were obtained. The rotational constants (A, B, and C) of the v7 = 1 state of cis-C2H2D2 were found to agree within 0.5% with the calculated values using B3LYP/cc-pVTZ and MP2/cc-pVTZ levels of theory. From this work, the band center of ν7 at 842.209489(20) cm-1 and the rovibrational constants of the v7 = 1 state of cis-C2H2D2 were determined with better accuracy than previously reported.

  13. Rationally tuned micropores within enantiopure metal-organic frameworks for highly selective separation of acetylene and ethylene.

    PubMed

    Xiang, Sheng-Chang; Zhang, Zhangjing; Zhao, Cong-Gui; Hong, Kunlun; Zhao, Xuebo; Ding, De-Rong; Xie, Ming-Hua; Wu, Chuan-De; Das, Madhab C; Gill, Rachel; Thomas, K Mark; Chen, Banglin

    2011-02-22

    Separation of acetylene and ethylene is an important industrial process because both compounds are essential reagents for a range of chemical products and materials. Current separation approaches include the partial hydrogenation of acetylene into ethylene over a supported Pd catalyst, and the extraction of cracked olefins using an organic solvent; both routes are costly and energy consuming. Adsorption technologies may allow separation, but microporous materials exhibiting highly selective adsorption of C(2)H(2)/C(2)H(4) have not been realized to date. Here, we report the development of tunable microporous enantiopure mixed-metal-organic framework (M'MOF) materials for highly selective separation of C(2)H(2) and C(2)H(4). The high selectivities achieved suggest the potential application of microporous M'MOFs for practical adsorption-based separation of C(2)H(2)/C(2)H(4).

  14. Coriolis interaction of the ν12 and 2ν10 bands of ethylene-cis-1,2-d2 (cis-C2H2D2) by high-resolution FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Ng, L. L.; Tan, T. L.; Gabona, M. G.

    2015-10-01

    The spectrum of the A-type ν12 band of ethylene-cis-1,2-d2 (cis-C2H2D2) was recorded at an unapodized resolution of 0.0063 cm-1 in the wavenumber range of 1270-1410 cm-1. The band is perturbed through a c-type Coriolis resonance with the unobserved B-type 2ν10 band which is situated approximately 11 cm-1 below the ν12 band center. In this work, a total of 73 new infrared transitions of high J and Ka values of the ν12 band were identified and assigned for a rovibrational analysis. Finally, a total of 844 perturbed and unperturbed infrared transitions (including those previously reported) of ν12 were assigned and fitted using Watson's A-reduced Hamiltonian in the Ir representation with the inclusion of a second-order c-type Coriolis interaction term to derive a set of rovibrational constants of better accuracy for the ν12 = 1 state up to two sextic terms. Improved rotational and two quartic centrifugal distortion constants were also derived for the ν10 = 2 state of cis-C2H2D2 from the analysis of the Coriolis interaction between the two perturbing bands. The ν12 band is found to be centered at 1341.150877 ± 0.000088 cm-1 while that of 2ν10 is 1330.6360 ± 0.0113 cm-1. By fitting the infrared lines of ν12 with an rms deviation of 0.00067 cm-1, a second-order c-Coriolis coupling constant was accurately determined. A set of ground state rovibrational constants up to two sextic terms of comparable accuracy to those previously reported was also derived from a simultaneous fit of a total of 1728 ground state combination differences (GSCDs) from the infrared transitions of the present analysis and those of the ν7 band of cis-C2H2D2 together with 22 microwave transitions. The root-mean-square deviation of the GSCD fit was 0.00030 cm-1.

  15. The Coriolis-interacting ν6 and ν4 bands of ethylene-cis-1,2-d2 (cis-C2H2D2) by high-resolution synchrotron Fourier transform infrared (FTIR) spectroscopy

    NASA Astrophysics Data System (ADS)

    Tan, T. L.; Gabona, M. G.; Wong, Andy; Appadoo, Dominique R. T.; McNaughton, Don

    2016-11-01

    The infrared spectrum of the ν6 band of ethylene-cis-1,2-d2 (cis-C2H2D2) was recorded at the Australian Synchrotron in the 980-1100 cm-1 region at an unapodized resolution of 0.00096 cm-1. Some of the transitions of the ν6 band centered at 1039.768335(30) cm-1 were perturbed by the upper energy levels of the infrared inactive ν4 band at 980.364(24) cm-1 by an a-type Coriolis interaction. Rovibrational analysis of a total of 941 unperturbed and perturbed infrared transitions of the ν6 band was carried out using an asymmetric rotor fitting program based on the Watson's A-reduced Hamiltonian in the Ir representation to derive up to 2 sextic constants for the ν6 = 1 state and 3 rotational constants (A, B, and C) for the ν4 = 1 state with a rms deviation of 0.00028 cm-1. From the perturbed analysis, the a-type Coriolis resonance parameter Z6,4a for the ν6 and ν4 interacting bands was determined to be 0.5249(14) cm-1. The band center and the rotational constants of the ν6 = 1 state were found to agree within 1% to the calculated values using B3LYP/cc-pVTZ and MP2/cc-pVTZ levels of theory. Furthermore, the a-type Coriolis coupling constant of these two bands derived from this work were compared to those experimentally determined previously and presently calculated.

  16. Quantum Chemical Evaluation of the Astrochemical Significance of Reactions between S Atom and Acetylene or Ethylene

    NASA Technical Reports Server (NTRS)

    Woon, David E.

    2007-01-01

    Addition-elimination reactions of S atom in its P-3 ground state with acetylene (C2H2) and ethylene (C2H4) were characterized with both molecular orbital and density functional theory calculations employing correlation consistent basis sets in order to assess the likelihood either reaction might play a general role in astrochemistry or a specific role in the formation of S2 (X (sup 3 SIGMA (sub g) (sup -)) via a mechanism proposed by Saxena and Misra (Mon. Not. R. Astron. Soc. 1995, 272, 89). The acetylene and ethylene reactions proceed through C2H2S ((sup 3)A")) and C2H4S ((sup 3)A")) intermediates, respectively, to yield HCCS ((sup 2)II)) and C2H3S ((sup 2)A')). Substantial barriers were found in the exit channels for every combination of method and basis set considered in this work, which effectively precludes hydrogen elimination pathways for both S + C2H2 and S + C2H4 in the ultracold interstellar medium where only very modest barriers can be surmounted and processes without barriers tend to predominate. However, if one or both intermediates is formed and stabilized efficiently under cometary or dense interstellar cloud conditions, they could serve as temporary reservoirs for S atom and participate in reactions such as S + C2H2S (right arrow) S2 = C2H2 or S + C2H4S (right arrow) S2 + C2H4. For formation and stabilization to be efficient, the reaction must possess a barrier height small enough to be surmountable at low temperatures yet large enough to prevent redissociation to reactants. Barrier heights computed with B3LYP and large basis sets are very low, but more rigorous QCISD(T) and RCCSD(T) results indicate that the barrier heights are closer to 3-4 kcal/mol. The calculations therefore indicate that S + C2H2 or S + C2H4 could contribute to the formation of S2 in comets and may serve as a means to gauge coma temperature. The energetics of the ethylene reaction are more favorable.

  17. Quantum chemical evaluation of the astrochemical significance of reactions between S atom and acetylene or ethylene.

    PubMed

    Woon, David E

    2007-11-08

    Addition-elimination reactions of S atom in its 3P ground state with acetylene (C2H2) and ethylene (C2H4) were characterized with both molecular orbital and density functional theory calculations employing correlation consistent basis sets in order to assess the likelihood that either reaction might play a general role in astrochemistry or a specific role in the formation of S2 (X3Sigmag-) via a mechanism proposed by Saxena, P. P.; Misra, A. Mon. Not. R. Astron. Soc. 1995, 272, 89. The acetylene and ethylene reactions proceed through C2H2S (3A' ') and C2H4S (3A' ') intermediates, respectively, to yield HCCS (2Pi) and C2H3S (2A'). Substantial barriers were found in the exit channels for every combination of method and basis set considered in this work, which effectively precludes hydrogen elimination pathways for both S + C2H2 and S + C2H4 in the ultracold interstellar medium where only very modest barriers can be surmounted and processes without barriers tend to predominate. However, if one or both intermediates are formed and stabilized efficiently under cometary or dense interstellar cloud conditions, they could serve as temporary reservoirs for the S atom and participate in reactions such as S + C2H2S --> S2 + C2H2 or S + C2H4S --> S2 + C2H4. For formation and stabilization to be efficient, the reaction must possess a barrier height small enough to be surmountable at low temperatures yet large enough to prevent redissociation to reactants. Barrier heights computed with B3LYP and large basis sets are very low, but more rigorous QCISD(T) and RCCSD(T) results indicate that the barrier heights are closer to 3-4 kcal/mol. The calculations therefore indicate that S + C2H2 or S + C2H4 could contribute to the formation of S2 in comets and may serve as a means to gauge coma temperature. The energetics of the ethylene reaction are more favorable.

  18. C2H2 adsorption in three isostructural metal-organic frameworks: boosting C2H2 uptake by rational arrangement of nitrogen sites.

    PubMed

    Song, Chengling; Jiao, Jingjing; Lin, Qiyi; Liu, Huimin; He, Yabing

    2016-03-21

    Replacing the benzene spacer in the organic linker 5,5'-(benzene-1,4-diyl)diisophthalate with the nitrogen containing heterocyclic rings, namely, pyrazine, pyridazine, and pyrimidine results in three organic linkers, which were reacted with copper ions under solvothermal conditions to form three isostructural metal-organic frameworks (ZJNU-46, ZJNU-47 and ZJNU-48) exhibiting exceptionally high sorption capacities with regard to acetylene due to the simultaneous immobilization of open metal sites and Lewis basic nitrogen sites in the frameworks. At 1 atm and 295 K, the gravimetric C2H2 adsorption uptakes reach 187, 213 and 193 cm(3) (STP) g(-1) for these three compounds. The gravimetric C2H2 adsorption amount of ZJNU-47a is the second highest reported for MOF materials. Notably, despite their same porosities, and densities of open metal sites and uncoordinated nitrogen sites, distinctly different C2H2 adsorption capacities were observed for these three compounds, which we think are mainly associated with the difference in the relative position of nitrogen atoms leading to different binding affinities of the frameworks towards C2H2 guest molecules, and thus different C2H2 adsorptions. This work demonstrates that the rational arrangement of open nitrogen sites will favorably improve the C2H2 uptake and thus provides useful information for future design of porous MOFs with high acetylene storage capacities.

  19. Heats of Formation of Triplet Ethylene, Ethylidene, and Acetylene

    SciTech Connect

    Nguyen, M.T.; Matus, M.H.; Lester Jr, W.A.; Dixon, David A.

    2007-06-28

    Heats of formation of the lowest triplet state of ethylene and the ground triplet state of ethylidene have been predicted by high level electronic structure calculations. Total atomization energies obtained from coupled-cluster CCSD(T) energies extrapolated to the complete basis set limit using correlation consistent basis sets (CBS), plus additional corrections predict the following heats of formation in kcal/mol: Delta H0f(C2H4,3A1) = 80.1 at 0 K and 78.5 at 298 K, and Delta H0f(CH3CH,3A") = 86.8 at 0 K and 85.1 at 298 K, with an error of less than +-1.0 kcal/mol. The vertical and adiabatic singlet-triplet separation energies of ethylene were calculated as Delta ES-T,vert = 104.1 and Delta ES-T,adia = 65.8 kcal/mol. These results are in excellent agreement with recent quantum Monte Carlo (DMC) values of 103.5 +- 0.3 and 66.4 +- 0.3 kcal/mol. Both sets of computational values differ from the experimental estimate of 58 +- 3 kcal/mol for the adiabatic splitting. The computed singlet-triplet gap at 0 K for acetylene is Delta ES-T,adia(C2H2) = 90.5 kcal/mol, which is in notable disagreement with the experimental value of 82.6 kcal/mol. The heat of formation of the triplet is Delta H0f(C2H2,3B2) = 145.3 kcal/mol. There is a systematic underestimation of the singlet-triplet gaps in recent photodecomposition experiments by ~;;7 to 8 kcal/mol. For vinylidene, we predict Delta H0f(H2CC,1A1) = 98.8 kcal/mol at 298 K (exptl. 100.3 +- 4.0), Delta H0f(H2CC,3B2) = 146.2 at 298 K, and an energy gap Delta ES-T-adia(H2CC) = 47.7 kcal/mol.

  20. Differential solubility of ethylene and acetylene in room-temperature ionic liquids: a theoretical study.

    PubMed

    Zhao, Xu; Xing, Huabin; Yang, Qiwei; Li, Rulong; Su, Baogen; Bao, Zongbi; Yang, Yiwen; Ren, Qilong

    2012-04-05

    The room-temperature ionic liquids (RTILs) have potential in realizing the ethylene (C(2)H(4)) and acetylene (C(2)H(2)) separation and avoiding solvent loss and environmental pollution compared with traditional solvents. The interaction mechanisms between gases and RTILs are important for the exploration of new RTILs for gas separation; thus, they were studied by quantum chemical calculation and molecular dynamics simulation in this work. The optimized geometries were obtained for the complexes of C(2)H(4)/C(2)H(2) with anions (Tf(2)N(-), BF(4)(-), and OAc(-)), cation (bmim(+)), and their ion pairs, and the analysis for geometry, interaction energy, natural bond orbital (NBO), and atoms in molecules (AIM) was performed. The quantum chemical calculation results show that the hydrogen-bonding interaction between the gas molecule and anion is the dominant factor in determining the solubility of C(2)H(2) in RTILs. However, the hydrogen-bonding interaction, the p-π interaction in C(2)H(4)-anion, and the π-π interaction in C(2)H(4)-cation are weak and comparable, which all affect the solubility of C(2)H(4) in RTILs with comparable contribution. The calculated results for the distance of H(gas)···X (X = O or F in anions), the BSSE-corrected interaction energy, the electron density of H(gas)···X at the bond critical point (ρ(BCP)), and the relative second-order perturbation stabilization energy (E(2)) are consistent with the experimental data that C(2)H(2) is more soluble than C(2)H(4) in the same RTILs and the solubility of C(2)H(4) in RTILs has the following order: [bmim][Tf(2)N] > [bmim][OAc] > [bmim][BF(4)]. The calculated results also agree with the order of C(2)H(2) solubility in different RTILs that [bmim][OAc] > [bmim][BF(4)] > [bmim][Tf(2)N]. Furthermore, the calculation results indicate that there is strong C(2)H(2)-RTIL interaction, which cannot be negligible compared to the RTIL-RTIL interaction; thus, the regular solution theory is probably not

  1. DFT study of selective hydrogenation of acetylene to ethylene on Pd doping Ag nanoclusters

    NASA Astrophysics Data System (ADS)

    Liu, D.

    2016-11-01

    Recently, it has been reported that the reaction selectivity of catalytic hydrogenation of acetylene to ethylene can be significantly enhanced via the approach of Pd mono-atomic catalysis [Pei et al. ACS Catal. 5 (2015) 3717-3725]. To explain the catalytic mechanism of this binary alloy catalyst, C2H2 hydrogenation reactions on Pd doping Ag nanoclusters are studied using density functional theory simulations. The simulation results indicate that H2 and C2H2 can simultaneously bind with a single Pd doping atom no matter it is on vertex and edge sites of Ag clusters. The following H2 dissociation and C2H2 hydrogenation are not difficult since the corresponding reaction barrier values are no more than 0.58 eV. The generated C2H4 molecule can not be further hydrogenated since it locates on the top of Pd doping atom, which is the only adsorption site for H2. On two Pd doping atoms at contiguous sites of Ag clusters, C2H4 hydrogenation reactions can be carried out since there are enough sites for co-adsorption of H2 and C2H4.

  2. Structural characterization of (C2H2)1-6+ cluster ions by vibrational predissociation spectroscopy

    NASA Astrophysics Data System (ADS)

    Relph, Rachael A.; Bopp, Joseph C.; Roscioli, Joseph R.; Johnson, Mark A.

    2009-09-01

    Vibrational predissociation spectra are reported for the cationic acetylene clusters, (C2H2)n+, n =1-6, in the region of the C-H stretching fundamentals. For n =1 and 2, predissociation could only be observed for the Ar-tagged clusters. These were prepared by charge-transfer collisions of Ark+ with C2H2 to create C2H2+ṡArm clusters, which were then converted into larger members of the (C2H2)n+ṡAr series by sequential addition of acetylene molecules. The (C2H2)2+ṡAr spectrum indicates that this species is predominantly present as the cyclobutadiene cation. Although mobility measurements on the electron-impact-generated (C2H2)3+ ion indicated that it primarily occurs as the benzene cation, [P. O. Momoh, J. Am. Chem. Soc. 128, 12408 (2006)] photofragmentation of (C2H2)3+ṡAr in the C-H stretching region is dominated by the loss of C2H2 in addition to the weakly bound Ar atom. This suggests that the dominant n =3 species formed by sequential addition of C2H2 is based on a covalently bound C4H4+ core ion. Interestingly, the spectrum of this core C4H4+ species is different from that found for the cyclobutadiene cation, displaying instead a new band pattern that is retained in the higher (C2H2)3-6+ clusters. Multiple isomers are clearly involved, as yet another pattern of bands is recovered when the (C2H2)3+ṡAr action spectrum is recorded in the (minor) Ar loss fragmentation channel. One of these features does appear in the location of the single band characteristic of the Ar-tagged benzene cation reported earlier [Phys. Chem. Chem. Phys. 4, 24 (2002)], supporting a scenario where the benzene cation is one of the isomers present. We then compare the Ar predissociation results with (C2H2)n+ spectra obtained when the ions are prepared by electron impact ionization of neutral acetylene clusters. The photofragmentation behavior and vibrational spectra indicate that the dominant species formed in this way also occur with a covalently bound C4H4+ core. There are

  3. Association reactions at low pressure. III. The C2H2+/C2H2 system.

    PubMed

    Anicich, V G; Sen, A D; Huntress, W T; McEwan, M J

    1990-11-15

    The association reactions, C4H2(+) + C2H2 and C4H3(+) + C2H2 have been examined at pressures between 8 x 10(-8) and 1 x 10(-4) Torr at 298 K in an ion cyclotron resonance mass spectrometer. Association occurred via two different mechanisms. At pressures below approximately 2 x 10(-6) Torr, the association was bimolecular having rate coefficients k2 = 2.7 x 10(-10) cm3 s-1 and 2.0 x 10(-10) cm3 s-1 for C4H2+ and C4H3+, respectively. At pressures above approximately 2 x 10(-6) Torr, termolecular association was observed with rate coefficients, k3 = 5.7 x 10(-23) cm6 s-1 and 1.3 x 10(-23) cm6 s-1 for C4H2+ and C4H3+, respectively, when M = C2H2. The termolecular rate constants with N2, Ar, Ne, and He as the third body, M, are also reported. We propose that the low pressure bimolecular association process was the result of radiative stabilization of the complex and the termolecular association process was the result of collisional stabilization. Elementary rate coefficients were obtained and the lifetime of the collision complex was > or = 57 microseconds for (C6H4+)* and > or = 18 microseconds for (C6H5+)*. At pressures below 1 x 10(-6) Torr, approximately 11% of the (C6H4+)* were stabilized by photon emission and the remaining approximately 89% reverted back to reactants, while approximately 24% of the (C6H5+)* were stabilized by photon emission and the remaining approximately 76% reverted back to reactants. The ionic products of the C2H2(+) + C2H2 reaction, C4H2+ and C4H3+, were found to be formed with enough internal energy that they did not react by the radiative association channel until relaxed by several nonreactive collisions with the bath gas.

  4. Laboratory IR Studies and Astrophysical Implications of C2H2-Containing Binary Ices

    NASA Technical Reports Server (NTRS)

    Knez, C.; Moore, M.; Ferrante, R.; Hudson, R.

    2012-01-01

    Studies of molecular hot cores and protostellar environments have shown that the observed abundance of gas-phase acetylene (C2H2) cannot be matched by chemical models without the inclusion of C2H2 molecules subliming from icy grain mantles. Searches for infrared (IR) spectral features of solid-phase acetylene are under way, but few laboratory reference spectra of C2H2 in icy mixtures, which are needed for spectral fits to observational data, have been published. Here, we report a systematic study of the IR spectra of condensed-phase pure acetylene and acetylene in ices dominated by carbon monoxide (CO), carbon dioxide (CO2), methane (CH4), and water (H2O). We present new spectral data for these ices, including band positions and intrinsic band strengths. For each ice mixture and concentration, we also explore the dependence of acetylene's nu5-band position (743 cm-1, 13.46 micrometers) and FWHM on temperature. Our results show that the nu5 feature is much more cleanly resolved in ices dominated by non-polar and low-polarity molecules, specifically CO, CO2, and CH4, than in mixtures dominated by H2O-ice. We compare our laboratory ice spectra with observations of a quiescent region in Serpens.

  5. Electron-Impact Total Ionization Cross Sections of CH and C2H2

    PubMed Central

    Kim, Yong-Ki; Ali, M. Asgar; Rudd, M. Eugene

    1997-01-01

    Electron-impact total ionization cross sections for the CH radical and C2H2 (acetylene) have been calculated using the Binary-Encounter-Bethe (BEB) model. The BEB model combines the Mott cross section and the asymptotic form of the Bethe theory, and has been shown to generate reliable ionization cross sections for a large variety of molecules. The BEB cross sections for CH and C2H2 are in good agreement with the available experimental data from ionization thresholds to hundreds of eV in incident energies. PMID:27805116

  6. A Diels-Alder super diene breaking benzene into C2H2 and C4H4 units

    NASA Astrophysics Data System (ADS)

    Inagaki, Yusuke; Nakamoto, Masaaki; Sekiguchi, Akira

    2014-01-01

    Cyclic polyene with six carbon atoms (benzene) is very stable, whereas cyclic polyene with four carbon atoms (cyclobutadiene) is extremely unstable. The electron-withdrawing pentafluorophenyl group of a substituted cyclobutadiene lowers the energy of the lowest unoccupied molecular orbital, greatly increasing its reactivity as a diene in Diels-Alder reactions with acetylene, ethylene and even benzene. Here we show that the reaction with benzene occurs cleanly at the relatively low temperature of 120 °C and results in the formal fragmentation of benzene into C2H2 and C4H4 units, via a unique Diels-Alder/retro-Diels-Alder reaction. This is a new example of the rare case where breaking the C-C bond of benzene is possible with no activation by a transition metal.

  7. A Diels–Alder super diene breaking benzene into C2H2 and C4H4 units

    PubMed Central

    Inagaki, Yusuke; Nakamoto, Masaaki; Sekiguchi, Akira

    2014-01-01

    Cyclic polyene with six carbon atoms (benzene) is very stable, whereas cyclic polyene with four carbon atoms (cyclobutadiene) is extremely unstable. The electron-withdrawing pentafluorophenyl group of a substituted cyclobutadiene lowers the energy of the lowest unoccupied molecular orbital, greatly increasing its reactivity as a diene in Diels–Alder reactions with acetylene, ethylene and even benzene. Here we show that the reaction with benzene occurs cleanly at the relatively low temperature of 120 °C and results in the formal fragmentation of benzene into C2H2 and C4H4 units, via a unique Diels–Alder/retro-Diels–Alder reaction. This is a new example of the rare case where breaking the C–C bond of benzene is possible with no activation by a transition metal. PMID:24398593

  8. Microporous metal-organic framework with dual functionalities for highly efficient removal of acetylene from ethylene/acetylene mixtures

    NASA Astrophysics Data System (ADS)

    Hu, Tong-Liang; Wang, Hailong; Li, Bin; Krishna, Rajamani; Wu, Hui; Zhou, Wei; Zhao, Yunfeng; Han, Yu; Wang, Xue; Zhu, Weidong; Yao, Zizhu; Xiang, Shengchang; Chen, Banglin

    2015-06-01

    The removal of acetylene from ethylene/acetylene mixtures containing 1% acetylene is a technologically very important, but highly challenging task. Current removal approaches include the partial hydrogenation over a noble metal catalyst and the solvent extraction of cracked olefins, both of which are cost and energy consumptive. Here we report a microporous metal-organic framework in which the suitable pore/cage spaces preferentially take up much more acetylene than ethylene while the functional amine groups on the pore/cage surfaces further enforce their interactions with acetylene molecules, leading to its superior performance for this separation. The single X-ray diffraction studies, temperature dependent gas sorption isotherms, simulated and experimental column breakthrough curves and molecular simulation studies collaboratively support the claim, underlying the potential of this material for the industrial usage of the removal of acetylene from ethylene/acetylene mixtures containing 1% acetylene at room temperature through the cost- and energy-efficient adsorption separation process.

  9. Microporous metal–organic framework with dual functionalities for highly efficient removal of acetylene from ethylene/acetylene mixtures

    PubMed Central

    Hu, Tong-Liang; Wang, Hailong; Li, Bin; Krishna, Rajamani; Wu, Hui; Zhou, Wei; Zhao, Yunfeng; Han, Yu; Wang, Xue; Zhu, Weidong; Yao, Zizhu; Xiang, Shengchang; Chen, Banglin

    2015-01-01

    The removal of acetylene from ethylene/acetylene mixtures containing 1% acetylene is a technologically very important, but highly challenging task. Current removal approaches include the partial hydrogenation over a noble metal catalyst and the solvent extraction of cracked olefins, both of which are cost and energy consumptive. Here we report a microporous metal–organic framework in which the suitable pore/cage spaces preferentially take up much more acetylene than ethylene while the functional amine groups on the pore/cage surfaces further enforce their interactions with acetylene molecules, leading to its superior performance for this separation. The single X-ray diffraction studies, temperature dependent gas sorption isotherms, simulated and experimental column breakthrough curves and molecular simulation studies collaboratively support the claim, underlying the potential of this material for the industrial usage of the removal of acetylene from ethylene/acetylene mixtures containing 1% acetylene at room temperature through the cost- and energy-efficient adsorption separation process. PMID:26041691

  10. Hydrogenation and Deuteration of C2H2 and C2H4 on Cold Grains: A Clue to the Formation Mechanism of C2H6 with Astronomical Interest

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hitomi; Hidaka, Hiroshi; Lamberts, Thanja; Hama, Tetsuya; Kawakita, Hideyo; Kästner, Johannes; Watanabe, Naoki

    2017-03-01

    We quantitatively investigated the hydrogen addition reactions of acetylene (C2H2) and ethylene (C2H4) on amorphous solid water (ASW) at 10 and 20 K relevant to the formation of ethane (C2H6) on interstellar icy grains. We found that the ASW surface enhances the reaction rates for C2H2 and C2H4 by approximately a factor of 2 compared to those on the pure-solid C2H2 and C2H4 at 10 K, probably due to an increase in the sticking coefficient and adsorption energy of the H atoms on ASW. In contrast to the previous proposal that the hydrogenation rate of C2H4 is orders of magnitude larger than that of C2H2, the present results show that the difference in hydrogenation rates of C2H2 and C2H4 is only within a factor of 3 on both the surfaces of pure solids and ASW. In addition, we found the small kinetic isotope effect for hydrogenation/deuteration of C2H2 and C2H4 at 10 K, despite the requirement of quantum tunneling. At 20 K, the reaction rate of deuteration becomes even larger than that of hydrogenation. These unusual isotope effects might originate from a slightly larger number density of D atoms than H atoms on ASW at 20 K. The hydrogenation of C2H2 is four times faster than CO hydrogenation and can produce C2H6 efficiently through C2H4 even in the environment of a dark molecular cloud.

  11. Temperature and pressure dependence of the absolute rate constant for the reactions of NH2 radicals with acetylene and ethylene

    NASA Technical Reports Server (NTRS)

    Bosco, S. R.; Nava, D. F.; Brobst, W. D.; Stief, L. J.

    1984-01-01

    The absolute rate constants for the reaction between the NH2 free radical and acetylene and ethylene is measured experimentally using a flash photolysis technique. The constant is considered to be a function of temperature and pressure. At each temperature level of the experiment, the observed pseudo-first-order rate constants were assumed to be independent of flash intensity. The results of the experiment indicate that the bimolecular rate constant for the NH2 + C2H2 reaction increases with pressure at 373 K and 459 K but not at lower temperatures. Results near the pressure limit conform to an Arrhenius expression of 1.11 (+ or -) 0.36 x 10 to the -13th over the temperature range from 241 to 459 K. For the reaction NH2 + C2H4, a smaller rate of increase in the bimolecular rate constant was observed over the temperature range 250-465 K. The implications of these results for current theoretical models of NH2 + C2H2 (or H4) reactions in the atmospheres of Jupiter and Saturn are discussed.

  12. Study of C2H2 optic-fiber monitoring system on spectrum absorption

    NASA Astrophysics Data System (ADS)

    Wang, Yutian; Li, Xiao-Xin; Wang, Zhong-Dong

    2005-02-01

    We report our research on the development of optical fiber trace gas sensors for environmental applications. A novel optical fiber sensor for monitoring acetylene (C2H2) gases is described. Through studying the measure theory, we use the Beer-Lambert law to monitor the gas. And after analyzing the C2H2 spectrum, we select Distributed Feedback Laser Diode (DFB LD) as light source. Comparing many kinds" sensor detection head, the gas absorbing cell with tail fiber can have good coupling with optical fiber and improve the coupling stability. In the data processing system, signals are distilled by lock-in amplifiers and then harmonic measure technology processes that distilled faint signals. After the all, the electronic signals are transmitted into computer to process, alarm and display. We design the instrument who can remote and on-line measuring acetylene. Through theory analysis and system experiment, the design of the system is practicable, and has a better precision and some apply foreground.

  13. Probing anisotropic interaction potentials of unsaturated hydrocarbons with He*(2 3S) metastable atom: Attractive-site preference of σ-direction in C2H2 and π-direction in C2H4

    NASA Astrophysics Data System (ADS)

    Horio, Takuya; Hatamoto, Takuro; Maeda, Satoshi; Kishimoto, Naoki; Ohno, Koichi

    2006-03-01

    State-resolved collision energy dependence of Penning ionization cross sections of acetylene (C2H2) and ethylene (C2H4) with He*(2S3) metastable atoms was observed in a wide collision energy range from 20to350meV. A recently developed discharge nozzle source with a liquid N2 circulator was employed for the measurements in the low-energy range from 20to80meV. Based on classical trajectory calculations for the energy dependence of the partial ionization cross sections, anisotropic potential energy surfaces for the present systems were obtained by optimizing ab initio model potentials for the chemically related systems Li +C2H2 and C2H4. In the case of C2H2, the global minimum was found to be located around the H atom along the molecular axis with a well depth of 48meV (ca. 1.1kcal/mol). On the other hand, a dominant attractive well with a depth of 62meV (ca. 1.4kcal/mol) was found in the πCC electron region of C2H4. These findings were discussed in connection with orbital interactions between molecular orbitals of the target molecules and atomic orbitals of the metastable atom. It is concluded that σ-type unoccupied molecular orbitals of C2H2 and a πCC-type highest occupied molecular orbital of C2H4 play a significant role for the attractive-site preference of σ direction in C2H2 and π direction in C2H4, respectively.

  14. Herman-Wallis factors in the C2H2nu5 infrared fundamental near 14 microns

    NASA Technical Reports Server (NTRS)

    Maguire, William C.; Hillman, John J.; Weber, Mark; Blass, William E.

    1991-01-01

    The presence of acetylene has been confirmed for some time in the atmospheres of the outer planets Jupiter, Saturn, Neptune, and Saturn's satellite Titan. For these atmospheres, the determination of C2H2 abundances using its strong nu5 fundamental requires laboratory line position and intensity measurements. The 1-m Fourier transform spectrometer at McMath solar telescope of Kitt Peak National Observatory was used to measure C2H2 at an unapodized spectral resolution of 0.0025/cm. Synthetic spectra are generated by convolving a Voigt line shape with an instrument function and varying intensity parameters by means of a nonlinear least squares technique. Intensities of 37 nu5 lines spanning P18 through R20 were measured using 0.123 torr of gas in a 1-cm cell. A Herman-Wallis intensity correction parameter of 1.3(4) x 10 to the -3rd has been derived using a least squares linear fit.

  15. Muonium Addition Reactions and Kinetic Isotope Effects in the Gas Phase: k∞ Rate Constants for Mu + C2H2.

    PubMed

    Arseneau, Donald J; Garner, David M; Reid, Ivan D; Fleming, Donald G

    2015-07-16

    The kinetics of the addition reaction of muonium (Mu) to acetylene have been studied in the gas phase at N2 moderator pressures mainly from ∼800 to 1000 Torr and over the temperature range from 168 to 446 K, but also down to 200 Torr at 168 K and over a much higher range of pressures, from 10 to 44 bar at 295 K, demonstrating pressure-independent rate constants, kMu(T). Even at 200 Torr moderator pressure, the kinetics for Mu + C2H2 addition behave as if effectively in the high-pressure limit, giving k∞ = kMu due to depolarization of the muon spin in the MuC2H2 radical formed in the addition step. The rate constants kMu(T) exhibit modest Arrhenius curvature over the range of measured temperatures. Comparisons with data and with calculations for the corresponding H(D) + C2H2 addition reactions reveal a much faster rate for the Mu reaction at the lowest temperatures, by 2 orders of magnitude, in accord with the propensity of Mu to undergo quantum tunneling. Moreover, isotopic atom exchange, which contributes in a major way to the analogous D atom reaction, forming C2HD + H, is expected to be unimportant in the case of Mu addition, a consequence of the much higher zero-point energy and hence weaker C-Mu bond that would form, meaning that the present report of the Mu + C2H2 reaction is effectively the only experimental study of kinetic isotope effects in the high-pressure limit for H-atom addition to acetylene.

  16. Triel Bonds, π-Hole-π-Electrons Interactions in Complexes of Boron and Aluminium Trihalides and Trihydrides with Acetylene and Ethylene.

    PubMed

    Grabowski, Sławomir J

    2015-06-19

    MP2/aug-cc-pVTZ calculations were performed on complexes of aluminium and boron trihydrides and trihalides with acetylene and ethylene. These complexes are linked through triel bonds where the triel center (B or Al) is characterized by the Lewis acid properties through its π-hole region while π-electrons of C2H2 or C2H4 molecule play the role of the Lewis base. Some of these interactions possess characteristics of covalent bonds, i.e., the Al-π-electrons links as well as the interaction in the BH3-C2H2 complex. The triel-π-electrons interactions are classified sometimes as the 3c-2e bonds. In the case of boron trihydrides, these interactions are often the preliminary stages of the hydroboration reaction. The Quantum Theory of "Atoms in Molecules" as well as the Natural Bond Orbitals approach are applied here to characterize the π-hole-π-electrons interactions.

  17. Estimation of nitrogenase activity in the presence of ethylene biosynthesis by use of deuterated acetylene as a substrate

    SciTech Connect

    Lin-Vien, D.; Fateley, W.G.; Davis, L.C. )

    1989-02-01

    Nitrogenase reduces deuterated acetylene primarily to cis dideuterated ethylene. This can be distinguished from undeuterated ethylene by the use of Fourier transform infrared spectroscopy. Characteristic bands in the region from 800 to 3,500 cm-1 can be used to identify and quantitate levels of these products. This technique is applicable to field studies of nitrogen fixation where ethylene biosynthesis by plants or bacteria is occurring. We have verified the reaction stoichiometry by using Klebsiella pneumoniae and Bradyrhizobium japonicum in soybeans. The most useful bands for quantitation of substrate purity and product distribution are as follows: acetylene-d0, 3,374 cm-1; acetylene-d1, 2,584 cm-1; acetylene-d2, 2,439 cm-1; cis-ethylene-d2, 843 cm-1; trans-ethylene-d2, 988 cm-1; ethylene-d1, 943 cm-1; ethylene-d0, 949 cm-1. (The various deuterated ethylenes and acetylenes are designated by a lowercase d and subscript to indicate the number, but not the position, of deuterium atoms in the molecule.) Mass spectrometry coupled to a gas chromatograph system has been used to assist in quantitation of the substrate and product distributions. Significant amounts of trans-ethylene-d2 were produced by both wild-type and nifV mutant K. pneumoniae. Less of this product was observed with the soybean system.

  18. Ion-neutral reaction of the C2H2N+ cation with C2H2: An experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Fathi, P.; Geppert, W. D.; Kaiser, A.; Ascenzi, D.

    2016-03-01

    The ion-neutral reactions of the C2H2N+ cation with C2H2 have been investigated using a Guided Ion Beam Mass Spectrometer (GIB-MS). The following ionic products were observed: CH3+, C2H2+, C2H3+, HNC+ /HCN+ , HCNH+, C3H+ , C2N+ , C3H3+, HCCN+ and C4H2N+ . Theoretical calculations have been carried out to propose reaction pathways leading to the observed products. These processes are of relevance for the generation of long chain nitrogen-containing species and they may be of interest for the chemistry of Titan's ionosphere or circumstellar envelopes.

  19. Thinking out of the black box: accurate barrier heights of 1,3-dipolar cycloadditions of ozone with acetylene and ethylene.

    PubMed

    Wheeler, Steven E; Ess, Daniel H; Houk, K N

    2008-02-28

    Accurate barriers for the 1,3-dipolar cycloadditions of ozone with acetylene and ethylene have been determined via the systematic extrapolation of ab initio energies within the focal point approach of Allen and co-workers. Electron correlation has been accounted for primarily via coupled cluster theory, including single, double, and triple excitations, as well as a perturbative treatment of connected quadruple excitations [CCSD, CCSD(T), CCSDT, and CCSDT(Q)]. For the concerted [4 + 2] cycloadditions, the final recommended barriers are DeltaH(0K) = 9.4 +/- 0.2 and 5.3 +/- 0.2 kcal mol(-1) for ozone adding to acetylene and ethylene, respectively. These agree with recent results of Cremer et al. and Anglada et al., respectively. The reaction energy for O3 + C2H2 exhibits a protracted convergence with respect to inclusion of electron correlation, with the CCSDT/cc-pVDZ and CCSDT(Q)/cc-pVDZ values differing by 2.3 kcal mol-1. Recommended enthalpies of formation (298 K) for cycloadducts 1,2,3-trioxole and 1,2,3-trioxolane are +32.8 and -1.6 kcal mol(-1), respectively. Popular composite ab initio approaches [CBS-QB3, CBS-APNO, G3, G3B3, G3(MP2)B3, G4, G4(MP3), and G4(MP2)] predict a range of barrier heights for these systems. The CBS-QB3 computed barrier for ozone and acetylene, DeltaH(0K) = 4.4 kcal mol(-1), deviates by 5 kcal mol(-1) from the focal point value. CBS-QB3 similarly underestimates the barrier for the reaction of ozone and ethylene, yielding a prediction of only 0.7 kcal mol(-1). The errors in the CBS-QB3 results are significantly larger than mean errors observed in application to the G2 test set. The problem is traced to the nontransferability of MP2 basis set effects in the case of these reaction barriers. The recently published G4 and G4(MP2) approaches perform substantially better for O3 + C2H2, predicting enthalpy barriers of 9.0 and 8.4 kcal mol(-1), respectively. For the prediction of these reaction barriers, the additive corrections applied in the

  20. Isomerization, Perturbations, Calculations and the S_{1} State of C_{2}H_{2}

    NASA Astrophysics Data System (ADS)

    Baraban, J. H.; Changala, P. B.; Berk, J. R. P.; Field, R. W.; Stanton, J. F.; Merer, A. J.

    2013-06-01

    Preliminary analysis of the energy region of the cis-trans isomerization transition state on the S_{1} surface of C_{2}H_{2} has revealed novel patterns and surprising perturbations, including unusually large (and high-order) anharmonicities, as well as K-staggerings of several vibrational levels. These effects complicate the analysis considerably, and require new models and calculations to account for and predict features of the observed spectra. The ˜{A}-˜{X} spectrum of acetylene has been studied both experimentally and theoretically for almost a century, and this cycle of unexpected phenomena eliciting innovative responses is found throughout its history. Especially in the last ten years, progress in understanding the S_{1} state rovibrational level structure and cis-trans isomerization has been accelerated by combining the information available from both ab initio computation and spectroscopic observations. The resulting dialogue has then frequently suggested fruitful avenues for further experiments and calculations. Current challenges and recent results in understanding the cis-trans isomerization transition state region will be discussed in this context.

  1. Identification of New {CIS} Vibrational Levels in the S1 State of C2H2

    NASA Astrophysics Data System (ADS)

    Baraban, J. H.; Changala, P. B.; Shaver, R. G.; Field, R. W.; Stanton, J. F.; Merer, A. J.

    2012-06-01

    Although the S_1 (tilde{A} ^1A_u) state of the trans conformer of acetylene has been known for many years, the corresponding S_1 (tilde{A} ^1A_2) state of the cis conformer was only discovered recently. Transitions to it from the ground state are electronically forbidden, but its vibrational levels acquire intensity by tunneling through the isomerization barrier and interacting with levels of the trans conformer. We have recently identified two new vibrational levels (32 and 41 61) of the {cis} conformer of S1 C2H2, bringing the total number of levels observed to six out of an expected ten up to the energies studied in this work. The appearance of these levels in IR-UV double resonance LIF spectra will be discussed, along with their vibrational assignments. Experimentally determined vibrational parameters and {ab initio} anharmonic force fields for both the {trans} and {cis} conformers will be presented as part of the evidence supporting these assignments. These results shed new light on the vibrational level structure of both conformers in this isomerizing system. A. J. Merer, A. H. Steeves, J. H. Baraban, H. A. Bechtel, and R. W. Field. J. Chem. Phys., 134(24):244310, 2011.

  2. Characteristics and anticoagulation behavior of polyethylene terephthalate modified by C2H2 plasma immersion ion implantation-deposition

    NASA Astrophysics Data System (ADS)

    Wang, J.; Pan, C. J.; Kwok, S. C. H.; Yang, P.; Chen, J. Y.; Wan, G. J.; Huang, N.; Chu, P. K.

    2004-01-01

    Acetylene (C2H2) plasma immersion ion implantation-deposition (PIII-D) is conducted on polyethylene terephthalate (PET) to improve its blood compatibility. The structural and physicochemical properties of the modified surface are characterized by, Raman spectroscopy, x-ray photoelectron spectroscopy (XPS), and static contact angle measurement. Atomic force microscopy discloses that the average roughness (Ra) of film surface decreases from 58.9 nm to 11.4 nm after C2H2 PIII-D treats PET. Attenuated total reflection Fourier transform infrared spectroscopy shows that the specfic adsorption peaks for PET decrease after ion implantation and deposition. Raman spectroscopy indicates that a thin amorphous polymerlike carbon (PLC) film is formed in the PET. The effects of the surface modification on the chemical bonding of C, H, and O are examined by XPS and the results show that the ratio of sp3 C-C to sp2 C=C is 0.25. After C2H2 PIII-D, the polar component γp of surface energy increases from 2.4 mN/m to 12.3 mN/m and γp/γd increases from 0.06 to 0.35. The wettability of the modified surfaces is improved. Scanning electron microscopy and optical microscopy reveal that the amounts of adhered, aggregated and morphologically changed platelets are reduced by the deposition of an amorphous polymer-like carbon film. The thrombin time, prothrombin time, and activated partial thromboplastin time of the modified PET are longer than those of the untreated PET. Our result thus shows that the amorphous PLC film deposited on the PET surface by C2H2 PIII-D improves platelet adhesion and activation. .

  3. The transcriptional regulator c2h2 accelerates mushroom formation in Agaricus bisporus.

    PubMed

    Pelkmans, Jordi F; Vos, Aurin M; Scholtmeijer, Karin; Hendrix, Ed; Baars, Johan J P; Gehrmann, Thies; Reinders, Marcel J T; Lugones, Luis G; Wösten, Han A B

    2016-08-01

    The Cys2His2 zinc finger protein gene c2h2 of Schizophyllum commune is involved in mushroom formation. Its inactivation results in a strain that is arrested at the stage of aggregate formation. In this study, the c2h2 orthologue of Agaricus bisporus was over-expressed in this white button mushroom forming basidiomycete using Agrobacterium-mediated transformation. Morphology, cap expansion rate, and total number and biomass of mushrooms were not affected by over-expression of c2h2. However, yield per day of the c2h2 over-expression strains peaked 1 day earlier. These data and expression analysis indicate that C2H2 impacts timing of mushroom formation at an early stage of development, making its encoding gene a target for breeding of commercial mushroom strains.

  4. Meridional Variations of C2H2 and C2H6 in Jupiter's Atmosphere from Cassini CIRS Infrared Spectra

    NASA Technical Reports Server (NTRS)

    Nixon, C. A.; Achterberg, R. K.; Conrath, B. J.; Irwin, P. G. J.; Fouchet, T.; Parrish, P. D.; Romani, P. N.; Abbas, M.; LeClair, A.; Strobel, D.

    2004-01-01

    Hydrocarbons such as acetylene (C2H2) and ethane (C2H6) are important tracers in Jupiter's atmosphere, constraining our models of the chemical and dynamical processes. However, our knowledge of the vertical and meridional variations of their abundances has remained sparse. During the flyby of the Cassini spacecraft in December 2000, the Composite Infrared Spectrometer (CIRS) instrument was used to map the spatial variation of emissions from 10-1400 cm(sup -1) (1000-7 microns). In this paper we analyze a zonally-averaged set of CIRS spectra taken at the highest (0.5 cm(sup -1)) resolution, to infer atmospheric temperatures in the stratosphere at 0.5-20 mbar via the v4 band of CH4, and in the troposphere at 150-400 mbar, via the H2 absorption at 600-800 cm(sup -1). Simultaneously, we retrieve the abundances of C2H2 and C2H6 via the v5 and vg bands respectively. Tropospheric absorption and stratospheric emission are highly anti-correlated at the CIRS resolution, introducing a non-uniqueness into the retrievals, such that vertical gradient and column abundance cannot both be found without additional constraints. Assuming profile gradients from photochemical calculations, we show that the column abundance of C2H2 decreases sharply towards the poles by a factor approximately 4, while C2H6 is unchanged in the north and increasing in the south, by a factor approximately 1.8. An explanation for the meridional trends is proposed in terms of a combination of photochemistry and dynamics. Poleward, the decreasing UV flux is predicted to decrease the abundances of C2H2 and C2H6 by factors 2.7 and 3.5 respectively at a latitude 70 deg. However, the lifetime of C2H6 in the stratosphere (5 x 10(exp 9)) is much longer than the dynamical timescale for meridional motions inferred from SL-9 debris (5 x 10(exp 8 s)), and therefore the constant or rising abundance towards high latitudes likely indicates that meridional mixing dominates over photochemical effects. For C2H2, the opposite

  5. Association Mechanisms of Unsaturated C2 Hydrocarbons with Their Cations: Acetylene and Ethylene

    NASA Technical Reports Server (NTRS)

    Bera, Partha P.; Head-Gordon, Martin; Lee, Timothy J.

    2013-01-01

    The ion-molecule association mechanism of acetylene and ethylene with their cations is investigated by ab initio quantum chemical methods to understand the structures, association energies, and the vibrational and electronic spectra of the products. Stable puckered cyclic isomers are found as the result of first forming less stable linear and bridge isomers. The puckered cyclic complexes are calculated to be strongly bound, by 87, 35 and 56 kcal/mol for acetylene-acetylene cation, ethylene-ethylene cation and acetylene-ethylene cation, respectively. These stable complexes may be intermediates that participate in further association reactions. There are no association barriers, and no significant inter-conversion barriers, so the initial linear and bridge encounter complexes are unlikely to be observable. However, the energy gap between the bridged and cyclic puckered isomers greatly differs from complex to complex: it is 44 kcal/mol in C4H4 +, but only 6 kcal/mol in C4H8 +. The accurate CCSD(T) calculations summarized above are also compared against less computationally expensive MP2 and density functional theory (DFT) calculations for structures, relative energies, and vibrational spectra. Calculated vibrational spectra are compared against available experiments for cyclobutadiene cation. Electronic spectra are also calculated using time-dependent DFT.

  6. Meridional Variations of C2H2 and C2H6 in Jupiter's Atmosphere from Cassini CIRS Infrared Spectra

    NASA Technical Reports Server (NTRS)

    Nixon, C. A.; Achterberg, R. K.; Conrath, B. J.; Irwin, P. G. J.; Fouchet, T.; Parrish, P. D.; Abbas, M.; LeClaire, A.; Romani, P. N.; Simon-Miller, A. A.

    2004-01-01

    The abundances of hydrocarbons such as acetylene (C2H2) and ethane (C2H6) in Jupiter's atmosphere are important physical quantities, constraining our models of the chemical and dynamical processes. However, our knowledge of these quantities and their vertical and latitudinal variations has remained sparse. The flyby of the Cassini spacecraft with Jupiter at the end of 2000 provided an excellent opportunity to observe the infrared spectrum with the Composite Infrared Spectrometer (CIRS) instrument, mapping the spatial variation of emissions from 10-1400 cm-1. CIRS spectra taken at the highest resolution (0.5 cm-1) in early December 2000 have been analysed to infer atmospheric temperatures in the stratosphere at 0.5-20 mbar via the v4 of CH4, and in the troposphere at 100-400 mbar, via the hydrogen collision-induced continuum absorption at 600-800 cm. Simultaneously, we have searched for meridional abundance variations in C2H2 and C2H6 via the v5 and vg bands respectively. Tropospheric absorption and stratospheric emission are highly anti-correlated at the CIM resolution, introducing a non-uniqueness into the retrievals, which means that vertical gradient and column abundance cannot be simultaneously found without additional constraints. If we assume the profile shapes from photochemical model calculations, we show that the column abundance of C2H2 must decrease sharply towards the poles, while C2H6 is constant or slightly increasing. The relevance of these results to current photochemical and dynamical knowledge of Jupiter's atmosphere is discussed.

  7. Observations of CH4, C2H6, and C2H2 in the stratosphere of Jupiter.

    PubMed

    Sada, P V; Bjoraker, G L; Jennings, D E; McCabe, G H; Romani, P N

    1998-12-01

    We have performed high-resolution spectral observations at mid-infrared wavelengths of CH4 (8.14 micrometers), C2H6 (12.16 micrometers), and C2H2 (13.45 micrometers) on Jupiter. These emission features probe the stratosphere of the planet and provide information on the carbon-based photochemical processes taking place in that region of the atmosphere. The observations were performed using our cryogenic echelle spectrometer CELESTE, in conjunction with the McMath-Pierce 1.5-m solar telescope between November 1994 and February 1995. We used the methane observations to derive the temperature profile of the jovian atmosphere in the 1-10 mbar region of the stratosphere. This profile was then used in conjunction with height-dependent mixing ratios of each hydrocarbon to determine global abundances for ethane and acetylene. The resulting mixing ratios are 3.9(+1.9)(-1.3) x 10(-6) for C2H6 (5 mbar pressure level), and 2.3 +/- 0.5 x 10(-8) for C2H2 (8 mbar pressure level), where the quoted uncertainties are derived from model variations in the temperature profile which match the methane observation uncertainties.

  8. Electronic dynamics of charge resonance enhanced ionization probed by laser-induced alignment in C2H2

    NASA Astrophysics Data System (ADS)

    Cornaggia, C.

    2016-10-01

    Although charge resonance enhanced ionization (CREI) be an ubiquitous effect in molecules in strong laser fields, the associated electron emission remains difficult to deal with. The main reason relies on the fact that CREI is part of an overall multielectron ionization, where the initial steps of single and dissociative ionization of neutral species dominate the electron spectrum. Using the rescattered electrons, we show that it is possible to address the electron signal from CREI without any contribution from other electron signals. The electrons from CREI are preferentially emitted when the molecular axis is parallel to the laser electric field as expected from its electronic dynamics. Acetylene is chosen for demonstration purpose because single ionization, which is not related to CREI, is more pronounced when the C2H2 molecular axis is perpendicular to the laser electric field.

  9. Analysis of dissolved C2H2 in transformer oils using laser Raman spectroscopy.

    PubMed

    Somekawa, Toshihiro; Kasaoka, Makoto; Kawachi, Fumio; Nagano, Yoshitomo; Fujita, Masayuki; Izawa, Yasukazu

    2013-04-01

    We have developed a laser Raman spectroscopy technique for assessing the working conditions of transformers by measuring dissolved C2H2 gas concentrations present in transformer oils. A frequency doubled Q-switched Nd:YAG laser (532 nm) was used as a laser source, and Raman signals at ~1972 cm(-1) originating from C2H2 gas dissolved in oil were detected. The results show that laser Raman spectroscopy is a useful alternative method for detecting transformer faults.

  10. Multiparameter functional diversity of human C2H2 zinc finger proteins

    PubMed Central

    Schmitges, Frank W.; Radovani, Ernest; Najafabadi, Hamed S.; Barazandeh, Marjan; Campitelli, Laura F.; Yin, Yimeng; Jolma, Arttu; Zhong, Guoqing; Guo, Hongbo; Kanagalingam, Tharsan; Dai, Wei F.; Taipale, Jussi; Emili, Andrew; Greenblatt, Jack F.; Hughes, Timothy R.

    2016-01-01

    C2H2 zinc finger proteins represent the largest and most enigmatic class of human transcription factors. Their C2H2-ZF arrays are highly variable, indicating that most will have unique DNA binding motifs. However, most of the binding motifs have not been directly determined. In addition, little is known about whether or how these proteins regulate transcription. Most of the ∼700 human C2H2-ZF proteins also contain at least one KRAB, SCAN, BTB, or SET domain, suggesting that they may have common interacting partners and/or effector functions. Here, we report a multifaceted functional analysis of 131 human C2H2-ZF proteins, encompassing DNA binding sites, interacting proteins, and transcriptional response to genetic perturbation. We confirm the expected diversity in DNA binding motifs and genomic binding sites, and provide motif models for 78 previously uncharacterized C2H2-ZF proteins, most of which are unique. Surprisingly, the diversity in protein–protein interactions is nearly as high as diversity in DNA binding motifs: Most C2H2-ZF proteins interact with a unique spectrum of co-activators and co-repressors. Thus, multiparameter diversification likely underlies the evolutionary success of this large class of human proteins. PMID:27852650

  11. A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames

    SciTech Connect

    Wang, H.; Frenklach, M.

    1997-07-01

    A computational study was performed for the formation and growth of polycyclic aromatic hydrocarbons (PAHs) in laminar premixed acetylene and ethylene flames. A new detailed reaction mechanism describing fuel pyrolysis and oxidation, benzene formation, and PAH mass growth and oxidation is presented and critically tested. It is shown that the reaction model predicts reasonably well the concentration profiles of major and intermediate species and aromatic molecules in a number of acetylene and ethylene flames reported in the literature. It is demonstrated that reactions of n-C{sub 4}H{sub x} + C{sub 2}H{sub 2} leading to the formation of one-ring aromatics are as important as the propargyl recombination, and hence must be included in kinetic modeling of PAH formation in hydrocarbon flames. It is further demonstrated that the mass growth of PAHs can be accounted for by the previously proposed H-abstraction-C{sub 2}H{sub 2}-addiction mechanism.

  12. Reaction Mechanism of the Symmetry-Forbidden [2+2] Addition of Ethylene and Acetylene to Amido-Substituted Digermynes and Distannynes Ph2N-EE-NPh2, (E = Ge, Sn): A Theoretical Study.

    PubMed

    Zhao, Lili; Jones, Cameron; Frenking, Gernot

    2015-08-24

    Quantum chemical calculations of reaction mechanisms for the formal [2+2] addition of ethylene and acetylene to the amido-substituted digermyne and distannyne Ph2N-EE-NPh2 (E = Ge, Sn) have been carried out by using density functional theory at the BP86/def2-TZVPP level. The nature and bonding situations were studied with the NBO method and with the charge and energy decomposition analysis EDA-NOCV. The addition of ethylene to Ph2N-EE-NPh2 takes place through an initial [2+1] addition to one metal atom and consecutive rearrangement to four-membered cyclic species, which feature a weak E-E bond. Rotation about the C-C bond with concomitant rupture of the E-E bond leads to the 1,2-disubstituted ethanes, which have terminal E(NPh2) groups. The overall reaction Ph2N-EE-NPh2+C2H4→(Ph2N)E-C2H4-E(NPh2) has very low activation barriers and is slightly exergonic for E = Ge but slightly endergonic for E = Sn. The analysis of the electronic structure shows that there is charge donation of nearly one electron to the ethylene moiety already in the first part of the reaction. The energy partitioning analysis suggests that the HOMO(Ph2N-EE-NPh2)→LUMO(C2H4) interaction has a similar strength as the HOMO(C2H4)→LUMO(Ph2N-EE-NPh2) interaction. The [2+2] addition of acetylene to Ph2N-EE-NPh2 also takes place through an initial [2+1] approach, which eventually leads to 1,2-disubstituted olefins (Ph2N)E-C2H2-E(NPh2). The formation of the energetically lowest lying conformations of cis-(Ph2N)E-C2H2-E(NPh2), which occurs with very low activation barriers, is clearly exergonic for the germanium and the tin compound. The trans-coordinated isomers of (Ph2N)E-C2H2-E(NPh2) are slightly lower in energy than the cis form but they are separated by a substantial energy barrier for the rotation about the C-C bond. The energy decomposition analysis indicates that the initial reaction takes place under formation of electron-sharing bonds between triplet fragments rather than HOMO

  13. The growth of phenanthrene from naphthalene by C2H2 additions

    NASA Astrophysics Data System (ADS)

    Bauschlicher, Charles W., Jr.

    2015-07-01

    Two paths are investigated for the growth of phenanthrene from naphthalene by the addition of C2H2 groups. The first series of steps leads to acenaphthylene (ACN), which is consistent with the path found previously. The addition of C2H2 to ACN can yield a product with two adjacent five-membered rings. Opening one five-membered ring produces a five-membered ring with CH2 side group. This can be converted to a six-membered ring in a manner analogous to the hydrogen atom catalysed fulvene to benzene conversion. A second path, with a somewhat higher barrier, can also lead to the phenanthrene product. The transition state for the second path is essentially isoenergetic with the stating material of ACN + C2H2 + H.

  14. N 2- and O 2-broadening coefficients of C 2H 2 IR lines

    NASA Astrophysics Data System (ADS)

    Bouanich, J. P.; Lambot, D.; Blanquet, G.; Walrand, J.

    1990-04-01

    Pressure-broadening parameters of six lines belonging to the ν5 band of C 2H 2 in collision with N 2 have been measured with a tunable diode-laser spectrometer in order to complete up to J = 33 our earlier measurements (D. Lambot, G. Blanquet, and J. P. Bouanich, J. Mol. Spectrosc.136, 86-92 (1989)) on the broadening of C 2H 2 by N 2 and O 2 at 297 K. These N 2- and O 2-broadening coefficients have been first calculated on the basis of the Anderson-Tsao-Curnutte theory; in this approach, we show that the short-range interactions which contribute significantly to the linewidths are not correctly treated. Next, we consider the improved semiclassical model proposed by Robert and Bonamy. The intermolecular potential consists in the addition of the atom-atom interaction model to the quadrupolar interactions. The limited radial spherical harmonics expansion of the atom-atom potential, from which expressions for the differential cross section were derived, appears to be quite insufficient at short intermolecular distances. Therefore, we use a more accurate representation of this potential, avoiding an inadequate truncation and keeping the analytic expressions obtained by Bonamy and Robert. In the calculations we take into account the contributions derived from the radial functions U000( r), U200( r), and U220( r), as well as from U400( r). A theoretical expression is obtained for the U400 contribution to the differential cross section. The results of the calculations arising from the exact radial expansion of the atom-atom potential appear to be significantly larger for high J lines than those arising from the truncated expansion. The latter results, which do not include adjustable atom-atom parameters, are in good agreement with experimental broadening coefficients for C 2H 2O 2 and in reasonable agreement (except at large J values) for C 2H 2N 2. It is also shown that the contributions to the linewidths derived from U400 are rather small for C 2H 2N 2 and more

  15. Heat of Combustion of the Product Formed by the Reaction of Acetylene, Ethylene, and Diborane

    NASA Technical Reports Server (NTRS)

    Tannenbaum, Stanley

    1957-01-01

    The net heat of combustion of the product formed by the reaction of diborane with a mixture of acetylene and ethylene was found to be 20,440 +/- 150 Btu per pound for the reaction of liquid fuel to gaseous carbon dioxide, gaseous water, and solid boric oxide. The measurements were made in a Parr oxygen-bomb calorimeter, and the combustion was believed to be 98 percent complete. The estimated net-heat of combustion for complete combustion would therefore be 20,850 +/- 150 Btu per pound.

  16. A novel flexible C2H2 gas sensor based on Ag-ZnO nanorods on PI/PTFE substrate

    NASA Astrophysics Data System (ADS)

    Uddin, A. S. M. Iftekhar; Chung, Gwiy-Sang

    2016-02-01

    In this work a novel flexible acetylene (C2H2) gas sensor based on Ag nanoparticles decorated vertical ZnO nanorods (Ag-ZnO NRs) on PI/PTFE substrate has been investigated. The grown structure was synthesized through a simple, rapid, and low-temperature hydrothermal-RF magnetron sputtering method. The successful immobilization of Ag nanoparticles (NPs) onto the surface of ZnO nanorods contributed large effective surface area and facilitated the charge transfer process. The as-fabricated sensor exhibited enhanced C2H2 sensing performances at low temperature (200°C) including a broad detection range (3 - 1000 ppm), and short recovery time (39 sec). Mechanical robustness and device flexibility were investigated at different curvature angle (0 - 90°) and several times bending-relaxing process (0 - 5 × 105 times). The sensor exhibited stable response magnitude with a negligible drift of ~ 2.1% for a maximum bending angle of 90o and a response drop of 8% after 5 × 104 bending/relaxing processes. The superior sensing features along with outstanding flexibility to extreme bending stress indicate the sensor a promising candidate for the development of practical flexible C2H2 gas sensors.

  17. Electron Impact Ionization and Dissociative Ionization of C2H2

    NASA Technical Reports Server (NTRS)

    Srivastava, S. K.

    1995-01-01

    By utilizing a crossed electron beam collision geometry, a combination of time-of-flight (TOF) and quadrupole mass spectrometers, and the relative flow technique1 normalized values of cross sections and appearance energies (AP) were obtained for the formation of singly and multiply ionized species resulting from the ionization and dissociation of C2H2. Details ont he apparatus and technique have been published previously.2,3.

  18. Hydrothermal synthesis and acetylene sensing properties of variety low dimensional zinc oxide nanostructures.

    PubMed

    Zhou, Qu; Chen, Weigen; Peng, Shudi; Zeng, Wen

    2014-01-01

    Various morphologies of low dimensional ZnO nanostructures, including spheres, rods, sheets, and wires, were successfully synthesized using a simple and facile hydrothermal method assisted with different surfactants. Zinc acetate dihydrate was chosen as the precursors of ZnO nanostructures. We found that polyethylene glycol (PEG), polyvinylpyrrolidone (PVP), glycine, and ethylene glycol (EG) play critical roles in the morphologies and microstructures of the synthesized nanostructures, and a series of possible growth processes were discussed in detail. Gas sensors were fabricated using screen-printing technology, and their sensing properties towards acetylene gas (C2H2), one of the most important arc discharge characteristic gases dissolved in oil-filled power equipments, were systematically measured. The ZnO nanowires based sensor exhibits excellent C2H2 sensing behaviors than those of ZnO nanosheets, nanorods, and nanospheres, indicating a feasible way to develop high-performance C2H2 gas sensor for practical application.

  19. Hydrothermal Synthesis and Acetylene Sensing Properties of Variety Low Dimensional Zinc Oxide Nanostructures

    PubMed Central

    Chen, Weigen; Peng, Shudi; Zeng, Wen

    2014-01-01

    Various morphologies of low dimensional ZnO nanostructures, including spheres, rods, sheets, and wires, were successfully synthesized using a simple and facile hydrothermal method assisted with different surfactants. Zinc acetate dihydrate was chosen as the precursors of ZnO nanostructures. We found that polyethylene glycol (PEG), polyvinylpyrrolidone (PVP), glycine, and ethylene glycol (EG) play critical roles in the morphologies and microstructures of the synthesized nanostructures, and a series of possible growth processes were discussed in detail. Gas sensors were fabricated using screen-printing technology, and their sensing properties towards acetylene gas (C2H2), one of the most important arc discharge characteristic gases dissolved in oil-filled power equipments, were systematically measured. The ZnO nanowires based sensor exhibits excellent C2H2 sensing behaviors than those of ZnO nanosheets, nanorods, and nanospheres, indicating a feasible way to develop high-performance C2H2 gas sensor for practical application. PMID:24672324

  20. A model of ethylene and acetylene adsorption on the (111) surfaces of platinum and nickel

    NASA Astrophysics Data System (ADS)

    Felter, T. E.; Weinberg, W. H.

    1981-02-01

    Despite the application of a variety of surface sensitive techniques to the adsorption of simple hydrocarbons on well characterized metallic surfaces, no consistent picture has appeared. We review briefly the published spectroscopic results of ultraviolet photoelectron spectroscopy (UPS) and electron energy loss spectroscopy (EELS) which probe, respectively, the electronic and vibrational structure of the surface-molecular complex, and we consider appropriate free molecular analogues, not only in their ground state but also in their first excited states. A simplified approach to determine the chemisorption geometry from UPS level shifts and EELS is presented. The technique allows an isolation of distortion induced shifts from the total relaxation shift, and we find that the true relaxation shift is rather constant, approximately 2.1 eV for the cases considered. These shifts can then be used to estimate the distance of the molecule to the surface. We concentrate primarily on four systems, C 2H 2 and C 2H 4 on Ni(111) and Pt(111), adsorbed at low temperature (below the onset of dissociation). Depending on the metal, the hydrocarbon can adsorb in a di-σ arrangement or with a distortion resembling the lowest energy configuration of the first excited state of the free molecule. We also consider briefly C 2H 4 on Ag and Cu in which no distortion occurs. The distortions that resemble the first excited states might occur as a consequence of donation of bonding (backbonding) electrons from (to) the normally filled π (empty π ∗) to (from) the empty (filled) d-band states of the metal. The net effect on the hydrocarbon to partially empty the π level and fill the π ∗ level, is analogous to a low excitation of the free molecule, π → π ∗. For C 2H 4 (planar in the ground state), the lowest excitation is the triplet T-state (3-4 eV) of minimal energy for a 90° twisted configuration with a lengthened C-C bond. Acetylene is a linear molecule in the ground state, but

  1. Mining the Brassica oleracea genome for Q-type C2H2 zinc finger transcription factor proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Q-type zinc finger proteins have been studied in several plant species and have been associated with response to stress. A whole genome analysis of Arabidopsis identified 176 putative C2H2 transcription factors (TF). Q-type C2H2 TFs containing the QALGGH motif and are a subset of these. In Arabidops...

  2. An ignored but most favorable channel for NCO +C2H2 reaction

    NASA Astrophysics Data System (ADS)

    Xie, Hong-bin; Wang, Jian; Zhang, Shao-wen; Ding, Yi-hong; Sun, Chia-chung

    2006-09-01

    The NCO +C2H2 reaction has been considered as a prototype for understanding the chemical reactivity of the isocyanate radical towards unsaturated hydrocarbons in fuel-rich combustion. It has also been proposed to provide an effective route for formation of oxazole-containing compounds in organic synthesis, and might have potential applications in interstellar processes. Unfortunately, this reaction has met mechanistic controversy both between experiments and between experiments and theoretical calculations. In this paper, detailed theoretical investigations at the Becke's three parameter Lee-Yang-Parr-B3LYP /6-31G(d), B3LYP /6-311++G(d,p), quadratic configuration interaction with single and double excitations QCISD /6-31G(d), and Gaussian-3 levels are performed for the NCO +C2H2 reaction, covering various entrance, isomerization, and decomposition channels. Also, the highly cost-expensive coupled-cluster theory including single and double excitations and perturbative inclusion of triple excitations CCSD(T)/aug-cc-pVTZ single-point energy calculation is performed for the geometries obtained at the Becke's three parameter Lee-Yang-Parr-B3LYP /6-311++G(d,p) level. A previously ignored yet most favorable channel via a four-membered ring intermediate with allyl radical character is found. However, formation of P3 H +HCCNCO and the five-membered ring channel predicted by previous experimental and theoretical studies is kinetically much less competitive. With the new channel, master equation rate constant calculations over a wide range of temperatures (298-1500K) and pressures (10-560Torr) show that the predicted total rate constants exhibit a positive-temperature dependence and no distinct pressure dependence effect. This is in qualitative agreement with available experimental results. Under the experimental conditions, the predicted values are about 50% lower than the latest experimental results. Also, the branching ratio variations of the fragments P2 HCN +HCCO and P5

  3. Global Modeling of High Resolution IR Spectra of 12C_2H_2

    NASA Astrophysics Data System (ADS)

    Amyay, B.; Herman, M.; Fayt, A.

    2010-06-01

    A global approach has been developed to calculate vibration-rotation spectra of acetylene in its ground electronic state, now including Coriolis interaction. The acetylene spectroscopic data base has been recently extended and the most recent set of effective Hamiltonian parameters resulting from the fit of experimental line positions gathered from literature up to 9000 cm-1 will be presented. This global model is essential to perform assignments and intensity simulations of high resolution spectra of acetylene, of astrophysical interest. Recent results will be highlighted concerning the FIR, MIR and NIR ranges. M. Herman, Mol. Phys. 105, 2217 (2007). B. Amyay, S. Robert, M. Herman, A. Fayt, B. Raghavendra, A. Moudens, J. Thiévin, B. Rowe, and R. Georges, J. Chem. Phys. 131, 114301 (2009).

