Science.gov

Sample records for acetylsalicylic acid-induced apoptosis

  1. Acetylsalicylic acid-induced oxidative stress, cell cycle arrest, apoptosis and mitochondrial dysfunction in human hepatoma HepG2 cells.

    PubMed

    Raza, Haider; John, Annie; Benedict, Sheela

    2011-10-01

    It is widely accepted that non-steroidal anti-inflammatory drugs (NSAIDs), including aspirin, reduce the risk of cancer. The anti-cancer and anti-inflammatory effects of NSAIDs are associated with the inhibition of prostaglandin synthesis and cyclooxygenase-2 activity. Several other mechanisms which contribute to the anti-cancer effect of these drugs in different cancer models both in vivo and in vitro are also presumed to be involved. The precise molecular mechanism, however, is still not clear. We investigated, therefore, the effects of acetylsalicylic acid (ASA, aspirin) on multiple cellular and functional targets, including mitochondrial bioenergetics, using human hepatoma HepG2 cancer cells in culture. Our results demonstrate that ASA induced G0/G1 cell cycle arrest and apoptosis in HepG2 cells. ASA increased the production of reactive oxygen species, reduced the cellular glutathione (GSH) pool and inhibited the activities of the mitochondrial respiratory enzyme complexes, NADH-ubiquinone oxidoreductase (complex I), cytochrome c oxidase (complex IV) and the mitochondrial matrix enzyme, aconitase. Apoptosis was triggered by alteration in mitochondrial permeability transition, inhibition of ATP synthesis, decreased expression of the anti-apoptotic protein Bcl-2, release of cytochrome c and activation of pro-apoptotic caspase-3 and the DNA repairing enzyme, poly (-ADP-ribose) polymerase (PARP). These findings strongly suggest that ASA-induced toxicity in human hepatoma HepG2 cells is mediated by increased metabolic and oxidative stress, accompanied by mitochondrial dysfunction which result in apoptosis.

  2. Acetylsalicylic acid-induced oxidative stress, cell cycle arrest, apoptosis and mitochondrial dysfunction in human hepatoma HepG2 cells.

    PubMed

    Raza, Haider; John, Annie; Benedict, Sheela

    2011-10-01

    It is widely accepted that non-steroidal anti-inflammatory drugs (NSAIDs), including aspirin, reduce the risk of cancer. The anti-cancer and anti-inflammatory effects of NSAIDs are associated with the inhibition of prostaglandin synthesis and cyclooxygenase-2 activity. Several other mechanisms which contribute to the anti-cancer effect of these drugs in different cancer models both in vivo and in vitro are also presumed to be involved. The precise molecular mechanism, however, is still not clear. We investigated, therefore, the effects of acetylsalicylic acid (ASA, aspirin) on multiple cellular and functional targets, including mitochondrial bioenergetics, using human hepatoma HepG2 cancer cells in culture. Our results demonstrate that ASA induced G0/G1 cell cycle arrest and apoptosis in HepG2 cells. ASA increased the production of reactive oxygen species, reduced the cellular glutathione (GSH) pool and inhibited the activities of the mitochondrial respiratory enzyme complexes, NADH-ubiquinone oxidoreductase (complex I), cytochrome c oxidase (complex IV) and the mitochondrial matrix enzyme, aconitase. Apoptosis was triggered by alteration in mitochondrial permeability transition, inhibition of ATP synthesis, decreased expression of the anti-apoptotic protein Bcl-2, release of cytochrome c and activation of pro-apoptotic caspase-3 and the DNA repairing enzyme, poly (-ADP-ribose) polymerase (PARP). These findings strongly suggest that ASA-induced toxicity in human hepatoma HepG2 cells is mediated by increased metabolic and oxidative stress, accompanied by mitochondrial dysfunction which result in apoptosis. PMID:21722632

  3. Acetylsalicylic acid induces programmed cell death in Arabidopsis cell cultures.

    PubMed

    García-Heredia, José M; Hervás, Manuel; De la Rosa, Miguel A; Navarro, José A

    2008-06-01

    Acetylsalicylic acid (ASA), a derivative from the plant hormone salicylic acid (SA), is a commonly used drug that has a dual role in animal organisms as an anti-inflammatory and anticancer agent. It acts as an inhibitor of cyclooxygenases (COXs), which catalyze prostaglandins production. It is known that ASA serves as an apoptotic agent on cancer cells through the inhibition of the COX-2 enzyme. Here, we provide evidences that ASA also behaves as an agent inducing programmed cell death (PCD) in cell cultures of the model plant Arabidopsis thaliana, in a similar way than the well-established PCD-inducing agent H(2)O(2), although the induction of PCD by ASA requires much lower inducer concentrations. Moreover, ASA is herein shown to be a more efficient PCD-inducing agent than salicylic acid. ASA treatment of Arabidopsis cells induces typical PCD-linked morphological and biochemical changes, namely cell shrinkage, nuclear DNA degradation, loss of mitochondrial membrane potential, cytochrome c release from mitochondria and induction of caspase-like activity. However, the ASA effect can be partially reverted by jasmonic acid. Taking together, these results reveal the existence of common features in ASA-induced animal apoptosis and plant PCD, and also suggest that there are similarities between the pathways of synthesis and function of prostanoid-like lipid mediators in animal and plant organisms.

  4. The effect of melatonin on acetylsalicylic acid-induced kidney and testis damage.

    PubMed

    Altintas, R; Polat, A; Parlakpinar, H; Vardi, N; Beytur, A; Oguz, F; Sagir, M; Yildiz, A; Duran, Z R

    2014-04-01

    The aim of this study was to evaluate the acute effect of high-dose acetylsalicylic acid (ASA) on kidney and testis, and the potential protective and therapeutic effects of melatonin on ASA-related pathology. A total of 40 rats were randomly divided into the following 5 groups (n = 8): group 1: control, not given any drug; group 2: only 200 mg/kg ASA was given; group 3: 5 mg/kg melatonin was given 45 min before administering 200 mg/kg ASA; group 4: 5 mg/kg melatonin was given 45 min after administering 200 mg/kg ASA; and group 5: only 5 mg/kg melatonin was given. The histopathological changes and the biochemical findings; such as malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), reduced glutathione (GSH), and blood urea nitrogen (BUN) as well as serum creatinine (Cr) levels were evaluated. ASA significantly increased MDA levels in both kidney and testis, whereas it significantly decreased the values of SOD, CAT, GPX, and GSH in kidney and CAT levels in testis. Melatonin significantly decreased MDA levels in kidney and ameliorated it in testis, whereas it caused elevation in the levels of antioxidants. BUN and Cr levels were higher after ASA, whereas these levels were diminished after melatonin administration. The improvement obtained by melatonin on ASA-induced histological alterations was more prominent when it was used after ASA in kidney and before ASA in testis. In this study, we demonstrated the beneficial effect of melatonin on high-dose ASA-related pathology of kidney and testis for the first time.

  5. Lysophosphatidic acid induces necrosis and apoptosis in hippocampal neurons.

    PubMed

    Holtsberg, F W; Steiner, M R; Keller, J N; Mark, R J; Mattson, M P; Steiner, S M

    1998-01-01

    A diverse body of evidence indicates a role for the lipid biomediator lysophosphatidic acid (LPA) in the CNS. This study identifies and characterizes the induction of neuronal death by LPA. Treatment of cultured hippocampal neurons from embryonic rat brains with 50 microM LPA resulted in neuronal necrosis, as determined morphologically and by the release of lactate dehydrogenase. A concentration of LPA as low as 10 microM led to the release of lactate dehydrogenase. In contrast, treatment of neurons with 0.1 or 1.0 microM LPA resulted in apoptosis, as determined by chromatin condensation. In addition, neuronal death induced by 1 microM LPA was characterized as apoptotic on the basis of terminal dUTP nick end-labeling (TUNEL) staining, externalization of phosphatidylserine, and protection against chromatin condensation, TUNEL staining, and phosphatidylserine externalization by treatment with N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone, a broad-spectrum inhibitor of caspases, i.e., members of the interleukin-1beta converting enzyme family. Studies with antagonists of ionotropic glutamate receptors did not indicate a significant role for these receptors in apoptosis induced by 1 microM LPA. LPA (1 microM) also induced a decrease in mitochondrial membrane potential. Moreover, pretreatment of neurons with cyclosporin A protected against the LPA-induced decrease in mitochondrial membrane potential and neuronal apoptosis. Thus, LPA, at pathophysiological levels, can induce neuronal apoptosis and could thereby participate in neurodegenerative disorders. PMID:9422348

  6. Zoledronic acid induces apoptosis and autophagy in cervical cancer cells.

    PubMed

    Wang, I-Te; Chou, Shou-Chu; Lin, Ying-Chin

    2014-12-01

    Cervical cancer is one of the most common gynecological cancers in association with high mortality and morbidity. The present study was aimed to investigate the in vitro effects of zoledronic acid (ZA) on viability and induction of apoptosis and autophagy as well as inflammatory effects in three human cervical cancer cell lines (HeLa, SiHa, and CaSki). Cell viability was measured by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay. Induction of apoptosis was determined by quantitation of expression level of B cell lymphoma 2 (Bcl-2) and Bax messenger RNA (mRNA) and identification of the proteolytic cleavage of poly (ADP)-ribose polymerase (PARP) and caspase-3. Autophagic effects were examined by quantitation of mRNA expression of autophagy protein 5 (ATG5) and beclin1 and identifying accumulation of microtubule-associated protein 1 light chain 3 (LC3)-II. Inflammatory effect was determined by measuring expression and production of IL-6 and cyclooxygenase-2 (Cox-2). The results showed ZA significantly inhibited cell viability of cervical cancer cells. ZA-induced cell death displayed features characteristic to both apoptosis and autophagy and was associated with different changes in the levels of Bcl-2 and Bax in the various cervical cancer lines. Expression of metastatic cytokines, IL-6 and Cox-2, was upregulated in the presence of ZA at low concentration. Our data revealed that ZA inhibits cervical cancer cells through the synergistic effect of apoptosis induction and autophagy activation.

  7. Lipopolysaccharide Stimulates Butyric Acid-Induced Apoptosis in Human Peripheral Blood Mononuclear Cells

    PubMed Central

    Kurita-Ochiai, Tomoko; Fukushima, Kazuo; Ochiai, Kuniyasu

    1999-01-01

    We previously reported that butyric acid, an extracellular metabolite from periodontopathic bacteria, induced apoptosis in murine thymocytes, splenic T cells, and human Jurkat T cells. In this study, we examined the ability of butyric acid to induce apoptosis in peripheral blood mononuclear cells (PBMC) and the effect of bacterial lipopolysaccharide (LPS) on this apoptosis. Butyric acid significantly inhibited the anti-CD3 monoclonal antibody- and concanavalin A-induced proliferative responses in a dose-dependent fashion. This inhibition of PBMC growth by butyric acid depended on apoptosis in vitro. It was characterized by internucleosomal DNA digestion and revealed by gel electrophoresis followed by a colorimetric DNA fragmentation assay to occur in a concentration-dependent fashion. Butyric acid-induced PBMC apoptosis was accompanied by caspase-3 protease activity but not by caspase-1 protease activity. LPS potentiated butyric acid-induced PBMC apoptosis in a dose-dependent manner. Flow-cytometric analysis revealed that LPS increased the proportion of sub-G1 cells and the number of late-stage apoptotic cells induced by butyric acid. Annexin V binding experiments with fractionated subpopulations of PBMC in flow cytometory revealed that LPS accelerated the butyric acid-induced CD3+-T-cell apoptosis followed by similar levels of both CD4+- and CD8+-T-cell apoptosis. The addition of LPS to PBMC cultures did not cause DNA fragmentation, suggesting that LPS was unable to induce PBMC apoptosis directly. These data suggest that LPS, in combination with butyric acid, potentiates CD3+ PBMC T-cell apoptosis and plays a role in the apoptotic depletion of CD4+ and CD8+ cells. PMID:9864191

  8. Anacardic acid induces apoptosis-like cell death in the rice blast fungus Magnaporthe oryzae.

    PubMed

    Muzaffar, Suhail; Bose, Chinchu; Banerji, Ashok; Nair, Bipin G; Chattoo, Bharat B

    2016-01-01

    Anacardic acid (6-pentadecylsalicylic acid), extracted from cashew nut shell liquid, is a natural phenolic lipid well known for its strong antibacterial, antioxidant, and anticancer activities. Its effect has been well studied in bacterial and mammalian systems but remains largely unexplored in fungi. The present study identifies antifungal, cytotoxic, and antioxidant activities of anacardic acid in the rice blast fungus Magnaporthe oryzae. It was found that anacardic acid causes inhibition of conidial germination and mycelial growth in this ascomycetous fungus. Phosphatidylserine externalization, chromatin condensation, DNA degradation, and loss of mitochondrial membrane potential suggest that growth inhibition of fungus is mainly caused by apoptosis-like cell death. Broad-spectrum caspase inhibitor Z-VAD-FMK treatment indicated that anacardic acid induces caspase-independent apoptosis in M. oryzae. Expression of a predicted ortholog of apoptosis-inducing factor (AIF) was upregulated during the process of apoptosis, suggesting the possibility of mitochondria dependent apoptosis via activation of apoptosis-inducing factor. Anacardic acid treatment leads to decrease in reactive oxygen species rather than increase in reactive oxygen species (ROS) accumulation normally observed during apoptosis, confirming the antioxidant properties of anacardic acid as suggested by earlier reports. Our study also shows that anacardic acid renders the fungus highly sensitive to DNA damaging agents like ethyl methanesulfonate (EMS). Treatment of rice leaves with anacardic acid prevents M. oryzae from infecting the plant without affecting the leaf, suggesting that anacardic acid can be an effective antifungal agent. PMID:26381667

  9. Gallic acid induces apoptosis in EGFR-mutant non-small cell lung cancers by accelerating EGFR turnover.

    PubMed

    Nam, Boas; Rho, Jin Kyung; Shin, Dong-Myung; Son, Jaekyoung

    2016-10-01

    Gallic acid is a common botanic phenolic compound, which is present in plants and foods worldwide. Gallic acid is implicated in various biological processes such as cell growth and apoptosis. Indeed, gallic acid has been shown to induce apoptosis in many cancer types. However, the molecular mechanisms of gallic acid-induced apoptosis in cancer, particularly lung cancer, are still unclear. Here, we report that gallic acid induces apoptosis in EGFR-mutant non-small cell lung cancer (NSCLC) cells, but not in EGFR-WT NSCLC cells. Treatment with gallic acid resulted in a significant reduction in proliferation and induction of apoptosis, only in EGFR-mutant NSCLC cells. Interestingly, treatment with gallic acid led to a robust decrease in EGFR levels, which is critical for NSCLC survival. Treatment with gallic acid had no significant effect on transcription, but induced EGFR turnover. Indeed, treatment with a proteasome inhibitor dramatically reversed gallic acid-induced EGFR downregulation. Moreover, treatment with gallic acid induced EGFR turnover leading to apoptosis in EGFR-TKI (tyrosine kinase inhibitor)-resistant cell lines, which are dependent on EGFR signaling for survival. Thus, these studies suggest that gallic acid can induce apoptosis in EGFR-dependent lung cancers that are dependent on EGFR for growth and survival via acceleration of EGFR turnover.

  10. Gallic acid induces apoptosis in EGFR-mutant non-small cell lung cancers by accelerating EGFR turnover.

    PubMed

    Nam, Boas; Rho, Jin Kyung; Shin, Dong-Myung; Son, Jaekyoung

    2016-10-01

    Gallic acid is a common botanic phenolic compound, which is present in plants and foods worldwide. Gallic acid is implicated in various biological processes such as cell growth and apoptosis. Indeed, gallic acid has been shown to induce apoptosis in many cancer types. However, the molecular mechanisms of gallic acid-induced apoptosis in cancer, particularly lung cancer, are still unclear. Here, we report that gallic acid induces apoptosis in EGFR-mutant non-small cell lung cancer (NSCLC) cells, but not in EGFR-WT NSCLC cells. Treatment with gallic acid resulted in a significant reduction in proliferation and induction of apoptosis, only in EGFR-mutant NSCLC cells. Interestingly, treatment with gallic acid led to a robust decrease in EGFR levels, which is critical for NSCLC survival. Treatment with gallic acid had no significant effect on transcription, but induced EGFR turnover. Indeed, treatment with a proteasome inhibitor dramatically reversed gallic acid-induced EGFR downregulation. Moreover, treatment with gallic acid induced EGFR turnover leading to apoptosis in EGFR-TKI (tyrosine kinase inhibitor)-resistant cell lines, which are dependent on EGFR signaling for survival. Thus, these studies suggest that gallic acid can induce apoptosis in EGFR-dependent lung cancers that are dependent on EGFR for growth and survival via acceleration of EGFR turnover. PMID:27597244

  11. Proteomic investigation into betulinic acid-induced apoptosis of human cervical cancer HeLa cells.

    PubMed

    Xu, Tao; Pang, Qiuying; Zhou, Dong; Zhang, Aiqin; Luo, Shaman; Wang, Yang; Yan, Xiufeng

    2014-01-01

    Betulinic acid is a pentacyclic triterpenoid that exhibits anticancer functions in human cancer cells. This study provides evidence that betulinic acid is highly effective against the human cervical cancer cell line HeLa by inducing dose- and time-dependent apoptosis. The apoptotic process was further investigated using a proteomics approach to reveal protein expression changes in HeLa cells following betulinic acid treatment. Proteomic analysis revealed that there were six up- and thirty down-regulated proteins in betulinic acid-induced HeLa cells, and these proteins were then subjected to functional pathway analysis using multiple analysis software. UDP-glucose 6-dehydrogenase, 6-phosphogluconate dehydrogenase decarboxylating, chain A Horf6-a novel human peroxidase enzyme that involved in redox process, was found to be down-regulated during the apoptosis process of the oxidative stress response pathway. Consistent with our results at the protein level, an increase in intracellular reactive oxygen species was observed in betulinic acid-treated cells. The proteins glucose-regulated protein and cargo-selection protein TIP47, which are involved in the endoplasmic reticulum pathway, were up-regulated by betulinic acid treatment. Meanwhile, 14-3-3 family proteins, including 14-3-3β and 14-3-3ε, were down-regulated in response to betulinic acid treatment, which is consistent with the decrease in expression of the target genes 14-3-3β and 14-3-3ε. Furthermore, it was found that the antiapoptotic bcl-2 gene was down-regulated while the proapoptotic bax gene was up-regulated after betulinic acid treatment in HeLa cells. These results suggest that betulinic acid induces apoptosis of HeLa cells by triggering both the endoplasmic reticulum pathway and the ROS-mediated mitochondrial pathway.

  12. Acetylsalicylic acid-induced changes in the chemical coding of extrinsic sensory neurons supplying the prepyloric area of the porcine stomach.

    PubMed

    Rytel, L; Calka, J

    2016-03-23

    Acetylsalicylic acid is a popular drug that is commonly used to treat fever and inflammation, but which can also negativity affect the mucosal layer of the stomach, although knowledge concerning its influence on gastric innervation is very scarce. Thus, the aim of the present study was to study the influence of prolonged acetylsalicylic acid supplementation on the extrinsic primary sensory neurons supplying the porcine stomach prepyloric region. Fast Blue (FB) was injected into the above-mentioned region of the stomach. Acetylsalicylic acid was then given orally to the experimental gilts from the seventh day after FB injection to the 27th day of the experiment. After euthanasia, the nodose ganglia (NG) and dorsal root ganglia (DRG) were collected. Sections of these ganglia were processed for routine double-labelling immunofluorescence technique for substance P (SP), calcitonine gene related peptide (CGRP), galanin (GAL), neuronal isoform of nitric oxide synthase (nNOS) and vasoactive intestinal polypeptide (VIP). Under physiological conditions within the nodose ganglia, the percentage of the FB-labeled neurons immunoreactive to particular substances ranged between 17.9 ± 2.7% (VIP-like immunoreactive (LI) neurons in the right NG) and 60.4 ± 1.7% (SP-LI cells within the left NG). Acetylsalicylic acid supplementation caused a considerable increase in the expression of all active substances studied within both left and right NG and the percentage of neurons positive to particular substances fluctuated from 47.2 ± 3.6% (GAL-LI neurons in the right NG) to 67.2 ± 2.0% (cells immunoreactive to SP in the left NG). All studied substances were also observed in DRG neurons supplying the prepyloric region of the stomach, but the number of immunoreactive neurons was too small to conduct a statistical analysis. The obtained results show that ASA may influence chemical coding of the sensory neurons supplying the porcine stomach, but the exact mechanisms of this action still

  13. PDIA3 Knockdown Exacerbates Free Fatty Acid-Induced Hepatocyte Steatosis and Apoptosis

    PubMed Central

    Yu, Chao-hui; Xu, Cheng-fu; Xu, Lei; Li, You-ming; Chen, Wei-xing

    2015-01-01

    Nonalcoholic fatty liver disease (NAFLD) has emerged as one of the most common chronic liver disease over the past decades. Endoplasmic reticulum stress (ERS) plays a pivotal role during the development of NAFLD. This study aims to analyze the potential role of protein disulfide isomerase A3 precursor (PDIA3), one of the ER chaperones, in free fatty acid-induced cell model of NAFLD. Human liver L02 cell line was treated with sodium palmitate for 24 hours, which developed severe intracellular lipid accumulation. The increased protein level of PDIA3 was detected via immunoblotting analysis in the fat loaded cell models of NAFLD. siRNA-mediated knockdown of PDIA3 in L02 cells not only increased the cellular lipid accumulation, but also exacerbated hepatocytes apoptosis induced by sodium palmitate. Further investigation revealed that knockdown of PDIA3 up-regulated protein expression of fatty acid synthase (FAS), a key enzyme involved in fatty acid synthesis. PDIA3 knockdown also up-regulated key molecules of ERS pathway, including glucose-regulated protein 78 (GRP78), phospho-PKR-like ER kinase (p-PERK), and C/EBP homologous protein (CHOP). Our results suggested that ER chaperone PDIA3 plays a pivotal role in FFA-induced hepatocyte steatosis and apoptosis. PMID:26214517

  14. Salicylic acid induces apoptosis in colon carcinoma cells grown in-vitro: Influence of oxygen and salicylic acid concentration

    SciTech Connect

    Zitta, Karina; Meybohm, Patrick; Bein, Berthold; Huang, Ying; Heinrich, Christin; Scholz, Jens; Steinfath, Markus; Albrecht, Martin

    2012-04-15

    In solid tumors the hypoxic environment can promote tumor progression and resistance to therapy. Recently, acetylsalicylic acid a major component of analgesic drugs and its metabolite salicylic acid (SA) have been shown to reduce the risk of colon cancer, but the mechanisms of action remain still unclear. Here we elucidate the effects of physiologically relevant concentrations of SA on colon carcinoma cells (CaCo-2) grown under normoxic and hypoxic conditions. Western blotting, caspase-3/7 apoptosis assays, MTS cell-proliferation assays, LDH cytotoxicity assays and hydrogen peroxide measurements were performed to investigate the effects of 1 and 10 {mu}M SA on CaCo-2 cells grown under normoxic conditions and cells exposed to hypoxia. Under normoxic conditions, SA did not influence cell proliferation or LDH release of CaCo-2 cells. However, caspase-3/7 activity was significantly increased. Under hypoxia, cell proliferation was reduced and LDH release and caspase-3/7 activities were increased. None of these parameters was altered by the addition of SA under hypoxic conditions. Hypoxia increased hydrogen peroxide concentrations 300-fold and SA significantly augmented the release of hydrogen peroxide under normoxic, but not under hypoxic conditions. Phosphorylation of the pro-survival kinases akt and erk1/2 was not changed by SA under hypoxic conditions, whereas under normoxia SA reduced phosphorylation of erk1/2 after 2 hours. We conclude that in colon carcinoma cells effects of SA on apoptosis and cellular signaling are dependent on the availability of oxygen. -- Highlights: Black-Right-Pointing-Pointer Effects of salicylic acid on colon carcinoma cells grown under normoxic and hypoxic conditions Black-Right-Pointing-Pointer Salicylic acid increases caspase-3/7 activity and hydrogen peroxide release under normoxia Black-Right-Pointing-Pointer Salicylic acid decreases pro-survival erk-1/2 phosphorylation under normoxia Black-Right-Pointing-Pointer Salicylic acid does

  15. Aminomethylphosphonic acid and methoxyacetic acid induce apoptosis in prostate cancer cells.

    PubMed

    Parajuli, Keshab R; Zhang, Qiuyang; Liu, Sen; You, Zongbing

    2015-01-01

    Aminomethylphosphonic acid (AMPA) and its parent compound herbicide glyphosate are analogs to glycine, which have been reported to inhibit proliferation and promote apoptosis of cancer cells, but not normal cells. Methoxyacetic acid (MAA) is the active metabolite of ester phthalates widely used in industry as gelling, viscosity and stabilizer; its exposure is associated with developmental and reproductive toxicities in both rodents and humans. MAA has been reported to suppress prostate cancer cell growth by inducing growth arrest and apoptosis. However, it is unknown whether AMPA and MAA can inhibit cancer cell growth. In this study, we found that AMPA and MAA inhibited cell growth in prostate cancer cell lines (LNCaP, C4-2B, PC-3 and DU-145) through induction of apoptosis and cell cycle arrest at the G1 phase. Importantly, the AMPA-induced apoptosis was potentiated with the addition of MAA, which was due to downregulation of the anti-apoptotic gene baculoviral inhibitor of apoptosis protein repeat containing 2 (BIRC2), leading to activation of caspases 7 and 3. These results demonstrate that the combination of AMPA and MAA can promote the apoptosis of prostate cancer cells, suggesting that they can be used as potential therapeutic drugs in the treatment of prostate cancer.

  16. Mitochondrial genome depletion in human liver cells abolishes bile acid-induced apoptosis: role of the Akt/mTOR survival pathway and Bcl-2 family proteins.

    PubMed

    Marin, Jose J G; Hernandez, Alicia; Revuelta, Isabel E; Gonzalez-Sanchez, Ester; Gonzalez-Buitrago, Jose M; Perez, Maria J

    2013-08-01

    Acute accumulation of bile acids in hepatocytes may cause cell death. However, during long-term exposure due to prolonged cholestasis, hepatocytes may develop a certain degree of chemoresistance to these compounds. Because mitochondrial adaptation to persistent oxidative stress may be involved in this process, here we have investigated the effects of complete mitochondrial genome depletion on the response to bile acid-induced hepatocellular injury. A subline (Rho) of human hepatoma SK-Hep-1 cells totally depleted of mitochondrial DNA (mtDNA) was obtained, and bile acid-induced concentration-dependent activation of apoptosis/necrosis and survival signaling pathways was studied. In the absence of changes in intracellular ATP content, Rho cells were highly resistant to bile acid-induced apoptosis and partially resistant to bile acid-induced necrosis. In Rho cells, both basal and bile acid-induced generation of reactive oxygen species (ROS), such as hydrogen peroxide and superoxide anion, was decreased. Bile acid-induced proapoptotic signals were also decreased, as evidenced by a reduction in the expression ratios Bax-α/Bcl-2, Bcl-xS/Bcl-2, and Bcl-xS/Bcl-xL. This was mainly due to a downregulation of Bax-α and Bcl-xS. Moreover, in these cells the Akt/mTOR pathway was constitutively activated in a ROS-independent manner and remained similarly activated in the presence of bile acid treatment. In contrast, ERK1/2 activation was constitutively reduced and was not activated by incubation with bile acids. In conclusion, these results suggest that impaired mitochondrial function associated with mtDNA alterations, which may occur in liver cells during prolonged cholestasis, may activate mechanisms of cell survival accounting for an enhanced resistance of hepatocytes to bile acid-induced apoptosis. PMID:23597504

  17. Gambogic acid induces apoptosis in diffuse large B-cell lymphoma cells via inducing proteasome inhibition

    PubMed Central

    Shi, Xianping; Lan, Xiaoying; Chen, Xin; Zhao, Chong; Li, Xiaofen; Liu, Shouting; Huang, Hongbiao; Liu, Ningning; Zang, Dan; Liao, Yuning; Zhang, Peiquan; Wang, Xuejun; Liu, Jinbao

    2015-01-01

    Resistance to chemotherapy is a great challenge to improving the survival of patients with diffuse large B-cell lymphoma (DLBCL), especially those with activated B-cell-like DLBCL (ABC-DLBCL). Therefore it is urgent to search for novel agents for the treatment of DLBCL. Gambogic acid (GA), a small molecule derived from Chinese herb gamboges, has been approved for Phase II clinical trial for cancer therapy by Chinese FDA. In the present study, we investigated the effect of GA on cell survival and apoptosis in DLBCL cells including both GCB- and ABC-DLBCL cells. We found that GA induced growth inhibition and apoptosis of both GCB- and ABC-DLBCL cells in vitro and in vivo, which is associated with proteasome malfunction. These findings provide significant pre-clinical evidence for potential usage of GA in DLBCL therapy particularly in ABC-DLBCL treatment. PMID:25853502

  18. Domoic acid induces direct DNA damage and apoptosis in Caco-2 cells: recent advances.

    PubMed

    Pinto-Silva, C R Carvalho; Moukha, S; Matias, W G; Creppy, E E

    2008-12-01

    Domoic acid (DA) is a neurotoxin produced by sea-water phytoplankton. Shellfish feeding on the phytoplankton can bioconcentrate DA, leading to a potentially serious health hazard for people consuming the contaminated shellfish. DA is the principal toxin responsible for amnesic shellfish poisoning (ASP). The toxic mechanism of DA is believed to be mediated at the level of the mitochondria, where uncoupling of oxidative phosphorylation decreases membrane permeability, causing cell swelling and ultimately lysis. Literature is poor concerning data on the possible genotoxicity and cytotoxicity of DA. In the present study, we have evaluated the cytotoxicity and genotoxicity of DA on a human colorectal adenocarcinoma cell line (Caco-2). Our results clearly demonstrate that DA decreased cell viability (IC(50) about 70 ng/mL), induced direct DNA damage from 15 ng/mL, and apoptosis in Caco-2 cells at 100 ng/mL. This apoptosis is likely bax-dependent and occurred only at high concentrations of DA, while lower concentrations upregulated both bax and bcl-2 at an apparent constant ratio until a sudden decrease of bcl-2 at 100 ng/mL and increase of bax. PMID:18293405

  19. The Na+/H+ Exchanger Controls Deoxycholic Acid-Induced Apoptosis by a H+-Activated, Na+-Dependent Ionic Shift in Esophageal Cells

    PubMed Central

    Goldman, Aaron; Chen, HwuDauRw; Khan, Mohammad R.; Roesly, Heather; Hill, Kimberly A.; Shahidullah, Mohammad; Mandal, Amritlal; Delamere, Nicholas A.; Dvorak, Katerina

    2011-01-01

    Apoptosis resistance is a hallmark of cancer cells. Typically, bile acids induce apoptosis. However during gastrointestinal (GI) tumorigenesis the cancer cells develop resistance to bile acid-induced cell death. To understand how bile acids induce apoptosis resistance we first need to identify the molecular pathways that initiate apoptosis in response to bile acid exposure. In this study we examined the mechanism of deoxycholic acid (DCA)-induced apoptosis, specifically the role of Na+/H+ exchanger (NHE) and Na+ influx in esophageal cells. In vitro studies revealed that the exposure of esophageal cells (JH-EsoAd1, CP-A) to DCA (0.2 mM -0.5 mM) caused lysosomal membrane perturbation and transient cytoplasmic acidification. Fluorescence microscopy in conjunction with atomic absorption spectrophotometry demonstrated that this effect on lysosomes correlated with influx of Na+, subsequent loss of intracellular K+, an increase of Ca2+ and apoptosis. However, ethylisopropyl-amiloride (EIPA), a selective inhibitor of NHE, prevented Na+, K+ and Ca2+ changes and caspase 3/7 activation induced by DCA. Ouabain and amphotericin B, two drugs that increase intracellular Na+ levels, induced similar changes as DCA (ion imbalance, caspase3/7 activation). On the contrary, DCA-induced cell death was inhibited by medium with low a Na+ concentrations. In the same experiments, we exposed rat ileum ex-vivo to DCA with or without EIPA. Severe tissue damage and caspase-3 activation was observed after DCA treatment, but EIPA almost fully prevented this response. In summary, NHE-mediated Na+ influx is a critical step leading to DCA-induced apoptosis. Cells tolerate acidification but evade DCA-induced apoptosis if NHE is inhibited. Our data suggests that suppression of NHE by endogenous or exogenous inhibitors may lead to apoptosis resistance during GI tumorigenesis. PMID:21887327

  20. Gambogic acid induces apoptosis and inhibits colorectal tumor growth via mitochondrial pathways

    PubMed Central

    Huang, Guang-Ming; Sun, Yu; Ge, Xin; Wan, Xin; Li, Chun-Bo

    2015-01-01

    AIM: To investigate the effect of gambogic acid (GA) on apoptosis in the HT-29 human colon cancer cell line. METHODS: H-29 cells were used for in vitro experiments in this study. Relative cell viability was assessed using MTT assays. Cell apoptosis was detected by terminal deoxynucleotidyl transferase dUTP nick end labeling and Hoechst 33342 staining, and quantified by flow cytometry. Cellular ultrastructure was observed by transmission electron microscopy. Real-time PCR and Western blot analyses were used to evaluate gene and protein expression levels. For in vivo experiments, BALB/c nude mice received subcutaneous injections of HT-29 cells in the right armpit. When well-established xenografts were palpable with a tumor size of 75 mm3, mice were randomly assigned to a vehicle (negative) control, positive control or GA treatment group (n = 6 each). The animals in the treatment group received one of three dosages of GA (in saline; 5, 10 or 20 mg/kg) via the caudal vein twice weekly, whereas animals in the negative and positive control groups were given equal volumes of 0.9% saline or 10 mg/kg docetaxel, respectively, via the caudal vein once weekly. RESULTS: The cell viability assay showed that GA inhibited proliferation of HT-29 cells in a dose- and time-dependent manner after treatment with GA (0.00, 0.31, 0.62, 1.25, 2.50, 5.00 or 10.00 μmol/L) for 24, 48 or 72 h. After 48 h, the percentage of apoptotic cells in cells treated with 0.00, 1.25, 2.50 and 5.00 μmol/L GA was 1.4% ± 0.3%, 9.8% ± 1.2%, 25.7% ± 3.3% and 49.3% ± 5.8%, respectively. Ultrastructural analysis of HT-29 cells treated for 48 h with 2.5μmol/L GA revealed apoptotic bodies and condensed and fragmented nuclei. Levels of caspase-8, -9 and -3 mRNAs were significantly increased after treatment with GA (1.25, 2.50 or 5.00 μmol/L) for 48 h (P < 0.05 for all). Protein levels of apoptosis-related factors Fas, FasL, FADD, cytochrome c, and Apaf-1 were increased in GA-treated cells, whereas levels

  1. Docosahexaenoic Acid Induces Oxidative DNA Damage and Apoptosis, and Enhances the Chemosensitivity of Cancer Cells.

    PubMed

    Song, Eun Ah; Kim, Hyeyoung

    2016-01-01

    The human diet contains low amounts of ω-3 polyunsaturated fatty acids (PUFAs) and high amounts of ω-6 PUFAs, which has been reported to contribute to the incidence of cancer. Epidemiological studies have shown that a high consumption of fish oil or ω-3 PUFAs reduced the risk of colon, pancreatic, and endometrial cancers. The ω-3 PUFA, docosahexaenoic acid (DHA), shows anticancer activity by inducing apoptosis of some human cancer cells without toxicity against normal cells. DHA induces oxidative stress and oxidative DNA adduct formation by depleting intracellular glutathione (GSH) and decreasing the mitochondrial function of cancer cells. Oxidative DNA damage and DNA strand breaks activate DNA damage responses to repair the damaged DNA. However, excessive DNA damage beyond the capacity of the DNA repair processes may initiate apoptotic signaling pathways and cell cycle arrest in cancer cells. DHA shows a variable inhibitory effect on cancer cell growth depending on the cells' molecular properties and degree of malignancy. It has been shown to affect DNA repair processes including DNA-dependent protein kinases and mismatch repair in cancer cells. Moreover, DHA enhanced the efficacy of anticancer drugs by increasing drug uptake and suppressing survival pathways in cancer cells. In this review, DHA-induced oxidative DNA damage, apoptotic signaling, and enhancement of chemosensitivity in cancer cells will be discussed based on recent studies. PMID:27527148

  2. Gallic acid induces apoptosis in human cervical epithelial cells containing human papillomavirus type 16 episomes.

    PubMed

    Shi, Lin; Lei, Yanjun; Srivastava, Ranjana; Qin, Weihua; Chen, Jason J

    2016-01-01

    The high-risk human papillomaviruses (HPV) that infect the anogenital tract are strongly associated with the development of cervical carcinoma, which is the second most common cancer in women worldwide. Therapeutic drugs specifically targeting HPV are not available. Polyphenolic compounds have gained considerable attention because of their cytotoxic effects against a variety of cancers and certain viruses. In this study, we examined the effects of several polyphenols on cellular proliferation and death of the human cervical cancer cells and human cervical epithelial cells containing stable HPV type 16 episomes (HPVep). Our results show that three polyphenols inhibited proliferation of HeLa cells dose-dependently. Furthermore, one of the examined polyphenols, gallic acid (GA), also inhibited the proliferation of HPVep cells and exhibited significant specificity towards HPV-positive cells. The anti-proliferative effect of GA on HPVep and HeLa cells was associated with apoptosis and upregulation of p53. These results suggest that GA can be a potential candidate for the development of anti-HPV agents.

  3. Docosahexaenoic Acid Induces Oxidative DNA Damage and Apoptosis, and Enhances the Chemosensitivity of Cancer Cells

    PubMed Central

    Song, Eun Ah; Kim, Hyeyoung

    2016-01-01

    The human diet contains low amounts of ω-3 polyunsaturated fatty acids (PUFAs) and high amounts of ω-6 PUFAs, which has been reported to contribute to the incidence of cancer. Epidemiological studies have shown that a high consumption of fish oil or ω-3 PUFAs reduced the risk of colon, pancreatic, and endometrial cancers. The ω-3 PUFA, docosahexaenoic acid (DHA), shows anticancer activity by inducing apoptosis of some human cancer cells without toxicity against normal cells. DHA induces oxidative stress and oxidative DNA adduct formation by depleting intracellular glutathione (GSH) and decreasing the mitochondrial function of cancer cells. Oxidative DNA damage and DNA strand breaks activate DNA damage responses to repair the damaged DNA. However, excessive DNA damage beyond the capacity of the DNA repair processes may initiate apoptotic signaling pathways and cell cycle arrest in cancer cells. DHA shows a variable inhibitory effect on cancer cell growth depending on the cells’ molecular properties and degree of malignancy. It has been shown to affect DNA repair processes including DNA-dependent protein kinases and mismatch repair in cancer cells. Moreover, DHA enhanced the efficacy of anticancer drugs by increasing drug uptake and suppressing survival pathways in cancer cells. In this review, DHA-induced oxidative DNA damage, apoptotic signaling, and enhancement of chemosensitivity in cancer cells will be discussed based on recent studies. PMID:27527148

  4. Correlation of HSP110 expression with all-trans retinoic acid-induced apoptosis.

    PubMed

    Evrard, L; Vanmuylder, N; Dourov, N; Hermans, C; Biermans, J; Werry-Huet, A; Rooze, M; Louryan, S

    2000-01-01

    In a previous study, we observed the strong expression of a stress protein of the HSP100/Clp family (HSP110) in apoptotic mesectodermal cells during early mouse facial development. In the present study, we describe the strong expression of the same HSP110 in mesectodermal cells undergoing apoptosis after all-trans retinoic acid (RA) administration. We used a teratological model known to increase cell deaths mainly in the first and second branchial arches during mammalian cephalogenesis: the treatment of E9 mouse embryos with all-trans RA, which results in craniofacial malformations comparable to those that characterize mandibulofacial dysostosis in man. Pregnant NMRI mice were treated with 60 mg/kg body weight of all-trans RA, given orally on day 9 of gestation; embryos were taken 4, 12 or 24 hr after RA administration. The apoptotic pattern of RA-induced cell deaths was confirmed using the dUTP biotin nick-end labeling (TUNEL) method and transmission electron microscopy (TEM). HSP110 expression was detected using an immunohistochemical approach. The increase in the number of TUNEL-positive cells and HSP110-positive cells after all-trans RA administration was quantified in the first branchial arch using a computerized method. Twelve hours after RA administration, the increase in the number of HSP110-positive cells is greater than the increase in the number of TUNEL-positive cells. Twenty-four hours after RA administration, only TUNEL-positive cells remain strong in number. We suggest that HSP110 expression could represent a biochemical event of apoptotic cell death induced by RA, associated with early stages of the apoptotic process. In order to find out if HSP110 expression resulted from neosynthesis, we performed in situ hybridization, which demonstrated that the expression of HSP110 occurred at the level of mRNA.

  5. Epithelial MUC1 promotes cell migration, reduces apoptosis and affects levels of mucosal modulators during acetylsalicylic acid (aspirin)-induced gastropathy.

    PubMed

    Banerjee, Debashish; Fernandez, Harvey Robert; Patil, Pradeep Bhatu; Premaratne, Pushpa; Quiding-Järbrink, Marianne; Lindén, Sara Katarina

    2015-02-01

    MUC1 is a transmembrane mucin highly expressed in the stomach. Although extensive research has uncovered many of its roles in cancer, knowledge about the functions of MUC1 in normal tissues is limited. In the present study, we showed that acetylsalicylic acid (ASA; aspirin) up-regulated MUC1/Muc1 expression in the gastric mucosa of humans and wild-type (WT) mice. ASA induced mucosal injury in all mice to a similar extent; however, WT animals and those chimaeras with Muc1 on the epithelia recovered faster than Muc1-knockout (KO) mice and chimaeras carrying Muc1 on haemopoietic but not epithelial cells. MUC1 enhanced proliferation and migration of the human gastric cell line MKN-7 and increased resistance to apoptosis. The repeated treatment regime used caused a reduction in cyclo-oxygenase-1 (Cox-1) expression, though WT animals returned faster towards pre-treatment levels and had increased Cox-2 and vascular endothelial growth factor levels during recovery. Thus we found that epithelial Muc1 is more important for the healing process than haemopoietic Muc1 and Muc1/MUC1 facilitates wound healing by enhancing cell migration and proliferation, protecting against apoptosis and mediating expression of mucosal modulators. Thus MUC1 plays essential roles during wound healing and development of treatment modalities targeting enhanced expression of MUC1 may be beneficial to treat mucosal wounds.

  6. Effect of vitamin C-releasing acetylsalicylic acid on gastric mucosal damage before and after Helicobacter pylori eradication therapy.

    PubMed

    Konturek, Peter C; Kania, Joanna; Gessner, Uwe; Konturek, Stanisław J; Hahn, Eckhart G; Konturek, Jan W

    2004-12-15

    The interaction between Helicobacter pylori (H. pylori) and nonsteroidal anti-inflammatory drugs (NSAIDs) such as acetylsalicylic acid is still controversial. This study was designed to compare the effect of acetylsalicylic acid and vitamin C-releasing acetylsalicylic acid on the gastric mucosal damage and microbleeding before and after eradication of H. pylori in 10 young healthy volunteers. Acetylsalicylic acid induced significantly more gastric lesions and higher microbleeding than acetylsalicylic acid-vitamin C. After successful H. pylori eradication therapy, acetylsalicylic acid induced significantly higher mucosal lesions and microbleeding than before eradication. In contrast, after acetylsalicylic acid-vitamin C, gastric lesion index was significantly lower and eradication therapy failed to aggravate it. All H. pylori-positive subjects showed significant up-regulation of antioxidant enzyme (superoxide dismutase, catalase, glutathione peroxidase). Plain acetylsalicylic acid stronger than acetylsalicylic acid-vitamin C reduced gastric gene expression of these antioxidant enzymes. H. pylori eradication significantly decreased expression of these enzymes and this was further enhanced by plain acetylsalicylic acid, but not acetylsalicylic acid-vitamin C. Under plain acetylsalicylic acid therapy, the expression of proinflammatory cytokines was increased before and after eradication of H. pylori. We conclude that vitamin C combined with acetylsalicylic acid, unlike plain acetylsalicylic acid without vitamin C, protects gastric mucosa in man probably due the attenuation of oxidative stress and proinflammatory cytokines.

  7. Resistance to butyrate impairs bile acid-induced apoptosis in human colon adenocarcinoma cells via up-regulation of Bcl-2 and inactivation of Bax.

    PubMed

    Barrasa, Juan I; Santiago-Gómez, Angélica; Olmo, Nieves; Lizarbe, María Antonia; Turnay, Javier

    2012-12-01

    A critical risk factor in colorectal carcinogenesis and tumor therapy is the resistance to the apoptotic effects of different compounds from the intestinal lumen, among them butyrate (main regulator of colonic epithelium homeostasis). Insensitivity to butyrate-induced apoptosis yields resistance to other agents, as bile acids or chemotherapy drugs, allowing the selective growth of malignant cell subpopulations. Here we analyze bile acid-induced apoptosis in a butyrate-resistant human colon adenocarcinoma cell line (BCS-TC2.BR2) to determine the mechanisms that underlay the resistance to these agents in comparison with their parental butyrate-sensitive BCS-TC2 cells. This study demonstrates that DCA and CDCA still induce apoptosis in butyrate-resistant cells through increased ROS production by activation of membrane-associated enzymes and subsequent triggering of the intrinsic mitochondrial apoptotic pathway. Although this mechanism is similar to that described in butyrate-sensitive cells, cell viability is significantly higher in resistant cells. Moreover, butyrate-resistant cells show higher Bcl-2 levels that confer resistance to bile acid-induced apoptosis sequestering Bax and avoiding Bax-dependent pore formation in the mitochondria. We have confirmed that this resistance is reverted using the Bcl-2 inhibitor ABT-263, thus demonstrating that the lower sensitivity of butyrate-resistant cells to the apoptotic effects of bile acids is mainly due to increased Bcl-2 levels.

  8. Gallic Acid Induces a Reactive Oxygen Species-Provoked c-Jun NH2-Terminal Kinase-Dependent Apoptosis in Lung Fibroblasts

    PubMed Central

    Chen, Chiu-Yuan; Chen, Kun-Chieh; Yang, Tsung-Ying; Liu, Hsiang-Chun; Hsu, Shih-Lan

    2013-01-01

    Idiopathic pulmonary fibrosis is a chronic lung disorder characterized by fibroblasts proliferation and extracellular matrix accumulation. Induction of fibroblast apoptosis therefore plays a crucial role in the resolution of this disease. Gallic acid (3,4,5-trihydroxybenzoic acid), a common botanic phenolic compound, has been reported to induce apoptosis in tumor cell lines and renal fibroblasts. The present study was undertaken to examine the role of mitogen-activated protein kinases (MAPKs) in lung fibroblasts apoptosis induced by gallic acid. We found that treatment with gallic acid resulted in activation of c-Jun NH2-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and protein kinase B (PKB, Akt), but not p38MAPK, in mouse lung fibroblasts. Inhibition of JNK using pharmacologic inhibitor (SP600125) and genetic knockdown (JNK specific siRNA) significantly inhibited p53 accumulation, reduced PUMA and Fas expression, and abolished apoptosis induced by gallic acid. Moreover, treatment with antioxidants (vitamin C, N-acetyl cysteine, and catalase) effectively diminished gallic acid-induced hydrogen peroxide production, JNK and p53 activation, and cell death. These observations imply that gallic acid-mediated hydrogen peroxide formation acts as an initiator of JNK signaling pathways, leading to p53 activation and apoptosis in mouse lung fibroblasts. PMID:23533505

  9. Citric acid induces cell-cycle arrest and apoptosis of human immortalized keratinocyte cell line (HaCaT) via caspase- and mitochondrial-dependent signaling pathways.

    PubMed

    Ying, Tsung-Ho; Chen, Chia-Wei; Hsiao, Yu-Ping; Hung, Sung-Jen; Chung, Jing-Gung; Yang, Jen-Hung

    2013-10-01

    Citric acid is an alpha-hydroxyacid (AHA) widely used in cosmetic dermatology and skincare products. However, there is concern regarding its safety for the skin. In this study, we investigated the cytotoxic effects of citric acid on the human keratinocyte cell line HaCaT. HaCaT cells were treated with citric acid at 2.5-12.5 mM for different time periods. Cell-cycle arrest and apoptosis were investigated by 4,6-diamidino-2-phenylindole dihydrochloride (DAPI) staining, flow cytometry, western blot and confocal microscopy. Citric acid not only inhibited proliferation of HaCaT cells in a dose-dependent manner, but also induced apoptosis and cell cycle-arrest at the G2/M phase (before 24 h) and S phase (after 24 h). Citric acid increased the level of Bcl-2-associated X protein (BAX) and reduced the levels of B-cell lymphoma-2 (BCL-2), B-cell lymphoma-extra large (BCL-XL) and activated caspase-9 and caspase-3, which subsequently induced apoptosis via caspase-dependent and caspase-independent pathways. Citric acid also activated death receptors and increased the levels of caspase-8, activated BH3 interacting-domain death agonist (BID) protein, Apoptosis-inducing factor (AIF), and Endonuclease G (EndoG). Therefore, citric acid induces apoptosis through the mitochondrial pathway in the human keratinocyte cell line HaCaT. The study results suggest that citric acid is cytotoxic to HaCaT cells via induction of apoptosis and cell-cycle arrest in vitro.

  10. Oxidative stress-driven mechanisms of nordihydroguaiaretic acid-induced apoptosis in FL5.12 cells

    SciTech Connect

    Deshpande, Vaidehee S. . E-mail: vaidehee@hotmail.com; Kehrer, James P.

    2006-08-01

    Nordihydroguaiaretic acid (NDGA), a general lipoxygenase (LOX) enzyme inhibitor, induces apoptosis independently of its activity as a LOX inhibitor in murine pro-B lymphocytes (FL.12 cells) by a mechanism that is still not fully understood. Glutathione depletion, oxidative processes and mitochondrial depolarization appear to contribute to the apoptosis induced by NDGA. The current data demonstrate that NDGA (20 {mu}M)-induced apoptosis in FL5.12 cells is partially protected by N-acetylcysteine (NAC) (10 mM) and dithiothreitol (DTT) (500 {mu}M) pretreatment, confirming a role for oxidative processes. In addition, the treatment of FL5.12 cells with NDGA led to an increase in phosphorylation and activation of the MAP kinases ERK, JNK and p38. Although pretreatment with ERK inhibitors (PD98059 or U0126) abolished ERK phosphorylation in response to NDGA, neither inhibitor had any effect on NDGA-induced apoptosis. SP600125, a JNK inhibitor, did not have any effect on NDGA-induced phosphorylation of JNK nor apoptosis. Pretreatment with the p38 inhibitor SB202190 attenuated NDGA-induced apoptosis by 30% and also abolished p38 phosphorylation, compared to NDGA treatment alone. NAC, but not DTT, also decreased the phosphorylation of p38 and JNK supporting a role for oxidative processes in activating these kinases. Neither NAC nor DTT blocked the phosphorylation of ERK suggesting that this activation is not related to oxidative stress. The release of cytochrome c and activation of caspase-3 induced by NDGA were inhibited by NAC. SB202190 slightly attenuated caspase-3 activation and had no effect on the release of cytochrome c. These data suggest that several independent mechanisms, including oxidative reactions, activation of p38 kinase and cytochrome c release contribute to NDGA-induced apoptosis.

  11. Gamma-aminobutyric acid induces tumor cells apoptosis via GABABR1·β-arrestins·JNKs signaling module.

    PubMed

    Tian, Hui; Wu, Jin-Xia; Shan, Feng-Xiao; Zhang, Shang-Nuan; Cheng, Qian; Zheng, Jun-Nian; Pei, Dong-Sheng

    2015-03-01

    Gamma-aminobutyric acid (GABA), an inhibitory neurotransmitter in central nervous system, has yet been found to widely exist in tumor tissues to regulate tumor cells growth. However, the function of GABA on inducing tumor cells apoptosis and the potential mechanism are still unclear. In order to detect whether GABA via GABAB receptor GABABR1 would activate c-Jun N-terminal kinases (JNKs) to promote tumor cells apoptosis, co-immunoprecipitation assay was used to investigate the association of β-arrestins with GABABR1 and JNKs in the different four cancer cell lines. Our observation demonstrated that β-arrestins, in addition to their role in G protein-coupled receptors desensitization, had an additional function as adapter proteins to recruit JNKs to GABABR1, thereby conferring distinct enzymatic activities upon the receptor, which may trigger JNKs signal pathway involved in the regulation of cellular growth. Activated JNKs subsequently phosphorylated downstream c-Jun to transcribe a wide variety of pro-apoptotic genes. Additionally, GABA up-regulated the ratio of pro-apoptotic protein Bax to anti-apoptotic protein Bcl-2, and thus facilitated caspase-3 cleavage, leading to tumor cells apoptosis in a mitochondrial-dependent pathway. In contrast, GABABR antagonist CGP35348 reversed GABA-induced JNKs phosphorylation and its downstream proteins activation, which consequently restrained tumor cells apoptosis. Taken together, our study suggested that GABA via its receptor GABABR1 recruited β-arrestins to facilitate the activation of JNKs cascade, resulting in tumor cells growth inhibition.

  12. Isogambogenic acid induces apoptosis-independent autophagic cell death in human non-small-cell lung carcinoma cells.

    PubMed

    Yang, Jianhong; Zhou, Yongzhao; Cheng, Xia; Fan, Yi; He, Shichao; Li, Shucai; Ye, Haoyu; Xie, Caifeng; Wu, Wenshuang; Li, Chunyan; Pei, Heying; Li, Luyuan; Wei, Zhe; Peng, Aihua; Wei, Yuquan; Li, Weimin; Chen, Lijuan

    2015-01-09

    To overcome drug resistance caused by apoptosis deficiency in patients with non-small cell lung carcinoma (NSCLC), there is a need to identify other means of triggering apoptosis-independent cancer cell death. We are the first to report that isogambogenic acid (iso-GNA) can induce apoptosis-independent autophagic cell death in human NSCLC cells. Several features of the iso-GNA-treated NSCLC cells indicated that iso-GNA induced autophagic cell death. First, there was no evidence of apoptosis or cleaved caspase 3 accumulation and activation. Second, iso-GNA treatment induced the formation of autophagic vacuoles, increased LC3 conversion, caused the appearance of autophagosomes and increased the expression of autophagy-related proteins. These findings provide evidence that iso-GNA induces autophagy in NSCLC cells. Third, iso-GNA-induced cell death was inhibited by autophagic inhibitors or by selective ablation of Atg7 and Beclin 1 genes. Furthermore, the mTOR inhibitor rapamycin increased iso-GNA-induced cell death by enhancing autophagy. Finally, a xenograft model provided additional evidence that iso-GNA exhibited anticancer effect through inducing autophagy-dependent cell death in NSCLC cells. Taken together, our results demonstrated that iso-GNA exhibited an anticancer effect by inducing autophagy-dependent cell death in NSCLC cells, which may be an effective chemotherapeutic agent that can be used against NSCLC in a clinical setting.

  13. Isogambogenic acid induces apoptosis-independent autophagic cell death in human non-small-cell lung carcinoma cells

    PubMed Central

    Yang, Jianhong; Zhou, Yongzhao; Cheng, Xia; Fan, Yi; He, Shichao; Li, Shucai; Ye, Haoyu; Xie, Caifeng; Wu, Wenshuang; Li, Chunyan; Pei, Heying; Li, Luyuan; Wei, Zhe; Peng, Aihua; Wei, Yuquan; Li, Weimin; Chen, Lijuan

    2015-01-01

    To overcome drug resistance caused by apoptosis deficiency in patients with non-small cell lung carcinoma (NSCLC), there is a need to identify other means of triggering apoptosis-independent cancer cell death. We are the first to report that isogambogenic acid (iso-GNA) can induce apoptosis-independent autophagic cell death in human NSCLC cells. Several features of the iso-GNA-treated NSCLC cells indicated that iso-GNA induced autophagic cell death. First, there was no evidence of apoptosis or cleaved caspase 3 accumulation and activation. Second, iso-GNA treatment induced the formation of autophagic vacuoles, increased LC3 conversion, caused the appearance of autophagosomes and increased the expression of autophagy-related proteins. These findings provide evidence that iso-GNA induces autophagy in NSCLC cells. Third, iso-GNA-induced cell death was inhibited by autophagic inhibitors or by selective ablation of Atg7 and Beclin 1 genes. Furthermore, the mTOR inhibitor rapamycin increased iso-GNA-induced cell death by enhancing autophagy. Finally, a xenograft model provided additional evidence that iso-GNA exhibited anticancer effect through inducing autophagy-dependent cell death in NSCLC cells. Taken together, our results demonstrated that iso-GNA exhibited an anticancer effect by inducing autophagy-dependent cell death in NSCLC cells, which may be an effective chemotherapeutic agent that can be used against NSCLC in a clinical setting. PMID:25571970

  14. Suberoyl bishydroxamic acid-induced apoptosis in HeLa cells via ROS-independent, GSH-dependent manner.

    PubMed

    You, Bo Ra; Park, Woo Hyun

    2013-05-01

    Suberoyl bishydroxamic acid (SBHA) is a HDAC inhibitor that can regulate many biological functions including apoptosis and proliferation in various cancer cells. Here, we evaluated the effect of SBHA on the growth of HeLa cervical cancer cells in relation to apoptosis, reactive oxygen species (ROS) and glutathione (GSH) levels. Dose-dependent inhibition of cell growth was observed in HeLa cells with an IC50 of approximately 15 μM at 72 h. SBHA also induced apoptosis in HeLa cells, as evidenced by sub-G1 cells, annexin V-FITC staining cells, activations of caspase 3 and 8, and the loss of mitochondrial membrane potential (ΔΨm). In addition, all of the tested caspase inhibitors rescued some cells from SBHA-induced HeLa cell death. SBHA increased ROS levels including O2(•-) and induced GSH depletion in HeLa cells. Generally, caspase inhibitors did not affect ROS levels in SBHA-treated HeLa cells, but they significantly prevented GSH depletion in these cells. Furthermore, while the well-known antioxidants, N-acetyl cysteine and vitamin C, did not affect cell death, ROS level or GSH depletion in SBHA-treated HeLa cells, L-buthionine sulfoximine, a GSH synthesis inhibitor, enhanced cell death and GSH depletion in these cells. In conclusion, SBHA inhibits the growth of HeLa cervical cancer cells via caspase-dependent apoptosis, and the inhibition is independent of ROS level changes, but dependent on GSH level changes.

