Science.gov

Sample records for acetylene partial pressure

  1. Vapor pressures of acetylene at low temperatures

    NASA Technical Reports Server (NTRS)

    Masterson, C. M.; Allen, John E., Jr.; Kraus, G. F.; Khanna, R. K.

    1990-01-01

    The atmospheres of many of the outer planets and their satellites contain a large number of hydrocarbon species. In particular, acetylene (C2H2) has been identified at Jupiter, Saturn and its satellite Titan, Uranus and Neptune. In the lower atmospheres of these planets, where colder temperatures prevail, the condensation and/or freezing of acetylene is probable. In order to obtain accurate models of the acetylene in these atmospheres, it is necessary to have a complete understanding of its vapor pressures at low temperatures. Vapor pressures at low temperatures for acetylene are being determined. The vapor pressures are measured with two different techniques in order to cover a wide range of temperatures and pressures. In the first, the acetylene is placed in a sample tube which is immersed in a low temperature solvent/liquid nitrogen slush bath whose temperature is measured with a thermocouple. The vapor pressure is then measured directly with a capacitance manometer. For lower pressures, a second technique which was called the thin-film infrared method (TFIR) was developed. It involves measuring the disappearance rate of a thin film of acetylene at a particular temperature. The spectra are then analyzed using previously determined extinction coefficient values, to determine the disappearance rate R (where R = delta n/delta t, the number of molecules that disappear per unit time). This can be related to the vapor pressure directly. This technique facilitates measurement of the lower temperatures and pressures. Both techniques have been calibrated using CO2, and have shown good agreement with the existing literature data.

  2. High pressure chemistry of substituted acetylenes

    SciTech Connect

    Chellappa, Raja; Dattelbaum, Dana; Sheffield, Stephen; Robbins, David

    2011-01-25

    High pressure in situ synchrotron x-ray diffraction experiments were performed on substituted polyacetylenes: tert-butyl acetylene [TBA: (CH{sub 3}){sub 3}-C{triple_bond}CH] and ethynyl trimethylsilane [ETMS: (CH{sub 3}){sub 3}-Si{triple_bond}CH] to investigate pressure-induced chemical reactions. The starting samples were the low temperature crystalline phases which persisted metastably at room temperature and polymerized beyond 11 GPa and 26 GPa for TBA and ETMS respectively. These reaction onset pressures are considerably higher than what we observed in the shockwave studies (6.1 GPa for TBA and 6.6 GPa for ETMS). Interestingly, in the case of ETMS, it was observed with fluid ETMS as starting sample, reacts to form a semi-crystalline polymer (crystalline domains corresponding to the low-T phase) at pressures less than {approx}2 GPa. Further characterization using vibrational spectroscopy is in progress.

  3. Oxygen partial pressure sensor

    DOEpatents

    Dees, D.W.

    1994-09-06

    A method for detecting oxygen partial pressure and an oxygen partial pressure sensor are provided. The method for measuring oxygen partial pressure includes contacting oxygen to a solid oxide electrolyte and measuring the subsequent change in electrical conductivity of the solid oxide electrolyte. A solid oxide electrolyte is utilized that contacts both a porous electrode and a nonporous electrode. The electrical conductivity of the solid oxide electrolyte is affected when oxygen from an exhaust stream permeates through the porous electrode to establish an equilibrium of oxygen anions in the electrolyte, thereby displacing electrons throughout the electrolyte to form an electron gradient. By adapting the two electrodes to sense a voltage potential between them, the change in electrolyte conductivity due to oxygen presence can be measured. 1 fig.

  4. Oxygen partial pressure sensor

    DOEpatents

    Dees, Dennis W.

    1994-01-01

    A method for detecting oxygen partial pressure and an oxygen partial pressure sensor are provided. The method for measuring oxygen partial pressure includes contacting oxygen to a solid oxide electrolyte and measuring the subsequent change in electrical conductivity of the solid oxide electrolyte. A solid oxide electrolyte is utilized that contacts both a porous electrode and a nonporous electrode. The electrical conductivity of the solid oxide electrolyte is affected when oxygen from an exhaust stream permeates through the porous electrode to establish an equilibrium of oxygen anions in the electrolyte, thereby displacing electrons throughout the electrolyte to form an electron gradient. By adapting the two electrodes to sense a voltage potential between them, the change in electrolyte conductivity due to oxygen presence can be measured.

  5. Oxygen transport through polyethylene terephthalate (PET) coated with plasma-polymerized acetylene at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Wemlinger, Erik; Pedrow, Patrick; Garcia-Pérez, Manuel; Sablani, Shyam

    2011-10-01

    Moser et al. have shown that oxygen transport through polyethyleneterephthalate (PET) is reduced by a factor of up to 120 when, at reduced pressure, hydrogenated amorphous carbon film with thickness less than 100 nm is applied to the PET substrate. Our work includes using atmospheric pressure cold plasma to grow a plasma-polymerized acetylene film on PET substrate and measuring reductions in oxygen transport. The reactor utilizes corona discharges and is operated at 60 Hz with a maximum voltage of 10 kV RMS. Corona streamers emanate from an array of needles with an average radius of curvature of 50 μm. The reactor utilizes a cylindrical reaction chamber with a vertical orientation such that argon carrier gas and acetylene precursor gas are introduced at the top then pass through the cold plasma activation zone and then through a grounded stainless steel mesh. Acetylene radicals are incident on the PET substrate and form plasma-polymerized acetylene film. Moser et al. have shown that oxygen transport through polyethyleneterephthalate (PET) is reduced by a factor of up to 120 when, at reduced pressure, hydrogenated amorphous carbon film with thickness less than 100 nm is applied to the PET substrate. Our work includes using atmospheric pressure cold plasma to grow a plasma-polymerized acetylene film on PET substrate and measuring reductions in oxygen transport. The reactor utilizes corona discharges and is operated at 60 Hz with a maximum voltage of 10 kV RMS. Corona streamers emanate from an array of needles with an average radius of curvature of 50 μm. The reactor utilizes a cylindrical reaction chamber with a vertical orientation such that argon carrier gas and acetylene precursor gas are introduced at the top then pass through the cold plasma activation zone and then through a grounded stainless steel mesh. Acetylene radicals are incident on the PET substrate and form plasma-polymerized acetylene film. E.M. Moser, R. Urech, E. Hack, H. Künzli, E. Müller, Thin

  6. Low pressure R.F. plasma reactions in light hydrocarbons. Ethylene and acetylene

    NASA Astrophysics Data System (ADS)

    Canepa, Pietro; Castello, Gianrico; Nicchia, Mario; Munari, Stelio

    The results obtained in the plasmolysis of ethylene and acetylene in an inductively coupled radiofrequency glow discharge are reported. A static system at a constant initial pressure of 0.5 torr and input power of 50 W was used; the gaseous and polymeric products were evaluated and compared with previous data on ethane plasmolysis and other available literature data. The decomposition products of ethylene were similar to those obtained during the plasmolysis of ethane, with a different distribution and a smaller initial increase of the total pressure. The total pressure of acetylene quickly decreased to near zero value at small specific energy, due to rapid polymerization. No gaseous products were detected, except hydrogen and traces of diacetylene.

  7. Partial pressure analysis of plasmas

    SciTech Connect

    Dylla, H.F.

    1984-11-01

    The application of partial pressure analysis for plasma diagnostic measurements is reviewed. A comparison is made between the techniques of plasma flux analysis and partial pressure analysis for mass spectrometry of plasmas. Emphasis is given to the application of quadrupole mass spectrometers (QMS). The interface problems associated with the coupling of a QMS to a plasma device are discussed including: differential-pumping requirements, electromagnetic interferences from the plasma environment, the detection of surface-active species, ion source interactions, and calibration procedures. Example measurements are presented from process monitoring of glow discharge plasmas which are useful for cleaning and conditioning vacuum vessels.

  8. Control of the nucleation and quality of graphene grown by low-pressure chemical vapor deposition with acetylene

    NASA Astrophysics Data System (ADS)

    Yang, Meng; Sasaki, Shinichirou; Suzuki, Ken; Miura, Hideo

    2016-03-01

    Although many studies have reported the chemical vapor deposition (CVD) growth of large-area monolayer graphene from methane, synthesis of graphene using acetylene as the source gas has not been fully explored. In this study, the low-pressure CVD (LPCVD) growth of graphene from acetylene was systematically investigated. We succeeded in regulating the domain size, defects density, layer number and the sheet resistance of graphene by changing the acetylene flow rates. Scanning electron microscopy and Raman spectroscopy were employed to confirm the layer number, uniformity and quality of the graphene films. It is found that a low flow rate of acetylene (0.28 sccm) is required to form high-quality monolayer graphene in our system. On the other hand, the high acetylene flow rate (7 sccm) will induce the growth of the bilayer graphene domains with high defects density. On the basis of selected area electron diffraction (SAED) pattern, the as-grown monolayer graphene domains were analyzed to be polycrystal. We also discussed the relation between the sheet resistacne and defects density in graphene. Our results provide great insights into the understanding of the CVD growth of monolayer and bilayer graphene from acetylene.

  9. Soot Formation in Laminar Acetylene/Air Diffusion Flames at Atmospheric Pressure. Appendix J

    NASA Technical Reports Server (NTRS)

    Xu, F.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2001-01-01

    The flame structure and soot-formation (soot nucleation and growth) properties of axisymmetric laminar coflowing jet diffusion flames were studied experimentally. Test conditions involved acetylene-nitrogen jets burning in coflowing air at atmospheric pressure. Measurements were limited to the axes of the flames and included soot concentrations, soot temperatures, soot structure, major gas species concentrations, radical species (H, OH, and O) concentrations, and gas velocities. The results show that as distance increases along the axes of the flames, detectable soot formation begins when significant H concentrations are present, and ends when acetylene concentrations become small. Species potentially associated with soot oxidation--O2, CO2, H2O, O, and OH-are present throughout the soot-formation region so that soot formation and oxidation proceed at the same time. Strong rates of soot growth compared to soot nucleation early in the soot-formation process, combined with increased rates of soot nucleation and oxidation as soot formation proceeds, causes primary soot particle diameters to reach a maximum relatively early in the soot-formation process. Aggregation of primary soot particles proceeds, however, until the final stages of soot oxidation. Present measurements of soot growth (corrected for soot oxidation) in laminar diffusion flames were consistent with earlier measurements of soot growth in laminar premixed flames and exhibited encouraging agreement with existing hydrogen-abstraction/carbon-addition (HACA) soot growth mechanisms in the literature that were developed based on measurements within laminar premixed flames. Measured primary soot particle nucleation rates in the present laminar diffusion flames also were consistent with corresponding rates measured in laminar premixed flames and yielded a crude correlation in terms of acetylene and H concentrations and the temperature.

  10. Soot Formation in Laminar Acetylene/Air Diffusion Flames at Atmospheric Pressure. Appendix C

    NASA Technical Reports Server (NTRS)

    Xu, F.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2000-01-01

    The flame structure and soot-formation (soot nucleation and growth) properties of axisymmetric laminar coflowing jet diffusion flames were studied experimentally. Test conditions involved acetylene-nitrogen jets burning in coflowing air at atmospheric pressure. Measurements were limited to the axes of the flames and included soot concentrations, soot temperatures, soot structure, major gas species concentrations, radical species (H, OH, and O) concentrations, and gas velocities. The results show that as distance increases along the axes of the flames, detectable soot formation begins when significant H concentrations are present, and ends when acetylene concentrations become small. Species potentially associated with soot oxidation-O2, CO2, H2O, O, and OH-are present throughout the soot-formation region so that soot formation and oxidation proceed at the same time. Strong rates of soot growth compared to soot nucleation early in the soot-formation process, combined with increased rates of soot nucleation and oxidation as soot formation proceeds, causes primary soot particle diameters to reach a maximum relatively early in the soot-formation process. Aggregation of primary soot particles proceeds, however, until the final stages of soot oxidation. Present measurements of soot growth (corrected for soot oxidation) in laminar diffusion flames were consistent with earlier measurements of soot growth in laminar premixed flames and exhibited encouraging agreement with existing hydrogen-abstraction/carbon-addition (HACA) soot growth mechanisms in the literature that were developed based on measurements within laminar premixed flames. Measured primary soot particle nucleation rates in the present laminar diffusion flames also were consistent with corresponding rates measured in laminar premixed flames and yielded a crude correlation in terms of acetylene and H concentrations and the temperature.

  11. Soot Formation in Laminar Acetylene/Air Diffusion Flames at Atmospheric Pressure. Appendix H

    NASA Technical Reports Server (NTRS)

    Xu, F.; Faeth, G. M.; Yuan, Z.-G. (Technical Monitor); Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2001-01-01

    The flame structure and soot-formation (soot nucleation and growth) properties of axisymmetric laminar coflowing jet diffusion flames were studied experimentally. Test conditions involved acetylene-nitrogen jets burning in coflowing air at atmospheric pressure. Measurements were limited to the axes of the flames and included soot concentrations, soot temperatures, soot structure, major gas species concentrations, radical species (H, OH, and O) concentrations, and gas velocities. The results show that as distance increases along the axes of the flames, detectable soot formation begins when significant H concentrations are present, and ends when acetylene concentrations become small. Species potentially associated with soot oxidation-O2, CO2, H2O, O, and OH-are present throughout the soot-formation region so that soot formation and oxidation proceed at the same time. Strong rates of soot growth compared to soot nucleation early in the soot-formation process, combined with increased rates of soot nucleation and oxidation as soot formation proceeds, causes primary soot particle diameters to reach a maximum relatively early in the soot-formation process. Aggregation of primary soot particles proceeds, however, until the final stages of soot oxidation. Present measurements of soot growth (corrected for soot oxidation) in laminar diffusion flames were consistent with earlier measurements of soot growth in laminar premixed flames and exhibited encouraging agreement with existing hydrogen-abstraction/carbon-addition (HACA) soot growth mechanisms in the literature that were developed based on measurements within laminar premixed flames. Measured primary soot particle nucleation rates in the present laminar diffusion flames also were consistent with corresponding rates measured in laminar premixed flames and yielded a crude correlation in terms of acetylene and H concentrations and the temperature.

  12. Characterization of magnetically confined low-pressure plasmas produced by an electromagnetic field in argon-acetylene mixtures

    NASA Astrophysics Data System (ADS)

    Makdessi, G. Al; Margot, J.; Clergereaux, R.

    2016-10-01

    Dust particles formation was investigated in magnetically confined low-pressure plasma produced in argon-acetylene mixtures. The plasma characteristics were measured in order to identify the species involved in the dust particles formation. Their dependence on the operating conditions including magnetic field intensity, acetylene fraction in the gas mixture and operating pressure was examined. In contrast with noble gases, in the presence of acetylene, the electron temperature increases with the magnetic field intensity, indicating additional charged particles losses in the plasma. Indeed, in these conditions, larger hydrocarbon ions are produced leading to the formation of dust particles in the plasma volume. The observed dependence of positive ion mass distribution and density and relative negative ion density on the operating parameters suggests that the dust particles are formed through different pathways, where negative and positive ions are both involved in the nucleation.

  13. Thin film oxygen partial pressure sensor

    NASA Technical Reports Server (NTRS)

    Wortman, J. J.; Harrison, J. W.; Honbarrier, H. L.; Yen, J.

    1972-01-01

    The development is described of a laboratory model oxygen partial pressure sensor using a sputtered zinc oxide thin film. The film is operated at about 400 C through the use of a miniature silicon bar. Because of the unique resistance versus temperature relation of the silicon bar, control of the operational temperature is achieved by controlling the resistance. A circuit for accomplishing this is described. The response of sputtered zinc oxide films of various thicknesses to oxygen, nitrogen, argon, carbon dioxide, and water vapor caused a change in the film resistance. Over a large range, film conductance varied approximately as the square root of the oxygen partial pressure. The presence of water vapor in the gas stream caused a shift in the film conductance at a given oxygen partial pressure. A theoretical model is presented to explain the characteristic features of the zinc oxide response to oxygen.

  14. DEVICE FOR CONTROL OF OXYGEN PARTIAL PRESSURE

    DOEpatents

    Bradner, H.; Gordon, H.S.

    1957-12-24

    A device is described that can sense changes in oxygen partial pressure and cause a corresponding mechanical displacement sufficient to actuate meters, valves and similar devices. A piston and cylinder arrangement contains a charge of crystalline metal chelate pellets which have the peculiar property of responding to variations in the oxygen content of the ambient atmosphere by undergoing a change in dimension. A lever system amplifies the relative displacement of the piston in the cylinder, and actuates the controlled valving device. This partial pressure oxygen sensing device is useful in controlled chemical reactions or in respiratory devices such as the oxygen demand meters for high altitude aircraft.

  15. Wall pressure fluctuations in rectangular partial enclosures

    NASA Astrophysics Data System (ADS)

    Pagliaroli, T.; Camussi, R.

    2015-04-01

    Wall pressure fluctuations generated within rectangular partial enclosures (RPEs) have been studied experimentally for a broad range of geometrical parameters. The geometry represents a simplified version of a new generation trapped vortex combustor and consisted of a rectangular cavity connected to a neck of smaller size. Wall pressure fluctuations have been measured through wall mounted microphones providing single and multi-variate pressure statistics both in the physical space and in the Fourier domain. In order to interpret the pressure signals, aerodynamic and acoustic investigations have been carried out as well for several cavity-neck ratios. The analysis of the acoustic response of the cavity has been conducted both numerically and experimentally and a simple theoretical model has been proposed to predict the frequency of the acoustic resonances. The aerodynamic study has been carried out through PIV measurements that provided characterization in terms of the geometrical parameters of both the large-scale vortex generated within the cavity and the recirculation zone formed upstream of the neck. The use of the POD decomposition permitted us to correlate the dynamics of the recirculation with the observed pressure statistics. The aerodynamic and acoustic investigations allowed us to interpret exhaustively the wall pressure cross-statistics and to separate contributions induced by hydrodynamic and purely acoustic pressure fluctuations.

  16. Temperature and pressure dependence of the absolute rate constant for the reactions of NH2 radicals with acetylene and ethylene

    NASA Technical Reports Server (NTRS)

    Bosco, S. R.; Nava, D. F.; Brobst, W. D.; Stief, L. J.

    1984-01-01

    The absolute rate constants for the reaction between the NH2 free radical and acetylene and ethylene is measured experimentally using a flash photolysis technique. The constant is considered to be a function of temperature and pressure. At each temperature level of the experiment, the observed pseudo-first-order rate constants were assumed to be independent of flash intensity. The results of the experiment indicate that the bimolecular rate constant for the NH2 + C2H2 reaction increases with pressure at 373 K and 459 K but not at lower temperatures. Results near the pressure limit conform to an Arrhenius expression of 1.11 (+ or -) 0.36 x 10 to the -13th over the temperature range from 241 to 459 K. For the reaction NH2 + C2H4, a smaller rate of increase in the bimolecular rate constant was observed over the temperature range 250-465 K. The implications of these results for current theoretical models of NH2 + C2H2 (or H4) reactions in the atmospheres of Jupiter and Saturn are discussed.

  17. Partial pressure analysis in space testing

    NASA Technical Reports Server (NTRS)

    Tilford, Charles R.

    1994-01-01

    For vacuum-system or test-article analysis it is often desirable to know the species and partial pressures of the vacuum gases. Residual gas or Partial Pressure Analyzers (PPA's) are commonly used for this purpose. These are mass spectrometer-type instruments, most commonly employing quadrupole filters. These instruments can be extremely useful, but they should be used with caution. Depending on the instrument design, calibration procedures, and conditions of use, measurements made with these instruments can be accurate to within a few percent, or in error by two or more orders of magnitude. Significant sources of error can include relative gas sensitivities that differ from handbook values by an order of magnitude, changes in sensitivity with pressure by as much as two orders of magnitude, changes in sensitivity with time after exposure to chemically active gases, and the dependence of the sensitivity for one gas on the pressures of other gases. However, for most instruments, these errors can be greatly reduced with proper operating procedures and conditions of use. In this paper, data are presented illustrating performance characteristics for different instruments and gases, operating parameters are recommended to minimize some errors, and calibrations procedures are described that can detect and/or correct other errors.

  18. Partial pressure measurements with an active spectrometer

    SciTech Connect

    Brooks, N.H.; Jensen, T.H.; Colchin, R.J.; Maingi, R.; Wade, M.R.; Finkenthal, D.F.; Naumenko, N.; Tugarinov, S.

    1998-07-01

    Partial pressure neutral ga measurements have been made using a commercial Penning gauge in conjunction with an active spectrometer. In prior work utilizing bandpass filters and conventional spectrometers, trace concentrations of the hydrogen isotopes H, D, T and of the noble gases He, Ne and Ar were determined from characteristic spectral lines in the light emitted by the neutral species of these elements. For all the elements mentioned, the sensitivity was limited by spectral contamination from a pervasive background of molecular hydrogen radiation. The active spectrometer overcomes this limitations by means of a digital lock-in method and correlation with reference spectra. Preliminary measurements of an admixture containing a trace amount of neon in deuterium show better than a factor of 20 improvement in sensitivity over conventional techniques. This can be further improved by correlating the relative intensities of multiple lines to sets of reference spectra.

  19. [Photodissociation of Acetylene and Acetone using Step-Scan Time-Resolved FTIR Emission Spectroscopy

    NASA Technical Reports Server (NTRS)

    McLaren, Ian A.; Wrobel, Jacek D.

    1997-01-01

    The photodissociation of acetylene and acetone was investigated as a function of added quenching gas pressures using step-scan time-resolved FTIR emission spectroscopy. Its main components consist of Bruker IFS88, step-scan Fourier Transform Infrared (FTIR) spectrometer coupled to a flow cell equipped with Welsh collection optics. Vibrationally excited C2H radicals were produced from the photodissociation of acetylene in the unfocused experiments. The infrared (IR) emission from these excited C2H radicals was investigated as a function of added argon pressure. Argon quenching rate constants for all C2H emission bands are of the order of 10(exp -13)cc/molecule.sec. Quenching of these radicals by acetylene is efficient, with a rate constant in the range of 10(exp -11) cc/molecule.sec. The relative intensity of the different C2H emission bands did not change with the increasing argon or acetylene pressure. However, the overall IR emission intensity decreased, for example, by more than 50% when the argon partial pressure was raised from 0.2 to 2 Torr at fixed precursor pressure of 160mTorr. These observations provide evidence for the formation of a metastable C2H2 species, which are collisionally quenched by argon or acetylene. Problems encountered in the course of the experimental work are also described.

  20. Microporous metal–organic framework with dual functionalities for highly efficient removal of acetylene from ethylene/acetylene mixtures

    PubMed Central

    Hu, Tong-Liang; Wang, Hailong; Li, Bin; Krishna, Rajamani; Wu, Hui; Zhou, Wei; Zhao, Yunfeng; Han, Yu; Wang, Xue; Zhu, Weidong; Yao, Zizhu; Xiang, Shengchang; Chen, Banglin

    2015-01-01

    The removal of acetylene from ethylene/acetylene mixtures containing 1% acetylene is a technologically very important, but highly challenging task. Current removal approaches include the partial hydrogenation over a noble metal catalyst and the solvent extraction of cracked olefins, both of which are cost and energy consumptive. Here we report a microporous metal–organic framework in which the suitable pore/cage spaces preferentially take up much more acetylene than ethylene while the functional amine groups on the pore/cage surfaces further enforce their interactions with acetylene molecules, leading to its superior performance for this separation. The single X-ray diffraction studies, temperature dependent gas sorption isotherms, simulated and experimental column breakthrough curves and molecular simulation studies collaboratively support the claim, underlying the potential of this material for the industrial usage of the removal of acetylene from ethylene/acetylene mixtures containing 1% acetylene at room temperature through the cost- and energy-efficient adsorption separation process. PMID:26041691

  1. Development of pressurized coal partial combustor

    SciTech Connect

    Yoshida, K.; Ino, T.; Yamamoto, T.; Kimura, N.

    1995-12-31

    The integrated gasification combined cycle (IGCC), an environment-friendly power generation system of high thermal efficiency, is being developed via various approaches around the world. The oxygen-blown entrained flow gasification process is a relatively simple method of producing medium calorie coal gas suitable for application to gas turbines. Various systems for this process have been developed to a demonstration level in Europe and America. Japan has actively been developing the air-blown process. However, taking stable molten slag discharge into consideration, coal must be supplied at two stages to raise the combustor temperature in ash molten part. Only two reports have been presented regarding two-stage coal supply. One is the report on an experiment with the Hycol gasifier, in which air feed ratio is varied, with coal feed fixed. The other is report on a simulation study with various gasifier coal feed ratios, conducted at Central Research Institute of Electric Power Industry. It seems that the appropriate feed ratio has not yet been established. Through this activity, a unique furnace construction has been established, and these influences of stoichiometric air ratio, of oxygen enrichment, of char recycling and of coal types on performance have been clarified. The purpose of the present study is to apply this developed CPC techniques to a Pressurized CPC (PCPC), thereby improving the IGCC technology. For the present study, we conducted systematic experiments on the air-blown process with a two stage dry feed system, using a 7 t/d-coal bench scale PCPC test facility, operated at the pressure of 0.4 MPa, and clarified the influence of coal feed ratio on coal gasification performance. This report describes the above-mentioned bench scale test procedures and results, and also some informations about a plan of a 25 t/d-coal pilot test system.

  2. Report on ISS Oxygen Production, Resupply, and Partial Pressure Management

    NASA Technical Reports Server (NTRS)

    Schaezler, Ryan; Ghariani, Ahmed; Leonard, Daniel; Lehman, Daniel

    2011-01-01

    The majority of oxygen used on International Space Station (ISS) is for metabolic support and denitrogenation procedures prior to Extra-Vehicular Activities. Oxygen is supplied by various visiting vehicles such as the Progress and Shuttle in addition to oxygen production capability on both the United States On-Orbit Segment (USOS) and Russian Segment (RS). To maintain a habitable atmosphere the oxygen partial pressure is controlled between upper and lower bounds. The full range of the allowable oxygen partial pressure along with the increased ISS cabin volume is utilized as a buffer allowing days to pass between oxygen production or direct addition of oxygen to the atmosphere from reserves. This paper summarizes amount of oxygen supplied and produced from all of the sources and describes past experience of managing oxygen partial pressure along with the range of management options available to the ISS.

  3. Measurement of partial pressures in vacuum technology and vacuum physics

    NASA Technical Reports Server (NTRS)

    Huber, W. K.

    1986-01-01

    It is pointed out that the measurement of gaseous pressures of less than 0.0001 torr is based on the ionization of gas atoms and molecules due to collisions with electrons. The particle density is determined in place of the pressure. The ionization cross sections for molecules of various gases are discussed. It is found that the true pressure in a vacuum system cannot be determined with certainty if it is unknown which gas is present. Effects of partial pressure determination on the condition of the vacuum system are discussed together with ion sources, systems of separation, and ion detection.

  4. Electron ionization of acetylene

    NASA Astrophysics Data System (ADS)

    King, Simon J.; Price, Stephen D.

    2007-11-01

    Relative partial ionization cross sections and precursor specific relative partial ionization cross sections for fragment ions formed by electron ionization of C2H2 have been measured using time-of-flight mass spectrometry coupled with a 2D ion-ion coincidence technique. We report data for the formation of H+, H2+, C2+, C+/C22+, CH +/C2H22+, CH2+, C2+, and C2H + relative to the formation of C2H2+, as a function of ionizing electron energy from 30-200eV. While excellent agreement is found between our data and one set of previously published absolute partial ionization cross sections, some discrepancies exist between the results presented here and two other recent determinations of these absolute partial ionization cross sections. We attribute these differences to the loss of some translationally energetic fragment ions in these earlier studies. Our relative precursor-specific partial ionization cross sections enable us, for the first time, to quantify the contribution to the yield of each fragment ion from single, double, and triple ionization. Analysis shows that at 50eV double ionization contributes 2% to the total ion yield, increasing to over 10% at an ionizing energy of 100eV. From our ion-ion coincidence data, we have derived branching ratios for charge separating dissociations of the acetylene dication. Comparison of our data to recent ab initio/RRKM calculations suggest that close to the double ionization potential C2H22+ dissociates predominantly on the ground triplet potential energy surface (Σg-3) with a much smaller contribution from dissociation via the lowest singlet potential energy surface (Δg1). Measurements of the kinetic energy released in the fragmentation reactions of C2H22+ have been used to obtain precursor state energies for the formation of product ion pairs, and are shown to be in good agreement with available experimental data and with theory.

  5. Using Dalton's Law of Partial Pressures to Determine the Vapor Pressure of a Volatile Liquid

    ERIC Educational Resources Information Center

    Hilgeman, Fred R.; Bertrand, Gary; Wilson, Brent

    2007-01-01

    This experiment, designed for a general chemistry laboratory, illustrates the use of Dalton's law of partial pressures to determine the vapor pressure of a volatile liquid. A predetermined volume of air is injected into a calibrated tube filled with a liquid whose vapor pressure is to be measured. The volume of the liquid displaced is greater than…

  6. Acetylenic carbon allotrope

    DOEpatents

    Lagow, Richard J.

    1998-01-01

    A fourth allotrope of carbon, an acetylenic carbon allotrope, is described. The acetylenic carbon allotropes of the present invention are more soluble than the other known carbon allotropes in many common organic solvents and possesses other desirable characteristics, e.g. high electron density, ability to burn cleanly, and electrical conductive properties. Many uses for this fourth allotrope are described herein.

  7. Acetylenic carbon allotrope

    DOEpatents

    Lagow, Richard J.

    1999-01-01

    A fourth allotrope of carbon, an acetylenic carbon allotrope, is described. The acetylenic carbon allotropes of the present invention are more soluble than the other known carbon allotropes in many common organic solvents and possesses other desirable characteristics, e.g. high electron density, ability to burn cleanly, and electrical conductive properties. Many uses for this fourth allotrope are described herein.

  8. Acetylenic carbon allotrope

    DOEpatents

    Lagow, R.J.

    1998-02-10

    A fourth allotrope of carbon, an acetylenic carbon allotrope, is described. The acetylenic carbon allotropes of the present invention are more soluble than the other known carbon allotropes in many common organic solvents and possesses other desirable characteristics, e.g. high electron density, ability to burn cleanly, and electrical conductive properties. Many uses for this fourth allotrope are described herein. 17 figs.

  9. Reduced atmospheric pressure in Radish: Alteration of NCER and transpiration at decreased oxygen partial pressures

    NASA Astrophysics Data System (ADS)

    Wehkamp, Cara Ann; Stasiak, Michael; Wheeler, Raymond; Dixon, Mike

    Fundamental to the future of space exploration is the development of advanced life support systems capable of maintaining crews for significant periods without re-supply from Earth. Significant research is focused on the development of bioregenerative life support systems to be used in conjunction with the current physico-chemical methods. These bioregenerative life support systems harness natural ecosystem processes and employ plant photosynthesis and transpiration to produce food, oxygen and regenerate water while consuming carbon dioxide. The forthcoming exploration of the Moon and Mars has prompted interest into the effects of hypobaria on plant development. Reduced atmospheric pressures will lessen the pressure gradient between the structure and the local environment thereby decreasing gas leakage and possibly the structural mass of the plant growth facility. In order to establish the optimal specifications for reduced pressure plant growth structures it is essential to determine the atmospheric pressure limits required for conventional plant development and growth. Due to its physiological importance, oxygen will compose a significant portion of these minimal environments. The objective of this study was to test the hypothesis that reduced atmospheric pressure and decreased oxygen partial pressures had no effect on radish productivity. Radishes (Raphanus sativa L. cv. Cherry Bomb II) were grown from seed in the University of Guelph's Hypobaric Plant Growth Chambers for a period of 21 days. Treatments included total pressures of 10, 33, 66 and 96 kPa and oxygen partial pressures of 2, 7, 14 and 20 kPa. Experiments demonstrated that reduced partial pressures of oxygen had a greater effect on radish growth than hypobaria. Results showed a reduction in net carbon exchange rate and transpiration with decreasing oxygen partial pressures leading to diminished productivity. Keywords: hypobaric, radish, oxygen partial pressure, variable pressure chamber

  10. Biological nitrogen fixation under primordial Martian partial pressures of dinitrogen

    NASA Technical Reports Server (NTRS)

    Klingler, J. M.; Mancinelli, R. L.; White, M. R.

    1989-01-01

    One of the most striking differences between the conditions on early Mars and earth was a low (18 mb) partial pressure of N2 (pN2) on early Mars, as opposed to 780 mb N2 on earth. To investigate the possibility of biological nitrogen fixation under conditions of early Mars, experiments were carried out on the growth of Azotobacter vinelandii and Azomonas agilis in nitrogen-free synthetic medium under various partial pressures of N2 (ranging from 780 to 0 mb). It was found that, although the biomass, cell number, and growth rate of these bacteria decreased with decreasing pN2 values below pN2 of 400 mb, both microorganisms were capable of growing at pN2 as low as 5 mb (but not at of below 1 mb), indicating that biological fixation of nitrogen could have occurred on primordial Mars.

  11. Oxygen-Partial-Pressure Sensor for Aircraft Oxygen Mask

    NASA Technical Reports Server (NTRS)

    Kelly, Mark; Pettit, Donald

    2003-01-01

    A device that generates an alarm when the partial pressure of oxygen decreases to less than a preset level has been developed to help prevent hypoxia in a pilot or other crewmember of a military or other high-performance aircraft. Loss of oxygen partial pressure can be caused by poor fit of the mask or failure of a hose or other component of an oxygen distribution system. The deleterious physical and mental effects of hypoxia cause the loss of a military aircraft and crew every few years. The device is installed in the crewmember s oxygen mask and is powered via communication wiring already present in all such oxygen masks. The device (see figure) includes an electrochemical sensor, the output potential of which is proportional to the partial pressure of oxygen. The output of the sensor is amplified and fed to the input of a comparator circuit. A reference potential that corresponds to the amplified sensor output at the alarm oxygen-partial-pressure level is fed to the second input of the comparator. When the sensed partial pressure of oxygen falls below the minimum acceptable level, the output of the comparator goes from the low state (a few millivolts) to the high state (near the supply potential, which is typically 6.8 V for microphone power). The switching of the comparator output to the high state triggers a tactile alarm in the form of a vibration in the mask, generated by a small 1.3-Vdc pager motor spinning an eccentric mass at a rate between 8,000 and 10,000 rpm. The sensation of the mask vibrating against the crewmember s nose is very effective at alerting the crewmember, who may already be groggy from hypoxia and is immersed in an environment that is saturated with visual cues and sounds. Indeed, the sensation is one of rudeness, but such rudeness could be what is needed to stimulate the crewmember to take corrective action in a life-threatening situation.

  12. High-Pressure Equation of State for Partially Ionic Solids

    NASA Technical Reports Server (NTRS)

    Schlosser, Herbert; Ferrante, John

    1993-01-01

    Recently, we showed that the cohesive energy of partially ionic solids may be characterized by a two-term energy relationship consisting of a Coulomb term arising from the valence-charge transfer delta Z between the atoms, and a scaled universal energy function E(sup *)(a(sup *)), which accounts for the partially covalent character of the bond and for the repulsion between the atomic cores for small R; a(sup *) is a scaled length. Normalized cohesive-energy curves of alkali halide crystals and of Ti and Ag halide crystals were obtained, and the cohesive-energy-curve parameters were used to generate theoretical equation-of-state (EOS) curves for the Li, Na, K, Cs, and Ag halides. Good agreement was obtained with the experimental isothermal compression curves over a wide pressure range (0-90 kbar). In this paper we verify that the cohesive-energy relationship is valid for divalent partially ionic solids; physically reasonable charge-transfer values (1.80 less than delta Z less than 2.0) are obtained for MgO, CaO, and CaS. Next, EOS curves for LiF, NaF, Nal, CsCl, Csl, MgO, CaO, and CaS are generated in terms of the cohesive-energy parameters. These EOS's yield excellent fits to experimental isothermal-compression data and to shock-wave data to very high pressures (P(sub max)= 250-1350 kbar).

  13. Measurement and calibration techniques used in computer partial pressure analysis

    SciTech Connect

    Mitchell, D.J.

    1985-05-01

    The uses of residual gas analyzers (RGA's) in computer controlled analytical studies and process monitoring applications are discussed in this paper. The relative merits are compared for the two most commonly used RGA's, which are the magnetic sector and the quadrupole mass analyzer. Methods of installing RGA's in vacuum systems and computer interfacing techniques are described. Measurement and calibration methods are outlined for applications where it is desirable to characterize either partial pressures or gas evolution rates. Interpretation of RGA spectra and limitations imposed by analytical errors are also discussed.

  14. Determination of the partial pressure of thallium in high-pressure lamp arcs: A comparative study

    SciTech Connect

    Karabourniotis, D.; Couris, S.; Damelincourt, J.J.; Aubes, M.

    1986-08-01

    The partial pressure of thallium in high-pressure Hg-TlI discharges with different mercury, thallium, and electron pressures has been measured by using the optically thin line Tl 655 nm and the self-reversed line Tl 535 nm. The partial pressure of the arc axis has been measured from the line Tl 655nm. The effective partial pressure has been measured from the self-reversed line Tl 535 nm on the basis of the multiparameter method, and it has been calculated from the known axis pressure of thallium and the calculation of its radial variation by taking into account the chemical reactions. The experimental results confirm the dispersion character of the blue wing of the line Tl 535 nm. The systematic difference obtained between the measured and calculated effective pressure, particularly at the moment of minimum electron density, may be interpreted by deviations from the local thermodynamic equilibrium (LTE) caused by overpopulation of the upper level of the line Tl 535 nm.

  15. Fine-tuning control on CNT diameter distribution, length and density using thermal CVD growth at atmospheric pressure: an in-depth analysis on the role of flow rate and flow duration of acetylene (C2H2) gas

    NASA Astrophysics Data System (ADS)

    Tripathi, Nishant; Mishra, Prabhash; Harsh, Harsh; Islam, S. S.

    2015-01-01

    An optimization control has been demonstrated to obtain carbon nanotubes having specific diameter distribution, length, homogeneity, and yield during its growth by thermal chemical vapor deposition technique under atmospheric pressure. Carbon nanotubes (CNTs) were grown on silicon wafer where a predeposition of iron catalyst of 2 nm thickness was made by sputtering. The growth was conducted under two variable parameters, i.e., flow rate and flow duration. Argon and hydrogen mixture was used for pretreatment of catalyst and as etching gas, and acetylene as a carbon precursor. In-depth analysis shows that increase in flow rate from 10 to 50 sccm resulted in increase in the concentration of amorphous carbon, CNTs diameter range and decrease in length, we found best result at 20 sccm flow rate of acetylene gas. On the other hand, as we varied flow duration from 6 to 14 min, with keeping flow rate of acetylene 20 sccm constant, dense homogeneous growth of horizontal CNTs network plus an increase in length and diameter range were observed. An optimization of flow rate and flow duration is presented here to obtain a selective diameter distribution and length as expected by this growth technique. Atomic force microscopy, field emission scanning electron microscopy and Raman spectroscopy were used to investigate the samples' morphologies in support of the observations made.

  16. DEVELOPMENT OF PRESSURIZED CIRCULATING FLUDIZED BED PARTIAL GASIFICATION MODULE (PGM)

    SciTech Connect

    Archie Robertson

    2002-07-10

    Foster Wheeler Power Group, Inc. is working under US Department of Energy contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% and produce near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines, or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The amount of syngas and char produced by the PGM can be tailored to fit the production objectives of the overall plant, i.e., power generation, clean liquid fuel production, chemicals production, etc. Hence, PGM is a robust building bock that offers all the advantages of coal gasification but in a more user-friendly form; it is also fuel flexible in that it can use alternative fuels such as biomass, sewerage sludge, etc. This report describes the work performed during the April 1--June 30, 2002 time period.

  17. Development of Pressurized Circulating Fluidized Bed Partial Gasification Module (PGM)

    SciTech Connect

    A. Robertson

    2002-09-30

    Foster Wheeler Power Group, Inc. is working under US Department of Energy contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% and produce near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines, or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The amount of syngas and char produced by the PGM can be tailored to fit the production objectives of the overall plant, i.e., power generation, clean liquid fuel production, chemicals production, etc. Hence, PGM is a robust building bock that offers all the advantages of coal gasification but in a more user-friendly form; it is also fuel flexible in that it can use alternative fuels such as biomass, sewerage sludge, etc. This report describes the work performed during the July 1-September 30, 2002 time period.

  18. Development of Pressurized Circulating Fluidized Bed Partial Gasification Module (PGM)

    SciTech Connect

    A. Robertson

    2003-12-31

    Foster Wheeler Power Group, Inc. is working under US Department of Energy contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% and produce near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines, or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The amount of syngas and char produced by the PGM can be tailored to fit the production objectives of the overall plant, i.e., power generation, clean liquid fuel production, chemicals production, etc. Hence, PGM is a robust building bock that offers all the advantages of coal gasification but in a more user-friendly form; it is also fuel flexible in that it can use alternative fuels such as biomass, sewerage sludge, etc. This report describes the work performed during the October 1 - December 31, 2003 time period.

  19. DEVELOPMENT OF PRESSURIZED CIRCULATING FLUIDIZED BED PARTIAL GASIFICATION MODULE (PGM)

    SciTech Connect

    Unknown

    2003-01-30

    Foster Wheeler Power Group, Inc. is working under US Department of Energy contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% and produce near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines, or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The amount of syngas and char produced by the PGM can be tailored to fit the production objectives of the overall plant, i.e., power generation, clean liquid fuel production, chemicals production, etc. Hence, PGM is a robust building bock that offers all the advantages of coal gasification but in a more user-friendly form; it is also fuel flexible in that it can use alternative fuels such as biomass, sewerage sludge, etc. This report describes the work performed during the October 1--December 31, 2002 time period.

  20. DEVELOPMENT OF PRESSURIZED CIRCULATING FLUIDIZED BED PARTIAL GASIFICATION MODULE (PGM)

    SciTech Connect

    Archie Robertson

    2003-07-23

    Foster Wheeler Power Group, Inc. is working under US Department of Energy contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% and produce near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines, or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The amount of syngas and char produced by the PGM can be tailored to fit the production objectives of the overall plant, i.e., power generation, clean liquid fuel production, chemicals production, etc. Hence, PGM is a robust building bock that offers all the advantages of coal gasification but in a more user-friendly form; it is also fuel flexible in that it can use alternative fuels such as biomass, sewerage sludge, etc. This report describes the work performed during the April 1--June 30, 2003 time period.

  1. DEVELOPMENT OF PRESSURIZED CIRCULATING FLUIDIZED BED PARTIAL GASIFICATION MODULE (PGM)

    SciTech Connect

    Archie Robertson

    2003-10-29

    Foster Wheeler Power Group, Inc. is working under US Department of Energy contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% and produce near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines, or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The amount of syngas and char produced by the PGM can be tailored to fit the production objectives of the overall plant, i.e., power generation, clean liquid fuel production, chemicals production, etc. Hence, PGM is a robust building bock that offers all the advantages of coal gasification but in a more user-friendly form; it is also fuel flexible in that it can use alternative fuels such as biomass, sewerage sludge, etc. This report describes the work performed during the July 1--September 30, 2003 time period.

  2. 21 CFR 868.1150 - Indwelling blood carbon dioxide partial pressure (PCO2) analyzer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Indwelling blood carbon dioxide partial pressure....1150 Indwelling blood carbon dioxide partial pressure (PCO2) analyzer. (a) Identification. An indwelling blood carbon dioxide partial pressure PCO2 analyzer is a device that consists of a...

  3. 21 CFR 868.1150 - Indwelling blood carbon dioxide partial pressure (PCO2) analyzer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Indwelling blood carbon dioxide partial pressure....1150 Indwelling blood carbon dioxide partial pressure (PCO2) analyzer. (a) Identification. An indwelling blood carbon dioxide partial pressure PCO2 analyzer is a device that consists of a...

  4. 21 CFR 868.1150 - Indwelling blood carbon dioxide partial pressure (PCO2) analyzer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Indwelling blood carbon dioxide partial pressure....1150 Indwelling blood carbon dioxide partial pressure (PCO2) analyzer. (a) Identification. An indwelling blood carbon dioxide partial pressure PCO2 analyzer is a device that consists of a...

  5. 21 CFR 868.1150 - Indwelling blood carbon dioxide partial pressure (PCO2) analyzer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Indwelling blood carbon dioxide partial pressure....1150 Indwelling blood carbon dioxide partial pressure (PCO2) analyzer. (a) Identification. An indwelling blood carbon dioxide partial pressure PCO2 analyzer is a device that consists of a...

  6. 21 CFR 868.1150 - Indwelling blood carbon dioxide partial pressure (PCO2) analyzer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Indwelling blood carbon dioxide partial pressure....1150 Indwelling blood carbon dioxide partial pressure (PCO2) analyzer. (a) Identification. An indwelling blood carbon dioxide partial pressure PCO2 analyzer is a device that consists of a...

  7. DEVELOPMENT OF PRESSURIZED CIRCULATING FLUIDIZED BED PARTIAL GASIFICATION MODULE (PGM)

    SciTech Connect

    Unknown

    2002-03-29

    Foster Wheeler Development Corporation is working under DOE contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% while producing near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The unique aspect of the process is that it utilizes a pressurized circulating fluidized bed partial gasifier and does not attempt to consume the coal in a single step. To convert all the coal to syngas in a single step requires extremely high temperatures ({approx}2500 to 2800 F) that melt and vaporize the coal and essentially drive all coal ash contaminants into the syngas. Since these contaminants can be corrosive to power generating equipment, the syngas must be cooled to near room temperature to enable a series of chemical processes to clean the syngas. Foster Wheeler's process operates at much lower temperatures that control/minimize the release of contaminants; this eliminates/minimizes the need for the expensive, complicated syngas heat exchangers and chemical cleanup systems typical of high temperature gasification. By performing the gasification in a circulating bed, a significant amount of syngas can still be produced despite the reduced temperature and the circulating bed allows easy scale up to large size plants. Rather than air, it can also operate with oxygen to facilitate

  8. Chemistry of acetylene on platinum (111) and (100) surfaces

    PubMed Central

    Muetterties, E. L.; Tasi, M.-C.; Kelemen, S. R.

    1981-01-01

    An ultra-high vacuum experimental study of acetylene chemisorption on Pt(111) and Pt(100) and of the reaction of hydrogen with the acetylene adsorbate has established distinguishing features of carbon-hydrogen bond breaking and making processes as a function of pressure, temperature, and surface crystallography. The rates for both processes are substantially higher on the Pt(100) surface. Net acetylene-hydrogen processes, in the temperature range of 20°C to ≈130°C, are distinctly different on the two surfaces: on Pt(100) the net reaction is hydrogen exchange (1H-2H exchange) and on Pt(111) the only detectable reaction is hydrogenation. Stereochemical differences in the acetylene adsorbate structure are considered to be a contributing factor to the differences in acetylene chemistry on these two surfaces. Images PMID:16593110

  9. DEVELOPMENT OF PRESSURIZED CIRCULATING FLUIDIZED BED PARTIAL GASIFICATION MODULE (PGM)

    SciTech Connect

    Archie Robertson

    2004-07-01

    Foster Wheeler Power Group, Inc. is working under US Department of Energy Contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% and produce near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines, or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The amount of syngas and char produced by the PGM can be tailored to fit the production objectives of the overall plant, i.e., power generation, clean liquid fuel production, chemicals production, etc. Hence, PGM is a robust building bock that offers all the advantages of coal gasification but in a more user-friendly form; it is also fuel flexible in that it can use alternative fuels such as biomass, sewerage sludge, etc. Under this contract a series of pilot plant tests are being conducted to ascertain PGM performance with a variety of fuels. The performance and economics of a PGM based plant designed for the co-production of hydrogen and electricity will also be determined. This report describes the work performed during the April-June 30, 2004 time period.

  10. Acetylene terminated matrix resins

    NASA Technical Reports Server (NTRS)

    Goldfarb, I. J.; Lee, Y. C.; Arnold, F. E.; Helminiak, T. E.

    1985-01-01

    The synthesis of resins with terminal acetylene groups has provided a promising technology to yield high performance structural materials. Because these resins cure through an addition reaction, no volatile by-products are produced during the processing. The cured products have high thermal stability and good properties retention after exposure to humidity. Resins with a wide variety of different chemical structures between the terminal acetylene groups are synthesized and their mechanical properties studied. The ability of the acetylene cured polymers to give good mechanical properties is demonstrated by the resins with quinoxaline structures. Processibility of these resins can be manipulated by varying the chain length between the acetylene groups or by blending in different amounts of reactive deluents. Processing conditions similar to the state-of-the-art epoxy can be attained by using backbone structures like ether-sulfone or bis-phenol-A. The wide range of mechanical properties and processing conditions attainable by this class of resins should allow them to be used in a wide variety of applications.

  11. Acylamidation of acetylenes

    SciTech Connect

    Gridnev, I.D.; Balenkova, E.S.

    1989-01-10

    The reactions of phenylacetylene, 1-heptyne, and diphenylacetylene with the complexes of acetylfluoroborate with acetonitrile and with chloroacetonitrile take place regiospecifically and stereospecifically as syn-addition of the acetyl group and nitrile at the triple bond of the acetylene and lead to previously unknown Z-N-acyl-/beta/-amino, /alpha/,/beta/-unsaturated ketones.

  12. DEVELOPMENT OF PRESSURIZED CIRCULATING FLUIDIZED BED PARTIAL GASIFICATION MODULE (PGM)

    SciTech Connect

    Unknown

    2001-07-10

    Foster Wheeler Development Corporation is working under DOE contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% while producing near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The unique aspect of the process is that it utilizes a pressurized circulating fluidized bed partial gasifier and does not attempt to consume the coal in a single step. To convert all the coal to syngas in a single step requires extremely high temperatures ({approx}2500 to 2800F) that melt and vaporize the coal and essentially drive all coal ash contaminants into the syngas. Since these contaminants can be corrosive to power generating equipment, the syngas must be cooled to near room temperature to enable a series of chemical processes to clean the syngas. Foster Wheeler's process operates at much lower temperatures that control/minimize the release of contaminants; this eliminates/minimizes the need for the expensive, complicated syngas heat exchangers and chemical cleanup systems typical of high temperature gasification. By performing the gasification in a circulating bed, a significant amount of syngas can still be produced despite the reduced temperature and the circulating bed allows easy scale up to large size plants. Rather than air, it can also operate with oxygen to facilitate

  13. [Measurements of surface ocean carbon dioxide partial pressure during WOCE

    SciTech Connect

    Not Available

    1992-01-01

    This paper discusses the research progress of the second year of research under Measurement of Surface Ocean Carbon Dioxide Partial Pressure During WOCE'' and proposes to continue measurements of underway pCO[sub 2]. During most of the first year of this grant, our efforts to measure pCO[sub 2] on WOCE WHP legs were frustrated by ship problems. The R/V Knorr, which was originally scheduled to carry out the first work on WHP lines P19 and P16 in the southeastem Pacific during the 1990-91 austral summer, was delayed in the shipyard during her mid-life refit for more than a year. In the interim, the smaller R/V Thomas Washington, was pressed into service to carry out lower-latitude portions of WHP lines P16 and P17 during mid-1991 (TUNES Expedition). We installed and operated our underway chromatographic system on this expedition, even though space and manpower on this smaller vessel were limited and no one from our group would be aboard any of the 3 WHP expedition legs. The results for carbon dioxide and nitrous oxide are shown. A map of the cruise track is shown for each leg, marked with cumulative distance. Following each track is a figure showing the carbon dioxide and nitrous oxide results as a function of distance along this track. The results are plotted as dry-gas mole fractions (in ppm and ppb, respectively) in air and in gas equilibrated with surface seawater at a total pressure equal to the barometric pressure. The air data are plotted as a 10-point running mean, and appear as a roughly horizontal line. The seawater data are plotted as individual points, using a 5-point Gaussian smoother. Equal values Of xCO[sub 2] in air and surface seawater indicate air-sea equilibrium.

  14. Influence of and additives on acetylene detonation

    NASA Astrophysics Data System (ADS)

    Drakon, A.; Emelianov, A.; Eremin, A.

    2014-03-01

    The influence of and admixtures (known as detonation suppressors for combustible mixtures) on the development of acetylene detonation was experimentally investigated in a shock tube. The time-resolved images of detonation wave development and propagation were registered using a high-speed streak camera. Shock wave velocity and pressure profiles were measured by five calibrated piezoelectric gauges and the formation of condensed particles was detected by laser light extinction. The induction time of detonation development was determined as the moment of a pressure rise at the end plate of the shock tube. It was shown that additive had no influence on the induction time. For , a significant promoting effect was observed. A simplified kinetic model was suggested and characteristic rates of diacetylene formation were estimated as the limiting stage of acetylene polymerisation. An analysis of the obtained data indicated that the promoting species is atomic chlorine formed by pyrolysis, which interacts with acetylene and produces radical, initiating a chain mechanism of acetylene decomposition. The results of kinetic modelling agree well with the experimental data.

  15. Measurements of Surface Ocean Carbon Dioxide Partial Pressure During WOCE

    SciTech Connect

    Weiss, R.F.

    1998-10-15

    All of the technical goals of the World Ocean Circulation Experiment (WOCE) field program which were supported under the Department of Energy research grant ''Measurements of Surface Ocean Carbon Dioxide Partial Pressure During WOCE'' (DE-FG03-90ER60981) have been met. This has included the measurement of the partial pressures of carbon dioxide (C0{sub 2}) and nitrous oxide (N{sub 2}O) in both the surface ocean and the atmosphere on 24 separate shipboard expedition legs of the WOCE Hydrographic Programme. These measurements were made in the Pacific, Indian and Atlantic Oceans over a six-and-a-half year period, and over a distance of nearly 200,000 kilometers of ship track. The total number of measurements, including ocean measurements, air measurements and standard gas measurements, is about 136,000 for each gas, or about 34,000 measurements of each gas in the ocean and in the air. This global survey effort is directed at obtaining a better understanding of the role of the oceans in the global atmospheric budgets of two important natural and anthropogenic modulators of climate through the ''greenhouse effect'', CO{sub 2} and N{sub 2}O, and an important natural and anthropogenic modulator of the Earth's protective ozone layer through catalytic processes in the stratosphere, N{sub 2}O. For both of these compounds, the oceans play a major role in their global budgets. In the case of CO{sub 2}, roughly half of the anthropogenic production through the combustion of fossil fuels has been absorbed by the world's oceans. In the case of N{sub 2}O, roughly a third of the natural flux to the atmosphere originates in the oceans. As the interpretation of the variability in the oceanic distributions of these compounds improves, measurements such as those supported by this research project are playing an increasingly important role in improving our understanding of natural and anthropogenic influences on climate and ozone. (B204)

  16. Acetylene removal process

    SciTech Connect

    Mc Farland, C.G.

    1987-02-17

    This patent describes a vapor phase process for the preparation of unsaturated hydrocarbon monoolefins in diolefins comprising oxidative dehydrogenation of stream of C/sub 3/ to C/sub 9/ hydrocarbon compounds to produce a product stream comprising 3.5 to 80 mol percent of unsaturated hydrocarbon product and of about or from 0.0001 to 2.5 mol percent acetylenic compound impurity, about or from 0.0005 to 2.5 mol percent carbonyl compounds and 5 to 93 mol percent non-condensable gases. The improvement described here comprises contacting the product stream in vapor phase at a temperature in the range of 250/sup 0/ to 900/sup 0/C. and containing less than 5 mol percent fee oxygen with a solid catalyst for reducing the acetylenic compounds in the product stream. The catalyst consists essentially of a mixture of oxides, carbonates or hydroxides of Fe and Ni, Fe being present as the major metal component and Ni being present in the range of about 0.25 to 20 weight percent based on total catalyst, an alkaline earth metal oxide, carbonate or hydroxide of Mg, Ca, Sr or Ba, and about 0.5 to 30 weight percent of an alkali metal oxide, carbonate or hydroxide of Li, Na, K or Rb determined as metal and based on the other metallic elements, and recovering the stream having the amount of acetylenic compounds therein reduced.

  17. Quantification and removal of some contaminating gases from acetylene used to study gas-utilizing enzymes and microorganisms.

    PubMed

    Hyman, M R; Arp, D J

    1987-02-01

    Acetylene generated from various grades of calcium carbide and obtained from commercial- and purified-grade acetylene cylinders was shown to contain high concentrations of various contaminants. Dependent on the source of acetylene, these included, at maximal values, H(2) (0.023%), O(2) (0.779%), N(2) (3.78%), PH(3) (0.06%), CH(4) (0.073%), and acetone (1 to 10%). The concentration of the contaminants in cylinder acetylene was highly dependent on the extent of cylinder discharge. Several conventional methods used to partially purify cylinder acetylene were compared. A small-scale method for extensively purifying acetylene is described. An effect of acetylene quality on acetylene reduction assays conducted with purified nitrogenase from Azotobacter vinelandii was demonstrated.

  18. Quantification and Removal of Some Contaminating Gases from Acetylene Used to Study Gas-Utilizing Enzymes and Microorganisms

    PubMed Central

    Hyman, Michael R.; Arp, Daniel J.

    1987-01-01

    Acetylene generated from various grades of calcium carbide and obtained from commercial- and purified-grade acetylene cylinders was shown to contain high concentrations of various contaminants. Dependent on the source of acetylene, these included, at maximal values, H2 (0.023%), O2 (0.779%), N2 (3.78%), PH3 (0.06%), CH4 (0.073%), and acetone (1 to 10%). The concentration of the contaminants in cylinder acetylene was highly dependent on the extent of cylinder discharge. Several conventional methods used to partially purify cylinder acetylene were compared. A small-scale method for extensively purifying acetylene is described. An effect of acetylene quality on acetylene reduction assays conducted with purified nitrogenase from Azotobacter vinelandii was demonstrated. PMID:16347278

  19. Plateau Waves of Intracranial Pressure and Partial Pressure of Cerebral Oxygen.

    PubMed

    Lang, Erhard W; Kasprowicz, Magdalena; Smielewski, Peter; Pickard, John; Czosnyka, Marek

    2016-01-01

    This study investigates 55 intracranial pressure (ICP) plateau waves recorded in 20 patients after severe traumatic brain injury (TBI) with a focus on a moving correlation coefficient between mean arterial pressure (ABP) and ICP, called PRx, which serves as a marker of cerebrovascular reactivity, and a moving correlation coefficient between ABP and cerebral partial pressure of oxygen (pbtO2), called ORx, which serves as a marker for cerebral oxygen reactivity. ICP and ICPamplitude increased significantly during the plateau waves, whereas CPP and pbtO2 decreased significantly. ABP, ABP amplitude, and heart rate remained unchanged. In 73 % of plateau waves PRx increased during the wave. ORx showed an increase during and a decrease after the plateau waves, which was not statistically significant. Our data show profound cerebral vasoparalysis on top of the wave and, to a lesser extent, impairment of cerebral oxygen reactivity. The different behavior of the indices may be due to the different latencies of the cerebral blood flow and oxygen level control mechanisms. While cerebrovascular reactivity is a rapidly reacting mechanism, cerebral oxygen reactivity is slower.

  20. Oxygen Partial Pressure and Oxygen Concentration Flammability: Can They Be Correlated?

    NASA Technical Reports Server (NTRS)

    Harper, Susana A.; Juarez, Alfredo; Perez, Horacio, III; Hirsch, David B.; Beeson, Harold D.

    2016-01-01

    NASA possesses a large quantity of flammability data performed in ISS airlock (30% Oxygen 526mmHg) and ISS cabin (24.1% Oxygen 760 mmHg) conditions. As new programs develop, other oxygen and pressure conditions emerge. In an effort to apply existing data, the question arises: Do equivalent oxygen partial pressures perform similarly with respect to flammability? This paper evaluates how material flammability performance is impacted from both the Maximum Oxygen Concentration (MOC) and Maximum Total Pressures (MTP) perspectives. From these studies, oxygen partial pressures can be compared for both the MOC and MTP methods to determine the role of partial pressure in material flammability. This evaluation also assesses the influence of other variables on flammability performance. The findings presented in this paper suggest flammability is more dependent on oxygen concentration than equivalent partial pressure.

  1. Forces and pressures in adsorbing partially directed walks

    NASA Astrophysics Data System (ADS)

    Janse van Rensburg, E. J.; Prellberg, T.

    2016-05-01

    Polymers in confined spaces lose conformational entropy. This induces a net repulsive entropic force on the walls of the confining space. A model for this phenomenon is a lattice walk between confining walls, and in this paper a model of an adsorbing partially directed walk is used. The walk is placed in a half square lattice {{{L}}}+2 with boundary \\partial {{{L}}}+2, and confined between two vertical parallel walls, which are vertical lines in the lattice, a distance w apart. The free energy of the walk is determined, as a function of w, for walks with endpoints in the confining walls and adsorbing in \\partial {{{L}}}+2. This gives the entropic force on the confining walls as a function of w. It is shown that there are zero force points in this model and the locations of these points are determined, in some cases exactly, and in other cases asymptotically.

  2. Potential hydrogen and oxygen partial pressures in legacy plutonium oxide packages at Oak Ridge

    SciTech Connect

    Veirs, Douglas K.

    2014-07-07

    An approach to estimate the maximum hydrogen and oxygen partial pressures within sealed containers is described and applied to a set of packages containing high-purity plutonium dioxide. The approach uses experimentally determined maximum hydrogen and oxygen partial pressures and scales the experimentally determined pressures to the relevant packaged material properties. The important material properties are the specific wattage and specific surface area (SSA). Important results from the experimental determination of maximum partial pressures are (1) the ratio of hydrogen to oxygen is stoichiometric, and (2) the maximum pressures increase with increasing initial rates of production. The material properties that influence the rates are the material specific wattage and the SSA. The unusual properties of these materials, high specific wattage and high SSA, result in higher predicted maximum pressures than typical plutonium dioxide in storage. The pressures are well within the deflagration range for mixtures of hydrogen and oxygen.

  3. Impact of hydrogen partial pressure on coal liquefaction. Final technical report

    SciTech Connect

    Kang, D.; Hoover, D.S.; Schweighardt, F.K.

    1984-06-01

    This program was conducted to determine the effects of hydrogen partial pressure on the SRC-I direct coal liquefaction process and SRC-I Demonstration Plant design. A native solvent was produced in quantity and slurried with Kentucky number 9 Mulford coal in a series of coal liquefaction runs under varying hydrogen gas rates, temperatures, residence times, and hydrogen partial pressures. The results showed that hydrogen partial pressure significantly affected product distribution; the magnitude of the effect was comparable to changes in temperature and residence time. Also, the impact of hydrogen partial pressure was enhanced by increases in both temperature and residence time. Operating at low hydrogen partial pressure did not show any apparent advantage; it reduced coal conversion, reduced oil yield, and had a detrimental effect on the yield distribution of other products. An increase in hydrogen partial pressure had the following effects: increased coal conversion; increased conversion of asphaltenes and preasphaltenes to lighter products; significantly increased the oil yield; increased light gas yields; decreased sulfur content in the SRC; increased hydrogen content of the recycle solvent; and increased hydrogen consumption. This study strongly suggests that further studies should be conducted to optimize the effects of hydrogen partial pressure on the process, both within and, preferably, beyond the constraints of the current basic SRC-I design, considering the major impact of this variable on the process. 10 references, 37 figures, 10 tables.

  4. Acetylene on Titan

    NASA Astrophysics Data System (ADS)

    Singh, Sandeep; McCord, Thomas B.; Combe, Jean-Philippe; Rodriguez, Sebastien; Cornet, Thomas; Le Mouélic, Stéphane; Clark, Roger Nelson; Maltagliati, Luca; Chevrier, Vincent

    2016-10-01

    Saturn's moon Titan possesses a thick atmosphere that is mainly composed of N2 (98%), CH4 (2 % overall, but 4.9% close to the surface) and less than 1% of minor species, mostly hydrocarbons [1]. A dissociation of N2 and CH4 forms complex hydrocarbons in the atmsophere and acetylene (C2H2) and ethane (C2H6) are produced most abundently. Since years, C2H2 has been speculated to exist on the surface of Titan based on its high production rate in the stratosphere predicted by photochemical models [2,3] and from its detection as trace gas sublimated/evaporated from the surface after the landing of the Huygens probe by the Gas Chromatograph Mass Spectrometer (GCMS) [1]. Here we show evidence of acetylene (C2H2) on the surface of Titan by detecting absorption bands at 1.55 µm and 4.93 µm using Cassini Visual and Infrared Mapping Spectrometer (VIMS) [4] at equatorial areas of eastern Shangri-La, and Fensal-Aztlan/Quivira.An anti-correlation of absorption band strength with albedo indicates greater concentrations of C2H2 in the dark terrains, such as sand dunes and near the Huygens landing site. The specific location of the C2H2 detections suggests that C2H2 is mobilized by surface processes, such as surface weathering by liquids through dissolution/evaporation processes.References:[1]Niemann et al., Nature 438, 779–784 (2005).[2]Lavvas et al., Planetary and Space Science 56, 67 – 99 (2008).[3]Lavvas et al., Planetary and Space Science 56, 27 – 66 (2008).[4] Brown et al., The Cassini-Huygens Mission 111–168 (Springer, 2004).

  5. 29 CFR 1910.102 - Acetylene.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...., 2003). (b) Piped systems. (1) Employers must comply with Chapter 9 (“Acetylene Piping”) of NFPA 51A..., 2006, these employers may comply with the provisions of Chapter 7 (“Acetylene Piping”) of NFPA 51A-2001... (fill) acetylene cylinders comply with the provisions of NFPA 51A-2006 (“Standard for Acetylene...

  6. 15N2 Fixation by Bacteria Associated with Maize Roots at a Low Partial O2 Pressure

    PubMed Central

    Alexander, David B.; Zuberer, David A.

    1989-01-01

    Nitrogen fixation by bacteria associated with roots of intact maize plants was measured by exposing the roots to 15N2 at a partial O2 pressure (pO2) of 2 or 10 kPa. The plants were grown in a mixture of Weswood soil and sand and then transferred to plastic cylinders containing an N-free plant nutrient solution. The solution was sparged continuously with a mixture of air and N2 at a pO2 of 2 or 10 kPa. Acetylene reduction was measured after the roots were exposed to the low pO2 overnight. The air-N2 atmosphere in the cylinders was then replaced with an O2-He atmosphere at the same pO2, and the roots were exposed to 20 kPa of 15N2 for 20 to 22 h. Incorporation of 15N into the roots was 200 times greater at 2 kPa of O2 than at 10 kPa of O2. Adding l-malate (1 g of C liter−1) to the nutrient solution increased root-associated nitrogenase activity, producing a strong 15N label which could be traced into the shoots. Fixed 15N was detected in the shoots within 5 days after the plants were returned to unfertilized soil. In a similar experiment with undisturbed plants grown in fritted clay, movement of fixed 15N into the shoots was evident within 4 days after the roots were exposed to 15N2 at 2 kPa of O2. Inoculation with Azospirillum lipoferum yielded no significant differences in shoot dry weight, total nitrogen content, percent nitrogen, or 15N enrichment of plant tissues. Inoculated plants did exhibit greater root dry weight than uninoculated plants, however. PMID:16347968

  7. Method and apparatus for monitoring oxygen partial pressure in air masks

    NASA Technical Reports Server (NTRS)

    Kelly, Mark E. (Inventor); Pettit, Donald R. (Inventor)

    2006-01-01

    Method and apparatus are disclosed for monitoring an oxygen partial pressure in an air mask and providing a tactile warning to the user. The oxygen partial pressure in the air mask is detected using an electrochemical sensor, the output signal from which is provided to a comparator. The comparator compares the output signal with a preset reference value or range of values representing acceptable oxygen partial pressures. If the output signal is different than the reference value or outside the range of values, the air mask is vibrated by a vibrating motor to alert the user to a potentially hypoxic condition.

  8. Partial Pressures of Te2 and Thermodynamic Properties of Ga-Te System

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Curreri, Peter A. (Technical Monitor)

    2001-01-01

    The partial pressures of Te2 in equilibrium with Ga(1-x)Te(x) samples were measured by optical absorption technique from 450 to 1100 C for compositions, x, between 0.333 and 0.612. To establish the relationship between the partial pressure of Te, and the measured optical absorbance, the calibration runs of a pure Te sample were also conducted to determine the Beer's Law constants. The partial pressures of Te2 in equilibrium with the GaTe(s) and Ga2Te3(s)compounds, or the so-called three-phase curves, were established. These partial pressure data imply the existence of the Ga3Te4(s) compound. From the partial pressures of Te2 over the Ga-Te melts, partial molar enthalpy and entropy of mixing for Te were derived and they agree reasonable well with the published data. The activities of Te in the Ga-Te melts were also derived from the measured partial pressures of Te2. These data agree well with most of the previous results. The possible reason for the high activity of Te measured for x less than 0.60 is discussed.

  9. Limitation of Acetylene Reduction (Nitrogen Fixation) by Photosynthesis in Soybean Having Low Water Potentials 1

    PubMed Central

    Huang, Chi-Ying; Boyer, John S.; Vanderhoef, Larry N.

    1975-01-01

    The role of photosynthesis and transpiration in the desiccation-induced inhibition of acetylene reduction (nitrogen fixation) was investigated in soybean (Glycine max [L.] Merr. var. Beeson) using an apparatus that permitted simultaneous measurements of acetylene reduction, net photosynthesis, and transpiration. The inhibition of acetylene reduction caused by low water potentials and their aftereffects could be reproduced by depriving shoots of atmospheric CO2 even though the soil remained at water potentials that should have favored rapid acetylene reduction. The inhibition of acetylene reduction at low water potentials could be partially reversed by exposing the shoots to high CO2 concentrations. When transpiration was varied independently of photosynthesis and dark respiration in plants having high water potentials, no effects on acetylene reduction could be observed. There was no correlation between transpiration and acetylene reduction in the CO2 experiments. Therefore, the correlation that was observed between transpiration and acetylene reduction during desiccation was fortuitous. We conclude that the inhibition of shoot photosynthesis accounted for the inhibition of nodule acetylene reduction at low water potentials. PMID:16659277

  10. Bulk YBa2Cu3O(x) superconductors through pressurized partial melt growth processing

    NASA Technical Reports Server (NTRS)

    Hu, S.; Hojaji, H.; Barkatt, A.; Boroomand, M.; Hung, M.; Buechele, A. C.; Thorpe, A. N.; Davis, D. D.; Alterescu, S.

    1992-01-01

    A novel pressurized partial melt growth process has been developed for producing large pieces of bulk Y-Ba-Cu-O superconductors. During long-time partial melt growth stage, an additional driving force for solidification is obtained by using pressurized oxygen gas. The microstructure and superconducting properties of the resulting samples were investigated. It was found that this new technique can eliminate porosity and inhomogeneity, promote large-scale grain-texturing, and improve interdomain coupling as well.

  11. Partial molar volume of L-Valine in water under high pressure

    NASA Astrophysics Data System (ADS)

    Sawamura, Seiji

    2013-06-01

    Partial molar volume of L-valine in water was estimated up to 400 MPa from pressure coefficient of the solubility of the solute and molar volume of solid valine. The former was measured in a previous paper and the latter was measured in this article using a piston-cylinder typed cell. The partial molar volume increased with pressure and a maximum was observed around 250 MPa. It was compared with other amino acids.

  12. Line width of manganese-zinc ferrite polycrystals with oxygen partial pressure

    NASA Astrophysics Data System (ADS)

    Byeon, Soon Cheon; Hong, Kug Sun; Kim, In-Tae

    1998-06-01

    A systematic variation in line width at X band (9.78 GHz) with oxygen partial pressure was observed in Mn0.47Zn0.47Fe2.06O4 polycrystalline samples. The linewidth of the samples increased from 105 to 188 Oe with decreasing atmospheric parameters from 8.4 to 6.4. It was found that contribution of anisotropy and porosity to the linewidth was small compared to the variation in linewidth with oxygen partial pressure. Estimation of the Fe2+ concentration of samples by measuring their thermoelectric power revealed that an increase in the concentration from 1.88 to 2.44 wt % was accompanied by decreasing oxygen partial pressure. As the resistivity of grain does not vary with oxygen partial pressure, the contribution of eddy current will be the same irrespective of the oxygen partial pressure. Therefore, the systematic increase in linewidth observed in our present study was attributed to the increase in Fe2+ concentration with decreasing oxygen partial pressure.