  4. Interactions between Lugol's fixative and ethylene in the acetylene-reduction assay for nitrogenase activity in lake water.

    PubMed

    Leonardson, L

    1980-05-01

    Lugol's solution is a practical and efficient fixative for the acetylene-reduction assay of nitrogenase activity in aquatic organisms. Correction must be made, however, for the solubility of ethylene in the liquid phase and reactions between Lugol's solution and ethylene. With a vapor phase-liquid phase volume ratio of 1.9:1, the mean solubility of ethylene in mixtures of lake water and Lugol's solution was 7.2%. No correlation was found between ethylene solubility and the concentration of Lugol's solution. Storage of fixed samples for more than 1 day before gas chromatographic analysis resulted in increased loss of ethylene from the vapor phase; the loss amounted to ca. 18% after 3 days. Higher losses were noted at higher concentrations of Lugol's solution. Most probably these effects were caused by iodine addition to ethylene, as indicated by the consumption of ethylene by iodine-potassium iodide solutions. The reaction was catalyzed by the rubber septa of the incubaton vessels when the septa were in contact with the liquid phase. Loss of ethylene decreased with increased concentration of phytoplankton because the organisms absorbed iodine. By using a standardized technique and determining ethylene solubility and reaction patterns between ethylene and the mixture of water and Lugol's solution, it is possible to correct for the loss of ethylene.

  5. The Dissociation Energies of CH4 and C2H2 Revisited

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Bauschlicher, Charles W., Jr.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    The bond dissociation energies of CH4 and C2H2 and their fragments are investigated using basis set extrapolations and high levels of correlation. The computed bond dissociation energies (D(sub e)) are accurate to within 0.2 kcal/mol. The agreement with the experimental (D(sub 0)) values is excellent if we assume that the zero-point energy of C2H is 9.18 kcal/mol. The effect of core (1s) correlation on the bond dissociation energies of C-H bonds is shown to vary from 0.2 to 0.7 kcal/mol and that for C-C bonds varies from 0.4 to 2.2 kcal/mol.

  6. Spectrum sensing of trace C(2)H(2) detection in differential optical absorption spectroscopy technique.

    PubMed

    Chen, Xi; Dong, Xiaopeng

    2014-09-10

    An improved algorithm for trace C(2)H(2) detection is presented in this paper. The trace concentration is accurately calculated by focusing on the absorption spectrum from the frequency domain perspective. The advantage of the absorption spectroscopy frequency domain algorithm is its anti-interference capability. First, the influence of the background noise on the minimum detectable concentration is greatly reduced. Second, the time-consuming preprocess of spectra calibration in the differential optical absorption spectroscopy technique is skipped. Experimental results showed the detection limit of 50 ppm is achieved at a lightpath length of 0.2 m. This algorithm can be used in real-time spectrum analysis with high accuracy.

  7. Context-dependent DNA recognition code for C2H2 zinc-finger transcription factors

    PubMed Central

    Liu, Jiajian; Stormo, Gary D.

    2008-01-01

    Motivation: Modeling and identifying the DNA-protein recognition code is one of the most challenging problems in computational biology. Several quantitative methods have been developed to model DNA-protein interactions with specific focus on the C2H2 zinc-finger proteins, the largest transcription factor family in eukaryotic genomes. In many cases, they performed well. But the overall the predictive accuracy of these methods is still limited. One of the major reasons is all these methods used weight matrix models to represent DNA-protein interactions, assuming all base-amino acid contacts contribute independently to the total free energy of binding. Results: We present a context-dependent model for DNA–zinc-finger protein interactions that allows us to identify inter-positional dependencies in the DNA recognition code for C2H2 zinc-finger proteins. The degree of non-independence was detected by comparing the linear perceptron model with the non-linear neural net (NN) model for their predictions of DNA–zinc-finger protein interactions. This dependency is supported by the complex base-amino acid contacts observed in DNA–zinc-finger interactions from structural analyses. Using extensive published qualitative and quantitative experimental data, we demonstrated that the context-dependent model developed in this study can significantly improves predictions of DNA binding profiles and free energies of binding for both individual zinc fingers and proteins with multiple zinc fingers when comparing to previous positional-independent models. This approach can be extended to other protein families with complex base-amino acid residue interactions that would help to further understand the transcriptional regulation in eukaryotic genomes. Availability:The software implemented as c programs and are available by request. http://ural.wustl.edu/softwares.html Contact: stormo@ural.wustl.edu PMID:18586699

  8. High-resolution, VUV (147-201 nm) photoabsorption cross sections for C2H2 at 195 and 295 K

    NASA Technical Reports Server (NTRS)

    Smith, Peter L.; Yoshino, Kouichi; Parkinson, W. H.; Ito, Kenji; Stark, Glenn

    1991-01-01

    Results of measurements of photoabsorption cross sections of acetylene at 195 and 295 K in the wavelength range of 147-201 nm are reported. Short-wavelength data are obtained at 0.002 nm intervals, but no structure was observed on that scale. Emission and absorption lines from contaminant species in xenon and hydrogen discharges are used to determine the correct wavelength scale for the data. The uncertainty in the relative wavelengths is estimated to be about 0.004 nm, whereas the absolute wavelength values are accurate to + or - 0.043 nm. No significant photodestruction of C2H2 was found during the measurements. Cross-section values determined at the beginning portions of the measurements are indistinguishable from the values determined at the ends, thus demonstrating that there was no loss of absorbers.

  9. Pressure dependence of the absolute rate constant for the reaction Cl + C2H2 from 210-361 K

    NASA Technical Reports Server (NTRS)

    Brunning, J.; Stief, L. J.

    1985-01-01

    In recent years, considerable attention has been given to the role of chlorine compounds in the catalytic destruction of stratospheric ozone. However, while some reactions have been studied extensively, the kinetic data for the reaction of Cl with C2H2 is sparse with only three known determinations of the rate constant k3. The reactions involved are Cl + C2H2 yields reversibly ClC2H2(asterisk) (3a) and ClC2H2(asterisk) + M yields ClC2H2 + M (3b). In the present study, flash photolysis coupled with chlorine atomic resonance fluorescence have been employed to determine the pressure and temperature dependence of k3 with the third body M = Ar. Room temperature values are also reported for M = N2. The pressure dependence observed in the experiments confirms the expectation that the reaction involves addition of Cl to the unsaturated C2H2 molecule followed by collisional stabilization of the resulting adduct radical.

  10. ZAS: C2H2 zinc finger proteins involved in growth and development.

    PubMed

    Wu, Lai-Chu

    2002-01-01

    A ZAS gene encodes a large protein with two separate C2H2 zinc finger pairs that independently bind to specific DNA sequences, including the kappaB motif. Three paralogous mammalian genes, ZAS1, ZAS2, and ZAS3, and a related Drosophila gene, Schnurri, have been cloned and characterized. The ZAS genes encode transcriptional proteins that activate or repress the transcription of a variety of genes involved in growth, development, and metastasis. In addition, ZAS3 associates with a TNF receptor-associated factor to inhibit NF-kappaB- and JNK/ SAPK-mediated signaling of TNF-alpha. Genetic experiments show that ZAS3 deficiency leads to proliferation of cells and tumor formation in mice. The data suggest that ZAS3 is important in controlling cell growth, apoptosis, and inflammation. The potent vasoactive hormone endothelin and transcription factor AP2 gene families also each consist of three members. The ZAS, endothelin, and transcription factor AP2 genes form several linkage groups. Knowledge of the chromosomal locations of these genes provides valuable clues to the evolution of the vertebrate genome.

  11. Investigating Enhanced Multiple Ionization Near Conical Intersections in C2H 2 +

    NASA Astrophysics Data System (ADS)

    McCracken, Greg; Liekhus-Schmaltz, Chelsea; Kaldun, Andreas; Bucksbaum, Phil

    2016-05-01

    Nonadiabatic behavior near conical intersections (CIs) leads to strong nonradiative mixing between different electronic states in polyatomic molecules. Recently, evidence was shown that strong field multiple ionization was significantly enhanced near the CI driving the isomerization of CHD. An interesting question is if it is a general feature that conical intersections enhance ionization rates. In this talk, we investigate the possibility of enhanced multiple ionization near the CI between the A and X states of the C2H2 cation, which is involved in the isomerization pathway to vinylidene. The cation is prepared in the A state nonlinearly using 50 fs pulses at 266 nm. The evolution of the nuclear wavepacket through the CI is then probed by a strong ultrafast pulse at 800 nm. Using a newly designed system to reconstruct the momenta of all ion fragments from a single Coulomb explosion event, we are able to see any enhancement of highly charged channels over doubly charged ones from events that are probed near the CI. This work was supported by NSF Grant PHY-0649578.

  12. Unusual Anharmonicities in Isomerizing Systems: the S1 State of C2H2

    NASA Astrophysics Data System (ADS)

    Baraban, J. H.; Field, R. W.; Stanton, J. F.; Merer, A. J.

    2012-06-01

    Low-barrier {cis}-{trans} isomerization profoundly affects the tilde{A}-tilde{X} spectrum of acetylene. We present extensions of the usual effective Hamiltonian model that capture these effects, and thereby enable fits of the complete tilde{A} {}1Au state J=K=0 level structure up to 4300 cm-1 above the {trans} zero point level. The relationship between these new additions to the model and spectroscopic indicators of the transition state energy will also be discussed. One dimensional models will be used to illustrate both the effects of the isomerization dynamics on the spectrum and how they can be exploited to reveal the isomerization barrier height.

  13. Fast Response, vertically oriented graphene nanosheet electric double layer capacitors synthesized from C(2)H(2).

    PubMed

    Cai, Minzhen; Outlaw, Ronald A; Quinlan, Ronald A; Premathilake, Dilshan; Butler, Sue M; Miller, John R

    2014-06-24

    The growth and electrical characteristics of vertically oriented graphene nanosheets grown by radio frequency plasma-enhanced chemical vapor deposition from C2H2 feedstock on nickel substrates and used as electrodes in symmetric electric double layer capacitors (EDLC) are presented. The nanosheets exhibited 2.7 times faster growth rate and much greater specific capacitance for a given growth time than CH4 synthesized films. Raman spectra showed that the intensity ratio of the D band to G band versus temperature initially decreased to a minimum value of 0.45 at a growth temperature of 750 °C, but increased rapidly with further temperature increase (1.15 at 850 °C). The AC specific capacitance at 120 Hz of these EDLC devices increased in a linear fashion with growth temperature, up to 265 μF/cm(2) (2 μm high film, 850 °C with 10 min growth). These devices exhibited ultrafast frequency response: the frequency response at -45° phase angle reached over 20 kHz. Consistent with the increase in D band to G band ratio, the morphology of the films became less vertical, less crystalline, and disordered at substrate temperatures of 800 °C and above. This deterioration in morphology resulted in an increase in graphene surface area and defect density, which, in turn, contributed to the increased capacitance, as well as a slight decrease in frequency response. The low equivalent series resistance varied from 0.07 to 0.08 Ω and was attributed to the significant carbon incorporation into the Ni substrate.

  14. A model for the ethylene and acetylene adsorption on the surface of Cun(n = 10-15) nanoclusters: A theoretical study

    NASA Astrophysics Data System (ADS)

    Farmanzadeh, Davood; Abdollahi, Tahereh

    2016-11-01

    In this work, we report the results of density functional theory calculations of ethylene and acetylene adsorption on the most stable Cun (n = 10-15) nanoclusters, in two π and di- σ adsorption modes. Both the hydrocarbons molecularly adsorbed on the surface. Our results show that the quality of interaction of ethylene and acetylene with odd copper nanoclusters (n = 11, 13, 15) is different from what is found on even copper nanoclusters (n = 10, 12, 14). One of the interesting features of this adsorption is that acetylene never orient toward di-σ mode for Cusbnd Cu bond in odd copper nanoclusters. Also, for di- σ-CunC2H4, no stable structure is identified. The highest interaction and deformation energies are seen for the adsorption of acetylene and ethylene on Cu11 in π-mode.

  15. Successive lithiation of acetylene, ethylene and benzene: a comprehensive computational study of large static second hyperpolarizability.

    PubMed

    Mondal, Avijit; Hatua, Kaushik; Roy, Ria Sinha; Nandi, Prasanta K

    2017-02-08

    This work is a revisit of the study of the electron correlation effect of lithium substitution on the second hyperpolarizability (10(6) a.u.) of acetylene, ethylene and benzene. The large quenching of mean second hyperpolarizability has been addressed by CCSD calculations. The inclusion of triple excitation in the MP4 method generally overestimates second hyperpolarizability in comparison to the MP4SDQ method. The present CCSD γav value of C6Li6: 405 × 10(4) a.u. obtained with a relatively larger basis set established the earlier prediction of Sadlej et al. [Phys. Chem. Phys. Chem., 2000, 2, 3393-3399] where degenerate non-dipolar transitions in low lying excited states play the crucial role. The successive lithiation results in gradual red shifting of transition energy leading to significant enhancement of second hyperpolarizability. Most of the chosen DFT functionals predict the correct qualitative trend of second hyperpolarizability. The quantitatively different results may be attributed to the case when the ground state wave function cannot be approximated by a single SD.

  16. Prediction of electron and ion concentrations in low-pressure premixed acetylene and ethylene flames

    NASA Astrophysics Data System (ADS)

    Cancian, J.; Bennett, B. A. V.; Colket, M. B.; Smooke, M. D.

    2013-04-01

    Flame stabilisation and extinction in a number of different flows can be affected by application of electric fields. Electrons and ions are present in flames, and because of charge separation, weak electric fields can also be generated even when there is no externally applied electric field. In this work, a numerical model incorporating ambipolar diffusion and plasma kinetics has been developed to predict gas temperature, species, and ion and electron concentrations in laminar premixed flames without applied electric fields. This goal has been achieved by combining the existing CHEMKIN-based PREMIX code with a recently developed methodology for the solution of electron temperature and transport properties that uses a plasma kinetics model and a Boltzmann equation solver. A chemical reaction set has been compiled from seven sources and includes chemiionisation, ion-molecule, and dissociative-recombination reactions. The numerical results from the modified PREMIX code (such as peak number densities of positive ions) display good agreement with previously published experimental data for fuel-rich, non-sooting, low-pressure acetylene and ethylene flames without applied electric fields.

  17. Sequence specificity is obtained from the majority of modular C2H2 zinc-finger arrays.

    PubMed

    Lam, Kathy N; van Bakel, Harm; Cote, Atina G; van der Ven, Anton; Hughes, Timothy R

    2011-06-01

    C2H2 zinc fingers (C2H2-ZFs) are the most prevalent type of vertebrate DNA-binding domain, and typically appear in tandem arrays (ZFAs), with sequential C2H2-ZFs each contacting three (or more) sequential bases. C2H2-ZFs can be assembled in a modular fashion, providing one explanation for their remarkable evolutionary success. Given a set of modules with defined three-base specificities, modular assembly also presents a way to construct artificial proteins with specific DNA-binding preferences. However, a recent survey of a large number of three-finger ZFAs engineered by modular assembly reported high failure rates (∼70%), casting doubt on the generality of modular assembly. Here, we used protein-binding microarrays to analyze 28 ZFAs that failed in the aforementioned study. Most (17) preferred specific sequences, which in all but one case resembled the intended target sequence. Like natural ZFAs, the engineered ZFAs typically yielded degenerate motifs, binding dozens to hundreds of related individual sequences. Thus, the failure of these proteins in previous assays is not due to lack of sequence-specific DNA-binding activity. Our findings underscore the relevance of individual C2H2-ZF sequence specificities within tandem arrays, and support the general ability of modular assembly to produce ZFAs with sequence-specific DNA-binding activity.

  18. Formation of hydrogenated amorphous carbon films by reactive high power impulse magnetron sputtering containing C2H2 gas

    NASA Astrophysics Data System (ADS)

    Kimura, Takashi; Kamata, Hikaru

    2015-09-01

    Diamond-like carbon (DLC) films have attracted interest for material industries, because they have unique properties. Hydrogenated amorphous carbon films are prepared by reactive high power impulse magnetron sputtering (HiPIMS) containing C2H2 gas and the properties of the films produced in Ar/C2H2 and Ne/C2H2 HiPIMS are compared. Production of hydrocarbon radicals and their ions strongly depends on both electron temperature and electron density in HiPIMS. Therefore, the influence of the difference in buffer gas (Ar and Ne) on the film properties is also valuable to investigate. The film preparation is performed at an average power of 60 W and a repetition frequency of 110 Hz. Total pressure ranges between 0.3 and 2 Pa. The maximum of instantaneous power is about 20-25 kW, and the magnitude of the current is 35 A. A negative pulse voltage is applied to the substrates for about 15 μs after the target voltage changed from about -500 V to 0 V. Hardness of the films prepared by Ar/C2H2 HiPIMS monotonically decreases with increasing the total pressure, whereas that of the films prepared by Ne/C2H2 HiPIMS does not strongly depend on the total pressure. This work is partially supported by JSPS KAKENHI Grant Number 26420230.

  19. Characterization of mid-infrared emissions from C2H2, CO, CO2, and HCN-filled hollow fiber lasers

    NASA Astrophysics Data System (ADS)

    Jones, A. M.; Fourcade-Dutin, C.; Mao, C.; Baumgart, B.; Nampoothiri, A. V. V.; Campbell, N.; Wang, Y.; Benabid, F.; Rudolph, W.; Washburn, B. R.; Corwin, K. L.

    2012-02-01

    We have now demonstrated and characterized gas-filled hollow-core fiber lasers based on population inversion from acetylene (12C2H2) and HCN gas contained within the core of a kagome-structured hollow-core photonic crystal fiber. The gases are optically pumped via first order rotational-vibrational overtones near 1.5 μm using 1-ns pulses from an optical parametric amplifier. Transitions from the pumped overtone modes to fundamental C-H stretching modes in both molecules create narrow-band laser emissions near 3 μm. High gain resulting from tight confinement of the pump and laser light together with the active gas permits us to operate these lasers in a single pass configuration, without the use of any external resonator structure. A delay between the emitted laser pulse and the incident pump pulse has been observed and is shown to vary with pump pulse energy and gas pressure. Furthermore, we have demonstrated lasing beyond 4 μm from CO and CO2 using silver-coated glass capillaries, since fused silica based fibers do not transmit in this spectral region and chalcogenide fibers are not yet readily available. Studies of the laser pulse energy as functions of the pump pulse energy and gas pressure were performed. Efficiencies reaching ~ 20% are observed for both acetylene and CO2.

  20. Designing supported palladium-on-gold bimetallic nano-catalysts for controlled hydrogenation of acetylene in large excess of ethylene

    NASA Astrophysics Data System (ADS)

    Malla, Pavani

    Ethylene is used as a starting point for many chemical intermediates in the petrochemical industry. It is predominantly produced through steam cracking of higher hydrocarbons (ethane, propane, butane, naphtha, and gas oil). During the cracking process, a small amount of acetylene is produced as a side product. However, acetylene must be removed since it acts as a poison for ethylene polymerization catalysts at even ppm concentrations (>5 ppm). Thus, the selective hydrogenation of acetylene to ethylene is an important process for the purification of ethylene. Conventional, low weight loading Pd catalysts are used for this selective reaction in high concentration ethylene streams. Gold was initially considered to be catalytically inactive for a long time. This changed when gold was seen in the context of the nanometric scale, which has indeed shown it to have excellent catalytic activity as a homogeneous or a heterogeneous catalyst. Gold is proved to have high selectivity to ethylene but poor at conversion. Bimetallic Au and Pd catalysts have exhibited superior activity as compared to Pd particles in semi-hydrogenation. Hydrogenation of acetylene was tested using this bimetallic combination. The Pd-on-Au bimetallic catalyst structure provides a new synthesis approach in improving the catalytic properties of monometallic Pd materials. TiO 2 as a support material and 0.05%Pd loading on 1%Au on titania support and used different treatment methods like washing plasma and reduction between the two metal loadings and was observed under 2:1 ratio. In my study there were two set of catalysts which were prepared by a modified incipient wetness impregnation technique. Out of all the reaction condition the catalyst which was reduced after impregnating gold and then impregnating palladium which was further treated in non-thermal hydrogen plasma and then pretreated in hydrogen till 250°C for 1 hour produced the best activity of 76% yield at 225°C. Stability tests were conducted

  1. Simulation of nanoparticle coagulation in radio-frequency C2H2/Ar microdischarges

    NASA Astrophysics Data System (ADS)

    Xiang-Mei, Liu; Qi-Nan, Li; Rui, Li

    2016-06-01

    The nanoparticle coagulation is investigated by using a couple of fluid models and aerosol dynamics model in argon with a 5% molecular acetylene admixture rf microdischarges, with the total input gas flow rate of 400 sccm. It co-exists with a homogeneous, secondary electron-dominated low temperature γ-mode glow discharges. The heat transfer equation and flow equation for neutral gas are taken into account. We mainly focused on investigations of the nanoparticle properties in atmospheric pressure microdischarges, and discussed the influences of pressure, electrode spacing, and applied voltage on the plasma density and nanoparticle density profiles. The results show that the characteristics of microdischarges are quite different from those of low pressure radio-frequency discharges. First, the nanoparticle density in the bulk plasma in microdischarges is much larger than that of low pressure discharges. Second, the nanoparticle density of 10 nm experiences an exponential increase as soon as the applied voltage increases, especially in the presheath. Finally, as the electrode spacing increases, the nanoparticle density decreased instead of increasing. Project supported by the Natural Science Foundation of Heilongjiang Province, China (Grant Nos. A2015011 and A2015010), the Postdoctoral Scientific Research Development Fund of Heilongjiang Province, China (Grant No. LBH-Q14159), the Program for Young Teachers Scientific Research in Qiqihar University (Grant No. 2014k-Z11), the National Natural Science Foundation of China (Grant No. 11404180), and the University Nursing Program for Yong Scholars with Creative Talents in Heilongjiang Province, China (Grant No. UNPYSCT-2015095).

  2. Theoretical study of the bonding of Nb(2+) to CH2, C2H2, and C2H4

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Partridge, Harry

    1991-01-01

    The bonding of Nb(2+) with CH2, C2H2, and C2H4 is studied by using electronic structure calculations that include high levels of electron correlation. The binding energy for NbCH2(2+) is in good agreement with the lower bound determined from the reaction with CH4 but is significantly smaller than the value determined from the binding energy and ionization potential of NbCH2(+). The calculations and a new interpretation of the experiment indicate that the larger value is in error primarily because the ionization potential of NbCH2(+) determined from bracketing charge-exchange reactions is too small. The computed binding energy of NbC2H2(2+) is in good agreement with experiment. The calculations show that the bonding is predominantly covalent in character for both NbCH2(2+) and NbC2H2(2+), whereas for NbC2H4(2+) the electronic states that are predominantly ionic and covalent are nearly degenerate. The trend in binding energies, CH2 greater than C2H2 greater than C2H4, is consistent with the energy required to prepare the ligands for bonding.

  3. Anaerobic oxidation of acetylene by estuarine sediments and enrichment cultures

    USGS Publications Warehouse

    Culbertson, Charles W.; Zehnder, Alexander J. B.; Oremland, Ronald S.

    1981-01-01

    Acetylene disappeared from the gas phase of anaerobically incubated estuarine sediment slurries, and loss was accompanied by increased levels of carbon dioxide. Acetylene loss was inhibited by chloramphenicol, air, and autoclaving. Addition of 14C2H2 to slurries resulted in the formation of 14CO2 and the transient appearance of 14C-soluble intermediates, of which acetate was a major component. Acetylene oxidation stimulated sulfate reduction; however, sulfate reduction was not required for the loss of C2H2 to occur. Enrichment cultures were obtained which grew anaerobically at the expense of C2H2.

  4. Anaerobic Oxidation of Acetylene by Estuarine Sediments and Enrichment Cultures

    PubMed Central

    Culbertson, Charles W.; Zehnder, Alexander J. B.; Oremland, Ronald S.

    1981-01-01

    Acetylene disappeared from the gas phase of anaerobically incubated estuarine sediment slurries, and loss was accompanied by increased levels of carbon dioxide. Acetylene loss was inhibited by chloramphenicol, air, and autoclaving. Addition of 14C2H2 to slurries resulted in the formation of 14CO2 and the transient appearance of 14C-soluble intermediates, of which acetate was a major component. Acetylene oxidation stimulated sulfate reduction; however, sulfate reduction was not required for the loss of C2H2 to occur. Enrichment cultures were obtained which grew anaerobically at the expense of C2H2. PMID:16345714

  5. Quantum cascade laser investigations of CH4 and C2H2 interconversion in hydrocarbon/H2 gas mixtures during microwave plasma enhanced chemical vapor deposition of diamond

    NASA Astrophysics Data System (ADS)

    Ma, Jie; Cheesman, Andrew; Ashfold, Michael N. R.; Hay, Kenneth G.; Wright, Stephen; Langford, Nigel; Duxbury, Geoffrey; Mankelevich, Yuri A.

    2009-08-01

    CH4 and C2H2 molecules (and their interconversion) in hydrocarbon/rare gas/H2 gas mixtures in a microwave reactor used for plasma enhanced diamond chemical vapor deposition (CVD) have been investigated by line-of-sight infrared absorption spectroscopy in the wavenumber range of 1276.5-1273.1 cm-1 using a quantum cascade laser spectrometer. Parameters explored include process conditions [pressure, input power, source hydrocarbon, rare gas (Ar or Ne), input gas mixing ratio], height (z) above the substrate, and time (t) after addition of hydrocarbon to a pre-existing Ar/H2 plasma. The line integrated absorptions so obtained have been converted to species number densities by reference to the companion two-dimensional (r ,z) modeling of the CVD reactor described in Mankelevich et al. [J. Appl. Phys. 104, 113304 (2008)]. The gas temperature distribution within the reactor ensures that the measured absorptions are dominated by CH4 and C2H2 molecules in the cool periphery of the reactor. Nonetheless, the measurements prove to be of enormous value in testing, tensioning, and confirming the model predictions. Under standard process conditions, the study confirms that all hydrocarbon source gases investigated (methane, acetylene, ethane, propyne, propane, and butane) are converted into a mixture dominated by CH4 and C2H2. The interconversion between these two species is highly dependent on the local gas temperature and the H atom number density, and thus on position within the reactor. CH4→C2H2 conversion occurs most efficiently in an annular shell around the central plasma (characterized by 1400C2H2→CH4 is favored in the more distant regions where Tgas<1400 K. Analysis of the multistep interconversion mechanism reveals substantial net consumption of H atoms accompanying the CH4→C2H2 conversion, whereas the reverse C2H2→CH4 process only requires H atoms to drive the reactions; H atoms are not consumed by the overall

  6. Can Analysis of Acetylene and Its Biodegradation Products in Enceladus Plumes be Used to Detect the Presence of Sub-Surface Life?

    NASA Astrophysics Data System (ADS)

    Miller, L. G.; Baesman, S. M.; Oremland, R. S.

    2014-12-01

    The search for biosignatures of life on Earth includes measurement of the stable isotope fractionation of reactants and products attributed to enzymatic processes and comparison with the often smaller chemical (abiotic) fractionation. We propose that this approach might be applied to study the origin and fate of organic compounds contained in water vapor plumes emanating from Enceladus or other icy bodies, perhaps revealing information about the potential for biology occurring within a sub-surface "habitable" zone. Methanol and C2-hydrocarbons including ethylene, ethane and acetylene (C2H2) have been identified in the plumes of Enceladus. Biological degradation of acetylene proceeds by anaerobic fermentation via acetylene hydratase through acetaldehyde, with a second enzyme (acetaldehyde dismutase) forming acetate and ethanol. We found that incubation of cultures of acetylene-fermenting bacteria exhibit a kinetic isotope effect (KIE) associated with the net removal of C2H2. Consumption of acetylene by both growing and washed-cell cultures of bacteria closely related to Pelobacter acetylenicus (e.g, strain SFB93) was accompanied by a carbon isotopic fractionation of about 2 per mil (KIE = 1.8-2.7 ‰), a result we are examining with other cultures of acetylene fermenters. In addition, we are measuring the carbon isotopic composition of acetaldehyde, ethanol and acetate during fermentation to learn whether these products are fractionated sufficiently, relative to their substrate, to warrant measurement of their isotopic composition in Enceladus (or Europa) plumes to indicate enzymatic activity in liquid environments below the crust of these moons.

  7. Rationally tuned micropores within enantiopure metal-organic frameworks for highly selective separation of acetylene and ethylene

    SciTech Connect

    Xiang, Sheng-Chang; Zhang, Zhangjing; Zhao, Cong-Gui; Hong, Kunlun; Zhao, Xuebo; Ding, De-Rong; Xie, Ming-Hua; Wu, Chuan-De; Madhab, Das; Gill, Rachel; Thomas, K Mark; Chen, Banglin

    2011-01-01

    Separation of acetylene and ethylene is an important industrial process because both compounds are essential reagents for a range of chemical products and materials. Current separation approaches include the partial hydrogenation of acetylene into ethylene over a supported Pd catalyst, and the extraction of cracked olefins using an organic solvent; both routes are costly and energy consuming. Adsorption technologies may allow separation, but microporous materials exhibiting highly selective adsorption of C{sub 2}H{sub 2}/C{sub 2}H{sub 4} have not been realized to date. Here, we report the development of tunable microporous enantiopure mixed-metal-organic framework (M'MOF) materials for highly selective separation of C{sub 2}H{sub 2} and C{sub 2}H{sub 4}. The high selectivities achieved suggest the potential application of microporous M'MOFs for practical adsorption-based separation of C{sub 2}H{sub 2}/C{sub 2}H{sub 4}.

  8. Rapid analysis of dissolved methane, ethylene, acetylene and ethane using partition coefficients and headspace-gas chromatography.

    PubMed

    Lomond, Jasmine S; Tong, Anthony Z

    2011-01-01

    Analysis of dissolved methane, ethylene, acetylene, and ethane in water is crucial in evaluating anaerobic activity and investigating the sources of hydrocarbon contamination in aquatic environments. A rapid chromatographic method based on phase equilibrium between water and its headspace is developed for these analytes. The new method requires minimal sample preparation and no special apparatus except those associated with gas chromatography. Instead of Henry's Law used in similar previous studies, partition coefficients are used for the first time to calculate concentrations of dissolved hydrocarbon gases, which considerably simplifies the calculation involved. Partition coefficients are determined to be 128, 27.9, 1.28, and 96.3 at 30°C for methane, ethylene, acetylene, and ethane, respectively. It was discovered that the volume ratio of gas-to-liquid phase is critical to the accuracy of the measurements. The method performance can be readily improved by reducing the volume ratio of the two phases. Method validation shows less than 6% variation in accuracy and precision except at low levels of methane where interferences occur in ambient air. Method detection limits are determined to be in the low ng/L range for all analytes. The performance of the method is further tested using environmental samples collected from various sites in Nova Scotia.

  9. Acetylene on Titan

    NASA Astrophysics Data System (ADS)

    Singh, Sandeep; McCord, Thomas B.; Combe, Jean-Philippe; Rodriguez, Sebastien; Cornet, Thomas; Le Mouélic, Stéphane; Clark, Roger Nelson; Maltagliati, Luca; Chevrier, Vincent

    2016-10-01

    Saturn's moon Titan possesses a thick atmosphere that is mainly composed of N2 (98%), CH4 (2 % overall, but 4.9% close to the surface) and less than 1% of minor species, mostly hydrocarbons [1]. A dissociation of N2 and CH4 forms complex hydrocarbons in the atmsophere and acetylene (C2H2) and ethane (C2H6) are produced most abundently. Since years, C2H2 has been speculated to exist on the surface of Titan based on its high production rate in the stratosphere predicted by photochemical models [2,3] and from its detection as trace gas sublimated/evaporated from the surface after the landing of the Huygens probe by the Gas Chromatograph Mass Spectrometer (GCMS) [1]. Here we show evidence of acetylene (C2H2) on the surface of Titan by detecting absorption bands at 1.55 µm and 4.93 µm using Cassini Visual and Infrared Mapping Spectrometer (VIMS) [4] at equatorial areas of eastern Shangri-La, and Fensal-Aztlan/Quivira.An anti-correlation of absorption band strength with albedo indicates greater concentrations of C2H2 in the dark terrains, such as sand dunes and near the Huygens landing site. The specific location of the C2H2 detections suggests that C2H2 is mobilized by surface processes, such as surface weathering by liquids through dissolution/evaporation processes.References:[1]Niemann et al., Nature 438, 779-784 (2005).[2]Lavvas et al., Planetary and Space Science 56, 67 - 99 (2008).[3]Lavvas et al., Planetary and Space Science 56, 27 - 66 (2008).[4] Brown et al., The Cassini-Huygens Mission 111-168 (Springer, 2004).

  10. Computational study of the rovibrational spectra of CO2-C2H2 and CO2-C2D2

    NASA Astrophysics Data System (ADS)

    Donoghue, Geoff; Wang, Xiao-Gang; Dawes, Richard; Carrington, Tucker

    2016-12-01

    An intermolecular potential energy surface and rovibrational transition frequencies are computed for CO2-C2H2. An interpolating moving least squares method is used to fit ab initio points at the explicitly correlated coupled-cluster level. The rovibrational Schrödinger equation is solved with a symmetry-adapted Lanczos algorithm. The computed disrotatory and torsion vibrational levels of both CO2-C2H2 and CO2-C2D2 differ from those obtained by experimentalists by less than 0.5 cm-1. CO2-C2H2 has two equivalent minima with the monomers perpendicular to the inter-monomer axis. In contrast to many other Van der Waals dimers there is no disrotatory path that connects the minima. The tunnelling path follows the torsional coordinate over a high barrier and the splitting is therefore tiny. Using vibrational parent analysis we are able to fit and thus obtain rotational constants and centrifugal distortion constants. Calculated rotational constants differ from their experimental counterparts by less than 0.001 cm-1.

  11. Identification and expression of C2H2 transcription factor genes in Carica papaya under abiotic and biotic stresses.

    PubMed

    Jiang, Ling; Pan, Lin-jie

    2012-06-01

    C2H2 proteins belong to a group of transcription factors (TFs) existing as a superfamily that plays important roles in defense responses and various other physiological processes in plants. The present study aimed to screen for and identify C2H2 proteins associated with defense responses to abiotic and biotic stresses in Carica papaya L. Data were collected for 47,483 papaya-expressed sequence tags (ESTs). The full-length cDNA nucleotide sequences of 87 C2H2 proteins were predicated by BioEdit. All 91 C2H2 proteins were aligned, and a phylogenetic tree was constructed using DNAman. The expression levels of 42 C2H2 were analyzed under conditions of salt stress by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). Methyl jasmonate treatment rapidly upregulated ZF(23.4) and ZF(30,912.1) by 18.6- and 21.7-fold, respectively. ZF(1.3), ZF(138.44), ZF(94.49), ZF(29.160), and ZF(20.206) were found to be downregulated after low temperature treatment at very significant levels (p < 0.01). ZF(23.4), ZF(161.1), and ZF(30,912.1) were upregulated while ZF1.3, ZF(158.1), ZF(249.5), ZF(138.44), ZF(94.49), ZF(29.160), and ZF(20.206) were significantly downregulated by Spermine treatment. ZF(23.4) was upregulated while ZF(1.3), ZF(249.5), ZF(94.94), ZF(29.160), ZF(138.44), and ZF(20.206) were significantly repressed after SA treatment. ZF(23.4) and ZF(30,912.1) were significantly upregulated after sap inoculation with papaya ringspot virus pathogen. ZF(30,912.1) was subcellularly localized in the nucleus by a transgenic fusion of pBS-ZF(30,912.1)-GFP into the protoplast of papaya. The results of the present study showed that ZF(30,912.1) could be an important TF that mediates responses to abiotic and biotic stresses in papaya.

  12. First-principles analysis of C2H2 molecule diffusion and its dissociation process on the ferromagnetic bcc-Fe110 surface.

    PubMed

    Ikeda, Minoru; Yamasaki, Takahiro; Kaneta, Chioko

    2010-09-29

    Using the projector-augmented plane wave method, we study diffusion and dissociation processes of C(2)H(2) molecules on the ferromagnetic bcc-Fe(110) surface and investigate the formation process of graphene created by C(2)H(2) molecules. The most stable site for C(2)H(2) on the Fe surface is a hollow site and its adsorption energy is - 3.5 eV. In order to study the diffusion process of the C(2)H(2) molecule, the barrier height energies for the C atom, C(2)-dimer and CH as well as the C(2)H(2) molecule are estimated using the nudged elastic band method. The barrier height energy for C(2)H(2) is 0.71 eV and this indicates that the C(2)H(2) diffuses easily on this FM bcc-Fe(110) surface. We further investigate the two step dissociation process of C(2)H(2) on Fe. The first step is the dissociation of C(2)H(2) into C(2)H and H, and the second step is that of C(2)H into C(2) and H. Their dissociation energies are 0.9 and 1.2 eV, respectively. These energies are relatively small compared to the dissociation energy 7.5 eV of C(2)H(2) into C(2)H and H in the vacuum. Thus, the Fe surface shows catalytic effects. We further investigate the initial formation process of graphene by increasing the coverage of C(2)H(2). The formation process of the benzene molecule on the FM bcc(110) surface is also discussed. We find that there exists a critical coverage of C(2)H(2) which characterizes the beginning of the formation of the graphene.

  13. A survey of well conserved families of C2H2 zinc-finger genes in Daphnia

    PubMed Central

    2010-01-01

    Background A recent comparative genomic analysis tentatively identified roughly 40 orthologous groups of C2H2 Zinc-finger proteins that are well conserved in "bilaterians" (i.e. worms, flies, and humans). Here we extend that analysis to include a second arthropod genome from the crustacean, Daphnia pulex. Results Most of the 40 orthologous groups of C2H2 zinc-finger proteins are represented by just one or two proteins within each of the previously surveyed species. Likewise, Daphnia were found to possess a similar number of orthologs for all of these small orthology groups. In contrast, the number of Sp/KLF homologs tends to be greater and to vary between species. Like the corresponding mammalian Sp/KLF proteins, most of the Drosophila and Daphnia homologs can be placed into one of three sub-groups: Class I-III. Daphnia were found to have three Class I proteins that roughly correspond to their Drosophila counterparts, dSP1, btd, CG5669, and three Class II proteins that roughly correspond to Luna, CG12029, CG9895. However, Daphnia have four additional KLF-Class II proteins that are most similar to the vertebrate KLF1/2/4 proteins, a subset not found in Drosophila. Two of these four proteins are encoded by genes linked in tandem. Daphnia also have three KLF-Class III members, one more than Drosophila. One of these is a likely Bteb2 homolog, while the other two correspond to Cabot and KLF13, a vertebrate homolog of Cabot. Conclusion Consistent with their likely roles as fundamental determinants of bilaterian form and function, most of the 40 groups of C2H2 zinc-finger proteins are conserved in kind and number in Daphnia. However, the KLF family includes several additional genes that are most similar to genes present in vertebrates but missing in Drosophila. PMID:20433734

  14. Detection of HCN and C2H2 in ISO Spectra of Oxygen-Rich AGB Stars

    NASA Technical Reports Server (NTRS)

    Carbon, Duane F.; Chiar, Jean; Goorvitch, David; Kwak, Dochan (Technical Monitor)

    2002-01-01

    Cool oxygen-rich AGB stars were not expected to have organic molecules like HCN in either their photospheres or circumstellar envelopes (CSEs). The discovery of HCN and CS microwave emission from the shallowest CSE layers of these stars was a considerable surprise and much theoretical effort has been expended in explaining the presence of such organics. To further explore this problem, we have undertaken a systematic search of oxygen-rich AGB stellar spectra in the Infrared Space Observatory (ISO) data archive. Our purposes are to find evidence regarding critical molecular species that could be of value in choosing among the proposed theoretical models, to locate spectral features which might give clues to conditions deeper in the CSEs, and to lay the groundwork for future SIRTF (Space Infrared Telescope Facility) and SOFIA (Stratospheric Observatory for Infrared Astronomy) observations. Using carefully reduced observations, we have detected weak absorption features arising from HCN and possibly C2H2 in a small number of oxygen-rich AGB stars. The most compelling case is NML Cyg which shows both HCN (14 microns) and CO2 (15 microns). VY CMa, a similar star, shows evidence for HCN, but not CO2. Two S-type stars show evidence for the C-H bending transitions: W Aql at 14 microns (HCN) and both W Aql and S Cas at 13.7 microns (C2H2). Both W Aql and S Cas as well as S Lyr, a SC-type star, show 3 micron absorption which may arise from the C-H stretch of HCN and C2H2. In the case of NML Cyg, we show that the HCN and CO2 spectral features are formed in the CSE at temperatures well above those of the outermost CSE layers and derive approximate column densities. In the case of the S-stars, we discuss the evidence for the organic features and their photospheric origin.

  15. A Soybean C2H2-Type Zinc Finger Gene GmZF1 Enhanced Cold Tolerance in Transgenic Arabidopsis

    PubMed Central

    Ma, Xue-Feng; Xu, Zhao-Shi; Liu, Meng-Meng; Shan, Shu-Guang; Cheng, Xian-Guo

    2014-01-01

    Zinc finger proteins were involved in response to different environmental stresses in plant species. A typical Cys2/His2-type (C2H2-type) zinc finger gene GmZF1 from soybean was isolated and was composed of 172 amino acids containing two conserved C2H2-type zinc finger domains. Phylogenetic analysis showed that GmZF1 was clustered on the same branch with six C2H2-type ZFPs from dicotyledonous plants excepting for GsZFP1, and distinguished those from monocotyledon species. The GmZF1 protein was localized at the nucleus, and has specific binding activity with EP1S core sequence, and nucleotide mutation in the core sequence of EPSPS promoter changed the binding ability between GmZF1 protein and core DNA element, implying that two amino acid residues, G and C boxed in core sequence TGACAGTGTCA possibly play positive regulation role in recognizing DNA-binding sites in GmZF1 proteins. High accumulation of GmZF1 mRNA induced by exogenous ABA suggested that GmZF1 was involved in an ABA-dependent signal transduction pathway. Over-expression of GmZF1 significantly improved the contents of proline and soluble sugar and decreased the MDA contents in the transgenic lines exposed to cold stress, indicating that transgenic Arabidopsis carrying GmZF1 gene have adaptive mechanisms to cold stress. Over-expression of GmZF1 also increased the expression of cold-regulated cor6.6 gene by probably recognizing protein-DNA binding sites, suggesting that GmZF1 from soybean could enhance the tolerance of Arabidopsis to cold stress by regulating expression of cold-regulation gene in the transgenic Arabidopsis. PMID:25286048

  16. Vibrational effects on the reaction of NO(2)(+) with C(2)H(2): effects of bending and bending angular momentum.

    PubMed

    Boyle, Jason M; Uselman, Brady W; Liu, Jianbo; Anderson, Scott L

    2008-03-21

    NO(2)(+) in six different vibrational states was reacted with C(2)H(2) over the center-of-mass energy range from 0.03 to 3.3 eV. The reaction, forming NO(+)+C(2)H(2)O and NO+C(2)H(2)O(+), shows a bimodal dependence on collision energy (E(col)). At low E(col), the reaction is quite inefficient (<2%) despite this being a barrierless, exoergic reaction, and is strongly inhibited by E(col). For E(col)> approximately 0.5 eV, a second mechanism turns on, with an efficiency reaching approximately 27% for E(col)>3 eV. The two reaction channels have nearly identical dependence on E(col) and NO(2)(+) vibrational state, and identical recoil dynamics, leading to the conclusion that they represent a single reaction path throughout most of the collision. All modes of NO(2)(+) vibrational excitation enhance both channels at all E(col), however, the effects of bend (010) and bend overtone (02(0)0) excitation are particularly strong (factor of 4). In contrast, the asymmetric stretch (001), which intuition suggests should be coupled to the reaction coordinate, leads to only a factor of approximately 2 enhancement, as does the symmetric stretch (100). Perhaps the most surprising effect is that of the bending angular momentum, which strongly suppress reaction, even though both the energy and angular momentum involved are tiny compared to the collision energy and angular momentum. The results are interpreted in light of ab initio and Rice-Ramsperger-Kassel-Marcus calculations.

  17. Acetylene hydratase: a non-redox enzyme with tungsten and iron-sulfur centers at the active site.

    PubMed

    Kroneck, Peter M H

    2016-03-01

    In living systems, tungsten is exclusively found in microbial enzymes coordinated by the pyranopterin cofactor, with additional metal coordination provided by oxygen and/or sulfur, and/or selenium atoms in diverse arrangements. Prominent examples are formate dehydrogenase, formylmethanofuran dehydrogenase, and aldehyde oxidoreductase all of which catalyze redox reactions. The bacterial enzyme acetylene hydratase (AH) stands out of its class as it catalyzes the conversion of acetylene to acetaldehyde, clearly a non-redox reaction and a reaction distinct from the reduction of acetylene to ethylene by nitrogenase. AH harbors two pyranopterins bound to W, and a [4Fe-4S] cluster. W is coordinated by four dithiolene sulfur atoms, one cysteine sulfur, and one oxygen ligand. AH activity requires a strong reductant suggesting W(IV) as the active oxidation state. Two different types of reaction pathways have been proposed. The 1.26 Å structure reveals a water molecule coordinated to W which could gain a partially positive net charge by the adjacent protonated Asp-13, enabling a direct attack of C2H2. To access the W-Asp site, a substrate channel was evolved distant from where it is found in other members of the DMSOR family. Computational studies of this second shell mechanism led to unrealistically high energy barriers, and alternative pathways were proposed where C2H2 binds directly to W. The architecture of the catalytic cavity, the specificity for C2H2 and the results from site-directed mutagenesis do not support this first shell mechanism. More investigations including structural information on the binding of C2H2 are needed to present a conclusive answer.

  18. Permutationally invariant fitting of intermolecular potential energy surfaces: A case study of the Ne-C2H2 system

    NASA Astrophysics Data System (ADS)

    Li, Jun; Guo, Hua

    2015-12-01

    The permutation invariant polynomial-neural network (PIP-NN) approach is extended to fit intermolecular potential energy surfaces (PESs). Specifically, three PESs were constructed for the Ne-C2H2 system. PES1 is a full nine-dimensional PIP-NN PES directly fitted to ˜42 000 ab initio points calculated at the level of CCSD(T)-F12a/cc-pCVTZ-F12, while the other two consist of the six-dimensional PES for C2H2 [H. Han, A. Li, and H. Guo, J. Chem. Phys. 141, 244312 (2014)] and an intermolecular PES represented in either the PIP (PES2) or PIP-NN (PES3) form. The comparison of fitting errors and their distributions, one-dimensional cuts and two-dimensional contour plots of the PESs, as well as classical trajectory collisional energy transfer dynamics calculations shows that the three PESs are very similar. We conclude that full-dimensional PESs for non-covalent interacting molecular systems can be constructed efficiently and accurately by the PIP-NN approach for both the constituent molecules and intermolecular parts.

  19. The C2H2 zinc finger genes of Strongylocentrotus purpuratus and their expression in embryonic development.

    PubMed

    Materna, Stefan C; Howard-Ashby, Meredith; Gray, Rachel F; Davidson, Eric H

    2006-12-01

    The C2H2 zinc finger is one of the most abundant protein domains and is thought to have been extensively replicated in diverse animal clades. Some well-studied proteins that contain this domain are transcriptional regulators. As part of an attempt to delineate all transcription factors encoded in the Strongylocentrotus purpuratus genome, we identified the C2H2 zinc finger genes indicated in the sequence, and examined their involvement in embryonic development. We found 377 zinc finger genes in the sea urchin genome, about half the number found in mice or humans. Their expression was measured by quantitative PCR. Up to the end of gastrulation less than a third of these genes is expressed, and about 75% of the expressed genes are maternal; both parameters distinguish these from all other classes of regulatory genes as measured in other studies. Spatial expression pattern was determined by whole mount in situ hybridization for 43 genes transcribed at a sufficient level, and localized expression was observed in diverse embryonic tissues. These genes may execute important regulatory functions in development. However, the functional meaning of the majority of this large gene family remains undefined.

  20. Reactions of 1-Naphthyl Radicals with Acetylene. Single-Pulse Shock Tube Experiments and Quantum Chemical Calculations. Differences and Similarities in the Reaction with Ethylene

    NASA Astrophysics Data System (ADS)

    Lifshitz, Assa; Tamburu, Carmen; Dubnikova, Faina

    2009-09-01

    The reactions of 1-naphthyl radicals with acetylene were studied behind reflected shock waves in a single-pulse shock tube, covering the temperature range 950-1200 K at overall densities behind the reflected shocks of ˜2.5 × 10-5 mol/cm3. 1-Iodonaphthalene served as the source for 1-naphthyl radicals. The [acetylene]/[1-iodonaphthalene] ratio in all of the experiments was ˜100 to channel the free radicals into reactions with acetylene rather than iodonaphthalene. Only two major products resulting from the reactions of 1-naphthyl radicals with acetylene and with hydrogen atoms were found in the post shock samples. They were acenaphthylene and naphthalene. Some low molecular weight aliphatic products at rather low concentrations, resulting from an attack of various free radicals on acetylene, were also found in the shocked samples. In view of the relatively low temperatures employed in the present experiments, the unimolecular decomposition rate of acetylene is negligible. One potential energy surface describes the production of acenaphthylene and 1-naphthyl acetylene, although the latter was not found experimentally due to the high barrier (calculated) required for its production. Using quantum chemical methods, the rate constants for three unimolecular elementary steps on the surface were calculated using transition state theory. A kinetics scheme containing 16 elementary steps was constructed, and computer modeling was performed. An excellent agreement between the experimental yields of the two major products and the calculated yields was obtained. Differences and similarities in the potential energy surfaces of 1-naphthyl radical + acetylene and those of ethylene are presented, and the kinetics mechanisms are discussed.

  1. Temperature dependent product yields for the spin forbidden singlet channel of the C(3P) + C2H2 reaction

    NASA Astrophysics Data System (ADS)

    Hickson, Kevin M.; Loison, Jean-Christophe; Wakelam, Valentine

    2016-08-01

    The atomic hydrogen formation channels of the C + C2H2 reaction have been investigated using a continuous supersonic flow reactor over the 52-296 K temperature range. H-atoms were detected directly at 121.567 nm by vacuum ultraviolet laser induced fluorescence. Absolute H-atom yields were determined by comparison with the H-atom signal generated by the C + C2H4 reaction. The product yields agree with earlier crossed beam experiments employing universal detection methods. Incorporating these branching ratios in a gas-grain model of dense interstellar clouds increases the c-C3H abundance. This reaction is a minor source of C3-containing molecules in the present simulations.

  2. On the Speed-Dependent Hard Collision Lineshape Models: Application to C2H2 Perturbed by Xe

    PubMed

    Lance; Blanquet; Walrand; Bouanich

    1997-10-01

    Three infrared absorption lines of the nu5 band of C2H2 diluted by Xe at pressures ranging from 40 to 300 mbar have been recorded at high resolution near 750 cm-1, using a tunable diode-laser spectrometer. Their lineshapes have been first analyzed by means of models using either the Dicke narrowing effect or the absorber speed-dependent collisional broadening and shifting. None of these models have given satisfactory results over the full pressure range of the perturber. It is shown that a correct treatment must include both line narrowing effects. We have investigated two possibilities of doing so: a convolution between two profiles corresponding to each effect and a noncorrelated and speed-dependent Rautian profile that we have developed here. The latter lineshape model appears to be the most appropriate. Copyright 1997 Academic Press. Copyright 1997Academic Press

  3. Thermodynamics of acetylene van der Waals dimerization

    NASA Technical Reports Server (NTRS)

    Colussi, A. J.; Sander, S. P.; Friedl, R. R.

    1991-01-01

    Integrated band intensities of the 620/cm absorption in (C2H2)2 are measured by FTIR spectroscopy at constant acetylene pressure between 198 and 273 K. These data, in conjunction with ab initio results for (C2H2)2, are used for the statistical evaluation of the equilibrium constant Kp(T) for acetylene-cluster dimerization. The present results are used to clarify the role of molecular clusters in chemical systems at or near equilibrium, in particular in Titan's stratosphere.

  4. A biogeochemical and genetic survey of acetylene fermentation by environmental samples and bacterial isolates

    USGS Publications Warehouse

    Miller, Laurence G.; Baesman, Shaun M.; Kirshtein, Julie; Voytek, Mary A.; Oremland, Ronald S.

    2013-01-01

    Anoxic samples (sediment and groundwater) from 13 chemically diverse field sites were assayed for their ability to consume acetylene (C2H2). Over incubation periods ranging from ˜ 10 to 80 days, selected samples from 7 of the 13 tested sites displayed significant C2H2 removal. No significant formation of ethylene was noted in these incubations; therefore, C2H2 consumption could be attributed to acetylene hydratase (AH) rather than nitrogenase activity. This putative AH (PAH) activity was observed in only 21% of the total of assayed samples, while amplification of AH genes from extracted DNA using degenerate primers derived from Pelobacter acetylenicus occurred in even fewer (9.8%) samples. Acetylene-fermenting bacteria were isolated as a pure culture from the sediments of a tidal mudflat in San Francisco Bay (SFB93) and as an enrichment culture from freshwater Searsville Lake (SV7). Comparison of 16S rDNA clone libraries revealed that SFB93 was closely related to P. carbolinicus, while SV7 consisted of several unrelated bacteria. AH gene was amplified from SFB93 but not SV7. The inability of the primers to generate amplicons in the SV7 enrichment, as well as from several of the environmental samples that displayed PAH activity, implied that either the primers were too highly constrained in their specificity or that there was a different type of AH gene in these environmental samples than occurs in P. acetylenicus. The significance of this work with regard to the search for life in the outer Solar System, where C2HL2 is abundant, is discussed.

  5. Shape and optical properties of aerosols formed by photolysis of acetylene, ethylene, and hydrogen cyanide

    NASA Astrophysics Data System (ADS)

    Bar-Nun, A.; Kleinfeld, I.; Ganor, E.

    1988-07-01

    The shapes and sizes of photochemically produced aerosol particles of polyacetylene, polyethylene, and polyhydrogen cyanide were studied experimentally. All of the single particles were found to be perfectly spherical and semiliquid. However, they aggregate readily, with a sticking coefficient near unity, to form nonspherical particles, which could give rise to the observed polarization from Titan's and Jupiter's upper haze layers. The absorbance of polyacetylene was remeasured and corrected, and it is now much closer to that of polyethylene. The measured real and imaginary indices of refraction of the two materials make them both suitable material for Titan's and Jupiter's upper haze layers. However, the larger abundance and higher rate of polymerization of acetylene would make it the dominant aerosol-forming material in both atmospheres.

  6. Shape and optical properties of aerosols formed by photolysis of acetylene, ethylene, and hydrogen cyanide

    SciTech Connect

    Bar-Nun, A.; Kleinfeld, I.; Ganor, E.

    1988-07-20

    The shapes and sizes of photochemically produced aerosol particles of polyacetylene, polyethylene, and polyhydrogen cyanide were studied experimentally. All of the single particles were found to be perfectly spherical and semiliquid. However, they aggregate readily, with a sticking coefficient near unity, to form nonspherical particles, which could give rise to the observed polarization from Titan's and Jupiter's upper haze layers. The absorbance of polyacetylene was remeasured and corrected, and it is now much closer to that of polyethylene. The measured real and imaginary indices of refraction of the two materials make them both suitable material for Titan's and Jupiter's upper haze layers. However, the larger abundance and higher rate of polymerization of acetylene would make it the dominant aerosol-forming material in both atmospheres. copyright American Geophysical Union 1988

  7. Covariance mapping of two-photon double core hole states in C 2 H 2 and C 2 H 6 produced by an x-ray free electron laser

    DOE PAGES

    Mucke, M; Zhaunerchyk, V; Frasinski, L J; ...

    2015-07-01

    Few-photon ionization and relaxation processes in acetylene (C2H2) and ethane (C2H6) were investigated at the linac coherent light source x-ray free electron laser (FEL) at SLAC, Stanford using a highly efficient multi-particle correlation spectroscopy technique based on a magnetic bottle. The analysis method of covariance mapping has been applied and enhanced, allowing us to identify electron pairs associated with double core hole (DCH) production and competing multiple ionization processes including Auger decay sequences. The experimental technique and the analysis procedure are discussed in the light of earlier investigations of DCH studies carried out at the same FEL and at thirdmore » generation synchrotron radiation sources. In particular, we demonstrate the capability of the covariance mapping technique to disentangle the formation of molecular DCH states which is barely feasible with conventional electron spectroscopy methods.« less

  8. Conservation, diversification and expansion of C2H2 zinc finger proteins in the Arabidopsis thaliana genome

    PubMed Central

    Englbrecht, Claudia C; Schoof, Heiko; Böhm, Siegfried

    2004-01-01

    Background The classical C2H2 zinc finger domain is involved in a wide range of functions and can bind to DNA, RNA and proteins. The comparison of zinc finger proteins in several eukaryotes has shown that there is a lot of lineage specific diversification and expansion. Although the number of characterized plant proteins that carry the classical C2H2 zinc finger motifs is growing, a systematic classification and analysis of a plant genome zinc finger gene set is lacking. Results We found through in silico analysis 176 zinc finger proteins in Arabidopsis thaliana that hence constitute the most abundant family of putative transcriptional regulators in this plant. Only a minority of 33 A. thaliana zinc finger proteins are conserved in other eukaryotes. In contrast, the majority of these proteins (81%) are plant specific. They are derived from extensive duplication events and form expanded families. We assigned the proteins to different subgroups and families and focused specifically on the two largest and evolutionarily youngest families (A1 and C1) that are suggested to be primarily involved in transcriptional regulation. The newly defined family A1 (24 members) comprises proteins with tandemly arranged zinc finger domains. Family C1 (64 members), earlier described as the EPF-family in Petunia, comprises proteins with one isolated or two to five dispersed fingers and a mostly invariant QALGGH motif in the zinc finger helices. Based on the amino acid pattern in these helices we could describe five different signature sequences prevalent in C1 zinc finger domains. We also found a number of non-finger domains that are conserved in these families. Conclusions Our analysis of the few evolutionarily conserved zinc finger proteins of A. thaliana suggests that most of them could be involved in ancient biological processes like RNA metabolism and chromatin-remodeling. In contrast, the majority of the unique A. thaliana zinc finger proteins are known or suggested to be

  9. Pressure dependence of the absolute rate constant for the reaction OH + C2H2 from 228 to 413 K

    NASA Technical Reports Server (NTRS)

    Michael, J. V.; Nava, D. F.; Payne, W. A.; Stief, L. J.; Borkowski, R. P.

    1980-01-01

    The pressure dependence of the absolute rate constant for the reaction of the hydroxyl radical with acetylene, important in both atmospheric and combustion chemistry, is determined for temperatures between 228 and 413 K. The flash photolysis-resonance fluorescence technique was employed at five temperatures over wide ranges of pressure and acetylene concentrations, with the OH produced by water photolysis and hydroxyl resonance fluorescent photons measured by multiscaling techniques. Results indicate that, except at the lowest temperature, the bimolecular rate constant for the reaction depends strongly on total pressure, with the pressure effect becoming more pronounced with increasing temperature. At limiting high pressures, the rate constant is found to be equal to 6.83 + or - 1.19 x 10 to the -12th exp (-646 + or - 47/T) cu cm/molecule per sec, where T is the temperature. Results thus demonstrate the importance of environmental conditions in theoretical studies of atmospheric and combustion product compositions

  10. Pressure dependence of the absolute rate constant for the reaction OH + C2H2 from 228 to 413K

    NASA Technical Reports Server (NTRS)

    Michael, J. V.; Nava, D. F.; Borokowski, R. P.; Payne, W. A.; Stief, L. J.

    1980-01-01

    The pressure dependence of absolute rate constants for the reaction of OH + C2H2 yields products has been examined at five temperatures ranging from 228 to 413 K. The experimental techniques which was used is flash photolysis-resonance fluoresence. OH was produced by water photolysis and hydroxyl resonance fluorescent photons were measured by multiscaling techniques. The results indicate that the low pressure bimolecular rate constant is 4 x 10 the the minus 13th power cu cm molecule (-1) s(-1) over the temperature range studied. A substantial increase in the bimolecular rate constant with an increase in pressure was observed at all temperatures except 228 K. This indicates the importance of initial adduct formation and subsequent stablization. The high pressure results are well represented by the Arrhenius expression (k sub bi) sub infinity = (6.83 + or - 1.19) x 10 to the minus 12th power exp(-646 + or - 47/T)cu cm molecule (-1) s(-1). The results are compared to previous investigated and are theoretically discussed. The implications of these results on modeling of terrestrial and planetary atmospheres and also in combustion chemistry are discussed.

  11. Molecular Frame Photoelectron Angular Distributions for Core Ionization of CF4 and C2H2F2

    NASA Astrophysics Data System (ADS)

    Trevisan, C. S.; Williams, J. B.; Menssen, A. J.; Rescigno, T. N.; Dorner, R.; McCurdy, C. W.

    2015-05-01

    We present experimental and theoretical results for the angular dependence of electrons ejected from the core orbitals of tetrafluoromethane (CF4) which display a tendency to avoid molecular bonds if averaged over directions of polarization of the incident X-ray beam, in contrast to earlier cases (CH4, H2O and NH3) studied by the same methods. To investigate whether the imaging effect can be used to detect the creation of core holes by photoionization from one of two atoms of the same type in a molecule, we computed and measured MFPADs of difluoroethylene (C2H2F2). Good agreement with the experimentally measured angular distributions show that the MFPADs contain the clear signature of the core-hole origin of the photoelectron, and validate the use of computed MFPADs as promising tools for the interpretation of such experiments. Our measurements employ the COLTRIMS method and the calculations were performed with the Complex Kohn Variational method. Work supported in part by the USDOE, Office of Science, Office of WDTS under the Visiting Faculty Program.

  12. {UNGERADE} Polyads in the 45800 - 46500 CM-1 Region of the S_1 State of C_2H_2

    NASA Astrophysics Data System (ADS)

    Baraban, J. H.; Changala, P. B.; Shaver, R. G.; Field, R. W.; Merer, A. J.

    2012-06-01

    We present an analysis of {ungerade} vibrational polyads in the 45800 - 46500 cm-1 region of the S_1 state of C_2H_2. This congested region is expected to hold at least 22 highly interacting vibrational levels. The polyads were observed in IR-UV double resonance LIF spectra, using ν''_3(σ_u^+), ν_3+ν''_4(π_u), and ν_1+ν''_5(π_u) as ground state vibrational intermediates. The assignments of the levels will be discussed, as well as a comparison between the observed structure and that predicted by effective constants from lower energy polyads, supplemented by ab initio theory where such constants are not available. We will also discuss local regions of interest, including perturbations. The goals of this analysis are to enable an extension of our understanding of the level structure to higher energies, nearing the cis-trans transition state, as well as to establish the trans level structure comprehensively, thereby permitting the identification of interloper states belonging to the cis manifold.

  13. An upper limit to the acetylene abundance toward BN in the orion molecular cloud

    NASA Technical Reports Server (NTRS)

    Knacke, R. F.; Kim, Y. H.; Irvine, W. M.

    1989-01-01

    A search for the acetylene (C2H2) nu3 infrared vibration-rotation absorption near 3 microns toward the Becklin-Neugebauer source in the Orion molecular cloud is reported. The relative abundance of C2H2/CO in the quiescent gas is less than 0.003.

  14. Acetylene on Titan’s Surface

    NASA Astrophysics Data System (ADS)

    Singh, S.; McCord, T. B.; Combe, J.-Ph.; Rodriguez, S.; Cornet, T.; Le Mouélic, S.; Clark, R. N.; Maltagliati, L.; Chevrier, V. F.

    2016-09-01

    Titan’s atmosphere is opaque in the near-infrared due to gaseous absorptions, mainly by methane, and scattering by aerosols, except in a few “transparency windows.” Thus, the composition of Titan’s surface remains difficult to access from space and is still poorly constrained. Photochemical models suggest that most of the organic compounds formed in the atmosphere are heavy enough to condense and build up at the surface in liquid and solid states over geological timescales. Acetylene (C2H2) net production in the atmosphere is predicted to be larger than any other compound and C2H2 has been speculated to exist on the surface of Titan. C2H2 was detected as a trace gas sublimated/evaporated from the surface using the Gas Chromatograph Mass Spectrometer after the landing of the Huygens probe. Here we show evidence of C2H2 on the surface of Titan by detecting absorption bands at 1.55 and 4.93 μm using the Cassini Visual and Infrared Mapping Spectrometer at three different equatorial areas—Tui Regio, eastern Shangri La, and Fensal-Aztlan/Quivira. We found that C2H2 is preferentially detected in low-albedo areas, such as sand dunes and near the Huygens landing site. The specific location of the C2H2 detections suggests that C2H2 is mobilized by surface processes, such as surface weathering by liquids through dissolution/evaporation processes.

  15. Investigation of SF6 injection during cyclic C2H2/SF6 flow for the formation of geometrically controlled carbon coils.

    PubMed

    Jeon, Young-Chul; Park, Bitna; Park, Semi; Kim, Sung-Hoon

    2014-12-01

    Carbon coils could be synthesized using C2H2/H2 as source gases along with SF6 as an incorporated additive gas using a thermal chemical vapor deposition (CVD) system. To obtain geometrically controlled carbon coils, a cyclic process, namely the turning on and off of C2H2 or SF6 flow during the initial reaction stage, was carried out. According to the different reaction processes, different interruption/injection times of C2H2 or SF6 flow and different injection sequences of the gas flow were investigated while maintaining the identical overall injection time of C2H2 and/or SF6 flow. The formation of carbon microcoils (CMCs) is favored by the lowest interruption/injection time ratio of SF6 flow within one cycle. In addition, the injection of SF6 flow prior to the injection of C2H2 flow promotes the formation of CMCs. Based on these results we revealed the role of the SF6 flow injection for the enhanced formation of geometrically controlled CMCs. The etching of materials, thereby promoting an increase in the number of nucleation sites for the survived growth species to form CMCs, by the increased fluorine concentration, originating from the dominant SF6 influx, is understood to be the main cause for the exclusive CMCs formation.

  16. Detonation re-initiation in a concentric tube arrangement for C_2 H_2 /O_2 /Ar mixtures

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Lee, J. H. S.; Weng, C.

    2016-11-01

    Re-initiation of detonation in a concentric tube arrangement where a detonation exiting from a small diameter inner tube to a large diameter outer tube has been investigated. The outer tube diameter D is 50.8 mm and inner tube diameters d are 38, 25.4, and 12.7 mm giving diameter ratios D/d=1.34 , 2, and 4. Stoichiometric C_2 H_2 -O_2 mixtures with argon dilution of 0, 25, 50, and 70% are used in the present study. Velocity measurements are made using photodiodes, and smoked foils downstream of the exit of the inner tube are also used to record the re-initiation process. Upon exit from the inner tube, the detonation suffers an abrupt decrease in velocity and at critical conditions, the velocity downstream of the exit is of the order of 50% of the Chapman-Jouguet velocity. It is found that re-initiation generally occurs within 10 tube diameters downstream of the exit. If re-initiation is not successful, the detonation continues to propagate at a low velocity for distances of the order of 30 tube diameters without any indication of flame acceleration of deflagration-to-detonation transition (DDT). Thus, the re-initiation process is clearly defined and distinct from the usual DDT in a smooth tube. The critical d/λ value ratio in the concentric tube is significantly lower than the usual unconfined case of d/λ =13 where λ is the detonation cell size. Thus, it is a result of re-initiation at the Mach stem of the reflected shock from the wall of the outer concentric tube. If re-initiation is not successful upon the first reflection, then subsequent multiple reflections at the tube axis and wall of the outer tube can also result in re-initiation. However, this is only observed for undiluted mixtures. For high-argon-diluted mixtures, re-initiation only occurs at the Mach stem of the first reflection.

  17. Distortion of ethyne on coordination to silver acetylide, C2H2ṡṡṡAgCCH, characterised by broadband rotational spectroscopy and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Stephens, Susanna L.; Zaleski, Daniel P.; Mizukami, Wataru; Tew, David P.; Walker, Nicholas R.; Legon, Anthony C.

    2014-03-01

    The rotational spectra of six isotopologues of a complex of ethyne and silver acetylide, C2H2ṡṡṡAgCCH, are measured by both chirped-pulse and Fabry-Perot cavity versions of Fourier-transform microwave spectroscopy. The complex is generated through laser ablation of a silver target in the presence of a gas sample containing 1% C2H2, 1% SF6, and 98% Ar undergoing supersonic expansion. Rotational, A0, B0, C0, and centrifugal distortion ΔJ and ΔJK constants are determined for all isotopologues of C2H2ṡṡṡAgCCH studied. The geometry is planar, C2v and T-shaped in which the C2H2 sub-unit comprises the bar of the "T" and binds to the metal atom through its π electrons. In the r0 geometry, the distance of the Ag atom from the centre of the triple bond in C2H2 is 2.2104(10) Å. The r(HC≡CH) parameter representing the bond distance separating the two carbon atoms and the angle, ∠(CCH), each defined within the C2H2 sub-unit, are determined to be 1.2200(24) Å and 186.0(5)°, respectively. This distortion of the linear geometry of C2H2 involves the hydrogen atoms moving away from the silver atom within the complex. The results thus reveal that the geometry of C2H2 changes measurably on coordination to AgCCH. A value of 59(4) N m-1 is determined for the intermolecular force constant, kσ, confirming that the complex is significantly more strongly bound than hydrogen and halogen-bonded analogues. Ab initio calculations of the re geometry at the CCSD(T)(F12*)/ACVTZ level of theory are consistent with the experimental results. The spectra of the 107Ag13C13CH and 109Ag13C13CH isotopologues of free silver acetylide are also measured for the first time allowing the geometry of the AgCCH monomer to be examined in greater detail than previously.