  15. Oleanolic acid induces mitochondrial-dependent apoptosis and G0/G1 phase arrest in gallbladder cancer cells

    PubMed Central

    Li, Huai-Feng; Wang, Xu-An; Xiang, Shan-Shan; Hu, Yun-Ping; Jiang, Lin; Shu, Yi-Jun; Li, Mao-Lan; Wu, Xiang-Song; Zhang, Fei; Ye, Yuan-Yuan; Weng, Hao; Bao, Run-Fa; Cao, Yang; Lu, Wei; Dong, Qian; Liu, Ying-Bin

    2015-01-01

    Oleanolic acid (OA), a naturally occurring triterpenoid, exhibits potential antitumor activity in many tumor cell lines. Gallbladder carcinoma is the most common malignancy of the biliary tract, and is a highly aggressive tumor with an extremely poor prognosis. Unfortunately, the effects of OA on gallbladder carcinoma are unknown. In this study, we investigated the effects of OA on gallbladder cancer cells and the underlying mechanism. The results showed that OA inhibits proliferation of gallbladder cancer cells in a dose-dependent and time-dependent manner on MTT and colony formation assay. A flow cytometry assay revealed apoptosis and G0/G1 phase arrest in GBC-SD and NOZ cells. Western blot analysis and a mitochondrial membrane potential assay demonstrated that OA functions through the mitochondrial apoptosis pathway. Moreover, this drug inhibited tumor growth in nude mice carrying subcutaneous NOZ tumor xenografts. These data suggest that OA inhibits proliferation of gallbladder cancer cells by regulating apoptosis and the cell cycle process. Thus, OA may be a promising drug for adjuvant chemotherapy in gallbladder carcinoma. PMID:26109845

  16. c9, t11- conjugated linoleic acid induces HCC cell apoptosis and correlation with PPAR-γ signaling pathway

    PubMed Central

    Lu, Guozhong; Zhang, Guoqing; Zheng, Xing; Zeng, Yan; Xu, Ziqi; Zeng, Weichi; Wang, Kebing

    2015-01-01

    Objective: Cis9, trans11 conjugated linoleic acid (c9, t11-CLA.) is one of the most important isomers of conjugated linoleic acid, which have a strong anti-tumor effects. Based on previous studies, we further explored the molecular mechanism of inducing cells apoptosis in human hepatocellular carcinoma cell line HepG2 and Hep3B. Methods: Cell Counting Kit 8 (CCK-8) assay was used to investigate the effects of c9, t11-CLA on cell viability and cell proliferation ability; The effects of c9, t11-CLA on cell apoptosis was analyzed by DNA ladder assay, immuno-fluorescence and flow cytometry, respectively. Apoptotic related gene (Bcl-2, Bcl-XL, Bcl-w, Mcl-1, Bax, Bak, Bad, Bid and Bim), PPAR family member (PPAR-α, PPAR-β and PPAR-γ), and Cox2 mRNA and protein expression were analyzed by RT-PCR and western blotting. ELISA assay was used to detect the content of Caspase-3. Results: Our data were confirmed that c9, t11-CLA could inhibit the HCC cells proliferation ability and decrease the cells viability. RT-PCR and western blotting assay verified that c9, t11-CLA obviously increased the transcription and protein expression levels of PPAR-γ. The synchronism and correlation between PPAR-γ and apoptotic proteins Bcl-2, Bax and Caspase-3 were found with a dose- and time-dependent manner. PPAR-γ inhibitor GW9662 and activator Rosilitazone were further verified that there was cooperative relation between them. Conclusion: In our study, we first report that c9, t11-CLA induces apoptosis in HCC cells by activation of PPARγ-Bcl-2-Caspase-3 signal pathway. These results indicated that c9, t11-CLA will be useful for clinic therapy of anti-tumor and as a new regulator of PPAR-γ in the future. PMID:26885272

  17. The histone deacetylase inhibitor suberoylanilide hydroxamic acid induces apoptosis, down-regulates the CXCR4 chemokine receptor and impairs migration of chronic lymphocytic leukemia cells

    PubMed Central

    Stamatopoulos, Basile; Meuleman, Nathalie; De Bruyn, Cécile; Delforge, Alain; Bron, Dominique; Lagneaux, Laurence

    2010-01-01

    Background Chronic lymphocytic leukemia is a neoplastic disorder that arises largely as a result of defective apoptosis leading to chemoresistance. Stromal cell-derived factor-1 and its receptor, CXCR4, have been shown to play an important role in chronic lymphocytic leukemia cell trafficking and survival. Design and Methods Since histone acetylation is involved in the modulation of gene expression, we evaluated the effects of suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, on chronic lymphocytic leukemia cells and in particular on cell survival, CXCR4 expression, migration, and drug sensitization. Results Here, we showed that treatment with suberoylanilide hydroxamic acid (20 μM) for 48 hours induced a decrease in chronic lymphocytic leukemia cell viability via apoptosis (n=20, P=0.0032). Using specific caspase inhibitors, we demonstrated the participation of caspases-3, -6 and -8, suggesting an activation of the extrinsic pathway. Additionally, suberoylanilide hydroxamic acid significantly decreased CXCR4 mRNA (n=10, P=0.0010) and protein expression (n=40, P<0.0001). As a result, chronic lymphocytic leukemia cell migration in response to stromal cell-derived factor-1 (n=23, P<0.0001) or through bone marrow stromal cells was dramatically impaired. Consequently, suberoylanilide hydroxamic acid reduced the protective effect of the microenvironment and thus sensitized chronic lymphocytic leukemia cells to chemotherapy such as fludarabine. Conclusions In conclusion, suberoylanilide hydroxamic acid induces apoptosis in chronic lymphocytic leukemia cells via the extrinsic pathway and down-regulates CXCR4 expression leading to decreased cell migration. Suberoylanilide hydroxamic acid in combination with other drugs represents a promising therapeutic approach to inhibiting migration, chronic lymphocytic leukemia cell survival and potentially overcoming drug resistance. PMID:20145270

  18. Gambogic Acid Induces Apoptosis in Imatinib-Resistant Chronic Myeloid Leukemia Cells via Inducing Proteasome Inhibition and Caspase-Dependent Bcr-Abl Downregulation

    PubMed Central

    Shi, Xianping; Chen, Xin; Li, Xiaofen; Lan, Xiaoying; Zhao, Chong; Liu, Shouting; Huang, Hongbiao; Liu, Ningning; Liao, Siyan; Song, Wenbin; Zhou, Ping; Wang, Shunqing; Xu, Li; Wang, Xuejun; Dou, Q. Ping; Liu, Jinbao

    2014-01-01

    Purpose Chronic myelogenous leukemia (CML) is characterized by the constitutive activation of Bcr-Abl tyrosine kinase. Bcr-Abl-T315I is the predominant mutation that causes resistance to imatinib, cytotoxic drugs, and the second-generation tyrosine kinase inhibitors. The emergence of imatinib resistance in patients with CML leads to searching for novel approaches to the treatment of CML. Gambogic acid, a small molecule derived from Chinese herb gamboges, has been approved for phase II clinical trial for cancer therapy by the Chinese Food and Drug Administration (FDA). In this study, we investigated the effect of gambogic acid on cell survival or apoptosis in CML cells bearing Bcr-Abl-T315I or wild-type Bcr-Abl. Experimental Design CML cell lines (KBM5, KBM5-T315I, and K562), primary cells from patients with CML with clinical resistance to imatinib, and normal monocytes from healthy volunteers were treated with gambogic acid, imatinib, or their combination, followed by measuring the effects on cell growth, apoptosis, and signal pathways. The in vivo antitumor activity of gambogic acid and its combination with imatinib was also assessed with nude xenografts. Results Gambogic acid induced apoptosis and cell proliferation inhibition in CML cells and inhibited the growth of imatinib-resistant Bcr-Abl-T315I xenografts in nude mice. Our data suggest that GA-induced proteasome inhibition is required for caspase activation in both imatinib-resistant and -sensitive CML cells, and caspase activation is required for gambogic acid–induced Bcr-Abl downregulation and apoptotic cell death. Conclusions These findings suggest an alternative strategy to overcome imatinib resistance by enhancing Bcr-Abl downregulation with the medicinal compound gambogic acid, which may have great clinical significance in imatinib-resistant cancer therapy. PMID:24334603

  19. Down-Regulation of AKT Signalling by Ursolic Acid Induces Intrinsic Apoptosis and Sensitization to Doxorubicin in Soft Tissue Sarcoma

    PubMed Central

    Villar, Victor Hugo; Vögler, Oliver; Barceló, Francisca; Martín-Broto, Javier; Martínez-Serra, Jordi; Ruiz-Gutiérrez, Valentina; Alemany, Regina

    2016-01-01

    Several important biological activities have been attributed to the pentacyclic triterpene ursolic acid (UA), being its antitumoral effect extensively studied in human adenocarcinomas. In this work, we focused on the efficacy and molecular mechanisms involved in the antitumoral effects of UA, as single agent or combined with doxorubicin (DXR), in human soft tissue sarcoma cells. UA (5–50 μM) strongly inhibited (up to 80%) the viability of STS cells at 24 h and its proliferation in soft agar, with higher concentrations increasing apoptotic death up to 30%. UA treatment (6–9 h) strongly blocked the survival AKT/GSK3β/β-catenin signalling pathway, which led to a concomitant reduction of the anti-apoptotic proteins c-Myc and p21, altogether resulting in the activation of intrinsic apoptosis. Interestingly, UA at low concentrations (10–15 μM) enhanced the antitumoral effects of DXR by up to 2-fold, while in parallel inhibiting DXR-induced AKT activation and p21 expression, two proteins implicated in antitumoral drug resistance and cell survival. In conclusion, UA is able to induce intrinsic apoptosis in human STS cells and also to sensitize these cells to DXR by blocking the AKT signalling pathway. Therefore, UA may have beneficial effects, if used as nutraceutical adjuvant during standard chemotherapy treatment of STS. PMID:27219337

  20. Perfluorooctanoic acid induces apoptosis through the p53-dependent mitochondrial pathway in human hepatic cells: a proteomic study.

    PubMed

    Huang, Qingyu; Zhang, Jie; Martin, Francis L; Peng, Siyuan; Tian, Meiping; Mu, Xiaoli; Shen, Heqing

    2013-11-25

    Perfluorooctanoic acid (PFOA) is one of the most commonly used perfluorinated compounds, and exposure to it has been associated with a number of adverse health effects. However, the molecular mechanisms involved in PFOA toxicity are still not well characterized. In the present study, flow cytometry analysis revealed that PFOA induced oxidative stress, cell cycle arrest and apoptosis in human non-tumor hepatic cells (L-02). Furthermore, we investigated the alterations in protein profile within L-02 cells exposed to PFOA, aiming to explore the mechanisms underlying PFOA hepatotoxicity on the proteome level. Of the 28 proteins showing significant differential expression in response to PFOA, 24 were down-regulated and 4 were up-regulated. This proteomic study proposed that the inhibition of some proteins, including GRP78, HSP27, CTSD and hnRNPC may be involved in the activation of p53, which consequently triggered the apoptotic process in L-02 cells. Induction of apoptosis via the p53-dependent mitochondrial pathway is further suggested as one of the key toxicological events occurring in L-02 cells under PFOA stress. We hope these data will shed new light on the molecular mechanisms responsible for PFOA-mediated toxicity in human liver cells, and from such studies useful biomarkers indicative of PFOA exposure could be developed.

  1. Maternal ethanol consumption during pregnancy enhances bile acid-induced oxidative stress and apoptosis in fetal rat liver.

    PubMed

    Perez, Maria J; Velasco, Elena; Monte, Maria J; Gonzalez-Buitrago, Jose M; Marin, Jose J G

    2006-08-15

    Ethanol is able to cross the placenta, which may cause teratogenicity. Here we investigated whether ethanol consumption during pregnancy (ECDP), even at doses unable to cause malformation, might increase the susceptibility of fetal rat liver to oxidative insults. Since cholestasis is a common condition in alcoholic liver disease and pregnancy, exposure to glycochenodeoxycholic acid (GCDCA) has been used here as the oxidative insult. The mothers received drinking water without or with ethanol from 4 weeks before mating until term, when placenta, maternal liver, and fetal liver were used. Ethanol induced a decreased GSH/GSSG ratio in these organs, together with enhanced gamma-glutamylcysteine synthetase and glutathione reductase activities in both placenta and fetal liver. Lipid peroxidation in placenta and fetal liver was enhanced by ethanol, although it had no effect on caspase-3 activity. Although the basal production of reactive oxygen species (ROS) was higher by fetal (FHs) than by maternal (AHs) hepatocytes in short-term cultures, the production of ROS in response to the presence of varying GCDCA concentrations was higher in AHs and was further increased by ECDP, which was associated to a more marked impairment in mitochondrial function. Moreover, GCDCA-induced apoptosis was increased by ECDP, as revealed by enhanced Bax-alpha/Bcl-2 ratio (both in AHs and FHs) and the activity of caspase-8 (only in AHs) and caspase-3. In sum, our results indicate that although AHs are more prone than FHs to producing ROS, at doses unable to cause maternal liver damage ethanol consumption causes oxidative stress and apoptosis in fetal liver.

  2. Gambogic acid induces apoptosis and sensitizes TRAIL-mediated apoptosis through downregulation of cFLIPL in renal carcinoma Caki cells.

    PubMed

    Jang, Ji Hoon; Kim, Joo-Young; Sung, Eon-Gi; Kim, Eun-Ae; Lee, Tae-Jin

    2016-01-01

    Gambogic acid (GA) is a natural compound derived from brownish gamboge resin that shows a range of bioactivity, such as antitumor and antimicrobial properties. Although, GA is already known to induce cell death in a variety of cancer cells, the molecular basis for GA-induced cell death in renal cancer cells is unclear. In this study, a treatment with GA induced cell death in human renal carcinoma Caki cells in a dose-dependent manner. Treatment of Caki cells with GA decreased the levels of antiapoptotic proteins, such as Bcl-2 and XIAP in a dose-dependent manner. In addition, GA decreased the expression of the cFLIPL protein, which was downregulated at the transcriptional level without any change in the levels of cFLIPs expression. z-VAD (pan-caspase inhibitor) partially blocked GA-mediated cell death. GA-induced apoptotic cell death in Caki cells is mediated partly by the AIF translocation from the mitochondria into the nucleus via a caspase-independent pathway. In contrast, N-acetylcysteine (NAC), a ROS scavenger, had no effect on GA-induced cell death. The restoration of cFLIPL attenuated GA-induced cell death in Caki cells. Furthermore, a sub-toxic dose of GA sensitized TRAIL-mediated apoptosis in Caki cells. Pretreatment with z-VAD completely blocked GA plus TRAIL-mediated apoptosis. On the contrary, pretreatment with NAC partially inhibited GA plus TRAIL-induced apoptosis. Our findings suggested that GA induces apoptosis via the downregulation of cFLIPL and sensitized TRAIL-mediated apoptosis in Caki cells. PMID:26648023

  3. Urea derivates of ursolic, oleanolic and maslinic acid induce apoptosis and are selective cytotoxic for several human tumor cell lines.

    PubMed

    Sommerwerk, Sven; Heller, Lucie; Kuhfs, Julia; Csuk, René

    2016-08-25

    2,3-Di-O-acetyl-maslinic acid benzylamide (5) has previously been shown to possess high cytotoxicity for a variety of human tumor cell lines while being of low cytotoxicity to non-malignant cells. Structural modifications performed on 5 revealed that the presence of these acetyl groups in 5 and the presence of (2β,3β)-configurated centers seems necessary for obtaining high cytotoxicity combined with best selectivity between malignant cells and non-malignant mouse fibroblasts. Compounds carrying an ursane skeleton showed weaker cytotoxicity than their oleanane derived analogs. In addition, the benzylamide function in compound 5 should be replaced by a phenylurea moiety to gain better cytotoxicity while retaining and improving the selectivity. Thus, maslinic acid derived N-[2β,3β-di-O-acetyl-17β-amino-28-norolean-12-en-17-yl]phenylurea (45) gave best results showing EC50 = 0.9 μM (for A2780 ovarian cancer cells) with EC50 > 120 μM for fibroblasts (NIH 3T3) and triggered apoptosis while caspase-3 was not activated by this compound. PMID:27149037

  4. Urea derivates of ursolic, oleanolic and maslinic acid induce apoptosis and are selective cytotoxic for several human tumor cell lines.

    PubMed

    Sommerwerk, Sven; Heller, Lucie; Kuhfs, Julia; Csuk, René

    2016-08-25

    2,3-Di-O-acetyl-maslinic acid benzylamide (5) has previously been shown to possess high cytotoxicity for a variety of human tumor cell lines while being of low cytotoxicity to non-malignant cells. Structural modifications performed on 5 revealed that the presence of these acetyl groups in 5 and the presence of (2β,3β)-configurated centers seems necessary for obtaining high cytotoxicity combined with best selectivity between malignant cells and non-malignant mouse fibroblasts. Compounds carrying an ursane skeleton showed weaker cytotoxicity than their oleanane derived analogs. In addition, the benzylamide function in compound 5 should be replaced by a phenylurea moiety to gain better cytotoxicity while retaining and improving the selectivity. Thus, maslinic acid derived N-[2β,3β-di-O-acetyl-17β-amino-28-norolean-12-en-17-yl]phenylurea (45) gave best results showing EC50 = 0.9 μM (for A2780 ovarian cancer cells) with EC50 > 120 μM for fibroblasts (NIH 3T3) and triggered apoptosis while caspase-3 was not activated by this compound.

  5. Dose Dependent Activation of Retinoic Acid-Inducible Gene-I Promotes Both Proliferation and Apoptosis Signals in Human Head and Neck Squamous Cell Carcinoma

    PubMed Central

    Yan, Ming; Zhu, Chao; Ye, Weimin; Zhu, Hanguang; Chen, Wantao; Zhang, Chenping; Zhang, Zhiyuan

    2013-01-01

    The retinoic-acid-inducible gene (RIG)-like receptor (RLR) family proteins are major pathogen reorganization receptors (PRR) responsible for detection of viral RNA, which initiates antiviral response. Here, we evaluated the functional role of one RLR family member, RIG-I, in human head and neck squamous cell carcinoma (HNSCC). RIG-I is abundantly expressed both in poorly-differentiated primary cancer and lymph node metastasis, but not in normal adjacent tissues. Activation of RIG-I by transfection with low dose of 5′-triphosphate RNA (3p-RNA) induces low levels of interferon and proinflammatory cytokines and promotes NF-κB- and Akt-dependent cell proliferation, migration and invasion. In contrast, activation of RIG-I by a high dose of 3p-RNA induces robust mitochondria-derived apoptosis accompanied by decreased activation of Akt, which is independent of the interferon and TNFα receptor, but can be rescued by over-expression of constitutively active Akt. Furthermore, co-immunoprecipitation experiments indicate that the CARD domain of RIG-I is essential for inducing apoptosis by interacting with caspase-9. Together, our results reveal a dual role of RIG-I in HNSCC through regulating activation of Akt, in which RIG-I activation by low-dose viral dsRNA increases host cell surviral, whereas higher level of RIG-I activation leads to apopotosis. These findings highlight the therapeutic potential of dsRNA mediated RIG-I activation in the treatment of HNSCC. PMID:23484008

  6. Role of parathyroid hormone-related protein in tubulointerstitial apoptosis and fibrosis after folic acid-induced nephrotoxicity.

    PubMed

    Ortega, Arantxa; Rámila, David; Ardura, Juan Antonio; Esteban, Vanesa; Ruiz-Ortega, Marta; Barat, Antonio; Gazapo, Rosa; Bosch, Ricardo J; Esbrit, Pedro

    2006-06-01

    Parathyroid hormone-related protein (PTHrP) is shortly upregulated in acute renal injury, but its pathophysiologic role is unclear. Investigated was whether PTHrP might act as a profibrogenic factor in mice that do or do not overexpress PTHrP in the proximal tubule after folic acid (FA) nephrotoxicity, a model of acute renal damage followed by partial regeneration and patchy tubulointerstitial fibrosis. It was found that constitutive PTHrP overexpression in these animals conveyed a significant increase in tubulointerstitial fibrosis, associated with both fibroblast activation (as alpha-smooth muscle actin staining) and macrophage influx, compared with control littermates at 2 to 3 wk after FA damage. Cell proliferation and survival was higher (P<0.01) in the renal interstitium of PTHrP-overexpressing mice than in control littermates within this period after injury. Moreover, the former mice had a constitutive Bcl-XL protein overexpression. In vitro studies in renal tubulointerstitial and fibroblastic cells strongly suggest that PTHrP (1-36) (100 nM) reduced FA-induced apoptosis through a dual mechanism involving Bcl-XL upregulation and Akt and Bad phosphorylation. PTHrP (1-36) also stimulated monocyte chemoattractant protein-1 expression in tubuloepithelial cells, as well as type-1 procollagen gene expression and fibronectin (mRNA levels and protein secretion) in these cells and renal fibroblastic cells. Our findings indicate that this peptide, by interaction with the PTH1 receptor, can increase tubulointerstitial cell survival and seems to act as a proinflammatory and profibrogenic factor in the FA-damaged kidney.

  7. Ursolic acid induces apoptosis in human leukaemia cells and exhibits anti-leukaemic activity in nude mice through the PKB pathway

    PubMed Central

    Gao, Ning; Cheng, Senping; Budhraja, Amit; Gao, Ziyi; Chen, Jieping; Liu, E-Hu; Huang, Cheng; Chen, Deying; Yang, Zailin; Liu, Qun; Li, Ping; Shi, Xianglin; Zhang, Zhuo

    2012-01-01

    BACKGROUND AND PURPOSE Ursolic acid (UA) has been extensively used as an anti-leukaemic agent in traditional Chinese medicine. In the present study, we investigated the ability of UA to induce apoptosis in human leukaemia cells in relation to its effects on caspase activation, Mcl-1 down-regulation and perturbations in stress-induced signalling pathways such as PKB and JNK. EXPERIMENTAL APPROACH Leukaemia cells were treated with UA after which apoptosis, caspase activation, PKB and JNK signalling pathways were evaluated. The anti-tumour activity of UA was evaluated using xenograft mouse model. KEY RESULTS UA induced apoptosis in human leukaemia cells in a dose- and time-dependent manner; this was associated with caspase activation, down-regulation of Mcl-1 and inactivation of PKB accompanied by activation of JNK. Enforced activation of PKB by a constitutively active PKB construct prevented UA-mediated JNK activation, Mcl-1 down-regulation, caspase activation and apoptosis. Conversely, UA lethality was potentiated by the PI3-kinase inhibitor LY294002. Interruption of the JNK pathway by pharmacological or genetic (e.g. siRNA) attenuated UA-induced apoptosis. Furthermore, UA-mediated inhibition of tumour growth in vivo was associated with induction of apoptosis, inactivation of PKB as well as activation of JNK. CONCLUSIONS AND IMPLICATIONS Collectively, these findings suggest a hierarchical model of UA-induced apoptosis in human leukaemia cells in which UA induces PKB inactivation, leading to JNK activation and culminating in Mcl-1 down-regulation, caspase activation and apoptosis. These findings indicate that interruption of PKB/JNK pathways may represent a novel therapeutic strategy in haematological malignancies. PMID:21950524

  8. Lipopolysaccharide prevents valproic acid-induced apoptosis via activation of nuclear factor-κB and inhibition of p53 activation.

    PubMed

    Tsolmongyn, Bilegtsaikhan; Koide, Naoki; Odkhuu, Erdenezaya; Haque, Abedul; Naiki, Yoshikazu; Komatsu, Takayuki; Yoshida, Tomoaki; Yokochi, Takashi

    2013-04-01

    The effect of lipopolysaccharide (LPS) on valproic acid (VPA)-induced cell death was examined by using mouse RAW 264.7 macrophage cells. LPS inhibited the activation of caspase 3 and poly (ADP-ribose) polymerase and prevented VPA-induced apoptosis. LPS inhibited VPA-induced p53 activation and pifithrin-α as a p53 inhibitor as well as LPS prevented VPA-induced apoptosis. LPS abolished the increase of Bax/Bcl-2 ratio, which is a critical indicator of p53-mediated mitochondrial damage, in response to VPA. The nuclear factor (NF)-κB inhibitors, Bay 11-7082 and parthenolide, abolished the preventive action of LPS on VPA-induced apoptosis. A series of toll-like receptor ligands, Pam3CSK4, poly I:C, and CpG DNA as well as LPS prevented VPA-induced apoptosis. Taken together, LPS was suggested to prevent VPA-induced apoptosis via activation of anti-apoptotic NF-κB and inhibition of pro-apoptotic p53 activation. The detailed inhibitory mechanism of VPA-induced apoptosis by LPS is discussed.

  9. Lipopolysaccharide prevents valproic acid-induced apoptosis via activation of nuclear factor-κB and inhibition of p53 activation.

    PubMed

    Tsolmongyn, Bilegtsaikhan; Koide, Naoki; Odkhuu, Erdenezaya; Haque, Abedul; Naiki, Yoshikazu; Komatsu, Takayuki; Yoshida, Tomoaki; Yokochi, Takashi

    2013-04-01

    The effect of lipopolysaccharide (LPS) on valproic acid (VPA)-induced cell death was examined by using mouse RAW 264.7 macrophage cells. LPS inhibited the activation of caspase 3 and poly (ADP-ribose) polymerase and prevented VPA-induced apoptosis. LPS inhibited VPA-induced p53 activation and pifithrin-α as a p53 inhibitor as well as LPS prevented VPA-induced apoptosis. LPS abolished the increase of Bax/Bcl-2 ratio, which is a critical indicator of p53-mediated mitochondrial damage, in response to VPA. The nuclear factor (NF)-κB inhibitors, Bay 11-7082 and parthenolide, abolished the preventive action of LPS on VPA-induced apoptosis. A series of toll-like receptor ligands, Pam3CSK4, poly I:C, and CpG DNA as well as LPS prevented VPA-induced apoptosis. Taken together, LPS was suggested to prevent VPA-induced apoptosis via activation of anti-apoptotic NF-κB and inhibition of pro-apoptotic p53 activation. The detailed inhibitory mechanism of VPA-induced apoptosis by LPS is discussed. PMID:23770718

  10. The BH3-mimetic gossypol and noncytotoxic doses of valproic acid induce apoptosis by suppressing cyclin-A2/Akt/FOXO3a signaling

    PubMed Central

    Pan, Hao; Lin, Qiu-Ru; Huang, Mei-Yun; Cai, Ji-Ye; Ouyang, Dong-Yun; He, Xian-Hui

    2015-01-01

    Previously we reported that valproic acid (VPA) acts in synergy with GOS to enhance cell death in human DU145 cells. However, the underlying mechanism remains elusive. In this study, we observed that such synergistic cytotoxicity of GOS and VPA could be extended to human A375, HeLa, and PC-3 cancer cells. GOS and VPA co-treatment induced robust apoptosis as evidenced by caspase-8/-9/-3 activation, PARP cleavage, and nuclear fragmentation. GOS and VPA also markedly decreased cyclin A2 protein expression. Owing to the reduction of cyclin A2, Akt signaling was suppressed, leading to dephosphorylation of FOXO3a. Consequently, FOXO3a was activated and the expression of its target genes, including pro-apoptotic FasL and Bim, was upregulated. Supporting this, FOXO3a knockdown attenuated FasL and Bim upregulation and apoptosis induction in GOS+VPA-treated cells. Furthermore, blocking proteasome activity by MG132 prevented the downregulation of cyclin A2, dephosphorylation of Akt and FOXO3a, and induction of apoptosis in cells co-treated with GOS and VPA. In mouse model, GOS and VPA combination significantly inhibited the growth of A375 melanoma xenografts. Our findings indicate that GOS and VPA co-treatment induces apoptosis in human cancer cells by suppressing the cyclin-A2/Akt/FOXO3a pathway. PMID:26517515

  11. 18α-Glycyrrhetinic Acid Induces Apoptosis of HL-60 Human Leukemia Cells through Caspases- and Mitochondria-Dependent Signaling Pathways.

    PubMed

    Huang, Yi-Chang; Kuo, Chao-Lin; Lu, Kung-Wen; Lin, Jen-Jyh; Yang, Jiun-Long; Wu, Rick Sai-Chuen; Wu, Ping-Ping; Chung, Jing-Gung

    2016-01-01

    In this study we investigate the molecular mechanisms of caspases and mitochondria in the extrinsic and intrinsic signal apoptosis pathways in human leukemia HL-60 cells after in vitro exposure to 18α-glycyrrhetinic acid (18α-GA). Cells were exposed to 18α-GA at various concentrations for various time periods and were harvested for flow cytometry total viable cell and apoptotic cell death measurements. Cells treated with 18α-GA significantly inhibited cell proliferation and induced cell apoptosis in a dose-dependent manner, with an IC50 value of 100 μM at 48 h. The cell growth inhibition resulted in induction of apoptosis and decreased the mitochondria membrane potential (ΔΨm) and increased caspase-8, -9 and -3 activities. Furthermore, cytochrome c and AIF were released from mitochondria, as shown by western blotting and confirmed by confocal laser microscopy. Western blotting showed that 18α-GA increased the levels of pro-apoptotic proteins such as Bax and Bid and decreased the anti-apoptotic proteins such as Bcl-2 and Bcl-xl, furthermore, results also showed that 18α-GA increased Fas and Fas-L which are associated with surface death receptor in HL-60 cells. Based on those observations, the present study supports the hypothesis that 18α-GA-induced apoptosis in HL-60 cells involves the activation of the both extrinsic and intrinsic apoptotic pathways. PMID:27376261

  12. Protective effects of Semen Crotonis Pulveratum on trinitrobenzene sulphonic acid-induced colitis in rats and H₂O₂-induced intestinal cell apoptosis in vitro.

    PubMed

    Wang, Xiaohong; Zhao, Jie; Han, Zhe; Tang, Fang

    2015-06-01

    Ulcerative colitis (UC) is a chronic inflammatory bowel disease. Semen Crotonis Pulveratum (SCP) has been used as a traditional medicine for the treatment of UC. However, its molecular mechanisms of action have not yet been elucidated. In the present study, we aimed to investigate the preliminary mechanisms of the role of SCP on trinitrobenzene sulphonic acid (TNBS)-induced UC in rats and hydrogen peroxide (H2O2)-induced intestinal cell apoptosis in vitro. Wistar rats (n=9 per group) were randomly divided into 4 groups: the normal control group, the UC group, the UC + SCP group and the UC + sulfasalazine group as a positive control. The proportion of CD4+CD25+ T cells and CD4+CD25+Foxp3+ Tregs, and the expression levels of interleukin (IL)-6 and IL-10 in the peripheral blood, as well as the expression levels of cyclooxygenase-2 (COX-2) and intercellular adhesion molecule-1 (ICAM-1) in the colon tissues were determined by flow cytometry, ELISA and immunohistochemical staining, respectively. Rat intestinal epithelial (IEC-6) cell apoptosis induced by H2O2 was determined by TUNEL assay, flow cytometry using Annexin V/propidium iodide (PI) staining and western blot analysis of caspase-3 activation, respectively. Significantly higher proportions of circulating CD4+CD25+ T cells and CD4+CD25+Foxp3+ Tregs were present in the UC + SCP group compared with the UC group. A significantly decreased expression of IL-6 and an increased expression of IL-10 were also observed in the UC + SCP group compared with UC group. SCP significantly reduced the UC-induced increase in the expression of COX-2 and ICAM-1 in the colon tissues. SCP inhibited cell apoptosis and caspase-3 activation induced by H2O2 in the ICE-6 cells. Our data thus indicate that SCP inhibits inflammation in UC by increasing the proportion of circulating Tregs, altering cytokine production and decreasing COX-2 and ICAM-1 expression. In addition it protects against H2O2-induced intestinal cell apoptosis in vitro.

  13. Rice bran phytic acid induced apoptosis through regulation of Bcl-2/Bax and p53 genes in HepG2 human hepatocellular carcinoma cells.

    PubMed

    Al-Fatlawi, Atheer Abbas; Al-Fatlawi, Anees Abbas; Irshad, Md; Zafaryab, Md; Rizvi, M Moshahid Alam; Ahmad, Ayaz

    2014-01-01

    Phytic acid (PA) has been reported to have positive nutritional benefits and prevent cancer formation. This study investigated the anticancer activity of rice bran PA against hepatocellular carcinoma (HepG2) cells. Cytotoxicty of PA (0.5 to 4mM) was examined by MTT and LDH assays after 24 and 48 h treatment. Apoptotic activity was evaluated by expression analysis of apoptosis-regulatory genes [i.e. p53, Bcl-2, Bax, Caspase-3 and -9] by reverse transcriptase-PCR and DNA fragmentation assay. The results showed antioxidant activity of PA in Fe3+ reducing power assay (p ≤ 0.03). PA inhibited the growth of HepG2 cells in a concentration dependent manner (p ≤ 0.04). After 48h treatment, cell viability was recorded 84.7, 74.4, 65.6, 49.6, 36.0 and 23.8% in MTT assay and 92.6, 77.0%, 66.8%, 51.2, 40.3 and 32.3% in LDH assay at concentrations of 1, 1.5, 2.0, 2.5, 3.0, and 3.5mM, respectively. Hence, treatment of PA for 24h, recorded viability of cells 93.5, 88.6, 55.5, 34.6 and 24.4% in MTT assay and 94.2, 86.1%, 59.7%, 42.3 and 31.6%, in LDH assay at concentrations of 1, 2.2, 3.0, 3.6 and 4.0mM, respectively. PA treated HepG2 cells showed up-regulation of p53, Bax, Caspase-3 and -9, and down- regulation of Bcl-2 gene (p ≤ 0.01). At the IC50 (2.49 mM) of PA, the p53, Bax, Caspase-3 and-9 genes were up- regulated by 6.03, 7.37, 19.7 and 14.5 fold respectively. Also, the fragmented genomic DNA in PA treated cells provided evidence of apoptosis. Our study confirmed the biological activity of PA and demonstrated growth inhibition and induction of apoptosis in HepG2 cells with modulation of the expression of apoptosis-regulatory genes. PMID:24870784

  14. Salvia fruticosa, Salvia officinalis, and rosmarinic acid induce apoptosis and inhibit proliferation of human colorectal cell lines: the role in MAPK/ERK pathway.

    PubMed

    Xavier, Cristina P R; Lima, Cristovao F; Fernandes-Ferreira, Manuel; Pereira-Wilson, Cristina

    2009-01-01

    Epidemiological studies have shown that nutrition is a key factor in modulating sporadic colorectal carcinoma (CRC) risk. Aromatic plants of the genus Salvia (sage) have been attributed many medicinal properties, which include anticancer activity. In the present study, the antiproliferative and proapoptotic effects of water extracts of Salvia fruticosa (SF) and Salvia officinalis (SO) and of their main phenolic compound rosmarinic acid (RA) were evaluated in two human colon carcinoma-derived cell lines, HCT15 and CO115, which have different mutations in the MAPK/ERK and PI3K/Akt signalling pathways. These pathways are commonly altered in CRC, leading to increased proliferation and inhibition of apoptosis. Our results show that SF, SO, and RA induce apoptosis in both cell lines, whereas cell proliferation was inhibited by the two sage extracts only in HCT15. SO, SF, and RA inhibited ERK phosphorylation in HCT15 and had no effects on Akt phosphorylation in CO115 cells. The activity of sage extracts seems to be due, at least in part, to the inhibition of MAPK/ERK pathway.

  15. Plasma levels of acetylsalicylic acid and salicylic acid after oral ingestion of plain and buffered acetylsalicylic acid in relation to bleeding time and thrombocyte function.

    PubMed

    Proost, J H; Van Imhoff, G W; Wesseling, H

    1983-02-25

    Buffered acetylsalicylic acid (Alka Seltzer, B-ASA) and plain aspirin (P-ASA) tablets were compared as to their effects on bleeding time and platelet function in eight healthy male volunteers. Two doses (500 and 1000 mg) of each preparation were investigated in a cross-over design, each volunteer being his own control in each dose group (n=4). Both preparations disturbed platelet aggregation to the same extent. Bleeding time increased after both preparations, though significantly more after the buffered preparation than after plain acetylsalicylic acid, irrespective of the dosage. The 1000 mg dose prolonged bleeding time significantly more than the 500 mg dose, irrespective of the preparation. Kinetic analysis showed that B-ASA gave higher peak plasma levels of acetylsalicylic acid (ASA) and accordingly salicylic acid peak levels were also higher after the buffered preparation. It is concluded that B-ASA in equi-analgesic doses prolongs bleeding time more than the plain preparation. Since it is less agressive on the gastro-intestinal mucosa, its use may be advantageous in situations where acetylsalicylic acid induced loss of platelet aggregation is desired. However, the risk of prolonged bleeding--e.g. after tooth extractions--is probably higher after the buffered preparation. PMID:6844122

  16. Retinoic Acid Induced-Autophagic Flux Inhibits ER-Stress Dependent Apoptosis and Prevents Disruption of Blood-Spinal Cord Barrier after Spinal Cord Injury

    PubMed Central

    Zhou, Yulong; Zhang, Hongyu; Zheng, Binbin; Ye, Libing; Zhu, Sipin; Johnson, Noah R; Wang, Zhouguang; Wei, Xiaojie; Chen, Daqing; Cao, Guodong; Fu, Xiaobing; Li, Xiaokun; Xu, Hua-Zi; Xiao, Jian

    2016-01-01

    Spinal cord injury (SCI) induces the disruption of the blood-spinal cord barrier (BSCB) which leads to infiltration of blood cells, an inflammatory response, and neuronal cell death, resulting spinal cord secondary damage. Retinoic acid (RA) has a neuroprotective effect in both ischemic brain injury and SCI, however the relationship between BSCB disruption and RA in SCI is still unclear. In this study, we demonstrated that autophagy and ER stress are involved in the protective effect of RA on the BSCB. RA attenuated BSCB permeability and decreased the loss of tight junction (TJ) molecules such as P120, β-catenin, Occludin and Claudin5 after injury in vivo as well as in Brain Microvascular Endothelial Cells (BMECs). Moreover, RA administration improved functional recovery in the rat model of SCI. RA inhibited the expression of CHOP and caspase-12 by induction of autophagic flux. However, RA had no significant effect on protein expression of GRP78 and PDI. Furthermore, combining RA with the autophagy inhibitor chloroquine (CQ) partially abolished its protective effect on the BSCB via exacerbated ER stress and subsequent loss of tight junctions. Taken together, the neuroprotective role of RA in recovery from SCI is related to prevention of of BSCB disruption via the activation of autophagic flux and the inhibition of ER stress-induced cell apoptosis. These findings lay the groundwork for future translational studies of RA for CNS diseases, especially those related to BSCB disruption. PMID:26722220

  17. Activation of Notch1 inhibits medial edge epithelium apoptosis in all-trans retinoic acid-induced cleft palate in mice.

    PubMed

    Zhang, Yadong; Dong, Shiyi; Wang, Weicai; Wang, Jianning; Wang, Miao; Chen, Mu; Hou, Jinsong; Huang, Hongzhang

    2016-08-26

    Administration of all-trans retinoic acid (atRA) on E12.0 (embryonic day 12.0) leads to failure of medial edge epithelium (MEE) disappearance and cleft palate. However, the molecular mechanism underlying the relationship between atRA and MEE remains to be identified. In this study, atRA (200 mg/kg) administered by gavage induced a 75% incidence of cleft palate in C57BL/6 mice. Notch1 was up-regulated in MEE cells in the atRA-treated group compared with the controls at E15.0, together with reduced apoptosis and elevated proliferation. Next, we investigated the mechanisms underlying atRA, Notch1 and MEE degradation in palate organ culture. Our results revealed that down-regulation of Notch1 partially rescued the inhibition of atRA-induced palate fusion. Molecular analysis indicated that atRA increased the expression of Notch1 and Rbpj and decreased the expression of P21. In addition, depletion of Notch1 expression decreased the expression of Rbpj and increased the expression of P21. Moreover, inhibition of Rbpj expression partially reversed atRA-induced MEE persistence and increased P21 expression. These findings demonstrate that atRA inhibits MEE degradation, which in turn induces a cleft palate, possibly through the Notch1/RBPjk/P21 signaling pathway. PMID:27343556

  18. Retinoic Acid Induced-Autophagic Flux Inhibits ER-Stress Dependent Apoptosis and Prevents Disruption of Blood-Spinal Cord Barrier after Spinal Cord Injury.

    PubMed

    Zhou, Yulong; Zhang, Hongyu; Zheng, Binbin; Ye, Libing; Zhu, Sipin; Johnson, Noah R; Wang, Zhouguang; Wei, Xiaojie; Chen, Daqing; Cao, Guodong; Fu, Xiaobing; Li, Xiaokun; Xu, Hua-Zi; Xiao, Jian

    2016-01-01

    Spinal cord injury (SCI) induces the disruption of the blood-spinal cord barrier (BSCB) which leads to infiltration of blood cells, an inflammatory response, and neuronal cell death, resulting spinal cord secondary damage. Retinoic acid (RA) has a neuroprotective effect in both ischemic brain injury and SCI, however the relationship between BSCB disruption and RA in SCI is still unclear. In this study, we demonstrated that autophagy and ER stress are involved in the protective effect of RA on the BSCB. RA attenuated BSCB permeability and decreased the loss of tight junction (TJ) molecules such as P120, β-catenin, Occludin and Claudin5 after injury in vivo as well as in Brain Microvascular Endothelial Cells (BMECs). Moreover, RA administration improved functional recovery in the rat model of SCI. RA inhibited the expression of CHOP and caspase-12 by induction of autophagic flux. However, RA had no significant effect on protein expression of GRP78 and PDI. Furthermore, combining RA with the autophagy inhibitor chloroquine (CQ) partially abolished its protective effect on the BSCB via exacerbated ER stress and subsequent loss of tight junctions. Taken together, the neuroprotective role of RA in recovery from SCI is related to prevention of of BSCB disruption via the activation of autophagic flux and the inhibition of ER stress-induced cell apoptosis. These findings lay the groundwork for future translational studies of RA for CNS diseases, especially those related to BSCB disruption.

  19. Down-regulation of lipid raft-associated onco-proteins via cholesterol-dependent lipid raft internalization in docosahexaenoic acid-induced apoptosis.

    PubMed

    Lee, Eun Jeong; Yun, Un-Jung; Koo, Kyung Hee; Sung, Jee Young; Shim, Jaegal; Ye, Sang-Kyu; Hong, Kyeong-Man; Kim, Yong-Nyun

    2014-01-01

    Lipid rafts, plasma membrane microdomains, are important for cell survival signaling and cholesterol is a critical lipid component for lipid raft integrity and function. DHA is known to have poor affinity for cholesterol and it influences lipid rafts. Here, we investigated a mechanism underlying the anti-cancer effects of DHA using a human breast cancer cell line, MDA-MB-231. We found that DHA decreased cell surface levels of lipid rafts via their internalization, which was partially reversed by cholesterol addition. With DHA treatment, caveolin-1, a marker for rafts, and EGFR were colocalized with LAMP-1, a lysosomal marker, in a cholesterol-dependent manner, indicating that DHA induces raft fusion with lysosomes. DHA not only displaced several raft-associated onco-proteins, including EGFR, Hsp90, Akt, and Src, from the rafts but also decreased total levels of those proteins via multiple pathways, including the proteasomal and lysosomal pathways, thereby decreasing their activities. Hsp90 overexpression maintained its client proteins, EGFR and Akt, and attenuated DHA-induced cell death. In addition, overexpression of Akt or constitutively active Akt attenuated DHA-induced apoptosis. All these data indicate that the anti-proliferative effect of DHA is mediated by targeting of lipid rafts via decreasing cell surface lipid rafts by their internalization, thereby decreasing raft-associated onco-proteins via proteasomal and lysosomal pathways and decreasing Hsp90 chaperone function.

  20. Stimulation of Anterior Thalamic Nuclei Protects Against Seizures and Neuronal Apoptosis in Hippocampal CA3 Region of Kainic Acid-induced Epileptic Rats

    PubMed Central

    Meng, Da-Wei; Liu, Huan-Guang; Yang, An-Chao; Zhang, Kai; Zhang, Jian-Guo

    2016-01-01

    Background: The antiepileptic effect of the anterior thalamic nuclei (ANT) stimulation has been demonstrated; however, its underlying mechanism remains unclear. The aim of this study was to investigate the effect of chronic ANT stimulation on hippocampal neuron loss and apoptosis. Methods: Sixty-four rats were divided into four groups: The control group, the kainic acid (KA) group, the sham-deep brain stimulation (DBS) group, and the DBS group. KA was used to induce epilepsy. Seizure count and latency to the first spontaneous seizures were calculated. Nissl staining was used to analyze hippocampal neuronal loss. Polymerase chain reaction and Western blotting were conducted to assess the expression of caspase-3 (Casp3), B-cell lymphoma-2 (Bcl2), and Bcl2-associated X protein (Bax) in the hippocampal CA3 region. One-way analysis of variance was used to determine the differences between the four groups. Results: The latency to the first spontaneous seizures in the DBS group was significantly longer than that in the KA group (27.50 ± 8.05 vs. 16.38 ± 7.25 days, P = 0.0005). The total seizure number in the DBS group was also significantly reduced (DBS vs. KA group: 11.75 ± 6.80 vs. 23.25 ± 7.72, P = 0.0002). Chronic ANT-DBS reduced neuronal loss in the hippocampal CA3 region (DBS vs. KA group: 23.58 ± 6.34 vs. 13.13 ± 4.00, P = 0.0012). After chronic DBS, the relative mRNA expression level of Casp3 was decreased (DBS vs. KA group: 1.18 ± 0.37 vs. 2.09 ± 0.46, P = 0.0003), and the relative mRNA expression level of Bcl2 was increased (DBS vs. KA group: 0.92 ± 0.21 vs. 0.48 ± 0.16, P = 0.0004). The protein expression levels of CASP3 (DBS vs. KA group: 1.25 ± 0.26 vs. 2.49 ± 0.38, P < 0.0001) and BAX (DBS vs. KA group: 1.57 ± 0.49 vs. 2.80 ± 0.63, P = 0.0012) both declined in the DBS group whereas the protein expression level of BCL2 (DBS vs. KA group: 0.78 ± 0.32 vs. 0.36 ± 0.17, P = 0.0086) increased in the DBS group. Conclusions: This study demonstrated

  1. c-Jun N-terminal Kinase-Dependent Endoplasmic Reticulum Stress Pathway is Critically Involved in Arjunic Acid Induced Apoptosis in Non-Small Cell Lung Cancer Cells.

    PubMed

    Joo, HyeEun; Lee, Hyun Joo; Shin, Eun Ah; Kim, Hangil; Seo, Kyeong-Hwa; Baek, Nam-In; Kim, Bonglee; Kim, Sung-Hoon

    2016-04-01

    Though arjunic acid, a triterpene isolated from Terminalia arjuna, was known to have antioxidant, antiinflammatory, and cytotoxic effects, its underlying antitumor mechanism still remains unclear so far. Thus, in the present study, the molecular antitumor mechanism of arjunic acid was examined in A549 and H460 non-small cell lung cancer (NSCLC) cells. Arjunic acid exerted cytotoxicity by 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyl tetrazolium bromide (MTT) assay and significantly increased sub-G1 population in A549 and H460 cells by cell cycle analysis. Consistently, arjunic acid cleaved poly (ADP-ribose) polymerase (PARP), activated Bax, and phosphorylation of c-Jun N-terminal kinases (JNK), and also attenuated the expression of pro-caspase-3 and Bcl-2 in A549 and H460 cells. Furthermore, arjunic acid upregulated the expression of endoplasmic reticulum (ER) stress proteins such as IRE1 α, ATF4, p-eIF2α, and C/EBP homologous protein (CHOP) in A549 and H460 cells. Conversely, CHOP depletion attenuated the increase of sub-G1 population by arjunic acid, and also JNK inhibitor SP600125 blocked the cytotoxicity and upregulation of IRE1 α and CHOP induced by arjunic acid in A549 and H460 cells. Overall, our findings suggest that arjunic acid induces apoptosis in NSCLC cells via JNK mediated ER stress pathway as a potent chemotherapeutic agent for NSCLC. PMID:26787261

  2. Combination of 13 cis-retinoic acid and tolfenamic acid induces apoptosis and effectively inhibits high-risk neuroblastoma cell proliferation.

    PubMed

    Shelake, Sagar; Eslin, Don; Sutphin, Robert M; Sankpal, Umesh T; Wadwani, Anmol; Kenyon, Laura E; Tabor-Simecka, Leslie; Bowman, W Paul; Vishwanatha, Jamboor K; Basha, Riyaz

    2015-11-01

    Chemotherapeutic regimens used for the treatment of Neuroblastoma (NB) cause long-term side effects in pediatric patients. NB arises in immature sympathetic nerve cells and primarily affects infants and children. A high rate of relapse in high-risk neuroblastoma (HRNB) necessitates the development of alternative strategies for effective treatment. This study investigated the efficacy of a small molecule, tolfenamic acid (TA), for enhancing the anti-proliferative effect of 13 cis-retinoic acid (RA) in HRNB cell lines. LA1-55n and SH-SY5Y cells were treated with TA (30μM) or RA (20μM) or both (optimized doses, derived from dose curves) for 48h and tested the effect on cell viability, apoptosis and selected molecular markers (Sp1, survivin, AKT and ERK1/2). Cell viability and caspase activity were measured using the CellTiter-Glo and Caspase-Glo kits. The apoptotic cell population was determined by flow cytometry with Annexin-V staining. The expression of Sp1, survivin, AKT, ERK1/2 and c-PARP was evaluated by Western blots. The combination therapy of TA and RA resulted in significant inhibition of cell viability (p<0.0001) when compared to individual agents. The anti-proliferative effect is accompanied by a decrease in Sp1 and survivin expression and an increase in apoptotic markers, Annexin-V positive cells, caspase 3/7 activity and c-PARP levels. Notably, TA+RA combination also caused down regulation of AKT and ERK1/2 suggesting a distinct impact on survival and proliferation pathways via signaling cascades. This study demonstrates that the TA mediated inhibition of Sp1 in combination with RA provides a novel therapeutic strategy for the effective treatment of HRNB in children.

  3. Inhibition of phosphotidylinositol-3 kinase pathway by a novel naphthol derivative of betulinic acid induces cell cycle arrest and apoptosis in cancer cells of different origin

    PubMed Central

    Majeed, R; Hamid, A; Sangwan, P L; Chinthakindi, P K; Koul, S; Rayees, S; Singh, G; Mondhe, D M; Mintoo, M J; Singh, S K; Rath, S K; Saxena, A K

    2014-01-01

    Betulinic acid (BA) is a pentacyclic triterpenoid natural product reported to inhibit cell growth in a variety of cancers. However, the further clinical development of BA got hampered because of poor solubility and pharmacological properties. Interestingly, this molecule offer several hotspots for structural modifications in order to address its associated issues. In our endeavor, we selected C-3 position for the desirable chemical modification in order to improve its cytotoxic and pharmacological potential and prepared a library of different triazoline derivatives of BA. Among them, we previously reported the identification of a potential molecule, that is, 3{1N(5-hydroxy-naphth-1yl)-1H-1,2,3-triazol-4yl}methyloxy betulinic acid (HBA) with significant inhibition of cancer cell growth and their properties. In the present study, we have shown for the first time that HBA decreased the expression of phosphotidylinositol-3 kinase (PI3K) p110α and p85α and caused significant downregulation of pAKT and of NFκB using human leukemia and breast cancer cells as in vitro models. Further it was revealed that PI3K inhibition by HBA induced cell cycle arrest via effects on different cell cycle regulatory proteins that include CDKis cyclins and pGSK3β. Also, this target-specific inhibition was associated with mitochondrial apoptosis as was reflected by the increased expression of mitochondrial bax, downregulated bcl2 and decreased mitochondrial levels of cytochrome c, together with reactive oxygen species generation and decline in mitochondrial membrane potential. The apoptotic effectors such as caspase 8, caspase 9 and caspase 3 were found to be upregulated besides DNA repair-associated enzyme, that is, PARP cleavage caused cancer cell death. Pharmacodynamic evaluation revealed that both HBA and BA were safe upto the dose of 2000 mg/kg body weight and with acceptable pharmacodynamic parameters. The in vitro data corroborated with in vivo anticancer activity wherein Ehrlich

  4. DNA damage and oxidative stress induced by acetylsalicylic acid in Daphnia magna.

    PubMed

    Gómez-Oliván, Leobardo Manuel; Galar-Martínez, Marcela; Islas-Flores, Hariz; García-Medina, Sandra; SanJuan-Reyes, Nely

    2014-08-01

    Acetylsalicylic acid is a nonsteroidal anti-inflammatory widely used due to its low cost and high effectiveness. This compound has been found in water bodies worldwide and is toxic to aquatic organisms; nevertheless its capacity to induce oxidative stress in bioindicators like Daphnia magna remains unknown. This study aimed to evaluate toxicity in D. magna induced by acetylsalicylic acid in water, using oxidative stress and DNA damage biomarkers. An acute toxicity test was conducted in order to determine the median lethal concentration (48-h LC50) and the concentrations to be used in the subsequent subacute toxicity test in which the following biomarkers were evaluated: lipid peroxidation, oxidized protein content, activity of the antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase, and level of DNA damage. Lipid peroxidation level and oxidized protein content were significantly increased (p<0.05), and antioxidant enzymes significantly altered with respect to controls; while the DNA damage were significantly increased (p<0.05) too. In conclusion, acetylsalicylic acid induces oxidative stress and DNA damage in D. magna.

  5. Acetylsalicylic acid treatment improves differentiation and immunomodulation of SHED.

    PubMed

    Liu, Y; Chen, C; Liu, S; Liu, D; Xu, X; Chen, X; Shi, S

    2015-01-01

    Stem cells from exfoliated deciduous teeth (SHED) possess multipotent differentiation and immunomodulatory properties. They have been used for orofacial bone regeneration and autoimmune disease treatment. In this study, we show that acetylsalicylic acid (ASA) treatment is able to significantly improve SHED-mediated osteogenic differentiation and immunomodulation. Mechanistically, ASA treatment upregulates the telomerase reverse transcriptase (TERT)/Wnt/β-catenin cascade, leading to improvement of SHED-mediated bone regeneration, and also upregulates TERT/FASL signaling, leading to improvement of SHED-mediated T-cell apoptosis and ameliorating disease phenotypes in dextran sodium sulfate-induced colitis mice. These data indicate that ASA treatment is a practical approach to improving SHED-based cell therapy.

  6. Stimulation of cysteinyl leukotriene production in mast cells by heat shock and acetylsalicylic acid.

    PubMed

    Mortaz, Esmaeil; Redegeld, Frank A; Dunsmore, Kathy; Odoms, Kelli; Wong, Hector R; Nijkamp, Frans P; Engels, Ferdi

    2007-04-30

    Immunoglobulin (Ig) E-dependent activation of mast cells is central to the allergic response. The engagement of IgE-occupied receptors initiates a series of molecular events that causes the release of preformed, and de novo synthesis of, allergic mediators. Cysteinyl leukotrienes are able to contract airway smooth muscle and increase mucus secretion and vascular permeability and recruit eosinophils. Mast cells have also recently been recognized as active participants in innate immune responses. Heat stress can modulate innate immunity by inducing stress proteins such as heat-shock proteins (HSPs). We previously demonstrated that treatment of mast cells with heat shock or acetylsalicylic acid results in an increase of TNF-alpha and IL-6 release. This effect was paralleled by expression of HSP70. In the current study, we further investigated the effects of heat shock and acetylsalicylic acid on the activation of mast cells and the release of cysteinyl leukotrienes. In mouse mast cells, derived from a culture of bone marrow cells, responsiveness to heat shock, acetylsalicylic acid and exogenous or endogenous HSP70 was monitored by measuring leukotriene C4 release. We show that after heat shock treatment and exposure to acetylsalicylic acid leukotriene production was increased. Moreover, exogenous rHSP70 also induced leukotriene production. Because it has been reported that leukotriene production in mast cells may be mediated by Toll like receptor (TLR) activation, and HSP70 also activates TLRs signaling, we further explored these issues by using mast cells that are not able to produce HSP70, i.e. heat shock factor-1 (HSF-1) knockout cells. We found that in HSF-1 knockout bone marrow derived mast cells, heat shock and acetylsalicylic acid failed to induce release of leukotrienes. Moreover, in wild type cells the surface expression of TLR4 was attenuated, whereas the intracellular expression was up-regulated. We conclude that heat shock and acetylsalicylic acid induce

  7. [Interaction between NSAIDs and acetylsalicylic acid disregarded].

    PubMed

    Vollaard, E J; Kramers, C; Brouwers, J R B J

    2014-01-01

    In 2013 the European Medicines Agency declared that diclofenac is contraindicated in patients with arterial thrombotic complications, based on a meta-analysis of randomised controlled trials on the adverse reactions of NSAIDs. The same decision was taken for coxibs some years earlier. The Dutch authorities (CBG/MEB) informed physicians and pharmacists about this decision without taking into account whether these patients were using prophylactic acetylsalicylic acid or not. It has been shown that NSAIDs with high COX-1 affinity like ibuprofen and naproxen cause a pharmacodynamic interaction with the inhibition of thromboxane synthesis by acetylsalicylic acid. This interaction does not occur with relatively COX-2-selective NSAIDs such as coxibs and diclofenac. Therefore, in patients who use acetylsalicylic acid for thromboprophylaxis, contraindicating coxibs or diclofenac is not justified, on the contrary: they are preferable.

  8. [The forensic chemical investigation of acetylsalicylic acid].