  13. Effects of operating pressure on flame oscillation and emission characteristics in a partially premixed swirl combustor

    SciTech Connect

    Kim, Jong-Ryul; Choi, Gyung-Min; Kim, Duck-Jool

    2011-01-15

    The influence of varying combustor pressure on flame oscillation and emission characteristics in the partially premixed turbulent flame were investigated. In order to investigate combustion characteristics in the partially premixed turbulent flame, the combustor pressure was controlled in the range of -30 to 30 kPa for each equivalence ratio ({phi} = 0.8-1.2). The r.m.s. of the pressure fluctuations increased with decreasing combustor pressure for the lean condition. The combustor pressure had a sizeable influence on combustion oscillation, whose dominant frequency varied with the combustor pressure. Combustion instabilities could be controlled by increasing the turbulent intensity of the unburned mixture under the lean condition. An unstable flame was caused by incomplete combustion; hence, EICO greatly increased. Furthermore, EINO{sub x} simply reduced with decreasing combustor pressure at a rate of 0.035 g/10 kPa. The possibility of combustion control on the combusting mode and exhaust gas emission was demonstrated. (author)

  14. Acetylene removal process

    SciTech Connect

    Mc Farland, C.G.

    1987-04-14

    This patent describes a vapor phase process for the preparation of hydrocarbon monoolefins and diolefins comprising oxidative dehydrogenation of a stream of C/sub 3/ to C/sub 9/ hydrocarbon compounds to produce a product stream comprising, exclusive of any water present, 3.5 to 80 mol percent hydrocarbon monoolefins and diolefins and about from 0.0001 to 2.5 mol percent carbonyl compounds and 5 to 93 mol percent non-condensable gases. The improvement described here comprises contacting the product stream in vapor phase at a temperature in the range of 250/sup 0/ to 900/sup 0/C and containing less than 5 mol percent free oxygen with a solid catalyst for reducing the acetylene compounds in the product stream, the catalyst consisting essentially of zinc ferrite and nickel oxide. The Fe is the major metal component by weight, an alkaline earth metal oxide, carbonate or hydroxide of Mg, Ca, Sr or Ba, and about 0.5 to 30 weight percent of an alkali metal oxide, carbonate or hydroxide, based on the other metallic elements of Li, Na, K or Rh.

  15. Measurement of partial pressures in extremely high vacuum region using a modified residual gas analyzer

    NASA Astrophysics Data System (ADS)

    Watanabe, Shu; Oyama, Hitoshi; Kato, Shigeki; Aono, Masakazu

    1999-03-01

    The measurement of partial pressures using a residual gas analyzer (RGA) in an extremely high vacuum (XHV) region has several problems, including the influence of electron stimulated desorption ions and the outgassing rate from the ion source of the RGA. In order to measure partial pressures in the XHV, a commercial RGA was modified as follows: an electrostatic analyzer was used to only measure gas phase ions; a low work function material, thoria, was used as a filament of the ion source to lower temperature of the filament and Cu wires connected the filament and releasing the heat around the ion source to atmosphere. After these modifications, the RGA could measure only gas phase ions and, at the same time the outgassing rate from the RGA was reduced. Partial pressures and total pressure in the XHV could be measured by the RGA.

  16. Oxygen partial pressure effects on the magnetron sputtered WO3 films

    NASA Astrophysics Data System (ADS)

    Merhan Muğlu, G.; Gür, E.

    2016-04-01

    Electrochromism is changing color of a substance in response to the applied an external electric field and the phenomenon is reversible. WO3 is very attractive material due to its electrochromic properties as well as it is also attractive for many different applications such as gas sensors, phosphorous screen, textile, glass industry. In this study, it is aimed to provide optimization of the optical and structural characteristics of WO3 by changing the growth parameters mainly the oxygen partial pressure. The partial pressure of oxygen was changed with increments of 0.7 mTorr. For the analysis, X-ray Diffraction (XRD), absorption, Raman spectroscopy measurements were used. When O2 gas increased, peaks belong to the WO3 was observed in XRD patterns at the 2 theta angles of 23.0, 11.0, 23.5 and 28.5 angles corresponding to the (002), (020) and (220) planes, respectively. This shows that there is a significant effect of increasing O2 partial pressure in the formation of WO3 films. The bandgap energy of the WO3 thin films are found to be around 3.0 eV. Raman measurements showed vibrational modes of W-O-W stretching and bending modes which shows small shifts depending on the partial pressures of the O2. Obtained results indicated that better crystal structure is obtained with higher O2 gas partial pressure.

  17. Research in acetylene containing monomers

    NASA Technical Reports Server (NTRS)

    Ogliaruso, M. A.

    1976-01-01

    The preparation of precursor bisbenzils with pendant acetylene linkages for use in the synthesis of new aromatic poly (phenyl quinoxalines) was investigated. Attempts to condense para, para prime-dibromo benzil and potassium acetylide in liquid ammonia and in toluene, to prepare 4-phenyl acetyl phenyl ether, 4-(paraacetylphenyl) acetyl phenyl ether, 4-phenyl acetyl-4 primeacetyl phenyl acetyl phenyl ether, the reaction of 4-phenyl acetyl phenyl ether with Villsmeier reagent to prepare 4-(beta-chloro cinnamaldehyde) phenyl ether, the reaction of 4-(para-acetyl phenyl) acetyl phenyl ether with Villsmeier reagent, and the oxidation of bibenzil to prepare benzil are described. The reactions of phenyl acetylene with oxidizing agent, of phenyl acetylene with bromine, of 1,1,2,2-tetrabromo ethyl benzene with zinc and with oxidizing agent are described.

  18. 29 CFR 1910.102 - Acetylene.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... acetylene piping systems, see CGA G-1.2-2006, part 3 (“Acetylene piping”) (Compressed Gas Association, Inc., 3rd ed., 2006). (c) Generators and filling cylinders. (1) Employers must ensure that...

  19. Determination of permeabilities for two gases from recording the partial pressure of one gas.

    PubMed

    Hoofd, L; de Koning, J; Kreuzer, F; Lamboo, A

    1986-09-01

    When a flexible diffusion layer separates two closed gas chambers containing different mixtures of several gases, the different permeabilities of the layer for these gases lead to differences in the total gas pressures of the two chambers resulting in bulging of the layer and consequent changes in the chamber volumes. Application of the gas laws to binary gas mixtures provides two equations relating the partial pressure changes of one gas in any of the two chambers to the partial pressure difference between the two chambers across the layer. This permits the calculation of the two unknown factors, permeability (or Krogh's diffusion coefficient) of the layer for the measured gas and the permeability ratio of the two gases. Thus the permeabilities of both gases can be determined from recording the partial pressure of one of the gases only. We filled the gas chambers with different mixtures of oxygen and a second gas (nitrogen or carbon dioxide) at atmospheric pressure, closed the chambers, and measured the diffusion of the gases across thin (12-500 microns) layers of various materials by recording the oxygen partial pressure in both chambers with polarographic oxygen electrodes. Permeabilities of these layers for oxygen and the other gas were determined for plastic layers (MEM213, Silastic, Teflon), as well as water and methemoglobin solutions either in a fluid layer or soaked in Millipore filters. The data agreed well with those obtained from other studies in most cases.

  20. Partial pressures of oxygen, phosphorus and fluorine in some lunar lavas

    NASA Technical Reports Server (NTRS)

    Nash, W. P.; Hausel, W. D.

    1973-01-01

    Lunar sample 14310 is a feldspar-rich basalt which shows no evidence of shock deformation or recrystallization. Pyroxenes include Mg-rich orthopyroxene, pigeonite and augite; pyroxferroite occurs in the interstitial residuum. Plagioclase feldspars are zoned from An(96) to An(67), and variations in feldspar compositions do not necessarily indicate loss of Na during eruption of the lava. Opaque phases include ilmenite, ulvospinel, metallic iron, troilite, and schreibersite. Both whitlockite and apatite are present, and the interstitial residua contain baddeleyite, tranquillityite and barium-rich sanidine. Theoretical calculations provide estimates of partial pressures of oxygen, phosphorus, and fluorine in lunar magmas. In general, partial pressures of oxygen are restricted by the limiting assemblages of iron-wuestite and ilmenite-iron-rutile; phosphorus partial pressures are higher in lunar magmas than in terrestrial lavas. The occurrence of whitlockite indicates significantly lower fugacities of fluorine in lunar magmas than in terrestrial magmas.

  1. Effects of Oxygen Partial Pressure on the Surface Tension of Liquid Nickel

    NASA Technical Reports Server (NTRS)

    SanSoucie, Michael P.; Rogers, Jan R.; Gowda, Vijaya Kumar Malahalli Shankare; Rodriguez, Justin; Matson, Douglas M.

    2015-01-01

    The NASA Marshall Space Flight Center's electrostatic levitation (ESL) laboratory has been recently upgraded with an oxygen partial pressure controller. This system allows the oxygen partial pressure within the vacuum chamber to be measured and controlled, theoretically in the range from 10-36 to 100 bar. The oxygen control system installed in the ESL laboratory's main chamber consists of an oxygen sensor, oxygen pump, and a control unit. The sensor is a potentiometric device that determines the difference in oxygen activity in two gas compartments (inside the chamber and the air outside of the chamber) separated by an electrolyte, which is yttria-stabilized zirconia. The pump utilizes coulometric titration to either add or remove oxygen. The system is controlled by a desktop control unit, which can also be accessed via a computer. The controller performs temperature control for the sensor and pump, PID-based current loop, and a control algorithm. Oxygen partial pressure has been shown to play a significant role in the surface tension of liquid metals. Oxide films or dissolved oxygen may lead to significant changes in surface tension. The effects of oxygen partial pressure on the surface tension of undercooled liquid nickel will be analyzed, and the results will be presented. The surface tension will be measured at several different oxygen partial pressures while the sample is undercooled. Surface tension will be measured using the oscillating drop method. While undercooled, each sample will be oscillated several times consecutively to investigate how the surface tension behaves with time while at a particular oxygen partial pressure.

  2. Observation of Ortho-Para Dependence of Pressure Broadening Coefficient in Acetylene νb{1}+νb{3} Vibration Band Using Dual-Comb Spectroscopy

    NASA Astrophysics Data System (ADS)

    Iwakuni, Kana; Okubo, Sho; Inaba, Hajime; Onae, Atsushi; Hong, Feng-Lei; Sasada, Hiroyuki; Yamada, Koichi MT

    2016-06-01

    We observe that the pressure-broadening coefficients depend on the ortho-para levels. The spectrum is taken with a dual-comb spectrometer which has the resolution of 48 MHz and the frequency accuracy of 8 digit when the signal-to-noise ratio is more than 20. In this study, about 4.4-Tz wide spectra of the P(31) to R(31) transitions in the νb{1}+νb{3} vibration band of 12C_2H_2 are observed at the pressure of 25, 60, 396, 1047, 1962 and 2654 Pa. Each rotation-vibration absorption line is fitted to Voight function and we determined pressure-broadening coefficients for each rotation-vibration transition. The Figure shows pressure broadening coefficient as a function of m. Here m is J"+1 for R and -J" for P-branch. The graph shows obvious dependence on ortho and para. We fit it to Pade function considering the population ratio of three-to-one for the ortho and para levels. This would lead to detailed understanding of the pressure boarding mechanism. S. Okubo et al., Applied Physics Express 8, 082402 (2015)

  3. 29 CFR 1910.102 - Acetylene.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...). (b) Piped systems. (1) Employers must comply with Chapter 9 (“Acetylene Piping”) of NFPA 51A-2006... may comply with the provisions of Chapter 7 (“Acetylene Piping”) of NFPA 51A-2001 (“Standard for... comply with the provisions of NFPA 51A-2006 (“Standard for Acetylene Charging Plants”) (National...

  4. 29 CFR 1910.102 - Acetylene.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...). (b) Piped systems. (1) Employers must comply with Chapter 9 (“Acetylene Piping”) of NFPA 51A-2006... may comply with the provisions of Chapter 7 (“Acetylene Piping”) of NFPA 51A-2001 (“Standard for... comply with the provisions of NFPA 51A-2006 (“Standard for Acetylene Charging Plants”) (National...

  5. 41 CFR 50-204.66 - Acetylene.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 1 2010-07-01 2010-07-01 true Acetylene. 50-204.66 Section 50-204.66 Public Contracts and Property Management Other Provisions Relating to Public Contracts...) Plants for the generation of acetylene and the charging (filling) of acetylene cylinders shall...

  6. Spectroscopic study of acetylene and hydrogen cyanide

    NASA Astrophysics Data System (ADS)

    Rozario, Hoimonti Immaculata

    High-resolution molecular spectroscopy has been used to study acetylene line parameters and emission spectra of hydrogen cyanide. All acetylene spectra were recorded in our laboratory at the University of Lethbridge using a 3-channel tuneable diode laser spectrometer. N2-broadened line widths and N2-pressure induced line shifts have been measured for transitions in the v1+v3 band of acetylene at seven temperatures in the range 213-333K to obtain the temperature dependences of broadening and shift coefficients. The Voigt and hard-collision line profile models were used to retrieve the line parameters. The line-broadening and line-shift coefficients as well as their temperature-dependent parameters have been also evaluated theoretically, in the frame work of a semi-classical approach based on an exponential representation of the scattering operator, an intermolecular potential composed of electrostatic quadrupole--quadrupole and pairwise atom--atom interactions as well as on exact trajectories driven by an effective isotropic potential. The experimental results for both N2-broadening and shifting show good agreement with the theoretical results. We have studied the line intensities of the 1vl 20←0v120 band system from the HCN emission spectrum. The infrared emission spectrum of H12C 14N was measured at the Justus-Liebig University, Giessen, Germany. The emission spectrum was analyzed with the spectrum analysis software Symath running using Mathematica as a platform. This approach allowed us to retrieve information on band intensity parameters.

  7. Steam catalysis in CaO carbonation under low steam partial pressure

    SciTech Connect

    Yang, S.J.; Xiao, Y.H.

    2008-06-15

    CaO was widely used to capture CO{sub 2} in direct hydrogen production process, where steam always existed simultaneously. The effect of steam on CaO carbonation performance under low steam partial pressure was investigated using a pressurized thermogravimetric apparatus. The experimental results revealed that steam improved CaO carbonation performance significantly no matter whether Ca(OH){sub 2} was produced or not. At 823 K and 0.5 MPa of steam partial pressure, effect of steam on CaO carbonation performance could not be attributed mainly to production of Ca(OH){sub 2} because the hydration rate of CaO was very slow. The main reason was steam catalysis in CaO carbonation. Enhancement of steam on CaO carbonation performance without Ca(OH){sub 2} production could not be attributed to improvement of steam on the physical property, but to catalytic effect of steam. Effects of CaO precursors, CO{sub 2} partial pressure, steam partial pressure, and temperature with steam addition on CaO carbonation performance were also investigated.

  8. Optimizing the physical ergonomics indices for the use of partial pressure suits.

    PubMed

    Ding, Li; Li, Xianxue; Hedge, Alan; Hu, Huimin; Feathers, David; Qin, Zhifeng; Xiao, Huajun; Xue, Lihao; Zhou, Qianxiang

    2015-03-01

    This study developed an ergonomic evaluation system for the design of high-altitude partial pressure suits (PPSs). A total of twenty-one Chinese males participated in the experiment which tested three types of ergonomics indices (manipulative mission, operational reach and operational strength) were studied using a three-dimensional video-based motion capture system, a target-pointing board, a hand dynamometer, and a step-tread apparatus. In total, 36 ergonomics indices were evaluated and optimized using regression and fitting analysis. Some indices that were found to be linearly related and redundant were removed from the study. An optimal ergonomics index system was established that can be used to conveniently and quickly evaluate the performance of different pressurized/non-pressurized suit designs. The resulting ergonomics index system will provide a theoretical basis and practical guidance for mission planners, suit designers and engineers to design equipment for human use, and to aid in assessing partial pressure suits.

  9. Optimizing the physical ergonomics indices for the use of partial pressure suits.

    PubMed

    Ding, Li; Li, Xianxue; Hedge, Alan; Hu, Huimin; Feathers, David; Qin, Zhifeng; Xiao, Huajun; Xue, Lihao; Zhou, Qianxiang

    2015-03-01

    This study developed an ergonomic evaluation system for the design of high-altitude partial pressure suits (PPSs). A total of twenty-one Chinese males participated in the experiment which tested three types of ergonomics indices (manipulative mission, operational reach and operational strength) were studied using a three-dimensional video-based motion capture system, a target-pointing board, a hand dynamometer, and a step-tread apparatus. In total, 36 ergonomics indices were evaluated and optimized using regression and fitting analysis. Some indices that were found to be linearly related and redundant were removed from the study. An optimal ergonomics index system was established that can be used to conveniently and quickly evaluate the performance of different pressurized/non-pressurized suit designs. The resulting ergonomics index system will provide a theoretical basis and practical guidance for mission planners, suit designers and engineers to design equipment for human use, and to aid in assessing partial pressure suits. PMID:25479976

  10. Report on ISS O2 Production, Gas Supply and Partial Pressure Management

    NASA Technical Reports Server (NTRS)

    Schaezler, Ryan N.; Cook, Anthony J.

    2015-01-01

    Oxygen is used on International Space Station (ISS) for metabolic support and denitrogenation procedures prior to Extra-Vehicular Activities. Nitrogen is used to maintain total pressure and account for losses associated with leakage and operational losses. Oxygen and nitrogen have been supplied by various visiting vehicles such as the Progress and Shuttle in addition to the on-orbit oxygen production capability. Starting in 2014, new high pressure oxygen/nitrogen tanks are available to launch on commercial cargo vehicles and will replace the high pressure gas source that Shuttle used to provide. To maintain a habitable atmosphere the oxygen and nitrogen partial pressures are controlled between upper and lower bounds. The full range of the allowable partial pressures along with the increased ISS cabin volume are utilized as a buffer allowing days to pass between oxygen production or direct addition of oxygen and nitrogen to the atmosphere from reserves. This paper summarizes the amount of gas supplied and produced from all of the sources and describes past experience of managing partial pressures along with the range of management options available to the ISS.

  11. Oxygen partial pressure dependent magnetic properties of manganese-zinc ferrite polycrystals

    SciTech Connect

    Byeon, S.C.; Hong, K.S.; Je, H.J.

    1997-05-01

    A systematic variation in initial permeability with oxygen partial pressure during post sintering cooling was observed in Mn{sub 0.47}Zn{sub 0.47}Fe{sub 2.06}O{sub 4} polycrystalline samples. The initial permeability increased from 6,300 to 8,600 when the atmospheric parameter decreased from 8.4 to 6.4. Here atmospheric parameter is the degree of oxygen partial pressure engaged in the cooling stage of the sample preparation. The origins of this systematic variation were investigated by measuring the saturation magnetization under high fields (10 kOe) and by observing microstructure changes as well as the magnetic properties under small applied fields (0.15 mOe). It was found that saturation magnetization of samples under high fields was almost unchanged in the range of oxygen partial pressures through which Fe{sup 2+} concentration varied by up to 0.5%. The systematic changes in saturated magnetization and saturation time under small applied fields suggest that the permeability is strongly dependent on domain mobility. This increase in domain mobility was attributed to increased grain growth with decreasing oxygen partial pressure.

  12. 21 CFR 868.1200 - Indwelling blood oxygen partial pressure (PO2) analyzer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Indwelling blood oxygen partial pressure (PO2) analyzer. 868.1200 Section 868.1200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices §...

  13. 21 CFR 868.1200 - Indwelling blood oxygen partial pressure (PO2) analyzer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Indwelling blood oxygen partial pressure (PO2) analyzer. 868.1200 Section 868.1200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices §...

  14. 21 CFR 868.1200 - Indwelling blood oxygen partial pressure (PO2) analyzer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Indwelling blood oxygen partial pressure (PO2) analyzer. 868.1200 Section 868.1200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices §...

  15. 21 CFR 868.1200 - Indwelling blood oxygen partial pressure (PO2) analyzer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Indwelling blood oxygen partial pressure (PO2) analyzer. 868.1200 Section 868.1200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices §...

  16. 21 CFR 868.1200 - Indwelling blood oxygen partial pressure (PO2) analyzer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Indwelling blood oxygen partial pressure (PO2) analyzer. 868.1200 Section 868.1200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices §...

  17. Measurement and Control of Oxygen Partial Pressure in an Electrostatic Levitator

    NASA Technical Reports Server (NTRS)

    SanSoucie, Michael P.; Rogers, Jan R.

    2014-01-01

    Recently the NASA Marshall Space Flight Center electrostatic levitation (ESL) laboratory has been upgraded to include an oxygen control system. This system allows the oxygen partial pressure within the vacuum chamber to be measured and controlled, at elevated temperatures, theoretically in the range from 10(exp -36) to 10(exp 0) bar. The role of active surface agents in liquid metals is fairly well known; however, published surface tension data typically has large scatter, which has been hypothesized to be caused by the presence of oxygen. The surface tension of metals is affected by even a small amount of adsorption of oxygen. It has even been shown that oxygen partial pressures may need to be as low as 10(exp -24) bar to avoid oxidation. While electrostatic levitation is done under high vacuum, oxide films or dissolved oxygen may have significant effects on materials properties, such as surface tension and viscosity. Therefore, the ability to measure and control the oxygen partial pressure within the chamber is highly desirable. The oxygen control system installed at MSFC contains a potentiometric sensor, which measures the oxygen partial pressure, and an oxygen ion pump. In the pump, a pulse-width modulated electric current is applied to yttrium-stabilized zirconia, resulting in oxygen transfer into or out of the system. Also part of the system is a control unit, which consists of temperature controllers for the sensor and pump, PID-based current loop for the ion pump, and a control algorithm. This system can be used to study the effects of oxygen on the thermophysical properties of metals, ceramics, glasses, and alloys. It can also be used to provide more accurate measurements by processing the samples at very low oxygen partial pressures. The oxygen control system will be explained in more detail and an overview of its use and limitations in an electrostatic levitator will be described. Some preliminary measurements have been made, and the results to date will

  18. Partial alignment and measurement of residual dipolar couplings of proteins under high hydrostatic pressure

    PubMed Central

    Fu, Yinan; Wand, A. Joshua

    2013-01-01

    High-pressure NMR spectroscopy has emerged as a complementary approach for investigating various structural and thermodynamic properties of macromolecules. Noticeably absent from the array of experimental restraints that have been employed to characterize protein structures at high hydrostatic pressure is the residual dipolar coupling, which requires the partial alignment of the macromolecule of interest. Here we examine five alignment media that are commonly used at ambient pressure for this purpose. We find that the spontaneous alignment of Pf1 phage, d(GpG) and a C12E5/n-hexnanol mixture in a magnetic field is preserved under high hydrostatic pressure. However, DMPC/ DHPC bicelles and collagen gel are found to be unsuitable. Evidence is presented to demonstrate that pressure-induced structural changes can be identified using the residual dipolar coupling. PMID:23807390

  19. [Device to assess in-socket pressure distribution for partial foot amputation].

    PubMed

    Alvarez-Camacho, Michelín; Urrusti, José Luis; Acero, María Del Carmen; Galván Duque-Gastélum, Carlos; Rodríguez-Reyes, Gerardo; Mendoza-Cruz, Felipe

    2014-07-01

    A device for dynamic acquisition and distribution analysis of in-socket pressure for patients with partial foot amputation is presented in this work. By using the developed system, we measured and generated pressure distribution graphs, obtained maximal pressure, and calculated pressure-time integral (PTI) of three subjects with partial foot amputation and of a group of Healthy subjects (Hs) (n = 10). Average maximal pressure in the healthy group was 19.4 ± 4.11 PSI, while for the three amputated patients, this was 27.8 ± 1.38, 17.6 ± 1.15, 29.10 ± 3.9 PSI, respectively. Maximal pressure-time integral for healthy subjects was 11.56 ± 2.83 PSI*s, and for study subjects was 19.54 ± 1.9, 12.35 ± 1.48, and 13.17 ± 1.31 PSI*s, respectively. The results of the control group agree with those previously reported in the literature. The pressure distribution pattern showed clear differences between study subjects and those of the control group; these graphs allowed us to identify the pressure in regions-of-interest that could be critical, such as surgical scars. The system presented in this work will aid to assess the effectiveness with which prosthetic systems distribute load, given that the formation of ulcers is highly linked to the pressure exercised at the point of contact; in addition, these results will help to investigate the comfort perception of the prosthesis, a factor directly influenced by the stump's pressure distribution. PMID:25264793

  20. [Device to assess in-socket pressure distribution for partial foot amputation].

    PubMed

    Alvarez-Camacho, Michelín; Urrusti, José Luis; Acero, María Del Carmen; Galván Duque-Gastélum, Carlos; Rodríguez-Reyes, Gerardo; Mendoza-Cruz, Felipe

    2014-07-01

    A device for dynamic acquisition and distribution analysis of in-socket pressure for patients with partial foot amputation is presented in this work. By using the developed system, we measured and generated pressure distribution graphs, obtained maximal pressure, and calculated pressure-time integral (PTI) of three subjects with partial foot amputation and of a group of Healthy subjects (Hs) (n = 10). Average maximal pressure in the healthy group was 19.4 ± 4.11 PSI, while for the three amputated patients, this was 27.8 ± 1.38, 17.6 ± 1.15, 29.10 ± 3.9 PSI, respectively. Maximal pressure-time integral for healthy subjects was 11.56 ± 2.83 PSI*s, and for study subjects was 19.54 ± 1.9, 12.35 ± 1.48, and 13.17 ± 1.31 PSI*s, respectively. The results of the control group agree with those previously reported in the literature. The pressure distribution pattern showed clear differences between study subjects and those of the control group; these graphs allowed us to identify the pressure in regions-of-interest that could be critical, such as surgical scars. The system presented in this work will aid to assess the effectiveness with which prosthetic systems distribute load, given that the formation of ulcers is highly linked to the pressure exercised at the point of contact; in addition, these results will help to investigate the comfort perception of the prosthesis, a factor directly influenced by the stump's pressure distribution.

  1. Transient responses of nitrogenase to acetylene and oxygen in actinorhizal nodules and cultured Frania

    SciTech Connect

    Silvester, W.B.; Winship, L.J. )

    1990-02-01

    Nitrogenase activity in root nodules of four species of actinorhizal plants showed varying declines in response to exposure to acetylene (10% v/v). Gymnostoma papuanum (S.Moore) L. Johnson. and Casuarina equisetifolia L. nodules showed a small decline (5-15%) with little or no recovery over 15 minutes. Myrica gale L. nodules showed a sharp decline followed by a rapid return to peak activity. Alnus incana ssp. rugosa (Du Roi) Clausen. nodules usually showed varying degrees of decline followed by a slower return to peak or near-peak activity. We call these effects acetylene-induced transients. Rapid increases in oxygen tension also caused dramatic transient decreases in nitrogenase activity in all species. The magnitude of the transient decrease was related to the size of the O{sub 2} partial pressure (pO{sub 2}) rise, to the proximity of the starting and ending oxygen tensions to the pO{sub 2} optimum, and to the time for which the plant was exposed to the lower pO{sub 2}. Oxygen-induced transients, induced both by step jumps in pO{sub 2} and by O{sub 2} pulses, were also observed in cultures of Frankia. The effects seen in nodules are purely a response by the bacterium and not a nodule effect per se. Oxygen-induced nitrogenase transients in actinorhizal nodules from the plant genera tested here do not appear to be a result of changes in nodule diffusion resistance.

  2. Acetylene: Synergy between theory and experiment

    NASA Astrophysics Data System (ADS)

    Lundberg, James K.; Field, Robert W.; Sherrill, C. David; Seidl, Edward T.; Xie, Yaoming; Schaefer, Henry F., III

    1993-06-01

    Six anomalous vibronic feature states [˜2 cm-1 full-width at half-maximum (FWHM), each consisting of ˜20 partially resolved eigenstates] have been observed in stimulated emission pumping (SEP) spectra of C2D2. Of the two plausible assignments for these features, the one most consistent with spectroscopic observations would imply that the lowest energy cis-bent triplet state of acetylene has T0≤25 820 cm-1, which is inconsistent with previous ab initio predictions. New higher level ab initio quantum mechanical methods have been used to predict the energy difference between X˜ 1Σg+ ground state and the cis-bent ã 3B2 lowest triplet state of acetylene. In conjunction with a triple zeta plus double polarization plus f function (TZ2Pf) basis set, the coupled cluster including single, double, and linearized triple excitations CCSD(T) method yields T0=ΔE(ã 3B2-X˜ 1Σg+)=30 500 cm-1. The true value of T0 for the ã 3B2 state is estimated to be ˜500 cm-1 higher. At the same level of theory the zero-point levels of the lowest triplet state of the trans-bent (ã 3Bu) and vinylidene (ã 3B2) isomers lie at still higher energies. This result conclusively rules out any triplet assignment for the anomalous feature states. The alternative assignment, as highly excited vibrational levels of the X˜ 1Σg+ state, is surprising in view of the Franck-Condon selectivity, dynamical stability, and nonselective relaxation of this special class of ``bright states'' observed in the SEP spectra. Such an assignment would be implausible in the absence of the present ab initio calculations. Previous experimental observations [Lisy and Klemperer, J. Chem. Phys. 72, 3880 (1980) and Wendt, Hippler, and Hunziker, J. Chem. Phys. 70, 4044 (1979)] of acetylene triplet states are discussed and shown to be completely consistent with each other and with the present ab initio ordering of the cis and trans isomeric minima on the T1 potential energy surface: cis ã 3B2 below trans ã 3Bu .

  3. Flight test evaluation of an RAF high altitude partial pressure protective assembly

    NASA Technical Reports Server (NTRS)

    Ashworth, G. R.; Putnam, T. W.; Dana, W. J.; Enevoldson, E. K.; Winter, W. R.

    1979-01-01

    A partial pressure suit was evaluated during tests in an F-104 and F-15 as a protective garment for emergency descents. The garment is an pressure jerkin and modified anti-g suit combined with an oronasal mask. The garment can be donned and doffed at the aircraft to minimize thermal buildup. The oronasal mask was favored by the pilots due to its immobility on the face during high g-loading. The garment was chosen to provide optimum dexterity for the pilot, which is not available in a full pressure suit, while protecting the pilot at altitudes up to 18,288 meters, during a cabin decompression, and subsequent aircraft descent. During cabin decompressions in the F-104 and F-15, cabin pressure altitude was measured at various aircraft angles of attack, Mach numbers, and altitudes to determine the effect of the aerodynamic slipstream on the cabin altitude.

  4. Oxidation of C/SiC Composites at Reduced Oxygen Partial Pressures

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.; Serra, Jessica

    2009-01-01

    Carbon-fiber reinforced SiC (C/SiC) composites are proposed for leading edge applications of hypersonic vehicles due to the superior strength of carbon fibers at high temperatures (greater than 1500 C). However, the vulnerability of the carbon fibers in C/SiC to oxidation over a wide range of temperatures remains a problem. Previous oxidation studies of C/SiC have mainly been conducted in air or oxygen, so that the oxidation behavior of C/SiC at reduced oxygen partial pressures of the hypersonic flight regime are less well understood. In this study, both carbon fibers and C/SiC composites were oxidized over a wide range of temperatures and oxygen partial pressures to facilitate the understanding and modeling of C/SiC oxidation kinetics for hypersonic flight conditions.

  5. Thermal Conversion of Methane to Acetylene

    SciTech Connect

    Fincke, James Russell; Anderson, Raymond Paul; Hyde, Timothy Allen; Wright, Randy Ben; Bewley, Randy Lee; Haggard, Delon C; Swank, William David

    2000-01-01

    This report describes the experimental demonstration of a process for the direct thermal conversion of methane to acetylene. The process utilizes a thermal plasma heat source to dissociation products react to form a mixture of acetylene and hydrogen. The use of a supersonic expansion of the hot gas is investigated as a method of rapidly cooling (quenching) the product stream to prevent further reaction or thermal decomposition of the acetylene which can lower the overall efficiency of the process.

  6. Introduction to total- and partial-pressure measurements in vacuum systems

    NASA Technical Reports Server (NTRS)

    Outlaw, R. A.; Kern, F. A.

    1989-01-01

    An introduction to the fundamentals of total and partial pressure measurement in the vacuum regime (760 x 10 to the -16th power Torr) is presented. The instrument most often used in scientific fields requiring vacuum measurement are discussed with special emphasis on ionization type gauges and quadrupole mass spectrometers. Some attention is also given to potential errors in measurement as well as calibration techniques.

  7. Oxygen supply in aquatic ectotherms: partial pressure and solubility together explain biodiversity and size patterns.

    PubMed

    Verberk, Wilco C E P; Bilton, David T; Calosi, Piero; Spicer, John I

    2011-08-01

    Aquatic ectotherms face the continuous challenge of capturing sufficient oxygen from their environment as the diffusion rate of oxygen in water is 3 x 10(5) times lower than in air. Despite the recognized importance of oxygen in shaping aquatic communities, consensus on what drives environmental oxygen availability is lacking. Physiologists emphasize oxygen partial pressure, while ecologists emphasize oxygen solubility, traditionally expressing oxygen in terms of concentrations. To resolve the question of whether partial pressure or solubility limits oxygen supply in nature, we return to first principles and derive an index of oxygen supply from Fick's classic first law of diffusion. This oxygen supply index (OSI) incorporates both partial pressure and solubility. Our OSI successfully explains published patterns in body size and species across environmental clines linked to differences in oxygen partial pressure (altitude, organic pollution) or oxygen solubility (temperature and salinity). Moreover, the OSI was more accurately and consistently related to these ecological patterns than other measures of oxygen (oxygen saturation, dissolved oxygen concentration, biochemical oxygen demand concentrations) and similarly outperformed temperature and altitude, which covaried with these environmental clines. Intriguingly, by incorporating gas diffusion rates, it becomes clear that actually more oxygen is available to an organism in warmer habitats where lower oxygen concentrations would suggest the reverse. Under our model, the observed reductions in aerobic performance in warmer habitats do not arise from lower oxygen concentrations, but instead through organismal oxygen demand exceeding supply. This reappraisal of how organismal thermal physiology and oxygen demands together shape aerobic performance in aquatic ectotherms and the new insight of how these components change with temperature have broad implications for predicting the responses of aquatic communities to

  8. Biomass hydrolysis inhibition at high hydrogen partial pressure in solid-state anaerobic digestion.

    PubMed

    Cazier, E A; Trably, E; Steyer, J P; Escudie, R

    2015-08-01

    In solid-state anaerobic digestion, so-called ss-AD, biogas production is inhibited at high total solids contents. Such inhibition is likely caused by a slow diffusion of dissolved reaction intermediates that locally accumulate. In this study, we investigated the effect of H2 and CO2 partial pressure on ss-AD. Partial pressure of H2 and/or CO2 was artificially fixed, from 0 to 1 557mbars for H2 and from 0 to 427mbars for CO2. High partial pressure of H2 showed a significant effect on methanogenesis, while CO2 had no impact. At high [Formula: see text] , the overall substrate degradation decreased with no accumulation of metabolites from acidogenic bacteria, indicating that the hydrolytic activity was specifically impacted. Interestingly, such inhibition did not occur when CO2 was added with H2. This result suggests that CO2 gas transfer is probably a key factor in ss-AD from biomass.

  9. Origin of the increase in resistivity of manganese-zinc ferrite polycrystals with oxygen partial pressure

    NASA Astrophysics Data System (ADS)

    Byeon, Soon Cheon; Hong, Kug Sun; Park, Jae Gwan; Kang, Won Nam

    1997-06-01

    In our present study, the origin of the increase in resistivity of polycrystalline Mn0.47Zn0.47Fe2.06O4 with increasing oxygen partial pressure was investigated by measuring thermoelectric power and electrical resistivity, and through analysis of grain size. The ferrous ion (Fe2+) concentration of the samples was estimated using the thermoelectric power data and it indicated that the increase of oxygen partial pressure accompanied only a 0.5 wt. % decrease in the concentration of Fe2+. The decrease in Fe2+ concentration failed to explain the order of magnitude increase in resistivity. Preferential oxidation of the grain boundaries did not contribute to the increase in resistivity since all the samples were cooled under the same conditions, i.e., constant oxidation potential. Impedance spectroscopy revealed that the increase in resistivity arose from the increase in resistivity of the grain boundary; this is discussed in terms of the microscopic shape factor, the brick-layer model, and the Maxwell-Wagner model. It is suggested that the increase in resistivity, with increasing oxygen partial pressure, originates from the increase in the microscopic shape factor of the grain boundary.

  10. Acetylene terminated aspartimides and resins therefrom

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M. (Inventor); Connell, John W. (Inventor); Havens, Stephen J. (Inventor)

    1989-01-01

    Acetylene terminated aspartimides are prepared using two methods. In the first, an amino-substituted aromatic acetylene is reacted with an aromatic bismaleimide in a solvent of glacial acetic acid and/or m-cresol. In the second method, an aromatic diamine is reacted with an ethynyl containing maleimide, such an N-(3-ethynyl phenyl) maleimide, in a solvent of glacial acetic acid and/or m-cresol. In addition, acetylene terminated aspartimides are blended with various acetylene terminated oligomers and polymers to yield composite materials exhibiting improved mechanical properties.

  11. Pressures of Partial Crystallization of Magmas from the Juan de Fuca Ridge: Implications for Crustal Accretion

    NASA Astrophysics Data System (ADS)

    Scott, J. L.; Barton, M.

    2010-12-01

    Plate spreading at the mid-ocean ridges is accompanied by intrusion of dikes and eruption of lava along the ridge axis. It has been suggested that the depth of magma chambers that feed the flows and dikes is related to the rate of spreading. As part of a larger effort to examine this hypothesis, we determined the depths of magma chambers beneath the intermediate spreading Juan de Fuca Ridge (JdF) which extends from the Blanco fracture zone at about 44.5 degrees North to the Triple junction of the JdF, Nootka Fault, and the Socanco fracture zone at 48.7 degrees North. Pressures of partial crystallization were determined by comparing the compositions of natural liquids (glasses) with those of experimental liquids in equilibrium with olivine, plagioclase, and clinopyroxene at different pressures and temperatures using the method described by Kelley and Barton (2008). Chemical analyses mid-ocean ridge basalts glasses sampled from along the JdF were used as liquid compositions. Samples with anomalous chemical compositions and samples that yielded pressures associated with unrealistically large uncertainties were filtered out of the database. The calculated pressures for the remaining 533 samples were used to calculate the depths of partial crystallization and to identify the likely location of magma chambers. Preliminary results indicate that the pressure of partial crystallization decreases from 2 to 1±0.5 kbars from the Blanco fracture zone to the north along the Cleft segment of the ridge. Calculated pressures remain approximately constant at 0.87±0.53 kbars along ridge segments to the north of the Cleft. These low pressures for the remaining segments of the ridge are interpreted to indicate magma chambers at depths of 1.3-4.9 km and agree reasonably well with the depths of seismically imaged tops of axial magma chambers (2-3 km) (Canales et al 2009). The higher pressures obtained for lavas erupted along the Cleft segment of the JdF agree very well with recent

  12. Preliminary Measurements Of N2O Partial Pressures In Rivers of Amazon Basin, Brazil

    NASA Astrophysics Data System (ADS)

    Oliveira, C. B.; Rasera, M. F.; Krusche, A. V.; Victoria, R. L.; Richey, J. E.; Cunha, H. B.; Gomes, B. M.

    2006-12-01

    The concentrations of nitrous oxide (N2O), an important component of the greenhouse effect and with a long residence time in the atmosphere, have significantly increased in this century. The reasons for this atmospheric increase in N2O are still partially unexplained. This uncertainty is worse in relation to aquatic environments. Here we report on preliminary measurements of N2O partial pressures in rivers of the Amazon basin. The study areas are in the state of Rondonia (rivers Ji Parana, Urupa, Comemoracao and Pimenta Bueno) and Amazonas (rivers Solimoes and Negro). The rivers were sampled from October 2005 to April 2006, using with immersion pumps, lowered in the middle of the channel to 60% of total depth. Water was pumped directly into a 1 l plastic bottle, which was overflown three times before closing. Using syringes, 60 ml of N2 were injected into the bottle, simultaenously to the withdrawn of 60 ml of sample. N2O was extracted into these 60 ml of N2 by shaking vigorously for 2 minutes. With the same syringes, the gas was taken from the bottles and injected into sealed evacuated 25 ml vials. Atmospheric samples were taken from one meter above the water column and stored the same way. N2O partial pressures were determined on a Shimadzu GC-14 Green House Gas Analyzer. All rivers showed little variations in N2O partial pressures. Average values in the rivers of Rondonia were around 0.41 ± 0.07 μ atm (n=46), whereas the Solimoes and Negro rivers, in the state of Amazonas, showed values around 0.43 ± 0.08 μ atm (n=131). Atmospheric averages were approximately 0.34 ± 0.04 μ atm (n=58) and 0.32 ± 0.03 μ atm (n=134) in the states of Rondonia and Amazonas, respectively. This means that, although these waters are supersatured in CO2, making evasive fluxes of this gas an important component of the C cycle in this basin, the same does not occur in the N cycle. Small differences in partial pressures of N2O between water and air will result in small fluxes of

  13. Proximate nutritional composition of CELSS crops grown at different CO2 partial pressures

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Mackowiak, C. L.; Sager, J. C.; Knott, W. M.; Berry, W. L.

    1994-01-01

    Two Controlled Ecological Life Support System (CELSS) candidate crops, soybean (Glycine max) and potato (Solanum tuberosum), were grown hydroponically in controlled environments maintained at carbon dioxide (CO2) partial pressures ranging from 0.05 to 1.00 kPa (500 to 10,000 ppm at 101 kPa atmospheric pressure). Plants were harvested at maturity (90 days for soybean and 105 days for potato) and all tissues analyzed for proximate nutritional composition (i.e. protein, fat, carbohydrate, crude fiber, and ash content). Soybean seed ash and crude fiber were higher and carbohydrate was lower than values reported for field-grown seed. Potato tubers showed little difference from field-grown tubers. Crude fiber of soybean stems and leaves increased with increased CO2, as did soybean leaf protein (total nitrogen). Potato leaf and stem (combined) protein levels also increased with increased CO2, while leaf and stem carbohydrates decreased. Values for leaf and stem protein and ash were higher than values generally reported for field-grown plants for both species. Results suggest that CO2 partial pressure should have little influence on proximate composition of potato tubers or soybean seed, but that high ash and protein levels might be expected from leaves and stems of crops grown in controlled environments of a CELSS.

  14. Proximate nutritional composition of CELSS crops grown at different CO2 partial pressures.

    PubMed

    Wheeler, R M; Mackowiak, C L; Sager, J C; Knott, W M; Berry, W L

    1994-11-01

    Two CELSS candidate crops, soybean (Glycine max) and potato (Solanum tuberosum), were grown hydroponically in controlled environments maintained at carbon dioxide (CO2) partial pressures ranging from 0.05 to 1.00 kPa (500 to 10,000 ppm at 101 kPa atmospheric pressure). Plants were harvested at maturity (90 days for soybean and 105 days for potato) and all tissues analyzed for proximate nutritional composition (i.e. protein, fat, carbohydrate, crude fiber, and ash content). Soybean seed ash and crude fiber were higher and carbohydrate was lower than values reported for field-grown seed. Potato tubers showed little difference from field-grown tubers. With the exception of increased crude fiber of soybean seed with increased CO2, no trends were apparent with regard to CO2 effects on proximate composition of soybean seed and potato tubers. Crude fiber of soybean stems and leaves increased with increased CO2, as did soybean leaf protein (total nitrogen). Potato leaf and stem (combined) protein levels also increased with increased CO2, while leaf and stem carbohydrates decreased. Values for leaf and stem protein and ash were higher than values generally reported for field-grown plants for both species. Results suggest that CO2 partial pressure should have little influence on proximate composition of potato tubers or soybean seed, but that high ash and protein levels might be expected from leaves and stems of crops grown in controlled environments of a CELSS.

  15. Proximate nutritional composition of celss crops grown at different CO2 partial pressures

    NASA Astrophysics Data System (ADS)

    Wheeler, R. M.; Mackowiak, C. L.; Sager, J. C.; Knott, W. M.; Berry, W. L.

    1994-11-01

    Two CELSS candidate crops, soybean (Glycine max) and potato (Solanum tuberosum), were grown hydroponically in controlled environments maintained at carbon dioxide (CO2) partial pressures ranging from 0.05 to 1.00 kPa (500 to 10,000 ppm at 101 kPa atmospheric pressure). Plants were harvested at maturity (90 days for soybean and 105 days for potato) and all tissues analyzed for proximate nutritional composition (i.e. protein, fat, carbohydrate, crude fiber, and ash content). Soybean seed ash and crude fiber were higher and carbohydrate was lower than values reported for field-grown seed. Potato tubers showed little difference from field-grown tubers. With the exception of increased crude fiber of soybean seed with increased CO2, no trends were apparent with regard to CO2 effects on proximate composition of soybean seed and potato tubers. Crude fiber of soybean stems and leaves increased with increased CO2, as did soybean leaf protein (total nitrogen). Potato leaf and stem (combined) protein levels also increased with increased CO2, while leaf and stem carbohydrates decreased. Values for leaf and stem protein and ash were higher than values generally reported for field-grown plants for both species. Results suggest that CO2 partial pressure should have little influence on proximate composition of potato tubers or soybean seed, but that high ash and protein levels might be expected from leaves and stems of crops grown in controlled environments of a CELSS.

  16. Detonation engine fed by acetylene-oxygen mixture

    NASA Astrophysics Data System (ADS)

    Smirnov, N. N.; Betelin, V. B.; Nikitin, V. F.; Phylippov, Yu. G.; Koo, Jaye

    2014-11-01

    The advantages of a constant volume combustion cycle as compared to constant pressure combustion in terms of thermodynamic efficiency has focused the search for advanced propulsion on detonation engines. Detonation of acetylene mixed with oxygen in various proportions is studied using mathematical modeling. Simplified kinetics of acetylene burning includes 11 reactions with 9 components. Deflagration to detonation transition (DDT) is obtained in a cylindrical tube with a section of obstacles modeling a Shchelkin spiral; the DDT takes place in this section for a wide range of initial mixture compositions. A modified ka-omega turbulence model is used to simulate flame acceleration in the Shchelkin spiral section of the system. The results of numerical simulations were compared with experiments, which had been performed in the same size detonation chamber and turbulent spiral ring section, and with theoretical data on the Chapman-Jouguet detonation parameters.

  17. Toxicity of elevated partial pressures of carbon dioxide to invasive New Zealand mudsnails

    USGS Publications Warehouse

    Nielson, R. Jordan; Moffitt, Christine M.; Watten, Barnaby J.

    2012-01-01

    The authors tested the efficacy of elevated partial pressures of CO2 to kill invasive New Zealand mudsnails. The New Zealand mudsnails were exposed to 100 kPa at three water temperatures, and the survival was modeled versus dose as cumulative °C-h. We estimated an LD50 of 59.4°C-h for adult and juvenile New Zealand mudsnails. The results suggest that CO2 may be an effective and inexpensive lethal tool to treat substrates, tanks, or materials infested with New Zealand mudsnails.

  18. Toxicity of elevated partial pressures of carbon dioxide to invasive New Zealand mudsnails.

    PubMed

    Nielson, R Jordan; Moffitt, Christine M; Watten, Barnaby J

    2012-08-01

    The authors tested the efficacy of elevated partial pressures of CO(2) to kill invasive New Zealand mudsnails. The New Zealand mudsnails were exposed to 100 kPa at three water temperatures, and the survival was modeled versus dose as cumulative °C-h. We estimated an LD50 of 59.4°C-h for adult and juvenile New Zealand mudsnails. The results suggest that CO(2) may be an effective and inexpensive lethal tool to treat substrates, tanks, or materials infested with New Zealand mudsnails.

  19. Pressure Distribution Over a Rectangular Airfoil with a Partial-Span Split Flap

    NASA Technical Reports Server (NTRS)

    Wenzinger, Carl J; Harris, Thomas A

    1937-01-01

    This report presents the results of pressure-distribution tests of a Clark y wing model with a partial-span split flap made to determine the distribution of air loads over both the wing and the flap. The model was used in conjunction with a reflection plane in the NACA 7 by 10 foot wind tunnel. The 20-percent-chord split flap extended over the inboard 60 percent of the semispan. The tests were made at various flap deflections up to 45 degrees and covered a range of angles of attack from zero lift to approximately maximum lift for each deflection.

  20. An experimental study on the ergonomics indices of partial pressure suits.

    PubMed

    Li, Xianxue; Ding, Li; Hedge, Alan; Hu, Huimin; Qin, Zhifeng; Zhou, Qianxiang

    2013-05-01

    Partial pressure suits (PPSs) are used under high altitude, low-pressure conditions to protect the pilots. However, the suit often limits pilot's mobility and work efficiency. The lack of ergonomic data on the effects of PPSs on mobility and performance creates difficulties for human factor engineers and cockpit layout specialists. This study investigated the effects of PPSs on different ergonomic mobility and performance indices in order to evaluate the suit's impact on pilot's body mobility and work efficiency. Three types of ergonomics indices were studied: the manipulative mission, operational reach and operational strength. Research results indicated that a PPS significantly affects the mobility and operational performance of the wearers. The results may provide mission planners and human factors engineers with better insight into the understanding of pilots' operational function, mobility and strength capabilities when wearing PPS. PMID:23102522

  1. Measurement of partial vapor pressure of ammonia over acid ammonium sulfate solutions by an integral method

    NASA Astrophysics Data System (ADS)

    Koutrakis, P.; Aurian-BlǎJeni, B.

    1993-02-01

    We present a simple, integral, passive method for measuring partial vapor pressure. Integral methods are useful tools when dealing with very low concentrations because collection over extended periods increases the analytical sensitivity. Passive methods have the advantage of not introducing constraints external to the system. The principle of the method used here is to selectively react the substance in the atmosphere over a solution with an immobilized coating on an appropriate support. The reaction product is not volatile, but is soluble and can be extracted in an appropriate solvent and analyzed. The method has been applied to measuring the vapor pressure of ammonia over aqueous solutions. The vapor pressure over ammonium sulfate solutions depends on the acidity of the solutions as well as on the salt concentration. The dependence can be explained with a simple model. Furthermore, using the same model, we calculated the ammonia vapor pressure above different ammonium sulfate/sulfuric acid aqueous solutions as a function of sulfate molarity and percentage of sulfuric acid. The results from the calculations suggest that for ambient ammonia concentrations less than 10 ppb, acid sulfate aerosols are not completely neutralized.

  2. DEVELOPMENT OF PRESSURIZED CIRCULATIONG FLUIDIZED BED PARTIAL GASIFICATION MODULE(PGM)

    SciTech Connect

    Archie Robertson

    2003-04-17

    Foster Wheeler Power Group, Inc. is working under US Department of Energy contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% and produce near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines, or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The amount of syngas and char produced by the PGM can be tailored to fit the production objectives of the overall plant, i.e., power generation, clean liquid fuel production, chemicals production, etc. Hence, PGM is a robust building block that offers all the advantages of coal gasification but in a more user-friendly form; it is also fuel flexible in that it can use alternative fuels such as biomass, sewerage sludge, etc. This report describes the work performed during the January 1--March 31, 2003 time period.

  3. Hypothesis: the regulation of the partial pressure of oxygen by the serotonergic nervous system in hypoxia.

    PubMed

    Devereux, Diana; Ikomi-Kumm, Julie

    2013-03-01

    The regulation of the partial pressure of oxygen by the serotonergic nervous system in hypoxia is a hypothesis, which proposes an inherent operative system in homo sapiens that allows central nervous system and endocrine-mediated vascular system adaption to variables in partial pressure of oxygen, pH and body composition, while maintaining sufficient oxygen saturation for the immune system and ensuring protection of major organs in hypoxic and suboptimal conditions. While acknowledging the importance of the Henderson-Hasselbalch equation in the regulation of acid base balance, the hypothesis seeks to define the specific neuroendocrine/vascular mechanisms at work in regulating acid base balance in hypoxia and infection. The SIA (serotonin-immune-adrenergic) system is proposed as a working model, which allows central nervous system and endocrine-mediated macro- and micro vascular 'fine tuning'. The neurotransmitter serotonin serves as a 'hypoxic sensor' in concert with other operators to orchestrate homeostatic balance in normal and pathological states. The SIA system finely regulates oxygen, fuel and metabolic buffering systems at local sites to ensure optimum conditions for the immune response. The SIA system is fragile and its operation may be affected by infection, stress, diet, environmental toxins and lack of exercise. The hypothesis provides new insight in the area of neuro-gastroenterology, and emphasizes the importance of diet and nutrition as a complement in the treatment of infection, as well as the normalization of intestinal flora following antibiotic therapy.

  4. Low tritium partial pressure permeation system for mass transport measurement in lead lithium eutectic

    DOE PAGES

    Pawelko, R. J.; Shimada, M.; Katayama, K.; Fukada, S.; Humrickhouse, P. W.; Terai, T.

    2015-11-28

    This paper describes a new experimental system designed to investigate tritium mass transfer properties in materials important to fusion technology. Experimental activities were carried out at the Safety and Tritium Applied Research (STAR) facility located at the Idaho National Laboratory (INL). The tritium permeation measurement system was developed as part of the Japan/US TITAN collaboration to investigate tritium mass transfer properties in liquid lead lithium eutectic (LLE) alloy. The experimental system is configured to measure tritium mass transfer properties at low tritium partial pressures. Initial tritium permeation scoping tests were conducted on a 1 mm thick α-Fe plate to determinemore » operating parameters and to validate the experimental technique. A second series of permeation tests was then conducted with the α-Fe plate covered with an approximately 8.5 mm layer of liquid lead lithium eutectic alloy (α-Fe/LLE). We present preliminary tritium permeation data for α-Fe and α-Fe/LLE at temperatures between 400 and 600°C and at tritium partial pressures between 1.7E-3 and 2.5 Pa in helium. Preliminary results for the α-Fe plate and α-Fe/LLE indicate that the data spans a transition region between the diffusion-limited regime and the surface-limited regime. In conclusion, additional data is required to determine the existence and range of a surface-limited regime.« less

  5. Low tritium partial pressure permeation system for mass transport measurement in lead lithium eutectic

    SciTech Connect

    Pawelko, R. J.; Shimada, M.; Katayama, K.; Fukada, S.; Humrickhouse, P. W.; Terai, T.

    2015-11-28

    This paper describes a new experimental system designed to investigate tritium mass transfer properties in materials important to fusion technology. Experimental activities were carried out at the Safety and Tritium Applied Research (STAR) facility located at the Idaho National Laboratory (INL). The tritium permeation measurement system was developed as part of the Japan/US TITAN collaboration to investigate tritium mass transfer properties in liquid lead lithium eutectic (LLE) alloy. The experimental system is configured to measure tritium mass transfer properties at low tritium partial pressures. Initial tritium permeation scoping tests were conducted on a 1 mm thick α-Fe plate to determine operating parameters and to validate the experimental technique. A second series of permeation tests was then conducted with the α-Fe plate covered with an approximately 8.5 mm layer of liquid lead lithium eutectic alloy (α-Fe/LLE). We present preliminary tritium permeation data for α-Fe and α-Fe/LLE at temperatures between 400 and 600°C and at tritium partial pressures between 1.7E-3 and 2.5 Pa in helium. Preliminary results for the α-Fe plate and α-Fe/LLE indicate that the data spans a transition region between the diffusion-limited regime and the surface-limited regime. In conclusion, additional data is required to determine the existence and range of a surface-limited regime.

  6. Red cell CO partial pressure during CO uptake; implications for CO diffusing capacity

    SciTech Connect

    Reeves, R.B.; Hae Kun Park )

    1991-03-11

    The authors used the naked thin blood film technique of Heidelberger and Reeves for measuring gas uptake kinetics to test the hypothesis that intracellular CO partial pressure (P{sub e}) is in equilibrium with Co partial pressure around the cell (P{sub c}) during CO uptake by the CO for O{sub 2} displacement reaction. Only if P{sub e} = P{sub c} will observed initial CO uptake rates be predicted by the Gibson-Roughton equation: ({Delta}S/{Delta}t){sup {minus}1} = 2.54 {times} 10{sup {minus}2} + .0945 (P{sub o2}/P{sub co}), where S is COHb saturation. Using combinations of P{sub co} values of 2.1, 7, 21 and 70 Torr and P{sub o2} values of 100, 153, 214, 285, and 428 Torr, ({Delta}S/{Delta}t) was determined for 19 gas tension ratios. The weighted least squares regression line slope was not different from theoretical. The authors conclude that diffusion equilibrium is reached early in the CO uptake process. Therefore, the classical Bohr-Krogh assumption that P{sub co} {approx} 0 during CO uptake is in error and that all published values of D{sub Lco} are underestimates.

  7. Effect of the nonlinearity of the carbonate system on partial pressure of carbon dioxide in the oceans

    NASA Technical Reports Server (NTRS)

    Trela, Piotr; Sathyendranath, Shubha; Moore, Robert M.; Kelley, Dan E.

    1995-01-01

    Partial pressure of CO2 is a nonlinear function of several seawater properties. Due to the nonlinearity in this relationship, the partial pressure of a uniform ocean would be different from that of a nonuniform ocean with the same bulk seawater properties. Assuming uniformity of seawater properties at some temporal and spatial scales in carbon models leads to systematic errors in partial pressure of CO2. In this paper we evaluate the magnitude of these errors. We partition the Geochemical Ocean Sections Study and Transient Tracers in the Oceans data according to the horizontal structure of several box models from the literature. Our results suggest that assumption of uniformity at large scales leads to understanding of underestimation of global surface ocean partial pressure of CO2 by at least 3 - 12 microatm. Nonlinear effects also introduce systematic errors in the buffer factor estimated from bulk seawater properties. We find the standard deviation of partial pressure of CO2 to be an indicator of the magnitude of the nonlinear effects. We discuss the implications of these errors for some conclusions drawn from carbon models. Biogeochemical processes, such as mixing, gas exchange, or biological activity, influence the distribution of the seawater properties. A shift in spatial or temporal patterns of these processes can modify the nonuniformity of the seawater properties and thus alter the partial pressure of the surface waters, even if the mean intensities of the processes remain constant.

  8. The role of hydrogen partial pressure on the annealing of copper substrates for graphene CVD synthesis

    NASA Astrophysics Data System (ADS)

    Ramos, Welyson T. S.; Cunha, Thiago H. R.; Barcelos, Ingrid D.; Miquita, Douglas R.; Ferrari, Gustavo A.; de Oliveira, Sergio; Seara, Luciana M.; Silva Neto, Eliel G.; Ferlauto, Andre S.; Lacerda, Rodrigo G.

    2016-04-01

    The influence of hydrogen utilized during the thermal treatment of copper substrates on the subsequent graphene growth is investigated. It is known that various parameters such as nature of the carbon precursor, temperature and pressure strongly affect the quality of the graphene grown by chemical vapor deposition. Another important parameter is the hydrogen partial pressure adjusted during the growth stage and in the pre-growth annealing of the substrate. In attempts to elucidate the role of hydrogen assisted thermal annealing on the copper substrate morphology and on the subsequent graphene growth, we subjected Cu foils to thermal annealing under H2 atmosphere at different pressures. The copper surface was characterized by scanning electronic microscopy (SEM) and atomic force microscopy whereas graphene films and grains were characterized by Raman spectroscopy and SEM. Our findings suggest that hydrogen not only affect the Cu surface but also diffuses into the substrate, being stored in the bulk material during the thermal treatment of the substrate. The release of hydrogen species in the subsequent stages of growth can result in damage to the graphene layer or induce the nucleation of additional layers depending on the growth and pre-growth conditions. Therefore, the use of hydrogen during the annealing of ‘low purity Cu foils’ should be carefully planned in order to obtain high quality graphene via LPCVD.

  9. Deformation mechanisms in granodiorite at effective pressures to 100 MPa and temperatures to partial melting

    SciTech Connect

    Friedman, M.; Handin, J.; Bauer, S.J.

    1981-01-01

    Deformation mechanisms in room-dry and water-saturated specimens of Charcoal Granodiorite, shortened at 10/sup -4/s/sup -1/, at effective pressures (Pe) to 100 MPa and temperatures to partial melting (less than or equal to 1050/sup 0/C) are documented with a view toward providing criteria to recognize and characterize the deformation for geological and engienering applications. Above 800/sup 0/C strength decreases dramatically at effective pressures greater than or equal to 50 MPa and water-weakening reduces strength an additional 30 to 40% at Pe = 100 MPa. Strains at failure are only 0.1 to 2.2% with macroscopic ductility (within this range) increasing as the effective pressures are increased and in wet versus dry tests. Shattering (multiple faulting) gives way to faulting along a single zone to failure without macroscopic faulting as ductility increases. Microscopically, cataclasis (extension microfracturing and thermal cracking with rigid-body motions) predominates at all conditions. Dislocation gliding contributes little to the strain. Precursive extension microfractures coalesce to produce the throughgoing faults with gouge zones exhibiting possible Riedel shears. Incipient melting, particularly in wet tests, produces a distinctive texture along feldspar grain boundaries that suggests a grain-boundary-softening effect contributes to the weakening. In addition, it is demonstrated that the presence of water does not lead to more microfractures, but to a reduction in the stresses required to initiate and propagate them.

  10. Extending helium partial pressure measurement technology to JET DTE2 and ITER

    NASA Astrophysics Data System (ADS)

    Klepper, C. C.; Biewer, T. M.; Kruezi, U.; Vartanian, S.; Douai, D.; Hillis, D. L.; Marcus, C.

    2016-11-01

    The detection limit for helium (He) partial pressure monitoring via the Penning discharge optical emission diagnostic, mainly used for tokamak divertor effluent gas analysis, is shown here to be possible for He concentrations down to 0.1% in predominantly deuterium effluents. This result from a dedicated laboratory study means that the technique can now be extended to intrinsically (non-injected) He produced as fusion reaction ash in deuterium-tritium experiments. The paper also examines threshold ionization mass spectroscopy as a potential backup to the optical technique, but finds that further development is needed to attain with plasma pulse-relevant response times. Both these studies are presented in the context of continuing development of plasma pulse-resolving, residual gas analysis for the upcoming JET deuterium-tritium campaign (DTE2) and for ITER.

  11. Diurnal changes in the partial pressure of carbon dioxide in coral reef waters

    SciTech Connect

    Kayanne, Hajime; Suzuki, Atsushi; Saito, Hiroshi

    1995-07-14

    Coral reefs are considered to be a source of atmospheric carbon dioxide because of their high calcium carbonate production and low net primary production. This was tested by direct measurement of diurnal changes in the partial pressure of carbon dioxide (P{sub CO2}) in reef waters during two 3-day periods, one in March 1993 and one in March 1994, on Shiraho reef of the Ryukyu Islands, Japan. Although the P{sub CO2} values in reef waters exhibited large diurnal changes ranging from 160 to 520 microatmospheres, they indicate that the reef flat area is a net sink for atmospheric carbon dioxide. This suggests that the net organic production rate of the reef community exceeded its calcium carbonate production rate during the observation periods. 16 refs., 2 figs., 1 tab.

  12. Diurnal changes in the partial pressure of carbon dioxide in coral reef water.

    PubMed

    Kayanne, H; Suzuki, A; Saito, H

    1995-07-14

    Coral reefs are considered to be a source of atmospheric carbon dioxide because of their high calcium carbonate production and low net primary production. This was tested by direct measurement of diurnal changes in the partial pressure of carbon dioxide (Pco(co2)) in reef waters during two 3-day periods, one in March 1993 and one in March 1994, on Shiraho reef of the Ryukyu Islands, Japan. Although the Pco(co2) values in reef waters exhibited large diurnal changes ranging from 160 to 520 microatmospheres, they indicate that the reef flat area is a net sink for atmospheric carbon dioxide. This suggests that the net organic production rate of the reef community exceeded its calcium carbonate production rate during the observation periods.

  13. Extending Helium Partial Pressure Measurement Technology to JET DTE2 and ITER

    SciTech Connect

    Klepper, C Christopher; Biewer, Theodore M; Douai, D.; Hillis, Donald Lee; Marcus, Chris; Kruezi, Uron

    2016-01-01

    The detection limit for helium (He) partial pressure monitoring via the Penning discharge optical emission diagnostic, mainly used for tokamak divertor effluent gas analysis, is shown here to be possible for He concentrations down to 0.1% in predominantly deuterium effluents. This result from a dedicated laboratory study means that the technique can now be extended to intrinsically (non-injected) He produced as fusion reaction ash in deuterium-tritium experiments. The paper also examines threshold ionization mass spectroscopy as a potential backup to the optical technique, but finds that further development is needed to attain with plasma pulse-relevant response times. Both these studies are presented in the context of continuing development of plasma pulse-resolving, residual gas analysis for the upcoming JET deuterium-tritium campaign (DTE-2) and for ITER.

  14. Partial Pressures for Several In-Se Compositions from Optical Absorbance of the Vapor

    NASA Technical Reports Server (NTRS)

    Brebrick, R. F.; Su, Ching-Hua

    2001-01-01

    The optical absorbance of the vapor phase over various In-Se compositions between 33.3-60.99 at.% Se and 673-1418 K was measured and used to obtain the partial pressures of Se2(g) and In2Se(g). The results are in agreement with silica Bourdon gauge measurements for compositions between 50-61 at.%, but significantly higher than those from Knudsen cell and simultaneous Knudsen-torsion cell measurements. It is found that 60.99 at.% Se lies outside the sesquiselenide homogeneity range and 59.98 at.% Se lies inside and is the congruently melting composition. The Gibbs energy of formation of the liquid from its pure liquid elements between 1000-1300 K is essentially independent of temperature and falls between -36 to -38 kJ per g atomic weight for 50 and 56% Se at 1200 and 1300 K.

  15. Physical Mechanisms of Failure, Ultralow Partial Pressure Lubrication, and the Reservoir Effect in MEMS

    NASA Astrophysics Data System (ADS)

    Hook, David Adam

    The aim of this work is to examine the effectiveness of self-assembled monolayer (SAM) coatings as long term lubrication coatings in microsystems, to examine the failure regimes of SAM coated devices, to examine the role of mobility in adsorbed lubricating films, and to examine evolution of the coefficient of friction of devices surrounded by ultralow partial pressures of alcohols up to saturation. Finally the role of self assembled monlayers in vapor phase lubrication is examined. Self-assembled monolayers are ubiquitous in fabrication of free-standing microdevices because of their ability to prevent release related and dormancy related stiction. However their ability to lubricate under sliding and normal contact conditions is not well documented. It can be shown that the energy dissipated per unit area in one sliding cycle due to friction is significant under general loading conditions. Therefore from an energy dissipated standpoint the bond energies of the silane molecules should not be enough to withstand even a short number of cycles. An extension of this is the energy imparted to the surface through a normal loading cycle through a loss of kinetic energy. It can also be shown that this is enough to break the silicon oxygen bonds however this is over a longer time scale than in sliding. Also there is an open question on the role of mobile and non-mobile adsorbed species on friction. Is the mobility of a molecule/layer on a surface an indicator of the effectiveness of the lubrication potential of the layer? Do submonolayer coverages of alcohols "lock-up" to contacting surfaces by disrupting non-corrogated potentials? Is there a distinct lowering of frictional forces at the formation of a monolayer? Controlled adsorption of mobile and non-mobile species on rubbing contacts is necessary to elucidate this physical relationship. To accomplish this one must take into account that friction measurements are highly scale dependant. Therefore to ensure the accuracy of

  16. Partial Pressures of In-Se from Optical Absorbance of the Vapor

    NASA Technical Reports Server (NTRS)

    Brebrick, R. F.; Su, Ching-Hua; Curreri, Peter A. (Technical Monitor)

    2001-01-01

    The optical absorbance of the vapor phase over various In-Se compositions between 33.3 and 61 atomic percent and 673 and 1418K has been measured and used to obtain the partial pressures of Se2(g) and In2Se(g). The results are in agreement with silica Bourdon gage measurements for compositions between 50 and 61 atomic percent but significantly higher than those from Knudsen cell and simultaneous Torsion-Knudsen cell measurements. The sequiselenide is found to sublime incongruently. Congruent vaporization occurs for the liquid above 1000 K between 50.08 and 56 at. percent Se. The Gibbs energy of formation of the liquid from its pure liquid elements between 1000 and 1300K is essentially independent of temperature and falls between -36 and -38 kJ per gram atomic weight for 50 and 56 percent Se at 1200 and 1300K.

  17. Instrument for stable high temperature Seebeck coefficient and resistivity measurements under controlled oxygen partial pressure

    DOE PAGES

    Ihlefeld, Jon F.; Brown-Shaklee, Harlan James; Sharma, Peter Anand

    2015-04-28

    The transport properties of ceramic materials strongly depend on oxygen activity, which is tuned by changing the partial oxygen pressure (pO2) prior to and during measurement. Within, we describe an instrument for highly stable measurements of Seebeck coefficient and electrical resistivity at temperatures up to 1300 K with controlled oxygen partial pressure. An all platinum construction is used to avoid potential materials instabilities that can cause measurement drift. Two independent heaters are employed to establish a small temperature gradient for Seebeck measurements, while keeping the average temperature constant and avoiding errors associated with pO2-induced drifts in thermocouple readings. Oxygen equilibriummore » is monitored using both an O2 sensor and the transient behavior of the resistance as a proxy. A pO2 range of 10-25–100 atm can be established with appropriate gas mixtures. Seebeck measurements were calibrated against a high purity platinum wire, Pt/Pt–Rh thermocouple wire, and a Bi2Te3 Seebeck coefficient Standard Reference Material. To demonstrate the utility of this instrument for oxide materials we present measurements as a function of pO2 on a 1 % Nb-doped SrTiO3 single crystal, and show systematic changes in properties consistent with oxygen vacancy defect chemistry. Thus, an approximately 11% increase in power factor over a pO2 range of 10-19–10-8 atm at 973 K for the donor-doped single crystals is observed.« less

  18. Instrument for stable high temperature Seebeck coefficient and resistivity measurements under controlled oxygen partial pressure

    SciTech Connect

    Ihlefeld, Jon F.; Brown-Shaklee, Harlan James; Sharma, Peter Anand

    2015-04-28

    The transport properties of ceramic materials strongly depend on oxygen activity, which is tuned by changing the partial oxygen pressure (pO2) prior to and during measurement. Within, we describe an instrument for highly stable measurements of Seebeck coefficient and electrical resistivity at temperatures up to 1300 K with controlled oxygen partial pressure. An all platinum construction is used to avoid potential materials instabilities that can cause measurement drift. Two independent heaters are employed to establish a small temperature gradient for Seebeck measurements, while keeping the average temperature constant and avoiding errors associated with pO2-induced drifts in thermocouple readings. Oxygen equilibrium is monitored using both an O2 sensor and the transient behavior of the resistance as a proxy. A pO2 range of 10-25–100 atm can be established with appropriate gas mixtures. Seebeck measurements were calibrated against a high purity platinum wire, Pt/Pt–Rh thermocouple wire, and a Bi2Te3 Seebeck coefficient Standard Reference Material. To demonstrate the utility of this instrument for oxide materials we present measurements as a function of pO2 on a 1 % Nb-doped SrTiO3 single crystal, and show systematic changes in properties consistent with oxygen vacancy defect chemistry. Thus, an approximately 11% increase in power factor over a pO2 range of 10-19–10-8 atm at 973 K for the donor-doped single crystals is observed.

  19. Kinetics and Structure of Superagglomerates Produced by Silane and Acetylene

    NASA Technical Reports Server (NTRS)

    Mulholland, G. W.; Hamins, A.; Sivathanu, Y.