  18. Five years of CO, HCN, C2H6, C2H2, CH3OH, HCOOH and H2CO total columns measured in the Canadian high Arctic

    NASA Astrophysics Data System (ADS)

    Viatte, C.; Strong, K.; Walker, K. A.; Drummond, J. R.

    2014-06-01

    We present a five-year time series of seven tropospheric species measured using a ground-based Fourier transform infrared (FTIR) spectrometer at the Polar Environment Atmospheric Research Laboratory (PEARL; Eureka, Nunavut, Canada; 80°05' N, 86°42' W) from 2007 to 2011. Total columns and temporal variabilities of carbon monoxide (CO), hydrogen cyanide (HCN) and ethane (C2H6) as well as the first derived total columns at Eureka of acetylene (C2H2), methanol (CH3OH), formic acid (HCOOH) and formaldehyde (H2CO) are investigated, providing a new data set in the sparsely sampled high latitudes. Total columns are obtained using the SFIT2 retrieval algorithm based on the optimal estimation method. The microwindows as well as the a priori profiles and variabilities are selected to optimize the information content of the retrievals, and error analyses are performed for all seven species. Our retrievals show good sensitivities in the troposphere. The seasonal amplitudes of the time series, ranging from 34 to 104%, are captured while using a single a priori profile for each species. The time series of the CO, C2H6 and C2H2 total columns at PEARL exhibit strong seasonal cycles with maxima in winter and minima in summer, in opposite phase to the HCN, CH3OH, HCOOH and H2CO time series. These cycles result from the relative contributions of the photochemistry, oxidation and transport as well as biogenic and biomass burning emissions. Comparisons of the FTIR partial columns with coincident satellite measurements by the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) show good agreement. The correlation coefficients and the slopes range from 0.56 to 0.97 and 0.50 to 3.35, respectively, for the seven target species. Our new data set is compared to previous measurements found in the literature to assess atmospheric budgets of these tropospheric species in the high Arctic. The CO and C2H6concentrations are consistent with negative trends observed over the

  19. Five years of CO, HCN, C2H6, C2H2, CH3OH, HCOOH, and H2CO total columns measured in the Canadian High Arctic

    NASA Astrophysics Data System (ADS)

    Viatte, C.; Strong, K.; Walker, K. A.; Drummond, J. R.

    2013-12-01

    We present a five-year timeseries of seven tropospheric species measured using a ground-based Fourier Transform InfraRed (FTIR) spectrometer at the Polar Environment Atmospheric Research Laboratory (PEARL, Eureka, Nunavut, Canada, 80°05' N, 86°42' W) from 2007 to 2011. Total columns and temporal variabilities of carbon monoxide (CO), hydrogen cyanide (HCN), and ethane (C2H6), as well as the first derived total columns at Eureka of acetylene (C2H2), methanol (CH3OH), formic acid (HCOOH), and formaldehyde (H2CO) are investigated, providing a new dataset in the sparsely sampled high latitudes. Total columns are obtained using the SFIT2 retrieval algorithm based on the Optimal Estimation Method. The microwindows, as well as the a priori profiles and variabilities are selected to optimize the information content of the retrievals, and error analyses are performed for all seven species. Our retrievals show good sensitivities in the troposphere. The seasonal amplitudes of the timeseries, ranging from 34 to 104%, are captured while using a single a priori profile for each species. The timeseries of the CO, C2H6 and C2H2 total columns at PEARL exhibit strong seasonal cycles with maxima in winter and minima in summer, in opposite phase to the HCN, CH3OH, HCOOH and H2CO timeseries. These cycles result from the relative contributions of the photochemistry, oxidation, and transport, as well as biogenic and biomass burning emissions. Comparisons of the FTIR partial columns with coincident satellite measurements by the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) show good agreement. The correlation coefficients and the slopes range from 0.56 to 0.97, and 0.50 to 3.35, respectively, for the seven target species. Our new dataset is compared with previous measurements found in the literature to assess atmospheric budgets of these tropospheric species in the high Arctic. The CO and C2H6 concentrations are consistent with negative trends observed over

  20. Application of the Hartmann-Tran profile to precise experimental data sets of 12C2H2

    NASA Astrophysics Data System (ADS)

    Forthomme, D.; Cich, M. J.; Twagirayezu, S.; Hall, G. E.; Sears, T. J.

    2015-11-01

    Self- and nitrogen-broadened line shape data for the Pe(11) line of the ν1 +ν3 band of acetylene, recorded using a frequency comb-stabilized laser spectrometer, have been analyzed using the Hartmann-Tran profile (HTP) line shape model in a multispectrum fitting. In total, the data included measurements recorded at temperatures between 125 K and 296 K and at pressures between 4 and 760 Torr. New, sub-Doppler, frequency comb-referenced measurements of the positions of multiple underlying hot band lines have also been made. These underlying lines significantly affect the Pe(11) line profile at temperatures above 240 K and poorly known frequencies previously introduced errors into the line shape analyses. The behavior of the HTP model was compared to the quadratic speed dependent Voigt profile (QSDVP) expressed in the frequency and time domains. A parameter uncertainty analysis was carried out using a Monte Carlo method based on the estimated pressure, transmittance and frequency measurement errors. From the analyses, the Pe(11) line strength was estimated to be 1.2014(50) ×10-20 in cmmolecule-1 units at 296 K with the standard deviation in parenthesis. For analyzing these data, we found that a reduced form of the HTP, equivalent to the QSDVP, was most appropriate because the additional parameters included in the full HTP were not well determined. As a supplement to this work, expressions for analytic derivatives and a lineshape fitting code written in Matlab for the HTP are available.

  1. Effects of inorganic nitrogen on C2H 2 reduction and CO 2 exchange in the Peltigera praetextata-Nostoc and Peltigera aphthosa-Coccomyxa-Nostoc symbioses.

    PubMed

    Hällbom, L; Bergman, B

    1983-04-01

    Uptake of NH 4 (+) and NO 3 (-) by the N2-fixing lichens Peltigera praetextata (two-component lichen) and P. aphthosa (three-component lichen) was studied. In addition, the effects of these ions, separately and in combination, on C2H2 reduction and CO2 exchange were examined. Both NH 4 (+) and NO 3 (-) were utilized by the lichens. NH4NO3 caused an increased liberation of NO 3 (-) from the lichens as compared to the release observed in untreated lichen thalli. NH 4 (+) and NO 3 (-) led to reduced C2H2 reduction by P. praetextata, which, however, was less pronounced than when the two ions were given in combination. In P. aphthosa the C2H2 reduction was inhibited by NH 4 (+) and NH4NO3, but not by NO 3 (-) alone. NH 4 (+) and NO 3 (-) had no effect on the net photosynthesis of P. praetextata, while, in combination, they led to inhibition, although only at a concentration higher than that inhibitory to the C2H2 reduction of P. aphthosa. The photsynthesis was inhibited by all salts, but only initially, probably a "salt effect". Effects of NH 4 (+) on the membrane potential of the cyanobiont are suggested as an important factor causing the depression of net photosynthesis.

  2. Local Perturbations in the (10110) and (10101) Levels of C_2H_2 from Frequency Comb-Referenced Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sears, Trevor; Twagirayezu, Sylvestre; Forthomme, Damien; Hall, Gregory; Cich, Matthew

    2015-06-01

    In work reported by Twagirayezu et al. at this meeting, the rest frequencies of more than 100 lines in the ν_4 and ν_5 hot bands in the ν_1 + ν_3 combination band of acetylene have been measured by saturation dip spectroscopy using an extended cavity diode laser locked to a frequency comb. This work was orginally directed towards providing a set of accurate frequencies for the hot band line positions to aid in modeling the lineshapes of the main lines in the band. In analyzing the results, we find that many of the upper levels in the hot band transitions suffer small, and in some cases not so small, local perturbations. These arise because of J-dependent near degeneracies between the title levels and background levels of the same symmetry, mostly derived from zero order states involving multiple quanta of bending excitation. The vibration-rotation levels at the energies in question have previously been modeled using a polyad-based Hamiltonian and the present data can be interpreted on the basis of this model, but they also provide information which can be used to refine the model, and point to terms that may have previously been neglected. The most important result is that the high precision of the measurements gives the opportunity to calibrate the effects of background levels associated with high bending quantum numbers and angular momentun states that are otherwise very difficult to access. Acknowledgments: We are most grateful to D. S Perry (U. Akron) and M. Herman (U. Libre de Bruxelles) for helpful discussions. Work at Brookhaven National Laboratory is funded by the Division of Chemical Sciences, Geosciences and Biosciences within the Offices of Basic Energy Sciences, Office of Sciences, U.S. Department of Energy under Contract Nos. DE-AC02-98CH10886 and DE-SC0012704. M. Herman and D. S. Perry, Phys. Chem. Chem. Phys., 15, 9970-9993 (2013)

  3. Application of the Hartmann–Tran profile to precise experimental data sets of 12C2H2

    DOE PAGES

    Forthomme, D.; Cich, M. J.; Twagirayezu, S.; ...

    2015-06-25

    Self- and nitrogen-broadened line shape data for the Pe(11) line of the ν₁ + ν₃ band of acetylene, recorded using a frequency comb-stabilized laser spectrometer, have been analyzed using the Hartmann–Tran profile (HTP) line shape model in a multispectrum fitting. In total, the data included measurements recorded at temperatures between 125 K and 296 K and at pressures between 4 and 760 Torr. New, sub-Doppler, frequency comb-referenced measurements of the positions of multiple underlying hot band lines have also been made. These underlying lines significantly affect the Pe(11) line profile at temperatures above 240 K and poorly known frequencies previouslymore » introduced errors into the line shape analyses. Thus, the behavior of the HTP model was compared to the quadratic speed dependent Voigt profile (QSDVP) expressed in the frequency and time domains. A parameter uncertainty analysis was carried out using a Monte Carlo method based on the estimated pressure, transmittance and frequency measurement errors. From the analyses, the Pe(11) line strength was estimated to be 1.2014(50) × 10-20 in cm.molecules⁻¹ units at 296 K with the standard deviation in parenthesis. For analyzing these data, we found that a reduced form of the HTP, equivalent to the QSDVP, was most appropriate because the additional parameters included in the full HTP were not well determined. As a supplement to this work, expressions for analytic derivatives and a lineshape fitting code written in Matlab for the HTP are available.« less

  4. Towards Structural-Functional Mimics of Acetylene Hydratase: Reversible Activation of Acetylene using a Biomimetic Tungsten Complex.

    PubMed

    Peschel, Lydia M; Belaj, Ferdinand; Mösch-Zanetti, Nadia C

    2015-10-26

    The synthesis and characterization of a biomimetic system that can reversibly bind acetylene (ethyne) is reported. The system has been designed to mimic catalytic intermediates of the tungstoenzyme acetylene hydratase. The thiophenyloxazoline ligand S-Phoz (2-(4',4'-dimethyloxazolin-2'-yl)thiophenolate) is used to generate a bioinspired donor environment around the W center, facilitating the stabilization of W-acetylene adducts. The featured complexes [W(C2 H2 )(CO)(S-Phoz)2 ] (2) and [WO(C2 H2 )(S-Phoz)2 ] (3) are extremely rare from a synthetic and structural point of view as very little is known about W-C2 H2 adducts. Upon exposure to visible light, 3 can release C2 H2 from its coordination sphere to yield the 14-electron species [WO(S-Phoz)2 ] (4). Under light-exclusion 4 re-activates C2 H2 making this the first fully characterized system for the reversible activation of acetylene.

  5. In situ spectroscopic characterization of Ni1-xZnx/ZnO catalysts and their selectivity for acetylene semihydrogenation in excess ethylene

    SciTech Connect

    Spanjers, Charles S.; Sim, Richard S.; Sturgis, Nicholas P.; Kabius, Bernd; Rioux, Robert M.

    2015-10-30

    The structures of ZnO-supported Ni catalysts were explored with in situ X-ray absorption spectroscopy, temperature-programmed reduction, X-ray diffraction, high-resolution transmission electron microscopy (HRTEM), scanning transmission electron microscopy, and electron energy loss spectroscopy. Calcination of nickel nitrate on a nanoparticulate ZnO support at 450 °C results in the formation of Zn-doped NiO (ca. N₀̣̣₈₅ Zn₀̣̣₁₅O) nanoparticles with the rock salt crystal structure. Subsequent in situ reduction monitored by X-ray absorption near-edge structure (XANES) at the Ni K edge reveals a direct transformation of the Zn-doped NiO nanoparticles to a face-centered cubic alloy, Ni1-xZnx, at ~400 °C with x increasing with increasing temperature. Both in situ XANES and ex situ HRTEM provide evidence for intermetallic β₁-NiZn formation at ~550 °C. In comparison to a Ni/SiO₂ catalyst, Ni/ZnO necessitates a higher temperature for the reduction of NiII to Ni⁰, which highlights the strong interaction between Ni and the ZnO support. The catalytic activity for acetylene removal from an ethylene feed stream is decreased by a factor of 20 on Ni/ZnO in comparison to Ni/SiO₂. The decrease in catalytic activity of Ni/ZnO is accompanied by a reduced absolute selectivity to ethylene. H–D exchange measurements demonstrate a reduced ability of Ni/ZnO to dissociate hydrogen in comparison to Ni/SiO₂.These results of the catalytic experiments suggest that the catalytic properties are controlled, in part, by the zinc oxide support and stress the importance of reporting absolute ethylene selectivity for the catalytic semihydrogenation of acetylene in excess ethylene.

  6. Acetylene adsorption on δ-MoC(001), TiC(001) and ZrC(001) surfaces: a comprehensive periodic DFT study.

    PubMed

    Jimenez-Orozco, Carlos; Florez, Elizabeth; Moreno, Andres; Liu, Ping; Rodriguez, Jose A

    2017-01-04

    A comprehensive study of acetylene adsorption on δ-MoC(001), TiC(001) and ZrC(001) surfaces was carried out by means of calculations based on periodic density functional theory, using the Perdew-Burke-Ernzerhof exchange-correlation functional. It was found that the bonding of acetylene was significantly affected by the electronic and structural properties of the carbide surfaces. The adsorbate interacted with metal and/or carbon sites of the carbide. The interaction of acetylene with the TiC(001) and ZrC(001) surfaces was strong (binding energies higher than -3.5 eV), while moderate acetylene adsorption energies were observed on δ-MoC(001) (-1.78 eV to -0.66 eV). Adsorption energies, charge density difference plots and Mulliken charges suggested that the binding of the hydrocarbon to the surface had both ionic and covalent contributions. According to the C-C bond lengths obtained, the adsorbed molecule was modified from acetylene-like into ethylene-like on the δ-MoC(001) surface (desired behavior for hydrogenation reactions) but into ethane-like on TiC(001) and ZrC(001). The obtained results suggest that the δ-MoC(001) surface is expected to have the best performance in selective hydrogenation reactions to convert alkynes into alkenes. Another advantage of δ-MoC(001) is that, after C2H2 adsorption, surface carbon sites remain available, which are necessary for H2 dissociation. However, these sites were occupied when C2H2 was adsorbed on TiC(001) and ZrC(001), limiting their application in the hydrogenation of alkynes.

  7. Reactions of Fe+ and FeO+ with C2H2, C2H4, and C2H6: temperature-dependent kinetics.

    PubMed

    Ard, Shaun G; Melko, Joshua J; Fournier, Joseph A; Shuman, Nicholas S; Viggiano, Albert A

    2013-10-10

    We present the first temperature-dependent rate constants and branching ratios for the reactions of Fe(+) and FeO(+) with C2H2, C2H4, and C2H6 from 170 to 700 K. Fe(+) is observed to react only by association with the three hydrocarbons, with temperature dependencies of T(-2) to T(-3). FeO(+) reacts with C2H2 and C2H4 at the collision rate over the temperature range, and their respective product branchings show similar temperature dependences. In contrast, the reaction with ethane is collisional at 170 K but varies as T(-0.5), while the product branching remains essentially flat with temperature. These variations in reactivity are discussed in terms of the published reactive potential surfaces. The effectiveness of Fe(+) as an oxygen-transfer catalyst toward the three hydrocarbons is also discussed.

  8. Ionization of large homogeneous and heterogeneous clusters generated in acetylene-Ar expansions: cluster ion polymerization.

    PubMed

    Kočišek, J; Lengyel, J; Fárník, M

    2013-03-28

    Pure acetylene and mixed Ar-acetylene clusters are formed in supersonic expansions of acetylene/argon mixtures and analysed using reflectron time-of-flight mass spectrometer with variable electron energy ionization source. Acetylene clusters composed of more than a hundred acetylene molecules are generated at the acetylene concentration of ≈8%, while mixed species are produced at low concentrations (≈0.7%). The electron energy dependence of the mass spectra revealed the ionization process mechanisms in clusters. The ionization above the threshold for acetylene molecule of 11.5 eV results in the main ionic fragment progression (C2H2)n(+). At the electron energies ≥21.5 eV above the CH+CH(+) dissociative ionization limit of acetylene the fragment ions nominally labelled as (C2H2)nCH(+), n ≥ 2, are observed. For n ≤ 7 these fragments correspond to covalently bound ionic structures as suggested by the observed strong dehydrogenation [(C2H2)n - k × H](+) and [(C2H2)nCH - k × H](+). The dehydrogenation is significantly reduced in the mixed clusters where evaporation of Ar instead of hydrogen can stabilize the nascent molecular ion. The C3H3(+) ion was previously assigned to originate from the benzene molecular ion; however, the low appearance energy of ≈13.7 eV indicates that a less rigid covalently bound structure of C6H6(+) ion must also be formed upon the acetylene cluster electron ionization. The appearance energy of Arn(C2H2)(+) fragments above ≈15.1 eV indicates that the argon ionization is the first step in the fragment ion production, and the appearance energy of Arn≥2(C2H2)m≥2(+) at ≈13.7 eV is discussed in terms of an exciton transfer mechanism.

  9. Ionization of large homogeneous and heterogeneous clusters generated in acetylene-Ar expansions: Cluster ion polymerization

    NASA Astrophysics Data System (ADS)

    Kočišek, J.; Lengyel, J.; Fárník, M.

    2013-03-01

    Pure acetylene and mixed Ar-acetylene clusters are formed in supersonic expansions of acetylene/argon mixtures and analysed using reflectron time-of-flight mass spectrometer with variable electron energy ionization source. Acetylene clusters composed of more than a hundred acetylene molecules are generated at the acetylene concentration of ≈8%, while mixed species are produced at low concentrations (≈0.7%). The electron energy dependence of the mass spectra revealed the ionization process mechanisms in clusters. The ionization above the threshold for acetylene molecule of 11.5 eV results in the main ionic fragment progression (C_2H_2)_n^+. At the electron energies ⩾21.5 eV above the CH+CH+ dissociative ionization limit of acetylene the fragment ions nominally labelled as (C2H2)nCH+, n ⩾ 2, are observed. For n ⩽ 7 these fragments correspond to covalently bound ionic structures as suggested by the observed strong dehydrogenation [(C2H2)n - k × H]+ and [(C2H2)nCH - k × H]+. The dehydrogenation is significantly reduced in the mixed clusters where evaporation of Ar instead of hydrogen can stabilize the nascent molecular ion. The C3 H_3^+ ion was previously assigned to originate from the benzene molecular ion; however, the low appearance energy of ≈13.7 eV indicates that a less rigid covalently bound structure of C6 H_6^+ ion must also be formed upon the acetylene cluster electron ionization. The appearance energy of Arn(C2H2)+ fragments above ≈15.1 eV indicates that the argon ionization is the first step in the fragment ion production, and the appearance energy of Ar_{n ≥ 2}(C2 H2)_{m≥ 2}^+ at ≈13.7 eV is discussed in terms of an exciton transfer mechanism.

  10. Effect of the gas temperature and pressure on the nucleation time of particles in low pressure Ar-C2H2 rf plasmas

    NASA Astrophysics Data System (ADS)

    Lin, Jiashu; Henault, Marie; Orazbayev, Sagi; Boufendi, Laïa; Takahashi, Kazuo; Al Farabi Kazakh National University Collaboration; Kyoto Institute Of Technology Team; Gremi Team

    2016-09-01

    Particle formation in low pressure plasmas is a 3-step process. The first one corresponds to the nucleation and growth of nano-crystallites by ion-molecular reactions, the agglomeration phase to form large particles, and the growth by radical deposition on the particle surface. The nucleation phase was demonstrated to be sensitive to gas temperature and pressure. In this work, time of nucleation phase of particles formation in low pressure cold rf C2H2/Ar plasmas studied by varying gas temperature from 265 K to 375 K, gas pressure from 0.4 mbar to 0.8 mbar and rf power from 6 W to 20 W. The ratio of C2H2/Ar is fixed to 2/98 in terms of pressure. Several previous works reported that particle formation takes a few sec at room temperature in C2 H2 plasmas and the time is much shorter than 0.1 s in SiH4 plasmas. Time evolution of self-bias voltage was mainly used to determine nucleation time. The self-bias voltage was modified by phase transition between the steps from nucleation to coagulation. The experimental results showed that the nucleation time increased with gas temperature, decreased with gas pressure and discharge power. At constant gas pressure of 0.4 mbar and discharge power of 6 W, for example, the nucleation time increased from 5 sec to 30 sec with increas

  11. Microwave Spectra and Geometries of C2H2\\cdots AuI and C2H4\\cdots AuI

    NASA Astrophysics Data System (ADS)

    Stephens, Susanna Louise; Mullaney, John Connor; Sprawling, Matt John; Tew, David Peter; Walker, Nick; Legon, Anthony

    2014-06-01

    A chirped-pulse Fourier transform microwave spectrometer has been used to measure the microwave spectra of both C2H2\\cdots AuI and C2H4\\cdots AuI. These complexes are generated via laser ablation at 532 nm of a gold surface in the presence of CF3I and either C2H2 or C2H4 and argon and are stabilized by a supersonic expansion. Rotational (A0, B0, C0) and centrifugal distortion constants (ΔJ, ΔJK and δJ) of each molecule have been determined as well the nuclear electric quadrupole coupling constants of gold and iodine atoms (χaa(Au}, χbb-χcc(Au), χaa(I) and χbb-χcc(I)). The spectrum of each molecule is consistent with a C2v structure in which the metal atom interacts with the π-orbital of the ethene or ethyne molecule. Isotopic substitutions of atoms within the C2H2 or C2H4 subunits are in progress and in conjunction with high level ab initio calculations will allow for accurate determination of the geometry of each molecule.

  12. Complete genome sequences of two acetylene-fermenting Pelobacter acetylenicus strains

    USGS Publications Warehouse

    Sutton, John M.; Baesman, Shaun; Fierst, Janna L.; Poret-Peterson, Amisha T.; Oremland, Ronald S.; Dunlap, Darren S.; Akob, Denise M.

    2017-01-01

    Acetylene fermentation is a rare metabolism that was serendipitously discovered during C2H2-block assays of N2O reductase. Here, we report the genome sequences of two type strains of acetylene-fermenting Pelobacter acetylenicus, the freshwater bacterium DSM 3246 and the estuarine bacterium DSM 3247.

  13. Complete Genome Sequences of Two Acetylene-Fermenting Pelobacter acetylenicus Strains

    PubMed Central

    Baesman, Shaun M.; Fierst, Janna L.; Poret-Peterson, Amisha T.; Oremland, Ronald S.; Dunlap, Darren S.

    2017-01-01

    ABSTRACT Acetylene fermentation is a rare metabolism that was serendipitously discovered during C2H2-block assays of N2O reductase. Here, we report the genome sequences of two type strains of acetylene-fermenting Pelobacter acetylenicus, the freshwater bacterium DSM 3246 and the estuarine bacterium DSM 3247. PMID:28183759

  14. Electron ionization of acetylene.

    PubMed

    King, Simon J; Price, Stephen D

    2007-11-07

    Relative partial ionization cross sections and precursor specific relative partial ionization cross sections for fragment ions formed by electron ionization of C2H2 have been measured using time-of-flight mass spectrometry coupled with a 2D ion-ion coincidence technique. We report data for the formation of H+, H+2, C2+, C+/C2+ 2, CH+/C2H+2, CH+2, C+2, and C2H+ relative to the formation of C2H+2, as a function of ionizing electron energy from 30-200 eV. While excellent agreement is found between our data and one set of previously published absolute partial ionization cross sections, some discrepancies exist between the results presented here and two other recent determinations of these absolute partial ionization cross sections. We attribute these differences to the loss of some translationally energetic fragment ions in these earlier studies. Our relative precursor-specific partial ionization cross sections enable us, for the first time, to quantify the contribution to the yield of each fragment ion from single, double, and triple ionization. Analysis shows that at 50 eV double ionization contributes 2% to the total ion yield, increasing to over 10% at an ionizing energy of 100 eV. From our ion-ion coincidence data, we have derived branching ratios for charge separating dissociations of the acetylene dication. Comparison of our data to recent ab initio/RRKM calculations suggest that close to the double ionization potential C2H2+2 dissociates predominantly on the ground triplet potential energy surface (3Sigma*g) with a much smaller contribution from dissociation via the lowest singlet potential energy surface (1Delta g). Measurements of the kinetic energy released in the fragmentation reactions of C2H2+2 have been used to obtain precursor state energies for the formation of product ion pairs, and are shown to be in good agreement with available experimental data and with theory.

  15. Reaction of C2H2+ (n.ν2, m.ν5) with NO2: Reaction on the singlet and triplet surfaces

    NASA Astrophysics Data System (ADS)

    Boyle, Jason M.; Bell, David M.; Anderson, Scott L.

    2011-01-01

    Integral cross sections and product recoil velocity distributions were measured for reaction of C2H2+ with NO2, in which the C2H2+ reactant was prepared in its ground state, and with mode-selective excitation in the cis-bend (2ν5) and CC stretch (n.ν2, n = 1, 2). Because both reactants have one unpaired electron, collisions can occur with either singlet or triplet coupling of these unpaired electrons, and the contributions are separated based on distinct recoil dynamics. For singlet coupling, reaction efficiency is near unity, with significant branching to charge transfer (NO2+), O- transfer (NO+), and O transfer (C2H2O+) products. For triplet coupling, reaction efficiency varies between 13% and 19%, depending on collision energy. The only significant triplet channel is NO+ + triplet ketene, generated predominantly by O- transfer, with a possible contribution from dissociative charge transfer at high collision energies. NO2+ formation (charge transfer) can only occur on the singlet surface, and appears to be mediated by a weakly bound complex at low energies. O transfer (C2H2O+) also appears to be dominated by reaction on the singlet surface, but is quite inefficient, suggesting a bottleneck limiting coupling to this product from the singlet reaction coordinate. The dominant channel is O- transfer, producing NO+, with roughly equal contributions from reaction on singlet and triplet surfaces. The effects of C2H2+ vibration are modest, but mode specific. For all three product channels (i.e., charge, O-, and O transfer), excitation of the CC stretch fundamental (ν2) has little effect, 2.ν2 excitation results in ˜50% reduction in reactivity, and excitation of the cis-bend overtone (2.ν5) results in ˜50% enhancement. The fact that all channels have similar mode dependence suggests that the rate-limiting step, where vibrational excitation has its effect, is early on the reaction coordinate, and branching to the individual product channels occurs later.

  16. Identification of Acetylene on Titan's Surface

    NASA Astrophysics Data System (ADS)

    Singh, S.; McCord, T. B.; Rodriguez, S.; Combe, J. P.; Cornet, T.; Le Mouelic, S.; Maltagliati, L.; Chevrier, V.; Clark, R. N.

    2015-12-01

    Titan's atmosphere is opaque in the near infrared due to gaseous absorptions, mainly by methane, and scattering by aerosols, except in a few "transparency windows" (e.g., Sotin et al., 2005). Thus, the composition of Titan surface remains difficult to access from space and is still poorly constrained, limited to ethane in the polar lakes (Brown et al., 2008) and a few possible organic molecules on the surface (Clark et al., 2010). Photochemical models suggest that most of the organic compounds formed in the atmosphere are heavy enough to condense and build up at the surface in liquid and solid states over geological timescale (Cordier et al., 2009, 2011). Acetylene (C2H2) is one of the most abundant organic molecules in the atmosphere and thus thought to present on the surface as well. Here we report direct evidence of solid C2H2 on Titan's surface using Cassini Visual and Infrared Mapping Spectrometer (VIMS) data. By comparing VIMS observations and laboratory measurements of solid and liquid C2H2, we identify a specific absorption at 1.55 µm that is widespread over Titan but is particularly strong in the brightest terrains. This surface variability suggests that C2H2 is mobilized by surface processes, such as surface weathering, topography, and dissolution/evaporation. The detection of C2H2 on the surface of Titan opens new paths to understand and constrain Titan's surface activity. Since C2H2 is highly soluble in Titan liquids (Singh et al. 2015), it can easily dissolve in methane/ethane and may play an important role in carving of fluvial channels and existence of karstic lakes at higher latitudes on Titan. These processes imply the existence of a dynamic surface with a continued history of erosion and deposition of C2H2 on Titan.

  17. On the ionic states of vinylidene and acetylene

    NASA Astrophysics Data System (ADS)

    Rosmus, P.; Botchwina, P.; Maier, J. P.

    1981-11-01

    Electronic states of C 2H +2 cation (with acetylenic and vinylidenic structure) are investigated by ab initio SCF and PNO CEPA calculations. The lowest excited state of the acetylene cation is calculated to be 4A 2 in a strongly bent cis conformation, and a qualitative explanation is given for the lack of detectable emission from theà 2∑ g+ state. Only the radical anion with the vinylidenic structure is bound.

  18. MICROWAVE SPECTRA AND GEOMETRIES OF C2H_{2\\cdots AgI} and C2H_{4\\cdots AgI}

    NASA Astrophysics Data System (ADS)

    Stephens, Susanna L.; Tew, David Peter; Walker, Nick; Legon, Anthony

    2015-06-01

    A chirped-pulse Fourier transform microwave spectrometer has been used to measure the microwave spectra of both C2H_{2\\cdots AgI} and C2H_{4\\cdots AgI}. These complexes are generated via laser ablation at 532 nm of a silver surface in the presence of CF3I and either C2H_{2} or C2H_{4} and argon and are stabilized by a supersonic expansion. Rotational (A0, B0, C0) and centrifugal distortion constants (ΔJ and ΔJK) of each molecule have been determined as well the nuclear electric quadrupole coupling constants the iodine atom (χaa(I) and χbb-χcc(I)). The spectrum of each molecule is consistent with a C2v structure in which the metal atom interacts with the π-orbital of the ethene or ethyne molecule. Isotopic substitutions of atoms within the C2H_{2} or C2H_{4} subunits are in progress and in conjunction with high level ab initio calculations will allow for accurate determination of the geometry of each molecule. These to complexes are put in the context of the recently studied H2S\\cdots AgI, OC\\cdotsAgI, H3N\\cdots AgI and (CH3)_{3N\\cdots AgI}. S.Z. Riaz, S.L. Stephens, W. Mizukami, D.P. Tew, N.R. Walker, A.C. Legon, Chem. Phys. Let., 531, 1-12 (2012) S.L. Stephens, W. Mizukami, D.P. Tew, N.R. Walker, A.C. Legon, J. Chem. Phys., 136(6), 064306 (2012) D.M. Bittner, D.P. Zaleski, S.L. Stephens, N.R. Walker, A.C. Legon, Study in progress.

  19. One-photon mass-analyzed threshold ionization spectroscopy (MATI) of cis-dichloroethylene (cis-C2H2Cl2)

    NASA Astrophysics Data System (ADS)

    Bae, Yong Jin; Kim, Myung Soo

    2007-11-01

    A high-quality one-photon mass-analyzed threshold ionization (MATI) spectrum of cis-C2H2Cl2 was obtained by using vacuum ultraviolet radiation generated by four-wave mixing in Kr. The ionization energy determined from the position of the 0-0 band in the spectrum was 9.6578 ± 0.0006 eV. Ten vibrational fundamentals for the cation were identified. Most of the overtones and combinations could be assigned properly by comparing with the quantum chemical calculation results. The equilibrium geometry of the cation was determined through Franck-Condon fit.

  20. High Resolution Infrared Spectrum of the ν7+ν8 Band of the Trans-C2H2D2 Molecule

    NASA Astrophysics Data System (ADS)

    Ziatkova, A. G.; Aslapovskaya, Yu. S.; Gromova, O. V.; Bekhtereva, E. S.; Fomchenko, A. L.

    2017-02-01

    High resolution spectrum of the trans-C2H2D2 molecule is analyzed on the basis of the Ground State Combination Difference method in the region 1450-1650 cm-1, in which the hybrid ν7 + ν8 band is located. The analysis is performed in the framework of the model which takes into account the Coriolis interaction with the ν8 + ν10 band. The b-type transitions that in their turn, allow more experimental data on the ν7 + ν8 band to be obtained, are determined for this band for the first time.

  1. Dubinin-Astakhov model for acetylene adsorption on metal-organic frameworks

    NASA Astrophysics Data System (ADS)

    Cheng, Peifu; Hu, Yun Hang

    2016-07-01

    Acetylene (C2H2) is explosive at a pressure above 29 psi, causing a safety issue for its storage and applications. C2H2 adsorption on metal-organic frameworks (MOFs) has been explored to solve the issue. However, a suitable isotherm equation for C2H2 adsorption on various MOFs has not been found. In this paper, it was demonstrated that Dubinin-Astakhov equation can be exploited as a general isotherm model to depict C2H2 adsorption on MOF-5, ZIF-8, HKUST-1, and MIL-53. In contrast, commonly used Langmuir and BET models exhibited their inapplicability for C2H2 adsorption on those MOFs.

  2. Effect of C2H2 flow rate on microstructure and properties of nc-Cu/a-C:H nanocomposite films prepared by filtered cathodic vaccum arc technique

    NASA Astrophysics Data System (ADS)

    Zhang, Haiqiang; Chen, Yiming; Liao, Bin; Wu, Xianying; Zhang, Huixing; Zhang, Xu

    2013-07-01

    Nc-Cu/a-C:H nanocomposite films are deposited by filtered cathodic vaccum arc (FCVA) technique using C2H2 as the precursor. The effects of C2H2 flow rate on the microstructure, composition and properties of nc-Cu/a-C:H films have been studied by Raman spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and nanoindentation test. In these films, copper nanoparticles (3.5-15 nm) are embedded in the amorphous carbon matrix, which could be confirmed by XRD analysis. Raman spectroscopy and XPS results confirm the decrease of sp3 content with the increasing copper fraction, which could be a result of more severe thermalization on carbon matrix owing to the presence of copper. The compressive stresses of these films, calculated by Stoney's equation, are found to be as low as 0.5 Gpa, declining with the increasing copper content. Nanoindentation measurements reveal that the film hardness falls monotonically as the Cu content in the films increases.

  3. Effect of gas phase composition cycling on/off modulation numbers of C2H2/SF6 flows on the formation of geometrically controlled carbon coils.

    PubMed

    Eum, Jun-Ho; Jeon, Young-Chul; Kim, Sung-Hoon

    2012-07-01

    Carbon coils can be synthesized using C2H2/H2 as source gases and SF6 as an incorporated additive gas under a thermal chemical vapor deposition system. In this study, nickel catalyst layer deposition and then hydrogen plasma pretreatment were performed prior to the carbon coils deposition reaction. To obtain geometrically controlled carbon coils, source gases and SF6 were manipulated as the cycling on/off modulation numbers of C2H2/SF6 flows. The cycling numbers were varied according to the different reaction processes. The increased cycling numbers could develop the wave-like nano-sized carbon coils. By further increasing the cycling numbers, however, the nanostructured carbon coils seemed to deteriorate. As a result, the maximum formation of geometrically controlled carbon coils was achieved by adjusting the cycling numbers. The enhanced etching capability of the fluorine-related species in SF6 additive gas was considered for the main objective of controlling the geometry of carbon coils.

  4. A SIFT ion-molecule study of some reactions in Titan's atmosphere. reactions of N(+), N(2)(+), and HCN(+) with CH(4), C(2)H(2), and C(2)H(4)

    NASA Technical Reports Server (NTRS)

    Anicich, Vincent G.; Wilson, Paul; McEwan, Murray J.

    2004-01-01

    The results of a study of the ion-molecule reactions of N(+), N(2)(+), and HCN(+) with methane, acetylene, and ethylene are reported. These studies were performed using the FA-SIFT at the University of Canterbury. The reactions studied here are important to understanding the ion chemistry in Titan's atmosphere. N(+) and N(2)(+) are the primary ions formed by photo-ionization and electron impact in Titan's ionosphere and drive Titan's ion chemistry. It is therefore very important to know how these ions react with the principal trace neutral species in Titan's atmosphere: Methane, acetylene, and ethylene. While these reactions have been studied before the product channels have been difficult to define as several potential isobaric products make a definitive answer difficult. Mass overlap causes difficulties in making unambiguous species assignments in these systems. Two discriminators have been used in this study to resolve the mass overlap problem. They are deuterium labeling and also the differences in reactivities of each isobar with various neutral reactants. Several differences have been found from the products in previous work. The HCN(+) ion is important in both Titan's atmosphere and in the laboratory.

  5. Auger-electron angular distributions calculated without the two-step approximation: Calculation of angle-resolved resonant Auger spectra of C2 H2

    NASA Astrophysics Data System (ADS)

    Colle, Renato; Embriaco, Davide; Massini, Michol; Simonucci, Stefano; Taioli, Simone

    2004-10-01

    Analytic expressions for the direct, resonant, and interference contributions to the differential cross section of a resonant Auger process, produced by the inner-shell photoionization of a linear molecule either “fixed in space” or belonging to a gas of randomly oriented molecules, have been derived following Dill’s procedures [ Dill , Phys. Rev. Lett. 45, 1393 (1980) ], but going beyond the two-step approximation. Angle-resolved Auger spectra of the C2H2 molecule measured on top of the C1s→π* resonance [ Kivimäki , J. Phys. B 30, 4279 (1997) ] have been calculated together with asymmetry parameters, analyzing also the different contributions to the electron angular distributions.

  6. Photoabsorption and photoionization cross sections of NH3, PH3, H2S, C2H2, and C2H4 in the VUV region

    NASA Technical Reports Server (NTRS)

    Xia, T. J.; Chien, T. S.; Wu, C. Y. Robert; Judge, D. L.

    1991-01-01

    Using synchrotron radiation as a continuum light source, the photoabsorption and photoionization cross sections of NH3, PH3, H2S, C2H2, and C2H4 have been measured from their respective ionization thresholds to 1060 A. The vibrational constants associated with the nu(2) totally symmetric, out-of-plane bending vibration of the ground electronic state of PH3(+) have been obtained. The cross sections and quantum yields for producing neutral products through photoexcitation of these molecules in the given spectral regions have also been determined. In the present work, autoionization processes were found to be less important than dissociation and predissociation processes in NH3, PH3, and C2H4. Several experimental techniques have been employed in order to examine the various possible systematic errors critically.

  7. A density functional theory study of phenyl formation initiated by ethynyl radical (C2H*) and ethyne (C2H2).

    PubMed

    Santiago, Romero M; Indarto, Antonius

    2008-12-01

    An ab initio computational density functional theory (DFT) was used to study the formation of the first cyclic molecule (phenyl) initiated by the ethynyl radical (C(2)H*). The study covers a competition reaction between the addition reactions of C(2)H* with ethyne (C(2)H(2)) and some molecular re-arrangement schemes. The minimum energy paths of the preferred cyclic formation route were characterized. A thorough thermochemical analysis was performed by evaluating the differences in the energy of activation (DeltaE), enthalpy (DeltaH), and Gibb's free energy (DeltaG) of the optimized stable and transition state (TS) molecules. The reaction temperatures were set to normal (T = 298 K) and combustion (T = 1,200 K) conditions.

  8. Measurements in N2-CH4(C2H2) discharges of reaction rates and thermochemical constants for Titan atmosphere study.

    PubMed

    Ricard, A; Cernogora, G; Fitaire, M; Hochard, L; Kouassi, N; Speller, C; Vacher, J R

    1995-01-01

    The kinetic reactions in N2-xCH4(C2H2) gas discharges with x less than 1% have been studied by emission spectroscopy in the afterglow of D.C. discharges and by mass spectroscopy from radiolysis ionization using alpha particles. The pressure range is from several Torr to 100 Torr. At the end of N2 D.C. discharges at room temperature, for a residence time of about 10(-2) s, the dominant active species are the N atoms with density of 10(14)-10(15) cm-3 for N2 density of about 10(17) cm-3 (3 Torr), the N2(X,V) vibrational molecules with for example [N2(X,V = 10)] approximately 10(14) cm-3 and the electronic metastable molecules N2(A 3 sigma u +) with a density of 10(12) cm-3. In such conditions, the following kinetic reactions have been studied: N2(A) + N2(A) --> N2(C,B,V') + N2(X), N2(A) + N2(X,V>5) --> N2(X) + N2(B,V') in pure N2 post-discharges and N2(A) + CH4 --> products, C + N + M2 --> CN(B,V') + M2, N2(X,V>4) + CN --> N2(X) + CN(B,A,V'), in N2-1% CH4 post-discharges. The clustering reactions of N2-(1-5%)CH4(C2H2) gas mixtures after radiolysis ionization have been studied for the H2CN+ nN2 ions and the equilibrium constants have been determined in the temperature range T = 140-300 K.

  9. Acetylene fermentation: An Earth-based analog of biological carbon cycling on Titan

    NASA Astrophysics Data System (ADS)

    Miller, L. G.; Baesman, S. M.; Hoeft, S. E.; Kirshtein, J.; Wolf, K.; Voytek, M. A.; Oremland, R. S.

    2009-12-01

    Acetylene (C2H2) is present in part per million quantities in the atmosphere of Titan; conceivably as an intermediate product of methane photolysis. Currently, Earth’s atmosphere contains only trace amounts of C2H2 (~40 pptv), however higher concentrations likely prevailed during the Hadean and early Archean eons (4.5 - 3.5 Ga). We isolated C2H2-fermenting microbes from various aquatic and sedimentary environments. Acetylene fermentation proceeds via acetylene hydratase (AH) through acetaldehyde, which dismutates to ethanol and acetate, and if oxidants are present (e.g., sulfate) eventually to CO2. Thus, the remnants of a C2H2 cycle exists today on Earth but may also occur on Titan and/or Enceladus, both being planetary bodies hypothesized to have liquid water underlying their frozen surfaces. We developed a molecular method for AH by designing PCR primers to target the functional gene in Pelobacter acetylenicus. We used this method to scan new environments for the presence of AH and we employed DNA sequencing of the 16S rRNA gene in order to positively identify pelobacters in environmental samples. Acetylene fermentation was documented in five diverse salt-, fresh-, and ground-water sites. Pelobacter was identified as the genus responsible for acetylene fermentation in some, but not all, of these sites. Successful probing for AH preceded the discovery of acetylene consumption in a contaminated groundwater site, demonstrating the utility of functional gene probing. A pure culture of a C2H2-fermenting pelobacter was obtained from an intertidal mudflat. We also obtained an enrichment culture (co-cultured with a sulfate reducer) from freshwater lake sediments, but neither was pelobacter nor AH detected in this sample, suggesting that an alternative pathway may be involved here. Slurry experiments using these lake sediments either with or without added C2H2 or sulfate showed that sulfate reduction and acetylene fermentation were independent processes. In general, the

  10. Hydrogen-Bonded Complexes of Phenylacetylene-Acetylene: Who is the Proton Donor?

    PubMed

    Verma, Kanupriya; Dave, Kapil; Viswanathan, K S

    2015-12-24

    Hydrogen-bonded complexes of C2H2 and phenylacetylene (PhAc) were studied using matrix isolation infrared spectroscopy and quantum chemical computations. Both C2H2 and PhAc, being potential proton donors, the question arises as to which of the two species would be the proton donor in the PhAc-C2H2 complex; a question that this work primarily addresses. The molecular structures, vibrational frequencies, and interaction energies of the PhAc-C2H2 complexes were calculated at the M06-2X and MP2 levels of theory, employing both 6-311++G(d,p) and aug-cc-pVDZ basis sets. At the M06-2X/aug-cc-pVDZ level, two nearly isoenergetic complexes (BSSE corrected) were indicated to be the global minima; one a C-H···π complex, where C2H2 served as a proton donor to the phenyl π-system in PhAc, and the other a C-H···π complex, where C2H2 served as a proton donor to the acetylene π-system in PhAc. Of the two, only the second complex was identified in the matrix, evidenced by a characteristic large shift in the ≡C-H stretch of C2H2. Experiments were also performed using PhAc deuterated at the acetylene hydrogen (PhAcD) to study the isotopic effects on the vibrational spectra of complexes. The isotopic studies further confirmed the structure of the complex trapped in the matrix, thereby presenting unambiguous evidence that C2H2 served as the proton donor to the acetylene π-system of PhAc. The theory of atoms-in-molecules (AIM), energy decomposition (EDA), and natural bond orbital (NBO) analysis were performed to understand the nature of the interactions involved in the complexes.

  11. Acetylene fuels TCE reductive dechlorination by defined Dehalococcoides/Pelobacter consortia

    USGS Publications Warehouse

    Mao, Xinwei; Oremland, Ronald S.; Liu, Tong; Landers, Abigail A; Baesman, Shaun; Alvarez-Cohen, Lisa

    2017-01-01

    Acetylene (C2H2) can be generated in contaminated groundwater sites as a consequence of chemical degradation of trichloroethene (TCE) by in situ minerals, and C2H2 is known to inhibit bacterial dechlorination. In this study, we show that while high C2H2 (1.3 mM) concentrations reversibly inhibit reductive dechlorination of TCE by Dehalococcoides mccartyi isolates as well as enrichment cultures containing D. mccartyi sp., low C2H2 (0.4 mM) concentrations do not inhibit growth or metabolism of D. mccartyi. Cocultures of Pelobacter SFB93, a C2H2-fermenting bacterium, with D. mccartyi strain 195 or with D. mccartyi strain BAV1 were actively sustained by providing acetylene as the electron donor and carbon source while TCE or cis-DCE served as the electron acceptor. Inhibition by acetylene of reductive dechlorination and methanogenesis in the enrichment culture ANAS was observed, and the inhibition was removed by adding Pelobacter SFB93 into the consortium. Transcriptomic analysis of D. mccartyi strain 195 showed genes encoding for reductive dehalogenases (e.g., tceA) were not affected during the C2H2-inhibition, while genes encoding for ATP synthase, biosynthesis, and Hym hydrogenase were down-regulated during C2H2 inhibition, consistent with the physiological observation of lower cell yields and reduced dechlorination rates in strain 195. These results will help facilitate the optimization of TCE-bioremediation at contaminated sites containing both TCE and C2H2.

  12. High-resolution spectroscopy of Saturn at 3 microns: CH 4, CH 3D, C 2H 2, C 2H 6, PH 3, clouds, and haze

    NASA Astrophysics Data System (ADS)

    Kim, Joo Hyeon; Kim, Sang J.; Geballe, Thomas R.; Kim, Sungsoo S.; Brown, Linda R.

    2006-12-01

    We report observation and analysis of a high-resolution 2.87-3.54 μm spectrum of the southern temperate region of Saturn obtained with NIRSPEC at Keck II. The spectrum reveals absorption and emission lines of five molecular species as well as spectral features of haze particles. The ν+ν band of CH 3D is detected in absorption between 2.87 and 2.92 μm; and we derived from it a mixing ratio approximately consistent with the Infrared Space Observatory result. The ν band of C 2H 2 also is detected in absorption between 2.95 and 3.05 μm; analysis indicates a sudden drop in the C 2H 2 mixing ratio at 15 mbar (130 km above the 1 bar level), probably due to condensation in the low stratosphere. The presence of the ν+ν+ν band of C 2H 6 near 3.07 μm, first reported by Bjoraker et al. [Bjoraker, G.L., Larson, H.P., Fink, U., 1981. Astrophys. J. 248, 856-862], is confirmed, and a C 2H 6 condensation altitude of 10 mbar (140 km) in the low stratosphere is determined. We assign weak emission lines within the 3.3 μm band of CH 4 to the ν band of C 2H 6, and derive a mixing ratio of 9±4×10 for this species. Most of the C 2H 6 3.3 μm line emission arises in the altitude range 460-620 km (at ˜μbar pressure levels), much higher than the 160-370 km range where the 12 μm thermal molecular line emission of this species arises. At 2.87-2.90 μm the major absorber is tropospheric PH 3. The cloud level determined here and at 3.22-3.54 is 390-460 mbar (˜30 km), somewhat higher than found by Kim and Geballe [Kim, S.J., Geballe, T.R., 2005. Icarus 179, 449-458] from analysis of a low resolution spectrum. A broad absorption feature at 2.96 μm, which might be due to NH 3 ice particles in saturnian clouds, is also present. The effect of a haze layer at about 125 km (˜12 mbar level) on the 3.20-3.54 μm spectrum, which was not apparent in the low resolution spectrum, is clearly evident in the high resolution data, and the spectral properties of the haze particles suggest that

  13. Plasma-enhanced CVD of functional coatings in Ar/maleic anhydride/C2H2 homogeneous dielectric barrier discharges at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Zajíčková, Lenka; Jelínek, Petr; Obrusník, Adam; Vodák, Jiří; Nečas, David

    2017-03-01

    In this contribution, we focus on the general problems of plasma-enhanced chemical vapor deposition in atmospheric pressure dielectric barrier discharges, i.e. deposition uniformity, film roughness and the formation of dust particles, and demonstrate them on the example of carboxyl coatings prepared by co-polymerization of acetylene and maleic anhydride. Since the transport of monomers at atmospheric pressure is advection-driven, special attention is paid to the gas dynamics simulations, gas flow patterns, velocity and residence time. By using numerical simulations, we design an optimized gas supply geometry capable of synthesizing uniform layers. The selection of the gas mixture containing acetylene was motivated by two of its characteristics: (i) suppression of filaments in dielectric barrier discharges, and (ii) improved film cross-linking, keeping the amount of functional groups high. However, acetylene discharges are prone to the formation of nanoparticles that can be incorporated into the deposited films, leading to their high roughness. Therefore, we also discuss the role of the gas composition, the spatial position of the substrate with respect to gas flow and the deposition time on the topography of the deposited films.

  14. Genome-wide Regulatory Roles of the C2H2-type Zinc Finger Protein ZNF764 on the Glucocorticoid Receptor

    PubMed Central

    Fadda, Abeer; Syed, Najeeb; Mackeh, Rafah; Papadopoulou, Anna; Suzuki, Shigeru; Jithesh, Puthen V.; Kino, Tomoshige

    2017-01-01

    The C2H2-type zinc finger protein ZNF764 acts as an enhancer for several steroid hormone receptors, and haploinsufficiency of this gene may be responsible for tissue resistance to multiple steroid hormones including glucocorticoids observed in a patient with 16p11.2 microdeletion. We examined genome-wide regulatory actions of ZNF764 on the glucocorticoid receptor (GR) in HeLa cells as a model system. ZNF764- and GR-binding sites demonstrated similar distribution in various genomic features. They positioned predominantly around 50–500 kbs from the transcription start sites of their nearby genes, and were closely localized with each other, overlapping in ~37% of them. ZNF764 demonstrated differential on/off effects on GR-binding and subsequent mRNA expression: some genes were highly dependent on the presence/absence of ZNF764, but others were not. Pathway analysis revealed that these 3 gene groups were involved in distinct cellular activities. ZNF764 physically interacted with GR at ligand-binding domain through its KRAB domain, and both its physical interaction to GR and zinc finger domain appear to be required for ZNF764 to regulate GR transcriptional activity. Thus, ZNF764 is a cofactor directing GR transcriptional activity toward specific biologic pathways by changing GR binding and transcriptional activity on the glucocorticoid-responsive genes. PMID:28139699

  15. Infrared spectra of the C2H2-(OCS)2 van der Waals complex: observation of a structure with C2 symmetry.

    PubMed

    Rezaei, Mojtaba; McKellar, A R W; Moazzen-Ahmadi, N

    2011-09-29

    Infrared spectra of the C(2)H(2)-(OCS)(2) trimer are studied by means of direct infrared absorption spectroscopy. The van der Waals complexes are generated in a supersonic slit-jet apparatus and probed using a rapid-scan tunable diode laser in the region of the ν(1) fundamental vibration of the OCS monomer. Two infrared bands are analyzed for the lowest energy isomer of the trimer, which has C(2) symmetry and is experimentally observed here for the first time. A relatively strong band centered at 2068.93 cm(-1) is assigned as the out-of-phase vibrations of the pair of equivalent OCS monomers. This band is blue-shifted relative to the free OCS monomer but with a reduced shift as compared with the analogous vibration of the nonpolar OCS dimer. A weaker red-shifted band observed at 2049.64 cm(-1) establishes the nonplanarity of the OCS dimer subunit within the trimer. Spectra for three isotopologues in addition to the normal form are used to help define an experimental structure, which agrees well with past and present semiempirical calculations.

  16. 10 kHz accuracy of an optical frequency reference based on (12)C2H2-filled large-core kagome photonic crystal fibers.

    PubMed

    Knabe, Kevin; Wu, Shun; Lim, Jinkang; Tillman, Karl A; Light, Philip S; Couny, Francois; Wheeler, Natalie; Thapa, Rajesh; Jones, Andrew M; Nicholson, Jeffrey W; Washburn, Brian R; Benabid, Fetah; Corwin, Kristan L

    2009-08-31

    Saturated absorption spectroscopy reveals the narrowest features so far in molecular gas-filled hollow-core photonic crystal fiber. The 48-68 mum core diameter of the kagome-structured fiber used here allows for 8 MHz full-width half-maximum sub-Doppler features, and its wavelength-insensitive transmission is suitable for high-accuracy frequency measurements. A fiber laser is locked to the (12)C2H2 nu(1); + nu(3) P(13) transition inside kagome fiber, and compared with frequency combs based on both a carbon nanotube fiber laser and a Cr:forsterite laser, each of which are referenced to a GPS-disciplined Rb oscillator. The absolute frequency of the measured line center agrees with those measured in power build-up cavities to within 9.3 kHz (1 sigma error), and the fractional frequency instability is less than 1.2 x 10(-11) at 1 s averaging time.

  17. Observation of positronium formation with inner orbital electrons for O2, CO2, C2H2, and N2O using PsARS

    NASA Astrophysics Data System (ADS)

    Edwards, J. J.; Kauppila, W. E.; Miller, E. G.; Stein, T. S.; Surdutovich, E.

    2006-05-01

    We are investigating ortho- and para-positronium (Ps) formation for positrons interacting with simple gas molecules in a gas scattering cell using Ps annihilation ratio spectroscopy (PsARS)[1]. These measurements involve the detection of two gamma rays in coincidence for energy windows (a) centered at 511 keV resulting from the decay of short-lived (0.1 ns) para-Ps and the destruction of longer-lived (0.1 μs) ortho-Ps at the scattering cell walls, and (b) from 300 to 460 keV resulting from the three gamma decay of ortho-Ps. By taking the ratios of these signals versus positron impact energy we find we are able to compare the resulting curves with that obtained for argon as a reference. These comparisons reveal departures from the argon curve at well defined energies and are interpreted as Ps formation with inner orbital electrons. The fractions of the overall Ps formation cross-section due to inner orbital electrons are estimated to be as high as 30% for O2, 25% for CO2, 15% for N2O and 5% for C2H2 near their respective threshold energies. [1] W.E. Kauppila, E.G. Miller, H.F.M. Mohamed, K. Pipinos, T.S. Stein, E. Surdutovich, Phys. Rev. Lett. 93, 113401 (2004).

  18. Identification of a Cis-Acting Element of ART1, a C2H2-Type Zinc-Finger Transcription Factor for Aluminum Tolerance in Rice1[OA

    PubMed Central

    Tsutsui, Tomokazu; Yamaji, Naoki; Feng Ma, Jian

    2011-01-01

    Rice (Oryza sativa) is one of the most aluminum (Al)-tolerant species among small-grain cereals. Recent identification of a transcription factor AL RESISTANCE TRANSCRIPTION FACTOR1 (ART1) revealed that this high Al tolerance in rice is achieved by multiple genes involved in detoxification of Al at different cellular levels. ART1 is a C2H2-type zinc-finger transcription factor and regulates the expression of 31 genes in the downstream. In this study, we attempted to identify a cis-acting element of ART1. We used the promoter region of SENSITIVE TO AL RHIZOTOXICITY1, an Al tolerance gene in the downstream of ART1. With the help of gel-shift assay, we were able to identify the cis-acting element as GGN(T/g/a/C)V(C/A/g)S(C/G). This element was found in the promoter region of 29 genes among 31 ART1-regulated genes. To confirm this cis-acting element in vivo, we transiently introduced this element one or five times tandemly repeated sequence with 35S minimal promoter and green fluorescent protein reporter together with or without ART1 gene in the tobacco (Nicotiana tabacum) mesophyll protoplasts. The results showed that the expression of green fluorescent protein reporter responded to ART1 expression. Furthermore, the expression increased with repetition of the cis-acting element. Our results indicate that the five nucleotides identified are the target DNA-binding sequence of ART1. PMID:21502187

  19. Underlying theory of a model for the Renner-Teller effect in tetra-atomic molecules: X(2)Πu electronic state of C2H2(+).

    PubMed

    Perić, M; Jerosimić, S; Mitić, M; Milovanović, M; Ranković, R

    2015-05-07

    In the present study, we prove the plausibility of a simple model for the Renner-Teller effect in tetra-atomic molecules with linear equilibrium geometry by ab initio calculations of the electronic energy surfaces and non-adiabatic matrix elements for the X(2)Πu state of C2H2 (+). This phenomenon is considered as a combination of the usual Renner-Teller effect, appearing in triatomic species, and a kind of the Jahn-Teller effect, similar to the original one arising in highly symmetric molecules. Only four parameters (plus the spin-orbit constant, if the spin effects are taken into account), which can be extracted from ab initio calculations carried out at five appropriate (planar) molecular geometries, are sufficient for building up the Hamiltonian matrix whose diagonalization results in the complete low-energy (bending) vibronic spectrum. The main result of the present study is the proof that the diabatization scheme, hidden beneath the apparent simplicity of the model, can safely be carried out, at small-amplitude bending vibrations, without cumbersome computation of non-adiabatic matrix elements at large number of molecular geometries.

  20. Glyoxal photodissociation. An ab initio direct classical trajectory study of C2H2O2→H2+2 CO

    NASA Astrophysics Data System (ADS)

    Li, Xiaosong; Millam, John M.; Schlegel, H. Bernhard

    2001-05-01

    Unimolecular dissociation of glyoxal via a three-body fragmentation channel has been studied by direct classical trajectory calculations using Hartree-Fock (HF) and hybrid density functional methods (BH&HLYP, B3LYP) with split valence and polarized basis sets [HF/3-21G, BH&HLYP/6-311G(d,p) and B3LYP/6-311G(d,p)]. The transition state for C2H2O2→H2+2 CO has a dihedral angle of 90-110° between the carbonyl groups and a calculated barrier of ˜59 kcal/mol above the trans conformer. To simulate the experimental conditions, trajectories were started from a microcanonical ensemble at the transition state with 4, 8, and 16 kcal/mol excess energy distributed among the vibrational modes and the transition vector. In agreement with experiment, the CO rotational distribution is very broad with a high . However, the calculations yielded more CO vibrational excitation for the triple dissociation channel than observed for all channels combined. Hydrogen is produced with low J but significant vibrational excitation, in accord with experiment. Similar to trajectory studies on H2CO→H2+CO, there is a good correlation between the energy released along the part of the reaction path where most of the H2 bond length change occurs and the average vibrational excitation of the H2 products.

  1. A microporous metal-organic framework with both open metal and Lewis basic pyridyl sites for high C2H2 and CH4 storage at room temperature.

    PubMed

    Rao, Xingtang; Cai, Jianfeng; Yu, Jiancan; He, Yabing; Wu, Chuande; Zhou, Wei; Yildirim, Taner; Chen, Banglin; Qian, Guodong

    2013-08-04

    A new microporous metal-organic framework, Cu2(PDDI) (ZJU-5; H4PDDI = 5,5'-(pyridine-2,5-diyl)diisophthalic acid), was solvothermally synthesized and structurally characterized. With open metal sites, Lewis basic pyridyl sites and suitable pore space, the acetylene uptake in ZJU-5a reaches the highest value of 290 cm(3) g(-1) at 273 K and 1 bar. Furthermore, ZJU-5a exhibits high absolute methane storage of 190 cm(3) (STP) cm(-3) at 35 bar and 224 cm(3) (STP) cm(-3) at 60 bar at room temperature.

  2. Differential cross sections, measured with guided ion beams: applications to N + + N 2 and C 2H 2+ + C 2D 4 collisions

    NASA Astrophysics Data System (ADS)

    Mark, S.; Gerlich, D.

    1996-09-01

    In gas phase ion chemistry, the guided-ion-beam (GIB) technique is well established for measuring reliable absolute integral cross sections over a wide range of collision energies. It is less known that the method is also well suited for recoil velocity distributions of product ions (the axial component is determined by using the time-off-flight method (GIB-TOF), the transverse component by guiding field variation (GIB-VAR)). This additional information can be used as a diagnostic tool and helps to unravel the energetics of competing reaction pathways. In general, it allows determination of absolute doubly differential cross sections with very high sensitivity and in an energy and scattering angular range inaccessible to standard ion-beam methods. The experimental part of this paper describes the technique in detail, its difficulties and advantages and the required experimental test procedures. Numerical simulations aid the understanding of the kinematics and the shortfalls of the technique, mainly caused by the random motion of the gas in the scattering cell. The results section briefly summarizes already published product velocity distributions obtained for simple systems. New measurements will be presented for two collision systems, N + + N 2 and C 2H 2+C 2D 4. For the first one, product velocity distributions provide information on the role of excited states of both reactants and products. In combination with new ab initio calculations of the N 3+ potential surface [F.R. Bennett et al., Chem. Phys., this issue] the role of barriers and nonadiabatic interactions is elucidated. In the case of the more complicated hydrocarbon system, the method allows us to distinguish between products of same mass but different isotopic compositions. In addition, different reaction pathways are identified and hints to barrier heights are extracted from the product velocity distributions.

  3. Tuberculate fruit gene Tu encodes a C2 H2 zinc finger protein that is required for the warty fruit phenotype in cucumber (Cucumis sativus L.).

    PubMed

    Yang, Xuqin; Zhang, Weiwei; He, Huanle; Nie, Jingtao; Bie, Beibei; Zhao, Junlong; Ren, Guoliang; Li, Yue; Zhang, Dabing; Pan, Junsong; Cai, Run

    2014-06-01

    Cucumber fruits that have tubercules and spines (trichomes) are known to possess a warty (Wty) phenotype. In this study, the tuberculate fruit gene Tu was identified by map-based cloning, and was found to encode a transcription factor (TF) with a single C2 H2 zinc finger domain. Tu was identified in all 38 Wty lines examined, and was completely absent from all 56 non-warty (nWty) lines. Cucumber plants transgenic for Tu (TCP) revealed that Tu was required for the Wty fruit phenotype. Subcellular localization showed that the fusion protein GFP-Tu was localized mainly to the nucleus. Based on analyses of semi-quantitative and quantitative reverse transcription polymerase chain reaction (RT-PCR), and mRNA in situ hybridization, we found that Tu was expressed specifically in fruit spine cells during development of fruit tubercules. Moreover, cytokinin (CTK) content measurements and cytological observations in Wty and nWty fruits revealed that the Wty fruit phenotype correlated with high endogenous CTK concentrations. As a result of further analyses on the transcriptomic profile of the nWty fruit epidermis and TCP fruit warts, expression of CTK-associated genes, and hormone content in nWty fruit epidermis, Wty fruit warts and epidermis, and TCP fruit warts and epidermis, we found that Tu probably promoted CTK biosynthesis in fruit warts. Here we show that Tu could not be expressed in the glabrous and tubercule-free mutant line gl that contained Tu, this result that futher confirmed the epistatic effect of the trichome (spine) gene Gl over Tu. Taken together, these data led us to propose a genetic pathway for the Wty fruit trait that could guide future mechanistic studies.

  4. A novel C2H2 transcription factor that regulates gliA expression interdependently with GliZ in Aspergillus fumigatus.

    PubMed

    Schoberle, Taylor J; Nguyen-Coleman, C Kim; Herold, Jennifer; Yang, Ally; Weirauch, Matt; Hughes, Timothy R; McMurray, John S; May, Gregory S

    2014-05-01

    Secondary metabolites are produced by numerous organisms and can either be beneficial, benign, or harmful to humans. Genes involved in the synthesis and transport of these secondary metabolites are frequently found in gene clusters, which are often coordinately regulated, being almost exclusively dependent on transcription factors that are located within the clusters themselves. Gliotoxin, which is produced by a variety of Aspergillus species, Trichoderma species, and Penicillium species, exhibits immunosuppressive properties and has therefore been the subject of research for many laboratories. There have been a few proteins shown to regulate the gliotoxin cluster, most notably GliZ, a Zn2Cys6 binuclear finger transcription factor that lies within the cluster, and LaeA, a putative methyltransferase that globally regulates secondary metabolism clusters within numerous fungal species. Using a high-copy inducer screen in A. fumigatus, our lab has identified a novel C2H2 transcription factor, which plays an important role in regulating the gliotoxin biosynthetic cluster. This transcription factor, named GipA, induces gliotoxin production when present in extra copies. Furthermore, loss of gipA reduces gliotoxin production significantly. Through protein binding microarray and mutagenesis, we have identified a DNA binding site recognized by GipA that is in extremely close proximity to a potential GliZ DNA binding site in the 5' untranslated region of gliA, which encodes an efflux pump within the gliotoxin cluster. Not surprisingly, GliZ and GipA appear to work in an interdependent fashion to positively control gliA expression.

  5. Trajectory surface hopping study of the O((3)P) + C2H2 reaction dynamics: effect of collision energy on the extent of intersystem crossing.

    PubMed

    Rajak, Karunamoy; Maiti, Biswajit

    2014-01-28

    Intersystem crossing (ISC) dynamics plays an important role in determining the product branching in the O((3)P) + C2H2 reaction despite the necessarily small spin-orbit coupling constant values. In this study we investigate the effect of collision energy on the extent of the contribution of a spin non-conserving route through ISC dynamics to the product distributions at the initial collision energies 8.2, 9.5, and 13.1 kcal/mol. A direct dynamics trajectory surface hopping method is employed with potential energy surfaces generated at the unrestricted B3LYP/6-31G(d,p) level of theory to perform nonadiabatic dynamics. To make our calculation simpler, nonadibatic transitions were only considered at the triplet-singlet intersections. At the crossing points, Landau-Zener transition probabilities were calculated using spin-orbit coupling constant values computed at the same geometry. The Landau-Zener model for the title reaction is validated against a more rigorous Tully's fewest switches method and found to be working reasonably well as expected because of weak spin-orbit coupling. We have compared our results with the recent crossed molecular beam experiments and observed a very good agreement with respect to the primary product branching ratios. Our calculation revealed that there is no noticeable effect of the initial collision energy on the overall product distributions that corroborates the recent experimental findings. Our calculation indicates, however, that the extent of intersystem crossing contributions varies significantly with collision energy, needed to be verified, experimentally.

  6. Merging open metal sites and Lewis basic sites in a NbO-type metal-organic framework for improved C2H2/CH4 and CO2/CH4 separation.

    PubMed

    Song, Chengling; Hu, Jiayi; Ling, Yajing; Feng, Yunlong; Chen, De-Li; He, Yabing

    2015-09-07

    A new three-dimensional NbO-type porous metal-organic framework ZJNU-47 was synthesized via a solvothermal reaction of Cu(NO3)2·3H2O and a Lewis basic nitrogen donor site-rich tetracarboxylate, namely, 5,5'-(pyridazine-3,6-diyl)-diisophthalate, and the structure was characterized by single-crystal X-ray diffraction to be isostructural with NOTT-101. With the synergistic effect of open metal sites, Lewis basic sites and a suitable pore space, the MOF material ZJNU-47a after activation can take up a large amount of C2H2 and CO2. The gravimetric C2H2 uptake of 214 cm(3) (STP) g(-1) at room temperature and 1 atm is the highest among all reported MOFs to date, and the gravimetric CO2 uptake of 108 cm(3) (STP) g(-1) is also among the highest reported for MOFs. Compared to the isostructural MOF NOTT-101a, ZJNU-47a exhibits a significant increase in C2H2 and CO2 uptake and thus improved C2H2/CH4 and CO2/CH4 separations. Significantly, comprehensive DFT studies of C2H2 and CO2 adsorption have revealed that the open nitrogen donor sites are comparable and even superior to open metal sites regarding the adsorption sites. This work demonstrated that the simultaneous introduction of Lewis basic nitrogen donor sites and Lewis acidic metal sites into the framework is a promising approach to improve the gas sorption toward CO2 and C2H2 and thus to produce materials possessing enhanced C2H2/CH4 and CO2/CH4 separation performance.

  7. Infrared Spectra and Optical Constants of Astronomical Ices: II. Ethane and Ethylene

    NASA Technical Reports Server (NTRS)

    Hudson, Reggie L.; Gerakines, Perry A.; Moore, M. H.