    PubMed

    Shormanov, V K; Chupak, V V; Pobedonstseva, M N; Maslov, S V; Kibets, N A; Tikhopoeva, N N

    2015-01-01

    The objective of the present study was to develop the universal approach to the quantitative determination of acetylsalicylic acid in biological tissues and fluids to be applied in the practice of forensic chemical expertise with the use of thin-layer chromatography, gas chromatography and mass spectrometry, low-pressure column chromatography, and spectrophotometry. A system of solvents consisting of acetone and ethyl acetate (7:3) was proposed as a universal agent for extracting acetylsalicylic acid from the cadaveric tissues and blood. It was shown that acetylsalicylic acid and its principal metabolite, salicylic acid, can be purified from the endogenous admixtures present in the biological materials by column chromatography on silica gel L 40/100 mcm. Salicylic acid in extracts from biological materials was identified and quantified with the use of thin-layer chromatography, gas chromatography/mass spectrometry, and electronic spectrophotometry. The method for forensic chemical investigation of acetylsalicylic acid has been developed and applied in the analysis of the material provided for expertise. PMID:26856059

  9. Gallic acid induces apoptosis and enhances the anticancer effects of cisplatin in human small cell lung cancer H446 cell line via the ROS-dependent mitochondrial apoptotic pathway.

    PubMed

    Wang, Ruixuan; Ma, Lijie; Weng, Dan; Yao, Jiahui; Liu, Xueying; Jin, Faguang

    2016-05-01

    Small cell lung cancer (SCLC) is the most aggressive lung cancer subtype and accounts for more than 15% of all lung cancer cases. Cisplatin [cis-diamminedichloroplatinum (CDDP)]-based combination chemotherapy is the cornerstone for all stages of SCLC. However, acquired multidrug resistance (MDR) and intolerable toxicities lead to a high mortality rate in SCLC patients. Gallic acid [3,4,5-trihydroxybenzoic acid (GA)] is a natural botanic phenolic compound which can induce cell apoptosis in several types of cancers. In the present study, we aimed to explore the anticancer effects of GA on human SCLC H446 cells and its promotive effects on the anticancer activities of cisplatin. The viability of the H446 cells was analyzed by MTT assay. Morphological changes in the H446 cells were observed under an inverted microscope. Apoptosis induction was determined by Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) staining. The level of reactive oxygen species (ROS) was assessed by 2'7'-dichlorofluorescein diacetate (DCFH‑DA), mitochondrial membrane potential (MMP) by JC-1, and western blotting was used to examine the expression of mitochondrial apoptosis-related proteins. The results showed that both GA and cisplatin changed the morphology, inhibited the growth and induced apoptosis in the H446 cells by inducing generation of ROS, disruption of MMP, downregulation of XIAP expression, and upregulation of Bax, Apaf-1, DIABLO and p53 expression. More importantly, GA combined with cisplatin exhibited synergistic effects on inducing of these pro-apoptotic mediators and modulating the activation of apoptosis-related molecules. However, inhibition of the generation of ROS by N-acetyl-l-cysteine (NAC), a specific ROS inhibitor, reversed the cell apoptosis induced by cisplatin combined with GA. In conclusion, the results from the present study revealed that GA exhibited an anticancer effect on human SCLC H446 cells and enhanced the antitumor activities of cisplatin

  10. Serum albumin complexation of acetylsalicylic acid metabolites.

    PubMed

    Jurkowski, Wiktor; Porebski, Grzegorz; Obtułowicz, Krystyna; Roterman, Irena

    2009-06-01

    One possible origin of the type I hypersensitivity reaction is reaction of drugs such as acetylsalicylic acid and its metabolites being complexed with human serum albumin. Albumin, being transporting molecule abundant in blood plasma is able to bind large array of ligands varying from small single carbon particles to long hydrophobic tailed lipidic acids (e.g. myristic acid). This non specificity is possible because of multi domain scaffold and large flexibility of inter-domain loops, which results in serious reorientation of domains. Hypothesis that acetylsalicylic acid metabolites may play indirect role in activation of allergic reaction has been tested. Binding of acetylsalicylic acid metabolites in intra-domain space causes significant increase of liability of domains IIIA and IIIB. One of metabolites, salicyluric acid, once is bound causes distortion and partial unfolding of helices in domains IA, IIB and IIIB. Changed are both directions and amplitude of relative motions as well as intra-domain distances. In result albumin is able to cross-link of adjacent IgE receptors which subsequently starts allergic reaction.

  11. Pharmacokinetic study of copper (II) acetylsalicylate.

    PubMed

    Iqbal, Mohammad S; Sher, Muhammad; Pervez, Humayun; Saeed, Maryiam

    2008-09-01

    This study was aimed at determination of pharmacokinetic parameters of copper (II) acetylsalicylate (CAS). Ten volunteers received a 60-mg dose of CAS. Blood samples were collected just before and after 0.25, 0.5, 0.75, 1.0, 1.5, 2.5, 3.0, 3.5, 4.0, 4.5, 5.5, 7.0, 10, and 12.0 h of administration of the drug. The plasma samples were analyzed for CAS and its metabolites by a validated high-performance liquid chromatography method having a suitable lower limit of quantification. The dose of 60 mg was well tolerated without any adverse effect. The maximum plasma concentration of CAS was found to be 0.38 mg L(-1) with t (max) of 0.72 h. The plasma half-life, clearance, and volume of distribution of CAS were 8.67 h, 66.30 L h(-1) and 829 L kg(-1), respectively. The elimination of CAS, acetylsalicylic acid, copper salicylate, and salicylic acid follows the first order kinetics with r (2) 0.979, 0.880, 0.991, and 0.998, respectively. The study provided for the first time the pharmacokinetic data for CAS after oral administration of CAS. The data were found to be useful in understanding the claimed enhanced anti-inflammatory activity of the drug as compared with that of acetylsalicylic acid. PMID:18478192

  12. Serum albumin complexation of acetylsalicylic acid metabolites.

    PubMed

    Jurkowski, Wiktor; Porebski, Grzegorz; Obtułowicz, Krystyna; Roterman, Irena

    2009-06-01

    One possible origin of the type I hypersensitivity reaction is reaction of drugs such as acetylsalicylic acid and its metabolites being complexed with human serum albumin. Albumin, being transporting molecule abundant in blood plasma is able to bind large array of ligands varying from small single carbon particles to long hydrophobic tailed lipidic acids (e.g. myristic acid). This non specificity is possible because of multi domain scaffold and large flexibility of inter-domain loops, which results in serious reorientation of domains. Hypothesis that acetylsalicylic acid metabolites may play indirect role in activation of allergic reaction has been tested. Binding of acetylsalicylic acid metabolites in intra-domain space causes significant increase of liability of domains IIIA and IIIB. One of metabolites, salicyluric acid, once is bound causes distortion and partial unfolding of helices in domains IA, IIB and IIIB. Changed are both directions and amplitude of relative motions as well as intra-domain distances. In result albumin is able to cross-link of adjacent IgE receptors which subsequently starts allergic reaction. PMID:19689242

  13. Transcriptomic analysis of Mandarin fish brain cells infected with infectious spleen and kidney necrosis virus with an emphasis on retinoic acid-inducible gene 1-like receptors and apoptosis pathways.

    PubMed

    Hu, Xianqin; Fu, Xiaozhe; Li, Ningqiu; Dong, Xingxing; Zhao, Lijuan; Lan, Jiangfeng; Ji, Wei; Zhou, Weidong; Ai, Taoshan; Wu, Shuqin; Lin, Li

    2015-08-01

    Infectious spleen and kidney necrosis virus (ISKNV) has caused significant economic losses in the cultured Mandarin fish (Siniperca chuatsi) industry. The molecular mechanisms that underlie the pathogenesis of the viral infection remain poorly understood. In this study, deep RNA sequencing technique was used to analyze the transcriptomic profiles of Mandarin fish brain cells (CPB) at progressive time points after ISKNV infection. A total of 96,206,040 clean data from 98,235,240 sequence reads were obtained. These raw data were assembled into 66,787 unigenes. Among these unigenes, 33,225 and 29,210 had significant hit the Nr and SwissProt databases where they matched 27,537and 19,638 unique protein accessions, respectively. In the samples harvested at 24 or 72 h post of the infection, a total of 10,834 or 7584 genes were differentially expressed in infected CPB cells compared to non-infected cells, including 5445 or 3766 up-regulated genes and 5389 or 3818 down-regulated genes, respectively. In addition, 12 differentially expressed genes (DEGs) were validated by quantitative PCR. These DEGs were involved in many pathways of viral pathogenesis. Further analysis of the major DEGs genes involved in the RLRs and apoptosis pathways revealed some interesting findings. In the RLRs pathway, ISKNV infection inhibited the activation of NF-κB via over expression of the IKKB-α and IKKB-β and lessened expression of interleukin-1 receptor-associated kinase 4 (IRAK4). In the apoptosis pathway, ISKNV infection could induce apoptosis mainly via tumor necrosis factor (TNF) mediated extrinsic pathway. The cellular apoptosis induced by ISKNV infection was confirmed using annexinV-FITC/PI and DAPI staining methods.

  14. Transcriptomic analysis of Mandarin fish brain cells infected with infectious spleen and kidney necrosis virus with an emphasis on retinoic acid-inducible gene 1-like receptors and apoptosis pathways.

    PubMed

    Hu, Xianqin; Fu, Xiaozhe; Li, Ningqiu; Dong, Xingxing; Zhao, Lijuan; Lan, Jiangfeng; Ji, Wei; Zhou, Weidong; Ai, Taoshan; Wu, Shuqin; Lin, Li

    2015-08-01

    Infectious spleen and kidney necrosis virus (ISKNV) has caused significant economic losses in the cultured Mandarin fish (Siniperca chuatsi) industry. The molecular mechanisms that underlie the pathogenesis of the viral infection remain poorly understood. In this study, deep RNA sequencing technique was used to analyze the transcriptomic profiles of Mandarin fish brain cells (CPB) at progressive time points after ISKNV infection. A total of 96,206,040 clean data from 98,235,240 sequence reads were obtained. These raw data were assembled into 66,787 unigenes. Among these unigenes, 33,225 and 29,210 had significant hit the Nr and SwissProt databases where they matched 27,537and 19,638 unique protein accessions, respectively. In the samples harvested at 24 or 72 h post of the infection, a total of 10,834 or 7584 genes were differentially expressed in infected CPB cells compared to non-infected cells, including 5445 or 3766 up-regulated genes and 5389 or 3818 down-regulated genes, respectively. In addition, 12 differentially expressed genes (DEGs) were validated by quantitative PCR. These DEGs were involved in many pathways of viral pathogenesis. Further analysis of the major DEGs genes involved in the RLRs and apoptosis pathways revealed some interesting findings. In the RLRs pathway, ISKNV infection inhibited the activation of NF-κB via over expression of the IKKB-α and IKKB-β and lessened expression of interleukin-1 receptor-associated kinase 4 (IRAK4). In the apoptosis pathway, ISKNV infection could induce apoptosis mainly via tumor necrosis factor (TNF) mediated extrinsic pathway. The cellular apoptosis induced by ISKNV infection was confirmed using annexinV-FITC/PI and DAPI staining methods. PMID:25982401

  15. [Acetylsalicylic acid strengthens the effects of ANISpm against hepatocellular carcinoma and its molecular mechanism].

    PubMed

    Xie, Song-qiang; Zhang, Lei-lei; Yang, Tao; Ma, Ying; Zhang, Ya-hong; Li, Qian; Wang, Jian-hong; Zhao, Jin; Wang, Chao-jie

    2011-09-01

    The objective of this study is to examine the effects of ANISpm, a novel polyamine naphthalimide conjugate, with acetylsalicylic acid against hepatocellular carcinoma in vivo and in vitro and elucidate its potential molecular mechanism. The proliferation inhibition was detected by MTT assay. Cell apoptosis, intracellular fluorescence intensity and mitochondrial membrane potential (MMP) were detected by high content screening (HCS) analysis. Polyamines content was analyzed by reverse-phase high performance liquid chromatography Protein expression levels were quantified by Western blotting assay. The combination treatment strongly inhibited cell proliferation, induced cell apoptosis in HepG2 cells and H22 hepatoma cells, which was mediated by enhanced ANISpm uptake via up-regulation of spermidine/spermine N1-acetyltransferase (SSAT) and depression of intracellular polyamine. Furthermore, this synergistic apoptosis was involved in mitochondria and death-receptor signal pathway. All these findings demonstrated that the combination treatment with acetylsalicylic acid and ANISpm resulted in synergistic antitumor effects on hepatoma cells. Thus, combination therapy with these agents may be useful as a potential template for the development of better chemotherapeutic strategy against hepatoma.

  16. Synthesis and transdermal properties of acetylsalicylic acid and selected esters.

    PubMed

    Gerber, Minja; Breytenbach, Jaco C; Hadgraft, Jonathan; du Plessis, Jeanetta

    2006-03-01

    The primary aim of this study was to determine the transdermal penetration of acetylsalicylic acid and some of its derivatives, to establish a correlation, if any, with selected physicochemical properties and to determine if transdermal application of acetylsalicylic acid and its derivatives will give therapeutic drug concentrations with respect to transdermal flux. Ten derivatives of acetylsalicylic acid were prepared by esterification of acetylsalicyloyl chloride with ten different alcohols. The experimental aqueous solubility, logD and transdermal flux values were determined for acetylsalicylic acid and its derivatives at pH 4.5. In vitro penetration was measured through excised female human abdominal skin in diffusion cells. The experimental aqueous solubility of acetylsalicylic acid (6.56 mg/ml) was higher than that of the synthesised acetylsalicylate derivatives (ranging from 1.76 x 10(-3) to 3.32 mg/ml), and the logD of acetylsalicylic acid (-0.85) was lower than that of its derivatives (ranging from -0.25 to 1.95). There was thus an inverse correlation between the aqueous solubility data and the logD values. The experimental transdermal flux of acetylsalicylic acid (263.83 nmol/cm(2)h) was much higher than that of its derivatives (ranging from 0.12 to 136.02 nmol/cm(2)h).

  17. Chlorogenic acid induces apoptosis to inhibit inflammatory proliferation of IL-6-induced fibroblast-like synoviocytes through modulating the activation of JAK/STAT and NF-κB signaling pathways

    PubMed Central

    LOU, LIXIA; ZHOU, JINGWEI; LIU, YUJUN; WEI, YI; ZHAO, JIULI; DENG, JIAGANG; DONG, BIN; ZHU, LINGQUN; WU, AIMING; YANG, YINGXI; CHAI, LIMIN

    2016-01-01

    Chlorogenic acid (CGA) is the primary constituent of Caulis Lonicerae, a Chinese herb used for the treatment of rheumatoid arthritis (RA). The present study aimed to investigate whether CGA was able to inhibit the proliferation of the fibroblast-like synoviocyte cell line (RSC-364), stimulated by interleukin (IL)-6, through inducing apoptosis. Following incubation with IL-6 or IL-6 and CGA, the cellular proliferation of RSC-364 cells was detected by MTT assay. The ratio of apoptosed cells were detected by flow cytometry. Western blot analysis was performed to observe protein expression levels of key molecules involved in the Janus-activated kinase/signal transducer and activator of transcription 3 (JAK/STAT) signaling pathway [phosphorylated (p)-STAT3, JAK1 and gp130] and the nuclear factor κB (NF-κB) signaling pathway [phosphorylated (p)-inhibitor of κB kinase subunit α/β and NF-κB p50). It was revealed that CGA was able to inhibit the inflammatory proliferation of RSC-364 cells mediated by IL-6 through inducing apoptosis. CGA was also able to suppress the expression levels of key molecules in the JAK/STAT and NF-κB signaling pathways, and inhibit the activation of these signaling pathways in the inflammatory response through IL-6-mediated signaling, thereby resulting in the inhibition of the inflammatory proliferation of synoviocytes. The present results indicated that CGA may have potential as a novel therapeutic agent for inhibiting inflammatory hyperplasia of the synovium through inducing synoviocyte apoptosis in patients with RA. PMID:27168850

  18. Docosahexaenoic acid induces increases in [Ca2+]i via inositol 1,4,5-triphosphate production and activates protein kinase C gamma and -delta via phosphatidylserine binding site: implication in apoptosis in U937 cells.

    PubMed

    Aires, Virginie; Hichami, Aziz; Filomenko, Rodolphe; Plé, Aude; Rébé, Cédric; Bettaieb, Ali; Khan, Naim Akhtar

    2007-12-01

    We investigated, in monocytic leukemia U937 cells, the effects of docosahexaenoic acid (DHA; 22:6 n-3) on calcium signaling and determined the implication of phospholipase C (PLC) and protein kinase C (PKC) in this pathway. DHA induced dose-dependent increases in [Ca2+]i, which were contributed by intracellular pool, via the production of inositol-1,4,5-triphosphate (IP3) and store-operated Ca2+ (SOC) influx, via opening of Ca2+ release-activated Ca2+ (CRAC) channels. Chemical inhibition of PLC, PKCgamma, and PKCdelta, but not of PKCbeta I/II, PKCalpha, or PKCbetaI, significantly diminished DHA-induced increases in [Ca2+]i. In vitro PKC assays revealed that DHA induced a approximately 2-fold increase in PKCgamma and -delta activities, which were temporally correlated with the DHA-induced increases in [Ca2+]i. In cell-free assays, DHA, but not other structural analogs of fatty acids, activated these PKC isoforms. Competition experiments revealed that DHA-induced activation of both the PKCs was dose-dependently inhibited by phosphatidylserine (PS). Furthermore, DHA induced apoptosis via reactive oxygen species (ROS) production, followed by caspase-3 activation. Chemical inhibition of PKCgamma/delta and of SOC/CRAC channels significantly attenuated both DHA-stimulated ROS production and caspase-3 activity. Our study suggests that DHA-induced activation of PLC/IP3 pathway and activation of PKCgamma/delta, via its action on PS binding site, may be involved in apoptosis in U937 cells.

  19. [Influence of hypoxen on acetylsalicylic acid efficiency in acute inflammation].

    PubMed

    Novikov, V E; Iliuchin, S A

    2013-01-01

    Rats were treated by subplantar injections of 0.1 ml 1% carrageenan solution. In 3 hours, this led to the development of acute inflammatory reaction (swelling of legs, neutrophilic leukocytosis, increased erythrocyte sedimentation rate, activation of free-radical oxidation). Acetylsalicylic acid in a dose of 100 mg/kg reduced development of the inflammatory response. Hypoxen in a dose of 50 mg/kg potentiated the effect of acetylsalicylic acid. The injection of both hypoxen and acetylsalicylic acid before the injection of carrageenan produced a strong anti-inflammatory effect, which was manifested by a reliable decrease in all monitored signs of inflammation.

  20. Influence of vitamin E on the antiplatelet effect of acetylsalicylic acid in human blood.

    PubMed

    González-Correa, J A; Arrebola, M M; Guerrero, A; Muñoz-Marín, J; Ruiz-Villafranca, D; Sánchez de La Cuesta, F; De La Cruz, J P

    2005-01-01

    We analysed the in vitro interaction between acetylsalicylic acid and vitamin E on the principal antiplatelet sites of action of acetylsalicylic acid, i.e., platelet aggregation, prostanoid production in platelets and leukocytes, and nitric oxide synthesis. Aggregation was measured in whole blood and in platelet-rich plasma (PRP) with ADP, collagen or arachidonic acid as platelet inducers, and we measured the production of thromboxane B2, prostacyclin and nitric oxide. Vitamin E potentiated the antiplatelet effect of acetylsalicylic acid in both whole blood and PRP. In PRP induced with collagen the IC50 for acetylsalicylic acid alone was 339+/-11.26, and that of acetylsalicylic acid+vitamin E was 0.89+/-0.09 (P<0.05). Vitamin E did not enhance inhibition of platelet thromboxane production by acetylsalicylic acid. Vitamin E spared or even increased prostacyclin levels, and acetylsalicylic acid+vitamin E diminished the inhibition of prostacyclin synthesis by acetylsalicylic acid (IC50 acetylsalicylic acid alone=1.81+/-0.15 microM; IC50 acetylsalicylic acid+vitamin E= 12.92+/-1.10 microM, P<0.05). Vitamin E increased the effect of acetylsalicylic acid on neutrophil nitric oxide production 42-fold (P<0.05). We conclude that vitamin E potentiates the antiplatelet effect of acetylsalicylic acid in vitro, and thus merits further research in ex vivo studies.

  1. Chrysophanic Acid Induces Necrosis but not Necroptosis in Human Renal Cell Carcinoma Caki-2 Cells

    PubMed Central

    Choi, Joon-Seok

    2016-01-01

    Background: Chrysophanic acid, also known as chrysophanol, has a number of biological activities. It enhances memory and learning abilities, raises superoxide dismutase activity, and has anti-cancer effects in several model systems. According to previous reports, chrysophanic acid-induced cell death shares features of necrotic cell death. However, the molecular and cellular processes underlying chrysophanic acid-induced cell death remain poorly understood. Methods: Chrysophanic acid-induced cell death was monitored by cell viability assay and Annexin V-propidium iodide (PI) staining of renal cell carcinoma Caki-2 cells. The induction of intracellular reactive oxygen species (ROS) by chrysophanic acid and the suppression of ROS by anti-oxidants were evaluated by 2′,7′-dichlorofluorescin diacetate staining. The expression and phosphorylation of proteins that are involved in apoptosis and necroptosis were detected by immunoblotting. Results: The extent of chrysophanic acid-induced cell death was concentration and time dependent, and dead cells mainly appeared in the PI-positive population, which is a major feature of necrosis, upon fluorescence-activated cell sorting analysis. Chrysophanic acid-induced cell death was associated with the generation of intracellular ROS, and this effect was reversed by pretreatment with N-acetyl cysteine. Chrysophanic acid-induced cell death was not associated with changes in apoptotic or necroptotic marker proteins. Conclusions: The cell death induced by chrysophanic acid resembled neither apoptotic nor necroptotic cell death in human renal cell carcinoma Caki-2 cells. PMID:27390736

  2. Acetylsalicylic acid and acetaminophen protect against oxidative neurotoxicity.

    PubMed

    Maharaj, H; Maharaj, D S; Daya, S

    2006-09-01

    Due to the implication of oxidative stress in neurodegenerative disorders we decided to investigate the antioxidant properties of acetylsalicylic acid and acetaminophen either alone or in combination. The thiobarbituric acid assay (TBA) and the nitroblue tetrazolium (NBT) assay were used to investigate quinolinic acid (QA)-induced: lipid peroxidation and superoxide anion generation in the rat hippocampus, in vivo. The study also shows, using cresyl violet staining, the preservation of structural integrity of neuronal cells following treatment with acetylsalicylic acid and acetaminophen in QA-lesioned rat hippocampus. Furthermore the study sought to determine whether these agents have any effect on endogenous (QA) formation. This study shows that acetylsalicylic acid and acetaminophen inhibit QA-induced superoxide anion generation, lipid peroxidation and cell damage, in vivo, in the rat hippocampus. In addition these agents inhibit the enzyme, 3-hydroxyanthranilic acid oxygenase (3-HAO), responsible for the synthesis of endogenous QA.

  3. Inhibition of cardiac mitochondrial respiration by salicylic acid and acetylsalicylate.

    PubMed

    Nulton-Persson, Amy C; Szweda, Luke I; Sadek, Hesham A

    2004-11-01

    Acetylsalicylate, the active ingredient in aspirin, has been shown to be beneficial in the treatment and prevention of cardiovascular disease. Because of the increasing frequency with which salicylates are used, it is important to more fully characterize extra- and intracellular processes that are altered by these compounds. Evidence is provided that treatment of isolated cardiac mitochondria with salicylic acid and to a lesser extent acetylsalicylate resulted in an increase in the rate of uncoupled respiration. In contrast, both compounds inhibited ADP-dependent NADH-linked (state 3) respiration to similar degrees. Under the conditions of our experiments, loss in state 3 respiration resulted from inhibition of the Krebs cycle enzyme alpha-ketoglutarate dehydrogenase (KGDH). Kinetic analysis indicates that salicylic acid acts as a competitive inhibitor at the alpha-ketoglutarate binding site. In contrast, acetylsalicylate inhibited the enzyme in a noncompetitive fashion consistent with interaction with the alpha-ketoglutarate binding site followed by enzyme-catalyzed acetylation. The effects of salicylic acid and acetylsalicylate on cardiac mitochondrial function may contribute to the known cardioprotective effects of therapeutic doses of aspirin, as well as to the toxicity associated with salicylate overdose.

  4. Effects of microgravity on the binding of acetylsalicylic acid by Rhizobium leguminosarum bv. trifolii

    NASA Astrophysics Data System (ADS)

    Urban, James E.; Gerren, Richard; Zoelle, Jeffery

    1995-07-01

    Bacteroids can be induced in vitro by treating growing Rhizobium leguminosarum bv. trifolii with succinic acid or succinic acid structural analogs like acetylsalicylic acid. Quantitating bacteroid induction by measuring acetylsalicylic binding under normal (1 g) conditions showed two forms of binding to occur. In one form of binding cells immediately bound comparatively high levels of acetylsalicylic acid, but the binding was quickly reversed. The second form of binding increased with time by first-order kinetics, and reached saturation in 40 s. Similar experiments performed in the microgravity environment aboard the NASA 930 aircraft showed only one form of binding and total acetylsalicylic acid bound was 32% higher than at 1 g.

  5. Superiority of zinc complex of acetylsalicylic acid to acetylsalicylic acid in preventing postischemic myocardial dysfunction.

    PubMed

    Korkmaz, Sevil; Atmanli, Ayhan; Li, Shiliang; Radovits, Tamás; Hegedűs, Peter; Barnucz, Enikő; Hirschberg, Kristóf; Loganathan, Sivakkanan; Yoshikawa, Yutaka; Yasui, Hiroyuki; Karck, Matthias; Szabó, Gábor

    2015-09-01

    The pathophysiology of ischemic myocardial injury involves cellular events, reactive oxygen species, and an inflammatory reaction cascade. The zinc complex of acetylsalicylic acid (Zn(ASA)2) has been found to possess higher anti-inflammatory and lower ulcerogenic activities than acetylsalicylic acid (ASA). Herein, we studied the effects of both ASA and Zn(ASA)2 against acute myocardial ischemia. Rats were pretreated with ASA (75 mg/kg) or Zn(ASA)2 (100 mg/kg) orally for five consecutive days. Isoproterenol (85 mg/kg, subcutaneously [s.c.]) was applied to produce myocardial infarction. After 17-22 h, animals were anesthetized with sodium pentobarbital (60 mg/kg, intraperitoneally [i.p.]) and both electrical and mechanical parameters of cardiac function were evaluated in vivo. Myocardial histological and gene expression analyses were performed. In isoproterenol-treated rats, Zn(ASA)2 treatment normalized significantly impaired left-ventricular contractility index (Emax 2.6 ± 0.7 mmHg/µL vs. 4.6 ± 0.5 mmHg/µL, P < 0.05), increased stroke volume (30 ± 3 µL vs. 50 ± 6 µL, P < 0.05), decreased systemic vascular resistance (7.2 ± 0.7 mmHg/min/mL vs. 4.2 ± 0.5 mmHg/min/mL, P < 0.05) and reduced inflammatory infiltrate into the myocardial tissues. ECG revealed a restoration of elevated ST-segment (0.21 ± 0.03 mV vs. 0.09 ± 0.02 mV, P < 0.05) and prolonged QT-interval (79.2 ± 3.2 ms vs. 69.5 ± 2.5 ms, P < 0.05) by Zn(ASA)2. ASA treatment did not result in an improvement of these parameters. Additionally, Zn(ASA)2 significantly increased the mRNA-expression of superoxide dismutase 1 (+73 ± 15%), glutathione peroxidase 4 (+44 ± 12%), and transforming growth factor (TGF)-β1 (+102 ± 22%). In conclusion, our data demonstrate that oral administration of zinc and ASA in the form of bis(aspirinato)zinc(II) complex is superior to ASA in preventing electrical

  6. Superiority of zinc complex of acetylsalicylic acid to acetylsalicylic acid in preventing postischemic myocardial dysfunction

    PubMed Central

    Korkmaz, Sevil; Atmanli, Ayhan; Li, Shiliang; Radovits, Tamás; Hegedűs, Peter; Hirschberg, Kristóf; Loganathan, Sivakkanan; Yoshikawa, Yutaka; Yasui, Hiroyuki; Karck, Matthias; Szabó, Gábor

    2015-01-01

    The pathophysiology of ischemic myocardial injury involves cellular events, reactive oxygen species, and an inflammatory reaction cascade. The zinc complex of acetylsalicylic acid (Zn(ASA)2) has been found to possess higher anti-inflammatory and lower ulcerogenic activities than acetylsalicylic acid (ASA). Herein, we studied the effects of both ASA and Zn(ASA)2 against acute myocardial ischemia. Rats were pretreated with ASA (75 mg/kg) or Zn(ASA)2 (100 mg/kg) orally for five consecutive days. Isoproterenol (85 mg/kg, subcutaneously [s.c.]) was applied to produce myocardial infarction. After 17–22 h, animals were anesthetized with sodium pentobarbital (60 mg/kg, intraperitoneally [i.p.]) and both electrical and mechanical parameters of cardiac function were evaluated in vivo. Myocardial histological and gene expression analyses were performed. In isoproterenol-treated rats, Zn(ASA)2 treatment normalized significantly impaired left-ventricular contractility index (Emax 2.6 ± 0.7 mmHg/µL vs. 4.6 ± 0.5 mmHg/µL, P < 0.05), increased stroke volume (30 ± 3 µL vs. 50 ± 6 µL, P < 0.05), decreased systemic vascular resistance (7.2 ± 0.7 mmHg/min/mL vs. 4.2 ± 0.5 mmHg/min/mL, P < 0.05) and reduced inflammatory infiltrate into the myocardial tissues. ECG revealed a restoration of elevated ST-segment (0.21 ± 0.03 mV vs. 0.09 ± 0.02 mV, P < 0.05) and prolonged QT-interval (79.2 ± 3.2 ms vs. 69.5 ± 2.5 ms, P < 0.05) by Zn(ASA)2. ASA treatment did not result in an improvement of these parameters. Additionally, Zn(ASA)2 significantly increased the mRNA-expression of superoxide dismutase 1 (+73 ± 15%), glutathione peroxidase 4 (+44 ± 12%), and transforming growth factor (TGF)-β1 (+102 ± 22%). In conclusion, our data demonstrate that oral administration of zinc and ASA in the form of bis(aspirinato)zinc(II) complex is superior to ASA in preventing electrical

  7. Dual effects of acetylsalicylic acid on ERK signaling and Mitf transcription lead to inhibition of melanogenesis.

    PubMed

    Nishio, Takashi; Usami, Mai; Awaji, Mizuki; Shinohara, Sumire; Sato, Kazuomi

    2016-01-01

    Acetylsalicylic acid (ASA) is widely used as an analgesic/antipyretic drug. It exhibits a wide range of biological effects, including preventative effects against heart attack and stroke, and the induction of apoptosis in various cancer cells. We previously found that ASA inhibits melanogenesis in B16 melanoma cells. However, the mechanisms of how ASA down-regulates melanin synthesis remain unclear. Here, we investigated the effect of ASA on melanogenic pathways, such as extracellular signal-regulated kinase (ERK) and microphthalmia-associated transcription factor (Mitf) transcription. ASA significantly inhibited melanin synthesis in a dose-dependent manner without oxidative stress and cell death. Semi-quantitative reverse transcription-polymerase chain reaction analysis showed that the inhibitory effect of ASA might be due to the inhibition of Mitf gene transcription. Interestingly, ASA also induced ERK phosphorylation. Additionally, treatment with PD98059, a specific ERK phosphorylation inhibitor, abolished the anti-melanogenic effect of ASA. These results suggest that the depigmenting effect of ASA results from down-regulation of Mitf, which is induced by both the induction of ERK phosphorylation and the inhibition of Mitf transcription.

  8. Dual effects of acetylsalicylic acid on ERK signaling and Mitf transcription lead to inhibition of melanogenesis.

    PubMed

    Nishio, Takashi; Usami, Mai; Awaji, Mizuki; Shinohara, Sumire; Sato, Kazuomi

    2016-01-01

    Acetylsalicylic acid (ASA) is widely used as an analgesic/antipyretic drug. It exhibits a wide range of biological effects, including preventative effects against heart attack and stroke, and the induction of apoptosis in various cancer cells. We previously found that ASA inhibits melanogenesis in B16 melanoma cells. However, the mechanisms of how ASA down-regulates melanin synthesis remain unclear. Here, we investigated the effect of ASA on melanogenic pathways, such as extracellular signal-regulated kinase (ERK) and microphthalmia-associated transcription factor (Mitf) transcription. ASA significantly inhibited melanin synthesis in a dose-dependent manner without oxidative stress and cell death. Semi-quantitative reverse transcription-polymerase chain reaction analysis showed that the inhibitory effect of ASA might be due to the inhibition of Mitf gene transcription. Interestingly, ASA also induced ERK phosphorylation. Additionally, treatment with PD98059, a specific ERK phosphorylation inhibitor, abolished the anti-melanogenic effect of ASA. These results suggest that the depigmenting effect of ASA results from down-regulation of Mitf, which is induced by both the induction of ERK phosphorylation and the inhibition of Mitf transcription. PMID:26699907

  9. Formic acid and acetic acid induce a programmed cell death in pathogenic Candida species.

    PubMed

    Lastauskienė, Eglė; Zinkevičienė, Auksė; Girkontaitė, Irutė; Kaunietis, Arnoldas; Kvedarienė, Violeta

    2014-09-01

    Cutaneous fungal infections are common and widespread. Antifungal agents used for the treatment of these infections often have undesirable side effects. Furthermore, increased resistance of the microorganisms to the antifungal drugs becomes the growing problem. Accordingly, the search for natural antifungal compounds continues to receive attention. Apoptosis is highly regulated programmed cell death. During yeast cell apoptosis, amino acids and peptides are released and can stimulate regeneration of human epithelium cells. Thus, detection of chemical compounds inducing apoptosis in yeast and nontoxic for humans is of great medical relevance. The aim of this study was to detect chemical compound inducing apoptosis in pathogenic Candida species with the lowest toxicity to the mammalian cells. Five chemical compounds--acetic acid, sodium bicarbonate, potassium carbonate, lithium acetate, and formic acid--were tested for evaluation of antifungal activity on C. albicans, C. guilliermondii, and C. lusitaniae. The results showed that acetic acid and formic acid at the lowest concentrations induced yeast cells death. Apoptosis analysis revealed that cells death was accompanied by activation of caspase. Minimal inhibitory concentrations of potassium carbonate and sodium bicarbonate induced Candida cells necrosis. Toxicity test with mammalian cell cultures showed that formic acid has the lowest effect on the growth of Jurkat and NIH 3T3 cells. In conclusion, our results show that a low concentration of formic acid induces apoptosis-like programmed cell death in the Candida yeast and has a minimal effect on the survivability of mammalian cells, suggesting potential applications in the treatment of these infections. PMID:24752490

  10. Acidosis, magnesium and acetylsalicylic acid: Effects on thrombin

    NASA Astrophysics Data System (ADS)

    Borisevich, Nikolaj; Loznikova, Svetlana; Sukhodola, Aleksandr; Halets, Inessa; Bryszewska, Maria; Shcharbin, Dzmitry

    2013-03-01

    Thrombin, an enzyme from the hydrolase family, is the main component of the blood coagulation system. In ischemic stroke it acts as a serine protease that converts soluble fibrinogen into insoluble strands of fibrin forming blood clots in the brain. It has been found to phosphoresce at room temperature in the millisecond and microsecond ranges. The phosphorescence of thrombin was studied under physiological conditions, in acidosis (decrease of pH from 8.0 to 5.0) and on the addition of salts (magnesium sulfate and sodium chloride) and of acetylsalicylic acid, and its connection with thrombin function is discussed. Acidosis significantly increased the internal dynamics of thrombin. We propose that lactate-acidosis plays a protective role in stroke, preventing the formation of clots. The addition of NaCl and MgSO4 in different concentrations increased the internal dynamics of thrombin. Also, the addition of MgSO4 decreased thrombin-induced platelet aggregation. However, magnesium sulfate and acetylsalicylic acid in the therapeutic concentrations used for treatment of ischemic stroke had no effect on thrombin internal dynamics. The data obtained will help to elucidate the conformational stability of thrombin under conditions modulating lactate-acidosis and in the presence of magnesium sulfate.

  11. Acidosis, magnesium and acetylsalicylic acid: effects on thrombin.

    PubMed

    Borisevich, Nikolaj; Loznikova, Svetlana; Sukhodola, Aleksandr; Halets, Inessa; Bryszewska, Maria; Shcharbin, Dzmitry

    2013-03-01

    Thrombin, an enzyme from the hydrolase family, is the main component of the blood coagulation system. In ischemic stroke it acts as a serine protease that converts soluble fibrinogen into insoluble strands of fibrin forming blood clots in the brain. It has been found to phosphoresce at room temperature in the millisecond and microsecond ranges. The phosphorescence of thrombin was studied under physiological conditions, in acidosis (decrease of pH from 8.0 to 5.0) and on the addition of salts (magnesium sulfate and sodium chloride) and of acetylsalicylic acid, and its connection with thrombin function is discussed. Acidosis significantly increased the internal dynamics of thrombin. We propose that lactate-acidosis plays a protective role in stroke, preventing the formation of clots. The addition of NaCl and MgSO(4) in different concentrations increased the internal dynamics of thrombin. Also, the addition of MgSO(4) decreased thrombin-induced platelet aggregation. However, magnesium sulfate and acetylsalicylic acid in the therapeutic concentrations used for treatment of ischemic stroke had no effect on thrombin internal dynamics. The data obtained will help to elucidate the conformational stability of thrombin under conditions modulating lactate-acidosis and in the presence of magnesium sulfate.

  12. Acetylsalicylic Acid Daily vs Acetylsalicylic Acid Every 3 Days in Healthy Volunteers: Effect on Platelet Aggregation, Gastric Mucosa, and Prostaglandin E2 Synthesis.

    PubMed

    Ferreira, Plinio Minghin Freitas; Gagliano-Jucá, Thiago; Zaminelli, Tiago; Sampaio, Marinalva Ferreira; Blackler, Rory Willian; Trevisan, Miriam da Silva; Novaes Magalhães, Antônio Frederico; De Nucci, Gilberto

    2016-07-01

    Substantial platelet inhibition was observed 3 days after a single administration of acetylsalicylic acid 81 mg to healthy volunteers. Here we investigate prostaglandin E2 (PGE2 ) antrum concentrations and gastrointestinal symptoms in two treatment groups: one receiving losartan and acetylsalicylic acid every day and the other receiving losartan every day and acetylsalicylic acid every 3 days. Twenty-eight healthy volunteers from both sexes received either 50 mg losartan and acetylsalicylic acid 81 mg daily or 50 mg losartan and acetylsalicylic acid 81 every 3 days with placebo on the other days. Therapy was delivered for 30 days for both groups. Gastric endoscopy was performed before and after treatment period. Biopsies were collected for PGE2 quantification. Platelet function tests were carried out before and during treatment and TXB2 release on platelet rich plasma was measured. The every 3 day low-dose acetylsalicylic acid regimen produced complete inhibition of platelet aggregation compared to the daily treatment. Thromboxane B2 release was substantially abolished for both groups during treatment. There was no significant difference on the endoscopic score of both treatment groups after the 30-day treatment (P = .215). There was over 50% suppression of antrum PGE2 content on volunteers receiving acetylsalicylic acid daily (P = .0016), while for the every 3 day dose regimen there was no significant difference between pre and post-treatment antrum PGE2 dosages (P = .4193). Since PGE2 is involved in gastric healing, we understand that this new approach could be safer and as efficient as the standard daily therapy on a long-term basis.

  13. [Identification of rat and human hemoglobin acetilation sites after its interaction with acetylsalicylic acid].

    PubMed

    Shreĭner, E V; Murashko, E A; Dubrovskiĭ, Ia D; Krasnov, N V; Podol'skaia, E P; Babakov, V N

    2012-01-01

    The possibility of interaction of 0.1 mg/mL acetylsalicylic acid with purified human and rat globin in vitro during 24 h at 37 degrees C was investigated. The rat globin can be modified with acetylsalicylic acid on aminoacid residues K-17, K-57, K-91, K-140 in alpha subunit as well as on K-18, K-77 in beta subunit. The human globin can be modified with acetylsalicylic acid on aminoacid residues K-17, K-41, K-57 and K-91 in alpha subunit as well as on K-18, K-96 and K- 133 in beta subunit. We identified of acetetylated lysines K-17 and K-57 in alpha subunit of human hemoglobin after incubation whole blood with 0.1 mg/mL acetylsalicylic acid during 3 h.

  14. [The blood anticoagulant system in rats perorally administered a heparin-acetylsalicylic acid complex].

    PubMed

    Kudriashov, B A; Liapina, L A; Pastorova, V E; Kondashevskaia, M V

    1991-01-01

    Heparin/acetylsalicylate complexes (1:9 and 10:1) were obtained in vitro. Single or chronic (7-8 days) per os administration to white rats of 0.1% solution of the heparin/acetylsalicylate complex (0.3 ml/200 g body weight) enhanced anticoagulative properties of blood plasma, increased the fibrinolytic activity in respect of stabilized fibrin, and diminished the thrombin-induced platelet aggregation. PMID:1787232

  15. High-pressure polymorphism of acetylsalicylic acid (aspirin): Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Crowell, Ethan L.; Dreger, Zbigniew A.; Gupta, Yogendra M.

    2015-02-01

    Micro-Raman spectroscopy was used to elucidate the high-pressure polymorphic behavior of acetylsalicylic acid (ASA), an important pharmaceutical compound known as aspirin. Using a diamond anvil cell (DAC), single crystals of the two polymorphic phases of aspirin existing at ambient conditions (ASA-I and ASA-II) were compressed to 10 GPa. We found that ASA-I does not transform to ASA-II, but instead transforms to a new phase (ASA-III) above ∼2 GPa. It is demonstrated that this transformation primarily introduces structural changes in the bonding and arrangement of the acetyl groups and is reversible upon the release of pressure. In contrast, a less dense ASA-II shows no transition in the pressure range studied, though it appears to exhibit a disordered structure above 7 GPa. Our results suggest that ASA-III is the most stable polymorph of aspirin at high pressures.

  16. Central effects of acetylsalicylic acid on trigeminal-nociceptive stimuli

    PubMed Central

    2014-01-01

    Background Acetylsalicylic acid is one of the most used analgesics to treat an acute migraine attack. Next to the inhibitory effects on peripheral prostaglandin synthesis, central mechanisms of action have also been discussed. Methods Using a standardized model for trigeminal-nociceptive stimulation during fMRI scanning, we investigated the effect of acetylsalicylic acid on acute pain compared to saline in 22 healthy volunteers in a double-blind within-subject design. Painful stimulation was applied using gaseous ammonia and presented in a pseudo-randomized order with several control stimuli. All participants were instructed to rate the intensity and unpleasantness of every stimulus on a VAS scale. Based on previous results, we hypothesized to find an effect of ASA on central pain processing structures like the ACC, SI and SII as well as the trigeminal nuclei and the hypothalamus. Results Even though we did not find any differences in pain ratings between saline and ASA, we observed decreased BOLD signal changes in response to trigemino-nociceptive stimulation in the ACC and SII after administration of ASA compared to saline. This finding is in line with earlier imaging results investigating the effect of ASA on acute pain. Contrary to earlier findings from animal studies, we could not find an effect of ASA on the trigeminal nuclei in the brainstem or within the hypothalamic area. Conclusion Taken together our study replicates earlier findings of an attenuating effect of ASA on pain processing structures, which adds further evidence to a possibly central mechanism of action of ASA. PMID:25201152

  17. Acetylsalicylic acid as a potential pediatric health hazard: legislative aspects concerning accidental intoxications in the European Union.

    PubMed

    Mund, Menen E; Gyo, Christoph; Brüggmann, Dörthe; Quarcoo, David; Groneberg, David A

    2016-01-01

    Acetylsalicylic acid is a frequently used medication worldwide. It is not used in pediatrics due its association with Reye syndrome. However, in case of pediatric intoxication, children are more fragile to salicylate poisoning because of their reduced ability of buffer the acid stress. Intoxication leads to a decoupling of oxidative phosphorylation and subsequently to a loss in mitochondrial function. Symptoms of poisoning are diverse; eventually they can lead to the death of the patient. Governmental websites of various EU countries were searched for legal information on acetylsalicylic acid availability in pharmacies and non-pharmacy stores. Various EU countries permit prescription-free sales of acetylsalicylic acid in pharmacies and non-pharmacy stores. In Sweden acetylsalicylic acid 500 mg may be sold in a maximum package size of 20 tablets or effervescent tablets in a non-pharmacy. In the UK a maximum of 16 tablets of acetylsalicylic acid 325 mg is allowed to sell in non-pharmacies. In Ireland acetylsalicylic acid is classified as S2 medication. Subsequently, acetylsalicylic acid is allowed to be sold prescription-free in pharmacies and non-pharmacy stores. In the Netherlands acetylsalicylic acid may only be sold in drug stores or pharmacies. A maximum of 24 tablets of 500 mg is allowed to purchase in a drug store. Several countries in the European Union are permitted to offer acetylsalicylic acid prescription-free in pharmacies and non-pharmacy stores without legal guidance on the storage position within the store. Further research is needed to investigate whether acetylsalicylic acid is located directly accessible to young children within the stores in EU countries which permit prescription-free sales of acetylsalicylic acid. PMID:27418941

  18. Acetylsalicylic acid decreases the labeling of blood constituents with technetium-99M.

    PubMed

    Fonseca, A S; Frydman, J N G; Rocha, Vanessa C; Bernardo-Filho, M

    2007-06-01

    Acetylsalicylic acid is the most widely used drug as antipyretic, analgesic, anti-inflammatory agent and for secondary prevention of thrombotic phenomena in the heart, brain and peripheral circulation. Drugs can modify the labeling of blood constituents with technetium-99m (99mTc). This work has evaluated the effect of in vivo treatment with acetylsalicylic acid on the in vitro labeling of the blood constituents with 99mTc. Wistar rats were treated with different doses (1.5, 3.0 and 6.0 mg/kg) of acetylsalicylic acid during 1 hour. At higher dose used (6.0 mg/kg) animals were treated during different period of time (0.25, 1.0 and 4.0 hours). Animals treated with physiologic saline solution were used as control. After the labeled process; plasma (P), blood cells (BC), insoluble (IF-P, IF-BC) and soluble (SF-P, SF-BC) fractions were separated. Afterwards, the percentage of radioactivity (%ATI) in each fraction was calculated. The treatment during 1 hour with acetylsalicylic acid at higher dose has significantly (p < 0.05) modified the fixation of 99mTc on blood cells. Considering the results, we suggest that acetylsalicylic acid used at therapeutic doses may interfere with the nuclear medicine procedures related to these blood constituents.

  19. Acetylsalicylic acid protects erectile function in diabetic rats.

    PubMed

    Hafez, G; Gonulalan, U; Kosan, M; Arioglu, E; Ozturk, B; Cetinkaya, M; Gur, S

    2014-01-01

    We aimed to evaluate the effect of acetylsalicylic acid (ASA) treatment on diabetes-induced erectile dysfunction. Adult male Sprague-Dawley rats were divided into four groups as follows: (i) control (C), (ii) diabetic (D), (iii) ASA-treated control (C+ASA) and (iv) ASA-treated diabetic (D+ASA) groups. In groups 2 and 4, diabetes was induced by injection of 35 mg kg(-1) streptozotocin. ASA (100 mg kg(-1) day(-1) , orally) was administrated to rats in groups 3 and 4 for 8 weeks. Both intracavernosal pressure (ICP) and mean arterial blood pressure (MAP) were measured in in vivo studies. In organ bath, the relaxation responses to acetylcholine (ACh), electrical field stimulation (EFS) and sodium nitroprusside were tested in corpus cavernosum (CC) strips. The mRNA expression for neuronal nitric oxide synthase (nNOS) was calculated using reverse transcription polymerase chain reaction technique. In in vivo experiments, diabetic rats displayed reduced ICP/MAP values, which were normalised with ASA treatment. The relaxant response to high-dose ACh and EFS at low frequencies (1-8 Hz) in CC strips from the D+ASA group were significantly higher when compared to the D group. Treatment with ASA normalised the raised mRNA expressions of nNOS in diabetic penile tissues. ASA may be involved in mRNA of protein synthesis of NO released from nonadrenergic and noncholinergic cavernosal nerve in diabetes.

  20. Acetylsalicylic Acid and Eflornithine in Treating Patients at High Risk for Colorectal Cancer | Division of Cancer Prevention

    Cancer.gov

    This phase II trial is studying how well giving acetylsalicylic acid together with eflornithine works in treating patients at high risk for colorectal cancer. Chemoprevention is the use of certain drugs to keep cancer from forming. The use of acetylsalicylic acid and eflornithine may prevent colorectal cancer. |

  1. Modified MCM-41 as a drug delivery system for acetylsalicylic acid

    NASA Astrophysics Data System (ADS)

    Vyskočilová, Eliška; Luštická, Ivana; Paterová, Iva; Machová, Libuše; Červený, Libor

    2014-12-01

    The modification of prepared MCM-41 by different groups (amino, chloro and oxo) was studied. Prepared materials were treated by acetylsalicylic acid and hybrid materials were characterized, compared from the point of view of immobilized amount of active substance. The highest amount of acetylsalicylic acid was detected using methyl-tert- butyl ether as a solvent and MCM-41 without modification after 1 h (0.35 g per 1 g of the support) or MCM modified by amino group after 5 h (0.37 g per 1 g of the support) as a support. Using amino modified MCM, the longer treatment by acetylsalicylic acid converged to the equilibrium and after 24 h the immobilized amount was 0.3 g per 1 g. A dissolution in vitro study was carried out, comparing the stability of formed interactions. The slowest dissolution was detected using non-modified MCM-41 and oxo modified material.

  2. Pharmacological correction of the negative effects of acetylsalicylic acid on the energy production system.

    PubMed

    Bryushinina, O S; Gurto, R V; Slepichev, V A; Stykon, G A; Zyuz'kova, Yu G; Yanovskaya, E A; Udut, V V

    2011-01-01

    Experiments of outbred rats with modeled xenobiotic load with acetylsalicylic acid (250 mg/kg for 7 days) revealed inhibition of mitochondrial respiration rate in states of rest and active phosphorylation, inhibition of succinate-dependent oxidation pathway, and a decrease in energization of organelles in the heart. For correction of the observed changes in energy production, succinic acid was preventively administered in a dose of 50 mg/kg for 7 days, which abolished the negative metabolic shifts in myocardial mitochondria. Comparison of pharmacokinetics of acetylsalicylic acid and acetylsalicylic acid against the background of succinate treatment performed on rabbits revealed complete coincidence of the studied parameters, which attests to the possibility of prevention of mitochondrial dysregulations with this Krebs cycle intermediate.

  3. Acetylsalicylic acid and salicylic acid decrease tumor cell viability and glucose metabolism modulating 6-phosphofructo-1-kinase structure and activity.

    PubMed

    Spitz, Guilherme A; Furtado, Cristiane M; Sola-Penna, Mauro; Zancan, Patricia

    2009-01-01

    The common observation that cancer cells present higher glycolytic rates when compared to control cells leads to the proposal of glycolysis as a potential target for the development of anti-tumoral agents. Anti-inflammatory drugs, such as acetylsalicylic acid (ASA) and salicylic acid (SA), present anti-tumoral properties, inducing apoptosis and altering tumor glucose utilization. The present work aims at evaluating whether ASA could directly decrease cell glycolysis through inhibition of the major regulatory enzyme within this pathway, 6-phosphofructo-1-kinase (PFK). We show that ASA and SA inhibit purified PFK in a dose-dependent manner, and that this inhibition occurs due to the modulation of the enzyme quaternary structure. ASA and SA promote the dissociation of the enzyme active tetramers into quite inactive dimers, a common regulatory mechanism of this enzyme. The inhibitory effects of ASA and SA on PFK are fully reversible and can be prevented or reverted by the binding of the enzyme to the actin filaments. Both drugs are also able to decrease glucose consumption by human breast cancer cell line MCF-7, as well as its viability, which decrease parallelly to the inhibition of PFK on these cells. In the end, we demonstrate the ability of ASA and SA to directly modulate an important regulatory intracellular enzyme, and propose that this is one of their mechanisms promoting anti-tumoral effects.

  4. Icariin, a major constituent from Epimedium brevicornum, attenuates ibotenic acid-induced excitotoxicity in rat hippocampus.

    PubMed

    Zong, Nan; Li, Fei; Deng, Yuanyuan; Shi, Jingshan; Jin, Feng; Gong, Qihai

    2016-10-15

    Excitotoxicity is one of the most extensively studied causes of neuronal death and plays an important role in Alzheimer's disease (AD). Icariin is a flavonoid component of a traditional Chinese medicine reported to possess a broad spectrum of pharmacological effects. The present study was designed to investigate the effects of icariin against learning and memory impairment induced by excitotoxicity. Here, we demonstrated that rats receiving intracerebroventricular injection of excitatory neurotoxin ibotenic acid exhibited impaired learning and memory. Oral administration of icariin at doses of 20 and 40mg/kg rescued behavioral performance and protected against neurotoxicity in rat hippocampus by suppressing ibotenic acid induced pro-apoptosis. Furthermore, Western blott of hippocampal specimens revealed that icariin up-regulated the expression of calbindin-D28k protein following ibotenic acid administration. Additionally, icariin inhibited mitogen-activated protein kinase (MAPK) family phosphorylation and nuclear factor kappa B (NF-κB) signaling, implicating the MAPK signaling and NF-κB signaling pathways were involved in the mechanism underlying icariin-mediated neuroprotection against ibotenic acid-induced excitotoxicity. These data suggested that icariin could be a potential agent for treatment of excitotoxicity-related diseases, including AD. PMID:27368415

  5. Icariin, a major constituent from Epimedium brevicornum, attenuates ibotenic acid-induced excitotoxicity in rat hippocampus.

    PubMed

    Zong, Nan; Li, Fei; Deng, Yuanyuan; Shi, Jingshan; Jin, Feng; Gong, Qihai

    2016-10-15

    Excitotoxicity is one of the most extensively studied causes of neuronal death and plays an important role in Alzheimer's disease (AD). Icariin is a flavonoid component of a traditional Chinese medicine reported to possess a broad spectrum of pharmacological effects. The present study was designed to investigate the effects of icariin against learning and memory impairment induced by excitotoxicity. Here, we demonstrated that rats receiving intracerebroventricular injection of excitatory neurotoxin ibotenic acid exhibited impaired learning and memory. Oral administration of icariin at doses of 20 and 40mg/kg rescued behavioral performance and protected against neurotoxicity in rat hippocampus by suppressing ibotenic acid induced pro-apoptosis. Furthermore, Western blott of hippocampal specimens revealed that icariin up-regulated the expression of calbindin-D28k protein following ibotenic acid administration. Additionally, icariin inhibited mitogen-activated protein kinase (MAPK) family phosphorylation and nuclear factor kappa B (NF-κB) signaling, implicating the MAPK signaling and NF-κB signaling pathways were involved in the mechanism underlying icariin-mediated neuroprotection against ibotenic acid-induced excitotoxicity. These data suggested that icariin could be a potential agent for treatment of excitotoxicity-related diseases, including AD.

  6. Effect of transdermic acetylsalicylic acid on hemostasis in healthy volunteers.

    PubMed

    Martínez, Adriana B; Funosas, Esteban; Maestri, Lorella; Lucena, Perla Hermida

    2007-01-01

    Acetylsalicylic acid (ASA) exerts an antiaggregatory effect on platelets by irreversible inhibition of the enzyme thrombocyte cyclooxigenase when it is administered orally at doses above 80 mg/day. For several years ASA has been available as a solution that can be topically applied on the skin. It is widely used by athletes and individuals with chronic rheumatic disorders. However, it has not been established to date whether the plasma levels that result from these doses of ASA affect hemostasis during odontological procedures that involve bleeding, causing platelet dysfunction. The aim of the present study was to evaluate whether topical application is capable of affecting hemostasis. Three studies were conducted: A, B y C. Each of the 3 groups included 12 healthy volunteers of both sexes. The aim of study A was to evaluate if the formulation for topical application resulted in plasma levels of ASA that resembled those observed for the oral formulation and affect hemostasis. In experiment A, plasma levels of salicylic acid (SA) were assessed for each volunteer at 30 minutes, 60 minutes, 6 hours, 12 hours and 24 hours after oral administration of a dose of 500 mg ASA. Experiment B was identical to experiment A except for the fact that ASA was topically applied employing a commercial preparation Aspirub in a predetermined area at a rate of 2 ml/day over a period of 15 days. Experiment C was designed in the same way as experiment B, for a higher dose and a longer period of time (4 ml/day over a period of 30 days). One of the volunteers exhibited detectable salicylemia that could affect hemostasis as occurs with the oral formulation. The following two studies (C1 and C2) employed doses of Aspirub of 8 and 16 ml/day respectively, over a period of 30 days. We measured biochemical parameters associated to platelet function. The dose of 8 ml/day induced moderate alterations in all the parameters related to platelet function and the daily dose of 16 ml inhibited platelet

  7. Butyl hydroxy toluene antagonizes the gastric toxicity but not the pharmacological activity of acetylsalicylic acid in rats.

    PubMed

    van Kolfschoten, A A; Hagelen, F; van Noordwijk, J

    1984-03-01

    Butyl hydroxy toluene reduced gastric erosion due to acetylsalicylic acid in the rat, but not the antiinflammatory, anti-pyretic and analgesic activity. By itself, BHT exhibited activity only in the test on analgesia. PMID:6728039

  8. Acetylsalicylic Acid Compared to Placebo in Treating High-Risk Patients With Subsolid Lung Nodules | Division of Cancer Prevention

    Cancer.gov

    This randomized phase II trial studies acetylsalicylic acid compared to placebo in treating high-risk patients with subsolid lung nodules. A nodule is a growth or lump that may be malignant (cancer) or benign (not cancer). Chemoprevention is the use of drugs to keep cancer from forming or coming back. The use of acetylsalicylic acid may keep cancer from forming in patients with subsolid lung nodules. |

  9. Increased excretion of c4-carnitine species after a therapeutic acetylsalicylic Acid dose: evidence for an inhibitory effect on short-chain Fatty Acid metabolism.