    1999-01-01

    The evolution of smoke in a laminar diffusion flame involves several steps. The first step is particle inception/nucleation in the high-temperature fuel-rich region of the flame followed by surface growth and coagulation/coalescence of the small particles. As the primary spheres grow in size and lose hydrogen, the colliding particles no longer coalesce but retain their identity as a cluster of primary spheres, termed an agglomerate. Finally, in the upper portion of the flame, the particles enter an oxidizing environment which may lead to partial or complete burnout of the agglomerates. Currently there is no quantitative model for describing the growth of smoke agglomerates up to superagglomerates with an overall dimension of 10 microns and greater. Such particles are produced during the burning of acetylene and fuels containing benzene rings such as toluene and polystyrene. In the case of polystyrene, smoke agglomerates in excess of 1 mm have been observed "raining" out from large fires. Evidence of the formation of superagglomerates in a laminar acetylene/air diffusion flame has been recently reported. Acetylene was chosen as the fuel since the particulate loading in acetylene/air diffusion flames is very high. Photographs were obtained by Sorensen using a microsecond xenon lamp of the "stream" of soot just above the flame. For low flow rates of acetylene, only submicrometer soot clusters are produced and they give rise to the homogeneous appearance of the soot stream. When the flow rate is increased to 1.7 cu cm/s, soot clusters up to 10 microns are formed and they are responsible for the graininess and at a flow rate of 3.4 cu cm/s, a web of interconnected clusters as large as the width of the flame is seen. This interconnecting web of superagglomerates is described as a gel state by Sorensen et al (1998). This is the first observation of a gel for a gas phase system. It was observed that this gel state immediately breaks up into agglomerates due to buoyancy

  20. Real-time visualization of oxygen partial pressures in straight channels of running polymer electrolyte fuel cell with water plugging

    NASA Astrophysics Data System (ADS)

    Nagase, Katsuya; Suga, Takeo; Nagumo, Yuzo; Uchida, Makoto; Inukai, Junji; Nishide, Hiroyuki; Watanabe, Masahiro

    2015-01-01

    Visualization inside polymer electrolyte fuel cells (PEFCs) for elucidating the reaction distributions is expected to improve the performance, durability, and stability. An oxygen-sensitive film of a luminescent porphyrin was used to visualize the oxygen partial pressures in five straight gas-flow channels of a running PEFC with liquid-water blockages formed at the end of the channels. The blockage greatly lowered and unstabilized the cell voltage. The oxygen partial pressure decreased nearly to 0 kPa in the blocked channel. With a water blockage in a channel, the oxygen partial pressures in the adjacent channels were lowered due to an extra demand of oxygen consumption. When the number of the blocked channels increased, the oxygen partial pressure in the unblocked channels became much lowered. When the water blockages disappeared, the oxygen partial pressures quickly returned to the values before plugging. The influence of the cross flows of air through the gas diffusion layers in straight channels was much smaller than that in serpentine flow channels.

  1. Oxidation of SiC/BN/SiC Composites in Reduced Oxygen Partial Pressures

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.; Boyd, Meredith

    2010-01-01

    SiC fiber-reinforced SiC composites with a BN interphase are proposed for use as leading edge structures of hypersonic vehicles. The durability of these materials under hypersonic flight conditions is therefore of interest. Thermogravimetric analysis was used to characterize the oxidation kinetics of both the constituent fibers and composite coupons at four temperatures: 816, 1149, 1343, and 1538 C (1500, 2100, 2450, and 2800 F) and in oxygen partial pressures between 5% and 0.1% (balance argon) at 1 atm total pressure. One edge of the coupons was ground off so the effects of oxygen ingress into the composite could be monitored by post-test SEM and EDS. Additional characterization of the oxidation products was conducted by XPS and TOF-SIMS. Under most conditions, the BN oxidized rapidly, leading to the formation of borosilicate glass. Rapid initial oxidation followed by volatilization of boria lead to protective oxide formation and further oxidation was slow. At 1538C in 5% oxygen, both the fibers and coupons exhibited borosilicate glass formation and bubbling. At 1538C in 0.1% oxygen, active oxidation of both the fibers and the composites was observed leading to rapid SiC degradation. BN oxidation at 1538C in 0.1% oxygen was not significant.

  2. Feasibility of measuring dissolved carbon dioxide based on head space partial pressures

    USGS Publications Warehouse

    Watten, B.J.; Boyd, C.E.; Schwartz, M.F.; Summerfelt, S.T.; Brazil, B.L.

    2004-01-01

    We describe an instrument prototype that measures dissolved carbon dioxide (DC) without need for standard wetted probe membranes or titration. DC is calculated using Henry's Law, water temperature, and the steady-state partial pressure of carbon dioxide that develops within the instrument's vertical gas-liquid contacting chamber. Gas-phase partial pressures were determined with either an infrared detector (ID) or by measuring voltage developed by a pH electrode immersed in an isolated sodium carbonate solution (SC) sparged with recirculated head space gas. Calculated DC concentrations were compared with those obtained by titration over a range of DC (2, 4, 8, 12, 16, 20, 24, and 28mg/l), total alkalinity (35, 120, and 250mg/l as CaCO3), total dissolved gas pressure (-178 to 120 mmHg), and dissolved oxygen concentrations (7, 14, and 18 mg/l). Statistically significant (P < 0.001) correlations were established between head space (ID) and titrimetrically determined DC concentrations (R2 = 0.987-0.999, N = 96). Millivolt and titrimetric values from the SC solution tests were also correlated (P < 0.001, R 2 = 0.997, N = 16). The absolute and relative error associated with the use of the ID and SC solution averaged 0.9mg/l DC and 7.0% and 0.6 mg/l DC and 9.6%, respectively. The precision of DC estimates established in a second test series was good; coefficients of variation (100(SD/mean)) for the head space (ID) and titration analyses were 0.99% and 1.7%. Precision of the SC solution method was 1.3%. In a third test series, a single ID was coupled with four replicate head space units so as to permit sequential monitoring (15 min intervals) of a common water source. Here, appropriate gas samples were secured using a series of solenoid valves (1.6 mm bore) activated by a time-based controller. This system configuration reduced the capital cost per sample site from US$ 2695 to 876. Absolute error averaged 2.9, 3.1, 3.7, and 2.7 mg/ l for replicates 1-4 (N = 36) during a 21

  3. [Measurements of surface ocean carbon dioxide partial pressure during WOCE]. Summary of research progress

    SciTech Connect

    Not Available

    1992-12-31

    This paper discusses the research progress of the second year of research under ``Measurement of Surface Ocean Carbon Dioxide Partial Pressure During WOCE`` and proposes to continue measurements of underway pCO{sub 2}. During most of the first year of this grant, our efforts to measure pCO{sub 2} on WOCE WHP legs were frustrated by ship problems. The R/V Knorr, which was originally scheduled to carry out the first work on WHP lines P19 and P16 in the southeastem Pacific during the 1990-91 austral summer, was delayed in the shipyard during her mid-life refit for more than a year. In the interim, the smaller R/V Thomas Washington, was pressed into service to carry out lower-latitude portions of WHP lines P16 and P17 during mid-1991 (TUNES Expedition). We installed and operated our underway chromatographic system on this expedition, even though space and manpower on this smaller vessel were limited and no one from our group would be aboard any of the 3 WHP expedition legs. The results for carbon dioxide and nitrous oxide are shown. A map of the cruise track is shown for each leg, marked with cumulative distance. Following each track is a figure showing the carbon dioxide and nitrous oxide results as a function of distance along this track. The results are plotted as dry-gas mole fractions (in ppm and ppb, respectively) in air and in gas equilibrated with surface seawater at a total pressure equal to the barometric pressure. The air data are plotted as a 10-point running mean, and appear as a roughly horizontal line. The seawater data are plotted as individual points, using a 5-point Gaussian smoother. Equal values Of xCO{sub 2} in air and surface seawater indicate air-sea equilibrium.

  4. Pressure dependence of the electro-optic response function in partially exposed polymer dispersed ferroelectric liquid crystals

    NASA Technical Reports Server (NTRS)

    Parmar, D. S.; Holmes, H. K.

    1993-01-01

    Ferroelectric liquid crystals in a new configuration, termed partially exposed polymer dispersed ferroelectric liquid crystal (PEPDFLC), respond to external pressures and demonstrate pressure-induced electro-optic switching response. When the PEPDFLC thin film is sandwiched between two transparent conducting electrodes, one a glass plate and the other a flexible sheet such as polyvenylidene fluoride, the switching characteristics of the thin film are a function of the pressure applied to the flexible transparent electrode and the bias voltage across the electrodes. Response time measurements reveal a linear dependence of the change in electric field with external pressure.

  5. High Oxygen Partial Pressure Decreases Anemia-Induced Heart Rate Increase Equivalent to Transfusion

    PubMed Central

    Feiner, John R.; Finlay-Morreale, Heather E.; Toy, Pearl; Lieberman, Jeremy A.; Viele, Maurene K.; Hopf, Harriet W.; Weiskopf, Richard B.

    2011-01-01

    Background Anemia is associated with morbidity and mortality and frequently leads to transfusion of erythrocytes. We sought to compare directly the effect of high inspired oxygen fraction vs. transfusion of erythrocytes on the anemia-induced increased heart rate (HR) in humans undergoing experimental acute isovolemic anemia. Methods We combined HR data from healthy subjects undergoing experimental isovolemic anemia in seven studies performed by our group. We examined HR changes associated with breathing 100% oxygen by non-rebreathing face mask vs. transfusion of erythrocytes at their nadir hemoglobin (Hb) concentration of 5 g/dL. Data were analyzed using a mixed-effects model. Results HR had an inverse linear relationship to hemoglobin concentration with a mean increase of 3.9 beats per minute per gram of Hb (beats/min/g Hb) decrease (95% confidence interval [CI], 3.7 – 4.1 beats/min/g Hb), P < 0.0001. Return of autologous erythrocytes significantly decreased HR by 5.3 beats/min/g Hb (95% CI, 3.8 – 6.8 beats/min/g Hb) increase, P < 0.0001. HR at nadir Hb of 5.6 g/dL (95% CI, 5.5 – 5.7 g/dL) when breathing air (91.4 beats/min; 95% CI, 87.6 – 95.2 beats/min) was reduced by breathing 100% oxygen (83.0 beats/min; 95% CI, 79.0 -87.0 beats/min), P < 0.0001. The HR at hemoglobin 5.6 g/dL when breathing oxygen was equivalent to the HR at Hb 8.9 g/dL when breathing air. Conclusions High arterial oxygen partial pressure reverses the heart rate response to anemia, probably owing to its usability, rather than its effect on total oxygen content. The benefit of high arterial oxygen partial pressure has significant potential clinical implications for the acute treatment of anemia and results of transfusion trials. PMID:21768873

  6. Partial Defect Verification of the Pressurized Water Reactor Spent Fuel Assemblies

    SciTech Connect

    Ham, Y S; Sitaraman, S

    2010-02-05

    The International Atomic Energy Agency (IAEA) has the responsibility to carry out independent inspections of all nuclear material and facilities subject to safeguards agreements in order to verify compliance with non-proliferation commitments. New technologies have been continuously explored by the IAEA and Member States to improve the verification measures to account for declared inventory of nuclear material and detect clandestine diversion and production of nuclear materials. Even with these efforts, a technical safeguards challenge has remained for decades for the case of developing a method in identifying possible diversion of nuclear fuel pins from the Light Water Reactor (LWR) spent fuel assemblies. We had embarked on this challenging task and successfully developed a novel methodology in detecting partial removal of fuel from pressurized water reactor spent fuel assemblies. The methodology uses multiple tiny neutron and gamma detectors in the form of a cluster and a high precision driving system to obtain underwater radiation measurements inside a Pressurized Water Reactor (PWR) spent fuel assembly without any movement of the fuel. The data obtained in such a manner can provide spatial distribution of neutron and gamma flux within a spent fuel assembly. The combined information of gamma and neutron signature is used to produce base signatures and they are principally dependent on the geometry of the detector locations, and exhibit little sensitivity to initial enrichment, burn-up or cooling time. A small variation in the fuel bundle such as a few missing pins changes the shape of the signature to enable detection. This resulted in a breakthrough method which can be used to detect pin diversion without relying on the nuclear power plant operator's declared operation data. Presented are the results of various Monte Carlo simulation studies and experiments from actual commercial PWR spent fuel assemblies.

  7. Applying Chemical Potential and Partial Pressure Concepts to Understand the Spontaneous Mixing of Helium and Air in a Helium-Inflated Balloon

    ERIC Educational Resources Information Center

    Jee-Yon Lee; Hee-Soo Yoo; Jong Sook Park; Kwang-Jin Hwang; Jin Seog Kim

    2005-01-01

    The spontaneous mixing of helium and air in a helium-inflated balloon is described in an experiment in which the partial pressure of the gases in the balloon are determined from the mole factions and the total pressure measured in the balloon. The results described provide a model for teaching concepts of partial pressure, chemical potential, and…

  8. Non-site-specific allosteric effect of oxygen on human hemoglobin under high oxygen partial pressure

    PubMed Central

    Takayanagi, Masayoshi; Kurisaki, Ikuo; Nagaoka, Masataka

    2014-01-01

    Protein allostery is essential for vital activities. Allosteric regulation of human hemoglobin (HbA) with two quaternary states T and R has been a paradigm of allosteric structural regulation of proteins. It is widely accepted that oxygen molecules (O2) act as a “site-specific” homotropic effector, or the successive O2 binding to the heme brings about the quaternary regulation. However, here we show that the site-specific allosteric effect is not necessarily only a unique mechanism of O2 allostery. Our simulation results revealed that the solution environment of high O2 partial pressure enhances the quaternary change from T to R without binding to the heme, suggesting an additional “non-site-specific” allosteric effect of O2. The latter effect should play a complementary role in the quaternary change by affecting the intersubunit contacts. This analysis must become a milestone in comprehensive understanding of the allosteric regulation of HbA from the molecular point of view. PMID:24710521

  9. Nitrogen partial pressures in man after decompression from simulated scuba dives at rest and during exercise.

    PubMed

    Radermacher, P; Santak, B; Muth, C M; Wenzel, J; Hampe, P; Vogt, L; Hahn, M; Falke, K J

    1990-11-01

    In 5 subjects arterial and central venous nitrogen partial pressures (PN2) were measured after decompression from a chamber dive following a decompression schedule for scuba diving. The simulated dives consisted of exposure to air at 6 bar for 30 min corresponding to a depth of 50 m. Afterward the subjects were decompressed with decompression stops at 2.5, 2.2, 1.9, 1.6, and 1.3 bar with a total decompression time of 67 min. In 3 of the subjects the measurements were repeated after they had exercised (workload 75 W) during bottom time. Immediately after decompression and every 40 min until Minute 240 arterial and central venous blood samples were analyzed for PN2 using a manometric Van Slyke apparatus. Venous PN2 remained elevated until 160 min after decompression, indicating still incomplete nitrogen washout for at least 2 h after decompression had been accomplished. We did not find any difference in PN2 values after decompression from dives at rest and after exercise. Applying a computer program based on a wide range of theoretical tissue half-times nitrogen elimination proved to be consistent with Haldanian theories when using our decompression profile. Our data confirm that nitrogen elimination is prolonged after decompression from simulated dives at rest and after exercise.

  10. Nitrogen partial pressures in man after decompression from simulated scuba dives.

    PubMed

    Radermacher, P; Santak, B; Muth, C M; Wenzel, J; Vogt, L; Hahn, M; Falke, K J

    1990-01-01

    In five subjects arterial and central venous nitrogen partial pressures (PN2) were measured after decompression from a chamber dive following a decompression schedule for scuba diving. The simulated dives consisted of exposure at rest to air at 6 bar for 30 min. corresponding to a depth of 50 m. Afterwards the subjects were decompressed with decompression stops at 2.5, 2.2, 1.9, 1.6 and 1.3 bar with a total decompression time of 73 min. Immediately after decompression and every 40 min. until the 240th min. arterial and central venous blood samples were analyzed for PN2 using a manometric Van Slyke apparatus. Venous PN2 remained elevated until 160 min. after decompression indicating still incomplete nitrogen wash-out at least two hours after decompression had been accomplished. Bubble formation is discussed as a cause for prolonged nitrogen elimination. Our data confirm that nitrogen elimination is prolonged after decompression from simulated dives at rest.

  11. Fiber-optic fluorescence-quenching oxygen partial pressure sensor using platinum octaethylporphyrin.

    PubMed

    Davenport, John J; Hickey, Michelle; Phillips, Justin P; Kyriacou, Panayiotis A

    2016-07-20

    The development and bench testing of a fiber-optic oxygen sensor is described. The sensor is designed for measurement of tissue oxygen levels in the mucosa of the digestive tract. The materials and construction are optimized for insertion through the mouth for measurement in the lower esophagus. An oxygen-sensitive fluorescence-quenching film was applied as a solution of platinum octaethylporphyrin (PtOEP) poly(ethyl methacrylate) (PEMA) and dichloromethane and dip coated onto the distal tip of the fiber. The sensor was tested by comparing relative fluorescence when immersed in liquid water at 37°C, at a range of partial pressures (0-101 kPa). Maximum relative fluorescence at most oxygen concentrations was seen when the PtOEP concentration was 0.1  g.L-1, four layers of coating solution were applied, and a fiber core radius of 600 μm was selected, giving a Stern-Volmer constant of 0.129  kPa-1. The performance of the sensor is suitable for many in vivo applications, particularly mucosal measurements. It has sufficient sensitivity, is sterilizable, and is sufficiently flexible and robust for insertion via the mouth without damage to the probe or risk of harm to the patient.

  12. Spectroscopic study of partially-ordered semiconductor heterojunction under high pressure and high magnetic field

    SciTech Connect

    Yu, P.Y.; Martinez, G.; Zeman, J.; Uchida, K.

    2000-12-31

    Photoluminescence upconversion (PLU) is a phenomenon in which a sample emits photons with energy higher than that of the excitation photon. This effect has been observed in many materials including rare earth ions doped in insulating hosts and semiconductor heterostructures without using high power lasers as the excitation source. Recently, this effect has been observed also in partially CuPt-ordered GaInP{sub 2} epilayers grown on GaAs substrates. As a spectroscopic technique photoluminescence upconversion is particularly well suited for studying band alignment at heterojunction interface. The value of band-offset has been determined with meV precision using magneto-photoluminescence. Using the fact that the pressure coefficient of electrons in GaAs is higher than those in GaInP{sub 2} they have been able to manipulate the band-offset at the GaInP/GaAs interface. By converting the band-offset from Type I to Type II they were able to demonstrate that the efficiency of the upconversion process is greatly enhanced by a Type II band-offset.

  13. Influence of oxygen partial pressure and silver additions on microstructure and related properties of YBCO superconductors

    SciTech Connect

    Singh, J.P.; Joo, J.; Guttschow, R.; Poeppel, R.B.

    1992-02-01

    Microstructure has a great influence on the mechanical and superconducting properties of YBCO. Mechanical properties of YBCO can be improved by both modifying the monolithic microstructure and developing composites of YBCO with silver (Ag). When monolithic YBCO was sintered to high densities ({approx} 91%) at a relatively low temperature ({approx} 910{degrees}C) by controlling oxygen partial pressure during sintering, the result was a small-grain microstructure (average grain size {approx} 5 {mu}m) and hence a high strength of 191 {plus_minus} 7 MPa. Addition of Ag as a second phase further improved the strength of YBCO. Composites of YBCO with 10 to 15 vol % Ag has a strength of 225 {plus_minus} 6 MPa and a fracture toughness of 3.3 {plus_minus} 0.2 MPa{radical}m. These improvements are believed to be due to compressive stresses in the YBCO matrix as a result of thermal mismatch between the YBCO and Ag phases. Furthermore, the Ag particles may provide increased resistance to crack propagation by pinning the crack. On the other hand, addition of Ag as a dopant to substitute for Cu sites in YBCO has a profound but nonmonotonic effect on grain microstructure and the resulting critical current density.

  14. Influence of oxygen partial pressure and silver additions on microstructure and related properties of YBCO superconductors

    SciTech Connect

    Singh, J.P.; Joo, J.; Guttschow, R.; Poeppel, R.B.

    1992-02-01

    Microstructure has a great influence on the mechanical and superconducting properties of YBCO. Mechanical properties of YBCO can be improved by both modifying the monolithic microstructure and developing composites of YBCO with silver (Ag). When monolithic YBCO was sintered to high densities ({approx} 91%) at a relatively low temperature ({approx} 910{degrees}C) by controlling oxygen partial pressure during sintering, the result was a small-grain microstructure (average grain size {approx} 5 {mu}m) and hence a high strength of 191 {plus minus} 7 MPa. Addition of Ag as a second phase further improved the strength of YBCO. Composites of YBCO with 10 to 15 vol % Ag has a strength of 225 {plus minus} 6 MPa and a fracture toughness of 3.3 {plus minus} 0.2 MPa{radical}m. These improvements are believed to be due to compressive stresses in the YBCO matrix as a result of thermal mismatch between the YBCO and Ag phases. Furthermore, the Ag particles may provide increased resistance to crack propagation by pinning the crack. On the other hand, addition of Ag as a dopant to substitute for Cu sites in YBCO has a profound but nonmonotonic effect on grain microstructure and the resulting critical current density.

  15. Measurement of the oxygen partial pressure and thermodynamic modeling of the U-Nd-O system

    NASA Astrophysics Data System (ADS)

    Lee, Seung Min; Knight, Travis W.; McMurray, Jacob W.; Besmann, Theodore M.

    2016-05-01

    Fission products greatly impact the properties of fuel necessitating a thorough understanding of the thermochemical properties of oxide fuels with fission products. However, thermochemical data for the U-Nd-O system is insufficient even though neodymium is a major fission product. As neodymium will likely be present as a solute in UO2, this research focuses on the study of (U1-yNdy)O2±x. Experimental measurements and analyses of the oxygen partial pressure (pO2)-temperature-oxygen to metal ratio (O/M ratio) relationships were performed using a thermogravimetric analyzer (TGA) and an oxygen analyzer. Thermodynamic computational modeling was performed using the CALPHAD (CALculation of PHAse Diagrams) method with the FactSage software. The Gibbs energy of the (U1-yNdy)O2±x solid solution was described by the compound energy formalism (CEF), which is based on earlier thermodynamic modeling data of the binary U-O system from Guéneau et al.. The thermodynamic and phase diagram data of the U-Nd-O system produced in this work show good agreement with the experimental data.

  16. Fiber-optic fluorescence-quenching oxygen partial pressure sensor using platinum octaethylporphyrin.

    PubMed

    Davenport, John J; Hickey, Michelle; Phillips, Justin P; Kyriacou, Panayiotis A

    2016-07-20

    The development and bench testing of a fiber-optic oxygen sensor is described. The sensor is designed for measurement of tissue oxygen levels in the mucosa of the digestive tract. The materials and construction are optimized for insertion through the mouth for measurement in the lower esophagus. An oxygen-sensitive fluorescence-quenching film was applied as a solution of platinum octaethylporphyrin (PtOEP) poly(ethyl methacrylate) (PEMA) and dichloromethane and dip coated onto the distal tip of the fiber. The sensor was tested by comparing relative fluorescence when immersed in liquid water at 37°C, at a range of partial pressures (0-101 kPa). Maximum relative fluorescence at most oxygen concentrations was seen when the PtOEP concentration was 0.1  g.L-1, four layers of coating solution were applied, and a fiber core radius of 600 μm was selected, giving a Stern-Volmer constant of 0.129  kPa-1. The performance of the sensor is suitable for many in vivo applications, particularly mucosal measurements. It has sufficient sensitivity, is sterilizable, and is sufficiently flexible and robust for insertion via the mouth without damage to the probe or risk of harm to the patient. PMID:27463913

  17. Electronic properties and strain sensitivity of CVD-grown graphene with acetylene

    NASA Astrophysics Data System (ADS)

    Yang, Meng; Sasaki, Shinichirou; Ohnishi, Masato; Suzuki, Ken; Miura, Hideo

    2016-04-01

    Although many studies have shown that large-area monolayer graphene can be formed by chemical vapor deposition (CVD) using methane gas, the growth of monolayer graphene using highly reactive acetylene gas remains a big challenge. In this study, we synthesized a uniform monolayer graphene film by low-pressure CVD (LPCVD) with acetylene gas. On the base of Raman spectroscopy measurements, it was found that up to 95% of the as-grown graphene is monolayer. The electronic properties and strain sensitivity of the LPCVD-grown graphene with acetylene were also evaluated by testing the fabricated field-effect transistors (FETs) and strain sensors. The derived carrier mobility and gauge factor are 862-1150 cm2/(V·s) and 3.4, respectively, revealing the potential for high-speed FETs and strain sensor applications. We also investigated the relationship between the electronic properties and the graphene domain size.

  18. Classifying Acute Respiratory Distress Syndrome Severity: Correcting the Arterial Oxygen Partial Pressure to Fractional Inspired Oxygen at Altitude.

    PubMed

    Pérez-Padilla, Rogelio; Hernández-Cárdenas, Carmen Margarita; Lugo-Goytia, Gustavo

    2016-01-01

    In the well-known Berlin definition of acute respiratory distress syndrome (ARDS), there is a recommended adjustment for arterial oxygen partial pressure to fractional inspired oxygen (PaO2/FIO2) at altitude, but without a reference as to how it was derived. PMID:27623033

  19. Oxygen partial pressure influenced structural and optical properties of DC magnetron sputtered ZrO{sub 2} films

    SciTech Connect

    Kondaiah, P.; Madhavi, V.; Uthanna, S.

    2013-02-05

    Thin films of zirconium oxide (ZrO{sub 2}) were deposited on (100) p-silicon and quartz substrates by sputtering of metallic zirconium target under different oxygen partial pressures in the range 8 Multiplication-Sign 10{sup -3}-6 Multiplication-Sign 10{sup -2}Pa. The effect of oxygen partial pressure on the structural and optical properties of the deposited films was systematically investigated. The deposition rate of the films decreased from 3.3 to 1.83 nm/min with the increase of oxygen partial pressure from 8 Multiplication-Sign 10{sup -3}-6 Multiplication-Sign 10{sup -2}Pa respectively. The X-ray diffraction profiles revealed that the films exhibit (111) refection of zirconium oxide in monoclinic phase. The optical band gap of the films increased from 5.62 to 5.80 eV and refractive index increased from 2.01 to 2.08 with the increase of oxygen partial pressure from 8 Multiplication-Sign 10{sup -3}-6 Multiplication-Sign 10{sup -2}Pa respectively.

  20. Geometry of α-Cr2O3(0001) as a Function of H2O Partial Pressure

    PubMed Central

    2015-01-01

    Surface X-ray diffraction has been employed to elucidate the surface structure of α-Cr2O3(0001) as a function of water partial pressure at room temperature. In ultra high vacuum, following exposure to ∼2000 Langmuir of H2O, the surface is found to be terminated by a partially occupied double layer of chromium atoms. No evidence of adsorbed OH/H2O is found, which is likely due to either adsorption at minority sites, or X-ray induced desorption. At a water partial pressure of ∼30 mbar, a single OH/H2O species is found to be bound atop each surface Cr atom. This adsorption geometry does not agree with that predicted by ab initio calculations, which may be a result of some differences between the experimental conditions and those modeled. PMID:26877825

  1. 46 CFR 154.1735 - Methyl acetylene-propadiene mixture.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Methyl acetylene-propadiene mixture. 154.1735 Section... Operating Requirements § 154.1735 Methyl acetylene-propadiene mixture. (a) The composition of the methyl acetylene-propadiene mixture at loading must be within the following limits or specially approved by...

  2. 46 CFR 154.1735 - Methyl acetylene-propadiene mixture.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Methyl acetylene-propadiene mixture. 154.1735 Section... Operating Requirements § 154.1735 Methyl acetylene-propadiene mixture. (a) The composition of the methyl acetylene-propadiene mixture at loading must be within the following limits or specially approved by...

  3. 46 CFR 154.1735 - Methyl acetylene-propadiene mixture.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Methyl acetylene-propadiene mixture. 154.1735 Section... Operating Requirements § 154.1735 Methyl acetylene-propadiene mixture. (a) The composition of the methyl acetylene-propadiene mixture at loading must be within the following limits or specially approved by...

  4. 46 CFR 154.1735 - Methyl acetylene-propadiene mixture.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Methyl acetylene-propadiene mixture. 154.1735 Section... Operating Requirements § 154.1735 Methyl acetylene-propadiene mixture. (a) The composition of the methyl acetylene-propadiene mixture at loading must be within the following limits or specially approved by...

  5. Microvascular oxygen partial pressure during hyperbaric oxygen in diabetic rat skeletal muscle.

    PubMed

    Yamakoshi, Kohei; Yagishita, Kazuyoshi; Tsuchimochi, Hirotsugu; Inagaki, Tadakatsu; Shirai, Mikiyasu; Poole, David C; Kano, Yutaka

    2015-12-15

    Hyperbaric oxygen (HBO) is a major therapeutic treatment for ischemic ulcerations that perforate skin and underlying muscle in diabetic patients. These lesions do not heal effectively, in part, because of the hypoxic microvascular O2 partial pressures (PmvO2 ) resulting from diabetes-induced cardiovascular dysfunction, which alters the dynamic balance between O2 delivery (Q̇o2) and utilization (V̇o2) rates. We tested the hypothesis that HBO in diabetic muscle would exacerbate the hyperoxic PmvO2 dynamics due, in part, to a reduction or slowing of the cardiovascular, sympathetic nervous, and respiratory system responses to acute HBO exposure. Adult male Wistar rats were divided randomly into diabetic (DIA: streptozotocin ip) and healthy (control) groups. A small animal hyperbaric chamber was pressurized with oxygen (100% O2) to 3.0 atmospheres absolute (ATA) at 0.2 ATA/min. Phosphorescence quenching techniques were used to measure PmvO2 in tibialis anterior muscle of anesthetized rats during HBO. Lumbar sympathetic nerve activity (LSNA), heart rate (HR), and respiratory rate (RR) were measured electrophysiologically. During the normobaric hyperoxia and HBO, DIA tibialis anterior PmvO2 increased faster (mean response time, CONT 78 ± 8, DIA 55 ± 8 s, P < 0.05) than CONT. Subsequently, PmvO2 remained elevated at similar levels in CONT and DIA muscles until normobaric normoxic recovery where the DIA PmvO2 retained its hyperoxic level longer than CONT. Sympathetic nervous system and cardiac and respiratory responses to HBO were slower in DIA vs. CONT. Specifically the mean response times for RR (CONT: 6 ± 1 s, DIA: 29 ± 4 s, P < 0.05), HR (CONT: 16 ± 1 s, DIA: 45 ± 5 s, P < 0.05), and LSNA (CONT: 140 ± 16 s, DIA: 247 ± 34 s, P < 0.05) were greater following HBO onset in DIA than CONT. HBO treatment increases tibialis anterior muscle PmvO2 more rapidly and for a longer duration in DIA than CONT, but not to a greater level. Whereas respiratory, cardiovascular

  6. Global autocorrelation scales of the partial pressure of oceanic CO2

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Adamec, David; Takahashi, Taro; Sutherland, Stewart C.

    2005-08-01

    A global database of approximately 1.7 million observations of the partial pressure of carbon dioxide in surface ocean waters (pCO2) collected between 1970 and 2003 is used to estimate its spatial autocorrelation structure. The patterns of the lag distance where the autocorrelation exceeds 0.8 is similar to patterns in the spatial distribution of the first baroclinic Rossby radius of deformation indicating that ocean circulation processes play a significant role in determining the spatial variability of pCO2. Separate calculations for times when the Sun is north and south of the equator revealed no obvious seasonal dependence of the spatial autocorrelation scales. The pCO2 measurements at Ocean Weather Station (OWS) "P" in the eastern subarctic Pacific (50°N, 145°W) is the only fixed location where an uninterrupted time series of sufficient length exists to calculate a meaningful temporal autocorrelation function for lags greater than a few days. The estimated temporal autocorrelation function at OWS "P" is highly variable. A spectral analysis of the longest four pCO2 time series indicates a high level of variability occurring over periods from the atmospheric synoptic to the maximum length of the time series, in this case 42 days. It is likely that a relative peak in variability with a period of 3-6 days is related to atmospheric synoptic period variability and ocean mixing events due to wind stirring. However, the short length of available time series makes identifying temporal relationships between pCO2 and atmospheric or ocean processes problematic.

  7. Spatial variability in the partial pressures of CO 2 in the northern Bering and Chukchi seas

    NASA Astrophysics Data System (ADS)

    Chen, Liqi; Gao, Zhongyong

    2007-11-01

    In the summers of 1999 and 2003, the 1st and 2nd Chinese National Arctic Research Expeditions measured the partial pressure of CO 2 in the air and surface waters ( pCO 2) of the Bering Sea and the western Arctic Ocean. The lowest pCO 2 values were found in continental shelf waters, increased values over the Bering Sea shelf slope, and the highest values in the waters of the Bering Abyssal Plain (BAP) and the Canadian Basin. These differences arise from a combination of various source waters, biological uptake, and seasonal warming. The Chukchi Sea was found to be a carbon dioxide sink, a result of the increased open water due to rapid sea-ice melting, high primary production over the shelf and in marginal ice zones (MIZ), and transport of low pCO 2 waters from the Bering Sea. As a consequence of differences in inflow water masses, relatively low pCO 2 concentrations occurred in the Anadyr waters that dominate the western Bering Strait, and relatively high values in the waters of the Alaskan Coastal Current (ACC) in the eastern strait. The generally lower pCO 2 values found in mid-August compared to at the end of July in the Bering Strait region (66-69°N) are attributed to the presence of phytoplankton blooms. In August, higher pCO 2 than in July between 68.5 and 69°N along 169°W was associated with higher sea-surface temperatures (SST), possibly as an influence of the ACC. In August in the MIZ, pCO 2 was observed to increase along with the temperature, indicating that SST plays an important role when the pack ice melts and recedes.

  8. Global Autocorrelation Scales of the Partial Pressure of Oceanic CO2

    NASA Technical Reports Server (NTRS)

    Li, Zhen; Adamec, David; Takahashi, Taro; Sutherland, Stewart C.

    2004-01-01

    A global database of approximately 1.7 million observations of the partial pressure of carbon dioxide in surface ocean waters (pCO2) collected between 1970 and 2003 is used to estimate its spatial autocorrelation structure. The patterns of the lag distance where the autocorrelation exceeds 0.8 is similar to patterns in the spatial distribution of the first baroclinic Rossby radius of deformation indicating that ocean circulation processes play a significant role in determining the spatial variability of pCO2. For example, the global maximum of the distance at which autocorrelations exceed 0.8 averages about 140 km in the equatorial Pacific. Also, the lag distance at which the autocorrelation exceed 0.8 is greater in the vicinity of the Gulf Stream than it is near the Kuroshio, approximately 50 km near the Gulf Stream as opposed to 20 km near the Kuroshio. Separate calculations for times when the sun is north and south of the equator revealed no obvious seasonal dependence of the spatial autocorrelation scales. The pCO2 measurements at Ocean Weather Station (OWS) 'P', in the eastern subarctic Pacific (50 N, 145 W) is the only fixed location where an uninterrupted time series of sufficient length exists to calculate a meaningful temporal autocorrelation function for lags greater than a few days. The estimated temporal autocorrelation function at OWS 'P', is highly variable. A spectral analysis of the longest four pCO2 time series indicates a high level of variability occurring over periods from the atmospheric synoptic to the maximum length of the time series, in this case 42 days. It is likely that a relative peak in variability with a period of 3-6 days is related to atmospheric synoptic period variability and ocean mixing events due to wind stirring. However, the short length of available time series makes identifying temporal relationships between pCO2 and atmospheric or ocean processes problematic.

  9. Microenvironmental oxygen partial pressure in acute myeloid leukemia: Is there really a role for hypoxia?

    PubMed

    Rieger, Christina T; Fiegl, Michael

    2016-07-01

    Reduced oxygen partial pressure (pO2) has been recognized as being relevant in hematopoiesis and the pathophysiology of malignant diseases. Although hypoxic (meaning insufficient supply of oxygen) and anoxic areas are present and of pathophysiologic importance (by hypoxia-induced pathways such as HiF1α) in solid tumors, this may not be true for (malignant) hematologic cells. Hematopoiesis occurs in the stem cell niche, which is characterized, among other things, by extremely low pO2. However, in contrast to solid tumors, in this context, the low pO2 is physiological and this feature, among others, is shared by the malignant stem cell niche harboring leukemia-initiating cells. Upon differentiation, hematopoietic cells are constantly exposed to changes in pO2 as they travel throughout the human body and encounter arterial and venous blood and migrate into oxygen-carrier-free tissue with low pO2. Hematologic malignancies such as acute myeloid leukemia (AML) make little difference in this respect and, whereas low oxygen is the usual environment of AML cells, recent evidence suggests no role for real hypoxia. Although there is no evidence that AML pathophysiology is related to hypoxia, leukemic blasts still show several distinct biological features when exposed to reduced pO2: they down- or upregulate membrane receptors such as CXCR4 or FLT3, activate or inhibit intracellular signaling pathways such as PI3K, and specifically secrete cytokines (IL-8). In summary, reduced pO2 should not be mistaken for hypoxia (nor should it be so called), and it does not automatically induce hypoxia-response mechanisms; therefore, a strict distinction should be made between physiologically low pO2 (physoxia) and hypoxia. PMID:27118044

  10. Living on acetylene. A primordial energy source.

    PubMed

    Ten Brink, Felix

    2014-01-01

    The tungsten iron-sulfur enzyme acetylene hydratase catalyzes the conversion of acetylene to acetaldehyde by addition of one water molecule to the C-C triple bond. For a member of the dimethylsulfoxide (DMSO) reductase family this is a rather unique reaction, since it does not involve a net electron transfer. The acetylene hydratase from the strictly anaerobic bacterium Pelobacter acetylenicus is so far the only known and characterized acetylene hydratase. With a crystal structure solved at 1.26 Å resolution and several amino acids around the active site exchanged by site-directed mutagenesis, many key features have been explored to understand the function of this novel tungsten enzyme. However, the exact reaction mechanism remains unsolved. Trapped in the reduced W(IV) state, the active site consists of an octahedrally coordinated tungsten ion with a tightly bound water molecule. An aspartate residue in close proximity, forming a short hydrogen bond to the water molecule, was shown to be essential for enzyme activity. The arrangement is completed by a small hydrophobic pocket at the end of an access funnel that is distinct from all other enzymes of the DMSO reductase family.

  11. Hydration of Acetylene: A 125th Anniversary

    ERIC Educational Resources Information Center

    Ponomarev, Dmitry A.; Shevchenko, Sergey M.

    2007-01-01

    The year 2006 is the 125th anniversary of a chemical reaction, the discovery of which by Mikhail Kucherov had a profound effect on the development of industrial chemistry in the 19-20th centuries. This was the hydration of alkynes catalyzed by mercury ions that made possible industrial production of acetaldehyde from acetylene. Historical…

  12. Acetylene measurement in flames by chirp-based quantum cascade laser spectrometry.

    PubMed

    Quine, Zachary R; McNesby, Kevin L

    2009-06-01

    We have designed and characterized a mid-IR spectrometer built around a pulsed distributed-feedback quantum cascade laser using the characteristic frequency down-chirp to scan through the spectral region 6.5 cm(-1) spectral region. The behavior of this chirp is extensively measured. The accuracy and detection limits of the system as an absorption spectrometer are demonstrated first by measuring spectra of acetylene through a single pass 16 cm absorption cell in real time at low concentrations and atmospheric pressure. The smallest detectable peak is measured to be approximately 1.5 x 10(-4) absorbance units, yielding a minimum detectable concentration length product of 2.4 parts per million meter at standard temperature and pressure. This system is then used to detect acetylene within an ethylene-air opposed flow flame. Measurements of acetylene content as a function of height above the fuel source are presented, as well as measurements of acetylene produced in fuel breakdown as a function of preinjection fuel temperature. PMID:19488121

  13. Acetylene measurement in flames by chirp-based quantum cascade laser spectrometry.

    PubMed

    Quine, Zachary R; McNesby, Kevin L

    2009-06-01

    We have designed and characterized a mid-IR spectrometer built around a pulsed distributed-feedback quantum cascade laser using the characteristic frequency down-chirp to scan through the spectral region 6.5 cm(-1) spectral region. The behavior of this chirp is extensively measured. The accuracy and detection limits of the system as an absorption spectrometer are demonstrated first by measuring spectra of acetylene through a single pass 16 cm absorption cell in real time at low concentrations and atmospheric pressure. The smallest detectable peak is measured to be approximately 1.5 x 10(-4) absorbance units, yielding a minimum detectable concentration length product of 2.4 parts per million meter at standard temperature and pressure. This system is then used to detect acetylene within an ethylene-air opposed flow flame. Measurements of acetylene content as a function of height above the fuel source are presented, as well as measurements of acetylene produced in fuel breakdown as a function of preinjection fuel temperature.

  14. Soil carbon dioxide partial pressure and dissolved inorganic carbonate chemistry under elevated carbon dioxide and ozone.

    PubMed

    Karberg, N J; Pregitzer, K S; King, J S; Friend, A L; Wood, J R

    2005-01-01

    Global emissions of atmospheric CO(2) and tropospheric O(3) are rising and expected to impact large areas of the Earth's forests. While CO(2) stimulates net primary production, O(3) reduces photosynthesis, altering plant C allocation and reducing ecosystem C storage. The effects of multiple air pollutants can alter belowground C allocation, leading to changes in the partial pressure of CO(2) (pCO(2)) in the soil , chemistry of dissolved inorganic carbonate (DIC) and the rate of mineral weathering. As this system represents a linkage between the long- and short-term C cycles and sequestration of atmospheric CO(2), changes in atmospheric chemistry that affect net primary production may alter the fate of C in these ecosystems. To date, little is known about the combined effects of elevated CO(2) and O(3) on the inorganic C cycle in forest systems. Free air CO(2) and O(3) enrichment (FACE) technology was used at the Aspen FACE project in Rhinelander, Wisconsin to understand how elevated atmospheric CO(2) and O(3) interact to alter pCO(2) and DIC concentrations in the soil. Ambient and elevated CO(2) levels were 360+/-16 and 542+/-81 microl l(-1), respectively; ambient and elevated O(3) levels were 33+/-14 and 49+/-24 nl l(-1), respectively. Measured concentrations of soil CO(2) and calculated concentrations of DIC increased over the growing season by 14 and 22%, respectively, under elevated atmospheric CO(2) and were unaffected by elevated tropospheric O(3). The increased concentration of DIC altered inorganic carbonate chemistry by increasing system total alkalinity by 210%, likely due to enhanced chemical weathering. The study also demonstrated the close coupling between the seasonal delta(13)C of soil pCO(2) and DIC, as a mixing model showed that new atmospheric CO(2) accounted for approximately 90% of the C leaving the system as DIC. This study illustrates the potential of using stable isotopic techniques and FACE technology to examine long- and short

  15. Measurement of Local Partial Pressure of Oxygen in the Brain Tissue under Normoxia and Epilepsy with Phosphorescence Lifetime Microscopy

    PubMed Central

    Zhang, Cong; Bélanger, Samuel; Pouliot, Philippe; Lesage, Frédéric

    2015-01-01

    In this work a method for measuring brain oxygen partial pressure with confocal phosphorescence lifetime microscopy system is reported. When used in conjunction with a dendritic phosphorescent probe, Oxyphor G4, this system enabled minimally invasive measurements of oxygen partial pressure (pO2) in cerebral tissue with high spatial and temporal resolution during 4-AP induced epileptic seizures. Investigating epileptic events, we characterized the spatio-temporal distribution of the "initial dip" in pO2 near the probe injection site and along nearby arterioles. Our results reveal a correlation between the percent change in the pO2 signal during the "initial dip" and the duration of seizure-like activity, which can help localize the epileptic focus and predict the length of seizure. PMID:26305777

  16. Oxygen partial pressure dependence of electrical conductivity in {gamma}'-Bi{sub 2}MoO{sub 6}

    SciTech Connect

    Vera, C.M.C. Aragon, R.

    2008-05-15

    The electrical conductivity of {gamma}'-Bi{sub 2}MoO{sub 6} was surveyed between 450 and 750 deg. C as a function of oxygen partial pressure, in the range 0.01-1 atm. A -1/6 power law dependence, consistent with a Frenkel defect model of doubly ionized oxygen vacancies and interstitials, is evidence for an n-type semiconductive component, with an optical band gap of 2.9 eV. The absence of this dependence is used to map the onset of dominant ionic conduction. - Graphical abstract: Temporal dependence of electrical conductivity at 500 deg. C for {gamma}'-Bi{sub 2}MoO{sub 6} at controlled partial pressures of oxygen.

  17. Two Phase Flow Modeling: Summary of Flow Regimes and Pressure Drop Correlations in Reduced and Partial Gravity

    NASA Technical Reports Server (NTRS)

    Balasubramaniam, R.; Rame, E.; Kizito, J.; Kassemi, M.

    2006-01-01

    The purpose of this report is to provide a summary of state-of-the-art predictions for two-phase flows relevant to Advanced Life Support. We strive to pick out the most used and accepted models for pressure drop and flow regime predictions. The main focus is to identify gaps in predictive capabilities in partial gravity for Lunar and Martian applications. Following a summary of flow regimes and pressure drop correlations for terrestrial and zero gravity, we analyze the fully developed annular gas-liquid flow in a straight cylindrical tube. This flow is amenable to analytical closed form solutions for the flow field and heat transfer. These solutions, valid for partial gravity as well, may be used as baselines and guides to compare experimental measurements. The flow regimes likely to be encountered in the water recovery equipment currently under consideration for space applications are provided in an appendix.

  18. Measurements of Pressure Distributions and Force Coefficients in a Squeeze Film Damper. Part 2: Partially Sealed Configuration

    NASA Technical Reports Server (NTRS)

    Jung, S. Y.; Sanandres, Luis A.; Vance, J. M.

    1991-01-01

    Experimental results from a partially sealed squeeze film damper (SFD) test rig, executing a circular centered orbit are presented and discussed. A serrated piston ring is installed at the damper exit. This device involves a new sealing concept which produces high damping values while allowing for oil flow to cool the damper. In the partially sealed damper, large cavitation regions are observed in the pressure fields at orbit radii epsilon equals 0.5 and epsilon equals 0.8. The cavitated pressure distributions and the corresponding force coefficients are compared with a cavitated bearing solution. The experimental results show the significance of fluid inertia and vapor cavitation in the operation of squeeze film dampers. Squeeze film Reynolds numbers tested reach up to Re equals 50, spanning the range of contemporary applications.

  19. Method for sensing and measuring a concentration or partial pressure of a reactant used in a redox reaction

    DOEpatents

    Findl, E.

    1984-12-21

    A method for sensing or measuring the partial pressure or concentration of an electroactive species used in conjunction with an electrolyte, the method being characterized by providing a constant current between an anode and a cathode of an electrolyte-containing cell, while measuring changes in voltage that occur between either the anode and cathode or between a reference electrode and one of the main electrodes of the cell, thereby to determine the concentration or partial pressure of the electro-active species as a function of said measured voltage changes. The method of the invention can be practiced using either a cell having only an anode and a cathode, or using a cell having an anode and a cathode in combination with a reference electrode. Accurate measurements of small concentrations or partial pressures of electro-active species are obtainable with the method of the invention, by using constant currents of only a few microamperes between the anode and cathode of the cell, while the concentration-determining voltage is measured.

  20. Investigation of Copper Losses to Synthetic Slag at Different Oxygen Partial Pressures in the Presence of Colemanite

    NASA Astrophysics Data System (ADS)

    Rusen, Aydın; Derin, Bora; Geveci, Ahmet; Topkaya, Yavuz Ali

    2016-09-01

    Copper losses to slag are crucial for copper matte smelting and converting stages. One factor affecting the copper losses to slag during these processes is partial pressure of oxygen. In this study, theoretical and experimental investigations of oxygen partial pressure effect on copper losses to fayalite type slag in the presence of colemanite were investigated. Theoretical considerations include liquidus temperatures and phase diagrams of the fayalite type slag calculated by the FactSage software program. In the experiments, a synthetic matte-slag (SM-SS) was produced by melting certain amounts of reagent grade Fe2O3-SiO2 and metallic Fe as starting materials. Experiments were carried out with SM-SS pair by the addition of calcined colemanite (from 0% to 6%) under various partial pressures of oxygen (10-7, 10-9, 10-11 atm) at 1250°C for 2 h. From the experimental results, it was found that the amount of copper in slag decreased slowly when colemanite was increased under all oxidizing atmospheres. The lowest copper content in synthetic slag was obtained as 0.38% after 6% colemanite addition.

  1. Development of a silicone membrane tube equilibrator for measuring partial pressures of volatile organic compounds in natural water.

    PubMed

    Ooki, Atsushi; Yokouchi, Yoko

    2008-08-01

    Methods for determining volatile organic compounds (VOCs) in water and air are required so that the VOCs' fluxes in water environments can be estimated. We developed a silicone membrane tube equilibrator for collecting gas-phase samples containing VOCs at equilibrium with natural water. The equilibrator consists of six silicone tubes housed in a polyvinyl chloride pipe. Equilibrated air samples collected from the equilibrator were analyzed with an automated preconcentration gas chromatography-mass spectrometry system for hourly measurements of VOC partial pressures. The partial pressures of all the target VOCs reached equilibrium within 1 h in the equilibrator. The system was used to determine VOC partial pressures in Lake Kasumigaura, a shallow eutrophic lake with a high concentration of suspended particulate matter (SPM). Compressed air was used daily to remove SPM deposited on the inner wall of the equilibrator and to maintain the equilibrium conditions for more than a week without the need to shut the system down. CH2Br2, CHCl3, CHBrCl2, CH2BrCl, C2H5I, C2Cl4, CH3I, and CH3Br in the lake were supersaturated with respect to the air, whereas CH3CI was undersaturated. CHCl3 had the highest flux (6.2 nmol m(-2) hr(-1)) during the observation period. PMID:18754497

  2. Method for sensing and measuring a concentration or partial pressure of a reactant used in a redox reaction

    NASA Astrophysics Data System (ADS)

    Findl, E.

    1984-12-01

    A method for sensing or measuring the partial pressure or concentration of an electroactive species used in conjunction with an electrolyte, the method being characterized by providing a constant current between an anode and a cathode of an electrolyte-containing cell, while measuring changes in voltage that occur between either the anode and cathode or between a reference electrode and one of the main electrodes of the cell, thereby to determine the concentration or partial pressure of the electro-active species as a function of said measured voltage changes. The method of the invention can be practiced using either a cell having only an anode and a cathode, or using a cell having an anode and a cathode in combination with a reference electrode. Accurate measurements of small concentrations or partial pressures of electro-active species are obtainable with the method of the invention, by using constant currents of only a few microamperes between the anode and cathode of the cell, while the concentration-determining voltage is measured.

  3. Stability and partial oligomerization of naphthalene under high pressure at room temperature

    NASA Astrophysics Data System (ADS)

    Shinozaki, Ayako; Mimura, Koichi; Nishida, Tamihito; Inoue, Toru; Nakano, Satoshi; Kagi, Hiroyuki

    2016-10-01

    The stability and pressure-induced chemical reactions of naphthalene were investigated at room temperature at pressures up to 23 GPa. In-situ X-ray diffraction (XRD) measurements indicated that naphthalene retained its crystal structure up to ∼20 GPa, whereas a solid amorphous phase was observed in the recovered samples. Based on microanalysis of the recovered samples using Gas Chromatograph Mass Spectrometer (GC/MS), naphthalene dimer and trimer isomers were observed at pressures exceeding 15 GPa. The dimers were classified as products of simple dimerization, naphthylation, and condensation, similar to the case of the pressure-induced dimerization of benzene, indicating a similar dimerization mechanism for naphthalene.

  4. The Relationship Between Oxygen Reserve Index and Arterial Partial Pressure of Oxygen During Surgery

    PubMed Central

    Dorotta, Ihab L.; Wells, Briana; Juma, David; Applegate, Patricia M.

    2016-01-01

    BACKGROUND: The use of intraoperative pulse oximetry (Spo2) enhances hypoxia detection and is associated with fewer perioperative hypoxic events. However, Spo2 may be reported as 98% when arterial partial pressure of oxygen (Pao2) is as low as 70 mm Hg. Therefore, Spo2 may not provide advance warning of falling arterial oxygenation until Pao2 approaches this level. Multiwave pulse co-oximetry can provide a calculated oxygen reserve index (ORI) that may add to information from pulse oximetry when Spo2 is >98%. This study evaluates the ORI to Pao2 relationship during surgery. METHODS: We studied patients undergoing scheduled surgery in which arterial catheterization and intraoperative arterial blood gas analysis were planned. Data from multiple pulse co-oximetry sensors on each patient were continuously collected and stored on a research computer. Regression analysis was used to compare ORI with Pao2 obtained from each arterial blood gas measurement and changes in ORI with changes in Pao2 from sequential measurements. Linear mixed-effects regression models for repeated measures were then used to account for within-subject correlation across the repeatedly measured Pao2 and ORI and for the unequal time intervals of Pao2 determination over elapsed surgical time. Regression plots were inspected for ORI values corresponding to Pao2 of 100 and 150 mm Hg. ORI and Pao2 were compared using mixed-effects models with a subject-specific random intercept. RESULTS: ORI values and Pao2 measurements were obtained from intraoperative data collected from 106 patients. Regression analysis showed that the ORI to Pao2 relationship was stronger for Pao2 to 240 mm Hg (r2 = 0.536) than for Pao2 over 240 mm Hg (r2 = 0.0016). Measured Pao2 was ≥100 mm Hg for all ORI over 0.24. Measured Pao2 was ≥150 mm Hg in 96.6% of samples when ORI was over 0.55. A random intercept variance component linear mixed-effects model for repeated measures indicated that Pao2 was significantly related to ORI

  5. Two new acetylenic compounds from Asparagus officinalis.

    PubMed

    Li, Xue-Mei; Cai, Jin-Long; Wang, Wen-Xiang; Ai, Hong-Lian; Mao, Zi-Chao

    2016-01-01

    Two new acetylenic compounds, asparoffins A (1) and B (2), together with two known compounds, nyasol (3) and 3″-methoxynyasol (4), were isolated from stems of Asparagus officinalis. The structures of two new compounds were elucidated on the basis of detailed spectroscopic analyses (UV, IR, MS, 1D, and 2D NMR). All compounds were evaluated for their cytotoxicities against three human cancer cell lines. PMID:26558641

  6. Two new acetylenic compounds from Asparagus officinalis.

    PubMed

    Li, Xue-Mei; Cai, Jin-Long; Wang, Wen-Xiang; Ai, Hong-Lian; Mao, Zi-Chao

    2016-01-01

    Two new acetylenic compounds, asparoffins A (1) and B (2), together with two known compounds, nyasol (3) and 3″-methoxynyasol (4), were isolated from stems of Asparagus officinalis. The structures of two new compounds were elucidated on the basis of detailed spectroscopic analyses (UV, IR, MS, 1D, and 2D NMR). All compounds were evaluated for their cytotoxicities against three human cancer cell lines.

  7. Silver as acrolein hydrogenation catalyst: intricate effects of catalyst nature and reactant partial pressures.

    PubMed

    Bron, Michael; Teschner, Detre; Knop-Gericke, Axel; Jentoft, Friederike C; Kröhnert, Jutta; Hohmeyer, Jens; Volckmar, Claudia; Steinhauer, Bernd; Schlögl, Robert; Claus, Peter

    2007-07-21

    The hydrogenation of acrolein over pure and supported silver has been investigated with a focus on the influence of catalyst structure and reaction pressure (mbar to 20 bar range) on activity and selectivity. An onset of formation of allyl alcohol beyond 100 mbar reaction pressure (at 250 degrees C) is ascribed to a change in adsorption geometry upon increasing coverage. Smaller silver particles (in the nanometer range), the proximity of a reducible oxide component as well as high pressure lead to enhanced allyl alcohol formation; the selectivity to the other main product propionaldehyde is reduced. The silver dispersion changed depending on the reaction pressure. Moreover, the presence of oxygen, most likely as subsurface oxygen, and the presence of defects are of paramount importance for the catalytic behaviour. The considerable changes of the silver catalysts under reaction conditions and the pressure dependence call for in situ measurements to establish true structure-activity/selectivity relationships for this system. PMID:17612721

  8. Cyclopolymerization of Acetylene to Benzyne and Naphthalene

    NASA Astrophysics Data System (ADS)

    Hewage, Dilrukshi; Silva, Ruchira; Yang, Dong-Sheng

    2012-06-01

    Reactions of acetylene (C_2H_2) with laser-vaporized La atoms produced La(C_6H_4) and La (C10H_8) in supersonic molecular beams. The organic fragments in these complexes were benzyne and naphthalene. The benzyne species was produced by the La-mediated cyclotrimerization of three acetylene molecules, whereas naphthalene was formed likely by the cyclization of the transient benzyne with two additional acetylene molecules. These cyclized products were identified by mass-analyzed threshold ionization mass spectroscopy, which measured adiabatic ionization energies and several vibrational frequencies. The measured ionization energies were 40875 (5) cm-1 for La(C_6H_4) and 36767 (5) cm-1 for La(C10H_8). The most active vibrational transitions of both complexes were metal-ligand stretching with 326 cm-1 for La(C_6H_4) and 286 cm-1 for La (C10H_8). By combining the spectra with theoretical calculations, the ground electronic states of the neutral complexes were determined to be ^2A_1 (C2v) and ^2A' (C_s) and those of the corresponding ions were ^1A_1 (C2v) and ^1A' (C_s) for La (C_6H_4) and La(C10H_8), respectively.

  9. Influence of N2 partial pressure on structural and microhardness properties of TiN/ZrN multilayers deposited by Ar/N2 vacuum arc discharge

    NASA Astrophysics Data System (ADS)

    Naddaf, M.; Abdallah, B.; Ahmad, M.; A-Kharroub, M.

    2016-08-01

    The influence of N2 partial pressure on structural, mechanical and wetting properties of multilayered TiN/ZrN thin films deposited on silicon substrates by vacuum arc discharge of (N2 + Ar) gas mixtures is investigated. X-ray diffraction (XRD) results show that the average texturing coefficient of (1 1 1) orientation and the grain size of both TiN and ZrN individual layers increase with increasing the N2 partial pressure. The Rutherford back scattering (RBS) measurements and analysis reveal that incorporation of the nitrogen in the film increases with increasing the N2 partial pressure and both TiN and ZrN individual layers have a nitrogen over-stoichiometry for N2 partial pressure ⩾50%. The change in the film micro-hardness is correlated to the changes in crystallographic texture, grain size, stoichiometry and the residual stress in the film as a function of the N2 partial pressure. In particular, stoichiometry of ZrN and TiN individual is found to play the vital role in determining the multilayer hardness. The multilayer film deposited at N2 partial pressure of 25% has the best stoichiometric ratio of both TiN and ZrN layers and the highest micro-hardness of about 32 GPa. In addition, water contact angle (WCA) measurements and analysis show a decrease in the work of adhesion on increasing the N2 partial pressure.

  10. High temperature polymer from maleimide-acetylene terminated monomers

    NASA Technical Reports Server (NTRS)

    Gerber, Margaret K. (Inventor); St.clair, Terry L. (Inventor)

    1993-01-01

    Thermally stable, glassy polymeric materials were prepared from maleimide-acetylene terminated monomeric materials by several methods. The monomers were heated to self-polymerize. The A-B structure of the monomer allowed it to polymerize with either bismaleimide monomers/oligomers or bis-acetylene monomers/oligomers. Copolymerization can also take place by mixing bismaleimide and bisacetylene monomers/oligomers with the maleimide-acetylene terminated monomers to yield homogenous glassy polymers.

  11. Physical Properties of Silver Oxide Thin Film Prepared by DC Magnetron Sputtering: Effect of Oxygen Partial Pressure During Growth

    NASA Astrophysics Data System (ADS)

    Entezar Mehdi, Hamid; Hantehzadeh, M. R.; Valedbagi, Sh.

    2013-02-01

    In this paper the physical properties of silver oxide thin film have been prepared on BK7 substrate at room temperature by reactive DC magnetron sputtering technique using pure silver metal target by varying oxygen partial pressure during growth at reported. The reactive sputter gas was a mixture of Ar (99.999%) and N2 (99.999%) with the different ratio Ar and N2 by volume at the constant pressure of the growth chamber. The X-ray diffraction measurements showed that by increasing O2 volume during the Growth, change in crystalline structure will occur. The Atomic Force Microscope images shown by increasing O2 volume, the RMS roughness decreasing consistently. The thickness of the thin films decreases (from 353 to 230 nm) with increasing oxygen partial pressure in chamber. The reflectivity of thin films was investigated with a spectrophotometer system, and the surface reflectivity measurements indicate that by increasing O2 volume growth, the optical properties of the films changes.

  12. Seismic attenuation in partially saturated Berea sandstone submitted to a range of confining pressures

    NASA Astrophysics Data System (ADS)

    Chapman, Samuel; Tisato, Nicola; Quintal, Beatriz; Holliger, Klaus

    2016-03-01

    Using the forced oscillation method, we measure the extensional-mode attenuation and Young's modulus of a Berea sandstone sample at seismic frequencies (0.5-50 Hz) for varying levels of water saturation (~0-100%) and confining pressures (2-25 MPa). Attenuation is negligible for dry conditions and saturation levels <80%. For saturation levels between ~91% and ~100%, attenuation is significant and frequency dependent in the form of distinct bell-shaped curves having their maxima between 1 and 20 Hz. Increasing saturation causes an increase of the overall attenuation magnitude and a shift of its peak to lower frequencies. On the other hand, increasing the confining pressure causes a reduction in the attenuation magnitude and a shift of its peak to higher frequencies. For saturation levels above ~98%, the fluid pressure increases with increasing confining pressure. When the fluid pressure is high enough to ensure full water saturation of the sample, attenuation becomes negligible. A second series of comparable experiments reproduces these results satisfactorily. Based on a qualitative analysis of the data, the frequency-dependent attenuation meets the theoretical predictions of mesoscopic wave-induced fluid flow (WIFF) in response to a heterogeneous water distribution in the pore space, so-called patchy saturation. These results show that mesoscopic WIFF can be an important source of seismic attenuation at reservoir conditions.

  13. Formation of Complex Organics by Gas Phase and Intracluster Ion-Molecule Reactions Involving Acetylene and Hydrogen Cyanide

    NASA Astrophysics Data System (ADS)

    El-Shall, S.; Hamed, A.; Soliman, A. R.; Momoh, P. O.

    2011-05-01

    Many complex organics including polycyclic aromatic hydrocarbons are present in flames and combustion processes as well as in interstellar clouds and solar nebulae. Here, we present evidence for the formation of complex covalent organics by gas phase and intracluster reactions of the benzene, phenylium, pyridine, pyrimidine, phenylacetylene and benzonitrile cations with acetylene and hydrogen cyanide molecules. These reactions are studied using mass-selected ion mobility, chemical reactivity, collisional dissociation, and ab initio calculations. Measurements of collision cross sections in helium provide structural information on the adducts and allow probing structural changes at different temperatures (isomerization). We observed multiple additions of five acetylene molecules on the pyridine cation at room temperature. This is a remarkable result considering that only two acetylene molecules were added to the phenyl cation and no addition was observed on the benzene cation at room temperature. The experimental results are in full agreement with the ab initio calculations which predict that the first and second acetylenes add to the pyridine ion in barrierless, highly exothermic reactions. Similar reactions have been observed for the pyrimidine radical cation although the extent of the addition reactions is limited to only two acetylene molecules at room temperature. The results provide the first evidence for the incorporation of nitrogen in the formation cyclic hydrocarbons via the gas phase reactions of pyridine and pyrimidine ions with acetylene molecules. In addition, the formation of covalent adducts in the ionized acetylene/HCN system will be reported for the first time. Sequential reactions leading to the formation of pyridine and pyrimidine radical cations and higher adducts are observed over a wide range of temperature and pressure. The formation of these covalent adducts may represent a general class of addition reactions that can form complex

  14. Seed storage at elevated partial pressure of oxygen, a fast method for analysing seed ageing under dry conditions

    PubMed Central

    Groot, S. P. C.; Surki, A. A.; de Vos, R. C. H.; Kodde, J.

    2012-01-01

    Background and Aims Despite differences in physiology between dry and relative moist seeds, seed ageing tests most often use a temperature and seed moisture level that are higher than during dry storage used in commercial practice and gene banks. This study aimed to test whether seed ageing under dry conditions can be accelerated by storing under high-pressure oxygen. Methods Dry barley (Hordeum vulgare), cabbage (Brassica oleracea), lettuce (Lactuca sativa) and soybean (Glycine max) seeds were stored between 2 and 7 weeks in steel tanks under 18 MPa partial pressure of oxygen. Storage under high-pressure nitrogen gas or under ambient air pressure served as controls. The method was compared with storage at 45 °C after equilibration at 85 % relative humidity and long-term storage at the laboratory bench. Germination behaviour, seedling morphology and tocopherol levels were assessed. Key Results The ageing of the dry seeds was indeed accelerated by storing under high-pressure oxygen. The morphological ageing symptoms of the stored seeds resembled those observed after ageing under long-term dry storage conditions. Barley appeared more tolerant of this storage treatment compared with lettuce and soybean. Less-mature harvested cabbage seeds were more sensitive, as was the case for primed compared with non-primed lettuce seeds. Under high-pressure oxygen storage the tocopherol levels of dry seeds decreased, in a linear way with the decline in seed germination, but remained unchanged in seeds deteriorated during storage at 45 °C after equilibration at 85 % RH. Conclusions Seed storage under high-pressure oxygen offers a novel and relatively fast method to study the physiology and biochemistry of seed ageing at different seed moisture levels and temperatures, including those that are representative of the dry storage conditions as used in gene banks and commercial practice. PMID:22967856

  15. Temperature measurements of partially-melted tin as a function of shock pressure

    SciTech Connect

    Seifter, Achim; Furlanetto, Michael R; Holtkamp, David B; Obst, Andrew W; Payton, J R; Stone, J B; Tabaka, L J; Grover, M; Macrum, G; Stevens, G D; Swift, D C; Turley, W D; Veeser, L R

    2009-01-01

    Equilibrium equation of state theory predicts that the free surface release temperature of shock loaded tin will show a plateau of 505 K in the pressure range from 19.5 to 33.0 GPa, corresponding to the solid-liquid mixed-phase region. In this paper we report free surface temperature measurements on shock-loaded tin from 15 to 31 GPa using multi-wavelength optical pyrometry. The shock waves were generated by direct contact of detonating high explosive with the sample. The pressure in the sample was determined by free surface velocity measurements using Photon Doppler Velocimetry. The emitted thermal radiance was measured at four wavelength bands in the near IR region from 1.5 to 5.0 {micro}m. The samples in most of the experiments had diamond-turned surface finishes, with a few samples being polished or ball rolled. At pressures higher than 25 GPa the measured free surface temperatures were higher than the predicted 505 K and increased with increasing pressure. This deviation could be explained by hot spots and/or variations in surface emissivity and requires a further investigation.

  16. Partially implicit finite difference scheme for calculating dynamic pressure in a terrain-following coordinate non-hydrostatic ocean model

    NASA Astrophysics Data System (ADS)

    Liu, Zhe; Lin, Lei; Xie, Lian; Gao, Huiwang

    2016-10-01

    To improve the efficiency of the terrain-following σ-coordinate non-hydrostatic ocean model, a partially implicit finite difference (PIFD) scheme is proposed. By using explicit terms instead of implicit terms to discretize the parts of the vertical dynamic pressure gradient derived from the σ-coordinate transformation, the coefficient matrix of the discrete Poisson equation that the dynamic pressure satisfies can be simplified from 15 diagonals to 7 diagonals. The PIFD scheme is shown to run stably when it is applied to simulate five benchmark cases, namely, a standing wave in a basin, a surface solitary wave, a lock-exchange problem, a periodic wave over a bar and a tidally induced internal wave. Compared with the conventional fully implicit finite difference (FIFD) scheme, the PIFD scheme produces simulation results of equivalent accuracy at only 40-60% of the computational cost. The PIFD scheme demonstrates strong applicability and can be easily implemented in σ-coordinate ocean models.

  17. Effect of oxygen partial pressure on the density of states of amorphous InGaZnO thin-film transistors

    NASA Astrophysics Data System (ADS)

    Li, Jun; Huang, Chuan-Xin; Zhu, Wen-Qing; Zhang, Jian-Hua; Jiang, Xue-Yin; Zhang, Zhi-Lin; Li, Xi-Feng

    2016-10-01

    The thin-film transistors (TFTs) with InGaZnO active layer with different oxygen partial pressures are fabricated by radio frequency sputtering. The influence of the oxygen partial pressure on the density of states (DOS) for InGaZnO-TFT is investigated by using temperature-dependent field-effect measurements. It indicates that the DOS become smaller with increasing oxygen partial pressure. The results are verified by the threshold voltage shift of InGaZnO-TFT with different oxygen partial pressures. The trend of the variation of DOS is consistent with that of the threshold voltage shift for InGaZnO-TFT. Thus, the gate bias instability is attributed to the charge trapping mechanism based on DOS. Therefore, this work offered a brief and accurate method to calculate DOS for demonstrating the bias stability of transistor.

  18. On the influence of the hysteretic behavior of the capillary pressure on the wave propagation in partially saturated soils

    NASA Astrophysics Data System (ADS)

    Albers, Bettina

    2016-06-01

    It is well known that the capillary pressure curve of partially saturated soils exhibits a hysteresis. For the same degree of saturation it has different values depending on the initial state of the soil, thus for drying of a wet soil or wetting of a dry soil. The influence of these different values of the capillary pressure on the propagation of sound waves is studied by use of a linear hyperbolic model. Even if the model does not contain a hysteresis operator, the effect of hysteresis in the capillary pressure curve is accounted for. In order to obtain the limits of phase speeds and attenuations for the two processes the correspondent values for main drying and main wetting are inserted into the model separately. This is done for two examples of soils, namely for Del Monte sand and for a silt loam both filled by an air-water mixture. The wave analysis reveals four waves: one transversal wave and three longitudinal waves. The waves which are driven by the immiscible pore fluids are influenced by the hysteresis in the capillary pressure curve while the waves which are mainly driven by the solid are not.

  19. Partial melting in the iron-sulfur system at high pressure: A synchrotron X-ray diffraction study

    SciTech Connect

    Campbell, A J; Seagle, C T; Heinz, D L; Shen, G; Prakapenka, V

    2008-09-18

    Partial melting in the Fe-S system was investigated at high pressures because of its importance to understanding the formation, composition, and thermal structure of the Earth's core. Earlier studies at very high pressure (>25 GPa) took place before the discovery of Fe{sub 3}, which compromised the interpretation of those results. Furthermore, they relied on textural criteria for melting that are difficult to apply at high pressure. In this study synchrotron X-ray diffraction was used to monitor coexisting metal and sulfide at high pressures and temperatures, during laser heating in a diamond anvil cell. The criterion for melting was the disappearance of one of the two coexisting phases, and reappearance upon quench. Temperatures of eutectic melting between Fe and Fe{sub 3}S were bracketed in this way up to 60 GPa, and a lower bound was established at 80 GPa. The accuracy of the melting point measured in these studies was improved through modelling of the axial temperature distribution through the thickness of the sample; this indicated an {approx}6% correction to the spectroradiometrically determined temperature. The Fe-Fe{sub 3}S eutectic composition remains close to 15 wt% S up to 60 GPa.

  20. Acetylenic polymers for hair styling products.

    PubMed

    Martiny, S

    2002-06-01

    This paper looks at the basic requirements of hair styling products from a consumer's perspective before moving onto a very brief outline of the various chemistries available to the formulator. It then discusses the manufacture of vinyl pyrrolidone from acetylene. The properties of polyvinyl pyrrolidone are described, followed by the features and benefits of some vinyl pyrrolidone copolymers and terpolymers. The instrumental analysis of the hold, flexibility, tack and combing properties of polymer films is discussed in some detail, along with the effect of application type on these measurable properties concentrating upon vinyl caprolactam/vinyl pyrrolidone/dimethylaminopropyl methacrylamide acrylates copolymer.

  1. High-Pressure Synthesis of Manganese Oxyhydride with Partial Anion Order.

    PubMed

    Tassel, Cedric; Goto, Yoshinori; Watabe, Daichi; Tang, Ya; Lu, Honcheng; Kuno, Yoshinori; Takeiri, Fumitaka; Yamamoto, Takafumi; Brown, Craig M; Hester, James; Kobayashi, Yoji; Kageyama, Hiroshi

    2016-08-01

    The high-pressure synthesis of a manganese oxyhydride LaSrMnO3.3 H0.7 is reported. Neutron and X-ray Rietveld analyses showed that this compound adopts the K2 NiF4 structure with hydride ions positioned exclusively at the equatorial site. This result makes a striking contrast to topochemical reductions of LaSrMnO4 that result in only oxygen-deficient phases down to LaSrMnO3.5 . This suggests that high H2 pressure plays a key role in stabilizing the oxyhydride phase, offering an opportunity to synthesize other transition-metal oxyhydrides. Magnetic susceptibility revealed a spin-glass transition at 24 K that is due to competing ferromagnetic (Mn(2+) -Mn(3+) ) and antiferromagnetic (Mn(2+) -Mn(2) , Mn(3+) -Mn(3+) ) interactions. PMID:27355695

  2. Growth of MoO{sub 3} nanostructured thin films as a function of O{sub 2}-partial pressure

    SciTech Connect

    Sharma, Rabindar Kumar Kumar, Prabhat; Reddy, G. B.