    2014-01-01

    Infrared spectroscopic observations have established the presence of hydrocarbon ices on Pluto and other TNOs, but the abundances of such molecules cannot be deduced without accurate optical constants (n, k) and reference spectra. In this paper we present our recent measurements of near- and mid-infrared optical constants for ethane (C2H6) and ethylene (C2H4) in multiple ice phases and at multiple temperatures. As in our recent work on acetylene (C2H2), we also report new measurements of the index of refraction of each ice at 670 nm. Comparisons are made to earlier work where possible, and electronic versions of our new results are made available.

  8. Frequency-comb referenced spectroscopy of v4- and v5-excited hot bands in the 1.5 μm spectrum of C2H2

    NASA Astrophysics Data System (ADS)

    Twagirayezu, Sylvestre; Cich, Matthew J.; Sears, Trevor J.; McRaven, Christopher P.; Hall, Gregory E.

    2015-10-01

    Doppler-free transition frequencies for v4- and v5-excited hot bands have been measured in the v1 + v3 band region of the spectrum of acetylene using saturation dip spectroscopy with an extended cavity diode laser referenced to a frequency comb. The frequency accuracy of the measured transitions, as judged from line shape model fits and comparison to known frequencies in the v1 + v3 band itself, is between 3 and 22 kHz. This is some three orders of magnitude improvement on the accuracy and precision of previous line position estimates that were derived from the analysis of high-resolution Fourier transform infrared absorption spectra. Comparison to transition frequencies computed from constants derived from published Fourier transform infrared spectra shows that some upper rotational energy levels suffer specific perturbations causing energy level shifts of up to several hundred MHz. These perturbations are due to energy levels of the same rotational quantum number derived from nearby vibrational levels that become degenerate at specific energies. Future identification of the perturbing levels will provide accurate relative energies of excited vibrational levels of acetylene in the 7100-7600 cm-1 energy region.

  9. Improving the Working Efficiency of a Triboelectric Nanogenerator by the Semimetallic PEDOT:PSS Hole Transport Layer and Its Application in Self-Powered Active Acetylene Gas Sensing.

    PubMed

    Uddin, A S M Iftekhar; Yaqoob, Usman; Chung, Gwiy-Sang

    2016-11-09

    Herein we report an enhanced triboelectric nanogenerator (TENG) based on the contact-separation mode between a patterned film of polydimethylsiloxane (PDMS) with a semimetallic elastomer of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and a nylon fiber film. The addition of ethylene glycol to the PEDOT:PSS film improves the functionality of the TENG significantly, yielding promising applicability in both indoor and outdoor (i.e., under sunlight) environments, with the maximum instantaneous power of 0.09 mW (indoors) and 0.2 mW (outdoors) for the load resistance of 3.8 MΩ. The device can also generate 11.2 V and 0.08 μA cm(-2) in response to the forearm movement of a human. Additionally, by replacing the bare nylon fiber in the TENG design with a Ag@ZnO/nylon fiber film, a self-powered active sensor (triboelectric nanogenerator-based sensor; TENS) has been realized to detect acetylene (C2H2) gas. The TENS exhibits excellent sensitivity of 70.9% (indoors) and 89% (outdoors) to C2H2 gas of 1000 ppm concentration. The proposed approach for harvesting energy and sensing can be advantageous in practical applications and may stimulate new research that will enhance nanogenerators as well as wearable, self-powered active sensors.

  10. A photochemical study of the kinetics of the reactions of NH2 with phosphine, ethylene, and acetylene using flash photolysis-laser induced fluorescence. Ph.D. Thesis Catholic Univ. of America; [ammonia in the atmosphere of Jupiter

    NASA Technical Reports Server (NTRS)

    Bosco, S. R.

    1982-01-01

    The photochemistry of the reactions of NH2 was investigated in an attempt to explain the existence of an abundance of ammonia in the Jovian atmosphere. The production of ammonia reservoirs from the coupling of ammonia with other atmospheric constituents was considered. The rate constants for the reactions of NH2 radicals with phosphine, acetylene, and ethylene were measured. Flash photolysis was used for the production of NH2 radicals and laser induced fluorescence was employed for radical detection. It was determined that the rates of the reactions were too slow to be significant as a source of ammonia reservoirs in the Jovian atmosphere.

  11. C2H2 zinc finger proteins of the SP/KLF, Wilms tumor, EGR, Huckebein, and Klumpfuss families in metazoans and beyond

    PubMed Central

    Pei, Jimin; Grishin, Nick V.

    2015-01-01

    Specificity proteins (SPs) and Krüppel-like factors (KLFs) are C2H2-type Zinc finger transcription factors that play essential roles in differentiation, development, proliferation and cell death. SP/KLF proteins, similarly to Wilms tumor protein 1 (WT1), Early Growth Response (EGR), Huckebein, and Klumpfuss, prefer to bind GC-rich sequences such as GC-box and CACCC-box (GT-box). We searched various genomes and transcriptomes of metazoans and single-cell holozoans for members of these families. Seven groups of KLFs (KLFA–G) and three groups of SPs (SPA–C) were identified in the three lineages of Bilateria (Deuterostomia, Ecdysozoa, and Lophotrochozoa). The last ancestor of jawed vertebrates was inferred to have at least 18 KLFs (group A: KLF1/2/4/17, group B: KLF3/8/12; group C: KLF5/5l; group D: KLF6/7; group E: KLF9/13/16; group F: KLF10/KLF11; group G: KLF15/15l) and 10 SPs (group A: SP1/2/3/4; group B: SP5/5l; group C: SP6/7/8/9), since they were found in both cartilaginous and boned fishes. Placental mammals have added KLF14 (group E) and KLF18 (group A), and lost KLF5l (KLF5-like) and KLF15l (KLF15-like). Multiple KLF members were found in basal metazoans (Ctenophora, Porifera, Placozoa, and Cnidaria). Ctenophora has the least number of KLFs and no SPs, which could be attributed to its proposed sister group relationship to other metazoans or gene loss. While SP, EGR and Klumpfuss were only detected in metazoans, KLF, WT1, and Huckebein are present in nonmetazoan holozoans. Of the seven metazoan KLF groups, only KLFG, represented by KLF15 in human, was found in nonmetazoans. In addition, two nonmetazoan groups of KLFs are present in Choanoflagellatea and Filasterea. WT1 could be evolutionarily the earliest among these GC/GT-box-binding families due to its sole presence in Ichthyosporea. PMID:26187067

  12. Chanabayaite, Cu2(N3C2H2)Cl(NH3,Cl,H2O,□)4, a new mineral containing triazolate anion

    NASA Astrophysics Data System (ADS)

    Chukanov, N. V.; Zubkova, N. V.; Möhn, G.; Pekov, I. V.; Pushcharovsky, D. Yu.; Zadov, A. E.

    2015-12-01

    A new mineral, chanabayaite, has been discovered at a guano deposit located at Mt. Pabellón de Pica near the village of Chanabaya, Iquique Province, Tarapacá region, Chile. It is associated with salammoniac, halite, joanneumite, nitratine and earlier chalcopyrite. Chanabayaite occurs as blue translucent imperfect prismatic crystals, up to 0.05 × 0.1 × 0.5 mm in size, and their radial aggregates. Chanabayaite is brittle, with a Mohs' hardness of 2. The cleavage is perfect on (001) and imperfect on (100) and (010). D meas = 1.48(2) g/cm3, D calc = 1.464 g/cm3. The mineral is optically biaxial (-), α = 1.561(2), β = 1.615(3), γ = 1.620(2), 2 V meas = 25(10)°, 2 V calc = 33°. Pleochroism is strong, Z ≈ Y (deep blue) ≫ X (pale blue with gray tint). IR spectrum is given. The chemical composition (electron microprobe data for Cu, Fe and Cl; gas chromatography data for H, N, C and O) is as follows (wt %): 32.23 Cu, 1.14 Fe, 16.13 Cl, 3.1 H, 29.9 N, 12.2 C, 3.4 O, total is 98.1. The empirical formula is ( Z = 4): Cu1.92Fe0.08Cl1.72N8.09C3.85H11.66O0.81. The structural model was based on the single-crystal X-ray diffraction data ( R = 0.1627). Chanabayaite is orthorhombic, space group Imma, a = 19.484(3), b = 7.2136(10), c = 11.999(4) Å, V = 1686.5(7) Å3, Z = 2. In chanabayaite, chains of the corner-sharing Cu(l)-centered octahedra and single Cu(2)-centered octahedra are linked via 1,2,4-triazolate anions C2N3H2 -. NH3 and Cl- are additional ligands coordinating Cu2+. Chanabayaite is a transformational mineral species formed by leaching of Na and one third of Cl and partial dehydration of the protophase Na2Cu2Cl3(N3C2H2)2(NH3)2 • 4H2O. The strongest reflections in the powder X-ray diffraction pattern [ d, Å ( I, %) ( hkl)] are detected: 10.19 (100) (101), 6.189 (40) (011), 5.729 (23) (301), 5.216 (75) (211, 202), 4.964 (20) (400), 2.830 (20) (602, 413, 503), 2.611 (24) (123, 422, 404).

  13. A Short-Term Decrease in Nitrogenase Activity (C2H2 Reduction) Is Induced by Exposure of Soybean Shoots to Their CO2 Compensation Point.

    PubMed Central

    Vidal, R.; Gerbaud, A.; Vidal, D.; Drevon, J. J.

    1995-01-01

    Photosynthesis and nitrogenase acetylene-reducing activity (ARA) were measured in soybeans (Glycine max [L.] Merr.) in which the shoots were exposed for 48 h to 60 [mu]L L-1 CO2, a value corresponding to their CO2 compensation point. Six hours after the beginning of the light period at low CO2, the ARA started to decrease, reaching a rate of 50% of the control rate in 14 to 24 h and 20% of the control rate in 34 to 38 h after the beginning of the CO2 treatment. At these times, there was no net photosynthesis, and the transpiration rate was 20% lower than that in the control plants. An increase in the partial pressure of O2 around the nodules alleviated this inhibition of ARA. The maximal ARA achieved at 40 kPaO2 was 3 times higher than that at 20 kPa O2 and similar to the maximal ARA of the control plants. It was argued that the decrease in ARA of soybean exposed to the CO2 compensation point was due to a decrease in the nodule's permeability to O2 diffusion. PMID:12228555

  14. Is the Reaction of C3N(-) with C2H2 a Possible Process for Chain Elongation in Titan's Ionosphere?

    PubMed

    Lindén, Fredrik; Alcaraz, Christian; Ascenzi, Daniela; Guillemin, Jean-Claude; Koch, Leopold; Lopes, Allan; Polášek, Miroslav; Romanzin, Claire; Žabka, Jan; Zymak, Illia; Geppert, Wolf D

    2016-07-14

    The reaction of C3N(-) with acetylene was studied using three different experimental setups, a triple quadrupole mass spectrometer (Trento), a tandem quadrupole mass spectrometer (Prague), and the "CERISES" guided ion beam apparatus at Orsay. The process is of astrophysical interest because it can function as a chain elongation mechanism to produce larger anions that have been detected in Titan's ionosphere by the Cassini Plasma Spectrometer. Three major products of primary processes, C2H(-), CN(-), and C5N(-), have been identified, whereby the production of the cyanide anion is probably partly due to collisional induced dissociation. The formations of all these products show considerable reaction thresholds and also display comparatively small cross sections. Also, no strong signals of anionic products for collision energies lower than 1 eV have been observed. Ab initio calculations have been performed to identify possible pathways leading to the observed products of the title reaction and to elucidate the thermodynamics of these processes. Although the productions of CN(-) and C5N(-) are exoergic, all reaction pathways have considerable barriers. Overall, the results of these computations are in agreement with the observed reaction thresholds. Due to the existence of considerable reaction energy barriers and the small observed cross sections, the title reaction is not very likely to play a major role in the buildup of large anions in cold environments like the interstellar medium or planetary and satellite ionospheres.

  15. A climatological study of the composition of Titan upper atmosphere from VIMS-IR soundings in limb geometry has been carried out for HCN, C_2H_2 and CH_4

    NASA Astrophysics Data System (ADS)

    Moriconi, M. L.; Adriani, A.; Dinelli, B. M.; Lopez-Puertas, M.; Filacchione, G.; D'Aversa, E.

    A climatological study of the composition of Titan upper atmosphere from VIMS-IR soundings in limb geometry has been carried out for (HCN), (C_2H_2) and (CH_4). The results of this study are here presented for the 2004-2012 period.

  16. The origin of the large bending enhancement of the reaction of C(2)H(2)(+) with methane: the effects of bending momentum, ruling out the precursor mechanism, and steps toward "Polanyi rules" for polyatomic reactions.

    PubMed

    Liu, Jianbo; Anderson, Scott L

    2009-10-21

    Quasi-classical trajectories for the hydrogen abstraction (HA) reaction C(2)H(2)(+)+ CH(4)--> C(2)H(3)(+)+ CH(3), were analyzed to probe the mechanistic origins of the large, mode-specific reactivity enhancement observed experimentally following excitation of the C(2)H(2)(+)cis-bending mode. The trajectories show the correct trend in reactivity vs. CC stretch and bending excitations, and also reproduce the experimental recoil velocity map. Analysis of the trajectories shows that at collision energy of 0.5 eV hydrogen abstraction is dominated by a direct mechanism, but approximately 15% of the reaction is mediated by a precursor complex. The vibrational enhancement mostly comes from direct collisions. The bending vibration enhances the reactivity in two ways. Collisions in bent geometries (of C(2)H(2)(+)) are more reactive; however, the dominant vibrational effect is a consequence of the momentum associated with the bending vibration. Enhancement by vibrational momentum is reminiscent of the behavior seen by Polanyi and co-workers for late barrier A + BC reactions, and indeed, the atom transfer event in the C(2)H(2)(+)+ CH(4) system does occur late in the collision. We, therefore, explore the possibilities for interpreting polyatomic vibrational dynamics in a "Polanyi Rule" context, using trajectories to guide the construction of a reduced dimensionality surface.

  17. Comparing denitrification estimates for a Texas estuary by using acetylene inhibition and membrane inlet mass spectrometry.

    PubMed

    Bernot, Melody J; Dodds, Walter K; Gardner, Wayne S; McCarthy, Mark J; Sobolev, Dmitri; Tank, Jennifer L

    2003-10-01

    Characterizing denitrification rates in aquatic ecosystems is essential to understanding how systems may respond to increased nutrient loading. Thus, it is important to ensure the precision and accuracy of the methods employed for measuring denitrification rates. The acetylene (C2H2) inhibition method is a simple technique for estimating denitrification. However, potential problems, such as inhibition of nitrification and incomplete inhibition of nitrous oxide reduction, may influence rate estimates. Recently, membrane inlet mass spectrometry (MIMS) has been used to measure denitrification in aquatic systems. Comparable results were obtained with MIMS and C2H2 inhibition methods when chloramphenicol was added to C2H2 inhibition assay mixtures to inhibit new synthesis of denitrifying enzymes. Dissolved-oxygen profiles indicated that surface layers of sediment cores subjected to the MIMS flowthrough incubation remained oxic whereas cores incubated using the C2H2 inhibition methods did not. Analysis of the microbial assemblages before and after incubations indicated significant changes in the sediment surface populations during the long flowthrough incubation for MIMS analysis but not during the shorter incubation used for the C2H2 inhibition method. However, bacterial community changes were also small in MIMS cores at the oxygen transition zone where denitrification occurs. The C2H2 inhibition method with chloramphenicol addition, conducted over short incubation intervals, provides a cost-effective method for estimating denitrification, and rate estimates are comparable to those obtained by the MIMS method.

  18. Coriolis interaction of the ν2 + ν12 band with ν2 + 2ν10 of cis-C2H2D2 by high resolution FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Gabona, M. G.; Tan, T. L.

    2014-05-01

    The high resolution Fourier transform infrared (FTIR) absorption spectrum of the ν2 + ν12 band of cis-C2H2D2 was recorded in the frequency range of 2515-2960 cm-1 with an unapodized resolution of 0.0063 cm-1. This band was perturbed through c-type Coriolis interaction by the unobserved ν2 + 2ν10 band approximately 19 cm-1 below ν2 + ν12. A total of 751 unperturbed and perturbed infrared transitions of ν2 + ν12 were assigned and fitted using Watson's A-reduced Hamiltonian in the Ir representation with the inclusion of c-type Coriolis terms to give 11 rovibrational constants for the upper state (ν2 = 1, ν12 = 1) with improved accuracy. The ν2 + ν12A-type band is centred at 2898.8975 ± 0.0004 cm-1. From the Coriolis interaction analysis between the ν2 + ν12 and ν2 + 2ν10 bands of cis-C2H2D2, a higher order K-dependent c-type Coriolis coupling constant between the two bands was derived for the first time. Furthermore, rotational constants for the ν2 + 2ν10 band of cis-C2H2D2 centred at 2880.17 ± 0.06 cm-1 were also determined.

  19. Effects of acido-basic support properties on the catalytic hydrogenation of acetylene on gold nano-particles

    NASA Astrophysics Data System (ADS)

    Manda, Abdullah Ahmed

    Metallic gold nanoparticles supported on gamma-Al2O 3 and magnesia-alumina mixed oxide, with different magnesia content have been prepared by sol-gel method and characterized by different techniques (inductive coupled plasma-mass spectroscopy (ICP-MS), XRD, BET surface area analysis, transmission electron microscopy (TEM), CO2 and NH 3 temperature programmed desorption (TPD), H2 temperature programmed reduction (TPR) and FTIR of adsorbed CO2). Such systems were found to produce catalysts with controllable acidity, varying from catalyst possessing large density of acidic and low density of basic sites, others with acidic and basic sites of equal strength and density, and others with large basic and low acid sites densities, respectively. The catalytic assessment of the generated acidity was carried out using 2-propanol decomposition as a test reaction. The results obtained indicate that the presence of magnesia and reduced gold nanopartilces has imparted the catalysts, 1%Au/4%Mg-Al 2O3 and 1%Au/8%Mg-Al2O3, with significant base-catalytic properties. Acetylene hydrogenation and formation of coke deposits were investigated on a gold catalyst supported on gamma-Al2O3 and gold supported on alumina-magnisia mixed oxide with different gold content; 1%Au/gamma-Al 2O3, 1%Au/15%Mg-Al2O3, 2%Au/15%Mg-Al 2O3 and 4%Au/15%Mg-Al2O3. The effect of the H2/C2H2 ratio was studied over a range of values. The catalytic activity and selectivity towards ethylene and other products were investigated at different reaction temperatures. Acetylene hydrogenation was investigated in the presence and absence of ethylene in stream. It is investigated that the adsorption of the triple bond is preferred over the double bond and during selective catalytic (SCR) of C2H2 the two hydrocarbons do not compete for the same adsorption sites. The deactivation of catalysts was studied by temperature programmed oxidation (TPO). Higher content of coke over 1%Au/Al2O3 catalyst was investigated in contrast to

  20. On the Radiolysis of Ethylene Ices by Energetic Electrons and Implications to the Extraterrestrial Hydrocarbon Chemistry

    NASA Astrophysics Data System (ADS)

    Zhou, Li; Maity, Surajit; Abplanalp, Matt; Turner, Andrew; Kaiser, Ralf I.

    2014-07-01

    The chemical processing of ethylene ices (C2H4) by energetic electrons was investigated at 11 K to simulate the energy transfer processes and synthesis of new molecules induced by secondary electrons generated in the track of galactic cosmic ray particles. A combination of Fourier transform infrared spectrometry (solid state) and quadrupole mass spectrometry (gas phase) resulted in the identification of six hydrocarbon molecules: methane (CH4), the C2 species acetylene (C2H2), ethane (C2H6), the ethyl radical (C2H5), and—for the very first time in ethylene irradiation experiments—the C4 hydrocarbons 1-butene (C4H8) and n-butane (C4H10). By tracing the temporal evolution of the newly formed molecules spectroscopically online and in situ, we were also able to fit the kinetic profiles with a system of coupled differential equations, eventually providing mechanistic information, reaction pathways, and rate constants on the radiolysis of ethylene ices and the inherent formation of smaller (C1) and more complex (C2, C4) hydrocarbons involving carbon-hydrogen bond ruptures, atomic hydrogen addition processes, and radical-radical recombination pathways. We also discuss the implications of these results on the hydrocarbon chemistry on Titan's surface and on ice-coated, methane-bearing interstellar grains as present in cold molecular clouds such as TMC-1.

  1. La-Activated Bicyclo-oligomerization of Acetylene to Naphthalene.

    PubMed

    Hewage, Dilrukshi; Silva, W Ruchira; Cao, Wenjin; Yang, Dong-Sheng

    2016-03-02

    We report the first example of metal-mediated acetylene bicyclopentamerization to form naphthalene in the gas phase. The bicyclic aromatic compound was observed in a complex with La. The La(naphthalene) complex was formed by the reaction of laser-ablated La atoms with acetylene molecules in a molecular beam source and was characterized by mass-analyzed threshold ionization spectroscopy. The bicyclo-oligomerization reaction occurs through sequential acetylene additions coupled with dehydrogenation. Three intermediates in the reaction have been identified: lanthanacyclopropene [La(C2H2)], La(cyclobut-1-en-3-yne) [La(C4H2)], and La(benzyne) [(La(C6H4)]. The metal-ligand bonding in the three intermediates is considerably different from that in the La(naphthalene) complex, as suggested by accurately measured adiabatic ionization energies.

  2. Vapor pressures of acetylene at low temperatures

    NASA Technical Reports Server (NTRS)

    Masterson, C. M.; Allen, John E., Jr.; Kraus, G. F.; Khanna, R. K.

    1990-01-01

    The atmospheres of many of the outer planets and their satellites contain a large number of hydrocarbon species. In particular, acetylene (C2H2) has been identified at Jupiter, Saturn and its satellite Titan, Uranus and Neptune. In the lower atmospheres of these planets, where colder temperatures prevail, the condensation and/or freezing of acetylene is probable. In order to obtain accurate models of the acetylene in these atmospheres, it is necessary to have a complete understanding of its vapor pressures at low temperatures. Vapor pressures at low temperatures for acetylene are being determined. The vapor pressures are measured with two different techniques in order to cover a wide range of temperatures and pressures. In the first, the acetylene is placed in a sample tube which is immersed in a low temperature solvent/liquid nitrogen slush bath whose temperature is measured with a thermocouple. The vapor pressure is then measured directly with a capacitance manometer. For lower pressures, a second technique which was called the thin-film infrared method (TFIR) was developed. It involves measuring the disappearance rate of a thin film of acetylene at a particular temperature. The spectra are then analyzed using previously determined extinction coefficient values, to determine the disappearance rate R (where R = delta n/delta t, the number of molecules that disappear per unit time). This can be related to the vapor pressure directly. This technique facilitates measurement of the lower temperatures and pressures. Both techniques have been calibrated using CO2, and have shown good agreement with the existing literature data.

  3. C2H2 absolutely optical frequency-stabilized and 40 GHz repetition-rate-stabilized, regeneratively mode-locked picosecond erbium fiber laser at 1.53 microm.

    PubMed

    Nakazawa, Masataka; Kasai, Keisuke; Yoshida, Masato

    2008-11-15

    We have succeeded in the simultaneous stabilization of the optical frequency and repetition rate of a regeneratively mode-locked picosecond erbium-doped fiber ring laser. The optical frequency was locked to the molecular absorption of C2H2 in the 1.5 microm band, and the repetition rate was stabilized to a 40 GHz synthesizer by using a microwave phase-locked loop. The optical frequency stability of the pulse train reached 2x10(-11) for tau=10-100 s. The key to success is the independent control of the repetition rate without disturbing the optical cavity condition.

  4. Heat of Mixing and Solution of 1,1,2,2-Tetrachloroethane C2H2Cl4 + C6H10O Cyclohexanone (HMSD1111, LB3666_H)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'heat of Mixing and Solution of 1,1,2,2-Tetrachloroethane C2H2Cl4 + C6H10O Cyclohexanone (HMSD1111, LB3666_H)' providing data from direct low-pressure calorimetric measurement of molar excess enthalpy at variable mole fraction and constant temperature.

  5. A comparative study of the structural, mechanical and tribological characteristics of TiSiC-Cr coatings prepared in CH4 and C2H2 reactive atmosphere by cathodic vacuum arc

    NASA Astrophysics Data System (ADS)

    Braic, Mariana; Vladescu, Alina; Balaceanu, Mihai; Luculescu, Catalin; Padmanabhan, Sibu C.; Constantin, Lidia; Morris, Michael A.; Braic, Viorel; Ana Grigorescu, Cristiana Eugenia; Ionescu, Paul; Dracea, Maria Diana; Logofatu, Constantin

    2017-04-01

    TiSiC-Cr coatings, with Cr and Si as additional elements, were deposited on Si, C 45 and 316 L steel substrates via cathodic arc evaporation. Two series of coatings with thicknesses in the range of 3.6-3.9 μm were produced, using either CH4 or C2H2 as carbon containing gas. For each series, different coatings were prepared by varying the carbon rich gas flow rate between 90 and 130 sccm, while maintaining constant cathode currents (110 and 100 A at TiSi and Cr cathodes, respectively), substrate bias (-200 V) and substrate temperature (∼320 °C). The coatings were analyzed for their mechanical characteristics (hardness, adhesion) and tribological performance (friction, wear), along with their elemental and phase composition, chemical bonds, crystalline structure and cross-sectional morphology. The coatings were found to be formed with nano-scale composite structures consisting of carbide crystallites (grain size of 3.1-8.2 nm) and amorphous hydrogenated carbon. The experimental results showed significant differences between the two coating series, where the films formed from C2H2 exhibited markedly superior characteristics in terms of microstructure, morphology, hardness, friction behaviour and wear resistance. For the coatings prepared using CH4, the measured values of crystallite size, hardness, friction coefficient and wear rate were in the ranges of 7.2-8.2 nm, 26-30 GPa, 0.3-0.4 and 2.1-4.8 × 10-6 mm3 N-1 m-1, respectively, while for the coatings grown in C2H2, the values of these characteristics were found to be in the ranges of 3.1-3.7 nm, 41-45 GPa, 0.1-0.2 and 1.4-3.0 × 10-6 mm3 N-1 m-1, respectively. Among the investigated coatings, the one produced using C2H2 at the highest flow rate (130 sccm) exhibited the highest hardness (45.1 GPa), the lowest friction coefficient (0.10) and the best wear resistance (wear rate of 1.4 × 10-6 mm3 N-1 m-1).

  6. Study of acetylene poisoning of Pt cathode on proton exchange membrane fuel cell spatial performance using a segmented cell system

    NASA Astrophysics Data System (ADS)

    Reshetenko, Tatyana V.; St-Pierre, Jean

    2015-08-01

    Acetylene is a welding fuel and precursor for organic synthesis, which requires considering it to be a possible air pollutant. In this work, the spatial performance of a proton exchange membrane fuel cell exposed to 300 ppm C2H2 and different operating currents was studied with a segmented cell system. The injection of C2H2 resulted in a cell performance decrease and redistribution of segments' currents depending on the operating conditions. Performance loss was 20-50 mV at 0.1-0.2 A cm-2 and was accompanied by a rapid redistribution of localized currents. Acetylene exposure at 0.4-1.0 A cm-2 led to a sharp voltage decrease to 0.07-0.13 V and significant changes in current distribution during a transition period, when the cell reached a voltage of 0.55-0.6 V. A recovery of the cell voltage was observed after stopping the C2H2 injection. Spatial electrochemical impedance spectroscopy (EIS) data showed different segments' behavior at low and high currents. It was assumed that acetylene oxidation occurs at high cell voltage, while it reduces at low cell potential. A detailed analysis of the current density distribution, its correlation with EIS data and possible C2H2 oxidation/reduction mechanisms are presented and discussed.

  7. Acetylene fuels reductive dechlorination of TCE by Dehalococcoides/Pelobacter-containing microbial consortia

    NASA Astrophysics Data System (ADS)

    Oremland, R. S.; Mao, X.; Mahandra, C.; Baesman, S. M.; Gushgari, S.; Alvarez-Cohen, L.; Liu, T.

    2015-12-01

    Groundwater contamination by trichloroethene (TCE) poses a threat to health and leads to the generation of vinyl chloride (VC), a carcinogen. Dehalococcoides mccartyi is the only bacterium that can completely dechlorinate TCE to ethene (C2H4). Acetylene (C2H2) occurs in TCE-contaminated sites as a consequence of chemical degradation of TCE. Yet acetylene inhibits a variety of microbial processes including methanogesis and reductive dechlorination. Pelobacter acetylenicus and related species can metabolize acetylene via acetylene hydratase and acetaldehyde dismutatse thereby generating acetate and H2 as endproducts, which could serve as electron donor and carbon source for growth of D. mccartyi. We found that 1mM acetylene (aqueous) inhibits growth of D. mccartyi strain 195 on 0.3 mM TCE, but that the inhibition was removed after 12 days with the addition of an acetylene-utilizing isolate from San Francisco Bay, Pelobacter strain SFB93. TCE did not inhibit the growth of this Pelobacter at the concentrations tested (0.1-0.5 mM) and TCE was not consumed by strain SFB93. Co-cultures of strain 195 with strain SFB93 at 5% inoculation were established in 120 mL serum bottles containing 40 mL defined medium. TCE was supplied at a liquid concentration of 0.1 mM, with 0.1 mM acetylene and N2/CO2 (90:10 v/v) headspace at 34 °C. Co-cultures were subsequently transferred (5% vol/vol inoculation) to generate subcultures after 20 μmol TCE was reduced to VC and 36 μmol acetylene was depleted. Aqueous H2 ranged from 114 to 217 nM during TCE-dechlorination, and the cell yield of strain 195 was 3.7 ±0.3 × 107 cells μmol-1 Cl- released. In a D. mccartyi-containing enrichment culture (ANAS) under the same conditions as above, it was found that inhibition of dechlorination by acetylene was reversed after 19 days by adding SFB93. Thus we showed that a co-culture of Pelobacter SFB93 and D. mccartyi 195 could be maintained with C2H2 as the electron donor and carbon source while TCE

  8. The composition of Saturn's atmosphere at northern temperate latitudes from Voyager IRIS spectra - NH3, PH3, C2H2, C2H6, CH3D, CH4, and the Saturnian D/H isotopic ratio

    NASA Technical Reports Server (NTRS)

    Courtin, R.; Gautier, D.; Marten, A.; Bezard, B.; Hanel, R.

    1984-01-01

    The vertical distributions and mixing ratios of minor constituents in the northern hemisphere of Saturn are investigated. Results are obtained for NH3, PH3, C2H2, C2H6, CH3D, and CH4; the D/H ratio is obtained from the CH4 and CH3D abundances. The NH3 mixing ratio in the upper atmosphere is found to be compatible with the saturated partial pressure. The inferred PH3/H2 ratio of 1.4 + or - 0.8 x 10 to the -6th is higher than the value derived from the solar P/H ratio. The stratospheric C2H2/H2 and C2H6/H2 ratios are, respectively, 2.1 + or - 1.4 x 10 to the -7th and 3.0 + or - 1.1 x 10 to the -6th; the latter decreases sharply below the 20-50 mbar level. The results for CH3D/H2 and CH4/H2 imply an enrichment of Saturn's upper atmosphere in carbon by a factor of at least three over the solar abundance. The interpretation of two NH3 lines in the five-micron window suggests a NH3/H2 ratio at the two bar level below the solar value.

  9. H2, He, and CO2 line-broadening coefficients, pressure shifts and temperature-dependence exponents for the HITRAN database. Part 1: SO2, NH3, HF, HCl, OCS and C2H2

    NASA Astrophysics Data System (ADS)

    Wilzewski, Jonas S.; Gordon, Iouli E.; Kochanov, Roman V.; Hill, Christian; Rothman, Laurence S.

    2016-01-01

    To increase the potential for use of the HITRAN database in astronomy, experimental and theoretical line-broadening coefficients, line shifts and temperature-dependence exponents of molecules of planetary interest broadened by H2, He, and CO2 have been assembled from available peer-reviewed sources. The collected data were used to create semi-empirical models so that every HITRAN line of the studied molecules has corresponding parameters. Since H2 and He are major constituents in the atmospheres of gas giants, and CO2 predominates in atmospheres of some rocky planets with volcanic activity, these spectroscopic data are important for remote sensing studies of planetary atmospheres. In this paper we make the first step in assembling complete sets of these parameters, thereby creating datasets for SO2, NH3, HF, HCl, OCS and C2H2.

  10. Enhanced acetylene emission near the north pole of Jupiter

    NASA Technical Reports Server (NTRS)

    Drossart, Pierre; Bezard, Bruno; Encrenaz, Therese; Atreya, Sushil; Lacy, John; Serabyn, Eugene; Tokunaga, Alan

    1986-01-01

    The present paper is concerned with observations of acetylene fundamental and hot band vibrational emission lines from the planet Jupiter. It is pointed out that the observation of a polar bright spot in the atmosphere of Jupiter is characterized by an enhancement in the individual lines of C2H2 which can be interpreted as an enhancement in the acetylene abundance. However, a purely thermal effect, on non-LTE phenomena cannot be excluded. The intensity of the observed hot band lines is also consistent with either hypothesis. The reported observations were performed with a cooled Fabry-Perot Grating Spectrometer (FPGS). Observations and instrumentation are considered in detail along with the calculation of synthetic spectra on the basis of a line-by-line computation, and the interpretation of the obtained data.

  11. Enhanced acetylene emission near the north pole of Jupiter

    NASA Technical Reports Server (NTRS)

    Drossart, P.; Bezard, B.; Atreya, S.; Lacy, J.; Serabyn, E.

    1986-01-01

    The present paper is concerned with observations of acetylene fundamental and hot band vibrational emission lines from the planet Jupiter. It is pointed out that the observation of a polar bright spot in the atmosphere of Jupiter is characterized by an enhancement in the individual lines of C2H2 which can be interpreted as an enhancement in the acetylene abundance. However, a purely thermal effect, or non-LTE phenomena cannot be excluded. The intensity of the observed hot band lines is also consistent with either hypothesis. The reported observations were performed with a cooled Fabry-Perot Grating Spectrometer (FPGS). Observations and instrumentation are considered in detail along with the calculation of synthetic spectra on the basis of a line-by-line computation, and the interpretation of the obtained data.

  12. Generation of the organo-rare gas dications HCCRg2+ (Rg = Ar and Kr) in the reaction of acetylene dications with rare gases.

    PubMed

    Ascenzi, Daniela; Tosi, Paolo; Roithová, Jana; Ricketts, Claire L; Schröder, Detlef; Lockyear, Jessica F; Parkes, Michael A; Price, Stephen D

    2008-12-21

    Using doubly ionized acetylene as a superelectrophilic reagent, the new rare-gas compounds HCCAr2+ and HCCKr2+ have been prepared for the first time in hyperthermal collisions of mass-selected C2H2(2+) with neutral rare gases (Rg). However, electron transfer from the rare gas to the acetylene dication as well as proton transfer from C2H2(2+) to the rare gas efficiently compete with formation of HCCRg2+. The computational investigations show that the formation of HCCRg2+ from acetylene dication is endothermic with Rg = He, Ne, Ar and Kr and only weakly exothermic with Xe. These energetic factors, as well as the pronounced competition with the other reactive channels help to explain why HCCRg2+ is only observed with Rg = Ar and Kr.

  13. Probing C-H⋯N interaction in acetylene-benzonitrile complex using matrix isolation infrared spectroscopy and DFT computations

    NASA Astrophysics Data System (ADS)

    Gopi, R.; Ramanathan, N.; Sundararajan, K.

    2017-04-01

    Hydrogen-bonded complexes of acetylene (C2H2) and the benzonitrile (C6H5CN) have been investigated using matrix isolation infrared spectroscopy and DFT computations. The structure of the complexes and the energies were computed at B3LYP and B3LYP+D3 levels of theory using 6-311++G (d, p) and aug-cc-pVDZ basis sets. DFT computations indicated two minima corresponding to the C-H⋯N (global) and C-H⋯π interactions (local) of 1:1 C2H2-C6H5CN complexes, where C2H2 is the proton donor in both complexes. Experimentally, the 1:1 C-H⋯N complex identified from the shifts in the C-H and Ctbnd N stretching modes corresponding to the C2H2 and C6H5CN sub-molecules in N2 and Ar matrices. Atoms in Molecules and Natural Bond Orbital analyses were performed to understand the nature of interaction and to unravel the reasons for red-shifting of the C-H stretching frequency in these complexes. Energy decomposition analysis was carried out to discern the various stabilizing and destabilizing components as a result of hydrogen bonding in the C2H2-C6H5CN complexes.

  14. Rovibrational-state-selected photoionization of acetylene by the two-color IR+VUV scheme: observation of rotationally resolved Rydberg transitions.

    PubMed

    Qian, X-M; Kung, A H; Zhang, Tao; Lau, K C; Ng, C Y

    2003-12-05

    We have demonstrated a rovibrational-state-selected photoionization experiment using an IR laser and high-resolution VUV-synchrotron radiation. The VUV photoionization of acetylene [C2H2(Xtilde; (1)Sigma(+)(g);nu(3)=1,J(')=8 or 10)] prepared by IR excitation reveals three strong autoionizing Rydberg series converging to C2H+2(Xtilde; (2)Pi(u);nu(+)(3)=1) with little ion background interference. Rotational transitions resolved for the Rydberg states provide an estimate of approximately 1.8 ps for their lifetimes. This experiment opens the way for state-selective photoionization studies of polyatomic molecules using VUV-synchrotron radiation.

  15. TaZAT8, a C2H2-ZFP type transcription factor gene in wheat, plays critical roles in mediating tolerance to Pi deprivation through regulating P acquisition, ROS homeostasis and root system establishment.

    PubMed

    Ding, Weiwei; Wang, Yanxia; Fang, Weibo; Gao, Si; Li, Xiaojuan; Xiao, Kai

    2016-11-01

    Transcription factors (TFs) play critical roles in mediating defense of plants to abiotic stresses through regulating downstream defensive genes. In this study, a wheat C2H2-ZFP (zinc finger protein) type TF gene designated as TaZAT8 was functionally characterized in mediating tolerance to the inorganic phosphate (Pi)-starvation stress. TaZAT8 bears conserved motifs harboring in the C2H2-ZFP type counterparts across vascular plant species. The expression of TaZAT8 was shown to be induced in roots upon Pi deprivation, with a Pi concentration- and temporal-dependent manner. Overexpression of TaZAT8 in tobacco conferred plants improved tolerance to Pi deprivation; the transgenic lines exhibited enlarged phenotype and elevated biomass and phosphorus (P) accumulation relative to wild-type (WT) after Pi-starvation treatment. NtPT1 and NtPT2, the tobacco phosphate transporter (PT) genes, showed increased transcripts in the Pi-deprived transgenic lines, indicative of their transcriptional regulation by TaZAT8. Overexpression analysis of these PT genes validated their function in mediating Pi acquisition under the Pi deprivation conditions. Additionally, the TaZAT8-overexpressing lines also behaved enhanced antioxidant enzyme (AE) activities and enlarged root system architecture (RSA) with respect to WT. Evaluation of the transcript abundance of tobacco genes encoding AE and PIN proteins, including NtMnSOD1, NtSOD1, NtPOD1;2, NtPOD1;5, NtPOD1;6, and NtPOD1;9, and NtPIN1 and NtPIN4 are upregulated in the TaZAT8-overexpressing lines. Overexpression of NtPIN1 and NtPIN4 conferred plants to enlarged RSA and elevated biomass under the Pi-starvation stress conditions. Our investigation provides insights into plant adaptation to the Pi-starvation stress mediated by distinct ZFP TFs through modulation of Pi acquisition and cellular ROS detoxicity.

  16. Optimization, Yield Studies and Morphology of WO3Nano-Wires Synthesized by Laser Pyrolysis in C2H2and O2Ambients—Validation of a New Growth Mechanism

    PubMed Central

    2008-01-01

    Laser pyrolysis has been used to synthesize WO3nanostructures. Spherical nano-particles were obtained when acetylene was used to carry the precursor droplet, whereas thin films were obtained at high flow-rates of oxygen carrier gas. In both environments WO3nano-wires appear only after thermal annealing of the as-deposited powders and films. Samples produced under oxygen carrier gas in the laser pyrolysis system gave a higher yield of WO3nano-wires after annealing than the samples which were run under acetylene carrier gas. Alongside the targeted nano-wires, the acetylene-ran samples showed trace amounts of multi-walled carbon nano-tubes; such carbon nano-tubes are not seen in the oxygen-processed WO3nano-wires. The solid–vapour–solid (SVS) mechanism [B. Mwakikunga et al., J. Nanosci. Nanotechnol., 2008] was found to be the possible mechanism that explains the manner of growth of the nano-wires. This model, based on the theory from basic statistical mechanics has herein been validated by length-diameter data for the produced WO3nano-wires.

  17. Growth of Nocardia rhodochrous on acetylene gas.

    PubMed Central

    Kanner, D; Bartha, R

    1979-01-01

    Soil sediment enrichment cultures yielded a coryneform bacterium capable of growing in a mineral salts solution with acetylene gas as its only source of carbon and energy. Based on morphological and physiological traits as well as on cell wall analysis, the bacterium was characterized as a strain of Nocardia rhodochrous. Maximal growth rates (generation time 2.7 to 3.0 h) on acetylene were obtained at 5 to 20% acetylene, 25 to 40% oxygen, pH 7.0 and 26 to 28 degrees C. Yields (grams of dry cells produced per gram of acetylene consumed) ranged between 90 and 110%. N. rhodochrous exhibits a growth factor requirement for the pyrimidine moiety of thiamine. Acetylene utilization is not an obligate trait, and a wide range of alternate carbon sources is utilized. Ethylene is neither produced nor consumed. The only previous report on acetylene utilization appeared in 1932. The Mycobacterium lacticola strain described in that report strongly resembles N. rhodochrous. PMID:37235

  18. Nonphysiological binding of ethylene by plants.

    PubMed

    Abeles, F B

    1984-03-01

    Ethylene binding to seedling tissue of Vicia faba, Phaseolus vulgaris, Glycine max, and Triticum aestivum was demonstrated by determining transit time required for ethylene to move through a glass tube filled with seedling tissue. Transit time for ethylene was greater than that for methane indicating that these tissues had an affinity for ethylene. However, the following observations suggest that the binding was not physiological. Inhibitors of ethylene action such as Ag(+) ions and CO(2) did not decrease binding. Mushrooms which have no known sites of ethylene action also demonstrated ethylene binding. The binding of acetylene, propylene, ethylene, propane, and ethane more closely followed their solubility in water than any known physiological activity.

  19. Nitrogen Fixation (Acetylene Reduction) Associated with Duckweed (Lemnaceae) Mats

    PubMed Central

    Zuberer, D. A.

    1982-01-01

    Duckweed (Lemnaceae) mats in Texas and Florida were investigated, using the acetylene reduction assay, to determine whether nitrogen fixation occurred in these floating aquatic macrophyte communities. N2-fixing microorganisms were enumerated by plating or most-probable-number techniques, using appropriate N-free media. Results of the investigations indicated that substantial N2-fixation (C2H2) was associated with duckweed mats in Texas and Florida. Acetylene reduction values ranged from 1 to 18 μmol of C2H4 g (dry weight)−1 day−1 for samples incubated aerobically in light. Dark N2 fixation was always two- to fivefold lower. 3-(3,4-Dichlorophenyl)-1,1-dimethylurea (7 to 10 μM) reduced acetylene reduction to levels intermediate between light and dark incubation. Acetylene reduction was generally greatest for samples incubated anaerobically in the light. It was estimated that 15 to 20% of the N requirement of the duckweed could be supplied through biological nitrogen fixation. N2-fixing heterotrophic bacteria (105 cells g [wet weight]−1 and cyanobacteria (105 propagules g [wet weight]−1 were associated with the duckweed mats. Azotobacter sp. was not detected in these investigations. One diazotrophic isolate was classified as Klebsiella. PMID:16345992

  20. Real-time monitoring of nucleation-growth cycle of carbon nanoparticles in acetylene plasmas

    NASA Astrophysics Data System (ADS)

    Hundt, Morten; Sadler, Patrick; Levchenko, Igor; Wolter, Matthias; Kersten, Holger; Ostrikov, Kostya (Ken)

    2011-06-01

    Quantum cascade laser absorption spectroscopy was used to measure the absolute concentration of acetylene in situ during the nanoparticle growth in Ar + C2H2 RF plasmas. It is demonstrated that the nanoparticle growth exhibits a periodical behavior, with the growth cycle period strongly dependent on the initial acetylene concentration in the chamber. Being 300 s at 7.5% of acetylene in the gas mixture, the growth cycle period decreases with the acetylene concentration increasing; the growth eventually disappears when the acetylene concentration exceeds 32%. During the nanoparticle growth, the acetylene concentration is small and does not exceed 4.2% at radio frequency (RF) power of 4 W, and 0.5% at RF power of 20 W. An injection of a single acetylene pulse into the discharge also results in the nanoparticle nucleation and growth. The absorption spectroscopy technique was found to be very effective for the time-resolved measurement of the hydrocarbon content in nanoparticle-generating plasmas.

  1. An ab initio study of the C2H2-HF, C2H(CH3)-HF and C2(CH3)2-HF hydrogen-bonded complexes.

    PubMed

    Ramos, Mozart N; Lopes, Kelson C; Silva, Washington L V; Tavares, Alessandra M; Castriani, Fátima A; do Monte, Silmar A; Ventura, Elizete; Araújo, Regiane C M U

    2006-02-01

    MP2/6-31++G** and B3LYP/6-31++G** ab initio molecular orbital calculations have been performed in order to obtain molecular geometries, binding energies and vibrational properties of the C2H2-HF, C2H(CH3)-HF and C2(CH3)2-HF H-bonded complexes. As expected, the more pronounced effects on the structural properties of the isolated molecules due to complexation was verified for the C[triple bond]C and H-F bond lengths, which are directly involved in the H-bond formation. These bond distances increased after complexation. BSSE uncorrected B3LYP binding energies are always lower than the corresponding MP2 values. However, the opposite trend has been verified after BSSE correction by the counterpoise method since it is much lower at B3LYP than at MP2 level. The binding energies for these complexes as well as for the HF acid submolecule modes (the HF stretching and vibrational frequency modes) showed an increasing hydrogen-bonding strength with increasing methyl substitution. The splitting in the HF in-plane and out-of-plane bending modes reflects the anisotropy in the hydrogen-bonding interaction with the pi system of the C[triple bond]C bond. The H-F stretching frequency is shifted downward after complexation and it increases with the methyl substitution. The IR intensities of the HF acid submolecule fundamentals are adequately interpreted through the atomic polar tensor of the hydrogen atom using the charge-charge flux-overlap model. The skeletal stretching modes of the Alkyne submolecule are decreased in the complex. The new vibrational modes arising from complexation show several interesting features.

  2. Frequency-Comb Referenced Spectroscopy of νb{4} and νb{5} Hot Bands in the νb{1}+νb{3} Combination Band of C2H2

    NASA Astrophysics Data System (ADS)

    Twagirayezu, Sylvestre; Cich, Matthew; Sears, Trevor; McRaven, C.; Hall, Gregory

    2015-06-01

    Doppler-free transition frequencies for νb{4} and νb{5} hot bands in the band of C2H2 have been measured using saturation dip spectroscopy with an extended cavity diode laser referenced to a frequency comb. The frequency accuracy of the measured transitions, as judged from line shape model fits and the spectrometer stability, is better than 30 kHz. This is some 2-3 orders of magnitude improvement on the accuracy and precision of previous measurements of the line positions derived from the analysis of high-resolution Fourier transform infrared absorption spectra. The data were analyzed by determining the upper state energies, using known lower state level positions, and fitting them to a J(J+1) polynomial expansion to identify perturbations. The results reveal that the upper rotational energy level structure is mostly regular but suffers J-localized perturbations causing level shifts between one and several hundred MHz. These perturbations are due to accidental near degeneracies with energy levels of the same J and larger bending vibrational excitation. Acknowledgements: We are most grateful to Prof. D.S Perry (U. of Akron) and Prof. M. Herman (U. Libre de Bruxelles) for providing us with detailed results from their work and helpful discussions. Work at Brookhaven National Laboratory is funded by the Division of Chemical Sciences, Geosciences and Biosciences within the Offices of Basic Energy Sciences, Office of Sciences, U.S. Department of Energy under Contract Nos. DE-AC02-98CH10886 and DE-SC0012704.

  3. Unconventional ionic hydrogen bonds: CH +⋯π (C tbnd C) binding energies and structures of benzene + rad (acetylene) 1-4 clusters

    NASA Astrophysics Data System (ADS)

    Soliman, Abdel-Rahman; Hamid, Ahmed M.; Abrash, Samuel A.; El-Shall, M. Samy

    2012-01-01

    Rapid condensation of acetylene onto the benzene cation with the addition of up to eight acetylene molecules is observed in the gas phase at 120-140 K forming the C6D6rad +(C2H2)n clusters. The binding energies and entropy changes of the stepwise condensation of the first four acetylene molecules onto the benzene cation have been measured and correlated with the calculated lowest energy isomers. The measured binding energies (3-4 kcal/mol) reflect weak charge-induced dipole and (benzene) Csbnd Hδ+⋯π Ctbnd C (acetylene) hydrogen bonding interactions. Associative charge transfer is suggested to activate the cyclization of three acetylene molecules to form a benzene molecule (C6H6).

  4. Infrared Spectra and Optical Constants of Astronomical Ices: I. Amorphous and Crystalline Acetylene

    NASA Technical Reports Server (NTRS)

    Hudson, R. L.; Ferrante, R. F.; Moore, M. H.

    2013-01-01

    Here we report recent measurements on acetylene (C2H2) ices at temperatures applicable to the outer Solar System and the interstellar medium. New near- and mid-infrared data, including optical constants (n, k), absorption coefficients (alpha), and absolute band strengths (A), are presented for both amorphous and crystalline phases of C2H2 that exist below 70 K. Comparisons are made to earlier work. Electronic versions of the data are made available, as is a computer routine to use our reported n and k values to simulate the observed IR spectra. Suggestions are given for the use of the data and a comparison to a spectrum of Makemake is made.

  5. Uptake of acetylene on cosmic dust and production of benzene in Titan's atmosphere

    NASA Astrophysics Data System (ADS)

    Frankland, Victoria L.; James, Alexander D.; Sánchez, Juan Diego Carrillo; Mangan, Thomas P.; Willacy, Karen; Poppe, Andrew R.; Plane, John M. C.

    2016-11-01

    A low-temperature flow tube and ultra-high vacuum apparatus were used to explore the uptake and heterogeneous chemistry of acetylene (C2H2) on cosmic dust analogues over the temperature range encountered in Titan's atmosphere below 600 km. The uptake coefficient, γ, was measured at 181 K to be (1.6 ± 0.4) × 10-4, (1.9 ± 0.4) × 10-4 and (1.5 ± 0.4) × 10-4 for the uptake of C2H2 on Mg2SiO4, MgFeSiO4 and Fe2SiO4, respectively, indicating that γ is independent of Mg or Fe active sites. The uptake of C2H2 was also measured on SiO2 and SiC as analogues for meteoric smoke particles in Titan's atmosphere, but was found to be below the detection limit (γ < 6 × 10-8 and < 4 × 10-7, respectively). The rate of cyclo-trimerization of C2H2 to C6H6 was found to be 2.6 × 10-5 exp(-741/T) s-1, with an uncertainty ranging from ± 27 % at 115 K to ± 49 % at 181 K. A chemical ablation model was used to show that the bulk of cosmic dust particles (radius 0.02-10 μm) entering Titan's atmosphere do not ablate (< 1% mass loss through sputtering), thereby providing a significant surface for heterogeneous chemistry. A 1D model of dust sedimentation shows that the production of C6H6via uptake of C2H2 on cosmic dust, followed by cyclo-trimerization and desorption, is probably competitive with gas-phase production of C6H6 between 80 and 120 km.

  6. Non-covalent C-Cl…π interaction in acetylene-carbon tetrachloride adducts: Matrix isolation infrared and ab initio computational studies

    NASA Astrophysics Data System (ADS)

    Ramanathan, N.; Sundararajan, K.; Vidya, K.; Jemmis, Eluvathingal D.

    2016-03-01

    Non-covalent halogen-bonding interactions between π cloud of acetylene (C2H2) and chlorine atom of carbon tetrachloride (CCl4) have been investigated using matrix isolation infrared spectroscopy and quantum chemical computations. The structure and the energies of the 1:1 C2H2-CCl4 adducts were computed at the B3LYP, MP2 and M05-2X levels of theory using 6-311 ++G(d,p) basis set. The computations indicated two minima for the 1:1 C2H2-CCl4 adducts; with the C-Cl…π adduct being the global minimum, where π cloud of C2H2 is the electron donor. The second minimum corresponded to a C-H…Cl adduct, in which C2H2 is the proton donor. The interaction energies for the adducts A and B were found to be nearly identical. Experimentally, both C-Cl…π and C-H…Cl adducts were generated in Ar and N2 matrixes and characterized using infrared spectroscopy. This is the first report on halogen bonded adduct, stabilized through C-Cl…π interaction being identified at low temperatures using matrix isolation infrared spectroscopy. Atoms in Molecules (AIM) and Natural Bond Orbital (NBO) analyses were performed to support the experimental results. The structures of 2:1 ((C2H2)2-CCl4) and 1:2 (C2H2-(CCl4)2) multimers and their identification in the low temperature matrixes were also discussed.

  7. Ce-PROMOTED Bond Activation of Ethylene Probed by Mass-Analyzed Threshold Ionization Spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Yuchen; Kumari, Sudesh; Cao, Wenjin; Yang, Dong-Sheng

    2015-06-01

    Ce(C_2H_2) and Ce(C_4H_6) complexes were observed in the reaction of Ce atom with ethylene in a supersonic molecular beam source and investigated by mass-analyzed threshold ionization spectroscopy (MATI) and theoretical calculations. Preliminary data analysis shows that Ce(C_2H_2) has a triangle structure (C2v) with Ce binding to C_2H_2 in a two-fold mode and Ce(C_4H_6) has a five-membered metallacyclic structure (Cs) with Ce binding to the two terminal carbon atoms of butadiene. The ground states of both species are triplets with a 4f16s1 Ce-based electron configuration and those of the corresponding ions are doublets from the removal of the 6s1 electron. The Ce(C_2H_2) complex is formed by ethylene dehydrogenation, whereas Ce(C_4H_6) by ethylene dehydrogenation and carbon-carbon bond coupling. The MATI spectra of Ce(C_2H_2) and Ce(C_4H_6) are rather similar to those of the corresponding La complexes previously observed by our group, except that the spectra of the Ce complexes exhibit two electronic transitions with almost identical vibrational intervals. This observation suggests that the existence of a 4f electron results in an increased complexity of the electronic spectra and states of the lanthanide hydrocarbons.

  8. Distortions of ethyne when complexed with a cuprous or argentous halide: the rotational spectrum of C2H2···CuF† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5cp02248g Click here for additional data file.

    PubMed Central

    Zaleski, Daniel P.; Stephens, Susanna L.; Tew, David P.; Bittner, Dror M.

    2015-01-01

    A new molecule C2H2···CuF has been synthesized in the gas phase by means of the reaction of laser-ablated metallic copper with a pulse of gas consisting of a dilute mixture of ethyne and sulfur hexafluoride in argon. The ground-state rotational spectrum was detected by two types of Fourier-transform microwave spectroscopy, namely that conducted in a microwave Fabry–Perot cavity and the chirped-pulse broadband technique. The spectroscopic constants of the six isotopologues 12C2H2···63Cu19F, 12C2H2···65Cu19F, 13C2H2···63Cu19F, 13C2H2···65Cu19F, 12C2D2···63Cu19F and 12C2D2···65Cu19F were determined and interpreted to show that the molecule has a planar, T-shaped geometry belonging to the molecular point group C 2v, with CuF forming the stem of the T. Quantitative interpretation reveals that the ethyne molecule is distorted when subsumed into the complex in such manner that the C 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000

  9. Proton exchange membrane fuel cell cathode contamination - Acetylene

    NASA Astrophysics Data System (ADS)

    Zhai, Y.; St-Pierre, Jean

    2015-04-01

    Acetylene adsorption on PEMFC electrodes and contamination in single cells are investigated with 300 ppm acetylene at a cathode held at 80 °C. The results of adsorption experiments suggest that acetylene adsorbs readily on electrodes and is reduced to ethylene and ethane under an open circuit potential of H2/N2, as the adsorbates can be electro-oxidized at high potentials. The cell voltage response shows that 300 ppm acetylene results in a cell performance loss of approximately 88%. The voltage degradation curve is divided into two stages by an inflection point, which suggests that potential-dependent processes are involved in acetylene poisoning. These potential-dependent processes may include acetylene oxidation and reduction as well as accumulation of intermediates on the electrode surface. Electrochemical impedance spectroscopy analysis suggests that acetylene affects the oxygen reduction reaction and may also affect mass transport processes. Acetylene also may be reduced in the steady poisoning state of the operating cell. After neat air operation, the cyclic voltammetry results imply that the cathode catalyst surface is almost completely restored, with no contaminant residues remaining in the MEA. Linear scanning voltammetry measurements show no change in hydrogen crossover caused by contamination, and polarization curves confirm complete recovery of cell performance.

  10. Wavelength-modulation detection of acetylene with a near-infrared external-cavity diode laser

    NASA Astrophysics Data System (ADS)

    Oh, Daniel B.; Hovde, David Christian

    1995-10-01

    An external-cavity diode laser operating at 1500 nm was used to record the combination band of acetylene (C2H2). By combination of wavelength-modulation spectroscopy with a noise-canceler detection circuit, a minimum detectable absorbance of 4.8 \\times 10 -4 with a 300-ms time constant was achieved, although this result was limited by etalon fringes. When combined with this detection technique, continuous, widely tunable output from an external-cavity laser is ideally suited for high-resolution absorption spectroscopy with excellent sensitivity.

  11. Chemically activated reactions on the C7H5 energy surface: propargyl + diacetylene, i-C5H3 + acetylene, and n-C5H3 + acetylene.

    PubMed

    da Silva, Gabriel; Trevitt, Adam J

    2011-05-21

    This study uses computational chemistry and statistical reaction rate theory to investigate the chemically activated reaction of diacetylene (butadiyne, C(4)H(2)) with the propargyl radical (C˙H(2)CCH) and the reaction of acetylene (C(2)H(2)) with the i-C(5)H(3) (CH(2)CCCC˙H) and n-C(5)H(3) (CHCC˙HCCH) radicals. A detailed G3SX-level C(7)H(5) energy surface demonstrates that the C(3)H(3) + C(4)H(2) and C(5)H(3) + C(2)H(2) addition reactions proceed with moderate barriers, on the order of 10 to 15 kcal mol(-1), and form activated open-chain C(7)H(5) species that can isomerize to the fulvenallenyl radical with the highest barrier still significantly below the entrance channel energy. Higher-energy pathways are available leading to other C(7)H(5) isomers and to a number of C(7)H(4) species + H. Rate constants in the large multiple-well (15) multiple-channel (30) chemically activated system are obtained from a stochastic solution of the one-dimensional master equation, with RRKM theory for microcanonical rate constants. The dominant products of the C(4)H(2) + C(3)H(3) reaction at combustion-relevant temperatures and pressures are i-C(5)H(3) + C(2)H(2) and CH(2)CCHCCCCH + H, along with several quenched C(7)H(5) intermediate species below 1500 K. The major products in the n-C(5)H(3) + C(2)H(2) reaction are i-C(5)H(3) + C(2)H(2) and a number of C(7)H(4) species + H, with C(7)H(5) radical stabilization at lower temperatures. The i-C(5)H(3) + C(2)H(2) reaction predominantly leads to C(7)H(4) + H and to stabilized C(7)H(5) products. The title reactions may play an important role in polycyclic aromatic hydrocarbon (PAH) formation in combustion systems. The C(7)H(5) potential energy surface developed here also provides insight into several other important reacting gas-phase systems relevant to combustion and astrochemistry, including C(2)H + the C(3)H(4) isomers propyne and allene, benzyne + CH, benzene + C((3)P), and C(7)H(5) radical decomposition, for which some

  12. Infrared spectra reveal box-like structures for a pentamer and hexamer of mixed carbon dioxide-acetylene clusters.

    PubMed

    Rezaei, Mojtaba; Norooz Oliaee, J; Moazzen-Ahmadi, N; McKellar, A R W

    2016-01-21

    Except for a few cases like water and carbon dioxide, identification and structural characterization of clusters with more than four monomers is rare. Here, we provide experimental and theoretical evidence for existence of box-like structures for a pentamer and a hexamer of mixed carbon dioxide-acetylene clusters. Two mid-infrared cluster absorption bands are observed in the CO2ν3 band region using a tunable diode laser to probe a pulsed supersonic jet. Each requires the presence of both carbon dioxide and acetylene in the jet, and (from observed rotational spacings) involves clusters containing about 4 to 7 molecules. Structures are predicted for mixed CO2 + C2H2 clusters using a distributed multipole model, and the bands are assigned to a specific pentamer, (CO2)3-(C2H2)2, and hexamer, (CO2)4-(C2H2)2. The hexamer has a box-like structure whose D2d symmetry is supported by observed intensity alternation in the spectrum. The pentamer has a closely related structure which is obtained by removing one CO2 molecule from the hexamer. These are among the largest mixed molecular clusters to be assigned by high-resolution spectroscopy.

  13. Detection of acetylene in the infrared spectrum of comet Hyakutake

    NASA Technical Reports Server (NTRS)

    Brooke, T. Y.; Tokunaga, A. T.; Weaver, H. A.; Crovisier, J.; Bockelee-Morvan, D.; Crisp, D.

    1996-01-01

    Comets are rich in volatile materials, of which roughly 80% (by number) are water molecules. Considerable progress is being made in identifying the other volatile species, the abundances of which should enable us to determine whether comets formed primarily from ice-covered interstellar grains, or from material that was chemically processed in the early solar nebula. Here we report the detection of acetylene (C2H2) in the infrared spectrum of comet C/1996 B2 (Hyakutake). The estimated abundance is 0.3-0.9%, relative to water, which is comparable to the predicted solid-phase abundance in cold interstellar clouds. This suggests that the volatiles in comet Hyakotake may have come from ice-covered interstellar grains, rather than material processed in the accretion disk out of which the Solar System formed.

  14. Acetylenic carbon allotrope

    DOEpatents

    Lagow, Richard J.

    1998-01-01

    A fourth allotrope of carbon, an acetylenic carbon allotrope, is described. The acetylenic carbon allotropes of the present invention are more soluble than the other known carbon allotropes in many common organic solvents and possesses other desirable characteristics, e.g. high electron density, ability to burn cleanly, and electrical conductive properties. Many uses for this fourth allotrope are described herein.

  15. Acetylenic carbon allotrope

    DOEpatents

    Lagow, Richard J.

    1999-01-01

    A fourth allotrope of carbon, an acetylenic carbon allotrope, is described. The acetylenic carbon allotropes of the present invention are more soluble than the other known carbon allotropes in many common organic solvents and possesses other desirable characteristics, e.g. high electron density, ability to burn cleanly, and electrical conductive properties. Many uses for this fourth allotrope are described herein.

  16. Time- and isomer-resolved measurements of sequential addition of acetylene to the propargyl radical

    DOE PAGES

    Savee, John D.; Selby, Talitha M.; Welz, Oliver; ...

    2015-10-06

    Soot formation in combustion is a complex process in which polycyclic aromatic hydrocarbons (PAHs) are believed to play a critical role. Recent works concluded that three consecutive additions of acetylene (C2H2) to propargyl (C3H3) create a facile route to the PAH indene (C9H8). However, the isomeric forms of C5H5 and C7H7 intermediates in this reaction sequence are not known. We directly investigate these intermediates using time- and isomer-resolved experiments. Both the resonance stabilized vinylpropargyl (vp-C5H5) and 2,4-cyclopentadienyl (c-C5H5) radical isomers of C5H5 are produced, with substantially different intensities at 800 K vs 1000 K. In agreement with literature master equationmore » calculations, we find that c-C5H5 + C2H2 produces only the tropyl isomer of C7H7 (tp-C7H7) below 1000 K, and that tp-C7H7 + C2H2 terminates the reaction sequence yielding C9H8 (indene) + H. Lastly, this work demonstrates a pathway for PAH formation that does not proceed through benzene.« less

  17. Cycloheximide prevents the de novo polypeptide synthesis required to recover from acetylene inhibition in Nitrosopumilus maritimus.

    PubMed

    Vajrala, Neeraja; Bottomley, Peter J; Stahl, David A; Arp, Daniel J; Sayavedra-Soto, Luis A

    2014-06-01

    Developing methods to differentiate the relative contributions of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) to ammonia (NH3) oxidation has been challenging due to the lack of compounds that selectively inhibit AOA. In this study, we investigated the effects of specific bacteria- and eukaryote-selective protein synthesis inhibitors on the recovery of acetylene (C2H2)-inactivated NH3 oxidation in the marine AOA Nitrosopumilus maritimus and compared the results with recovery of the AOB Nitrosomonas europaea. C2 H2 irreversibly inhibited N. maritimus NH3 oxidation in a similar manner to what was observed previously with N. europaea. However, cycloheximide (CHX), a widely used eukaryotic protein synthesis inhibitor, but not bacteria-specific protein synthesis inhibitors (kanamycin and gentamycin), inhibited the recovery of NH3-oxidizing activity in N. maritimus. CHX prevented the incorporation of (14)CO2 -labeling into cellular proteins, providing further evidence that CHX acts as a protein synthesis inhibitor in N. maritimus. If the effect of CHX on protein synthesis can be confirmed among other isolates of AOA, the combination of C2H2 inactivation followed by recovery of NH3 oxidation either in the presence of bacteria-selective protein synthesis inhibitors or CHX might be used to estimate the relative contributions of AOB and AOA to NH3 oxidation in natural environments.

  18. Conformations of propargyl alcohol and its interaction with acetylene: A matrix isolation infrared and DFT computations

    NASA Astrophysics Data System (ADS)

    Sundararajan, K.; Gopi, R.; Ramanathan, N.

    2016-10-01

    Conformations of propargyl alcohol (PA) were studied using matrix isolation infrared spectroscopy. DFT computations using 6-311++G(d,p) basis set on the PA molecule identified two minima; gauche (g-PA) and trans (t-PA). Comparison of infrared spectra of PA trapped in Ar, N2 and Xe matrices with computations showed the evidence of the ground state g-PA conformer. Four minima were optimized on the potential energy surface for the hydrogen-bonded interaction of g-PA and acetylene (C2H2), corresponding to complex A (Csbnd H⋯O), complex B (Osbnd H⋯π) and complex C and D (Csbnd H⋯π). The structure, energies and the vibrational wavenumbers were computed for these complexes at B3LYP/6-311++G (d,p) level of theory. The infrared spectra of the hydrogen-bonded complexes between C2H2 and g-PA were studied in Ar matrix. The infrared spectra recorded under matrix isolation conditions revealed the formation of two types of complexes A (Csbnd H⋯O) and B (Osbnd H⋯π). Formation of these complexes was evidenced from the shifts in the vibrational wavenumber of the modes involving the C2H2 and PA submolecules.

  19. Chromophores from photolyzed ammonia reacting with acetylene: Application to Jupiters Great Red Spot

    NASA Technical Reports Server (NTRS)

    Carlson, Robert W.; Baines, Kevin H.; Anderson, M. S.; Filacchione, G.; Simon, A. A.

    2016-01-01

    The high altitude of Jupiter's Great Red Spot (GRS) may enhance the upward flux of gaseous ammonia (NH3 ) into the high troposphere, where NH3 molecules can be photodissociated and initiate a chain of chemical reactions with downwelling acetylene molecules (C2H2 ). These reactions, experimentally studied earlier by (Ferris and Ishikawa [1987] Nature 326, 777-778) and (Ferris and Ishikawa [1988] J. Amer. Chem. Soc. 110, 4306-4312), produce chromophores that absorb in the visible and ultraviolet regions. In this work we photolyzed mixtures of NH3 and C2H2 using ultraviolet radiation with a wavelength of 214 nm and measured the spectral transmission of the deposited films in the visible region (400-740 nm). From these transmission data we estimated the imaginary indices of refraction. Assuming that ammonia grains at the top of the GRS clouds are coated with this material, we performed layered sphere and radiative transfer calculations to predict GRS reflection spectra. Comparison of those results with observed and previously unreported Cassini visible spectra and with true-color images of the GRS show that the unknown GRS chromophore is spectrally consistent with the coupled NH3-C2H2 photochemical products produced in our laboratory experiments. Using high-resolution mass spectrometry and infrared spectroscopy we infer that the chromophore-containing residue is composed of aliphatic azine, azo, and diazo compounds.

  20. Chromophores from photolyzed ammonia reacting with acetylene: Application to Jupiter's Great Red Spot

    NASA Astrophysics Data System (ADS)

    Carlson, R. W.; Baines, K. H.; Anderson, M. S.; Filacchione, G.; Simon, A. A.