    PubMed

    Mels, Catharina M C; Jansen van Rensburg, Peet; van der Westhuizen, Francois H; Pretorius, Pieter J; Erasmus, Elardus

    2011-01-01

    Acetylsalicylic acid and/or its metabolites are implicated to have various effects on metabolism and, especially, on mitochondrial function. These effects include both inhibitory and stimulatory effects. We investigated the effect of both combined and separate oral acetylsalicylic acid and acetaminophen administration at therapeutic doses on the urinary metabolite profile of human subjects. In this paper, we provided in vivo evidence, in human subjects, of a statistically significant increase in isobutyrylcarnitine after the administration of a therapeutic dose of acetylsalicylic acid. We, therefore, propose an inhibitory effect of acetylsalicylic acid on the short-chain fatty acid metabolism, possibly at the level of isobutyryl-CoA dehydrogenase.

  10. Preparation of acetylsalicylic acid-acylated chitosan as a novel polymeric drug for drug controlled release.

    PubMed

    Liu, Changkun; Wu, Yiguang; Zhao, Liyan; Huang, Xinzheng

    2015-01-01

    The acetylsalicylic acid-acylated chitosan (ASACTS) with high degree of substitution (DS) was successfully synthesized, and characterized with FTIR, (1)H NMR and elemental analysis methods. The optimum synthesis conditions were obtained which gave the highest DS (about 60%) for ASACTS. Its drug release experiments were carried out in simulated gastric and intestine fluids. The results show that the drugs in the form of acetylsalicylic acid (ASA) and salicylic acid (SA) were released in a controlled manner from ASACTS only in simulated gastric fluid. The release profile can be best fitted with logistic and Weibull model. The research results reveal that ASACTS can be a potential polymeric drug for the controlled release of ASA and SA in the targeted gastric environment.

  11. Teratogenicity studies with methotrexate, aminopterin, and acetylsalicylic acid in domestic cats.

    PubMed

    Khera, K S

    1976-08-01

    Pregnancy was timed in cats following induced ovulation. Methotrexate, (0.5 mg/kg), aminopterin, (0.1 mg/kg), and acetylsalicylic acid, (25 or 50 mg/kg) were administered orally in gelatin capsules in single daily doses on different days of gestation, methotrexate (MTX) on days 11-14, 14-17, or 17-20, aminopterin on day 12, 14, or 16, and acetylsalicylic acid (ASA) on days 10-15 or 15-20. Maternal toxicity was produced only by MTX. MTX given on days 11-14 and 14-17 produced high frequencies of malformations including umbilical hernia. Aminopterin caused no conclusive teratogenic response. An overall increased frequency of anomalies occurred after 50 mg/kg ASA but no single anomaly predominated.

  12. [Acetylsalicylic acid desensitization in the new era of percutaneous coronary intervention].

    PubMed

    Fuertes Ferre, Georgina; Ferrer Gracia, Maria Cruz; Calvo Cebollero, Isabel

    2015-09-21

    Dual antiplatelet therapy is essential in patients undergoing percutaneous coronary intervention with stent implantation. Hypersensitivity to acetylsalicylic acid (ASA) limits treatment options. Desensitization to ASA has classically been studied in patients with respiratory tract disease. Over the last years, many protocols have been described about ASA desensitization in patients with ischemic heart disease, including acute coronary syndrome and the need for coronary stent implantation. It is important to know the efficacy and safety of ASA desensitization in these patients. PMID:25577589

  13. Determination of acetylsalicylic acid and its major metabolites in bovine urine using ultra performance liquid chromatography.

    PubMed

    Castillo-García, M L; Aguilar-Caballos, M P; Gómez-Hens, A

    2015-03-15

    A new method based on ultra high performance liquid chromatography (UPLC) with photometric and fluorometric detection for the determination of acetylsalicylic acid and its main metabolites, namely gentisic, salicylic and salicyluric acids, in bovine urine samples is reported. Photometric detection was used for acetylsalicylic acid determination, whereas the native fluorescence of the metabolites was monitored using fluorometric detection. The separation was performed under isocratic conditions, using acetonitrile-phosphate solution (3.5mM, pH 3.5) (26:74, v/v) as the mobile phase. The retention times of the four compounds were lower than 2min, which are shorter than those achieved using conventional HPLC. Under the optimum separation conditions, the dynamic ranges and detection limits (ngmL(-1)) were: 0.2-2500, 0.09 for gentisic acid; 0.2-2500, 0.08 for salicylic acid and 2.5-15,000, 1.1 for salicyluric acid, using fluorescence detection, and 10-25,000, 2.2 for acetylsalicylic acid, using UV detection. Intra-day and inter-day precision data were assessed at two levels of concentration of each analyte using both detection systems. The selectivity of the method was checked by assaying different drugs of veterinary use showing that most of them did not interfere with the determination of the analytes. The method has been applied to the analysis of bovine urine samples, which only required a simple clean up step of the samples prior to injection in the UPLC system. A recovery study was performed, which provided values in the range of 80-100%. This fact proves the practical usefulness of this method as an ultrafast analytical tool for the therapeutic control of acetylsalicylic acid administration in bovine animals intended for food production.

  14. Determination of acetylsalicylic acid and its major metabolites in bovine urine using ultra performance liquid chromatography.

    PubMed

    Castillo-García, M L; Aguilar-Caballos, M P; Gómez-Hens, A

    2015-03-15

    A new method based on ultra high performance liquid chromatography (UPLC) with photometric and fluorometric detection for the determination of acetylsalicylic acid and its main metabolites, namely gentisic, salicylic and salicyluric acids, in bovine urine samples is reported. Photometric detection was used for acetylsalicylic acid determination, whereas the native fluorescence of the metabolites was monitored using fluorometric detection. The separation was performed under isocratic conditions, using acetonitrile-phosphate solution (3.5mM, pH 3.5) (26:74, v/v) as the mobile phase. The retention times of the four compounds were lower than 2min, which are shorter than those achieved using conventional HPLC. Under the optimum separation conditions, the dynamic ranges and detection limits (ngmL(-1)) were: 0.2-2500, 0.09 for gentisic acid; 0.2-2500, 0.08 for salicylic acid and 2.5-15,000, 1.1 for salicyluric acid, using fluorescence detection, and 10-25,000, 2.2 for acetylsalicylic acid, using UV detection. Intra-day and inter-day precision data were assessed at two levels of concentration of each analyte using both detection systems. The selectivity of the method was checked by assaying different drugs of veterinary use showing that most of them did not interfere with the determination of the analytes. The method has been applied to the analysis of bovine urine samples, which only required a simple clean up step of the samples prior to injection in the UPLC system. A recovery study was performed, which provided values in the range of 80-100%. This fact proves the practical usefulness of this method as an ultrafast analytical tool for the therapeutic control of acetylsalicylic acid administration in bovine animals intended for food production. PMID:25660719

  15. [Acetylsalicylic acid desensitization in the new era of percutaneous coronary intervention].

    PubMed

    Fuertes Ferre, Georgina; Ferrer Gracia, Maria Cruz; Calvo Cebollero, Isabel

    2015-09-21

    Dual antiplatelet therapy is essential in patients undergoing percutaneous coronary intervention with stent implantation. Hypersensitivity to acetylsalicylic acid (ASA) limits treatment options. Desensitization to ASA has classically been studied in patients with respiratory tract disease. Over the last years, many protocols have been described about ASA desensitization in patients with ischemic heart disease, including acute coronary syndrome and the need for coronary stent implantation. It is important to know the efficacy and safety of ASA desensitization in these patients.

  16. Acetylsalicylic acid combined with diclofenac inhibits cartilage degradation in rabbit models of osteoarthritis

    PubMed Central

    Liu, Jianqiang; Wu, Changshun; Wang, Dong; Wang, Laicheng; Sun, Shui

    2016-01-01

    The present study aimed to investigate the effect of different concentrations of acetylsalicylic acid combined with diclofenac on the articular cartilage of a rabbit model of osteoarthritis (OA). A total of 40 New Zealand white rabbits were divided into 5 groups. Group A was a sham-operated control group, which was treated with normal saline. Groups B-E were OA models and were treated with normal saline and acetylsalicylic acid combined with diclofenac at concentrations of 5, 10 and 20 mg/kg, respectively. A cartilage macroscopic examination and a pathological observation were performed to analyze the structure of the articular cartilage in all of the treated groups. The nitric oxide (NO) content and interleukin 1β (IL-1β) levels were detected by an enzyme-linked immunosorbent assay. In addition, the protein expression of matrix metalloproteinase 3 (MMP)-3 and MMP-13 were detected by western blot analysis. The mRNA expression of tissue inhibitor of metalloproteinases 1 (TIMP1) was detected by polymerase chain reaction (PCR). The results revealed that different concentrations of the drugs significantly reduced the scores of cartilago articularis, the NO and IL-1β levels and the protein expression of MMP-3 and MMP-13. Furthermore, PCR revealed that the mRNA expression of TIMP1 was significantly upregulated, and the effects increased with increasing drug concentration. Thus, the administration of different concentrations of acetylsalicylic acid combined with diclofenac demonstrates preventive or therapeutic effects against OA progression. PMID:27698707

  17. Determination of acetylsalicylic acid in commercial tablets by SERS using silver nanoparticle-coated filter paper

    NASA Astrophysics Data System (ADS)

    Sallum, Loriz Francisco; Soares, Frederico Luis Felipe; Ardila, Jorge Armando; Carneiro, Renato Lajarim

    2014-12-01

    In this work, filter paper was used as a low cost substrate for silver nanoparticles in order to perform the detection and quantification of acetylsalicylic acid by SERS in a commercial tablet. The reaction conditions were 150 mM of ammonium hydroxide, 50 mM of silver nitrate, 500 mM of glucose, 12 min of the reaction time, 45 °C temperature, pretreatment with ammonium hydroxide and quantitative filter paper (1-2 μm). The average size of silver nanoparticles deposited on the paper substrate was 180 nm. Adsorption time of acetylsalicylic acid on the surface of the silver-coated filter paper was studied and an adsorption time of 80 min was used to build the analytical curve. It was possible to obtain a calibration curve with good precision with a coefficient of determination of 0.933. The method proposed in this work was capable to quantify acetylsalicylic acid in commercial tablets, at low concentration levels, with relative error of 2.06% compared to the HPLC. The preparation of filter paper coated with silver nanoparticles using Tollen's reagent presents several advantages such as low cost of synthesis, support and reagents; minimum amount of residuals, which are easily treated, despite the SERS spectroscopy presenting fast analysis, with low sample preparation and low amount of reactants as in HPLC analysis.

  18. Determination of acetylsalicylic acid in commercial tablets by SERS using silver nanoparticle-coated filter paper.

    PubMed

    Sallum, Loriz Francisco; Soares, Frederico Luis Felipe; Ardila, Jorge Armando; Carneiro, Renato Lajarim

    2014-12-10

    In this work, filter paper was used as a low cost substrate for silver nanoparticles in order to perform the detection and quantification of acetylsalicylic acid by SERS in a commercial tablet. The reaction conditions were 150mM of ammonium hydroxide, 50mM of silver nitrate, 500mM of glucose, 12min of the reaction time, 45°C temperature, pretreatment with ammonium hydroxide and quantitative filter paper (1-2μm). The average size of silver nanoparticles deposited on the paper substrate was 180nm. Adsorption time of acetylsalicylic acid on the surface of the silver-coated filter paper was studied and an adsorption time of 80min was used to build the analytical curve. It was possible to obtain a calibration curve with good precision with a coefficient of determination of 0.933. The method proposed in this work was capable to quantify acetylsalicylic acid in commercial tablets, at low concentration levels, with relative error of 2.06% compared to the HPLC. The preparation of filter paper coated with silver nanoparticles using Tollen's reagent presents several advantages such as low cost of synthesis, support and reagents; minimum amount of residuals, which are easily treated, despite the SERS spectroscopy presenting fast analysis, with low sample preparation and low amount of reactants as in HPLC analysis.

  19. Acetylsalicylic acid combined with diclofenac inhibits cartilage degradation in rabbit models of osteoarthritis

    PubMed Central

    Liu, Jianqiang; Wu, Changshun; Wang, Dong; Wang, Laicheng; Sun, Shui

    2016-01-01

    The present study aimed to investigate the effect of different concentrations of acetylsalicylic acid combined with diclofenac on the articular cartilage of a rabbit model of osteoarthritis (OA). A total of 40 New Zealand white rabbits were divided into 5 groups. Group A was a sham-operated control group, which was treated with normal saline. Groups B-E were OA models and were treated with normal saline and acetylsalicylic acid combined with diclofenac at concentrations of 5, 10 and 20 mg/kg, respectively. A cartilage macroscopic examination and a pathological observation were performed to analyze the structure of the articular cartilage in all of the treated groups. The nitric oxide (NO) content and interleukin 1β (IL-1β) levels were detected by an enzyme-linked immunosorbent assay. In addition, the protein expression of matrix metalloproteinase 3 (MMP)-3 and MMP-13 were detected by western blot analysis. The mRNA expression of tissue inhibitor of metalloproteinases 1 (TIMP1) was detected by polymerase chain reaction (PCR). The results revealed that different concentrations of the drugs significantly reduced the scores of cartilago articularis, the NO and IL-1β levels and the protein expression of MMP-3 and MMP-13. Furthermore, PCR revealed that the mRNA expression of TIMP1 was significantly upregulated, and the effects increased with increasing drug concentration. Thus, the administration of different concentrations of acetylsalicylic acid combined with diclofenac demonstrates preventive or therapeutic effects against OA progression.

  20. Amoxicillin/clavulanic acid-induced pemphigus vulgaris: case report.

    PubMed

    Baroni, Adone; Russo, Teresa; Faccenda, Franco; Piccolo, Vincenzo

    2012-01-01

    Drug-induced pemphigus is a well-established variety of pemphigus, presenting with clinical and histopathologic features identical to idiopathic form. Medical history plays a fundamental role in the diagnosis of drug-induced pemphigus. A large variety of drugs have been implicated in its pathogenesis and they may induce acantholysis via biochemical and/or immune mechanism. We present a case of a 69-year-old woman affected by amoxicillin/clavulanic acid-induced pemphigus and discuss its pathogenetic mechanism.

  1. Synergistic inhibitory effect of ascorbic acid and acetylsalicylic acid on prostaglandin E2 release in primary rat microglia.

    PubMed

    Fiebich, Bernd L; Lieb, Klaus; Kammerer, Norbert; Hüll, Michael

    2003-07-01

    Ascorbic acid (vitamin C) has been suggested to protect cerebral tissue in a variety of pathophysiological situations such as head trauma, ischemia or Alzheimer's disease. Most of these protective actions have been attributed to the antioxidative capacity of ascorbic acid. Besides the presence of elevated levels of oxygen radicals, prostaglandins produced by neurones and microglial cells seem to play an important role in prolonged tissue damage. We investigated whether ascorbic acid alone inhibits prostaglandin E2 (PGE2) synthesis and may augment the inhibitory effect of acetylsalicylic acid on prostaglandin synthesis. Ascorbic acid dose-dependently inhibited PGE2 synthesis in lipopolysaccharide-treated primary rat microglial cells (IC50 = 3.70 micro m). In combination with acetylsalicylic acid (IC50 = 1.85 micro m), ascorbic acid augmented the inhibitory effect of acetylsalicylic acid on PGE2 synthesis (IC50 = 0.25 micro m in combination with 100 micro m ascorbic acid). Ascorbic acid alone or in combination with acetylsalicylic acid did not inhibit cyclooxygenase-2 (COX-2) protein synthesis but inhibited COX-2 enzyme activity. Our results show that ascorbic acid and acetylsalicylic acid act synergistically in inhibiting PGE2 synthesis, which may help to explain a possible protective effect of ascorbic acid in various brain diseases.

  2. Ethanol promotes saturated fatty acid-induced hepatoxicity through endoplasmic reticulum (ER) stress response.

    PubMed

    Yi, Hong-Wei; Ma, Yu-Xiang; Wang, Xiao-Ning; Wang, Cui-Fen; Lu, Jian; Cao, Wei; Wu, Xu-Dong

    2015-04-01

    Serum palmitic acid (PA), a type of saturated fatty acid, causes lipid accumulation and induces toxicity in hepatocytes. Ethanol (EtOH) is metabolized by the liver and induces hepatic injury and inflammation. Herein, we analyzed the effects of EtOH on PA-induced lipotoxicity in the liver. Our results indicated that EtOH aggravated PA-induced apoptosis and lipid accumulation in primary rat hepatocytes in dose-dependent manner. EtOH intensified PA-caused endoplasmic reticulum (ER) stress response in vitro and in vivo, and the expressions of CHOP, ATF4, and XBP-1 in nucleus were significantly increased. EtOH also increased PA-caused cleaved caspase-3 in cytoplasm. In wild type and CHOP(-/-) mice treated with EtOH and high fat diet (HFD), EtOH worsened the HFD-induced liver injury and dyslipidemia, while CHOP knockout blocked toxic effects of EtOH and PA. Our study suggested that targeting UPR-signaling pathways is a promising, novel approach to reducing EtOH and saturated fatty acid-induced metabolic complications.

  3. γ-Hydroxybutyric Acid-Induced Electrographic Seizures

    PubMed Central

    Cheung, Joseph; Lucey, Brendan P.; Duntley, Stephen P.; Darken, Rachel S.

    2014-01-01

    We describe a case of absence-like electrographic seizures during NREM sleep in a patient who was taking sodium oxybate, a sodium salt of γ-hydroxybutyric acid (GHB). An overnight full montage electroencephalography (EEG) study revealed numerous frontally predominant rhythmic 1.5-2 Hz sharp waves and spike-wave activity during stage N2 and N3 sleep at the peak dose time for sodium oxybate, resembling atypical absence-like electrographic seizures. The patient was later weaned off sodium oxybate, and a repeat study did not show any such electrographic seizures. Absence-like seizures induced by GHB had previously been described in experimental animal models. We present the first reported human case of absence-like electrographic seizure associated with sodium oxybate. Citation: Cheung J, Lucey BP, Duntley SP, Darken RS. γ-hydroxybutyric acid-induced electrographic seizures. J Clin Sleep Med 2014;10(7):811-812. PMID:25024661

  4. Increased isoprostane levels in oleic acid-induced lung injury

    SciTech Connect

    Ono, Koichi; Koizumi, Tomonobu; Tsushima, Kenji; Yoshikawa, Sumiko; Yokoyama, Toshiki; Nakagawa, Rikimaru; Obata, Toru

    2009-10-16

    The present study was performed to examine a role of oxidative stress in oleic acid-induced lung injury model. Fifteen anesthetized sheep were ventilated and instrumented with a lung lymph fistula and vascular catheters for blood gas analysis and measurement of isoprostanes (8-epi prostaglandin F2{alpha}). Following stable baseline measurements, oleic acid (0.08 ml/kg) was administered and observed 4 h. Isoprostane was measured by gas chromatography mass spectrometry with the isotope dilution method. Isoprostane levels in plasma and lung lymph were significantly increased 2 h after oleic acid administration and then decreased at 4 h. The percent increases in isoprostane levels in plasma and lung lymph at 2 h were significantly correlated with deteriorated oxygenation at the same time point, respectively. These findings suggest that oxidative stress is involved in the pathogenesis of the pulmonary fat embolism-induced acute lung injury model in sheep and that the increase relates with the deteriorated oxygenation.

  5. Proteomic study on usnic-acid-induced hepatotoxicity in rats.

    PubMed

    Liu, Qian; Zhao, Xiaoping; Lu, Xiaoyan; Fan, Xiaohui; Wang, Yi

    2012-07-25

    Usnic acid, a lichen metabolite, is used as a dietary supplement for weight loss. However, clinical studies have shown that usnic acid causes hepatotoxicity. The present study aims to investigate the mechanism of usnic acid hepatotoxicity in vivo. Two-dimensional gel electrophoresis coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was used to analyze the expression profiles of differentially regulated and expressed proteins in rat liver after usnic acid administration. The results reveal the differential expression of 10 proteins in usnic-acid-treated rats compared to the normal controls. These proteins are associated with oxidative stress, lipid metabolism, and several other molecular pathways. The endoplasmic reticulum and mitochondria may be the primary targets of usnic-acid-induced hepatotoxicity.

  6. Enteric coating can lead to reduced antiplatelet effect of low-dose acetylsalicylic acid.

    PubMed

    Haastrup, Peter Fentz; Grønlykke, Thor; Jarbøl, Dorte Ejg

    2015-03-01

    Low-dose acetylsalicylic acid (ASA) is widely used as antithrombotic prophylaxis. Enteric-coated ASA has been developed to decrease the risk of gastrointestinal side effects. The consequences of enteric coating on pharmacokinetics and antiplatelet effect of ASA have not systematically been assessed. This MiniReview demonstrates that data from clinical trials indicate that enteric coating can reduce the antiplatelet effect of ASA compared to plain ASA. This is possibly due to decreased bioavailability of ASA caused by prolonged solvation and absorption of the enteric-coated formulations. Therefore, low-dose enteric-coated ASA might not be bioequivalent to plain ASA, entailing the risk of insufficient cardiovascular prophylaxis.

  7. DFT studies on the vibrational and electronic spectra of acetylsalicylic acid

    NASA Astrophysics Data System (ADS)

    Ye, Yunfeng; Tang, Guodong; Han, Yonghong; Culnane, Lance F.; Zhao, Jianyin; Zhang, Yu

    2016-05-01

    The following is a theoretical and experimental study on the vibrational and electronic properties of acetylsalicylic acid (ASA). Vibrational information was obtained by FT-IR and Raman spectroscopy which agree well with harmonic vibrational frequency calculations. The calculations were carried out using density functional theory B3LYP methods with 6-311G** and LANL2DZ basis sets. The vibrational assignments were calculated by Gaussview. Absorption UV-Vis experiments of ASA reveal three maximum peaks at 203, 224 and 277 nm, which are in agreement with calculated electronic transitions using TD-B3LYP/6-311G**.

  8. Bile-acid-induced cell injury and protection

    PubMed Central

    Perez, Maria J; Briz, Oscar

    2009-01-01

    Several studies have characterized the cellular and molecular mechanisms of hepatocyte injury caused by the retention of hydrophobic bile acids (BAs) in cholestatic diseases. BAs may disrupt cell membranes through their detergent action on lipid components and can promote the generation of reactive oxygen species that, in turn, oxidatively modify lipids, proteins, and nucleic acids, and eventually cause hepatocyte necrosis and apoptosis. Several pathways are involved in triggering hepatocyte apoptosis. Toxic BAs can activate hepatocyte death receptors directly and induce oxidative damage, thereby causing mitochondrial dysfunction, and induce endoplasmic reticulum stress. When these compounds are taken up and accumulate inside biliary cells, they can also cause apoptosis. Regarding extrahepatic tissues, the accumulation of BAs in the systemic circulation may contribute to endothelial injury in the kidney and lungs. In gastrointestinal cells, BAs may behave as cancer promoters through an indirect mechanism involving oxidative stress and DNA damage, as well as acting as selection agents for apoptosis-resistant cells. The accumulation of BAs may have also deleterious effects on placental and fetal cells. However, other BAs, such as ursodeoxycholic acid, have been shown to modulate BA-induced injury in hepatocytes. The major beneficial effects of treatment with ursodeoxycholic acid are protection against cytotoxicity due to more toxic BAs; the stimulation of hepatobiliary secretion; antioxidant activity, due in part to an enhancement in glutathione levels; and the inhibition of liver cell apoptosis. Other natural BAs or their derivatives, such as cholyl-N-methylglycine or cholylsarcosine, have also aroused pharmacological interest owing to their protective properties. PMID:19360911

  9. Inhibition of anaerobic glycolysis in bovine retina extracts by salicylate and acetylsalicylate.

    PubMed

    Rinaudo, M T; Curto, M; Bruno, R; Ponzetto, C

    1982-01-01

    1. Na salicylate 31 mM inhibits anaerobic glycolysis from glucose in bovine retina extracts. The formation rate of DAP and GAP increases while that of FDP, G6P, F6P and lactate decreases. All the above modifications are almost completely removed by 1.4 mM NAD+. 2. Bovine retina extracts, preincubated for 1 hr at 0 degrees C with 31 mM Na salicylate show a strongly reduced glycolytic activity. In this system G6P and F6P do accumulate, FDP, DAP, GAP and lactate decrease. These effects are not altered adding 3.5 mM NAD+ to the preincubation mixture. 3. Acetylsalicylate 31 mM inhibits anaerobic glycolysis in crude retina extracts. As the rate of lactate formation decreases, G6P and F6P do accumulate, while FDP, DAP and GAP diminish. 4. Identical modifications are observed adding the inhibitor directly to the incubation mixture, or preincubating it with the extracts at 0 degrees C for 4 hr. 3.5 mM NAD+ does not remove the effects of acetylsalicylate.

  10. Numerical simulation of the solvate structures of acetylsalicylic acid in supercritical carbon dioxide containing polar co-solvents

    NASA Astrophysics Data System (ADS)

    Petrenko, V. E.; Antipova, M. L.; Gurina, D. L.; Odintsova, E. G.; Kumeev, R. S.; Golubev, V. A.

    2016-07-01

    Hydrogen-bonded complexes of acetylsalicylic acid with polar co-solvents in supercritical carbon dioxide, modified by methanol, ethanol, and acetone of 0.03 mole fraction concentration, are studied by numerical methods of classical molecular dynamics simulation and quantum chemical calculations. The structure, energy of formation, and lifetime of hydrogen-bonded complexes are determined, along with their temperature dependences (from 318 to 388 K at constant density of 0.7 g cm-3). It is shown that the hydrogen bonds between acetylsalicylic acid and methanol are most stable at 318 K and are characterized by the highest value of absolute energy. At higher supercritical temperatures, however, the longest lifetime is observed for acetylsalicylic acid-ethanol complexes. These results correlate with the known literature experimental data showing that the maximum solubility of acetylsalicylic acid at density values close to those considered in this work and at temperatures of 318 and 328 K is achieved when using methanol and ethanol as co-solvents, respectively.

  11. [New biological active derivatives of indomethacin and acetylsalicylic acid. Synthesis, physico-chemical characterisation and structure validation].

    PubMed

    Stan, Catalina; Stefanache, Alina; Dumitrache, M

    2006-01-01

    It is well known that niflumic acid glycinamide has a good antiinflammatory action useful in gum inflammatory diseases. The objective of this study was to obtain new glycinamides of acetylsalicylic acid and indomethacin, which could have a better antiinflammatory action than niflumic acid glycinamide. The study presents the synthesis, physico-chemical characterisation and structure validation of these glycinamides.

  12. Identification and Quantitative Analysis of Acetaminophen, Acetylsalicylic Acid, and Caffeine in Commercial Analgesic Tablets by LC-MS

    ERIC Educational Resources Information Center

    Fenk, Christopher J.; Hickman, Nicole M.; Fincke, Melissa A.; Motry, Douglas H.; Lavine, Barry

    2010-01-01

    An undergraduate LC-MS experiment is described for the identification and quantitative determination of acetaminophen, acetylsalicylic acid, and caffeine in commercial analgesic tablets. This inquiry-based experimental procedure requires minimal sample preparation and provides good analytical results. Students are provided sufficient background…

  13. Unsaturated fatty acids induce non-canonical autophagy

    PubMed Central

    Niso-Santano, Mireia; Malik, Shoaib Ahmad; Pietrocola, Federico; Bravo-San Pedro, José Manuel; Mariño, Guillermo; Cianfanelli, Valentina; Ben-Younès, Amena; Troncoso, Rodrigo; Markaki, Maria; Sica, Valentina; Izzo, Valentina; Chaba, Kariman; Bauvy, Chantal; Dupont, Nicolas; Kepp, Oliver; Rockenfeller, Patrick; Wolinski, Heimo; Madeo, Frank; Lavandero, Sergio; Codogno, Patrice; Harper, Francis; Pierron, Gérard; Tavernarakis, Nektarios; Cecconi, Francesco; Maiuri, Maria Chiara; Galluzzi, Lorenzo; Kroemer, Guido

    2015-01-01

    To obtain mechanistic insights into the cross talk between lipolysis and autophagy, two key metabolic responses to starvation, we screened the autophagy-inducing potential of a panel of fatty acids in human cancer cells. Both saturated and unsaturated fatty acids such as palmitate and oleate, respectively, triggered autophagy, but the underlying molecular mechanisms differed. Oleate, but not palmitate, stimulated an autophagic response that required an intact Golgi apparatus. Conversely, autophagy triggered by palmitate, but not oleate, required AMPK, PKR and JNK1 and involved the activation of the BECN1/PIK3C3 lipid kinase complex. Accordingly, the downregulation of BECN1 and PIK3C3 abolished palmitate-induced, but not oleate-induced, autophagy in human cancer cells. Moreover, Becn1+/− mice as well as yeast cells and nematodes lacking the ortholog of human BECN1 mounted an autophagic response to oleate, but not palmitate. Thus, unsaturated fatty acids induce a non-canonical, phylogenetically conserved, autophagic response that in mammalian cells relies on the Golgi apparatus. PMID:25586377

  14. Characterization of salicylic acid-induced genes in Chinese cabbage.

    PubMed

    Park, Y-S; Min, H-J; Ryang, S-H; Oh, K-J; Cha, J-S; Kim, H Y; Cho, T-J

    2003-06-01

    Salicylic acid is a messenger molecule in the activation of defense responses in plants. In this study, we isolated four cDNA clones representing salicylic acid-induced genes in Chinese cabbage (Brassica rapa subsp. pekinensis) by subtractive hybridization. Of the four clones, the BC5-2 clone encodes a putative glucosyltransferase protein. The BC5-3 clone is highly similar to an Arabidopsis gene encoding a putative metal-binding farnesylated protein. The BC6-1 clone is a chitinase gene with similarities to a rapeseed class IV chitinase. Class IV chitinases have deletions in the chitin-binding and catalytic domains and the BC6-1 chitinase has an additional deletion in the catalytic domain. The BCP8-1 clone is most homologous to an Arabidopsis gene that contains a tandem array of two thiJ-like sequences. These four cabbage genes were barely expressed in healthy leaves, but were strongly induced by salicylic acid and benzothiadiazole. Expression of the three genes represented by the BC5-2, BC5-3 and BCP8-1 clones were also induced by Pseudomonas syringae pv. tomato, a nonhost pathogen that elicits a hypersensitive response in Chinese cabbage. None of these four genes, however, was strongly induced by methyl jasmonate or by ethylene.

  15. Sulfuric acid-induced corrosion of aluminum surfaces

    SciTech Connect

    Dai, Q.; Freedman, A.; Robinson, G.N.

    1995-12-01

    The sulfuric acid-induced corrosion of smooth (2 nm average roughness) aluminum surfaces has been studied in real times using an in situ Fourier transform infrared reflection absorption spectrometer and a quartz crystal microbalance. Submicron thick, 35 to 55 weight percent (5 to 12 molal), sulfuric acid films were formed on room temperature metal surfaces by the reaction of gas-phase SO{sub 3} and H{sub 2}O vapor in a flowing gas system at a total pressure of {approximately}200 Torr. The deposition of the acid films and subsequent changes in their chemical composition resulting from corrosion of the aluminum substrate could be monitored using characteristic infrared absorption features. The corrosion process always significantly perturbed the spectral signature of the films from that which was observed on inert gold surfaces. Using changes in spectral features that are linked to the production of Al{sup 3+} as indicators of corrosion, the authors conclude the rate of corrosion of the metal is strongly enhanced by both higher relative humidities and increased rates of sulfuric acid deposition.

  16. Computerized image analysis for acetic acid induced intraepithelial lesions

    NASA Astrophysics Data System (ADS)

    Li, Wenjing; Ferris, Daron G.; Lieberman, Rich W.

    2008-03-01

    Cervical Intraepithelial Neoplasia (CIN) exhibits certain morphologic features that can be identified during a visual inspection exam. Immature and dysphasic cervical squamous epithelium turns white after application of acetic acid during the exam. The whitening process occurs visually over several minutes and subjectively discriminates between dysphasic and normal tissue. Digital imaging technologies allow us to assist the physician analyzing the acetic acid induced lesions (acetowhite region) in a fully automatic way. This paper reports a study designed to measure multiple parameters of the acetowhitening process from two images captured with a digital colposcope. One image is captured before the acetic acid application, and the other is captured after the acetic acid application. The spatial change of the acetowhitening is extracted using color and texture information in the post acetic acid image; the temporal change is extracted from the intensity and color changes between the post acetic acid and pre acetic acid images with an automatic alignment. The imaging and data analysis system has been evaluated with a total of 99 human subjects and demonstrate its potential to screening underserved women where access to skilled colposcopists is limited.

  17. Sphingoid bases inhibit acid-induced demineralization of hydroxyapatite.

    PubMed

    Valentijn-Benz, Marianne; van 't Hof, Wim; Bikker, Floris J; Nazmi, Kamran; Brand, Henk S; Sotres, Javier; Lindh, Liselott; Arnebrant, Thomas; Veerman, Enno C I

    2015-01-01

    Calcium hydroxyapatite (HAp), the main constituent of dental enamel, is inherently susceptible to the etching and dissolving action of acids, resulting in tooth decay such as dental caries and dental erosion. Since the prevalence of erosive wear is gradually increasing, there is urgent need for agents that protect the enamel against erosive attacks. In the present study we studied in vitro the anti-erosive effects of a number of sphingolipids and sphingoid bases, which form the backbone of sphingolipids. Pretreatment of HAp discs with sphingosine, phytosphingosine (PHS), PHS phosphate and sphinganine significantly protected these against acid-induced demineralization by 80 ± 17%, 78 ± 17%, 78 ± 7% and 81 ± 8%, respectively (p < 0.001). On the other hand, sphingomyelin, acetyl PHS, octanoyl PHS and stearoyl PHS had no anti-erosive effects. Atomic force measurement revealed that HAp discs treated with PHS were almost completely and homogeneously covered by patches of PHS. This suggests that PHS and other sphingoid bases form layers on the surface of HAp, which act as diffusion barriers against H(+) ions. In principle, these anti-erosive properties make PHS and related sphingosines promising and attractive candidates as ingredients in oral care products.

  18. A dual inhibitor of cyclooxygenase and 5-lipoxygenase protects against kainic acid-induced brain injury.

    PubMed

    Minutoli, Letteria; Marini, Herbert; Rinaldi, Mariagrazia; Bitto, Alessandra; Irrera, Natasha; Pizzino, Gabriele; Pallio, Giovanni; Calò, Margherita; Adamo, Elena Bianca; Trichilo, Vincenzo; Interdonato, Monica; Galfo, Federica; Squadrito, Francesco; Altavilla, Domenica

    2015-06-01

    Systemic administration of kainic acid causes inflammation and apoptosis in the brain, resulting in neuronal loss. Dual cyclooxygenase/5-lipoxygenase (COX/5-LOX) inhibitors could represent a possible neuroprotective approach in preventing glutamate excitotoxicity. Consequently, we investigated the effects of a dual inhibitor of COX/5-LOX following intraperitoneal administration of kainic acid (KA, 10 mg/kg) in rats. Animals were randomized to receive either the dual inhibitor of COX/5-LOX (flavocoxid, 20 mg/kg i.p.) or its vehicle (1 ml/kg i.p.) 30 min after KA administration. Sham brain injury rats were used as controls. We evaluated protein expression of phosphorylated extracellular signal-regulated kinase (p-ERK1/2) and tumor necrosis factor alpha (TNF-α) as well as levels of malondialdehyde (MDA), prostaglandin E2 (PGE2) and leukotriene B4 (LTB4) in the hippocampus. Animals were also observed for monitoring behavioral changes according to Racine Scale. Finally, histological analysis and brain edema evaluation were carried out. Treatment with the dual inhibitor of COX/5-LOX decreased protein expression of p-ERK1/2 and TNF-α in hippocampus, markedly reduced MDA, LTB4 and PGE2 hippocampal levels, and also ameliorated brain edema. Histological analysis showed a reduction in cell damage in rats treated with the dual inhibitor of COX/5-LOX, particularly in hippocampal subregion CA3c. Moreover, flavocoxid significantly improved behavioral signs following kainic acid administration. Our results suggest that dual inhibition of COX/5-LOX by flavocoxid has neuroprotective effects during kainic acid-induced excitotoxicity. PMID:25893744

  19. Bile acid-induced necrosis in primary human hepatocytes and in patients with obstructive cholestasis

    SciTech Connect

    Woolbright, Benjamin L.; Dorko, Kenneth; Antoine, Daniel J.; Clarke, Joanna I.; Gholami, Parviz; Li, Feng; Kumer, Sean C.; Schmitt, Timothy M.; Forster, Jameson; Fan, Fang; Jenkins, Rosalind E.; Park, B. Kevin; Hagenbuch, Bruno; Olyaee, Mojtaba; Jaeschke, Hartmut

    2015-03-15

    Accumulation of bile acids is a major mediator of cholestatic liver injury. Recent studies indicate bile acid composition between humans and rodents is dramatically different, as humans have a higher percent of glycine conjugated bile acids and increased chenodeoxycholate content, which increases the hydrophobicity index of bile acids. This increase may lead to direct toxicity that kills hepatocytes, and promotes inflammation. To address this issue, this study assessed how pathophysiological concentrations of bile acids measured in cholestatic patients affected primary human hepatocytes. Individual bile acid levels were determined in serum and bile by UPLC/QTOFMS in patients with extrahepatic cholestasis with, or without, concurrent increases in serum transaminases. Bile acid levels increased in serum of patients with liver injury, while biliary levels decreased, implicating infarction of the biliary tracts. To assess bile acid-induced toxicity in man, primary human hepatocytes were treated with relevant concentrations, derived from patient data, of the model bile acid glycochenodeoxycholic acid (GCDC). Treatment with GCDC resulted in necrosis with no increase in apoptotic parameters. This was recapitulated by treatment with biliary bile acid concentrations, but not serum concentrations. Marked elevations in serum full-length cytokeratin-18, high mobility group box 1 protein (HMGB1), and acetylated HMGB1 confirmed inflammatory necrosis in injured patients; only modest elevations in caspase-cleaved cytokeratin-18 were observed. These data suggest human hepatocytes are more resistant to human-relevant bile acids than rodent hepatocytes, and die through necrosis when exposed to bile acids. These mechanisms of cholestasis in humans are fundamentally different to mechanisms observed in rodent models. - Highlights: • Cholestatic liver injury is due to cytoplasmic bile acid accumulation in hepatocytes. • Primary human hepatocytes are resistant to BA-induced injury

  20. Platelets induce apoptosis via membrane-bound FasL

    PubMed Central

    Schleicher, Rebecca I.; Reichenbach, Frank; Kraft, Peter; Kumar, Anil; Lescan, Mario; Todt, Franziska; Göbel, Kerstin; Hilgendorf, Ingo; Geisler, Tobias; Bauer, Axel; Olbrich, Marcus; Schaller, Martin; Wesselborg, Sebastian; O’Reilly, Lorraine; Meuth, Sven G.; Schulze-Osthoff, Klaus; Gawaz, Meinrad; Li, Xuri; Kleinschnitz, Christoph; Edlich, Frank

    2015-01-01

    After tissue injury, both wound sealing and apoptosis contribute to restoration of tissue integrity and functionality. Although the role of platelets (PLTs) for wound closure and induction of regenerative processes is well established, the knowledge about their contribution to apoptosis is incomplete. Here, we show that PLTs present the death receptor Fas ligand (FasL) on their surface after activation. Activated PLTs as well as the isolated membrane fraction of activated PLTs but not of resting PLTs induced apoptosis in a dose-dependent manner in primary murine neuronal cells, human neuroblastoma cells, and mouse embryonic fibroblasts. Membrane protein from PLTs lacking membrane-bound FasL (FasL△m/△m) failed to induce apoptosis. Bax/Bak-mediated mitochondrial apoptosis signaling in target cells was not required for PLT-induced cell death, but increased the apoptotic response to PLT-induced Fas signaling. In vivo, PLT depletion significantly reduced apoptosis in a stroke model and an inflammation-independent model of N-methyl-d-aspartic acid-induced retinal apoptosis. Furthermore, experiments using PLT-specific PF4Cre+ FasLfl/fl mice demonstrated a role of PLT-derived FasL for tissue apoptosis. Because apoptosis secondary to injury prevents inflammation, our findings describe a novel mechanism on how PLTs contribute to tissue homeostasis. PMID:26232171

  1. Platelets induce apoptosis via membrane-bound FasL.

    PubMed

    Schleicher, Rebecca I; Reichenbach, Frank; Kraft, Peter; Kumar, Anil; Lescan, Mario; Todt, Franziska; Göbel, Kerstin; Hilgendorf, Ingo; Geisler, Tobias; Bauer, Axel; Olbrich, Marcus; Schaller, Martin; Wesselborg, Sebastian; O'Reilly, Lorraine; Meuth, Sven G; Schulze-Osthoff, Klaus; Gawaz, Meinrad; Li, Xuri; Kleinschnitz, Christoph; Edlich, Frank; Langer, Harald F

    2015-09-17

    After tissue injury, both wound sealing and apoptosis contribute to restoration of tissue integrity and functionality. Although the role of platelets (PLTs) for wound closure and induction of regenerative processes is well established, the knowledge about their contribution to apoptosis is incomplete. Here, we show that PLTs present the death receptor Fas ligand (FasL) on their surface after activation. Activated PLTs as well as the isolated membrane fraction of activated PLTs but not of resting PLTs induced apoptosis in a dose-dependent manner in primary murine neuronal cells, human neuroblastoma cells, and mouse embryonic fibroblasts. Membrane protein from PLTs lacking membrane-bound FasL (FasL(△m/△m)) failed to induce apoptosis. Bax/Bak-mediated mitochondrial apoptosis signaling in target cells was not required for PLT-induced cell death, but increased the apoptotic response to PLT-induced Fas signaling. In vivo, PLT depletion significantly reduced apoptosis in a stroke model and an inflammation-independent model of N-methyl-d-aspartic acid-induced retinal apoptosis. Furthermore, experiments using PLT-specific PF4Cre(+) FasL(fl/fl) mice demonstrated a role of PLT-derived FasL for tissue apoptosis. Because apoptosis secondary to injury prevents inflammation, our findings describe a novel mechanism on how PLTs contribute to tissue homeostasis.

  2. Glycyrrhetinic acid-induced permeability transition in rat liver mitochondria.

    PubMed

    Salvi, Mauro; Fiore, Cristina; Armanini, Decio; Toninello, Antonio

    2003-12-15

    Glycyrrhetinic acid, a hydrolysis product of one of the main constituents of licorice, the triterpene glycoside of glycyrrhizic acid, when added to rat liver mitochondria at micromolar concentrations induces swelling, loss of membrane potential, pyridine nucleotide oxidation, and release of cytochrome c and apoptosis inducing factor. These changes are Ca(2+) dependent and are prevented by cyclosporin A, bongkrekic acid, and N-ethylmaleimide. All these observations indicate that glycyrrhetinic acid is a potent inducer of mitochondrial permeability transition and can trigger the pro-apoptotic pathway. PMID:14637195

  3. Quality and antioxidant properties on sweet cherries as affected by preharvest salicylic and acetylsalicylic acids treatments.

    PubMed

    Giménez, María José; Valverde, Juan Miguel; Valero, Daniel; Guillén, Fabián; Martínez-Romero, Domingo; Serrano, María; Castillo, Salvador

    2014-10-01

    The effects of salicylic acid (SA) or acetylsalicylic acid (ASA) treatments during on-tree cherry growth and ripening on fruit quality attributes, especially those related with the content on bioactive compounds and antioxidant activity were analysed in this research. For this purpose, two sweet cherry cultivars, 'Sweet Heart' and 'Sweet Late', were used and SA or ASA treatments, at 0.5, 1.0 and 2.0mM concentrations, were applied at three key points of fruit development (pit hardening, initial colour changes and onset of ripening). These treatments increased fruit weight and ameliorated quality attributes at commercial harvest, and led to cherries with higher concentration in total phenolics and in total anthocyanins, as well as higher antioxidant activity, in both hydrophilic and lipophilic fractions. Thus, preharvest treatments with SA or ASA could be promising tools to improve sweet cherry quality and health beneficial effects for consumers. PMID:24799232

  4. Simultaneous determination of acetylsalicylic and salicylic acids by first derivative spectrometry in pharmaceutical preparations

    NASA Astrophysics Data System (ADS)

    Rogić, Dunja

    1993-03-01

    A multicomponent first derivative UV spectrometric procedure for determination of acetylsalicylic acid (aspirin) and salicylic acid in the solution containing 1 % (w/v) of citric acid in some pharmaceutical preparations is presented. The method is based on the use of the first derivative minimum spectrometric measurements at 286 nm for aspirin and at 318 nm for salicylic acid. Four kinds of cmmercial Aspirin tablets were assayed without a long pretreatment of the pharmaceuticals from the tablet additives. Beer's law is obeyed from 13.62-68.1 μg ml -1 of aspirin and from 2.723-13.616 μg ml -1 of salicylic acid. Detection limits at the 0.05 level of significance were calculated to be 1.24 and 0.25 μg ml -1 with relative standard deviations of 1.09 % and 1.2 % of aspirin and salicylic acid, respectively.

  5. Quality and antioxidant properties on sweet cherries as affected by preharvest salicylic and acetylsalicylic acids treatments.

    PubMed

    Giménez, María José; Valverde, Juan Miguel; Valero, Daniel; Guillén, Fabián; Martínez-Romero, Domingo; Serrano, María; Castillo, Salvador

    2014-10-01

    The effects of salicylic acid (SA) or acetylsalicylic acid (ASA) treatments during on-tree cherry growth and ripening on fruit quality attributes, especially those related with the content on bioactive compounds and antioxidant activity were analysed in this research. For this purpose, two sweet cherry cultivars, 'Sweet Heart' and 'Sweet Late', were used and SA or ASA treatments, at 0.5, 1.0 and 2.0mM concentrations, were applied at three key points of fruit development (pit hardening, initial colour changes and onset of ripening). These treatments increased fruit weight and ameliorated quality attributes at commercial harvest, and led to cherries with higher concentration in total phenolics and in total anthocyanins, as well as higher antioxidant activity, in both hydrophilic and lipophilic fractions. Thus, preharvest treatments with SA or ASA could be promising tools to improve sweet cherry quality and health beneficial effects for consumers.

  6. Synthesis, characterisation and biological evaluation of copper and silver complexes based on acetylsalicylic acid.

    PubMed

    Rubner, Gerhard; Bensdorf, Kerstin; Wellner, Anja; Bergemann, Silke; Gust, Ronald

    2011-10-01

    Metalcarbonyl complexes with ligands derived from acetylsalicylic acid demonstrated high cytotoxic potential against various tumor cell lines and strong inhibition of the cyclooxygenase enzymes COX-1 and 2. In this study we tried to achieve comparable effects with [alkyne]silver or copper trifluoromethanesulfonate complexes which are more hydrophilic then the uncharged metalcarbonyl derivatives. All compounds were evaluated for growth inhibition against breast (MCF-7, MDA-MB 231) and colon cancer (HT-29) cell lines and for COX-1 and COX-2 inhibitory effects at isolated isoenzymes. Pure ligands showed neither cytotoxic nor COX-inhibitory effects. While the silver complexes of (but-2-ynyl)-2-acetoxybenzoate (But-ASS-Ag) and (but-2-yne-1,4-diyl)-bis(2-acetoxybenzoate) (Di-ASS-But-Ag) were strong cytostatics, only the copper complex Di-ASS-But-Cu was active. At the COX enzymes the complexes were more effective than their ligands and aspirin.

  7. Using Capillary Electrophoresis to Determine the Purity of Acetylsalicylic Acid Synthesized in the Undergraduate Laboratory

    NASA Astrophysics Data System (ADS)

    Welder, Frank; Colyer, Christa L.

    2001-11-01

    Capillary electrophoresis (CE), although a powerful analytical tool, has found only limited application in undergraduate laboratory study. In an effort to expose freshman and sophomore chemistry students to this technique, thereby giving them practical instrumental experience early in their careers, we propose to use CE in the analysis of student-synthesized acetylsalicylic acid (ASA). The synthesis of ASA from salicylic acid (SA) is a routine undergraduate laboratory, although students rarely have the opportunity to test the purity of their product. The CE method described herein provides students with a method to test purity and yield of their product and to determine the effect of aging on their sample. CE can accomplish this in a short period of time, with minimal disruption to the regular laboratory curriculum. Optimized separation conditions, limits of detection, and linear range for ASA and SA are also given.

  8. The absorption of acetylsalicylic acid from the stomach in relation to intragastric pH.

    PubMed

    Dotevall, G; Ekenved, G

    1976-01-01

    A comparative study on the effect of a buffered (pH 6.5) and an unbuffered (pH 2.9) solution of acetylsalicylic acid (ASA) on gastric pH, gastric emptying, and gastric absorption of ASA was performed in 10 healthy volunteers. Gastric pH was recorded using radiotelemetry. Gastric emptying and gastric absorption was studied with an aspiration technique and phenol red as nonabsorbable marker. Administration of the unbuffered solution to the fasting subjects resulted in a gastric pH of about 2 and absorption of ASA from the stomach was found to occur. The buffered solution of ASA increased gastric pH to above 5 and gastric absorption of ASA was found to be significantly less than after the unbuffered solution. The buffered solution was emptied from the stomach more rapidly than the unbuffered one. PMID:12558

  9. Acetylsalicylic-acid-containing drugs and nonsteroidal anti-inflammatory drugs available in Canada

    PubMed Central

    Brigden, M; Smith, R E

    1997-01-01

    A large number of drugs containing acetylsalicylic acid (ASA) and nonsteroidal anti-inflammatory drugs (NSAIDs) are available by prescription and over the counter in Canada. The possibility of serious side effects and drug interactions is therefore high. The authors have compiled a comprehensive list of products containing these drugs from information supplied by pharmaceutical databases, independent marketing researchers and Health Canada's Drug Directorate. Physicians should ensure that additional ASA-containing drugs or NSAIDs are not inadvertently taken by patients, especially those receiving oral anticoagulant therapy or those with a qualitative platelet defect. Patients at risk should be cautioned to check with their physician before taking any new medication, even over-the-counter products. PMID:9099173

  10. Acetylsalicylic acid, aging and coronary artery disease are associated with ABCA1 DNA methylation in men

    PubMed Central

    2014-01-01

    Background Previous studies have suggested that DNA methylation contributes to coronary artery disease (CAD) risk variability. DNA hypermethylation at the ATP-binding cassette transporter A1 (ABCA1) gene, an important modulator of high-density lipoprotein cholesterol and reverse cholesterol transport, has been previously associated with plasma lipid levels, aging and CAD, but the association with CAD has yet to be replicated. Results ABCA1 DNA methylation levels were measured in leucocytes of 88 men using bis-pyrosequencing. We first showed that DNA methylation at the ABCA1 gene promoter locus is associated with aging and CAD occurrence in men (P < 0.05). The latter association is stronger among older men with CAD (≥61 years old; n = 19), who showed at least 4.7% higher ABCA1 DNA methylation levels as compared to younger men with CAD (<61 years old; n = 19) or men without CAD (n = 50; P < 0.001). Higher ABCA1 DNA methylation levels in older men were also associated with higher total cholesterol (r = 0.34, P = 0.03), low-density lipoprotein cholesterol (r = 0.32, P = 0.04) and triglyceride levels (r = 0.26, P = 0.09). Furthermore, we showed that acetylsalicylic acid therapy is associated with 3.6% lower ABCA1 DNA methylation levels (P = 0.006), independent of aging and CAD status of patients. Conclusions This study provides new evidence that the ABCA1 epigenetic profile is associated with CAD and aging, and highlights that epigenetic modifications might be a significant molecular mechanism involved in the pathophysiological processes associated with CAD. Acetylsalicylic acid treatment for CAD prevention might involve epigenetic mechanisms. PMID:25093045

  11. [Absolute bioavailability of a special sustained-release acetylsalicylic acid formulation].

    PubMed

    Lücker, P W; Swoboda, M; Wetzelsberger, N

    1989-03-01

    Absolute Bioavailability of a Special Acetylsalicylic Acid Sustained Release Formulation. The absolute bioavailability of an acetylsalicylic acid (ASA) sustained release formulation (Contrheuma retard), containing 300 mg ASA as initial dose and 350 mg in a retard formulation, was determined in comparison to a standard ASA solution for intravenous administration in a two-treatment, two-period cross-over trial with 6 healthy male volunteers by comparing the areas under the plasma-fluctuation-time curves of the primary metabolite. In addition, it was examined by comparison of the mean times after administration of both formulations, whether the test formulation meets the requirements of a sustained release formulation. The investigations led to the following results: The absolute bioavailability of the test formulation was 95%. The statistical comparison of the areas under the concentration-time courses allowed no decision (neither for equivalence nor difference). The maximal concentration of SA after intravenous administration of the standard formulation was reached after 0.4 h on an average and amounted to 62 micrograms/ml. After oral administration of the test formulation, a mean concentration maximum of 28 micrograms/ml was calculated, which had been reached after about 2 h. The differences are statistically significant. The mean time for SA was 6 h after the standard formulation, whereas after administration of the test compound, a mean of 11.5 h was calculated. 24 h following administration, the concentration of SA was 1.3 micrograms/ml after intravenous administration of the standard formulation and 5.5 micrograms/ml after administration of the test formulation. These differences, too, are statistically significant. From the comparison of the mean time for SA, a retard factor of 1.9 was calculated. PMID:2757664

  12. Orexin A attenuates palmitic acid-induced hypothalamic cell death.

    PubMed

    Duffy, Cayla M; Nixon, Joshua P; Butterick, Tammy A

    2016-09-01

    Palmitic acid (PA), an abundant dietary saturated fatty acid, contributes to obesity and hypothalamic dysregulation in part through increase in oxidative stress, insulin resistance, and neuroinflammation. Increased production of reactive oxygen species (ROS) as a result of PA exposure contributes to the onset of neuronal apoptosis. Additionally, high fat diets lead to changes in hypothalamic gene expression profiles including suppression of the anti-apoptotic protein B cell lymphoma 2 (Bcl-2) and upregulation of the pro-apoptotic protein B cell lymphoma 2 associated X protein (Bax). Orexin A (OXA), a hypothalamic peptide important in obesity resistance, also contributes to neuroprotection. Prior studies have demonstrated that OXA attenuates oxidative stress induced cell death. We hypothesized that OXA would be neuroprotective against PA induced cell death. To test this, we treated an immortalized hypothalamic cell line (designated mHypoA-1/2) with OXA and PA. We demonstrate that OXA attenuates PA-induced hypothalamic cell death via reduced caspase-3/7 apoptosis, stabilization of Bcl-2 gene expression, and reduced Bax/Bcl-2 gene expression ratio. We also found that OXA inhibits ROS production after PA exposure. Finally, we show that PA exposure in mHypoA-1/2 cells significantly reduces basal respiration, maximum respiration, ATP production, and reserve capacity. However, OXA treatment reverses PA-induced changes in intracellular metabolism, increasing basal respiration, maximum respiration, ATP production, and reserve capacity. Collectively, these results support that OXA protects against PA-induced hypothalamic dysregulation, and may represent one mechanism through which OXA can ameliorate effects of obesogenic diet on brain health. PMID:27449757

  13. Acetylsalicylic acid regulates MMP-2 activity and inhibits colorectal invasion of murine B16F0 melanoma cells in C57BL/6J mice: effects of prostaglandin F(2)alpha.

    PubMed

    Tsai, Chin-Shaw Stella; Luo, Shue-Fen; Ning, Chung-Chu; Lin, Chien-Liang; Jiang, Ming-Chung; Liao, Ching-Fong

    2009-08-01

    Epidemiological studies indicate that acetylsalicylic acid may reduce the risk of mortality due to colon cancers. Metastasis is the major cause of cancer death. Matrix metalloproteinases (MMPs) play important roles in tumor invasion regulation, and prostaglandin F(2)alpha (PGF(2)alpha) is a key stimulator of MMP production. Thus, we investigated whether acetylsalicylic acid regulated MMP activity and the invasion of cancer cells and whether PGF(2)alpha attenuated acetylsalicylic acid-inhibited invasion of cancer cells. Gelatin-based zymography assays showed that acetylsalicylic acid inhibited the MMP-2 activity of B16F0 melanoma cells. Matrigel-based chemoinvasion assays showed that acetylsalicylic acid inhibited the invasion of B16F0 cells. Acetylsalicylic acid can inhibit PGF(2)alpha synthesis and PGF(2)alpha is a key stimulator of MMP-2 production. Our data showed that PGF(2)alpha treatment attenuated the acetylsalicylic acid-inhibited invasion of B16F0 cells. In animal experiments, acetylsalicylic acid reduced colorectal metastasis of B16F0 cells in C57BL/6J mice by 44%. Our results suggest that PGF(2)alpha is a therapeutic target for metastasis inhibition and acetylsalicylic acid may possess anti-metastasis ability.

  14. Effect of tocopherol and acetylsalicylic acid on the biochemical indices of blood in dioxin-exposed rats.

    PubMed

    Rosińczuk, Joanna; Całkosiński, Ireneusz

    2015-07-01

    New sources of dioxins and increased dioxin concentrations in the environment, coupled with their increased bioavailability along the food chain and accumulation in adipose tissues, contribute to various adverse long-term biological effects. The purpose of the study was to determine whether tocopherol protects the CNS by decreasing the pro-inflammatory influence of free radicals generated by TCDD; whether acetylsalicylic acid inhibits the production of inflammatory mediators; and whether the combined administration of tocopherol and acetylsalicylic acid to TCDD-exposed rats has a potential CNS-protective effect. The study included 117 rats divided into 8 groups: 75 female and 12 male Buffalo rats aged 8-10 weeks, weighing 140-160 g; as well as 30 female rats aged 6 weeks and weighing 120 g, which were the offspring of females from each study group. In the experiment, the following substances were used: 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), dosed at 5 μg/kg BW and 12.5 μg/kg BW, diluted in a 1% DMSO solution at the concentration of 1 μg/ml; α-tocopherol acetate, dosed at 30 mg/kg BW, in 0.2 ml of oil solution; and acetylsalicylic acid, 50mg/kg BW, suspended in 0.5 ml of starch solution, administered orally using a feeding tube. Pleurisy was induced by an injection of 0.15 ml of 1% carrageenin solution. The use of tocopherol reduces the adverse effects of the inflammatory reaction induced by TCDD. Administering tocopherol improves protein metabolism by reducing protein catabolism, and raises γ-globulin fraction levels. Combined acetylsalicylic acid and tocopherol suppress catabolic processes accompanying inflammation.