    2015-06-24

    In this report, we synthesized molybdenum trioxide (α-MoO{sub 3}) nanostructured thin films (NST{sub s}) with nanoflakes (NF{sub s}) on the Ni-coated glass substrates employing plasma assisted sublimation process (PASP) as a function of oxygen partial pressure (PO{sub 2}). The effect of oxygen partial pressure on structural, morphological, and vibrational properties have been investigated systematically. The structural analysis divulged that all films deposited at different PO{sub 2} have pure orthorhombic phase, no impurity phase is detected under the limit of resolution. The morphological studies of samples is carried out by SEM, revealed that features as well as alignment of MoO{sub 3} NST{sub s} can be monitored by PO{sub 2} and the sample having best features is obtained at 7.5×10{sup −2} Torr. In addition, the more insight information is accomplished by TEM/HRTEM on the best featured sample, which confirmed the single crystalline nature of nanoflakes. The vibrational study of all samples are performed by FTIR, and strongly supports the XRD observations. All the results are in consonance with each other.

  3. The abundance of Fe(C0 3) OH in goethite and a possible constraint on minimum atmospheric oxygen partial pressures in the Phanerozoic

    NASA Astrophysics Data System (ADS)

    YAPP, Crayton J.

    1996-11-01

    Concentrations of the Fe(CO 3)OH component in goethites from Phanerozoic oolitic ironstones appear to record information on the partial pressures of soil CO 2 in ancient subaerial weathering environments. Application of a simple steady-state, one-dimensional, Fickian diffusion model to ancient goethite-bearing soils suggests that it may be possible to calculate lower limits for the partial pressure of oxygen in the Earth's atmosphere by using both the inferred soil CO 2 partial pressure and estimates of the partial pressure of atmospheric CO 2. Extant data from colitic goethites indicate that the atmospheric PO 2 value was no lower than about 13% of the present atmospheric level (PAL) in the Late Ordovician. This value affirms existing evidence for abundant molecular oxygen in the Earth's atmosphere in the Early Paleozoic, i.e., before the widespread advent of vascular plants. Extensive colonization of the continents by vascular plants in the Devonian was associated with calculated atmospheric oxygen partial pressures that were no lower than about 39% of PAL at 360 Ma BP. For Early Jurassic to Late Cretaceous samples, the calculated lower limit of atmospheric oxygen ranged from about 20 to 25% of the present value. It remains to be established whether or not there is a systematic relationship between calculated minimum Po 2 values (or soil respiration rates) and the actual partial pressure of atmospheric oxygen.

  4. RECRYSTALLIZATION OF PMDA AND SYNTHESIS OF AN ACETYLENIC DIAMINE

    SciTech Connect

    Sanner, R; Cook, R C

    2004-09-21

    This memo provides documentation for the method of recrystallization of pyromeletic dianhydride (PMDA), the dianhydride used in the vapor deposition of Kapton-like polyimide for ICF shell ablators and for the synthesis of bis(3-aminophenyl) acetylene, a unique acetylenic diamine developed for vapor deposition testing.

  5. Proton exchange membrane fuel cell cathode contamination - Acetylene

    NASA Astrophysics Data System (ADS)

    Zhai, Y.; St-Pierre, Jean

    2015-04-01

    Acetylene adsorption on PEMFC electrodes and contamination in single cells are investigated with 300 ppm acetylene at a cathode held at 80 °C. The results of adsorption experiments suggest that acetylene adsorbs readily on electrodes and is reduced to ethylene and ethane under an open circuit potential of H2/N2, as the adsorbates can be electro-oxidized at high potentials. The cell voltage response shows that 300 ppm acetylene results in a cell performance loss of approximately 88%. The voltage degradation curve is divided into two stages by an inflection point, which suggests that potential-dependent processes are involved in acetylene poisoning. These potential-dependent processes may include acetylene oxidation and reduction as well as accumulation of intermediates on the electrode surface. Electrochemical impedance spectroscopy analysis suggests that acetylene affects the oxygen reduction reaction and may also affect mass transport processes. Acetylene also may be reduced in the steady poisoning state of the operating cell. After neat air operation, the cyclic voltammetry results imply that the cathode catalyst surface is almost completely restored, with no contaminant residues remaining in the MEA. Linear scanning voltammetry measurements show no change in hydrogen crossover caused by contamination, and polarization curves confirm complete recovery of cell performance.

  6. An experimental study of the formation of pressure shadows in partially molten rocks

    NASA Astrophysics Data System (ADS)

    Qi, C.; Kohlstedt, D. L.

    2011-12-01

    Deformation of a two-phase, solid-melt rock containing rigid particles results in the formation of pressure shadows as melt flows from regions in relative compression to those in relative tension coupled with a counter flux of solid. To investigate this compaction-decompaction process, samples fabricated from fine-grained San Carlos olivine plus 10 vol % mid-ocean ridge basalt (MORB) containing dispersed sub-millimeter-sized beads of single crystals of San Carlos olivine were deformed in torsion at a temperature of 1200°C and a confining pressure of 300 MPa in a gas-medium apparatus. Samples were sheared to a strain of γ ≈ 10 at a constant shear strain rate of 10-4 s-1 at the outer radius with a corresponding shear stress of ~100 MPa. Maps of the melt distribution around the olivine beads obtain by reflected-light optical microscopy demonstrated that pressure shadows became observable around the beads at a strain of γ ≈ 1. Crystallographic preferred orientations (CPOs) generated from electron backscattered diffraction (EBSD) analyses of the olivine grains revealed that [100] and [001] axes form girdles approximately parallel to shear plane, and [010] axes form point maxima approximately perpendicular to shear plane. The changes in the directions of (010) planes around the beads indicated changes in stress field caused by the existence of the beads. Alignment of melt pockets also constrains the local orientation of the stress field by orienting ~20° to the shear plane, antithetic to the shear direction. One goal of these experiments is to obtain the relative value of the bulk viscosity to the shear viscosity based on the two phase flow analysis of McKenzie and Holness (2000).

  7. Acetylene-based materials in organic photovoltaics.

    PubMed

    Silvestri, Fabio; Marrocchi, Assunta

    2010-04-08

    Fossil fuel alternatives, such as solar energy, are moving to the forefront in a variety of research fields. Organic photovoltaic systems hold the promise of a lightweight, flexible, cost-effective solar energy conversion platform, which could benefit from simple solution-processing of the active layer. The discovery of semiconductive polyacetylene by Heeger et al. in the late 1970s was a milestone towards the use of organic materials in electronics; the development of efficient protocols for the palladium catalyzed alkynylation reactions and the new conception of steric and conformational advantages of acetylenes have been recently focused the attention on conjugated triple-bond containing systems as a promising class of semiconductors for OPVs applications. We review here the most important and representative (poly)arylacetylenes that have been used in the field. A general introduction to (poly)arylacetylenes, and the most common synthetic approaches directed toward making these materials will be firstly given. After a brief discussion on working principles and critical parameters of OPVs, we will focus on molecular arylacetylenes, (co)polymers containing triple bonds, and metallopolyyne polymers as p-type semiconductor materials. The last section will deal with hybrids in which oligomeric/polymeric structures incorporating acetylenic linkages such as phenylene ethynylenes have been attached onto C(60), and their use as the active materials in photovoltaic devices.

  8. Soot formation in pyrolysis of acetylene, allene and 1,3-butadiene

    NASA Technical Reports Server (NTRS)

    Frenklach, M.; Durgaprasad, M. B.; Matula, R. A.; Taki, S.

    1983-01-01

    The formation of soot behind reflected shock waves in argon-diluted mixtures of acetylene, allene, and 1,3-butadiene was investigated by monitoring the attenuation of a laser beam in both the visible (632.8 nm) and the infrared (3.39 microns) regions of the spectrum. The experiments utilized temperatures ranging from 1500-3100 K, reflected shock pressures of 0.3-7.0 bar, and total carbon atom concentrations of 2-20 x 10 to the 17th atoms/cu cm. A bell-shaped dependence of soot yield on temperature was observed during the pyrolysis of all three compounds, which was similar to that previously found for toluene. For acetylene, the decrese in total pressure was found to shift the soot bell to higher temperatures with a significant increase in the maximum soot yield. A computer simulation for acetylene pyrolysis suggested that the reactions between C2H3, C4H3, and C4H4 may be those which lead to the formation of aromatic structures. In addition, it was found that soot is formed much faster and in much larger quantities from allene than from 1,3-butadiene.

  9. Highly oriented NdFeCoB nanocrystalline magnets from partially disproportionated compacts by reactive deformation under low pressure

    SciTech Connect

    Zheng, Qing; Li, Jun; Liu, Ying Yu, Yunping; Lian, Lixian

    2014-05-07

    In the present investigation, we take advantage of the ultrafine grain size of NdFeCoB partially hydrogen-disproportionated phases, and prepare anisotropic nanocrystalline magnets with full density and homogenous microstructure and texture by reactive deformation under low pressure. Our results suggest that the pressure could properly promote an occurrence of desorption-recombination reaction due to a shorter-range rearrangement of the atoms, and the newly recombined Nd{sub 2}Fe{sub 14}B grains with fine grain size could undergo deformation immediately after the phase transformation, and then an obvious anisotropy and uniform alignment would be obtained. The maximum magnetic properties, (BH){sub max} = 25.8 MGOe, Br = 11.8 kG, H{sub cj} = 5.5 kOe, were obtained after being treated for 5 min at 820 °C in vacuum. The present study highlights the feasibility to prepare anisotropic nanocrystalline magnets with homogeneous microstructure and a strong (00l) texture of uniform grain size under low pressure.

  10. Brain tissue partial pressure of oxygen predicts the outcome of severe traumatic brain injury under mild hypothermia treatment

    PubMed Central

    Sun, Hongtao; Zheng, Maohua; Wang, Yanmin; Diao, Yunfeng; Zhao, Wanyong; Wei, Zhengjun

    2016-01-01

    Objective The aim of this study was to investigate the clinical significance and changes of brain tissue partial pressure of oxygen (PbtO2) in the course of mild hypothermia treatment (MHT) for treating severe traumatic brain injury (sTBI). Methods There were 68 cases with sTBI undergoing MHT. PbtO2, intracranial pressure (ICP), jugular venous oxygen saturation (SjvO2), and cerebral perfusion pressure (CPP) were continuously monitored, and clinical outcomes were evaluated using the Glasgow Outcome Scale score. Results Of 68 patients with sTBI, PbtO2, SjvO2, and CPP were obviously increased, but decreased ICP level was observed throughout the MHT. PbtO2 and ICP were negatively linearly correlated, while there was a positive linear correlation between PbtO2 and SjvO2. Monitoring CPP and SjvO2 was performed under normal circumstances, and a large proportion of patients were detected with low PbtO2. Decreased PbtO2 was also found after MHT. Conclusion Continuous PbtO2 monitoring could be introduced to evaluate the condition of regional cerebral oxygen metabolism, thereby guiding the clinical treatment and predicting the outcome. PMID:27601907

  11. Brain tissue partial pressure of oxygen predicts the outcome of severe traumatic brain injury under mild hypothermia treatment

    PubMed Central

    Sun, Hongtao; Zheng, Maohua; Wang, Yanmin; Diao, Yunfeng; Zhao, Wanyong; Wei, Zhengjun

    2016-01-01

    Objective The aim of this study was to investigate the clinical significance and changes of brain tissue partial pressure of oxygen (PbtO2) in the course of mild hypothermia treatment (MHT) for treating severe traumatic brain injury (sTBI). Methods There were 68 cases with sTBI undergoing MHT. PbtO2, intracranial pressure (ICP), jugular venous oxygen saturation (SjvO2), and cerebral perfusion pressure (CPP) were continuously monitored, and clinical outcomes were evaluated using the Glasgow Outcome Scale score. Results Of 68 patients with sTBI, PbtO2, SjvO2, and CPP were obviously increased, but decreased ICP level was observed throughout the MHT. PbtO2 and ICP were negatively linearly correlated, while there was a positive linear correlation between PbtO2 and SjvO2. Monitoring CPP and SjvO2 was performed under normal circumstances, and a large proportion of patients were detected with low PbtO2. Decreased PbtO2 was also found after MHT. Conclusion Continuous PbtO2 monitoring could be introduced to evaluate the condition of regional cerebral oxygen metabolism, thereby guiding the clinical treatment and predicting the outcome.

  12. Partial amorphization of a Cu-Zr-Ti alloy by high pressure torsion

    SciTech Connect

    Revesz, Adam; Hobor, Sandor; Labar, Janos L.; Zhilyaev, Alex P.; Kovacs, Zsolt

    2006-11-15

    High pressure torsion was applied to produce disk-shape specimen of Cu{sub 60}Zr{sub 20}Ti{sub 20} composition. Radial dependence of the microstructure was monitored by x-ray diffraction, scanning, and transmission electron microscopies. The disk consists of a top surface layer, homogeneous on a micrometer scale with an average thickness of 10-20 {mu}m, and an inhomogeneous bulk region of 200 {mu}m thickness. Calorimetric studies revealed that the disk contains detectable amount of amorphous phase. Characteristics of this amorphous content were compared to a fully amorphous melt-quenched Cu{sub 60}Zr{sub 20}Ti{sub 20} ribbon.

  13. Structural, mechanical, electrical and wetting properties of ZrNx films deposited by Ar/N2 vacuum arc discharge: Effect of nitrogen partial pressure

    NASA Astrophysics Data System (ADS)

    Abdallah, B.; Naddaf, M.; A-Kharroub, M.

    2013-03-01

    Non-stiochiometric zirconium nitride (ZrNx) thin films have been deposited on silicon substrates by vacuum arc discharge of (N2 + Ar) gas mixtures at different N2 partial pressure ratio. The microstructure, mechanical, electrical and wetting properties of these films are studied by means of X-ray diffraction (XRD), micro-Raman spectroscopy, Rutherford back scattering (RBS) technique, conventional micro-hardness testing, electrical resistivity, atomic force microscopy (AFM) and contact angle (CA) measurements. RBS results and analysis show that the (N/Zr) ratio in the film increases with increasing the N2 partial pressure. A ZrNx film with (Zr/N) ratio in the vicinity of stoichiometric ZrN is obtained at N2 partial pressure of 10%. XRD and Raman results indicate that all deposited films have strained cubic crystal phase of ZrN, regardless of the N2 partial pressure. On increasing the N2 partial pressure, the relative intensity of (1 1 1) orientation with respect to (2 0 0) orientation is seen to decrease. The effect of N2 partial pressure on micro-hardness and the resistivity of the deposited film is revealed and correlated to the alteration of grain size, crystallographic texture, stoichiometry and residual stress developed in the film. In particular, it is found that residual stress and nitrogen incorporation in the film play crucial role in the alteration of micro-hardness and resistivity respectively. In addition, CA and AFM results demonstrate that as N2 partial pressure increases, both the surface hydrophobicity and roughness of the deposited film increase, leading to a significant decrease in the film surface free energy (SFE).

  14. Oxidation behavior of V-Cr-Ti alloys in low-partial-pressure oxygen environments

    SciTech Connect

    Natesan, K.; Uz, M.

    1998-09-01

    A test program is in progress at Argonne National Laboratory to evaluate the effect of pO{sub 2} in the exposure environment on oxygen uptake, scaling kinetics, and scale microstructure in V-Cr-Ti alloys. The data indicate that the oxidation process follows parabolic kinetics in all of the environments used in the present study. From the weight change data, parabolic rate constants were evaluated as a function of temperature and exposure environment. The temperature dependence of the parabolic rate constants was described by an Arrhenius relationship. Activation energy for the oxidation process was fairly constant in the oxygen pressure range of 1 {times} 10{sup {minus}6} to 1 {times} 10{sup {minus}1} torr for both the alloys. The activation energy for oxidation in air was significantly lower than in low-pO{sub 2} environments, and for oxidation in pure O{sub 2} at 760 torr was much lower than in low-pO{sub 2} environments. X-ray diffraction analysis of the specimens showed that VO{sub 2} was the dominant phase in low-pO{sub 2} environments, while V{sub 2}O{sub 5} was dominant in air and in pure oxygen at 76f0 torr.

  15. Equilibrium partial pressure of CO2 in Callovian-Oxfordian argillite as a function of relative humidity: Experiments and modelling

    NASA Astrophysics Data System (ADS)

    Lassin, Arnault; Marty, Nicolas C. M.; Gailhanou, Hélène; Henry, Benoît; Trémosa, Joachim; Lerouge, Catherine; Madé, Benoît; Altmann, Scott; Gaucher, Eric C.

    2016-08-01

    Having previously demonstrated that the mineral assemblage of claystone can impose its pCO2 under saturated conditions, we here study the effect of rock desaturation, i.e. the evaporation of pore water, on the partial pressure of CO2 (pCO2) in Callovian-Oxfordian argillite from the Paris Basin (France). In this new study, which combines experiments at room temperature and geochemical modelling, we examine the primary role of capillary forces on chemical equilibria for relative humidity values ranging between 50% and 100%. In particular we are able, without any fitting parameters, to model the experimental decrease of pCO2 as a function of decreasing water content in the argillite. This application to a complex natural system not only confirms the theoretical concepts of geochemistry in capillary contexts, but is promising with respect to other systems, both natural (soil, rock) and industrial (ceramics, granular material).

  16. Growth of GaAs from a free surface melt under controlled arsenic pressure in a partially confined configuration

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Lagowski, J.; Wu, Y.

    1988-01-01

    A partially confined configuration for the growth of GaAs from melt in space was developed, consisting of a triangular prism containing the seed crystal and source material in the form of a rod. It is suggested that the configuration overcomes two obstacles in the growth of GaAs in space: total confinement in a quartz crucible and lack of arsenic pressure control. Ground tests of the configuration show that it is capable of crystal growth in space and is useful for studying the growth of GaAs from a free-surface melt on earth. The resulting chemical composition, electrical property variations, and phenomenological models to account for the results are presented.

  17. Oxygen partial pressure dependent optical properties of glancing angle deposited (GLAD) Ta2O5 films deposited by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Tripathi, S.; Haque, S. Maidul; Rao, K. Divakar; Misal, J. S.; Pratap, C.; Sahoo, N. K.

    2016-05-01

    Experiments were carried out on Ta2O5 oxide thin films by asymmetric bipolar pulsed DC magnetron sputtering using a new hybrid combination of conventional (normal incidence) deposition and glancing angle deposition (GLAD) geometries. The films were prepared with varying O2 partial pressure. The ellipsometry characterization reveals a systematic variation in refractive index, which decreased from 2.2 in the normal films to an average 1.78 in the GLAD films. The bandgap of these GLAD films is slightly higher as compared to normal films. Overall transmission of the GLAD films is increased is by ~ 15 % implying a reduction in the refractive index for potential optical filtering device applications. The results were further supported by X-ray reflectivity measurements which show an effective double layer structure in GLAD consisting of layers with different densities of the same Ta2O5 material.

  18. Experimental determination of carbonation rate in Portland cement at 25°C and relatively high CO2 partial pressure

    NASA Astrophysics Data System (ADS)

    Hernández-Rodríguez, Ana; Montegrossi, Giordano; Huet, Bruno; Virgili, Giorgio; Orlando, Andrea; Vaselli, Orlando; Marini, Luigi

    2016-04-01

    The aim of this work is to study the alteration of Portland class G Cement at ambient temperature under a relatively high CO2 partial pressure through suitably designed laboratory experiments, in which cement hydration and carbonation are taken into account separately. First, the hydration process was carried out for 28 days to identify and quantify the hydrated solid phases formed. After the completion of hydration, accompanied by partial carbonation under atmospheric conditions, the carbonation process was investigated in a stirred micro-reactor (Parr instrument) with crushed cement samples under 10 bar or more of pure CO2(g) and MilliQ water adopting different reaction times. The reaction time was varied to constrain the reaction kinetics of the carbonation process and to investigate the evolution of secondary solid phases. Chemical and mineralogical analyses (calcimetry, chemical composition, SEM and X-ray Powder Diffraction) were carried out to characterize the secondary minerals formed during cement hydration and carbonation. Water analyses were also performed at the end of each experimental run to measure the concentrations of relevant solutes. The specific surface area of hydrated cement was measured by means of the BET method to obtain the rates of cement carbonation. Experimental outcomes were simulated by means of the PhreeqC software package. The obtained results are of interest to understand the comparatively fast cement alteration in CO2 production wells with damaged casing.

  19. 46 CFR 151.50-79 - Methyl acetylene-propadiene mixture.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Methyl acetylene-propadiene mixture. 151.50-79 Section... acetylene-propadiene mixture. (a) The composition of the methyl acetylene-propadiene mixture at loading must... acetylene-propadiene mixture must have a refrigeration system that does not compress the cargo vapor or...

  20. 46 CFR 151.50-79 - Methyl acetylene-propadiene mixture.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Methyl acetylene-propadiene mixture. 151.50-79 Section... acetylene-propadiene mixture. (a) The composition of the methyl acetylene-propadiene mixture at loading must... acetylene-propadiene mixture must have a refrigeration system that does not compress the cargo vapor or...

  1. 46 CFR 151.50-79 - Methyl acetylene-propadiene mixture.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Methyl acetylene-propadiene mixture. 151.50-79 Section... acetylene-propadiene mixture. (a) The composition of the methyl acetylene-propadiene mixture at loading must... acetylene-propadiene mixture must have a refrigeration system that does not compress the cargo vapor or...

  2. Anaerobic oxidation of acetylene by estuarine sediments and enrichment cultures

    USGS Publications Warehouse

    Culbertson, Charles W.; Zehnder, Alexander J. B.; Oremland, Ronald S.

    1981-01-01

    Acetylene disappeared from the gas phase of anaerobically incubated estuarine sediment slurries, and loss was accompanied by increased levels of carbon dioxide. Acetylene loss was inhibited by chloramphenicol, air, and autoclaving. Addition of 14C2H2 to slurries resulted in the formation of 14CO2 and the transient appearance of 14C-soluble intermediates, of which acetate was a major component. Acetylene oxidation stimulated sulfate reduction; however, sulfate reduction was not required for the loss of C2H2 to occur. Enrichment cultures were obtained which grew anaerobically at the expense of C2H2.

  3. Adsorption and reaction of acetylene on clean and oxygen-precovered Pd(100) studied with high-resolution X-ray photoelectron spectroscopy.

    PubMed

    Höfert, O; Lorenz, M P A; Streber, R; Zhao, W; Bayer, A; Steinrück, H-P; Papp, C

    2013-10-28

    We investigated the adsorption and thermal evolution of acetylene on clean Pd(100) and Pd(100) precovered with 0.25 ML oxygen. The measurements were performed in situ by fast XPS at the synchrotron radiation facility BESSY II. On Pd(100) acetylene molecularly adsorbs at 130 K. Upon heating transformation to a CCH species occurs around 390 K along with the formation of a completely dehydrogenated carbon species. On the oxygen-precovered surface partial CCH formation already occurs upon adsorption at 130 K, and the dehydrogenation temperature and the stability range of CCH are shifted to lower temperatures by ∼200 K. PMID:24182063

  4. Nonstationary coherent optical effects caused by pulse propagation through acetylene-filled hollow-core photonic-crystal fibers

    NASA Astrophysics Data System (ADS)

    Ocegueda, M.; Hernandez, E.; Stepanov, S.; Agruzov, P.; Shamray, A.

    2014-06-01

    Experimental observations of nonstationary coherent optical phenomena, i.e., optical nutation, free induction, and photon echo, in the acetylene (12C2H2) filled hollow-core photonic-crystal fiber (PCF) are reported. The presented results were obtained for the acetylene vibration-rotational transition P9 at wavelength 1530.37 nm at room temperature under a gas pressure of <0.5 Torr. An all-fiber pumped-through cell based on the commercial 2.6-m-long PCF with a 10-μm hollow-core diameter was used. The characteristic relaxation time T2 during which the optical coherent effects were typically observed in our experiments was estimated to be ≈8 ns. This time is governed by the limited time of the acetylene molecules' presence inside the effective PCF modal area and by intermolecule collisions. An accelerated attenuation of the optical nutation oscillations is explained by a random orientation of acetylene molecules.

  5. High-temperature measurements of methane and acetylene using quantum cascade laser absorption near 8 μm

    NASA Astrophysics Data System (ADS)

    Sajid, M. B.; Javed, T.; Farooq, A.

    2015-04-01

    The mid-infrared wavelength region near 8 μm contains absorption bands of several molecules such as water vapor, hydrogen peroxide, nitrous oxide, methane and acetylene. A new laser absorption sensor based on the ν4 band of methane and the ν4+ν5 band of acetylene is reported for interference-free, time-resolved measurements under combustion-relevant conditions. A detailed line-selection procedure was used to identify optimum transitions. Methane and acetylene were measured at the line centers of Q12 (1303.5 cm-1) and P23 (1275.5 cm-1) transitions, respectively. High-temperature absorption cross sections of methane and acetylene were measured at peaks (on-line) and valleys (off-line) of the selected absorption transitions. The differential absorption strategy was employed to eliminate interference absorption from large hydrocarbons. Experiments were performed behind reflected shock waves over a temperature range of 1200-2200 K, between pressures of 1-4 atm. The diagnostics were then applied to measure the respective species time-history profiles during the shock-heated pyrolysis of n-pentane.

  6. Laser heating and oxygen partial pressure effects on the dynamic magnetic properties of perpendicular CoFeAlO films

    NASA Astrophysics Data System (ADS)

    Wu, Di; Li, Wei; Tang, Minghong; Zhang, Zongzhi; Lou, Shitao; Jin, Q. Y.

    2016-07-01

    The impact of oxidation and laser heating on the dynamic magnetic properties of perpendicularly magnetized Co50Fe25Al25O films has been studied by time-resolved magneto-optical Kerr effect in a fs-laser pump-probe setup. We find that pump laser fluence Fp can affect the effective magnetic anisotropy field and thus the precession frequency f seriously, leading to an increased dependence of effective magnetic damping factor αeff on the external field at higher fluences. Moreover, the αeff increases with increasing the oxygen partial pressure PO2 while the uniaxial anisotropy energy Ku and Landau factor g decrease, owing to the increased proportion of superparamagnetic CoFe oxides formed by over-oxidation. By optimizing both the Fp and PO2, the intrinsic damping factor is determined to be lower than 0.028 for the perpendicular film showing a uniaxial anisotropy energy as high as 4.3×106 erg/cm3. The results in this study provide a promising approach to manipulate the magnetic parameters for possible applications in spintronic devices.

  7. Quadratic function between arterial partial oxygen pressure and mortality risk in sepsis patients: an interaction with simplified acute physiology score

    PubMed Central

    Zhang, Zhongheng; Ji, Xuqing

    2016-01-01

    Oxygen therapy is widely used in emergency and critical care settings, while there is little evidence on its real therapeutic effect. The study aimed to explore the impact of arterial oxygen partial pressure (PaO2) on clinical outcomes in patients with sepsis. A large clinical database was employed for the study. Subjects meeting the diagnostic criteria of sepsis were eligible for the study. All measurements of PaO2 were extracted. The primary endpoint was death from any causes during hospital stay. Survey data analysis was performed by using individual ICU admission as the primary sampling unit. Quadratic function was assumed for PaO2 and its interaction with other covariates were explored. A total of 199,125 PaO2 samples were identified for 11,002 ICU admissions. Each ICU stay comprised 18 PaO2 samples in average. The fitted multivariable model supported our hypothesis that the effect of PaO2 on mortality risk was in quadratic form. There was significant interaction between PaO2 and SAPS-I (p = 0.007). Furthermore, the main effect of PaO2 on SOFA score was nonlinear. The study shows that the effect of PaO2 on mortality risk is in quadratic function form, and there is significant interaction between PaO2 and severity of illness. PMID:27734905

  8. The jumbo squid, Dosidicus gigas (Ommastrephidae), living in oxygen minimum zones I: Oxygen consumption rates and critical oxygen partial pressures

    NASA Astrophysics Data System (ADS)

    Trueblood, Lloyd A.; Seibel, Brad A.

    2013-10-01

    Dosidicus gigas is a large, metabolically active, epipelagic squid known to undertake diel vertical migrations across a large temperature and oxygen gradient in the Eastern Pacific. Hypoxia is known to cause metabolic suppression in D. gigas. However, the precise oxygen level at which metabolic suppression sets in is unknown. Here we describe a novel ship-board swim tunnel respirometer that was used to measure metabolic rates and critical oxygen partial pressures (Pcrit) for adult squids (2-7kg). Metabolic rate measurements were validated by comparison to the activity of the Krebs cycle enzyme, citrate synthase, in mantle muscle tissue (2-17kg). We recorded a mean routine metabolic rate of 5.91μmolg-1h-1 at 10°C and 12.62μmolg-1h-1 at 20°C. A temperature coefficient, Q10, of 2.1 was calculated. D. gigas had Pcrits of 1.6 and 3.8kPa at 10 and 20°C, respectively. Oxygen consumption rate (MO2) varied with body mass (M) according to MO2=11.57M-0.12±0.03 at 10°C. Citrate synthase activity varied with body mass according to Y=9.32M-0.19±0.02.

  9. Partial hydrophilic modification of biaxially oriented polypropylene film by an atmospheric pressure plasma jet with the allylamine monomer

    NASA Astrophysics Data System (ADS)

    Chen, W. X.; Yu, J. S.; Hu, W.; Chen, G. L.

    2016-11-01

    In this paper, the partial modification of the biaxially oriented polypropylene (BOPP) film for potential biological and packaging applications was achieved via hydrophilic modification using atmospheric pressure plasma jet (APPJ). In the APPJ system, the allylamine (ALA) monomer was polymerized on the BOPP surface by either the Ar/O2 or the He/O2 plasma. The results showed that plasmatic modification created many micro/nano sized holes on the BOPP film, which increased the surface roughness dramatically and the increased roughness enhanced the combining intensity between the BOPP film and the ALA polymer. However, such a plasmatic modification increased the water vapor permeability. The FTIR and XPS characterizations showed that the amine groups were grafted onto the BOPP film, and the contact angle of the BOPP film decreases from 98.5° to 8°. Compared with the BOPP films treated by the Ar or He plasma, the barrier property of the modified BOPP film increased significantly when the ALA polymer was incorporated. The bio-affinity/toxicity of ALA polymer was illustrated by the attachment of the cultured SMMC-7721 hepatoma cells on the modified BOPP film. The significant enhancement in the cell density indicated that modified BOPP film was highly bio-compatible and non-toxic, especially treated with the Ar/O2/ALA plasma.

  10. Temporal resilience and dynamics of anaerobic methane-oxidizing microbial communities to short-term changes in methane partial pressures

    NASA Astrophysics Data System (ADS)

    Klasek, S.; Tiantian, Y.; Torres, M. E.; Colwell, F. S.; Wang, F.; Liang, L.

    2015-12-01

    Marine sediments produce tens to hundreds of teragrams of methane annually, which is released from the seabed at thousands of cold seeps distributed globally along continental margins. Around 80-90% of this methane is consumed in shallower sediment layers before reaching the hydrosphere, in a microbially-mediated process known as anaerobic oxidation of methane (AOM) However, cold seeps appear to exhibit temporal variation in gas flux intensity, and AOM filter efficiency at cold seeps generally decreases with fluid flow rate. To our knowledge, the degree to which temporal heterogeneity in subsurface methane flux stimulates AOM community growth and adaptation to increased methane concentrations has not been investigated. Static high-pressure bioreactors were used to incubate sulfate-methane transition zone (SMTZ) and methanogenic zone sediments underlying a Mediterranean mud volcano gas flare under in situ temperature and pressure at 8 MPa methane. Sulfide production rates of 0.4 μmol/cm3/day in both sediment regimes after 4 months of incubation suggested the resilience of the marine subsurface methane filter may extend well below the SMTZ (40 cm). Similar incubations of SMTZ samples from below a gas flare off Svalbard at saturating (3.8 MPa) and 0.2 MPa methane are being sampled after 1 week, 4 weeks, and 4 months; sulfide production rates of 8-18 nmol/cm3/day were first observed after 4 weeks of incubation. Sediment samples at all specified time points for both sets of incubations were collected for nucleic acid extraction and cell fixation. Anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB) are expected dominant taxa in enriched and non-enriched communities. 16S rDNA community analysis is expected to reveal additional microbial players involved in the short-term adaptation to higher methane partial pressures in the marine subsurface. Increased AOM community activity (RNA/DNA ratio) and copy numbers of methane cycling transcripts (mcr

  11. Acetylene on Titan’s Surface

    NASA Astrophysics Data System (ADS)

    Singh, S.; McCord, T. B.; Combe, J.-Ph.; Rodriguez, S.; Cornet, T.; Le Mouélic, S.; Clark, R. N.; Maltagliati, L.; Chevrier, V. F.

    2016-09-01

    Titan’s atmosphere is opaque in the near-infrared due to gaseous absorptions, mainly by methane, and scattering by aerosols, except in a few “transparency windows.” Thus, the composition of Titan’s surface remains difficult to access from space and is still poorly constrained. Photochemical models suggest that most of the organic compounds formed in the atmosphere are heavy enough to condense and build up at the surface in liquid and solid states over geological timescales. Acetylene (C2H2) net production in the atmosphere is predicted to be larger than any other compound and C2H2 has been speculated to exist on the surface of Titan. C2H2 was detected as a trace gas sublimated/evaporated from the surface using the Gas Chromatograph Mass Spectrometer after the landing of the Huygens probe. Here we show evidence of C2H2 on the surface of Titan by detecting absorption bands at 1.55 and 4.93 μm using the Cassini Visual and Infrared Mapping Spectrometer at three different equatorial areas—Tui Regio, eastern Shangri La, and Fensal-Aztlan/Quivira. We found that C2H2 is preferentially detected in low-albedo areas, such as sand dunes and near the Huygens landing site. The specific location of the C2H2 detections suggests that C2H2 is mobilized by surface processes, such as surface weathering by liquids through dissolution/evaporation processes.

  12. Electron impact induced anion production in acetylene.

    PubMed

    Szymańska, Ewelina; Čadež, Iztok; Krishnakumar, E; Mason, Nigel J

    2014-02-28

    A detailed experimental investigation of electron induced anion production in acetylene, C2H2, in the energy range between 1 and 90 eV is presented. The anions are formed by two processes in this energy range: dissociative electron attachment (DEA) and dipolar dissociation (DD). DEA in C2H2 is found to lead to the formation of H(-) and C2(-)/C2H(-) through excitation of resonances in the electron energy range 1-15 eV. These anionic fragments are formed with super thermal kinetic energy and reveal no anisotropy in the angular distributions. DD in C2H2 leads to the formation of H(-), C(-)/CH(-) and C2(-)/C2H(-) with threshold energies of 15.7, 20.0 and 16.5 eV respectively. The measured anion yields have been used to calculate anion production rates for H(-), C(-)/CH(-) and C2(-)/C2H(-) in Titan's ionosphere. PMID:24343432

  13. Acetylene on Titan’s Surface

    NASA Astrophysics Data System (ADS)

    Singh, S.; McCord, T. B.; Combe, J.-Ph.; Rodriguez, S.; Cornet, T.; Le Mouélic, S.; Clark, R. N.; Maltagliati, L.; Chevrier, V. F.

    2016-09-01

    Titan’s atmosphere is opaque in the near-infrared due to gaseous absorptions, mainly by methane, and scattering by aerosols, except in a few “transparency windows.” Thus, the composition of Titan’s surface remains difficult to access from space and is still poorly constrained. Photochemical models suggest that most of the organic compounds formed in the atmosphere are heavy enough to condense and build up at the surface in liquid and solid states over geological timescales. Acetylene (C2H2) net production in the atmosphere is predicted to be larger than any other compound and C2H2 has been speculated to exist on the surface of Titan. C2H2 was detected as a trace gas sublimated/evaporated from the surface using the Gas Chromatograph Mass Spectrometer after the landing of the Huygens probe. Here we show evidence of C2H2 on the surface of Titan by detecting absorption bands at 1.55 and 4.93 μm using the Cassini Visual and Infrared Mapping Spectrometer at three different equatorial areas—Tui Regio, eastern Shangri La, and Fensal–Aztlan/Quivira. We found that C2H2 is preferentially detected in low-albedo areas, such as sand dunes and near the Huygens landing site. The specific location of the C2H2 detections suggests that C2H2 is mobilized by surface processes, such as surface weathering by liquids through dissolution/evaporation processes.

  14. Mortality of workers at acetylene production plants.

    PubMed Central

    Newhouse, M L; Matthews, G; Sheikh, K; Knight, K L; Oakes, D; Sullivan, K R

    1988-01-01

    To reduce the risk of explosion oxyacetylene cylinders are filled with a spongy mass, acetone is added to saturate the mass, and acetylene is pumped into the cylinder. The first cylinders manufactured before 1936 used a kapok filling topped off with about 16 oz of crocidolite asbestos, with a metal gauze thimble inserted to reduce risk of flash back. Cylinders must be examined annually. The use of crocidolite ceased in 1972 and other fillings have been adopted since 1970; kapok cylinders now constitute less than 5% of the total stock. To assess possible hazards, a mortality study of workers first employed between 1935 and 1975 and followed up to December 1984 was undertaken. Simulation tests showed low concentrations of asbestos in the air even in the earliest period. The population studied consisted of 370 workers at the Bilston plant in the West Midlands, 611 at the 14 other plants in England and Wales, and 120 in Scotland. No deaths occurred from mesothelial tumours but there was an excess of deaths from cancer, particularly lung cancer, cancer of the stomach, and cancer of the pancreas, the latter accounting for eight deaths. Risks appeared to be concentrated at the Bilston plant. The importance of these findings is discussed. PMID:3342189

  15. Process hydrogenates unwanted diolefins and acetylenes

    SciTech Connect

    Vora, B.V. )

    1988-12-05

    Diolefins and actetylenes in C/sub 3//C/sub 4/ olefin streams can be selectively hydrogenated to produce high-purity mono-olefins for downstream polyolefin production. C/sub 3//C/sub 4/ olefin sources, fluid catalytic cracking (FCC), steam crackers, and dehydrogenation of C/sub 3//C/sub 4/ paraffins, all contain these undesirable polyunsaturated compounds. Hydrogenation of these compounds in alkylation unit feeds can also improve the economics of the alkylation process. Production of high-purity mono-olefins for downstream polyolefins production requires a feedstock that is essentially free of dienes and acetylenes to minimize undesirable side reactions. Although alkylation units can tolerate some diolefins in the feed, economics dictate that these diolefins should be minimized. The selective hydrogenation process (SHP) developed by others at its Marl, West Germany, plant, has undergone additional development work since commercialization of the process in 1980. The unit was designed to feed 160,000 metric tons/year of clean C/sub 4/ raffinate from a steam cracker, with a maximum polyunsaturated content of 0.8 wt%.

  16. Ion-induced dissociation dynamics of acetylene

    SciTech Connect

    De, Sankar; Rajput, Jyoti; Roy, A.; Safvan, C. P.; Ghosh, P. N.

    2008-02-15

    We report on the results of dissociation dynamics of multiple charged acetylene molecules formed in collision with 1.2 MeV Ar{sup 8+} projectiles. Using the coincidence map, we can separate out the different dissociation pathways between carbon and hydrogen ionic fragments as well as complete two-body breakup events. From the measured slopes of the coincidence islands for carbon atomic fragments and theoretical values determined from the charge and momentum distribution of the correlated particles, we observe a diatom like behavior of the C-C charged complex during dissociation of multiply charged C{sub 2}H{sub 2}. We conclude that this behavior in breakup dynamics is a signature of sequentiality in dissociation of this multiply charged molecular species. The shape and orientation of the islands give further information about the momentum balance in the fragmentation process of two- or many-body dissociation pathways. Kinetic energy release of different breakup channels are reported here and compared with values calculated from the pure Coulomb explosion model.

  17. Oxygen Partial Pressure Is a Rate-Limiting Parameter for Cell Proliferation in 3D Spheroids Grown in Physioxic Culture Condition

    PubMed Central

    Gomes, Aurélie; Guillaume, Ludivine; Grimes, David Robert; Fehrenbach, Jérôme; Lobjois, Valérie; Ducommun, Bernard

    2016-01-01

    The in situ oxygen partial pressure in normal and tumor tissues is in the range of a few percent. Therefore, when studying cell growth in 3D culture systems, it is essential to consider how the physiological oxygen concentration, rather than the one in the ambient air, influences the proliferation parameters. Here, we investigated the effect of reducing oxygen partial pressure from 21% to 5% on cell proliferation rate and regionalization in a 3D tumor spheroid model. We found that 5% oxygen concentration strongly inhibited spheroid growth, changed the proliferation gradient and reduced the 50% In Depth Proliferation index (IDP50), compared with culture at 21% oxygen. We then modeled the oxygen partial pressure profiles using the experimental data generated by culturing spheroids in physioxic and normoxic conditions. Although hypoxia occurred at similar depth in spheroids grown in the two conditions, oxygen partial pressure was a major rate-limiting factor with a critical effect on cell proliferation rate and regionalization only in spheroids grown in physioxic condition and not in spheroids grown at atmospheric normoxia. Our findings strengthen the need to consider conducting experiment in physioxic conditions (i.e., tissue normoxia) for proper understanding of cancer cell biology and the evaluation of anticancer drugs in 3D culture systems. PMID:27575790

  18. Effects of ambient and acute partial pressures of ozone on leaf net CO sub 2 assimilation of field-grown Vitis vinifera L

    SciTech Connect

    Roper, T.R.; Williams, L.E. Kearney Agricultural Center, Parlier, CA )

    1989-12-01

    Mature, field-grown Vitis vinifera L. grapevines grown in open-top chambers were exposed to either charcoal-filtered air or ambient ozone partial pressures throughout the growing season. Individual leaves also were exposed to ozone partial pressures of 0.2, 0.4, or 0.6 micropascals per pascal for 5 hours. No visual ozone damage was found on leaves exposed to any of the treatments. Chronic exposure to ambient O{sub 3} partial pressures reduced net CO{sub 2} assimilation rate (A) between 5 and 13% at various times throughout the season when compared to the filtered treatment. Exposure of leaves to 0.2 micropascals per pascal O{sub 3} for 5 hours had no significant effect on A; however, A was reduced 84% for leaves exposed to 0.6 micropascals per pascal O{sub 3} when compared to the controls after 5 hours. Intercellular CO{sub 2} partial pressure (c{sub i}) was lower for leaves exposed to 0.2 micropascals per pascal O{sub 3} when compared to the controls, while c{sub i} of the leaves treated with 0.6 micropascals per pascal of O{sub 3} increased during the fumigation. The long-term effects of ambient O{sub 3} and short-term exposure to acute levels of O{sub 3} reduced grape leaf photosynthesis due to a reduction in both stomatal and mesophyll conductances.

  19. Oxygen Partial Pressure Is a Rate-Limiting Parameter for Cell Proliferation in 3D Spheroids Grown in Physioxic Culture Condition.

    PubMed

    Gomes, Aurélie; Guillaume, Ludivine; Grimes, David Robert; Fehrenbach, Jérôme; Lobjois, Valérie; Ducommun, Bernard

    2016-01-01

    The in situ oxygen partial pressure in normal and tumor tissues is in the range of a few percent. Therefore, when studying cell growth in 3D culture systems, it is essential to consider how the physiological oxygen concentration, rather than the one in the ambient air, influences the proliferation parameters. Here, we investigated the effect of reducing oxygen partial pressure from 21% to 5% on cell proliferation rate and regionalization in a 3D tumor spheroid model. We found that 5% oxygen concentration strongly inhibited spheroid growth, changed the proliferation gradient and reduced the 50% In Depth Proliferation index (IDP50), compared with culture at 21% oxygen. We then modeled the oxygen partial pressure profiles using the experimental data generated by culturing spheroids in physioxic and normoxic conditions. Although hypoxia occurred at similar depth in spheroids grown in the two conditions, oxygen partial pressure was a major rate-limiting factor with a critical effect on cell proliferation rate and regionalization only in spheroids grown in physioxic condition and not in spheroids grown at atmospheric normoxia. Our findings strengthen the need to consider conducting experiment in physioxic conditions (i.e., tissue normoxia) for proper understanding of cancer cell biology and the evaluation of anticancer drugs in 3D culture systems. PMID:27575790

  20. Long-Term Stroke Risk Due to Partial White-Coat or Masked Hypertension Based on Home and Ambulatory Blood Pressure Measurements: The Ohasama Study.

    PubMed

    Satoh, Michihiro; Asayama, Kei; Kikuya, Masahiro; Inoue, Ryusuke; Metoki, Hirohito; Hosaka, Miki; Tsubota-Utsugi, Megumi; Obara, Taku; Ishiguro, Aya; Murakami, Keiko; Matsuda, Ayako; Yasui, Daisaku; Murakami, Takahisa; Mano, Nariyasu; Imai, Yutaka; Ohkubo, Takayoshi

    2016-01-01

    The prognostic significance of white-coat hypertension (WCHT) is controversial, and different findings on self-measured home measurements and 24-h ambulatory monitoring make identifying WCHT difficult. We examined whether individuals with partially or completely defined WCHT, as well as masked hypertension, as determined by different out-of-office blood pressure measurements, have a distinct long-term stroke risk. We followed 1464 participants (31.8% men; mean age, 60.6±10.8 years) in the general population of Ohasama, Japan, for a median of 17.1 years. A first stroke occurred in 212 subjects. Using sustained normal blood pressure (events/n=61/776) as a reference, adjusted hazard ratios for stroke (95% confidence intervals; events/n) were 1.38 (0.82-2.32; 19/137) for complete WCHT (isolated office hypertension), 2.16 (1.36-3.43; 29/117) for partial WCHT (either home or ambulatory normotension with office hypertension), 2.05 (1.24-3.41; 23/100) for complete masked hypertension (both home and ambulatory hypertension with office normotension), 2.08 (1.37-3.16; 38/180) for partial masked hypertension (either home or ambulatory hypertension with office normotension), and 2.46 (1.61-3.77; 42/154) for sustained hypertension. When partial WCHT and partial masked hypertension groups were further divided into participants only with home hypertension and those only with ambulatory hypertension, all subgroups had a significantly higher stroke risk (adjusted hazard ratio ≥1.84, P≤0.04). In conclusion, impacts of partial WCHT as well as partial masked hypertension for long-term stroke risk were comparable to those of complete masked hypertension or sustained hypertension. We need both home and 24-h ambulatory blood pressure measurements to evaluate stroke risk accurately.

  1. Reproducing early Martian atmospheric carbon dioxide partial pressure by modeling the formation of Mg-Fe-Ca carbonate identified in the Comanche rock outcrops on Mars

    NASA Astrophysics Data System (ADS)

    Berk, Wolfgang; Fu, Yunjiao; Ilger, Jan-Michael

    2012-10-01

    The well defined composition of the Comanche rock's carbonate (Magnesite0.62Siderite0.25Calcite0.11Rhodochrosite0.02) and its host rock's composition, dominated by Mg-rich olivine, enable us to reproduce the atmospheric CO2partial pressure that may have triggered the formation of these carbonates. Hydrogeochemical one-dimensional transport modeling reveals that similar aqueous rock alteration conditions (including CO2partial pressure) may have led to the formation of Mg-Fe-Ca carbonate identified in the Comanche rock outcrops (Gusev Crater) and also in the ultramafic rocks exposed in the Nili Fossae region. Hydrogeochemical conditions enabling the formation of Mg-rich solid solution carbonate result from equilibrium species distributions involving (1) ultramafic rocks (ca. 32 wt% olivine; Fo0.72Fa0.28), (2) pure water, and (3) CO2partial pressures of ca. 0.5 to 2.0 bar at water-to-rock ratios of ca. 500 molH2O mol-1rock and ca. 5°C (278 K). Our modeled carbonate composition (Magnesite0.64Siderite0.28Calcite0.08) matches the measured composition of carbonates preserved in the Comanche rocks. Considerably different carbonate compositions are achieved at (1) higher temperature (85°C), (2) water-to-rock ratios considerably higher and lower than 500 mol mol-1 and (3) CO2partial pressures differing from 1.0 bar in the model set up. The Comanche rocks, hosting the carbonate, may have been subjected to long-lasting (>104 to 105 years) aqueous alteration processes triggered by atmospheric CO2partial pressures of ca. 1.0 bar at low temperature. Their outcrop may represent a fragment of the upper layers of an altered olivine-rich rock column, which is characterized by newly formed Mg-Fe-Ca solid solution carbonate, and phyllosilicate-rich alteration assemblages within deeper (unexposed) units.

  2. Microstructure, mechanical and optical properties of TiAlON coatings sputter-deposited with varying oxygen partial pressures

    NASA Astrophysics Data System (ADS)

    Schalk, Nina; Thierry Simonet Fotso, J. F.; Holec, David; Fian, Alexander; Jakopic, Georg; Terziyska, Velislava L.; Daniel, Rostislav; Mitterer, Christian

    2016-01-01

    Due to their excellent mechanical and optical properties as well as chemical stability, the synthesis of transition metal oxynitride thin films has attracted growing interest in the last years. Within this work, the evolution of the structure and properties of TiAlON coatings over a wide compositional range, from the nitride to the oxide side, was investigated. The coatings were grown on Si substrates in a laboratory-scale unbalanced magnetron dc sputtering system from powder metallurgical TiAl targets with an Al/Ti atomic ratio of 60/40, using a constant level of nitrogen with rising oxygen partial pressure. Coating composition and microstructure were investigated by energy- and wavelength-dispersive x-ray spectroscopy, x-ray diffraction, x-ray photoelectron spectroscopy, Raman spectroscopy and transmission electron microscopy. Furthermore, the mechanical and optical properties were evaluated using nanoindentation and spectroscopic ellipsometry, respectively. Oxygen concentrations of up to 49 at.% within the films could be obtained, at the expense of the nitrogen content. The oxygen-free coating exhibited a single-phase fcc-Ti1-x Al x N structure. With increasing oxygen content the structure remained fcc-Ti1-x Al x N based, but additional fractions of amorphous oxides were formed. The structural evolution was corroborated by ab initio calculations. Decreasing coating hardness could be observed with increasing oxygen concentration. The refraction index and extinction coefficient were lower for coatings with higher oxygen content, but the behavior of the optical properties remained Ti1-x Al x N-like over the investigated spectral range.

  3. Maximizing the Hydrogen Photoproduction Yields in Chlamydomonas Reinhardtii Cultures: The Effect of the H2 Partial Pressure

    SciTech Connect

    Kosourov, S. N.; Batyrova, K. A.; Petushkova, E. P.; Tsygankov, A. A.; Ghirardi, M. L.; Seibert, M.

    2012-05-01

    Photoproduction of H{sub 2} gas has been examined in sulfur/phosphorus-deprived Chalmydomonas reinhardtii cultures, placed in photobioreactors (PhBRs) with different gas phase to liquid phase ratios (V{sub g.p.}/V{sub l.p.}). The results demonstrate that an increase in the ratio stimulates H{sub 2} photoproduction activity in both algal suspension cultures and in algae entrapped in thin alginate films. In suspension cultures, a 4x increase (from {approx}0.5 to {approx}2) in V{sub g.p.}/V{sub l.p} results in a 2x increase (from 10.8 to 23.1 mmol l{sup -1} or 264-565 ml l{sup -1}) in the total yield of H{sub 2} gas. Remarkably, 565 ml of H{sub 2} gas per liter of the suspension culture is the highest yield ever reported for a wild-type strain in a time period of less than 190 h. In immobilized algae, where diffusion of H{sub 2} from the medium to the PhBR gas phase is not affected by mixing, the maximum rate and yield of H{sub 2} photoproduction occur in PhBRs with V{sub g.p.}/V{sub l.p} above 7 or in a PhBR with smaller headspace, if the H{sub 2} is effectively removed from the medium by continuous flushing of the headspace with argon. These experiments in combination with studies of the direct inhibitory effect of high H{sub 2} concentrations in the PhBR headspace on H{sub 2} photoproduction activity in algal cultures clearly show that H{sub 2} photoproduction in algae depends significantly on the partial pressure of H{sub 2} (not O{sub 2} as previously thought) in the PhBR gas phase.

  4. The effect of oxygen partial pressure on protein synthesis and collagen hydroxylation by mature periodontal tissues maintained in organ cultures

    PubMed Central

    Yen, Edwin H. K.; Sodek, Jaro; Melcher, Antony H.

    1979-01-01

    Mature periodontal tissues from adult-mouse first mandibular molars were cultured in a continuous-flow organ-culture system which allowed the regulation of both ascorbic acid concentration and pO2 (oxygen partial pressure). Protein synthesis was measured by analysing the incorporation of [3H]proline into collagenous and non-collagenous proteins during the last 24h of a 2-day culture. At low pO2 [16.0kPa (approx. 120mmHg)] approx. 60% of protein-incorporated [3H]proline was found in collagenous proteins. However, it was evident that this collagen was considerably underhydroxylated. At high pO2 [56.0kPa (approx. 420mmHg)], both the amount of collagen deposited in the tissues and the degree of hydroxylation were increased considerably. In contrast, no significant effect on non-collagenous protein was observed. Tissues cultured at low pO2 for the first 48h were unable to respond to a subsequent increase in pO2 during the last 24h. Analysis of pepsin-solubilized collagen α-chains labelled with [14C]glycine demonstrated the synthesis of both type-I and type-III collagens by explants cultured for 48h at high pO2. Type-III collagen comprised 20–30% of the radioactivity in α-chains in both the periodontal ligament and the tissues of the alveolar process. The pattern of protein synthesis in the alveolar tissues at high pO2 was similar to that observed in these tissues in vivo. However, in the cultured periodontal ligament the proportions of non-collagenous proteins and type-III collagens were increased in comparison with the tissue in vivo. PMID:454369

  5. In vivo modulation of interacting central pattern generators in lobster stomatogastric ganglion: influence of feeding and partial pressure of oxygen.

    PubMed

    Clemens, S; Massabuau, J C; Legeay, A; Meyrand, P; Simmers, J

    1998-04-01

    The stomatogastric ganglion (STG) of the European lobster Homarus gammarus contains two rhythm-generating networks (the gastric and pyloric circuits) that in resting, unfed animals produce two distinct, yet strongly interacting, motor patterns. By using simultaneous EMG recordings from the gastric and pyloric muscles in vivo, we found that after feeding, the gastropyloric interaction disappears as the two networks express accelerated motor rhythms. The return to control levels of network activity occurs progressively over the following 1-2 d and is associated with a gradual reappearance of the gastropyloric interaction. In parallel with this change in network activity is an alteration of oxygen levels in the blood. In resting, unfed animals, arterial partial pressure of oxygen (PO2) is most often between 1 and 2 kPa and then doubles within 1 hr after feeding, before returning to control values some 24 hr later. In vivo, experimental prevention of the arterial PO2 increase after feeding leads to a slowing of pyloric rhythmicity toward control values and a reappearance of the gastropyloric interaction, without apparent effect on gastric network operation. Using in vitro preparations of the stomatogastric nervous system and by changing oxygen levels uniquely at the level of the STG within the range observed in the intact animal, we were able to mimic most of the effects observed in vivo. Our data indicate that the gastropyloric interaction appears only during a "free run" mode of foregut activity and that the coordinated operation of multiple neural networks may be modulated by local changes in oxygenation. PMID:9502835

  6. Carbon dioxide partial pressure and 13C content of north temperate and boreal lakes at spring ice melt

    USGS Publications Warehouse

    Striegl, R.G.; Kortelainen, Pirkko; Chanton, J.P.; Wickland, K.P.; Bugna, G.C.; Rantakari, M.

    2001-01-01

    Carbon dioxide (CO2) accumulates under lake ice in winter and degasses to the atmosphere after ice melt. This large springtime CO2 pulse is not typically considered in surface-atmosphere flux estimates, because most field studies have not sampled through ice during late winter. Measured CO2 partial pressure (pCO2) of lake surface water ranged from 8.6 to 4,290 Pa (85-4,230 ??atm) in 234 north temperate and boreal lakes prior to ice melt during 1998 and 1999. Only four lakes had surface pCO2 less than or equal to atmospheric pCO2, whereas 75% had pCO2 >5 times atmospheric. The ??13CDIC (DIC = ??CO2) of 142 of the lakes ranged from -26.28??? to +0.95.???. Lakes with the greatest pCO2 also had the lightest ??13CDIC, which indicates respiration as their primary CO2 source. Finnish lakes that received large amounts of dissolved organic carbon from surrounding peatlands had the greatest pCO2. Lakes set in noncarbonate till and bedrock in Minnesota and Wisconsin had the smallest pCO2 and the heaviest ??13CDIC, which indicates atmospheric and/or mineral sources of C for those lakes. Potential emissions for the period after ice melt were 2.36 ?? 1.44 mol CO2 m-2 for lakes with average pCO2 values and were as large as 13.7 ?? 8.4 mol CO2 m-2 for lakes with high pCO2 values.

  7. Influence of oxygen partial pressure on optical and structural properties of RF sputtered ZnO thin films

    NASA Astrophysics Data System (ADS)

    Murkute, P.; Saha, S.; Pandey, S. K.; Chatterjee, A.; Datta, D.; Chakrabarti, S.

    2016-02-01

    In this paper we report a detailed investigation of ZnO thin film properties deposited on Si<100> substrate at 400°C using RF sputtering. To reduce oxygen induced vacancies and interstitial defects in samples, variable oxygen flow rate during deposition followed by post growth annealing in oxygen ambient were carried out. Four samples were deposited under constant temperature condition but with variable oxygen partial pressure of 0%, 20%, 50% and 80% in Argon and Oxygen mixture, namely sample S1, S2 , S3 and S4 respectively. Deposited films were further annealed at 700, 800, 900 and 1000°C in oxygen ambient for 10s. Photoluminescence (PL) measurements carried at low temperature (18K) demonstrated near band edge emission peak of ZnO at 3.37eV. Increment in PL intensity was observed with increasing annealing temperature and a particular sample S4 annealed at 900 measured narrowest full width half maxima (FWHM) of ~0.1272eV. Defects peaks observed at lower energies were suppressed with increasing oxygen flow and post growth annealing, indicating improvement in film quality. From HRXRD measurement it was observed S4 sample annealed at 900°C has the highest peak intensity and narrowest FWHM compared to other samples, demonstrating the best crystalline property of annealed film at 900°C. Highest XRD peak intensity measured at 34.53° corresponds to (002) crystal orientation reveals that the films were highly caxis oriented. AFM results show increase in grain size with increasing oxygen flow and annealing temperature which ensures improvement in morphological properties of the film.

  8. Identification of Acetylene on Titan's Surface

    NASA Astrophysics Data System (ADS)

    Singh, S.; McCord, T. B.; Rodriguez, S.; Combe, J. P.; Cornet, T.; Le Mouelic, S.; Maltagliati, L.; Chevrier, V.; Clark, R. N.

    2015-12-01

    Titan's atmosphere is opaque in the near infrared due to gaseous absorptions, mainly by methane, and scattering by aerosols, except in a few "transparency windows" (e.g., Sotin et al., 2005). Thus, the composition of Titan surface remains difficult to access from space and is still poorly constrained, limited to ethane in the polar lakes (Brown et al., 2008) and a few possible organic molecules on the surface (Clark et al., 2010). Photochemical models suggest that most of the organic compounds formed in the atmosphere are heavy enough to condense and build up at the surface in liquid and solid states over geological timescale (Cordier et al., 2009, 2011). Acetylene (C2H2) is one of the most abundant organic molecules in the atmosphere and thus thought to present on the surface as well. Here we report direct evidence of solid C2H2 on Titan's surface using Cassini Visual and Infrared Mapping Spectrometer (VIMS) data. By comparing VIMS observations and laboratory measurements of solid and liquid C2H2, we identify a specific absorption at 1.55 µm that is widespread over Titan but is particularly strong in the brightest terrains. This surface variability suggests that C2H2 is mobilized by surface processes, such as surface weathering, topography, and dissolution/evaporation. The detection of C2H2 on the surface of Titan opens new paths to understand and constrain Titan's surface activity. Since C2H2 is highly soluble in Titan liquids (Singh et al. 2015), it can easily dissolve in methane/ethane and may play an important role in carving of fluvial channels and existence of karstic lakes at higher latitudes on Titan. These processes imply the existence of a dynamic surface with a continued history of erosion and deposition of C2H2 on Titan.

  9. Spatial and Temporal Variations in the Partial Pressure and Emission of CO2 and CH4 in and Amazon Floodplain Lake

    NASA Astrophysics Data System (ADS)

    Forsberg, B. R.; Amaral, J. H.; Barbosa, P.; Kasper, D.; MacIntyre, S.; Cortes, A.; Sarmento, H.; Borges, A. V.; Melack, J. M.; Farjalla, V.

    2015-12-01

    The Amazon floodplain contains a variety of wetland environments which contribute CO2 and CH4 to the regional and global atmospheres. The partial pressure and emission of these greenhouse gases (GHGs) varies: 1) between habitats, 2) seasonally, as the characteristics these habitats changes and 3) diurnally, in response to diurnal stratification. In this study, we investigated the combined influence of these factors on the partial pressure and emission of GHGs in Lago Janauacá, a central Amazon floodplain lake (3o23' S; 60o18' O). All measurements were made between August of 2014 and April of 2015 at two different sites and in three distinct habitats: open water, flooded forest, flooded macrophytes. Concentrations of CO2 and CH4 in air were measured continuously with a cavity enhanced absorption spectrometer, Los Gatos Research´s Ultraportable Greenhouse Gas Analyzer (UGGA). Vertical profiles o pCO2 and pCH4 were measured using the UGGA connected to an electric pump and equilibrator. Diffusive surface emissions were estimated with the UGGA connected to a static floating chamber. To investigate the influence of vertical stratification and mixing on GHG partial pressure and emissions, a meteorological station and submersible sensor chain were deployed at each site. Meteorological sensors included wind speed and direction. The submersible chains included thermistors and oxygen sensors. Depth profiles of partial pressure and diffusive emissions for both CO2 and CH4 varied diurnally, seasonally and between habitats. Both pCO2 and pCH4 were consistently higher in bottom than surface waters with the largest differences occurring at high water when thermal stratification was most stable. Methane emissions and partial pressures were highest at low water while pCO2 and CO2 fluxes were highest during high water periods, with 35% of CO2 fluxes at low water being negative. The highest average surface value of pCO2 (5491 μatm), encountered during rising water, was ~3 times

  10. Microgravity Superagglomerates Produced By Silane And Acetylene

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman (Technical Monitor); Bundy, Matthew; Mulholland, George W.; Manzello, Samuel; Yang, Jiann; Scott, John Henry; Sivathanu, Yudaya

    2003-01-01

    The size of the agglomerates produced in the upper portion of a flame is important for a variety of applications. Soot particle size and density effect the amount of radiative heat transfer from a fire to its surroundings. Particle size determines the lifetime of smoke in a building or in the atmosphere, and exposure hazard for smoke inhaled and deposited in the lungs. The visibility through a smoke layer and dectectability of the smoke are also greatly affected by agglomerate size. Currently there is limited understanding of soot growth with an overall dimension of 10 m and larger. In the case of polystyrene, smoke agglomerates in excess of 1 mm have been observed raining out from large fires. Unlike hydrocarbon fuels, silane has the advantage that silica particles are the major combustion product resulting in a particle volume fraction a factor of ten greater than that for a carbonaceous smoke. There are two very desirable properties of silica aero-gels that are important for both space and earth based applications. The first important property is its inertness to most oxidizing and reducing atmospheres. Therefore, silica aero-gels make excellent fire ablatives and can be used in very demanding applications. The second important property is that silica aero-gels are expected to have very high porosity (greater than 0.999), making them lightweight and ideal for aerospace applications. The added benefit of the high porosity is that they can be used as extremely efficient filters for many earth based applications as well. Evidence of the formation of superagglomerates in a laminar acetylene/air diffusion flame was found by Sorensen et al. [1]. An interconnecting web of super-agglomerates was observed to span the width of the soot plume in the region just above the flame tip and described as a gel state. It was observed that this gel state immediately breaks up into agglomerates as larges as 100 m due to buoyancy induced turbulence. Large soot agglomerates were

  11. Synthesis of functional acetylene derivatives from calcium carbide.

    PubMed

    Lin, Zhewang; Yu, Dingyi; Sum, Yin Ngai; Zhang, Yugen

    2012-04-01

    AHA Erlebnis: CaC(2), used to produce acetylene until several decades ago, is re-emerging as a cheap, sustainable resource synthesized from coal and lignocellulosic biomass. We report efficient catalytic protocols for the synthesis of functional acetylene derivatives from CaC(2) through aldehyde, alkyne, and amine (AAA) as well as alkyne, haloalkane, and amine (AHA) couplings, and in addition demonstrate its use in click and Sonogashira chemistry, showing that calcium carbide is a sustainable and cost-efficient carbon source.

  12. Theoretical determination of the structure of acetylene on Pt(111)

    NASA Astrophysics Data System (ADS)

    Anderson, Alfred B.; Hubbard, Arthur T.

    1980-09-01

    An atom superposition and electron delocalization technique applied to acetylene chemisorption on small cluster models for the Pt(111) surface shows preference for the triangular site as deduced from electron energy loss analyses by Ibach and Lehwald. This confirms the applicability of Badger's and related rules in this instance. Calculations on CCH 3 produce a structure in agreement with a dynamic LEED analysis at 400 K by Kesmodel, Dubois and Somorjai. Structures of CCH 2 and CHCH 2 are calculated and these species are found to be less stable than acetylene and CCH 3, respectively, when chemisorbed on Pt(111).

  13. Biomethanation of Syngas Using Anaerobic Sludge: Shift in the Catabolic Routes with the CO Partial Pressure Increase.

    PubMed

    Sancho Navarro, Silvia; Cimpoia, Ruxandra; Bruant, Guillaume; Guiot, Serge R

    2016-01-01

    Syngas generated by thermal gasification of biomass or coal can be steam reformed and purified into methane, which could be used locally for energy needs, or re-injected in the natural gas grid. As an alternative to chemical catalysis, the main components of the syngas (CO, CO2, and H2) can be used as substrates by a wide range of microorganisms, to be converted into gas biofuels, including methane. This study evaluates the carboxydotrophic (CO-consuming) methanogenic potential present in an anaerobic sludge from an upflow anaerobic sludge bed (UASB) reactor treating waste water, and elucidates the CO conversion routes to methane at 35 ± 3°C. Kinetic activity tests under CO at partial pressures (pCO) varying from 0.1 to 1.5 atm (0.09-1.31 mmol/L in the liquid phase) showed a significant carboxydotrophic activity potential for growing conditions on CO alone. A maximum methanogenic activity of 1 mmol CH4 per g of volatile suspended solid and per day was achieved at 0.2 atm of CO (0.17 mmol/L), and then the rate decreased with the amount of CO supplied. The intermediary metabolites such as acetate, H2, and propionate started to accumulate at higher CO concentrations. Inhibition experiments with 2-bromoethanesulfonic acid (BES), fluoroacetate, and vancomycin showed that in a mixed culture CO was converted mainly to acetate by acetogenic bacteria, which was further transformed to methane by acetoclastic methanogens, while direct methanogenic CO conversion was negligible. Methanogenesis was totally blocked at high pCO in the bottles (≥1 atm). However it was possible to achieve higher methanogenic potential under a 100% CO atmosphere after acclimation of the sludge to CO. This adaptation to high CO concentrations led to a shift in the archaeal population, then dominated by hydrogen-utilizing methanogens, which were able to take over acetoclastic methanogens, while syntrophic acetate oxidizing (SAO) bacteria oxidized acetate into CO2 and H2. The disaggregation of the

  14. Biomethanation of Syngas Using Anaerobic Sludge: Shift in the Catabolic Routes with the CO Partial Pressure Increase.

    PubMed

    Sancho Navarro, Silvia; Cimpoia, Ruxandra; Bruant, Guillaume; Guiot, Serge R

    2016-01-01

    Syngas generated by thermal gasification of biomass or coal can be steam reformed and purified into methane, which could be used locally for energy needs, or re-injected in the natural gas grid. As an alternative to chemical catalysis, the main components of the syngas (CO, CO2, and H2) can be used as substrates by a wide range of microorganisms, to be converted into gas biofuels, including methane. This study evaluates the carboxydotrophic (CO-consuming) methanogenic potential present in an anaerobic sludge from an upflow anaerobic sludge bed (UASB) reactor treating waste water, and elucidates the CO conversion routes to methane at 35 ± 3°C. Kinetic activity tests under CO at partial pressures (pCO) varying from 0.1 to 1.5 atm (0.09-1.31 mmol/L in the liquid phase) showed a significant carboxydotrophic activity potential for growing conditions on CO alone. A maximum methanogenic activity of 1 mmol CH4 per g of volatile suspended solid and per day was achieved at 0.2 atm of CO (0.17 mmol/L), and then the rate decreased with the amount of CO supplied. The intermediary metabolites such as acetate, H2, and propionate started to accumulate at higher CO concentrations. Inhibition experiments with 2-bromoethanesulfonic acid (BES), fluoroacetate, and vancomycin showed that in a mixed culture CO was converted mainly to acetate by acetogenic bacteria, which was further transformed to methane by acetoclastic methanogens, while direct methanogenic CO conversion was negligible. Methanogenesis was totally blocked at high pCO in the bottles (≥1 atm). However it was possible to achieve higher methanogenic potential under a 100% CO atmosphere after acclimation of the sludge to CO. This adaptation to high CO concentrations led to a shift in the archaeal population, then dominated by hydrogen-utilizing methanogens, which were able to take over acetoclastic methanogens, while syntrophic acetate oxidizing (SAO) bacteria oxidized acetate into CO2 and H2. The disaggregation of the

  15. [Partial pressure of CO2 and CO2 degassing fluxes of Huayuankou and Xiaolangdi Station affected by Xiaolangdi Reservoir].

    PubMed

    Zhang, Yong-ling; Yang, Xiao-lin; Zhang, Dong

    2015-01-01

    According to periodic sampling analysis per month in Xiaolangdi station and Huayuankou station from November 2011 to October 2012, combined with continuous sampling analysis of Xiaolangdi Reservoir during runoff and sediment control period in 2012, partial pressure of CO2 (pCO2) in surface water were calculated based on Henry's Law, pCO2 features and air-water CO2 degassing fluxes of Huayuankou station and Xiaolangdi station affected by Xiaolangdi Reservoir were studied. The results were listed as follows, when Xiaolangdi Reservoir operated normally, pCO2 in surface water of Xiaolangdi station and Huayuankou station varied from 82 to 195 Pa and from 99 to 228 Pa, moreover, pCO2 in surface water from July to September were distinctly higher than those in other months; meanwhile, pCO, in surface water from Huayuankou station were higher than that from Xiaolangdi station. During runoff and sediment control period of Xiaolangdi Reservoir, two hydrological stations commonly indicated that pCO2 in surface water during water draining were obviously lower than those during sediment releasing. Whether in the period of normal operation or runoff and sediment control, pCO2 in surface water had positive relations to DIC content in two hydrological stations. Since the EpCO,/AOU value was higher than the theoretical value of 0. 62, the biological aerobic respiration effect had distinct contribution to pCO2. Throughout the whole year, air-water CO2 degassing fluxes from Xiaolangdi station and Huayuankou station were 0.486 p.mol (m2 s) -l and 0.588 pmol (m2 x s)(-1) respectively; When Xiaolangdi Reservoir operated normally, air-water CO, degassing fluxes in Huayuankou station were higher than that in Xiaolangdi station; during runoff and sediment control from Xiaolangdi Reservoir, two hydrological stations had one observation result in common, namely, air-water CO2 degassing fluxes in the period of water draining were obviously lower than that in the period of sediment releasing

  16. Changes in partial pressures of respiratory gases during submerged voluntary breath hold across odontocetes: is body mass important?