    2016-08-01

    The high altitude of Jupiter's Great Red Spot (GRS) may enhance the upward flux of gaseous ammonia (NH3) into the high troposphere, where NH3 molecules can be photodissociated and initiate a chain of chemical reactions with downwelling acetylene molecules (C2H2). These reactions, experimentally studied earlier by (Ferris and Ishikawa [1987] Nature 326, 777-778) and (Ferris and Ishikawa [1988] J. Amer. Chem. Soc. 110, 4306-4312), produce chromophores that absorb in the visible and ultraviolet regions. In this work we photolyzed mixtures of NH3 and C2H2 using ultraviolet radiation with a wavelength of 214 nm and measured the spectral transmission of the deposited films in the visible region (400-740 nm). From these transmission data we estimated the imaginary indices of refraction. Assuming that ammonia grains at the top of the GRS clouds are coated with this material, we performed layered sphere and radiative transfer calculations to predict GRS reflection spectra. Comparison of those results with observed and previously unreported Cassini visible spectra and with true-color images of the GRS show that the unknown GRS chromophore is spectrally consistent with the coupled NH3-C2H2 photochemical products produced in our laboratory experiments. Using high-resolution mass spectrometry and infrared spectroscopy we infer that the chromophore-containing residue is composed of aliphatic azine, azo, and diazo compounds.

  1. [Photodissociation of Acetylene and Acetone using Step-Scan Time-Resolved FTIR Emission Spectroscopy

    NASA Technical Reports Server (NTRS)

    McLaren, Ian A.; Wrobel, Jacek D.

    1997-01-01

    The photodissociation of acetylene and acetone was investigated as a function of added quenching gas pressures using step-scan time-resolved FTIR emission spectroscopy. Its main components consist of Bruker IFS88, step-scan Fourier Transform Infrared (FTIR) spectrometer coupled to a flow cell equipped with Welsh collection optics. Vibrationally excited C2H radicals were produced from the photodissociation of acetylene in the unfocused experiments. The infrared (IR) emission from these excited C2H radicals was investigated as a function of added argon pressure. Argon quenching rate constants for all C2H emission bands are of the order of 10(exp -13)cc/molecule.sec. Quenching of these radicals by acetylene is efficient, with a rate constant in the range of 10(exp -11) cc/molecule.sec. The relative intensity of the different C2H emission bands did not change with the increasing argon or acetylene pressure. However, the overall IR emission intensity decreased, for example, by more than 50% when the argon partial pressure was raised from 0.2 to 2 Torr at fixed precursor pressure of 160mTorr. These observations provide evidence for the formation of a metastable C2H2 species, which are collisionally quenched by argon or acetylene. Problems encountered in the course of the experimental work are also described.

  2. Cation-π and CH-π Interactions in the Coordination and Solvation of Cu(+)(acetylene)n Complexes.

    PubMed

    Brathwaite, Antonio D; Ward, Timothy B; Walters, Richard S; Duncan, Michael A

    2015-06-04

    Copper-acetylene cation complexes of the form Cu(C2H2)n(+) (n = 1-8) are produced by laser ablation in a supersonic expansion of acetylene/argon. The ions are mass selected and studied via infrared laser photodissociation spectroscopy in the C-H stretching region (3000-3500 cm(-1)). The structure and bonding of these complexes are investigated through the number of infrared active bands, their relative intensities and their frequency positions. Density functional theory calculations are carried out in support of the experimental data. The combined data show that cation-π complexes are formed for the n = 1-3 species, resulting in red-shifted C-H stretches on the acetylene ligands. The coordination of the copper cation is completed with three acetylene ligands, forming a "propeller" structure with D3 symmetry. Surprisingly, complexes with even greater numbers of acetylenes than this (4-6) have distinctive infrared band patterns quite different from those of the smaller complexes. Experiment combined with theory establishes that there is a fascinating pattern of second-sphere solvation involving the binding of acetylenes in bifurcated CH-π binding sites at the apex of two core ligands. This binding motif leads to three equivalent sites for second-sphere ligands, which when filled form a highly symmetrical Cu(+)(C2H2)6 complex. Solvent binding in this complex induces a structural change to planarity in the core, producing an appealing "core-shell" structure with D(3h) symmetry.

  3. Acetylene/Vinylidene Isomerization after Carbon K-shell Photo-Ionization

    NASA Astrophysics Data System (ADS)

    Osipov, Timut; Weber, T.; Jahnke, T.; Alnaser, A.; Landers, A.; Hertlein, M.; Jagutzki, O.; Schmidt, L.; Schöffler, M.; Prior, M.; Feinberg, B.; Cocke, C. L.; Dörner, R.; Belkacem, A.

    2006-05-01

    Comprehensive study of the acetylene/vinylidene isomerization dynamics after the carbon k-shell photoionization followed by the Auger decay was performed by means of the COLTRIMS (COLd Target Recoil Ion Momentum Spectroscopy) technique. The Auger electrons, produced in this reaction, were detected in coincidence with the products of the Coulomb explosion of the dication C2H2^2+. Measurement of the 3d vector momenta for all detected particles inferred the Auger electron energies and directions in the body fixed molecular frame along with the KER (Kinetic Energy Release) for different break up channels. This highly differential reaction cross-section study provided very unique information about the fragmentation pathways of the doubly charged acetylene molecule.

  4. Line intensity measurements for acetylene between 8980 and 9420 cm-1

    NASA Astrophysics Data System (ADS)

    Béguier, S.; Lyulin, O. M.; Hu, S.-M.; Campargue, A.

    2017-03-01

    The absorption spectrum of acetylene is studied by high-resolution Fourier-transform spectroscopy (FTS) between 8980 and 9420 cm-1. Positions and intensities of 432 12C2H2 absorption lines are retrieved from a spectrum recorded at room temperature (298.5 K) with a pressure of 87.6 hPa and a 105 m path length. The measured lines belong to 11 bands including three bands observed for the first time. The obtained intensity dataset constitutes the first intensity information in the region. The Herman-Wallis coefficients are derived from a fit of the measured intensity values. The reported results will be valuable to complete the spectroscopic databases of acetylene.

  5. Bond-rearrangement and ionization mechanisms in the photo-double-ionization of simple hydrocarbons (C2H4, C2H3F, and 1,1-C2H2F2) near and above threshold

    DOE PAGES

    Gaire, B.; Gatton, A. S.; Wiegandt, F.; ...

    2016-09-14

    We have investigated bond-rearrangement driven by photo-double-ionization (PDI) near and above the double ionization threshold in a sequence of carbon-carbon double bonded hydrocarbon molecules: ethylene, fluoroethylene, and 1,1-difluoroethylene. We employ the kinematically complete cold target recoil ion momentum spectroscopy (COLTRIMS) method to resolve all photo-double-ionization events leading to two-ionic fragments. We observe changes in the branching ratios of different dissociative ionization channels depending on the presence of none, one, or two fluorine atoms. The role of the fluorine atom in the bond-rearrangement channels is intriguing as evident by the re-ordering of the threshold energies of the PDI in the fluorinatedmore » molecules. These effects offer a compelling argument that the electronegativity of the fluorine (or the polarity of the molecule) strongly influences the potential energy surfaces of the molcules and drives bond-rearrangement during the dissociation process. The energy sharing and the relative angle between the 3D-momentum vectors of the two electrons provide clear evidence of direct and indirect PDI processes.« less

  6. Bond-rearrangement and ionization mechanisms in the photo-double-ionization of simple hydrocarbons (C2H4, C2H3F, and 1,1-C2H2F2) near and above threshold

    SciTech Connect

    Gaire, B.; Gatton, A. S.; Wiegandt, F.; Neff, J.; Janke, C.; Zeller, S.; Reedy, D.; Rajput, J.; Ben-Itzahk, I.; Landers, A. L.; Belkacem, A.; Weber, Th.

    2016-09-14

    We have investigated bond-rearrangement driven by photo-double-ionization (PDI) near and above the double ionization threshold in a sequence of carbon-carbon double bonded hydrocarbon molecules: ethylene, fluoroethylene, and 1,1-difluoroethylene. We employ the kinematically complete cold target recoil ion momentum spectroscopy (COLTRIMS) method to resolve all photo-double-ionization events leading to two-ionic fragments. We observe changes in the branching ratios of different dissociative ionization channels depending on the presence of none, one, or two fluorine atoms. The role of the fluorine atom in the bond-rearrangement channels is intriguing as evident by the re-ordering of the threshold energies of the PDI in the fluorinated molecules. These effects offer a compelling argument that the electronegativity of the fluorine (or the polarity of the molecule) strongly influences the potential energy surfaces of the molcules and drives bond-rearrangement during the dissociation process. The energy sharing and the relative angle between the 3D-momentum vectors of the two electrons provide clear evidence of direct and indirect PDI processes.

  7. Bond-rearrangement and ionization mechanisms in the photo-double-ionization of simple hydrocarbons (C2H4 , C2H3F , and 1 ,1 -C2H2F2 ) near and above threshold

    NASA Astrophysics Data System (ADS)

    Gaire, B.; Gatton, A.; Wiegandt, F.; Neff, J.; Janke, C.; Zeller, S.; Reedy, D.; Rajput, J.; Ben-Itzhak, I.; Landers, A. L.; Belkacem, A.; Weber, Th.

    2016-09-01

    We investigate bond-rearrangement driven by photo-double-ionization (PDI) near and above the double-ionization threshold in a sequence of carbon-carbon double-bonded hydrocarbon molecules: ethylene, fluoroethylene, and 1,1-difluoroethylene. We employ the kinematically complete cold target recoil ion momentum spectroscopy method to resolve all photo-double-ionization events leading to two-ion fragments. We observe changes in the branching ratios of different dissociative ionization channels depending on the presence of no, one, or two fluorine atoms. The role of the fluorine atom in the bond-rearrangement channels is intriguing, as evident by the reordering of the threshold energies of the PDI in the fluorinated molecules. These effects offer a compelling argument that the electronegativity of the fluorine (or the polarity of the molecule) strongly influences the potential energy surfaces of the molecules and drives bond rearrangement during the dissociation process. The energy sharing and the relative angle between the three-dimensional momentum vectors of the two electrons enable us to distinguish between knockout and other ionization mechanisms of the PDI processes.

  8. Influence of resonant collisions on the self-broadening of acetylene

    NASA Astrophysics Data System (ADS)

    Lehmann, Kevin K.

    2017-03-01

    Iwakuni et al. [Phys. Rev. Lett. 117, 143902 (2016)] have reported an ortho-para alternation of ˜10% in the self pressure broadening coefficients for ro-vibrational lines of the C2H2 transitions in the ν1+ν3 C-H (local mode) overtone band near 197 THz (1.52 μm). These authors attributed this effect to the contribution of resonant collisions, where the rotational energy change of one molecule is exactly compensated by the rotational energy change of its collision partner. Resonant collisions are known to be important in the case of self pressure broadening of highly polar molecules, such as HCN, but have not previously been invoked in the case of nonpolar molecules, such as acetylene, where the long range potential is dominated by the quadrupole-quadrupole electrostatic interaction. In the present work, the simple semiclassical Anderson-theory approach is used to estimate the rates of C2H2-C2H2 rotationally inelastic collisions and these used to predict pressure broadening rates, ignoring other contributions to the broadening, which should not have resonant enhancements. It is found that exactly resonant collisions do not make a major contribution to the broadening and these calculations predict an ortho-para alternation of the pressure broadening coefficients far below what was inferred by Iwakuni et al. The present results are consistent with a large body of published work that reported self-broadening coefficients of C2H2 ro-vibrational transitions that found negligible dependence on the vibrational transition and no even-odd alternation, even for Q and S branch transitions where any such effect is predicted to be much larger than for the P and R branch transitions studied by Iwakuni et al.

  9. A near-infrared acetylene detection system based on a 1.534 μm tunable diode laser and a miniature gas chamber

    NASA Astrophysics Data System (ADS)

    He, Qixin; Zheng, Chuantao; Liu, Huifang; Li, Bin; Wang, Yiding; Tittel, Frank K.

    2016-03-01

    A near-infrared (NIR) dual-channel differential acetylene (C2H2) detection system was experimentally demonstrated based on tunable diode laser absorption spectroscopy (TDLAS) technique and wavelength modulation spectroscopy (WMS) technique. A distributed feedback (DFB) laser modulated by a self-developed driver around 1.534 μm is used as light source. A miniature gas chamber with 15 cm path length is adopted as absorption pool, and an orthogonal lock-in amplifier is developed to extract the second harmonic (2f) signal. Sufficient standard C2H2 samples with different concentrations were prepared, and detailed measurements were carried out to study the detection performance. A good linear relationship is observed between the amplitude of the 2f signal and C2H2 concentration within the range of 200-10,000 ppm, and the relative measurement error is less than 5% within the whole range. A long-term monitoring lasting for 20 h on a 1000 ppm C2H2 sample was carried out, and the maximum concentration fluctuation is less than 2%. Due to the capability of using long-distance and low-loss optical fiber, the gas-cell can be placed in the filed for remote monitoring, which enables the system to have good prospects in industrial field.

  10. An infrared study of the bending region of acetylene

    NASA Astrophysics Data System (ADS)

    Hillman, J. J.; Jennings, D. E.; Halsey, G. W.; Nadler, Shachar; Blass, W. E.

    1991-04-01

    Acetylene spectra observed with instrumental resolutions of 0.0025 and 0.005 cm-1 were obtained at The National Optical Astronomy Observatory, Tucson, Arizona using the FTS spectrometer at the National Solar Observatory McMath telescope facility. These resolutions are factors of 6 and 3 times, respectively, that of the best prior study in the literature. The higher resolution allowed the assignment of many more low-J Q-branch transitions. The range of optical densities available in this study also allowed the extension of observed and assigned transitions to significantly higher J-values than reported in prior studies. Availability of improved standard lines resulted in high quality transition wavenumbers which are accurate to approximately +/-0.0001 cm-1. Using proven combination difference techniques and analysis software, this study produces the best available molecular parameters for the ν4 and ν5 states of acetylene. In addition, because acetylene has no permanent dipole moment, this study extends the precision of available ground state parameters B0 and D0 and produces for the first time an estimator of H0. In addition to H0 values for both isotopic species treated, we have obtained for the first time a value for H5 for the dominant isotopmer. The value of H5 for the 13C12CH2 was not determined and thus thought to be significantly smaller than H5 for 12C2H2. This study also obtains l-doubling parameters for both degenerate fundamental states in the lesser isotopmer for the first time as well as H4 for both isotopmers and B4 and D4 for the lesser isotopmer. NASA/ASEE Summer Faculty Fellow, NASA/Goddard Space Flight Center, 1986, 1987 (during which periods a portion of this work was completed).

  11. Synthesis of Highly Stable Silver-Loaded Vertical ZnO Nanowires Array and its Acetylene Sensing Properties

    NASA Astrophysics Data System (ADS)

    Uddin, Abu Sadat Mohammad Iftekhar; Chung, Gwiy-Sang

    2016-09-01

    A silver-loaded one-dimensional (1D) vertical ZnO nanowires (NWs) array synthesized by a facile seed mediated hydrothermal-RF magnetron sputtering method has been investigated for the fabrication of a highly stable and reproducible acetylene (C2H2) gas sensor. Successful immobilization of silver nanoparticles (NPs) as a sensitizer on the ZnO NWs array significantly enhanced the C2H2 sensing properties and showed a stable sensing performance. The grown structure exhibited high response magnitude (30.8 at 1000ppm), short response time (43s) and excellent selectivity at 220∘C. The enhanced performance can probably be accounted for the effect of combining the highly orientated ZnO NWs and catalytically active silver-based network. The superior sensing features toward C2H2 along with broad detection range (1-1000ppm), outstanding stability and excellent reproducibility indicate that the sensor is a promising candidate for practical applications.

  12. Titan haze: structure and properties of cyanoacetylene and cyanoacetylene-acetylene photopolymers

    NASA Technical Reports Server (NTRS)

    Clarke, D. W.; Ferris, J. P.

    1997-01-01

    The structure and morphological properties of polymers produced photochemically from the UV irradiation of cyanoacetylene and cyanoacetylene mixtures have been examined to evaluate their possible contribution to the haze layers found on Titan. A structural analysis of these polymers may contribute to our understanding of the data returned from the Huygens probe of the Cassini mission that will pass through the atmosphere of Titan in the year 2004. Infrared analysis, elemental analysis, and thermal methods (thermogravimetric analysis, thermolysis, pyrolysis) were used to examine structures of polycyanoacetylenes produced by irradiation of the gas phase HC3N at 185 and 254 nm. The resulting brown to black polymer, which exists as small particles, is believed to be a branched chain of conjugated carbon-carbon double bonds, which, on exposure to heat, cyclizes to form a graphitic structure. Similar methods of analysis were used to show that when HC3N is photolyzed in the presence of Titan's other atmospheric constituents (CH4, C2H6, C2H2, and CO), a copolymer is formed in which the added gases are incorporated as substituents on the polymer chain. Of special significance is the copolymer of HC3N and acetylene (C2H2). Even in experiments where C2H2 was absorbing nearly all of the incident photons, the ratio of C2H2 to HC3N found in the resulting polymer was only 2:1. Scanning electron microscopy was used to visually examine the polymer particles. While pure polyacetylene particles are amorphous spheres roughly 1 micrometer in diameter, polycyanoacetylenes appear to be strands of rough, solid particles slightly smaller in size. The copolymer of HC3N and C2H2 exhibits characteristics of both pure polymers. This is particularly important as pure polyacetylenes do not match the optical constants measured for Titan's atmospheric hazes. The copolymers produced by the incorporation of other minor atmospheric constituents, like HC3N, into the polyacetylenes are expected to have

  13. Acetylene terminated matrix resins

    NASA Technical Reports Server (NTRS)

    Goldfarb, I. J.; Lee, Y. C.; Arnold, F. E.; Helminiak, T. E.

    1985-01-01

    The synthesis of resins with terminal acetylene groups has provided a promising technology to yield high performance structural materials. Because these resins cure through an addition reaction, no volatile by-products are produced during the processing. The cured products have high thermal stability and good properties retention after exposure to humidity. Resins with a wide variety of different chemical structures between the terminal acetylene groups are synthesized and their mechanical properties studied. The ability of the acetylene cured polymers to give good mechanical properties is demonstrated by the resins with quinoxaline structures. Processibility of these resins can be manipulated by varying the chain length between the acetylene groups or by blending in different amounts of reactive deluents. Processing conditions similar to the state-of-the-art epoxy can be attained by using backbone structures like ether-sulfone or bis-phenol-A. The wide range of mechanical properties and processing conditions attainable by this class of resins should allow them to be used in a wide variety of applications.

  14. Acylamidation of acetylenes

    SciTech Connect

    Gridnev, I.D.; Balenkova, E.S.

    1989-01-10

    The reactions of phenylacetylene, 1-heptyne, and diphenylacetylene with the complexes of acetylfluoroborate with acetonitrile and with chloroacetonitrile take place regiospecifically and stereospecifically as syn-addition of the acetyl group and nitrile at the triple bond of the acetylene and lead to previously unknown Z-N-acyl-/beta/-amino, /alpha/,/beta/-unsaturated ketones.

  15. Comparison of N(2) Fixation and Yields in Cajanus cajan between Hydrogenase-Positive and Hydrogenase-Negative Rhizobia by In Situ Acetylene Reduction Assays and Direct N Partitioning.

    PubMed

    La Favre, J S; Focht, D D

    1983-08-01

    Pigeon peas [Cajanus cajan (L.) Millsp.] were grown in soil columns containing (15)N-enriched organic matter. Seasonal N(2) fixation activity was determined by periodically assaying plants for reduction of C(2)H(2). N(2) fixation rose sharply from the first assay period at 51 days after planting to a peak of activity between floral initiation and fruit set. N(2) fixation (acetylene reduction) activity dropped concomitantly with pod maturation but recovered after pod harvests. Analysis of (15)N content of plant shoots revealed that approximately 91 to 94% of plant N was derived from N(2) fixation. The effect of inoculation with hydrogenase-positive and hydrogenase-negative rhizobia was examined. Pigeon peas inoculated with strain P132 (hydrogenase-positive) yielded significantly more total shoot N than other inoculated or uninoculated treatments. However, two other hydrogenase-positive strains did not yield significantly more total shoot N than a hydrogenase-negative strain. The extent of nodulation by inoculum strains compared to indigenous rhizobia was determined by typing nodules according to intrinsic antibiotic resistance of the inoculum strains. The inoculum strains were detected in almost all typed nodules of inoculated plants.Gas samples were taken from soil columns several times during the growth cycle of the plants. H(2) was never detected, even in columns containing pigeon peas inoculated with hydrogenase-negative rhizobia. This was attributed to H(2) consumption by soil bacteria. Estimation of N(2) fixation by acetylene reduction activity was closest to the direct (15)N method when ethylene concentrations in the gas headspace (between the column lid and soil surface) were extrapolated to include the soil pore space as opposed solely to measurement in the headspace. There was an 8-fold difference between the two acetylene reduction assay methods of estimation. Based on a planting density of 15,000 plants per hectare, the direct (15)N fixation rates ranged

  16. Absolute Integral Cross Sections for the State-selected Ion-Molecule Reaction N2+(X2Σg+ v+ = 0-2) + C2H2 in the Collision Energy Range of 0.03-10.00 eV

    NASA Astrophysics Data System (ADS)

    Xu, Yuntao; Xiong, Bo; Chung Chang, Yih; Ng, C. Y.

    2016-08-01

    Using the vacuum ultraviolet laser pulsed field ionization-photoion source, together with the double-quadrupole-double-octopole mass spectrometer developed in our laboratory, we have investigated the state-selected ion-molecule reaction {{{{N}}}2}+({X}2{{{{Σ }}}{{g}}}+; v + = 0-2, N+ = 0-9) + C2H2, achieving high internal-state selectivity and high kinetic energy resolution for reactant {{{{N}}}2}+ ions. The charge transfer (CT) and hydrogen-atom transfer (HT) channels, which lead to the respective formation of product {{{C}}}2{{{{H}}}2}+ and N2H+ ions, are observed. The vibrationally selected absolute integral cross sections for the CT [σ CT(v +)] and HT [[σ HT(v +)] channels obtained in the center-of-mass collision energy (E cm) range of 0.03-10.00 eV reveal opposite E cm dependences. The σ CT(v +) is found to increase as E cm is decreased, and is consistent with the long-range exothermic CT mechanism, whereas the E cm enhancement observed for the σ HT(v +) suggests effective coupling of kinetic energy to internal energy, enhancing the formation of N2H+. The σ HT(v +) curve exhibits a step at E cm = 0.70-1.00 eV, suggesting the involvement of the excited {{{C}}}2{{{{H}}}2}+({A}2{{{{Σ }}}{{g}}}+) state in the HT reaction. Contrary to the strong E cm dependences for σ CT(v +) and σ HT(v +), the effect of vibrational excitation of {{{{N}}}2}+ on both the CT and HT channels is marginal. The branching ratios and cross sections for the CT and HT channels determined in the present study are useful for modeling the atmospheric compositions of Saturn's largest moon, Titan. These cross sections and branching ratios are also valuable for benchmarking theoretical calculations on chemical dynamics of the titled reaction.

  17. Effects of dicyandiamide and acetylene on N2O emissions and ammonia oxidizers in a fluvo-aquic soil applied with urea.

    PubMed

    Wang, Qing; Zhang, Li-Mei; Shen, Ju-Pei; Du, Shuai; Han, Li-Li; He, Ji-Zheng

    2016-11-01

    Ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) are crucial for N2O emission as they carry out the key step of nitrification. Dicyandiamide (DCD) and acetylene (C2H2) are typical nitrification inhibitors (NIs), while the comparative effects of these NIs on N2O production and ammonia oxidizers' (AOB and AOA) growth are unclear. Four treatments including a control, urea, urea + DCD, and urea + C2H2 were set up to investigate their effect of inhibiting soil nitrification, nitrification-related N2O emission as well as the growth of ammonia oxidizers with a fluvo-aquic soil using microcosms for 28 days. N2O emission and net nitrification rate increased after the application of urea, but were significantly restrained in urea + NI treatments, while C2H2 was more effective in reducing N2O emission and nitrification rate than DCD. The abundance of AOB, which was significantly correlated with N2O emission and net nitrification rate, was more inhibited by C2H2 than DCD. Furthermore, the application of urea in all the soils had little impact on the AOA community, while obvious shifts of AOB community structure were found compared with the control. All AOB sequences fell within Nitrosospira cluster 3, and the AOA community was clustered to group 1.1b. Collectively, it indicated that application of urea combined with NIs (DCD or C2H2) could potentially alter N2O emission, mainly through regulating the growth of AOB but not AOA in this fluvo-aquic soil.

  18. The interaction strengths and spectroscopy parameters of the C2H2∙∙∙HX and HCN∙∙∙HX complexes (X = F, Cl, CN, and CCH) and related ternary systems valued by fluxes of charge densities: QTAIM, CCFO, and NBO calculations.

    PubMed

    Viana, Marco A A; Araújo, Regiane C M U; Neto, José A Maia; Chame, Henrique C; Pereira, Arquimedes M; Oliveira, Boaz G

    2017-04-01

    This theoretical work exhibits a new systematic study of structural parameters, electronic properties, infrared vibration modes, and molecular topography of hydrogen complexes, namely linear-type HCN⋯HX and T-type C2H2⋯HX (X = F, Cl, CN, and CCH). Ideally, the knowledge of the ternary systems of C2H2⋯HCN⋯HF and HCN⋯HCN⋯HF whose subparts integrate the linear and T-shaped complexes were used to give support in this current research. By means of computational calculations carried out in both levels B3LYP and MP2, the variations of the HX bond lengths are clearly overestimated in the HCN⋯HX linear complexes. In agreement with the analyses of the electrostatic potentials, the higher intermolecular energies of these complexes agree with the larger red-shifts in the stretch frequencies in HX. Also, the QTAIM descriptors and NBO calculations were used to inspect the interaction strength as well as to confirm the π cloud as a proton accepting center. By taking into account the absorption intensity ratio as a standard parameter to predict the interaction strength and intermolecular characterization, the formalism of the charge-charge flux-overlap modified (CCFO) was applied.

  19. Implications for Extraterrestrial Hydrocarbon Chemistry: Analysis of Ethylene (C2H4) and D4-Ethylene (C2D4) Ices Exposed to Ionizing Radiation via Combined Infrared Spectroscopy and Reflectron Time-of-flight Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Abplanalp, Matthew J.; Kaiser, Ralf I.

    2017-02-01

    The processing of the hydrocarbon ice, ethylene (C2H4/C2D4), via energetic electrons, thus simulating the processes in the track of galactic cosmic-ray particles, was carried out in an ultrahigh vacuum apparatus. The chemical evolution of the ices was monitored online and in situ utilizing Fourier transform infrared spectroscopy (FTIR) and during temperature programmed desorption, via a quadrupole mass spectrometer utilizing electron impact ionization (EI-QMS) and a reflectron time-of-flight mass spectrometer utilizing a photoionization source (PI-ReTOF-MS). Several previous in situ studies of ethylene ice irradiation using FTIR were substantiated with the detection of six products: [CH4 (CD4)], acetylene [C2H2 (C2D2)], the ethyl radical [C2H5 (C2D5)], ethane [C2H6 (C2D6)], 1-butene [C4H8 (C4D8)], and n-butane [C4H10 (C4D10)]. Contrary to previous gas phase studies, the PI-ReTOF-MS detected several groups of hydrocarbon with varying degrees of saturation: C n H2n+2 (n = 4–10), C n H2n (n = 2–12, 14, 16), C n H2n‑2 (n = 3–12, 14, 16), C n H2n‑4 (n = 4–12, 14, 16), C n H2n‑6 (n = 4–10, 12), C n H2n‑8 (n = 6–10), and C n H2n‑10 (n = 6–10). Multiple laboratory studies have shown the facile production of ethylene from methane, which is a known ice constituent in the interstellar medium. Various astrophysically interesting molecules can be associated with the groups detected here, such as allene/methylacetylene (C3H4) or 1, 3-butadiene (C4H6) and its isomers, which have been shown to lead to polycyclic aromatic hydrocarbons. Finally, several hydrocarbon groups detected here are unique to ethylene ice versus ethane ice and may provide understanding of how complex hydrocarbons form in astrophysical environments.

  20. Large amplitude motion of the acetylene molecule within acetylene-neon complexes hosted in helium droplets.

    PubMed

    Briant, M; Mengesha, E; de Pujo, P; Gaveau, M-A; Soep, B; Mestdagh, J-M; Poisson, L

    2016-06-28

    Superfluid helium droplets provide an ideal environment for spectroscopic studies with rotational resolution. Nevertheless, the molecular rotation is hindered because the embedded molecules are surrounded by a non-superfluid component. The present work explores the dynamical role of this component in the hindered rotation of C2H2 within the C2H2-Ne complex. A HENDI experiment was built and near-infrared spectroscopy of C2H2-Ne and C2H2 was performed in the spectral region overlapping the ν3/ν2 + ν4 + ν5 Fermi-type resonance of C2H2. The comparison between measured and simulated spectra helped to address the above issue.

  1. An Experimental and Theoretical Study of Nitrogen-Broadened Acetylene Lines

    NASA Technical Reports Server (NTRS)

    Thibault, Franck; Martinez, Raul Z.; Bermejo, Dionisio; Ivanov, Sergey V.; Buzykin, Oleg G.; Ma, Qiancheng

    2014-01-01

    We present experimental nitrogen-broadening coefficients derived from Voigt profiles of isotropic Raman Q-lines measured in the 2 band of acetylene (C2H2) at 150 K and 298 K, and compare them to theoretical values obtained through calculations that were carried out specifically for this work. Namely, full classical calculations based on Gordon's approach, two kinds of semi-classical calculations based on Robert Bonamy method as well as full quantum dynamical calculations were performed. All the computations employed exactly the same ab initio potential energy surface for the C2H2N2 system which is, to our knowledge, the most realistic, accurate and up-to-date one. The resulting calculated collisional half-widths are in good agreement with the experimental ones only for the full classical and quantum dynamical methods. In addition, we have performed similar calculations for IR absorption lines and compared the results to bibliographic values. Results obtained with the full classical method are again in good agreement with the available room temperature experimental data. The quantum dynamical close-coupling calculations are too time consuming to provide a complete set of values and therefore have been performed only for the R(0) line of C2H2. The broadening coefficient obtained for this line at 173 K and 297 K also compares quite well with the available experimental data. The traditional Robert Bonamy semi-classical formalism, however, strongly overestimates the values of half-width for both Qand R-lines. The refined semi-classical Robert Bonamy method, first proposed for the calculations of pressure broadening coefficients of isotropic Raman lines, is also used for IR lines. By using this improved model that takes into account effects from line coupling, the calculated semi-classical widths are significantly reduced and closer to the measured ones.

  2. Chromophores from Photolyzed Ammonia Reacting with Acetylene: Application to Jupiter’s Great Red Spot

    NASA Astrophysics Data System (ADS)

    Carlson, Robert W.; Baines, K. H.; Anderson, M. S.; Filacchione, G.

    2012-10-01

    The production mechanisms of chromophores at Jupiter, and notably at the Great Red Spot (GRS), have been long-standing puzzles. A clue to the formation of the GRS coloring agent may be the great height of this storm, which can upwell ammonia to pressure levels of a few hundred mbar where solar photons capable of dissociating NH3 penetrate. Acetylene formed at higher altitudes can diffuse down and react with the NH3 photodissociation products, forming a deposit that absorbs in the ultraviolet and visible region (Ferris and Ishikawa, J. Amer. Chem. Soc. 110, 4306-4312, 1988). We have investigated the system NH3 + C2H2 + CH4 using a Zn lamp emitting at 214 nm to produce NH2 + H and subsequent reaction products. The deposits produced in these reactions were analyzed by optical and infrared spectroscopy and soft-ionization (He*) time-of-flight mass spectroscopy. The combination of NH3 + CH4 produced no visibly absorbing material, but NH3 + C2H2 and NH3 + C2H2 + CH4 mixtures both produced a yellow-orange film whose transmission spectra are similar to that of the GRS obtained by Cassini VIMS. Infrared spectra show a strong band at 2056 wavenumbers which may arise from nitrile (-CN), isonitrile (-NC), or diazide (-CNN) functional groups. The high-resolution mass spectra are consistent with compounds of the form CnH2n+1Nm, similar to the products formed in NH3 + CH4 spark discharges (Molton and Ponnamperuma, Icarus 21, 166-174, 1974). We thank NASA's Planetary Atmospheres Program for support.

  3. Pulse-induced nonequilibrium dynamics of acetylene inside carbon nanotube studied by an ab initio approach.

    PubMed

    Miyamoto, Yoshiyuki; Zhang, Hong; Rubio, Angel

    2012-06-05

    Nanoscale molecular confinement substantially modifies the functionality and electronic properties of encapsulated molecules. Many works have approached this problem from the perspective of quantifying ground-state molecular changes, but little is known about the nonequilibrium dynamics of encapsulated molecular system. In this letter, we report an analysis of the nonequilibrium dynamics of acetylene (C(2)H(2)) inside a semiconducting carbon nanotube (CNT). An ultrashort high-intense laser pulse (2 fs width and 10(15) W/cm(2) intensity) brings the systems out of equilibrium. This process is modeled by comprehensive first-principles time-dependent density-functional simulations. When encapsulated, acetylene dimer, unlike a single acetylene molecule, exhibits correlated vibrational dynamics (C-C bond rotation and H-C-C bending) that is markedly different from the dynamics observed in the gas phase. This result highlights the role of CNT in modulating the optical electric field within the tube. At longer simulation timescales (> 20 fs) in the largest-diameter tube studied here [CNT(14,0)], we observe synchronized rotation about the C-C axes in the dimer and ultimately ejection of one of the four hydrogen atoms. Our results illustrate the richness of photochemical phenomena in confined geometries.

  4. Imaging the C black formation by acetylene pyrolysis with molecular reactive force field simulations.

    PubMed

    Zhang, Chaoyang; Zhang, Chi; Ma, Yu; Xue, Xianggui

    2015-05-07

    C black is a class of substantial materials with a long history of applications. However, apart from some descriptions of primary reactions, subsequent processes leading up to the final formation mechanism remain unclear. This mechanism is also crucial for understanding the formation of other carbonaceous materials. In this work, we visualize C black formation by acetylene pyrolysis using molecular dynamics simulations with a molecular reactive force field named ReaxFF. We find that the formation undergoes four stages: (1) chain elongation by H abstraction and polymerization of small C species, (2) chain branching, (3) cyclization and ring densification, and (4) condensed ring folding. The simulated C black particle possesses a structure of folded graphite layers, which is in good accordance with experimental observations. Cyclization and condensation are derived from fusion between neighboring chains, significantly varying from common experimental observations at relatively low temperatures that abide by the mechanism of H abstraction and C2H2 addition. Moreover, polyyne and polyene are usually found during acetylene pyrolysis, suggesting that the pyrolysis of acetylene and other hydrocarbons may be a feasible method of obtaining carbyne, a novel carbonaceous material with a high value.

  5. Self-calibration wavelength modulation spectroscopy for acetylene detection based on tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Huang, Qin-Bin; Xu, Xue-Mei; Li, Chen-Jing; Ding, Yi-Peng; Cao, Can; Yin, Lin-Zi; Ding, Jia-Feng

    2016-11-01

    The expressions of the second harmonic (2f) signal are derived on the basis of absorption spectral and lock-in theories. A parametric study indicates that the phase shift between the intensity and wavelength modulation makes a great contribution to the 2f signal. A self-calibration wavelength modulation spectroscopy (WMS) method based on tunable diode laser absorption spectroscopy (TDLAS) is applied, combining the advantages of ambient pressure, temperature suppression, and phase-shift influences elimination. Species concentration is retrieved simultaneously from selected 2f signal pairs of measured and reference WMS-2f spectra. The absorption line of acetylene (C2H2) at 1530.36 nm near-infrared is selected to detect C2H2 concentrations in the range of 0-400 ppmv. System sensitivity, detection precision and limit are markedly improved, demonstrating that the self-calibration method has better detecting performance than the conventional WMS. Project supported by the National Natural Science Foundation of China (Grant Nos. 61172047, 61502538, and 61501525).

  6. A Cationic Unsaturated Platinum(II) Complex that Promotes the Tautomerization of Acetylene to Vinylidene.

    PubMed

    Ortega-Moreno, Laura; Peloso, Riccardo; López-Serrano, Joaquín; Iglesias-Sigüenza, Javier; Maya, Celia; Carmona, Ernesto

    2017-03-01

    Complex [PtMe2 (PMe2 ArDipp2 )] (1), which contains a tethered terphenyl phosphine (ArDipp2 =2,6-(2,6-(i) Pr2 C6 H3 )2 C6 H3 ), reacts with [H(Et2 O)2 ]BArF (BArF(-) =B[3,5-(CF3 )2 C6 H3 ]4(-) ) to give the solvent (S) complex [PtMe(S)(PMe2 ArDipp2 )](+) (2⋅S). Although the solvent molecule is easily displaced by a Lewis base (e.g., CO or C2 H4 ) to afford the corresponding adducts, treatment of 2⋅S with C2 H2 yielded instead the allyl complex [Pt(η(3) -C3 H5 )(PMe2 ArDipp2 )](+) (6) via the alkyne intermediate [PtMe(η(2) -C2 H2 )(PMe2 ArDipp2 )](+) (5). Deuteration experiments with C2 D2 , and kinetic and theoretical investigations demonstrated that the conversion of 5 into 6 involves a Pt(II) -promoted HC≡CH to :C=CH2 tautomerization in preference over acetylene migratory insertion into the Pt-Me bond.

  7. A novel metal-organic framework for high storage and separation of acetylene at room temperature

    NASA Astrophysics Data System (ADS)

    Duan, Xing; Wang, Huizhen; Ji, Zhenguo; Cui, Yuanjing; Yang, Yu; Qian, Guodong

    2016-09-01

    A novel 3D microporous metal-organic framework with NbO topology, [Cu2(L)(H2O)2]•(DMF)6·(H2O)2 (ZJU-10, ZJU = Zhejiang University; H4L =2‧-hydroxy-[1,1‧:4‧,1″-terphenyl]-3,3″,5,5″-tetracarboxylic acid; DMF =N,N-dimethylformamide), has been synthesized and structurally characterized. With suitable pore sizes and open Cu2+ sites, ZJU-10a exhibits high BET surface area of 2392 m2/g, as well as moderately high C2H2 volumetric uptake capacity of 132 cm3/cm3. Meanwhile, ZJU-10a is a promising porous material for separation of acetylene from methane and carbon dioxide gas mixtures at room temperature.

  8. Nonstationary coherent optical effects caused by pulse propagation through acetylene-filled hollow-core photonic-crystal fibers

    NASA Astrophysics Data System (ADS)

    Ocegueda, M.; Hernandez, E.; Stepanov, S.; Agruzov, P.; Shamray, A.

    2014-06-01

    Experimental observations of nonstationary coherent optical phenomena, i.e., optical nutation, free induction, and photon echo, in the acetylene (12C2H2) filled hollow-core photonic-crystal fiber (PCF) are reported. The presented results were obtained for the acetylene vibration-rotational transition P9 at wavelength 1530.37 nm at room temperature under a gas pressure of <0.5 Torr. An all-fiber pumped-through cell based on the commercial 2.6-m-long PCF with a 10-μm hollow-core diameter was used. The characteristic relaxation time T2 during which the optical coherent effects were typically observed in our experiments was estimated to be ≈8 ns. This time is governed by the limited time of the acetylene molecules' presence inside the effective PCF modal area and by intermolecule collisions. An accelerated attenuation of the optical nutation oscillations is explained by a random orientation of acetylene molecules.

  9. A combined crossed-beam and theoretical study of the reaction dynamics of O(3P) + C2H3 → C2H2 + OH: analysis of the nascent OH products with the preferential population of the Π(A') component.

    PubMed

    Park, Min-Jin; Jang, Su-Chan; Choi, Jong-Ho

    2012-11-28

    The gas-phase reaction dynamics of ground-state atomic oxygen [O((3)P) from the photo-dissociation of NO(2)] with vinyl radicals [C(2)H(3) from the supersonic flash pyrolysis of vinyl iodide, C(2)H(3)I] has been investigated using a combination of high-resolution laser-induced fluorescence spectroscopy in a crossed-beam configuration and ab initio calculations. Unlike the previous gas-phase bulk kinetic experiments by Baulch et al. [J. Phys. Chem. Ref. Data 34, 757 (2005)], a new exothermic channel of O((3)P) + C(2)H(3) → C(2)H(2) + OH (X (2)Π: υ" = 0) has been identified for the first time, and the population analysis shows bimodal nascent rotational distributions of OH products with low- and high-N" components with a ratio of 2.4:1. No spin-orbit propensities were observed, and the averaged ratios of Π(A('))∕Π(A") were determined to be 1.66 ± 0.27. On the basis of computations at the CBS-QB3 theory level and comparison with prior theory, the microscopic mechanisms responsible for the nascent populations can be understood in terms of two competing dynamical pathways: a direct abstraction process in the low-N" regime as the major pathway and an addition-complex forming process in the high-N" regime as the minor pathway. Particularly, during the bond cleavage process of the weakly bound van der Waals complex C(2)H(2)-OH, the characteristic pathway from the low dihedral-angle geometry was consistent with the observed preferential population of the Π(A') component in the nascent OH products. A molecular-level discussion of the reactivity, mechanism, and dynamical features of the title reaction are presented together with a comparison to gas-phase oxidation reactions of a series of prototypical hydrocarbon radicals.

  10. A combined crossed-beam and theoretical study of the reaction dynamics of O(3P) + C2H3 → C2H2 + OH: Analysis of the nascent OH products with the preferential population of the Π(A') component

    NASA Astrophysics Data System (ADS)

    Park, Min-Jin; Jang, Su-Chan; Choi, Jong-Ho

    2012-11-01

    The gas-phase reaction dynamics of ground-state atomic oxygen [O(3P) from the photo-dissociation of NO2] with vinyl radicals [C2H3 from the supersonic flash pyrolysis of vinyl iodide, C2H3I] has been investigated using a combination of high-resolution laser-induced fluorescence spectroscopy in a crossed-beam configuration and ab initio calculations. Unlike the previous gas-phase bulk kinetic experiments by Baulch et al. [J. Phys. Chem. Ref. Data 34, 757 (2005)], 10.1063/1.1748524, a new exothermic channel of O(3P) + C2H3 → C2H2 + OH (X 2Π: υ″ = 0) has been identified for the first time, and the population analysis shows bimodal nascent rotational distributions of OH products with low- and high-N″ components with a ratio of 2.4:1. No spin-orbit propensities were observed, and the averaged ratios of Π(A')/Π(A″) were determined to be 1.66 ± 0.27. On the basis of computations at the CBS-QB3 theory level and comparison with prior theory, the microscopic mechanisms responsible for the nascent populations can be understood in terms of two competing dynamical pathways: a direct abstraction process in the low-N″ regime as the major pathway and an addition-complex forming process in the high-N″ regime as the minor pathway. Particularly, during the bond cleavage process of the weakly bound van der Waals complex C2H2—OH, the characteristic pathway from the low dihedral-angle geometry was consistent with the observed preferential population of the Π(A') component in the nascent OH products. A molecular-level discussion of the reactivity, mechanism, and dynamical features of the title reaction are presented together with a comparison to gas-phase oxidation reactions of a series of prototypical hydrocarbon radicals.

  11. Collisions of slow polyatomic ions with surfaces: dissociation and chemical reactions of C2H2+*, C2H3+, C2H4+*, C2H5+, and their deuterated variants C2D2+* and C2D4+* on room-temperature and heated carbon surfaces.

    PubMed

    Jasík, Juraj; Zabka, Jan; Feketeova, Linda; Ipolyi, Imre; Märk, Tilmann D; Herman, Zdenek

    2005-11-17

    Interaction of C2Hn+ (n = 2-5) hydrocarbon ions and some of their isotopic variants with room-temperature and heated (600 degrees C) highly oriented pyrolytic graphite (HOPG) surfaces was investigated over the range of incident energies 11-46 eV and an incident angle of 60 degrees with respect to the surface normal. The work is an extension of our earlier research on surface interactions of CHn+ (n = 3-5) ions. Mass spectra, translational energy distributions, and angular distributions of product ions were measured. Collisions with the HOPG surface heated to 600 degrees C showed only partial or substantial dissociation of the projectile ions; translational energy distributions of the product ions peaked at about 50% of the incident energy. Interactions with the HOPG surface at room temperature showed both surface-induced dissociation of the projectiles and, in the case of radical cation projectiles C2H2+* and C2H4+*, chemical reactions with the hydrocarbons on the surface. These reactions were (i) H-atom transfer to the projectile, formation of protonated projectiles, and their subsequent fragmentation and (ii) formation of a carbon chain build-up product in reactions of the projectile ion with a terminal CH3-group of the surface hydrocarbons and subsequent fragmentation of the product ion to C3H3+. The product ions were formed in inelastic collisions in which the translational energy of the surface-excited projectile peaked at about 32% of the incident energy. Angular distributions of reaction products showed peaking at subspecular angles close to 68 degrees (heated surfaces) and 72 degrees (room-temperature surfaces). The absolute survival probability at the incident angle of 60 degrees was about 0.1% for C2H2+*, close to 1% for C2H4+* and C2H5+, and about 3-6% for C2H3+.

  12. Stable carbon isotope fractionation during bacterial acetylene fermentation: Potential for life detection in hydrocarbon-rich volatiles of icy planet(oid)s

    USGS Publications Warehouse

    Miller, Laurence; Baesman, Shaun; Oremland, Ron

    2015-01-01

    We report the first study of stable carbon isotope fractionation during microbial fermentation of acetylene (C2H2) in sediments, sediment enrichments, and bacterial cultures. Kinetic isotope effects (KIEs) averaged 3.7 ± 0.5‰ for slurries prepared with sediment collected at an intertidal mudflat in San Francisco Bay and 2.7 ± 0.2‰ for a pure culture of Pelobacter sp. isolated from these sediments. A similar KIE of 1.8 ± 0.7‰ was obtained for methanogenic enrichments derived from sediment collected at freshwater Searsville Lake, California. However, C2H2 uptake by a highly enriched mixed culture (strain SV7) obtained from Searsville Lake sediments resulted in a larger KIE of 9.0 ± 0.7‰. These are modest KIEs when compared with fractionation observed during oxidation of C1 compounds such as methane and methyl halides but are comparable to results obtained with other C2compounds. These observations may be useful in distinguishing biologically active processes operating at distant locales in the Solar System where C2H2 is present. These locales include the surface of Saturn's largest moon Titan and the vaporous water- and hydrocarbon-rich jets emanating from Enceladus.

  13. Stable Carbon Isotope Fractionation during Bacterial Acetylene Fermentation: Potential for Life Detection in Hydrocarbon-Rich Volatiles of Icy Planet(oid)s

    PubMed Central

    Baesman, Shaun M.; Oremland, Ronald S.

    2015-01-01

    Abstract We report the first study of stable carbon isotope fractionation during microbial fermentation of acetylene (C2H2) in sediments, sediment enrichments, and bacterial cultures. Kinetic isotope effects (KIEs) averaged 3.7 ± 0.5‰ for slurries prepared with sediment collected at an intertidal mudflat in San Francisco Bay and 2.7 ± 0.2‰ for a pure culture of Pelobacter sp. isolated from these sediments. A similar KIE of 1.8 ± 0.7‰ was obtained for methanogenic enrichments derived from sediment collected at freshwater Searsville Lake, California. However, C2H2 uptake by a highly enriched mixed culture (strain SV7) obtained from Searsville Lake sediments resulted in a larger KIE of 9.0 ± 0.7‰. These are modest KIEs when compared with fractionation observed during oxidation of C1 compounds such as methane and methyl halides but are comparable to results obtained with other C2 compounds. These observations may be useful in distinguishing biologically active processes operating at distant locales in the Solar System where C2H2 is present. These locales include the surface of Saturn's largest moon Titan and the vaporous water- and hydrocarbon-rich jets emanating from Enceladus. Key Words: Acetylene—Fermentation—Isotope fractionation—Enceladus—Life detection. Astrobiology 15, 977–986. PMID:26539733

  14. Ethylene update

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The gaseous plant hormone ethylene is required for many aspects of plant growth, development and responses to the environment. Potato tubers produce low amounts of ethylene and are highly sensitive to ethylene in the atmosphere. Several responses of potato tubers to endogenous and exogenous ethylene...

  15. Nitrogen fixation (acetylene reduction) by epiphytes of freshwater macrophytes.

    PubMed

    Finke, L R; Seeley, H W

    1978-07-01

    The involvement of epiphytic microorganisms in nitrogen fixation was investigated in a shallow freshwater pond near Ithaca, N.Y. The acetylene reduction technique was used to follow diel and seasonal cycles of nitrogen fixation by epiphytes of Myriophyllum spicatum. Acetylene-reducing activity was maximal between noon and 6 p.m., but substantial levels of activity relative to daytime rates continued through the night. Experiments with the seasonal course of activity showed a gradual decline during the autumn months and no activity in January or February. Activity commenced in May, with an abrupt increase to levels between 0.45 and 0.95 nmol of ethylene formed per mg (dry weight) of plant per h. Through most of the summer months, mean rates of acetylene reduction remained between 0.15 and 0.60 nmol/mg (dry weight) per h. It was calculated from diel and seasonal cycles that, in the pond areas studied, epiphytes were capable of adding from 7.5 to 12.5 mug of N per mg of plant per year to the pond. This amount is significant relative to the total amount of nitrogen incorporated into the plant. Blue-green algae (cyanobacteria), particularly Gloeotrichia, appeared to bear prime responsibility for nitrogen fixation, but photosynthetic bacteria of the genus Rhodopseudomonas were isolated from M. spicatum and shown to support high rates of acetylene reduction.

  16. Ultra-high sensitive acetylene detection using quartz-enhanced photoacoustic spectroscopy with a fiber amplified diode laser and a 30.72 kHz quartz tuning fork

    NASA Astrophysics Data System (ADS)

    Ma, Yufei; He, Ying; Zhang, Ligong; Yu, Xin; Zhang, Jingbo; Sun, Rui; Tittel, Frank K.

    2017-01-01

    An ultra-high sensitive acetylene (C2H2) Quartz-enhanced photoacoustic spectroscopy (QEPAS) sensor based on a high power laser and a quartz tuning fork with a resonance frequency f0 of 30.72 kHz was demonstrated. An erbium-doped fiber amplifier (EDFA) amplified distributed feedback diode laser with a center wavelength of 1.53 μm was used as the exciting source. A 33.2 ppb minimum detection limit (MDL) at 6534.37 cm-1 was achieved, and the calculated normalized noise equivalent absorption coefficient was 3.54 × 10-8 cm-1 W/√Hz when the laser output power was 1500 mW. The ppb-level detection sensitivity of C2H2 validated the reported QEPAS method.

  17. A sensitive search for organics (CH4, CH3OH, H2CO, C2H6, C2H2, C2H4), hydroperoxyl (HO2), nitrogen compounds (N2O, NH3, HCN) and chlorine species (HCl, CH3Cl) on Mars using ground-based high-resolution infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Villanueva, G. L.; Mumma, M. J.; Novak, R. E.; Radeva, Y. L.; Käufl, H. U.; Smette, A.; Tokunaga, A.; Khayat, A.; Encrenaz, T.; Hartogh, P.

    2013-03-01

    Is Mars actively releasing organic and other minor gases into the atmosphere? We present a comprehensive search for trace species on Mars, targeting multiple volatile organic species (CH4, CH3OH, H2CO, C2H6, C2H2, C2H4), hydroperoxyl (HO2), several nitrogen compounds (N2O, NH3, HCN), and two chlorine species (HCl, CH3Cl) through their rovibrational spectra in the 2.8-3.7 μm spectral region. The data were acquired over a period of 4 years (2006-2010) using powerful infrared high-resolution spectrometers (CRIRES, NIRSPEC, CSHELL) at high-altitude observatories (VLT, Keck-2, NASA-IRTF), and span a broad range of seasons, Doppler shifts and spatial coverage. Here, we present results from a selection of high-quality spectra obtained on four separate dates, representing a fraction of our search space. For most of these species we derived the most stringent upper limits ever obtained, and because the targeted gases have substantially different resident lifetimes in the Martian atmosphere (from hours to centuries), our measurements not only test for current release but also provide stringent limits on the quiescent levels. In particular, we sampled the same regions where plumes of methane have been recently observed (e.g., Syrtis Major and Valles Marineris), allowing us to test for seasonal and temporal variability.

  18. Application of the photoacoustic method to the measurement of acetylene reduction by nitrogenase enzyme

    NASA Astrophysics Data System (ADS)

    Schramm, D. U.; Sthel, M. S.; Carneiro, L. O.; Franco, A. A.; Campos, A. C.; Vargas, H.

    2005-06-01

    Nitrogenase is an enzyme responsible for the reduction of the atmospheric N2 into NH4^+, which represents the key entry point of the molecular nitrogen into the biogeochemical cycle of nitrogen. This enzyme is present in the rhizobial bacteroids, which are symbionts in a Leguminosae plant (Acacia Holosericea), and also reduces acetylene into ethylene at the same rate as the nitrogen reduction. Therefore, a CO2 Laser Photoacoustic system was used for detecting and monitoring the ethylene emission by the nitrogenase activity, in the rhizobial symbionts in Acacia Holosericea, when they are confined in test tubes with acetylene at two different volumes (0.1 and 0.5 ml). Ethylene concentrations are also determined in the ppm range.

  19. Mystery of 1-Vinylpropargyl Formation from Acetylene Addition to the Propargyl Radical: An Open-and-Shut Case.

    PubMed

    da Silva, Gabriel

    2017-03-16

    The addition of acetylene (C2H2) to the propargyl radical (C3H3) initiates a cascade of molecular weight growth reactions that result in the production of polycyclic aromatic hydrocarbons (PAHs) in flames. Although it is well-established that the first reaction step produces the cyclic C5H5 radical cyclopentadienyl (c-C5H5), recent studies have also detected significant quantities of the open-chain form, 1-vinylpropargyl (l-C5H5). This work presents a mechanism for the C3H3 + C2H2 reaction from ab initio calculations, which includes pathways for the formation of both the open and shut isomers as well as for their interconversion. Formation of both isomers proceeds from the initial HCCCH2CHCH(•) reaction adduct with similar barriers, both well below the entrance channel energy. Subsequent isomerization of l-C5H5 with c-C5H5 also transpires at below the energy of the reactants, although this process connects two deep wells (being resonance stabilized radicals), and must compete with collisional energy transfer. An RRKM theory/master equation model is developed for the reported C5H5 reaction mechanism. Master equation simulations suggest that both cyclic and open-chain isomers are expected to form from the C3H3 + C2H2 reaction across a range of temperatures, although the lifetime of l-C5H5 is relatively short for rearrangement to c-C5H5.

  20. Carbon material formation on SBA-15 and Ni-SBA-15 and residue constituents during acetylene decomposition.

    PubMed

    Chiang, Hung-Lung; Wu, Trong-Neng; Ho, Yung-Shou; Zeng, Li-Xuan

    2014-07-15

    Carbon materials including carbon spheres and nanotubes were formed from acetylene decomposition on hydrogen-reduced SBA-15 and Ni-SBA-15 at 650-850°C. The physicochemical characteristics of SBA-15, Ni-SBA-15 and carbon materials were analyzed by field emission scanning electronic microscopy (FE-SEM), Raman spectrometry, and energy dispersive spectrometry (EDS). In addition, the contents of polyaromatic hydrocarbons (PAHs) in the tar and residue and volatile organic compounds (VOCs) in the exhaust were determined during acetylene decomposition on SBA-15 and Ni-SBA-15. Spherical carbon materials were observed on SBA-15 during acetylene decomposition at 750 and 850°C. Carbon filaments and ball spheres were formed on Ni-SBA-15 at 650-850°C. Raman spectroscopy revealed peaks at 1290 (D-band, disorder mode, amorphous carbon) and 1590 (G-band, graphite sp(2) structure)cm(-1). Naphthalene (2 rings), pyrene (4 rings), phenanthrene (3 rings), and fluoranthene (4 rings) were major PAHs in tar and residues. Exhaust constituents of hydrocarbon (as propane), H2, and C2H2 were 3.9-2.6/2.7-1.5, 1.4-2.8/2.6-4.3, 4.2-2.4/3.2-1.7% when acetylene was decomposed on SBA-15/Ni-SBA-15, respectively, corresponding to temperatures ranging from 650 to 850°C. The concentrations of 52 VOCs ranged from 9359 to 5658 and 2488 to 1104ppm for SBA-15 and Ni-SBA-15 respectively, at acetylene decomposition temperatures from 650 to 850°C, and the aromatics contributed more than 87% fraction of VOC concentrations.

  1. Acetylene-sourced CVD-synthesised catalytically active graphene for electrochemical biosensing.

    PubMed

    Osikoya, Adeniyi Olugbenga; Parlak, Onur; Murugan, N Arul; Dikio, Ezekiel Dixon; Moloto, Harry; Uzun, Lokman; Turner, Anthony Pf; Tiwari, Ashutosh

    2017-03-15

    In this study, we have demonstrated the use of chemical vapour deposition (CVD) grown-graphene to develop a highly-ordered graphene-enzyme electrode for electrochemical biosensing. The graphene sheets were deposited on 1.00mm thick copper sheet at 850°C using acetylene (C2H2) as carbon source in an argon (Ar) and nitrogen (N2) atmosphere. An anionic surfactant was used to increase wettability and hydrophilicity of graphene; thereby facilitating the assembly of biomolecules on the electrode surface. Meanwhile, the theoretical calculations confirmed the successful modification of hydrophobic nature of graphene through the anionic surface assembly, which allowed high-ordered immobilisation of glucose oxidase (GOx) on the graphene. The electrochemical sensing activities of the graphene-electrode was explored as a model for bioelectrocatalysis. The bioelectrode exhibited a linear response to glucose concentration ranging from 0.2 to 9.8mM, with sensitivity of 0.087µA/µM/cm(2) and a detection limit of 0.12µM (S/N=3). This work sets the stage for the use of acetylene-sourced CVD-grown graphene as a fundamental building block in the fabrication of electrochemical biosensors and other bioelectronic devices.

  2. The methane-acetylene cycle Aerospace Plane - A promising candidate for earth to orbit transportation

    SciTech Connect

    Zubrin, R.M. )

    1992-01-01

    The methane-acetylene cycle Aerosapce Plane (MACASP) concept is proposed and its theoretical feasibility is shown. In this concept, methane fuel stored on-board the aircraft is run out within the wing leading edge in pipes at temperatures up to 1400 K. In the presence of catalyst, the heat provided by wing drag is used to drive the highly endothermic chemical reaction 2CH4 yields 3H2 + C2H2. The products of this reaction, hydrogen and acetylene, are then fed into a combustion chamber and burned in air. On the NASP, terminal acceleration to orbit beyond the critical Mach number of the scramjet can be enabled by rocket operation using a small on-board supply of LOx. The advantages of this concept are that the two highly energetic but difficult-to-store fuels can be used without on-board storage. It is shown that the MACASP concept offers significant promise for economical earth-to-orbit transportation. 5 refs.

  3. Research in acetylene containing monomers

    NASA Technical Reports Server (NTRS)

    Ogliaruso, M. A.

    1976-01-01

    The preparation of precursor bisbenzils with pendant acetylene linkages for use in the synthesis of new aromatic poly (phenyl quinoxalines) was investigated. Attempts to condense para, para prime-dibromo benzil and potassium acetylide in liquid ammonia and in toluene, to prepare 4-phenyl acetyl phenyl ether, 4-(paraacetylphenyl) acetyl phenyl ether, 4-phenyl acetyl-4 primeacetyl phenyl acetyl phenyl ether, the reaction of 4-phenyl acetyl phenyl ether with Villsmeier reagent to prepare 4-(beta-chloro cinnamaldehyde) phenyl ether, the reaction of 4-(para-acetyl phenyl) acetyl phenyl ether with Villsmeier reagent, and the oxidation of bibenzil to prepare benzil are described. The reactions of phenyl acetylene with oxidizing agent, of phenyl acetylene with bromine, of 1,1,2,2-tetrabromo ethyl benzene with zinc and with oxidizing agent are described.

  4. 41 CFR 50-204.66 - Acetylene.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 1 2010-07-01 2010-07-01 true Acetylene. 50-204.66..., Vapors, Fumes, Dusts, and Mists § 50-204.66 Acetylene. (a) The in-plant transfer, handling, storage, and utilization of acetylene in cylinders shall be in accordance with Compressed Gas Association Pamphlet...

  5. 29 CFR 1910.102 - Acetylene.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 5 2010-07-01 2010-07-01 false Acetylene. 1910.102 Section 1910.102 Labor Regulations... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Hazardous Materials § 1910.102 Acetylene. (a) Cylinders. Employers must ensure that the in-plant transfer, handling, storage, and use of acetylene in cylinders...

  6. 29 CFR 1910.102 - Acetylene.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... may comply with the provisions of Chapter 7 (“Acetylene Piping”) of NFPA 51A-2001 (“Standard for... comply with the provisions of NFPA 51A-2006 (“Standard for Acetylene Charging Plants”) (National Fire... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Hazardous Materials § 1910.102 Acetylene. (a) Cylinders....

  7. 29 CFR 1910.102 - Acetylene.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... may comply with the provisions of Chapter 7 (“Acetylene Piping”) of NFPA 51A-2001 (“Standard for... comply with the provisions of NFPA 51A-2006 (“Standard for Acetylene Charging Plants”) (National Fire... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Hazardous Materials § 1910.102 Acetylene. (a) Cylinders....

  8. The adaptive control system of acetylene generator

    NASA Astrophysics Data System (ADS)

    Kovaliuk, D. O.; Kovaliuk, Oleg; Burlibay, Aron; Gromaszek, Konrad

    2015-12-01

    The method of acetylene production in acetylene generator was analyzed. It was found that impossible to provide the desired process characteristics by the PID-controller. The adaptive control system of acetylene generator was developed. The proposed system combines the classic controller and fuzzy subsystem for controller parameters tuning.

  9. New assignments and a rare peculiarity in the high sensitivity CRDS spectrum of acetylene near 8000 cm-1

    NASA Astrophysics Data System (ADS)

    Kassi, S.; Lyulin, O. M.; Béguier, S.; Campargue, A.

    2016-08-01

    The absorption spectrum of acetylene has been recorded at room temperature (296 K) using high sensitivity Cavity Ring Down Spectroscopy in the 7914 and 8252 cm-1 interval. The noise equivalent absorption of the spectra is αmin ∼ 5×10-11 cm-1. A list of about 5600 absorption features was constructed. The smallest intensities are on the order of 10-29 cm/molecule. A total of 1325 rovibrational lines of 12C2H2 were assigned by comparison with accurate predictions provided by a global effective operator model. In addition, 132 rovibrational lines of 12C13CH2 present in natural isotopic abundance were assigned on the basis of their published positions. The assigned 12C2H2 lines belong to 12 new and 6 already known bands, for which additional J-lines were assigned. The line intensities of the three cold bands of 12C13CH2 are reported for the first time. The new data will be valuable to refine the parameters of the global effective Hamiltonian and dipole moments of 12C2H2 in the region. Spectroscopic parameters of the 12C2H2 and 12C13CH2 upper vibrational levels were derived from a band-by-band fit of the line positions (typical rms values are on the order of 0.001 cm-1). A few of the analyzed bands were found to be affected by rovibrational perturbations, which are discussed. In particular, the rotational structure of the 2ν1 + (ν4 + ν5)0 Σu+-Σg+ band near 7994 cm-1 exhibits a particularly surprising intensity distribution: while the P(19) and R(17) transitions share the same J = 18 upper level, the R(17) line has an intensity about 4 orders of magnitude smaller than the P(19) line. This unusual situation is quantitatively interpreted as resulting from a Coriolis interaction between the ν1 + 2ν2 + ν51 and 2ν1 + (ν4 + ν5)0 bands with a energy crossing at J = 18. The accidental nearly perfect cancelation of the two terms contributing to the line strength of the R(17) line leads to the near disappearance of this line.

  10. The cytochrome P-450 active site. Regiospecificity of prosthetic heme alkylation by olefins and acetylenes.

    PubMed

    Kunze, K L; Mangold, B L; Wheeler, C; Beilan, H S; Ortiz de Montellano, P R

    1983-04-10

    Hepatic microsomal cytochrome P-450 from phenobarbital-pretreated rats is inactivated during the metabolism of linear olefins (ethylene, propene, and octene) and acetylenes (acetylene, propyne, and octyne). As expected from previous work, the inactivation is due to N-alkylation of the prosthetic heme group by the substrate. The N-alkyl group in each adduct is formally obtained by addition of a porphyrin nitrogen to the terminal carbon and of an oxygen atom (as a hydroxyl function) to the internal carbon of the pi-bond. The oxygen is shown here by 18O studies to be catalytically introduced by the enzyme. The olefins exclusively alkylate the nitrogen of pyrrole ring D, but the acetylenes alkylate that of pyrrole ring A. Acetylene is an exception in that it reacts with more than one nitrogen. Circular dichroism studies of the ethylene adduct and of the ring D regioisomer of N-ethylprotoporphyrin IX obtained by alkylation of the prosthetic heme of hemoglobin have been used to determine which face of cytochrome P-450 heme is alkylated by the unsaturated substrates. These results implicate an active site that is sterically encumbered in the region over pyrrole ring B and has a lipophilic binding site that accommodates chains of at least six carbon atoms over pyrrole ring C.

  11. Acetylene-terminated polyimide adhesives

    NASA Technical Reports Server (NTRS)

    Hanky, A. O.

    1983-01-01

    The nadic-encapped LARC-13 addition polyimide exhibits excellent flow, is easy to process, and can be utilized for short terms at temperatures up to 593 C. It retains good lap shear strength as an adhesive for titanium after aging in air up to 125 hours at 316 C; but lap shear strength degrades with longer exposures at that temperature. Thermid 600, an addition polyimide that is acetylene encapped, exhibits thermomechanical properties even after long term exposure in at air at 316 C. An inherent drawback of this system is that it has a narrow processing window. An acetylene encapped, addition polyimide which is a hybrid of these two systems was developed. It has good retention of strength after long term aging and is easily processed. The synthesis and characterization of various molecular weight oligomers of this system are discussed as well as the bonding, aging, and testing of lap shear adhesive samples.

  12. Autoxidation and acetylene-accelerated oxidation of NO in a 2-phase system; implications for the expression of denitrification in ex situ experiments

    NASA Astrophysics Data System (ADS)

    Nadeem, Shahid; Dörsch, Peter; Bakken, Lars

    2013-04-01

    Denitrification allows microorganisms to sustain respiration under anoxic conditions. The typical niche for denitrification is an environment with fluctuating oxygen concentrations such as soils and borders between anoxic and oxic zones of biofilms and sediments. In such environments, the organisms need adequate regulation of denitrification in response to changing oxygen availability to tackle both oxic and anoxic spells. The regulation of denitrification in soils has environmental implications, since it affects the proportions of N2, N2O and NO emitted to the atmosphere. The expression of denitrification enzymes is regulated by a complex regulatory network involving one or several positive feedback loops via the intermediate nitrogen oxides. Nitric oxide (NO) is known to induce denitrification in model organisms, but the quantitative effect of NO and its concentration dependency has not been assessed for denitrification in soils. NO is chemically unstable in the presence of oxygen due to autoxidation, and the oxidation of NO is accelerated by acetylene (C2H2) which is commonly used as an inhibitor of N2O reductase in denitrification studies. As a first step to a better understanding of NO's role in soil denitrification, we investigated NO oxidation kinetics for a closed "two phase" system (i.e. liquid phase + headspace) typically used for denitrification experiments with soil slurries, with and without acetylene present. Models were developed to adequately predict autoxidation and acetylene-accelerated oxidation. The minimum oxygen concentration in the headspace ([O2]min, mL L-1) for acetylene-accelerated NO oxidation was found to increase linearly with the NO concentration ([NO], mL L-1); [O2]min= 0.192 + [NO]*0.1 (r2=0.978). The models for NO oxidation were then used to assess NO-oxidation rates in denitrification experiments with batches of bacterial cells extracted from soil. The batches were exposed to low initial oxygen concentrations in gas tight serum

  13. Thermal Conversion of Methane to Acetylene

    SciTech Connect

    Fincke, James Russell; Anderson, Raymond Paul; Hyde, Timothy Allen; Wright, Randy Ben; Bewley, Randy Lee; Haggard, Delon C; Swank, William David

    2000-01-01

    This report describes the experimental demonstration of a process for the direct thermal conversion of methane to acetylene. The process utilizes a thermal plasma heat source to dissociation products react to form a mixture of acetylene and hydrogen. The use of a supersonic expansion of the hot gas is investigated as a method of rapidly cooling (quenching) the product stream to prevent further reaction or thermal decomposition of the acetylene which can lower the overall efficiency of the process.

  14. 76 FR 75782 - Revising Standards Referenced in the Acetylene Standard

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-05

    ... the Acetylene Standard AGENCY: Occupational Safety and Health Administration (OSHA), Department of... is revising its Acetylene Standard for general industry by updating a reference to a standard... and Explanation of Revisions to the Acetylene Standard IV. Procedural Determinations A....

  15. Acetylene terminated aspartimides and resins therefrom

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M. (Inventor); Connell, John W. (Inventor); Havens, Stephen J. (Inventor)

    1989-01-01

    Acetylene terminated aspartimides are prepared using two methods. In the first, an amino-substituted aromatic acetylene is reacted with an aromatic bismaleimide in a solvent of glacial acetic acid and/or m-cresol. In the second method, an aromatic diamine is reacted with an ethynyl containing maleimide, such an N-(3-ethynyl phenyl) maleimide, in a solvent of glacial acetic acid and/or m-cresol. In addition, acetylene terminated aspartimides are blended with various acetylene terminated oligomers and polymers to yield composite materials exhibiting improved mechanical properties.