  15. Effect of tocopherol and acetylsalicylic acid on the biochemical indices of blood in dioxin-exposed rats.

    PubMed

    Rosińczuk, Joanna; Całkosiński, Ireneusz

    2015-07-01

    New sources of dioxins and increased dioxin concentrations in the environment, coupled with their increased bioavailability along the food chain and accumulation in adipose tissues, contribute to various adverse long-term biological effects. The purpose of the study was to determine whether tocopherol protects the CNS by decreasing the pro-inflammatory influence of free radicals generated by TCDD; whether acetylsalicylic acid inhibits the production of inflammatory mediators; and whether the combined administration of tocopherol and acetylsalicylic acid to TCDD-exposed rats has a potential CNS-protective effect. The study included 117 rats divided into 8 groups: 75 female and 12 male Buffalo rats aged 8-10 weeks, weighing 140-160 g; as well as 30 female rats aged 6 weeks and weighing 120 g, which were the offspring of females from each study group. In the experiment, the following substances were used: 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), dosed at 5 μg/kg BW and 12.5 μg/kg BW, diluted in a 1% DMSO solution at the concentration of 1 μg/ml; α-tocopherol acetate, dosed at 30 mg/kg BW, in 0.2 ml of oil solution; and acetylsalicylic acid, 50mg/kg BW, suspended in 0.5 ml of starch solution, administered orally using a feeding tube. Pleurisy was induced by an injection of 0.15 ml of 1% carrageenin solution. The use of tocopherol reduces the adverse effects of the inflammatory reaction induced by TCDD. Administering tocopherol improves protein metabolism by reducing protein catabolism, and raises γ-globulin fraction levels. Combined acetylsalicylic acid and tocopherol suppress catabolic processes accompanying inflammation. PMID:26056971

  16. Differential roles of unsaturated and saturated fatty acids on autophagy and apoptosis in hepatocytes.

    PubMed

    Mei, Shuang; Ni, Hong-Min; Manley, Sharon; Bockus, Abigail; Kassel, Karen M; Luyendyk, James P; Copple, Bryan L; Ding, Wen-Xing

    2011-11-01

    Fatty acid-induced lipotoxicity plays a critical role in the pathogenesis of nonalcoholic liver disease. Saturated fatty acids and unsaturated fatty acids have differential effects on cell death and steatosis, but the mechanisms responsible for these differences are not known. Using cultured HepG2 cells and primary mouse hepatocytes, we found that unsaturated and saturated fatty acids differentially regulate autophagy and apoptosis. The unsaturated fatty acid, oleic acid, promoted the formation of triglyceride-enriched lipid droplets and induced autophagy but had a minimal effect on apoptosis. In contrast, the saturated fatty acid, palmitic acid, was poorly converted into triglyceride-enriched lipid droplets, suppressed autophagy, and significantly induced apoptosis. Subsequent studies revealed that palmitic acid-induced apoptosis suppressed autophagy by inducing caspase-dependent Beclin 1 cleavage, indicating cross-talk between apoptosis and autophagy. Moreover, our data suggest that the formation of triglyceride-enriched lipid droplets and induction of autophagy are protective mechanisms against fatty acid-induced lipotoxicity. In line with our in vitro findings, we found that high-fat diet-induced hepatic steatosis was associated with autophagy in the mouse liver. Potential modulation of autophagy may be a novel approach that has therapeutic benefits for obesity-induced steatosis and liver injury. PMID:21856859

  17. Low-dose acetylsalicylic acid (100 mg/day) after aortocoronary bypass surgery: a placebo-controlled trial.

    PubMed Central

    Meister, W; von Schacky, C; Weber, M; Lorenz, R; Kotzur, J; Reichart, B; Theisen, K; Weber, P C

    1984-01-01

    The effect of low-dose acetylsalicylic acid (100 mg/day) upon bypass patency-rate and clinical course after aortocoronary bypass surgery was investigated in a randomized, placebo-controlled clinical trial. Sixty patients with 143 distal anastomoses of bypasses were randomized, 46 underwent repeat angiography after 4 months. Using the intention to treat-strategy, treatment was superior to placebo as judged by bypass patency rate and occurrence of cardiovascular complications or death. Counting the six drop-outs as failures, only nine of the 31 patients of the placebo group, but 16 of the 29 patients of the treatment group were considered successes (P less than 0.04). Eighteen patients in the placebo group and eight patients of the treatment group received beta-adrenoceptor blockers postoperatively, suggesting again a favourable effect of the treatment. Adverse drug reactions were very rare and minor. Supported by pathophysiological insights and positive trends in similar trials, the positive result justifies the recommendation of prescribing 100 mg of acetylsalicylic acid once daily to all patients without contraindications after aortocoronary bypass surgery. The positive result of this trial warrants further clinical trials of low-dose acetylsalicylic acid for other indications in arterial diseases. PMID:6378232

  18. Inhibition of Calcium Influx Reduces Dysfunction and Apoptosis in Lipotoxic Pancreatic β-Cells via Regulation of Endoplasmic Reticulum Stress

    PubMed Central

    Wang, Ting; Chen, Kaixian; Zhu, Weiliang; Wang, Heyao

    2015-01-01

    Lipotoxicity plays an important role in pancreatic β-cell failure during the development of type 2 diabetes. Prolonged exposure of β-cells to elevated free fatty acids level could cause deterioration of β-cell function and induce cell apoptosis. Therefore, inhibition of fatty acids-induced β-cell dysfunction and apoptosis might provide benefit for the therapy of type 2 diabetes. The present study examined whether regulation of fatty acids-triggered calcium influx could protect pancreatic β-cells from lipotoxicity. Two small molecule compounds, L-type calcium channel blocker nifedipine and potassium channel activator diazoxide were used to inhibit palmitic acid-induced calcium influx. And whether the compounds could reduce palmitic acid-induced β-cell failure and the underlying mechanism were also investigated. It was found that both nifedipine and diazoxide protected MIN6 pancreatic β-cells and primary cultured murine islets from palmitic acid-induced apoptosis. Meanwhile, the impaired insulin secretion was also recovered to varying degrees by these two compounds. Our results verified that nifedipine and diazoxide could reduce palmitic acid-induced endoplasmic reticulum stress to generate protective effects on pancreatic β-cells. More importantly, it suggested that regulation of calcium influx by small molecule compounds might provide benefits for the prevention and therapy of type 2 diabetes. PMID:26147439

  19. Standardized Extract of Bacopa monniera Attenuates Okadaic Acid Induced Memory Dysfunction in Rats: Effect on Nrf2 Pathway

    PubMed Central

    Nagarajan, Rajasekar; Hanif, Kashif; Siddiqui, Hefazat Husain; Nath, Chandishwar

    2013-01-01

    The aim of the present study is to investigate the effect of standardized extract of Bacopa monnieri (memory enhancer) and Melatonin (an antioxidant) on nuclear factor erythroid 2 related factor 2 (Nrf2) pathway in Okadaic acid induced memory impaired rats. OKA (200 ng) was administered intracerebroventricularly (ICV) to induce memory impairment in rats. Bacopa monnieri (BM-40 and 80 mg/kg) and Melatonin (20 mg/kg) were administered 1 hr before OKA injection and continued daily up to day 13. Memory functions were assessed by Morris water maze test on days 13–15. Rats were sacrificed for biochemical estimations of oxidative stress, neuroinflammation, apoptosis, and molecular studies of Nrf2, HO1, and GCLC expressions in cerebral cortex and hippocampus brain regions. OKA caused a significant memory deficit with oxidative stress, neuroinflammation, and neuronal loss which was concomitant with attenuated expression of Nrf2, HO1, and GCLC. Treatment with BM and Melatonin significantly improved memory dysfunction in OKA rats as shown by decreased latency time and path length. The treatments also restored Nrf2, HO1, and GCLC expressions and decreased oxidative stress, neuroinflammation, and neuronal loss. Thus strengthening the endogenous defense through Nrf2 modulation plays a key role in the protective effect of BM and Melatonin in OKA induced memory impairment in rats. PMID:24078822

  20. Effects of caffeine and paracetamol alone or in combination with acetylsalicylic acid on prostaglandin E(2) synthesis in rat microglial cells.

    PubMed

    Fiebich, B L; Lieb, K; Hüll, M; Aicher, B; van Ryn, J; Pairet, M; Engelhardt, G

    2000-08-23

    Paracetamol has mild analgesic and antipyretic properties and is, along with acetylsalicylic acid, one of the most popular "over the counter" analgesic agents. However, the mechanism underlying its clinical effects is unknown. Another drug whose mechanism of action is unknown is caffeine, which is often used in combination with other analgesics, augmenting their effect. We investigated the inhibitory effect of paracetamol and caffeine on lipopolysaccharide (LPS)-induced cyclooxygenase (COX)- and prostaglandin (PG)E(2)-synthesis in primary rat microglial cells and compared it with the effect of acetylsalicylic acid, salicylic acid, and dipyrone. Furthermore, combinations of these drugs were used to investigate a possible synergistic inhibitory effect on PGE(2)-synthesis. Both paracetamol (IC(50)=7.45 microM) and caffeine (IC(50)=42.5 microM) dose-dependently inhibited microglial PGE(2) synthesis. In combination with acetylsalicylic acid (IC(50)=3.12 microM), both substances augmented the inhibitory effect of acetylsalicylic acid on LPS-induced PGE(2)-synthesis. Whereas paracetamol inhibited only COX enzyme activity, caffeine also inhibited COX-2 protein synthesis. These results are compatible with the view that the clinical activity of paracetamol and caffeine is due to inhibition of COX. Furthermore, these results may help explain the clinical experience of an adjuvant analgesic effect of caffeine and paracetamol when combined with acetylsalicylic acid.

  1. Changes of cytokine production and cell viability of peripheral blood mononuclear cells from silicosis patients: effect of in vitro treatment with acetylsalicylic acid.

    PubMed

    Dobreva, Zlatka Georgieva; Prakova, Gospodinka Radeva; Slavov, Emil Slavov; Stanilova, Spaska Angelova

    2010-02-01

    In this study, IL-6 and IL-12p40 production and cell viability of peripheral blood mononuclear cells from silicosis patients after in vitro stimulation were investigated. Furthermore, the effects of introducing acetylsalicylic acid to stimulated patients' peripheral blood mononuclear cells on cytokine production and cell viability were determined. Nine patients with moderate silicosis, 11 with severe silicosis and 14 healthy subjects were recruited for this study. The level of IL-6 produced by patients peripheral blood mononuclear cells decreased depending on the stage of the disease. The addition of acetylsalicylic acid had significantly suppressive effect on the IL-6 production by lipopolysaccharide-stimulated patients' peripheral blood mononuclear cells. Acetylsalicylic acid treatment of C3 binding glycoprotein-stimulated patients' peripheral blood mononuclear cells led to significant upregulation of IL-12p40 production. Results showed a stage-dependent decrease of cell viability of peripheral blood mononuclear cells from silicosis patients. Acetylsalicylic acid significantly decreased cell viability entirely in stimulated peripheral blood mononuclear cells from patients with severe silicosis. In conclusion, this study showed that the disease progression affects peripheral blood mononuclear cells in patients with silicosis and causes functional changes that became apparent after stimulation. Our study demonstrated that in severe silicosis the treatment with acetylsalicylic acid, as an anti-inflammatory agent, might not be beneficial for patients.

  2. Development and validation of a liquid chromatographic method for purity control of clopidogrel-acetylsalicylic acid in combined oral dosage forms.

    PubMed

    Kahsay, Getu; Van Schepdael, Ann; Adams, Erwin

    2012-03-01

    A reversed phase liquid chromatographic method with UV detection for the simultaneous determination of clopidogrel and acetylsalicylic acid and their related substances in combined oral formulations was developed and validated. Good separation was achieved on a Luna C18 column (150 mm × 4.6 mm, 3 μm) using gradient elution at a flow rate of 1 mL/min and a column temperature of 35 °C. UV detection was performed at 220 nm. The validation was performed according to the ICH guidelines. The method proved to be specific, sensitive (LOQ=0.975 μg/mL and 0.0384 μg/mL for clopidogrel and acetylsalicylic acid, respectively), linear in the concentration range from LOQ to 325 μg/mL for clopidogrel and from LOQ to 650 μg/mL for acetylsalicylic acid, precise (RSD values for intermediate precision <1%) and accurate with mean recovery values of 100.7% and 100.2% for clopidogrel and acetylsalicylic acid, respectively. Moreover, the solution stability and method robustness were examined. The method gives satisfactory separation of impurities of clopidogrel and acetylsalicylic acid and so it is suitable for quantification of the related substances as well as for the assay of the actives. PMID:22226416

  3. Hypersensitivity to acetylsalicylic acid (ASA) and tartrazine in patients with asthma.

    PubMed

    Stenius, B S; Lemola, M

    1976-03-01

    One-hundred and forty asthmatics were tested perorally with acetylsalicylic acid (ASA), and/or with the azo-colour tartrazine; a fall in PEF of more than 20% was accepted as a positive result. About one quarter of the patients displayed a positive reaction to one of the two tested agents. No significant correlation was found between the reactions of these, and the presence of atopy, nasal polyposis, sinusitis, rhinitis, sensitivity to cold air, the age at onset, duration of asthma, or history of sensitivity to alcoholic drinks. The history suggested sensitivity to ingested, possibly coloured, food and drink, in only about one third of the tartrazine-positive cases. The ASA provocation tests were mainly applied to patients with doubtful or negative histories of sensitivity to ASA-containing drugs. The frequency of cross-reactivity between the two tested agents was statistically significant; patients reacting to tartrazine were for the most part, also sensitive to ASA. Tests for sensitivity to analgesics and food additives should be conducted as a routine measure in asthmatics, and sensitive patients should be given information on suitable medication and dietary control. PMID:1277437

  4. Acetylsalicylic acid enhances tachyphylaxis of repetitive capsaicin responses in TRPV1-GFP expressing HEK293 cells.

    PubMed

    Maurer, Kristina; Binzen, Uta; Mörz, Handan; Bugert, Peter; Schedel, Angelika; Treede, Rolf-Detlef; Greffrath, Wolfgang

    2014-03-20

    Since many years acetylsalicylic acid (ASA) is known for its antithrombotic, antiphlogistic and analgesic effects caused by irreversible acetylation of cyclooxygenase. ASA also inhibits capsaicin- and heat-induced responses in cultured dorsal root ganglia (DRG) neurons, suggesting TRPV1 (transient receptor potential channel of the vanilloid receptor family, subtype 1) to be an additional target of ASA. We now studied the effect of ASA on heterologously expressed rat TRPV1 using calcium microfluorimetry. Capsaicin dose-dependently increased intracellular calcium with an EC50 of 0.29 μM in rTRPV1 expressing HEK293 cells. During repetitive stimulation the second response to capsaicin was reduced (53.4 ± 8.3% compared to vehicle control; p<0.005; Student's unpaired t-test) by 1μM ASA, a concentration much below the one needed to inhibit cyclooxygenase (IC50 of 35 μM in thromboxane B2 production assay). In contrast, calcium transients induced by a single stimulus of 0.3 or 1 μM capsaicin were not significantly reduced by 0.3 or 1 μM ASA. These data suggest that ASA increases the tachyphylaxis of rTRPV1 channel activation. Mechanisms are unknown and may be direct by e.g. stabilization of the desensitized state or indirect via inhibition of intracellular signaling pathways e.g. of the mitogen-activated protein kinase family (MAPK/ERK).

  5. Acetylsalicylic acid inhibits IL-18-induced cardiac fibroblast migration through the induction of RECK.

    PubMed

    Siddesha, Jalahalli M; Valente, Anthony J; Sakamuri, Siva S V P; Gardner, Jason D; Delafontaine, Patrice; Noda, Makoto; Chandrasekar, Bysani

    2014-07-01

    The pathogenesis of cardiac fibrosis and adverse remodeling is thought to involve the ROS-dependent induction of inflammatory cytokines and matrix metalloproteinases (MMPs), and the activation and migration of cardiac fibroblasts (CF). Here we investigated the role of RECK (reversion-inducing-cysteine-rich protein with Kazal motifs), a unique membrane-anchored MMP regulator, on IL-18-induced CF migration, and the effect of acetylsalicylic acid (ASA) on this response. In a Matrigel invasion assay, IL-18-induced migration of primary mouse CF was dependent on both IKK/NF-κB- and JNK/AP-1-mediated MMP9 induction and Sp1-mediated RECK suppression, mechanisms that required Nox4-dependent H(2)O(2) generation. Notably, forced expression of RECK attenuated IL-18-induced MMP9 activation and CF migration. Further, therapeutic concentrations of ASA inhibited IL-18-induced H(2)O(2) generation, MMP9 activation, RECK suppression, and CF migration. The salicylic acid moiety of ASA similarly attenuated IL-18-induced CF migration. Thus, ASA may exert potential beneficial effect in cardiac fibrosis through multiple protective mechanisms.

  6. Low-dose acetylsalicylic acid and bleeding risks with ventriculoperitoneal shunt placement.

    PubMed

    Kamenova, Maria; Croci, Davide; Guzman, Raphael; Mariani, Luigi; Soleman, Jehuda

    2016-09-01

    OBJECTIVE Ventriculoperitoneal (VP) shunt placement is a common procedure for the treatment of hydrocephalus following diverse neurosurgical conditions. Most of the patients present with other comorbidities and receive antiplatelet therapy, usually acetylsalicylic acid (ASA). Despite its clinical relevance, the perioperative management of these patients has not been sufficiently investigated. The aim of this study was to compare the peri- and postoperative bleeding complication rates associated with ASA intake in patients undergoing VP shunt placement. METHODS Of 172 consecutive patients undergoing VP shunt placement between June 2009 and December 2015, 40 (23.3%) patients were receiving low-dose ASA treatment. The primary outcome measure was bleeding events in ASA users versus nonusers, whereas secondary outcome measures were postoperative cardiovascular events, hematological findings, morbidity, and mortality. A subgroup analysis was conducted in patients who discontinued ASA treatment for < 7 days (n = 4, ASA Group 1) and for ≥ 7 days (n = 36, ASA Group 2). RESULTS No statistically significant difference for bleeding events was observed between ASA users and nonusers (p = 0.30). Cardiovascular complications, surgical morbidity, and mortality did not differ significantly between the groups either. Moreover, there was no association between ASA discontinuation regimens (< 7 days and ≥ 7 days) and hemorrhagic events. CONCLUSIONS Given the lack of guidelines regarding perioperative management of neurosurgical patients with antiplatelet therapy, these findings elucidate one issue, showing comparable bleeding rates in ASA users and nonusers undergoing VP shunt placement. PMID:27581316

  7. Effects of acetylsalicylic acid on germination, growth and chlorophyll amounts of cucumber (Cucumis sativus L.) seeds.

    PubMed

    Canakci, Songül; Munzuroğlu, Omer

    2007-09-01

    Germination activities, various growth parameters (primary root length, hypocotyl length, primary leaf length, plant length and increase in fresh weight) and chlorophyll (a+b) amounts of cucumber seeds exposed to 0, 10(-5), 10(-4), 10(-3) and 0.5x 10(-2) M aqueous solutions of acetylsalicylic acid (ASA) for 48 h were established. While 0.5x 10(-2) M ASA significantly prevented germination activity of the seeds, other concentrations did not produce any effect, either positive or negative. Meanwhile, 0.5x 10(-2) M ASA inhibited radicle growth of the germinated seeds, while 10(-5) M ASA increased radicle growth. Other concentrations of ASA did not affect radicle growth. The following findings were obtained from the one-week seedlings exposed to ASA for 48 h: 0.5x10(-2) M ASA prevented growth (lengthening) of root, hypocotyl, leaf and plant and increased chlorophyll (a+b) amount with an increase in fresh weight. Contrary to 0.5x 10(-2) M ASA application, these features of the seedlings (except for the leaf length) were encouraged by 10(-5) M ASA. 10(-3)) M ASA only prevented root growth and reduced chlorophyll (a+b) amount. Other concentrations of ASA did not bring about any positive or negative effect on the features studied.

  8. Acacia-gelatin microencapsulated liposomes: preparation, stability, and release of acetylsalicylic acid.

    PubMed

    Dong, C; Rogers, J A

    1993-01-01

    Liposomes of dipalmitoylphosphatidylcholine (DPPC) containing acetylsalicylic acid (ASA) have been microencapsulated by acacia-gelatin using the complex coacervation technique as a potential oral drug delivery system. The encapsulation efficiency of ASA was unaltered by the microencapsulation process. The stability of the microencapsulated liposomes in sodium cholate solutions at pH 5.6 was much greater than the corresponding liposomes. The optimum composition and conditions for stability and ASA release were 3.0% acacia-gelatin and a 1- to 2-hr formaldehyde hardening time. Approximately 25% ASA was released in the first 6 hr from microencapsulated liposomes at 23 degrees C and the kinetics followed matrix-controlled release (Q varies; is directly proportional to t1/2). At 37 degrees C, this increased to 75% released in 30 min followed by a slow constant release, likely due to lowering of the phase transition temperature of DPPC by the acacia-gelatin to near 37 degrees C. At both temperatures, the release from control liposomes was even more rapid. Hardening times of 4 hr and an acacia-gelatin concentration of 5% resulted in a lower stability of liposomes and a faster release of ASA. It is concluded that under appropriate conditions the microencapsulation of liposomes by acacia-gelatin may increase their potential as an oral drug delivery system. PMID:8430052

  9. Effect of controlled local acetylsalicylic acid release on in vitro platelet adhesion to vascular grafts.

    PubMed

    Hall, J D; Rittgers, S E; Schmidt, S P

    1994-04-01

    Thrombosis is the most serious acute problem for small diameter arterial bypass grafts. In this research, small diameter expanded polytetrafluoroethylene (e-PTFE) vascular grafts were coated with acetylsalicylic acid (ASA) loaded poly (d,l-lactide) (PLA) by a solvent casting method. The feasibility and efficacy of this approach were evaluated by ASA release studies and platelet adhesion tests. First, the ASA release kinetics were evaluated from the ASA/PLA coated vascular grafts in an in vitro steady flow loop model. ASA release was measured by a spectrophotometric technique. Finally, the efficacy of local ASA release to reduce in vitro canine platelet adhesion to grafts was determined with epifluorescent video microscopy and quantitative image analysis. The steady state release rates from the 5%, 10%, and 15% ASA/PLA coated grafts were 13.2 x 10(-5), 32.0 x 10(-5), and 41.5 x 10(-5) micrograms/cm2.sec, respectively. Platelet adhesion to 10% and 15% ASA/PLA coated grafts was reduced with respect to the control and 5% grafts for 10 days. Platelet adhesion to 5% ASA/PLA coated grafts was reduced with respect to controls at 2 and 10 days, but not initially. PMID:8064590

  10. Demonstration of the analgesic efficacy and dose-response of acetylsalicylic acid with pseudoephedrine.

    PubMed

    Schachtel, Bernard P; Voelker, Michael; Sanner, Kathleen M; Gagney, Diana; Bey, Mary; Schachtel, Emily J; Becka, Michael

    2010-12-01

    To determine acute analgesia by acetylsalicylic acid (ASA) when combined with pseudoephedrine (PSE) in patients with upper respiratory tract infection (URTI), we used the sore throat pain model to measure single-dose effects of ASA 500 mg/PSE 30 mg, ASA 1000 mg/PSE 60 mg, and acetaminophen (APAP) 1000 mg/PSE 60 mg (serving as a positive control). Under double-blind, randomized, placebo-controlled conditions, 640 adult patients with confirmed acute pharyngitis and rhinosinusitis associated with URTI rated throat pain intensity and relief at intervals over 6 hours. Efficacy was demonstrated for both doses of ASA/PSE compared with placebo for all end points, including total pain relief and summed pain intensity differences, beginning at 20 minutes on both scales (all P < .05), and the efficacy of APAP/PSE compared with placebo was confirmed (P < .01). Greater differences in pain relief and intensity were also demonstrated between the higher and lower doses of ASA/PSE (P < .05), in particular, among 329 patients with severe pain, as well as between ASA 1000 mg/PSE 60 mg and APAP 1000 mg/PSE 60 mg (P < .05). No serious adverse events were reported. This study demonstrates that ASA is a well-tolerated and effective analgesic in 500- and 1000-mg doses when combined with pseudoephedrine.

  11. In search of pure liquid salt forms of aspirin: ionic liquid approaches with acetylsalicylic acid and salicylic acid.

    PubMed

    Bica, Katharina; Rijksen, Christiaan; Nieuwenhuyzen, Mark; Rogers, Robin D

    2010-02-28

    We present an ionic liquid (IL) approach towards a dual functional liquid salt form of aspirin using different pharmaceutically active cations composed of antibacterials, analgesics, local anesthetics, and antiarrhythmic drugs in combination with acetylsalicylic acid or its metabolite salicylic acid and discuss stability of these ILs in comparison to solid salts. Several low-melting or liquid salts of salicylic acid with dual functionality and promising properties were isolated and characterized; however, although such ILs with aspirin could be prepared, they suffer from limited stability and slowly decompose into the corresponding salicylate ILs when exposed to moisture.

  12. Structural diversity of solid dispersions of acetylsalicylic acid as seen by solid-state NMR.

    PubMed

    Policianova, Olivia; Brus, Jiri; Hruby, Martin; Urbanova, Martina; Zhigunov, Alexander; Kredatusova, Jana; Kobera, Libor

    2014-02-01

    Solid dispersions of active pharmaceutical ingredients are of increasing interest due to their versatile use. In the present study polyvinylpyrrolidone (PVP), poly[N-(2-hydroxypropyl)-metacrylamide] (pHPMA), poly(2-ethyl-2-oxazoline) (PEOx), and polyethylene glycol (PEG), each in three Mw, were used to demonstrate structural diversity of solid dispersions. Acetylsalicylic acid (ASA) was used as a model drug. Four distinct types of the solid dispersions of ASA were created using a freeze-drying method: (i) crystalline solid dispersions containing nanocrystalline ASA in a crystalline PEG matrix; (ii) amorphous glass suspensions with large ASA crystallites embedded in amorphous pHPMA; (iii) solid solutions with molecularly dispersed ASA in rigid amorphous PVP; and (iv) nanoheterogeneous solid solutions/suspensions containing nanosized ASA clusters dispersed in a semiflexible matrix of PEOx. The obtained structural data confirmed that the type of solid dispersion can be primarily controlled by the chemical constitutions of the applied polymers, while the molecular weight of the polymers had no detectable impact. The molecular structure of the prepared dispersions was characterized using solid-state NMR, wide-angle X-ray scattering (WAXS), and differential scanning calorimetry (DSC). By applying various (1)H-(13)C and (1)H-(1)H correlation experiments combined with T1((1)H) and T1ρ((1)H) relaxation data, the extent of the molecular mixing was determined over a wide range of distances, from intimate intermolecular contacts (0.1-0.5 nm) up to the phase-separated nanodomains reaching ca. 500 nm. Hydrogen-bond interactions between ASA and polymers were probed by the analysis of (13)C and (15)N CP/MAS NMR spectra combined with the measurements of (1)H-(15)N dipolar profiles. Overall potentialities and limitations of individual experimental techniques were thoroughly evaluated.

  13. Acetylsalicylic acid (ASA) - How much, how often, and when? A clinical-pharmacological perspective.

    PubMed

    Loew, Dieter; Belz, Gustav G

    2016-08-01

    The dose of acetylsalicylic acid (ASA) commonly used in the prevention and treatment of arteriosclerotic angiopathies is equal to or less than 100 mg daily. This choice of dose is predominantly based on molecular-pharmacological findings showing an inhibition in synthesis of the prothrombotic thromboxane (TXB2) and an irreversible inhibition in blood platelet aggregation. However, an analysis of ASA dose-effect relationships for doses of 50 - 500 mg (PO and IV) shows that doses of ASA up to 100 mg daily produce only a small or moderate inhibition in collagen/epinephrine-induced platelet aggregation and have no significant effect on the important platelet factors, PF3 and PF4. Doses of ASA 300 - 500 mg, on the other hand, inhibit platelet aggregation almost completely and, in addition, produce a 50 - 70% inhibition in PF3 and PF4 lasting at least 24 hours. There is also evidence that doses of ASA above 100 mg daily markedly inhibit thromboxane synthesis for up to 24 hours and that doses of 500 mg daily produce a clinically relevant inhibition in platelet adhesion to vessel walls for up 72 hours and prevent procoagulatory shape changes for up to 12 hours. These findings suggest that a dose of ≥ 300 mg at intervals of 2 - 3 days would be more appropriate for primary and secondary prophylaxis of arteriosclerotic angiopathies and that the benefit-risk ratio would be greater because of the increased availability of mucoprotective prostaglandins, PGI2 (prostacyclin) and the gastroprotective, PGE2. Our viewpoint, predominantly based on findings with biomarkers, could serve as a basis for further randomized controlled studies.

  14. Alterations in rat intestinal mucin patterns following luminal infusion of acetylsalicylic acid and prostaglandin derivatives.

    PubMed

    Satchithanandam, S; Cassidy, M M; Kharroubi, A T; Calvert, R J; Leeds, A R; Vahouny, G V

    1990-12-01

    The secretion of gastrointestinal mucin and/or the formation of mucoid caps have been implicated in cytoprotective or repair mechanisms related to mucosal injury models. In this study, rats were treated with acetylsalicylic acid (ASA) or prostaglandins (PG), and their effects on the synthesis and secretion of small intestinal mucin were examined. A newly developed polyclonal antibody to rat intestinal mucin was used for immunoassay of rat intestinal luminal and tissue mucin. The mucin antigen source was obtained by vacuum aspiration of luminal mucus. A high-molecular-weight glycoprotein (2 x 10(6) Da) fraction injected into rabbits produced a primary mucin antibody. A sensitive and quantitative enzyme-linked immunosorbent assay (ELISA) was developed that yielded a highly reproducible and linear response with mucin aliquots containing 0-20 ng of protein/ml. Incorporation of the plasma tracers ([3H]glucose and [35S]sodium sulfate) into mucin derived from hexadecyltrimethylammonium bromide precipitation after treatment with ASA (100 mg/kg body wt) decreased, although administration of dimethylprostaglandin E2 (100 micrograms/kg body wt) significantly increased the specific tracer incorporation values for the sialomucin and sulfomucin indices in luminal mucin fractions. The immunoassay data pattern for the ELISA technique was virtually identical to the results of the radiolabeled tracer method obtained for the same pharmacologic treatments. These experiments demonstrate that the estimation of synthesized mucin (tissue source) or secreted mucin (luminal source) as determined by the ELISA technique is similar to that obtained by the time-consuming and labor-intensive tracer incorporation methodology. PMID:1701376

  15. Acid-induced aggregation propensity of nivolumab is dependent on the Fc.

    PubMed

    Liu, Boning; Guo, Huaizu; Xu, Jin; Qin, Ting; Xu, Lu; Zhang, Junjie; Guo, Qingcheng; Zhang, Dapeng; Qian, Weizhu; Li, Bohua; Dai, Jianxin; Hou, Sheng; Guo, Yajun; Wang, Hao

    2016-01-01

    Nivolumab, an anti-programmed death (PD)1 IgG4 antibody, has shown notable success as a cancer treatment. Here, we report that nivolumab was susceptible to aggregation during manufacturing, particularly in routine purification steps. Our experimental results showed that exposure to low pH caused aggregation of nivolumab, and the Fc was primarily responsible for an acid-induced unfolding phenomenon. To compare the intrinsic propensity of acid-induced aggregation for other IgGs subclasses, tocilizumab (IgG1), panitumumab (IgG2) and atezolizumab (aglyco-IgG1) were also investigated. The accurate pH threshold of acid-induced aggregation for individual IgG Fc subclasses was identified and ranked as: IgG1 < aglyco-IgG1 < IgG2 < IgG4. This result was cross-validated by thermostability and conformation analysis. We also assessed the effect of several protein stabilizers on nivolumab, and found mannitol ameliorated the acid-induced aggregation of the molecule. Our results provide valuable insight into downstream manufacturing process development, especially for immune checkpoint modulating molecules with a human IgG4 backbone. PMID:27310175

  16. MICROARRAY ANALYSIS OF DICHLOROACETIC ACID-INDUCED CHANGES IN GENE EXPRESSION

    EPA Science Inventory


    MICROARRAY ANALYSIS OF DICHLOROACETIC ACID-INDUCED CHANGES IN GENE EXPRESSION

    Dichloroacetic acid (DCA) is a major by-product of water disinfection by chlorination. Several studies have demonstrated the hepatocarcinogenicity of DCA in rodents when administered in dri...

  17. Luteolin prevents uric acid-induced pancreatic β-cell dysfunction

    PubMed Central

    Ding, Ying; Shi, Xuhui; Shuai, Xuanyu; Xu, Yuemei; Liu, Yun; Liang, Xiubin; Wei, Dong; Su, Dongming

    2014-01-01

    Abstract Elevated uric acid causes direct injury to pancreatic β-cells. In this study, we examined the effects of luteolin, an important antioxidant, on uric acid-induced β-cell dysfunction. We first evaluated the effect of luteolin on nitric oxide (NO) formation in uric acid-stimulated Min6 cells using the Griess method. Next, we performed transient transfection and reporter assays to measure transcriptional activity of nuclear factor (NF)-κB. Western blotting assays were also performed to assess the effect of luteolin on the expression of MafA and inducible NO synthase (iNOS) in uric acid-treated cells. Finally, we evaluated the effect of luteolin on uric acid-induced inhibition of glucose-stimulated insulin secretion (GSIS) in Min6 cells and freshly isolated mouse pancreatic islets. We found that luteolin significantly inhibited uric acid-induced NO production, which was well correlated with reduced expression of iNOS mRNA and protein. Furthermore, decreased activity of NF-κB was implicated in inhibition by luteolin of increased iNOS expression induced by uric acid. Besides, luteolin significantly increased MafA expression in Min6 cells exposed to uric acid, which was reversed by overexpression of iNOS. Moreover, luteolin prevented uric acid-induced inhibition of GSIS in both Min6 cells and mouse islets. In conclusion, luteolin protects pancreatic β-cells from uric acid-induced dysfunction and may confer benefit on the protection of pancreatic β-cells in hyperuricemia-associated diabetes. PMID:25050113

  18. Succinate reverses in-vitro platelet inhibition by acetylsalicylic acid and P2Y receptor antagonists.

    PubMed

    Spath, Brigitte; Hansen, Arne; Bokemeyer, Carsten; Langer, Florian

    2012-01-01

    High on-treatment platelet reactivity has been associated with adverse cardiovascular events in patients receiving anti-platelet agents, but the molecular mechanisms underlying this phenomenon remain incompletely understood. Succinate, a citric acid cycle intermediate, is released into the circulation under conditions of mitochondrial dysfunction due to hypoxic organ damage, including sepsis, stroke, and myocardial infarction. Because the G protein-coupled receptor (GPCR) for succinate, SUCNR1 (GPR91), is present on human platelets, we hypothesized that succinate-mediated platelet stimulation may counteract the pharmacological effects of cyclooxygenase-1 and ADP receptor antagonists. To test this hypothesis in a controlled in-vitro study, washed platelets from healthy donors were treated with acetylsalicylic acid (ASA) or small-molecule P2Y(1) or P2Y(12) inhibitors and subsequently analyzed by light transmittance aggregometry using arachidonic acid (AA), ADP and succinate as platelet agonists. Aggregation in response to succinate alone was highly variable with only 29% of donors showing a (mostly delayed) platelet response. In contrast, succinate reproducibly and concentration-dependently (10-1000 µM) enhanced platelet aggregation in response to low concentrations of exogenous ADP. Furthermore, while succinate alone had no effect in the presence of platelet inhibitors, responsiveness of platelets to ADP after pretreatment with P2Y(1) or P2Y(12) antagonists was fully restored, when platelets were co-stimulated with 100 µM succinate. Similarly, succinate completely (at 1000 µM) or partially (at 100 µM) reversed the inhibitory effect of ASA on AA-induced platelet aggregation. In contrast, succinate failed to restore platelet responsiveness in the presence of both ASA and the P2Y(12) antagonist, suggesting that concomitant signaling via different GPCRs was required. Essentially identical results were obtained, when flow cytometric analysis of surface CD62P

  19. Water-soluble nitric-oxide-releasing acetylsalicylic acid (ASA) prodrugs.

    PubMed

    Rolando, Barbara; Lazzarato, Loretta; Donnola, Monica; Marini, Elisabetta; Joseph, Sony; Morini, Giuseppina; Pozzoli, Cristina; Fruttero, Roberta; Gasco, Alberto

    2013-07-01

    A series of water-soluble (benzoyloxy)methyl esters of acetylsalicylic acid (ASA), commonly known as aspirin, are described. The new derivatives each have alkyl chains containing a nitric oxide (NO)-releasing nitrooxy group and a solubilizing moiety bonded to the benzoyl ring. The compounds were synthesized and evaluated as ASA prodrugs. After conversion to the appropriate salt, most of the derivatives are solid at room temperature and all possess good water solubility. They are quite stable in acid solution (pH 1) and less stable at physiological pH. In human serum, these compounds are immediately metabolized by esterases, producing a mixture of ASA, salicylic acid (SA), and of the related NO-donor benzoic acids, along with other minor products. Due to ASA release, the prodrugs are capable of inhibiting collagen-induced platelet aggregation of human platelet-rich plasma. Simple NO-donor benzoic acids 3-hydroxy-4-(3-nitrooxypropoxy)benzoic acid (28) and 3-(morpholin-4-ylmethyl)-4-[3-(nitrooxy)propoxy]benzoic acid (48) were also studied as representative models of the whole class of benzoic acids formed following metabolism of the prodrugs in serum. These simplified derivatives did not trigger antiaggregatory activity when tested at 300 μM. Only 28 displays quite potent NO-dependent vasodilatatory action. Further in vivo evaluation of two selected prodrugs, {[2-(acetyloxy)benzoyl]oxy}methyl-3-[(3-[aminopropanoyl)oxy]-4-[3-(nitrooxy)propoxy]benzoate⋅HCl (38) and {[2-(acetyloxy)benzoyl]oxy}methyl 3-(morpholin-4-ylmethyl)-4-[3-(nitrooxy)propoxy]benzoate oxalate (49), revealed that their anti-inflammatory activities are similar to that of ASA when tested in the carrageenan-induced paw edema assay in rats. The gastrotoxicity of the two prodrugs was also determined to be lower than that of ASA in a lesion model in rats. Taken together, these results indicated that these NO-donor ASA prodrugs warrant further investigation for clinical application.

  20. Trypanosomatid apoptosis: 'Apoptosis' without the canonical regulators.

    PubMed

    Smirlis, Despina; Soteriadou, Ketty

    2011-01-01

    Apoptosis is a regulated process of cell death originally described in multicelullar organisms contributing to their development and functionality. There is now increasing experimental evidence that a similar form of cell death is operative in unicellular eukaryotes, including trypanosomatids of the genera Trypanosoma and Leishmania. The determination of ancestral executors and regulators of 'apoptosis' in these protozoa belonging to the most primitive eukaryotes that appeared on earth 1.5 billion years ago, provide an exciting challenge in the understanding of the evolution of apoptosis-regulating processes. A review of the present knowledge of trypanosomatid apoptosis points to the fact that these dying protozoa acquire common apoptotic morphological features as metazoan cells, although they lack many of the molecules accepted today as canonical apoptosis mediators (Bcl-2 family members, caspases, TNF related family of receptors). Herein, we discuss how the knowledge of regulators and executors of trypanosomatid apoptosis may provide answers to the gaps concerning the origin of apoptosis. The aim of this addendum is to emphasize the need for classifying the ancestral death program and to discuss how this relates to the complex death programs in multicellular lineages, with the hope to stimulate further enquiry and research into this area.

  1. Protective Effect of Ocimum basilicum Essential Oil Against Acetic Acid-Induced Colitis in Rats.

    PubMed

    Rashidian, Amir; Roohi, Parnia; Mehrzadi, Saeed; Ghannadi, Ali Reza; Minaiyan, Mohsen

    2016-10-01

    Ocimum basilicum L has been traditionally used for the treatment of inflammatory bowel disease in Iran. This study investigates the ameliorative effect of Ocimum basilicum essential oil on an acetic acid-induced colitis model in rats. Ocimum basilicum essential oil with 2 doses (200 and 400 μL/kg) significantly ameliorated wet weight/length ratio of colonic tissue compared to the control group. Higher doses of essential oil (200 and 400 μL/kg) significantly reduced ulcer severity, ulcer area, and ulcer index. On the other hand, histological examination revealed the diminution of total colitis index as a marker for inflammatory cell infiltration in the colonic segments of rats treated with Ocimum basilicum essential oil (200 and 400 μL/kg). The increased level of myeloperoxidase was significantly decreased after the treatment with the essential oil (200 and 400 μL/kg). These results suggest that Ocimum basilicum exhibits protective effect against acetic acid-induced colitis.

  2. Minocycline ameliorates prenatal valproic acid induced autistic behaviour, biochemistry and blood brain barrier impairments in rats.

    PubMed

    Kumar, Hariom; Sharma, Bhupesh

    2016-01-01

    Autism is a neurodevelopment disorder. One percent worldwide population suffers with autism and males suffer more than females. Microglia plays an important role in neurodevelopment, neuropsychiatric and neurodegenerative disorders. The present study has been designed to investigate the role of minocycline in prenatal valproic acid induced autism in rats. Animals with prenatal valproic acid have reduced social interaction (three chamber social behaviour apparatus), spontaneous alteration (Y-Maze), exploratory activity (Hole board test), intestinal motility, serotonin levels (both in prefrontal cortex and ileum) and prefrontal cortex mitochondrial complex activity (complexes I, II, IV). Furthermore, prenatal valproic acid treated animals have shown an increase in locomotion (actophotometer), anxiety (elevated plus maze), brain oxidative stress (thiobarbituric acid reactive species, glutathione, catalase), nitrosative stress (nitrite/nitrate), inflammation (both in brain and ileum myeloperoxidase activity), calcium and blood brain barrier permeability. Treatment with minocycline significantly attenuated prenatal valproic acid induced reduction in social interaction, spontaneous alteration, exploratory activity intestinal motility, serotonin levels and prefrontal cortex mitochondrial complex activity. Furthermore, minocycline has also attenuated prenatal valproic acid induced increase in locomotion, anxiety, brain oxidative and nitrosative stress, inflammation, calcium and blood brain barrier permeability. Thus, it may be concluded that prenatal valproic acid has induced autistic behaviour, biochemistry and blood brain barrier impairment in animals, which were significantly attenuated by minocycline. Minocycline should be explored further for its therapeutic benefits in autism.

  3. Protective effect of hispidulin on kainic acid-induced seizures and neurotoxicity in rats.

    PubMed

    Lin, Tzu Yu; Lu, Cheng Wei; Wang, Su Jane; Huang, Shu Kuei

    2015-05-15

    Hispidulin is a flavonoid compound which is an active ingredient in a number of traditional Chinese medicinal herbs, and it has been reported to inhibit glutamate release. The purpose of this study was to investigate whether hispidulin protects against seizures induced by kainic acid, a glutamate analog with excitotoxic properties. The results indicated that intraperitoneally administering hispidulin (10 or 50mg/kg) to rats 30 min before intraperitoneally injecting kainic acid (15 mg/kg) increased seizure latency and decreased seizure score. In addition, hispidulin substantially attenuated kainic acid-induced hippocampal neuronal cell death, and this protective effect was accompanied by the suppression of microglial activation and the production of proinflammatory cytokines such as interleukin-1β, interleukin-6, and tumor necrosis factor-α in the hippocampus. Moreover, hispidulin reduced kainic acid-induced c-Fos expression and the activation of mitogen-activated protein kinases in the hippocampus. These data suggest that hispidulin has considerable antiepileptic, neuroprotective, and antiinflammatory effects on kainic acid-induced seizures in rats. PMID:25746462

  4. Houttuyniae Herba Attenuates Kainic Acid-Induced Neurotoxicity via Calcium Response Modulation in the Mouse Hippocampus.

    PubMed

    Kim, Hyo Geun; Jeong, Hyun Uk; Hong, Sung In; Oh, Myung Sook

    2015-12-01

    Epilepsy is a complex neurological disorder characterized by the repeated occurrence of electrical activity known as seizures. This activity induces increased intracellular calcium, which ultimately leads to neuronal damage. Houttuyniae Herba, the aerial part of Houttuynia cordata, has various pharmacological effects and is widely used as a traditional herb. In the present study, we evaluated the protective effects of Houttuyniae Herba water extract on kainic acid-induced neurotoxicity. Kainic acid directly acts on calcium release, resulting in seizure behavior, neuronal damage, and cognitive impairment. In a rat primary hippocampal culture system, Houttuyniae Herba water extract significantly protected neuronal cells from kainic acid toxicity. In a seizure model where mice received intracerebellar kainic acid injections, Houttuyniae Herba water extract treatment resulted in a lower seizure stage score, ameliorated cognitive impairment, protected neuronal cells against kainic acid-induced toxicity, and suppressed neuronal degeneration in the hippocampus. In addition, Houttuyniae Herba water extract regulated increases in the intracellular calcium level, its related downstream pathways (reactive oxygen species production and mitochondrial dysfunction), and calcium/calmodulin complex kinase type II immunoreactivity in the mouse hippocampus, which resulted from calcium influx stimulation induced by kainic acid. These results demonstrate the neuroprotective effects of Houttuyniae Herba water extract through inhibition of calcium generation in a kainic acid-induced epileptic model. PMID:26366753

  5. Minocycline ameliorates prenatal valproic acid induced autistic behaviour, biochemistry and blood brain barrier impairments in rats.

    PubMed

    Kumar, Hariom; Sharma, Bhupesh

    2016-01-01

    Autism is a neurodevelopment disorder. One percent worldwide population suffers with autism and males suffer more than females. Microglia plays an important role in neurodevelopment, neuropsychiatric and neurodegenerative disorders. The present study has been designed to investigate the role of minocycline in prenatal valproic acid induced autism in rats. Animals with prenatal valproic acid have reduced social interaction (three chamber social behaviour apparatus), spontaneous alteration (Y-Maze), exploratory activity (Hole board test), intestinal motility, serotonin levels (both in prefrontal cortex and ileum) and prefrontal cortex mitochondrial complex activity (complexes I, II, IV). Furthermore, prenatal valproic acid treated animals have shown an increase in locomotion (actophotometer), anxiety (elevated plus maze), brain oxidative stress (thiobarbituric acid reactive species, glutathione, catalase), nitrosative stress (nitrite/nitrate), inflammation (both in brain and ileum myeloperoxidase activity), calcium and blood brain barrier permeability. Treatment with minocycline significantly attenuated prenatal valproic acid induced reduction in social interaction, spontaneous alteration, exploratory activity intestinal motility, serotonin levels and prefrontal cortex mitochondrial complex activity. Furthermore, minocycline has also attenuated prenatal valproic acid induced increase in locomotion, anxiety, brain oxidative and nitrosative stress, inflammation, calcium and blood brain barrier permeability. Thus, it may be concluded that prenatal valproic acid has induced autistic behaviour, biochemistry and blood brain barrier impairment in animals, which were significantly attenuated by minocycline. Minocycline should be explored further for its therapeutic benefits in autism. PMID:26551768

  6. Effect on postoperative analgesia of small-dose lysine acetylsalicylate added to prilocaine during intravenous regional anesthesia.

    PubMed

    Corpataux, J B; Van Gessel, E F; Donald, F A; Forster, A; Gamulin, Z

    1997-05-01

    Nonsteroidal antiinflammatory drugs act largely peripherally by blocking the local synthesis of prostaglandins. The aim of this study was to evaluate whether the addition of a small dose of lysine acetylsalicylate (LA) to the prilocaine used for intravenous regional anesthesia (IVRA) would improve the quality of postoperative analgesia. Sixty patients undergoing lower extremity IVRA for foot or ankle surgery were randomly assigned to three double-blind groups: LA-IVRA where 90 mg of LA was mixed with prilocaine 0.5% for IVRA and 1 mL of 0.9% NaCl administered intravenously (IV) through the forearm catheter after tourniquet inflation; LA-IV where 1 mL of 0.9% NaCl was mixed with prilocaine and 90 mg of LA administered IV; and placebo where 1 mL of 0.9% NaCl was administered both with prilocaine for the IVRA and IV. Duration of analgesia (time elapsed between tourniquet release and first injection of morphine, expressed as mean +/- SD) was significantly longer (P < 0.05) in LA-IVRA (387 +/- 216 min) when compared with LA-IV (175 +/- 264 min) and placebo (126 +/- 201 min). Analgesic requirements remained significantly lower in LA-IVRA when compared with placebo only during the first six postoperative hours, LA-IV being in an intermediate position. Pain scores were significantly lower in LA-IVRA during the first postoperative hour when compared with LA-IV and during the first 3 postoperative hours when compared with placebo. We conclude that 90 mg of LA (corresponding to 50 mg of acetylsalicylic acid) added to prilocaine 0.5% during IVRA improves the quality of postoperative analgesia in the early postoperative period.

  7. Structure, stability, and antiplatelet activity of O-acyl derivatives of salicylic acid and lipophilic esters of acetylsalicylate.

    PubMed

    Zavodnik, Ilya B; Lapshina, Elena; Sudnikovich, Elena; Boncler, Magdalena; Luzak, Bogusława; Rózalski, Marcin; Helińska, Magdalena; Watała, Cezary

    2009-01-01

    The anti-thrombotic activity of acetylsalicylic acid (ASA) has been shown to be due to specific irreversible acetylation of blood platelet cyclooxygenase. The aim of our study was to investigate the associations between the antiplatelet activities of derivatives of both ASA and salicylic acid (SA), as well as the structure, stability, and molecular properties of these compounds. Homologous series of O-acyl derivatives of salicylic acid (propionyl-, butyrylsalicylic acids, PSA, BSA) and lipophilic dodecyl (C12)-, hexadecyl (C16)-, and cholesteryl acetylsalicylates were synthesized and tested for structure-activity relationships. The molecular properties (heat of formation, molecular surface area, dipole moment) of ASA and SA derivatives obtained by theoretical calculations changed with the increasing length of the acyl or alkyl residue. The inhibition of whole blood platelet aggregation and the reduction in thromboxane (TX) generation by O-acyl derivatives were concentration-dependent and decreased along with increasing the length of acyl hain. These effects correlated with the extent of platelet reactivity and P-selectin expression inhibition in collagen-activated platelets. In contrast to ASA and O-acyl derivatives of SA, none of the lipophilic ASA derivatives had a significant inhibitory effect on platelet aggregation. In conclusion, all SA and ASA derivatives studied under in vitro conditions showed much lower antiplatelet activities than ASA itself, despite their higher affinity to plasma proteins or membrane components and their equivalent ability to acetylate protein free amino groups.We suggest the significance of the carboxylic group, dipole moment, geometry, and size of these pharmaceuticals in their ability to bind to the active site of cyclooxygenase and their antiplatelet efficacy.

  8. [Study of acetylsalicylic acid role in the potentiation of antiamnesic and neuroprotective properties of piracetam in rats with alloxan diabetes].

    PubMed

    Zhiliuk, V I; Levykh, A E; Mamchur, V I

    2013-01-01

    It has been established that prolonged alloxan-induced hyperglycemia in rats potentiates amnesic properties of scopolamine hydrobromide. It was characterized by shortening of the latent period by 44% (p<0,01) and by 47,7% (p<0,05) after 24 hours and on the 20th day of conditioned passive avoidance test. This effect was accompanied by increase in oxidative modification of proteins and nitric oxide synthesis in the cerebral cortex. Along with this, a significant enhancement of ADP- and collagen-induced platelet aggregation was observed. These processes may play the leading role in the development of cognitive deficit in diabetes. Meanwhile, co-administration of piracetam with acetylsalicylic acid was accompanied by an expressed antiamnetic potential - the reduction of early markers of proteins degradation (aldehydephenylhydrazones, APH) by 21,7% (p<0,05) and late markers of proteins degradation (ketonephenylhydrazones, KPH) by 23,8% (p<0,001) was noted. This combination was 15,7% (p<0,05) more active than piracetam according to the effect upon KPH. NO2-/NO3- level was also decreased by 30,3% (p<0,05) in comparison with alloxan-diabetic rats. The significant anti-platelet effect was observed: degree of collagen-induced platelet aggregation was reduced by 56,8% (p<0,01), ADP (5 μmol/l)-induced - by 31,7% (p<0,01), ADP (20 μmol/l)-induced - by 47,3% (p<0,01) as compared to the hyperglycemic rats. Such an increase in nootropic activity of piracetam may be assumed to be directly related to the ability of acetylsalicylic acid to improve microcirculation in the ischemic areas of the brain in diabetes and probably to its neuroprotective potential.

  9. Treadmill exercise enhances spatial learning ability through suppressing hippocampal apoptosis in Huntington's disease rats.

    PubMed

    Ji, Eun-Sang; Kim, You-Mi; Shin, Mal-Soon; Kim, Chang-Ju; Lee, Kwang-Sik; Kim, Kijeong; Ha, Jonglin; Chung, Yong-Rak

    2015-06-01

    Huntington's disease is a chronic neurodegenerative disorder inherited in an autosomal dominant fashion, and characterized as involuntary movement. Quinolinic acid has been used to produce an animal model of Huntington's disease. In the present study, the effect of treadmill exercise on spatial-learning ability and motor coordination focusing on the apoptosis in the hippocampus was investigated using quinolinic acid-induced Huntington's disease rats. Huntington's disease was induced by unilateral intrastriatal injection of quinolinic acid (2 μL of 100 nmol) using stereotaxic instrument. The rats in the treadmill exercise groups were subjected to run on a treadmill for 30 min once a day during 14 days. Spatial learning ability and motor coordination were determined by radial 8-arm maze test and rota-rod test. Immunohistochemistry for caspase-3 and western blot for Bax and Bcl-2 were also conducted for the detection of apoptosis. In the present results, spatial learning ability and motor coordination were deteriorated by intrastriatal injection of quinolinic acid. In contrast, treadmill exercise exerted ameliorating effect on quinolinic acid-induced deterioration of spatial learning ability and motor coordination. Bcl-2 expression in the hippocampus was de-creased and expressions of casepase-3 and Bax in the hippocampus were increased in the quinolinic acid-induced Huntington's disease rats. Treadmill exercise increased Bcl-2 expression and decreased expressions of casepase-3 and Bax in the Huntington's disease rats. The present results showed that treadmill exercise might ameliorate quinolinic acid-induced loss of spatial learning ability and motor coordination by suppressing apoptosis in the hippocampus. PMID:26171378

  10. Mitochondria-dependent apoptosis of con A-activated T lymphocytes induced by asiatic acid for preventing murine fulminant hepatitis.

    PubMed

    Guo, Wenjie; Liu, Wen; Hong, Shaocheng; Liu, Hailiang; Qian, Cheng; Shen, Yan; Wu, Xuefeng; Sun, Yang; Xu, Qiang

    2012-01-01

    Selectively facilitating apoptosis of activated T cells is essential for the clearance of pathogenic injurious cells and subsequent efficient resolution of inflammation. However, few chemicals have been reported to trigger apoptosis of activated T cells for the treatment of hepatitis without affecting quiescent T cells. In the present study, we found that asiatic acid, a natural triterpenoid, selectively triggered apoptosis of concanavalin A (Con A)-activated T cells in a mitochondria-dependent manner indicated by the disruption of the mitochondrial transmembrane potential, release of cytochrome c from mitochondria to cytosol, caspases activation, and cleavage of PARP. In addition, asiatic acid also induced the cleavage of caspase 8 and Bid and augmented Fas expression in Con A-activated T cells. However, following activation of T cells from MRL(lpr/lpr) mice with mutation of Fas demonstrated a similar susceptibility to asiatic acid-induced apoptosis compared with normal T cells, suggesting that Fas-mediated death-receptor apoptotic pathway does not mainly contribute to asiatic acid-induced cell death. Furthermore, asiatic acid significantly alleviated Con A-induced T cell-dependent fulminant hepatitis in mice, as assessed by reduced serum transaminases, pro-inflammatory cytokines, and pathologic parameters. Consistent with the in vitro results, asiatic acid also induced apoptosis of activated CD4(+) T cells in vivo. Taken together, our results demonstrated that the ability of asiatic acid to induce apoptosis of activated T cells and its potential use in the treatment of T-cell-mediated inflammatory diseases.

  11. Benfotiamine attenuates nicotine and uric acid-induced vascular endothelial dysfunction in the rat.

    PubMed

    Balakumar, Pitchai; Sharma, Ramica; Singh, Manjeet

    2008-01-01

    The study has been designed to investigate the effect of benfotiamine, a thiamine derivative, in nicotine and uric acid-induced vascular endothelial dysfunction (VED) in rats. Nicotine (2 mg kg(-1)day(-1), i.p., 4 weeks) and uric acid (150 mg kg(-1)day(-1), i.p., 3 weeks) were administered to produce VED in rats. The development of VED was assessed by employing isolated aortic ring preparation and estimating serum and aortic concentration of nitrite/nitrate. Further, the integrity of vascular endothelium was assessed using the scanning electron microscopy (SEM) of thoracic aorta. Moreover, the oxidative stress was assessed by estimating serum thiobarbituric acid reactive substances (TBARS) and aortic superoxide anion generation. The administration of nicotine and uric acid produced VED by impairing the integrity of vascular endothelium and subsequently decreasing serum and aortic concentration of nitrite/nitrate and attenuating acetylcholine-induced endothelium dependent relaxation. Further, nicotine and uric acid produced oxidative stress, which was assessed in terms of increase in serum TBARS and aortic superoxide generation. However, treatment with benfotiamine (70 mg kg(-1)day(-1), p.o.) or atorvastatin (30 mg kg(-1)day(-1) p.o., a standard agent) markedly prevented nicotine and uric acid-induced VED and oxidative stress by improving the integrity of vascular endothelium, increasing the concentration of serum and aortic nitrite/nitrate, enhancing the acetylcholine-induced endothelium dependent relaxation and decreasing serum TBARS and aortic superoxide anion generation. Thus, it may be concluded that benfotiamine reduces the oxidative stress and consequently improves the integrity of vascular endothelium and enhances the generation of nitric oxide to prevent nicotine and uric acid-induced experimental VED. PMID:18951979

  12. The acid-induced folded state of Sac7d is the native state.

    PubMed Central

    Bedell, J. L.; McCrary, B. S.; Edmondson, S. P.; Shriver, J. W.