    PubMed

    Noren, S R; Williams, T M; Ramirez, K; Boehm, J; Glenn, M; Cornell, L

    2012-02-01

    Odontocetes have an exceptional range in body mass spanning 10(3) kg across species. Because, size influences oxygen utilization and carbon dioxide production rates in mammals, this lineage likely displays an extraordinary variation in oxygen store management compared to other marine mammal groups. To examine this, we measured changes in the partial pressures of respiratory gases ([Formula: see text], [Formula: see text]), pH, and lactate in the blood during voluntary, quiescent, submerged breath holds in Pacific white-sided dolphins (Lagenorhynchus obliquidens), bottlenose dolphins (Tursiops truncatus), and a killer whale (Orcinus orca) representing a mass range of 96-3,850 kg. These measurements provided an empirical determination of the effect of body size on the variability in blood biochemistry during breath hold and experimentally determined aerobic dive limits (ADL) within one taxonomic group (odontocetes). For the species in this study, maximum voluntary breath-hold duration was positively correlated with body mass, ranging from 3.5 min in white-sided dolphins to 13.3 min for the killer whale. Variation in breath-hold duration was associated with differences in the rate of change for [Formula: see text] throughout breath hold; [Formula: see text] decreased twice as fast for the two smaller species (-0.6 mmHg O(2) min(-1)) compared to the largest species (-0.3 mmHg O(2) min(-1)). In contrast, the rate of increase in [Formula: see text] during breath hold was similar across species. These results demonstrate that large body size in odontocetes facilitates increased aerobic breath-hold capacity as mediated by decreased mass-specific metabolic rates (rates of change in [Formula: see text] served as a proxy for oxygen utilization). Indeed the experimentally determined 5 min ADL for bottlenose dolphins was surpassed by the 13.3 min maximum breath hold of the killer whale, which did not end in a rise in lactate. Rather, breath hold ended voluntarily as respiratory

  17. Biomethanation of Syngas Using Anaerobic Sludge: Shift in the Catabolic Routes with the CO Partial Pressure Increase

    PubMed Central

    Sancho Navarro, Silvia; Cimpoia, Ruxandra; Bruant, Guillaume; Guiot, Serge R.

    2016-01-01

    Syngas generated by thermal gasification of biomass or coal can be steam reformed and purified into methane, which could be used locally for energy needs, or re-injected in the natural gas grid. As an alternative to chemical catalysis, the main components of the syngas (CO, CO2, and H2) can be used as substrates by a wide range of microorganisms, to be converted into gas biofuels, including methane. This study evaluates the carboxydotrophic (CO-consuming) methanogenic potential present in an anaerobic sludge from an upflow anaerobic sludge bed (UASB) reactor treating waste water, and elucidates the CO conversion routes to methane at 35 ± 3°C. Kinetic activity tests under CO at partial pressures (pCO) varying from 0.1 to 1.5 atm (0.09–1.31 mmol/L in the liquid phase) showed a significant carboxydotrophic activity potential for growing conditions on CO alone. A maximum methanogenic activity of 1 mmol CH4 per g of volatile suspended solid and per day was achieved at 0.2 atm of CO (0.17 mmol/L), and then the rate decreased with the amount of CO supplied. The intermediary metabolites such as acetate, H2, and propionate started to accumulate at higher CO concentrations. Inhibition experiments with 2-bromoethanesulfonic acid (BES), fluoroacetate, and vancomycin showed that in a mixed culture CO was converted mainly to acetate by acetogenic bacteria, which was further transformed to methane by acetoclastic methanogens, while direct methanogenic CO conversion was negligible. Methanogenesis was totally blocked at high pCO in the bottles (≥1 atm). However it was possible to achieve higher methanogenic potential under a 100% CO atmosphere after acclimation of the sludge to CO. This adaptation to high CO concentrations led to a shift in the archaeal population, then dominated by hydrogen-utilizing methanogens, which were able to take over acetoclastic methanogens, while syntrophic acetate oxidizing (SAO) bacteria oxidized acetate into CO2 and H2. The disaggregation of the

  18. Oxygen partial pressure dependence of magnetic, optical and magneto-optical properties of epitaxial cobalt-substituted SrTiO₃ films.

    PubMed

    Onbaşlı, Mehmet C; Goto, Taichi; Tang, Astera; Pan, Annia; Battal, Enes; Okyay, Ali K; Dionne, Gerald F; Ross, C A

    2015-05-18

    Cobalt-substituted SrTiO3 films (SrTi0.70Co0.30O(3-δ)) were grown on SrTiO3 substrates using pulsed laser deposition under oxygen pressures ranging from 1 μTorr to 20 mTorr. The effect of oxygen pressure on structural, magnetic, optical, and magneto-optical properties of the films was investigated. The film grown at 3 μTorr has the highest Faraday rotation (FR) and magnetic saturation moment (M(s)). Increasing oxygen pressure during growth reduced M(s), FR and optical absorption in the near-infrared. This trend is attributed to decreasing Co2+ ion concentration and oxygen vacancy concentration with higher oxygen partial pressure during growth. PMID:26074589

  19. [Generation of Superoxide Radicals by Complex III in Heart Mitochondria and Antioxidant Effect of Dinitrosyl Iron Complexes at Different Partial Pressure of Oxygen].

    PubMed

    Dudylina, A L; Ivanova, M V; Shumaev, K B; Ruuge, E K

    2016-01-01

    The EPR spin-trapping technique and EPR-oximetry were used to study generation of superoxide radicals in heart mitochondria isolated from Wistar rats under conditions of variable oxygen concentration. Lithium phthalocyanine and TEMPONE-15N-D16 were chosen to determine oxygen content in a gas-permeable capillary tube containing mitochondria. TIRON was used as a spin trap. We investigated the influence of different oxygen concentrations in incubation mixture and demonstrated that heart mitochondria can generate superoxide in complex III at different partial pressure of oxygen as well as under the conditions of deep hypoxia (< 5% O2). Dinitrosyl iron complexes with glutathione (the pharmaceutical drug "Oxacom") exerted an antioxidant effect, regardless of the value of the partial pressure of oxygen, but the magnitude and kinetic characteristics of the effect depended on the concentration of the drug.

  20. Extended x-ray absorption fine structure measurements on radio frequency magnetron sputtered HfO2 thin films deposited with different oxygen partial pressures.

    PubMed

    Maidul Haque, S; Nayak, C; Bhattacharyya, Dibyendu; Jha, S N; Sahoo, N K

    2016-03-20

    Two sets of HfO2 thin film have been deposited by the radio frequency magnetron sputtering technique at various oxygen partial pressures, one set without any substrate bias and another set with a 50 W pulsed dc substrate bias. The films have been characterized by extended x-ray absorption fine structure (EXAFS) measurements at the Hf L3 edge, and the structural information obtained from analysis of the EXAFS data has been used to explain the macroscopic behavior of the refractive index obtained from spectroscopic ellipsometry measurements. It has been observed that the variation of refractive index with oxygen partial pressure depends on the Hf-Hf bond length for the set of films deposited without substrate bias, while for the other set of films deposited with pulsed dc substrate bias, it depends on the oxygen coordination of the nearest neighbor shell surrounding Hf sites.

  1. A flowing liquid test system for assessing the linearity and time-response of rapid fibre optic oxygen partial pressure sensors.

    PubMed

    Chen, R; Hahn, C E W; Farmery, A D

    2012-08-15

    The development of a methodology for testing the time response, linearity and performance characteristics of ultra fast fibre optic oxygen sensors in the liquid phase is presented. Two standard medical paediatric oxygenators are arranged to provide two independent extracorporeal circuits. Flow from either circuit can be diverted over the sensor under test by means of a system of rapid cross-over solenoid valves exposing the sensor to an abrupt change in oxygen partial pressure, P O2. The system is also capable of testing the oxygen sensor responses to changes in temperature, carbon dioxide partial pressure P CO2 and pH in situ. Results are presented for a miniature fibre optic oxygen sensor constructed in-house with a response time ≈ 50 ms and a commercial fibre optic sensor (Ocean Optics Foxy), when tested in flowing saline and stored blood.

  2. [Generation of Superoxide Radicals by Complex III in Heart Mitochondria and Antioxidant Effect of Dinitrosyl Iron Complexes at Different Partial Pressure of Oxygen].

    PubMed

    Dudylina, A L; Ivanova, M V; Shumaev, K B; Ruuge, E K

    2016-01-01

    The EPR spin-trapping technique and EPR-oximetry were used to study generation of superoxide radicals in heart mitochondria isolated from Wistar rats under conditions of variable oxygen concentration. Lithium phthalocyanine and TEMPONE-15N-D16 were chosen to determine oxygen content in a gas-permeable capillary tube containing mitochondria. TIRON was used as a spin trap. We investigated the influence of different oxygen concentrations in incubation mixture and demonstrated that heart mitochondria can generate superoxide in complex III at different partial pressure of oxygen as well as under the conditions of deep hypoxia (< 5% O2). Dinitrosyl iron complexes with glutathione (the pharmaceutical drug "Oxacom") exerted an antioxidant effect, regardless of the value of the partial pressure of oxygen, but the magnitude and kinetic characteristics of the effect depended on the concentration of the drug. PMID:27192832

  3. 46 CFR 56.50-103 - Fixed oxygen-acetylene distribution piping.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Fixed oxygen-acetylene distribution piping. 56.50-103... oxygen-acetylene distribution piping. (a) This section applies to fixed piping installed for the distribution of oxygen and acetylene carried in cylinders as vessels stores. (b) The distribution piping...

  4. 46 CFR 56.50-103 - Fixed oxygen-acetylene distribution piping.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Fixed oxygen-acetylene distribution piping. 56.50-103... oxygen-acetylene distribution piping. (a) This section applies to fixed piping installed for the distribution of oxygen and acetylene carried in cylinders as vessels stores. (b) The distribution piping...

  5. 46 CFR 56.50-103 - Fixed oxygen-acetylene distribution piping.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Fixed oxygen-acetylene distribution piping. 56.50-103... oxygen-acetylene distribution piping. (a) This section applies to fixed piping installed for the distribution of oxygen and acetylene carried in cylinders as vessels stores. (b) The distribution piping...

  6. 46 CFR 56.50-103 - Fixed oxygen-acetylene distribution piping.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Fixed oxygen-acetylene distribution piping. 56.50-103... oxygen-acetylene distribution piping. (a) This section applies to fixed piping installed for the distribution of oxygen and acetylene carried in cylinders as vessels stores. (b) The distribution piping...

  7. 46 CFR 56.50-103 - Fixed oxygen-acetylene distribution piping.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Fixed oxygen-acetylene distribution piping. 56.50-103... oxygen-acetylene distribution piping. (a) This section applies to fixed piping installed for the distribution of oxygen and acetylene carried in cylinders as vessels stores. (b) The distribution piping...

  8. Effects of various oxygen partial pressures on Ti-doped ZnO thin film transistors fabricated on flexible plastic substrate

    NASA Astrophysics Data System (ADS)

    Cui, Guodong; Han, Dedong; Yu, Wen; Shi, Pan; Zhang, Yi; Huang, Lingling; Cong, Yingying; Zhou, Xiaoliang; Zhang, Xiaomi; Zhang, Shengdong; Zhang, Xing; Wang, Yi

    2016-04-01

    By applying a novel active layer of titanium zinc oxide (TiZO), we have successfully fabricated fully transparent thin-film transistors (TFTs) with a bottom gate structure fabricated on a flexible plastic substrate at low temperatures. The effects of various oxygen partial pressures during channel deposition were studied to improve the device performance. We found that the oxygen partial pressure during channel deposition has a significant impact on the performance of TiZO TFTs, and that the TFT developed under 10% oxygen partial pressure exhibits superior performance with a low threshold voltage (V th) of 2.37 V, a high saturation mobility (μsat) of 125.4 cm2 V-1 s-1, a steep subthreshold swing (SS) of 195 mV/decade and a high I on/I off ratio of 3.05 × 108. These results suggest that TiZO thin films are promising for high-performance fully transparent flexible TFTs and displays.

  9. Light-induced changes in an aqueous beta-carotene system stored under halogen and fluorescent lamps, affected by two oxygen partial pressures.

    PubMed

    Limbo, Sara; Torri, Luisa; Piergiovanni, Luciano

    2007-06-27

    The aim of this work was to investigate the reaction kinetics of beta-carotene in an aqueous medium as a function of exposure to commercial lights (halogen and fluorescent sources) and oxygen partial pressures. The evolution of the pigment concentration, the changes in color, and the accumulation of a volatile compound (beta-ionone) were monitored during storage. The kinetics of degradation were mathematically modeled to compare the effects of lighting conditions and oxygen partial pressures. Lighting was also a critical variable in the presence of a low oxygen partial pressure (5 kPa), and in these conditions, the beta-carotene degraded completely during storage, even if more slowly than at 20 kPa of O2. The pigment degradation was correlated to illuminance and UVA irradiance values, but the different decay rates of the fluorescent lamps were explained by the differences in the blue region of the energy emission spectra. A halogen lamp gave minor negative effects on beta-carotene degradation.

  10. Global Ocean Surface Water Partial Pressure of CO2 Database: Measurements Performed During 1968-2007 (Version 2007)

    SciTech Connect

    Kozyr, Alex

    2008-09-30

    More than 4.1 million measurements of surface water partial pressure of CO2 obtained over the global oceans during 1968-2007 are listed in the Lamont-Doherty Earth Observatory (LDEO) database, which includes open ocean and coastal water measurements. The data assembled include only those measured by equilibrator-CO2 analyzer systems and have been quality-controlled based on the stability of the system performance, the reliability of calibrations for CO2 analysis, and the internal consistency of data. To allow re-examination of the data in the future, a number of measured parameters relevant to pCO2 measurements are listed. The overall uncertainty for the pCO2 values listed is estimated to be ± 2.5 µatm on the average. For simplicity and for ease of reference, this version is referred to as 2007, meaning that data collected through 31 December 2007 has been included. It is our intention to update this database annually. There are 37 new cruise/ship files in this update. In addition, some editing has been performed on existing files so this should be considered a V2007 file. Also we have added a column reporting the partial pressure of CO2 in seawater in units of Pascals. The data presented in this database include the analyses of partial pressure of CO2 (pCO2), sea surface temperature (SST), sea surface salinity (SSS), pressure of the equilibration, and barometric pressure in the outside air from the ship’s observation system. The global pCO2 data set is available free of charge as a numeric data package (NDP) from the Carbon Dioxide Information Analysis Center (CDIAC). The NDP consists of the oceanographic data files and this printed documentation, which describes the procedures and methods used to obtain the data.

  11. Fatal carbon monoxide intoxication after acetylene gas welding of pipes.

    PubMed

    Antonsson, Ann-Beth; Christensson, Bengt; Berge, Johan; Sjögren, Bengt

    2013-06-01

    Acetylene gas welding of district heating pipes can result in exposure to high concentrations of carbon monoxide. A fatal case due to intoxication is described. Measurements of carbon monoxide revealed high levels when gas welding a pipe with closed ends. This fatality and these measurements highlight a new hazard, which must be promptly prevented.

  12. 76 FR 75840 - Revising Standards Referenced in the Acetylene Standard

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-05

    ... language from outdated standards published by standards developing organizations (``SDO standards'') (69 FR... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF LABOR... rulemaking, the Agency is proposing to revise its Acetylene Standard for general industry by updating...

  13. 76 FR 75782 - Revising Standards Referenced in the Acetylene Standard

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-05

    ... on November 9, 2009. See 74 FR 57883. The Compressed Gas Association published a new edition of CGA G... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF LABOR... is revising its Acetylene Standard for general industry by updating a reference to a...

  14. 77 FR 13969 - Revising Standards Referenced in the Acetylene Standard

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-08

    ... Association (GGA) acetylene standard (see 76 FR 75782). In the DFR, OSHA deleted reference to CGA G-1-2003 and... final rule published on December 5, 2011 (76 FR 75782), is effective on March 5, 2012. For the purposes....C. 553, Secretary of Labor's Order 1-2012 (77 FR 3912), and 29 CFR part 1911. Signed at...

  15. 46 CFR 154.1735 - Methyl acetylene-propadiene mixture.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Methyl acetylene-propadiene mixture. 154.1735 Section 154.1735 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Special Design...

  16. Acetylene absorption and binding in nonporous crystal lattice

    SciTech Connect

    Thallapally, Praveen K.; Dobrzanska, Liliana B.; Gingrich, Todd R.; Wirsig, Trevor B.; Barbour, Leonard J.; Atwood, Jerry L.

    2006-09-01

    Unusual storage: An organic nonporous material, p-tert-butylcalix[4]arene, sorbs acetylene with high storage density under ambient conditions. It is presumed that gas molecules diffuse through the seemingly nonporous lattice without disrupting the arrangement of the host molecules (see picture; red O, blue C, gray H, yellow void space).

  17. Interstitial pneumonitis after acetylene welding: a case report.

    PubMed

    Brvar, Miran

    2014-01-01

    Acetylene is a colorless gas commonly used for welding. It acts mainly as a simple asphyxiant. In this paper, however, we present a patient who developed a severe interstitial pneumonitis after acetylene exposure during aluminum welding. A 44-year old man was welding with acetylene, argon and aluminum electrode sticks in a non-ventilated aluminum tank for 2 h. Four hours after welding dyspnea appeared and 22 h later he was admitted at the Emergency Department due to severe respiratory insufficiency with pO2 = 6.7 kPa. Chest X-ray showed diffuse interstitial infiltration. Pulmonary function and gas diffusion tests revealed a severe restriction (55% of predictive volume) and impaired diffusion capacity (47% of predicted capacity). Toxic interstitial pneumonitis was diagnosed and high-dose systemic corticosteroid methylprednisolone and inhalatory corticosteroid fluticasone therapy was started. Computed Tomography (CT) of the lungs showed a diffuse patchy ground-glass opacity with no signs of small airway disease associated with interstitial pneumonitis. Corticosteroid therapy was continued for the next 8 weeks gradually reducing the doses. The patient's follow-up did not show any deterioration of respiratory function. In conclusion, acetylene welding might result in severe toxic interstitial pneumonitis that improves after an early systemic and inhalatory corticosteroid therapy.

  18. Electrical properties of InGaN thin films grown by RF sputtering at different temperatures, varying nitrogen and argon partial pressure ratios

    NASA Astrophysics Data System (ADS)

    Jakkala, Pratheesh; Kordesch, Martin E.

    2016-10-01

    Indium gallium nitride (InGaN) thin films of varying indium (In) and gallium (Ga) compositions have been fabricated on aluminosilicate glass and silicon (111) substrates using RF magnetron sputtering method at different growth temperatures, varied from 35 °C to 450 °C. Argon (Ar) and nitrogen (N2) are used as Inert and reactive gases respectively. Keeping the total pressure of gas mixture constant, partial pressures of N2 and Ar gases are varied. Ratio of Ar partial pressure to total pressure in the gas mixture is varied from 0 to 0.75. In this study, we present electrical properties of these InGaN thin films. Resistivity values of 2.6 × 10‑5 to 1.68 × 10‑2 Ω.cm, mobility values of 0.119 to 45.2 cm2/V.s, conductivity values of 0.595 × 103 to 37.3 × 103 mho/cm and bulk carrier concentration values ‑1020 to ‑1022/m3 are recorded that are measured through Hall-effect measurement technique.

  19. Lipase-catalyzed hydrolysis of TG containing acetylenic FA.

    PubMed

    Jie, Marcel S F Lie Ken; Fua, Xun; Lau, Maureen M L; Chye, M L

    2002-10-01

    Hydrolysis of symmetrical acetylenic TG of type AAA [viz., glycerol tri-(4-decynoate), glycerol tri-(6-octadecynoate), glycerol tri-(9-octadecynoate), glycerol tri-(10-undecynoate), and glycerol tri-(13-docosynoate)] in the presence of eight microbial lipases was studied. Novozyme 435 (Candida antarctica), an efficient enzyme for esterification, showed a significant resistance in the hydrolysis of glycerol tri-(9-octadecynoate) and glycerol tri-(13-docosynoate). Hydrolysis of acetylenic TG with Lipolase 100T (Humicola lanuginosa) was rapidly accomplished. Lipase PS-D (Pseudomonas cepacia) showed a fair resistance toward the hydrolysis of glycerol tri-(6-octadecynoate) only, which reflected its ability to recognize the delta6 positional isomer of 18:1. Lipase CCL (Candida cylindracea, syn. C. rugosa) and AY-30 (C. rugosa) were able to catalyze the release of 10-undecynoic acid and 9-octadecynoic acid from the corresponding TG, but less readily the 13-docosynoic acid in the case of glycerol tri-(13-docosynoate). The two lipases CCL and AY-30 were able to distinguish the small difference in structure of fatty acyl moieties in the TG substrate. To confirm this trend, three regioisomers of mixed acetylenic TG of type ABC (containing one each of delta6, delta9, and delta13 acetylenic FA in various positions) were prepared and hydrolyzed with CCL and AY-40. The results reconfirmed the observation that AY-30 and CCL were able to distinguish the slight differences in the molecular structure (position of the acetylenic bond and chain length) of the acyl groups in the TG during the hydrolysis of such TG substrates.

  20. Role of partial miscibility on pressure buildup due to constant rate injection of CO2 into closed and open brine aquifers

    NASA Astrophysics Data System (ADS)

    Mathias, Simon A.; Gluyas, Jon G.; GonzáLez MartíNez de Miguel, Gerardo J.; Hosseini, Seyyed A.

    2011-12-01

    This work extends an existing analytical solution for pressure buildup because of CO2 injection in brine aquifers by incorporating effects associated with partial miscibility. These include evaporation of water into the CO2 rich phase and dissolution of CO2 into brine and salt precipitation. The resulting equations are closed-form, including the locations of the associated leading and trailing shock fronts. Derivation of the analytical solution involves making a number of simplifying assumptions including: vertical pressure equilibrium, negligible capillary pressure, and constant fluid properties. The analytical solution is compared to results from TOUGH2 and found to accurately approximate the extent of the dry-out zone around the well, the resulting permeability enhancement due to residual brine evaporation, the volumetric saturation of precipitated salt, and the vertically averaged pressure distribution in both space and time for the four scenarios studied. While brine evaporation is found to have a considerable effect on pressure, the effect of CO2 dissolution is found to be small. The resulting equations remain simple to evaluate in spreadsheet software and represent a significant improvement on current methods for estimating pressure-limited CO2 storage capacity.

  1. Towards Structural-Functional Mimics of Acetylene Hydratase: Reversible Activation of Acetylene using a Biomimetic Tungsten Complex.

    PubMed

    Peschel, Lydia M; Belaj, Ferdinand; Mösch-Zanetti, Nadia C

    2015-10-26

    The synthesis and characterization of a biomimetic system that can reversibly bind acetylene (ethyne) is reported. The system has been designed to mimic catalytic intermediates of the tungstoenzyme acetylene hydratase. The thiophenyloxazoline ligand S-Phoz (2-(4',4'-dimethyloxazolin-2'-yl)thiophenolate) is used to generate a bioinspired donor environment around the W center, facilitating the stabilization of W-acetylene adducts. The featured complexes [W(C2 H2 )(CO)(S-Phoz)2 ] (2) and [WO(C2 H2 )(S-Phoz)2 ] (3) are extremely rare from a synthetic and structural point of view as very little is known about W-C2 H2 adducts. Upon exposure to visible light, 3 can release C2 H2 from its coordination sphere to yield the 14-electron species [WO(S-Phoz)2 ] (4). Under light-exclusion 4 re-activates C2 H2 making this the first fully characterized system for the reversible activation of acetylene.

  2. Microstructure and performance of titanium oxide coatings sprayed by oxygen-acetylene flame.

    PubMed

    Ctibor, Pavel; Stengl, Vaclav; Zahalka, Frantisek; Murafa, Nataliya

    2011-03-01

    TiO(2) nano-powders were agglomerated by a spray drying process for application to thermal spraying. A conventional oxygen-acetylene flame torch was used to deposit porous partially nanostructured TiO(2) coatings. Steel substrates were used as a support for tested samples. Scanning electron microscopy, X-ray microanalysis and X-ray diffraction were performed to study the morphology and the crystalline phases of the titania coatings. Optical bandgap and kinetics of the acetone decomposition were also studied. The best results were obtained for the powder which is available as a commercial spray feedstock. This powder seems to be most resistant against the reducing atmosphere in the jet of combustive gases. PMID:20938550

  3. Influence of Partial Pressure of Sulfur and Oxygen on Distribution of Fe and Mn between Liquid Fe-Mn Oxysulfide and Molten Slag

    NASA Astrophysics Data System (ADS)

    Kim, Sun-Joong; Shibata, Hiroyuki; Takekawa, Jun; Kitamura, Shin-Ya; Yamaguchi, Katsunori; Kang, Youn-Bae

    2012-10-01

    The authors proposed an innovative process for recovering Mn from steelmaking slag. The process starts with the sulfurization of steelmaking slag to separate P from Mn by the formation of a liquid sulfide phase (matte). Then, the obtained matte is weakly oxidized to make a Mn-rich oxide phase without P. High-purity Fe-Mn alloys can therefore be produced by the reduction of the Mn-rich oxide phase. However, to the authors' knowledge, the sulfurization of molten slag containing P and Mn has not been sufficiently investigated. It was recently found that P was not distributed to the matte in equilibrium with the molten slag. To gain knowledge of the process's development, it is important to investigate the influence of the partial pressures of sulfur and oxygen on the equilibrium distribution of Mn and Fe between the matte and the molten slag. In the current work, a mineralogical microstructure analysis of the matte revealed that the existence of the oxysulfide and metal phases was dependent on the partial pressure of sulfur and oxygen. The Mn content of the matte increased with partial pressure of sulfur while the O content of the matte decreased. In contrast, the ratio of Mn/Fe in the matte was constant when the metal phase of the matte was observed at a log P_{{{{O}}2 }} below -11. These results also corresponded to the relationship between the activity coefficient ratio of MnS/FeS and the mole fraction of MnS/FeS in the matte. The γ MnS/ γ FeS value decreased exponentially as the mole fraction of MnS/FeS increased.

  4. An investigation on the effect of high partial pressure of hydrogen on the nanocrystalline structure of silicon carbide thin films prepared by radio-frequency magnetron sputtering.

    PubMed

    Daouahi, Mohsen; Omri, Mourad; Kerm, Abdul Ghani Yousseph; Al-Agel, Faisal Abdulaziz; Rekik, Najeh

    2015-02-01

    The aim of the study reported in this paper is to investigate the role of the high partial pressure of hydrogen introduced during the growth of nanocrystalline silicon carbide thin films (nc-SiC:H). For this purpose, we report the preparation as well as spectroscopic studies of four series of nc-SiC:H obtained by radio-frequency magnetron sputtering at high partial pressure of hydrogen by varying the percentage of H2 in the gas mixture from 70% to 100% at common substrate temperature (TS=500°C). The effects of the dilution on the structural changes and the chemical bonding of the different series have been studied using Fourier transform infrared and Raman spectroscopy. For this range of hydrogen dilution, two groups of films were obtained. The first group is characterized by the dominance of the crystalline phase and the second by a dominance of the amorphous phase. This result confirms the multiphase structure of the grown nc-SiC:H thin films by the coexistence of the SiC network, carbon-like and silicon-like clusters. Furthermore, infrared results show that the SiC bond is the dominant absorption peak and the carbon atom is preferentially bonded to silicon. The maximum value obtained of the crystalline fraction is about 77%, which is relatively important compared to other results obtained by other techniques. In addition, the concentration of CHn bonds was found to be lower than that of SiHn for all series. Raman measurements revealed that the crystallization occurs in all series even at 100% H2 dilution suggesting that high partial pressure of hydrogen favors the formation of silicon nanocrystallites (nc-Si). The absence of both the longitudinal acoustic band and the transverse optical band indicate that the crystalline phase is dominant.

  5. Impact of the hydrogen partial pressure on lactate degradation in a coculture of Desulfovibrio sp. G11 and Methanobrevibacter arboriphilus DH1.

    PubMed

    Junicke, H; Feldman, H; van Loosdrecht, M C M; Kleerebezem, R

    2015-04-01

    In this study, the impact of the hydrogen partial pressure on lactate degradation was investigated in a coculture of Desulfovibrio sp. G11 and Methanobrevibacter arboriphilus DH1. To impose a change of the hydrogen partial pressure, formate was added to the reactor. Hydrogen results from the bioconversion of formate besides lactate in the liquid phase. In the presence of a hydrogen-consuming methanogen, this approach allows for a better estimation of low dissolved hydrogen concentrations than under conditions where hydrogen is supplied externally from the gas phase, resulting in a more accurate determination of kinetic parameters. A change of the hydrogen partial pressure from 1,200 to 250 ppm resulted in a threefold increase of the biomass-specific lactate consumption rate. The 50 % inhibition constant of hydrogen on lactate degradation was determined as 0.692 ± 0.064 μM dissolved hydrogen (831 ± 77 ppm hydrogen in the gas phase). Moreover, for the first time, the maximum biomass-specific lactate consumption rate of Desulfovibrio sp. G11 (0.083 ± 0.006 mol-Lac/mol-XG11/h) and the affinity constant for hydrogen uptake of Methanobrevibacter arboriphilus DH1 (0.601 ± 0.022 μM dissolved hydrogen) were determined. Contrary to the widely established view that the biomass-specific growth rate of a methanogenic coculture is determined by the hydrogen-utilizing partner; here, it was found that the hydrogen-producing bacterium determined the biomass-specific growth rate of the coculture grown on lactate and formate.

  6. In-Situ Partial Pressure Measurements and Visual Observation during Crystal Growth of ZnSe by Seeded Physical Vapor Transport

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Feth, Shari; Lehoczky, Sandor L.

    1999-01-01

    An in-situ monitoring furnace was constructed with side windows to perform partial pressure measurements by optical absorption and visual observation of the growing crystal. A fused silica -rowth ampoule with a 4.5 cm long square tube between the source and the seed was prepared for the optical absorption measurements. A ZnSe crystal was grown by the seeded physical vapor transport (PVT) technique in the horizontal configuration. The growth temperature was 1120 C and the furnace translation rate was 3nmVday. Partial pressures of Se2, P(sub Se2), at three locations along the length of the growth ampoule were measured at 90 min intervals during the growth process. The measured P (sub Se2) were in the range of 2.0 to 6.5 x 10(exp -3) atm. The P(sub Se2) results indicated that the partial pressure profile was inconsistent with the results of the one-dimensional diffusion mass transport model and that the source composition shifted toward Se-rich during the run, i.e. the grown crystal was more Zn-rich than the source. The visual observation showed that the seed crystal first etched back, with greater thermal etching occurring along the edges of the seed crystal. Once the growth started, the crystal crew in a predominately contactless mode and facets were evident during growth. The crystal did not grow symmetrically which is believed to be due to the unintentional asymmetry of the radial thermal profile in the furnace.

  7. Plant and environment interactions: Growth and yield response of commercial bearing-age {open_quote}Casselman{close_quote} plum trees to various ozone partial pressures

    SciTech Connect

    Retzlaff, W.A.; Williams, L.E.; DeJong, T.M.

    1997-05-01

    Nursery stock of plum (Prunus salicina Lindel., cv. Casselman) was planted 1 Apr. 1988 in an experimental orchard at the Univ. of California Kearney Agricultural Center near Fresno, CA. Trees in this study were enclosed in open-top fumigation chambers on 1 May 1989, and exposed to three atmospheric ozone partial pressures (charcoal filtered air, ambient air, and ambient air + ozone) during the 1989 through 1992 growing seasons (typically 1 Apr. - 1 Nov.). A nonchamber treatment plot was used to assess chamber effects on tree performance. This study details the results of the exposures during the initial commercial bearing period (1991 through 1993) in this orchard. The mean 12-h (0800-2000 h Pacific Daylight Time [PDT]) ozone partial pressures during the experimental periods in the charcoal filtered, ambient, ambient + ozone, and nonchamber treatments averaged 0.031, 0.048, 0.091, and 0.056 {mu}Pa Pa{sup {minus}1} in 1991 and 1992, respectively. Fruit number per tree decreased as atmospheric ozone partial pressure increased from the charcoal filtered to ambient + ozone treatment, significantly affecting yield. Yield of plum trees averaged 23.6, 19.8, 13.7, and 17.9 kg tree{sup {minus}1} in 1991 and 1992 in the charcoal filtered, ambient, ambient + ozone, and nonchamber treatments, respectively. Only one out of the five original treatment plots was exposed to ozone treatments during the 1993 growing season. Yield of plum trees in this single replicate in 1993 was reduced by increased atmospheric ozone partial pressure. Yield of plum trees in the four remaining unexposed treatment plots in 1993 was 16.7, 17.9, and 16.0 kg tree{sup {minus}1} in the previous charcoal filtered, ambient, and ambient + ozone treatments respectively. The similarity in yield of the post-chamber treatments indicates that a change in air quality in the current growing season can affect yield of Casselman plum trees. 26 refs., 6 figs., 4 tabs.

  8. Enhanced Photoluminescence in Acetylene-Treated ZnO Nanorods.

    PubMed

    Jäppinen, Luke; Jalkanen, Tero; Sieber, Brigitte; Addad, Ahmed; Heinonen, Markku; Kukk, Edwin; Radevici, Ivan; Paturi, Petriina; Peurla, Markus; Shahbazi, Mohammad-Ali; Santos, Hélder A; Boukherroub, Rabah; Santos, Hellen; Lastusaari, Mika; Salonen, Jarno

    2016-12-01

    Zinc oxide (ZnO) nanorods were manufactured using the aqueous chemical growth (ACG) method, and the effect of thermal acetylene treatment on their morphology, chemical composition, and optical properties was investigated. Changes in the elemental content of the treated rods were found to be different than in previous reports, possibly due to the different defect concentrations in the samples, highlighting the importance of synthesis method selection for the process. Acetylene treatment resulted in a significant improvement of the ultraviolet photoluminescence of the rods. The greatest increase in emission intensity was recorded on ZnO rods treated at the temperature of 825 °C. The findings imply that the changes brought on by the treatment are limited to the surface of the ZnO rods.

  9. Enhanced Photoluminescence in Acetylene-Treated ZnO Nanorods

    NASA Astrophysics Data System (ADS)

    Jäppinen, Luke; Jalkanen, Tero; Sieber, Brigitte; Addad, Ahmed; Heinonen, Markku; Kukk, Edwin; Radevici, Ivan; Paturi, Petriina; Peurla, Markus; Shahbazi, Mohammad-Ali; Santos, Hélder A.; Boukherroub, Rabah; Santos, Hellen; Lastusaari, Mika; Salonen, Jarno

    2016-09-01

    Zinc oxide (ZnO) nanorods were manufactured using the aqueous chemical growth (ACG) method, and the effect of thermal acetylene treatment on their morphology, chemical composition, and optical properties was investigated. Changes in the elemental content of the treated rods were found to be different than in previous reports, possibly due to the different defect concentrations in the samples, highlighting the importance of synthesis method selection for the process. Acetylene treatment resulted in a significant improvement of the ultraviolet photoluminescence of the rods. The greatest increase in emission intensity was recorded on ZnO rods treated at the temperature of 825 °C. The findings imply that the changes brought on by the treatment are limited to the surface of the ZnO rods.

  10. Enhanced Photoluminescence in Acetylene-Treated ZnO Nanorods.

    PubMed

    Jäppinen, Luke; Jalkanen, Tero; Sieber, Brigitte; Addad, Ahmed; Heinonen, Markku; Kukk, Edwin; Radevici, Ivan; Paturi, Petriina; Peurla, Markus; Shahbazi, Mohammad-Ali; Santos, Hélder A; Boukherroub, Rabah; Santos, Hellen; Lastusaari, Mika; Salonen, Jarno

    2016-12-01

    Zinc oxide (ZnO) nanorods were manufactured using the aqueous chemical growth (ACG) method, and the effect of thermal acetylene treatment on their morphology, chemical composition, and optical properties was investigated. Changes in the elemental content of the treated rods were found to be different than in previous reports, possibly due to the different defect concentrations in the samples, highlighting the importance of synthesis method selection for the process. Acetylene treatment resulted in a significant improvement of the ultraviolet photoluminescence of the rods. The greatest increase in emission intensity was recorded on ZnO rods treated at the temperature of 825 °C. The findings imply that the changes brought on by the treatment are limited to the surface of the ZnO rods. PMID:27644239

  11. Acetylene bubble-powered autonomous capsules: towards in situ fuel.

    PubMed

    Moo, James Guo Sheng; Wang, Hong; Pumera, Martin

    2014-12-28

    A fuel-free autonomous self-propelled motor is illustrated. The motor is powered by the chemistry of calcium carbide and utilising water as a co-reactant, through a polymer encapsulation strategy. Expulsion of acetylene bubbles powers the capsule motor. This is an important step, going beyond the toxic hydrogen peroxide fuel used normally, to find alternative propellants for self-propelled machines.

  12. Aquatic acetylene-reduction techniques: solutions to several problems.

    PubMed

    Flett, R J; Hamilton, R D; Campbell, N E

    1976-01-01

    Previous methods of performing aquatic acetylene-reduction assays are described and several problems associated with them are discussed. A refinement of these older techniques is introduced and problems that it overcomes are also discussed. A depth profile of nitrogen fixation (C2H4 production), obtained by the refined technique, is shown for a fertilized Canadian Shield lake in the Experimental Lakes Area of northwestern Ontario. PMID:814983

  13. Aquatic acetylene-reduction techniques: solutions to several problems.

    PubMed

    Flett, R J; Hamilton, R D; Campbell, N E

    1976-01-01

    Previous methods of performing aquatic acetylene-reduction assays are described and several problems associated with them are discussed. A refinement of these older techniques is introduced and problems that it overcomes are also discussed. A depth profile of nitrogen fixation (C2H4 production), obtained by the refined technique, is shown for a fertilized Canadian Shield lake in the Experimental Lakes Area of northwestern Ontario.

  14. Geochemical signatures of metasedimentary rocks of high-pressure granulite facies and their relation with partial melting: Carvalhos Klippe, Southern Brasília Belt, Brazil

    NASA Astrophysics Data System (ADS)

    Cioffi, Caue Rodrigues; Campos Neto, Mario da Costa; da Rocha, Brenda Chung; Moraes, Renato; Henrique-Pinto, Renato

    2012-12-01

    High-grade metasedimentary rocks can preserve geochemical signatures of their sedimentary protolith if significant melt extraction did not occur. Retrograde reaction textures provide the main evidence for trapped melt in the rock fabrics. Carvalhos Klippe rocks in Southern Brasília Orogen, Brazil, present a typical high-pressure granulite assemblage with evidence of mica breakdown partial melting (Ky + Grt + Kfs ± Bt ± Rt). The metamorphic peak temperatures obtained by Zr-in-Rt and ternary feldspar geothermometers are between 850 °C and 900 °C. The GASP baric peak pressure obtained using grossular rich garnet core is 16 kbar. Retrograde reaction textures in which the garnet crystals are partially to totally replaced by Bt + Qtz ± Fsp intergrowths are very common in the Carvalhos Klippe rocks. These reactions are interpreted as a result of interactions between residual phases and trapped melt during the retrograde path. In the present study the geochemical signatures of three groups of Carvalhos Klippe metasedimentary rocks are analysed. Despite the high metamorphic grade these three groups show well-defined geochemical features and their REE patterns are similar to average compositions of post-Archean sedimentary rocks (PAAS, NASC). The high-pressure granulite facies Grt-Bt-Pl gneisses with immature arenite (wacke, arkose or lithic-arenite) geochemical signatures present in the Carvalhos Klippe are compared to similar rocks in amphibolite facies from the same tectonic framework (Andrelândia Nappe System). The similar geochemical signatures between Grt-Bt-Pl gneisses metamorphosed in high-pressure granulite facies and Grt-Bt-Pl-Qtz schists from the Andrelândia and Liberdade Nappes, with minimal to absent melting conditions, are suggestive of low rates of melt extraction in these high-grade rocks. The rocks with pelitic compositions most likely had higher melt extraction and even under such circumstances nevertheless tend to show REE patterns similar to

  15. Tuning the Electronic Properties of Acetylenic Fluorenes by Phosphaalkene Incorporation.

    PubMed

    Svyaschenko, Yurii V; Orthaber, Andreas; Ott, Sascha

    2016-03-14

    Versatile synthetic protocols for 2,7- and 3,6-diacetylenic fluorene-9-ylidene phosphanes (F9Ps) were developed. Protodesilylation of trimethylsilyl-protected acetylenic F9Ps affords terminal acetylenes that can be employed in Sonogashira and Glaser-type C-C coupling reactions to give thienyl-decorated and butadiyne-bridged fluorene-9-ylidene phosphanes, respectively. As evidenced by UV/Vis spectroscopy and cyclic voltammetry and corroborated by ab initio calculations, the presence of the P center in the F9Ps induces a significantly reduced HOMO-LUMO splitting that originates from stabilization of the LUMO levels. Variation of the acetylene substitution pattern is an additional tool to influence the optical and electronic properties. Whereas 3,6-disubstituted F9Ps have strong absorptions around 400 nm, mainly due to π-π* transitions, 2,7-diacetylenic F9Ps exhibit longest-wavelength absorptions that have significant charge-transfer character with an onset around 520 nm. PMID:26833389

  16. Dubinin-Astakhov model for acetylene adsorption on metal-organic frameworks

    NASA Astrophysics Data System (ADS)

    Cheng, Peifu; Hu, Yun Hang

    2016-07-01

    Acetylene (C2H2) is explosive at a pressure above 29 psi, causing a safety issue for its storage and applications. C2H2 adsorption on metal-organic frameworks (MOFs) has been explored to solve the issue. However, a suitable isotherm equation for C2H2 adsorption on various MOFs has not been found. In this paper, it was demonstrated that Dubinin-Astakhov equation can be exploited as a general isotherm model to depict C2H2 adsorption on MOF-5, ZIF-8, HKUST-1, and MIL-53. In contrast, commonly used Langmuir and BET models exhibited their inapplicability for C2H2 adsorption on those MOFs.

  17. Analysis of the Pressure Rise in a Partially Filled Liquid Tank in Microgravity with Low Wall Heat Flux and Simultaneous Boiling and Condensation

    NASA Technical Reports Server (NTRS)

    Hasan, Mohammad M.; Balasubramaniam, R.

    2012-01-01

    Experiments performed with Freon 113 in the space shuttle have shown that in a pro- cess of very slow heating, high liquid superheats can be sustained for a long period in microgravity. In a closed system explosive vaporization of superheated liquid resulted in pressure spikes of varying magnitudes. In this paper, we analyze the pressure rise in a partially lled closed tank in which a large vapor bubble (i.e., ullage) is initially present, and the liquid is subjected to a low wall heat ux. The liquid layer adjacent to the wall becomes superheated until the temperature for nucleation of the bubbles (or the incipience of boiling) is achieved. In the absence of the gravity-induced convection large quantities of superheated liquid can accumulate over time near the heated surface. Once the incipience temperature is attained, explosive boiling occurs and the vapor bubbles that are produced on the heater surface tend to quickly raise the tank pressure. The liquid-vapor saturation temperature increases as well. These two e ects tend to induce condensation of the large ullage bubble that is initially present, and tends to mitigate the tank pressure rise. As a result, the tank pressure is predicted to rise sharply, attain a maximum, and subsequently decay slowly. The predicted pressure rise is compared with experimental results obtained in the microgravity environments of the space shuttle for Freon 113. The analysis is appli- cable, in general to heating of liquid in closed containers in microgravity and to cryogenic fuel tanks, in particular where small heat leaks into the tank are unavoidable.

  18. Morphology and gas sensing characteristics of density-controlled CuO nanostructures obtained by varying the oxygen partial pressure during growth

    NASA Astrophysics Data System (ADS)

    Lee, Dongjin; Jin, Changhyun; Noh, Youngwook; Park, Seokhyun; Choi, Sun-Woo

    2016-07-01

    By exerting different O2 partial pressures (0, 20, 40, and 60 sccm) onto copper substrates, we discovered that the growth parameter, namely, the O2 flow rate, affects the degree of nucleation, diameter, length, and crystalline quality of CuO nanowires (NWs). Scanning electron microscopy (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM) were used to analyze the evolution of the morphological and the microstructural changes in the CuO nanostructures. The formation of a Cu2O interlayer between the Cu and the CuO layers could be adjusted by controlling more precisely the O2 flow rate. In addition, the reducing (H2S) and the oxidizing (O2, NO2, and SO2) gas sensing performances of these O2-assisted CuO NWs were compared with those of CuO NWs grown in static air. The response to the reducing H2S of the sensors based on CuO NWs grown using O2 at 40 sccm showed a higher electrical change and faster response and recovery times than the sensors based on CuO NWs grown using lower O2 flow rates, including the ones grown in static air and/or used for sensing oxidizing gases (O2, NO2, and SO2) did. On the basis of their growth and their gas-sensing applications, the possible mechanisms characteristic of the density-controlled CuO NWs grown using various O2 partial pressures are discussed.

  19. Effects of Pleistocene, pre-industrial, current, and future CO[sub 2] partial pressures on C[sub 3] and C[sub 4] plant growth

    SciTech Connect

    Dippery, J.K.; Strain, B.R. )

    1993-06-01

    To study plant growth in atmospheric CO[sub 2] concentrations ranging from Pleistocene through predicted future levels, Amaranthus retroflexus (C[sub 4]) and Abutilon theophrasti (C[sub 3]) were grown in growth chambers at four CO[sub 2] levels (15 Pa, Pleistocene minimum; 27 Pa, pre-industrial; 35 Pa, current; 70 Pa, future). Thirty-five days after emergence, shoot dry weight, root dry weight and leaf area did not differ between any CO[sub 2] levels for the C[sub 4] species. The C[sub 3] species showed increased root and shoot dry weights and leaf areas when grown in CO[sub 2] partial pressures of 15 Pa, 27 Pa and 35 Pa. This evidence indicates that plant growth in C[sub 4] species is unaffected by atmospheric CO[sub 2] levels ranging from the Pleistocene minimum through the future; whereas, C[sub 3] species show growth increases as CO[sub 2] partial pressures rise above the Pleistocene minimum.

  20. Influence of Oxygen Partial Pressure on Opto-Electrical Properties, Crystallite Size and Dislocation Density of Sn Doped In_2O_3 Nanostructures

    NASA Astrophysics Data System (ADS)

    Soleimanian, Vishtasb; Ghasemi Varnamkhasti, Mohsen

    2016-10-01

    In this research, high-quality Sn doped indium oxide (ITO) thin films were grown on glass slide substrates using an electron beam evaporation method. Vacuum chamber partial pressure was changed and the electro-optical as well as the microstructure parameters were investigated. The microstructure of prepared films was evaluated by x-ray diffraction analysis in terms of crystallite size and dislocation density. It was found that the best results [high transparency (88%) over the visible wavelength region, low sheet resistance of 12.8 Ω /square, the optical band gap of 3.76 eV, crystallite size of 49.5 nm and dislocation density of 1.42 × 10^{14} m^{-2}] were achieved for the sample produced at a partial pressure of 1 × 10^{-4} mbar. Therefore, one can successfully control the physical properties of ITO films by varying the oxygen content of the evaporation system. The correlation between the band gap and carrier concentration in addition to the average crystallite size of films was also established.

  1. Influence of Oxygen Partial Pressure on Opto-Electrical Properties, Crystallite Size and Dislocation Density of Sn Doped In_2 O_3 Nanostructures

    NASA Astrophysics Data System (ADS)

    Soleimanian, Vishtasb; Ghasemi Varnamkhasti, Mohsen

    2016-06-01

    In this research, high-quality Sn doped indium oxide (ITO) thin films were grown on glass slide substrates using an electron beam evaporation method. Vacuum chamber partial pressure was changed and the electro-optical as well as the microstructure parameters were investigated. The microstructure of prepared films was evaluated by x-ray diffraction analysis in terms of crystallite size and dislocation density. It was found that the best results [high transparency (88%) over the visible wavelength region, low sheet resistance of 12.8 Ω /square, the optical band gap of 3.76 eV, crystallite size of 49.5 nm and dislocation density of 1.42 × 10^{14} m^{-2} ] were achieved for the sample produced at a partial pressure of 1 × 10^{-4} mbar. Therefore, one can successfully control the physical properties of ITO films by varying the oxygen content of the evaporation system. The correlation between the band gap and carrier concentration in addition to the average crystallite size of films was also established.

  2. Thermodynamic study on the formation of acetylene during coal pyrolysis in the arc plasma jet

    SciTech Connect

    Bao, W.; Li, F.; Cai, G.; Lu, Y.; Chang, L.

    2009-07-01

    Based on the principle of minimizing the Gibbs free energy, the composition of C-H-O-N-S equilibrium system about acetylene formation during the pyrolysis in arc plasma jet for four kinds of different rank-ordered coals such as Datong, Xianfeng, Yangcheng, and Luan was analyzed and calculated. The results indicated that hydrogen, as the reactive atmosphere, was beneficial to the acetylene formation. The coal ranks and the hydrogen, oxygen, nitrogen, and sulfur in coal all could obviously affect the acetylene yield. The mole fraction of acetylene is the maximum when the ratio value of atom H/C was 2. The content of oxygen was related to the acetylene yield, but it does not compete with CO formation. These agreed with the experimental results, and they could help to select the coal type for the production of acetylene through plasma pyrolysis process.

  3. The effect of the partial pressure of water vapor on the surface tension of the liquid water-air interface.

    PubMed

    Pérez-Díaz, José L; Álvarez-Valenzuela, Marco A; García-Prada, Juan C

    2012-09-01

    Precise measurements of the surface tension of water in air vs. humidity at 5, 10, 15, and 20 °C are shown. For constant temperature, surface tension decreases linearly for increasing humidity in air. These experimental data are in good agreement with a simple model based on Newton's laws here proposed. It is assumed that evaporating molecules of water are ejected from liquid to gas with a mean normal component of the speed of "ejection" greater than zero. A high humidity in the air reduces the net flow of evaporating water molecules lowering the effective surface tension on the drop. Therefore, just steam in air acts as an effective surfactant for the water-air interface. It can partially substitute chemical surfactants helping to reduce their environmental impact.

  4. Acetylene-derived polymers and their applications in hair and skin care.

    PubMed

    Petter, P J

    1989-02-01

    Synopsis Since the introduction over 30 years ago of polyvinylpyrrolidone (PVP) as the first synthetic hairspray resin, acetylene-derived polymers have found wide and increasing applications in the cosmetics and toiletries industry. This review covers the two main classes of acetylenic polymers. In the first class, in which the chemistry may be traced back to reaction of acetylene with formaldehyde, are included PVP homopolymers and copolymers of VP with vinyl acetate, dimethylaminoethyl methacrylate, vinylcaprolactam and styrene. In the second class, stemming from reaction of acetylene with methanol, are the poly (vinyl methyl ether/maleic acid) monoester resins.

  5. Acetylene-derived polymers and their applications in hair and skin care.

    PubMed

    Petter, P J

    1989-02-01

    Synopsis Since the introduction over 30 years ago of polyvinylpyrrolidone (PVP) as the first synthetic hairspray resin, acetylene-derived polymers have found wide and increasing applications in the cosmetics and toiletries industry. This review covers the two main classes of acetylenic polymers. In the first class, in which the chemistry may be traced back to reaction of acetylene with formaldehyde, are included PVP homopolymers and copolymers of VP with vinyl acetate, dimethylaminoethyl methacrylate, vinylcaprolactam and styrene. In the second class, stemming from reaction of acetylene with methanol, are the poly (vinyl methyl ether/maleic acid) monoester resins. PMID:19456933

  6. Endorhizal and Exorhizal Acetylene-reducing Activity in a Grass (Spartina alterniflora Loisel.)-Diazotroph Association.

    PubMed

    Boyle, C D; Patriquin, D G

    1980-08-01

    Earlier studies indicated that bacteria responsible for nitrogenase activity of some grasses are located inside the roots. Those studies were conducted with excised roots in which a long, unexplained "lag phase" occurred before initiation of nitrogenase activity. When hydroponically maintained Spartina alterniflora Loisel. was incubated in a two-compartment system with acetylene, ethylene was produced following, at most, a 2-hour lag in both the upper (shoot) and lower (roots + water) phases. Ethylene production in the upper phase not attributable to leaf-associated acetylene-reducing activity or to diffusion of ethylene from around the roots is considered to represent "endorhizal acetylene-reducing activity," the internally produced ethylene diffusing into the upper phase via the lacunae. Ethylene produced in the lower phase is designated "exorhizal acetylene-reducing activity." The endorhizal acetylene-reducing activity, in comparison to exorhizal activity, was relatively insensitive to additions of HgCl(2), NH(4)Cl, or carbon sources to the lower phase. Post-lag acetylene-reducing activity of roots excised from plants growing in soil responded to additions in a manner similar to that of endorhizal acetylene-reducing activity, whereas post-lag acetylene-reducing activity of rhizosphere soil responded in a manner similar to that of exorhizal acetylene-reducing activity. PMID:16661421

  7. High Pressure Experimental Investigation of the Interaction between Partial Melts of Eclogite and Mantle Peridotite during Upwelling

    NASA Astrophysics Data System (ADS)

    Pinter, Z.; Rosenthal, A.; Frost, D. J.; McCammon, C. A.; Höfer, H. E.; Yaxley, G. M.; Berry, A.; Woodland, A. B.; Vasilyev, P.; Pearson, G. D.

    2015-12-01

    Many mantle-derived magmas may originate through partial melting of complex, mixed mantle rocks including not only peridotite, but also oceanic crust recycled into the mantle [1,2]. There is, however, little detailed knowledge concerning how such material is produced, how it melts, the types of liquids produced and how they are extracted from the mantle. We have conducted a series of peridotite/basalt layered experiments using an average altered mid-ocean ridge basalt GA2 [3] and fertile peridotite HZ1 [4] doped with Ir to act as a redox sensor [5,6]. Experiments were performed at 3-10 GPa, 1235-1660°C, using a multi anvil apparatus. The compositions of minerals and melts were analysed using an electron microprobe. Fourier-transform infrared and Mössbauer spectroscopy were also employed to determine the concentrations of small amounts of volatiles and the Fe3+/ΣFe ratio, respectively. Experiments yielded well-crystallised heterogeneous mantle assemblages. Similar to previous studies [3,7], 'dry' eclogite starts to melt at higher depths than ambient 'dry' mantle along adiabatic paths. Highly siliceous melts produced through near-adiabatic ascent freeze into ambient peridotite, forming distinct orthopyroxene-rich reaction zones [8]. We demonstrate that impregnating partial melts of eclogite in an upwelling mantle differ in their metasomatic effects depending on the particular adiabatic path, as suggested previously [7]. Thus, melt compositions formed by subsequent re-melting of such metasomatic assemblages strongly depend on potential temperature of the adiabat [7]. [1] Hofmann et al. Treatise Geochem 2, 2.03, 61-101 (2003) [2] Sobolev et al. Science 316, 412-417 (2007) [3] Spandler et al. J Petrol 49, 771-795 (2008) [4] Green et al. Nature 467, 448-451 (2010) [5] Stagno et al. Nature 493, 84-88 (2013) [6] Stagno et al. Contrib Mineral Petrol 169:16 (2015) [7] Rosenthal et al. Sci Rep 4, 6099 (2014) [8] Yaxley & Green Schweiz Mineral Petrogr Mitt 78, 243-255 (1998)

  8. Fluid resuscitation guided by sublingual partial pressure of carbon dioxide during hemorrhagic shock in a porcine model.

    PubMed

    Xu, Jiefeng; Ma, Linhao; Sun, Shijie; Lu, Xiaoye; Wu, Xiaobo; Li, Zilong; Tang, Wanchun

    2013-04-01

    To avoid aggressive fluid resuscitation during hemorrhagic shock, fluid resuscitation is best guided by a specific measurement of tissue perfusion. We investigated whether fluid resuscitation guided by sublingual PCO2 would reduce the amount of resuscitation fluid without compromising the outcomes of hemorrhagic shock. Ten male domestic pigs weighing between 34 and 37 kg were used. Forty-five percent of estimated blood volume was removed during an interval of 1 h. The animals were then randomized to receive fluid resuscitation based on either sublingual PCO2 or blood pressure (BP). In the sublingual PCO2-guided group, resuscitation was initiated when sublingual PCO2 exceeded 70 Torr and stopped when it decreased to 50 Torr. In the BP-guided group, resuscitation was initiated when mean aortic pressure decreased to 60 mmHg and stopped when it increased to 90 mmHg. First, Ringer's lactate solution (RLS) of 30 mL kg was administered; subsequently, the shed blood was transfused if sublingual PCO2 remained greater than 50 Torr in the sublingual PCO2-guided group or mean aortic pressure was less than 90 mmHg in the BP-guided group. All the animals were monitored for 4 h and observed for an additional 68 h. In the sublingual PCO2-guided group, fluid resuscitation was required in only 40% of the animals. In addition, a significantly lower volume of RLS (170 ± 239 mL, P = 0.005 vs. BP-guided group) was administered without the need for blood infusion in this group. However, in the BP-guided group, all the animals required a significantly larger volume of fluid (955 ± 381 mL), including both RLS and blood. There were no differences in postresuscitation tissue microcirculation, myocardial and neurologic function, and 72-h survival between groups. During hemorrhagic shock, fluid resuscitation guided by sublingual PCO2 significantly reduced the amount of resuscitation fluid without compromising the outcomes of hemorrhagic shock. PMID:23364438

  9. Acetylene hydratase: a non-redox enzyme with tungsten and iron-sulfur centers at the active site.

    PubMed

    Kroneck, Peter M H

    2016-03-01

    In living systems, tungsten is exclusively found in microbial enzymes coordinated by the pyranopterin cofactor, with additional metal coordination provided by oxygen and/or sulfur, and/or selenium atoms in diverse arrangements. Prominent examples are formate dehydrogenase, formylmethanofuran dehydrogenase, and aldehyde oxidoreductase all of which catalyze redox reactions. The bacterial enzyme acetylene hydratase (AH) stands out of its class as it catalyzes the conversion of acetylene to acetaldehyde, clearly a non-redox reaction and a reaction distinct from the reduction of acetylene to ethylene by nitrogenase. AH harbors two pyranopterins bound to W, and a [4Fe-4S] cluster. W is coordinated by four dithiolene sulfur atoms, one cysteine sulfur, and one oxygen ligand. AH activity requires a strong reductant suggesting W(IV) as the active oxidation state. Two different types of reaction pathways have been proposed. The 1.26 Å structure reveals a water molecule coordinated to W which could gain a partially positive net charge by the adjacent protonated Asp-13, enabling a direct attack of C2H2. To access the W-Asp site, a substrate channel was evolved distant from where it is found in other members of the DMSOR family. Computational studies of this second shell mechanism led to unrealistically high energy barriers, and alternative pathways were proposed where C2H2 binds directly to W. The architecture of the catalytic cavity, the specificity for C2H2 and the results from site-directed mutagenesis do not support this first shell mechanism. More investigations including structural information on the binding of C2H2 are needed to present a conclusive answer.

  10. Cantilever stress measurements for pulsed laser deposition of perovskite oxides at 1000 K in an oxygen partial pressure of 10{sup −4} millibars

    SciTech Connect

    Premper, J.; Sander, D.; Kirschner, J.

    2015-03-15

    An in situ stress measurement setup using an optical 2-beam curvature technique is described which is compatible with the stringent growth conditions of pulsed laser deposition (PLD) of perovskite oxides, which involves high substrate temperatures of 1000 K and oxygen partial pressures of up to 1 × 10{sup −4} millibars. The stress measurements are complemented by medium energy electron diffraction (MEED), Auger electron spectroscopy, and additional growth rate monitoring by a quartz microbalance. A shielded filament is used to allow for simultaneous stress and MEED measurements at high substrate temperatures. A computer-controlled mirror scans an excimer laser beam over a stationary PLD target. This avoids mechanical noise originating from rotating PLD targets, and the setup does not suffer from limited lifetime issues of ultra high vacuum (UHV) rotary feedthroughs.

  11. Assay of the deuterium enrichment of water via acetylene.

    PubMed

    Previs, S F; Hazey, J W; Diraison, F; Beylot, M; David, F; Brunengraber, H

    1996-06-01

    A technique is presented for measuring the 2H enrichment of water in biological samples when this enrichment is greater than 0.2%. The sample is reacted with calcium carbide to form acetylene gas, which is determined by gas chromatography electron impact ionization mass spectrometry. Ion-molecule reactions, resulting in proton abstraction, are minimized by lowering the electron ionization energy from the usual 70 eV to 45 eV. This technique is much more rapid and economical than the classical isotope ratio mass spectrometric assay of the enrichment of hydrogen gas derived from reduction of water.

  12. Effect of polynuclear hydrocarbons on algal nitrogen fixation (acetylene reduction)

    SciTech Connect

    Bastian, M.V.; Toetz, D.W.

    1985-08-01

    The objective of this research was to determine the effects of polynuclear aromatic hydrocarbons (PAH) on N/sub 2/ fixation by the alga, Anabaena flos-aquea. The reduction of acetylene (C/sub 2/H/sub 2/) to ethylene (C/sub 2/H/sub 4/) was measured as a measure of the capacity of an organism to fix atmospheric N/sub 2/ and reduce it to an assimilable form. The primary advantage of this assay is its speed since chemical exposure and quantitative chromatographic analysis can be completed in a few hours.

  13. Partial pressures of oxygen and carbon dioxide, pH, and concentrations of bicarbonate, lactate, and glucose in pleural fluid from horses.

    PubMed

    Brumbaugh, G W; Benson, P A

    1990-07-01

    Samples of pleural fluid from 20 horses with effusive pleural diseases of various causes were evaluated; samples from 19 horses were used for the study. There were differences for pH (P = 0.001) and partial pressure of oxygen (PO2) between arterial blood and nonseptic pleural fluid (P = 0.0491), but there were no differences for pH, PO2, partial pressure of carbon dioxide (PCO2), and concentrations of bicarbonate (HCO3-), lactate, and glucose between venous blood and nonseptic pleural fluid. Paired comparisons of venous blood and nonseptic pleural fluid from the same horse indicated no differences. There were differences (P = 0.0001, each) for pH, PO2, PCO2, and concentrations of HCO3- between arterial blood and septic pleural fluid. Differences also existed for pH (P = 0.0001), PCO2 (P = 0.0003), and concentrations of HCO3- (P = 0.0001), lactate (P = 0.0051), and glucose (P = 0.0001) between venous blood and septic pleural fluid. Difference was not found for values of PO2 between venous blood and septic pleural fluid, although 4 samples of septic pleural fluid contained virtually no oxygen. Paired comparisons of venous blood and septic pleural fluid from the same horse revealed differences (P less than 0.05) for all values, except those for PO2. These alterations suggested functional and physical compartmentalization that separated septic and healthy tissue. Compartmentalization and microenvironmental factors at the site of infection should be considered when developing therapeutic strategies for horses with septic pleural disease. PMID:2389879

  14. Acetylene Fermentation: Relevance to Primordial Biogeochemistry and the Search for Life in the Outer Solar System

    NASA Astrophysics Data System (ADS)

    Oremland, R. S.; Baesman, S. M.; Miller, L. G.

    2014-02-01

    Acetylene supports the growth of some terrestrial anaerobes. The reaction is highly exothermic. The abundance of acetylene in the methane-rich planet(oid)s of the outer solar system could represent a means of nourishment for resident alien microbes.

  15. 46 CFR 151.50-79 - Methyl acetylene-propadiene mixture.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... suction line. (c) The piping system, including the cargo refrigeration system, for tanks to be loaded with methyl acetylene-propadiene mixture must be completely separate from piping and refrigeration systems for other tanks. If the piping system for the tanks to be loaded with methyl acetylene-propadiene mixture...

  16. 46 CFR 151.50-79 - Methyl acetylene-propadiene mixture.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... suction line. (c) The piping system, including the cargo refrigeration system, for tanks to be loaded with methyl acetylene-propadiene mixture must be completely separate from piping and refrigeration systems for other tanks. If the piping system for the tanks to be loaded with methyl acetylene-propadiene mixture...

  17. Self-consistent particle modeling of radio frequency discharge in Ar/O{sub 2} mixtures: Effects of crossed electric and magnetic fields and partial pressure

    SciTech Connect

    Benyoucef, Djilali; Yousfi, Mohammed; Belmadani, Bachir

    2011-04-15

    A particle-in-cell/Monte Carlo model is developed to study and analyze the electrical characteristics of the nonequilibrium plasma created by radio frequency (RF) discharge in Ar/O{sub 2} mixtures in the presence of crossed electric and magnetic fields. The method of collision treatment is based on an optimized estimation of the free time flight. The needed basic data--more specifically, the ion-neutral cross sections--are determined first. The simulation conditions are 50 mTorr for the total gas pressure and 200 V for the peak of the RF voltage at a frequency of 13.56 MHz. The magnetic field is varied from 0 to 50 G. The effect of the partial pressure ratio of O{sub 2} in the mixture and the effect of the magnitude of the magnetic field are discussed. In particular, the results show an increase of the plasma density that is ten times higher in the presence of a magnetic field.

  18. Influence of the Cs partial pressure on the optical and electrical properties of ITO films prepared by dc sputter type negative metal ion beam deposition

    NASA Astrophysics Data System (ADS)

    Kim, Daeil

    2003-12-01

    The influence of cesium (Cs) partial pressure ( PCs) in the sputtering atmosphere on the opto-electrical and surface morphological property of ITO thin films deposited onto unheated polycarbonate substrate was investigated. The deposition technique used was a dc sputter type negative metal ion beam source which uses Cs as a surface negative ionization agent. During deposition Ar gas flow rate, deposition pressure and bipolar dc power were kept constant at 30 sccm, 9 × 10 -2 Pa, and 250 W, respectively. As increase PCs both electrical conductivity and optical transmittance of the film were increased. The lowest resistivity of 5.1 × 10 -4 Ω cm and optical transmittance of 89% at 550 nm were measured in the ITO film deposited at PCs of 1.7 × 10 -3 Pa. Surface morphology of ITO film was also varied with PCs and the lowest surface roughness (Ra: 1.16 nm) was obtained a tCs of 1.7 × 10 -3 Pa.

  19. Self-consistent particle modeling of radio frequency discharge in Ar/O2 mixtures: Effects of crossed electric and magnetic fields and partial pressure

    NASA Astrophysics Data System (ADS)

    Benyoucef, Djilali; Yousfi, Mohammed; Belmadani, Bachir

    2011-04-01

    A particle-in-cell/Monte Carlo model is developed to study and analyze the electrical characteristics of the nonequilibrium plasma created by radio frequency (RF) discharge in Ar/O2 mixtures in the presence of crossed electric and magnetic fields. The method of collision treatment is based on an optimized estimation of the free time flight. The needed basic data—more specifically, the ion-neutral cross sections—are determined first. The simulation conditions are 50 mTorr for the total gas pressure and 200 V for the peak of the RF voltage at a frequency of 13.56 MHz. The magnetic field is varied from 0 to 50 G. The effect of the partial pressure ratio of O2 in the mixture and the effect of the magnitude of the magnetic field are discussed. In particular, the results show an increase of the plasma density that is ten times higher in the presence of a magnetic field.

  20. Effects of water-saturation on strength and ductility of three igneous rocks at effective pressures to 50 MPA and temperatures to partial melting

    SciTech Connect

    Bauer, S.J.; Friedman, M.; Handin, J.

    1981-01-01

    The short-term failure strengths and strains at failure of room-dry and water-saturated, cylindrical specimens (2 by 4 cm) of Charcoal Granodiorite (CG), Mt. Hood Andesite (MHA), and Cuerbio Basalt (CB) at a strain rate of 10/sup -4/s/sup -1/, at effective confining pressures of 0, 50, and 100 MPa and at temperatures to partial melting were investigated. Data from water-saturated specimens of the granodiorite and andesite, compared to room-dry counterparts, indicate (1) the pore pressures are essentially communicated throughout each test specimen so that they are fully effective; (2) at P/sub e/ = 0 and 50 MPa the granodiorite does not water-weaken; (3) at these same effective pressures the more porous and finer-grained andesite begins to exhibit water-weakening at about 600/sup 0/C; (4) at P/sub e/ = 0 and 870 to 900/sup 0/C the andesite's strength averages 20 MPa while the strength of dry specimens at the same P and T exhibit a strength of 100 MPa; (5) at P/sub e/ = 50 MPa compared to 160 MPa dry; (6) the basalt at P/sub e/ = 0, appears to be water-weakened at 800/sup 0/C; (7) water saturated specimens deformed at temperatures less than that of melting exhibit ultimate strengths at less than 2% shortening and then work-soften along faults; (8) again as do the dry counterparts, the wet specimens deform primarily by microscopic fracturing that coalesces into one or more macroscopic faults; and (9) the temperature for incipient melting of the andesite is decreased >150/sup 0/C in the water-saturated tests.

  1. Effects of water-saturation on strength and ductility of three igneous rocks at effective pressures to 50 MPa and temperatures to partial melting

    SciTech Connect

    Bauer, S.J.; Friedman, M.; Handin, J.

    1981-01-01

    Instantaneous-failure strengths and ductilities of water-saturated cylindrical specimens of Charcoal Granodiorite, Mount Hood Andesite, and Cuerbio Basalt are determined at a strain rate of 10{sup -4}s{sup -1} and at effective confining pressures (Pe) of 0 and 50 MPa and at temperatures to partial melting. The data indicate: (1) at Pe = 0 and 50 MPa (Pc and Pp of 50 MPa and of 100 and 50 MPa, respectively) the granodiorite does not water-weaken; (2) at these same Pe the more porous and finer-grained andesite begins to exhibit water-weakening at about 600/sup 0/C; (3) at Pe = 0 and 870-900{sup 0}C the andesite's wet strength averages 20 MPa compared to 100 MPa, dry; (4) at Pe = 50 MPa and 920{sup 0}C its wet strength is 45 MPa compared to 160 MPa dry; (5) at Pe = 0, the basalt appears to be water-weakened above 800{sup 0}C; (6) water-saturated specimens deformed at temperatures less than T{sub m} exhibit ultimate strengths at less than 2 percent shortening and then work-soften along faults; and (7) both dry and wet specimens deform primarily by brittle fracture. Extrapolations indicate: (1) crystalline rocks should be drillable because they remain brittle until partial melting occurs, and penetration rates should increase with temperature because there is a corresponding decrease in brittle fracture strength; (2) boreholes in ''water-filled'' holes will be stable to >10 km at temperatures 10 km; and (4) open boreholes in the andesite are apt to be much less stable, and at similar temperatures would fail at 2 to 5-km depth.

  2. Infrared spectroscopy and Mie scattering of acetylene aerosols formed in a low temperature diffusion cell

    NASA Technical Reports Server (NTRS)

    Dunder, T.; Miller, R. E.

    1990-01-01

    A method is described for forming and spectroscopically characterizing cryogenic aerosols formed in a low temperature gas cell. By adjusting the cell pressure, gas composition and flow rate, the size distribution of aerosol particles can be varied over a wide range. The combination of pressure and flow rate determine the residence time of the aerosols in the cell and hence the time available for the particles to grow. FTIR spectroscopy, over the range from 600/cm to 6000/cm, is used to characterize the aerosols. The particle size distribution can be varied so that, at one extreme, the spectra show only absorption features associated with the infrared active vibrational bands and, at the other, they display both absorption and Mie scattering. In the latter case, Mie scattering theory is used to obtain semiquantitative aerosol size distributions, which can be understood in terms of the interplay between nucleation and condensation. In the case of acetylene aerosols, the infrared spectra suggest that the particles exist in the high temperature cubic phase of the solid.

  3. Partial molar volumes of NiO and CoO liquids: implications for the pressure dependence of metal-silicate partitioning

    NASA Astrophysics Data System (ADS)

    Courtial, Philippe; Gottsmann, Joachim; Holzheid, Astrid; Dingwell, Donald B.