  16. Root-Associated N2 Fixation (Acetylene Reduction) by Enterobacteriaceae and Azospirillum Strains in Cold-Climate Spodosols

    PubMed Central

    Haahtela, Kielo; Wartiovaara, Tuula; Sundman, Veronica; Skujiņš, J.

    1981-01-01

    N2 fixation by bacteria in associative symbiosis with washed roots of 13 Poaceae and 8 other noncultivated plant species in Finland was demonstrated by the acetylene reduction method. The roots most active in C2H2 reduction were those of Agrostis stolonifera, Calamagrostis lanceolata, Elytrigia repens, and Phalaris arundinacea, which produced 538 to 1,510 nmol of C2H4·g−1 (dry weight)· h−1 when incubated at pO2 0.04 with sucrose (pH 6.5), and 70 to 269 nmol of C2H4· g−1 (dry weight)·h−1 without an added energy source and unbuffered. Azospirillum lipferum, Enterobacter agglomerans, Klebsiella pneumoniae, and a Pseudomonas sp. were the acetylene-reducing organisms isolated. The results demonstrate the presence of N2-fixing organisms in associative symbiosis with plant roots found in a northern climatic region in acidic soils ranging down to pH 4.0. PMID:16345687

  17. Cavity Ringdown Laser Asorption Spectroscopy(crlas) of Isotopically Labeled Acetylene Between 12,500 - 13,600 wn

    NASA Astrophysics Data System (ADS)

    Lue, Christopher J.; Sullivan, Michael N.; Draganjac, Mark E.; Reeve, Scott W.

    2011-06-01

    About five years ago, Arkansas State University created the Arkansas Center for Laser Applications and Science (ArCLAS) with the intention of making it a state-of-the-art facility for laser-based research and optical spectroscopy in the midSouth. Since that time, University and DoD support has lead to the acquisition of numerous laser based spectrometers including a novel three color picosecond system utilized primarily for STIRAP measurements of bulk gas samples. Over the past few months, we have begun collecting near infrared overtone and combination band spectra for the acetylene molecule with a pulsed cavity ringdown laser absorption spectrometer (CRDLAS) as part of the STIRAP support effort. Certainly acetylene has been extensively studied by a number of different spectroscopic methods. During these CRDLAS investigations a 13C_2H_2 band was discovered which we believe has not been previously reported. Here a complete rovibrational analysis of this band will be presented. See for example, Michel Herman, Jacques lievin, Jean Vander Auwera, and Alain Campargue, in Global and Accurate Vibration Hamiltonians from High Resolution Molecular Spectroscopy, Advances in Chemical Physics Volume 108, John Wiley and Sons, NY, NY (1999) and references therein.

  18. CATION-π and CH-π Interactions in the Coordination and Solvation of Cu+ (ACETYLENE)n (n=1-6) Complexes Investigated via Infrared Photodissociation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Brathwaite, Antonio David; Walters, Richard S.; Ward, Timothy B.; Duncan, Michael A.

    2015-06-01

    Mass-selected copper-acetylene cation complexes of the form Cu(C2H2)n+ are produced by laser ablation and studied via infrared laser photodissociation spectroscopy in the C-H stretching region (3000-3500 wn). Spectra for larger species are measured via ligand elimination, whereas argon tagging is employed to enhance dissociation yields in smaller complexes. The number of infrared active bands, their frequency positions and their relative intensities provide insight into the structure and bonding of these ions. Density functional theory calculations are carried out in support of this work. The combined data show that cation-π bonds are formed for the n=1-3 species, resulting in red-shifted C-H stretches on the acetylene ligands. Three acetylene ligands complete the coordination of the copper cation. Additional ligands (n=4-6) solvate the n=3 core by forming CH-pi bonds. Distinctive vibrational patterns are exhibited for coordinated vs. solvent ligands. Theory reproduces these results.

  19. 41 CFR 50-204.66 - Acetylene.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 41 Public Contracts and Property Management 1 2014-07-01 2014-07-01 false Acetylene. 50-204.66 Section 50-204.66 Public Contracts and Property Management Other Provisions Relating to Public Contracts.... (b) The piped systems for the in-plant transfer and distribution of acetylene shall be...

  20. 41 CFR 50-204.66 - Acetylene.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 41 Public Contracts and Property Management 1 2012-07-01 2009-07-01 true Acetylene. 50-204.66 Section 50-204.66 Public Contracts and Property Management Other Provisions Relating to Public Contracts.... (b) The piped systems for the in-plant transfer and distribution of acetylene shall be...

  1. 46 CFR 147.70 - Acetylene.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Acetylene. 147.70 Section 147.70 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS CARGOES HAZARDOUS SHIPS' STORES Stowage and Other Special Requirements for Particular Materials § 147.70 Acetylene. (a) Seventeen cubic meters (600...

  2. 29 CFR 1910.102 - Acetylene.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... with the provisions of CGA Pamphlet G-1-2003 (“Acetylene”) (Compressed Gas Association, Inc., 11th ed..., 2006, these employers may comply with the provisions of Chapter 7 (“Acetylene Piping”) of NFPA 51A-2001 (“Standard for Acetylene Charging Plants”) (National Fire Protection Association, 2001 ed., 2001). (3)...

  3. Theoretical study of the bonding of the first-row transition-metal positive ions to ethylene

    NASA Technical Reports Server (NTRS)

    Sodupe, M.; Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Partridge, Harry

    1992-01-01

    Ab initio calculations were performed to study the bonding of the first-row transition-metal ions with ethylene. While Sc(+) and Ti(+) insert into the pi bond of ethylene to form a three-membered ring, the ions V(+) through Cu(+) form an electrostatic complex with ethylene. The binding energies are compared with those from experiment and with those of comparable calculations performed previously for the metal-acetylene ion systems.

  4. What is Different Between Borazine-Acetylene and Benzene-Acetylene a Matrix Isolation and Ab-Initio Study.

    NASA Astrophysics Data System (ADS)

    Verma, Kanupriya; Viswanathan, K. S.

    2016-06-01

    Borazine (B_3N_3H_6)-C_2H_2 system was studied experimentally, using matrix isolation infrared spectroscopy and supported by ab-initio computations. B_3N_3H_6, also referred to as inorganic benzene, presents an interesting comparison with C_6H_6. While C_6H_6 has a delocalized π system, B_3N_3H_6 has electron density centered on the nitrogen atoms, while the boron atoms are electron deficient. In addition, B_3N_3H_6 can also serve as a proton donor through N-H group. Similarly, C_2H_2 can act both as a proton donor, using the hydrogen attached to the sp carbon or as a proton acceptor at its π-cloud. At the MP2/aug-cc-pVDZ level of theory, C_6H_6-C_2H_2 system showed three minimaThe. global minimum was a structure where the C_2H_2 was the proton donor to the C_6H_6 π system. The next was a local minimum where the C_6H_6 was the proton donor to C_2H_2 and the third was a π stacked structure. B_3N_3H_6-C_2H_2 also shows three minima at the same level of theory mentioned above. One was a structure where C_2H_2 donates a proton to B_3N_3H_6, approaching it from above the plane of the ring, much like in C_6H_6-C_2H_2. A second near degenerate structure was also located where the C_2H_2 serves as a proton acceptor towards the N-H group of B_3N_3H_6. A similar structure in C_6H_6-C_2H_2 was a local minimum. While in the case of C_6H_6-C_2H_2, the global minimum was the only one observed in the experiments, in the case of B_3N_3H_6-C_2H_2, both near degenerate minima mentioned above were observed in the matrix. B_3N_3H_6-C_2H_2 therefore reveals similarities and differences from the C_6H_6-C_2H_2 system. A π-stacked local minimum was also computationally indicated in the B_3N_3H_6-C_2H_2 system, though it was not observed in our experiments. Our earlier work comparing B_3N_3H_6-H_2O to C_6H_6-H_2O also yielded a similar behavioral pattern. Details of the experimental data and computational results will be presented. References: 1. M. Majumder, B. K. Mishra, N

  5. Yttrium-Assisted C-H and C-C Bond Activation of Ethylene Probed by Mass-Analyzed Threshold Ionization Spectroscopy

    NASA Astrophysics Data System (ADS)

    Kim, Jong Hyun; Yang, Dong-Sheng

    2016-06-01

    The reaction between Y atom and ethylene (CH2=CH2) was performed in a laser-ablation supersonic molecular beam source. Y(C2H2), Y(C2H4), and Y(C4H6) were observed by time-of-flight mass spectrometry and investigated with mass-analyzed threshold ionization (MATI) spectroscopy and theoretical calculations. Y(C2H2) is formed by hydrogen elimination, Y(C2H4) by simple association, and La(C4H6) by C-C bond coupling and dehydrogenation. Both Y(C2H2) and Y(C2H4) have a C2v triangular structure with a C=C double bond in Y(C2H2) and a C-C single bond in Y(C2H4). Y(C4H6) has a five-membered metallacyclic structure (Cs) with Y binding to the two terminal carbon atoms of butene, which is the exactly same as that of Y(C4H6) formed in the Y + 1-butene reaction. For all three complexes, ionization has a small effect on the metal-carbon bond lengths because the rejected electron has basically a Y 5s character. The adiabatic ionization energies are measured to be 45679(5) wn for Y(C2H2), 45603(5) wn for Y(C2H4) and 43475(5) wn for Y(C4H6). The metal-ligand stretching frequencies of the three complexes are also measured from the MATI spectra.

  6. Influence of chlorine coordination number on the catalytic mechanism of ruthenium chloride catalysts in the acetylene hydrochlorination reaction: a DFT study.

    PubMed

    Han, You; Sun, Mengxia; Li, Wei; Zhang, Jinli

    2015-03-28

    The catalytic mechanism of Ru-based catalysts in the acetylene hydrochlorination reaction has been investigated via the density functional theory (DFT) method. To study the effect of the chlorine coordination number on the catalytic mechanism, Ru3Cl9, Ru3Cl7, Ru5Cl7, Ru3Cl3 and Ru3 clusters were chosen as the catalytic models. Our results show that the energy barrier for acetylene hydrochlorination on Ru3Cl9 was as high as 1.51 eV at 458 K. When the chlorine coordination number decreased, the energy barriers on Ru3Cl7, Ru5Cl7, Ru3Cl3 and Ru3 were 1.29, 0.89, 1.01 and 1.42 eV, respectively. On Ru3Cl9, the H and Cl atoms of HCl were simultaneously added to C2H2 to form C2H3Cl, while the reaction was divided into two steps on Ru3Cl7, Ru3Cl3 and Ru3 clusters. The first step was the addition of H atom of HCl to C2H2 to form C2H3˙, and the second step was the addition of Cl atom to C2H3˙ to form C2H3Cl. The step involving the addition of Cl was the rate-controlling step during the whole reaction. On Ru5Cl7 cluster, there was an additional step before the steps involving the addition of H and Cl: the transfer of H atom from HCl to Ru atom. This step was the rate-controlling step during the reaction of acetylene hydrochlorination on Ru5Cl7 and its energy barrier was the lowest among all the above-mentioned catalytic models. Therefore, the Ru5Cl7 cluster played the most predominant role in acetylene hydrochlorination with the largest reaction rate constant kTST of 10(3).

  7. Ethylene glycol

    Integrated Risk Information System (IRIS)

    Ethylene glycol ; CASRN 107 - 21 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic E

  8. Ethylene diamine

    Integrated Risk Information System (IRIS)

    Ethylene diamine ; CASRN 107 - 15 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  9. [The gas chromatographic detection of acetylene in cadaveric material].

    PubMed

    Iablochkin, V D

    1999-01-01

    Acetylene traces were detected by gas chromatography in the cadaveric right crural muscle of a 30-year-old man dead from an explosion of an acetylene reservoir at a plant. Acetylene was identified using the absolute calibration method on 3 standard gas chromatographic columns, reaction gas chromatography, and acetylene "deduction" by silver sulfate on silicagel.

  10. Acetylene measurement in flames by chirp-based quantum cascade laser spectrometry.

    PubMed

    Quine, Zachary R; McNesby, Kevin L

    2009-06-01

    We have designed and characterized a mid-IR spectrometer built around a pulsed distributed-feedback quantum cascade laser using the characteristic frequency down-chirp to scan through the spectral region 6.5 cm(-1) spectral region. The behavior of this chirp is extensively measured. The accuracy and detection limits of the system as an absorption spectrometer are demonstrated first by measuring spectra of acetylene through a single pass 16 cm absorption cell in real time at low concentrations and atmospheric pressure. The smallest detectable peak is measured to be approximately 1.5 x 10(-4) absorbance units, yielding a minimum detectable concentration length product of 2.4 parts per million meter at standard temperature and pressure. This system is then used to detect acetylene within an ethylene-air opposed flow flame. Measurements of acetylene content as a function of height above the fuel source are presented, as well as measurements of acetylene produced in fuel breakdown as a function of preinjection fuel temperature.

  11. Incorporation of deuterium in coke formed on an acetylene hydrogenation catalyst

    SciTech Connect

    Larsson, M.; Jansson, J.; Asplund, S.

    1996-09-01

    In selective hydrogenation of acetylene in excess ethylene, considerable amounts of coke or {open_quotes}green oils{close_quotes} are formed and accumulate on the catalyst. A fraction of the acetylene undergoes oligomerization reactions producing C{sub 4}`s and larger hydrocarbons. Compounds larger than C{sub 8} are retained on the catalysts surface or as a condensed phase in the pore system. The reaction mechanism is largely unknown but several authors have postulated that oligomerization occurs through dissociatively adsorbed acetylene (2), i.e., C{sub 2}H(ads) and C{sub 2}(ads). In this paper a novel method of studying the coke formation on a catalyst is introduced. Deuterium is incorporated in the coke during hydrogenation of acetylene, and during temperature-programmed oxidation (TPO) experiments the deuterium content is analyzed. The objective is to shed some light on the mechanism for oligomer formation in this system. The catalyst, Pd/{alpha}-Al{sub 2}O{sub 3}, was prepared by the impregnation of {alpha}-alumina (Sued-Chemie) with a solution of Pd(NO{sub 3}){sub 2} in 30% HNO{sub 3}. 8 refs., 4 figs.

  12. Seasonal variations of temperature, acetylene and ethane in Saturn's atmosphere from 2005 to 2010, as observed by Cassini-CIRS

    NASA Astrophysics Data System (ADS)

    Sinclair, J. A.; Irwin, P. G. J.; Fletcher, L. N.; Moses, J. I.; Greathouse, T. K.; Friedson, A. J.; Hesman, B.; Hurley, J.; Merlet, C.

    2013-07-01

    Acetylene (C2H2) and ethane (C2H6) are by-products of complex photochemistry in the stratosphere of Saturn. Both hydrocarbons are important to the thermal balance of Saturn's stratosphere and serve as tracers of vertical motion in the lower stratosphere. Earlier studies of Saturn's hydrocarbons using Cassini-CIRS observations have provided only a snapshot of their behaviour. Following the vernal equinox in August 2009, Saturn's northern and southern hemispheres have entered spring and autumn, respectively, however the response of Saturn's hydrocarbons to this seasonal shift remains to be determined. In this paper, we investigate how the thermal structure and concentrations of acetylene and ethane have evolved with the changing season on Saturn. We retrieve the vertical temperature profiles and acetylene and ethane volume mixing ratios from Δν˜=15.5cm-1 Cassini-CIRS observations. In comparing 2005 (solar longitude, Ls ˜ 308°), 2009 (Ls ˜ 3°) and 2010 (Ls ˜ 15°) results, we observe the disappearance of Saturn's warm southern polar hood with cooling of up to 17.1 K ± 0.8 K at 1.1 mbar at high-southern latitudes. Comparison of the derived temperature trend in this region with a radiative climate model (Section 4 of Fletcher et al., 2010 and Greathouse et al. (2013, in preparation)) indicates that this cooling is radiative although dynamical changes in this region cannot be ruled out. We observe a 21 ± 12% enrichment of acetylene and a 29 ± 11% enrichment of ethane at 25°N from 2005 to 2009, suggesting downwelling at this latitude. At 15°S, both acetylene and ethane exhibit a decrease in concentration of 6 ± 11% and 17 ± 9% from 2005 to 2010, respectively, which suggests upwelling at this latitude (though a statistically significant change is only exhibited by ethane). These implied vertical motions at 15°S and 25°N are consistent with a recently-developed global circulation model of Saturn's tropopause and stratosphere(Friedson and Moses, 2012), which

  13. Structure and hydration of the C4H4●+ ion formed by electron impact ionization of acetylene clusters.

    PubMed

    Momoh, Paul O; Hamid, Ahmed M; Abrash, Samuel A; El-Shall, M Samy

    2011-05-28

    Here we report ion mobility experiments and theoretical studies aimed at elucidating the identity of the acetylene dimer cation and its hydrated structures. The mobility measurement indicates the presence of more than one isomer for the C(4)H(4)(●+) ion in the cluster beam. The measured average collision cross section of the C(4)H(4)(●+) isomers in helium (38.9 ± 1 Å(2)) is consistent with the calculated cross sections of the four most stable covalent structures calculated for the C(4)H(4)(●+) ion [methylenecyclopropene (39.9 Å(2)), 1,2,3-butatriene (41.1 Å(2)), cyclobutadiene (38.6 Å(2)), and vinyl acetylene (41.1 Å(2))]. However, none of the single isomers is able to reproduce the experimental arrival time distribution of the C(4)H(4)(●+) ion. Combinations of cyclobutadiene and vinyl acetylene isomers show excellent agreement with the experimental mobility profile and the measured collision cross section. The fragment ions obtained by the dissociation of the C(4)H(4)(●+) ion are consistent with the cyclobutadiene structure in agreement with the vibrational predissociation spectrum of the acetylene dimer cation (C(2)H(2))(2)(●+) [R. A. Relph, J. C. Bopp, J. R. Roscioli, and M. A. Johnson, J. Chem. Phys. 131, 114305 (2009)]. The stepwise hydration experiments show that dissociative proton transfer reactions occur within the C(4)H(4)(●+)(H(2)O)(n) clusters with n ≥ 3 resulting in the formation of protonated water clusters. The measured binding energy of the C(4)H(4)(●+)H(2)O cluster, 38.7 ± 4 kJ/mol, is in excellent agreement with the G3(MP2) calculated binding energy of cyclobutadiene(●+)·H(2)O cluster (41 kJ/mol). The binding energies of the C(4)H(4)(●+)(H(2)O)(n) clusters change little from n = 1 to 5 (39-48 kJ/mol) suggesting the presence of multiple binding sites with comparable energies for the water-C(4)H(4)(●+) and water-water interactions. A significant entropy loss is measured for the addition of the fifth water

  14. Structure and hydration of the C4H4•+ ion formed by electron impact ionization of acetylene clusters

    NASA Astrophysics Data System (ADS)

    Momoh, Paul O.; Hamid, Ahmed M.; Abrash, Samuel A.; Samy El-Shall, M.

    2011-05-01

    Here we report ion mobility experiments and theoretical studies aimed at elucidating the identity of the acetylene dimer cation and its hydrated structures. The mobility measurement indicates the presence of more than one isomer for the C4H4•+ ion in the cluster beam. The measured average collision cross section of the C4H4•+ isomers in helium (38.9 ± 1 Å2) is consistent with the calculated cross sections of the four most stable covalent structures calculated for the C4H4•+ ion [methylenecyclopropene (39.9 Å2), 1,2,3-butatriene (41.1 Å2), cyclobutadiene (38.6 Å2), and vinyl acetylene (41.1 Å2)]. However, none of the single isomers is able to reproduce the experimental arrival time distribution of the C4H4•+ ion. Combinations of cyclobutadiene and vinyl acetylene isomers show excellent agreement with the experimental mobility profile and the measured collision cross section. The fragment ions obtained by the dissociation of the C4H4•+ ion are consistent with the cyclobutadiene structure in agreement with the vibrational predissociation spectrum of the acetylene dimer cation (C2H2)2•+ [R. A. Relph, J. C. Bopp, J. R. Roscioli, and M. A. Johnson, J. Chem. Phys. 131, 114305 (2009)], 10.1063/1.3212595. The stepwise hydration experiments show that dissociative proton transfer reactions occur within the C4H4•+(H2O)n clusters with n ≥ 3 resulting in the formation of protonated water clusters. The measured binding energy of the C4H4•+H2O cluster, 38.7 ± 4 kJ/mol, is in excellent agreement with the G3(MP2) calculated binding energy of cyclobutadiene•+.H2O cluster (41 kJ/mol). The binding energies of the C4H4•+(H2O)n clusters change little from n = 1 to 5 (39-48 kJ/mol) suggesting the presence of multiple binding sites with comparable energies for the water-C4H4•+ and water-water interactions. A significant entropy loss is measured for the addition of the fifth water molecule suggesting a structure with restrained water molecules, probably a

  15. Aqueous reductive dechlorination of chlorinated ethylenes with tetrakis(4-carboxyphenyl)porphyrin cobalt.

    PubMed

    Fritsch, Joseph M; McNeill, Kristopher

    2005-06-27

    The catalytic dechlorination of chlorinated ethylenes by 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin cobalt ((TCPP)Co), a cobalt complex structurally similar to vitamin B12, was studied. It was found to have superior aqueous-phase dechlorination activity on chlorinated ethylenes (CEs) relative to vitamin B12. Bimolecular rate constants for the degradation of CEs by (TCPP)Co of 250, 24, 0.24, and 1.5 M(-1) s(-1) were found for perchloroethylene (PCE), trichloroethylene (TCE), cis-dichloroethylene (cDCE), and trans-dichloroethylene (tDCE), respectively. Through kinetic analysis, the rate laws for PCE and TCE were determined to be first order in substrate and catalyst, and PCE degradation was shown to be sensitive to the concentration of the titanium citrate bulk reductant and pH. The importance of the Co(I) oxidation state on dehalogenation was studied with UV-vis absorbance spectroscopy, a variety of reducing agents, and cyclic voltammetry. Evidence of chlorovinyl complexes as potential catalytic cycle intermediates was obtained through the preparation of (TPP)Co(trans-C2H2Cl) and the observation of (TPP)Co(C2HCl2) and (TCPP)Co(C2HCl2) by mass spectrometry. The X-ray crystal structure of (TPP)Co(trans-C2H2Cl) is reported.

  16. Oligomers Terminated By Maleimide And Acetylene

    NASA Technical Reports Server (NTRS)

    St. Clair, Terry L.; Pater, Ruth H.; Gerber, Margaret K.

    1994-01-01

    Oligomeric molecules terminated with maleimide and acetylene groups synthesized and thermally treated to form cross-linked polymers exhibiting high or undetectable glass-transition temperatures and high thermo-oxidative stabilities. Compounds used to make thermally stable, glassy polymers.

  17. Ethylene glycol blood test

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003564.htm Ethylene glycol blood test To use the sharing features ... enable JavaScript. This test measures the level of ethylene glycol in the blood. Ethylene glycol is a ...

  18. A surface and a gas-phase mechanism for the description of growth on the diamond(100) surface in an oxy-acetylene torch reactor

    NASA Astrophysics Data System (ADS)

    Okkerse, M.; de Croon, M. H. J. M.; Kleijn, C. R.; van den Akker, H. E. A.; Marin, G. B.

    1998-12-01

    A gas-phase and a surface mechanism were developed, suitable for multidimensional simulations of diamond oxy-acetylene torch reactors. The gas-phase mechanism was obtained by reducing a 48 species combustion chemistry mechanism to a 27 species mechanism with the aid of sensitivity analysis. The surface mechanism for growth on monocrystalline (100) surfaces developed, was based on literature quantum-mechanical calculations by Skokov et al. It consists of 67 elementary reaction steps and 41 species, and contains CH3 and C2H2 as gas-phase growth precursors and atomic hydrogen and oxygen to etch carbon from the surface. The gas-phase and surface chemistry models were tested in one-dimensional simulations, yielding dependencies of the growth rate on feed composition and surface temperature that are in qualitative agreement with the experiments. A more detailed study of the surface chemistry showed that, compared to CH3, acetylene contributes very little to diamond growth. Furthermore, molecular and atomic oxygen do not affect the diamond surface as much as atomic hydrogen because of their low concentrations.

  19. Method development for the determination of fluorine in toothpaste via molecular absorption of aluminum mono fluoride using a high-resolution continuum source nitrous oxide/acetylene flame atomic absorption spectrophotometer.

    PubMed

    Ozbek, Nil; Akman, Suleyman

    2012-05-30

    Fluorine was determined via the rotational molecular absorption line of aluminum mono fluoride (AlF) generated in C(2)H(2)/N(2)O flame at 227.4613 nm using a high-resolution continuum source flame atomic absorption spectrophotometer (HR-CS-FAAS). The effects of AlF wavelength, burner height, fuel rate (C(2)H(2)/N(2)O) and amount of Al on the accuracy, precision and sensitivity were investigated and optimized. The Al-F absorption band at 227.4613 nm was found to be the most suitable analytical line with respect to sensitivity and spectral interferences. Maximum sensitivity and a good linearity were obtained in acetylene-nitrous oxide flame at a flow rate of 210 L h(-1) and a burner height of 8mm using 3000 mg L(-1) of Al for 10-1000 mg L(-1)of F. The accuracy and precision of the method were tested by analyzing spiked samples and waste water certified reference material. The results were in good agreement with the certified and spiked amounts as well as the precision of several days during this study was satisfactory (RSD<10%). The limit of detection and characteristic concentration of the method were 5.5 mg L(-1) and 72.8 mg L(-1), respectively. Finally, the fluorine concentrations in several toothpaste samples were determined. The results found and given by the producers were not significantly different. The method was simple, fast, accurate and sensitive.

  20. 75 FR 5707 - Revising Standards Referenced in the Acetylene Standard

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-04

    ... in the Acetylene Standard AGENCY: Occupational Safety and Health Administration (OSHA), Labor. ACTION... accompanied its direct-final rule revising the Acetylene Standard for general industry. DATES: As of February...- final rule to update the incorporated references in its Acetylene Standard for general industry at...

  1. 77 FR 13969 - Revising Standards Referenced in the Acetylene Standard

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-08

    ... the Acetylene Standard AGENCY: Occupational Safety and Health Administration (OSHA), Department of... date of its direct final rule that revises the Acetylene Standard for general industry by updating the... that revised the Acetylene Standard for general industry by updating a reference to the Compressed...

  2. 77 FR 13997 - Revising Standards Referenced in the Acetylene Standard

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-08

    ... in the Acetylene Standard AGENCY: Occupational Safety and Health Administration (OSHA), Labor. ACTION... accompanied its direct-final rule revising the Acetylene Standard for general industry. DATES: Effective March...-final rule to update the incorporated references in its Acetylene Standard for general industry at...

  3. 46 CFR 154.1735 - Methyl acetylene-propadiene mixture.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Methyl acetylene-propadiene mixture. 154.1735 Section... Operating Requirements § 154.1735 Methyl acetylene-propadiene mixture. (a) The composition of the methyl acetylene-propadiene mixture at loading must be within the following limits or specially approved by...

  4. 46 CFR 154.1735 - Methyl acetylene-propadiene mixture.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Methyl acetylene-propadiene mixture. 154.1735 Section... Operating Requirements § 154.1735 Methyl acetylene-propadiene mixture. (a) The composition of the methyl acetylene-propadiene mixture at loading must be within the following limits or specially approved by...

  5. Rotationally Resolved Vacuum Ultraviolet Resonance-Enhanced Multiphoton Ionization (VUV REMPI) of Acetylene via the G̃ Rydberg State.

    PubMed

    Schmidt-May, Alice F; Grütter, Monika; Neugebohren, Jannis; Kitsopoulos, T N; Wodtke, Alec M; Harding, Dan J

    2016-07-14

    We present a 1 + 1' resonance-enhanced multiphoton ionization (REMPI) scheme for acetylene via the linear G̃ 4sσ (1)Πu Rydberg state, offering partial rotational resolution and the possibility to detect excitation in both the cis- and trans-bending modes. The resonant transition to the G̃ state is driven by a vacuum ultraviolet (VUV) photon, generated by resonant four-wave mixing (FWM) in krypton. Ionization from the short-lived G̃ state then occurs quickly, driven by the high intensity of the residual light from the FWM process. We have observed nine bands in the region between 79 200 cm(-1) and 80 500 cm(-1) in C2H2 and C2D2. We compare our results with published spectra in this region and suggest alternative assignments for some of the Renner-Teller split bands. Similar REMPI schemes should be applicable to other small molecules with picosecond lifetime Rydberg states.

  6. The hybrid A/B type ν12 band of trans-ethylene-1,2-d2 by high-resolution Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Tan, T. L.; Ng, L. L.; Gabona, M. G.

    2015-06-01

    The FTIR absorption spectrum of the hybrid A/B type ν12 band of trans-ethylene-1,2-d2 (trans-C2H2D2) centered at 1298.038145(19) cm-1 in the 1220-1420 cm-1 region was recorded at an unapodized resolution of 0.0063 cm-1. Using Watson's A-reduced Hamiltonian in the Ir representation, a total of 2892 a- and b-type transitions was assigned and fitted to upper state (ν12 = 1) rovibrational constants up to three sextic terms. The b-type feature of the band was analyzed for the first time. The root-mean-square deviation of the upper state ν12 = 1 fit was 0.00037 cm-1 while the accuracy of the measurements of the line frequencies was limited to ±0.00065 cm-1. A set of ground state rovibrational constants up to three sextic terms was also derived from the simultaneous fit of 4597 ground state combination differences from the present analysis and those of the ν4 + ν8 and ν4 bands of trans-C2H2D2 with a root-mean-square deviation of 0.00039 cm-1. The transition dipole moment ratio |μa/μb | of the ν12 band of trans-C2H2D2 was found to be 5.0 ± 0.3.

  7. Simultaneous Measurement of Acetylene Reduction and Respiratory Gas Exchange of Attached Root Nodules 1

    PubMed Central

    Winship, Lawrence J.; Tjepkema, John D.

    1982-01-01

    A method was developed for the simultaneous measurement of acetylene reduction, carbon dioxide evolution and oxygen uptake by individual root nodules of intact nitrogen-fixing plants (Alnus rubra Bong.). The nodules were enclosed in a temperature-controlled leak-tight cuvette. Assay gas mixtures were passed through the cuvette at a constant, known flow rate and gas exchange was measured by the difference between inlet and outlet gas compositions. Gas concentrations were assayed by a combination of an automated gas chromatograph and a programmable electronic integrator. Carbon dioxide and ethylene evolution were determined with a coefficient of variation which was less than 2%, whereas the coefficient of variation for oxygen uptake measurements was less than 5%. Nodules subjected to repeated removal from and reinsertion into the cuvette and to long exposures of 10% v/v acetylene showed no irreversible decline in respiration or acetylene reduction. This system offers long-term stability and freedom from disturbance artifacts plus the ability to monitor continuously, rapidly and specifically the changes in root nodule activity caused by environmental perturbation. PMID:16662496

  8. Inactivation of the particulate methane monooxygenase (pMMO) in Methylococcus capsulatus (Bath) by acetylene.

    PubMed

    Pham, Minh D; Lin, Ya-Ping; Van Vuong, Quan; Nagababu, Penumaka; Chang, Brian T-A; Ng, Kok Yaoh; Chen, Chein-Hung; Han, Chau-Chung; Chen, Chung-Hsuan; Li, Mai Suan; Yu, Steve S-F; Chan, Sunney I

    2015-12-01

    Acetylene (HCCH) has a long history as a mechanism-based enzyme inhibitor and is considered an active-site probe of the particulate methane monooxygenase (pMMO). Here, we report how HCCH inactivates pMMO in Methylococcus capsulatus (Bath) by using high-resolution mass spectrometry and computational simulation. High-resolution MALDI-TOF MS of intact pMMO complexes has allowed us to confirm that the enzyme oxidizes HCCH to the ketene (C2H2O) intermediate, which then forms an acetylation adduct with the transmembrane PmoC subunit. LC-MS/MS analysis of the peptides derived from in-gel proteolytic digestion of the protein subunit identifies K196 of PmoC as the site of acetylation. No evidence is obtained for chemical modification of the PmoA or PmoB subunit. The inactivation of pMMO by a single adduct in the transmembrane PmoC domain is intriguing given the complexity of the structural fold of this large membrane-protein complex as well as the complicated roles played by the various metal cofactors in the enzyme catalysis. Computational studies suggest that the entry of hydrophobic substrates to, and migration of products from, the catalytic site of pMMO are controlled tightly within the transmembrane domain. Support of these conclusions is provided by parallel experiments with two related alkynes: propyne (CH3CCH) and trifluoropropyne (CF3CCH). Finally, we discuss the implication of these findings to the location of the catalytic site in pMMO.

  9. A DFT+U study of acetylene selective hydrogenation on oxygen defective anatase (101) and rutile (110) TiO2 supported Pd4 cluster

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Lv, Cun-Qin; Guo, Yong; Wang, Gui-Chang

    2012-03-01

    The reaction mechanisms for selective acetylene hydrogenation on three different supports, Pd4 cluster, oxygen defective anatase (101), and rutile (110) titania supported Pd4, cluster are studied using the density functional theory calculations with a Hubbard U correction (DFT+U). The present calculations show that the defect anatase support binds Pd4 cluster more strongly than that of rutile titania due to the existence of Ti3+ in anatase titania. Consequently, the binding energies of adsorbed species such as acetylene and ethylene on Pd4 cluster become weaker on anatase supported catalysts compared to the rutile supported Pd4 cluster. Anatase catalyst has higher selectivity of acetylene hydrogenation than rutile catalyst. On the one hand, the activation energies of ethylene formation are similar on the two catalysts, while they vary a lot on ethyl formation. The rutile supported Pd catalyst with lower activation energy is preferable for further hydrogenation. On the other hand, the relatively weak adsorption energy of ethylene is gained on anatase surface, which means it is easier for ethylene desorption, hence getting higher selectivity. For further understanding, the energy decomposition method and micro-kinetic analysis are also introduced.

  10. Low Cost Aromatic Acetylene and Oligomeric Benzils and Their Conversion to Acetylene Terminated Quinoxalines

    DTIC Science & Technology

    1982-07-01

    methyl-3-butyn-2-ol by warming with methylbutynol in the presence of cuprous iodide in triethylamine was very rapid, indicating that the acetylene can...8.6/1 actually caused a significant rate increase in Runs 75, 114, and 115. The presence of cuprous iodide shows little effect in the reaction of...bromoarenes with olefins.(9) The effect in the acetylene reaction, how- ever, is very significant. Cuprous iodide probably is involved in two modes

  11. Characterization of How DNA Modifications Affect DNA Binding by C2H2 Zinc Finger Proteins

    PubMed Central

    Patel, A.; Hashimoto, H.; Zhang, X.; Cheng, X.

    2016-01-01

    Much is known about vertebrate DNA methylation and oxidation; however, much less is known about how modified cytosine residues within particular sequences are recognized. Among the known methylated DNA-binding domains, the Cys2-His2 zinc finger (ZnF) protein superfamily is the largest with hundreds of members, each containing tandem ZnFs ranging from 3 to >30 fingers. We have begun to biochemically and structurally characterize these ZnFs not only on their sequence specificity but also on their sensitivity to various DNA modifications. Rather than following published methods of refolding insoluble ZnF arrays, we have expressed and purified soluble forms of ZnFs, ranging in size from a tandem array of two to six ZnFs, from seven different proteins. We also describe a fluorescence polarization assay to measure ZnFs affinity with oligonucleotides containing various modifications and our approaches for cocrystallization of ZnFs with oligonucleotides. PMID:27372763

  12. Living on acetylene. A primordial energy source.

    PubMed

    Ten Brink, Felix

    2014-01-01

    The tungsten iron-sulfur enzyme acetylene hydratase catalyzes the conversion of acetylene to acetaldehyde by addition of one water molecule to the C-C triple bond. For a member of the dimethylsulfoxide (DMSO) reductase family this is a rather unique reaction, since it does not involve a net electron transfer. The acetylene hydratase from the strictly anaerobic bacterium Pelobacter acetylenicus is so far the only known and characterized acetylene hydratase. With a crystal structure solved at 1.26 Å resolution and several amino acids around the active site exchanged by site-directed mutagenesis, many key features have been explored to understand the function of this novel tungsten enzyme. However, the exact reaction mechanism remains unsolved. Trapped in the reduced W(IV) state, the active site consists of an octahedrally coordinated tungsten ion with a tightly bound water molecule. An aspartate residue in close proximity, forming a short hydrogen bond to the water molecule, was shown to be essential for enzyme activity. The arrangement is completed by a small hydrophobic pocket at the end of an access funnel that is distinct from all other enzymes of the DMSO reductase family.

  13. Influence of and additives on acetylene detonation

    NASA Astrophysics Data System (ADS)

    Drakon, A.; Emelianov, A.; Eremin, A.

    2014-03-01

    The influence of and admixtures (known as detonation suppressors for combustible mixtures) on the development of acetylene detonation was experimentally investigated in a shock tube. The time-resolved images of detonation wave development and propagation were registered using a high-speed streak camera. Shock wave velocity and pressure profiles were measured by five calibrated piezoelectric gauges and the formation of condensed particles was detected by laser light extinction. The induction time of detonation development was determined as the moment of a pressure rise at the end plate of the shock tube. It was shown that additive had no influence on the induction time. For , a significant promoting effect was observed. A simplified kinetic model was suggested and characteristic rates of diacetylene formation were estimated as the limiting stage of acetylene polymerisation. An analysis of the obtained data indicated that the promoting species is atomic chlorine formed by pyrolysis, which interacts with acetylene and produces radical, initiating a chain mechanism of acetylene decomposition. The results of kinetic modelling agree well with the experimental data.

  14. Hydration of Acetylene: A 125th Anniversary

    ERIC Educational Resources Information Center

    Ponomarev, Dmitry A.; Shevchenko, Sergey M.

    2007-01-01

    The year 2006 is the 125th anniversary of a chemical reaction, the discovery of which by Mikhail Kucherov had a profound effect on the development of industrial chemistry in the 19-20th centuries. This was the hydration of alkynes catalyzed by mercury ions that made possible industrial production of acetaldehyde from acetylene. Historical…

  15. Induction of Olefin Metathesis by Acetylenes.

    DTIC Science & Technology

    1980-11-20

    essentially that of 2. The acetylene is thus an activator, but unlike the organometallic co- catalysts like C2 H5A1C1 2 , which it replaces, it is unique in...J.C.; Moulijn, J.A. Adv. Catal. 1975, 24, 131. (4) Some of the results were discussed at the 3rd NSF Workshop on Organo - metallic Chemistry, Pingree

  16. Temperature dependent kinetics (195-798 K) and H atom yields (298-498 K) from reactions of (1)CH(2) with acetylene, ethene, and propene.

    PubMed

    Gannon, K L; Blitz, M A; Liang, C H; Pilling, M J; Seakins, P W; Glowacki, D R

    2010-09-09

    The rate coefficients for the removal of the excited state of methylene, (1)CH(2) (a(1)A(1)), by acetylene, ethene, and propene have been studied over the temperature range 195-798 K by laser flash photolysis, with (1)CH(2) being monitored by laser-induced fluorescence. The rate coefficients of all three reactions exhibit a negative temperature dependence that can be parametrized as k((1)CH(2)+C(2)H(2)) = (3.06 +/- 0.11) x 10(-10) T ((-0.39+/-0.07)) cm(3) molecule(-1) s(-1), k((1)CH(2)+C(2)H(4)) = (2.10 +/- 0.18) x 10(-10) T ((-0.84+/-0.18)) cm(3) molecule(-1) s(-1), k((1)CH(2)+C(3)H(6)) = (3.21 +/- 0.02) x 10(-10) T ((-0.13+/-0.01)) cm(3) molecule(-1) s(-1), where the errors are statistical at the 2sigma level. Removal of (1)CH(2) occurs by chemical reaction and electronic relaxation to ground state triplet methylene. The H atom yields from the reactions of (1)CH(2) with acetylene, ethene, and propene have been determined by laser-induced fluorescence over the temperature range 298-498 K. For the reaction with propene, H atom yields are close to the detection limit, but for acetylene and ethene, the fraction of H atom production is approximately 0.88 and 0.71, respectively, at 298 K, rising to unity by 398 K, with the balance of the reaction with acetylene presumed to be electronic relaxation. Experimental constraints limit studies to a maximum of 1 Torr of bath gas; master equation calculations using an approach that allows treatment of intermediates with deep energy wells have been carried out to explore the role of collisional stabilization for the reaction of (1)CH(2) with acetylene. Stabilization is calculated to be insignificant under the experimental conditions, but does become significant at higher pressures. Between pressures of 100 and 1000 Torr, propyne and allene are formed in similar amounts with a slight preference for propyne. At higher pressures propyne formation becomes about a factor two greater than that of allene, and above 10(5) Torr (300 < T

  17. Reaction of atomic bromine with acetylene and loss rate of atmospheric acetylene due to reaction with OH, Cl, O, and Br

    NASA Technical Reports Server (NTRS)

    Payne, W. A.; Nava, D. F.; Brunning, J.; Stief, L. J.

    1986-01-01

    The first-order, diffusion, and bimolecular rate constants for the reaction Br + C2H2 yields C2H3Br are evaluated. The rate constants are measured at 210, 248, 298, and 393 K and at pressures between 15-100 torr Ar using flash photolysis combined with time-resolved detection of atomic bromine via Br resonance radiation. It is observed that the reaction is not affected by pressure or temperature and the bimolecular constant = (4.0 + or - 0.8) x 10 to the -15th cu cm/sec with an error of two standard deviations. The C2H2 + Br reaction rates are compared with reactions of C2H2 with Cl, OH, NH2, and H. The loss rates for atmospheric C2H2 for reactions with OH, Cl, O, and Br are calculated as a function of altitude.

  18. Acetylene hydrogenation over structured Au-Pd catalysts.

    PubMed

    McCue, Alan J; Baker, Richard T; Anderson, James A

    2016-07-04

    AuPd nanoparticles were prepared following a methodology designed to produce core-shell structures (an Au core and a Pd shell). Characterisation suggested that slow addition of the shell metal favoured deposition onto the pre-formed core, whereas more rapid addition favoured the formation of a monometallic Pd phase in addition to some nanoparticles with the core-shell morphology. When used for the selective hydrogenation of acetylene, samples that possessed monometallic Pd particles favoured over-hydrogenation to form ethane. A sample prepared by the slow addition of a small amount of Pd resulted in the formation of a core-shell structure but with an incomplete Pd shell layer. This material exhibited a completely different product selectivity with ethylene and oligomers forming as the major products as opposed to ethane. The improved performance was thought to be as a result of the absence of Pd particles, which are capable of forming a Pd-hydride phase, with enhanced oligomer selectivity associated with reaction on uncovered Au atoms.

  19. Recent Line-Shape and Doppler Thermometry Studies Involving Transitions in the ν1 +ν3 Band of Acetylene

    NASA Astrophysics Data System (ADS)

    Hashemi, Robab; Rozario, Hoimonti; Povey, Chad; Garber, Jolene; Derksen, Mark; Predoi-Cross, Adriana

    2014-06-01

    The line positions for transitions in the ν1 +ν3 band are often used as a frequency standard by the telecom industry and also needed for planetary atmospheric studies. Four relevant studies have been recently carried out in our group and will be discussed briefly below. (1) N2-broadened line widths and N2-pressure induced line shifts have been measured for transitions in the ν1 +ν3 band of acetylene at seven temperatures in the range 213333K to obtain the temperature dependences of broadening and shift coefficients. The Voigt and hard-collision line profile models were used to retrieve the line parameters. This study has been published in Molecular Physics, 110 Issue 21/22 (2012) 2645-2663. (2) Six nitrogen perturbed transitions of acetylene within the ν1 +ν3 absorption band have been recorded using a 3-channel diode laser spectrometer. We have examined C2H2 spectra using a hard collision (Rautian) profile over a range of five temperatures (213 K-333 K). From these fits we have obtained the N2-broadening and narrowing coefficients of C2H2 and examined their temperature dependence. The experimentally measured narrowing coefficients have been used to estimate the nitrogen diffusion coefficients. The broadening coefficients and corresponding temperature dependence exponents have also been compared to that of calculations completed using a classical impact approach on an ab initio potential energy surface. We have observed a good agreement between our theoretical and experimental results. This study was published in Canadian Journal of Physics 91(11) 896-905 (2013). (3) An extension of the previous study was to analyze the room temperature for the same six transitions using the Voigt, Rautian, Galatry, RautianGalatry and Correlated Rautian profiles. For the entire pressure range, we have tested the applicability of these line-shape models. Except for Voigt profile, Dicke narrowing effect has been considered in all mentioned line-shape models. The experimental

  20. Coal pyrolysis to acetylene using dc hydrogen plasma torch: effects of system variables on acetylene concentration

    NASA Astrophysics Data System (ADS)

    Chen, Longwei; Meng, Yuedong; Shen, Jie; Shu, Xingsheng; Fang, Shidong; Xiong, Xinyang

    2009-03-01

    In order to unveil the inner mechanisms that determine acetylene concentration, experimental studies on the effect of several parameters such as plasma torch power, hydrogen flux and coal flux were carried out from coal pyrolysis in a dc plasma torch. Xinjiang long flame coals including volatile constituents at a level of about 42% were used in the experiment. Under the following experimental conditions, namely plasma torch power, hydrogen flow rate and pulverized coal feed speed of 2.12 MW, 32 kg h-1 and 900 kg h-1, respectively, acetylene volume concentration of about 9.4% was achieved. The experimental results indicate that parameters such as plasma torch power and coal flux play important roles in the formation of acetylene. Acetylene concentration increases inconspicuously with hydrogen flux. A chemical thermodynamic equilibrium model using the free energy method is introduced in this paper to numerically simulate each experimental condition. The numerical results are qualitatively consistent with the experimental results. Two parameters, i.e. the gas temperature and the ratio of hydrogen/carbon, are considered to be the dominant and independent factors that determine acetylene concentration.

  1. Opposite influence of haloalkanes on combustion and pyrolysis of acetylene

    NASA Astrophysics Data System (ADS)

    Drakon, A. V.; Emelianov, A. V.; Eremin, A. V.; Mikheyeva, E. Yu

    2015-11-01

    An influence of haloalkanes CF3H and CCl4 (known as inflammation and explosion suppressors) on combustion and pyrolysis of acetylene behind shock waves was experimentally studied. While ignition delay times in stoihiometric acetylene-oxygen mixtures were expectedly increased by halogenoalkanes admixtures, the induction times of carbon particle formation at acetylene pyrolysis were dramatically reduced in presence of CCl4. A simplified kinetic model was suggested and characteristic rates of diacetylene C4H2 formation were estimated as a limiting stage of acetylene polymerization. An analysis of obtained data has indicated that promoting species is atomic chlorine forming in CCl4 pyrolysis, which interacts with acetylene and produces C2H radical, initiating a chain mechanism of acetylene decomposition. The results of kinetic modeling agree well with experimental data.

  2. Two new acetylenic compounds from Asparagus officinalis.

    PubMed

    Li, Xue-Mei; Cai, Jin-Long; Wang, Wen-Xiang; Ai, Hong-Lian; Mao, Zi-Chao

    2016-01-01

    Two new acetylenic compounds, asparoffins A (1) and B (2), together with two known compounds, nyasol (3) and 3″-methoxynyasol (4), were isolated from stems of Asparagus officinalis. The structures of two new compounds were elucidated on the basis of detailed spectroscopic analyses (UV, IR, MS, 1D, and 2D NMR). All compounds were evaluated for their cytotoxicities against three human cancer cell lines.

  3. Aromatic Radicals-Acetylene Particulate Matter Chemistry

    DTIC Science & Technology

    2011-12-01

    atmosphere1. In addition to acute respiratory problems, long-term effects include lung cancer and cardiopulmonary diseases , as studied by Pope at al...problems such as ischemic heart disease , fatal arrhythmia, and congestive heart failure4,5. Strategies to reduce fine particulate matter (PM...acetylene reaction have been made by Fahr and Stein15, who deduced an Arrhenius expression in a 4 temperature range between 1000 and 1330 K in

  4. Cross Sections for Electron Collisions with Acetylene

    NASA Astrophysics Data System (ADS)

    Song, Mi-Young; Yoon, Jung-Sik; Cho, Hyuck; Karwasz, Grzegorz P.; Kokoouline, Viatcheslav; Nakamura, Yoshiharu; Tennyson, Jonathan

    2017-03-01

    Cross section data are compiled from the literature for electron collisions with the acetylene (HCCH) molecule. Cross sections are collected and reviewed for total scattering, elastic scattering, momentum transfer, excitations of rotational and vibrational states, dissociation, ionization, and dissociative attachment. The data derived from swarm experiments are also considered. For each of these processes, the recommended values of the cross sections are presented. The literature has been surveyed through early 2016.

  5. High temperature polymer from maleimide-acetylene terminated monomers

    NASA Technical Reports Server (NTRS)

    Gerber, Margaret K. (Inventor); St.clair, Terry L. (Inventor)

    1993-01-01

    Thermally stable, glassy polymeric materials were prepared from maleimide-acetylene terminated monomeric materials by several methods. The monomers were heated to self-polymerize. The A-B structure of the monomer allowed it to polymerize with either bismaleimide monomers/oligomers or bis-acetylene monomers/oligomers. Copolymerization can also take place by mixing bismaleimide and bisacetylene monomers/oligomers with the maleimide-acetylene terminated monomers to yield homogenous glassy polymers.

  6. Synthesis of functional poly(disubstituted acetylene)s through the post-polymerization modification route.

    PubMed

    Gao, Yuan; Wang, Xiao; Sun, Jing Zhi; Tang, Ben Zhong

    2015-04-01

    We report the recent progress in the preparation of functional poly(disubstituted acetylene)s (PDSAs) through post-polymerization modification routes. The metathesis polymerization of disubstituted acetylene monomers activated by Mo/W-Sn complex catalysts, which do not tolerate highly polar functionalities, was assumed to be a key step in the polymer synthetic procedures. We and other groups have explored several approaches to prepare PDSAs with latent reactive functionalities, which are inactive to Mo/W-Sn complex catalysts but can be used as highly reactive sites for post-polymerization modification. Click chemistry, Michael-type addition reactions, the use of activated esters and other strategies are demonstrated by recently published examples. These works indicate that post-polymerization modification is an efficient route to the synthesis of various functional PDSAs.

  7. Photoabsorption cross section of acetylene in the EUV region

    NASA Technical Reports Server (NTRS)

    Wu, C. Y. R.; Judge, D. L.

    1985-01-01

    The measurement of the absolute photoabsorption cross sections of C2H2 in the 175-740 A region by means of a double ionization chamber is reported. The continuum background source is the synchrotron radiation emitted by the Wisconsin 240 MeV electron storage ring. It is found that the cross sections range from 2 to a maximum of 36 Mb. Two new Rydberg series are identified and the cross section data are applied in the analysis of various sum rules. From the rules, it is shown that the data of C2H2 in the 580-1088 A range may be too low, while the measured ionization transition moment may be too high.

  8. High-resolution FTIR spectroscopy of the ν3 band of methyl acetylene-d

    NASA Astrophysics Data System (ADS)

    Pal, Ayan Kumar; Kshirsagar, R. J.

    2014-04-01

    The high-resolution Fourier transform spectrum of methyl acetylene-d1 (CH3CCD) at room temperature has been recorded in the region of the ν3 band (1980-2035 cm-1) at an apodized resolution of 0.004 cm-1. About 600 vibration-rotation transitions have been assigned, with J upto 36 and K upto 6. The spectrum shows the presence of several perturbations. The observed minus calculated deviation of the fit for K = 4 subband is much more than the expected, shows the presence of Fermi resonance with the nearby vibrational state.

  9. Rotational spectroscopy and molecular structure of the 1-chloro-1-fluoroethylene-acetylene complex.

    PubMed

    Leung, Helen O; Marshall, Mark D; Grimes, David D

    2011-01-21

    Guided by ab initio calculations, Fourier transform microwave spectra in the 6-21 GHz region are obtained for seven isotopomers of the complex formed between 1-chloro-1-fluoroethylene and acetylene. These include the four possible combinations of (35)Cl- and (37)Cl-containing CH(2)CClF with the most abundant acetylene isotopic modification, HCCH, and its H(13)C(13)CH analogue, as well as three singly substituted deuterated isotopomers. Analysis of the spectra determines the rotational constants and additionally, the complete chlorine quadrupole hyperfine coupling tensors in both the inertial and principal electric field gradient axis systems, and where appropriate, the diagonal components of the deuterium quadrupole coupling tensors. The inertial information contained in the rotational constants provides the structure for CH(2)CClF-HCCH: a primary, hydrogen bonding interaction existing between the HCCH donor and the F atom acceptor on the 1-chloro-1-fluoroethylene moiety, while a secondary interaction occurs between the acetylenic bond on the HCCH molecule and the H atom cis to the hydrogen-bonded F atom on the substituted ethylene, which causes the hydrogen bond to deviate from linearity. This is similar to the structure obtained for 1,1-difluoroethylene-HCCH [H. O. Leung and M. D. Marshall, J. Chem. Phys. 126, 154301 (2006)], and indeed, to within experimental uncertainty, the intermolecular interactions in CH(2)CClF-HCCH and its 1,1-difluoroethylene counterpart are practically indistinguishable, even though ab initio calculations at the MP2∕6-311G++(2d, 2p) level suggest that the former complex is more strongly bound.

  10. RECRYSTALLIZATION OF PMDA AND SYNTHESIS OF AN ACETYLENIC DIAMINE

    SciTech Connect

    Sanner, R; Cook, R C

    2004-09-21

    This memo provides documentation for the method of recrystallization of pyromeletic dianhydride (PMDA), the dianhydride used in the vapor deposition of Kapton-like polyimide for ICF shell ablators and for the synthesis of bis(3-aminophenyl) acetylene, a unique acetylenic diamine developed for vapor deposition testing.

  11. 76 FR 75840 - Revising Standards Referenced in the Acetylene Standard

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-05

    ... the Acetylene Standard AGENCY: Occupational Safety and Health Administration (OSHA), Department of... rulemaking, the Agency is proposing to revise its Acetylene Standard for general industry by updating a... Companion Proposed Rule C. Request for Comment III. Summary and Explanation of Revisions to the...

  12. Spectroscopic study of acetylene and hydrogen cyanide

    NASA Astrophysics Data System (ADS)

    Rozario, Hoimonti Immaculata

    High-resolution molecular spectroscopy has been used to study acetylene line parameters and emission spectra of hydrogen cyanide. All acetylene spectra were recorded in our laboratory at the University of Lethbridge using a 3-channel tuneable diode laser spectrometer. N2-broadened line widths and N2-pressure induced line shifts have been measured for transitions in the v1+v3 band of acetylene at seven temperatures in the range 213-333K to obtain the temperature dependences of broadening and shift coefficients. The Voigt and hard-collision line profile models were used to retrieve the line parameters. The line-broadening and line-shift coefficients as well as their temperature-dependent parameters have been also evaluated theoretically, in the frame work of a semi-classical approach based on an exponential representation of the scattering operator, an intermolecular potential composed of electrostatic quadrupole--quadrupole and pairwise atom--atom interactions as well as on exact trajectories driven by an effective isotropic potential. The experimental results for both N2-broadening and shifting show good agreement with the theoretical results. We have studied the line intensities of the 1vl 20←0v120 band system from the HCN emission spectrum. The infrared emission spectrum of H12C 14N was measured at the Justus-Liebig University, Giessen, Germany. The emission spectrum was analyzed with the spectrum analysis software Symath running using Mathematica as a platform. This approach allowed us to retrieve information on band intensity parameters.

  13. Angular and energy distributions of fragment ions in dissociative double photoionization of acetylene molecules in the 31.9-50.0 eV photon energy range

    NASA Astrophysics Data System (ADS)

    Falcinelli, Stefano; Alagia, Michele; Farrar, James M.; Kalogerakis, Konstantinos S.; Pirani, Fernando; Richter, Robert; Schio, Luca; Stranges, Stefano; Rosi, Marzio; Vecchiocattivi, Franco

    2016-09-01

    The two-body dissociation reactions of the dication C2H2+2, initiated via double ionization of acetylene molecules by photons in the energy range 31.9-50.0 eV, have been studied by coupling photoelectron-photoion-photoion coincidence and ion imaging techniques. The angular distributions and kinetic energy of product ions, measured in the 31.9-50.0 eV energy range, exhibit significant differences for the three leading dissociation reactions with respect to a previous investigation carried out at a fixed energy of 39.0 eV, providing thus new information on the dynamical evolution of the system. The analysis of the results indicates that such dissociation reactions occur with a different mechanism. In particular, the symmetric dissociation in two CH+ ions is characterized by different dynamics, and the anisotropy of the angular distribution of ionic products increases with photon energy in a more pronounced way than the other two reactions. Moreover, the kinetic energy distribution of the symmetric dissociation reaction exhibits several components that change with photon energy. The new experimental findings cast light on the microscopic evolution of the system and can provide a laboratory reference for new theoretical calculations on specific features of the multidimensional potential energy surface, namely, the structure, energy and symmetry of dication states, the electronic state of dissociation products, energy barriers and their dependence on the geometry of the intermediate state.

  14. Improvements of anti-corrosion and mechanical properties of NiTi orthopedic materials by acetylene, nitrogen and oxygen plasma immersion ion implantation

    NASA Astrophysics Data System (ADS)

    Poon, Ray W. Y.; Ho, Joan P. Y.; Liu, Xuanyong; Chung, C. Y.; Chu, Paul K.; Yeung, Kelvin W. K.; Lu, William W.; Cheung, Kenneth M. C.

    2005-08-01

    Nickel-titanium shape memory alloys (NiTi) are useful materials in orthopedics and orthodontics due to their unique super-elasticity and shape memory effects. However, the problem associated with the release of harmful Ni ions to human tissues and fluids has been raising safety concern. Hence, it is necessary to produce a surface barrier to impede the out-diffusion of Ni ions from the materials. We have conducted acetylene, nitrogen and oxygen plasma immersion ion implantation (PIII) into NiTi alloys in an attempt to improve the surface properties. All the implanted and annealed samples surfaces exhibit outstanding corrosion and Ni out-diffusion resistance. Besides, the implanted layers are mechanically stronger than the substrate underneath. XPS analyses disclose that the layer formed by C2H2 PIII is composed of mainly TiCx with increasing Ti to C concentration ratios towards the bulk. The nitrogen PIII layer is observed to be TiN, whereas the oxygen PIII layer is composed of oxides of Ti4+, Ti3+ and Ti2+.

  15. CMOS-compatible synthesis of large-area, high-mobility graphene by chemical vapor deposition of acetylene on cobalt thin films.

    PubMed

    Ramón, Michael E; Gupta, Aparna; Corbet, Chris; Ferrer, Domingo A; Movva, Hema C P; Carpenter, Gary; Colombo, Luigi; Bourianoff, George; Doczy, Mark; Akinwande, Deji; Tutuc, Emanuel; Banerjee, Sanjay K

    2011-09-27

    We demonstrate the synthesis of large-area graphene on Co, a complementary metal-oxide-semiconductor (CMOS)-compatible metal, using acetylene (C(2)H(2)) as a precursor in a chemical vapor deposition (CVD)-based method. Cobalt films were deposited on SiO(2)/Si, and the influence of Co film thickness on monolayer graphene growth was studied, based on the solubility of C in Co. The surface area coverage of monolayer graphene was observed to increase with decreasing Co film thickness. A thorough Raman spectroscopic analysis reveals that graphene films, grown on an optimized Co film thickness, are principally composed of monolayer graphene. Transport properties of monolayer graphene films were investigated by fabrication of back-gated graphene field-effect transistors (GFETs), which exhibited high hole and electron mobility of ∼1600 cm(2)/V s and ∼1000 cm(2)/V s, respectively, and a low trap density of ∼1.2 × 10(11) cm(-2).

  16. Two bonding configurations of acetylene on Si(001)-(2 x 1): a combined high-resolution electron energy loss spectroscopy and density functional theory study.

    PubMed

    Mineva, T; Nathaniel, R; Kostov, K L; Widdra, W

    2006-11-21

    Two coexisting adsorption states of molecularly adsorbed acetylene on the Si(001)-(2 x 1) surface have been identified by a combined study based on the high-resolution electron energy loss spectroscopy and density functional computations. Seven possible adsorbate-substrate structures are considered theoretically including their full vibrational analysis. Based on a significantly enhanced experimental resolution, the assignment of 15 C2H2- and C2D2-derived vibrational modes identifies a dominant di-sigma bonded molecule adsorbed on top of a single Si-Si dimer. Additionally there is clear evidence for a second minority species which is di-sigma bonded between two Si-Si dimers within the same dimer row (end-bridge geometry). The possible symmetries of the adsorbate complexes are discussed based on the specular and off-specular vibrational measurements. They suggest lower than ideal C(2v) and C(s) symmetries for on-top and end-bridge species, respectively. At low coverages the symmetry reductions might be lifted.

  17. Low Cost Routes to Acetylenic Intermediates

    DTIC Science & Technology

    1979-12-01

    palladium as catalyst, diethyl amine as solvent and cuprous iodide as cocatalyst (Equation 1). Cl 2Pd (PPh 3)2 ArX + H-CE-C-R Ar-C-C-R (1) Et 2 NH...an acetylene and cuprous iodide was not brought to a conclusion because this work was interrupted by work on the ATS system. We synthesized a variety...triethyl amine and cuprous iodide. At 940, the production of the substituted phenylacetylene and the disappearance of bromobenzene were examined by GC

  18. Importance of surface carbide formation on the activity and selectivity of Pd surfaces in the selective hydrogenation of acetylene

    NASA Astrophysics Data System (ADS)

    Yang, Bo; Burch, Robbie; Hardacre, Christopher; Hu, P.; Hughes, Philip

    2016-04-01

    A recent experimental investigation (Kim et al. J. Catal. 306 (2013) 146-154) on the selective hydrogenation of acetylene over Pd nanoparticles with different shapes concluded that Pd(100) showed higher activity and selectivity than Pd(111) for acetylene hydrogenation. However, our recent density functional calculations (Yang et al. J. Catal. 305 (2013) 264-276) observed that the clean Pd(111) surface should result in higher activity and ethylene selectivity compared with the clean Pd(100) surface for acetylene hydrogenation. In the current work, using density functional theory calculations, we find that Pd(100) in the carbide form gives rise to higher activity and selectivity than Pd(111) carbide. These results indicate that the catalyst surface is most likely in the carbide form under the experimental reaction conditions. Furthermore, the adsorption energies of hydrogen atoms as a function of the hydrogen coverage at the surface and subsurface sites over Pd(100) are compared with those over Pd(111), and it is found that the adsorption of hydrogen atoms is always less favoured on Pd(100) over the whole coverage range. This suggests that the Pd(100) hydride surface will be less stable than the Pd(111) hydride surface, which is also in accordance with the experimental results reported.

  19. Rotational Dependence of Intramolecular Dynamics in Acetylene at Low Vibrational Excitation as Deduced from High Resolution Spectroscopy

    NASA Astrophysics Data System (ADS)

    Perry, David S.; Miller, Anthony; Amyay, B.; Fayt, A.; Herman, M.

    2010-06-01

    The link between energy-resolved spectra and time-resolved dynamics is explored quantitatively for acetylene (12C2H2), X1Σg+ with up to 8,600 wn of vibrational energy. This comparison is based on the extensive knowledge of the vibration-rotation energy levels and on the model Hamiltonian used to fit them to high precision. Simulated intensity borrowing features in high resolution absorption spectra and predicted survival probabilities for intramolecular vibrational redistribution (IVR) are first investigated for the ν4+ν5 and ν3 bright states, for J = 2, 30 and 100. The dependence of the results on the rotational quantum number and on the choice of vibrational bright state reflects the interplay of three kinds of off-diagonal resonances: anharmonic, rotational l-type, and Coriolis. The dynamical quantities used to characterize the calculated time-dependent dynamics are the dilution factor φd, the IVR lifetime τIVR, and the recurrence time τrec. For the two bright states ν3+2ν4 and 7ν4, the collisionless dynamics for thermally averaged rotational distributions at T = 27, 270 and 500 K were calculated from the available spectroscopic data. For the 7ν4 bright state, an apparent irreversible decay of is found. In all cases, the model Hamiltonian allows a detailed calculation of the energy flow among all of the coupled zeroth-order vibration-rotation states. B. Amyay, S. Robert, M. Herman, A. Fayt, B. Raghavendra, A. Moudens, J. Thiévin, B. Rowe, and R. Georges, J. Chem. Phys., 131, 114301 (2009).

  20. Acetylene-Based Materials in Organic Photovoltaics

    PubMed Central

    Silvestri, Fabio; Marrocchi, Assunta

    2010-01-01

    Fossil fuel alternatives, such as solar energy, are moving to the forefront in a variety of research fields. Organic photovoltaic systems hold the promise of a lightweight, flexible, cost-effective solar energy conversion platform, which could benefit from simple solution-processing of the active layer. The discovery of semiconductive polyacetylene by Heeger et al. in the late 1970s was a milestone towards the use of organic materials in electronics; the development of efficient protocols for the palladium catalyzed alkynylation reactions and the new conception of steric and conformational advantages of acetylenes have been recently focused the attention on conjugated triple-bond containing systems as a promising class of semiconductors for OPVs applications. We review here the most important and representative (poly)arylacetylenes that have been used in the field. A general introduction to (poly)arylacetylenes, and the most common synthetic approaches directed toward making these materials will be firstly given. After a brief discussion on working principles and critical parameters of OPVs, we will focus on molecular arylacetylenes, (co)polymers containing triple bonds, and metallopolyyne polymers as p-type semiconductor materials. The last section will deal with hybrids in which oligomeric/polymeric structures incorporating acetylenic linkages such as phenylene ethynylenes have been attached onto C60, and their use as the active materials in photovoltaic devices. PMID:20480031

  1. Acetylene-based materials in organic photovoltaics.

    PubMed

    Silvestri, Fabio; Marrocchi, Assunta

    2010-04-08

    Fossil fuel alternatives, such as solar energy, are moving to the forefront in a variety of research fields. Organic photovoltaic systems hold the promise of a lightweight, flexible, cost-effective solar energy conversion platform, which could benefit from simple solution-processing of the active layer. The discovery of semiconductive polyacetylene by Heeger et al. in the late 1970s was a milestone towards the use of organic materials in electronics; the development of efficient protocols for the palladium catalyzed alkynylation reactions and the new conception of steric and conformational advantages of acetylenes have been recently focused the attention on conjugated triple-bond containing systems as a promising class of semiconductors for OPVs applications. We review here the most important and representative (poly)arylacetylenes that have been used in the field. A general introduction to (poly)arylacetylenes, and the most common synthetic approaches directed toward making these materials will be firstly given. After a brief discussion on working principles and critical parameters of OPVs, we will focus on molecular arylacetylenes, (co)polymers containing triple bonds, and metallopolyyne polymers as p-type semiconductor materials. The last section will deal with hybrids in which oligomeric/polymeric structures incorporating acetylenic linkages such as phenylene ethynylenes have been attached onto C(60), and their use as the active materials in photovoltaic devices.

  2. 46 CFR 151.50-79 - Methyl acetylene-propadiene mixture.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Methyl acetylene-propadiene mixture. 151.50-79 Section... acetylene-propadiene mixture. (a) The composition of the methyl acetylene-propadiene mixture at loading must... acetylene-propadiene mixture must have a refrigeration system that does not compress the cargo vapor or...

  3. 46 CFR 151.50-79 - Methyl acetylene-propadiene mixture.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Methyl acetylene-propadiene mixture. 151.50-79 Section... acetylene-propadiene mixture. (a) The composition of the methyl acetylene-propadiene mixture at loading must... acetylene-propadiene mixture must have a refrigeration system that does not compress the cargo vapor or...

  4. 46 CFR 151.50-79 - Methyl acetylene-propadiene mixture.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Methyl acetylene-propadiene mixture. 151.50-79 Section... acetylene-propadiene mixture. (a) The composition of the methyl acetylene-propadiene mixture at loading must... acetylene-propadiene mixture must have a refrigeration system that does not compress the cargo vapor or...

  5. Ethylene insensitive plants

    DOEpatents

    Ecker, Joseph R.; Nehring, Ramlah; McGrath, Robert B.

    2007-05-22

    Nucleic acid and polypeptide sequences are described which relate to an EIN6 gene, a gene involved in the plant ethylene response. Plant transformation vectors and transgenic plants are described which display an altered ethylene-dependent phenotype due to altered expression of EIN6 in transformed plants.