    2000-01-01

    Sac7d unfolds at low pH in the absence of salt, with the greatest extent of unfolding obtained at pH 2. We have previously shown that the acid unfolded protein is induced to refold by decreasing the pH to 0 or by addition of salt (McCrary BS, Bedell J. Edmondson SP, Shriver JW, 1998, J Mol Biol 276:203-224). Both near-ultraviolet circular dichroism spectra and ANS fluorescence enhancements indicate that the acid- and salt-induced folded states have a native fold and are not molten globular. 1H,15N heteronuclear single quantum coherence NMR spectra confirm that the native, acid-, and salt-induced folded states are essentially identical. The most significant differences in amide 1H and 15N chemical shifts are attributed to hydrogen bonding to titrating carboxyl side chains and through-bond inductive effects. The 1H NMR chemical shifts of protons affected by ring currents in the hydrophobic core of the acid- and salt-induced folded states are identical to those observed in the native. The radius of gyration of the acid-induced folded state at pH 0 is shown to be identical to that of the native state at pH 7 by small angle X-ray scattering. We conclude that acid-induced collapse of Sac7d does not lead to a molten globule but proceeds directly to the native state. The folding of Sac7d as a function of pH and anion concentration is summarized with a phase diagram that is similar to those observed for other proteins that undergo acid-induced folding except that the A-state is encompassed by the native state. These results demonstrate that formation of a molten globule is not a general property of proteins that are refolded by acid. PMID:11106160

  13. Clavulanic acid induces penile erection and yawning in male rats: comparison with apomorphine.

    PubMed

    Sanna, Fabrizio; Melis, Maria Rosaria; Angioni, Laura; Argiolas, Antonio

    2013-02-01

    The beta-lactamase inhibitor clavulanic acid induced penile erection and yawning in a dose dependent manner when given intraperitoneally (IP, 0.05-5mg/kg), perorally (OS, 0.1-5mg/kg) and intracereboventricularly (ICV, 0.01-5 μg/rat) to male rats. The effect resembles that of the dopamine receptor agonist apomorphine given subcutaneously (SC) (0.02-0.25mg/kg), although the responses of the latter followed a U inverted dose-response curve, disappearing at doses higher than 0.1mg/kg. Clavulanic acid responses were reduced by about 55% by haloperidol, a dopamine D2 receptor antagonist (0.1mg/kg IP), and by d(CH(2))(5)Tyr(Me)(2)-Orn(8)-vasotocin, an oxytocin receptor antagonist (2 μg/rat ICV), both given 15 min before clavulanic acid. A higher reduction of clavulanic acid responses (more than 80%) was also found with morphine, an opioid receptor agonist (5mg/kg IP), and with mianserin, a serotonin 5HT(2c) receptor antagonist (0.2mg/kg SC). In contrast, no reduction was found with naloxone, an opioid receptor antagonist (1mg/kg IP). The ability of haloperidol, d(CH(2))(5)Tyr(Me)(2)-Orn(8)-vasotocin and morphine to reduce clavulanic acid induced penile erection and yawning suggests that clavulanic acid induces these responses, at least in part, by increasing central dopaminergic neurotransmission. Dopamine in turn activates oxytocinergic neurotransmission and centrally released oxytocin induces penile erection and yawning. However, since both penile erection and yawning episodes were reduced not only by the blockade of central dopamine and oxytocin receptors and by the stimulation of opioid receptors, which inhibits oxytocinergic neurotransmission, but also by mianserin, an increase of central serotonin neurotransmission is also likely to participate in these clavulanic acid responses.

  14. Unsaturated fatty acid-induced non-canonical autophagy: unusual? or unappreciated?

    PubMed Central

    Bankaitis, Vytas A

    2015-01-01

    The breakdown of cellular components via autophagy is crucial for cellular homeostasis. In this issue of The EMBO Journal, Niso-Santano et al (2015) report the important observation that feeding cells with saturated or unsaturated fatty acids triggers mechanistically distinct autophagic responses. Feeding cells saturated fatty acid induced the canonical, BECN1/PI3K-dependent autophagy pathway. Conversely, the unsaturated fatty acid oleate triggered autophagic responses that were independent of the BECN1/PI3K complex, but that required a functional Golgi system. PMID:25762589

  15. Calpains, mitochondria, and apoptosis

    PubMed Central

    Smith, Matthew A.; Schnellmann, Rick G.

    2012-01-01

    Mitochondrial activity is critical for efficient function of the cardiovascular system. In response to cardiovascular injury, mitochondrial dysfunction occurs and can lead to apoptosis and necrosis. Calpains are a 15-member family of Ca2+-activated cysteine proteases localized to the cytosol and mitochondria, and several have been shown to regulate apoptosis and necrosis. For example, in endothelial cells, Ca2+ overload causes mitochondrial calpain 1 cleavage of the Na+/Ca2+ exchanger leading to mitochondrial Ca2+ accumulation. Also, activated calpain 1 cleaves Bid, inducing cytochrome c release and apoptosis. In renal cells, calpains 1 and 2 promote apoptosis and necrosis by cleaving cytoskeletal proteins, which increases plasma membrane permeability and cleavage of caspases. Calpain 10 cleaves electron transport chain proteins, causing decreased mitochondrial respiration and excessive activation, or inhibition of calpain 10 activity induces mitochondrial dysfunction and apoptosis. In cardiomyocytes, calpain 1 activates caspase 3 and poly-ADP ribose polymerase during tumour necrosis factor-α-induced apoptosis, and calpain 1 cleaves apoptosis-inducing factor after Ca2+ overload. Many of these observations have been elucidated with calpain inhibitors, but most calpain inhibitors are not specific for calpains or a specific calpain family member, creating more questions. The following review will discuss how calpains affect mitochondrial function and apoptosis within the cardiovascular system. PMID:22581845

  16. Mitochondrial regulation of apoptosis.

    PubMed

    Mayer, Bernd; Oberbauer, Rainer

    2003-06-01

    Mitochondria play a central part in cellular survival and apoptotic death. These processes are highly regulated by pro- and antiapoptotic Bcl-2 superfamily members. A key feature within apoptosis cascades is disruption of mitochondrial transmembrane potential and apoptogenic protein release, caused by opening of the permeability transition pore (PT). New data, however, indicate that mitochondrial apoptosis may occur without PT involvement.

  17. The apoptosis database.

    PubMed

    Doctor, K S; Reed, J C; Godzik, A; Bourne, P E

    2003-06-01

    The apoptosis database is a public resource for researchers and students interested in the molecular biology of apoptosis. The resource provides functional annotation, literature references, diagrams/images, and alternative nomenclatures on a set of proteins having 'apoptotic domains'. These are the distinctive domains that are often, if not exclusively, found in proteins involved in apoptosis. The initial choice of proteins to be included is defined by apoptosis experts and bioinformatics tools. Users can browse through the web accessible lists of domains, proteins containing these domains and their associated homologs. The database can also be searched by sequence homology using basic local alignment search tool, text word matches of the annotation, and identifiers for specific records. The resource is available at http://www.apoptosis-db.org and is updated on a regular basis.

  18. Role of hepatocyte S6K1 in palmitic acid-induced endoplasmic reticulum stress, lipotoxicity, insulin resistance and in oleic acid-induced protection.

    PubMed

    Pardo, Virginia; González-Rodríguez, Águeda; Muntané, Jordi; Kozma, Sara C; Valverde, Ángela M

    2015-06-01

    The excess of saturated free fatty acids, such as palmitic acid, that induces lipotoxicity in hepatocytes, has been implicated in the development of non-alcoholic fatty liver disease also associated with insulin resistance. By contrast, oleic acid, a monounsaturated fatty acid, attenuates the effects of palmitic acid. We evaluated whether palmitic acid is directly associated with both insulin resistance and lipoapoptosis in mouse and human hepatocytes and the impact of oleic acid in the molecular mechanisms that mediate both processes. In human and mouse hepatocytes palmitic acid at a lipotoxic concentration triggered early activation of endoplasmic reticulum (ER) stress-related kinases, induced the apoptotic transcription factor CHOP, activated caspase 3 and increased the percentage of apoptotic cells. These effects concurred with decreased IR/IRS1/Akt insulin pathway. Oleic acid suppressed the toxic effects of palmitic acid on ER stress activation, lipoapoptosis and insulin resistance. Besides, oleic acid suppressed palmitic acid-induced activation of S6K1. This protection was mimicked by pharmacological or genetic inhibition of S6K1 in hepatocytes. In conclusion, this is the first study highlighting the activation of S6K1 by palmitic acid as a common and novel mechanism by which its inhibition by oleic acid prevents ER stress, lipoapoptosis and insulin resistance in hepatocytes.

  19. Obestatin Accelerates the Healing of Acetic Acid-Induced Colitis in Rats.

    PubMed

    Matuszyk, Aleksandra; Ceranowicz, Piotr; Warzecha, Zygmunt; Cieszkowski, Jakub; Bonior, Joanna; Jaworek, Jolanta; Kuśnierz-Cabala, Beata; Konturek, Peter; Ambroży, Tadeusz; Dembiński, Artur

    2016-01-01

    Obestatin, a 23-amino acid peptide derived from the proghrelin, has been shown to exhibit some protective and therapeutic effects in the gut. The aim of present study was to determine the effect of obestatin administration on the course of acetic acid-induced colitis in rats. Materials and Methods. Studies have been performed on male Wistar rats. Colitis was induced by a rectal enema with 3.5% acetic acid solution. Obestatin was administered intraperitoneally twice a day at a dose of 8 nmol/kg, starting 24 h after the induction of colitis. Seven or 14 days after the induction of colitis, the healing rate of the colon was evaluated. Results. Treatment with obestatin after induction of colitis accelerated the healing of colonic wall damage and this effect was associated with a decrease in the colitis-evoked increase in mucosal activity of myeloperoxidase and content of interleukin-1β. Moreover, obestatin administration significantly reversed the colitis-evoked decrease in mucosal blood flow and DNA synthesis. Conclusion. Administration of exogenous obestatin exhibits therapeutic effects in the course of acetic acid-induced colitis and this effect is related, at least in part, to the obestatin-evoked anti-inflammatory effect, an improvement of local blood flow, and an increase in cell proliferation in colonic mucosa.

  20. Exogenous Ghrelin Accelerates the Healing of Acetic Acid-Induced Colitis in Rats

    PubMed Central

    Matuszyk, Aleksandra; Ceranowicz, Piotr; Warzecha, Zygmunt; Cieszkowski, Jakub; Ceranowicz, Dagmara; Gałązka, Krystyna; Bonior, Joanna; Jaworek, Jolanta; Bartuś, Krzysztof; Gil, Krzysztof; Olszanecki, Rafał; Dembiński, Artur

    2016-01-01

    Previous studies have shown that ghrelin reduces colonic inflammation induced by trinitrobenzene sulfonic acid and dextran sodium sulfate. In the present study we determined the effect of treatment with ghrelin on the course of acetic acid-induced colitis in rats. Rectal administration of 3% acetic acid solution led to induction of colitis in all animals. Damage of the colonic wall was accompanied by an increase in mucosal concentration of pro-inflammatory interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), as well mucosal activity of myeloperoxidase. Moreover, induction of colitis led to a reduction in colonic blood flow and DNA synthesis. Administration of ghrelin after induction of colitis led to faster regeneration of the colonic wall and reduction in colonic levels of IL-1β, TNF-α, and myeloperoxidase. In addition, treatment with ghrelin improved mucosal DNA synthesis and blood flow. Our study disclosed that ghrelin exhibits a strong anti-inflammatory and healing effect in acetic acid-induced colitis. Our current observation in association with previous findings that ghrelin exhibits curative effect in trinitrobenzene sulfonic acid- and dextran sodium sulfate-induced colitis suggest that therapeutic effect of ghrelin in the colon is universal and independent of the primary cause of colitis. PMID:27598133

  1. Exogenous Ghrelin Accelerates the Healing of Acetic Acid-Induced Colitis in Rats.

    PubMed

    Matuszyk, Aleksandra; Ceranowicz, Piotr; Warzecha, Zygmunt; Cieszkowski, Jakub; Ceranowicz, Dagmara; Gałązka, Krystyna; Bonior, Joanna; Jaworek, Jolanta; Bartuś, Krzysztof; Gil, Krzysztof; Olszanecki, Rafał; Dembiński, Artur

    2016-01-01

    Previous studies have shown that ghrelin reduces colonic inflammation induced by trinitrobenzene sulfonic acid and dextran sodium sulfate. In the present study we determined the effect of treatment with ghrelin on the course of acetic acid-induced colitis in rats. Rectal administration of 3% acetic acid solution led to induction of colitis in all animals. Damage of the colonic wall was accompanied by an increase in mucosal concentration of pro-inflammatory interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), as well mucosal activity of myeloperoxidase. Moreover, induction of colitis led to a reduction in colonic blood flow and DNA synthesis. Administration of ghrelin after induction of colitis led to faster regeneration of the colonic wall and reduction in colonic levels of IL-1β, TNF-α, and myeloperoxidase. In addition, treatment with ghrelin improved mucosal DNA synthesis and blood flow. Our study disclosed that ghrelin exhibits a strong anti-inflammatory and healing effect in acetic acid-induced colitis. Our current observation in association with previous findings that ghrelin exhibits curative effect in trinitrobenzene sulfonic acid- and dextran sodium sulfate-induced colitis suggest that therapeutic effect of ghrelin in the colon is universal and independent of the primary cause of colitis. PMID:27598133

  2. Nucleic acid-induced antiviral immunity in invertebrates: an evolutionary perspective.

    PubMed

    Wang, Pei-Hui; Weng, Shao-Ping; He, Jian-Guo

    2015-02-01

    Nucleic acids derived from viral pathogens are typical pathogen associated molecular patterns (PAMPs). In mammals, the recognition of viral nucleic acids by pattern recognition receptors (PRRs), which include Toll-like receptors (TLRs) and retinoic acid-inducible gene (RIG)-I-like receptors (RLRs), induces the release of inflammatory cytokines and type I interferons (IFNs) through the activation of nuclear factor κB (NF-κB) and interferon regulatory factor (IRF) 3/7 pathways, triggering the host antiviral state. However, whether nucleic acids can induce similar antiviral immunity in invertebrates remains ambiguous. Several studies have reported that nucleic acid mimics, especially dsRNA mimic poly(I:C), can strongly induce non-specific antiviral immune responses in insects, shrimp, and oyster. This behavior shows multiple similarities to the hallmarks of mammalian IFN responses. In this review, we highlight the current understanding of nucleic acid-induced antiviral immunity in invertebrates. We also discuss the potential recognition and regulatory mechanisms that confer non-specific antiviral immunity on invertebrate hosts.

  3. Protective Effect of Ocimum basilicum Essential Oil Against Acetic Acid-Induced Colitis in Rats.

    PubMed

    Rashidian, Amir; Roohi, Parnia; Mehrzadi, Saeed; Ghannadi, Ali Reza; Minaiyan, Mohsen

    2016-10-01

    Ocimum basilicum L has been traditionally used for the treatment of inflammatory bowel disease in Iran. This study investigates the ameliorative effect of Ocimum basilicum essential oil on an acetic acid-induced colitis model in rats. Ocimum basilicum essential oil with 2 doses (200 and 400 μL/kg) significantly ameliorated wet weight/length ratio of colonic tissue compared to the control group. Higher doses of essential oil (200 and 400 μL/kg) significantly reduced ulcer severity, ulcer area, and ulcer index. On the other hand, histological examination revealed the diminution of total colitis index as a marker for inflammatory cell infiltration in the colonic segments of rats treated with Ocimum basilicum essential oil (200 and 400 μL/kg). The increased level of myeloperoxidase was significantly decreased after the treatment with the essential oil (200 and 400 μL/kg). These results suggest that Ocimum basilicum exhibits protective effect against acetic acid-induced colitis. PMID:26620574

  4. Comparative neuroprotective profile of statins in quinolinic acid induced neurotoxicity in rats.

    PubMed

    Kalonia, Harikesh; Kumar, Puneet; Kumar, Anil

    2011-01-01

    A possible neuroprotective role has been recently suggested for 3H3MGCoA reductase inhibitors (statins). Here, we sought to determine neuroprotective effect of statins in quinolinic acid induced neurotoxicity in rats. Rats were surgically administered quinolinic acid and treated with Atorvastatin (10, 20 mg/kg), simvastatin (15, 30 mg/kg) and fluvastatin (5, 10 mg/kg) once daily up to 3 weeks. Atorvastatin (10, 20 mg/kg), simvastatin (30 mg/kg) and fluvastatin (10 mg/kg) treatment significantly attenuated the quinolinic acid induced behavioral (locomotor activity, rotarod performance and beam walk test), biochemical (lipid peroxidation, nitrite concentration, SOD and catalase), mitochondrial enzyme complex alterations in rats suggesting their free radical scavenging potential. Additionally, atorvastatin (10, 20 mg/kg), simvastatin (30 mg/kg) and fluvastatin (10 mg/kg) significantly decrease the TNF-α level and striatal lesion volume in quinolinic acid treated animals indicating their anti-inflammatory effects. In comparing the protective effect of different statins, atorvastatin is effective at both the doses while simvastatin and fluvastatins at respective lower doses were not able to produce the protective effect in quinolinic acid treated animals. These modulations can account, at least partly, for the beneficial effect of statins in our rodent model of striatal degeneration. Our findings show that statins could be explored as possible neuroprotective agents for neurodegenerative disorders such as HD. PMID:20696189

  5. Licofelone attenuates quinolinic acid induced Huntington like symptoms: possible behavioral, biochemical and cellular alterations.

    PubMed

    Kalonia, Harikesh; Kumar, Puneet; Kumar, Anil

    2011-03-30

    Cyclo-oxygenase and lipoxygenase enzymes are involved in arachidonic acid metabolism. Emerging evidence indicates that cyclo-oxygenase and lipoxygenase inhibitors prevent neurodegenerative processes and related complications. Therefore, the present study has been designed to explore the neuroprotective potential of licofelone (dual COX-2/5-LOX inhibitor) against quinolinic acid induced Huntington like symptom in rats. Intrastriatal administration of quinolinic acid significantly caused reduction in body weight and motor function (locomotor activity, rotarod performance and beam walk test), oxidative defense (as evidenced by increased lipid peroxidation, nitrite concentration and decreased endogenous antioxidant enzymes), alteration in mitochondrial enzyme complex (I, II and IV) activities, raised TNF-α level and striatal lesion volume as compared to sham treated animals. Licofelone (2.5, 5 and 10 mg/kg) treatment significantly improved body weight, locomotor activity, rotarod performance, balance beam walk performance, oxidative defense, mitochondrial enzyme complex activities and attenuated TNF-α level and striatal lesion as compared to control (quinolinic acid). The present study highlights that licofelone attenuates behavioral, biochemical and cellular alterations against quinolinic acid induced neurotoxicity and this could be an important therapeutic avenue to ameliorate the Huntington like symptoms. PMID:21237233

  6. Salicylic acid induces mitochondrial injury by inhibiting ferrochelatase heme biosynthesis activity.

    PubMed

    Gupta, Vipul; Liu, Shujie; Ando, Hideki; Ishii, Ryohei; Tateno, Shumpei; Kaneko, Yuki; Yugami, Masato; Sakamoto, Satoshi; Yamaguchi, Yuki; Nureki, Osamu; Handa, Hiroshi

    2013-12-01

    Salicylic acid is a classic nonsteroidal anti-inflammatory drug. Although salicylic acid also induces mitochondrial injury, the mechanism of its antimitochondrial activity is not well understood. In this study, by using a one-step affinity purification scheme with salicylic acid-immobilized beads, ferrochelatase (FECH), a homodimeric enzyme involved in heme biosynthesis in mitochondria, was identified as a new molecular target of salicylic acid. Moreover, the cocrystal structure of the FECH-salicylic acid complex was determined. Structural and biochemical studies showed that salicylic acid binds to the dimer interface of FECH in two possible orientations and inhibits its enzymatic activity. Mutational analysis confirmed that Trp301 and Leu311, hydrophobic amino acid residues located at the dimer interface, are directly involved in salicylic acid binding. On a gel filtration column, salicylic acid caused a shift in the elution profile of FECH, indicating that its conformational change is induced by salicylic acid binding. In cultured human cells, salicylic acid treatment or FECH knockdown inhibited heme synthesis, whereas salicylic acid did not exert its inhibitory effect in FECH knockdown cells. Concordantly, salicylic acid treatment or FECH knockdown inhibited heme synthesis in zebrafish embryos. Strikingly, the salicylic acid-induced effect in zebrafish was partially rescued by FECH overexpression. Taken together, these findings illustrate that FECH is responsible for salicylic acid-induced inhibition of heme synthesis, which may contribute to its antimitochondrial and anti-inflammatory function. This study establishes a novel aspect of the complex pharmacological effects of salicylic acid.

  7. The bioactive compounds alpha-chaconine and gallic acid in potato extracts decrease survival and induce apoptosis in LNCaP and PC3 prostate cancer cells.

    PubMed

    Reddivari, Lavanya; Vanamala, Jairam; Safe, Stephen H; Miller, J Creighton

    2010-01-01

    We recently reported that colored potato extracts and an anthocyanin rich fraction suppressed lymph-node carcinoma of the prostate (LNCaP) and prostate cancer-3 (PC-3) prostate cancer cell proliferation and induced apoptosis via caspase-dependent and caspase-independent pathways. Chlorogenic acid, caffeic acid, gallic acid, catechin, malvidin, and glycoalkaloids (alpha-chaconine and solanine) have now been identified as the major bioactive components of potato, and their effects on LNCaP and PC-3 cell proliferation and apoptosis have been investigated. alpha-chaconine (5 microg/ml) and gallic acid (15 microg/ml) exhibited potent antiproliferative properties and increased cyclin-dependent kinase inhibitor p27 levels in both cell lines. Both alpha-chaconine and gallic acid induced poly [adenosine diphosphate (ADP)] ribose polymerase cleavage and caspase-dependent apoptosis in LNCaP cells; however, caspase-independent apoptosis through nuclear translocation of endonuclease G was observed in both LNCaP and PC-3 cells. alpha-chaconine and gallic acid activated c-Jun N-terminal protein kinase (JNK), and this response played a major role in induction of caspase-dependent apoptosis in LNCaP cells; whereas modulation of JNK and mitogen-activated protein kinase did not affect alpha-chaconine- and gallic acid-induced caspase-independent apoptosis. These results suggest that apoptosis induced by whole potato extracts in prostate cancer cell lines may be in part due to alpha-chaconine and gallic acid.

  8. Specific modulation of apoptosis and Bcl-xL phosphorylation in yeast by distinct mammalian protein kinase C isoforms.

    PubMed

    Saraiva, Lucília; Silva, Rui D; Pereira, Gil; Gonçalves, Jorge; Côrte-Real, Manuela

    2006-08-01

    Mammalian protein kinase C (PKC) isoforms have been subject of particular attention because of their ability to modulate apoptotic proteins. However, the roles played by each PKC isoform in apoptosis are still unclear. Here, expression of individual mammalian PKC isoforms in Saccharomyces cerevisiae is used as a new approach to study the role of each isoform in apoptosis. The four isoforms tested, excepting PKC-delta, stimulate S. cerevisiae acetic-acid-induced apoptosis essentially through a mitochondrial ROS-dependent pathway. However, their co-expression with Bcl-xL reveals a PKC-isoform-dependent modulation of Bcl-xL anti-apoptotic activity. A yeast pathway homologue to the mammalian SAPK/JNK is responsible for acetic-acid-induced Bcl-xL phosphorylation that is differently modulated by PKC isoforms. The data obtained suggest conservation of an ancient mechanism of apoptosis regulation in yeast and mammals and offer new insights into mammalian apoptosis modulation by PKC isoforms.

  9. Bovine chromosomal regions affecting rheological traits in acid-induced skim milk gels.

    PubMed

    Glantz, M; Gustavsson, F; Bertelsen, H P; Stålhammar, H; Lindmark-Månsson, H; Paulsson, M; Bendixen, C; Gregersen, V R

    2015-02-01

    The production of fermented milk products has increased worldwide during the last decade and is expected to continue to increase during the coming decade. The quality of these products may be optimized through breeding practices; however, the relations between cow genetics and technological properties of acid milk gels are not fully known. Therefore, the aim of this study was to identify chromosomal regions affecting acid-induced coagulation properties and possible candidate genes. Skim milk samples from 377 Swedish Red cows were rheologically analyzed for acid-induced coagulation properties using low-amplitude oscillation measurements. The resulting traits, including gel strength, coagulation time, and yield stress, were used to conduct a genome-wide association study. Single nucleotide polymorphisms (SNP) were identified using the BovineHD SNPChip (Illumina Inc., San Diego, CA), resulting in almost 621,000 segregating markers. The genome was scanned for putative quantitative trait loci (QTL) regions, haplotypes based on highly associated SNP were inferred, and the additive genetic effects of haplotypes within each QTL region were analyzed using mixed models. A total of 8 genomic regions were identified, with large effects of the significant haplotype explaining between 4.8 and 9.8% of the phenotypic variance of the studied traits. One major QTL was identified to overlap between gel strength and yield stress, the QTL identified with the most significant SNP closest to the gene coding for κ-casein (CSN3). In addition, a chromosome-wide significant region affecting yield stress on BTA 11 was identified to be colocated with PAEP, coding for β-lactoglobulin. Furthermore, the coagulation properties of the genetic variants within the 2 genes were compared with the coagulation properties identified by the patterns of the haplotypes within the regions, and it was discovered that the haplotypes were more diverse and in one case slightly better at explaining the

  10. Apoptosis, autophagy, and more.

    PubMed

    Lockshin, Richard A; Zakeri, Zahra

    2004-12-01

    Cell death has been subdivided into the categories apoptosis (Type I), autophagic cell death (Type II), and necrosis (Type III). The boundary between Type I and II has never been completely clear and perhaps does not exist due to intrinsic factors among different cell types and the crosstalk among organelles within each type. Apoptosis can begin with autophagy, autophagy can end with apoptosis, and blockage of caspase activity can cause a cell to default to Type II cell death from Type I. Furthermore, autophagy is a normal physiological process active in both homeostasis (organelle turnover) and atrophy. "Autophagic cell death" may be interpreted as the process of autophagy that, unlike other situations, does not terminate before the cell collapses. Since switching among the alternative pathways to death is relatively common, interpretations based on knockouts or inhibitors, and therapies directed at controlling apoptosis must include these considerations.

  11. Induction of Apoptosis.

    PubMed

    2016-01-01

    The apoptotic activity of plants is checked to confirm its anti-tumour and anti-cancer activity. Apoptosis is a specific process that leads to intrinsic programmed cell death which is essential in the homeostasis of normal tissues of the body and occurs in various physiological and pathological situations. Method to check apoptosis in EAC cells and DNA analysis are featured in this chapter as a preliminary test manner. PMID:26939284

  12. UV irradiation-induced apoptosis leads to activation of a 36-kDa myelin basic protein kinase in HL-60 cells

    SciTech Connect

    Lu, M.L.; Sato, Mitsuhiro; Cao, Boliang; Richie, J.P.

    1996-08-20

    UV irradiation induces apoptosis (or programmed cell death) in HL-60 promyelocytic leukemia cells within 3 h. UV-induced apoptosis is accompanied by activation of a 36-kDa myelin basic protein kinase (p36 MBP kinase). This kinase is also activated by okadaic acid and retinoic acid-induced apoptosis. Irrespective of the inducing agent, p36 MBP kinase activation is restricted to the subpopulation of cells actually undergoing apoptosis. Activation of p36 MBP kinase occurs in enucleated cytoplasts, indicating no requirements for a nucleus or fragmented DNA in signaling. We also demonstrate the activation of p36 kinase in tumor necrosis factor-{alpha}-and serum starvation-induced cell death using the human prostatic tumor cell line LNCap and NIH 3T3 fibroblasts, respectively. We postulate that p36 MBP kinase is a common component in diverse signaling pathways leading to apoptosis. 40 refs., 5 figs.

  13. Valproic Acid-Induced Severe Acute Pancreatitis with Pseudocyst Formation: Report of a Case

    PubMed Central

    Khamrui, Sujan; Kataria, Mohnish; Biswas, Jayanta; Saha, Suman

    2015-01-01

    Valproic acid is the most widely used anti-epilep­tic drug in children, and it is probably the most frequent cause of drug-induced acute pancreatitis. Outcomes for patients with valproic acid-associated pancreatitis vary from full recovery after discontinuation of the drug to severe acute pancreatitis and death. Here, we present a case of valproic acid-induced severe acute pancreatitis with pseudocyst formation in a 10-year-old girl with cerebral palsy and generalized tonic-clonic seizure. There was no resolution of the pseudocyst after discontinuation of valproic acid. The patient became symptomatic with a progressive increase in the size of the pseudocyst. She was successfully treated with cystogastrostomy and was well at 12-month follow-up. PMID:26366333

  14. Effect of zinc sulphate on acetic acid-induced gastric ulceration in rats.

    PubMed

    Li, K M

    1990-09-01

    The effects of zinc sulphate on gastric ulcer healing rate and mucosal mucus content of acetic acid-induced ulceration in rats have been assessed. Daily treatment with zinc sulphate progressively accelerated ulcer healing in a dose-dependent manner with a significant increase observed on day 15 after ulcer induction in rats treated with 44 and 88 mg kg-1 zinc sulphate. A significant increase in gastric mucosal adherent mucus was also observed in those animals treated with 88 mg kg-1 zinc sulphate. The results suggest that a minimum treatment period of 15 days is needed for the zinc sulphate to be effective, and that zinc ions may promote gastric ulcer healing by enhancing mucus formation to prevent acid back-diffusion into the gastric mucosa.

  15. Polysaccharide arabinogalactan from larch Larix sibirica as carrier for molecules of salicylic and acetylsalicylic acid: preparation, physicochemical and pharmacological study.

    PubMed

    Chistyachenko, Yulia S; Dushkin, Alexandr V; Polyakov, Nikolay E; Khvostov, Mikhail V; Tolstikova, Tatyana G; Tolstikov, Genrikh A; Lyakhov, Nikolay Z

    2015-05-01

    Inclusion complexes of salicylic acid (SA) and acetylsalicylic acid (aspirin, ASA) with polysaccharide arabinogalactan (AG) from larch wood Larix sibirica and Larix gmelinii were synthesized using mechanochemical technology. In the present study, we have investigated physicochemical properties of the synthesized complexes in solid state and in aqueous solutions as well as their anti-aggregation and ulcerogenic activity. The evidence of the complexes formation was obtained by nuclear magnetic resonance (NMR) relaxation technique. It was shown that in aqueous solution the molecules of SA and ASA are in fast exchange between the complex with AG macromolecules and solution. The stability constant of aspirin complex was calculated. It was shown that mechanochemically synthesized complexes are more stable when compared to the complex obtained by mixing solutions of the components. Complexes of ASA show two-fold increase of anti-platelet effect. It allows to reduce the dose of the antithrombotic drug and its ulcerogenic activity. These results substantiate the possibility to design new preparations on the basis of ASA with increased activity and safety.

  16. Simultaneous quantitation of acetylsalicylic acid and clopidogrel along with their metabolites in human plasma using liquid chromatography tandem mass spectrometry.

    PubMed

    Chhonker, Yashpal S; Pandey, Chandra P; Chandasana, Hardik; Laxman, Tulsankar Sachin; Prasad, Yarra Durga; Narain, V S; Dikshit, Madhu; Bhatta, Rabi S

    2016-03-01

    The interest in therapeutic drug monitoring has increased over the last few years. Inter- and intra-patient variability in pharmacokinetics, plasma concentration related toxicity and success of therapy have stressed the need of frequent therapeutic drug monitoring of the drugs. A sensitive, selective and rapid liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) method was developed for the simultaneous quantification of acetylsalicylic acid (aspirin), salicylic acid, clopidogrel and carboxylic acid metabolite of clopidogrel in human plasma. The chromatographic separations were achieved on Waters Symmetry Shield(TM) C18 column (150 × 4.6 mm, 5 µm) using 3.5 mm ammonium acetate (pH 3.5)-acetonitrile (10:90, v/v) as mobile phase at a flow rate of 0.75 mL/min. The present method was successfully applied for therapeutic drug monitoring of aspirin and clopidogrel in 67 patients with coronary artery disease.

  17. Various laboratory protocols for measuring thromboxane A2 generation to detect the effectiveness of acetylsalicylic acid therapy: a comparative study.

    PubMed

    Rozalski, Marcin; Watala, Cezary; Golanski, Jacek

    2014-01-01

    A reliable and simple laboratory assay for predicting clinical effectiveness of antiplatelet acetylsalicylic acid (ASA) therapy is needed. We have compared various laboratory protocols for measuring blood thromboxane A2 (TXA2) generation used to detect the effects of ASA administration. Healthy volunteers (n = 15) were given 150 mg per day ASA for 10 days, followed by ASA at 75 mg per day for 10 days. Five protocols tested for measuring TXA2 generation were: baseline TXB2 determination in plasma; static generation of TXA2 in anticoagulated blood (1 h incubation at room temperature or 37°C, respectively); dynamic generation of TXA2 in anticoagulated blood (1 h in rotary mixer); and generation of TXA2 in blood without anticoagulant (serum-generated TXA2). Platelet aggregation in whole blood was also measured using arachidonic acid (AA), collagen, and ADP as agonists. All five protocols showed significant reduction in TXB2 levels in individuals taking ASA. However, only the assay of TXA2 generation in serum was significantly different compared with the other protocols (P < 0.002). Moreover, the strongest and most significant correlation was observed between TXA2 generation in serum and AA-induced aggregation parameters (for 75 mg per day ASA).Serum TXA2 generation is the best laboratory protocol to detect the effects of ASA, based on serum markers of prostanoid metabolism.

  18. Simultaneous quantitation of acetylsalicylic acid and clopidogrel along with their metabolites in human plasma using liquid chromatography tandem mass spectrometry.

    PubMed

    Chhonker, Yashpal S; Pandey, Chandra P; Chandasana, Hardik; Laxman, Tulsankar Sachin; Prasad, Yarra Durga; Narain, V S; Dikshit, Madhu; Bhatta, Rabi S

    2016-03-01

    The interest in therapeutic drug monitoring has increased over the last few years. Inter- and intra-patient variability in pharmacokinetics, plasma concentration related toxicity and success of therapy have stressed the need of frequent therapeutic drug monitoring of the drugs. A sensitive, selective and rapid liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) method was developed for the simultaneous quantification of acetylsalicylic acid (aspirin), salicylic acid, clopidogrel and carboxylic acid metabolite of clopidogrel in human plasma. The chromatographic separations were achieved on Waters Symmetry Shield(TM) C18 column (150 × 4.6 mm, 5 µm) using 3.5 mm ammonium acetate (pH 3.5)-acetonitrile (10:90, v/v) as mobile phase at a flow rate of 0.75 mL/min. The present method was successfully applied for therapeutic drug monitoring of aspirin and clopidogrel in 67 patients with coronary artery disease. PMID:26230053

  19. Polysaccharide arabinogalactan from larch Larix sibirica as carrier for molecules of salicylic and acetylsalicylic acid: preparation, physicochemical and pharmacological study.

    PubMed

    Chistyachenko, Yulia S; Dushkin, Alexandr V; Polyakov, Nikolay E; Khvostov, Mikhail V; Tolstikova, Tatyana G; Tolstikov, Genrikh A; Lyakhov, Nikolay Z

    2015-05-01

    Inclusion complexes of salicylic acid (SA) and acetylsalicylic acid (aspirin, ASA) with polysaccharide arabinogalactan (AG) from larch wood Larix sibirica and Larix gmelinii were synthesized using mechanochemical technology. In the present study, we have investigated physicochemical properties of the synthesized complexes in solid state and in aqueous solutions as well as their anti-aggregation and ulcerogenic activity. The evidence of the complexes formation was obtained by nuclear magnetic resonance (NMR) relaxation technique. It was shown that in aqueous solution the molecules of SA and ASA are in fast exchange between the complex with AG macromolecules and solution. The stability constant of aspirin complex was calculated. It was shown that mechanochemically synthesized complexes are more stable when compared to the complex obtained by mixing solutions of the components. Complexes of ASA show two-fold increase of anti-platelet effect. It allows to reduce the dose of the antithrombotic drug and its ulcerogenic activity. These results substantiate the possibility to design new preparations on the basis of ASA with increased activity and safety. PMID:24517849

  20. Influence of buffered and unbuffered acetylsalicylic acid on dental enamel and dentine in human teeth: an in vitro pilot study.

    PubMed

    Rogalla, K; Finger, W; Hannig, M

    1992-06-01

    An in vitro study was conducted to investigate the erosive effect of buffered and unbuffered acetylsalicylic acid (ASA) on dental enamel and dentine in human teeth by scanning electron microscopy. In order to standardize the specimens and to improve comparability the dental enamel and dentine were superficially abraded. The enamel and dentine specimens were therefore particularly sensitive to the influences of acid agents. Concentrated solution of buffered chewable ASA tablets (500 mg ASA and 300 mg calcium carbonate in 5 ml water) showed no changes in the enamel surface structure after exposure times of 1 min, 5 min and 60 min. In contrast, minimal corrosive effects were already seen after exposure of the enamel surface to the unbuffered ASA solutions for 1 min. After exposure times of 5 min and 60 min erosion of the enamel was more pronounced. Immersion in the unbuffered ASA solution led to clearly visible micromorphological changes on the dentine surfaces even after exposure for 1 min. Exposure of the dentine specimens to the buffered ASA solutions led to only very slight changes in the surface morphology. Therefore, the scanning electron micrograph after exposure to buffered ASA is comparable to the picture of untreated dentine. PMID:1513188

  1. On the origin of surface imposed anisotropic growth of salicylic and acetylsalicylic acids crystals during droplet evaporation.

    PubMed

    Przybyłek, Maciej; Cysewski, Piotr; Pawelec, Maciej; Ziółkowska, Dorota; Kobierski, Mirosław

    2015-03-01

    In this paper droplet evaporative crystallization of salicylic acid (SA) and acetylsalicylic acid (ASA) crystals on different surfaces, such as glass, polyvinyl alcohol (PVA), and paraffin was studied. The obtained crystals were analyzed using powder X-ray diffraction (PXRD) technique. In order to better understand the effect of the surface on evaporative crystallization, crystals deposited on glass were scraped off. Moreover, evaporative crystallization of a large volume of solution was performed. As we found, paraffin which is non-polar surface promotes formation of crystals morphologically similar to those obtained via bulk evaporative crystallization. On the other hand, when crystallization is carried out on the polar surfaces (glass and PVA), there is a significant orientation effect. This phenomenon is manifested by the reduction of the number of peaks in PXRD spectrum recorded for deposited on the surface crystals. Noteworthy, reduction of PXRD signals is not observed for powder samples obtained after scraping crystals off the glass. In order to explain the mechanism of carboxylic crystals growth on the polar surfaces, quantum-chemical computations were performed. It has been found that crystal faces of the strongest orientation effect can be characterized by the highest surface densities of intermolecular interactions energy (IIE). In case of SA and ASA crystals formed on the polar surfaces the most dominant faces are characterized by the highest adhesive and cohesive properties. This suggests that the selection rules of the orientation effect comes directly from surface IIE densities.

  2. Inhibition of Radiation-Induced Oxidative Damage in the Lung Tissue: May Acetylsalicylic Acid Have a Positive Role?

    PubMed

    Demirel, Can; Kilciksiz, Sevil Cagiran; Gurgul, Serkan; Erdal, Nurten; Yigit, Seyran; Tamer, Lulufer; Ayaz, Lokman

    2016-02-01

    The lung is relatively sensitive to irradiation. It is shown that acetylsalicylic acid (ASA) might reduce oxidative injury and that it has a place in protection from cancer. The aim of this study is to evaluate the potential radioprotective effects of ASA. Whole-body irradiation (6 Gy, single dose) was applied to the rats. Glutathione (GSH), malondialdehyde (MDA), myeloperoxidase (MPO), and nitric oxide (NO) levels in the lung tissue were measured. Control (C), Radiation (R), Radiation + ASA (R + ASA; received irradiation and 25 mg/kg of ASA intraperitoneally (i.p.)), and Radiation + Amifostine (R + WR-2721; received irradiation and 200 mg/kg of WR-2721 i.p.) groups were used. The MPO levels decreased statistically significantly in the group administered ASA. Histopathologically, a radioprotective effect of ASA was more evident in the R + ASA group. ASA is an agent which has not been used as a radioprotector in the clinic yet, and it is worth supporting with more advanced studies. PMID:26276129

  3. Esophageal Submucosal Injection of Capsaicin but Not Acid Induces Symptoms in Normal Subjects

    PubMed Central

    Lee, Robert H; Korsapati, Hariprasad; Bhalla, Vikas; Varki, Nissi; Mittal, Ravinder K

    2016-01-01

    Background/Aims Transient receptor potential vanilloid-1 (TRPV1) is a candidate for mediating acid-induced symptoms in the esophagus. We conducted studies to determine if the presence of acid in the mucosa/submucosa and direct activation of TRPV1 by capsaicin elicited symptoms in normal healthy subjects. We also studied the presence of TRPV1 receptors in the esophagus. Methods Unsedated endoscopy was performed on healthy subjects with no symptoms. Using a sclerotherapy needle, normal saline (pH 2.0–7.5) was injected into the mucosa/submucosa, 5 cm above the Z line. In a separate group of healthy subjects, injection of capsaicin and vehicle was also studied. Quality of symptoms was reported using the McGill Pain Questionnaire, and symptom intensity using the visual analogue scale (VAS). Immunohistochemistry was performed on 8 surgical esophagus specimens using TRPV1 antibody. Results Acid injection either did not elicit or elicited mild symptoms in subjects at all pH solutions. Capsaicin but not the vehicle elicited severe heartburn/chest pain in all subjects. Mean VAS for capsaicin was 91 ± 3 and symptoms lasted for 25 ± 1 minutes. Immunohistochemistry revealed a linear TRPV1 staining pattern between the epithelial layer and the submucosa that extended into the papillae. Eighty-five percent of papillae stained positive for TRPV1 with a mean 1.1 positive papillae per high-powered field. Conclusions The mechanism of acid-induced heartburn and chest pain is not the simple interaction of hydrogen ions with afferents located in the esophageal mucosa and submucosa. TRPV1 receptors are present in the lamina propria and their activation induces heartburn and chest pain. PMID:26932896

  4. Neuroprotective effects of butterbur and rough aster against kainic Acid-induced oxidative stress in mice.

    PubMed

    Oh, Sang Hee; Sok, Dai-Eun; Kim, Mee Ree

    2005-01-01

    The separate and combined neuroprotective effects of rough aster (Aster scaber) and butterbur (Petasite japonicus) extracts against oxidative damage in the brain of mice challenged with kainic acid were examined by comparing behavioral changes and biochemical parameters of oxidative stress. Rough aster butanol extract (400 mg/kg) and/or butterbur butanol extract (150 or 400 mg/kg) were administered to male ICR mice, 6-8 weeks old, through a gavage for 4 days consecutively, and on day 4, kainic acid (50 mg/kg) was administered intraperitoneally. Compared with the vehicle-treated control, no significant changes in body and brain weight were observed in mice administered rough aster or butterbur butanol extract. Administration of kainic acid only, causing a lethality of approximately 54%, resulted in a significant decrease of total glutathione level and increase of thiobarbituric acid-reactive substances (TBARS) value in brain tissue. The administration of butterbur or rough aster extract (400 mg/kg) decreased the lethality (50%) of kainic acid to 25%, alleviated the behavioral signs of neurotoxicity, restored the cytosolic glutathione level of brain homogenate to approximately 80% (P < .05), and reduced kainic acid-induced increases in TBARS values. In contrast to no significant neuroprotection by butterbur extract at a low dose (150 mg/kg), the combination of rough aster extract and butterbur extract reduced the lethality to 12.5%. Moreover, the combination delayed the onset time of behavioral signs by twofold, and significantly preserved the level of cytosolic glutathione peroxidase and glutathione reductase activities. However, the other biochemical parameters were not altered significantly by the combination. Thus, the combination of two vegetable extracts significantly increased the neuroprotective action against kainic acid-induced neurotoxicity. Based on these findings, the combination of butterbur extract and rough aster extract contains a functional agent or

  5. Gallic acid induced apoptotic events in HCT-15 colon cancer cells

    PubMed Central

    Subramanian, Aruna Priyadharshni; Jaganathan, Saravana Kumar; Mandal, Mahitosh; Supriyanto, Eko; Muhamad, Ida Idayu

    2016-01-01

    AIM: To investigate the inhibitory action of diet-derived phenolic compound gallic acid (GA) against HCT-15 colon cancer cells. METHODS: The antiproliferative effect of GA against colon cancer cells was determined by performing thiazolyl blue tetrazolium bromide (MTT) assay. The colony forming ability of GA treated colon cancer cells was evaluated using the colony forming assay. The cell cycle changes induced by GA in HCT-15 cells were analyzed by propidium iodide staining. Levels of reactive oxygen species (ROS) and mitochondrial membrane potential of HCT-15 exposed to GA was assessed using 2’,7’-dichlorfluorescein-diacetate and rhodamine-123 respectively, with the help of flow cytometry. Morphological changes caused by GA treatment in the colon cancer cells were identified by scanning electron microscope and photomicrograph examination. Apoptosis was confirmed using flow cytometric analysis of GA treated HCT-15 cells after staining with Yo-Pro-1. RESULTS: MTT assay results illustrated that GA has an inhibitory effect on HCT-15 cells with IC50 value of 740 μmol/L. A time-dependent inhibition of colony formation was evident with GA treatment. Cell cycle arrest was evident from the accumulation of GA treated HCT-15 cells at sub-G1 phase (0.98 ± 1.03 vs 58.01 ± 2.05) with increasing exposure time. Flow cytometric analysis of GA treated HCT-15 cells depicted early events associated with apoptosis like lipid layer breakage and fall in mitochondrial membrane potential apart from an increase in the generation of ROS which were in a time dependent manner. SEM and photomicrograph images of the GA-treated cells displayed membrane blebbing and cell shrinking characteristics of apoptosis. Further apoptosis confirmation by Yo-Pro-1 staining also showed the time-dependent increase of apoptotic cells after treatment. CONCLUSION: These results show that GA induced ROS dependent apoptosis and inhibited the growth of colon cancer cells. PMID:27099438

  6. DIBROMOACETIC ACID-INDUCED ELEVATIONS IN CIRCULATING ESTRADIOL: EFFECTS IN BOTH CYCLING AND OVARIECTOMIZED/STEROID-PRIMED FEMALE RATS

    EPA Science Inventory

    RTD-03-031
    Goldman, JM and Murr, AS. Dibromoacetic Acid-induced Elevations in Circulating Estradiol: Effects in Both Cycling and Ovariectomized/Steroid-primed Female Rats. Reproductive Toxicology (in press).

    Abstract

    Oral exposures to high concentrations of th...

  7. DIBROMOACETIC ACID-INDUCED ELEVATIONS OF ESTRADIOL IN THE CYCLING AND OVARIECTOMOZED/ESTRADIOL-IMPLANTED FEMALE RAT

    EPA Science Inventory

    Goldman, JM and Murr, AS. Dibromoacetic Acid-induced Elevations of Estradiol in Both Cycling and Ovariectomized / Estradiol-implanted Female Rats

    ABSTRACT
    Haloacetic acids are one of the principal classes of disinfection by-products generated by the chlorination of mun...

  8. Phenylethanoids in the herb of Plantago lanceolata and inhibitory effect on arachidonic acid-induced mouse ear edema.

    PubMed

    Murai, M; Tamayama, Y; Nishibe, S

    1995-10-01

    The five phenylethanoids, acteoside (1), cistanoside F (2), lavandulifolioside (3), plantamajoside (4) and isoacteoside (5) were isolated from the herb of Plantago lanceolata L. (Plantaginaceae). Compounds 1, the major phenylethanoid in the herb of P. lanceolata L., and 4, the major phenylethanoid in the herb of P. asiatica L., showed inhibitory effects on arachidonic acid-induced mouse ear edema. PMID:7480214

  9. Effect of a novel NK1 receptor selective antagonist (NKP608) on citric acid induced cough and airway obstruction.

    PubMed

    El-Hashim, A Z; Wyss, D; Lewis, C

    2004-01-01

    The effects of an orally administered novel and selective NK1 antagonist, NKP608, on cough and airway obstruction, induced by citric acid in guinea pigs, were investigated. Guinea pigs were pre-treated with 0.03, 0.3 and 1 mg kg(-1) of NKP608, the NK2 antagonist, SR48968 or both 2 h prior to challenge with citric acid (0.6 M) for a 10 min period. Guinea pigs pre-treated with 0.03, 0.3 and 1mgkg(-1) of NKP608 exhibited a significant reduction of 77, 74 and 79%, respectively, in the numbers of cough compared to vehicle pre-treated animals (P<0.05). SR48968, 10 mg kg(-1), alone did not significantly affect the citric acid-induced cough but when co-administered with 1 mg kg(-1) of NKP608, there was a significant 90% reduction in cough. NKP608 did not significantly reduce the citric acid-induced increase in Penh at any of the doses used. SR48968 significantly reduced the citric acid induced airway obstruction by about 50%. However, when SR48968 was co-administered with NKP608, there was a greater (73%) decrease in the airway obstruction compared with SR48968 alone. These data show that NKP608, a selective NK1 receptor antagonist, is a potent inhibitor of citric acid induced cough in guinea pigs and may therefore have value in the therapy of clinical cough.

  10. Phenylethanoids in the herb of Plantago lanceolata and inhibitory effect on arachidonic acid-induced mouse ear edema.

    PubMed

    Murai, M; Tamayama, Y; Nishibe, S

    1995-10-01

    The five phenylethanoids, acteoside (1), cistanoside F (2), lavandulifolioside (3), plantamajoside (4) and isoacteoside (5) were isolated from the herb of Plantago lanceolata L. (Plantaginaceae). Compounds 1, the major phenylethanoid in the herb of P. lanceolata L., and 4, the major phenylethanoid in the herb of P. asiatica L., showed inhibitory effects on arachidonic acid-induced mouse ear edema.

  11. Spaceflight Associated Apoptosis

    NASA Technical Reports Server (NTRS)

    Ichiki, Albert T.; Gibson, Linda A.; Allebban, Zuhair

    1996-01-01

    Lymphoid tissues have been shown to atrophy in rats flown on Russian spaceflights. Histological examination indicated evidence for cell degradation. Lymphoid tissues from rats flown on Spacelab Life Sciences-2 mission were analyzed for apoptosis by evidence of fragmented lymphocytes, which could be engulfed by macrophages, or DNA strand breaks using the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay. Apoptosis was not detected in the thymus and spleen collected inflight or from the synchronous ground rats but was detected in the thymus, spleen and inguinal lymph node of the flight animals on recovery. These results indicate that the apoptosis observed in the lymphatic tissues of the rats on recovery could have been induced by the gravitational stress of reentry, corroborating the findings from the early space-flight observations.

  12. Myocardial apoptosis and SIDS.

    PubMed

    Grasmeyer, Sarah; Madea, Burkhard

    2015-01-01

    Apoptosis mediates cardiac damage in severe forms of myocarditis. In fatal myocarditis, large amounts of cardiomyocytes show apoptotic DNA fragmentation, while in human controls, few apoptotic cardiomyocytes are found. In the present study the frequency of apoptosis in 88 SIDS cases (category 1b according to the San Diego Classification) and 15 control cases was investigated. In every case myocardial samples from 8 standard locations were collected. Detection of apoptotic cardiomyocytes was performed by TUNEL method. Furthermore the myocardial tissue was stained with HE and immunohistochemical methods (LCA, CD68, CD45-R0). More than 90% of the slides did not contain apoptotic cardiomyocytes at all. The detection rate of apoptotic cardiomyocytes was almost equal in control group (26.7%) and SIDS group (23.86%). A quantification of apoptotic cardiomyocytes per mm(2) revealed no significant difference between both groups either. Altogether there is no evidence for a higher rate of apoptosis in SIDS.

  13. Effects of nimesulide, acetylsalicylic acid, ibuprofen and nabumetone on cyclooxygenase-1- and cyclooxygenase-2-mediated prostanoid production in healthy volunteers ex vivo.

    PubMed

    Kerola, Markku; Vuolteenaho, Katriina; Kosonen, Outi; Kankaanranta, Hannu; Sarna, Seppo; Moilanen, Eeva

    2009-01-01

    : The beneficial actions of non-steroidal anti-inflammatory drugs (NSAIDs) have been associated with inhibition of cyclooxygenase-2 (COX-2), whereas some of their adverse effects are associated mainly with inhibition of COX-1. Selective COX-2 inhibitors reduce the risk of gastrointestinal adverse events, but increase the risk of thromboembolic events pointing to importance of optimal COX-1/COX-2 inhibition in drug safety. We compared the effects of acetylsalicylic acid, ibuprofen, nabumetone and nimesulide on COX-1 and COX-2 pathways in healthy volunteers in an ex vivo set-up using single oral doses commonly used to treat acute pain. In a randomized, double-blind four-phase cross-over study, 15 healthy volunteers were given orally a single dose of either acetylsalicylic acid 500 mg, ibuprofen 400 mg, nabumetone 1 g or nimesulide 100 mg. Blood samples were drawn before and 1, 3, 6, 24 and 48 hr after the drug for the assessment of COX-1 and COX-2 activity. COX-1 activity was measured as thromboxane(2) production during blood clotting and COX-2 activity as endotoxin-induced prostaglandin E(2) synthesis in blood leucocytes. The data show that after a single oral dose these four NSAIDs have different profiles of action on COX-1 and COX-2. As expected, acetylsalicylic acid appeared to be COX-1-selective and ibuprofen effectively inhibited both COX-1 and COX-2. Nabumetone showed only a slight inhibitory effect on COX-1 and COX-2. Nimesulide caused almost complete suppression of COX-2 activity and a partial reduction of COX-1 activity. This confirms the relative COX-2 selectivity of nimesulide.

  14. Comparison of the concentration-effect relationship of a local antiinflammatory agent and oral acetylsalicylic acid: the value of local application.

    PubMed

    Poisson, M; Ralambosoa, C; Blehaut, H; Astoin, J

    1985-01-01

    Using a pharmacological model, the comparison between acetylsalicylic acid (ASA), administered orally, and a solution combining two salicylate derivatives (ethyl 5-methoxy-salicylate and 3-phenyl-propyl-salicylate), applied locally, demonstrated the value of the local application. Indeed, the pharmacological activity was highly significant and directly related to the tissue concentration of salicyl ions, which was higher after local application of the solution than after oral administration of ASA. The local solution also resulted in a lower plasma concentration of salicylate ions, allowing high plasma salicylate concentrations to be avoided. PMID:4074414

  15. Apoptosis-an introduction.

    PubMed

    Lawen, Alfons

    2003-09-01

    Apoptosis has become a major research area in the biomedical sciences. As there are more than 13,000 papers published annually on the topic, it is impossible to keep track on all developments in the area. The individual aspects of molecular control of apoptosis are well reviewed, but more general, introductory recent reviews into the field are lacking. This review aims to give a brief overview of the field, providing an introduction into the literature for students and newcomers; as it is written for the un-initiated, wherever possible, review articles will be cited rather than original papers.

  16. Multiple copies of a bile acid-inducible gene in Eubacterium sp. strain VPI 12708.

    PubMed Central

    Gopal-Srivastava, R; Mallonee, D H; White, W B; Hylemon, P B

    1990-01-01

    Eubacterium sp. strain VPI 12708 is an anaerobic intestinal bacterium which possesses inducible bile acid 7-dehydroxylation activity. Several new polypeptides are produced in this strain following induction with cholic acid. Genes coding for two copies of a bile acid-inducible 27,000-dalton polypeptide (baiA1 and baiA2) have been previously cloned and sequenced. We now report on a gene coding for a third copy of this 27,000-dalton polypeptide (baiA3). The baiA3 gene has been cloned in lambda DASH on an 11.2-kilobase DNA fragment from a partial Sau3A digest of the Eubacterium DNA. DNA sequence analysis of the baiA3 gene revealed 100% homology with the baiA1 gene within the coding region of the 27,000-dalton polypeptides. The baiA2 gene shares 81% sequence identity with the other two genes at the nucleotide level. The flanking nucleotide sequences associated with the baiA1 and baiA3 genes are identical for 930 bases in the 5' direction from the initiation codon and for at least 325 bases in the 3' direction from the stop codon, including the putative promoter regions for the genes. An additional open reading frame (occupying from 621 to 648 bases, depending on the correct start codon) was found in the identical 5' regions associated with the baiA1 and baiA3 clones. The 5' sequence 930 bases upstream from the baiA1 and baiA3 genes was totally divergent. The baiA2 gene, which is part of a large bile acid-inducible operon, showed no homology with the other two genes either in the 5' or 3' direction from the polypeptide coding region, except for a 15-base-pair presumed ribosome-binding site in the 5' region. These studies strongly suggest that a gene duplication (baiA1 and baiA3) has occurred and is stably maintained in this bacterium. Images PMID:2376563

  17. Rho Kinase ROCK2 Mediates Acid-Induced NADPH Oxidase NOX5-S Expression in Human Esophageal Adenocarcinoma Cells

    PubMed Central

    Cao, Weibiao

    2016-01-01

    Mechanisms of the progression from Barrett’s esophagus (BE) to esophageal adenocarcinoma (EA) are not fully understood. We have shown that NOX5-S may be involved in this progression. However, how acid upregulates NOX5-S is not well known. We found that acid-induced increase in NOX5-S expression was significantly decreased by the Rho kinase (ROCK) inhibitor Y27632 in BE mucosal biopsies and FLO-1 EA cells. In addition, acid treatment significantly increased the Rho kinase activity in FLO-1 cells. The acid-induced increase in NOX5-S expression and H2O2 production was significantly decreased by knockdown of Rho kinase ROCK2, but not by knockdown of ROCK1. Conversely, the overexpression of the constitutively active ROCK2, but not the constitutively active ROCK1, significantly enhanced the NOX5-S expression and H2O2 production. Moreover, the acid-induced increase in Rho kinase activity and in NOX5-S mRNA expression was blocked by the removal of calcium in both FLO-1 and OE33 cells. The calcium ionophore A23187 significantly increased the Rho kinase activity and NOX5-S mRNA expression. We conclude that acid-induced increase in NOX5-S expression and H2O2 production may depend on the activation of ROCK2, but not ROCK1, in EA cells. The acid-induced activation of Rho kinase may be mediated by the intracellular calcium increase. It is possible that persistent acid reflux present in BE patients may increase the intracellular calcium, activate ROCK2 and thereby upregulate NOX5-S. High levels of reactive oxygen species derived from NOX5-S may cause DNA damage and thereby contribute to the progression from BE to EA. PMID:26901778

  18. Investigation of gallic acid induced anticancer effect in human breast carcinoma MCF-7 cells.

    PubMed

    Wang, Ke; Zhu, Xue; Zhang, Kai; Zhu, Ling; Zhou, Fanfan

    2014-09-01

    Gallic acid (GA), a polyhydroxylphenolic compound abundantly distributed in plants, fruits, and foods, has been reported to have various biological activities including an anticancer effect. In this study, we extensively investigated the anticancer effect of GA in human breast carcinoma MCF-7 cells. Our study indicated that treatment with GA resulted in inhibition of proliferation and induction of apoptosis in MCF-7 cells. Then, the molecular mechanism of GA's apoptotic action in MCF-7 cells was further investigated. The results revealed that GA induced apoptosis by triggering the extrinsic or Fas/FasL pathway as well as the intrinsic or mitochondrial pathway. Furthermore, the apoptotic signaling induced by GA was amplified by cross-link between the two pathways. Taken together, our findings may be useful for understanding the mechanism of action of GA on breast cancer cells and provide new insights into the possible application of such compound and its derivatives in breast cancer therapy.