    1999-08-01

    Volumetric measurements have been conducted on 7 Ni- and Co-containing sodium disilicate liquids within a compositional range varying from 0 to 9 mol% of NiO and from 0 to 23 mol% of CoO and over a large temperature interval (i.e., above their respective glass transition temperature and up to at least 1473 K). Their molar volumes and thermal expansivities have been determined by combining high-temperature measurements using the Pt-based double-bob Archimedean method and low-temperature measurements using the method described by Webb et al. [S.L. Webb, R. Knoche, D.B. Dingwell, Determination of silicate liquid thermal expansivity using dilatometry and calorimetry, Eur. J. Mineral. 4 (1992) 95-104] based on an assumed equivalence of the relaxation of volume and enthalpy at the glass transition. The molar volume of the present liquids decreases with increasing NiO and CoO contents and the Co-containing liquids exhibit a greater molar volume than the Ni-containing liquids at equivalent molar concentrations. The present results were analysed using a regression equation from which the partial molar volume of NiO and CoO liquids was obtained by the least squares method. This procedure yields partial molar volumes valid over the entire temperature range of 11.506 ± 0.687 and 14.884 ± 0.149 cm 3/mol and temperature derivatives of 2.684 ± 1.6 × 10 -3 and 1.441 ± 0.4 × 10 -3 cm 3/mol K, respectively for NiO and CoO at 800 K. The behavior of M-Fe metal-silicate exchange partition coefficient (M = Ni, Co), based on present molar volume determinations, has been estimated as a function of pressure over a wide temperature range. The metal-silicate exchange partition coefficients of both Ni and Co decrease with increasing pressure within the entire temperature range considered in this study (i.e., 800-3000 K).

  4. Reconstruction of pH and partial pressure of carbon dioxide during the Mesozoic era period using boron and oxygen isotopic compositions of fresh ammonoids & nautiloids

    NASA Astrophysics Data System (ADS)

    Kawahata, Hodaka; Fukushima, Ayaka; Moriya, Kazuyori; Ishikawa, Tsuyoshi; Suzuki, Atsushi; Tanabe, Kazushige

    2013-04-01

    The increase of partial pressure of carbon dioxide (pCO2) in the atmosphere induces global warming and ocean acidification at the modern condition. The reconstruction of pCO2 during the geological time is required together with proxy calibration by laboratory experiments to predict the future environments. Boron isotopic ratio is an excellent proxy for pH and the relevant partial pressure of carbon dioxide in the seawater (PCO2). This study is the first to quantify pH dependence of delta 11B of the ammonoids and nautiloids mainly in the Cretaceous and in Jurassic (70-162 Ma), which are expected to be much warmer due to higher PCO2. However, no reliable reconstruction data using foraminiferal delta 11B before Cenozoic era has been reported. We used the very fresh aragonite shells of ammonoids and nautiloids by big advantages. Since aragonite changes into secondary calcite by diagenesis, it is easy and effective to identify the degree of alteration at each sample by measuring calcite/aragonite ratio. Also we carefully conducted the assessment of secondary alteration from three perspectives: 1) Determination of calcite/aragonite ratio by X-ray diffraction (XRD), 2) Observation of microstructures of the nacreous layers by scanning electron microscope (SEM), and 3) Measurement of trace element contents and stable isotope ratios. We conducted high precision boron isotope analysis of biogenic carbonates with +/- 0.1 per mil reproducibility by adopting positive thermal ionization mass spectrometry (P-TIMS) methods. Also we analyzed delta 18O to estimate paleo-temperature, at which biogenic aragonite was formed. Combination of delta 11B and delta 18O of biogenic aragonite in 80 Ma and 86 Ma revealed that deeper dwellers showed lower delta 11B values, which corresponded to lower pH. This feature is consistent with those observed in the modern vertical water column. The respective shallow water temperature was 19.7 and 19.1 centigrade. Based on these results, the

  5. CO2 Solubility in Natural Rhyolitic Melts at High Pressures - Implications for Carbon Flux in Subduction Zones by Sediment Partial Melts

    NASA Astrophysics Data System (ADS)

    Duncan, M. S.; Dasgupta, R.

    2011-12-01

    Partial melts of subducting sediments is thought to be a critical agent in carrying trace elements and water to arc basalt source regions. For subduction zones that contain significant amount of carbonates in ocean-floor sediments, sediment melts likely also act as a carrier of CO2. However, the CO2 carrying capacity of natural rhyolitic melts at sub-arc depths remains unconstrained. We conducted experiments on a synthetic composition, similar to average, low-degree experimental partial melt of pelitic sediments. The composition was constructed with reagent grade oxides and carbonates, the source of excess CO2. Experiments were conducted between 1 and 3 GPa at 1200 °C in Au80Pd20 capsules using a piston cylinder apparatus with a half-inch BaCO3 assembly at Rice University. Quench products showed glasses with bubbles, the latter suggesting saturation of the melt with a CO2-rich vapor phase. Oxygen fugacity during the experiments was not strictly controlled but the presence of CO2 bubbles and absence of graphite indicates fO2 above the CCO buffer. Major element concentrations of glasses were measured using EPMA. The CO2 and H2O contents of experimental doubly polished (50-110 μm), bubble-free portions of the glass chips were determined using a Thermo Nicolet Fourier Transform Infrared Spectrometer. Spectra were recorded with a resolution of 4 cm-1, 512 scans, from 650 to 4000 cm-1, under a nitrogen purge to eliminate atmospheric gases. Dissolved volatile concentrations were quantified using the Beer-Lambert law and linear molar absorption coefficients from previous studies [1, 2]. Total dissolved carbon dioxide of experimental glasses was determined from the intensity of the ν3 antisymmetric stretch bands of CO32- at 1430 cm-1 and CO2mol at 2348 cm-1. Dissolved water content of experimental glasses was determined from the intensity of O-H stretching at 3520 cm-1. Estimated total CO2 concentrations at 3 GPa are in the range of 1-2 wt%, for melts with H2O contents

  6. Root and nodule respiration in relation to acetylene reduction in intact nodulated peas.

    PubMed

    Mahon, J D

    1977-12-01

    Inoculated pea plants (Pisum sativum L.) were grown with N-free nutrients in a controlled environment room and rates of respiratory CO(2) evolution and C(2)H(2) reduction by the intact nodulated roots were determined. Experiments followed changes related to diurnal cycles, light and dark treatments, partial defoliation, aging of plants and NH(4)NO(3) addition. In all experiments, changes in C(2)H(2) reduction were associated with parallel changes in the respiration rate, although in all but the defoliation experiment there was a basal level of respiration which was independent of the rate of C(2)H(2) reduction. In conditions which affected growth or plant size as well as C(2)H(2) reduction, respiration changed by an average of 0.42 mg CO(2) (mumol C(2)H(2) reduced)(-1). However, some treatments decreased C(2)H(2) reduction without greatly changing the growth and in these conditions respiration was decreased by an average of 0.27 mg CO(2) (mumol C(2)H(2) reduced)(-1). While this value may also include some respiration associated with other processes, it is proposed that it more closely estimates respiration directly associated with energy utilization for acetylene reduction; whereas the higher value includes respiration related to maintenance and growth processes as well.

  7. Detection of acetylene in the infrared spectrum of comet Hyakutake.

    PubMed

    Brooke, T Y; Tokunaga, A T; Weaver, H A; Crovisier, J; Bockelée-Morvan, D; Crisp, D

    1996-10-17

    Comets are rich in volatile materials, of which roughly 80% (by number) are water molecules. Considerable progress is being made in identifying the other volatile species, the abundances of which should enable us to determine whether comets formed primarily from ice-covered interstellar grains, or from material that was chemically processed in the early solar nebula. Here we report the detection of acetylene (C2H2) in the infrared spectrum of comet C/1996 B2 (Hyakutake). The estimated abundance is 0.3-0.9%, relative to water, which is comparable to the predicted solid-phase abundance in cold interstellar clouds. This suggests that the volatiles in comet Hyakotake may have come from ice-covered interstellar grains, rather than material processed in the accretion disk out of which the Solar System formed.

  8. Organogermanium Chemistry: Germacyclobutanes and digermane Additions to Acetylenes

    SciTech Connect

    Andrew Michael Chubb

    2003-12-12

    This dissertation comprises two main research projects. The first project, presented in Chapter 1, involves the synthesis and thermochemistry of germacyclobutanes (germetanes). Four new germetanes (spirodigermetane, diallylgermetane, dichlorogermetane, and germacyclobutane) have been synthesized using a modified di-Grignard synthesis. Diallylgermetane is shown to be a useful starting material for obtaining other germetanes, particularly the parent germetane, germacyclobutane. The gas-phase thermochemistries of spirodigermetane, diallylgermetane and germacyclobutane have been explored via pulsed stirred-flow reactor (SFR) studies, showing remarkable differences in decomposition, depending on the substitution at the germanium atom. The second project investigates the thermochemical, photochemical, and catalytic additions of several digermanes to acetylenes. The first examples of thermo- and photochemical additions of Ge-Ge bonds to C{triple_bond}C are demonstrated. Mechanistic investigations are described and comparisons are made to analogous disilane addition reactions, previously studied in their group.

  9. Adhesive and composite evaluation of acetylene-terminated phenylquinoxaline resins

    NASA Technical Reports Server (NTRS)

    Hergenrother, P. M.

    1981-01-01

    A series of acetylene-terminated phenylquinoxaline (ATPQ) oligomers of various molecular weights were prepared and subsequently chain extended by the thermally induced reaction of the ethynyl groups. The processability and thermal properties of these oligomers and their cured resins were compared with that of a relatively high molecular weight linear polyphenylquinoxaline (PPQ) with the same chemical backbone. The ATPQ oligomers exhibited significantly better processability than the linear PPQ but the PPQ displayed substantially better thermooxidative stability. Adhesive (Ti/Ti) and composite (graphite filament reinforcement) work was performed to evaluate the potential of these materials for structural applications. The PPQ exhibited better retention of adhesive and laminate properties than the ATPQ resins at 260 C after aging for 500 hr at 260 C in circulating air.

  10. Ultrafast Extreme Ultraviolet Induced Isomerization of Acetylene Cations

    SciTech Connect

    Jiang, Y.; Rudenko, Artem; Herrwerth, O.; Foucar, L.; Kurka, M.; Kuhnel, K.; Lezius, M.; Kling, Matthias; van Tilborg, Jeroen; Belkacem, Ali; Ueda, K.; Dusterer, S.; Treusch, R.; Schroter, Claus-Dieter; Moshammer, Robbert; Ullrich, Joachim

    2011-06-17

    Ultrafast isomerization of acetylene cations ([HC = CH]{sup +}) in the low-lying excited A{sup 2}{Sigma}{sub g}{sup +} state, populated by the absorption of extreme ultraviolet (XUV) photons (38 eV), has been observed at the Free Electron Laser in Hamburg, (FLASH). Recording coincident fragments C{sup +} + CH{sub 2}{sup +} as a function of time between XUV-pump and -probe pulses, generated by a split-mirror device, we find an isomerization time of 52 {+-} 15 fs in a kinetic energy release (KER) window of 5.8 < KER < 8 eV, providing clear evidence for the existence of a fast, nonradiative decay channel.

  11. Acetylene fuel from atmospheric CO2 on Mars

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Linne, Diane L.

    1992-01-01

    The Mars mission scenario proposed by Baker and Zubrin (1990) intended for an unmanned preliminary mission is extended to maximize the total impulse of fuel produced with a minimum mass of hydrogen from Earth. The hydrogen along with atmospheric carbon dioxide is processed into methane and oxygen by the exothermic reaction in an atmospheric processing module. Use of simple chemical reactions to produce acetylene/oxygen rocket fuel on Mars from hydrogen makes it possible to produce an amount of fuel that is nearly 100 times the mass of hydrogen brought from earth. If such a process produces the return propellant for a manned Mars mission, the required mission mass in LEO is significantly reduced over a system using all earth-derived propellants.

  12. Ultrafast Extreme Ultraviolet Induced Isomerization of Acetylene Cations

    SciTech Connect

    Jiang, Y. H.; Kurka, M.; Kuehnel, K. U.; Schroeter, C. D.; Moshammer, R.; Rudenko, A.; Foucar, L.; Herrwerth, O.; Lezius, M.; Kling, M. F.; Tilborg, J. van; Belkacem, A.; Ueda, K.; Duesterer, S.; Treusch, R.; Ullrich, J.

    2010-12-31

    Ultrafast isomerization of acetylene cations ([HC=CH]{sup +}) in the low-lying excited A{sup 2}{Sigma}{sub g}{sup +} state, populated by the absorption of extreme ultraviolet (XUV) photons (38 eV), has been observed at the Free Electron Laser in Hamburg, (FLASH). Recording coincident fragments C{sup +}+CH{sub 2}{sup +} as a function of time between XUV-pump and -probe pulses, generated by a split-mirror device, we find an isomerization time of 52{+-}15 fs in a kinetic energy release (KER) window of 5.8

  13. Preflame zone structure and main features of fuel conversion in atmospheric pressure premixed laminar hydrocarbon flames

    SciTech Connect

    Ksandopulo, G.I.

    1995-08-25

    This report describes the structure study of the premixed hydrocarbon-oxidizer Bunsen flames burning at the atmospheric pressure and also the ones with some inhibitors added. Studies were performed on hexane, propane, methane, acetylene, and hexene flames.

  14. Acetylene as fast food: Implications for development of life on anoxic primordial earth and in the outer solar system

    USGS Publications Warehouse

    Oremland, R.S.; Voytek, M.A.

    2008-01-01

    Acetylene occurs, by photolysis of methane, in the atmospheres of jovian planets and Titan. In contrast, acetylene is only a trace component of Earth's current atmosphere. Nonetheless, a methane-rich atmosphere has been hypothesized for early Earth; this atmosphere would also have been rich in acetylene. This poses a paradox, because acetylene is a potent inhibitor of many key anaerobic microbial processes, including methanogenesis, anaerobic methane oxidation, nitrogen fixation, and hydrogen oxidation. Fermentation of acetylene was discovered 25 years ago, and Pelobacter acetylenicus was shown to grow on acetylene by virtue of acetylene hydratase, which results in the formation of acetaldehyde. Acetaldehyde subsequently dismutates to ethanol and acetate (plus some hydrogen). However, acetylene hydratase is specific for acetylene and does not react with any analogous compounds. We hypothesize that microbes with acetylene hydratase played a key role in the evolution of Earth's early biosphere by exploiting an available source of carbon from the atmosphere and in so doing formed protective niches that allowed for other microbial processes to flourish. Furthermore, the presence of acetylene in the atmosphere of a planet or planetoid could possibly represent evidence for an extraterrestrial anaerobic ecosystem. ?? Mary Ann Liebert, Inc.

  15. Acetylene as Fast Food: Implications for Development of Life on Anoxic Primordial Earth and in the Outer Solar System

    NASA Astrophysics Data System (ADS)

    Oremland, Ronald S.; Voytek, Mary A.

    2008-02-01

    Acetylene occurs, by photolysis of methane, in the atmospheres of jovian planets and Titan. In contrast, acetylene is only a trace component of Earth's current atmosphere. Nonetheless, a methane-rich atmosphere has been hypothesized for early Earth; this atmosphere would also have been rich in acetylene. This poses a paradox, because acetylene is a potent inhibitor of many key anaerobic microbial processes, including methanogenesis, anaerobic methane oxidation, nitrogen fixation, and hydrogen oxidation. Fermentation of acetylene was discovered 25 years ago, and Pelobacter acetylenicus was shown to grow on acetylene by virtue of acetylene hydratase, which results in the formation of acetaldehyde. Acetaldehyde subsequently dismutates to ethanol and acetate (plus some hydrogen). However, acetylene hydratase is specific for acetylene and does not react with any analogous compounds. We hypothesize that microbes with acetylene hydratase played a key role in the evolution of Earth's early biosphere by exploiting an available source of carbon from the atmosphere and in so doing formed protective niches that allowed for other microbial processes to flourish. Furthermore, the presence of acetylene in the atmosphere of a planet or planetoid could possibly represent evidence for an extraterrestrial anaerobic ecosystem.

  16. Acetylene as fast food: implications for development of life on anoxic primordial Earth and in the outer solar system.

    PubMed

    Oremland, Ronald S; Voytek, Mary A

    2008-02-01

    Acetylene occurs, by photolysis of methane, in the atmospheres of jovian planets and Titan. In contrast, acetylene is only a trace component of Earth's current atmosphere. Nonetheless, a methane-rich atmosphere has been hypothesized for early Earth; this atmosphere would also have been rich in acetylene. This poses a paradox, because acetylene is a potent inhibitor of many key anaerobic microbial processes, including methanogenesis, anaerobic methane oxidation, nitrogen fixation, and hydrogen oxidation. Fermentation of acetylene was discovered approximately 25 years ago, and Pelobacter acetylenicus was shown to grow on acetylene by virtue of acetylene hydratase, which results in the formation of acetaldehyde. Acetaldehyde subsequently dismutates to ethanol and acetate (plus some hydrogen). However, acetylene hydratase is specific for acetylene and does not react with any analogous compounds. We hypothesize that microbes with acetylene hydratase played a key role in the evolution of Earth's early biosphere by exploiting an available source of carbon from the atmosphere and in so doing formed protective niches that allowed for other microbial processes to flourish. Furthermore, the presence of acetylene in the atmosphere of a planet or planetoid could possibly represent evidence for an extraterrestrial anaerobic ecosystem.

  17. Acetylene as fast food: implications for development of life on anoxic primordial Earth and in the outer solar system.

    PubMed

    Oremland, Ronald S; Voytek, Mary A

    2008-02-01

    Acetylene occurs, by photolysis of methane, in the atmospheres of jovian planets and Titan. In contrast, acetylene is only a trace component of Earth's current atmosphere. Nonetheless, a methane-rich atmosphere has been hypothesized for early Earth; this atmosphere would also have been rich in acetylene. This poses a paradox, because acetylene is a potent inhibitor of many key anaerobic microbial processes, including methanogenesis, anaerobic methane oxidation, nitrogen fixation, and hydrogen oxidation. Fermentation of acetylene was discovered approximately 25 years ago, and Pelobacter acetylenicus was shown to grow on acetylene by virtue of acetylene hydratase, which results in the formation of acetaldehyde. Acetaldehyde subsequently dismutates to ethanol and acetate (plus some hydrogen). However, acetylene hydratase is specific for acetylene and does not react with any analogous compounds. We hypothesize that microbes with acetylene hydratase played a key role in the evolution of Earth's early biosphere by exploiting an available source of carbon from the atmosphere and in so doing formed protective niches that allowed for other microbial processes to flourish. Furthermore, the presence of acetylene in the atmosphere of a planet or planetoid could possibly represent evidence for an extraterrestrial anaerobic ecosystem. PMID:18199006

  18. Rate-based screening of pressure-dependent reaction networks

    NASA Astrophysics Data System (ADS)

    Matheu, David M.; Lada, Thomas A.; Green, William H.; Dean, Anthony M.; Grenda, Jeffrey M.

    2001-08-01

    Computer tools to automatically generate large gas-phase kinetic models find increasing use in industry. Until recently, mechanism generation algorithms have been restricted to generating kinetic models in the high-pressure limit, unless special adjustments are made for particular cases. A new approach, recently presented, allows the automated generation of pressure-dependent reaction networks for chemically and thermally activated reactions (Grenda et al., 2000; Grenda and Dean, in preparation; Grenda et al., 1998; see Refs. [1-3]). These pressure-dependent reaction networks can be quite large and can contain a large number of unimportant pathways. We thus present an algorithm for the automated screening of pressure-dependent reaction networks. It allows a computer to discover and incorporate pressure-dependent reactions in a manner consistent with the existing rate-based model generation method. The new algorithm works by using a partially-explored (or "screened") pressure-dependent reaction network to predict rate constants, and updating predictions as more parts of the network are discovered. It requires only partial knowledge of the network connectivity, and allows the user to explore only the important channels at a given temperature and pressure. Applications to vinyl + O 2, 1-naphthyl + acetylene and phenylvinyl radical dissociation are presented. We show that the error involved in using a truncated pressure-dependent network to predict a rate constant is insignificant, for all channels whose yields are significantly greater than a user-specified tolerance. A bound for the truncation error is given. This work demonstrates the feasibility of using screened networks to predict pressure-dependent rate constants k(T,P).

  19. Effect of varying alveolar oxygen partial pressure on diffusing capacity for nitric oxide and carbon monoxide, membrane diffusing capacity and lung capillary blood volume.

    PubMed

    Borland, C D; Cox, Y

    1991-12-01

    1. To examine the effect of varying oxygen partial pressure (PAO2) on nitric oxide (DLNO) and carbon monoxide (DLCO) diffusing capacity (transfer factor), 10 subjects performed combined DLCO/DLNO measurements with the inspired mixture made up with three different oxygen concentrations (25%, 18% and 15%) to give PAO2 values of 12-20 kPa. 2. A novel method is described for calculating membrane diffusing capacity (DM) and pulmonary capillary volume (Qc) from DLNO and DLCO. 3. The mean DMCO was 52.89 mmol min-1 kPa-1 and Qc was 0.056 litre. Reducing PAO2 from 20 to 12 kPa resulted in an increase in DLCO = -0.124 (O2%) + 11.67 (P less than 0.001) and a fall in DLNO = 0.538 (O2%) + 32.01 (P less than 0.001) and a fall in DLNO/DLCO = 0.107 (O2%) + 2.52 (P less than 0.001). DM (P = 0.59) and Qc (P = 0.64) also tended to fall with falling PAO2. 4. It appears more likely that the minor reduction in DLNO that we have observed with falling PAO2 is due to diffusion rather than reaction limitation.

  20. Piezoelectric and dielectric properties of Sn-doped (Na0.5K0.5)NbO3 ceramics processed under low oxygen partial pressure atmosphere

    NASA Astrophysics Data System (ADS)

    Kobayashi, Keisuke; Doshida, Yutaka; Mizuno, Youichi; Randall, Clive A.

    2014-01-01

    Sn-doped (Na0.5K0.5)NbO3 (Sn-NKN) ceramics fired under various oxygen partial pressure (pO2) conditions have been investigated and discussed in terms of bulk piezoelectric and dielectric properties. X-ray diffraction measurements and Rayleigh analysis indicate that the substitution site of the Sn cations depend on the pO2 atmosphere in the firing process. For pO2 higher than 1.0 × 10-10 atm, Sn cations mainly substitute as Sn4+ at the B-site of perovskite NKN, whereas Sn2+ A-site substitution is favored under a low-pO2 atmosphere. Low-pO2 fired Sn-NKN ceramics exhibit higher relative permittivity, Curie temperature, and piezoelectric coefficient (d33). Sn2+ at A-site acts as a donor and reduces the p-type carrier concentrations that result from an electronic compensation of metal vacancies created through the high volatility of Na and K suboxides. The higher piezoelectricity and resistivity in low-pO2 fired Sn-NKN ceramics make this material suitable for base-metal cofired devices such as Ni-inner-electrode multilayer capacitors and actuators.

  1. Effects of elevated partial pressure of carbon dioxide and season of the year on forage quality and cyanide concentration of Trifolium repens L. from a FACE experiment

    NASA Astrophysics Data System (ADS)

    Frehner, Marco; Lüscher, Andreas; Hebeisen, Thomas; Zanetti, Silvia; Schubiger, Franz; Scalet, Mario

    Differently managed (cutting frequency and N fertilization) Trifolium repens monocultures were grown at 60 Pa and 35 Pa of pCO 2 (partial pressure of CO 2) in a Free Air Carbon dioxide Enrichment (FACE) array. The concentrations of cyanide, digestible organic matter, crude protein and net energy for lactation were measured at different harvests throughout the growing season. The average cyanide concentrations differed significantly in the years and the seasons within the year; however, the concentrations were not affected by CO 2. Digestible organic matter, crude protein and net energy for lactation differed significantly with the seasons of the year and cutting frequencies. While digestible organic matter and net energy for lactation were not affected by elevated pCO 2, the concentration of crude protein decreased from 288 g kg -1 at ambient to 251 g kg -1 at elevated pCO 2. Since the crude protein concentration in herbage from Trifolium monocultures was very high even at elevated CO 2, it is suggested that this decrease in crude protein concentration does not negatively affect forage quality. We conclude that, in Trifolium herbage, the seasons of the year and management practices are more decisive for forage quality than changes in pCO 2. We shall discuss how forage quality and cyanide intake by ruminants may, however, be affected by CO 2-induced shifts in the proportion of species in mixed plant communities.

  2. Determination of octane numbers and Reid vapor pressure of commercial petroleum fuels using FT-Raman spectroscopy and partial least-squares regression analysis

    SciTech Connect

    Cooper, J.B.; Wise, K.L.; Groves, J.; Welch, W.T.

    1995-11-15

    A Fourier transform Raman spectrometer was used to collect the Raman spectra of 208 commercial petroleum fuels. The individual motor and research octane numbers (MON and RON, respectively) were determined experimentally using the industry standard ASTM knock engine method. Partial least-squares regression analysis was used to build regression models which correlate the Raman spectra of 175 of the fuels with the experimentally determined values for MON, RON, and pump octane number (the average of MON and RON) of the fuels. Each of the models was validated using leave-one-out validation. The standard errors of validation are 0.415, 0.535, and 0.410 octane units for MON, RON, and pump octane number, respectively. It is evident that the accuracy of the Raman determined values is limited by the accuracy of the training set used in creating the models. The Raman regression models were used to predict the octane numbers for the fuels which were not used to build the models. The results compare favorably with the leave-one-out validation. Also, it is demonstrated that the experimentally determined Reid vapor pressures are highly correlated with the Raman spectra of the fuel samples and can be predicted with a standard error of 0.568 psi. 11 refs., 6 figs., 2 tabs.

  3. Density functional theory study of the γ-MnOOH (010) surface: Response to oxygen and water partial pressures and temperature

    NASA Astrophysics Data System (ADS)

    Oxford, Gloria A. E.; Chaka, Anne M.

    2011-11-01

    Ab initio thermodynamics was combined with density functional theory calculations to identify stable γ-MnOOH (010) surface terminations in response to varying oxygen and water partial pressures. Within the range of accessible oxygen chemical potentials, reduced manganese atoms are not thermodynamically stable at the surface. Oxidation of the surface by addition of oxygen is favorable at oxygen chemical potentials typically found in experiments. Entropy drives the removal of H2 from the stoichiometric surface above 603 K under ambient conditions, in close agreement with the experimental decomposition temperature of 573 K. Molecular adsorption of water at half-monolayer and monolayer coverages is highly exothermic and significantly lowers the surface free energy of the clean surface. Dissociative adsorption of water is only possible at monolayer coverage, where it is stabilized by the formation of a hydrogen-bonding network on the surface. The most thermodynamically stable surfaces are oxidized surfaces, but the stoichiometric and fully hydrated surfaces may be accessible in experiments due to slow oxidation kinetics of the surface.

  4. Oxy-acetylene driven laboratory scale shock tubes for studying blast wave effects.

    PubMed

    Courtney, Amy C; Andrusiv, Lubov P; Courtney, Michael W

    2012-04-01

    This paper describes the development and characterization of modular, oxy-acetylene driven laboratory scale shock tubes. Such tools are needed to produce realistic blast waves in a laboratory setting. The pressure-time profiles measured at 1 MHz using high-speed piezoelectric pressure sensors have relevant durations and show a true shock front and exponential decay characteristic of free-field blast waves. Descriptions are included for shock tube diameters of 27-79 mm. A range of peak pressures from 204 kPa to 1187 kPa (with 0.5-5.6% standard error of the mean) were produced by selection of the driver section diameter and distance from the shock tube opening. The peak pressures varied predictably with distance from the shock tube opening while maintaining both a true blast wave profile and relevant pulse duration for distances up to about one diameter from the shock tube opening. This shock tube design provides a more realistic blast profile than current compression-driven shock tubes, and it does not have a large jet effect. In addition, operation does not require specialized personnel or facilities like most blast-driven shock tubes, which reduces operating costs and effort and permits greater throughput and accessibility. It is expected to be useful in assessing the response of various sensors to shock wave loading; assessing the reflection, transmission, and absorption properties of candidate armor materials; assessing material properties at high rates of loading; assessing the response of biological materials to shock wave exposure; and providing a means to validate numerical models of the interaction of shock waves with structures. All of these activities have been difficult to pursue in a laboratory setting due in part to lack of appropriate means to produce a realistic blast loading profile. PMID:22559580

  5. Oxy-acetylene driven laboratory scale shock tubes for studying blast wave effects

    NASA Astrophysics Data System (ADS)

    Courtney, Amy C.; Andrusiv, Lubov P.; Courtney, Michael W.

    2012-04-01

    This paper describes the development and characterization of modular, oxy-acetylene driven laboratory scale shock tubes. Such tools are needed to produce realistic blast waves in a laboratory setting. The pressure-time profiles measured at 1 MHz using high-speed piezoelectric pressure sensors have relevant durations and show a true shock front and exponential decay characteristic of free-field blast waves. Descriptions are included for shock tube diameters of 27-79 mm. A range of peak pressures from 204 kPa to 1187 kPa (with 0.5-5.6% standard error of the mean) were produced by selection of the driver section diameter and distance from the shock tube opening. The peak pressures varied predictably with distance from the shock tube opening while maintaining both a true blast wave profile and relevant pulse duration for distances up to about one diameter from the shock tube opening. This shock tube design provides a more realistic blast profile than current compression-driven shock tubes, and it does not have a large jet effect. In addition, operation does not require specialized personnel or facilities like most blast-driven shock tubes, which reduces operating costs and effort and permits greater throughput and accessibility. It is expected to be useful in assessing the response of various sensors to shock wave loading; assessing the reflection, transmission, and absorption properties of candidate armor materials; assessing material properties at high rates of loading; assessing the response of biological materials to shock wave exposure; and providing a means to validate numerical models of the interaction of shock waves with structures. All of these activities have been difficult to pursue in a laboratory setting due in part to lack of appropriate means to produce a realistic blast loading profile.

  6. Acetylene as a substrate in the development of primordial bacterial communities

    USGS Publications Warehouse

    Culbertson, C.W.; Strohmaier, F.E.; Oremland, R.S.

    1988-01-01

    The fermentation of atmospheric acetylene by anaerobic bacteria is proposed as the basis of a primordial heterotrophic food chain. The accumulation of fermentation products (acetaldehyde, ethanol, acetate and hydrogen) would create niches for sulfate-respiring bacteria as well as methanogens. Formation of acetylene-free environments in soils and sediments would also alter the function of nitrogenase from detoxification to nitrogen-fixation. The possibility of an acetylene-based anaerobic food chain in Jovian-type atmospheres is discussed. ?? 1988 Kluwer Academic Publishers.

  7. Electron Stimulated Decomposition of Acetylene as a Precursor for Graphene

    NASA Astrophysics Data System (ADS)

    Kumar, Mahesh; Rothwell, Sara; Cohen, Philip

    2011-03-01

    We report here on the deposition of carbon via C2 H2 dissociation by electron beam irradiation and thermal decomposition. The substrates investigated include sapphire, silicon, ALD deposited Al 2 O3 / Si O2 , and GaN/sapphire. Raman analyses show that on C-plane sapphire both thermal decomposition and electron beam stimulated dissociation of C2 H2 deposit carbon successfully. On other substrates these methods were inactive, showing the decomposition of C2 H2 on sapphire is catalytic. We tested different annealing times and C2 H2 pressures, gauging absorption saturation with RHEED. Samples exposed to 15 min. C2 H2 adsorption during 400 eV electron irradiation and then annealed for 2 hr. to above 600° C in high vacuum showed the greatest proportion of sp2 to sp3 bonding by Raman analysis. The Raman spectra also suggest hydrogen adsorption, which may hinder further sp2 bonding. Annealing samples in a hydrogen atmosphere does not change their Raman spectra, suggesting hydrogen saturation. Partial support from the University of Minnesota Institute for Renewable Energy and the Environment

  8. Characterization of the Minimum Energy Paths and Energetics for the Reaction of Vinylidene with Acetylene

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.; Taylor, Peter R.

    1995-01-01

    The reaction of vinylidene (CH2C) with acetylene may be an initiating reaction in soot formation. We report minimum energy paths and accurate energetics for a pathway leading to vinyl-acetylene and for a number of isomers of C4H4. The calculations use complete active space self-consistent field (CASSCF) derivative methods to characterize the stationary points and internally contacted configuration interaction (ICCI) and/or coupled cluster singles and doubles with a perturbational estimate of triple excitations (CCSD(T)) to determine the energetics. We find an entrance channel barrier of about 5 kcal/mol for the addition of vinylidene to acetylene, but no barriers above reactants for the reaction pathway leading to vinyl-acetylene.

  9. KISS: Kinetics and Structure of Superagglomerates Produced by Silane and Acetylene

    NASA Technical Reports Server (NTRS)

    Mulholland, G. W.; Yang, J. C.; Scott, J. H.; Sivithanu, Y.

    2001-01-01

    The objective of this study is to understand the process of gas phase agglomeration leading to superagglomerates and a gel-like structure for microgravity (0-g) silane and acetylene flames. Ultimately one would apply this understanding to predicting flame conditions that could lead to the gas phase production of an aero-gel. The approach is to burn acetylene and silane and to analyze the evolution of the soot and silica agglomerates. Acetylene is chosen because it has one of the highest soot volume fractions and there is evidence of super agglomerates being formed in laminar acetylene flames. Silane has the advantage that silica particles are the major combustion product resulting in a particle volume fraction a factor of ten greater than that for a carbonaceous smoke.

  10. Evaluation of Sorbents for Acetylene Separation in Atmosphere Revitalization Loop Closure

    NASA Technical Reports Server (NTRS)

    Abney, Morgan B.; Miller, Lee A.; Barton, Katherine

    2012-01-01

    State-of-the-art carbon dioxide reduction technology uses a Sabatier reactor to recover water from metabolic carbon dioxide. In order to maximize oxygen loop closure, a byproduct of the system, methane, must be reduced to recover hydrogen. NASA is currently exploring a microwave plasma methane pyrolysis system for this purpose. The resulting product stream of this technology includes unreacted methane, product hydrogen, and acetylene. The hydrogen and the small amount of unreacted methane resulting from the pyrolysis process can be returned to the Sabatier reactor thereby substantially improving the overall efficiency of the system. However, the acetylene is a waste product that must be removed from the pyrolysis product. Two materials have been identified as potential sorbents for acetylene removal: zeolite 4A, a commonly available commercial sorbent, and HKUST-1, a newly developed microporous metal. This paper provides an explanation of the rationale behind acetylene removal and the results of separation testing with both materials

  11. Evaluation of Sorbents for Acetylene Separation in Atmosphere Revitalization Loop Closure

    NASA Technical Reports Server (NTRS)

    Abney, Morgan B.; Miller, Lee A.; Barton, Katherine

    2011-01-01

    State-of-the-art carbon dioxide reduction technology uses a Sabatier reactor to recover water from metabolic carbon dioxide. In order to maximize oxygen loop closure, a byproduct of the system, methane, must be reduced to recover hydrogen. NASA is currently exploring a microwave plasma methane pyrolysis system for this purpose. The resulting product stream of this technology includes unreacted methane, product hydrogen, and acetylene. The hydrogen and the small amount of unreacted methane resulting from the pyrolysis process can be returned to the Sabatier reactor thereby substantially improving the overall efficiency of the system. However, the acetylene is a waste product that must be removed from the pyrolysis product. Two materials have been identified as potential sorbents for acetylene removal: zeolite 4A, a commonly available commercial sorbent, and HKUST-1, a newly developed microporous metal. This paper provides an explanation of the rationale behind acetylene removal and the results of separation testing with both materials.

  12. Silyl-acetylene polymers for use as precursors to silicon carbide fibers

    SciTech Connect

    Meyer, M.K.

    1991-12-20

    The steps involved in production of silicon carbide fiber using silyl acetylene polymer precursors can be separated into four processing steps: polymer synthesis, fiber spinning, fiber crosslinking, and pyrolysis. Practical experimental considerations in each step are discussed.

  13. Effect of oxygen partial pressure on the magnetic properties of La2/3Sr1/3MnO3 films grown on SrTiO3 (1 1 1) substrates by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Prajapat, C. L.; Kalita, Parswajit; Sastry, P. U.; Singh, M. R.; Gupta, S. K.; Ravikumar, G.

    2014-09-01

    The influence of oxygen partial pressure on phase formation and magnetic properties of LSMO (La2/3Sr1/3MnO3) thin films deposited on STO (1 1 1) substrates by pulsed laser deposition was investigated. Phase formation and epitaxial growth were confirmed by X-ray diffraction. Good crystalline mosaic is observed for oxygen partial pressures ranging from 0.3 to 1.0 mbar. For each of the pressures, the lattice parameters were estimated assuming the lattice distortion is volume conserving. The Curie temperatures TC vs lattice strain relation thus obtained is comparable to the available data in literature. Variation in coercive field of the films can be accounted for by the variation in TC.

  14. Infrared analysis of soot produced from an acetylene-rich flame

    NASA Astrophysics Data System (ADS)

    Pino, Thomas; Dartois, Emmanuel; Cao, Anh Tuan; D'Hendecourt, Louis; Bréchignac, Philippe

    The ubiquitous unidentified infrared emission bands (UIBs), now referred to as aromatic infrared bands (AIBs), observed from a variety of regions of interstellar space have been recognized to involve carbonaceous material with an aromatic character. It is now widely accepted that these interstellar "nanograins" should have sizes intermediate between those of the PAHs easily accessible to laboratory studies and of the "standard" interstellar grains (ca 0.05μm or 50 nm). The nanometer size is related to their capability of being transiently heated upon absorption of UV starlight photons. We will present the preliminary results obtained with a new experimental set-up, devoted to the formation of carbonaceous nanoparticles and the characterization of their spectral properties in absorption and in emission, in the solid phase and in the gas phase, isolated in a van der Waals matrix or free-flying. The production of the species uses laboratory techniques and conditioning under specific interstellar processes such as coupling a chemical reactor to stellar-like UV irradiation. We have used in particular an acetylene-rich, premixed and flat, low-pressure flame as a reactor. When operated under low-pressure conditions, the spatial development of the flame allows us to sample its content at various stages of the particles growth. The analysis can be made by transmission spectroscopy of thin film deposits under infrared microscope or in rare gas matrices under FTIR spectroscopy, and by Time-Of-Flight mass spectrometry. The preliminary results reveal a strong evolution from aromatic materials containing aliphatic substituents to large polymer-like soot particules. The spectrum in Figure 1 is that of a deposition taken from a sooting flame at a C/O=2, burning at a pressure of 26.5mb, and sampled at 12mm from the flat burner. A tentative assignment is given.

  15. Overreactivity of the psyche or the soma? Interindividual associations between psychosomatic symptoms, anxiety, heart rate, and end-tidal partial carbon dioxide pressure.

    PubMed

    Wientjes, C J; Grossman, P

    1994-01-01

    Current research has all but refuted previous suggestions about the role of hyperventilation as a proximal, common cause of psychosomatic symptoms. As an alternative, it has been proposed that the experience of psychosomatic symptoms is primarily associated with psychological mechanisms, i.e., with enhanced tendencies of distressed individuals to focus their attention on bodily sensations and to evaluate these in a catastrophic manner. Although this hypothesis has received considerable empirical support, physiological influences on symptom reporting have not, as yet, been fully explored. In this study, contributions of psychological and physiological factors were studied among a group of 83 normal healthy male subjects by an assessment of the interindividual relationships between symptom experience in daily life, situational and dispositional anxiety, baseline end-tidal partial carbon dioxide pressure (PCO2), and heart rate. Trait anxiety and end-tidal PCO2 each contributed separately to the prediction of the psychosomatic symptom score. Trait anxiety explained nearly one third of the symptom variance, and an additional 4% was explained by PCO2. Psychological symptoms were more strongly associated with anxiety and somatic symptoms, more strongly with PCO2. Heart rate only tended to be correlated with symptom reporting. Analysis of covariance among subgroups of extreme-symptom reporters supported the correlational findings by demonstrating that the association between hyperventilation and symptom reporting remained intact when psychological influences were factored out. The findings suggest that reports of psychosomatic symptoms represent two distinct components: one that is primarily psychological (and is unrelated to physiological factors) and a second that reflects objective variance in physiological functioning. The influence of the first component is probably greater than that of the second. PMID:7871109

  16. Mechanism-based inactivation of benzo(a)pyrene hydroxylase by aryl acetylenes and aryl olefins

    SciTech Connect

    Gan, L.S.; Lu, J.Y.L.; Alworth, W.L.

    1986-05-01

    A series of aryl acetylenes and aryl olefins have been examined as substrates and inhibitors of cytochrome P-450 dependent monooxgenases in liver microsomes from 5,6-benzoflavone or phenobarbital pretreated rats. 1-Ethynylpyrene, 3-ethynylperylene, 2-ethynylfluorene, methyl 1-pyrenyl acetylene, cis- and trans-1-(2-bromovinyl)pyrene, and 1-allylpyrene serve as mechanism-based irreversible inactivators (suicide inhibitors) of benzo(a)pyrene hydroxylase, while 1-vinylpyrene and phenyl 1-pyrenyl acetylene do not cause a detectable suicide inhibition of benzo(a)pyrene hydroxylase. The mechanism-based loss of benzo(a)pyrene hydroxylase caused by the aryl acetylenes is not accompanied by a corresponding loss of the P-450 content of the microsomes (suicide destruction). The suicide inhibition by these aryl acetylenes therefore does not involve covalent binding to the heme moiety of the monooxygenase. Nevertheless, in the presence of NADPH, /sup 3/H-labeled 1-ethynylpyrene becomes covalently attached to the cytochrome P-450 protein; the measured stoichiometry of binding is one 1-ethynylpyrene per P-450 heme unit. The authors conclude that the inhibition of benzo(a)pyrene hydroxylase produced by 1-ethynylpyrene may be related to the mechanism of suicide inhibition of P-450 activity by chloramphenicol rather than the mechanism of suicide destruction of P-450 previously described for acetylene and propyne.

  17. Immediate Acetylene Reduction by Excised Grass Roots Not Previously Preincubated at Low Oxygen Tensions 1

    PubMed Central

    van Berkum, Peter; Sloger, Charles

    1979-01-01

    Excised roots of Spartina alterniflora Loisel. and corn reduced acetylene in air without the previously reported period of zero activity lasting 8 to 18 hours. The profiles of acetylene-dependent ethylene accumulation by excised roots and intact plants of S. alterniflora were similar. No significant change in the number of bacteria associated with the roots was detectable during the assay. Most of the nitrogenase activity was detected in the roots and rhizomes of the plants. The salt marsh sediment also was capable of reducing acetylene. Additional damage to roots by washing and cutting increased the rate of acetylene reduction with samples incubated in air. Low concentrations of nitrate significantly inhibited the nitrogenase activity associated with the sediment and excised roots, but not with intact plants. Rates of acetylene reduction by excised corn roots were low. Oxidation and endogenous production of ethylene in the absence of acetylene were negligible. Measurements made with excised grass roots as described probably reflect the occurrence and magnitude of nitrogenase activity associated with the plants in the field. PMID:16661045

  18. A porous metal-organic framework with ultrahigh acetylene uptake capacity under ambient conditions

    NASA Astrophysics Data System (ADS)

    Pang, Jiandong; Jiang, Feilong; Wu, Mingyan; Liu, Caiping; Su, Kongzhao; Lu, Weigang; Yuan, Daqiang; Hong, Maochun

    2015-06-01

    Acetylene, an important petrochemical raw material, is very difficult to store safely under compression because of its highly explosive nature. Here we present a porous metal-organic framework named FJI-H8, with both suitable pore space and rich open metal sites, for efficient storage of acetylene under ambient conditions. Compared with existing reports, FJI-H8 shows a record-high gravimetric acetylene uptake of 224 cm3 (STP) g-1 and the second-highest volumetric uptake of 196 cm3 (STP) cm-3 at 295 K and 1 atm. Increasing the storage temperature to 308 K has only a small effect on its acetylene storage capacity (~200 cm3 (STP) g-1). Furthermore, FJI-H8 exhibits an excellent repeatability with only 3.8% loss of its acetylene storage capacity after five cycles of adsorption-desorption tests. Grand canonical Monte Carlo simulation reveals that not only open metal sites but also the suitable pore space and geometry play key roles in its remarkable acetylene uptake.

  19. A porous metal-organic framework with ultrahigh acetylene uptake capacity under ambient conditions

    PubMed Central

    Pang, Jiandong; Jiang, Feilong; Wu, Mingyan; Liu, Caiping; Su, Kongzhao; Lu, Weigang; Yuan, Daqiang; Hong, Maochun

    2015-01-01

    Acetylene, an important petrochemical raw material, is very difficult to store safely under compression because of its highly explosive nature. Here we present a porous metal-organic framework named FJI-H8, with both suitable pore space and rich open metal sites, for efficient storage of acetylene under ambient conditions. Compared with existing reports, FJI-H8 shows a record-high gravimetric acetylene uptake of 224 cm3 (STP) g−1 and the second-highest volumetric uptake of 196 cm3 (STP) cm−3 at 295 K and 1 atm. Increasing the storage temperature to 308 K has only a small effect on its acetylene storage capacity (∼200 cm3 (STP) g−1). Furthermore, FJI-H8 exhibits an excellent repeatability with only 3.8% loss of its acetylene storage capacity after five cycles of adsorption–desorption tests. Grand canonical Monte Carlo simulation reveals that not only open metal sites but also the suitable pore space and geometry play key roles in its remarkable acetylene uptake. PMID:26123775

  20. ABSORPTION CROSS SECTION OF GASEOUS ACETYLENE AT 85 K IN THE WAVELENGTH RANGE 110-155 nm

    SciTech Connect

    Cheng, Bing-Ming; Chen, Hui-Fen; Lu, Hsiao-Chi; Chen, Hong-Kai; Alam, M. S.; Chou, Sheng-Lung; Lin, Meng-Yeh

    2011-09-01

    Absorption spectra and absorption cross sections of gaseous acetylene, C{sub 2}H{sub 2}, at 298 and 85 K were measured in the wavelength range 110-155 nm with a slit-jet system coupled to a synchrotron as a source of vacuum ultraviolet light. Using published spectral parameters of C{sub 2}H{sub 2}, we simulated the absorption profile for the Rydberg transition to state 4R{sub 0} in the range 124.6-125.1 nm, according to which the temperature of the jet-expanded sample at stagnation pressure 200 Torr is 85 {+-} 5 K. Our cross sections of C{sub 2}H{sub 2} are applicable for determining properties sensitive to temperature for diagnostic work on Saturn and Titan.

  1. Wavelength modulation spectroscopy at 1530.32 nm for measurements of acetylene based on Fabry-Perot tunable filter

    NASA Astrophysics Data System (ADS)

    Yun-Long, Li; Bing-Chu, Yang; Xue-Mei, Xu

    2016-02-01

    Sensitive detection of acetylene (C2H2) is performed by absorption spectroscopy and wavelength modulation spectroscopy (WMS) based on Fiber Fabry-Perot tunable filter (FFP-TF) at 1530.32 nm. After being calibrated by Fiber Bragg Grating (FBG), FFP-TF is frequency-multiplexed and modulated at 20 Hz and 2.5 kHz respectively to achieve wavelength modulation. The linearity with 0.9907 fitting coefficient is obtained by measuring different concentrations in a 100 ppmv-400 ppmv range. Furthermore, the stability of the system is analyzed by detecting 50 ppmv and 100 ppmv standard gases for 2 h under room temperature and ambient pressure conditions respectively. The precision of 11 ppmv is achieved by calculating the standard deviation. Therefore, the measuring system of C2H2 detection can be applied in practical applications. Project supported by the National Natural Science Foundation of China (Grant Nos. 61172047 and 61071025).

  2. An improved processible acetylene-terminated polyimide for composites

    NASA Technical Reports Server (NTRS)

    Landis, A. L.; Naselow, A. B.

    1985-01-01

    The newest member of a family of thermosetting acetylene-substituted polyimide oligomers is HR600P. This oligomer is the isoimide version of the oligomer known as HR600P and Thermid 600. Although both types of material yield the same heat resistant end products after cure, HR600P has much superior processing characteristics. This attributed to its lower melting temperature (160 + or - 10 C, 320 + or - 20 F) in contrast to 202 C (396 F) for Thermid MC-600, its longer gel time at its processing temperature (16 to 30 minutes bvs 3 minutes), and its excellent solubility in low boiling solvents such as tetrahydrofuran, glymes, or 4:1 methyl ethyl ketone/toluene mixtures. These advantages provide more acceptable coating and impregnation procedures, allow for more complete removal at lower temperatures, provide a longer pot life or working time, and allow composite structure fabrication in conventional autoclaves used for epoxy composite curing. The excellent processing characteristics of HR600P allow its use in large area laminated structures, structural composites, and molding compositions.

  3. Discovery, Development, and Commercialization of Gold Catalysts for Acetylene Hydrochlorination.

    PubMed

    Johnston, Peter; Carthey, Nicholas; Hutchings, Graham J

    2015-11-25

    Vinyl chloride monomer (VCM) is a major chemical intermediate for the manufacture of polyvinyl chloride (PVC), which is the third most important polymer in use today. Hydrochlorination of acetylene is a major route for the production of vinyl chloride, since production of the monomer is based in regions of the world where coal is abundant. Until now, mercuric chloride supported on carbon is used as the catalyst in the commercial process, and this exhibits severe problems associated with catalyst lifetime and mercury loss. It has been known for over 30 years that gold is a superior catalyst, but it is only now that it is being commercialized. In this Perspective we discuss the use and disadvantages of the mercury catalyst and the advent of the gold catalysts for this important reaction. The nature of the active site and the possible reaction mechanism are discussed. Recent advances in the design and preparation of active gold catalysts containing ultralow levels of gold are described. In the final part, a view to the future of this chemistry will be discussed as well as the possible avenues for the commercial potential of gold catalysis.

  4. Copper-catalyzed chlorination and condensation of acetylene and dichloroacetylene.

    PubMed

    Taylor, P H; Wehrmeier, A; Sidhu, S S; Lenoir, D; Schramm, K W; Kettrup, A

    2000-06-01

    The chlorination and condensation of acetylene at low temperatures is demonstrated using copper chlorides as chlorinated agents coated to model borosilicate surfaces. Experiments with and without both a chlorine source and borosilicate surfaces indicate the absence of gas-phase and gas-surface reactions. Chlorination and condensation occur only in the presence of the copper catalyst. C2 through C8 organic products were observed in the effluent; PCDD/F were only observed from extraction of the borosilicate surfaces. A global reaction model is proposed that is consistent with the observed product distributions. Similar experiments with dichloroacetylene indicate greater reactivity in the absence of the copper catalyst. Reaction is observed in the gas-phase and in the presence of borosilicate surfaces at low temperatures. The formation of hexachlorobenzene is only observed in the presence of a copper catalyst. PCDD/F were only observed from extraction of the borosilicate surfaces. A global reaction model is proposed for the formation of hexachlorobenzene from dichloroacetylene. PMID:10789968

  5. Acetylene fermentation: An Earth-based analog of biological carbon cycling on Titan

    NASA Astrophysics Data System (ADS)

    Miller, L. G.; Baesman, S. M.; Hoeft, S. E.; Kirshtein, J.; Wolf, K.; Voytek, M. A.; Oremland, R. S.

    2009-12-01

    Acetylene (C2H2) is present in part per million quantities in the atmosphere of Titan; conceivably as an intermediate product of methane photolysis. Currently, Earth’s atmosphere contains only trace amounts of C2H2 (~40 pptv), however higher concentrations likely prevailed during the Hadean and early Archean eons (4.5 - 3.5 Ga). We isolated C2H2-fermenting microbes from various aquatic and sedimentary environments. Acetylene fermentation proceeds via acetylene hydratase (AH) through acetaldehyde, which dismutates to ethanol and acetate, and if oxidants are present (e.g., sulfate) eventually to CO2. Thus, the remnants of a C2H2 cycle exists today on Earth but may also occur on Titan and/or Enceladus, both being planetary bodies hypothesized to have liquid water underlying their frozen surfaces. We developed a molecular method for AH by designing PCR primers to target the functional gene in Pelobacter acetylenicus. We used this method to scan new environments for the presence of AH and we employed DNA sequencing of the 16S rRNA gene in order to positively identify pelobacters in environmental samples. Acetylene fermentation was documented in five diverse salt-, fresh-, and ground-water sites. Pelobacter was identified as the genus responsible for acetylene fermentation in some, but not all, of these sites. Successful probing for AH preceded the discovery of acetylene consumption in a contaminated groundwater site, demonstrating the utility of functional gene probing. A pure culture of a C2H2-fermenting pelobacter was obtained from an intertidal mudflat. We also obtained an enrichment culture (co-cultured with a sulfate reducer) from freshwater lake sediments, but neither was pelobacter nor AH detected in this sample, suggesting that an alternative pathway may be involved here. Slurry experiments using these lake sediments either with or without added C2H2 or sulfate showed that sulfate reduction and acetylene fermentation were independent processes. In general, the

  6. The Ratio of Partial Pressure Arterial Oxygen and Fraction of Inspired Oxygen 1 Day After Acute Respiratory Distress Syndrome Onset Can Predict the Outcomes of Involving Patients.

    PubMed

    Lai, Chih-Cheng; Sung, Mei-I; Liu, Hsiao-Hua; Chen, Chin-Ming; Chiang, Shyh-Ren; Liu, Wei-Lun; Chao, Chien-Ming; Ho, Chung-Han; Weng, Shih-Feng; Hsing, Shu-Chen; Cheng, Kuo-Chen

    2016-04-01

    The initial hypoxemic level of acute respiratory distress syndrome (ARDS) defined according to Berlin definition might not be the optimal predictor for prognosis. We aimed to determine the predictive validity of the stabilized ratio of partial pressure arterial oxygen and fraction of inspired oxygen (PaO2/FiO2 ratio) following standard ventilator setting in the prognosis of patients with ARDS.This prospective observational study was conducted in a single tertiary medical center in Taiwan and compared the stabilized PaO2/FiO2 ratio (Day 1) following standard ventilator settings and the PaO2/FiO2 ratio on the day patients met ARDS Berlin criteria (Day 0). Patients admitted to intensive care units and in accordance with the Berlin criteria for ARDS were collected between December 1, 2012 and May 31, 2015. Main outcome was 28-day mortality. Arterial blood gas and ventilator setting on Days 0 and 1 were obtained.A total of 238 patients met the Berlin criteria for ARDS were enrolled, and they were classified as mild (n = 50), moderate (n = 125), and severe (n = 63) ARDS, respectively. Twelve (5%) patients who originally were classified as ARDS did not continually meet the Berlin definition, and a total of 134 (56%) patients had the changes regarding the severity of ARDS from Day 0 to Day 1. The 28-day mortality rate was 49.1%, and multivariate analysis identified age, PaO2/FiO2 on Day 1, number of organ failures, and positive fluid balance within 5 days as significant risk factors of death. Moreover, the area under receiver-operating curve for mortality prediction using PaO2/FiO2 on Day 1 was significant higher than that on Day 0 (P = 0.016).PaO2/FiO2 ratio on Day 1 after applying mechanical ventilator is a better predictor of outcomes in patients with ARDS than those on Day 0.

  7. Daily CO2 partial pressure and CO2 outgassing in the upper Yangtze River basin: a case study of Longchuanjiang, China

    NASA Astrophysics Data System (ADS)

    Li, S. Y.; Lu, X. X.; He, M.; Zhou, Y.; Li, L.; Ziegler, A. D.

    2011-10-01

    Rivers have been under sampled to establish them as sinks or sources of the atmospheric carbon oxide (CO2). Such poor coverage is well known for tropical and sub-tropical, particularly monsoon driven rivers. An unprecedented high-temporal-resolution (daily) sampling during July 2008-August 2009 were conducted from the Longchuanjiang River of the upper Yangtze basin, a subtropical monsoon river in China to reveal the daily-to-seasonal dynamics of the partial pressure of CO2 (pCO2) and CO2 degassing flux from the river. The pCO2 levels were supersaturated in CO2 with respect to atmospheric equilibrium (380 μatm) during the entire survey period with obvious daily and seasonal variations, ranging from 450 to 63 000 μatm with an average of 3900 μatm. pCO2 values in the surface water in the wet season were relatively low, except flooding period in November, due to a dilution effect by heavy rainfall. However, both daily and monthly minimal and maximal pCO2 also occurred in this period. In contrast, the pCO2 levels in the dry season were much higher, mainly resulted from lower pH by anthropogenic activities. Net CO2 flux and pCO2 were strongly correlated with pH, but weakly with water temperature, dissolved inorganic carbon and water discharge, and uncorrelated with particulate nutrients and biogenic elements. The estimated water-to-air CO2 degassing flux in the Longchuanjiang River was about 110 mol m-2 yr-1, with the upper limit of 460 mol m-2 yr-1. Our study also indicated that among the total organic carbon remobilized through soil erosion, around 17% (11 400 t C yr-1) of was emitted to the atmosphere, 52% (35 000 t C yr-1) deposited in the river-reservoirs system and 31% (21 000 t C yr-1) exported further downstream. High spatial and temporal resolution of estimates of CO2 emission from the world large rivers is required due to that catchment characteristics and anthropogenic activities are extremely heterogeneous in space and time.

  8. Assessment of metabolic flux distribution in the thermophilic hydrogen producer Caloramator celer as affected by external pH and hydrogen partial pressure

    PubMed Central

    2014-01-01

    Background Caloramator celer is a strict anaerobic, alkalitolerant, thermophilic bacterium capable of converting glucose to hydrogen (H2), carbon dioxide, acetate, ethanol and formate by a mixed acid fermentation. Depending on the growth conditions C. celer can produce H2 at high yields. For a biotechnological exploitation of this bacterium for H2 production it is crucial to understand the factors that regulate carbon and electron fluxes and therefore the final distribution of metabolites to channel the metabolic flux towards the desired product. Results Combining experimental results from batch fermentations with genome analysis, reconstruction of central carbon metabolism and metabolic flux analysis (MFA), this study shed light on glucose catabolism of the thermophilic alkalitolerant bacterium C. celer. Two innate factors pertaining to culture conditions have been identified to significantly affect the metabolic flux distribution: culture pH and partial pressures of H2 (PH2). Overall, at alkaline to neutral pH the rate of biomass synthesis was maximized, whereas at acidic pH the lower growth rate and the less efficient biomass formation are accompanied with more efficient energy recovery from the substrate indicating high cell maintenance possibly to sustain intracellular pH homeostasis. Higher H2 yields were associated with fermentation at acidic pH as a consequence of the lower synthesis of other reduced by-products such as formate and ethanol. In contrast, PH2 did not affect the growth of C. celer on glucose. At high PH2 the cellular redox state was balanced by rerouting the flow of carbon and electrons to ethanol and formate production allowing unaltered glycolytic flux and growth rate, but resulting in a decreased H2 synthesis. Conclusion C. celer possesses a flexible fermentative metabolism that allows redistribution of fluxes at key metabolic nodes to simultaneously control redox state and efficiently harvest energy from substrate even under unfavorable

  9. Therapeutic Hypothermia Reduces Intracranial Pressure and Partial Brain Oxygen Tension in Patients with Severe Traumatic Brain Injury: Preliminary Data from the Eurotherm3235 Trial.

    PubMed

    Flynn, Liam M C; Rhodes, Jonathan; Andrews, Peter J D

    2015-09-01

    Traumatic brain injury (TBI) is a significant cause of disability and death and a huge economic burden throughout the world. Much of the morbidity associated with TBI is attributed to secondary brain injuries resulting in hypoxia and ischemia after the initial trauma. Intracranial hypertension and decreased partial brain oxygen tension (PbtO2) are targeted as potentially avoidable causes of morbidity. Therapeutic hypothermia (TH) may be an effective intervention to reduce intracranial pressure (ICP), but could also affect cerebral blood flow (CBF). This is a retrospective analysis of prospectively collected data from 17 patients admitted to the Western General Hospital, Edinburgh. Patients with an ICP >20 mmHg refractory to initial therapy were randomized to standard care or standard care and TH (intervention group) titrated between 32°C and 35°C to reduce ICP. ICP and PbtO2 were measured using the Licox system and core temperature was recorded through rectal thermometer. Data were analyzed at the hour before cooling, the first hour at target temperature, 2 consecutive hours at target temperature, and after 6 hours of hypothermia. There was a mean decrease in ICP of 4.3±1.6 mmHg (p<0.04) from 15.7 to 11.4 mmHg, from precooling to the first epoch of hypothermia in the intervention group (n=9) that was not seen in the control group (n=8). A decrease in ICP was maintained throughout all time periods. There was a mean decrease in PbtO2 of 7.8±3.1 mmHg (p<0.05) from 30.2 to 22.4 mmHg, from precooling to stable hypothermia, which was not seen in the control group. This research supports others in demonstrating a decrease in ICP with temperature, which could facilitate a reduction in the use of hyperosmolar agents or other stage II interventions. The decrease in PbtO2 is not below the suggested treatment threshold of 20 mmHg, but might indicate a decrease in CBF.

  10. Dynamics of CO2 partial pressure and CO2 outgassing in the lower reaches of the Xijiang River, a subtropical monsoon river in China.

    PubMed

    Yao, Guanrong; Gao, Quanzhou; Wang, Zhengang; Huang, Xiakun; He, Tong; Zhang, Yongling; Jiao, Shulin; Ding, Jian

    2007-04-15

    The partial pressure of carbon dioxide (pCO(2)) in surface water was surveyed monthly at 6 sampling sites along the entire length of the lower reaches of the Xijiang River, a subtropical monsoon river in China, and at the mouths of its major tributaries, over a whole hydrological year from April 2005 to March 2006, to reveal the seasonal and spatial dynamics of pCO(2). Intensive sampling and measurements were also conducted at Wuzhou gauge station in June and July to investigate the impact of floodwater on pCO(2) and to further explore the relationship between river discharge and pCO(2). The pCO(2) levels were well above atmospheric equilibrium (380 microatm) during the entire survey period with obvious seasonal and spatial variations, ranging from 600 microatm to 7200 microatm for the mainstream and from 700 to 11000 microatm for tributaries, respectively. The pattern of pCO(2) seasonal variation across 6 sites was almost consistent with each other with little difference. The pCO(2) levels in the dry season were relatively low, with relatively slight temporal and spatial fluctuations that were predominantly controlled by in situ biogenic activities. While the pCO(2) in the wet season greatly varied with river discharge, both annual maximum and minimum pCO(2) levels occurring in this period. The much higher pCO(2) in the early wet season were mainly induced by increasing baseflow and interflow that flushed significant soil CO(2) into the streams, whereas the lower pCO(2) observed after floods from July to September, some even lower than pCO(2) levels in the dry season, potentially resulted from in situ plankton blooms. The annual minima pCO(2) levels occurring in this period were caused by the dilution effect of floodwater. There was no obvious downstream trend in pCO(2) variation during the whole survey period, probably a consequence of disturbance from tributaries or spatially distinct channel characteristics and water environments. Based on measurements, we

  11. The Role of Oxygen Partial Pressure in Controlling the Phase Composition of La1- x Sr x Co y Fe1- y O3- δ Oxygen Transport Membranes Manufactured by Means of Plasma Spray-Physical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Marcano, D.; Mauer, G.; Sohn, Y. J.; Vaßen, R.; Garcia-Fayos, J.; Serra, J. M.

    2016-04-01

    La0.58Sr0.4Co0.2Fe0.8O3 - δ (LSCF) deposited on a metallic porous support by plasma spray-physical vapor deposition is a promising candidate for oxygen-permeation membranes. Ionic transport properties are regarded to depend on the fraction of perovskite phase present in the membrane. However, during processing, the LSCF powder decomposes into perovskite and secondary phases. In order to improve the ionic transport properties of the membranes, spraying was carried out at different oxygen partial pressures p(O2). It was found that coatings deposited at lower and higher oxygen partial pressures consist of 70% cubic/26% rhombohedral and 61% cubic/35% rhombohedral perovskite phases, respectively. During annealing, the formation of non-perovskite phases is driven by oxygen non-stoichiometry. The amount of oxygen added during spraying can be used to increase the perovskite phase fraction and suppress the formation of non-perovskite phases.

  12. Activity and Activity Coefficient of Iron Oxides in the Liquid FeO-Fe2O3-CaO-SiO2 Slag Systems at Intermediate Oxygen Partial Pressures

    NASA Astrophysics Data System (ADS)

    Henao, Hector M.; Itagaki, Kimio

    2007-10-01

    At present, there is a scarcity of data on the activities of iron oxides in the FeO-Fe2O3-CaO-SiO2 slag system at intermediate oxygen partial pressures and temperatures relevant to sulfide smelting and nonferrous metallurgy. The present study provides relevant data at temperatures between 1573 and 1673 K and partial pressures of oxygen between 10-9 and 10-4 atm. The experiments were carried out by equilibrating the slag in a CO-CO2 gas mixture in a platinum crucible, after which the phases of all the experimental samples, including the platinum foil, were analyzed by electron probe microanalysis (EPMA). Where only liquid phase or liquid phase and tridymite (SiO2) were observed, wet chemical analysis was used to determine the ratio of (mass pct Fe2+)/(mass pct Fe3+). Activity and activity coefficients for FeO (liquid) and FeO1.33 (solid) were calculated. Tendencies of the effect of the (CaO/SiO2) ratio, temperature, and oxygen partial pressure on these thermochemical quantities are discussed in this article.

  13. Infrared Spectra and Optical Constants of Acetylene and Ethane Ices

    NASA Astrophysics Data System (ADS)

    Moore, Marla H.; Ferrante, R. F.; Hudson, R. L.; Moore, W. J.

    2012-10-01

    Hydrocarbon-containing ices have characteristic absorption bands in both the mid- and near-infrared spectral regions, yet accurate optical constants are not available for most of these molecules. Ices with a hydrocarbon component have been identified on several TNOs (1) and the presence of volatiles, such as hydrocarbons, is inferred for intermediate or large TNOs based on sublimation models (2, 3). In our laboratory we recently have undertaken low-temperature spectroscopic studies of C2 hydrocarbons. We report IR spectra for acetylene (C2H2) and ethane (C2H6) ice in both the amorphous and crystalline phases at multiple temperatures. We include measurements of the refractive index at 670 nm for both the amorphous and crystalline phases of each ice. The optical constants, the real (n) and imaginary (k) components of the complex index of refraction, were determined from 7000 - 400 cm-1 (1.4 - 25 microns) at multiple temperatures using a Kramers-Kronig analysis. A goal of the present work is to provide a data base of optical constants of C2 molecules similar to that of Hudgins et al. (4) and Moore et al. (5). These values, as well as our calculated individual band strengths, will have great practical importance for the ongoing analysis of TNO spectra. (1) Brown, M.E. et al., Astron J., 133, 284, 2007. (2) Delsanti, A. et al., A&A, 52, A40, 2010. (3) Schaller, E. L. & Brown, M. E., ApJ, 659, L61, 2007. (4) Hudgins, D. M. et al., ApJS, 86, 713, 1993. (5) Moore, M. H. et al., ApJS, 191, 96, 2010. This work is supported by NASA’s Planetary Atmospheres, Outer Planets, and Cassini Data Analysis programs, and The Goddard Center for Astrobiology.

  14. Pressure (Or No Royal Road)

    ERIC Educational Resources Information Center

    Bradley, J.

    1973-01-01

    Discusses how difficult the various problems of pressure, partial pressure, gas laws, and vapor pressure are for students. Outlines the evolution of the concept of pressure, the gas equation for a perfect gas, partial pressures, saturated vapor pressure, Avogadro's hypothesis, Raoult's law, and the vapor pressure of ideal solutions. (JR)

  15. Acetylene Fermentation: Relevance to Primordial Biogeochemistry and the Search for Life in the Outer Solar System

    NASA Astrophysics Data System (ADS)

    Oremland, R. S.; Baesman, S. M.; Miller, L. G.

    2013-12-01

    Acetylene is a highly reactive component of planet(oid)s with anoxic, methane-rich atmospheres, such as Jupiter, Saturn, Titan, and perhaps the primordial Earth. Included in this group is Enceladus, although it is not clear if the acetylene detected within its jets by Cassini was formed by photolysis of methane, from thermo-catalysis of organic matter in the orb's interior, or a fragmentation artifact of the mass spectrum of a larger hydrocarbon. Acetylene inhibits many microbial processes (e.g., methanogenesis, methane oxidation, hydrogen metabolism, denitrification) yet a number of anaerobes can use it as a carbon and energy source to support growth. The best studied is Pelobacter acetylenicus, which carries out a two-step reaction involving the enzymes acetylene hydratase and acetaldehyde dismutase. The former, a low potential W-containing enzyme, forms acetaldehyde while the latter produces ethanol and acetate. Metabolism of acetylene by mixed microbial communities (sediments and/or enrichment cultures) produces these intermediates, and when coupled with sulfate-reduction or methanogenesis respectively forms CO2 or an equal mixtures of CO2 plus CH4. It is not inconceivable that such an anaerobic, microbial food chain could exist in the waters beneath the ice cap of Enceladus, Titan, or even in the mesothermal atmospheric regions of the gas giants. Detection of the identified intermediate products of acetylene fermentation, namely acetaldehyde, ethanol, acetate and formate in the atmospheres of these planet(oid)s would constitute evidence for a microbial life signature. This evidence would be strongly reinforced if a stable carbon isotope fractionation was identified as well, whereby the products of acetylene fermentation were enriched in 12C relative to 13C (i.e., had a lighter δ13C signal) when compared to that of the starting acetylene. The most practical target to test this hypothesis would be Enceladus (if the detected acetylene is shown to be a real

  16. Acetylene fuels reductive dechlorination of TCE by Dehalococcoides/Pelobacter-containing microbial consortia

    NASA Astrophysics Data System (ADS)

    Oremland, R. S.; Mao, X.; Mahandra, C.; Baesman, S. M.; Gushgari, S.; Alvarez-Cohen, L.; Liu, T.

    2015-12-01

    Groundwater contamination by trichloroethene (TCE) poses a threat to health and leads to the generation of vinyl chloride (VC), a carcinogen. Dehalococcoides mccartyi is the only bacterium that can completely dechlorinate TCE to ethene (C2H4). Acetylene (C2H2) occurs in TCE-contaminated sites as a consequence of chemical degradation of TCE. Yet acetylene inhibits a variety of microbial processes including methanogesis and reductive dechlorination. Pelobacter acetylenicus and related species can metabolize acetylene via acetylene hydratase and acetaldehyde dismutatse thereby generating acetate and H2 as endproducts, which could serve as electron donor and carbon source for growth of D. mccartyi. We found that 1mM acetylene (aqueous) inhibits growth of D. mccartyi strain 195 on 0.3 mM TCE, but that the inhibition was removed after 12 days with the addition of an acetylene-utilizing isolate from San Francisco Bay, Pelobacter strain SFB93. TCE did not inhibit the growth of this Pelobacter at the concentrations tested (0.1-0.5 mM) and TCE was not consumed by strain SFB93. Co-cultures of strain 195 with strain SFB93 at 5% inoculation were established in 120 mL serum bottles containing 40 mL defined medium. TCE was supplied at a liquid concentration of 0.1 mM, with 0.1 mM acetylene and N2/CO2 (90:10 v/v) headspace at 34 °C. Co-cultures were subsequently transferred (5% vol/vol inoculation) to generate subcultures after 20 μmol TCE was reduced to VC and 36 μmol acetylene was depleted. Aqueous H2 ranged from 114 to 217 nM during TCE-dechlorination, and the cell yield of strain 195 was 3.7 ±0.3 × 107 cells μmol-1 Cl- released. In a D. mccartyi-containing enrichment culture (ANAS) under the same conditions as above, it was found that inhibition of dechlorination by acetylene was reversed after 19 days by adding SFB93. Thus we showed that a co-culture of Pelobacter SFB93 and D. mccartyi 195 could be maintained with C2H2 as the electron donor and carbon source while TCE

  17. Ionization of large homogeneous and heterogeneous clusters generated in acetylene-Ar expansions: Cluster ion polymerization

    SciTech Connect

    Kocisek, J.; Lengyel, J.; Farnik, M.