  6. Selective hydrogenation of acetylene on SiO2 supported Ni-In bimetallic catalysts: Promotional effect of In

    NASA Astrophysics Data System (ADS)

    Chen, Yanjun; Chen, Jixiang

    2016-11-01

    Ni/SiO2 and the bimetallic NixIn/SiO2 catalysts with different Ni/In ratios were tested for the selective hydrogenation of acetylene, and their physicochemical properties before and after the reaction were characterized by means of N2-sorption, H2-TPR, XRD, TEM, XPS, H2 chemisorption, C2H4-TPD, NH3-TPD, FT-IR of adsorbed pyridine, and TG/DTA and Raman. A promotional effect of In on the performance of Ni/SiO2 was found, and NixIn/SiO2 with a suitable Ni/In ratio gave much higher acetylene conversion, ethylene selectivity and catalyst stability than Ni/SiO2. This is ascribed to the geometrical isolation of the reactive Ni atoms with the inert In ones and the charge transfer from the In atoms to Ni ones, both of which are favorable for reducing the adsorption strength of ethylene and restraining the Csbnd C hydrogenolysis and the polymerizations of acetylene and the intermediate compounds. On the whole, Ni6In/SiO2 and Ni10In/SiO2 had better performance. Nevertheless, with increasing the In content, the selectivity to the C4+ hydrocarbons tended to increase due to the enhanced catalyst acidity because of the charge transfer from the In atoms to Ni ones. As the Lewis acid ones, the In sites could promote the polymerization. The catalyst deactivation was also analyzed. We propose that the Ni/SiO2 deactivation is mainly attributed to the phase change from metallic Ni to nickel carbide. The introduction of In inhibited the formation of nickel carbide. However, as the In content increased, the carbonaceous deposit became the main reason for the NixIn/SiO2 deactivation due to the enhanced catalyst acidity.

  7. Interpenetrating polymer networks from acetylene terminated materials

    NASA Technical Reports Server (NTRS)

    Connell, J. W.; Hergenrother, P. M.

    1989-01-01

    As part of a program to develop high temperature/high performance structural resins for aerospace applications, the chemistry and properties of a novel class of interpenetrating polymer networks (IPNs) were investigated. These IPNs consist of a simple diacetylenic compound (aspartimide) blended with an acetylene terminated arylene ether oligomer. Various compositional blends were prepared and thermally cured to evaluate the effect of crosslink density on resin properties. The cured IPNs exhibited glass transition temperatures ranging from 197 to 254 C depending upon the composition and cure temperature. The solvent resistance, fracture toughness and coefficient of thermal expansion of the cured blends were related to the crosslink density. Isothermal aging of neat resin moldings, adhesive and composite specimens showed a postcure effect which resulted in improved elevated temperature properties. The chemistry, physical and mechanical properties of these materials will be discussed.

  8. Reactions of Acetylene in Superbasic Media

    NASA Astrophysics Data System (ADS)

    Trofimov, Boris A.

    1981-02-01

    The results of studies of fundamentally new reactions of acetylene and its substituted derivatives in media of very high basicity are surveyed. They lead to hitherto unknown or relatively inaccessible monomers, reagents, and intermediates: 2-vinyloxybuta-1,3-diene, pyrroles, and N-vinylpyrroles, divinyl sulphide, divinyl telluride, 4-methylene-1,3-oxathiolan, di(buta-1,3-dienyl)sulphide, dihydrothiophen, 1-vinyl-2-thiabicyclo[3,2,0]hept-3-ene, etc. The most important properties of superbasic media consisting of an alkali metal hydroxide and a dipolar aprotic solvent as well as the probable mechanisms of their activating effect on anions and the triple bond are examined. An attempt is made to analyse these reactions in terms of coordination catalysis by alkali metal cations. The bibliography includes 199 references.

  9. High pressure chemistry of substituted acetylenes

    SciTech Connect

    Chellappa, Raja; Dattelbaum, Dana; Sheffield, Stephen; Robbins, David

    2011-01-25

    High pressure in situ synchrotron x-ray diffraction experiments were performed on substituted polyacetylenes: tert-butyl acetylene [TBA: (CH{sub 3}){sub 3}-C{triple_bond}CH] and ethynyl trimethylsilane [ETMS: (CH{sub 3}){sub 3}-Si{triple_bond}CH] to investigate pressure-induced chemical reactions. The starting samples were the low temperature crystalline phases which persisted metastably at room temperature and polymerized beyond 11 GPa and 26 GPa for TBA and ETMS respectively. These reaction onset pressures are considerably higher than what we observed in the shockwave studies (6.1 GPa for TBA and 6.6 GPa for ETMS). Interestingly, in the case of ETMS, it was observed with fluid ETMS as starting sample, reacts to form a semi-crystalline polymer (crystalline domains corresponding to the low-T phase) at pressures less than {approx}2 GPa. Further characterization using vibrational spectroscopy is in progress.

  10. Temporally Varying Ethylene Emission on Jupiter

    NASA Technical Reports Server (NTRS)

    Romani, Paul N.; Jennings, Donald E.; Bjoraker, Gordon L.; Sada, Pedro V.; McCabe. Geprge; Boyle, Robert J.

    2008-01-01

    Ethylene (C2H4) emission has been measured in the poles and equator of Jupiter. The 949 cm(sup -1) spectra were recorded with a high resolution spectrometer at the McMath-Pierce telescope at Kitt Peak in October-November 1998 and at the Infrared Telescope Facility at Mauna Kea in June 2000. C2H4 is an important product of methane chemistry in the outer planets. Knowledge of its abundance can help discriminate among the various proposed sets of CH4 photolysis branching ratios at Ly-alpha, and determine the relative importance of the reaction pathways that produce C2H2 and C2H6. In the equatorial region the C2H4 emission is weak, and we were only able to detect it at high air-mass, near the limb. We derive a peak equatorial molar abundance of C2H4 of 4.5 x 10(exp -7) - 1.7 x 10(exp -6) near 2.2 x 10(exp -3) mbar, with a total column of 5.7 x 10(exp 14) - 2.2 x 10(exp 15) molecules cm(exp -2) above 10 mbar depending upon choice of thermal profile. We observed enhanced C2H4 emission from the poles in the regions where auroras are seen in X-ray, UV, and near infrared images. In 2000 we measured a short-term change in the distribution of polar C2H4 emission; the emission in the north IR auroral "hot spot" decreased by a factor of three over a two-day interval. This transient its contribution peak at 5-10 microbar suggests that the polar e is primarily a thermal effect coupled with vertical transport. Comparing our observations from Kitt Peak and Mauna Kea shows that the C2H4 emission of the northern non-"hot spot" auroral regions did not change over the three-year period while that in the southern polar regions decreased.

  11. The relative abundance of ethane to acetylene in the Jovian stratosphere.

    PubMed

    Allen, M; Yung, Y L; Gladstone, G R

    1992-12-01

    The observed ratio of C2H6 to C2H2 in the Jovian stratosphere increases from approximately 55 at 2 mbar to approximately 277 at 12 mbar. In current photochemical models this ratio typically increases between 2 and 12 mbar by a factor of < or = 3. Recent laboratory kinetics studies on the reaction between C2H3 and H2 to form C2H4 suggest an efficient chemical mechanism for hydrogenation of C2H2 to C2H6. Inclusion of this scheme as part of a comprehensive updated model for hydrocarbon photochemistry in the atmosphere of Jupiter provides an explanation of the altitude variation of the C2H6/C2H2 ratio. The sensitivity of these results to uncertainties in the key rate constants at low temperatures is illustrated, identifying needs for additional laboratory measurements. Since the key reaction rate constants decrease with decreasing temperature, the hydrogenation of C2H2 as proposed predicts a qualitatively decreasing trend in the C2H6/C2H2 value with decreasing distance from the Sun. The observed variation between Jupiter and Saturn is consistent with this prediction.

  12. Nitrogen fixation (acetylene reduction) by annual winter legumes on a coal surface mine

    SciTech Connect

    Gabrielson, F.C.

    1982-01-01

    The winter annuals, crimson clover, rose clover, subterranean clover and hairy vetch, were evaluated for their ability to fix nitrogen on coal surface mine substrates by measuring their ability to reduce acetylene to ethylene. The effects of fertilizer, Abruzzi ryegrass, Kentucky 31 fescue grass and a phytotoxic plant Chenopodium album on nitrogen fixation was also assessed. Crimson clover was recommended as the best legume to use on topsoil and shale in the South. Hairy vetch gave good results on shale and subterranean clover did well on topsoil. The use of these species for revegetation is discussed. Overall, no correlation between substrate pH and ethylene levels was found and effects of substrate depended upon the legume species. Super phosphate fertilizer supported less nitrogen fixation than 13-13-13. Abruzzi ryegrass in some unknown way inhibited plant density and nitrogen fixation by legumes but not by free living substrate micro-organisms. Shale from under dead Chenopodium plants in both field and greenhouse experiments did not inhibit nitrogen fixation. 11 references, 7 tables.

  13. Nitrogen fixation (Acetylene Reduction) by annual winter legumes on a coal surface mine

    SciTech Connect

    Gabrielson, F.C.

    1982-01-01

    The winter annuals, crimson clover, rose clover, subterranean clover and hairy vetch, were evaluated for nitrogen fixing capacity on coal surface mine substrates by measuring their ability to reduce acetylene to ethylene. The effects of fertilizer, Abruzzi rye, Kentucky 31 fescue grass and a phytotoxic plant Chenopodium album on nitrogen fixation were also assessed. Crimson clover was recommended as the best legume to use on topsoil and shale in the south. Hairy vetch gave good results on shale and subterranean clover did well on topsoil. The use of these species for revegetation is discussed. Overall, no correlation between substrate pH and ethylene levels was found and effects of substrate depended upon the legume species. Super phosphate fertilizer supported less nitrogen fixation than 13-13-13. Abruzzi rye in some unknown way inhibited plant density and nitrogen fixation by legumes but not by free living substrate micro-organisms. Shale from under dead Chenopodium plants in both field and greehouse experiments did not inhibit nitrogen fixation. 7 tables.

  14. Ethylene by Naphta Cracking

    ERIC Educational Resources Information Center

    Wiseman, Peter

    1977-01-01

    Presents a discussion of the manufacture of ethylene by thermal cracking of hydrocarbon feedstocks that is useful for introducing the subject of industrial chemistry into a chemistry curriculum. (MLH)

  15. Ethylene-Vapor Optrodes

    NASA Technical Reports Server (NTRS)

    Tabacco, Mary Beth; Zhou, Quan

    1993-01-01

    Porous optical fibers include sensing regions filled with reagents. Optical-fiber chemical sensors (optrodes) developed to measure concentrations of ethylene in air in enclosed artificial plant-growth environments. Such measurements needed because ethylene acts as plant-growth hormone affecting growth at concentrations less than or equal to 20 parts per billion. Optrodes small, but exhibit sensitivities comparable to those of larger instruments. Operated safely in potentially explosive atmospheres and neither cause, nor susceptible to, electrical interference at suboptical frequencies.

  16. Satellite observations of ethylene

    NASA Astrophysics Data System (ADS)

    Dolan, W.; Payne, V.; Kulawik, S. S.; Bowman, K. W.

    2015-12-01

    Ethylene (C2H4) is a trace gas commonly associated with boreal fire plumes and the petrochemical industry. It has a short lifetime (~1-2 days) in the troposphere due to its reaction with OH. Chemical destruction of ethylene in the atmosphere leads to the production of ozone precursors such as carbon monoxide (CO) and formaldehyde. The Tropospheric Emission Spectrometer (TES) is a Fourier Transform Spectrometer aboard the Aura satellite that measures thermal infrared radiances with high spectral resolution. Trace gas products retrieved routinely from TES spectra include O3, CO, H2O, HDO, CH4, NH3, HCOOH, CH3OH, with OCS and PAN to be included in the next data release. The TES spectra also includes a wealth of untapped information about other trace gasses including ethylene. Ethylene was first observed in TES spectra by Alvarado et al. (2011), though it has yet to be developed into an operational product. Our study focuses on the detection and initial quantitative estimates of ethylene in TES special observations taken in support of the 2008 ARCTAS mission. Initial observations of HCN in the spectra may provide a way to distinguish between fire plume and petrochemical derived ethylene. Results indicate a correlation between ethylene and CO in fresh fire plumes but not in older plumes, consistent with the gas's short lifetime. The approach adopted here to detect ethylene in the TES 2008 ARCTAS special observations can easily be expanded to larger datasets, including those from other thermal infrared sounders as well as to other trace gases.

  17. Inspecting an ethylene pipe line

    SciTech Connect

    Ramsvig, D.M. ); Duncan, J.; Zillinger, L. )

    1991-07-01

    This paper reports on the Alberta Gas Ethylene Co. (AGEC), completion of intensive internal cleaning and inspection program on their 112-mi ethylene pipe line. AGEC operates two ethylene manufacturing facilities in central Alberta, Canada. The ethylene plants are located 12.4 mi east of Red Deer, Alta., at Joffre, and supply two customers in Joffre. The remaining ethylene is shipped by the 112-mi, 12-in. line to a storage cavern near Edmonton.

  18. Ab initio calculations of one-electron-scattering properties of ethyne (acetylene) and ethylene molecules

    SciTech Connect

    Tripathi, A.N.; Smith, V.H. Jr. K7L3N6); Kaijser, P.; Siemens, A.G. ); Diercksen, G.H.F. )

    1990-03-01

    Isotropic scattering functions and Compton profiles together with their directional components for several directions relevant to the molecular structure of C{sub 2}H{sub 2} and C{sub 2}H{sub 4} have been evaluated for {ital ab} {ital initio} self-consistent field and configuration-interaction wave functions. The internally folded density (reciprocal form factor) {ital B}({ital r}) is calculated and discussed as are various momentum expectation values. Comparison is made with available experimental and other theoretical results.

  19. The relative abundance of ethane to acetylene in the Jovian stratosphere

    NASA Technical Reports Server (NTRS)

    Allen, Mark; Yung, Yuk L.; Gladstone, G. R.

    1992-01-01

    The inclusion of the results of laboratory kinetics studies on the reaction of C2H3 and H2 to yield C2H4, which is suggestive of an efficient chemical mechanism for the hydrogenation of C2H2 to C2H6, can be included in a comprehensive model of the Jupiter atmosphere hydrocarbon photochemistry to explain the observed altitude variation of the C2H6/C2H2 ratio. The sensitivity of these results to uncertainties in key low-temperature rate constants is demonstrated. These key reaction-rate constants decrease with falling temperature.

  20. Ion-induced dissociation dynamics of acetylene

    SciTech Connect

    De, Sankar; Rajput, Jyoti; Roy, A.; Safvan, C. P.; Ghosh, P. N.

    2008-02-15

    We report on the results of dissociation dynamics of multiple charged acetylene molecules formed in collision with 1.2 MeV Ar{sup 8+} projectiles. Using the coincidence map, we can separate out the different dissociation pathways between carbon and hydrogen ionic fragments as well as complete two-body breakup events. From the measured slopes of the coincidence islands for carbon atomic fragments and theoretical values determined from the charge and momentum distribution of the correlated particles, we observe a diatom like behavior of the C-C charged complex during dissociation of multiply charged C{sub 2}H{sub 2}. We conclude that this behavior in breakup dynamics is a signature of sequentiality in dissociation of this multiply charged molecular species. The shape and orientation of the islands give further information about the momentum balance in the fragmentation process of two- or many-body dissociation pathways. Kinetic energy release of different breakup channels are reported here and compared with values calculated from the pure Coulomb explosion model.

  1. Preparation of ethylene gas and comparison of ethylene responses induced by ethylene, ACC, and ethephon.

    PubMed

    Zhang, Wei; Wen, Chi-Kuang

    2010-01-01

    Ethylene is a gaseous plant hormone used in many physiological studies examining its role in plant growth and development. However, ethylene gas may not be conveniently available to many laboratories for occasional use, and therefore several chemicals can be used as replacements. Here we report that the kinetics of the ethylene response induced by ethylene and two widely-used ethylene replacements are different. ACC failed to efficiently replace prolonged ethylene treatments, while the decomposition products of ethephon may cause non-specific responses and the efficiency of ethephon conversion to ethylene was relatively low. A cost-effective method to prepare ethylene gas was developed. Analyzed by gas chromatography, the chemically produced ethylene exhibited an identical chromatogram to that from the commercial source. Our synthetic ethylene gave the same dose-response curve in Arabidopsis as gaseous ethylene. Our study shows that the use of the ethylene gas is essential to experiments that are sensitive to treatment duration and dosage. When ACC and ethephon are used as replacements, caution should be taken in the experimental design. For laboratories that do not have an ethylene tank, ethylene gas can be easily prepared by a chemical approach without further purification.

  2. Recovery and purification of ethylene

    DOEpatents

    Reyneke, Rian; Foral, Michael J.; Lee, Guang-Chung; Eng, Wayne W. Y.; Sinclair, Iain; Lodgson, Jeffery S.

    2008-10-21

    A process for the recovery and purification of ethylene and optionally propylene from a stream containing lighter and heavier components that employs an ethylene distributor column and a partially thermally coupled distributed distillation system.

  3. The Synthesis and Isothermal Aging Behavior of Oxygen-Free Acetylene Terminated Quinoxalines

    DTIC Science & Technology

    1981-05-01

    AFWAL-TR-81-4004 THE SYNTHESIS AND ISOTHERMAL AGING BEHAVIOR OF OXYGEN-FREE ACETYLENE TERMINATED QUINOXALINES Polymer Branch Nonmetallic Materials...TYPE OF REPORT & PERIOD COVERED THE SYNTHESIS AND ISOTHERMAL AGING BEHAVIOR Final Technical Report OF OXYGEN-FREE ACETYLENE TERMINATED January 1979...Quinoxaline Acetylene Terminated Acetylene Cure Thermooxidative Stability Isothermal Aging 20. ABSTRACT (Continue on reverse side if necessary and identify by

  4. Current Toxicology of Ethylene Oxide,

    DTIC Science & Technology

    1982-12-01

    carcinogenicity are presented. The overall toxicological implications and a recommendation on the use of ethylene oxide are briefly discussed. (U...wer exposed to ethylene oxide vapour. A single exposure of the male rats to vapour at 100 ppm for 4 hours resulted in reproduction A abnormalities...oxide causes leukemia. It should be noted also that ethylene oxide in the presence of water produces ethylene glycol. Subchronic and chronic exposures

  5. Chemistry and properties of blends of acetylene terminated materials

    NASA Technical Reports Server (NTRS)

    Connell, John W.; Hergenrother, Paul M.

    1991-01-01

    As part of a NASA program to develop new high temperature/high performance structural materials, the chemistry and properties of acetylene-containing materials and their cured resins are under investigation. The objective of this work is to develop materials that are readily processable (i.e., 200-300 C and about 1.4 MPa or less) and possess usable mechanical properties at temperatures as high as 177 C. An acetylene-terminated aspartimide (ATA) was blended with an equal weight of an acetylene-terminated arylene ether (ATAE) oligomer. The blend was subsequently thermally cured to yield a resin which was evaluated in the form of neat resin moldings, adhesive specimens, and laminates. Adhesive specimens and laminates gave good mechanical properties to temperatures as high as 177 C. In addition, preliminary laminate work is presented on the resin from a blend of a new N-methyl substituted ATA and an ATAE.

  6. 46 CFR 56.50-103 - Fixed oxygen-acetylene distribution piping.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Fixed oxygen-acetylene distribution piping. 56.50-103... oxygen-acetylene distribution piping. (a) This section applies to fixed piping installed for the distribution of oxygen and acetylene carried in cylinders as vessels stores. (b) The distribution piping...

  7. 46 CFR 56.50-103 - Fixed oxygen-acetylene distribution piping.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Fixed oxygen-acetylene distribution piping. 56.50-103... oxygen-acetylene distribution piping. (a) This section applies to fixed piping installed for the distribution of oxygen and acetylene carried in cylinders as vessels stores. (b) The distribution piping...

  8. 46 CFR 56.50-103 - Fixed oxygen-acetylene distribution piping.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Fixed oxygen-acetylene distribution piping. 56.50-103... oxygen-acetylene distribution piping. (a) This section applies to fixed piping installed for the distribution of oxygen and acetylene carried in cylinders as vessels stores. (b) The distribution piping...

  9. 46 CFR 56.50-103 - Fixed oxygen-acetylene distribution piping.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Fixed oxygen-acetylene distribution piping. 56.50-103... oxygen-acetylene distribution piping. (a) This section applies to fixed piping installed for the distribution of oxygen and acetylene carried in cylinders as vessels stores. (b) The distribution piping...

  10. 46 CFR 56.50-103 - Fixed oxygen-acetylene distribution piping.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Fixed oxygen-acetylene distribution piping. 56.50-103... oxygen-acetylene distribution piping. (a) This section applies to fixed piping installed for the distribution of oxygen and acetylene carried in cylinders as vessels stores. (b) The distribution piping...

  11. Ethylene thiourea (ETU)

    Integrated Risk Information System (IRIS)

    Ethylene thiourea ( ETU ) ; CASRN 96 - 45 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarci

  12. The Application of Gas Dwell Time Control for Rapid Single Wall Carbon Nanotube Forest Synthesis to Acetylene Feedstock

    PubMed Central

    Matsumoto, Naoyuki; Oshima, Azusa; Sakurai, Shunsuke; Yamada, Takeo; Yumura, Motoo; Hata, Kenji; Futaba, Don N.

    2015-01-01

    One aspect of carbon nanotube (CNT) synthesis that remains an obstacle to realize industrial mass production is the growth efficiency. Many approaches have been reported to improve the efficiency, either by lengthening the catalyst lifetime or by increasing the growth rate. We investigated the applicability of dwell time and carbon flux control to optimize yield, growth rate, and catalyst lifetime of water-assisted chemical vapor deposition of single-walled carbon nanotube (SWCNT) forests using acetylene as a carbon feedstock. Our results show that although acetylene is a precursor to CNT synthesis and possesses a high reactivity, the SWCNT forest growth efficiency is highly sensitive to dwell time and carbon flux similar to ethylene. Through a systematic study spanning a wide range of dwell time and carbon flux levels, the relationship of the height, growth rate, and catalyst lifetime is found. Further, for the optimum conditions for 10 min growth, SWCNT forests with ~2500 μm height, ~350 μm/min initial growth rates and extended lifetimes could be achieved by increasing the dwell time to ~5 s, demonstrating the generality of dwell time control to highly reactive gases.

  13. Coke formation and its effect on internal mass transfer and selectivity in Pd-catalysed acetylene hydrogenation

    SciTech Connect

    Asplund, S.

    1996-01-01

    Catalyst aging by coke formation has been studied for the selective hydrogenation of acetylene in the presence of excess ethylene on supported palladium catalysts. Deposited coke was found to have a substantial influence on the effective diffusivity, which decreased about one order of magnitude during 100 h of operation. As has been observed previously the selectivity for the undesired ethane was higher on aged catalysts, while the activity for acetylene hydrogenation was almost constant. These effects, however, were strongly dependent on the catalyst particle size, although the behaviour of fresh catalysts was unaffected by mass transfer limitations. When the catalyst used was Pd/{alpha}-Al{sub 2}O{sub 3} the change in selectivity with aging could be explained solely as a consequence of the increased diffusion resistance. The mass transfer effects were important also on Pd/{gamma}-Al{sub 2}O{sub 3}, but on this catalyst there was an additional increase in ethane selectivity that could not be attributed to diffusion limitations. Calculations and experimental tests showed that the observed phenomena are relevant also for the shell-type catalysts normally used industrially. The coke formation itself was about four to five times faster on Pd/{gamma}-Al{sub 2}O{sub 3} compared to the {alpha}-Al{sub 2}O{sub 3}-supported catalyst. The coke was generally concentrated towards the pellet periphery showing the influence of diffusion resistance also on the coke-forming reactions. 27 refs., 10 figs., 5 tabs.

  14. How plants sense ethylene gas--the ethylene receptors.

    PubMed

    Lacey, Randy F; Binder, Brad M

    2014-04-01

    Ethylene is a hormone that affects many processes important for plant growth, development, and responses to stresses. The first step in ethylene signal transduction is when ethylene binds to its receptors. Numerous studies have examined how these receptors function. In this review we summarize many of these studies and present our current understanding about how ethylene binds to the receptors. The biochemical output of the receptors is not known but current models predict that when ethylene binds to the receptors, the activity of the associated protein kinase, CTR1 (constitutive triple response1), is reduced. This results in downstream transcriptional changes leading to ethylene responses. We present a model where a copper cofactor is required and the binding of ethylene causes the receptor to pass through a transition state to become non-signaling leading to lower CTR1 activity.

  15. A All-Vacuum High Resolution Fourier Transform Spectrometer with Absorption Pathlengths up to 352 M: Acetylene Spectrum at 1.4-1.7 Microns.

    NASA Astrophysics Data System (ADS)

    Keppler, Karen Ann

    1995-01-01

    The spectra of acetylene (C_2H _2) and of water vapor have been recorded at room temperature with Doppler- or pressure -broadening-limited resolution at pathlengths up to 352m. The spectra were obtained with the combination of a FTIR (Fourier Transform Infrared) spectrometer, evacuated transfer optics, and a multipass cell of 4m base length. The measurements were performed at the Justus-Liebig-Universitat in Giessen, Germany, using the FTIR spectrometer at that university, the multipass cell assembled at The Ohio State University, and the vacuum transfer optics designed by the author. The regions in which the spectra were recorded are 5900-7150 cm^{-1} and 1850-6600 cm^{-1}. Calibration difficulties pertaining to the determination of the absolute accuracy of the data have been resolved, and molecular parameters have been extracted for the HCCH data. These calibration problems were not documented in earlier studies using high resolution Fourier transform spectrometers. For this reason, the dissertation addresses this matter in somewhat greater detail. This work contains a description of the technology used to obtain the data, and a description of the calibration of the spectra to make them suitable for future use as secondary wavenumber calibration standards. The bands detected for the first time in this study have been reported, and updated energy level diagrams for HCCH and H^{13}CCH have been included. The molecular parameters obtained from the HCCH spectra have been presented. The appendices include, among others, the basic observational data, a spectral map and associated wavenumber lists of HCCH, and a description of the weighting scheme developed by the author for Fourier Transform spectra.

  16. Siloxane containing addition polyimides. II - Acetylene terminated polyimides

    NASA Technical Reports Server (NTRS)

    Maudgal, S.; St. Clair, T. L.

    1984-01-01

    Acetylene terminated polyimide oligomers having a range of molecular weights have been synthesized by reacting bis (gamma-aminopropyl) tetramethyldisiloxane, aminophenylacetylene and 3, 3', 4, 4' benzophenonetetracarboxylic dianhydride in different molar ratios. The prepolymers were isolated and characterized for melt flow and cure properties. They show promise as adhesives for bonding titanium to titanium and as matrix resins for graphite cloth reinforced composites. The most promising system has been blended in varying proportions with Thermid 600, a commercially available acetylene terminated polyimide oligomer, and the mixtures have been tested for application as composite matrix resins.

  17. Synthesis of functional acetylene derivatives from calcium carbide.

    PubMed

    Lin, Zhewang; Yu, Dingyi; Sum, Yin Ngai; Zhang, Yugen

    2012-04-01

    AHA Erlebnis: CaC(2), used to produce acetylene until several decades ago, is re-emerging as a cheap, sustainable resource synthesized from coal and lignocellulosic biomass. We report efficient catalytic protocols for the synthesis of functional acetylene derivatives from CaC(2) through aldehyde, alkyne, and amine (AAA) as well as alkyne, haloalkane, and amine (AHA) couplings, and in addition demonstrate its use in click and Sonogashira chemistry, showing that calcium carbide is a sustainable and cost-efficient carbon source.

  18. The anharmonic force field of ethylene, C2H4, by means of accurate ab initio calculations

    NASA Astrophysics Data System (ADS)

    Martin, Jan M. L.; Lee, Timothy J.; Taylor, Peter R.; François, Jean-Pierre

    1995-08-01

    The quartic force field of ethylene, C2H4, has been calculated ab initio using augmented coupled cluster, CCSD(T), methods and correlation consistent basis sets of spdf quality. For the 12C isotopomers C2H4, C2H3D, H2CCD2, cis-C2H2D2, trans-C2H2D2, C2HD3, and C2D4, all fundamentals are reproduced to better than 10 cm-1, except for three cases where the error is 11 cm-1. Our calculated harmonic frequencies suggest a thorough revision of the accepted experimentally derived values. Our computed and empirically corrected re geometry differs substantially from experimentally derived values: Both the predicted rz geometry and the ground-state rotational constants are, however, in excellent agreement with experiment, suggesting revision of the older values. Anharmonicity constants agree well with experiment for stretches, but differ substantially for stretch-bend interaction constants, due to equality constraints in the experimental analysis that do not hold. Improved criteria for detecting Fermi and Coriolis resonances are proposed and found to work well, contrary to the established method based on harmonic frequency differences that fails to detect several important resonances for C2H4 and its isotopomers. Surprisingly good results are obtained with a small spd basis at the CCSD(T) level. The well-documented strong basis set effect on the ν8 out-of-plane motion is present to a much lesser extent when correlation-optimized polarization functions are used. Complete sets of anharmonic, rovibrational coupling, and centrifugal distortion constants for the isotopomers are available as supplementary material to the paper via the World-Wide Web.

  19. Microgravity Superagglomerates Produced By Silane And Acetylene

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman (Technical Monitor); Bundy, Matthew; Mulholland, George W.; Manzello, Samuel; Yang, Jiann; Scott, John Henry; Sivathanu, Yudaya

    2003-01-01

    The size of the agglomerates produced in the upper portion of a flame is important for a variety of applications. Soot particle size and density effect the amount of radiative heat transfer from a fire to its surroundings. Particle size determines the lifetime of smoke in a building or in the atmosphere, and exposure hazard for smoke inhaled and deposited in the lungs. The visibility through a smoke layer and dectectability of the smoke are also greatly affected by agglomerate size. Currently there is limited understanding of soot growth with an overall dimension of 10 m and larger. In the case of polystyrene, smoke agglomerates in excess of 1 mm have been observed raining out from large fires. Unlike hydrocarbon fuels, silane has the advantage that silica particles are the major combustion product resulting in a particle volume fraction a factor of ten greater than that for a carbonaceous smoke. There are two very desirable properties of silica aero-gels that are important for both space and earth based applications. The first important property is its inertness to most oxidizing and reducing atmospheres. Therefore, silica aero-gels make excellent fire ablatives and can be used in very demanding applications. The second important property is that silica aero-gels are expected to have very high porosity (greater than 0.999), making them lightweight and ideal for aerospace applications. The added benefit of the high porosity is that they can be used as extremely efficient filters for many earth based applications as well. Evidence of the formation of superagglomerates in a laminar acetylene/air diffusion flame was found by Sorensen et al. [1]. An interconnecting web of super-agglomerates was observed to span the width of the soot plume in the region just above the flame tip and described as a gel state. It was observed that this gel state immediately breaks up into agglomerates as larges as 100 m due to buoyancy induced turbulence. Large soot agglomerates were

  20. Ethylene Glycol Adsorption and Reaction over CeOX(111) Thin Films

    SciTech Connect

    T Chen; D Mullins

    2011-12-31

    This study reports the interaction of ethylene glycol with well-ordered CeO{sub x}(111) thin film surfaces. Ethylene glycol initially adsorbs on fully oxidized CeO{sub 2}(111) and reduced CeO{sub 2-x}(111) through the formation of one C-O-Ce bond and then forms a second alkoxy bond after annealing. On fully oxidized CeO{sub 2}(111) both recombination of ethylene glycol and water desorption occur at low temperature leaving stable -OCH{sub 2}CH{sub 2}O- (ethylenedioxy) intermediates and oxygen vacancies on the surface. This ethylenedioxy intermediate goes through C-C bond scission to produce formate species which then react to produce CO and CO{sub 2}. The formation of water results in the reduction of the ceria. On a reduced CeO{sub 2-x}(111) surface the reaction selectivity shifts toward a dehydration process. The ethylenedioxy intermediate decomposes by breaking a C-O bond and converts into an enolate species. Similar to the reaction of acetaldehyde on reduced CeO{sub 2-x}(111), the enolate reacts to produce acetaldehyde, acetylene, and ethylene. The loss of O from ethylene glycol leads to a small amount of oxidation of the reduced ceria.

  1. Ethylene Glycol Adsorption and Reaction over CeOX(111) Thin Films

    SciTech Connect

    Mullins, David R; Chen, Tsung-Liang

    2011-01-01

    This study reports the interaction of ethylene glycol with well-ordered CeO{sub x}(111) thin film surfaces. Ethylene glycol initially adsorbs on fully oxidized CeO{sub 2}(111) and reduced CeO{sub 2-x}(111) through the formation of one C-O-Ce bond and then forms a second alkoxy bond after annealing. On fully oxidized CeO{sub 2}(111) both recombination of ethylene glycol and water desorption occur at low temperature leaving stable -OCH{sub 2}CH{sub 2}O- (ethylenedioxy) intermediates and oxygen vacancies on the surface. This ethylenedioxy intermediate goes through C-C bond scission to produce formate species which then react to produce CO and CO{sub 2}. The formation of water results in the reduction of the ceria. On a reduced CeO{sub 2-x}(111) surface the reaction selectivity shifts toward a dehydration process. The ethylenedioxy intermediate decomposes by breaking a C-O bond and converts into an enolate species. Similar to the reaction of acetaldehyde on reduced CeO{sub 2-x}(111), the enolate reacts to produce acetaldehyde, acetylene, and ethylene. The loss of O from ethylene glycol leads to a small amount of oxidation of the reduced ceria.

  2. Reactions of acetylenes in superbasic media. Recent advances

    NASA Astrophysics Data System (ADS)

    Trofimov, B. A.; Schmidt, E. Yu

    2014-07-01

    The main advances in the chemistry of acetylene in superbasic media achieved over the last five years are analyzed. Particular emphasis is placed on the ethynylation of aldehydes and ketones and C-, N- and O-vinylation. The cascade assembly of complex molecules in which ethynylation and vinylation are consecutive steps is considered. The bibliography includes 369 references.

  3. Acetylenic Coupling: A Powerful Tool in Molecular Construction.

    PubMed

    Siemsen; Livingston; Diederich

    2000-08-04

    Acetylenic coupling is currently experiencing some of the most intensive study of its long history. Rigid and sterically undemanding di- and oligoacetylene moieties, which are frequently encountered in natural products, are finding increasing application as key structural elements in synthetic receptors for molecular recognition. Interesting electronic and optical properties of extensively pi-conjugated systems have spurred research into new linear oligoalkynes and acetylenic carbon allotropes. The synthetic challenges associated with these efforts have in turn spawned new methods. While classical Glaser conditions are still frequently used for homocoupling, the demand for increasingly selective heterocoupling conditions has provided the focus of research over the past decades. These efforts have undoubtedly been hampered by a relatively poor mechanistic understanding of these processes. More recently, palladium-catalyzed coupling methods have led to improvements in both the selectivity and reliability of acetylenic homo- and heterocouplings and paved the way for their application to ever more complicated systems. The variety of acetylenic coupling protocols, the current mechanistic understanding, and their application in natural product and targeted synthesis are discussed comprehensively for the first time in this review, with an emphasis on the most recently developed methods, and their application to the synthesis of complex macromolecular structures.

  4. Acetylene soot reaction with NO in the presence of CO.

    PubMed

    Mendiara, T; Alzueta, M U; Millera, A; Bilbao, R

    2009-07-30

    The heterogeneous reaction of soot with NO can be considered as a means of reduction of the emissions of both pollutants from combustion systems. In this paper, the influence of the presence of CO in the soot-NO reaction is studied. Soot was obtained by pyrolysis at 1373 K of 5000 ppmv acetylene in nitrogen. The study of the influence of CO on the soot-NO reaction was performed in experiments fixing NO concentration at 900 ppmv and introducing different CO concentrations among 0 and 9900 ppmv. An increase in both the carbon consumption rate and NO reduction by acetylene soot was observed as the concentration of CO increases. These results can be explained by the oxide-stripping reaction, CO+C(f)(O)-->CO(2)+C(f). The direct reaction of CO with NO catalyzed by the carbon surface, CO+NO-->CO(2)+1/2N(2) may not be considered in this case the dominant process due to the absence of mineral impurities in the acetylene soot. The influence of CO in the acetylene soot-NO reaction was also tested in the presence of oxygen (250-5000 ppmv). In these conditions and for relatively high CO/O(2) ratios, CO seems to also contribute to NO reduction by the previous oxide-stripping reaction.

  5. Interstitial pneumonitis after acetylene welding: a case report.

    PubMed

    Brvar, Miran

    2014-01-01

    Acetylene is a colorless gas commonly used for welding. It acts mainly as a simple asphyxiant. In this paper, however, we present a patient who developed a severe interstitial pneumonitis after acetylene exposure during aluminum welding. A 44-year old man was welding with acetylene, argon and aluminum electrode sticks in a non-ventilated aluminum tank for 2 h. Four hours after welding dyspnea appeared and 22 h later he was admitted at the Emergency Department due to severe respiratory insufficiency with pO2 = 6.7 kPa. Chest X-ray showed diffuse interstitial infiltration. Pulmonary function and gas diffusion tests revealed a severe restriction (55% of predictive volume) and impaired diffusion capacity (47% of predicted capacity). Toxic interstitial pneumonitis was diagnosed and high-dose systemic corticosteroid methylprednisolone and inhalatory corticosteroid fluticasone therapy was started. Computed Tomography (CT) of the lungs showed a diffuse patchy ground-glass opacity with no signs of small airway disease associated with interstitial pneumonitis. Corticosteroid therapy was continued for the next 8 weeks gradually reducing the doses. The patient's follow-up did not show any deterioration of respiratory function. In conclusion, acetylene welding might result in severe toxic interstitial pneumonitis that improves after an early systemic and inhalatory corticosteroid therapy.

  6. Fatal carbon monoxide intoxication after acetylene gas welding of pipes.

    PubMed

    Antonsson, Ann-Beth; Christensson, Bengt; Berge, Johan; Sjögren, Bengt

    2013-06-01

    Acetylene gas welding of district heating pipes can result in exposure to high concentrations of carbon monoxide. A fatal case due to intoxication is described. Measurements of carbon monoxide revealed high levels when gas welding a pipe with closed ends. This fatality and these measurements highlight a new hazard, which must be promptly prevented.

  7. Acetylene absorption and binding in nonporous crystal lattice

    SciTech Connect

    Thallapally, Praveen K.; Dobrzanska, Liliana B.; Gingrich, Todd R.; Wirsig, Trevor B.; Barbour, Leonard J.; Atwood, Jerry L.

    2006-09-01

    Unusual storage: An organic nonporous material, p-tert-butylcalix[4]arene, sorbs acetylene with high storage density under ambient conditions. It is presumed that gas molecules diffuse through the seemingly nonporous lattice without disrupting the arrangement of the host molecules (see picture; red O, blue C, gray H, yellow void space).

  8. Lipase-catalyzed hydrolysis of TG containing acetylenic FA.

    PubMed

    Jie, Marcel S F Lie Ken; Fua, Xun; Lau, Maureen M L; Chye, M L

    2002-10-01

    Hydrolysis of symmetrical acetylenic TG of type AAA [viz., glycerol tri-(4-decynoate), glycerol tri-(6-octadecynoate), glycerol tri-(9-octadecynoate), glycerol tri-(10-undecynoate), and glycerol tri-(13-docosynoate)] in the presence of eight microbial lipases was studied. Novozyme 435 (Candida antarctica), an efficient enzyme for esterification, showed a significant resistance in the hydrolysis of glycerol tri-(9-octadecynoate) and glycerol tri-(13-docosynoate). Hydrolysis of acetylenic TG with Lipolase 100T (Humicola lanuginosa) was rapidly accomplished. Lipase PS-D (Pseudomonas cepacia) showed a fair resistance toward the hydrolysis of glycerol tri-(6-octadecynoate) only, which reflected its ability to recognize the delta6 positional isomer of 18:1. Lipase CCL (Candida cylindracea, syn. C. rugosa) and AY-30 (C. rugosa) were able to catalyze the release of 10-undecynoic acid and 9-octadecynoic acid from the corresponding TG, but less readily the 13-docosynoic acid in the case of glycerol tri-(13-docosynoate). The two lipases CCL and AY-30 were able to distinguish the small difference in structure of fatty acyl moieties in the TG substrate. To confirm this trend, three regioisomers of mixed acetylenic TG of type ABC (containing one each of delta6, delta9, and delta13 acetylenic FA in various positions) were prepared and hydrolyzed with CCL and AY-40. The results reconfirmed the observation that AY-30 and CCL were able to distinguish the slight differences in the molecular structure (position of the acetylenic bond and chain length) of the acyl groups in the TG during the hydrolysis of such TG substrates.

  9. Platinum Metal-Free Catalysts for Selective Soft Oxidative Methane → Ethylene Coupling. Scope and Mechanistic Observations.

    PubMed

    Peter, Matthias; Marks, Tobin J

    2015-12-09

    Using abundant soft oxidants, a high methane-to-ethylene conversion might be achievable due to the low thermodynamic driving force for over-oxidation. Here we report on the oxidative coupling of methane by gaseous S2 (SOCM). The catalytic properties of Pd/Fe3O4 are compared with those of Fe3O4, and it is found that high ethylene selectivities can be achieved without noble metals; conversion and selectivity on Fe3O4 are stable for at least 48 h at SOCM conditions. SOCM data for 10 oxides are compared, and ethylene selectivities as high as 33% are found; the C2H4/C2H6 ratios of 9-12 observed at the highest S2 conversions are significantly higher than the C2H4/C2H6 ratios usually found in the CH4 coupling with O2. Complementary in-detail analytical studies show that, on Mg, Zr, Sm, W, and La catalysts, which strongly coke during the reaction, lower ethylene selectivities are observed than on Fe, Ti, and Cr catalysts, which only coke to a minor extent. Further catalyst-dependent changes during SOCM in surface area, surface composition, and partial conversion to oxysulfides and sulfides are discussed. Evidence concerning the reaction mechanism is obtained taking into account the selectivity for the different reaction products versus the contact time. CH4 coupling proceeds non-oxidatively with the evolution of H2 on some catalysts, and evidence is presented that C2H4 and C2H2 formation occur via C2H6 and C2H4 dehydrogenation, respectively.

  10. Ethylene in mutualistic symbioses

    PubMed Central

    Khatabi, Behnam; Schäfer, Patrick

    2012-01-01

    Ethylene (ET) is a gaseous phytohormone that participates in various plant physiological processes and essentially contributes to plant immunity. ET conducts its functions by regulating the expression of ET-responsive genes or in crosstalk with other hormones. Several recent studies have shown the significance of ET in the establishment and development of plant-microbe interactions. Therefore, it is not surprising that pathogens and mutualistic symbionts target ET synthesis or signaling to colonize plants. This review introduces the significance of ET metabolism in plant-microbe interactions, with an emphasis on its role in mutualistic symbioses. PMID:23072986

  11. Interstellar Antifreeze: Ethylene Glycol

    NASA Technical Reports Server (NTRS)

    Hollis, J. M.; Lovas, F. J.; Jewell, P. R.; Coudert, L. H.

    2002-01-01

    Interstellar ethylene glycol (HOCH2CH2,OH) has been detected in emission toward the Galactic center source Sagittarius B2(N-LMH) by means of several millimeter-wave rotational torsional transitions of its lowest energy conformer. The types and kinds of molecules found to date in interstellar clouds suggest a chemistry that favors aldehydes and their corresponding reduced alcohols-e.g., formaldehyde (H2CO)/methanol (CH3OH), acetaldehyde (CH3CHO)/ethanol (CH3CH2OH). Similarly, ethylene glycol is the reduced alcohol of glycolaldehyde (CH2OHCHO), which has also been detected toward Sgr B2(N-LMH). While there is no consensus as to how any such large complex molecules are formed in the interstellar clouds, atomic hydrogen (H) and carbon monoxide (CO) could form formaldehyde on grain surfaces, but such surface chemistry beyond that point is uncertain. However, laboratory experiments have shown that the gas-phase reaction of atomic hydrogen (H) and solid-phase CO at 10-20 K can produce formaldehyde and methanol and that alcohols and other complex molecules can be synthesized from cometary ice analogs when subject to ionizing radiation at 15 K. Thus, the presence of aldehyde/ reduced alcohol pairs in interstellar clouds implies that such molecules are a product of a low-temperature chemistry on grain surfaces or in grain ice mantles. This work suggests that aldehydes and their corresponding reduced alcohols provide unique observational constraints on the formation of complex interstellar molecules.

  12. Communication: Observation of local-bender eigenstates in acetylene.

    PubMed

    Steeves, Adam H; Park, G Barratt; Bechtel, Hans A; Baraban, Joshua H; Field, Robert W

    2015-08-21

    We report the observation of eigenstates that embody large-amplitude, local-bending vibrational motion in acetylene by stimulated emission pumping spectroscopy via vibrational levels of the S1 state involving excitation in the non-totally symmetric bending modes. The N(b) = 14 level, lying at 8971.69 cm(-1) (J = 0), is assigned on the basis of degeneracy due to dynamical symmetry breaking in the local-mode limit. The level pattern for the N(b) = 16 level, lying at 10 218.9 cm(-1), is consistent with expectations for increased separation of ℓ = 0 and 2 vibrational angular momentum components. Increasingly poor agreement between our observations and the predicted positions of these levels highlights the failure of currently available normal mode effective Hamiltonian models to extrapolate to regions of the potential energy surface involving large-amplitude displacement along the acetylene ⇌ vinylidene isomerization coordinate.

  13. Enhanced Photoluminescence in Acetylene-Treated ZnO Nanorods.

    PubMed

    Jäppinen, Luke; Jalkanen, Tero; Sieber, Brigitte; Addad, Ahmed; Heinonen, Markku; Kukk, Edwin; Radevici, Ivan; Paturi, Petriina; Peurla, Markus; Shahbazi, Mohammad-Ali; Santos, Hélder A; Boukherroub, Rabah; Santos, Hellen; Lastusaari, Mika; Salonen, Jarno

    2016-12-01

    Zinc oxide (ZnO) nanorods were manufactured using the aqueous chemical growth (ACG) method, and the effect of thermal acetylene treatment on their morphology, chemical composition, and optical properties was investigated. Changes in the elemental content of the treated rods were found to be different than in previous reports, possibly due to the different defect concentrations in the samples, highlighting the importance of synthesis method selection for the process. Acetylene treatment resulted in a significant improvement of the ultraviolet photoluminescence of the rods. The greatest increase in emission intensity was recorded on ZnO rods treated at the temperature of 825 °C. The findings imply that the changes brought on by the treatment are limited to the surface of the ZnO rods.

  14. Thermodynamic study on the formation of acetylene during coal pyrolysis in the arc plasma jet

    SciTech Connect

    Bao, W.; Li, F.; Cai, G.; Lu, Y.; Chang, L.

    2009-07-01

    Based on the principle of minimizing the Gibbs free energy, the composition of C-H-O-N-S equilibrium system about acetylene formation during the pyrolysis in arc plasma jet for four kinds of different rank-ordered coals such as Datong, Xianfeng, Yangcheng, and Luan was analyzed and calculated. The results indicated that hydrogen, as the reactive atmosphere, was beneficial to the acetylene formation. The coal ranks and the hydrogen, oxygen, nitrogen, and sulfur in coal all could obviously affect the acetylene yield. The mole fraction of acetylene is the maximum when the ratio value of atom H/C was 2. The content of oxygen was related to the acetylene yield, but it does not compete with CO formation. These agreed with the experimental results, and they could help to select the coal type for the production of acetylene through plasma pyrolysis process.

  15. Acetylene bubble-powered autonomous capsules: towards in situ fuel.

    PubMed

    Moo, James Guo Sheng; Wang, Hong; Pumera, Martin

    2014-12-28

    A fuel-free autonomous self-propelled motor is illustrated. The motor is powered by the chemistry of calcium carbide and utilising water as a co-reactant, through a polymer encapsulation strategy. Expulsion of acetylene bubbles powers the capsule motor. This is an important step, going beyond the toxic hydrogen peroxide fuel used normally, to find alternative propellants for self-propelled machines.

  16. Abiotic reductive dechlorination of chlorinated ethylenes by iron-bearing soil minerals. 2. Green rust.

    PubMed

    Lee, Woojin; Batchelor, Bill

    2002-12-15

    Abiotic reductive dechlorination of chlorinated ethylenes by the sulfate form of green rust (GR(SO4)) was examined in batch reactors. Dechlorination kinetics were described by a modified Langmuir-Hinshelwood model. The rate constant for reductive dechlorination of chlorinated ethylenes at reactive GR(SO4) surfaces was in the range of 0.592 (+/-4.4%) to 1.59 (+/-6.3%) day(-1). The specific reductive capacity of GR(SO4) for target organics was in the range of 9.86 (+/-10.1%) to 18.0 (+/-4.3%) microM/g and sorption coefficient was in the range of 0.53 (+/-2.4%) to 1.22 (+/-4.3%) mM(-1). Surface area-normalized pseudo-first-order initial rate constants for chlorinated ethylenes by GR(SO4) were 3.4 to 8.2 times greater than those by pyrite. Chlorinated ethylenes were mainly transformed to acetylene, and no detectable amounts of chlorinated intermediates were observed. The rate constants for the reductive dechlorination of trichloroethylene (TCE) increased as pH increased (6.8 to 10.1) but were independent of solid concentration and initial TCE concentration. Magnetite and/or maghemite were produced by the oxidation of GR(SO4) by TCE. These findings are relevant to the understanding of the role of abiotic reductive dechlorination during natural attenuation in environments that contain GR(SO4).

  17. Microwave Enhanced Direct Cracking of Hydrocarbon Feedstock for Energy Efficient Production of Ethylene and Propylene.

    SciTech Connect

    Shulman, Holly; Fall, Morgana; Wagner, Eric; Bowlin, Ricardo

    2012-02-13

    This project demonstrated microwave cracking of ethane with good product conversion and ethylene selectivity, with a short residence time ({approx}0.001 sec). The laboratory scale equipment was designed and built, along with concept designs for larger scale implementation. The system was operated below atmospheric pressures, in the range of 15-55 torr, with argon as a carrier gas. The measured products included hydrogen, methane, acetylene, and ethylene. The results followed similar trends to those predicted by the modeling software SPYRO{reg_sign}, with the exception that the microwave appeared to produce slightly lower amounts of ethylene and methane, although enhanced analytical analysis should reduce the difference. Continued testing will be required to verify these results and quantify the energy consumption of microwave vs. conventional. The microwave cracking process is an attractive option due to the possibility of selectively heating the reaction volume rather than the reactor walls, which may allow novel reactor designs that result in more efficient production of ethylene. Supplemental studies are needed to continue the laboratory testing and refine processing parameters.

  18. Modeling encapsulation of acetylene molecules into carbon nanotubes.

    PubMed

    Tran-Duc, Thien; Thamwattana, Ngamta

    2011-06-08

    Polyacetylene is a well-known conductive polymer and when doped its conductivity can be altered by up to 12 orders of magnitude. However, due to entropy effects a polyacetylene chain usually suffers from distortions and interchain couplings which lead to unpredictable changes in its conducting property. Encapsulating a polyacetylene chain into a carbon nanotube can resolve these issues. Furthermore, since the carbon nanotube itself possesses excellent electrical conductivity, the combination of the carbon nanotube and polyacetylene may give rise to a new material with superior transport behavior. In this paper, we model mathematically the molecular interaction between an acetylene molecule and a carbon nanotube in order to determine conditions at which configurations of the acetylene molecule are accepted into the carbon nanotube as well as its equilibrium configurations inside various sizes of carbon nanotubes. For special cases of the acetylene molecule lying on the tube axis, standing vertically with its center on the tube axis and staying far inside the tube, explicit analytical expressions for the interaction energy are obtained.

  19. Quantifying Momentum Transfer Due to Blast Waves from Oxy-Acetylene Driven Shock Tubes

    DTIC Science & Technology

    2012-05-30

    Transfer Due to Blast Waves from Oxy - Acetylene Driven Shock Tubes 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...and the response of materiel to blast loading. Recently, laboratory-scale shock tubes driven by oxy - acetylene were described. It was estimated that...later. In each case, most of the momentum transfer was due to the shock wave itself. The results support previous estimates that the oxy - acetylene

  20. Acetylene as a substrate in the development of primordial bacterial communities

    NASA Astrophysics Data System (ADS)

    Culbertson, Charles W.; Strohmaier, Francis E.; Oremland, Ronald S.

    1988-12-01

    The fermentation of atmospheric acetylene by anaerobic bacteria is proposed as the basis of a primordial heterotrophic food chain. The accumulation of fermentation products (acetaldehyde, ethanol, acetate and hydrogen) would create niches for sulfate-respiring bacteria as well as methanogens. Formation of acetylene-free environments in soils and sediments would also alter the function of nitrogenase from detoxification to nitrogen-fixation. The possibility of an acetylene-based anaerobic food chain in Jovian-type atmospheres is discussed.

  1. Thermodynamical Study on Production of Acetylene from Coal Pyrolysis in Hydrogen Plasma

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Guo, Wenkang; Yuan, Xingqiu; Zhao, Taize

    2006-05-01

    The chemical thermodynamic equilibrium of acetylene production by coal pyrolysis in hydrogen plasma was studied. The thermodynamic equilibrium is obtained by using the method of free energy. Calculated results show that the hydrogen concentration in the equilibrium system is very important for the acetylene production by coal conversion and the energy consumption for the production of acetylene per-kilogram strongly depends on the hydrogen concentration and the temperature.

  2. Initial stages of soot formation in thermal pyrolysis of acetylene. I. Mechanism for homogeneous pyrolysis of acetylene

    SciTech Connect

    Merkulov, A.A.; Ovsyannikov, A.A.; Polak, L.S.; Popov, V.T.; Pustilnikov, V.Yu. )

    1989-03-01

    A probable mechanism for the homogeneous pyrolysis of acetylene, using carbene reactions, is considered. Analysis of the energetics for the probable mechanism of the initiation reactions shows the rearrangement C{sub 2}H{sub 2} {yields}:CCH{sub 2} to be the most probable. Using the energetic barriers for simple carbene reactions and formation enthalpies for more complicated carbenes, the authors evaluated the activation energies for the reactions mechanism. The vibrational excitation of the products of carbene reactions is taken into account. Calculations of the acetylene conversion kinetics and yields of the main gas-phase pyrolysis products, based on the carbene molecular mechanism, show significantly better agreement with available experimental data as compared to those based on traditional radical mechanisms. The calculated time for the appearance of aromatic products is close to the measured induction times for the appearance of soot particles.

  3. Interaction of the mechanism-based inactivator acetylene with ammonia monooxygenase of Nitrosomonas europaea.

    PubMed

    Gilch, Stefan; Vogel, Manja; Lorenz, Matthias W; Meyer, Ortwin; Schmidt, Ingo

    2009-01-01

    The ammonia monooxygenase (AMO) of Nitrosomonas europaea is a metalloenzyme that catalyses the oxidation of ammonia to hydroxylamine. We have identified histidine 191 of AmoA as the binding site for the oxidized mechanism-based inactivator acetylene. Binding of acetylene changed the molecular mass of His-191 from 155.15 to 197.2 Da (+42.05), providing evidence that acetylene was oxidized to ketene (CH2CO; 42.04 Da) which binds specifically to His-191. It must be assumed that His-191 is part of the acetylene-activating site in AMO or at least directly neighbours this site.

  4. Kinetics and Structure of Superagglomerates Produced by Silane and Acetylene

    NASA Technical Reports Server (NTRS)

    Mulholland, G. W.; Hamins, A.; Sivathanu, Y.

    1999-01-01

    The evolution of smoke in a laminar diffusion flame involves several steps. The first step is particle inception/nucleation in the high-temperature fuel-rich region of the flame followed by surface growth and coagulation/coalescence of the small particles. As the primary spheres grow in size and lose hydrogen, the colliding particles no longer coalesce but retain their identity as a cluster of primary spheres, termed an agglomerate. Finally, in the upper portion of the flame, the particles enter an oxidizing environment which may lead to partial or complete burnout of the agglomerates. Currently there is no quantitative model for describing the growth of smoke agglomerates up to superagglomerates with an overall dimension of 10 microns and greater. Such particles are produced during the burning of acetylene and fuels containing benzene rings such as toluene and polystyrene. In the case of polystyrene, smoke agglomerates in excess of 1 mm have been observed "raining" out from large fires. Evidence of the formation of superagglomerates in a laminar acetylene/air diffusion flame has been recently reported. Acetylene was chosen as the fuel since the particulate loading in acetylene/air diffusion flames is very high. Photographs were obtained by Sorensen using a microsecond xenon lamp of the "stream" of soot just above the flame. For low flow rates of acetylene, only submicrometer soot clusters are produced and they give rise to the homogeneous appearance of the soot stream. When the flow rate is increased to 1.7 cu cm/s, soot clusters up to 10 microns are formed and they are responsible for the graininess and at a flow rate of 3.4 cu cm/s, a web of interconnected clusters as large as the width of the flame is seen. This interconnecting web of superagglomerates is described as a gel state by Sorensen et al (1998). This is the first observation of a gel for a gas phase system. It was observed that this gel state immediately breaks up into agglomerates due to buoyancy

  5. Monofunctional hyperbranched ethylene oligomers.

    PubMed

    Wiedemann, Thomas; Voit, Gregor; Tchernook, Alexandra; Roesle, Philipp; Göttker-Schnetmann, Inigo; Mecking, Stefan

    2014-02-05

    The neutral κ(2)N,O-salicylaldiminato Ni(II) complexes [κ(2)N,O-{(2,6-(3',5'-R2C6H3)2C6H3-N═C(H)-(3,5-I2-2-O-C6H2)}]NiCH3(pyridine)] (1a-pyr, R = Me; 1b-pyr, R = Et; 1c-pyr, R = iPr) convert ethylene to hyperbranched low-molecular-weight oligomers (Mn ca. 1000 g mol(-1)) with high productivities. While all three catalysts are capable of generating hyperbranched structures, branching densities decrease significantly with the nature of the remote substituent along Me > Et > iPr and oligomer molecular weights increase. Consequently, only 1a-pyr forms hyperbranched structures over a wide range of reaction conditions (ethylene pressure 5-30 atm and 20-70 °C). An in situ catalyst system achieves similar activities and identical highly branched oligomer microstructures, eliminating the bottleneck given by the preparation and isolation of Ni-Me catalyst precursor species. Selective introduction of one primary carboxylic acid ester functional group per highly branched oligoethylene molecule was achieved by isomerizing ethoxycarbonylation and alternatively cross metathesis with ethyl acrylate followed by hydrogenation. The latter approach results in complete functionalization and no essential loss of branched oligomer material and molecular weight, as the reacting double bonds are close to a chain end. Reduction yielded a monoalcohol-functionalized oligomer. Introduction of one reactive epoxide group per branched oligomer occurs completely and selectively under mild conditions. All reaction steps involved in oligomerization and monofunctionalization are efficient and readily scalable.

  6. 46 CFR 154.1725 - Ethylene oxide.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Ethylene oxide. 154.1725 Section 154.1725 Shipping COAST....1725 Ethylene oxide. (a) A vessel carrying ethylene oxide must: (1) Have cargo piping, vent piping, and... space of an ethylene oxide cargo tank for a period of 30 days under the condition of paragraph (e)...

  7. 46 CFR 154.1725 - Ethylene oxide.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Ethylene oxide. 154.1725 Section 154.1725 Shipping COAST....1725 Ethylene oxide. (a) A vessel carrying ethylene oxide must: (1) Have cargo piping, vent piping, and... space of an ethylene oxide cargo tank for a period of 30 days under the condition of paragraph (e)...

  8. 46 CFR 154.1725 - Ethylene oxide.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Ethylene oxide. 154.1725 Section 154.1725 Shipping COAST....1725 Ethylene oxide. (a) A vessel carrying ethylene oxide must: (1) Have cargo piping, vent piping, and... space of an ethylene oxide cargo tank for a period of 30 days under the condition of paragraph (e)...

  9. Quantification and Removal of Some Contaminating Gases from Acetylene Used to Study Gas-Utilizing Enzymes and Microorganisms

    PubMed Central

    Hyman, Michael R.; Arp, Daniel J.

    1987-01-01

    Acetylene generated from various grades of calcium carbide and obtained from commercial- and purified-grade acetylene cylinders was shown to contain high concentrations of various contaminants. Dependent on the source of acetylene, these included, at maximal values, H2 (0.023%), O2 (0.779%), N2 (3.78%), PH3 (0.06%), CH4 (0.073%), and acetone (1 to 10%). The concentration of the contaminants in cylinder acetylene was highly dependent on the extent of cylinder discharge. Several conventional methods used to partially purify cylinder acetylene were compared. A small-scale method for extensively purifying acetylene is described. An effect of acetylene quality on acetylene reduction assays conducted with purified nitrogenase from Azotobacter vinelandii was demonstrated. PMID:16347278

  10. 49 CFR 173.303 - Charging of cylinders with compressed gas in solution (acetylene).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Charging of cylinders with compressed gas in solution (acetylene). 173.303 Section 173.303 Transportation Other Regulations Relating to Transportation....303 Charging of cylinders with compressed gas in solution (acetylene). (a) Cylinder, filler...

  11. 49 CFR 173.303 - Charging of cylinders with compressed gas in solution (acetylene).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Charging of cylinders with compressed gas in solution (acetylene). 173.303 Section 173.303 Transportation Other Regulations Relating to Transportation....303 Charging of cylinders with compressed gas in solution (acetylene). (a) Cylinder, filler...

  12. 49 CFR 173.303 - Charging of cylinders with compressed gas in solution (acetylene).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Charging of cylinders with compressed gas in solution (acetylene). 173.303 Section 173.303 Transportation Other Regulations Relating to Transportation....303 Charging of cylinders with compressed gas in solution (acetylene). (a) Cylinder, filler...

  13. 49 CFR 173.303 - Charging of cylinders with compressed gas in solution (acetylene).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Charging of cylinders with compressed gas in solution (acetylene). 173.303 Section 173.303 Transportation Other Regulations Relating to Transportation....303 Charging of cylinders with compressed gas in solution (acetylene). (a) Cylinder, filler...

  14. Complete Genome Sequence of the Acetylene-Fermenting Pelobacter sp. Strain SFB93

    PubMed Central

    Baesman, Shaun M.; Fierst, Janna L.; Poret-Peterson, Amisha T.; Oremland, Ronald S.; Dunlap, Darren S.

    2017-01-01

    ABSTRACT Acetylene fermentation is a rare metabolism that was previously reported as being unique to Pelobacter acetylenicus. Here, we report the genome sequence of Pelobacter sp. strain SFB93, an acetylene-fermenting bacterium isolated from sediments collected in San Francisco Bay, CA. PMID:28183760

  15. 46 CFR 151.50-79 - Methyl acetylene-propadiene mixture.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... suction line. (c) The piping system, including the cargo refrigeration system, for tanks to be loaded with methyl acetylene-propadiene mixture must be completely separate from piping and refrigeration systems for other tanks. If the piping system for the tanks to be loaded with methyl acetylene-propadiene mixture...

  16. 46 CFR 151.50-79 - Methyl acetylene-propadiene mixture.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... suction line. (c) The piping system, including the cargo refrigeration system, for tanks to be loaded with methyl acetylene-propadiene mixture must be completely separate from piping and refrigeration systems for other tanks. If the piping system for the tanks to be loaded with methyl acetylene-propadiene mixture...

  17. Acetylene Fermentation: Relevance to Primordial Biogeochemistry and the Search for Life in the Outer Solar System

    NASA Astrophysics Data System (ADS)

    Oremland, R. S.; Baesman, S. M.; Miller, L. G.

    2014-02-01

    Acetylene supports the growth of some terrestrial anaerobes. The reaction is highly exothermic. The abundance of acetylene in the methane-rich planet(oid)s of the outer solar system could represent a means of nourishment for resident alien microbes.

  18. Complete genome sequence of the acetylene-fermenting Pelobacter sp. strain SFB93

    USGS Publications Warehouse

    Sutton, John M.; Baesman, Shaun; Fierst, Janna L.; Poret-Peterson, Amisha T.; Oremland, Ronald S.; Dunlap, Darren S.; Akob, Denise M.

    2017-01-01

    Acetylene fermentation is a rare metabolism that was previously reported as being unique to Pelobacter acetylenicus. Here, we report the genome sequence of Pelobacter sp. strain SFB93, an acetylene-fermenting bacterium isolated from sediments collected in San Francisco Bay, CA.

  19. Participation of ethylene in gravitropism

    NASA Technical Reports Server (NTRS)

    Harrison, M.; Pickard, B. G.

    1984-01-01

    In shoots of many plants, of which tomato (Lycopersicon esculentum Mill.) is an example, ethylene production is substantially increased during gravitropism. As a first step toward elucidating the role of ethylene in gravitropism, detailed time courses of ethylene production in isolated hypocotyl segments and whole plants were measured for gravistimulated and upright tomato seedlings. In the first experiment, seedlings were set upright or laid horizontal and then, at 15 min intervals, sets of hypocotyls were excised and sealed into gas tight vials. A steady long term rise in ethylene production begins after 15 min gravistimulation. It is possible that this increase is a consequence of the accumulation of indoleacetic acid (IAA) in the lower tissue of the hypocotyle. In a second kind of experiment, whole seedlings were enclosed in sealed chambers and air samples were withdrawn at 5 min intervals. Stimulated seedlings produced more ethylene than controls during the first 5 min interval, but not appreciably more during the second. This suggests the possibility that the ethylene production induced during the first 5 min occurs immediately rather than after a lag, and thus much too soon to be controlled by redistribution of IAA.

  20. Protonated acetylene - An important circumstellar and interstellar ion

    NASA Technical Reports Server (NTRS)

    Glassgold, A. E.; Omont, A.; Guelin, M.

    1992-01-01

    In a circumstellar envelope, a substantial amount of acetylene is transported in a wind to the outer envelope, where it can be photoionized by interstellar radiation and then converted into C2H3(+) by a low-temperature reaction with H2. New chemical modeling calculations indicate that sufficient C2H3(+) may be produced in the outer envelope of IRC + 10216 to be observable. Similar considerations suggest that C2H3(+) should also be detectable in interstellar clouds, provided its rotational spectrum has been measured accurately in the laboratory.

  1. Magnetic coupling in a hybrid Mn(ii) acetylene dicarboxylate.

    PubMed

    Hendon, Christopher H; Pradaux-Caggiano, Fabienne; Hatcher, Lauren E; Gee, William J; Wilson, Chick C; Butler, Keith T; Carbery, David R; Walsh, Aron; Melot, Brent C

    2016-12-07

    The design of ligands that mediate through-bond long range super-exchange in metal-organic hybrid materials would expand chemical space beyond the commonly observed short range, low temperature magnetic ordering. Here we examine acetylene dicarboxylate as a potential ligand that could install long range magnetic ordering due to its spatially continuous frontier orbitals. Using a known Mn(ii)-containing coordination polymer we compute and measure the electronic structure and magnetic ordering. In this case, the latter is weak owing to the sub-optimal ligand coordination geometry, with a critical temperature of 2.5 K.

  2. Ultrafast hydrogen migration in acetylene cation driven by non-adiabatic effects.

    PubMed

    Madjet, Mohamed El-Amine; Li, Zheng; Vendrell, Oriol

    2013-03-07

    Non-adiabatic dynamics of the acetylene cation is investigated using mixed quantum-classical dynamics based on trajectory surface hopping. To describe the non-adiabatic effects, two surface hopping methods are used, namely, Tully's fewest switches and Landau-Zener surface hopping. Similarities and differences between the results based on those two methods are discussed. We find that the photoionization of acetylene into the first excited state A(2)Σg(+) drives the molecule from the linear structure to a trans-bent structure. Through a conical intersection the acetylene cation can relax back to either the ground state of acetylene or vinylidene. We conclude that hydrogen migration always takes place after non-radiative electronic relaxation to the ground state of the monocation. Based on the analysis of correlation functions we identify coherent oscillations between acetylene and vinylidene with a period of about 70 fs after the electronic relaxation.

  3. Suicidal inactivation and labelling of ammonia mono-oxygenase by acetylene.

    PubMed Central

    Hyman, M R; Wood, P M

    1985-01-01

    Acetylene brings about a progressive inactivation of ammonia mono-oxygenase, the ammonia-oxidizing enzyme in Nitrosomonas europaea. High NH4+ ion concentrations were protective. The inactivation followed first-order kinetics, with a rate constant of 1.5 min-1 at saturating concentrations of acetylene. If acetylene was added in the absence of O2, the cells remained active until O2 was re-introduced. A protective effect was also demonstrated with thiourea, a reversible non-competitive inhibitor of ammonia oxidation. Incubation of cells with [14C]acetylene was found to cause labelling of a single membrane polypeptide. This ran on dodecyl sulphate/polyacrylamide-gel electrophoresis with an Mr value of 28 000. It is concluded that acetylene is a suicide substrate for the mono-oxygenase. The labelling experiment provides the first identification of a constituent polypeptide of ammonia mono-oxygenase. Images Fig. 4. PMID:4004794

  4. Vibrational characterization of ethylene adsorption and its thermal evolution on Si(001)-(2 x 1): identification of majority and minority species.

    PubMed

    Kostov, Krassimir L; Nathaniel, Rachel; Mineva, Tzonka; Widdra, Wolf

    2010-08-07

    The vibrational and structural properties of a single-domain Si(001)-(2 x 1) surface upon ethylene adsorption have been studied by density functional cluster calculations and high-resolution electron energy loss spectroscopy. The detailed analysis of the theoretically and the experimentally determined vibrational frequencies reveals two coexisting adsorbate configurations. The majority species consist of ethylene molecules which are di-sigma bonded to the two Si atoms of a single Si-Si dimer. The local symmetry of this adsorption complex is reduced to C(2) for ethylene saturation coverage as determined by surface selection rules for the vibrational excitation process. The symmetry reduction includes the rotation of the C-C bond around the surface normal and the twist of the methylene groups around the C-C axis. Experimentally, 17 ethylene-derived modes are found and assigned for the majority and the minority species based on a comparison with calculated vibrational frequencies. The minority species which can account up to 14% of the total ethylene coverage is spectroscopically identified for the first time. It is assigned to ethylene molecules di-sigma bonded to two adjacent Si-Si dimers (in an end-bridge configuration). One part of the minority species desorbs molecularly at 665 K, about 50 K higher than the majority species, whereas the remaining part dissociates to adsorbed acetylene at temperatures around 630 K. For the latter, a di-sigma end-bridge like bonding configuration is proposed based on a comparison with vibrational data for adsorbed acetylene on Si(100)-(2 x 1).