  19. Pharmacokinetic study of a new oral buffered acetylsalicylic acid (ASA) formulation in comparison with plain ASA in healthy volunteers.

    PubMed

    Viganò, G; Garagiola, U; Gaspari, F

    1991-01-01

    A single-blind, randomized, crossover pharmacokinetic study was carried out to investigate the bioavailability of a new oral buffered 325 mg acetylsalicylic acid (ASA) formulation (ASPIRINA 03) in comparison with a 325 mg plain tablet. Twelve healthy volunteers of both sexes, aged between 20 and 37 years, received buffered or plain ASA on two separate occasions with a wash-out interval of at least two weeks. ASA and salicylic acid (SA) plasma levels were determined by a chromatographic method. The results showed no difference between the area under concentration time curve (AUC0-infinity) ASA values of both formulations (p = 0.19), and buffered ASA relative bioavailability was 102.49% (= bioequivalence). A significant difference was found between the AUC0-30 min ASA values: 90.5 micrograms. min/ml with buffered and 67.7 micrograms. min/ml with the plain tablet (p less than 0.05). The buffered ASA time of maximum concentration was shorter (28 +/- 8 min) than the plain one (38 +/- 19 min, p less than 0.05). The plasma concentrations and pharmacokinetic parameters of SA were not significantly different after the administration of the two ASA formulations. The plain ASA tablet had a significantly lower (p less than 0.05) dissolution rate than buffered ASA tablet. Moreover, the buffered ASA tablet significantly (p less than 0.01) increased the pH by 0.5 units. In conclusion, the bioavailability of the new oral buffered ASA was equivalent to that of plain ASA, but the plasma concentration peak was reached in a shorter time. PMID:1809699

  20. Next-generation re-sequencing of genes involved in increased platelet reactivity in diabetic patients on acetylsalicylic acid.

    PubMed

    Postula, Marek; Janicki, Piotr K; Eyileten, Ceren; Rosiak, Marek; Kaplon-Cieslicka, Agnieszka; Sugino, Shigekazu; Wilimski, Radosław; Kosior, Dariusz A; Opolski, Grzegorz; Filipiak, Krzysztof J; Mirowska-Guzel, Dagmara

    2016-06-01

    The objective of this study was to investigate whether rare missense genetic variants in several genes related to platelet functions and acetylsalicylic acid (ASA) response are associated with the platelet reactivity in patients with diabetes type 2 (T2D) on ASA therapy. Fifty eight exons and corresponding introns of eight selected genes, including PTGS1, PTGS2, TXBAS1, PTGIS, ADRA2A, ADRA2B, TXBA2R, and P2RY1 were re-sequenced in 230 DNA samples from T2D patients by using a pooled PCR amplification and next-generation sequencing by Illumina HiSeq2000. The observed non-synonymous variants were confirmed by individual genotyping of 384 DNA samples comprising of the individuals from the original discovery pools and additional verification cohort of 154 ASA-treated T2DM patients. The association between investigated phenotypes (ASA induced changes in platelets reactivity by PFA-100, VerifyNow and serum thromboxane B2 level [sTxB2]), and accumulation of rare missense variants (genetic burden) in investigated genes was tested using statistical collapsing tests. We identified a total of 35 exonic variants, including 3 common missense variants, 15 rare missense variants, and 17 synonymous variants in 8 investigated genes. The rare missense variants exhibited statistically significant difference in the accumulation pattern between a group of patients with increased and normal platelet reactivity based on PFA-100 assay. Our study suggests that genetic burden of the rare functional variants in eight genes may contribute to differences in the platelet reactivity measured with the PFA-100 assay in the T2DM patients treated with ASA. PMID:26599574

  1. Efficacy of acetylsalicylic acid (aspirin) in skin B16-F0 melanoma tumor-bearing C57BL/6 mice.

    PubMed

    Vad, Nikhil M; Kudugunti, Shashi K; Wang, Hezhen; Bhat, G Jayarama; Moridani, Majid Y

    2014-05-01

    Several epidemiological studies show that aspirin can act as a chemopreventive agent and decrease the incidences of various cancers including melanoma. In this work, we investigated the in vitro and in vivo efficacy of acetylsalicylic acid (ASA) as an antimelanoma agent in B16-F0 cells and skin B16-F0 melanoma tumor mouse model. Our findings indicate that the IC50 (48 h) for ASA in B16-F0 melanoma cells was 100 μM and that ASA caused a dose- and time-dependent GSH depletion and increase in reactive oxygen species (ROS) formation in B16-F0 melanoma cells. Male C57BL/6 mice were inoculated s.c. with 1 × 10(6) B16-F0 melanoma cells. ASA (80, 100, and 150 mg/kg) was initiated on day 1 or day 7, or day 9 after cell inoculation and continued daily for 13, 7, and 5 days, respectively. Animals were weighed daily and sacrificed on day 13. The tumors were excised and weighed. The animals receiving 13 days of ASA therapy at 80, 100, and 150 mg/kg demonstrated tumor growth inhibition by 1 ± 12%, 19 ± 22%, and 50 ± 29%, respectively. Animals receiving 7 days of therapy at 80, 100, and 150 mg/kg demonstrated tumor growth inhibition by 12 ± 14%, 27 ± 14%, and 40 ± 14%, respectively. No significant tumor growth inhibition was observed with 5 days of therapy. ASA at 100 and 150 mg/kg caused significant tumor growth inhibition in C57BL/6 mice when administered for 13 and 7 days, respectively. The results obtained in this study are consistent with the recent epidemiologically based report that aspirin is associated with lower melanoma risk in humans.

  2. Low dose of acetylsalicylic acid and oxidative stress-mediated endothelial dysfunction in diabetes: a short-term evaluation.

    PubMed

    Tassone, Eliezer Joseph; Perticone, Maria; Sciacqua, Angela; Mafrici, Simona Fortunata; Settino, Chiara; Malara, Natalia; Mollace, Vincenzo; Sesti, Giorgio; Perticone, Francesco

    2015-04-01

    Current guidelines suggest the use of low doses of acetylsalicylic acid (ASA) for patients with diabetes mellitus (DM) in primary prevention. However, the evidences demonstrating the beneficial effect of ASA in primary prevention are conflicting. In this pilot study, we evaluated in a group of diabetic patients, in primary prevention, the impact of ASA treatment on oxidative stress and vascular function. We enrolled 22 newly diagnosed diabetic patients, without any previous clinical evidence of cardiovascular disease, to receive, in primary prevention, ASA (100 mg/daily). We tested, in basal condition, after 4 weeks of ASA administration and after 4 weeks of pharmacological washout, the impact of ASA treatment on endothelial function, assessed by a semipletysmographic method, measuring the main oxidative stress parameters related to it. As expected, after 4 weeks of treatment, ASA induced a significant reduction of plasma thromboxane-A2, as a consequence of cyclooxygenase-1 inhibition. By contrast, ASA significantly increased the plasma and urine 8-iso-PGF2α, a well-known prothrombotic molecule, parallel to an increase of plasma NOX2 levels. The enhancement of this oxidative pathway is associated with a significant impairment of endothelial vasodilation, assessed by reactive hyperemia index (RHI). The pharmacological washout reverted all parameters to basal condition. Our findings suggest that ASA utilization for primary prevention in diabetic patients causes a significant increase of oxidative stress burden impairing the vascular function. Present data, if confirmed on a larger population, could permanently discourage the use of the ASA for the primary prevention in patients with DM.

  3. [Comparative evaluation of antiplatelet efectiveness drugs of original and reproduced enteric forms of acetylsalicylic acid (clinical study ICAR))].

    PubMed

    Martsevich, S Iu; Tolpygina, S N; Lukina, Iu V; Voronina, V P; Kiseleva, N V; Boĭchenko, E S; Dubinskaia, R É; Khoseva, E N

    2012-01-01

    The purpose of the study was a comparative study of antiplatelet activity of acetylsalicylic acid drugs, produced in gastro-resistant form trombopol 75 mg and aspirin cardio 100 mg in patients with high risk of cardiovascular events. Effect of trombopol 75 mg versus 100 mg aspirin cardio on platelet aggregation in 30 patients with high risk of cardiovascular events during 3 week treatment period was studied. Design method: blind, randomized, crossover method. Three weeks before the initial therapy, for those patients, who received antiplatelet platelet therapy at the time of inclusion in the study, this therapy was withdrew ("wash-out period"), after which patient was given one of the study drug (sequence of courses was s determined according to the scheme of randomization) with the recommendation of taking it daily in the morning at the same time. At each visit, before the next dose of the drug, blood samples for determination of ADP-induced platelet aggregation were taken, physical examination, measurement of blood pressure (BP) and heart rate were recorded, adverse events were recorded. Follow-up visit was performed 3 weeks later. 21 days after first study drug withdrawal, a second similar course of therapy with another drug was performed. Antiplatelet efficacy of aspirin was assessed by its effect on spontaneous and ADP- induced platelet aggregation. Aggregation activity was determined by turbidometric method by changing of translucent ability of the blood sample during the formation of aggregates after 2 minutes of exposure. As an inducer of aggregation ADP solutions of three concentrations (0.5, 1 and 2 mM) were used. No significant difference between compared drugs in influence on aggregation ability of platelets after 3 weeks of daily intake was found. No adverse events associated with taking of studied drugs were registered. It was concluded that, generic APD - trombopol 75 mg and aspirin cardio 100 mg were equivalent on antiplatelet efficacy and

  4. Extracellularly secreted APE1/Ref-1 triggers apoptosis in triple-negative breast cancer cells via RAGE binding, which is mediated through acetylation.

    PubMed

    Lee, Yu Ran; Kim, Ki Mo; Jeon, Byeong Hwa; Choi, Sunga

    2015-09-15

    The present study evaluated the mechanism of apoptosis caused by post-translational modification, hyperacetylation in triple-negative breast cancer (TNBC) cells. We previously showed that trichostatin A (TSA) induced secretion of acetylated apurinic apyrimidinic endonuclease 1/redox factor-1 (Ac-APE1/Ref-1). This is the first report showing that Ac-APE1/Ref-1 initiates apoptosis in TNBC cells by binding to the receptor for advanced glycation end products (RAGE). The functional significance of secreted Ac-APE1/Ref-1 was studied by induction of intracellular hyperacetylation through co-treatment with acetylsalicylic acid and TSA in MDA-MB-231 cells. In response to hyperacetylation, secretion of Ac-APE1/Ref-1 in vesicles was observed, resulting in significantly decreased cell viability and induction of apoptosis with increased expression of RAGE. The hyperacetylation-induced apoptosis was similar in two other TNBC cell lines: BT-459 and MDA-MB-468. Therefore, hyperacetylation may be a therapeutic target for treatment of TNBCs. This study introduces a novel paradigm whereby post-translational modification induces apoptotic cell death in breast cancer cells resistant to standard chemotherapeutic agents through secretion of auto- or paracrine molecules such as Ac-APE1/Ref-1.

  5. Unsaturated fatty acids induce calcium influx into keratinocytes and cause abnormal differentiation of epidermis.

    PubMed

    Katsuta, Yuji; Iida, Toshii; Inomata, Shinji; Denda, Mitsuhiro

    2005-05-01

    Abnormal follicular keratinization is involved in comedogenesis in acne vulgaris. We recently demonstrated that calcium influx into epidermal keratinocytes is associated with impaired skin barrier function and epidermal proliferation. Based on these results, we hypothesized that sebum components affect calcium dynamics in the keratinocyte and consequently induce abnormal keratinization. To test this idea, we first observed the effects of topical application of sebum components, triglycerides (triolein), saturated fatty acids (palmitic acid and stearic acid), and unsaturated fatty acids (oleic acid and palmitoleic acid) on hairless mouse skin. Neither triglyceride nor saturated fatty acids affected the skin surface morphology or epidermal proliferation. On the other hand, application of unsaturated fatty acids, oleic acid, and palmitoleic acid induced scaly skin, abnormal keratinization, and epidermal hyperplasia. Application of triglycerides and saturated fatty acids on cultured human keratinocytes did not affect the intracellular calcium concentration ([Ca(2+)](i)), whereas unsaturated fatty acids increased the [Ca(2+)](i) of the keratinocytes. Moreover, application of oleic acid on hairless mouse skin induced an abnormal calcium distribution in the epidermis. These results suggest that unsaturated fatty acids in sebum alter the calcium dynamics in epidermal keratinocytes and induce abnormal follicular keratinization.

  6. Primary and secondary genetic responses after folic acid-induced acute renal injury in the mouse.

    PubMed

    Calvet, J P; Chadwick, L J

    1994-12-01

    Folic acid-induced acute renal injury results in dramatic changes in gene expression. Among the genes affected by folic acid treatment are the primary response genes, c-fos and c-myc, which are thought to function to initiate cell cycle events. In this report, changes in the expression of three other genes in response to folic acid injury have been investigated: ornithine decarboxylase, epidermal growth factor (EGF), and sulfated glycoprotein-2 (SGP-2). Renal injury was found to cause a rapid decrease in EGF mRNA, which remained absent for several days after the initial injury, gradually returning to normal levels over an approximately 3-wk regeneration and recovery period. Ornithine decarboxylase mRNA showed a similar decrease. In contrast, folic acid caused a rapid increase in SGP-2 mRNA, which peaked several days after treatment, decreasing to normal levels over the 3-wk period. The mRNAs for the primary response genes were superinduced in the injured kidneys in the presence of the protein synthesis inhibitor cycloheximide. In contrast, the changes in EGF and SGP-2 mRNA levels were blocked by cycloheximide, indicating that these responses required new protein synthesis during the first few hours after folic acid injury. The opposite but parallel responses in the expression of the EGF and SGP-2 genes suggest that their regulation is coupled to the initial injury-induced dedifferentiation and subsequent return to the fully differentiated state.

  7. On the molecular mechanisms of the acid-induced dissociation of hydroxy-apatite in water.

    PubMed

    Hochrein, Oliver; Zahn, Dirk

    2011-06-01

    The enamel/saliva interface is mimicked by the comparably much simpler model of (001) surfaces of hydroxy-apatite ( Ca(10)(PO(4))(6)(OH)(2) ) in contact with aqueous solution. At neutral pH, the dissociation of ions is penalized by more than 150 kJ mol(-1) giving rise to very stable apatite-water interfaces. This picture changes drastically with decreasing pH, as the protonation of phosphate and hydroxide ions lowers the free energy of calcium ions dissociation. Our simulations suggest the mechanism of acid-induced apatite decomposition to i) require a considerable degree of protonation of the apatite surface. The first ion dissociation step ii) involves calcium ions which electrostatic binding has been locally destabilized through phosphate and hydroxide protonation. The depletion of calcium ions embedding the anions then allows iii) the dissociation of the anionic species. Along this line, the protective role of fluoride in caries prevention is related to the stabilization of the calcium triangles embedding the OH(-)/F(-) ions.

  8. Saturated phosphatidic acids mediate saturated fatty acid-induced vascular calcification and lipotoxicity.

    PubMed

    Masuda, Masashi; Miyazaki-Anzai, Shinobu; Keenan, Audrey L; Okamura, Kayo; Kendrick, Jessica; Chonchol, Michel; Offermanns, Stefan; Ntambi, James M; Kuro-O, Makoto; Miyazaki, Makoto

    2015-12-01

    Recent evidence indicates that saturated fatty acid-induced (SFA-induced) lipotoxicity contributes to the pathogenesis of cardiovascular and metabolic diseases; however, the molecular mechanisms that underlie SFA-induced lipotoxicity remain unclear. Here, we have shown that repression of stearoyl-CoA desaturase (SCD) enzymes, which regulate the intracellular balance of SFAs and unsaturated FAs, and the subsequent accumulation of SFAs in vascular smooth muscle cells (VSMCs), are characteristic events in the development of vascular calcification. We evaluated whether SMC-specific inhibition of SCD and the resulting SFA accumulation plays a causative role in the pathogenesis of vascular calcification and generated mice with SMC-specific deletion of both Scd1 and Scd2. Mice lacking both SCD1 and SCD2 in SMCs displayed severe vascular calcification with increased ER stress. Moreover, we employed shRNA library screening and radiolabeling approaches, as well as in vitro and in vivo lipidomic analysis, and determined that fully saturated phosphatidic acids such as 1,2-distearoyl-PA (18:0/18:0-PA) mediate SFA-induced lipotoxicity and vascular calcification. Together, these results identify a key lipogenic pathway in SMCs that mediates vascular calcification. PMID:26517697

  9. Phosphoenolpyruvate carboxykinase is an acid-induced, chromosomally encoded virulence factor in Agrobacterium tumefaciens.

    PubMed

    Liu, Pu; Wood, Derek; Nester, Eugene W

    2005-09-01

    The pckA gene, encoding phosphoenolpyruvate carboxykinase, catalyzes the reversible decarboxylation and phosphorylation of oxaloacetate to form phosphoenolpyruvate. Located on the circular chromosome of Agrobacterium, this locus is adjacent to the loci chvG and chvI, encoding a two-component regulatory system that has been shown to be important in virulence. Using a reporter gene fusion, studies showed that the pckA gene is induced by acidic pH but not by acetosyringone. This acid induction is regulated by the chvG-chvI regulatory system, which controls acid-inducible genes. A pckA mutant had no demonstrable PckA enzyme activity and grew on AB minimal medium with glucose but did not grow on the same medium with succinate as the sole carbon source and was more inhibited in its growth than the wild-type strain by an acidic environment. A pckA mutant was highly attenuated in tumor-inducing ability on tobacco leaf disks and was severely attenuated in vir gene expression. Although vir gene induction was completely restored when a constitutive virG gene was introduced into the mutant strain, virulence was only partially restored. These results suggest that avirulence may be due to a combination of the inhibition of this mutant in the acidic plant wound environment and the poor induction of the vir genes. PMID:16109945

  10. Anti-osteoporosis activity of naringin in the retinoic acid-induced osteoporosis model.

    PubMed

    Wei, Min; Yang, Zhonglin; Li, Ping; Zhang, Yabo; Sse, Wing Cho

    2007-01-01

    Isoflavonoids isolated from plants have been confirmed to fight osteoporosis and promote bone health. However, few studies have been conducted to describe the anti-osteoporosis activity of botanical flavonone. Based on the experimental outcomes, we demonstrated the ability of naringin to fight osteoporosis in vitro. We developed a retinoic acid-induced osteoporosis model of rats to assess whether naringin has similar bioactivity against osteoporosis in vitro. After a 14-day supplement of retinoic acid to induce osteoporosis, SD rats were administered naringin. A blood test showed that naringin-treated rats experienced significantly lower activity of serum alkaline phosphatase and had higher femur bone mineral density, compared to untreated rats. All three dosages of naringin improved the decrease in bone weight coefficient, the length and the diameter of the bone, the content of bone ash, calcium, and phosphorus content induced by retinoic acid. The data of histomorphological metrology of naringin groups showed no difference as compared to normal control rats. These outcomes suggest that naringin offer a potential in the management of osteoporosis in vitro. PMID:17708632

  11. SV40 enhancer activation during retinoic acid-induced differentiation of F9 embryonal carcinoma cells.

    PubMed Central

    Sleigh, M J; Lockett, T J

    1985-01-01

    The transient expression vector pSV2CAT, which carries the bacterial chloramphenicol acetyl transferase (CAT) gene under the control of the SV40 early promoter, was used to transfect the murine embryonal carcinoma cell line F9 at various times during the retinoic acid-induced differentiation of these cells. Expression of the CAT gene under SV40 promoter control was found to increase markedly on F9 cell differentiation, measured relative to expression from the thymidine kinase promoter in the same cells. A series of constructs was prepared to identify the features of the SV40 early promoter required for transcription in differentiated and undifferentiated cells, as well as the factors limiting transcription in each case. The increased transcription seen on F9 cell differentiation was not observed when cells were transfected with molecules lacking a functional enhancer. It appears that as embryonal carcinoma cells differentiate, increased SV40 transcription results from enhancer sequence activation. In both differentiated and undifferentiated cell types the level of transcription was found to be limited by the availability and/or activity of cellular factors necessary for enhancer function. Images Fig. 1. PMID:3004973

  12. Bile acid induced colonic irritation stimulates intracolonic nitric oxide release in humans.

    PubMed Central

    Casellas, F; Mourelle, M; Papo, M; Guarner, F; Antolin, M; Armengol, J R; Malagelada, J R

    1996-01-01

    AIM--To measure the intracolonic release of nitric oxide end products (nitrates plus nitrites) and eicosanoids in response to intraluminal irritation with deoxycholic acid (DCA). PATIENTS--Seven patients with irritable bowel syndrome. METHODS--The left colon was perfused with a solution with or without 3 mM deoxycholic acid. Aspirates were assayed for eicosanoids by specific radioimmuno-assay, and for nitrates plus nitrites by the Griess reaction. To confirm that stimulated colonic mucosa can produce nitric oxide (NO), ancillary studies were performed in vitro using samples of normal mucosa obtained from five surgically resected colons. Samples were incubated for 30 minutes in Kreb's solution, 3 mM DCA or DCA with 1 mM L-nitro-arginine-methyl-ester (L-NAME) to inhibit the NO synthase. Finally, NO synthase activity was measured in five samples of human colonic mucosa. RESULTS--Intracolonic release of nitrates plus nitrites was basally undetectable in six of seven patients. Bile acid considerably increased the release of prostaglandin E2 and nitrates plus nitrites (p < 0.01). By contrast, no increase in thromboxane and leukotriene was seen. In vitro mucosal incubation with DCA increased the production of NO synthase products, which was blocked by L-NAME. Activity of Ca+2 independent NO synthase was detectable in four of five samples of human colonic mucosa. CONCLUSION--The human colonic mucosa responds to bile acid induced irritation by a surge in NO generation via NO synthase. PMID:8707118

  13. A West Nile virus mutant with increased resistance to acid-induced inactivation.

    PubMed

    Martín-Acebes, Miguel A; Saiz, Juan-Carlos

    2011-04-01

    West Nile virus (WNV) is a mosquito-borne flavivirus responsible for epidemics of febrile illness, meningitis, encephalitis and flaccid paralysis. WNV gains entry into host cells through endocytosis. The acid pH inside endosomes triggers rapid conformational rearrangements of the flavivirus envelope (E) glycoprotein that result in fusion of the endosomal membrane with the virion envelope. Conformational rearrangements of the E glycoprotein can be induced by acid exposure in solution in the absence of target membranes, thus causing a loss of infectivity. Following a genetic approach to study this process, a WNV mutant with increased resistance to acid-induced inactivation was isolated and its complete genome was sequenced. A single amino acid substitution, T70I, in the E glycoprotein was found to be responsible for the increased acid resistance, which was linked to an increase in the sensitivity of infection to the chemical rise of endosomal pH, suggesting that the mutant required a more acid pH inside the endosomes for fusion. No alterations in viral infection kinetics, plaque size or induced mortality rates in mice of the mutant were noted. However, by means of virus competition assays, a reduction in viral fitness under standard culture conditions was observed for the mutant. These results provide new evidence of the adaptive flexibility to environmental factors--pH variation in this case--of WNV populations. Implications of the T70I replacement on the E glycoprotein structure-function relationship are discussed.

  14. Neuroprotective effects of MK-801 on L-2-chloropropionic acid-induced neurotoxicity.

    PubMed

    Williams, R E; Lock, E A; Bachelard, H S

    2001-02-01

    L-2-Chloropropionic acid is selectively toxic to the cerebellum in rats; the granule cell necrosis observed within 48 h can be prevented by prior administration of MK-801. Short-term treatment (2 h) with L-2-chloropropionic acid has also been shown to activate the mitochondrial pyruvate dehydrogenase complex in fasted adult rats. This study aimed to investigate the effect of prior exposure to MK-801 on the biochemical and neurotoxicological effects of L-2-chloropropionic acid. Extracts were prepared from the forebrain and cerebellum of animals that had been treated with L-2-chloropropionic acid, with and without prior treatment with MK-801, and were analysed using magnetic resonance spectroscopy and amino acid analysis. Glucose metabolism was studied by monitoring the metabolism of [1-(13)C]-glucose using GC/MS. L-2-Chloropropionic acid caused increased glucose metabolism in both brain regions 6 h after administration, confirming activation of the pyruvate dehydrogenase complex, which was not prevented by MK-801. After 48 h an increase in lactate and a decrease in N-acetylaspartate was observed only in the cerebellum, whereas phosphocreatine and ATP decreased in both tissues. MK-801 prevented the changes in lactate and N:-acetylaspartate, but not those on the energy state. These studies suggest that L-2-chloropropionic acid-induced neurotoxicity is only partly mediated by the NMDA subtype of glutamate receptor.

  15. Saturated phosphatidic acids mediate saturated fatty acid-induced vascular calcification and lipotoxicity.

    PubMed

    Masuda, Masashi; Miyazaki-Anzai, Shinobu; Keenan, Audrey L; Okamura, Kayo; Kendrick, Jessica; Chonchol, Michel; Offermanns, Stefan; Ntambi, James M; Kuro-O, Makoto; Miyazaki, Makoto

    2015-10-26

    Recent evidence indicates that saturated fatty acid-induced (SFA-induced) lipotoxicity contributes to the pathogenesis of cardiovascular and metabolic diseases; however, the molecular mechanisms that underlie SFA-induced lipotoxicity remain unclear. Here, we have shown that repression of stearoyl-CoA desaturase (SCD) enzymes, which regulate the intracellular balance of SFAs and unsaturated FAs, and the subsequent accumulation of SFAs in vascular smooth muscle cells (VSMCs), are characteristic events in the development of vascular calcification. We evaluated whether SMC-specific inhibition of SCD and the resulting SFA accumulation plays a causative role in the pathogenesis of vascular calcification and generated mice with SMC-specific deletion of both Scd1 and Scd2. Mice lacking both SCD1 and SCD2 in SMCs displayed severe vascular calcification with increased ER stress. Moreover, we employed shRNA library screening and radiolabeling approaches, as well as in vitro and in vivo lipidomic analysis, and determined that fully saturated phosphatidic acids such as 1,2-distearoyl-PA (18:0/18:0-PA) mediate SFA-induced lipotoxicity and vascular calcification. Together, these results identify a key lipogenic pathway in SMCs that mediates vascular calcification.

  16. Role of neurosteroids in experimental 3-nitropropionic acid induced neurotoxicity in rats.

    PubMed

    Kumar, Pushpender; Kumar, Puneet; Khan, Aamir; Deshmukh, Rahul; Lal Sharma, Pyare

    2014-01-15

    Huntington's disease is an autosomal dominant, progressive, and fatal neurodegenerative disease characterized by motor and non-motor symptoms. Systemic administration of 3-nitropropionic acid, a complex II inhibitor of the electron transport chain induces selective striatal lesions in rodents. Neurosteroids are synthesized in central nervous system, able to modulate GABAA receptor function and has been reported to have neuroprotective action. The present study has been designed to investigate the role of neurosteroids such as progesterone and pregnenolone which are positive and negative modulators of GABA respectively against 3-nitropropionic acid induced experimental Huntington's disease. Systemic administration of 3-nitropropionic acid (10mg/kg i.p.) for 14 days significantly reduced body weight, locomotor activity, motor coordination, balance beam walk performance, antioxidant defense enzymes (reduced glutathione and catalase) and significantly increase oxidative stress markers (lipid peroxidation and nitrite level) in striatum and cortex. 3-Nitropropionic acid treatment also increases pro-inflammatory cytokines (TNF-α and IL-1β) level in striatum. Progesterone (10, 20mg/kg/day i.p.) treatments for 14 days significantly reversed the behavioral, antioxidant defense enzymes, oxidative stress marker and pro-inflammatory cytokines as compared to the 3-Nitropropionic acid treated group. Pregnenolone (1 and 2mg/kg i.p.), a negative modulator of GABAA pretreatment significantly reversed the protective effect of progesterone on behavioral and biochemical parameters. The results of the present study suggest that the positive GABAergic modulation may be beneficial for the treatment of motor disorder. PMID:24333475

  17. Folic acid induces salicylic acid-dependent immunity in Arabidopsis and enhances susceptibility to Alternaria brassicicola.

    PubMed

    Wittek, Finni; Kanawati, Basem; Wenig, Marion; Hoffmann, Thomas; Franz-Oberdorf, Katrin; Schwab, Wilfried; Schmitt-Kopplin, Philippe; Vlot, A Corina

    2015-08-01

    Folates are essential for one-carbon transfer reactions in all organisms and contribute, for example, to de novo DNA synthesis. Here, we detected the folate precursors 7,8-dihydropteroate (DHP) and 4-amino-4-deoxychorismate (ADC) in extracts from Arabidopsis thaliana plants by Fourier transform ion cyclotron resonance-mass spectrometry. The accumulation of DHP, but not ADC, was induced after infection of plants with Pseudomonas syringae delivering the effector protein AvrRpm1. Application of folic acid or the DHP precursor 7,8-dihydroneopterin (DHN) enhanced resistance in Arabidopsis to P. syringae and elevated the transcript accumulation of the salicylic acid (SA) marker gene pathogenesis-related1 in both the treated and systemic untreated leaves. DHN- and folic acid-induced systemic resistance was dependent on SA biosynthesis and signalling. Similar to SA, folic acid application locally enhanced Arabidopsis susceptibility to the necrotrophic fungus Alternaria brassicicola. Together, the data associate the folic acid pathway with innate immunity in Arabidopsis, simultaneously activating local and systemic SA-dependent resistance to P. syringae and suppressing local resistance to A. brassicicola.

  18. Inhibition of ascorbic acid-induced modifications in lens proteins by peptides.

    PubMed

    Argirova, Mariana; Argirov, Ognyan

    2003-03-01

    The effects of three dipeptides L-phenylalanyl-glybine, glycyl-L-phenylalanine,and aspartame (L-aspartyl-L-phenylalanine, methyl ester) as inhibitors of the ascorbic acid-induced modifications in lens proteins were studied. Their efficiency was compared to that of two known inhibitors--aminoguanidine and carnosine. The tested dipeptides diminished protein carbonyl content by 32-58% and most moderated the formation of chromophores, as measured by the absorbency at 325 nm of the glycated proteins. The appearance of non-tryptophan fluorescence (excitation 340 nm/emission 410 nm) was observed for proteins glycated with ascorbic acid. All of the dipeptides examined, as well as aminoguanidine, decreased this glycation-related fluorescence. The potential inhibitors prevented the intensive formation of very high molecular weight aggregates. A competitive mechanism of their inhibitory effect was proposed, based on the reactivity of individual substances toward ascorbic acid. These findings indicate that they have a potential for use as alternatives for aminoguanidine as an anti-glycation agent.

  19. Effect of galactose on acid induced molten globule state of Soybean Agglutinin: Biophysical approach

    NASA Astrophysics Data System (ADS)

    Alam, Parvez; Naseem, Farha; Abdelhameed, Ali Saber; Khan, Rizwan Hasan

    2015-11-01

    In the present study the formation of molten globule-like unfolding intermediate Soybean Agglutinin (SBA) in acidic pH range has been established with the help of acrylamide quenching, intrinsic fluorescence, ANS fluorescence measurement, far UV CD and dynamic light scattering measurement. A marked increase in ANS fluorescence was observed at pH 2.2. Ksv of acrylamide quenching was found to be higher at pH 2.2 than that of native SBA at pH 7. Far UV CD spectra of pH induced state suggest that SBA shows significant retention of secondary structure closure to native. Hydrodynamic radius of SBA at pH 2.2 was found be more as compared to native state and also in other pH induced states. Further we checked the effect of galactose on the molten globule state of SBA. This study suggests that SBA exist as molten globule at pH 2.2 and this study will help in acid induced molten globule state of other proteins.

  20. Apoptosis during intramembranous ossification

    PubMed Central

    Palumbo, Carla; Ferretti, Marzia; De Pol, Anto

    2003-01-01

    This paper concerns the role of apoptosis during the onset of bone histogenesis. Previous investigations by us performed on intramembranous ossification revealed the existence of two types of osteogenesis: static (SBF) and dynamic bone formation (DBF). During SBF, the first to occur, stationary osteoblasts transform into osteocytes in the same location where they differentiated, forming the primary spongiosa. DBF takes place later, when movable osteoblastic laminae differentiate along the surface of the primary trabeculae. The main distinctive feature between SBF and DBF is that the latter involves the invasion of pre-existing adjacent tissue, whereas the former does not. To ascertain whether programmed cell death during the invasive DBF process determines the fate of surrounding pre-existing mesenchyme differently from that occurring during the non-invasive SBF process, we studied apoptosis in ossification centres of tibial diaphysis in chick embryos and newborn rabbits with TUNEL and TEM. It emerged that, in both SBF and DBF, apoptosis affects mesenchymal cells located between the forming trabeculae and capillaries. However, apoptotic cells were observed more frequently during DBF than during SBF. This suggests that, during bone histogenesis, apoptosis, which is mostly associated with the invasive process of DBF, is probably dedicated to making space for advancing bone growth. PMID:14686694

  1. Purple sweet potato color attenuates domoic acid-induced cognitive deficits by promoting estrogen receptor-α-mediated mitochondrial biogenesis signaling in mice.

    PubMed

    Lu, Jun; Wu, Dong-mei; Zheng, Yuan-lin; Hu, Bin; Cheng, Wei; Zhang, Zi-feng

    2012-02-01

    Recent findings suggest that endoplasmic reticulum stress may be involved in the pathogenesis of domoic acid-induced neurodegeneration. Purple sweet potato color, a class of naturally occurring anthocyanins, has beneficial health and biological effects. Recent studies have also shown that anthocyanins have estrogenic activity and can enhance estrogen receptor-α expression. In this study, we evaluated the effect of purple sweet potato color on cognitive deficits induced by hippocampal mitochondrial dysfunction in domoic acid-treated mice and explored the potential mechanisms underlying this effect. Our results showed that the oral administration of purple sweet potato color to domoic acid-treated mice significantly improved their behavioral performance in a step-through passive avoidance task and a Morris water maze task. These improvements were mediated, at least in part, by a stimulation of estrogen receptor-α-mediated mitochondrial biogenesis signaling and by decreases in the expression of p47phox and gp91phox. Decreases in reactive oxygen species and protein carbonylation were also observed, along with a blockade of the endoplasmic reticulum stress pathway. Furthermore, purple sweet potato color significantly suppressed endoplasmic reticulum stress-induced apoptosis, which prevented neuron loss and restored the expression of memory-related proteins. However, knockdown of estrogen receptor-α using short hairpin RNA only partially blocked the neuroprotective effects of purple sweet potato color in the hippocampus of mice cotreated with purple sweet potato color and domoic acid, indicating that purple sweet potato color acts through multiple pathways. These results suggest that purple sweet potato color could be a possible candidate for the prevention and treatment of cognitive deficits in excitotoxic and other brain disorders.

  2. Simultaneous determination of acetylsalicylic acid and salicylic acid in human plasma by isocratic high-pressure liquid chromatography with post-column hydrolysis and fluorescence detection.

    PubMed

    Hobl, Eva-Luise; Jilma, Bernd; Ebner, Josef; Schmid, Rainer W

    2013-06-01

    A selective, sensitive and rapid high-performance liquid chromatography method with post-column hydrolysis and fluorescence detection was developed for the simultaneous quantification of acetylsalicylic acid and its metabolite salicylic acid in human plasma. Following the addition of 2-hydroxy-3-methoxybenzoic acid as internal standard and simple protein precipitation with acetonitrile, the analytes were separated on a ProntoSIL 120 C18 ace-EPS column (150 × 2 mm, 3 µm) protected by a C8 guard column (5 µm). The mobile phase, 10 mm formic acid in water (pH 2.9) and acetonitrile (70:30, v/v), was used at a flow rate of 0.35 mL/min. After on-line post-column hydrolysis of acetylsalicylic acid (ASA) to salicylic acid (SA) by addition of alkaline solution, the analytes were measured at 290 nm (λex ) and 400 nm (λem ). The method was linear in the concentration ranges between 0.05 and 20 ng/μL for both ASA and SA with a lower limit of quantification of 25 pg/μL for SA and 50 pg/μL for ASA. The limit of detection was 15 pg/μL for SA and 32.5 pg/μL for ASA. The analysis of ASA and SA can be carried out within 8 min; therefore this method is suitable for measuring plasma concentrations of salicylates in clinical routine.

  3. Regulation on RhoA in vascular smooth muscle cells under inflammatory stimulation proposes a novel mechanism mediating the multiple-beneficial action of acetylsalicylic acid.

    PubMed

    Li, Dong-Bo; Yang, Guo-Jie; Xu, Hong-Wei; Fu, Zhi-Xuan; Wang, Shan-Wei; Hu, Shen-Jiang

    2013-12-01

    Recent studies have revealed the additional beneficial effects of acetylsalicylic acid (aspirin) in the medication of cardiovascular diseases. The small GTPase RhoA as an important signaling factor is implicated in a wide range of cell functions. This study aimed to investigate the regulatory effect of acetylsalicylic acid on RhoA in vascular smooth muscle cells (VSMCs). We found that aspirin at 300 μM suppressed VSMCs proliferation stimulated by LPS, and this inhibitory effect was partially mediated by inhibiting the iNOS/NO pathway. RhoA overexpression was downregulated by aspirin (both 30 and 300 μM) because of enhanced degradation of RhoA protein. The effect of LPS on increasing active RhoA level was significantly attenuated by aspirin (300 μM), which exerted no effect on RhoA translocation. The promoted RhoA phosphorylation under LPS stimulation, coupled with RhoA protein expression, was greatly decreased by aspirin treatment. No effect of aspirin was found on the expression, activation, and phosphorylation of RhoA in VSMCs devoid of inflammatory stimulation. Our investigation indicates that the regulation of RhoA by aspirin in VSMCs under inflammatory stimulus could be a novel mechanism via which aspirin, apart from the COX-dependent action, exerted the multiple beneficial effects.

  4. Food sensitivity reported by patients with asthma and hay fever. A relationship between food sensitivity and birch pollen-allergy and between food sensitivity and acetylsalicylic acid intolerance.

    PubMed

    Eriksson, N E

    1978-08-01

    Among adult patients with bronchial asthma and/or allergic rhinitis undergoing allergological investigation with skin test, nasal provocation test and RAST, 1129 answered a questionaire regarding food sensitivity (FS). 276 (24%) of the patients reported some kind of allergic symptoms on eating or handling various foods, of which hazel nut, apple and shell fish were the most often named. Females reported FS more often than males. A correlation was found between birch pollen allergy and FS with nuts, apple, peach, cherry, pear, plum, carrot and new potato. The higher the degree of birch pollen allergy, according to skin test, RAST or provocation test, the higher the frequency of FS. A correlation was found too between acetylsalicylic acid intolerance and FS with some foods, e.g. nuts, strawberry, almond, green pepper, hip, chocolate, egg, cabbage, milk and wine. The connection between birch pollen allergy and FS is probably explained by the structural relationship between birch pollen allergen and some allergens of the foodstuffs, whereas the high incidence of FS in acetylsalicylic acid-intolerant patients is probably explained by additives in foods as well as salicylates or benzoates naturally occurring in some food. PMID:717703

  5. Formation of molecular complexes of salicylic acid, acetylsalicylic acid, and methyl salicylate in a mixture of supercritical carbon dioxide with a polar cosolvent

    NASA Astrophysics Data System (ADS)

    Petrenko, V. E.; Antipova, M. L.; Gurina, D. L.; Odintsova, E. G.

    2015-08-01

    The solvate structures formed by salicylic acid, acetylsalicylic acid, and methyl salicylate in supercritical (SC) carbon dioxide with a polar cosolvent (methanol, 0.03 mole fractions) at a density of 0.7 g/cm3 and a temperature of 318 K were studied by the molecular dynamics method. Salicylic and acetylsalicylic acids were found to form highly stable hydrogen-bonded complexes with methanol via the hydrogen atom of the carboxyl group. For methyl salicylate in which the carboxyl hydrogen is substituted by a methyl radical, the formation of stable hydrogen bonds with methanol was not revealed. The contribution of other functional groups of the solute to the interactions with the cosolvent was much smaller. An analysis of correlations between the obtained data and the literature data on the cosolvent effect on the solubility of the compounds in SC CO2 showed that the dissolving ability of SC CO2 with respect to a polar organic substance in the presence of a cosolvent increased only when stable hydrogen-bonded complexes are formed between this substance and the cosolvent.

  6. Cinnamic acid induces apoptotic cell death and cytoskeleton disruption in human melanoma cells.

    PubMed

    Niero, Evandro Luís de Oliveira; Machado-Santelli, Gláucia Maria

    2013-05-23

    Anticancer activities of cinnamic acid derivatives include induction of apoptosis by irreversible DNA damage leading to cell death. The present work aimed to compare the cytotoxic and genotoxic potential of cinnamic acid in human melanoma cell line (HT-144) and human melanocyte cell line derived from blue nevus (NGM). Viability assay showed that the IC50 for HT-144 cells was 2.4 mM, while NGM cells were more resistant to the treatment. The growth inhibition was probably associated with DNA damage leading to DNA synthesis inhibition, as shown by BrdU incorporation assay, induction of nuclear aberrations and then apoptosis. The frequency of cell death caused by cinnamic acid was higher in HT-144 cells. Activated-caspase 3 staining showed apoptosis after 24 hours of treatment with cinnamic acid 3.2 mM in HT-144 cells, but not in NGM. We observed microtubules disorganization after cinnamic acid exposure, but this event and cell death seem to be independent according to M30 and tubulin labeling. The frequency of micronucleated HT-144 cells was higher after treatment with cinnamic acid (0.4 and 3.2 mM) when compared to the controls. Cinnamic acid 3.2 mM also increased the frequency of micronucleated NGM cells indicating genotoxic activity of the compound, but the effects were milder. Binucleation and multinucleation counting showed similar results. We conclude that cinnamic acid has effective antiproliferative activity against melanoma cells. However, the increased frequency of micronucleation in NGM cells warrants the possibility of genotoxicity and needs further investigation.

  7. Cinnamic acid induces apoptotic cell death and cytoskeleton disruption in human melanoma cells

    PubMed Central

    2013-01-01

    Anticancer activities of cinnamic acid derivatives include induction of apoptosis by irreversible DNA damage leading to cell death. The present work aimed to compare the cytotoxic and genotoxic potential of cinnamic acid in human melanoma cell line (HT-144) and human melanocyte cell line derived from blue nevus (NGM). Viability assay showed that the IC50 for HT-144 cells was 2.4 mM, while NGM cells were more resistant to the treatment. The growth inhibition was probably associated with DNA damage leading to DNA synthesis inhibition, as shown by BrdU incorporation assay, induction of nuclear aberrations and then apoptosis. The frequency of cell death caused by cinnamic acid was higher in HT-144 cells. Activated-caspase 3 staining showed apoptosis after 24 hours of treatment with cinnamic acid 3.2 mM in HT-144 cells, but not in NGM. We observed microtubules disorganization after cinnamic acid exposure, but this event and cell death seem to be independent according to M30 and tubulin labeling. The frequency of micronucleated HT-144 cells was higher after treatment with cinnamic acid (0.4 and 3.2 mM) when compared to the controls. Cinnamic acid 3.2 mM also increased the frequency of micronucleated NGM cells indicating genotoxic activity of the compound, but the effects were milder. Binucleation and multinucleation counting showed similar results. We conclude that cinnamic acid has effective antiproliferative activity against melanoma cells. However, the increased frequency of micronucleation in NGM cells warrants the possibility of genotoxicity and needs further investigation. PMID:23701745

  8. Tachykinin inhibition of acid-induced gastric hyperaemia in the rat.

    PubMed Central

    Heinemann, A.; Jocic, M.; Herzeg, G.; Holzer, P.

    1996-01-01

    1. Primary afferent neurones releasing the vasodilator, calcitonin gene-related peptide, mediate the gastric hyperaemic response to acid back-diffusion. The tachykinins neurokinin A (NKA) and substance P (SP) are located in the same neurones and are co-released with calcitonin gene-related peptide. In this study we investigated the effect and possible role of tachykinins in the acid-evoked gastric vasodilatation in urethane-anaesthetized rats. 2. Gastric acid back-diffusion, induced by perfusing the stomach with 15% ethanol in the presence of 0.05 M HCl, increased gastric mucosal blood flow by 60-90%, as determined by the hydrogen clearance technique. NKA and SP (0.14-3.78 nmol min-1 kg-1, infused intra-aortically) inhibited the gastric mucosal hyperaemic response to acid back-diffusion in a dose-dependent manner, an effect that was accompanied by aggravation of ethanol/acid-induced macroscopic haemorrhagic lesions. 3. The inhibitory effect of NKA (1.26 nmol min-1 kg-1) on the acid-induced gastric mucosal vasodilatation was prevented by the tachykinin NK2 receptor antagonists, MEN 10,627 (200 nmol kg-1) but left unaltered by the NK1 receptor antagonist, SR 140,333 (300 nmol kg-1) and the mast-cell stabilizer, ketotifen (4.6 mumol kg-1). 4. Under basal conditions, with 0.05 M HCl being perfused through the stomach, NKA (1.26 nmol min-1 kg-1) reduced gastric mucosal blood flow by about 25%, an effect that was abolished by SR 140,333 but not MEN 10,627 or ketotifen. 5. SR 140,333, MEN 10,627 or ketotifen had no significant effect on basal gastric mucosal blood flow nor did they modify the gastric mucosal hyperaemic reaction to acid back-diffusion. 6. The effect of NKA (1.26 nmol min-1 kg-1) in causing vasoconstriction and inhibiting the vasodilator response to acid back-diffusion was also seen when blood flow in the left gastric artery was measured with the ultrasonic transit time shift technique. 7. Arginine vasopressin (AVP, 0.1 nmol min-1 kg-1) induced gastric

  9. Loss of n-6 fatty acid induced pediatric obesity protects against acute murine colitis

    PubMed Central

    Nagy-Szakal, Dorottya; Mir, Sabina A. V.; Harris, R. Alan; Dowd, Scot E.; Yamada, Takeshi; Lacorazza, H. Daniel; Tatevian, Nina; Smith, C. Wayne; de Zoeten, Edwin F.; Klein, John; Kellermayer, Richard

    2015-01-01

    Dietary influences may affect microbiome composition and host immune responses, thereby modulating propensity toward inflammatory bowel diseases (IBDs): Crohn disease (CD) and ulcerative colitis (UC). Dietary n-6 fatty acids have been associated with UC in prospective studies. However, the critical developmental period when (n-6) consumption may induce UC is not known. We examined the effects of transiently increased n-6 consumption during pediatric development on subsequent dextran-sulfate-sodium (DSS)-induced acute murine colitis. The animals transiently became obese then rapidly lost this phenotype. Interestingly, mice were protected against DSS colitis 40 days after n-6 consumption. The transient high n-6-induced protection against colitis was fat type- and dietary reversal-dependent and could be transferred to germ-free mice by fecal microbiota transplantation. We also detected decreased numbers of chemokine receptor (Cxcr)5+ CD4+ T cells in the mesenteric lymph nodes (MLNs) of transiently n-6-fed mice. Further experiments revealed that anti-chemokine ligand (Cxcl)13 (the ligand of Cxcr5) antibody treatment decreased DSS colitis severity, implicating the importance of the Cxcr5-Cxcl13 pathway in mammalian colitis. Consecutively, we found elevated CXCL13 concentrations (CD: 1.8-fold, P = 0.0077; UC: 1.9-fold, P = 0.056) in the serum of untreated pediatric IBD patients. The human serologic observations supported the translational relevance of our findings.—Nagy-Szakal, D., Mir, S. A. V., Harris, R. A., Dowd, S. E., Yamada, T., Lacorazza, H. D., Tatevian, N., Smith, C. W., de Zoeten, E. F., Klein, J., Kellermayer, R. Loss of n-6 fatty acid induced pediatric obesity protects against acute murine colitis. PMID:25903104

  10. Helicobacter pylori impedes acid-induced tightening of gastric epithelial junctions

    PubMed Central

    Marcus, Elizabeth A.; Vagin, Olga; Tokhtaeva, Elmira; Sachs, George

    2013-01-01

    Gastric infection by Helicobacter pylori is the most common cause of ulcer disease and gastric cancer. The mechanism of progression from gastritis and inflammation to ulcers and cancer in a fraction of those infected is not definitively known. Significant acidity is unique to the gastric environment and is required for ulcer development. The interplay between gastric acidity and H. pylori pathogenesis is important in progression to advanced disease. The aim of this study was to characterize the impact of acid on gastric epithelial integrity and cytokine release and how H. pylori infection alters these responses. Human gastric epithelial (HGE-20) cells were grown on porous inserts, and survival, barrier function, and cytokine release were studied at various apical pH levels in the presence and absence of H. pylori. With apical acidity, gastric epithelial cells demonstrate increased barrier function, as evidenced by increased transepithelial electrical resistance (TEER) and decreased paracellular permeability. This effect is reduced in the presence of wild-type, but not urease knockout, H. pylori. The epithelial inflammatory response is also modulated by acidity and H. pylori infection. Without H. pylori, epithelial IL-8 release decreases in acid, while IL-6 release increases. In the presence of H. pylori, acidic pH diminishes the magnitude of the previously reported increase in IL-8 and IL-6 release. H. pylori interferes with the gastric epithelial response to acid, contributing to altered barrier function and inflammatory response. H. pylori diminishes acid-induced tightening of cell junctions in a urease-dependent manner, suggesting that local pH elevation promotes barrier compromise and progression to mucosal damage. PMID:23989011

  11. Intrarenal renin-angiotensin system mediates fatty acid-induced ER stress in the kidney.

    PubMed

    Li, Chunling; Lin, Yu; Luo, Renfei; Chen, Shaoming; Wang, Feifei; Zheng, Peili; Levi, Moshe; Yang, Tianxin; Wang, Weidong

    2016-03-01

    Obesity-related kidney disease is related to caloric excess promoting deleterious cellular responses. Accumulation of saturated free fatty acids in tubular cells produces lipotoxicity involving significant cellular dysfunction and injury. The objectives of this study were to elucidate the role of renin-angiotensin system (RAS) activation in saturated fatty acid-induced endoplasmic reticulum (ER) stress in cultured human proximal tubule epithelial cells (HK2) and in mice fed with a high-fat diet. Treatment with saturated fatty acid palmitic acid (PA; 0.8 mM) for 24 h induced ER stress in HK2, leading to an unfolded protein response as reflected by increased expressions of the ER chaperone binding immunoglobulin protein (BiP) and proapoptotic transcription factor C/EBP homologous protein (CHOP) protein as evaluated by immunoblotting. PA treatment also induced increased protein expression of inositol requiring protein 1α (IRE1α), phosphorylated eukaryotic initiation factor-α (eIF2α), and activating transcription factor 4 (ATF4) as well as activation of caspase-3. PA treatment was associated with increased angiotensin II levels in cultured medium. The angiotensin II type 1 receptor (AT1R) blocker valsartan or renin inhibitor aliskiren dramatically suppressed PA-induced upregulation of BiP, CHOP, IRE1α, p-eIF2α, and ATF4 in HK2 cells. In contrast, valsartan or aliskiren did not prevent ER stress induced by tunicamycin. C57BL/6 mice fed with a high-fat diet for 14 wk exhibited increased protein expressions of BiP and CHOP compared with control mice, which were significantly attenuated by the valsartan treatment. Increased angiotensin II levels in serum and urine were observed in mice fed with a high-fat diet when compared with controls. It is suggested that the intrarenal RAS activation may play an important role in diabetic kidney injury via mediating ER stress induced by saturated fatty acid. PMID:26672616

  12. Diets Rich in Saturated and Polyunsaturated Fatty Acids Induce Morphological Alterations in the Rat Ventral Prostate

    PubMed Central

    Furriel, Angélica; Campos-Silva, Pamella; Silva, Paola Cariello Guedes Picarote; Costa, Waldemar Silva; Sampaio, Francisco José Barcellos; Gregório, Bianca Martins

    2014-01-01

    Aim To evaluate the influence of dietary lipid quality on the body mass, carbohydrate metabolism and morphology of the rat ventral prostate. Materials and Methods Wistar rats were divided into four groups: SC (standard chow), HF-S (high-fat diet rich in saturated fatty acids), HF-P (high-fat diet rich in polyunsaturated fatty acids) and HF-SP (high-fat diet rich in saturated and polyunsaturated fatty acids). We analyzed body mass, fat mass deposits, plasma blood, insulin resistance and the ventral prostate structure. Results Groups that received high-fat diets were heavier and presented larger fat deposits than SC group. The HF-S and HF-SP groups had higher glucose, insulin and total cholesterol serum levels and insulin resistance compared with the SC. The acinar area, epithelium height and area density of the lumen were higher in the HF-SP than in the other groups. The epithelium area density and epithelial cell proliferation were greater in the HF-P and HF-SP than in the SC group. All of the groups that received high-fat diets had greater area density of the stroma, area density of smooth muscle cells and stromal cell proliferation compared with the SC group. Conclusion Diets rich in saturated and/or polyunsaturated fatty acids induced overweight. Independently of insulin resistance, polyunsaturated fatty acids increased prostate stromal and epithelial cell proliferation. Saturated fatty acids influenced only stromal cellular proliferation. These structural and morphometric alterations may be considered risk factors for the development of adverse remodeling process in the rat ventral prostate. PMID:25029463

  13. Bile Acid-Induced Necrosis in Primary Human Hepatocytes and in Patients with Obstructive Cholestasis

    PubMed Central

    Woolbright, Benjamin L.; Dorko, Kenneth; Antoine, Daniel J.; Clarke, Joanna I.; Gholami, Parviz; Li, Feng; Kumer, Sean C.; Schmitt, Timothy M.; Forster, Jameson; Fan, Fang; Jenkins, Rosalind E.; Park, B. Kevin; Hagenbuch, Bruno; Olyaee, Mojtaba; Jaeschke, Hartmut

    2015-01-01

    Accumulation of bile acids is a major mediator of cholestatic liver injury. Recent studies indicate bile acid composition between humans and rodents is dramatically different, as humans have a higher percent of glycine conjugated bile acids and increased chenodeoxycholate content, which increases the hydrophobicity index of bile acids. This increase may lead to direct toxicity that kills hepatocytes, and promotes inflammation. To address this issue, this study assessed how pathophysiological concentrations of bile acids measured in cholestatic patients affected primary human hepatocytes. Individual bile acid levels were determined in serum and bile by UPLC/QTOFMS in patients with extrahepatic cholestasis with, or without, concurrent increases in serum transaminases. Bile acid levels increased in serum of patients with liver injury, while biliary levels decreased, implicating infarction of the biliary tracts. To assess bile acid-induced toxicity in man, primary human hepatocytes were treated with relevant concentrations, derived from patient data, of the model bile acid glycochenodeoxycholic acid (GCDC). Treatment with GCDC resulted in necrosis with no increase in apoptotic parameters. This was recapitulated by treatment with biliary bile acid concentrations, but not serum concentrations. Marked elevations in serum full-length cytokeratin-18, high mobility group box1 protein (HMGB1), and acetylated HMGB1 confirmed inflammatory necrosis in injured patients; only modest elevations in caspase-cleaved cytokeratin-18 were observed. These data suggest human hepatocytes are more resistant to human-relevant bile acids than rodent hepatocytes, and die through necrosis when exposed to bile acids. These mechanisms of cholestasis in humans are fundamentally different to mechanisms observed in rodent models. PMID:25636263

  14. Human sweet taste receptor mediates acid-induced sweetness of miraculin.

    PubMed

    Koizumi, Ayako; Tsuchiya, Asami; Nakajima, Ken-ichiro; Ito, Keisuke; Terada, Tohru; Shimizu-Ibuka, Akiko; Briand, Loïc; Asakura, Tomiko; Misaka, Takumi; Abe, Keiko

    2011-10-01

    Miraculin (MCL) is a homodimeric protein isolated from the red berries of Richadella dulcifica. MCL, although flat in taste at neutral pH, has taste-modifying activity to convert sour stimuli to sweetness. Once MCL is held on the tongue, strong sweetness is sensed over 1 h each time we taste a sour solution. Nevertheless, no molecular mechanism underlying the taste-modifying activity has been clarified. In this study, we succeeded in quantitatively evaluating the acid-induced sweetness of MCL using a cell-based assay system and found that MCL activated hT1R2-hT1R3 pH-dependently as the pH decreased from 6.5 to 4.8, and that the receptor activation occurred every time an acid solution was applied. Although MCL per se is sensory-inactive at pH 6.7 or higher, it suppressed the response of hT1R2-hT1R3 to other sweeteners at neutral pH and enhanced the response at weakly acidic pH. Using human/mouse chimeric receptors and molecular modeling, we revealed that the amino-terminal domain of hT1R2 is required for the response to MCL. Our data suggest that MCL binds hT1R2-hT1R3 as an antagonist at neutral pH and functionally changes into an agonist at acidic pH, and we conclude this may cause its taste-modifying activity. PMID:21949380

  15. Role of ion transporters in the bile acid-induced esophageal injury.

    PubMed

    Laczkó, Dorottya; Rosztóczy, András; Birkás, Klaudia; Katona, Máté; Rakonczay, Zoltán; Tiszlavicz, László; Róka, Richárd; Wittmann, Tibor; Hegyi, Péter; Venglovecz, Viktória

    2016-07-01

    Barrett's esophagus (BE) is considered to be the most severe complication of gastro-esophageal reflux disease (GERD), in which the prolonged, repetitive episodes of combined acidic and biliary reflux result in the replacement of the squamous esophageal lining by columnar epithelium. Therefore, the acid-extruding mechanisms of esophageal epithelial cells (EECs) may play an important role in the defense. Our aim was to identify the presence of acid/base transporters on EECs and to investigate the effect of bile acids on their expressions and functions. Human EEC lines (CP-A and CP-D) were acutely exposed to bile acid cocktail (BAC) and the changes in intracellular pH (pHi) and Ca(2+) concentration ([Ca(2+)]i) were measured by microfluorometry. mRNA and protein expression of ion transporters was investigated by RT-PCR, Western blot, and immunohistochemistry. We have identified the presence of a Na(+)/H(+) exchanger (NHE), Na(+)/HCO3 (-) cotransporter (NBC), and a Cl(-)-dependent HCO3 (-) secretory mechanism in CP-A and CP-D cells. Acute administration of BAC stimulated HCO3 (-) secretion in both cell lines and the NHE activity in CP-D cells by an inositol triphosphate-dependent calcium release. Chronic administration of BAC to EECs increased the expression of ion transporters compared with nontreated cells. A similar expression pattern was observed in biopsy samples from BE compared with normal epithelium. We have shown that acute administration of bile acids differently alters ion transport mechanisms of EECs, whereas chronic exposure to bile acids increases the expression of acid/base transporters. We speculate that these adaptive processes of EECs represent an important mucosal defense against the bile acid-induced epithelial injury. PMID:27198194

  16. Human sweet taste receptor mediates acid-induced sweetness of miraculin

    PubMed Central

    Koizumi, Ayako; Tsuchiya, Asami; Nakajima, Ken-ichiro; Ito, Keisuke; Terada, Tohru; Shimizu-Ibuka, Akiko; Briand, Loïc; Asakura, Tomiko; Misaka, Takumi; Abe, Keiko

    2011-01-01

    Miraculin (MCL) is a homodimeric protein isolated from the red berries of Richadella dulcifica. MCL, although flat in taste at neutral pH, has taste-modifying activity to convert sour stimuli to sweetness. Once MCL is held on the tongue, strong sweetness is sensed over 1 h each time we taste a sour solution. Nevertheless, no molecular mechanism underlying the taste-modifying activity has been clarified. In this study, we succeeded in quantitatively evaluating the acid-induced sweetness of MCL using a cell-based assay system and found that MCL activated hT1R2-hT1R3 pH-dependently as the pH decreased from 6.5 to 4.8, and that the receptor activation occurred every time an acid solution was applied. Although MCL per se is sensory-inactive at pH 6.7 or higher, it suppressed the response of hT1R2-hT1R3 to other sweeteners at neutral pH and enhanced the response at weakly acidic pH. Using human/mouse chimeric receptors and molecular modeling, we revealed that the amino-terminal domain of hT1R2 is required for the response to MCL. Our data suggest that MCL binds hT1R2-hT1R3 as an antagonist at neutral pH and functionally changes into an agonist at acidic pH, and we conclude this may cause its taste-modifying activity. PMID:21949380

  17. Mortalin, Apoptosis, and Neurodegeneration

    PubMed Central

    Londono, Carolina; Osorio, Cristina; Gama, Vivian; Alzate, Oscar

    2012-01-01

    Mortalin is a highly conserved heat-shock chaperone usually found in multiple subcellular locations. It has several binding partners and has been implicated in various functions ranging from stress response, control of cell proliferation, and inhibition/prevention of apoptosis. The activity of this protein involves different structural and functional mechanisms, and minor alterations in its expression level may lead to serious biological consequences, including neurodegeneration. In this article we review the most current data associated with mortalin’s binding partners and how these protein-protein interactions may be implicated in apoptosis and neurodegeneration. A complete understanding of the molecular pathways in which mortalin is involved is important for the development of therapeutic strategies for cancer and neurodegenerative diseases. PMID:24970131

  18. The influence of pretreatment with ghrelin on the development of acetic-acid-induced colitis in rats.

    PubMed

    Maduzia, D; Matuszyk, A; Ceranowicz, D; Warzecha, Z; Ceranowicz, P; Fyderek, K; Galazka, K; Dembinski, A

    2015-12-01

    Ghrelin has been primarily shown to exhibit protective and therapeutic effect in the gut. Pretreatment with ghrelin inhibits the development of acute pancreatitis and accelerates pancreatic recovery in the course of this disease. In the stomach, ghrelin reduces gastric mucosal damage induced by ethanol, stress or alendronate, as well as accelerates the healing of acetic acid-induced gastric and duodenal ulcer. The aim of present studies was to investigate the effect of pretreatment with ghrelin on the development of acetic acid-induced colitis. Studies have been performed on male Wistar rats. Animals were treated intraperitoneally with saline (control) or ghrelin (4, 8 or 16 nmol/kg/dose). Saline or ghrelin was given twice: 8 and 1 h before induction of colitis. Colitis was induced by a rectal enema with 1 ml of 4% solution of acetic acid and the severity of colitis was assessed 1 or 24 hours after induction of inflammation. Rectal administration of acetic acid induced colitis in all animals. Damage of colonic wall was seen at the macroscopic and microscopic level. This effect was accompanied by a reduction in colonic blood flow and mucosal DNA synthesis. Moreover, induction of colitis significantly increased mucosal concentration of pro-inflammatory interleukin-1β (IL-1β), activity of myeloperoxidase and concentration of malondialdehyde (MDA). Mucosal activity of superoxide dismutase (SOD) was reduced. Pretreatment with ghrelin reduced the area and grade of mucosal damage. This effect was accompanied by an improvement of blood flow, DNA synthesis and SOD activity in colonic mucosa. Moreover, ghrelin administration reduced mucosal concentration of IL-1β and MDA, as well as decreased mucosal activity of myeloperoxidase. Administration of ghrelin protects the large bowel against the development of the acetic acid-induced colitis and this effect seems to be related to the ghrelin-evoked anti-inflammatory and anti-oxidative effects.