    2013-03-28

    Pure acetylene and mixed Ar-acetylene clusters are formed in supersonic expansions of acetylene/argon mixtures and analysed using reflectron time-of-flight mass spectrometer with variable electron energy ionization source. Acetylene clusters composed of more than a hundred acetylene molecules are generated at the acetylene concentration of Almost-Equal-To 8%, while mixed species are produced at low concentrations ( Almost-Equal-To 0.7%). The electron energy dependence of the mass spectra revealed the ionization process mechanisms in clusters. The ionization above the threshold for acetylene molecule of 11.5 eV results in the main ionic fragment progression (C{sub 2}H{sub 2}){sub n}{sup +}. At the electron energies Greater-Than-Or-Slanted-Equal-To 21.5 eV above the CH+CH{sup +} dissociative ionization limit of acetylene the fragment ions nominally labelled as (C{sub 2}H{sub 2}){sub n}CH{sup +}, n Greater-Than-Or-Slanted-Equal-To 2, are observed. For n Less-Than-Or-Slanted-Equal-To 7 these fragments correspond to covalently bound ionic structures as suggested by the observed strong dehydrogenation [(C{sub 2}H{sub 2}){sub n}-k Multiplication-Sign H]{sup +} and [(C{sub 2}H{sub 2}){sub n}CH -k Multiplication-Sign H]{sup +}. The dehydrogenation is significantly reduced in the mixed clusters where evaporation of Ar instead of hydrogen can stabilize the nascent molecular ion. The C{sub 3}H{sub 3}{sup +} ion was previously assigned to originate from the benzene molecular ion; however, the low appearance energy of Almost-Equal-To 13.7 eV indicates that a less rigid covalently bound structure of C{sub 6}H{sub 6}{sup +} ion must also be formed upon the acetylene cluster electron ionization. The appearance energy of Ar{sub n}(C{sub 2}H{sub 2}){sup +} fragments above Almost-Equal-To 15.1 eV indicates that the argon ionization is the first step in the fragment ion production, and the appearance energy of Ar{sub n{>=}2}(C{sub 2}H{sub 2}){sub m{>=}2}{sup +} at Almost-Equal-To 13

  18. Flexible band gap tuning of hexagonal boron nitride sheets interconnected by acetylenic bonds.

    PubMed

    Zhang, Hongyu; Luo, Youhua; Feng, Xiaojuan; Zhao, Lixia; Zhang, Meng

    2015-08-21

    The energetic and electronic properties of acetylenic-bond-interconnected hexagonal boron nitride sheets (BNyne), in which the number of rows of BN hexagonal rings (denoted as BN width) between neighboring arrays of acetylenic linkages increases consecutively, have been explored using first-principles calculations. Depending on the spatial position of B/N atoms with respect to the acetylenic linkages, there are two different types of configurations. The band structure features and band gap evolutions of BNyne structures as a function of the BN width can be categorized into two families, corresponding to two distinct types of configurations. In particular, for both types of BNyne structures, the band gap variations exhibit odd-even oscillating behavior depending on the BN width, which is related to the different symmetries of acetylenic chains in the unit cell. These results suggest that the embedded linear acetylenic chains can provide more flexibility for manipulation of the atomic and electronic properties of hexagonal boron nitride. These sp-sp(2) hybrid structures might promise importantly potential applications for developing nanoscale electronic and optoelectronic devices. PMID:26194068

  19. Mid-Infrared Pumped Laser-Induced Thermal Grating Spectroscopy for Detection of Acetylene in the Visible Spectral Range.

    PubMed

    Sahlberg, Anna-Lena; Kiefer, Johannes; Aldén, Marcus; Li, Zhongshan

    2016-06-01

    We present mid-infrared laser-induced thermal grating spectroscopy (IR-LITGS) using excitation radiation around 3 µm generated by a simple broadband optical parametric oscillator (OPO). Acetylene as a typical small hydrocarbon molecule is used as an example target species. A mid-infrared broadband OPO pumped by the fundamental output of a neodymium-doped yttrium aluminum garnet (Nd:YAG) laser was used to generate the pump beams, with pulse energies of 6-10 mJ depending on the wavelength. The line width of the OPO idler beam was ∼5 cm(-1), which is large enough to cover up to six adjacent acetylene lines. The probe beam was the radiation of a 532 nm cw solid state laser with 190 mW output power. Signals were generated in atmospheric pressure gas flows of N2, air, CO2 and Ar with small admixtures of C2H2 A detection limit of less than 300 ppm was found for a point measurement of C2H2 diluted in N2 As expected, the oscillation frequency of the IR-LITGS signal was found to have a large dependency on the buffer gas, which allows determination of the speed of sound. Moreover, the results reveal a very strong collisional energy exchange between C2H2 and CO2 compared to the other gases. This manifests as significant local heating. In summary, the MIR-LITGS technique enables spectroscopy of fundamental vibrational transitions in the infrared via detection in the visible spectral range. PMID:27091904

  20. An Experimental and Theoretical Study of Nitrogen-Broadened Acetylene Lines

    NASA Technical Reports Server (NTRS)

    Thibault, Franck; Martinez, Raul Z.; Bermejo, Dionisio; Ivanov, Sergey V.; Buzykin, Oleg G.; Ma, Qiancheng

    2014-01-01

    We present experimental nitrogen-broadening coefficients derived from Voigt profiles of isotropic Raman Q-lines measured in the 2 band of acetylene (C2H2) at 150 K and 298 K, and compare them to theoretical values obtained through calculations that were carried out specifically for this work. Namely, full classical calculations based on Gordon's approach, two kinds of semi-classical calculations based on Robert Bonamy method as well as full quantum dynamical calculations were performed. All the computations employed exactly the same ab initio potential energy surface for the C2H2N2 system which is, to our knowledge, the most realistic, accurate and up-to-date one. The resulting calculated collisional half-widths are in good agreement with the experimental ones only for the full classical and quantum dynamical methods. In addition, we have performed similar calculations for IR absorption lines and compared the results to bibliographic values. Results obtained with the full classical method are again in good agreement with the available room temperature experimental data. The quantum dynamical close-coupling calculations are too time consuming to provide a complete set of values and therefore have been performed only for the R(0) line of C2H2. The broadening coefficient obtained for this line at 173 K and 297 K also compares quite well with the available experimental data. The traditional Robert Bonamy semi-classical formalism, however, strongly overestimates the values of half-width for both Qand R-lines. The refined semi-classical Robert Bonamy method, first proposed for the calculations of pressure broadening coefficients of isotropic Raman lines, is also used for IR lines. By using this improved model that takes into account effects from line coupling, the calculated semi-classical widths are significantly reduced and closer to the measured ones.

  1. Chromophores from Photolyzed Ammonia Reacting with Acetylene: Application to Jupiter’s Great Red Spot

    NASA Astrophysics Data System (ADS)

    Carlson, Robert W.; Baines, K. H.; Anderson, M. S.; Filacchione, G.

    2012-10-01

    The production mechanisms of chromophores at Jupiter, and notably at the Great Red Spot (GRS), have been long-standing puzzles. A clue to the formation of the GRS coloring agent may be the great height of this storm, which can upwell ammonia to pressure levels of a few hundred mbar where solar photons capable of dissociating NH3 penetrate. Acetylene formed at higher altitudes can diffuse down and react with the NH3 photodissociation products, forming a deposit that absorbs in the ultraviolet and visible region (Ferris and Ishikawa, J. Amer. Chem. Soc. 110, 4306-4312, 1988). We have investigated the system NH3 + C2H2 + CH4 using a Zn lamp emitting at 214 nm to produce NH2 + H and subsequent reaction products. The deposits produced in these reactions were analyzed by optical and infrared spectroscopy and soft-ionization (He*) time-of-flight mass spectroscopy. The combination of NH3 + CH4 produced no visibly absorbing material, but NH3 + C2H2 and NH3 + C2H2 + CH4 mixtures both produced a yellow-orange film whose transmission spectra are similar to that of the GRS obtained by Cassini VIMS. Infrared spectra show a strong band at 2056 wavenumbers which may arise from nitrile (-CN), isonitrile (-NC), or diazide (-CNN) functional groups. The high-resolution mass spectra are consistent with compounds of the form CnH2n+1Nm, similar to the products formed in NH3 + CH4 spark discharges (Molton and Ponnamperuma, Icarus 21, 166-174, 1974). We thank NASA's Planetary Atmospheres Program for support.

  2. Highly enantioselective reductive cyclization of acetylenic aldehydes via rhodium catalyzed asymmetric hydrogenation.

    PubMed

    Rhee, Jong Uk; Krische, Michael J

    2006-08-23

    Catalytic hydrogenation of acetylenic aldehydes 1a-12a using chirally modified cationic rhodium catalysts enables highly enantioselective reductive cyclization to afford cyclic allylic alcohols 1b-12b. Using an achiral hydrogenation catalyst, the chiral racemic acetylenic aldehydes 13a-15a engage in highly syn-diastereoselective reductive cyclizations to afford cyclic allylic alcohols 13b-15b. Ozonolysis of cyclization products 7b and 9b allows access to optically enriched alpha-hydroxy ketones 7c and 9c. Reductive cyclization of enyne 7a under a deuterium atmosphere provides the monodeuterated product deuterio-7b, consistent with a catalytic mechanism involving alkyne-carbonyl oxidative coupling followed by hydrogenolytic cleavage of the resulting oxametallacycle. These hydrogen-mediated transformations represent the first examples of the enantioselective reductive cyclization of acetylenic aldehydes. PMID:16910650

  3. Examining the impact of acetylene on N-fixation and the active sediment microbial community

    PubMed Central

    Fulweiler, Robinson W.; Heiss, Elise M.; Rogener, Mary Kate; Newell, Silvia E.; LeCleir, Gary R.; Kortebein, Sarah M.; Wilhelm, Steven W.

    2015-01-01

    Here we examined the impact of a commonly employed method used to measure nitrogen fixation, the acetylene reduction assay (ARA), on a marine sediment community. Historically, the ARA technique has been broadly employed for its ease of use, in spite of numerous known artifacts. To gauge the severity of these effects in a natural environment, we employed high-throughput 16S rRNA gene sequencing to detect differences in acetylene-treated sediments vs. non-treated control sediments after a 7 h incubation. Within this short time period, significant differences were seen across all activity of microbes identified in the sediment, implying that the changes induced by acetylene occur quickly. The results have important implications for our understanding of marine nitrogen budgets. Moreover, because the ARA technique has been widely used in terrestrial and freshwater habitats, these results may be applicable to other ecosystems. PMID:26029177

  4. Deactivation mechanisms for Pd/Al{sub 2}O{sub 3} acetylene hydrogenation catalysts

    SciTech Connect

    Hall, J.B.; Huggins, B.J.; Meyers, B.L.; Kaminsky, M.P.

    1994-12-31

    The selective hydrogenation of acetylenic impurities to ethylene is a crucial purification step in the production of olefins by steam cracking. This hydrogenation is done catalytically using a Pd/Al{sub 2}O{sub 3} catalyst in a fixed bed reactor. The designed lifetime of the catalyst in a front end acetylene converter is about 4 years. Accelerated catalyst deactivation and thermal runaways caused by loss in catalyst selectivity are common problems which plague acetylene converters. Such problems result in unscheduled shutdowns and increased costs to replace deactivated catalyst. This presentation outlines several deactivation mechanisms of the catalyst and discusses how they affect catalyst lifetime and performance. Catalyst characterization using electron microscopy and CO chemisorption provides information on how poisons deteriorate the catalyst and Pd particle size changes produced by use and regeneration. Thermal gravimetric analysis was also used to determine the extent of coke burn-off using less severe regeneration procedures.

  5. Quantum Dynamics of Vinylidene Photodetachment on an Accurate Global Acetylene-Vinylidene Potential Energy Surface.

    PubMed

    Guo, Lifen; Han, Huixian; Ma, Jianyi; Guo, Hua

    2015-08-01

    Vinylidene is a high-energy isomer of acetylene, and the rearrangement of bonds in the two species serves as a prototype for isomerization reactions. Here, a full-dimensional quantum mechanical study of the vinylidene vibration is carried out on a recently developed global acetylene-vinylidene potential energy surface by simulating the photodetachment dynamics of the vinylidene anion. Several low-lying vibrational levels of the anion were first determined on a new ab initio based potential energy surface, and their photoelectron spectra were obtained within the Condon approximation. The vibrational features of the vinylidene isomer are found to agree well with the experiment in both positions and intensities, validating the global acetylene-vinylidene potential energy surface.

  6. High pressure effects on U L3 x-ray absorption in partial fluorescence yield mode and single crystal x-ray diffraction in the heavy fermion compound UCd11

    NASA Astrophysics Data System (ADS)

    Nasreen, Farzana; Antonio, Daniel; VanGennep, Derrick; Booth, Corwin H.; Kothapalli, Karunakar; Bauer, Eric D.; Sarrao, John L.; Lavina, Barbara; Iota-Herbei, Valentin; Sinogeikin, Stanislav; Chow, Paul; Xiao, Yuming; Zhao, Yusheng; Cornelius, Andrew L.

    2016-03-01

    We report a study of high pressure x-ray absorption (XAS) performed in the partial fluorescence yield mode (PFY) at the U L3 edge (0-28.2 GPa) and single crystal x-ray diffraction (SXD) (0-20 GPa) on the UCd11 heavy fermion compound at room temperature. Under compression, the PFY-XAS results show that the white line is shifted by  +4.1(3) eV at the highest applied pressure of 28.2 GPa indicating delocalization of the 5f electrons. The increase in full width at half maxima and decrease in relative amplitude of the white line with respect to the edge jump point towards 6d band broadening under high pressure. A bulk modulus of K 0  =  62(1) GPa and its pressure derivative, K0\\prime   =  4.9(2) was determined from high pressure SXD results. Both the PFY-XAS and diffraction results do not show any sign of a structural phase transition in the applied pressure range.

  7. Estimation of nitrogenase activity in the presence of ethylene biosynthesis by use of deuterated acetylene as a substrate.

    PubMed Central

    Lin-Vien, D; Fateley, W G; Davis, L C

    1989-01-01

    Nitrogenase reduces deuterated acetylene primarily to cis dideuterated ethylene. This can be distinguished from undeuterated ethylene by the use of Fourier transform infrared spectroscopy. Characteristic bands in the region from 800 to 3,500 cm-1 can be used to identify and quantitate levels of these products. This technique is applicable to field studies of nitrogen fixation where ethylene biosynthesis by plants or bacteria is occurring. We have verified the reaction stoichiometry by using Klebsiella pneumoniae and Bradyrhizobium japonicum in soybeans. The most useful bands for quantitation of substrate purity and product distribution are as follows: acetylene-d0, 3,374 cm-1; acetylene-d1, 2,584 cm-1; acetylene-d2, 2,439 cm-1; cis-ethylene-d2, 843 cm-1; trans-ethylene-d2, 988 cm-1; ethylene-d1, 943 cm-1; ethylene-d0, 949 cm-1. (The various deuterated ethylenes and acetylenes are designated by a lowercase d and subscript to indicate the number, but not the position, of deuterium atoms in the molecule.) Mass spectrometry coupled to a gas chromatograph system has been used to assist in quantitation of the substrate and product distributions. Significant amounts of trans-ethylene-d2 were produced by both wild-type and nifV mutant K. pneumoniae. Less of this product was observed with the soybean system. PMID:2655535

  8. Estimation of nitrogenase activity in the presence of ethylene biosynthesis by use of deuterated acetylene as a substrate

    SciTech Connect

    Lin-Vien, D.; Fateley, W.G.; Davis, L.C. )

    1989-02-01

    Nitrogenase reduces deuterated acetylene primarily to cis dideuterated ethylene. This can be distinguished from undeuterated ethylene by the use of Fourier transform infrared spectroscopy. Characteristic bands in the region from 800 to 3,500 cm-1 can be used to identify and quantitate levels of these products. This technique is applicable to field studies of nitrogen fixation where ethylene biosynthesis by plants or bacteria is occurring. We have verified the reaction stoichiometry by using Klebsiella pneumoniae and Bradyrhizobium japonicum in soybeans. The most useful bands for quantitation of substrate purity and product distribution are as follows: acetylene-d0, 3,374 cm-1; acetylene-d1, 2,584 cm-1; acetylene-d2, 2,439 cm-1; cis-ethylene-d2, 843 cm-1; trans-ethylene-d2, 988 cm-1; ethylene-d1, 943 cm-1; ethylene-d0, 949 cm-1. (The various deuterated ethylenes and acetylenes are designated by a lowercase d and subscript to indicate the number, but not the position, of deuterium atoms in the molecule.) Mass spectrometry coupled to a gas chromatograph system has been used to assist in quantitation of the substrate and product distributions. Significant amounts of trans-ethylene-d2 were produced by both wild-type and nifV mutant K. pneumoniae. Less of this product was observed with the soybean system.

  9. Heats of Formation of Triplet Ethylene, Ethylidene, and Acetylene

    SciTech Connect

    Nguyen, M.T.; Matus, M.H.; Lester Jr, W.A.; Dixon, David A.

    2007-06-28

    Heats of formation of the lowest triplet state of ethylene and the ground triplet state of ethylidene have been predicted by high level electronic structure calculations. Total atomization energies obtained from coupled-cluster CCSD(T) energies extrapolated to the complete basis set limit using correlation consistent basis sets (CBS), plus additional corrections predict the following heats of formation in kcal/mol: Delta H0f(C2H4,3A1) = 80.1 at 0 K and 78.5 at 298 K, and Delta H0f(CH3CH,3A") = 86.8 at 0 K and 85.1 at 298 K, with an error of less than +-1.0 kcal/mol. The vertical and adiabatic singlet-triplet separation energies of ethylene were calculated as Delta ES-T,vert = 104.1 and Delta ES-T,adia = 65.8 kcal/mol. These results are in excellent agreement with recent quantum Monte Carlo (DMC) values of 103.5 +- 0.3 and 66.4 +- 0.3 kcal/mol. Both sets of computational values differ from the experimental estimate of 58 +- 3 kcal/mol for the adiabatic splitting. The computed singlet-triplet gap at 0 K for acetylene is Delta ES-T,adia(C2H2) = 90.5 kcal/mol, which is in notable disagreement with the experimental value of 82.6 kcal/mol. The heat of formation of the triplet is Delta H0f(C2H2,3B2) = 145.3 kcal/mol. There is a systematic underestimation of the singlet-triplet gaps in recent photodecomposition experiments by ~;;7 to 8 kcal/mol. For vinylidene, we predict Delta H0f(H2CC,1A1) = 98.8 kcal/mol at 298 K (exptl. 100.3 +- 4.0), Delta H0f(H2CC,3B2) = 146.2 at 298 K, and an energy gap Delta ES-T-adia(H2CC) = 47.7 kcal/mol.

  10. Simulations of shock-induced mixing& combustion of an acetylene cloud in a chamber

    SciTech Connect

    Bell, J B; Day, M S; Beckner, V E; Kuhl, A L; Neuwald, P; Reichenbach, H

    2001-02-06

    In this paper we present numerical simulations of the interaction of a blast wave with an acetylene bubble in a closed chamber. We model the system using the inviscid Euler equations for a mixture of ideal gases. The formulation specifies the thermodynamic behavior of the system using a Chemkin interface and includes the capability to model combustion as the ambient air mixes with the acetylene. The simulations are performed using a three-dimensional adaptive mesh refinement algorithm based on a second-order Godunov integration scheme. Simulations are compared with experimental measurements for the same configuration.

  11. Synthesis of micro- and nanodiamonds by the method of oxy- acetylene combustion flame

    NASA Astrophysics Data System (ADS)

    Sabitov, S.; Mansurov, B.; Medyanova, B.; Partizan, G.; Koshanova, A.; Merkibayev, Ye; Mansurova, M.; Lesbayev, B.

    2016-08-01

    This work presents the results of experiments on synthesis of micro- and nanodiamonds by the method of oxy-acetylene torch on the surface of pre-deposited copper thin films. The influence of the thickness of the buffer copper film and the concentration ratio of oxygen and acetylene on the structure formation of the deposited samples was investigated during performed experiments. Studies by Raman scattering and scanning electron microscopy showed that the synthesis of micro- and nano-diamonds occurs under certain experimental conditions.

  12. Acetylene- and Phenylacetylene-Terminated Poly(Arylene Ether Benzimidazole)s (PAEBI's)

    NASA Technical Reports Server (NTRS)

    Connell, John W.; Hergenrother, Paul M.; Smith, Joseph G., Jr.

    1994-01-01

    Polymers prepared by first synthesizing polymers terminated with hydroxy groups, then reacting them with either 4-ethynylbenzoyl chloride or 4-fluoro-4'-phenylethynylbenzophenone. Endcapped polymers thermally cured to yield materials with attractive combination of properties. Cured acetylene-and phenylacetylene-terminated PAEBI's exhibit higher glass-transition temperatures and better retention of mechanical properties at high temperatures. Cured acetylene- and phenylacetylene-terminated polymers exhibit excellent adhesion to copper foil and polyimide film. Potentially useful as adhesives, coatings, composite matrices, fibers, films, membranes, and moldings.

  13. Application of an oxygen-shielded air-acetylene flame to atomic spectroscopy.

    PubMed

    Stephens, R

    1973-08-01

    A burner has been designed which provides an oxygen-shielded air-acetylene flame for atomic-absorption work. The chemical reducing properties of the oxygen-shielded flame operated under fuel-rich conditions are enhanced by the higher C: O ratio obtainable in the flame and by the higher flame temperature just above the reaction zone. The flame is inherently essentially free from the risk of flashback, and is offered as an alternative to the nitrous oxide-acetylene flame for use with certain types of equipment and for particular applications.

  14. Strength and ductility of room-dry and water-saturated igneous rocks at low pressures and temperatures to partial melting. Final report

    SciTech Connect

    Friedman, M.; Handin, J.; Higgs, N.G.; Lantz, J.R.; Bauer, S.J.

    1980-11-01

    Rock types that are likely candidates for drilling were tested. Reported herein are the short-time ultimate strengths and ductilities determined at temperatures of 25/sup 0/ to 1050/sup 0/C and a strain rate of 10/sup -4/s/sup -1/ of (a) room-dry Mt. Hood Andesite, Cuerbio Basalt, and Charcoal (St. Cloud Gray) Granodiorite at confining pressures of 0, 50, and 100 MPa, (b) water-saturated specimens of the same three rocks at zero effective pressure (both pore and confining pressures of 50 MPa), and (c) room-dry Newberry Rhyolite Obsidian at 0 and 50 MPa. These strengths are then compared with the stresses developed at the wall of a borehole in an elastic medium at the appropriate temperatures and mean pressures to assess the problem of borehole stability. (MHR)

  15. Near-infrared spectra of liquid/solid acetylene under Titan relevant conditions and implications for Cassini/VIMS detections

    NASA Astrophysics Data System (ADS)

    Singh, S.; Cornet, T.; Chevrier, V. F.; Combe, J.-Ph.; McCord, T. B.; Roe, L. A.; Le Mouélic, S.; Le Menn, E.; Wasiak, F. C.

    2016-05-01

    Acetylene is thought to be abundant on Titan according to most photochemical models. While detected in the atmosphere, its likely presence at the surface still lacks physical evidence. It is thought that solid acetylene could be a major component of Titan's lakes shorelines and dry lakebed, detected as the 5 μm-bright deposits with the Cassini/VIMS instrument. Acetylene could also be present under its liquid form as dissolved solids in Titan's methane-ethane lakes, as emphasized by thermodynamics studies. This paper is devoted to the near-infrared spectroscopy study of acetylene under solid and liquid phases between 1 and 2.2 μm, synthesized in a Titan simulation chamber that is able to reproduce extreme temperature conditions. From experiments, we observed a ∼10% albedo increase between liquid acetylene at 193-188 K and solid acetylene at 93 K. Using the NIR spectroscopy technique we successfully calculated the reflectivity ratio of solid/liquid acetylene as 1.13. The second difference we observed between liquid and solid acetylene is a shift in the major absorption band detected at 1.54 μm, the shift of ∼0.01 μm occurring toward higher wavelength. In order to assess the detectability of acetylene on Titan using the Cassini/VIMS instrument, we adapted our spectra to the VIMS spectral resolution. The spectral band at 1.55 μm and a negative slope at 2.0 μm falls in the Cassini/VIMS atmospheric windows over several VIMS infrared spectels, thus Cassini/VIMS should be able to detect acetylene.

  16. High performance addition-type thermoplastics (ATTs) - Evidence for the formation of a Diels-Alder adduct in the reaction of an acetylene-terminated material and a bismaleimide

    NASA Technical Reports Server (NTRS)

    Pater, R. H.; Soucek, M. D.; Chang, A. C.; Partos, R. D.

    1991-01-01

    Recently, the concept and demonstration of a new versatile synthetic reaction for making a large number of high-performance addition-type thermoplastics (ATTs) were reported. The synthesis shows promise for providing polymers having an attractive combination of easy processability, good toughness, respectable high temperature mechanical performance, and excellent thermo-oxidative stability. The new chemistry involves the reaction of an acetylene-terminated material with a bismaleimide or benzoquinone. In order to clarify the reaction mechanism, model compound studies were undertaken in solutions as well as in the solid state. The reaction products were purified by flash chromatography and characterized by conventional analytical techniques including NMR, FT-IR, UV-visible, mass spectroscopy, and high pressure liquid chromatography. The results are presented of the model compound studies which strongly support the formation of a Diels-Alder adduct in the reaction of an acetylene-terminated compound and a bismaleimide or benzoquinone.

  17. The effect of a forced-air warming blanket on patients' end-tidal and transcutaneous carbon dioxide partial pressures during eye surgery under local anaesthesia: a single-blind, randomised controlled trial.

    PubMed

    Sukcharanjit, S; Tan, A S B; Loo, A V P; Chan, X L; Wang, C Y

    2015-12-01

    Surgical drapes used during eye surgery are impermeable to air and hence risk trapping air underneath them. We investigated the effect of a forced-air warming blanket on carbon dioxide accumulation under the drapes in patients undergoing eye surgery under local anaesthesia without sedation. Forty patients of ASA physical status 1 and 2 were randomly assigned to either the forced-air warmer (n = 20) or a control heated overblanket (n = 20). All patients were given 1 l.min(-1) oxygen. We measured transcutaneous and end-tidal carbon dioxide partial pressures, heart rate, arterial pressure, respiratory rate, temperature and oxygen saturation before and after draping, then every 5 min thereafter for 30 min. The mean (SD) transcutaneous carbon dioxide partial pressure in the forced-air warming group stayed constant after draping at 5.7 (0.2) kPa but rose to a maximum of 6.4 (0.4) kPa in the heated overblanket group (p = 0.0001 for the difference at time points 15 min and later). We conclude that forced-air warming reduces carbon dioxide accumulation under the drapes in patients undergoing eye surgery under local anaesthesia.

  18. Effects of raised intracranial pressure on regional cerebral blood flow: a comparison of effects of naloxone and TRH on the microcirculation in partial cerebral ischaemia.

    PubMed Central

    Koskinen, L. O.

    1985-01-01

    The effects on regional cerebral blood flow (rCBF) of raised intracranial pressure (ICP) and of naloxone and thyrotropin releasing hormone (TRH) during this condition were studied in anaesthetized rabbits. The ICP was elevated until a central ischaemic response was observed. The regional blood flow was determined with the microsphere technique before and during elevation of the ICP (ICPe) and after drug treatment. Total CBF was reduced by about 70% during ICPe while the uveal blood flow increased slightly and some other peripheral tissue blood flows remained unaffected. The administration of TRH caused an increase in mean arterial blood pressure (MAP) from 11.9 +/- 0.6 to 14.6 +/- 0.7 kPa and a normalization of the rCBF. In some peripheral tissues, e.g. gastric mucosa and spleen, TRH reduced the blood flow by 53% and 76%, respectively. In blood pressure stabilized animals no effect on rCBF was seen after TRH. Naloxone had no consistent effect on MAP or local blood flow. It was concluded that in the range of cerebral perfusion pressure studied there was a passive relationship between cerebral blood flow and perfusion pressure. The lack of effect of naloxone and the marked effect of TRH during cerebral ischaemia are consistent with a mechanism of action of TRH not related to a 'physiological' antagonism of opioids. PMID:3928009

  19. Calculation of the standard partial molal thermodynamic properties of KCl{sup 0} and activity coefficients of aqueous KCl at temperatures and pressures to 1000{degree}C and 5 kbar

    SciTech Connect

    Pokrovskii, V.A.; Helgeson, H.C.

    1997-06-01

    Regression of experimental activity coefficient and dissociation constant data reported in the literature with the Hueckel and Setchenow equations and the revised HKF equations of state generated parameters and thermodynamic properties of dissociated KCl and KCl{sup 0} at 25{degrees}C and bar that can be used to calculate the standard partial molal thermodynamic properties of KCl{sup 0} and the activity coefficients of KCl at temperatures and pressures to 1000{degrees}C and 5 kbar. 46 refs., 6 figs., 4 tabs.

  20. Elimination kinetics of acetylene and Freon 22 in resting and active lungless salamanders.

    PubMed

    Feder, M E; Full, R J; Piiper, J

    1988-05-01

    To quantify diffusion limitation in cutaneous gas exchange, the elimination of two inert gases of different diffusivity, Freon 22 (CHC1F2) and acetylene (C2H2), was measured simultaneously in exclusively skin-breathing lungless salamanders, Desmognathus quadramaculatus. In resting salamanders, elimination of both gases could be described as the sum of three exponential terms. For both the medium and the slow exponential component, the ratio of the respective rate constants (k) for acetylene and Freon averaged 1.77. This value is between the values expected for perfusion limitation (1.00) and diffusion limitation (1.94), indicating combined diffusion and perfusion limitation. In salamanders stimulated to run on a treadmill, the elimination rates and the rate constants increased more for Freon than for acetylene. During spontaneous activity, the increase in elimination of Freon was larger than that of acetylene. These findings suggest an increase in the diffusing capacity of the skin during exercise. Thus the diffusing capacity of salamander skin for gases appears to be variable and to be adjusted to meet the increased O2 requirement during exercise.

  1. Methane emissions measured at two California landfills by OTM-10 and an acetylene tracer method

    EPA Science Inventory

    Methane emissions were measured at two municipal solid waste landfills in California using static flux chambers, an optical remote sensing approach known as vertical radial plume mapping (VRPM) using a tunable diode laser (TDL) and a novel acetylene tracer method. The tracer meth...

  2. Association Mechanisms of Unsaturated C2 Hydrocarbons with Their Cations: Acetylene and Ethylene

    NASA Technical Reports Server (NTRS)

    Bera, Partha P.; Head-Gordon, Martin; Lee, Timothy J.

    2013-01-01

    The ion-molecule association mechanism of acetylene and ethylene with their cations is investigated by ab initio quantum chemical methods to understand the structures, association energies, and the vibrational and electronic spectra of the products. Stable puckered cyclic isomers are found as the result of first forming less stable linear and bridge isomers. The puckered cyclic complexes are calculated to be strongly bound, by 87, 35 and 56 kcal/mol for acetylene-acetylene cation, ethylene-ethylene cation and acetylene-ethylene cation, respectively. These stable complexes may be intermediates that participate in further association reactions. There are no association barriers, and no significant inter-conversion barriers, so the initial linear and bridge encounter complexes are unlikely to be observable. However, the energy gap between the bridged and cyclic puckered isomers greatly differs from complex to complex: it is 44 kcal/mol in C4H4 +, but only 6 kcal/mol in C4H8 +. The accurate CCSD(T) calculations summarized above are also compared against less computationally expensive MP2 and density functional theory (DFT) calculations for structures, relative energies, and vibrational spectra. Calculated vibrational spectra are compared against available experiments for cyclobutadiene cation. Electronic spectra are also calculated using time-dependent DFT.

  3. A Safe and Easy Classroom Demonstration of the Generation of Acetylene Gas.

    ERIC Educational Resources Information Center

    Cox, Marilyn Blagg; Krause, Paul

    1994-01-01

    In this demonstration of the generation and combustion of acetylene, calcium carbide and water are allowed to react in a latex examination glove. Two student volunteers perform the demonstration with instructor guidance. This safe, popular demonstration, originally intended to illustrate the alkyne family of compounds, can be used with a variety…

  4. Technical opportunities for converting natural gas to acetylene-based chemicals

    SciTech Connect

    Cooke, N.E.; Ashraf, F.A.; Divanji, H.

    1987-01-01

    Canada has abundant natural gas and in some provinces such as Quebec, cheap and surplus electricity is also available. A techno-economic study has been carried out which indicates that it is economically attractive to manufacture acetylene via the electric-arc process from natural gas and electricity at the cost of raw materials prevailing at present in the Province of Quebec, Canada.

  5. Laboratory astrochemistry: catalytic conversion of acetylene to polycyclic aromatic hydrocarbons over SiC grains.

    PubMed

    Zhao, T Q; Li, Q; Liu, B S; Gover, R K E; Sarre, P J; Cheung, A S-C

    2016-02-01

    Catalytic conversion reactions of acetylene on a solid SiC grain surface lead to the formation of polycyclic aromatic hydrocarbons (PAHs) and are expected to mimic chemical processes in certain astrophysical environments. Gas-phase PAHs and intermediates were detected in situ using time-of-flight mass spectrometry, and their formation was confirmed using GC-MS in a separate experiment by flowing acetylene gas through a fixed-bed reactor. Activation of acetylene correlated closely with the dangling bonds on the SiC surface which interact with and break the C-C π bond. The addition of acetylene to the resulting radical site forms a surface ring structure which desorbs from the surface. The results of HRTEM and TG indicate that soot and graphene formation on the SiC surface depends strongly on reaction temperature. We propose that PAHs as seen through the 'UIR' emission bands can be formed through decomposition of a graphene-like material, formed on the surface of SiC grains in carbon-rich circumstellar envelopes. PMID:26752613

  6. Mechanism of tungsten-dependent acetylene hydratase from quantum chemical calculations.

    PubMed

    Liao, Rong-Zhen; Yu, Jian-Guo; Himo, Fahmi

    2010-12-28

    Acetylene hydratase is a tungsten-dependent enzyme that catalyzes the nonredox hydration of acetylene to acetaldehyde. Density functional theory calculations are used to elucidate the reaction mechanism of this enzyme with a large model of the active site devised on the basis of the native X-ray crystal structure. Based on the calculations, we propose a new mechanism in which the acetylene substrate first displaces the W-coordinated water molecule, and then undergoes a nucleophilic attack by the water molecule assisted by an ionized Asp13 residue at the active site. This is followed by proton transfer from Asp13 to the newly formed vinyl anion intermediate. In the subsequent isomerization, Asp13 shuttles a proton from the hydroxyl group of the vinyl alcohol to the α-carbon. Asp13 is thus a key player in the mechanism, but also W is directly involved in the reaction by binding and activating acetylene and providing electrostatic stabilization to the transition states and intermediates. Several other mechanisms are also considered but the energetic barriers are found to be very high, ruling out these possibilities.

  7. Recent Line-Shape and Doppler Thermometry Studies Involving Transitions in the ν1 +ν3 Band of Acetylene

    NASA Astrophysics Data System (ADS)

    Hashemi, Robab; Rozario, Hoimonti; Povey, Chad; Garber, Jolene; Derksen, Mark; Predoi-Cross, Adriana

    2014-06-01

    The line positions for transitions in the ν1 +ν3 band are often used as a frequency standard by the telecom industry and also needed for planetary atmospheric studies. Four relevant studies have been recently carried out in our group and will be discussed briefly below. (1) N2-broadened line widths and N2-pressure induced line shifts have been measured for transitions in the ν1 +ν3 band of acetylene at seven temperatures in the range 213333K to obtain the temperature dependences of broadening and shift coefficients. The Voigt and hard-collision line profile models were used to retrieve the line parameters. This study has been published in Molecular Physics, 110 Issue 21/22 (2012) 2645-2663. (2) Six nitrogen perturbed transitions of acetylene within the ν1 +ν3 absorption band have been recorded using a 3-channel diode laser spectrometer. We have examined C2H2 spectra using a hard collision (Rautian) profile over a range of five temperatures (213 K-333 K). From these fits we have obtained the N2-broadening and narrowing coefficients of C2H2 and examined their temperature dependence. The experimentally measured narrowing coefficients have been used to estimate the nitrogen diffusion coefficients. The broadening coefficients and corresponding temperature dependence exponents have also been compared to that of calculations completed using a classical impact approach on an ab initio potential energy surface. We have observed a good agreement between our theoretical and experimental results. This study was published in Canadian Journal of Physics 91(11) 896-905 (2013). (3) An extension of the previous study was to analyze the room temperature for the same six transitions using the Voigt, Rautian, Galatry, RautianGalatry and Correlated Rautian profiles. For the entire pressure range, we have tested the applicability of these line-shape models. Except for Voigt profile, Dicke narrowing effect has been considered in all mentioned line-shape models. The experimental

  8. Seasonal Variations of Temperature, Acetylene and Ethane in Saturn's Stratosphere from 2005 to 2010

    NASA Astrophysics Data System (ADS)

    Sinclair, James; Irwin, P. G. J.; Fletcher, L. N.; Moses, J. I.; Greathouse, T. K.; Friedson, A. J.; Hesman, B.; Hurley, J.; Merlet, C.

    2012-10-01

    Acetylene (C2H2) and ethane (C2H6) exemplify by-products of complex photochemistry in Saturn’s stratosphere. Their relative stability together with their strong vertical gradients in concentration allow for their use as tracers of vertical motion in Saturn’s lower stratosphere. Earlier studies of Saturn's hydrocarbons have provided only a snapshot of their behaviour with temporal variations remaining to be determined. In this study, we investigate how the thermal structure and concentrations of acetylene and ethane have evolved on Saturn with the changing season. We use FIRMAP (15.5 cm-1 spectral resolution) Cassini-CIRS observations, initially retrieve temperature and subsequently retrieve the abundances of acetylene and ethane. In comparing 2005, 2009 and 2010 results, we observe the disappearance of Saturn's southern warm polar hood with cooling of up to 18.6 K ± 0.9 K at 1.1 mbar south of 75°S (planetographic). This suggests dissipation of Saturn's south polar vortex in addition to an autumnal cooling. We observe a 20% ± 9% enrichment of acetylene and a 30% ± 10% enrichment of ethane at 2.1 mbar at 25°N, together with a 14% ± 9% depletion of acetylene and an 18% ± 7% depletion of ethane at the same altitude at 15°S. This suggests the presence of localised downwelling and upwelling at these latitudes, respectively. These vertical motions are consistent with a recently-developed GCM (global circulation model) of Saturn's tropopause and stratosphere, which predicts this pattern of upwelling and downwelling as a result of seasonally-reversing Hadley circulation.

  9. Purification and characterization of acetylene hydratase of Pelobacter acetylenicus, a tungsten iron-sulfur protein.

    PubMed Central

    Rosner, B M; Schink, B

    1995-01-01

    Acetylene hydratase of the mesophilic fermenting bacterium Pelobacter acetylenicus catalyzes the hydration of acetylene to acetaldehyde. Growth of P. acetylenicus with acetylene and specific acetylene hydratase activity depended on tungstate or, to a lower degree, molybdate supply in the medium. The specific enzyme activity in cell extract was highest after growth in the presence of tungstate. Enzyme activity was stable even after prolonged storage of the cell extract or of the purified protein under air. However, enzyme activity could be measured only in the presence of a strong reducing agent such as titanium(III) citrate or dithionite. The enzyme was purified 240-fold by ammonium sulfate precipitation, anion-exchange chromatography, size exclusion chromatography, and a second anion-exchange chromatography step, with a yield of 36%. The protein was a monomer with an apparent molecular mass of 73 kDa, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The isoelectric point was at pH 4.2. Per mol of enzyme, 4.8 mol of iron, 3.9 mol of acid-labile sulfur, and 0.4 mol of tungsten, but no molybdenum, were detected. The Km for acetylene as assayed in a coupled photometric test with yeast alcohol dehydrogenase and NADH was 14 microM, and the Vmax was 69 mumol.min-1.mg of protein-1. The optimum temperature for activity was 50 degrees C, and the apparent pH optimum was 6.0 to 6.5. The N-terminal amino acid sequence gave no indication of resemblance to any enzyme protein described so far. PMID:7592321

  10. Rotationally Resolved Vacuum Ultraviolet Resonance-Enhanced Multiphoton Ionization (VUV REMPI) of Acetylene via the G̃ Rydberg State.

    PubMed

    Schmidt-May, Alice F; Grütter, Monika; Neugebohren, Jannis; Kitsopoulos, T N; Wodtke, Alec M; Harding, Dan J

    2016-07-14

    We present a 1 + 1' resonance-enhanced multiphoton ionization (REMPI) scheme for acetylene via the linear G̃ 4sσ (1)Πu Rydberg state, offering partial rotational resolution and the possibility to detect excitation in both the cis- and trans-bending modes. The resonant transition to the G̃ state is driven by a vacuum ultraviolet (VUV) photon, generated by resonant four-wave mixing (FWM) in krypton. Ionization from the short-lived G̃ state then occurs quickly, driven by the high intensity of the residual light from the FWM process. We have observed nine bands in the region between 79 200 cm(-1) and 80 500 cm(-1) in C2H2 and C2D2. We compare our results with published spectra in this region and suggest alternative assignments for some of the Renner-Teller split bands. Similar REMPI schemes should be applicable to other small molecules with picosecond lifetime Rydberg states. PMID:27073931

  11. Epilepsy (partial)

    PubMed Central

    2011-01-01

    Introduction About 3% of people will be diagnosed with epilepsy during their lifetime, but about 70% of people with epilepsy eventually go into remission. Methods and outcomes We conducted a systematic review and aimed to answer the following clinical questions: What are the effects of starting antiepileptic drug treatment following a single seizure? What are the effects of drug monotherapy in people with partial epilepsy? What are the effects of additional drug treatments in people with drug-resistant partial epilepsy? What is the risk of relapse in people in remission when withdrawing antiepileptic drugs? What are the effects of behavioural and psychological treatments for people with epilepsy? What are the effects of surgery in people with drug-resistant temporal lobe epilepsy? We searched: Medline, Embase, The Cochrane Library, and other important databases up to July 2009 (Clinical Evidence reviews are updated periodically; please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). Results We found 83 systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. Conclusions In this systematic review we present information relating to the effectiveness and safety of the following interventions: antiepileptic drugs after a single seizure; monotherapy for partial epilepsy using carbamazepine, gabapentin, lamotrigine, levetiracetam, phenobarbital, phenytoin, sodium valproate, or topiramate; addition of second-line drugs for drug-resistant partial epilepsy (allopurinol, eslicarbazepine, gabapentin, lacosamide, lamotrigine, levetiracetam, losigamone, oxcarbazepine, retigabine, tiagabine, topiramate, vigabatrin, or zonisamide); antiepileptic drug withdrawal for people with partial or

  12. Complete determination of the photoionization dynamics of a polyatomic molecule. II. Determination of radial dipole matrix elements and phases from experimental photoelectron angular distributions from A1Au acetylene.

    PubMed

    Hockett, Paul; Reid, Katharine L

    2007-10-21

    We present a fit to photoelectron angular distributions (PADs) measured following the photoionization of rotationally selected A1Au state acetylene. In the case of the 4(1)2Sigmau- vibronic state of the ion, we are able to use this fit to make a complete determination of the radial dipole matrix elements and phases connecting the prepared level to each photoelectron partial wave. We have also investigated other Renner-Teller subbands with a view to disentangling geometrical and dynamical contributions to the resulting PADs.

  13. Limitations on the NMR determination of structural corrections for correlated deformation of partially oriented linear molecules

    NASA Astrophysics Data System (ADS)

    Wasser, R.; Diehl, P.

    The dipolar couplings of partially oriented acetylene and biacetylene have been measured in various liquid crystal solvents. The results confirm the theoretical prediction that in linear molecules, due to the interdependence of the direct couplings, the information is drastically reduced and the structures corrected for the correlated deformation cannot be determined. Measured couplings corrected for harmonic vibration fulfill with excellent precision an additivity relation. This indicates that higher-order terms in the theory of correlated deformation can safely be neglected.

  14. A potential plant-derived antifungal acetylenic acid mediates its activity by interfering with fatty acid homeostasis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    6-Nonadecynoic acid (6-NDA), a plant-derived acetylenic acid, exhibits strong inhibitory activity against the human fungal pathogens Candida albicans, Aspergillus fumigatus, and Trichophyton mentagrophytes. In the present study, transcriptional profiling coupled with mutant and biochemical analyses...

  15. Analysis of partial sequences of genes coding for 16S rRNA of actinomycetes isolated from Casuarina equisetifolia nodules in Mexico.

    PubMed Central

    Niner, B M; Brandt, J P; Villegas, M; Marshall, C R; Hirsch, A M; Valdés, M

    1996-01-01

    Filamentous bacteria isolated from surface-sterilized nodules of Casuarina equisetifolia trees in México were capable of reducing acetylene, a diagnostic test for nitrogenase, but were unable to nodulate their host. Analysis of partial 16S rRNA gene sequences suggests that the Mexican isolates are not Frankia strains but members of a novel clade. PMID:8702297

  16. Characterization of the Minimum Energy Paths and Energetics for the reaction of Vinylidene with Acetylene

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.; Taylor, Peter R.

    1995-01-01

    The reaction of vinylidene (CH2C) with acetylene may be an initiating reaction in soot formation. We report minimum energy paths and accurate energetics for a pathway leading to vinylacetylene and for a number of isomers Of C4H4. The calculations use complete active space self-consistent field (CASSCF) derivative methods to characterize the stationary points and internally contacted configuration interaction (ICCI) and/or coupled cluster singles and doubles with a perturbational estimate of triple excitations (CCSD(T)) to determine the energetics. We find an entrance channel barrier of about 5 kcal/mol for the addition of vinylidene to acetylene, but no barriers above reactants for the reaction pathway leading to vinylacetylene.

  17. Carbide sludge management in acetylene producing plants by using vacuum filtration.

    PubMed

    Ramasamy, Palanisamy; Periathamby, Agamuthu; Ibrahim, Shaliza

    2002-12-01

    Carbide sludge (10.4-11.5 tonnes day(-1)) is generated from the reaction of calcium carbide (900 kg) and water (6,000 L) in the production of acetylene (2,400 m3), in three selected acetylene manufacturing plants. The sludge (of pH 12.2 and containing Cu, Pb, Fe, Mn, Ni and Zn ions whose concentrations exceed the Department of Environment limits for industrial wastewater) was treated by vacuum filtration as a substitute for the ponding system, which is environmentally less acceptable. A similar system by flocculation was also developed. The filtration system represents an improvement over the ponding method, as shown by a pH of 7 for the clear filtrate; the solid cake, which contains 98% of the metals, can be conveniently disposed at an integrated scheduled waste treatment centre.

  18. Formation of Large Ag Clusters with Shells of Methane, Ethylene, and Acetylene in He Droplets.

    PubMed

    Loginov, Evgeny; Gomez, Luis F; Sartakov, Boris G; Vilesov, Andrey F

    2016-09-01

    Helium droplets were used to assemble composite metal-molecular clusters. Produced clusters have several hundreds of silver atoms in the core, immersed in a shell consisting of methane, ethylene, or acetylene molecules. The structure of the clusters was studied via infrared spectra of the C-H stretches of the hydrocarbon molecules. The spectra of the clusters containing methane and acetylene show two distinct features due to molecules on the interface with silver core and those in the volume of the neat molecular part of the clusters. The relative intensities of the peaks are in good agreement with the estimates based on the number of the captured particles. Experiments also suggest that selection rules for infrared transitions for molecules adsorbed on metal surfaces are also valid for silver clusters as small as 300 atoms. PMID:27500443

  19. Isotope effect in normal-to-local transition of acetylene bending modes

    DOE PAGES

    Ma, Jianyi; Xu, Dingguo; Guo, Hua; Tyng, Vivian; Kellman, Michael E.

    2012-01-01

    The normal-to-local transition for the bending modes of acetylene is considered a prelude to its isomerization to vinylidene. Here, such a transition in fully deuterated acetylene is investigated using a full-dimensional quantum model. It is found that the local benders emerge at much lower energies and bending quantum numbers than in the hydrogen isotopomer HCCH. This is accompanied by a transition to a second kind of bending mode called counter-rotator, again at lower energies and quantum numbers than in HCCH. These transitions are also investigated using bifurcation analysis of two empirical spectroscopic fitting Hamiltonians for pure bending modes, which helpsmore » to understand the origin of the transitions semiclassically as branchings or bifurcations out of the trans and normal bend modes when the latter become dynamically unstable. The results of the quantum model and the empirical bifurcation analysis are in very good agreement.« less

  20. Theoretical and Experimental Evidence of Hydrogen Migration rather than Isomerization in the Acetylene Dication

    NASA Astrophysics Data System (ADS)

    Liekhus-Schmaltz, Chelsea; Li, Zheng; Petrovic, Vladimir; Martinez, Todd; Bucksbaum, Phil; AMO75113 Collaboration

    2016-05-01

    Theoretical calculations and experimental results in the acetylene dication have long agreed that isomerization after x-ray excitation occurs in the first singlet state, where the carbon-carbon bond lives long enough for isomerization to complete. These same calculations predict that a large barrier to isomerization exists that would cause isomerization to occur in about a picosecond, while there is some evidence for ultrafast isomerization in under 100 fs. However, new ab initio calculations of the acetylene dication reveal that ultrafast isomerization after x-ray excitation is unlikely. In this talk, we present evidence that signatures of hydrogen migration observed in recent time resolved LCLS data are mostly due to hydrogen migration in an excited state which dissociates too quickly for isomerization to complete. This material is based upon work supported by the National Science Foundation under Grant No. PHY-0649578.

  1. Application of the photoacoustic method to the measurement of acetylene reduction by nitrogenase enzyme

    NASA Astrophysics Data System (ADS)

    Schramm, D. U.; Sthel, M. S.; Carneiro, L. O.; Franco, A. A.; Campos, A. C.; Vargas, H.

    2005-06-01

    Nitrogenase is an enzyme responsible for the reduction of the atmospheric N2 into NH4^+, which represents the key entry point of the molecular nitrogen into the biogeochemical cycle of nitrogen. This enzyme is present in the rhizobial bacteroids, which are symbionts in a Leguminosae plant (Acacia Holosericea), and also reduces acetylene into ethylene at the same rate as the nitrogen reduction. Therefore, a CO2 Laser Photoacoustic system was used for detecting and monitoring the ethylene emission by the nitrogenase activity, in the rhizobial symbionts in Acacia Holosericea, when they are confined in test tubes with acetylene at two different volumes (0.1 and 0.5 ml). Ethylene concentrations are also determined in the ppm range.

  2. A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames

    SciTech Connect

    Wang, H.; Frenklach, M.

    1997-07-01

    A computational study was performed for the formation and growth of polycyclic aromatic hydrocarbons (PAHs) in laminar premixed acetylene and ethylene flames. A new detailed reaction mechanism describing fuel pyrolysis and oxidation, benzene formation, and PAH mass growth and oxidation is presented and critically tested. It is shown that the reaction model predicts reasonably well the concentration profiles of major and intermediate species and aromatic molecules in a number of acetylene and ethylene flames reported in the literature. It is demonstrated that reactions of n-C{sub 4}H{sub x} + C{sub 2}H{sub 2} leading to the formation of one-ring aromatics are as important as the propargyl recombination, and hence must be included in kinetic modeling of PAH formation in hydrocarbon flames. It is further demonstrated that the mass growth of PAHs can be accounted for by the previously proposed H-abstraction-C{sub 2}H{sub 2}-addiction mechanism.

  3. Groundwater remediation engineering sparging using acetylene--study on the flow distribution of air.

    PubMed

    Zheng, Yan-Mei; Zhang, Ying; Huang, Guo-Qiang; Jiang, Bin; Li, Xin-Gang

    2005-01-01

    Air sparging (AS) is an emerging method to remove VOCs from saturated soils and groundwater. Air sparging performance highly depends on the air distribution resulting in the aquifer. In order to study gas flow characterization, a two-dimensional experimental chamber was designed and installed. In addition, the method by using acetylene as the tracer to directly image the gas distribution results of AS process has been put forward. Experiments were performed with different injected gas flow rates. The gas flow patterns were found to depend significantly on the injected gas flow rate, and the characterization of gas flow distributions in porous media was very different from the acetylene tracing study. Lower and higher gas flow rates generally yield more irregular in shape and less effective gas distributions.

  4. Probing Ionic Complexes of Ethylene and Acetylene with Vacuum-Ultraviolet Radiation.

    PubMed

    Bandyopadhyay, Biswajit; Stein, Tamar; Fang, Yigang; Kostko, Oleg; White, Alec; Head-Gordon, Martin; Ahmed, Musahid

    2016-07-14

    Mixed complexes of acetylene-ethylene are studied using vacuum-ultraviolet (VUV) photoionization mass spectrometry and theoretical calculations. These complexes are produced and ionized at different distances from the exit of a continuous nozzle followed by reflectron time-of-flight mass spectrometry detection. Acetylene, with a higher ionization energy (11.4 eV) than ethylene (10.6 eV), allows for tuning the VUV energy and initializing reactions either from a C2H2(+) or a C2H4(+) cation. Pure acetylene and ethylene expansions are separately carried out to compare, contrast, and hence identify products from the mixed expansion: these are C3H3(+) (m/z = 39), C4H5(+) (m/z = 53), and C5H5(+) (m/z = 65). Intensity distributions of C2H2, C2H4, their dimers and reactions products are plotted as a function of ionization distance. These distributions suggest that association mechanisms play a crucial role in product formation closer to the nozzle. Photoionization efficiency (PIE) curves of the mixed complexes demonstrate rising edges closer to both ethylene and acetylene ionization energies. We use density functional theory (ωB97X-V/aug-cc-pVTZ) to study the structures of the neutral and ionized dimers, calculate their adiabatic and vertical ionization energies, as well as the energetics of different isomers on the potential energy surface (PES). Upon ionization, vibrationally excited clusters can use the extra energy to access different isomers on the PES. At farther ionization distances from the nozzle, where the number densities are lower, unimolecular decay is expected to be the dominant mechanism. We discuss the possible decay pathways from the different isomers on the PES and examine the ones that are energetically accessible. PMID:26983013

  5. Effect of acetylene and ammonia as reburn fuel additions to methane in nitric oxide reburning

    SciTech Connect

    Kumpaty, S.K.; Nokku, V.P.; Subramanian, K.

    1996-12-31

    Presented in this paper are the computational results of NO reburning with (a) a combination of methane and acetylene and (b) a combination of methane and ammonia. An updated reaction mechanism that was more comprehensive in terms of predicting the ammonia and isocyanic acid oxidation chemistry was employed to run the CKINTERP program. Using the binary file created by executing the above program and the input stoichiometric ratio conditions, the CHEMKIN package predicted the exit concentrations of various species involved in NO reburning.

  6. Phase-vanishing method with acetylene evolution and its utilization in several organic syntheses.

    PubMed

    Matake, Ryosuke; Niwa, Yuki; Matsubara, Hiroshi

    2015-05-15

    A novel quadraphasic phase-vanishing system in which acetylene is evolved from calcium carbide and directly applied in situ to the Sonogashira coupling reaction was developed. This method, which provides a safe, convenient, and one-pot means to utilize gaseous reagents without special equipment, was also applied to a Cu-catalyzed azide-alkyne cycloaddition (CuAAC) reaction and a three-component aldehyde-alkyne-amine (A(3)) coupling reaction with excellent results.

  7. Theoretical study of the C-H bond dissociation energy of acetylene

    NASA Technical Reports Server (NTRS)

    Taylor, Peter R.; Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.

    1990-01-01

    The authors present a theoretical study of the convergence of the C-H bond dissociation energy (D sub o) of acetylene with respect to both the one- and n-particle spaces. Their best estimate for D sub o of 130.1 plus or minus 1.0 kcal/mole is slightly below previous theoretical estimates, but substantially above the value determined using Stark anticrossing spectroscopy that is asserted to be an upper bound.

  8. Epigenetic modifier-induced biosynthesis of novel acetylenic sterols from Cladosporium colocasiae.

    PubMed

    Liu, Dong-Ze; Liang, Bo-Wen; Li, Xiao-Fei; Yu, Zhi-Yuan

    2014-09-01

    The addition of an HDAC inhibitor, suberoylanilide hydroxamic acid (SBHA), to the culture medium of Cladosporium colocasiae, dramatically altered its metabolic profiles. Analysis of the culture broth extract led to the isolation of two new acetylenic sterols (1-2). The isolated compounds were further evaluated for their cytotoxic and antibacterial activities. Compound 1 showed activity against Bacillus subtilis, affording a zone of inhibition of 12mm at 100μg/disk. However, none of them showed noticeable growth inhibitory effects.

  9. Adsorption of acetic acid on ice studied by ambient-pressure XPS and partial-electron-yield NEXAFS spectroscopy at 230-240 K.

    PubMed

    Křepelová, Adéla; Bartels-Rausch, Thorsten; Brown, Matthew A; Bluhm, Hendrik; Ammann, Markus

    2013-01-17

    Ice plays a key role in the environment, and the ice-air interface influences heterogeneous chemical reactions between snowpack or cirrus clouds and the surrounding air. Soluble gases have been suspected to affect the topmost, disordered layer on ice (often referred to as a quasiliquid layer, QLL). Changes are especially expected in the hydrogen-bonding structure of water in the presence of solutes at the ice surface. Here, we used ambient-pressure X-ray photoelectron spectroscopy (XPS) to detect acetic acid at the ice surface at 230-240 K under atmospheric conditions for the first time. Electron-kinetic-energy-dependent C 1s spectra indicate that acetic acid remains confined to the topmost ice surface layers. Spectral analysis provides information about the protonation state of acetate at the ice surface. Surface-sensitive Auger-electron-yield C-edge near-edge X-ray absorption fine structure (NEXAFS) spectra were recorded to probe the molecular state of the adsorbed species. The O-edge NEXAFS spectra show only minor differences between clean ice and ice with adsorbed acetic acid and thus indicate that acetic acid does not lead to an extended disordered layer on the ice surface between 230 and 240 K.

  10. Refolding of the recombinant protein OmpA70 from Leptospira interrogans from inclusion bodies using high hydrostatic pressure and partial characterization of its immunological properties.

    PubMed

    Fraga, Tatiana R; Chura-Chambi, Rosa M; Gonçales, Amane P; Morais, Zenaide M; Vasconcellos, Sílvio A; Morganti, Ligia; Martins, Elizabeth A L

    2010-07-20

    Leptospira is the etiological agent of leptospirosis, a life-threatening disease that affects human populations worldwide. Available vaccines have demonstrated limited effectiveness, and therapeutic interventions are complicated by the difficulty of establishing an early diagnosis. The genome of Leptospira strains was sequenced, and bioinformatic analyses revealed potential vaccine and serodiagnosis candidates. The present work studied OmpA70, a putative outer membrane protein from Leptospira interrogans serovar Copenhageni that combines structural features of Loa22, the first genetically defined virulence factor in Leptospira, and Lp49, a protein that reacts with sera from early and convalescent patients. Recombinant OmpA was produced in Escherichia coli in an insoluble form. Considering the importance of the structural integrity of a protein to confer immune protection, high hydrostatic pressure (HHP) was used to refold OmpA70 aggregated as inclusion bodies. HHP was applied in association with redox-shuffling reagents (oxidized and reduced glutathione) and guanidine hydrochloride or l-arginine. About 40% of the protein was refolded by applying 200MPa for 16h in concentrations of l-arginine above 0.4M. Circular dichroism revealed the presence of secondary structure. OmpA70 has immunogenic and antigenic properties as high antibody titers were seen after immunization with this protein, and sera from infected hamsters reacted with soluble OmpA70.

  11. Discovery of acetylene hydratase activity of the iron–sulphur protein IspH

    PubMed Central

    Wang, Weixue; Zhang, Yonghui; Bacher, Adelbert; Eisenreich, Wolfgang; Li, Kai; Schulz, Charles; Oldfield, Eric; Groll, Michael

    2013-01-01

    The final step of the methylerythritol phosphate isoprenoid biosynthesis pathway is catalysed by the iron–sulphur enzyme IspH, producing the universal precursors of terpenes: isopentenyl diphosphate and dimethylallyl diphosphate. Here we report an unforeseen reaction discovered during the investigation of the interaction of IspH with acetylene inhibitors by X-ray crystallography, Mößbauer, and nuclear magnetic resonance spectroscopy. In addition to its role as a 2H+/2e− reductase, IspH can hydrate acetylenes to aldehydes and ketones via anti-Markovnikov/Markovnikov addition. The reactions only occur with the oxidised protein and proceed via η1-O-enolate intermediates. One of these is characterized crystallographically and contains a C4 ligand oxygen bound to the unique, fourth iron in the 4Fe-4S cluster: this intermediate subsequently hydrolyzes to produce an aldehyde product. This unexpected side to IspH reactivity is of interest in the context of the mechanism of action of other acetylene hydratases, as well as in the design of antiinfectives targeting IspH. PMID:22948824

  12. Simultaneous Measurement of Acetylene Reduction and Respiratory Gas Exchange of Attached Root Nodules 1

    PubMed Central

    Winship, Lawrence J.; Tjepkema, John D.

    1982-01-01

    A method was developed for the simultaneous measurement of acetylene reduction, carbon dioxide evolution and oxygen uptake by individual root nodules of intact nitrogen-fixing plants (Alnus rubra Bong.). The nodules were enclosed in a temperature-controlled leak-tight cuvette. Assay gas mixtures were passed through the cuvette at a constant, known flow rate and gas exchange was measured by the difference between inlet and outlet gas compositions. Gas concentrations were assayed by a combination of an automated gas chromatograph and a programmable electronic integrator. Carbon dioxide and ethylene evolution were determined with a coefficient of variation which was less than 2%, whereas the coefficient of variation for oxygen uptake measurements was less than 5%. Nodules subjected to repeated removal from and reinsertion into the cuvette and to long exposures of 10% v/v acetylene showed no irreversible decline in respiration or acetylene reduction. This system offers long-term stability and freedom from disturbance artifacts plus the ability to monitor continuously, rapidly and specifically the changes in root nodule activity caused by environmental perturbation. PMID:16662496

  13. Dehalogenative Homocoupling of Terminal Alkynyl Bromides on Au(111): Incorporation of Acetylenic Scaffolding into Surface Nanostructures.

    PubMed

    Sun, Qiang; Cai, Liangliang; Ma, Honghong; Yuan, Chunxue; Xu, Wei

    2016-07-26

    On-surface C-C coupling reactions of molecular precursors with alkynyl functional groups demonstrate great potential for the controllable fabrication of low-dimensional carbon nanostructures/nanomaterials, such as carbyne, graphyne, and graphdiyne, which demand the incorporation of highly active sp-hybridized carbons. Recently, through a dehydrogenative homocoupling reaction of alkynes, the possibility was presented to fabricate surface nanostructures involving acetylenic linkages, while problems lie in the fact that different byproducts are inevitably formed when triggering the reactions at elevated temperatures. In this work, by delicately designing the molecular precursors with terminal alkynyl bromide, we introduce the dehalogenative homocoupling reactions on the surface. As a result, we successfully achieve the formation of dimer structures, one-dimensional molecular wires and two-dimensional molecular networks with acetylenic scaffoldings on an inert Au(111) surface, where the unexpected C-Au-C organometallic intermediates are also observed. This study further supplements the database of on-surface dehalogenative C-C coupling reactions, and more importantly, it provides us an alternative efficient way for incorporating the acetylenic scaffolding into low-dimensional surface nanostructures. PMID:27326451

  14. Toward spectroscopically accurate global ab initio potential energy surface for the acetylene-vinylidene isomerization

    SciTech Connect

    Han, Huixian; Li, Anyang; Guo, Hua

    2014-12-28

    A new full-dimensional global potential energy surface (PES) for the acetylene-vinylidene isomerization on the ground (S{sub 0}) electronic state has been constructed by fitting ∼37 000 high-level ab initio points using the permutation invariant polynomial-neural network method with a root mean square error of 9.54 cm{sup −1}. The geometries and harmonic vibrational frequencies of acetylene, vinylidene, and all other stationary points (two distinct transition states and one secondary minimum in between) have been determined on this PES. Furthermore, acetylene vibrational energy levels have been calculated using the Lanczos algorithm with an exact (J = 0) Hamiltonian. The vibrational energies up to 12 700 cm{sup −1} above the zero-point energy are in excellent agreement with the experimentally derived effective Hamiltonians, suggesting that the PES is approaching spectroscopic accuracy. In addition, analyses of the wavefunctions confirm the experimentally observed emergence of the local bending and counter-rotational modes in the highly excited bending vibrational states. The reproduction of the experimentally derived effective Hamiltonians for highly excited bending states signals the coming of age for the ab initio based PES, which can now be trusted for studying the isomerization reaction.

  15. Dehalogenative Homocoupling of Terminal Alkynyl Bromides on Au(111): Incorporation of Acetylenic Scaffolding into Surface Nanostructures.

    PubMed

    Sun, Qiang; Cai, Liangliang; Ma, Honghong; Yuan, Chunxue; Xu, Wei

    2016-07-26

    On-surface C-C coupling reactions of molecular precursors with alkynyl functional groups demonstrate great potential for the controllable fabrication of low-dimensional carbon nanostructures/nanomaterials, such as carbyne, graphyne, and graphdiyne, which demand the incorporation of highly active sp-hybridized carbons. Recently, through a dehydrogenative homocoupling reaction of alkynes, the possibility was presented to fabricate surface nanostructures involving acetylenic linkages, while problems lie in the fact that different byproducts are inevitably formed when triggering the reactions at elevated temperatures. In this work, by delicately designing the molecular precursors with terminal alkynyl bromide, we introduce the dehalogenative homocoupling reactions on the surface. As a result, we successfully achieve the formation of dimer structures, one-dimensional molecular wires and two-dimensional molecular networks with acetylenic scaffoldings on an inert Au(111) surface, where the unexpected C-Au-C organometallic intermediates are also observed. This study further supplements the database of on-surface dehalogenative C-C coupling reactions, and more importantly, it provides us an alternative efficient way for incorporating the acetylenic scaffolding into low-dimensional surface nanostructures.

  16. Proton uptake in the H(+)-SOFC cathode material Ba(0.5)Sr(0.5)Fe(0.8)Zn(0.2)O(3-δ): transition from hydration to hydrogenation with increasing oxygen partial pressure.

    PubMed

    Poetzsch, Daniel; Merkle, Rotraut; Maier, Joachim

    2015-01-01

    Thermogravimetric investigations on the perovskite Ba(0.5)Sr(0.5)Fe(0.8)Zn(0.2)O(3-δ) (BSFZ, with mixed hole, oxygen vacancy and proton conductivity) from water vapor can occur by acid-base reaction (hydration) or redox reaction (hydrogen uptake), depending on the oxygen partial pressure, i.e. on the material's defect concentrations. In parallel, the effective diffusion coefficient of the stoichiometry relaxation kinetics also changes. These striking observations can be rationalized in terms of a defect chemical model and transport equations for materials with three mobile carriers. Implications for the search of cathode materials with mixed electronic and protonic conductivity for application on proton conducting oxide electrolytes are discussed.

  17. The anomalous behavior of the Zeeman anticrossing spectra of à 1Au acetylene: Theoretical considerations

    NASA Astrophysics Data System (ADS)

    Vacek, George; Sherrill, C. David; Yamaguchi, Yukio; Schaefer, Henry F., III

    1996-02-01

    P. Dupré, R. Jost, M. Lombardi, P. G. Green, E. Abramson, and R. W. Field have observed anomalous behavior of the anticrossing density in the Zeeman anticrossing (ZAC) spectra of gas phase à 1Au acetylene in the 42 200 to 45 300 cm-1 energy range. To best explain this result, they hypothesize a large singlet-triplet coupling due to the existence of a linear isomerization barrier connecting a triplet-excited cis- and trans-acetylene in the vicinity of the studied energy range (˜45 500 cm-1). Theoretically such a linear stationary point, however, must have two different degenerate bending vibrational frequencies which are either imaginary or exactly zero. Neither case has yet been experimentally detected. Here, we have studied the two lowest-lying linear triplet-excited-state stationary points of acetylene, 3Σ+u and 3Δu, to see if they fit Dupré et al.'s hypothesis. We have completed geometry optimization and harmonic vibrational frequency analysis using complete-active-space self-consistent field (CASSCF) wave functions as well as determined energy points at those geometries using the second-order configuration interaction (SOCI) method. Harmonic vibrational analyses of both stationary points reveal two different doubly degenerate vibrational modes with imaginary vibrational frequencies (or negative force constants) indicating that they are indeed saddle points with a Hessian index of four. At the DZP SOCI//CASSCF level of theory with zero-point vibrational energy (ZPVE) correction, the 3Σ+u stationary point lies 35 840 cm-1 above the ground state of acetylene. This is much too low in energy to contribute to the ZAC spectral anomaly. At the same level of theory with ZPVE correction, the 3Δu stationary point lies 44 940 cm-1 above the ground state consistent with Dupré et al.'s hypothesis. Several solutions to the anomalous ZAC spectra are discussed. We propose that the anomaly may also be due to coupling with a nearly linear structure on the T3 surface of

  18. Performance of seminal and nodal roots of wheat in stagnant solution: K+ and P uptake and effects of increasing O2 partial pressures around the shoot on nodal root elongation.

    PubMed

    Wiengweera, Amara; Greenway, Hank

    2004-09-01

    Roots of intact wheat plants were grown for 7-12 d in stagnant nutrient solution, containing 0.1% agar, to mimic the lack of convection in waterlogged soil. Net K+ and P uptakes by seminal and nodal roots were measured separately using a split root system. For seminal roots in stagnant solution, net uptakes as a percentage of aerated roots were between 0% and 16% for P, while K+ ranged between 15% uptake and 54% loss. For the more waterlogging-tolerant nodal roots, net uptakes in stagnant nutrient solution, as a percentage of aerated roots, were 31-73% for P and 69-115% for K+. Elongation rates of nodal roots in stagnant nutrient were about 35-43% of those for roots in aerated solution. This partial inhibition occurred in these nodal roots despite their 15% porosity (v/v). Elevation of O2 partial pressures around the shoots to 40 kPa and then to 80 kPa substantially accelerated nodal root elongation in stagnant solution, demonstrating that most of the inhibition seen with ambient O2 around the shoots was associated with a restricted O2 supply to these nodal roots. Thus, in wheat nodal roots, with a partial pressure of 20 kPa O2 around the shoots, O2 diffusion from the shoots did not completely relieve the restrictions on elongation resulting from stagnancy in the nutrient solution. These results contrast with those in the literature for rice, in which roots function efficiently in stagnant solutions (0.1% agar). So, when wheat roots are aerenchymatous there are still restrictions to O2 diffusion in the gas space continuum between the atmosphere and the functional tissues of the roots. This poor acclimation must have been due to inefficiency of the aerenchymatous axes, which may include persistence of anoxic steles, and/or restricted O2 diffusion in other parts of the gas space continuum, in either the shoots and shoot-root junction or in the root tip.

  19. Interpretation of PAN, acetone and acetylene measurements from the MIPAS-E

    NASA Astrophysics Data System (ADS)

    Moore, D. P.; Remedios, J. J.; Parker, R. J.

    2009-04-01

    Emissions of anthropogenic pollution, from biomass burning events in particular, result in the injection of a wide range of carbon compounds into the atmosphere. Carbon monoxide (CO), methane (CH4) and volatile organic compounds (VOCs) are released in significant amounts, affecting both the oxidation capacity of the troposphere and ozone production. Upper troposphere (UT) measurements of PAN, acetone and acetylene have, in the past, been generally limited to sporadic in situ sampling during specialised campaign periods. The recent rapid progress in both the detection and retrieval of many VOC species from spaceborne instrumentation has been large. It has recently been established that the observation of the global distribution of VOCs in the UT can be made by measurements provided by instruments such as the Michelson Interferometer for Passive Atmospheric Sounding onboard ENVISAT (MIPAS-E) or the Atmospheric Chemistry Experiment (ACE) onboard SCISAT-1. In this work, we discuss the ability of MIPAS-E to provide new global measurements of acetone in the UT. We also describe both the distribution and seasonality observed in UT PAN volume mixing ratios (vmrs). From the MIPAS-E acetylene measurements, we analyse the extent and magnitude of the chemical isolation observed over the Middle East during August 2003. We show that this enhancement is due to fast westward transport from Asia via the Easterly Jet associated with the Asian monsoon anticyclone. A full error analysis is carried out for each of the three gases we analyse. Previous work has shown that characteristic infrared signatures of PAN, acetone and acetylene can be detected in MIPAS-E thermal emission spectra, with the 787-790 cm-1, 1216-1218 cm-1 and 776.0-776.15 cm-1 spectral ranges respectively being particularly sensitive to changes in each of the gases. We invert the measured MIPAS-E spectra into vmrs using an independent offline-retrieval scheme based on the optimal estimation approach which was

  20. A model of ethylene and acetylene adsorption on the (111) surfaces of platinum and nickel

    NASA Astrophysics Data System (ADS)

    Felter, T. E.; Weinberg, W. H.