  5. Ethylene monitoring and control system

    NASA Technical Reports Server (NTRS)

    Nelson, Bruce N. (Inventor); Richard, II, Roy V. (Inventor); Kane, James A. (Inventor)

    2001-01-01

    A system that can accurately monitor and control low concentrations of ethylene gas includes a test chamber configured to receive sample gas potentially containing an ethylene concentration and ozone, a detector configured to receive light produced during a reaction between the ethylene and ozone and to produce signals related thereto, and a computer connected to the detector to process the signals to determine therefrom a value of the concentration of ethylene in the sample gas. The supply for the system can include a four way valve configured to receive pressurized gas at one input and a test chamber. A piston is journaled in the test chamber with a drive end disposed in a drive chamber and a reaction end defining with walls of the test chamber a variable volume reaction chamber. The drive end of the piston is pneumatically connected to two ports of the four way valve to provide motive force to the piston. A manifold is connected to the variable volume reaction chamber, and is configured to receive sample gasses from at least one of a plurality of ports connectable to degreening rooms and to supply the sample gas to the reactive chamber for reaction with ozone. The apparatus can be used to monitor and control the ethylene concentration in multiple degreening rooms.

  6. Ethylene monitoring and control system

    NASA Technical Reports Server (NTRS)

    Nelson, Bruce N. (Inventor); Richard, II, Roy V. (Inventor); Kanc, James A. (Inventor)

    2000-01-01

    A system that can accurately monitor and control low concentrations of ethylene gas includes a test chamber configured to receive sample gas potentially containing an ethylene concentration and ozone, a detector configured to receive light produced during a reaction between the ethylene and ozone and to produce signals related thereto, and a computer connected to the detector to process the signals to determine therefrom a value of the concentration of ethylene in the sample gas. The supply for the system can include a four way valve configured to receive pressurized gas at one input and a test chamber. A piston is journaled in the test chamber with a drive end disposed in a drive chamber and a reaction end defining with walls of the test chamber a variable volume reaction chamber. The drive end of the piston is pneumatically connected to two ports of the four way valve to provide motive force to the piston. A manifold is connected to the variable volume reaction chamber, and is configured to receive sample gasses from at least one of a plurality of ports connectable to degreening rooms and to supply the sample gas to the reactive chamber for reaction with ozone. The apparatus can be used to monitor and control the ethylene concentration in multiple degreening rooms.

  7. Ethylene-producing bacteria that ripen fruit.

    PubMed

    Digiacomo, Fabio; Girelli, Gabriele; Aor, Bruno; Marchioretti, Caterina; Pedrotti, Michele; Perli, Thomas; Tonon, Emil; Valentini, Viola; Avi, Damiano; Ferrentino, Giovanna; Dorigato, Andrea; Torre, Paola; Jousson, Olivier; Mansy, Sheref S; Del Bianco, Cristina

    2014-12-19

    Ethylene is a plant hormone widely used to ripen fruit. However, the synthesis, handling, and storage of ethylene are environmentally harmful and dangerous. We engineered E. coli to produce ethylene through the activity of the ethylene-forming enzyme (EFE) from Pseudomonas syringae. EFE converts a citric acid cycle intermediate, 2-oxoglutarate, to ethylene in a single step. The production of ethylene was placed under the control of arabinose and blue light responsive regulatory systems. The resulting bacteria were capable of accelerating the ripening of tomatoes, kiwifruit, and apples.

  8. Acetylene as fast food: Implications for development of life on anoxic primordial earth and in the outer solar system

    USGS Publications Warehouse

    Oremland, R.S.; Voytek, M.A.

    2008-01-01

    Acetylene occurs, by photolysis of methane, in the atmospheres of jovian planets and Titan. In contrast, acetylene is only a trace component of Earth's current atmosphere. Nonetheless, a methane-rich atmosphere has been hypothesized for early Earth; this atmosphere would also have been rich in acetylene. This poses a paradox, because acetylene is a potent inhibitor of many key anaerobic microbial processes, including methanogenesis, anaerobic methane oxidation, nitrogen fixation, and hydrogen oxidation. Fermentation of acetylene was discovered 25 years ago, and Pelobacter acetylenicus was shown to grow on acetylene by virtue of acetylene hydratase, which results in the formation of acetaldehyde. Acetaldehyde subsequently dismutates to ethanol and acetate (plus some hydrogen). However, acetylene hydratase is specific for acetylene and does not react with any analogous compounds. We hypothesize that microbes with acetylene hydratase played a key role in the evolution of Earth's early biosphere by exploiting an available source of carbon from the atmosphere and in so doing formed protective niches that allowed for other microbial processes to flourish. Furthermore, the presence of acetylene in the atmosphere of a planet or planetoid could possibly represent evidence for an extraterrestrial anaerobic ecosystem. ?? Mary Ann Liebert, Inc.

  9. Acetylene as Fast Food: Implications for Development of Life on Anoxic Primordial Earth and in the Outer Solar System

    NASA Astrophysics Data System (ADS)

    Oremland, Ronald S.; Voytek, Mary A.

    2008-02-01

    Acetylene occurs, by photolysis of methane, in the atmospheres of jovian planets and Titan. In contrast, acetylene is only a trace component of Earth's current atmosphere. Nonetheless, a methane-rich atmosphere has been hypothesized for early Earth; this atmosphere would also have been rich in acetylene. This poses a paradox, because acetylene is a potent inhibitor of many key anaerobic microbial processes, including methanogenesis, anaerobic methane oxidation, nitrogen fixation, and hydrogen oxidation. Fermentation of acetylene was discovered 25 years ago, and Pelobacter acetylenicus was shown to grow on acetylene by virtue of acetylene hydratase, which results in the formation of acetaldehyde. Acetaldehyde subsequently dismutates to ethanol and acetate (plus some hydrogen). However, acetylene hydratase is specific for acetylene and does not react with any analogous compounds. We hypothesize that microbes with acetylene hydratase played a key role in the evolution of Earth's early biosphere by exploiting an available source of carbon from the atmosphere and in so doing formed protective niches that allowed for other microbial processes to flourish. Furthermore, the presence of acetylene in the atmosphere of a planet or planetoid could possibly represent evidence for an extraterrestrial anaerobic ecosystem.

  10. Acetylene as fast food: implications for development of life on anoxic primordial Earth and in the outer solar system.

    PubMed

    Oremland, Ronald S; Voytek, Mary A

    2008-02-01

    Acetylene occurs, by photolysis of methane, in the atmospheres of jovian planets and Titan. In contrast, acetylene is only a trace component of Earth's current atmosphere. Nonetheless, a methane-rich atmosphere has been hypothesized for early Earth; this atmosphere would also have been rich in acetylene. This poses a paradox, because acetylene is a potent inhibitor of many key anaerobic microbial processes, including methanogenesis, anaerobic methane oxidation, nitrogen fixation, and hydrogen oxidation. Fermentation of acetylene was discovered approximately 25 years ago, and Pelobacter acetylenicus was shown to grow on acetylene by virtue of acetylene hydratase, which results in the formation of acetaldehyde. Acetaldehyde subsequently dismutates to ethanol and acetate (plus some hydrogen). However, acetylene hydratase is specific for acetylene and does not react with any analogous compounds. We hypothesize that microbes with acetylene hydratase played a key role in the evolution of Earth's early biosphere by exploiting an available source of carbon from the atmosphere and in so doing formed protective niches that allowed for other microbial processes to flourish. Furthermore, the presence of acetylene in the atmosphere of a planet or planetoid could possibly represent evidence for an extraterrestrial anaerobic ecosystem.

  11. [The development of acetylene on-line monitoring technology based on laser absorption spectrum].

    PubMed

    He, Ying; Zhang, Yu-jun; Kan, Rui-feng; Xia, Hui; Wang, Min; Cui, Xiao-juan; Chen, Jiu-ying; Chen, Dong; Liu, Wen-qing; Liu, Jian-guo

    2008-10-01

    As one of the materials in organic chemical industry, acetylene has been used in many aspects of chemical industry. But acetylene is a very dangerous inflammable and explosive gas, so it needs in-situ monitoring during industrial storage and production. Tunable diode laser absorption spectroscopy (TDLAS) technology has been widely used in atmospheric trace gases detection, because it has a lot of advantageous characteristics, such as high sensitivity, good selectivity, and rapid time response. The distribution characteristics of absorption lines of acetylene in near infrared band were studied, and then the system designing scheme of acetylene on-line monitoring based on near infrared tunable diode laser absorption spectroscopy technology was discussed in detail. Moreover, the system of experiment measurement was set up and the method of signal detection and the algorithm of concentration inversion were studied. In addition, the sample cell with a path length of 10 cm, and the acetylene of different known concentrations were measured. As a result, the detection limit obtained reached 1.46 cm3 x m(-3). Finally the dynamic detection experiment was carried out, and the measurement result is stable and reliable, so the design of the system is practicable through experiment analysis. On-line acetylene leakage monitoring system was developed based on the experiment, and it is suitable for giving a leakage alarm of acetylene during its storage, transportation and use.

  12. Analysis of acetylene in blood and urine using cryogenic gas chromatography-mass spectrometry.

    PubMed

    Kashiwagi, Masayuki; Hara, Kenji; Fujii, Hiroshi; Kageura, Mitsuyoshi; Takamoto, Mutsuo; Matsusue, Aya; Sugimura, Tomoko; Kubo, Shin-ichi

    2009-09-01

    A method for quantitative analysis of acetylene in blood and urine samples was investigated. Using cryogenic gas chromatography-mass spectrometry (GC-MS), acetylene was measured with isobutane as the internal standard in the headspace method, which revealed a linear response over the entire composite range with an excellent correlation coefficient, both in blood (R = 0.9968, range = 5.39-43.1 microg/ml) and urine (R = 0.9972, range = 2.16-10.8 microg/ml). The coefficients of variation (CV) for blood ranged from 2.62 to 11.6% for intra-day and 4.55 to 10.4% for inter-day. The CV for urine ranged from 2.38 to 3.10% for intra-day and 4.83 to 11.0% for inter-day. The recovery rate as an index of accuracy ranged from 83 to 111%. The present method showed good reliability, and is also simple and rapid. In actual samples from a charred cadaver due to acetylene explosion, the measured concentrations of acetylene by this method were 21.5 microg/ml for femoral vein blood, 17.9 microg/ml for right atrial blood, 25.5 microg/ml for left atrial blood and 7.49 microg/ml for urine. Quantification of acetylene provides important information, because the acetylene concentration is a vital reaction or sign. For example, when acetylene is filled in a closed space and then explodes, in antemortem explosion, the blood acetylene concentration of the cadaver might be significant. On the other hand, in postmortem explosion, acetylene is not detected in blood. Furthermore, when several victims are involved in one explosion, comparison of the sample concentrations can also provide useful information to establish the conditions at the accident scene; therefore, the present method is useful in forensics.

  13. RESIDUAL RISK ASSESSMENT: ETHYLENE OXIDE ...

    EPA Pesticide Factsheets

    This document describes the residual risk assessment for the Ethylene Oxide Commercial Sterilization source category. For stationary sources, section 112 (f) of the Clean Air Act requires EPA to assess risks to human health and the environment following implementation of technology-based control standards. If these technology-based control standards do not provide an ample margin of safety, then EPA is required to promulgate addtional standards. This document describes the methodology and results of the residual risk assessment performed for the Ethylene Oxide Commercial Sterilization source category. The results of this analyiss will assist EPA in determining whether a residual risk rule for this source category is appropriate.

  14. A first principles study of the acetylene-water interaction

    SciTech Connect

    Tzeli, Demeter; Mavridis, Aristides; Xantheas, Sotiris S.

    2000-04-08

    We present an extensive study of the stationary points on the acetylene-water (AW) ground-state potential energy surface (PES) aimed in establishing accurate energetics for the two different bonding scenarios that are considered. Those include arrangements in which water acts either as a proton acceptor from one of the acetylene hydrogen atoms or a proton donor to the triple bond. We used a hierarchy of theoretical methods to account for electron correlation [MP2 (second-order Moller-Plesset), MP4 (fourth-order Moller-Plesset), and CCSD(T) (coupled-cluster single double triple)] coupled with a series of increasing size augmented correlation consistent basis sets (aug-cc-pVnZ, n=2,3,4). We furthermore examined the effect of corrections due to basis set superposition error (BSSE). We found that those have a large effect in altering the qualitative features of the PES of the complex. They are responsible for producing a structure of higher (C{sub 2v}) symmetry for the global minimum. Zero-point energy (ZPE) corrections were found to increase the stability of the C{sub 2v} arrangement. For the global (water acceptor) minimum of C{sub 2v} symmetry our best estimates are {delta}E{sub e}=-2.87 kcal/mol ({delta}E{sub 0}=-2.04 kcal/mol) and a van der Waals distance of R{sub e}=2.190 Aa. The water donor arrangement lies 0.3 kcal/mol (0.5 kcal/mol including ZPE corrections) above the global minimum. The barrier for its isomerization to the global minimum is E{sub e}=0.18 kcal/mol; however, inclusion of BSSE- and ZPE-corrections destabilize the water donor arrangement suggesting that it can readily convert to the global minimum. We therefore conclude that there exists only one minimum on the PES in accordance with previous experimental observations. To this end, vibrational averaging and to a lesser extend proper description of intermolecular interactions (BSSE) were found to have a large effect in altering the qualitative features of the ground-state PES of the acetylene

  15. The Anharmonic Force Field of Ethylene, C2H4, by Means of Accurate Ab Initio Calculations

    NASA Technical Reports Server (NTRS)

    Martin, Jan M. L.; Lee, Timothy J.; Taylor, Peter R.; Francois, Jean-Pierre; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    The quartic force field of ethylene, C2H4, has been calculated ab initio using augmented coupled cluster, CCSD(T), methods and correlation consistent basis sets of spdf quality. For the C-12 isotopomers C2H4, C2H3D, H2CCD2, cis-C2H2D2, trans-C2H2D2, C2HD3, and C2D4, all fundamentals could be reproduced to better than 10 per centimeter, except for three cases of severe Fermi type 1 resonance. The problem with these three bands is identified as a systematic overestimate of the Kiij Fermi resonance constants by a factor of two or more; if this is corrected for, the predicted fundamentals come into excellent agreement with experiment. No such systematic overestimate is seen for Fermi type 2 resonances. Our computed harmonic frequencies suggest a thorough revision of the accepted experimentally derived values. Our computed and empirically corrected re geometry differs substantially from experimentally derived values: both the predicted rz geometry and the ground-state rotational constants are, however, in excellent agreement with experiment, suggesting revision of the older values. Anharmonicity constants agree well with experiment for stretches, but differ substantially for stretch-bend interaction constants, due to equality constraints in the experimental analysis that do not hold. Improved criteria for detecting Fermi and Coriolis resonances are proposed and found to work well, contrary to the established method based on harmonic frequency differences that fails to detect several important resonances for C2H4 and its isotopomers. Surprisingly good results are obtained with a small spd basis at the CCSD(T) level. The well-documented strong basis set effect on the v8 out-of-plane motion is present to a much lesser extent when correlation-optimized polarization functions are used. Complete sets of anharmonic, rovibrational coupling, and centrifugal distortion constants for the isotopomers are available as supplementary material to the paper.

  16. Effects of Air/Nitrogen Cure on An Acetylene Terminated Quinoxaline Thermoset System

    DTIC Science & Technology

    1981-06-01

    AFWAL-TR-81-401 2 FILE Copy EFFECTS OF AIR/NITROGEN CURE ON AN ACETYLENE TERMINATED QUINOXALINE THERMOSET SYSTEM Polymer Branch Nonmetallic Materials...RECIPIENT’S CATALOG NUMBER AFWAL-TR- 81-4012 4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED Effects of Air/Nitrogen Cure on an Acetylene ...81-4012 SECTION I INTRODUCTION The Air Force has an interest in the development of acetylene - terminated (AT) resins as a new technology to form high

  17. Acetylene in breath: background levels and real-time elimination kinetics after smoking.

    PubMed

    Metsälä, M; Schmidt, F M; Skyttä, M; Vaittinen, O; Halonen, L

    2010-12-01

    We have measured the acetylene concentration in the exhaled breath of 40 volunteers (31 non-smokers, nine smokers) using near-infrared cavity ring-down spectroscopy. The acetylene levels were found to be the same as in ambient air for non-smokers, whereas elevated levels were observed for smokers. Real-time measurements with sub-second time resolution have been applied to measure the elimination kinetics of acetylene in breath after exposure to tobacco smoke. Three exponential time constants can be distinguished from the data and these can be used to define the residence times for different compartments, according to the multi-compartment model of the human body.

  18. Acetylene as a substrate in the development of primordial bacterial communities

    USGS Publications Warehouse

    Culbertson, C.W.; Strohmaier, F.E.; Oremland, R.S.

    1988-01-01

    The fermentation of atmospheric acetylene by anaerobic bacteria is proposed as the basis of a primordial heterotrophic food chain. The accumulation of fermentation products (acetaldehyde, ethanol, acetate and hydrogen) would create niches for sulfate-respiring bacteria as well as methanogens. Formation of acetylene-free environments in soils and sediments would also alter the function of nitrogenase from detoxification to nitrogen-fixation. The possibility of an acetylene-based anaerobic food chain in Jovian-type atmospheres is discussed. ?? 1988 Kluwer Academic Publishers.

  19. Ethylene binding site affinity in ripening apples

    SciTech Connect

    Blankenship, S.M. . Dept. of Horticultural Science); Sisler, E.C. )

    1993-09-01

    Scatchard plots for ethylene binding in apples (Malus domestica Borkh.), which were harvested weekly for 5 weeks to include the ethylene climacteric rise, showed C[sub 50] values (concentration of ethylene needed to occupy 50% of the ethylene binding sites) of 0.10, 0.11, 0.34, 0.40, and 0.57 [mu]l ethylene/liter[sup [minus]1], respectively, for each of the 5 weeks. Higher ethylene concentrations were required to saturate the binding sites during the climacteric rise than at other times. Diffusion of [sup 14]C-ethylene from the binding sites was curvilinear and did not show any indication of multiple binding sites. Ethylene was not metabolized by apple tissue.

  20. Colorometric detection of ethylene glycol vapor

    NASA Technical Reports Server (NTRS)

    Helm, C.; Mosier, B.; Verostko, C. E.

    1970-01-01

    Very low concentrations of ethylene glycol in air or other gases are detected by passing a sample through a glass tube with three partitioned compartments containing reagents which successively convert the ethylene glycol vapor into a colored compound.

  1. Volatilization of ethylene dibromide from water

    USGS Publications Warehouse

    Rathbun, R.E.; Tai, D.Y.

    1987-01-01

    Overall mass-transfer coefficients for the volatilization of ethylene dibromide from water were measured simultaneously with the oxygen absorption coefficient in a laboratory stirred tank. Coefficients were measured as a function of mixing conditions in the water for two windspeeds. The ethylene dibromide mass-transfer coefficient depended on windspeed; the ethylene dibromide liquid-film coefficient did not, in agreement with theory. A constant relation existed between the liquid-film coefficients for ethylene dibromide and oxygen.

  2. Morphology of flattened diamond crystals synthesized by the oxy-acetylene flame method

    NASA Astrophysics Data System (ADS)

    Hirabayashi, Keiji; Kimura, Takeshi; Hirose, Yoichi

    1993-01-01

    Flattened diamond crystals were synthesized by the oxy-acetyle flame method under high O2/C2H2 gas ratio conditions (≥0.95). The morphology of the flattened diamond crystals is characterized as follows: the ratio of the size of the top face and the height is 5:1 or more and all the faces are {111} faces. The twin boundaries are formed many times parallel to the top face. Scanning electron microscopy observations indicate that the flattened diamond crystals exhibit a good crystalline morphology. The motive force of lateral growth is caused by a re-entrant corner effect which results from the formation of twin boundaries.

  3. Ultrafast Extreme Ultraviolet Induced Isomerization of Acetylene Cations

    SciTech Connect

    Jiang, Y. H.; Kurka, M.; Kuehnel, K. U.; Schroeter, C. D.; Moshammer, R.; Rudenko, A.; Foucar, L.; Herrwerth, O.; Lezius, M.; Kling, M. F.; Tilborg, J. van; Belkacem, A.; Ueda, K.; Duesterer, S.; Treusch, R.; Ullrich, J.

    2010-12-31

    Ultrafast isomerization of acetylene cations ([HC=CH]{sup +}) in the low-lying excited A{sup 2}{Sigma}{sub g}{sup +} state, populated by the absorption of extreme ultraviolet (XUV) photons (38 eV), has been observed at the Free Electron Laser in Hamburg, (FLASH). Recording coincident fragments C{sup +}+CH{sub 2}{sup +} as a function of time between XUV-pump and -probe pulses, generated by a split-mirror device, we find an isomerization time of 52{+-}15 fs in a kinetic energy release (KER) window of 5.8

  4. Decoupling in the line mixing of acetylene infrared Q branches

    NASA Technical Reports Server (NTRS)

    Pine, A. S.; Looney, J. P.

    1990-01-01

    A difference-frequency laser spectrometer was used to record the Q-branch profiles of the nu1 + nu5, nu3 + nu4, and nu2 + 2nu4 + nu5 Pi(u)-Sigma(g) combination bands in the 2.5 micron C-H stretch-bend region of acetylene. The experiment was carried out at pressures in the range of 1 to 500 Torr. It is shown that line mixing causes substantial deviation of collisionally overlapped Q-branch profiles from the independently additive superposition of Lorentzian line shapes. It is also found that the degree of line mixing is greatly reduced from that assuming all the broadening arises from rotationally inelastic collisions coupling Q-branch lines only to one another.

  5. Acetylene fuel from atmospheric CO2 on Mars

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Linne, Diane L.

    1992-01-01

    The Mars mission scenario proposed by Baker and Zubrin (1990) intended for an unmanned preliminary mission is extended to maximize the total impulse of fuel produced with a minimum mass of hydrogen from Earth. The hydrogen along with atmospheric carbon dioxide is processed into methane and oxygen by the exothermic reaction in an atmospheric processing module. Use of simple chemical reactions to produce acetylene/oxygen rocket fuel on Mars from hydrogen makes it possible to produce an amount of fuel that is nearly 100 times the mass of hydrogen brought from earth. If such a process produces the return propellant for a manned Mars mission, the required mission mass in LEO is significantly reduced over a system using all earth-derived propellants.

  6. Adhesive and composite evaluation of acetylene-terminated phenylquinoxaline resins

    NASA Technical Reports Server (NTRS)

    Hergenrother, P. M.

    1981-01-01

    A series of acetylene-terminated phenylquinoxaline (ATPQ) oligomers of various molecular weights were prepared and subsequently chain extended by the thermally induced reaction of the ethynyl groups. The processability and thermal properties of these oligomers and their cured resins were compared with that of a relatively high molecular weight linear polyphenylquinoxaline (PPQ) with the same chemical backbone. The ATPQ oligomers exhibited significantly better processability than the linear PPQ but the PPQ displayed substantially better thermooxidative stability. Adhesive (Ti/Ti) and composite (graphite filament reinforcement) work was performed to evaluate the potential of these materials for structural applications. The PPQ exhibited better retention of adhesive and laminate properties than the ATPQ resins at 260 C after aging for 500 hr at 260 C in circulating air.

  7. Ultrafast Extreme Ultraviolet Induced Isomerization of Acetylene Cations

    SciTech Connect

    Jiang, Y.; Rudenko, Artem; Herrwerth, O.; Foucar, L.; Kurka, M.; Kuhnel, K.; Lezius, M.; Kling, Matthias; van Tilborg, Jeroen; Belkacem, Ali; Ueda, K.; Dusterer, S.; Treusch, R.; Schroter, Claus-Dieter; Moshammer, Robbert; Ullrich, Joachim

    2011-06-17

    Ultrafast isomerization of acetylene cations ([HC = CH]{sup +}) in the low-lying excited A{sup 2}{Sigma}{sub g}{sup +} state, populated by the absorption of extreme ultraviolet (XUV) photons (38 eV), has been observed at the Free Electron Laser in Hamburg, (FLASH). Recording coincident fragments C{sup +} + CH{sub 2}{sup +} as a function of time between XUV-pump and -probe pulses, generated by a split-mirror device, we find an isomerization time of 52 {+-} 15 fs in a kinetic energy release (KER) window of 5.8 < KER < 8 eV, providing clear evidence for the existence of a fast, nonradiative decay channel.

  8. Organogermanium Chemistry: Germacyclobutanes and digermane Additions to Acetylenes

    SciTech Connect

    Chubb, Andrew Michael

    2003-01-01

    This dissertation comprises two main research projects. The first project, presented in Chapter 1, involves the synthesis and thermochemistry of germacyclobutanes (germetanes). Four new germetanes (spirodigermetane, diallylgermetane, dichlorogermetane, and germacyclobutane) have been synthesized using a modified di-Grignard synthesis. Diallylgermetane is shown to be a useful starting material for obtaining other germetanes, particularly the parent germetane, germacyclobutane. The gas-phase thermochemistries of spirodigermetane, diallylgermetane and germacyclobutane have been explored via pulsed stirred-flow reactor (SFR) studies, showing remarkable differences in decomposition, depending on the substitution at the germanium atom. The second project investigates the thermochemical, photochemical, and catalytic additions of several digermanes to acetylenes. The first examples of thermo- and photochemical additions of Ge-Ge bonds to C{triple_bond}C are demonstrated. Mechanistic investigations are described and comparisons are made to analogous disilane addition reactions, previously studied in their group.

  9. 49 CFR 173.323 - Ethylene oxide.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.323 Ethylene oxide. (a) For packaging ethylene oxide in non-bulk packagings, silver mercury or any of its alloys or copper may not be used in any... 49 Transportation 2 2012-10-01 2012-10-01 false Ethylene oxide. 173.323 Section...

  10. 21 CFR 573.440 - Ethylene dichloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Ethylene dichloride. 573.440 Section 573.440 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additive Listing § 573.440 Ethylene dichloride. The food additive ethylene dichloride may be safely used...

  11. 21 CFR 173.230 - Ethylene dichloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene dichloride. 173.230 Section 173.230 Food... Solvents, Lubricants, Release Agents and Related Substances § 173.230 Ethylene dichloride. A tolerance of 30 parts per million is established for ethylene dichloride in spice oleoresins when present...

  12. 21 CFR 173.230 - Ethylene dichloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ethylene dichloride. 173.230 Section 173.230 Food... Solvents, Lubricants, Release Agents and Related Substances § 173.230 Ethylene dichloride. A tolerance of 30 parts per million is established for ethylene dichloride in spice oleoresins when present...

  13. 21 CFR 173.230 - Ethylene dichloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ethylene dichloride. 173.230 Section 173.230 Food... Solvents, Lubricants, Release Agents and Related Substances § 173.230 Ethylene dichloride. A tolerance of 30 parts per million is established for ethylene dichloride in spice oleoresins when present...

  14. 21 CFR 573.440 - Ethylene dichloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Ethylene dichloride. 573.440 Section 573.440 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additive Listing § 573.440 Ethylene dichloride. The food additive ethylene dichloride may be safely used...

  15. 21 CFR 573.440 - Ethylene dichloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Ethylene dichloride. 573.440 Section 573.440 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additive Listing § 573.440 Ethylene dichloride. The food additive ethylene dichloride may be safely used...

  16. 21 CFR 573.440 - Ethylene dichloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ethylene dichloride. 573.440 Section 573.440 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additive Listing § 573.440 Ethylene dichloride. The food additive ethylene dichloride may be safely used...

  17. 21 CFR 173.230 - Ethylene dichloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ethylene dichloride. 173.230 Section 173.230 Food... Related Substances § 173.230 Ethylene dichloride. A tolerance of 30 parts per million is established for ethylene dichloride in spice oleoresins when present therein as a residue from the extraction of...

  18. 21 CFR 173.230 - Ethylene dichloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ethylene dichloride. 173.230 Section 173.230 Food... Solvents, Lubricants, Release Agents and Related Substances § 173.230 Ethylene dichloride. A tolerance of 30 parts per million is established for ethylene dichloride in spice oleoresins when present...

  19. 21 CFR 573.440 - Ethylene dichloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Ethylene dichloride. 573.440 Section 573.440 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additive Listing § 573.440 Ethylene dichloride. The food additive ethylene dichloride may be safely used...

  20. Liquid ethylene-propylene copolymers

    NASA Technical Reports Server (NTRS)

    Rhein, R. A.; Ingham, J. D.; Humphrey, M. F.

    1975-01-01

    Oligomers are prepared by heating solid ethylene-propylene rubber in container that retains solid and permits liquid product to flow out as it is formed. Molecular weight and viscosity of liquids can be predetermined by process temperature. Copolymers have low viscosity for given molecular weight.

  1. New insights about the hydrogen bonds formed between acetylene and hydrogen fluoride: π ⋯ H, C ⋯ H and F ⋯ H

    NASA Astrophysics Data System (ADS)

    Silva, Denize S.; Oliveira, Boaz G.

    2017-02-01

    A theoretical study of hydrogen bond strength and bond properties in the C2H2 ⋯(HF)-T, C2H2 ⋯ 2(HF)-T, C2H2 ⋯ 2(HF), C2H2 ⋯ 3(HF) and C2H2 ⋯ 4(HF) complexes was carried out at the B3LYP/6-311 ++G(d,p) theory level. In these systems, a strength competition between the π ⋯ H and C ⋯ H interactions was examined. Specifically the F ⋯ H hydrogen bond, its properties were studied through a comparison between the hydrogen fluoride and the higher-order complexes (trimer, tetramer and pentamer). Regarding the electronic properties, the hydrogen bond strength could not be determined by the supermolecule approach. Thus, the hydrogen bond energies were computed via NBO calculations. Additionally to NBO, the ChelpG charge calculations were used to interpret the intermolecular charge transfer. The QTAIM integrations were useful to predict the covalent character of the π ⋯ H, C ⋯ H and F ⋯ H hydrogen bonds. Moreover, values of hybrid orbitals (s and p) and atomic radii were also determined in order to justify the red shifts in the stretch frequencies of the Hsbnd F bonds.

  2. Silyl-acetylene polymers for use as precursors to silicon carbide fibers

    SciTech Connect

    Meyer, M.K.

    1991-12-20

    The steps involved in production of silicon carbide fiber using silyl acetylene polymer precursors can be separated into four processing steps: polymer synthesis, fiber spinning, fiber crosslinking, and pyrolysis. Practical experimental considerations in each step are discussed.

  3. KISS: Kinetics and Structure of Superagglomerates Produced by Silane and Acetylene

    NASA Technical Reports Server (NTRS)

    Mulholland, G. W.; Yang, J. C.; Scott, J. H.; Sivithanu, Y.

    2001-01-01

    The objective of this study is to understand the process of gas phase agglomeration leading to superagglomerates and a gel-like structure for microgravity (0-g) silane and acetylene flames. Ultimately one would apply this understanding to predicting flame conditions that could lead to the gas phase production of an aero-gel. The approach is to burn acetylene and silane and to analyze the evolution of the soot and silica agglomerates. Acetylene is chosen because it has one of the highest soot volume fractions and there is evidence of super agglomerates being formed in laminar acetylene flames. Silane has the advantage that silica particles are the major combustion product resulting in a particle volume fraction a factor of ten greater than that for a carbonaceous smoke.

  4. Fluorinated 5- and 7-membered carbacycle motifs by reaction of difluorocarbene with acetylene ethers.

    PubMed

    Chia, Poh Wai; Bello, Davide; Slawin, Alexandra M Z; O'Hagan, David

    2013-03-18

    The reaction of acetylene ethers with difluorocarbene (CF(2)), generated from the Ruppert-Prakash reagent, unexpectedly gave rise to co-produced fluorinated bicyclic [2.1.1]-hex-2-ene and cyclohepta-1,4-diene ring products.

  5. INHIBITION OF ALKYLBENZENE BIODEGRADATION UNDER DENITRIFYING CONDITIONS BY USING THE ACETYLENE BLOCK TECHNIQUE

    EPA Science Inventory

    Addition of acetylene to microcosms simultaneously amended with nitrate and alkylbenzenes resulted in inhibition of the rate of alkylbenzene biodegradation under denitrifying conditions. Toluene, xylenes, and 1,2,4-trimethylbenzene were recalcitrant, whereas ethylbenzene was degr...

  6. Tunable mid-infrared emission from acetylene-filled hollow-core fiber

    NASA Astrophysics Data System (ADS)

    Wang, Zefeng; Zhou, Zhiyue; Li, Zhixian; Zhang, Naiqian; Chen, Yubin

    2016-11-01

    We report here a step tunable mid-infrared laser emission from acetylene-filled hollow-core fiber. Two kinds of anti-resonant hollow-core fibers are filled with mbar level of acetylene gas, and pumped with a modulated, amplified, narrow linewidth, fine tunable, 1.5 μm diode laser, then 3 μm laser emissions are generated by the intrinsic absorption of acetylene molecules. The laser wavelength is step-tunable in the range of 3.1 3.2 μm when the pump laser is precisely tuned to different absorption lines of P-branch of acetylene. By properly designing the fiber's transmission bands, and carefully selecting active gases and pump lasers, this paper provides a novel method for efficient, compact and tunable mid-infrared fiber lasers over a broad spectrum range.

  7. Evaluation of Sorbents for Acetylene Separation in Atmosphere Revitalization Loop Closure

    NASA Technical Reports Server (NTRS)

    Abney, Morgan B.; Miller, Lee A.; Barton, Katherine

    2011-01-01

    State-of-the-art carbon dioxide reduction technology uses a Sabatier reactor to recover water from metabolic carbon dioxide. In order to maximize oxygen loop closure, a byproduct of the system, methane, must be reduced to recover hydrogen. NASA is currently exploring a microwave plasma methane pyrolysis system for this purpose. The resulting product stream of this technology includes unreacted methane, product hydrogen, and acetylene. The hydrogen and the small amount of unreacted methane resulting from the pyrolysis process can be returned to the Sabatier reactor thereby substantially improving the overall efficiency of the system. However, the acetylene is a waste product that must be removed from the pyrolysis product. Two materials have been identified as potential sorbents for acetylene removal: zeolite 4A, a commonly available commercial sorbent, and HKUST-1, a newly developed microporous metal. This paper provides an explanation of the rationale behind acetylene removal and the results of separation testing with both materials.

  8. Evaluation of Sorbents for Acetylene Separation in Atmosphere Revitalization Loop Closure

    NASA Technical Reports Server (NTRS)

    Abney, Morgan B.; Miller, Lee A.; Barton, Katherine

    2012-01-01

    State-of-the-art carbon dioxide reduction technology uses a Sabatier reactor to recover water from metabolic carbon dioxide. In order to maximize oxygen loop closure, a byproduct of the system, methane, must be reduced to recover hydrogen. NASA is currently exploring a microwave plasma methane pyrolysis system for this purpose. The resulting product stream of this technology includes unreacted methane, product hydrogen, and acetylene. The hydrogen and the small amount of unreacted methane resulting from the pyrolysis process can be returned to the Sabatier reactor thereby substantially improving the overall efficiency of the system. However, the acetylene is a waste product that must be removed from the pyrolysis product. Two materials have been identified as potential sorbents for acetylene removal: zeolite 4A, a commonly available commercial sorbent, and HKUST-1, a newly developed microporous metal. This paper provides an explanation of the rationale behind acetylene removal and the results of separation testing with both materials

  9. Characterization of the Minimum Energy Paths and Energetics for the Reaction of Vinylidene with Acetylene

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.; Taylor, Peter R.

    1995-01-01

    The reaction of vinylidene (CH2C) with acetylene may be an initiating reaction in soot formation. We report minimum energy paths and accurate energetics for a pathway leading to vinyl-acetylene and for a number of isomers of C4H4. The calculations use complete active space self-consistent field (CASSCF) derivative methods to characterize the stationary points and internally contacted configuration interaction (ICCI) and/or coupled cluster singles and doubles with a perturbational estimate of triple excitations (CCSD(T)) to determine the energetics. We find an entrance channel barrier of about 5 kcal/mol for the addition of vinylidene to acetylene, but no barriers above reactants for the reaction pathway leading to vinyl-acetylene.

  10. Ethylene effects in pea stem tissue

    SciTech Connect

    Steen, D.A.; Chadwick, A.V.

    1981-01-01

    The marked effects of ethylene on pea stem growth have been investigated. Low temperatures and colchicine, both known microtubule depolymerization agents, reverse the effects of ethylene in straight growth tests. Low temperature (6 C) also profoundly reduces the effects of gas in terms of swelling, hook curvature, and horizontal mutation. Deuterium oxide, an agent capable of rigidifying microtubular structure, mimics the effects of ethylene. Electron microscopy shows that microtubule orientation is strikingly altered by ethylene. These findings indicate that some of the ethylene responses may be due to a stabilizing effect on microtubules in plant cells.

  11. The adsorption of acetylene on rhodium-modified colloidal silver, a surface-enhanced Raman study

    NASA Astrophysics Data System (ADS)

    Feilchenfeld, Hannah; Luckier, Miguel; Efron, Leah; Willner, Bilha

    Surface-enhanced Raman scattering (SERS) from molecules adsorbed on rhodium-modified colloidal silver particles is reported for the first time. Deposition of thin layers of metallic rhodium on the silver surface led to fast aggregation of the sol and to modifications of its SERS spectrum. An intense new band, assigned to the RhO stretching vibration of citrate ions bound to rhodium sites, appeared at 530 cm -1 in the Raman spectrum after rhodium addition to the suspension. The spectra of acetylene adsorbed on both unmodified silver particles and silver modified by an overlayer of rhodium indicated that acetylene displaced the citrate ions from their adsorption sites. All acetylene spectra were characterized by weak bands at 1990, 2050 and 2150 cm -1 assigned to σ π-complexes between acetylene and silver, by a silver acetylide peak at 1800 cm -1 and by an intense band at 1550 cm -1 due to C=C containing species formed on the surface. However, on the rhodium-modified colloid an additional band, attributed to acetylene σ π-bound to rhodium sites, was observed at 1910-1920 cm -1. The intensity of the new band was a direct function of the amount of rhodium deposited on the silver. It increased immediately after acetylene adsorption, and later slowly diminished, while simultaneously the 1550 cm -1 peak became more important. This time evolution was ascribed to a reaction taking place on the surface.

  12. A porous metal-organic framework with ultrahigh acetylene uptake capacity under ambient conditions

    PubMed Central

    Pang, Jiandong; Jiang, Feilong; Wu, Mingyan; Liu, Caiping; Su, Kongzhao; Lu, Weigang; Yuan, Daqiang; Hong, Maochun

    2015-01-01

    Acetylene, an important petrochemical raw material, is very difficult to store safely under compression because of its highly explosive nature. Here we present a porous metal-organic framework named FJI-H8, with both suitable pore space and rich open metal sites, for efficient storage of acetylene under ambient conditions. Compared with existing reports, FJI-H8 shows a record-high gravimetric acetylene uptake of 224 cm3 (STP) g−1 and the second-highest volumetric uptake of 196 cm3 (STP) cm−3 at 295 K and 1 atm. Increasing the storage temperature to 308 K has only a small effect on its acetylene storage capacity (∼200 cm3 (STP) g−1). Furthermore, FJI-H8 exhibits an excellent repeatability with only 3.8% loss of its acetylene storage capacity after five cycles of adsorption–desorption tests. Grand canonical Monte Carlo simulation reveals that not only open metal sites but also the suitable pore space and geometry play key roles in its remarkable acetylene uptake. PMID:26123775

  13. Mechanism-based inactivation of benzo(a)pyrene hydroxylase by aryl acetylenes and aryl olefins

    SciTech Connect

    Gan, L.S.; Lu, J.Y.L.; Alworth, W.L.

    1986-05-01

    A series of aryl acetylenes and aryl olefins have been examined as substrates and inhibitors of cytochrome P-450 dependent monooxgenases in liver microsomes from 5,6-benzoflavone or phenobarbital pretreated rats. 1-Ethynylpyrene, 3-ethynylperylene, 2-ethynylfluorene, methyl 1-pyrenyl acetylene, cis- and trans-1-(2-bromovinyl)pyrene, and 1-allylpyrene serve as mechanism-based irreversible inactivators (suicide inhibitors) of benzo(a)pyrene hydroxylase, while 1-vinylpyrene and phenyl 1-pyrenyl acetylene do not cause a detectable suicide inhibition of benzo(a)pyrene hydroxylase. The mechanism-based loss of benzo(a)pyrene hydroxylase caused by the aryl acetylenes is not accompanied by a corresponding loss of the P-450 content of the microsomes (suicide destruction). The suicide inhibition by these aryl acetylenes therefore does not involve covalent binding to the heme moiety of the monooxygenase. Nevertheless, in the presence of NADPH, /sup 3/H-labeled 1-ethynylpyrene becomes covalently attached to the cytochrome P-450 protein; the measured stoichiometry of binding is one 1-ethynylpyrene per P-450 heme unit. The authors conclude that the inhibition of benzo(a)pyrene hydroxylase produced by 1-ethynylpyrene may be related to the mechanism of suicide inhibition of P-450 activity by chloramphenicol rather than the mechanism of suicide destruction of P-450 previously described for acetylene and propyne.

  14. Particle Generation and Evolution in Silane/Acetylene Flames in Microgravity

    NASA Technical Reports Server (NTRS)

    Keil, D. G.

    2001-01-01

    The objective of this new experimental program is to advance the understanding of the formation of particles from gas phase combustion processes. The work will utilize the unique SiH4/C2H2 combustion system which generates particulate products ranging from high purity, white SiC to carbonaceous soot depending on equivalence ratio. A key goal of this work is to identify gas phase or particle formation processes that provide the enthalpy release necessary to drive the combustion wave, and to locate the parts of the particle formation process that determine SiC stoichiometry and crystallinity. In a real sense, these SiH4/C2H2 flames act like "highly sooty" hydrocarbon flames, but with simpler chemistry. This simplification is expected to allow them to be used as surrogates to advance understanding of soot formation in such rich hydrocarbon flames. It is also expected that this improved understanding of SiC particle generation and evolution in these self-sustaining flames will advance the commercial potential of the flame process for the generation of high purity SiC powders.

  15. Optical fiber gas sensor development and application

    NASA Astrophysics Data System (ADS)

    Jin, W.; Ho, H. L.

    2008-12-01

    This paper reports recent development and application of optical fiber gas sensors using absorption spectroscopy, including open-path gas sensors using fiber coupled micro-optic cells and photonic bandgap (PBG) fibers. A fiber-optic sensor system capable of detecting dissolved fault gases in oil-insulated equipment in power industry is presented. The gases include methane (CH4), acetylene (C2H2) and ethylene (C2H4). In addition, the development of gas sensor using PBG fiber will be reported.

  16. An improved processible acetylene-terminated polyimide for composites

    NASA Technical Reports Server (NTRS)

    Landis, A. L.; Naselow, A. B.

    1985-01-01

    The newest member of a family of thermosetting acetylene-substituted polyimide oligomers is HR600P. This oligomer is the isoimide version of the oligomer known as HR600P and Thermid 600. Although both types of material yield the same heat resistant end products after cure, HR600P has much superior processing characteristics. This attributed to its lower melting temperature (160 + or - 10 C, 320 + or - 20 F) in contrast to 202 C (396 F) for Thermid MC-600, its longer gel time at its processing temperature (16 to 30 minutes bvs 3 minutes), and its excellent solubility in low boiling solvents such as tetrahydrofuran, glymes, or 4:1 methyl ethyl ketone/toluene mixtures. These advantages provide more acceptable coating and impregnation procedures, allow for more complete removal at lower temperatures, provide a longer pot life or working time, and allow composite structure fabrication in conventional autoclaves used for epoxy composite curing. The excellent processing characteristics of HR600P allow its use in large area laminated structures, structural composites, and molding compositions.

  17. Acetylene-chromene terminated resins as high temperature thermosets

    NASA Technical Reports Server (NTRS)

    Godschalx, J. P.; Inbasekaran, M. N.; Bartos, B. R.; Scheck, D. M.; Laman, S. A.

    1990-01-01

    A novel phase transfer catalyzed process for the preparation of propargyl ethers has been developed. The propargyl ethers serve as precursors to a new class of thermosetting resins called acetylene-chromene terminated (ACT) resins. Heat treatment of a solution of propargyl ethers with various catalysts, followed by removal of solvent leads to the ACT resins via partial conversion of the propargyl ether groups to chromenes. This process reduces the energy content of the resin systems and reduces the amount of shrinkage found during cure. Due to the presence of the solvent the process is safe and gives rise to low viscosity products suitable for resin transfer molding and filament winding type applications. Due to the high glass transition temperature, high modulus, and low moisture uptake the cured resins display better than 232 C/wet performance. The thermal stability of the ACT resins in air at 204 C is superior to that of conventional bismaleimide resins. The resins also display excellent electrical properties.

  18. Ionization of large homogeneous and heterogeneous clusters generated in acetylene-Ar expansions: Cluster ion polymerization

    SciTech Connect

    Kocisek, J.; Lengyel, J.; Farnik, M.

    2013-03-28

    Pure acetylene and mixed Ar-acetylene clusters are formed in supersonic expansions of acetylene/argon mixtures and analysed using reflectron time-of-flight mass spectrometer with variable electron energy ionization source. Acetylene clusters composed of more than a hundred acetylene molecules are generated at the acetylene concentration of Almost-Equal-To 8%, while mixed species are produced at low concentrations ( Almost-Equal-To 0.7%). The electron energy dependence of the mass spectra revealed the ionization process mechanisms in clusters. The ionization above the threshold for acetylene molecule of 11.5 eV results in the main ionic fragment progression (C{sub 2}H{sub 2}){sub n}{sup +}. At the electron energies Greater-Than-Or-Slanted-Equal-To 21.5 eV above the CH+CH{sup +} dissociative ionization limit of acetylene the fragment ions nominally labelled as (C{sub 2}H{sub 2}){sub n}CH{sup +}, n Greater-Than-Or-Slanted-Equal-To 2, are observed. For n Less-Than-Or-Slanted-Equal-To 7 these fragments correspond to covalently bound ionic structures as suggested by the observed strong dehydrogenation [(C{sub 2}H{sub 2}){sub n}-k Multiplication-Sign H]{sup +} and [(C{sub 2}H{sub 2}){sub n}CH -k Multiplication-Sign H]{sup +}. The dehydrogenation is significantly reduced in the mixed clusters where evaporation of Ar instead of hydrogen can stabilize the nascent molecular ion. The C{sub 3}H{sub 3}{sup +} ion was previously assigned to originate from the benzene molecular ion; however, the low appearance energy of Almost-Equal-To 13.7 eV indicates that a less rigid covalently bound structure of C{sub 6}H{sub 6}{sup +} ion must also be formed upon the acetylene cluster electron ionization. The appearance energy of Ar{sub n}(C{sub 2}H{sub 2}){sup +} fragments above Almost-Equal-To 15.1 eV indicates that the argon ionization is the first step in the fragment ion production, and the appearance energy of Ar{sub n{>=}2}(C{sub 2}H{sub 2}){sub m{>=}2}{sup +} at Almost-Equal-To 13

  19. Acetylene Fermentation: Relevance to Primordial Biogeochemistry and the Search for Life in the Outer Solar System

    NASA Astrophysics Data System (ADS)

    Oremland, R. S.; Baesman, S. M.; Miller, L. G.

    2013-12-01

    Acetylene is a highly reactive component of planet(oid)s with anoxic, methane-rich atmospheres, such as Jupiter, Saturn, Titan, and perhaps the primordial Earth. Included in this group is Enceladus, although it is not clear if the acetylene detected within its jets by Cassini was formed by photolysis of methane, from thermo-catalysis of organic matter in the orb's interior, or a fragmentation artifact of the mass spectrum of a larger hydrocarbon. Acetylene inhibits many microbial processes (e.g., methanogenesis, methane oxidation, hydrogen metabolism, denitrification) yet a number of anaerobes can use it as a carbon and energy source to support growth. The best studied is Pelobacter acetylenicus, which carries out a two-step reaction involving the enzymes acetylene hydratase and acetaldehyde dismutase. The former, a low potential W-containing enzyme, forms acetaldehyde while the latter produces ethanol and acetate. Metabolism of acetylene by mixed microbial communities (sediments and/or enrichment cultures) produces these intermediates, and when coupled with sulfate-reduction or methanogenesis respectively forms CO2 or an equal mixtures of CO2 plus CH4. It is not inconceivable that such an anaerobic, microbial food chain could exist in the waters beneath the ice cap of Enceladus, Titan, or even in the mesothermal atmospheric regions of the gas giants. Detection of the identified intermediate products of acetylene fermentation, namely acetaldehyde, ethanol, acetate and formate in the atmospheres of these planet(oid)s would constitute evidence for a microbial life signature. This evidence would be strongly reinforced if a stable carbon isotope fractionation was identified as well, whereby the products of acetylene fermentation were enriched in 12C relative to 13C (i.e., had a lighter δ13C signal) when compared to that of the starting acetylene. The most practical target to test this hypothesis would be Enceladus (if the detected acetylene is shown to be a real

  20. Ethylene capacity tops 77 million mty

    SciTech Connect

    Rhodes, A.K.; Knott, D.

    1995-04-17

    World ethylene production capacity is 77.8 million metric tons/year (mty). This total represents an increase of more than 6 million mty, or almost 9%, over last year`s survey. The biggest reason for the large change is more information about plants in the CIS. Also responsible for the increase in capacity is the start-up of several large ethylene plants during the past year. The paper discusses construction of ethylene plants, feedstocks, prices, new capacity, price outlook, and problems in Europe`s ethylene market.

  1. Acetylene reaction with the Si(111) surface: A semiempirical quantum chemical study

    NASA Astrophysics Data System (ADS)

    Weiner, B.; Carmer, C. S.; Frenklach, M.

    1991-01-01

    The interaction between the acetylene molecule and the Si(111) surface was modeled using the geometry optimization pathway of the Zerner intermediate neglect of differential overlap semiempirical quantum chemical program. The surface was represented by a 49-atom cluster containing four layers of silicon atoms. To determine the effect of the interaction upon the silicon surface, 12 central atoms from the top two layers were allowed to move to stable positions. The geometry of the silicon surface was initially optimized without acetylene, resulting in a significant rearrangement of the mobile atoms. Nine separate calculations were then performed, differing in the initial position and orientation of the acetylene molecule above the surface. The geometry of the resulting surface structures was found to be highly dependent upon the initial placement and orientation of the acetylene. In each case, the acetylene was found to react with the silicon surface by the formation of Si-C bonds. An analysis of the Wiberg bond indices revealed that the initial triple bond between carbon atoms was reduced to approximately a single bond, the exact bond order varying slightly from case to case. It was also found that Si-Si bonds surrounding the reaction site were weakened, and in some cases broken, due to the strain induced by the Si-C bond formation. The degree to which the surfaces were rearranged was found to correlate with the final energies, indicating that the most distorted surfaces were the most energetically favorable.

  2. Adsorption of binary mixtures of ethane and acetylene on activated carbon

    SciTech Connect

    Lee, T.V.; Huang, J.C.; Rothstein, D.; Madey, R.

    1984-01-01

    Dynamic measurement of the adsorption of binary mixtures of ethane and acetylene (and also of each gas alone) in a helium carrier gas were made on an (Columbia 4LXC 12/28) activated carbon adsorber bed at 25/sup 0/C. The adsorption capacities of the activated carbon for the pure gases and for each component in the mixtures are extracted from the transmission curves by the use of a mass balance equation. Transmission is the ratio of the concentration at the outlet of the adsorber bed to that at the inlet. The adsorption isotherms for pure ethane and acetylene can be presented by a modified Langmuir isotherm known as the Chakravarti-Dhar isotherm at gas concentrations up to at least 4.2 X 19/sup -7/ mol/cm/sup 3/ (viz., 7.8 mmHg). The gas-adsorbate equilibrium composition and the adsorption capacity of each component in the binary mixture of ethane and acetylene are estimated from the corresponding single-component isotherms by applying ideal adsorbed solution theory (IAST). The fact that the estimated values of the adsorption capacities and the gas-adsorbate equilibrium compositions are in good agreement with those extracted from the measurements for the binary mixtures of ethane and acetylene confirms that the ethane-acetylene system forms an ideal adsorbed phase on activated carbon at a pressure of about 7.3 mmHg and a temperature of 25/sup 0/C. 20 references, 4 figures, 4 tables.

  3. Time dependence of ethylene decomposition and byproducts formation in a continuous flow dielectric-packed plasma reactor.

    PubMed

    Gandhi, M Sanjeeva; Ananth, Antony; Mok, Young Sun; Song, Jun-Ik; Park, Kyu-Hyun

    2013-04-01

    This work investigated the decomposition of ethylene in a continuous flow dielectric-packed bed plasma reactor filled with various packing materials at atmospheric pressure and room temperature. When compared to the case without any packing material, the reactor filled with packing materials remarkably facilitated the plasma-induced decomposition of ethylene in the order of α-alumina>silica>zirconia>glass wool (GW). Under identical condition, the increase in the decomposition efficiency (DE) with increasing the specific energy input was more rapid in the plasma reactor filled with the packing materials than in the blank plasma reactor. In the early stage, almost complete decomposition of ethylene was observed with the α-alumina, but after a certain period of time, the DE decreased with time. Unlike the α-alumina, the other packing materials examined did not show any significant deterioration in the decomposition over time during 10-h operation. After the regeneration of the used packing materials by using the plasma in the presence of oxygen, the original decomposition performance was nearly recovered. The decrease in the BET surface area due to the formation of polymer deposits was observed in the used α-alumina and silica; however the surface area was almost regained by the regeneration. While no other byproducts except carbon oxides and N2O were detected with the α-alumina and silica, methane, acetylene, formaldehyde and N2O were identified in the effluent gas with the zirconia and GW packing materials.

  4. Ethylene Regulates Levels of Ethylene Receptor/CTR1 Signaling Complexes in Arabidopsis thaliana

    DOE PAGES

    Shakeel, Samina N.; Gao, Zhiyong; Amir, Madiha; ...

    2015-03-26

    The plant hormone ethylene is perceived by a five-member family of receptors in Arabidopsis thaliana. The receptors function in conjunction with the Raf-like kinase CTR1 to negatively regulate ethylene signal transduction. CTR1 interacts with multiple members of the receptor family based on co-purification analysis, interacting more strongly with receptors containing a receiver domain. Levels of membrane-associated CTR1 vary in response to ethylene, doing so in a post-transcriptional manner that correlates with ethylene-mediated changes in levels of the ethylene receptors ERS1, ERS2, EIN4, and ETR2. Interactions between CTR1 and the receptor ETR1 protect ETR1 from ethylene-induced turnover. Kinetic and dose-response analysesmore » support a model in which two opposing factors control levels of the ethylene receptor/CTR1 complexes. Ethylene stimulates the production of new complexes largely through transcriptional induction of the receptors. However, ethylene also induces turnover of receptors, such that levels of ethylene receptor/CTR1 complexes decrease at higher ethylene concentrations. Lastly, we discuss implications of this model for ethylene signaling.« less

  5. Biocatalytic conversion of ethylene to ethylene oxide using an engineered toluene monooxygenase

    SciTech Connect

    Carlin, DA; Bertolani, SJ; Siegel, JB

    2015-01-01

    Mutants of toluene o-xylene monooxygenase are demonstrated to oxidize ethylene to ethylene oxide in vivo at yields of >99%. The best mutant increases ethylene oxidation activity by >5500-fold relative to the native enzyme. This is the first report of a recombinant enzyme capable of carrying out this industrially significant chemical conversion.

  6. Ethylene and pollination decrease transcript abundance of an ethylene receptor gene in Dendrobium petals.

    PubMed

    Thongkum, Monthathip; Burns, Parichart; Bhunchoth, Anjana; Warin, Nuchnard; Chatchawankanphanich, Orawan; van Doorn, Wouter G

    2015-03-15

    We studied the expression of a gene encoding an ethylene receptor, called Ethylene Response Sensor 1 (Den-ERS1), in the petals of Dendrobium orchid flowers. Transcripts accumulated during the young floral bud stage and declined by the time the flowers had been open for several days. Pollination or exposure to exogenous ethylene resulted in earlier flower senescence, an increase in ethylene production and a lower Den-ERS1 transcript abundance. Treatment with 1-methylcyclopropene (1-MCP), an inhibitor of the ethylene receptor, decreased ethylene production and resulted in high transcript abundance. The literature indicates two kinds of ethylene receptor genes with regard to the effects of ethylene. One group shows ethylene-induced down-regulated transcription, while the other has ethylene-induced up-regulation. The present gene is an example of the first group. The 5' flanking region showed binding sites for Myb and myb-like, homeodomain, MADS domain, NAC, TCP, bHLH and EIN3-like transcription factors. The binding site for the EIN3-like factor might explain the ethylene effect on transcription. A few other transcription factors (RAV1 and NAC) seem also related to ethylene effects.

  7. Biocatalytic conversion of ethylene to ethylene oxide using an engineered toluene monooxygenase.

    PubMed

    Carlin, D A; Bertolani, S J; Siegel, J B

    2015-02-11

    Mutants of toluene o-xylene monooxygenase are demonstrated to oxidize ethylene to ethylene oxide in vivo at yields of >99%. The best mutant increases ethylene oxidation activity by >5500-fold relative to the native enzyme. This is the first report of a recombinant enzyme capable of carrying out this industrially significant chemical conversion.

  8. Ethylene Regulates Levels of Ethylene Receptor/CTR1 Signaling Complexes in Arabidopsis thaliana.

    PubMed

    Shakeel, Samina N; Gao, Zhiyong; Amir, Madiha; Chen, Yi-Feng; Rai, Muneeza Iqbal; Haq, Noor Ul; Schaller, G Eric

    2015-05-08

    The plant hormone ethylene is perceived by a five-member family of receptors in Arabidopsis thaliana. The receptors function in conjunction with the Raf-like kinase CTR1 to negatively regulate ethylene signal transduction. CTR1 interacts with multiple members of the receptor family based on co-purification analysis, interacting more strongly with receptors containing a receiver domain. Levels of membrane-associated CTR1 vary in response to ethylene, doing so in a post-transcriptional manner that correlates with ethylene-mediated changes in levels of the ethylene receptors ERS1, ERS2, EIN4, and ETR2. Interactions between CTR1 and the receptor ETR1 protect ETR1 from ethylene-induced turnover. Kinetic and dose-response analyses support a model in which two opposing factors control levels of the ethylene receptor/CTR1 complexes. Ethylene stimulates the production of new complexes largely through transcriptional induction of the receptors. However, ethylene also induces turnover of receptors, such that levels of ethylene receptor/CTR1 complexes decrease at higher ethylene concentrations. Implications of this model for ethylene signaling are discussed.

  9. Poly(ethylene oxide) functionalization

    DOEpatents

    Pratt, Russell Clayton

    2014-04-08

    A simple procedure is provided by which the hydroxyl termini of poly(ethylene oxide) can be appended with functional groups to a useful extent by reaction and precipitation. The polymer is dissolved in warmed toluene, treated with an excess of organic base and somewhat less of an excess of a reactive acylating reagent, reacted for several hours, then precipitated in isopropanol so that the product can be isolated as a solid, and salt byproducts are washed away. This procedure enables functionalization of the polymer while not requiring laborious purification steps such as solvent-solvent extraction or dialysis to remove undesirable side products.

  10. Gas Chromatographic Separation of an Acetylene Vinyl Fluoride-Difluoroethane Mixture on Triethylene Glycol and Silicone Oil,

    DTIC Science & Technology

    The purpose of the research was to study gas-chromatographic separation of impurities of acetylene and difluoroethane in vinyl fluoride obtained by...and difluoroethane . All the components are separated, and the criteria of separation of acetylene-vinyl fluoride and vinyl fluoride- difluoroethane

  11. Abiotic reductive dechlorination of chlorinated ethylenes by iron-bearing soil minerals. 1. Pyrite and magnetite.

    PubMed

    Lee, Woojin; Batchelor, Bill

    2002-12-01

    Abiotic reductive dechlorination of chlorinated ethylenes (tetrachloroethylene (PCE), trichloroethylene (TCE), cis-dichloroethylene (cis-DCE), and vinyl chloride (VC)) by pyrite and magnetite was characterized in a batch reactor system. Dechlorination kinetics was adequately described by a modified Langmuir-Hinshelwood model that includes the effect of a decreasing reductive capacity of soil mineral. The kinetic rate constant for the reductive dechlorination of target organics at reactive sites of soil minerals was in the range of 0.185 (+/- 0.023) to 1.71 (+/- 0.06) day(-1). The calculated specific reductive capacity of soil minerals for target organics was in the range of 0.33 (+/- 0.02) to 2.26 (+/- 0.06) microM/g and sorption coefficient was in the range of 0.181 (+/- 0.006) to 0.7 (+/- 0.022) mM(-1). Surface area-normalized pseudo-first-order initial rate constants for target organics by pyrite were found to be 23.5 to 40.3 times greater than those by magnetite. Target organics were mainly transformed to acetylene and small amount of chlorinated intermediates, which suggests that beta-elimination was the main dechlorination pathway. The dechlorination of VC followed a hydrogenolysis pathway to produce ethylene and ethane. The addition of Fe(II) increased the dechlorination rate of cis-DCE and VC in magnetite suspension by nearly a factor of 10. The results obtained in this research provide basic knowledge to better predict the fate of chlorinated ethylenes and to understand the potential of abiotic processes in natural attenuation.

  12. On the radiolysis of ethylene ices by energetic electrons and implications to the extraterrestrial hydrocarbon chemistry

    SciTech Connect

    Zhou, Li; Maity, Surajit; Abplanalp, Matt; Turner, Andrew; Kaiser, Ralf I.

    2014-07-20

    The chemical processing of ethylene ices (C{sub 2}H{sub 4}) by energetic electrons was investigated at 11 K to simulate the energy transfer processes and synthesis of new molecules induced by secondary electrons generated in the track of galactic cosmic ray particles. A combination of Fourier transform infrared spectrometry (solid state) and quadrupole mass spectrometry (gas phase) resulted in the identification of six hydrocarbon molecules: methane (CH{sub 4}), the C2 species acetylene (C{sub 2}H{sub 2}), ethane (C{sub 2}H{sub 6}), the ethyl radical (C{sub 2}H{sub 5}), and—for the very first time in ethylene irradiation experiments—the C4 hydrocarbons 1-butene (C{sub 4}H{sub 8}) and n-butane (C{sub 4}H{sub 10}). By tracing the temporal evolution of the newly formed molecules spectroscopically online and in situ, we were also able to fit the kinetic profiles with a system of coupled differential equations, eventually providing mechanistic information, reaction pathways, and rate constants on the radiolysis of ethylene ices and the inherent formation of smaller (C1) and more complex (C2, C4) hydrocarbons involving carbon-hydrogen bond ruptures, atomic hydrogen addition processes, and radical-radical recombination pathways. We also discuss the implications of these results on the hydrocarbon chemistry on Titan's surface and on ice-coated, methane-bearing interstellar grains as present in cold molecular clouds such as TMC-1.

  13. A philosophical theory on human communication and modern physics: e(,2)c(,2)H('2)T energy-exchange and consciousness-change toward humanism, healing, and transformation

    NASA Astrophysics Data System (ADS)

    Jenkins-Tate, Marnishia Laverne

    This dissertation addresses the need for a body of human communication theory that can be useful toward advancing personal and social transformation. Of the humanistic genre, it suggests that there is a need to promote humanism, healing, and personal transformation in the non-clinical settings of everyday living. Three questions guide the effort. First, it asks: what kind of human communication theory might describe some of the underlying dynamics of human interaction, while also suggesting ways to improve the quality of interactions of any related philosophical theory be grounded by some scientific discipline? Then finally, it asks: how might these proposed concepts be captured in a manner that can be useful to human beings in everyday human interaction? Extending the work of modern physics to the realm of human communication, the theory integrates conceptual aspects of quantum theory, relativity theory, communication accommodation theory, and various nonverbal communication theory. Then, it proposes the philosophical framework for a new body of theory which it calls the energy-exchange theory of human communication. Treating human beings as living forms of matter, it suggests that ``energy'' is the life-force that sustains all human beings, and that ``consciousness'' is that qualitative level of development at which energy manifests itself in the human experience. It proposes that human beings have the capacity to exchange energy and influence consciousness during the human communication process, and that these interactions can advance humanism, healing, and transformation-which it proposes are the higher states and levels of human consciousness. Thus, this research effort sought to know and to describe a phenomenon that is the interactive human being; and to suggest useful ways that this volitional being can know and transform itself through human interaction. With verisimilitude as a driving factor in describing human beings as communicators, the research is ontology- centered. It suggests that human beings are most notably creatures of feeling and soul, and that it is through interaction involving these dimensions that one can best come to know the human being. Accordingly, the research employs a hermeneutic phenomenological approach toward participative inquiry and experiential knowing. With practicality as a driving factor in suggesting ways that the human phenomenon can know and transform itself, this work utilizes a pragmatic approach to theory- building. Pragmatism suggests that all theories are approximations that ultimately should be judged on their abilities to truthfully describe phenomena and to solve human problems. Thus, having undergone an inductive progression from data to theory-building, now this work must go from theory to data, such that next steps should involve formal assessment of its verisimilitude and pragmatism based on feedback gained through field research on various persons who may apply the theory and its model to everyday living. (Abstract shortened by UMI.)

  14. Reactions of Fe+ and FeO+ with C2H2, C2H4, and C2H6: Temperature-Dependent Kinetics

    DTIC Science & Technology

    2013-09-12

    highly exothermic reaction is only minimally hindered kinetically and therefore would be expected to proceed with very high efficiency and minimal...and is unlikely to be involved under these experimental conditions. Changing the neutral isomer to CHCOH makes the reaction 0.57 eV exothermic , and... reaction is flat over our temperature range, consistent with the well-spaced, highly exothermic product channels calculated by Zhang et al. The static

  15. Quantum Dynamics of Vinylidene Photodetachment on an Accurate Global Acetylene-Vinylidene Potential Energy Surface.

    PubMed

    Guo, Lifen; Han, Huixian; Ma, Jianyi; Guo, Hua

    2015-08-06

    Vinylidene is a high-energy isomer of acetylene, and the rearrangement of bonds in the two species serves as a prototype for isomerization reactions. Here, a full-dimensional quantum mechanical study of the vinylidene vibration is carried out on a recently developed global acetylene-vinylidene potential energy surface by simulating the photodetachment dynamics of the vinylidene anion. Several low-lying vibrational levels of the anion were first determined on a new ab initio based potential energy surface, and their photoelectron spectra were obtained within the Condon approximation. The vibrational features of the vinylidene isomer are found to agree well with the experiment in both positions and intensities, validating the global acetylene-vinylidene potential energy surface.

  16. Examining the impact of acetylene on N-fixation and the active sediment microbial community

    PubMed Central

    Fulweiler, Robinson W.; Heiss, Elise M.; Rogener, Mary Kate; Newell, Silvia E.; LeCleir, Gary R.; Kortebein, Sarah M.; Wilhelm, Steven W.

    2015-01-01

    Here we examined the impact of a commonly employed method used to measure nitrogen fixation, the acetylene reduction assay (ARA), on a marine sediment community. Historically, the ARA technique has been broadly employed for its ease of use, in spite of numerous known artifacts. To gauge the severity of these effects in a natural environment, we employed high-throughput 16S rRNA gene sequencing to detect differences in acetylene-treated sediments vs. non-treated control sediments after a 7 h incubation. Within this short time period, significant differences were seen across all activity of microbes identified in the sediment, implying that the changes induced by acetylene occur quickly. The results have important implications for our understanding of marine nitrogen budgets. Moreover, because the ARA technique has been widely used in terrestrial and freshwater habitats, these results may be applicable to other ecosystems. PMID:26029177

  17. Methods and compositions to modulate ethylene sensitivity

    DOEpatents

    Stepanova, Anna N.; Ecker, Joseph R.

    2007-01-30

    The field of the invention relates to plants and plant genes, including both plant mutants and transgenic plants containing a gene that confers an ethylene insensitive phenotype. Also encompassed by the invention are methods of using the disclosed plant gene to confer an ethylene insensitive phenotype.

  18. 29 CFR 1910.1047 - Ethylene oxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 6 2012-07-01 2012-07-01 false Ethylene oxide. 1910.1047 Section 1910.1047 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS (CONTINUED) Toxic and Hazardous Substances § 1910.1047 Ethylene oxide. (a) Scope and...

  19. 29 CFR 1915.1047 - Ethylene oxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Ethylene oxide. 1915.1047 Section 1915.1047 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... § 1915.1047 Ethylene oxide. Note: The requirements applicable to shipyard employment under this...

  20. 29 CFR 1926.1147 - Ethylene oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 8 2014-07-01 2014-07-01 false Ethylene oxide. 1926.1147 Section 1926.1147 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Ethylene oxide. Note: The requirements applicable to construction work under this section are identical...