    1981-02-01

    Despite the application of a variety of surface sensitive techniques to the adsorption of simple hydrocarbons on well characterized metallic surfaces, no consistent picture has appeared. We review briefly the published spectroscopic results of ultraviolet photoelectron spectroscopy (UPS) and electron energy loss spectroscopy (EELS) which probe, respectively, the electronic and vibrational structure of the surface-molecular complex, and we consider appropriate free molecular analogues, not only in their ground state but also in their first excited states. A simplified approach to determine the chemisorption geometry from UPS level shifts and EELS is presented. The technique allows an isolation of distortion induced shifts from the total relaxation shift, and we find that the true relaxation shift is rather constant, approximately 2.1 eV for the cases considered. These shifts can then be used to estimate the distance of the molecule to the surface. We concentrate primarily on four systems, C 2H 2 and C 2H 4 on Ni(111) and Pt(111), adsorbed at low temperature (below the onset of dissociation). Depending on the metal, the hydrocarbon can adsorb in a di-σ arrangement or with a distortion resembling the lowest energy configuration of the first excited state of the free molecule. We also consider briefly C 2H 4 on Ag and Cu in which no distortion occurs. The distortions that resemble the first excited states might occur as a consequence of donation of bonding (backbonding) electrons from (to) the normally filled π (empty π ∗) to (from) the empty (filled) d-band states of the metal. The net effect on the hydrocarbon to partially empty the π level and fill the π ∗ level, is analogous to a low excitation of the free molecule, π → π ∗. For C 2H 4 (planar in the ground state), the lowest excitation is the triplet T-state (3-4 eV) of minimal energy for a 90° twisted configuration with a lengthened C-C bond. Acetylene is a linear molecule in the ground state, but

  1. Role of hydrogen abstraction acetylene addition mechanisms in the formation of chlorinated naphthalenes. 2. Kinetic modeling and the detailed mechanism of ring closure.

    PubMed

    McIntosh, Grant J; Russell, Douglas K

    2014-12-26

    The dominant formation mechanisms of chlorinated phenylacetylenes, naphthalenes, and phenylvinylacetylenes in relatively low pressure and temperature (∼40 Torr and 1000 K) pyrolysis systems are explored. Mechanism elucidation is achieved through a combination of theoretical and experimental techniques, the former employing a novel simplification of kinetic modeling which utilizes rate constants in a probabilistic framework. Contemporary formation schemes of the compounds of interest generally require successive additions of acetylene to phenyl radicals. As such, infrared laser powered homogeneous pyrolyses of dichloro- or trichloroethylene were perturbed with 1,2,4- or 1,2,3-trichlorobenzene. The resulting changes in product identities were compared with the major products expected from conventional pathways, aided by the results of our previous computational work. This analysis suggests that a Bittner-Howard growth mechanism, with a novel amendment to the conventional scheme made just prior to ring closure, describes the major products well. Expected products from a number of other potentially operative channels are shown to be incongruent with experiment, further supporting the role of Bittner-Howard channels as the unique pathway to naphthalene growth. A simple quantitative analysis which performs very well is achieved by considering the reaction scheme as a probability tree, with relative rate constants being cast as branching probabilities. This analysis describes all chlorinated phenylacetylene, naphthalene, and phenylvinylacetylene congeners. The scheme is then tested in a more general system, i.e., not enforcing a hydrogen abstraction/acetylene addition mechanism, by pyrolyzing mixtures of di- and trichloroethylene without the addition of an aromatic precursor. The model indicates that these mechanisms are still likely to be operative.

  2. A biogeochemical and genetic survey of acetylene fermentation by environmental samples and bacterial isolates

    USGS Publications Warehouse

    Miller, Laurence G.; Baesman, Shaun M.; Kirshtein, Julie; Voytek, Mary A.; Oremland, Ronald S.

    2013-01-01

    Anoxic samples (sediment and groundwater) from 13 chemically diverse field sites were assayed for their ability to consume acetylene (C2H2). Over incubation periods ranging from ˜ 10 to 80 days, selected samples from 7 of the 13 tested sites displayed significant C2H2 removal. No significant formation of ethylene was noted in these incubations; therefore, C2H2 consumption could be attributed to acetylene hydratase (AH) rather than nitrogenase activity. This putative AH (PAH) activity was observed in only 21% of the total of assayed samples, while amplification of AH genes from extracted DNA using degenerate primers derived from Pelobacter acetylenicus occurred in even fewer (9.8%) samples. Acetylene-fermenting bacteria were isolated as a pure culture from the sediments of a tidal mudflat in San Francisco Bay (SFB93) and as an enrichment culture from freshwater Searsville Lake (SV7). Comparison of 16S rDNA clone libraries revealed that SFB93 was closely related to P. carbolinicus, while SV7 consisted of several unrelated bacteria. AH gene was amplified from SFB93 but not SV7. The inability of the primers to generate amplicons in the SV7 enrichment, as well as from several of the environmental samples that displayed PAH activity, implied that either the primers were too highly constrained in their specificity or that there was a different type of AH gene in these environmental samples than occurs in P. acetylenicus. The significance of this work with regard to the search for life in the outer Solar System, where C2HL2 is abundant, is discussed.

  3. Rotational spectroscopy and molecular structure of the 1-chloro-1-fluoroethylene-acetylene complex.

    PubMed

    Leung, Helen O; Marshall, Mark D; Grimes, David D

    2011-01-21

    Guided by ab initio calculations, Fourier transform microwave spectra in the 6-21 GHz region are obtained for seven isotopomers of the complex formed between 1-chloro-1-fluoroethylene and acetylene. These include the four possible combinations of (35)Cl- and (37)Cl-containing CH(2)CClF with the most abundant acetylene isotopic modification, HCCH, and its H(13)C(13)CH analogue, as well as three singly substituted deuterated isotopomers. Analysis of the spectra determines the rotational constants and additionally, the complete chlorine quadrupole hyperfine coupling tensors in both the inertial and principal electric field gradient axis systems, and where appropriate, the diagonal components of the deuterium quadrupole coupling tensors. The inertial information contained in the rotational constants provides the structure for CH(2)CClF-HCCH: a primary, hydrogen bonding interaction existing between the HCCH donor and the F atom acceptor on the 1-chloro-1-fluoroethylene moiety, while a secondary interaction occurs between the acetylenic bond on the HCCH molecule and the H atom cis to the hydrogen-bonded F atom on the substituted ethylene, which causes the hydrogen bond to deviate from linearity. This is similar to the structure obtained for 1,1-difluoroethylene-HCCH [H. O. Leung and M. D. Marshall, J. Chem. Phys. 126, 154301 (2006)], and indeed, to within experimental uncertainty, the intermolecular interactions in CH(2)CClF-HCCH and its 1,1-difluoroethylene counterpart are practically indistinguishable, even though ab initio calculations at the MP2∕6-311G++(2d, 2p) level suggest that the former complex is more strongly bound. PMID:21261349

  4. Mechanisms of. pi. -bond oxidation by cytochrome p-450: acetylenes as probes

    SciTech Connect

    Komives, E.A.

    1987-01-01

    Phenylacetylene and biphenylacetylene are oxidized by microsomal and purified P-450 to the corresponding arylacetic acids. During this transformation, the acetylenic hydrogen undergoes a 1,2 shift which causes a kinetic isotope effect of 1.8 on the overall enzymatic rate. The same products and kinetic isotope effects are observed when the arylacetylenes are oxidized by m-chloroperbenzoic acid. Suicide inactivation of P-450 by the arylacetylenes, which occurs simultaneously with metabolite formation, is insensitive to isotopic substitution so the partition ratio changes from 26 for phenylacetylene of 14 for (1-/sup 2/H) phenylacetylene.

  5. (-)-Duryne and its homologues, cytotoxic acetylenes from a marine Sponge Petrosia sp.

    PubMed

    Hitora, Yuki; Takada, Kentaro; Okada, Shigeru; Ise, Yuji; Matsunaga, Shigeki

    2011-05-27

    Six linear acetylenes, (-)-duryne (1) and (-)-durynes B-F (2-6), were isolated from the marine sponge Petrosia sp. Their structures were elucidated by NMR and tandem FABMS analyses. The positions of the olefinic bonds were confirmed by ozonolysis experiments, and the absolute configurations were determined by the modified Mosher's method. Compound 1 was found to be the enantiomer of duryne, a previously reported sponge metabolite. Compounds 1-6 show cytotoxicity against HeLa cells with IC50 values between 0.08 and 0.50 μM. PMID:21534590

  6. Second hyperpolarizability of delta shaped disubstituted acetylene complexes of beryllium, magnesium, and calcium.

    PubMed

    Hatua, Kaushik; Nandi, Prasanta K

    2015-10-01

    Present theoretical study involves the delta shape complexes of beryllium, magnesium, and calcium where the metal atom interacts perpendicularly with disubstituted acetylene. Most of the complexes are found to be fairly stable. The dependence of second-hyperpolarizability on the basis set with increasing polarization and diffuse functions has been examined which showed the importance of 'f-type' type polarization function for heavy metal (Mg, Ca) and 'd-type' polarization function for beryllium. Larger second hyperpolarizability has been predicted for complexes having significant ground state polarization and low lying excited states favoring strong electronic coupling. Transition energy plays the most significant role in modulating the second hyperpolarizability.

  7. The 2Πg shape resonance of acetylene anion: an investigation with the RAC method

    NASA Astrophysics Data System (ADS)

    Čurík, Roman; Paidarová, Ivana; Horáček, Jiří

    2016-07-01

    Recently developed method of regularized analytic continuation (RAC) is applied to determination of the 2Πg resonance of acetylene anion. The method is based on continuation of the electron affinities calculated for the anion in presence of an external perturbation field. Its independence on the correlation treatment of the many-electron system allows application of accurate coupled-clusters methods for electronic structure calculations utilized in determination of the resonance position and width. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.

  8. Heat of Combustion of the Product Formed by the Reaction of Acetylene, Ethylene, and Diborane

    NASA Technical Reports Server (NTRS)

    Tannenbaum, Stanley

    1957-01-01

    The net heat of combustion of the product formed by the reaction of diborane with a mixture of acetylene and ethylene was found to be 20,440 +/- 150 Btu per pound for the reaction of liquid fuel to gaseous carbon dioxide, gaseous water, and solid boric oxide. The measurements were made in a Parr oxygen-bomb calorimeter, and the combustion was believed to be 98 percent complete. The estimated net-heat of combustion for complete combustion would therefore be 20,850 +/- 150 Btu per pound.

  9. Synthesis of (iso)quinoline, (iso)coumarin and (iso)chromene derivatives from acetylene compounds

    NASA Astrophysics Data System (ADS)

    Ryabukhin, D. S.; Vasilyev, A. V.

    2016-06-01

    Published data on the methods of synthesis of quinoline, isoquinoline, coumarin, isocoumarin, chromene and isochromene derivatives from acetylene compounds are summarized. The reactions catalyzed by metal complexes (Pd, Pt, Ru, Rh, Au, Ag, Ni, Cu, etc.) and transformations induced by various electrophilic reagents (Brynsted and Lewis acids) are considered. Moieties of the mentioned heterocyclic systems are present in many biologically active natural products and pharmaceutical agents. Besides, derivatives of these heterocycles are used in the manufacture of catalysts, dyes, perfumery and cosmetic products, corrosion inhibitors and so on. The bibliography includes 211 references.

  10. Effect of Varying Inert Gas and Acetylene Concentration on the Synthesis of Carbon Nanotubes.

    PubMed

    Afrin, Rahat; Abbas, Syed Mustansar; Shah, Nazar Abbas; Mustafa, Muhammad Farooq; Ali, Zulfiqar; Ahmad, Nisar

    2016-03-01

    The multiwalled carbon nanotubes (MWCNTs) with small diameter and high purity were achieved by chemical vapor deposition technique using silicon substrate. The introduction of specific concentration of inert gas with hydrocarbon played a key role in controlling morphology and diameter of MWCNTs. Nickel mixed ferrite nanoparticles were used as a catalyst for the growth of MWCNTs. Growth parameters like concentration of hydrocarbon source and inert gas flow, composition of catalyst particles and growth temperature were studied. In this work smaller diameter and twisted MWCNTs were formed by dilution of acetylene with argon gas. Electrical properties suggest a semimetallic behavior of synthesized MWCNTs. PMID:27455741

  11. Effect of Varying Inert Gas and Acetylene Concentration on the Synthesis of Carbon Nanotubes.

    PubMed

    Afrin, Rahat; Abbas, Syed Mustansar; Shah, Nazar Abbas; Mustafa, Muhammad Farooq; Ali, Zulfiqar; Ahmad, Nisar

    2016-03-01

    The multiwalled carbon nanotubes (MWCNTs) with small diameter and high purity were achieved by chemical vapor deposition technique using silicon substrate. The introduction of specific concentration of inert gas with hydrocarbon played a key role in controlling morphology and diameter of MWCNTs. Nickel mixed ferrite nanoparticles were used as a catalyst for the growth of MWCNTs. Growth parameters like concentration of hydrocarbon source and inert gas flow, composition of catalyst particles and growth temperature were studied. In this work smaller diameter and twisted MWCNTs were formed by dilution of acetylene with argon gas. Electrical properties suggest a semimetallic behavior of synthesized MWCNTs.

  12. Polymerization of ionized acetylene clusters into covalent bonded ions: evidence for the formation of benzene radical cation.

    PubMed

    Momoh, Paul O; Abrash, Samuel A; Mabrouki, Ridha; El-Shall, M Samy

    2006-09-27

    Since the discovery of acetylene and benzene in protoplanetary nebulae under powerful ultraviolet ionizing radiation, efforts have been made to investigate the polymerization of ionized acetylene. Here we report the efficient formation of benzene ions within gas-phase ionized acetylene clusters (C2H2)n+ with n = 3-60. The results from experiments, which use mass-selected ion mobility techniques, indicate that the (C2H2)3+ ion has unusual stability similar to that of the benzene cation; its primary fragment ions are similar to those reported from the benzene cation, and it has a collision cross section of 47.4 A2 in helium at 300 K, similar to the value of 47.9 A2 reported for the benzene cation. In other words, (C2H2)3+ structurally looks like benzene, it has stability similar to that of benzene, it fragments such as benzene, therefore, it must be benzene! PMID:16984178

  13. Effects of Wing Flaps and Wing Duct Inlet on the Lift and Stalling Characteristics of a 1/4-Scale Partial-Span Model of the Republic XF-12 Airplane in the Langley 19-Foot Pressure Tunnel

    NASA Technical Reports Server (NTRS)

    Graham, Robert R.; Martina, Albert P.; Salmi, Reino J.

    1946-01-01

    An investigation was conducted in the Langley 19-foot pressure tunnel to determine the lift, drag, pitching-moment and stalling characteristics fo a 1/4 -scale partial-span model of the left wing of the Republic XF-12 airplane. The effects of a duct inlet, located between the nacelles at the leading edge of the wing, on those characteristics were also investigated. The Reynolds numbers for the investigation covered a range from 4,500,000 to 8,600,000. The results of the investigation indicated that maximum lift coefficients of 1.36, 1.71, and 2.11 were measured on the model with flaps neutral and deflected 20 deg and 55 deg, respectively at a Reynolds number of 8,600,000. When the duct inlet was replaced by a basic airfoil nose the flap-neutral maximum-lift coefficient was increased from 1.36 to 1.41. The results also showed that at maximum lift with flaps neutral or deflected 55 deg. most of the area between the nacelles were stalled while only small areas on other portions of the model were stalled; when the duct inlet was replaced by the basic airfoil nose the stall was delayed to a slightly higher angle of attack but the nature of the stall was relatively unaffected.

  14. [Increase in skin blood circulation and transcutaneous oxygen partial pressure of the top of the foot in lower leg immersion in water containing carbon dioxide in patients with arterial occlusive disease. Results of a controlled study compared with fresh water].

    PubMed

    Hartmann, B; Drews, B; Burnus, C; Bassenge, E

    1991-01-01

    Semi-quantitative Doppler laser flowmetry and measurement of transcutaneous oxygen partial pressure (TCPO2 in mmHg) are reliable, non-invasive methods of continuous measurement suitable for underwater use. We measured the effect of aqueous CO2 (succinate + sodium bicarbonate = Kao Bub; 1400 mg CO2 per kg water) compared with fresh water (both at 34 degrees C, depth of leg immersion 35 cm, immersion time 20 min) on circulation and TCPO2 in the feet of 15 patients with bilateral stage-II occlusion of the Aa. fem. superf. intraindividually in a randomised, crossover trial. Measurements were made at the same time of day on two consecutive days. No change in either cutaneous microcirculation or TCPO2 was observed during immersion in fresh water. During immersion in a CO2 bath both culaneous blood flow (as expressed by Doppler laser flux) and the amplitude of the Doppler laser vasomotion flux increased more than threefold (p less than 0.001, Wilcoxon), while sitting TCPO2 increased by over 10% (from 63 to 71 mmHg; p less than 0.001). The observed changes in oxygen dissociation and cutaneous microcirculation may help to provide an explanation for the well-known therapeutic effect of CO2 baths in all stages of occlusive arterial disease. PMID:1776351

  15. Partial phase diagram of aqueous bovine carbonic anhydrase: analyses of the pressure-dependent temperatures of the low- to physiological-temperature nondenaturational conformational change and of unfolding to the molten globule state.

    PubMed

    McNevin, Stacey L; Nguyen, Duong T; Britt, B Mark

    2008-10-01

    At 1.0 atm pressure and in 150 mM sodium phosphate (pH=7.0), bovine carbonic anhydrase undergoes a nondenaturational conformational change at 30.3 degrees C and an unfolding transition from the physiological conformer to the molten globule state at 67.4 degrees C. The pressure dependences of the temperatures of these transitions have been studied under reversible conditions for the purpose of understanding DeltaH degrees, DeltaS degrees, and DeltaV for each conformational change. Temperatures for the low-temperature to physiological-temperature conformational change TL-->P are obtained from physiologically relevant conditions using slow-scan-rate differential scanning calorimetry. Temperatures for the physiological-temperature conformation to molten globule state conversion TP-->MG are obtained from differential scanning calorimetry measurements of the apparent transition temperature in the presence of guanidine hydrochloride extrapolated to zero molar denaturant. The use of slow-scan-rate differential scanning calorimetry permits the calculation of the activation volume for the conversion of the low-temperature conformer to the physiological-temperature conformer DeltaVL-->P. At 1.0 atm pressure, the transition from the low-temperature conformer to the physiological-temperature conformer involves a volume change DeltaVL-->P=15+/-2 L/mole, which contrasts with the partial unfolding of the physiological-temperature conformer to the molten globule state (DeltaVP-->MG=26+/-9 L/mole). The activation volume for this process DeltaVL-->P=51+/-9 L/mole and is consistent with a prior thermodynamic analysis that suggests the conformational transition from the low-temperature conformation to the physiological-temperature conformation possesses a substantial unfolding quality. These results provide further evidence the structure of the enzyme obtained from crystals grown below 30 degrees C should not be regarded as the physiological structure (the normal bovine body

  16. Taple-top imaging of the non-adiabatically driven isomerization in the acetylene cation

    NASA Astrophysics Data System (ADS)

    Beaulieu, Samuel; Ibrahim, Heide; Wales, Benji; Schmidt, Bruno E.; Thiré, Nicolas; Bisson, Éric; Hebeisen, Christoph T.; Wanie, Vincent; Giguere, Mathieu; Kieffer, Jean-Claude; Sanderson, Joe; Schuurman, Michael S.; Légaré, François

    2014-05-01

    One of the primary goals of modern ultrafast science is to follow nuclear and electronic evolution of molecules as they undergo a photo-chemical reaction. Most of the interesting dynamics phenomena in molecules occur when an electronically excited state is populated. When the energy difference between electronic ground and excited states is large, Free Electron Laser (FEL) and HHG-based VUV sources were, up to date, the only light sources able to efficiently initiate those non-adiabatic dynamics. We have developed a simple table-top approach to initiate those rich dynamics via multiphoton absorption. As a proof of principle, we studied the ultrafast isomerization of the acetylene cation. We have chosen this model system for isomerization since the internal conversion mechanism which leads to proton migration is still under debate since decades. Using 266 nm multiphoton absorption as a pump and 800 nm induced Coulomb Explosion as a probe, we have shoot the first high-resolution molecular movie of the non-adiabatically driven proton migration in the acetylene cation. The experimental results are in excellent agreement with high level ab initio trajectory simulations.

  17. The methane-acetylene cycle Aerospace Plane - A promising candidate for earth to orbit transportation

    SciTech Connect

    Zubrin, R.M. )

    1992-01-01

    The methane-acetylene cycle Aerosapce Plane (MACASP) concept is proposed and its theoretical feasibility is shown. In this concept, methane fuel stored on-board the aircraft is run out within the wing leading edge in pipes at temperatures up to 1400 K. In the presence of catalyst, the heat provided by wing drag is used to drive the highly endothermic chemical reaction 2CH4 yields 3H2 + C2H2. The products of this reaction, hydrogen and acetylene, are then fed into a combustion chamber and burned in air. On the NASP, terminal acceleration to orbit beyond the critical Mach number of the scramjet can be enabled by rocket operation using a small on-board supply of LOx. The advantages of this concept are that the two highly energetic but difficult-to-store fuels can be used without on-board storage. It is shown that the MACASP concept offers significant promise for economical earth-to-orbit transportation. 5 refs.

  18. Global fitting of line intensities of acetylene molecule in the infrared using the effective operator approach

    NASA Astrophysics Data System (ADS)

    Perevalov, V. I.; Lyulin, O. M.; Jacquemart, D.; Claveau, C.; Teffo, J.-L.; Dana, V.; Mandin, J.-Y.; Valentin, A.

    2003-04-01

    The method of effective operators has been applied to the global fitting of line intensities of the acetylene molecule in the middle infrared. Simultaneous fittings of recently observed line intensities in the cold and hot bands lying in the 13.6, 7.8, and 5 μm regions have been performed. The eigenfunctions of the effective Hamiltonian developed for the global treatment of the vibration-rotation line positions of acetylene [O.M. Lyulin, V.I. Perevalov, S.A. Tashkun, J.-L. Teffo, in: Leonid N. Sinitsa (Ed.), 13th Symposium and School on High Resolution Molecular Spectroscopy, Proceedings of SPIE, vol. 4063, 2000, pp. 126-133] have been used in the calculations. The sets of effective dipole moment parameters obtained reproduce the observed line intensities within the experimental accuracy. The importance of l-type resonance, responsible for some large differences between intensities of the same lines in subbands having opposite parities, is exhibited and discussed.

  19. Preparation of allenic sulfones and allenes from the selenosulfonation of acetylenes

    SciTech Connect

    Back, T.G.; Krishna, M.V.; Muralidharan, K.R. )

    1989-08-18

    {beta}-(phenylseleno)vinyl sulfones 2 are readily obtained from the free-radical selenosulfonation of acetylenes. Compounds 2 isomerize to allyl sulfones 4 under base-catalyzed conditions in nearly quantitative yield, with high stereoselectivity favoring the Z configuration. Allyl sulfones 4 afford generally high yields of allenic sulfones 1 when subjected to oxidation with m-chloroperbenzoic acid or tert-butyl hydroperoxide, followed by selenoxide syn-elimination. The sulfone-stabilized anion intermediates in the isomerizations of 2 to 4 can be alkylated, deuterated, or silylated in the {alpha}-position prior to oxidation, providing allenic sulfones with an additional {alpha}-substituent. In some cases, spontaneous elimination of the phenylseleno group occurred, producing the allenic sulfone without the need for an oxidation step. Desulfonylation of allyl sulfones 4f, 4c, and 25 with sodium amalgam afforded vinyl selenides that were converted to allenes in moderate to good yields by oxidation-elimination. The copper-catalyzed coupling of allyl sulfones 4 with Grignard reagents comprises an alternative route to vinyl selenide precursors of allenes. These procedures permit the synthesis of various {alpha}- and {gamma}-substituted allenic sulfones and allenes from acetylenes.

  20. Nonoxidative methane conversion to acetylene over zeolite in a low temperature plasma

    SciTech Connect

    Liu, C.; Mallinson, R.; Lobban, L.

    1998-10-01

    Previous investigations have found that the plasma catalytic conversion of methane is a low-temperature process for the activation of methane, the major component of natural gas. In this paper, the production of acetylene via plasma catalytic conversion of methane over NaY zeolite is discussed. Hydrogen is produced as a by-product during this plasma catalytic methane conversion. A methane/hydrogen feed with oxygen as an additive and helium as a diluent has been studied in this investigation. The CH{sub 4}/H{sub 2}/O{sub 2} system is found to be more selective for the production of C{sub 2} hydrocarbons, compared to the CH{sub 4}/O{sub 2}, CH{sub 4}H{sub 2}O, and CH{sub 4}/CO{sub 2} systems reported previously. A higher hydrogen concentration feed is more favorable for acetylene formation. The selectivity and yield of C{sub 2} hydrocarbons are related to the hydrogen feed rate, gas temperature, concentration of oxygen additive, and flowrate. The highest yield of C{sub 2} hydrocarbons (32%) is obtained at the lowest flowrate used (10 cm{sup 3}/s; residence time {approximately}2.3 s). A reaction mechanism is also presented to explain the experimental results.

  1. Formation of artificial pores in nano-TiO2 photo-electrode films using acetylene-black for high-efficiency, dye-sensitized solar cells

    PubMed Central

    Cho, Tae-Yeon; Han, Chi-Whan; Jun, Yongseok; Yoon, Soon-Gil

    2013-01-01

    Acetylene-black paste without a light scattering layer was applied to meso-porous TiO2 photo-electrode films with a crystalline framework, a low residual carbon, and a tunable morphological pore size. The thermal-treated TiO2 photo-electrode films had an increased acetylene-black concentration with an increase in artificial pores and a decrease in residual carbon. The performance of dye-sensitized solar cells (DSSCs) was enhanced by the use of the TiO2 photo-anode pastes at various acetylene-black concentrations. The photo-conversion efficiency of the DSSCs using TiO2 photo-electrode films with 1.5 wt% acetylene-black was enhanced from 7.98 (no acetylene-black) to 9.75% without the integration of a light- scattering layer. PMID:23511122

  2. Vibration-rotation pattern in acetylene. II. Introduction of Coriolis coupling in the global model and analysis of emission spectra of hot acetylene around 3 microm.

    PubMed

    Amyay, Badr; Robert, Séverine; Herman, Michel; Fayt, André; Raghavendra, Balakrishna; Moudens, Audrey; Thiévin, Jonathan; Rowe, Bertrand; Georges, Robert

    2009-09-21

    A high temperature source has been developed and coupled to a high resolution Fourier transform spectrometer to record emission spectra of acetylene around 3 mum up to 1455 K under Doppler limited resolution (0.015 cm(-1)). The nu(3)-ground state (GS) and nu(2)+nu(4)+nu(5) (Sigma(u) (+) and Delta(u))-GS bands and 76 related hot bands, counting e and f parities separately, are assigned using semiautomatic methods based on a global model to reproduce all related vibration-rotation states. Significantly higher J-values than previously reported are observed for 40 known substates while 37 new e or f vibrational substates, up to about 6000 cm(-1), are identified and characterized by vibration-rotation parameters. The 3 811 new or improved data resulting from the analysis are merged into the database presented by Robert et al. [Mol. Phys. 106, 2581 (2008)], now including 15 562 lines accessing vibrational states up to 8600 cm(-1). A global model, updated as compared to the one in the previous paper, allows all lines in the database to be simultaneously fitted, successfully. The updates are discussed taking into account, in particular, the systematic inclusion of Coriolis interaction.

  3. Is Titan Partially Differentiated?

    NASA Astrophysics Data System (ADS)

    Mitri, G.; Pappalardo, R. T.; Stevenson, D. J.

    2009-12-01

    The recent measurement of the gravity coefficients from the Radio Doppler data of the Cassini spacecraft has improved our knowledge of the interior structure of Titan (Rappaport et al. 2008 AGU, P21A-1343). The measured gravity field of Titan is dominated by near hydrostatic quadrupole components. We have used the measured gravitational coefficients, thermal models and the hydrostatic equilibrium theory to derive Titan's interior structure. The axial moment of inertia gives us an indication of the degree of the interior differentiation. The inferred axial moment of inertia, calculated using the quadrupole gravitational coefficients and the Radau-Darwin approximation, indicates that Titan is partially differentiated. If Titan is partially differentiated then the interior must avoid melting of the ice during its evolution. This suggests a relatively late formation of Titan to avoid the presence of short-lived radioisotopes (Al-26). This also suggests the onset of convection after accretion to efficiently remove the heat from the interior. The outer layer is likely composed mainly of water in solid phase. Thermal modeling indicates that water could be present also in liquid phase forming a subsurface ocean between an outer ice I shell and a high pressure ice layer. Acknowledgments: This work was conducted at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  4. Effect of the detonation nanodiamond surface on the catalytic activity of deposited nickel catalysts in the hydrogenation of acetylene

    NASA Astrophysics Data System (ADS)

    Tveritinova, E. A.; Kulakova, I. I.; Zhitnev, Yu. N.; Kharlanov, A. N.; Fionov, A. V.; Chen, W.; Buyanova, I.; Lunin, V. V.

    2013-07-01

    A comparative study is performed of the catalytic activity of nanosized nickel deposited on detonation synthesis nanodiamond (DND) and coal (CSUG) produced by burning sugar and crystalline quartz in the hydrogenation of acetylene. Nanosized nickel is obtained through the thermal decomposition of nickel formate under a dynamic vacuum. The catalysts are studied by means of scanning electron and transmission electron microscopy, X-ray fluorescence, IR-spectroscopy, X-ray diffraction, and pulse microcatalytic method. It is shown that Ni/DND is an active catalyst of acetylene hydrogenation, considerably surpassing Ni/quartz and Ni/CSUG. The apparent activation energy of the hydrogenation of acetylene is calculated, and the region of the reaction are determined for all catalysts. It is found that the influence of the structure and nature of a functional coating of nanodiamond on the catalytic activity of Ni/DND deposited catalyst in the hydrogenation of acetylene. The ability of Ni/DND to hold active hydrogen is detected.

  5. Infrared Spectroscopy of Deuterated Acetylene in Solid Parahydrogen and the Helium Recovery Initiative

    NASA Astrophysics Data System (ADS)

    Strom, Aaron I.; Anderson, David T.

    2016-06-01

    The linear tetratomic organic molecule acetylene, HCCH, has been studied extensively throughout the past century via numerous spectroscopic experiments, exploiting wavelengths across the electromagnetic spectrum. Both the mono- and di-deutero acetylene isotopologues have also been widely studied, namely HCCD and DCCD. In this presentation, I will present the Fourier transform infrared (FTIR) spectroscopy of DCCD in solid parahydrogen (pH2) in the low-temperature regime (1.5-5.0 K). We intend to perform UV photochemical studies on DCCD doped solid pH2 and, therefore, the infrared spectroscopy must be characterized prior. The FTIR spectrum of DCCD isolated in solid pH2 exhibits rich fine structure in the νb{3} asymmetric C-D stretch region. Some of the observed peaks may arise from the formation of weakly bound acetylene dimers, or potentially even larger clusters. We can test this hypothesis by varying the DCCD concentration in separate experiments and temperature cycling the matrix to look for irreversible cluster growth. In preliminary experiments we observe trace amounts of the lighter isotopologues (HCCD and HCCH) and so these species can also cluster with DCCD, adding to the complexity of the spectra. We remark that ortho-hydrogen clustering to DCCD may also be occurring and we have ways to check that as well. In order to make better sense of the FTIR spectrum of DCCD doped pH2, a comparison with the simulated low temperature gas-phase spectrum will also be presented. This will allow us to address issues related to the extent of the rotational motion of DCCD in solid pH2. A liquid helium bath cryostat is used to grow and maintain the DCCD doped pH2 crystals for spectroscopic characterization. Helium is a non-renewable resource and in recent years the Anderson group has been building a helium recovery system. This Helium Recovery Initiative (HRI) will be discussed in an effort to describe how we implemented this new experimental system in our laboratory and to

  6. Characterization of the Minimum Energy Paths for the Ring Closure Reactions of C4H3 with Acetylene

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.

    1995-01-01

    The ring closure reaction of C4H3 with acetylene to give phenyl radical is one proposed mechanism for the formation of the first aromatic ring in hydrocarbon combustion. There are two low-lying isomers of C4H3; 1-dehydro-buta-l-ene-3-yne (n-C4H3) and 2-dehydro-buta-l-ene-3-yne (iso-C4H3). It has been proposed that only n-C4H3 reacts with acetylene to give phenyl radical, and since iso-C4H3 is more stable than n-C4H3, formation of phenyl radical by this mechanism is unlikely. We report restricted Hartree-Fock (RHF) plus singles and doubles configuration interaction calculations with a Davidson's correction (RHF+1+2+Q) using the Dunning correlation consistent polarized valence double zeta basis set (cc-pVDZ) for stationary point structures along the reaction pathway for the reactions of n-C4H3 and iso-C4H3 with acetylene. n-C4H3 plus acetylene (9.4) has a small entrance channel barrier (17.7) (all energetics in parentheses are in kcal/mol with respect to iso-C4H3 plus acetylene) and the subsequent closure steps leading to phenyl radical (-91.9) are downhill with respect to the entrance channel barrier. Iso-C4H3 Plus acetylene also has an entrance channel barrier (14.9) and there is a downhill pathway to 1-dehydro-fulvene (-55.0). 1-dehydro-fulvene can rearrange to 6-dehydro-fulvene (-60.3) by a 1,3-hydrogen shift over a barrier (4.0), which is still below the entrance channel barrier, from which rearrangement to phenyl radical can occur by a downhill pathway. Thus, both n-C4H3 and iso-C4H3 can react with acetylene to give phenyl radical with small barriers.

  7. Carbon material formation on SBA-15 and Ni-SBA-15 and residue constituents during acetylene decomposition.

    PubMed

    Chiang, Hung-Lung; Wu, Trong-Neng; Ho, Yung-Shou; Zeng, Li-Xuan

    2014-07-15

    Carbon materials including carbon spheres and nanotubes were formed from acetylene decomposition on hydrogen-reduced SBA-15 and Ni-SBA-15 at 650-850°C. The physicochemical characteristics of SBA-15, Ni-SBA-15 and carbon materials were analyzed by field emission scanning electronic microscopy (FE-SEM), Raman spectrometry, and energy dispersive spectrometry (EDS). In addition, the contents of polyaromatic hydrocarbons (PAHs) in the tar and residue and volatile organic compounds (VOCs) in the exhaust were determined during acetylene decomposition on SBA-15 and Ni-SBA-15. Spherical carbon materials were observed on SBA-15 during acetylene decomposition at 750 and 850°C. Carbon filaments and ball spheres were formed on Ni-SBA-15 at 650-850°C. Raman spectroscopy revealed peaks at 1290 (D-band, disorder mode, amorphous carbon) and 1590 (G-band, graphite sp(2) structure)cm(-1). Naphthalene (2 rings), pyrene (4 rings), phenanthrene (3 rings), and fluoranthene (4 rings) were major PAHs in tar and residues. Exhaust constituents of hydrocarbon (as propane), H2, and C2H2 were 3.9-2.6/2.7-1.5, 1.4-2.8/2.6-4.3, 4.2-2.4/3.2-1.7% when acetylene was decomposed on SBA-15/Ni-SBA-15, respectively, corresponding to temperatures ranging from 650 to 850°C. The concentrations of 52 VOCs ranged from 9359 to 5658 and 2488 to 1104ppm for SBA-15 and Ni-SBA-15 respectively, at acetylene decomposition temperatures from 650 to 850°C, and the aromatics contributed more than 87% fraction of VOC concentrations. PMID:24858051

  8. From the Lindlar catalyst to supported ligand-modified palladium nanoparticles: selectivity patterns and accessibility constraints in the continuous-flow three-phase hydrogenation of acetylenic compounds.

    PubMed

    Vilé, Gianvito; Almora-Barrios, Neyvis; Mitchell, Sharon; López, Núria; Pérez-Ramírez, Javier

    2014-05-12

    Site modification and isolation through selective poisoning comprise an effective strategy to enhance the selectivity of palladium catalysts in the partial hydrogenation of triple bonds in acetylenic compounds. The recent emergence of supported hybrid materials matching the stereo- and chemoselectivity of the classical Lindlar catalyst holds promise to revolutionize palladium-catalyzed hydrogenations, and will benefit from an in-depth understanding of these new materials. In this work, we compare the performance of bare, lead-poisoned, and ligand-modified palladium catalysts in the hydrogenation of diverse alkynes. Catalytic tests, conducted in a continuous-flow three-phase reactor, coupled with theoretical calculations and characterization methods, enable elucidation of the structural origins of the observed selectivity patterns. Distinctions in the catalytic performance are correlated with the relative accessibility of the active site to the organic substrate, and with the adsorption configuration and strength, depending on the ensemble size and surface potentials. This explains the role of the ligand in the colloidally prepared catalysts in promoting superior performance in the hydrogenation of terminal and internal alkynes, and short-chain alkynols. In contrast, the greater accessibility of the active surface of the Pd-Pb alloy and the absence of polar groups are shown to be favorable in the conversion of alkynes containing long aliphatic chains and/or ketone groups. These findings provide detailed insights for the advanced design of supported nanostructured catalysts.

  9. A novel metal-organic framework for high storage and separation of acetylene at room temperature

    NASA Astrophysics Data System (ADS)

    Duan, Xing; Wang, Huizhen; Ji, Zhenguo; Cui, Yuanjing; Yang, Yu; Qian, Guodong

    2016-09-01

    A novel 3D microporous metal-organic framework with NbO topology, [Cu2(L)(H2O)2]•(DMF)6·(H2O)2 (ZJU-10, ZJU = Zhejiang University; H4L =2‧-hydroxy-[1,1‧:4‧,1″-terphenyl]-3,3″,5,5″-tetracarboxylic acid; DMF =N,N-dimethylformamide), has been synthesized and structurally characterized. With suitable pore sizes and open Cu2+ sites, ZJU-10a exhibits high BET surface area of 2392 m2/g, as well as moderately high C2H2 volumetric uptake capacity of 132 cm3/cm3. Meanwhile, ZJU-10a is a promising porous material for separation of acetylene from methane and carbon dioxide gas mixtures at room temperature.

  10. Synthesis, structure and cytotoxic activity of acetylenic derivatives of betulonic and betulinic acids

    NASA Astrophysics Data System (ADS)

    Bębenek, Ewa; Chrobak, Elwira; Wietrzyk, Joanna; Kadela, Monika; Chrobak, Artur; Kusz, Joachim; Książek, Maria; Jastrzębska, Maria; Boryczka, Stanisław

    2016-02-01

    A series of acetylenic derivatives of betulonic and betulinic acids has been synthesized and characterized by 1H and 13C NMR, IR and MS spectroscopy. The structure of propargyl betulonate 4 and propargyl betulinate-DMF solvate 8A was solved by X-ray diffraction. Thermal properties were examined using a DSC technique. The resulting alkynyl derivatives, as well as betulin 1 and betulinic acid 3, were evaluated in vitro for their cytotoxic activity against human T47D breast cancer, CCRF/CEM leukemia, SW707 colorectal, murine P388 leukemia and BALB3T3 normal fibroblasts cell lines. Several of the obtained compounds have a favorable cytotoxic profile than betulin 1. Propargyl betulinate 8 was the most active derivative, being up to 3-fold more potent than betulin 1 against the human leukemia (CCRF/CEM) cell line, with an IC50 value of 3.9 μg/mL.

  11. Tabletop imaging of structural evolutions in chemical reactions demonstrated for the acetylene cation

    NASA Astrophysics Data System (ADS)

    Ibrahim, Heide; Wales, Benji; Beaulieu, Samuel; Schmidt, Bruno E.; Thiré, Nicolas; Fowe, Emmanuel P.; Bisson, Éric; Hebeisen, Christoph T.; Wanie, Vincent; Giguére, Mathieu; Kieffer, Jean-Claude; Spanner, Michael; Bandrauk, André D.; Sanderson, Joseph; Schuurman, Michael S.; Légaré, François

    2014-07-01

    The introduction of femto-chemistry has made it a primary goal to follow the nuclear and electronic evolution of a molecule in time and space as it undergoes a chemical reaction. Using Coulomb Explosion Imaging, we have shot the first high-resolution molecular movie of a to and fro isomerization process in the acetylene cation. So far, this kind of phenomenon could only be observed using vacuum ultraviolet light from a free-electron laser. Here we show that 266 nm ultrashort laser pulses are capable of initiating rich dynamics through multiphoton ionization. With our generally applicable tabletop approach that can be used for other small organic molecules, we have investigated two basic chemical reactions simultaneously: proton migration and C=C bond breaking, triggered by multiphoton ionization. The experimental results are in excellent agreement with the timescales and relaxation pathways predicted by new and quantitative ab initio trajectory simulations.

  12. Reactions of yttrium and scandium atoms with acetylene: a matrix isolation infrared spectroscopic and theoretical study.

    PubMed

    Teng, Yun-Lei; Xu, Qiang

    2010-09-01

    Laser-ablated yttrium and scandium metal atoms have been codeposited at 4 K with acetylene in excess argon. Products, Y(C(2)H(2)), HYCCH, HScCCH(-), and HScScCCH(-), have been formed in the present experiments and characterized using infrared spectroscopy on the basis of the results of the isotopic shifts, mixed isotopic splitting patterns, stepwise annealing, the change of reagent concentration and laser energy, and the comparison with theoretical predictions. Density functional theory calculations have been performed on these molecules. The agreement between the experimental and calculated vibrational frequencies, relative absorption intensities, and isotopic shifts supports the identification of these molecules from the matrix infrared spectra. Plausible reaction mechanisms have been proposed to account for the formation of these molecules.

  13. Reactions of group 14 metal atoms with acetylene: a matrix isolation infrared spectroscopic and theoretical study.

    PubMed

    Teng, Yun-Lei; Xu, Qiang

    2009-11-01

    Laser-ablated group 14 metal atoms have been codeposited at 4 K with acetylene in excess argon. Products, Ge(C2H2), HGeCCH, Sn(C2H2), Sn2CCH2, HSnCCH, and HPbCCH, have been formed in the present experiments and characterized using infrared spectroscopy on the basis of the results of the isotopic shifts, mixed isotopic splitting patterns, stepwise annealing, the change of reagent concentration and laser energy, and the comparison with theoretical predictions. Density functional theory calculations have been performed on these molecules. The agreement between the experimental and the calculated vibrational frequencies, relative absorption intensities, and isotopic shifts supports the identification of these molecules from the matrix infrared spectra. Plausible reaction mechanisms have been proposed to account for the formation of these molecules.

  14. Retrievals of the Abundances of Acetylene and other Hydrocarbons in Titan's Upper Atmosphere

    NASA Astrophysics Data System (ADS)

    Fan, Siteng; Shemansky, D. E.; Yung, Yuk

    2016-10-01

    Acetylene abundance in the Titan upper atmosphere has been extracted from Cassini Ultraviolet Imaging Spectrograph (UVIS) stellar occultations. The data reduction process is based on simulation of the discrete spectral absorption in the far ultraviolet (FUV) region between 110 and 190 nm. Pointing drift is corrected by instrument simulation of the stellar image location on the instrument detector. Latitude and seasonal dependence of the vertical profiles has been examined. The observed spectra have been compared to atmospheric chemical model calculations (KINETICS) by predicting the occultation spectra, allowing the imposition of constraints on the model, and directly establishing the level of uncertainty in the extraction process. Hydrocarbon and nitrile vertical profiles have been extracted, with limits set on the precursors to aerosols. Aerosol continuum spectral structure is recognized in the extinction spectra, but physical chemistry modeling of aerosol precursors to date indicate higher abundances than the upper limits set by observation.

  15. Hydrothermal Synthesis and Acetylene Sensing Properties of Variety Low Dimensional Zinc Oxide Nanostructures

    PubMed Central

    Chen, Weigen; Peng, Shudi; Zeng, Wen

    2014-01-01

    Various morphologies of low dimensional ZnO nanostructures, including spheres, rods, sheets, and wires, were successfully synthesized using a simple and facile hydrothermal method assisted with different surfactants. Zinc acetate dihydrate was chosen as the precursors of ZnO nanostructures. We found that polyethylene glycol (PEG), polyvinylpyrrolidone (PVP), glycine, and ethylene glycol (EG) play critical roles in the morphologies and microstructures of the synthesized nanostructures, and a series of possible growth processes were discussed in detail. Gas sensors were fabricated using screen-printing technology, and their sensing properties towards acetylene gas (C2H2), one of the most important arc discharge characteristic gases dissolved in oil-filled power equipments, were systematically measured. The ZnO nanowires based sensor exhibits excellent C2H2 sensing behaviors than those of ZnO nanosheets, nanorods, and nanospheres, indicating a feasible way to develop high-performance C2H2 gas sensor for practical application. PMID:24672324

  16. Tabletop imaging of structural evolutions in chemical reactions demonstrated for the acetylene cation.

    PubMed

    Ibrahim, Heide; Wales, Benji; Beaulieu, Samuel; Schmidt, Bruno E; Thiré, Nicolas; Fowe, Emmanuel P; Bisson, Éric; Hebeisen, Christoph T; Wanie, Vincent; Giguére, Mathieu; Kieffer, Jean-Claude; Spanner, Michael; Bandrauk, André D; Sanderson, Joseph; Schuurman, Michael S; Légaré, François

    2014-01-01

    The introduction of femto-chemistry has made it a primary goal to follow the nuclear and electronic evolution of a molecule in time and space as it undergoes a chemical reaction. Using Coulomb Explosion Imaging, we have shot the first high-resolution molecular movie of a to and fro isomerization process in the acetylene cation. So far, this kind of phenomenon could only be observed using vacuum ultraviolet light from a free-electron laser. Here we show that 266 nm ultrashort laser pulses are capable of initiating rich dynamics through multiphoton ionization. With our generally applicable tabletop approach that can be used for other small organic molecules, we have investigated two basic chemical reactions simultaneously: proton migration and C=C bond breaking, triggered by multiphoton ionization. The experimental results are in excellent agreement with the timescales and relaxation pathways predicted by new and quantitative ab initio trajectory simulations.

  17. Urea-acetylene dicarboxylic acid reaction: A likely pathway for prebiotic uracil formation

    NASA Astrophysics Data System (ADS)

    Subbaraman, A. S.; Kazi, Z. A.; Choughuley, A. S. U.; Chadha, M. S.

    1980-12-01

    A number of routes have been suggested for the prebiotic synthesis of uracil involving the reaction of urea with malic acid, propiolic acid, cyanoacetylene and others. Cyanoacetylene has been detected in the interstellar medium as well as simulated prebiotic experiments. It is therefore plausible that dicyanoacetylene and its hydrolytic product acetylene dicarboxylic acid, (ADCA) may have played a role in chemical evolution. This aspect has been examined in the present work for the synthesis of uracil from ADCA and urea reaction. It was found that when ADCA reacted with urea, uracil was formed only in the presence of phosphoric acid and phosphates. Ammonium phosphates gave higher yields of uracil than other phosphates. In the absence of phosphoric acid or phosphates no uracil formation took place. This type of synthesis could have taken place in prebiotic oceans which contained ammonium phosphates and other salts.

  18. Atom-economic catalytic amide synthesis from amines and carboxylic acids activated in situ with acetylenes

    PubMed Central

    Krause, Thilo; Baader, Sabrina; Erb, Benjamin; Gooßen, Lukas J.

    2016-01-01

    Amide bond-forming reactions are of tremendous significance in synthetic chemistry. Methodological research has, in the past, focused on efficiency and selectivity, and these have reached impressive levels. However, the unacceptable amounts of waste produced have led the ACS GCI Roundtable to label ‘amide bond formation avoiding poor atom economy' as the most pressing target for sustainable synthetic method development. In response to this acute demand, we herein disclose an efficient one-pot amide coupling protocol that is based on simple alkynes as coupling reagents: in the presence of a dichloro[(2,6,10-dodecatriene)-1,12-diyl]ruthenium catalyst, carboxylate salts of primary or secondary amines react with acetylene or ethoxyacetylene to vinyl ester intermediates, which undergo aminolysis to give the corresponding amides along only with volatile acetaldehyde or ethyl acetate, respectively. The new amide synthesis is broadly applicable to the synthesis of structurally diverse amides, including dipeptides. PMID:27282773

  19. Analysis for Mar Vel Black and acetylene soot low reflectivity surfaces for star tracker sunshade applications

    NASA Technical Reports Server (NTRS)

    Yung, E.

    1974-01-01

    Mar Vel Black is a revolutionary new extremely low reflectivity anodized coating developed by Martin Marietta of Denver. It is of great interest in optics in general, and in star trackers specifically because it can reduce extraneous light reflections. A sample of Mar Vel Black was evaluated. Mar Vel Black looks much like a super black surface with many small peaks and very steep sides so that any light incident upon the surface will tend to reflect many times before exiting that surface. Even a high reflectivity surface would thus appear to have a very low reflectivity under such conditions. Conversely, acetylene soot does not have the magnified surface appearance of a super black surface. Its performance is, however, predictable from the surface structure, considering the known configuration of virtually pure carbon.

  20. Graphenes in the absence of metals as carbocatalysts for selective acetylene hydrogenation and alkene hydrogenation

    NASA Astrophysics Data System (ADS)

    Primo, Ana; Neatu, Florentina; Florea, Mihaela; Parvulescu, Vasile; Garcia, Hermenegildo

    2014-10-01

    Catalysis makes possible a chemical reaction by increasing the transformation rate. Hydrogenation of carbon-carbon multiple bonds is one of the most important examples of catalytic reactions. Currently, this type of reaction is carried out in petrochemistry at very large scale, using noble metals such as platinum and palladium or first row transition metals such as nickel. Catalysis is dominated by metals and in many cases by precious ones. Here we report that graphene (a single layer of one-atom-thick carbon atoms) can replace metals for hydrogenation of carbon-carbon multiple bonds. Besides alkene hydrogenation, we have shown that graphenes also exhibit high selectivity for the hydrogenation of acetylene in the presence of a large excess of ethylene.

  1. Atom-economic catalytic amide synthesis from amines and carboxylic acids activated in situ with acetylenes.

    PubMed

    Krause, Thilo; Baader, Sabrina; Erb, Benjamin; Gooßen, Lukas J

    2016-01-01

    Amide bond-forming reactions are of tremendous significance in synthetic chemistry. Methodological research has, in the past, focused on efficiency and selectivity, and these have reached impressive levels. However, the unacceptable amounts of waste produced have led the ACS GCI Roundtable to label 'amide bond formation avoiding poor atom economy' as the most pressing target for sustainable synthetic method development. In response to this acute demand, we herein disclose an efficient one-pot amide coupling protocol that is based on simple alkynes as coupling reagents: in the presence of a dichloro[(2,6,10-dodecatriene)-1,12-diyl]ruthenium catalyst, carboxylate salts of primary or secondary amines react with acetylene or ethoxyacetylene to vinyl ester intermediates, which undergo aminolysis to give the corresponding amides along only with volatile acetaldehyde or ethyl acetate, respectively. The new amide synthesis is broadly applicable to the synthesis of structurally diverse amides, including dipeptides. PMID:27282773

  2. Analysis of Effluent Gases During the CCVD Growth of Multi Wall Carbon Nanotubes from Acetylene

    NASA Technical Reports Server (NTRS)

    Schmitt, T. C.; Biris, A. S.; Miller, D. W.; Biris, A. R.; Lupu, D.; Trigwell, S.; Rahman, Z. U.

    2005-01-01

    Catalytic chemical vapor deposition was used to grow multi-walled carbon nanotubes on a Fe:Co:CaCO3 catalyst from acetylene. The influent and effluent gases were analyzed by gas chromatography and mass spectrometry at different time intervals during the nanotubes growth process in order to better understand and optimize the overall reaction. A large number of byproducts were identified and it was found that the number and the level for some of the carbon byproducts significantly increased over time. The CaCO3 catalytic support thermally decomposed into CaO and CO2 resulting in a mixture of two catalysts for growing the nanotubes, which were found to have outer diameters belonging to two main groups 8 to 35 nm and 40 to 60 nm, respectively.

  3. Synthesis, structure and cytotoxic activity of acetylenic derivatives of betulonic and betulinic acids

    NASA Astrophysics Data System (ADS)

    Bębenek, Ewa; Chrobak, Elwira; Wietrzyk, Joanna; Kadela, Monika; Chrobak, Artur; Kusz, Joachim; Książek, Maria; Jastrzębska, Maria; Boryczka, Stanisław

    2016-02-01

    A series of acetylenic derivatives of betulonic and betulinic acids has been synthesized and characterized by 1H and 13C NMR, IR and MS spectroscopy. The structure of propargyl betulonate 4 and propargyl betulinate-DMF solvate 8A was solved by X-ray diffraction. Thermal properties were examined using a DSC technique. The resulting alkynyl derivatives, as well as betulin 1 and betulinic acid 3, were evaluated in vitro for their cytotoxic activity against human T47D breast cancer, CCRF/CEM leukemia, SW707 colorectal, murine P388 leukemia and BALB3T3 normal fibroblasts cell lines. Several of the obtained compounds have a favorable cytotoxic profile than betulin 1. Propargyl betulinate 8 was the most active derivative, being up to 3-fold more potent than betulin 1 against the human leukemia (CCRF/CEM) cell line, with an IC50 value of 3.9 μg/mL.

  4. Interference in acetylene intersystem crossing acts as the molecular analog of Young's double-slit experiment.

    PubMed

    de Groot, Mattijs; Field, Robert W; Buma, Wybren J

    2009-02-24

    We report on an experimental approach that reveals crucial details of the composition of singlet-triplet mixed eigenstates in acetylene. Intersystem crossing in this prototypical polyatomic molecule embodies the mixing of the lowest excited singlet state (S(1)) with 3 triplet states (T(1), T(2), and T(3)). Using high-energy (157-nm) photons from an F(2) laser to record excited-state photoelectron spectra, we have decomposed the mixed eigenstates into their S(1), T(3), T(2), and T(1) constituent parts. One example of the interpretive power that ensues from the selective sensitivity of the experiment to the individual electronic state characters is the discovery and examination of destructive interference between two doorway-mediated intersystem crossing pathways. This observation of an interference effect in nonradiative decay opens up possibilities for rational coherent control over molecular excited state dynamics.

  5. Tabletop imaging of structural evolutions in chemical reactions demonstrated for the acetylene cation.

    PubMed

    Ibrahim, Heide; Wales, Benji; Beaulieu, Samuel; Schmidt, Bruno E; Thiré, Nicolas; Fowe, Emmanuel P; Bisson, Éric; Hebeisen, Christoph T; Wanie, Vincent; Giguére, Mathieu; Kieffer, Jean-Claude; Spanner, Michael; Bandrauk, André D; Sanderson, Joseph; Schuurman, Michael S; Légaré, François

    2014-01-01

    The introduction of femto-chemistry has made it a primary goal to follow the nuclear and electronic evolution of a molecule in time and space as it undergoes a chemical reaction. Using Coulomb Explosion Imaging, we have shot the first high-resolution molecular movie of a to and fro isomerization process in the acetylene cation. So far, this kind of phenomenon could only be observed using vacuum ultraviolet light from a free-electron laser. Here we show that 266 nm ultrashort laser pulses are capable of initiating rich dynamics through multiphoton ionization. With our generally applicable tabletop approach that can be used for other small organic molecules, we have investigated two basic chemical reactions simultaneously: proton migration and C=C bond breaking, triggered by multiphoton ionization. The experimental results are in excellent agreement with the timescales and relaxation pathways predicted by new and quantitative ab initio trajectory simulations. PMID:25034613

  6. Dynamics of proton-acetylene collisions at 30 eV

    NASA Astrophysics Data System (ADS)

    Malinovskaya, S. A.; Cabrera-Trujillo, R.; Sabin, John. R.; Deumens, E.; Ohrn, Y.

    2002-07-01

    Collisions of protons with ground state acetylene molecules at 30 eV are studied using the electron nuclear dynamics (END) theory. This time-dependent methodology for the study of molecular processes is a nonadiabatic approach to direct dynamics, which has been successfully applied to ion-atom and ion-molecule reactive collisions. Using the minimal END theory, we calculate the direct and charge-transfer differential cross sections. Different initial conditions lead to diverse product channels, such as charge transfer, proton exchange, and collision induced dissociation. Projectile energy loss is analyzed in terms of transfer into target electronic, translational, and rovibrational excitations. The comparison of the computed results with time-of-flight measurements is discussed.

  7. Shock-tube pyrolysis of acetylene - Sensitivity analysis of the reaction mechanism for soot formation

    NASA Technical Reports Server (NTRS)

    Frenklach, M.; Clary, D. W.; Gardiner, W. C., Jr.; Stein, S. E.

    1986-01-01

    The impact of thermodynamic parameters on the sensitivity of model predictions of soot formation by shock-tube pyrolysis of acetylene were assessed analytically. The pyrolysis process was treated as having three components: initiation, the initial pyrolysis stages; cyclization, formation of larger molecules and radicals and small aromatic molecules; and polymerization, further growth of aromatic rings. Rate equations are reviewed for each component. Thermodynamic effects were assessed by varying the C2H-H and C2H3-H bond energies and the Ct-(Ct) group additivity value. Any change in the C2H-H bond energy had a significant impact on the temperature and the maximum amount of the soot yield. The findings underscore the necessity of using accurate thermodynamic data for modeling high-temperature chemical kinetics.

  8. Infrared Spectra and Optical Constants of Astronomical Ices: I. Amorphous and Crystalline Acetylene

    NASA Technical Reports Server (NTRS)

    Hudson, R. L.; Ferrante, R. F.; Moore, M. H.

    2013-01-01

    Here we report recent measurements on acetylene (C2H2) ices at temperatures applicable to the outer Solar System and the interstellar medium. New near- and mid-infrared data, including optical constants (n, k), absorption coefficients (alpha), and absolute band strengths (A), are presented for both amorphous and crystalline phases of C2H2 that exist below 70 K. Comparisons are made to earlier work. Electronic versions of the data are made available, as is a computer routine to use our reported n and k values to simulate the observed IR spectra. Suggestions are given for the use of the data and a comparison to a spectrum of Makemake is made.

  9. Computational simulations of hydrogen circular migration in protonated acetylene induced by circularly polarized light.

    PubMed

    Shi, Xuetao; Li, Wen; Schlegel, H Bernhard

    2016-08-28

    The hydrogens in protonated acetylene are very mobile and can easily migrate around the C2 core by moving between classical and non-classical structures of the cation. The lowest energy structure is the T-shaped, non-classical cation with a hydrogen bridging the two carbons. Conversion to the classical H2CCH(+) ion requires only 4 kcal/mol. The effect of circularly polarized light on the migration of hydrogens in oriented C2H3 (+) has been simulated by Born-Oppenheimer molecular dynamics. Classical trajectory calculations were carried out with the M062X/6-311+G(3df,2pd) level of theory using linearly and circularly polarized 32 cycle 7 μm cosine squared pulses with peak intensity of 5.6 × 10(13) W/cm(2) and 3.15 × 10(13) W/cm(2), respectively. These linearly and circularly polarized pulses transfer similar amounts of energy and total angular momentum to C2H3 (+). The average angular momentum vectors of the three hydrogens show opposite directions of rotation for right and left circularly polarized light, but no directional preference for linearly polarized light. This difference results in an appreciable amount of angular displacement of the three hydrogens relative to the C2 core for circularly polarized light, but only an insignificant amount for linearly polarized light. Over the course of the simulation with circularly polarized light, this corresponds to a propeller-like motion of the three hydrogens around the C2 core of protonated acetylene. PMID:27586924

  10. Computational simulations of hydrogen circular migration in protonated acetylene induced by circularly polarized light

    NASA Astrophysics Data System (ADS)

    Shi, Xuetao; Li, Wen; Schlegel, H. Bernhard

    2016-08-01

    The hydrogens in protonated acetylene are very mobile and can easily migrate around the C2 core by moving between classical and non-classical structures of the cation. The lowest energy structure is the T-shaped, non-classical cation with a hydrogen bridging the two carbons. Conversion to the classical H2CCH+ ion requires only 4 kcal/mol. The effect of circularly polarized light on the migration of hydrogens in oriented C2H3+ has been simulated by Born-Oppenheimer molecular dynamics. Classical trajectory calculations were carried out with the M062X/6-311+G(3df,2pd) level of theory using linearly and circularly polarized 32 cycle 7 μm cosine squared pulses with peak intensity of 5.6 × 1013 W/cm2 and 3.15 × 1013 W/cm2, respectively. These linearly and circularly polarized pulses transfer similar amounts of energy and total angular momentum to C2H3+. The average angular momentum vectors of the three hydrogens show opposite directions of rotation for right and left circularly polarized light, but no directional preference for linearly polarized light. This difference results in an appreciable amount of angular displacement of the three hydrogens relative to the C2 core for circularly polarized light, but only an insignificant amount for linearly polarized light. Over the course of the simulation with circularly polarized light, this corresponds to a propeller-like motion of the three hydrogens around the C2 core of protonated acetylene.

  11. Landsliding in partially saturated materials

    NASA Astrophysics Data System (ADS)

    Godt, Jonathan W.; Baum, Rex L.; Lu, Ning

    2009-01-01

    Rainfall-induced landslides are pervasive in hillslope environments around the world and among the most costly and deadly natural hazards. However, capturing their occurrence with scientific instrumentation in a natural setting is extremely rare. The prevailing thinking on landslide initiation, particularly for those landslides that occur under intense precipitation, is that the failure surface is saturated and has positive pore-water pressures acting on it. Most analytic methods used for landslide hazard assessment are based on the above perception and assume that the failure surface is located beneath a water table. By monitoring the pore water and soil suction response to rainfall, we observed shallow landslide occurrence under partially saturated conditions for the first time in a natural setting. We show that the partially saturated shallow landslide at this site is predictable using measured soil suction and water content and a novel unified effective stress concept for partially saturated earth materials.

  12. Landsliding in partially saturated materials

    USGS Publications Warehouse

    Godt, J.W.; Baum, R.L.; Lu, N.

    2009-01-01

    [1] Rainfall-induced landslides are pervasive in hillslope environments around the world and among the most costly and deadly natural hazards. However, capturing their occurrence with scientific instrumentation in a natural setting is extremely rare. The prevailing thinking on landslide initiation, particularly for those landslides that occur under intense precipitation, is that the failure surface is saturated and has positive pore-water pressures acting on it. Most analytic methods used for landslide hazard assessment are based on the above perception and assume that the failure surface is located beneath a water table. By monitoring the pore water and soil suction response to rainfall, we observed shallow landslide occurrence under partially saturated conditions for the first time in a natural setting. We show that the partially saturated shallow landslide at this site is predictable using measured soil suction and water content and a novel unified effective stress concept for partially saturated earth materials. Copyright 2009 by the American Geophysical Union.

  13. Partial oxidation of methane by pulsed corona discharges

    NASA Astrophysics Data System (ADS)

    Hoeben, W. F. L. M.; Boekhoven, W.; Beckers, F. J. C. M.; van Heesch, E. J. M.; Pemen, A. J. M.

    2014-09-01

    Pulsed corona-induced partial oxidation of methane in humid oxygen or carbon dioxide atmospheres has been investigated for future fuel synthesis applications. The obtained product spectrum is wide, i.e. saturated, unsaturated and oxygen-functional hydrocarbons. The generally observed methane conversion levels are 6-20% at a conversion efficiency of about 100-250 nmol J-1. The main products are ethane, ethylene and acetylene. Higher saturated hydrocarbons up to C6 have been detected. The observed oxygen-functional hydrocarbons are methanol, ethanol and lower concentrations of aldehydes, ketones, dimethylether and methylformate. Methanol seems to be exclusively produced with CH4/O2 mixtures at a maximum production efficiency of 0.35 nmol J-1. CH4/CO2 mixtures appear to yield higher hydrocarbons. Carboxylic acids appear to be mainly present in the aqueous reactor phase, possibly together with higher molecular weight species.

  14. Metabolic activation of acetylenic substituents to derivatives in the rat causing the loss of hepatic cytochrome P-450 and haem

    PubMed Central

    White, Ian N. H.

    1978-01-01

    1. A number of acetylenic-substituted steroidal and non-steroidal compounds, including 2,2-dipropargylacetamide, pregna-2,4-dien-20-yno[2,3-d]isoxazol-17-ol (Danazol) and acetylene gas, when administered to rats in vivo brought about a decrease in the concentrations of hepatic microsomal cytochrome P-450 and haem. Abnormal haem-breakdown products, `green pigments', and porphyrins accumulated in the livers of these animals. 2. For loss of microsomal cytochrome P-450 to occur in vitro, metabolic activation of the acetylenic substituent was necessary. The enzyme system responsible required NADPH and air, and was induced by pretreatment of rats with phenobarbitone; these are characteristics typical of the microsomal mixed-function oxidases. 3. When rats were dosed with 17α-ethynyl-17β-hydroxyandrost-4-en-3-one (ethynyltestosterone, 1mmol/kg) the pattern of green pigments extracted from the liver 4h after dosing and separated by t.l.c. was quite different from that in rats given 17β-hydroxy-17α-vinylandrost-4-en-3-one (vinyltestosterone), suggesting that reduction of the unsaturated triple bond to a double bond is not normally part of the metabolic activation pathway of the acetylenic substituent. 4. The green pigments extracted from the livers of rats 4h after the administration of the acetylenic-substituted compounds (1mmol/kg) when separated by silica-gel t.l.c. had variable RF values. The number and distribution of green pigments was characteristic for each compound examined. There was little correlation between the total loss of hepatic microsomal haem and the apparent intensity of the green pigments seen on the thin-layer chromatograms. 5. After incubation of [14C]acetylene in vitro with microsomal preparations from phenobarbitone-pretreated rats and a NADPH-generating system, no significant covalent binding to microsomal protein was detected over a 30min incubation period, although under similar conditions there was a significant loss of cytochrome P-450

  15. A model for the ethylene and acetylene adsorption on the surface of Cun(n = 10-15) nanoclusters: A theoretical study

    NASA Astrophysics Data System (ADS)

    Farmanzadeh, Davood; Abdollahi, Tahereh

    2016-11-01

    In this work, we report the results of density functional theory calculations of ethylene and acetylene adsorption on the most stable Cun (n = 10-15) nanoclusters, in two π and di- σ adsorption modes. Both the hydrocarbons molecularly adsorbed on the surface. Our results show that the quality of interaction of ethylene and acetylene with odd copper nanoclusters (n = 11, 13, 15) is different from what is found on even copper nanoclusters (n = 10, 12, 14). One of the interesting features of this adsorption is that acetylene never orient toward di-σ mode for Cusbnd Cu bond in odd copper nanoclusters. Also, for di- σ-CunC2H4, no stable structure is identified. The highest interaction and deformation energies are seen for the adsorption of acetylene and ethylene on Cu11 in π-mode.

  16. Three-Dimensional Carbon Allotropes Comprising Phenyl Rings and Acetylenic Chains in sp+sp(2) Hybrid Networks.

    PubMed

    Wang, Jian-Tao; Chen, Changfeng; Li, Han-Dong; Mizuseki, Hiroshi; Kawazoe, Yoshiyuki

    2016-01-01

    We here identify by ab initio calculations a new type of three-dimensional (3D) carbon allotropes that consist of phenyl rings connected by linear acetylenic chains in sp+sp(2) bonding networks. These structures are constructed by inserting acetylenic or diacetylenic bonds into an all sp(2)-hybridized rhombohedral polybenzene lattice, and the resulting 3D phenylacetylene and phenyldiacetylene nets comprise a 12-atom and 18-atom rhombohedral primitive unit cells in the symmetry, which are characterized as the 3D chiral crystalline modification of 2D graphyne and graphdiyne, respectively. Simulated phonon spectra reveal that these structures are dynamically stable. Electronic band calculations indicate that phenylacetylene is metallic, while phenyldiacetylene is a semiconductor with an indirect band gap of 0.58 eV. The present results establish a new type of carbon phases and offer insights into their outstanding structural and electronic properties.

  17. Three-Dimensional Carbon Allotropes Comprising Phenyl Rings and Acetylenic Chains in sp+sp2 Hybrid Networks

    NASA Astrophysics Data System (ADS)

    Wang, Jian-Tao; Chen, Changfeng; Li, Han-Dong; Mizuseki, Hiroshi; Kawazoe, Yoshiyuki

    2016-04-01

    We here identify by ab initio calculations a new type of three-dimensional (3D) carbon allotropes that consist of phenyl rings connected by linear acetylenic chains in sp+sp2 bonding networks. These structures are constructed by inserting acetylenic or diacetylenic bonds into an all sp2-hybridized rhombohedral polybenzene lattice, and the resulting 3D phenylacetylene and phenyldiacetylene nets comprise a 12-atom and 18-atom rhombohedral primitive unit cells in the symmetry, which are characterized as the 3D chiral crystalline modification of 2D graphyne and graphdiyne, respectively. Simulated phonon spectra reveal that these structures are dynamically stable. Electronic band calculations indicate that phenylacetylene is metallic, while phenyldiacetylene is a semiconductor with an indirect band gap of 0.58 eV. The present results establish a new type of carbon phases and offer insights into their outstanding structural and electronic properties.

  18. Slow intramolecular vibrational redistribution: the latest results for trifluoropropyne, a comparison with the other terminal acetylenes and the mechanism*

    NASA Astrophysics Data System (ADS)

    Malinovsky, A. L.; Makarov, A. A.; Ryabov, E. A.

    2012-05-01

    We studied the dynamics of intramolecular vibrational redistribution (IVR) from the initially excited mode ν1≈3330 cm-1 (acetylene-type H-C bond) in H{-}C\\equivC{-}CF_3 molecules in the gaseous phase by means of time-resolved anti-Stokes spontaneous Raman scattering. The time constant of this process was estimated as 2.3 ns—this is the slowest IVR time reported so far for the room-temperature gases. We have compared this result with earlier results on the other terminal acetylene molecules, and give an explanation of this low IVR rate. Our suggestion for it follows from an assumption that the most probable doorway state leading to IVR from \

  19. Three-dimensional carbon allotropes comprising phenyl rings and acetylenic chains in sp+sp2 hybrid networks

    DOE PAGES

    Wang, Jian -Tao; Chen, Changfeng; Li, Han -Dong; Mizuseki, Hiroshi; Kawazoe, Yoshiyuki

    2016-04-18

    Here, we here identify by ab initio calculations a new type of three-dimensional (3D) carbon allotropes that consist of phenyl rings connected by linear acetylenic chains in sp+sp2 bonding networks. These structures are constructed by inserting acetylenic or diacetylenic bonds into an all sp2-hybridized rhombohedral polybenzene lattice, and the resulting 3D phenylacetylene and phenyldiacetylene nets comprise a 12-atom and 18-atom rhombohedral primitive unit cells R-3m symmetry, which are characterized as the 3D chiral crystalline modification of 2D graphyne and graphdiyne, respectively. Simulated phonon spectra reveal that these structures are dynamically stable. Electronic band calculations indicate that phenylacetylene is metallic, whilemore » phenyldiacetylene is a semiconductor with an indirect band gap of 0.58 eV. The present results establish a new type of carbon phases and offer insights into their outstanding structural and electronic properties.« less

  20. Three-Dimensional Carbon Allotropes Comprising Phenyl Rings and Acetylenic Chains in sp+sp2 Hybrid Networks

    PubMed Central

    Wang, Jian-Tao; Chen, Changfeng; Li, Han-Dong; Mizuseki, Hiroshi; Kawazoe, Yoshiyuki

    2016-01-01

    We here identify by ab initio calculations a new type of three-dimensional (3D) carbon allotropes that consist of phenyl rings connected by linear acetylenic chains in sp+sp2 bonding networks. These structures are constructed by inserting acetylenic or diacetylenic bonds into an all sp2-hybridized rhombohedral polybenzene lattice, and the resulting 3D phenylacetylene and phenyldiacetylene nets comprise a 12-atom and 18-atom rhombohedral primitive unit cells in the symmetry, which are characterized as the 3D chiral crystalline modification of 2D graphyne and graphdiyne, respectively. Simulated phonon spectra reveal that these structures are dynamically stable. Electronic band calculations indicate that phenylacetylene is metallic, while phenyldiacetylene is a semiconductor with an indirect band gap of 0.58 eV. The present results establish a new type of carbon phases and offer insights into their outstanding structural and electronic properties. PMID:27087405