  19. The influence of pretreatment with ghrelin on the development of acetic-acid-induced colitis in rats.

    PubMed

    Maduzia, D; Matuszyk, A; Ceranowicz, D; Warzecha, Z; Ceranowicz, P; Fyderek, K; Galazka, K; Dembinski, A

    2015-12-01

    Ghrelin has been primarily shown to exhibit protective and therapeutic effect in the gut. Pretreatment with ghrelin inhibits the development of acute pancreatitis and accelerates pancreatic recovery in the course of this disease. In the stomach, ghrelin reduces gastric mucosal damage induced by ethanol, stress or alendronate, as well as accelerates the healing of acetic acid-induced gastric and duodenal ulcer. The aim of present studies was to investigate the effect of pretreatment with ghrelin on the development of acetic acid-induced colitis. Studies have been performed on male Wistar rats. Animals were treated intraperitoneally with saline (control) or ghrelin (4, 8 or 16 nmol/kg/dose). Saline or ghrelin was given twice: 8 and 1 h before induction of colitis. Colitis was induced by a rectal enema with 1 ml of 4% solution of acetic acid and the severity of colitis was assessed 1 or 24 hours after induction of inflammation. Rectal administration of acetic acid induced colitis in all animals. Damage of colonic wall was seen at the macroscopic and microscopic level. This effect was accompanied by a reduction in colonic blood flow and mucosal DNA synthesis. Moreover, induction of colitis significantly increased mucosal concentration of pro-inflammatory interleukin-1β (IL-1β), activity of myeloperoxidase and concentration of malondialdehyde (MDA). Mucosal activity of superoxide dismutase (SOD) was reduced. Pretreatment with ghrelin reduced the area and grade of mucosal damage. This effect was accompanied by an improvement of blood flow, DNA synthesis and SOD activity in colonic mucosa. Moreover, ghrelin administration reduced mucosal concentration of IL-1β and MDA, as well as decreased mucosal activity of myeloperoxidase. Administration of ghrelin protects the large bowel against the development of the acetic acid-induced colitis and this effect seems to be related to the ghrelin-evoked anti-inflammatory and anti-oxidative effects. PMID:26769837

  20. [Platelet aggregation upon acetylsalicylic acid and clopidogrel treatment and glycoprotein IIb/IIIa content in patients with acute coronary syndrome].

    PubMed

    Khaspekova, S G; Ziuriaev, I T; Iakushkin, V V; Golubeva, N V; Ruda, M Ia; Mazurov, A V

    2011-01-01

    Interaction between aggregating activity of platelets and glycoprotein (GP) IIb/IIIa (fibrinogen receptor) content on their surface was investigated in patients with acute coronary syndrome (ACS). Eighty nine ACS patients were included into the study - 69 with and 20 without elevation of ST segment. Blood was collected within the first hour of admission to the clinic (1 day), and then at 3-5 and 8-12 days. All patients received standard antiaggregant therapy - acetylsalicylic acid - ASA (thromboxane A2 synthesis inhibitor) and clopidogrel (ADP receptor antagonist). Platelet aggregation was analyzed at the first time point when patients had already taken ASA but not clopidogrel, and then (3-5 and 8- 12 days) upon combined therapy with both preparations. Aggregation was induced by 5 and 20 uM ADP and measured by turbidimetric method. In comparison with the initial level (1 day, ASA) at days 3-5, i.e. after development of clopidogrel effect, platelet aggregation was decreased by 54 and 40% upon its stimulation with 5 and 20 uM ADP, and was not further changed at days 8-12. GP IIb/IIIa content on platelet surface was determined by binding of 125I-labelled monoclonal antibody CRC64. GP IIb/IIIa number varied from 31100 to 73000 per platelet with the mean level of 48500 +/- 8400 (mean +/- standard deviation). No differences were detected between mean GP IIb/IIIa number at 1, 3-5 and 8-12 days after ACS onset. Upon repeat GP IIb/IIIa measurement coefficient of variation was 6.1% demonstrating the stability of this parameter in each patient. Positive correlation between platelet aggregation and GP IIb/IIIa content was detected at the first day - correlation coefficients (r) 0.425 and 0.470 for 5 and 20 uM ADP (n=57, p<0.001). However positive association between these parameters was not revealed at 3-5 and 8-12 days, when patients received not only ASA but clopidogrel as well (r from -0.054 to -0.237, p>0.05). These results indicates that variations of GP IIb/IIIa content

  1. The effect of a platelet cholesterol modulation on the acetylsalicylic acid-mediated blood platelet inhibition in hypercholesterolemic patients.

    PubMed

    Luzak, Boguslawa; Boncler, Magdalena; Rywaniak, Joanna; Wilk, Radoslaw; Stanczyk, Lidia; Czyz, Malgorzata; Rysz, Jacek; Watala, Cezary

    2011-05-11

    Aspirin (acetylsalicylic acid, ASA) is widely used in the prevention of cardiovascular disease, but its beneficial effects may be restrained in some individuals, where the reduced ability of ASA to protect against arterial thrombotic events is observed. We analyzed the influence of the treatment with atorvastatin (10mg/day) on the platelet sensitivity to ASA monitored under in vitro conditions in hypercholesterolemic patients. The associations between plasma or platelet cholesterol parameters and the ASA-mediated inhibition of platelet reactivity or the extent of platelet protein acetylation by ASA were estimated in the patients treated with atorvastatin for 1, 3, or 6 months. Out of 27 patients, in 17 individuals platelets appeared significantly more sensitive to 50 μM ASA in arachidonic acid- or collagen-induced whole blood aggregation following 1 month atorvastatin therapy (inhibition by 60.9 ± 5.6% vs. 48.8 ± 5.4%, P<0.05 for 0.5mM arachidonic acid, 40.8 ± 2.9% vs. 27.0 ± 4.1%, P<0.05 for 1 μg/ml collagen), and this effect lasted for 3 and 6 months, remaining in a weak, although significant, relation to the reduction of platelet cholesterol content (R(S)=-0.277, P<0.002 for arachidonic acid, R(S)=-0.197, P<0.02 for collagen). It was, however, not dependent upon either antiplatelet action or plasma lipid-lowering activity of atorvastatin. In addition, in about 50% of patients, we noticed that ASA (50 μM) significantly and time-dependently diminished thromboxane B(2) concentration in atorvastatin-treated patients. The ASA-induced acetylation of platelet proteins significantly increased in the course of atorvastatin therapy and was associated with reduced platelet cholesterol (R(S)=-0.598, P<0.0001). In conclusion, statin therapy may improve platelet sensitivity to ASA in some hypercholesterolemic patients. This effect may extend beyond the action of atorvastatin as merely a lipid-lowering agent. The mechanisms of resistance of some patients to such a

  2. Effects of paracetamol and propacetamol on gastric mucosal damage and gastric lipid peroxidation caused by acetylsalicylic acid (ASA) in rats.

    PubMed

    Galunska, B; Marazova, K; Tankova, T; Popov, A; Frangov, P; Krushkov, I; Di Massa, A

    2002-08-01

    We have studied the effect of paracetamol and its pro-drug propacetamol on gastric mucosal damage induced by acetylsalicylic acid (ASA) and its possible relation to changes in gastric lipid peroxidation status in rats. Paracetamol or propacetamol were administered intragastrically 1h before ASA (300 mg kg(-1)) in the following equivalent doses: 62.5, 125.0 and 250.0 mg kg(-1) or 125.0, 250.0 and 500.0 mg kg(-1), respectively. The effects of the tested agents were compared to that of prostaglandin E2 (PGE2) 15, 30 and 60 mg kg(-1). Gastric ulcer formation was estimated morphometrically 4h after ASA administration. Malondialdehyde (MDA), glutathione (reduced, GSH, and oxidized, GSSG) and uric acid (UA) were determined in gastric mucosa and blood plasma and used as biochemical markers of the oxidative status. The results showed that paracetamol (250, 125, 62.5 mg kg(-1)) and propacetamol (500, 250, 125 mg kg(-1)) diminished the area of ASA-induced gastric lesions. The effect of propacetamol was more pronounced than that of paracetamol and similar to that of PGE2. Gastric MDA increased 3-fold in the ASA-group. The tested agents reduced it by a range of 30-70%. In all pretreated groups gastric glutathione and UA levels were found higher than that of control group and lower than that of ASA-group. Paracetamol and propacetamol, as well as PGE2, diminished the lipid peroxidation in plasma to a lesser extent than in gastric mucosa, but maintained elevated levels of the selective plasma antioxidant UA. These results show that the ASA-induced gastric mucosal damage is accompanied by the development of oxidative stress, evidenced by the accumulation of MDA, and concomitant initial activation of cell antioxidant defences. As paracetamol and propacetamol tend to decrease gastric lesions caused by ASA and alter gastric mucosal MDA, glutathione and UA values in a favorable manner, it could be suggested that their effects on the gastric mucosa could be related to interference with

  3. Salubrinal, ER stress inhibitor, attenuates kainic acid-induced hippocampal cell death.

    PubMed

    Kim, Jung Soo; Heo, Rok Won; Kim, Hwajin; Yi, Chin-Ok; Shin, Hyun Joo; Han, Jong Woo; Roh, Gu Seob

    2014-10-01

    Kainic acid (KA)-induced neuronal death is closely linked to endoplasmic reticulum (ER) and mitochondrial dysfunction. Parkin is an ubiquitin E3 ligase that mediates the ubiquitination of the Bcl-2 family of proteins and its mutations are associated with neuronal apoptosis in neurodegenerative diseases. We investigated the effect of salubrinal, an ER stress inhibitor, on the regulation of ER stress and mitochondrial apoptosis induced by KA, in particular, by controlling parkin expression. We showed that salubrinal significantly reduced seizure activity and increased survival rates of mice with KA-induced seizures. We found that salubrinal protected neurons against apoptotic death by reducing expression of mitochondrial apoptotic factors and elF2α-ATF4-CHOP signaling proteins. Interestingly, we showed that salubrinal decreased the KA-induced parkin expression and inhibited parkin translocation to mitochondria, which suggests that parkin may regulate a cross-talk between ER and mitochondria. Collectively, inhibition of ER stress attenuates mitochondrial apoptotic and ER stress pathways and controls parkin-mediated neuronal death following KA-induced seizures. PMID:24728926

  4. Effect of baicalin on hippocampal damage in kainic acid-induced epileptic mice

    PubMed Central

    Liao, Zheng-Jian; Liang, Ri-Sheng; Shi, Song-Sheng; Wang, Chun-Hua; Yang, Wei-Zhong

    2016-01-01

    The aim of the present study was to determine the effect of baicalin on the expression of miR-497 and its target B-cell lymphoma-2 (Bcl-2) in the hippocampus of kainic acid (KA)-induced epileptic mice. To establish status epilepticus (SE), 0.1 µg/5 µl KA was injected into the lateral cerebral ventricle in mice, which then received an intraperitoneal injection of baicalin (100 mg/kg) after 1 and 8 h. Hematoxylin and eosin staining was used to observe the pathological changes in morphology and neuronal apoptosis was determined by terminal transferase-mediated dUTP nick end-labeling staining. Western blot analysis was used to detect the expression of Bcl-2 and cleaved caspase-3 proteins in the hippocampus, while reverse transcription-quantitative polymerase chain reaction was used to quantify hippocampal miR-497 expression. The results showed that baicalin significantly attenuated neuronal damage and apoptosis in the hippocampus 72 h after SE. In addition, baicalin decreased SE-induced expression of miR-497 and cleaved caspase-3 protein, while upregulating the expression of Bcl-2 protein. In conclusion, the present results suggest that baicalin possesses potent antiapoptotic properties and attenuates hippocampal injury in mice after SE, which may be associated with the downregulation of miR-497 and cleaved caspase-3 and the upregulation of Bcl-2. PMID:27588062

  5. Attenuation of proinflammatory cytokines and apoptotic process by verapamil and diltiazem against quinolinic acid induced Huntington like alterations in rats.

    PubMed

    Kalonia, Harikesh; Kumar, Puneet; Kumar, Anil

    2011-02-01

    Huntington disease is a neurodegenerative disease with complex pathophysiology. Recently, role of neuroinflammation and interplay between various other cellular cascades have been suggested to be involved in pathophysiology of Huntington disease. Involvement of calcium overload mediated oxidative damage and excitotoxicity have been suggested to play a central role in quinolinic acid induced Huntington like symptoms. The present study has been carried out to investigate the neuroprotective effect of calcium channel blockers (verapamil and diltiazem) against quinolinic acid induced dysfunction in motor, biochemical and neuroinflammatory signaling in rats. Intrastriatal quinolinic acid administration leads to significant motor [locomotor (72% reduction), rotarod (55% reduction), balance beam walk performance] dysfunction coupled with the marked oxidative damage and increased neuroinflammatory markers [TNF-α (140%), IL-6 (115%), caspase-3(75%)] levels in striatum as compared to the sham treatment. Verapamil (10 and 20mg/kg), diltiazem (10 and 20mg/kg) drug treatment for 21days resulted in a significant improvement in the motor function (improvement in locomotor activity, rotarod and balance beam walk performance). Further, verapamil (10 and 20mg/kg), diltiazem (10 and 20mg/kg) treatment significantly attenuated oxidative damage, level of proinflammatory mediators (TNF-α IL-6 and caspase-3) in quinolinic acid treated animals. Results of the present study demonstrate that protective effect of these calcium channel blockers (verapamil, diltiazem) might be due to their inhibitory action on different neuroinflammatory pathways against quinolinic acid induced Huntington disease like symptoms in rats. PMID:21112316

  6. Effect of CMC Molecular Weight on Acid-Induced Gelation of Heated WPI-CMC Soluble Complex.

    PubMed

    Huan, Yan; Zhang, Sha; Vardhanabhuti, Bongkosh

    2016-02-01

    Acid-induced gelation properties of heated whey protein isolate (WPI) and carboxymethylcellulose (CMC) soluble complex were investigated as a function of CMC molecular weight (270, 680, and 750 kDa) and concentrations (0% to 0.125%). Heated WPI-CMC soluble complex with 6% protein was made by heating biopolymers together at pH 7.0 and 85 °C for 30 min and diluted to 5% protein before acid-induced gelation. Acid-induced gel formed from heated WPI-CMC complexes exhibited increased hardness and decreased water holding capacity with increasing CMC concentrations but gel strength decreased at higher CMC content. The highest gel strength was observed with CMC 750 k at 0.05%. Gels with low CMC concentration showed homogenous microstructure which was independent of CMC molecular weight, while increasing CMC concentration led to microphase separation with higher CMC molecular weight showing more extensive phase separation. When heated WPI-CMC complexes were prepared at 9% protein the acid gels showed improved gel hardness and water holding capacity, which was supported by the more interconnected protein network with less porosity when compared to complexes heated at 6% protein. It is concluded that protein concentration and biopolymer ratio during complex formation are the major factors affecting gel properties while the effect of CMC molecular weight was less significant.

  7. Involvement of Aif1 in apoptosis triggered by lack of Hxk2 in the yeast Saccharomyces cerevisiae.

    PubMed

    Amigoni, Loredana; Frigerio, Gianluca; Martegani, Enzo; Colombo, Sonia

    2016-05-01

    We recently showed that in hxk2Δ cells, showing constitutive localization of active Ras at the mitochondria, addition of acetic acid caused an increase of both apoptotic and necrotic cells compared with the wild-type strain, providing a new role for hexokinase 2 (EC 2.7.1.1) as an anti-apoptotic factor, besides its known role as a glycolytic enzyme and as a regulator of gene transcription of several Mig1-regulated genes. We also demonstrated that apoptosis induced by lack of Hxk2 may not require the activation of Yca1. Here, we show that deletion of HXK2 causes hypersensitivity to H2O2 and that addition of this well-known apoptotic stimulus to hxk2Δ cells causes an increase in the level ROS, apoptosis and mitochondrial membrane potential. We also show that deletion of AIF1 in hxk2Δ cells enhances survival after induction of apoptosis with both H2O2 and acetic acid, rescues the reduction of both growth rate and cell size, abrogates both H2O2 and acetic acid-induced ROS accumulation and decreases cell death, suggesting that Aif1 might be involved in both H2O2 and acetic acid-induced cell death in hxk2Δ cells. Moreover, we show that active Ras proteins relocalize to the plasma membrane and to the nucleus in hxk2Δ aif1Δ cells. PMID:26895787

  8. Involvement of Aif1 in apoptosis triggered by lack of Hxk2 in the yeast Saccharomyces cerevisiae.

    PubMed

    Amigoni, Loredana; Frigerio, Gianluca; Martegani, Enzo; Colombo, Sonia

    2016-05-01

    We recently showed that in hxk2Δ cells, showing constitutive localization of active Ras at the mitochondria, addition of acetic acid caused an increase of both apoptotic and necrotic cells compared with the wild-type strain, providing a new role for hexokinase 2 (EC 2.7.1.1) as an anti-apoptotic factor, besides its known role as a glycolytic enzyme and as a regulator of gene transcription of several Mig1-regulated genes. We also demonstrated that apoptosis induced by lack of Hxk2 may not require the activation of Yca1. Here, we show that deletion of HXK2 causes hypersensitivity to H2O2 and that addition of this well-known apoptotic stimulus to hxk2Δ cells causes an increase in the level ROS, apoptosis and mitochondrial membrane potential. We also show that deletion of AIF1 in hxk2Δ cells enhances survival after induction of apoptosis with both H2O2 and acetic acid, rescues the reduction of both growth rate and cell size, abrogates both H2O2 and acetic acid-induced ROS accumulation and decreases cell death, suggesting that Aif1 might be involved in both H2O2 and acetic acid-induced cell death in hxk2Δ cells. Moreover, we show that active Ras proteins relocalize to the plasma membrane and to the nucleus in hxk2Δ aif1Δ cells.

  9. Interactions between the Influenza A Virus RNA Polymerase Components and Retinoic Acid-Inducible Gene I

    PubMed Central

    Li, Weizhong; Chen, Hongjun; Sutton, Troy; Obadan, Adebimpe

    2014-01-01

    ABSTRACT The influenza A virus genome possesses eight negative-strand RNA segments in the form of viral ribonucleoprotein particles (vRNPs) in association with the three viral RNA polymerase subunits (PB2, PB1, and PA) and the nucleoprotein (NP). Through interactions with multiple host factors, the RNP subunits play vital roles in replication, host adaptation, interspecies transmission, and pathogenicity. In order to gain insight into the potential roles of RNP subunits in the modulation of the host's innate immune response, the interactions of each RNP subunit with retinoic acid-inducible gene I protein (RIG-I) from mammalian and avian species were investigated. Studies using coimmunoprecipitation (co-IP), bimolecular fluorescence complementation (BiFc), and colocalization using confocal microscopy provided direct evidence for the RNA-independent binding of PB2, PB1, and PA with RIG-I from various hosts (human, swine, mouse, and duck). In contrast, the binding of NP with RIG-I was found to be RNA dependent. Expression of the viral NS1 protein, which interacts with RIG-I, did not interfere with the association of RNA polymerase subunits with RIG-I. The association of each individual virus polymerase component with RIG-I failed to significantly affect the interferon (IFN) induction elicited by RIG-I and 5′ triphosphate (5′ppp) RNA in reporter assays, quantitative reverse transcription-PCR (RT-PCR), and IRF3 phosphorylation tests. Taken together, these findings indicate that viral RNA polymerase components PB2, PB1, and PA directly target RIG-I, but the exact biological significance of these interactions in the replication and pathogenicity of influenza A virus needs to be further clarified. IMPORTANCE RIG-I is an important RNA sensor to elicit the innate immune response in mammals and some bird species (such as duck) upon influenza A virus infection. Although the 5′-triphosphate double-stranded RNA (dsRNA) panhandle structure at the end of viral genome RNA is

  10. Gambogic acid induces apoptotic cell death in T98G glioma cells.

    PubMed

    Thida, Mya; Kim, Dae Won; Tran, Thi Thu Thuy; Pham, Minh Quan; Lee, Heesu; Kim, Inki; Lee, Jae Wook

    2016-02-01

    Gambogic acid (GA), a natural product with a xanthone structure, has a broad range of anti-proliferative effects on cancer cell lines. We evaluated GA for its cytotoxic effects on T98G glioblastoma cells. GA exhibited potent anti-proliferative activity and induced apoptosis in T98G glioblastoma cells in a dose-dependent manner. Incubation of cells with GA revealed apoptotic features including increased Bax and AIF expression, cytochrome c release, and cleavage of caspase-3, -8, -9, and PARP, while Bcl-2 expression was downregulated. Furthermore, GA induced reactive oxygen species (ROS) generation in T98G cells. Our results indicate that GA increases Bax- and AIF-associated apoptotic signaling in glioblastoma cells. PMID:26631318

  11. Pathophysiological Significance of Hepatic Apoptosis

    PubMed Central

    Wang, Kewei; Lin, Bingliang

    2013-01-01

    Apoptosis is a classical pathological feature in liver diseases caused by various etiological factors such as drugs, viruses, alcohol, and cholestasis. Hepatic apoptosis and its deleterious effects exacerbate liver function as well as involvement in fibrosis/cirrhosis and carcinogenesis. An imbalance between apoptotic and antiapoptotic capabilities is a prominent characteristic of liver injury. The regulation of apoptosis and antiapoptosis can be a pivotal step in the treatment of liver diseases. PMID:27335822

  12. Alleviating Effects of Bushen-Yizhi Formula on Ibotenic Acid-Induced Cholinergic Impairments in Rat

    PubMed Central

    Hou, Xue-Qin; Zhang, Lei; Yang, Cong; Rong, Cui-Ping; He, Wen-Qing; Zhang, Chun-Xia; Li, Shi; Su, Ru-Yu; Chang, Xiang; Qin, Ji-Huan; Chen, Yun-Bo

    2015-01-01

    Abstract This study explored the curative effect and underlying mechanisms of a traditional Chinese medicine compound prescription, Bushen-Yizhi formula (BSYZ), in ibotenic acid (IBO)-induced rats. Morris water maze and novel object recognition tests showed that BSYZ significantly improved spatial and object memory. Brain immunohistochemistry staining showed that BSYZ significantly up-regulated expression of choline acetyltransferase (ChAT) and nerve growth factor (NGF) in the hippocampus and cortex. The protein tyrosine kinase high-affinity receptor TrkA was slightly increased in the hippocampus and cortex, and significantly enhanced in the nucleus basalis of Meynert (NBM) after BSYZ intervention. The immunoreactivity of the p75 low-affinity receptor in BSYZ-treated rats was significantly strengthened in the cortex. Similar expression trends of nerve growth factor (NGF), TrkA, and p75 mRNA were observed in the hippocampus and cortex. Additionally, BSYZ reversed IBO-induced disorders of acetylcholine (ACh) levels, ChAT, and cholinesterase (ChE) in the cortex, which was consistent with the changes in mRNA levels of ChAT and acetylcholinesterase (AChE). Expression of ChAT and AChE proteins and mRNA in the hippocampus was up-regulated, whereas the apoptosis-relative protein cleaved caspase-3 was decreased after administration of BSYZ. Moreover, changes in cell death were confirmed by histological morphology. Thus, the results indicated that the BSYZ formula could ameliorate memory impairments in IBO-induced rats, and it exerted its therapeutic action probably by modulating cholinergic pathways, NGF signaling, and anti-apoptosis. Overall, it is suggested that the BSYZ formula might be a potential therapeutic approach for the treatment of Alzheimer's disease (AD) and other cholinergic impairment-related diseases. PMID:25482164

  13. Apoptosis pathways and neuroblastoma therapy.

    PubMed

    Fulda, S

    2009-01-01

    Evasion of apoptosis, the cell's intrinsic death program, is a hallmark of human cancers including neuroblastoma. Also, failure to undergo apoptosis may cause treatment resistance, since the cytotoxic activity of anticancer therapies commonly used in the clinic, e.g. chemotherapy, gamma-irradiation or immunotherapy, is predominantly mediated by triggering apoptosis in tumor cells. Therefore, a better understanding of the signaling pathways and molecules that govern apoptosis in neuroblastoma cells is expected to open new avenues for the design of molecular targeted therapies for neuroblastoma.

  14. Role of Apoptosis in disease

    PubMed Central

    Favaloro, B.; Allocati, N.; Graziano, V.; Di Ilio, C.; De Laurenzi, V.

    2012-01-01

    Since the initial description of apoptosis, a number of different forms of cell death have been described. In this review we will focus on classic caspase-dependent apoptosis and its variations that contribute to diseases. Over fifty years of research have clarified molecular mechanisms involved in apoptotic signaling as well and shown that alterations of these pathways lead to human diseases. Indeed both reduced and increased apoptosis can result in pathology. More recently these findings have led to the development of therapeutic approaches based on regulation of apoptosis, some of which are in clinical trials or have entered medical practice. PMID:22683550

  15. Effects of L-glutamine on acetylsalycylic acid induced gastric lesions and acid back diffusion in dogs.

    PubMed

    Hung, C R; Takeuchi, K; Okabe, S; Murata, T; Takagi, K

    1976-12-01

    Effects of L-glutamine on acetylsalicylic acid (ASA)-induced gastric mucosal lesions were studied in mongrel dogs. It was confirmed that when oral ASA at 1.0 or 2.0 g per dog is given in two divided doses, there is severe and consistent dose-dependent mucosal damage in the glandular portion of the stomach in fasted dogs. However, when L-glutamine 2.0 or 4.0 g per dog in two divided doses is given concomitantly with ASA 2.0 g per dog orally, the gastric irritation is significantly inhibited. Instillation of 20 mM of ASA in 100 mM HCl solution into the Heidenhain pouch of Beagle dogs produced a significant loss of H+ from the pouch and a gain of Na+ in the lumen compared with ASA-free controls. When L-glutamine (100 mM) was given concomitantly with ASA (20 mM) into the pouch, changes of electrolyte fluxes in response to ASA alone were significantly suppressed. However, 50 mM of L-glutamine had no appreciable effect on acid back diffusion caused by ASA 20 mM. The amino acid itself had little effect on the ionic movement in the pouch. Gross bleeding from the pouch treated with ASA was never observed with the concomitant dosing of ASA and L-glutamine 50 or 100 mM. PMID:15154

  16. Identification of an immediate-early salicylic acid-inducible tobacco gene and characterization of induction by other compounds.

    PubMed

    Horvath, D M; Chua, N H

    1996-08-01

    Tobacco genes that are induced in response to salicylic acid (SA) treatment with immediate-early kinetics were identified by differential mRNA display. Detailed analysis of IS10a, one cDNA clone identified by this method, revealed induction within 30 min of treatment, with a peak of expression at 3 h, that decayed rapidly thereafter. Treatment with the protein synthesis inhibitor, cycloheximide (CHX), also caused induction of IS10a mRNA to comparable levels, but the IS10a mRNA continued to accumulate after 3 h of induction. In combination, CHX and SA led to a superinduction of IS10a mRNA levels that was also sustained. Half-maximal induction was evident at ca. 100-150 microM SA. In addition to SA, induction of IS10a occurred to varying degrees upon treatment with acetylsalicylic acid, benzoic acid, 2,4-dichlorophenoxyacetic acid, methyl jasmonate, and hydrogen peroxide, whereas treatment with other compounds had no effect. The proteins encoded by IS10a and a second highly homologous cDNA show sequence similarity to UDP-glucose: flavonoid glucosyltransferases.

  17. Carnosic acid sensitized TRAIL-mediated apoptosis through down-regulation of c-FLIP and Bcl-2 expression at the post translational levels and CHOP-dependent up-regulation of DR5, Bim, and PUMA expression in human carcinoma caki cells

    PubMed Central

    Bae, Jae Hoon; Kwon, Taeg Kyu

    2015-01-01

    Carnosic acid is a phenolic diterpene from rosmarinus officinalis, and has multiple functions, such as anti-inflammatory, anti-viral, and anti-tumor activity. In this study, we examined whether carnosic acid could sensitize TRAIL-mediated apoptosis in human renal carcinoma Caki cells. We found that carnosic acid markedly induced TRAIL-mediated apoptosis in human renal carcinoma (Caki, ACHN, and A498), and human hepatocellular carcinoma (SK-HEP-1), and human breast carcinoma (MDA-MB-231) cells, but not normal cells (TMCK-1 and HSF). Carnosic acid induced down-regulation of c-FLIP and Bcl-2 expression at the post-translational levels, and the over-expression of c-FLIP and Bcl-2 markedly blocked carnosic acid-induced TRAIL sensitization. Furthermore, carnosic acid induced death receptor (DR)5, Bcl-2 interacting mediator of cell death (Bim), and p53 up-regulated modulator of apoptosis (PUMA) expression at the transcriptional levels via CCAAT/enhancer-binding protein-homologous protein (CHOP). Down-regulation of CHOP expression by siRNA inhibited DR5, Bim, and PUMA expression, and attenuated carnosic acid plus TRAIL-induced apoptosis. Taken together, our study demonstrates that carnosic acid enhances sensitization against TRAIL-mediated apoptosis through the down-regulation of c-FLIP and Bcl-2 expression, and up-regulation of ER stress-mediated DR5, Bim, and PUMA expression at the transcriptional levels. PMID:25596735

  18. Postharvest treatments with salicylic acid, acetylsalicylic acid or oxalic acid delayed ripening and enhanced bioactive compounds and antioxidant capacity in sweet cherry.

    PubMed

    Valero, Daniel; Díaz-Mula, Huertas M; Zapata, Pedro Javier; Castillo, Salvador; Guillén, Fabián; Martínez-Romero, Domingo; Serrano, María

    2011-05-25

    Sweet cherry cultivars ('Cristalina' and 'Prime Giant') harvested at commercial ripening stage were treated with salicylic acid (SA), acetylsalicylic acid (ASA) or oxalic acid (OA) at 1 mM and then stored for 20 days under cold temperature. Results showed that all treatments delayed the postharvest ripening process, manifested by lower acidity, color changes and firmness losses, and maintained quality attributes for longer periods than controls. In addition, total phenolics, anthocyanins and antioxidant activity increased in untreated fruit during the first 10 days of storage and then decreased, while in fruits of all treatments, these parameters increased continuously during storage without significant differences among treatments. Thus, postharvest treatments with natural compounds, such as SA, ASA or OA, could be innovative tools to extend the storability of sweet cherry with higher content of bioactive compounds and antioxidant activity as compared with control fruits. PMID:21506518

  19. Teratogenic effects of the interaction acetylsalicylic acid (ASA) and ethanol: morphologic and morphometric evaluation of the lingual epithelium in rat fetuses.

    PubMed

    Marinho, S A; Sala, M A; Lopes, R A; de Moraes Grisi, M F; Novaes, A B; de Souza, S L S; Taba, M

    2007-02-01

    The objective of the present work was to evaluate the teratogenic effects of the interaction between acetylsalicylic acid (ASA) and ethanol on the epithelium of the lingual mucosa in rat fetuses. On the 10th pregnancy day, a single intraperitoneal ethanol dose (2.96 g/kg body weight) (Group I), ASA (200 mg/kg body weight) (Group II) and ASA plus ethanol, in the same doses (Group III), or saline (Group IV - control), were administrated. The epithelial alterations were assessed by means of histological and morphometric methods, on posterior dorsal, anterior dorsal and ventral regions of the tongue. ASA reduced, in rat fetuses, the ethanol deleterious effects on nuclear size in the epithelial prickle cell of the lingual mucosa. On the other hand, ASA did not influence the effects of ethanol in both epithelial layers of the lingual mucosa, when the nuclear shape, cell volume or epithelial layers thickness were evaluated.

  20. Editorial on low-dose acetylsalicylic acid treatment and impact on short-term mortality in Staphylococcus aureus bloodstream infection: a propensity score-matched cohort study.

    PubMed

    Schoergenhofer, Christian; Schwameis, Michael; Lagler, Heimo; Jilma, Bernd

    2016-05-01

    The manuscript "Low-Dose Acetylsalicylic Acid Treatment and Impact on Short-Term Mortality in Staphylococcus aureus (S. aureus) Bloodstream Infection: A propensity Score-Matched Cohort Study" published in Critical Care Medicine by Osthoff et al. reported an association of aspirin intake with a reduced short-term mortality. Direct anti-microbial effects of aspirin and its metabolite salicylate were suggested in preclinical studies. Especially intriguing is the inclusion of a control group with Escherichia coli (E. coli) blood stream infections in this study, in which aspirin was not associated with an improved outcome. However, as other observational studies also reported benefits of aspirin in critically ill patients, randomized trials are needed to confirm the effects of low-dose aspirin. PMID:27294095

  1. Editorial on low-dose acetylsalicylic acid treatment and impact on short-term mortality in Staphylococcus aureus bloodstream infection: a propensity score-matched cohort study

    PubMed Central

    Schoergenhofer, Christian; Schwameis, Michael; Lagler, Heimo

    2016-01-01

    The manuscript “Low-Dose Acetylsalicylic Acid Treatment and Impact on Short-Term Mortality in Staphylococcus aureus (S. aureus) Bloodstream Infection: A propensity Score-Matched Cohort Study” published in Critical Care Medicine by Osthoff et al. reported an association of aspirin intake with a reduced short-term mortality. Direct anti-microbial effects of aspirin and its metabolite salicylate were suggested in preclinical studies. Especially intriguing is the inclusion of a control group with Escherichia coli (E. coli) blood stream infections in this study, in which aspirin was not associated with an improved outcome. However, as other observational studies also reported benefits of aspirin in critically ill patients, randomized trials are needed to confirm the effects of low-dose aspirin. PMID:27294095

  2. Postharvest treatments with salicylic acid, acetylsalicylic acid or oxalic acid delayed ripening and enhanced bioactive compounds and antioxidant capacity in sweet cherry.

    PubMed

    Valero, Daniel; Díaz-Mula, Huertas M; Zapata, Pedro Javier; Castillo, Salvador; Guillén, Fabián; Martínez-Romero, Domingo; Serrano, María

    2011-05-25

    Sweet cherry cultivars ('Cristalina' and 'Prime Giant') harvested at commercial ripening stage were treated with salicylic acid (SA), acetylsalicylic acid (ASA) or oxalic acid (OA) at 1 mM and then stored for 20 days under cold temperature. Results showed that all treatments delayed the postharvest ripening process, manifested by lower acidity, color changes and firmness losses, and maintained quality attributes for longer periods than controls. In addition, total phenolics, anthocyanins and antioxidant activity increased in untreated fruit during the first 10 days of storage and then decreased, while in fruits of all treatments, these parameters increased continuously during storage without significant differences among treatments. Thus, postharvest treatments with natural compounds, such as SA, ASA or OA, could be innovative tools to extend the storability of sweet cherry with higher content of bioactive compounds and antioxidant activity as compared with control fruits.

  3. Effect of formulation parameters on the drug release and floating properties of gastric floating two-layer tablets with acetylsalicylic acid.

    PubMed

    Hasçiçek, Canan; Yüksel-Tilkan, Günseli; Türkmen, Berna; Ozdemir, Nurten

    2011-09-01

    Floating dosage forms of acetylsalicylic acid, used for its antithrombotic effect, were developed to prolong gastric residence time and increase bioavailability. In the two-layer tablet formulation, hydroxypropyl methylcellulose (HPMC) of high viscosity and an effervescent mixture of citric acid and sodium bicarbonate formed the floating layer. The release layer contained the drug, direct tableting agent and different types of matrix-forming polymers such as HPMC of low viscosity, sodium carboxymethylcellulose and chitosan. Tablets were prepared using a direct compression technique. The effect of formulation variables on physicochemical and floating properties and the drug release from tablets were investigated. Floating ability was dependent on the amount of effervescent agent and gel-forming polymer of the floating layer. Drug release was prolonged to 8 hours by changing the type and viscosity of the matrix-forming polymer in the drug-loading layer and all formulations showed a diffusion release mechanisms.

  4. Cyclooxygenase product inhibition with acetylsalicylic acid slows disease progression in the Han:SPRD-Cy rat model of polycystic kidney disease.

    PubMed

    Ibrahim, Naser H M; Gregoire, Melanie; Devassy, Jessay G; Wu, Yinhong; Yoshihara, Daisuke; Yamaguchi, Tamio; Nagao, Shizuko; Aukema, Harold M

    2015-01-01

    Renal cyclooxygenase (COX) derived eicosanoids are elevated and lipoxygenase (LOX) products are reduced in the Han:SPRD-Cy rat model of polycystic kidney disease (PKD). Selective COX2 inhibition reduces kidney disease progression, but COX1 levels also are elevated in this model. Since the effect of reducing the products of both COX isoforms and the role of LOX products is not known, weanling normal and diseased Han:SPRD-cy littermates were given either low dose acetylsalicylic acid (ASA), nordihydroguaiaretic (NDGA) or no treatment for eight weeks. Renal eicosanoids were altered in the diseased compared to normal cortex, with COX products being higher and LOX products being lower. ASA reduced COX products, cyst growth and kidney water content, while NDGA reduced LOX products without altering disease progression or kidney function. Hence, a human equivalent ASA dose equal to less than one regular strength aspirin per day slowed disease progression, while further reduction of LOX products did not worsen disease progression.

  5. Effects of acetylsalicylic acid (ASA), ASA plus L-glutamine and L-glutamine on healing of chronic gastric ulcer in the rat.

    PubMed

    Okabe, S; Takeuchi, K; Honda, K; Takagi, K

    1976-01-01

    A chronic gastric ulcer model was produced in rats by the subserosal injection of 20% acetic acid solution (0.015 ml) in order to examine whether (1) acetylsalicylic acid (ASA) irritates the chronic gastric ulcer in active or healed or diminished stage, (2) L-glutamine, given together with ASA, inhibits the adverse effect of ASA. Oral ASA 200 mg/kg/day, given in two divided doses for 10 consecutive days, apparently delayed the healing of the gastric ulcer and irritated the healed ulcer to reulcerate. L-Glutamine, 1,500 mg/kg/day, which was given together with ASA in two divided doses, markedly protected the gastric ulcer both in active and healed stages from the deleterious activity of ASA. PMID:955326

  6. The nitric oxide-donating derivative of acetylsalicylic acid, NCX 4016, stimulates glucose transport and glucose transporters translocation in 3T3-L1 adipocytes.

    PubMed

    Kaddai, V; Gonzalez, T; Bolla, M; Le Marchand-Brustel, Y; Cormont, M

    2008-07-01

    NCX 4016 is a nitric oxide (NO)-donating derivative of acetylsalicylic acid. NO and salicylate, in vivo metabolites of NCX 4016, were shown to be potential actors in controlling glucose homeostasis. In this study, we evaluated the action of NCX 4016 on the capacity of 3T3-L1 adipocytes to transport glucose in basal and insulin-stimulated conditions. NCX 4016 induced a twofold increase in glucose uptake in parallel with the translocation of the glucose transporters GLUT1 and GLUT4 to the plasma membrane, leaving unaffected their total expression levels. Importantly, NCX 4016 further increased glucose transport induced by a physiological concentration of insulin. The stimulatory effect of NCX 4016 on glucose uptake appears to be mediated by its NO moiety. Indeed, it is inhibited by a NO scavenger and treatment with acetylsalicylic or salicylic acid had no effect. Although NO is involved in the action of NCX 4016, it did not mainly depend on the soluble cGMP cyclase/protein kinase G pathway. Furthermore, NCX 4016-stimulated glucose transport did not involve the insulin-signaling cascade required to stimulate glucose transport. NCX 4016 induces a small activation of the mitogen-activated protein kinases p38 and c-Jun NH(2)-terminal kinase and no activation of other stress-activated signaling molecules, including extracellular signal-regulated kinase, inhibitory factor kappaB, or AMP-activated kinases. Interestingly, NCX 4016 modified the content of S-nitrosylated proteins in adipocytes. Taken together, our results indicate that NCX 4016 induced glucose transport in adipocytes through a novel mechanism possibly involving S-nitrosylation. NCX 4016 thus possesses interesting characteristics to be considered as a candidate molecule for the treatment of patients suffering from metabolic syndrome and type 2 diabetes. PMID:18492771

  7. Prolonged acetylsalicylic-acid-supplementation-induced gastritis affects the chemical coding of the stomach innervating vagal efferent neurons in the porcine dorsal motor vagal nucleus (DMX).

    PubMed

    Gańko, Marta; Całka, Jarosław

    2014-01-01

    The main goal of our research was to study the possible alterations of the chemical coding of the dorsal motor vagal nucleus (DMX) neurons projecting to the porcine stomach prepyloric region following prolonged acetylsalicylic acid supplementation. Fast Blue (FB) was injected into the studied area of the stomach. Since the seventh day following the FB injection, acetylsalicylic acid (ASA) was given orally to the experimental gilts. All animals were euthanized on the 28th day after FB injection. Medulla oblongata sections were then processed for double-labeling immunofluorescence for choline acetyltransferase (ChAT), pituitary adenylate cyclase-activating peptide (PACAP), vasoactive intestinal polypeptide (VIP), nitric oxide synthase (NOS), galanin (GAL), substance P (SP), leu enkephalin (LENK), and cocaine- and amphetamine-regulated transcript (CART). In the control DMX, only PACAP was observed in 30.08 ± 1.97 % of the FB-positive neurons, while VIP, NOS, GAL, SP, LENK, and CART were found exclusively in neuronal processes running between FB-labeled perikarya. In the ASA DMX, PACAP was revealed in 49.53 ± 5.73 % of traced vagal perikarya. Moreover, we found de novo expression of VIP in 40.32 ± 7.84 %, NOS in 25.02 ± 6.08 %, and GAL in 3.37 ± 0.85 % of the FB-labeled neurons. Our results suggest that neuronal PACAP, VIP, NOS, and GAL are mediators of neural response to aspirin-induced stomach inflammatory state.

  8. Genetic parameters for rennet- and acid-induced coagulation properties in milk from Swedish Red dairy cows.

    PubMed

    Gustavsson, F; Glantz, M; Poulsen, N A; Wadsö, L; Stålhammar, H; Andrén, A; Lindmark Månsson, H; Larsen, L B; Paulsson, M; Fikse, W F

    2014-01-01

    Milk coagulation is an important processing trait, being the basis for production of both cheese and fermented products. There is interest in including technological properties of these products in the breeding goal for dairy cattle. The aim of the present study was therefore to estimate genetic parameters for milk coagulation properties, including both rennet- and acid-induced coagulation, in Swedish Red dairy cattle using genomic relationships. Morning milk samples and blood samples were collected from 395 Swedish Red cows that were selected to be as genetically unrelated as possible. Using a rheometer, milk samples were analyzed for rennet- and acid-induced coagulation properties, including gel strength (G'), coagulation time, and yield stress (YS). In addition to the technological traits, milk composition was analyzed. A binary trait was created to reflect that milk samples that had not coagulated 40min after rennet addition were considered noncoagulating milk. The cows were genotyped by using the Illumina BovineHD BeadChip (Illumina Inc., San Diego, CA). Almost 600,000 markers remained after quality control and were used to construct a matrix of genomic relationships among the cows. Multivariate models including fixed effects of herd, lactation stage, and parity were fitted using the ASReml software to obtain estimates of heritabilities and genetic and phenotypic correlations. Heritability estimates (h(2)) for G' and YS in rennet and acid gels were found to be high (h(2)=0.38-0.62) and the genetic correlations between rennet-induced and acid-induced coagulation properties were weak but favorable, with the exception of YSrennet with G'acid and YSacid, both of which were strong. The high heritability (h(2)=0.45) for milk coagulating ability expressed as a binary trait suggests that noncoagulation could be eliminated through breeding. Additionally, the results indicated that the current breeding objective could increase the frequency of noncoagulating milk and

  9. Apoptosis Evaluation by Electrochemical Techniques.

    PubMed

    Yin, Jian; Miao, Peng

    2016-03-01

    Apoptosis has close relevance to pathology, pharmacology, and toxicology. Accurate and convenient detection of apoptosis would be beneficial for biological study, clinical diagnosis, and drug development. Based on distinct features of apoptotic cells, a diversity of analytical techniques have been exploited for sensitive analysis of apoptosis, such as surface plasmon resonance, electrochemical methods, flow cytometry, and some imaging assays. Among them, the features of simplicity, easy operation, low cost, and high sensitivity make electrochemical techniques powerful tools to investigate electron-transfer processes of in vitro biological systems. In this contribution, a general overview of current knowledge on various technical approaches for apoptosis evaluation is provided. Furthermore, recently developed electrochemical biosensors for detecting apoptotic cells and their advantages over traditional methods are summarized. One of the main considerations focuses on designing the recognition elements based on various biochemical events during apoptosis.

  10. Apoptosis and the Airway Epithelium

    PubMed Central

    White, Steven R.

    2011-01-01

    The airway epithelium functions as a barrier and front line of host defense in the lung. Apoptosis or programmed cell death can be elicited in the epithelium as a response to viral infection, exposure to allergen or to environmental toxins, or to drugs. While apoptosis can be induced via activation of death receptors on the cell surface or by disruption of mitochondrial polarity, epithelial cells compared to inflammatory cells are more resistant to apoptotic stimuli. This paper focuses on the response of airway epithelium to apoptosis in the normal state, apoptosis as a potential regulator of the number and types of epithelial cells in the airway, and the contribution of epithelial cell apoptosis in important airways diseases. PMID:22203854

  11. Multi-omics profile of the mouse dentate gyrus after kainic acid-induced status epilepticus.

    PubMed

    Schouten, Marijn; Bielefeld, Pascal; Fratantoni, Silvina A; Hubens, Chantal J; Piersma, Sander R; Pham, Thang V; Voskuyl, Rob A; Lucassen, Paul J; Jimenez, Connie R; Fitzsimons, Carlos P

    2016-01-01

    Temporal lobe epilepsy (TLE) can develop from alterations in hippocampal structure and circuit characteristics, and can be modeled in mice by administration of kainic acid (KA). Adult neurogenesis in the dentate gyrus (DG) contributes to hippocampal functions and has been reported to contribute to the development of TLE. Some of the phenotypical changes include neural stem and precursor cells (NPSC) apoptosis, shortly after their birth, before they produce hippocampal neurons. Here we explored these early phenotypical changes in the DG 3 days after a systemic injection of KA inducing status epilepticus (KA-SE), in mice. We performed a multi-omics experimental setup and analyzed DG tissue samples using proteomics, transcriptomics and microRNA profiling techniques, detecting the expression of 2327 proteins, 13401 mRNAs and 311 microRNAs. We here present a description of how these data were obtained and make them available for further analysis and validation. Our data may help to further identify and characterize molecular mechanisms involved in the alterations induced shortly after KA-SE in the mouse DG. PMID:27529540

  12. Fusaric acid induces mitochondrial stress in human hepatocellular carcinoma (HepG2) cells.

    PubMed

    Sheik Abdul, Naeem; Nagiah, Savania; Chuturgoon, Anil A

    2016-09-01

    Fusarium spp are common contaminants of maize and produce many mycotoxins, including the fusariotoxin fusaric acid (FA). FA is a niacin related compound, chelator of divalent cations, and mediates toxicity via oxidative stress and possible mitochondrial dysregulation. Sirtuin 3 (SIRT3) is a stress response deacetylase that maintains proper mitochondrial function. We investigated the effect of FA on SIRT3 and oxidative and mitochondrial stress pathways in the hepatocellular carcinoma (HepG2) cell line. We determined FA toxicity (24 h incubation; IC50 = 104 μg/ml) on mitochondrial output, cellular and mitochondrial stress responses, mitochondrial biogenesis and markers of cell death using spectrophotometry, luminometry, qPCR and western blots. FA caused a dose dependent decrease in metabolic activity along with significant depletion of intracellular ATP. FA induced a significant increase in lipid peroxidation, despite up-regulation of the antioxidant transcription factor, Nrf2. FA significantly decreased expression of SIRT3 mRNA with a concomitant decrease in protein expression. Lon protease was also significantly down-regulated. FA induced aberrant mitochondrial biogenesis as evidenced by significantly decreased protein expressions of: PGC-1α, p-CREB, NRF1 and HSP70. Finally, FA activated apoptosis as noted by the significantly increased activity of caspases 3/7 and also induced cellular necrosis. This study provides insight into the molecular mechanisms of FA (a neglected mycotoxin) induced hepatotoxicity. PMID:27390038

  13. n-3 Fatty Acids Induce Neurogenesis of Predominantly POMC-Expressing Cells in the Hypothalamus.

    PubMed

    Nascimento, Lucas F R; Souza, Gabriela F P; Morari, Joseane; Barbosa, Guilherme O; Solon, Carina; Moura, Rodrigo F; Victório, Sheila C; Ignácio-Souza, Letícia M; Razolli, Daniela S; Carvalho, Hernandes F; Velloso, Lício A

    2016-03-01

    Apoptosis of hypothalamic neurons is believed to play an important role in the development and perpetuation of obesity. Similar to the hippocampus, the hypothalamus presents constitutive and stimulated neurogenesis, suggesting that obesity-associated hypothalamic dysfunction can be repaired. Here, we explored the hypothesis that n-3 polyunsaturated fatty acids (PUFAs) induce hypothalamic neurogenesis. Both in the diet and injected directly into the hypothalamus, PUFAs were capable of increasing hypothalamic neurogenesis to levels similar or superior to the effect of brain-derived neurotrophic factor (BDNF). Most of the neurogenic activity induced by PUFAs resulted in increased numbers of proopiomelanocortin but not NPY neurons and was accompanied by increased expression of BDNF and G-protein-coupled receptor 40 (GPR40). The inhibition of GPR40 was capable of reducing the neurogenic effect of a PUFA, while the inhibition of BDNF resulted in the reduction of global hypothalamic cell. Thus, PUFAs emerge as a potential dietary approach to correct obesity-associated hypothalamic neuronal loss.

  14. Multi-omics profile of the mouse dentate gyrus after kainic acid-induced status epilepticus

    PubMed Central

    Schouten, Marijn; Bielefeld, Pascal; Fratantoni, Silvina A.; Hubens, Chantal J.; Piersma, Sander R.; Pham, Thang V.; Voskuyl, Rob A.; Lucassen, Paul J.; Jimenez, Connie R.; Fitzsimons, Carlos P.

    2016-01-01

    Temporal lobe epilepsy (TLE) can develop from alterations in hippocampal structure and circuit characteristics, and can be modeled in mice by administration of kainic acid (KA). Adult neurogenesis in the dentate gyrus (DG) contributes to hippocampal functions and has been reported to contribute to the development of TLE. Some of the phenotypical changes include neural stem and precursor cells (NPSC) apoptosis, shortly after their birth, before they produce hippocampal neurons. Here we explored these early phenotypical changes in the DG 3 days after a systemic injection of KA inducing status epilepticus (KA-SE), in mice. We performed a multi-omics experimental setup and analyzed DG tissue samples using proteomics, transcriptomics and microRNA profiling techniques, detecting the expression of 2327 proteins, 13401 mRNAs and 311 microRNAs. We here present a description of how these data were obtained and make them available for further analysis and validation. Our data may help to further identify and characterize molecular mechanisms involved in the alterations induced shortly after KA-SE in the mouse DG. PMID:27529540

  15. Lactoferrin attenuates fatty acid-induced lipotoxicity via Akt signaling in hepatocarcinoma cells.

    PubMed

    Morishita, Satoru; Tomita, Keiko; Ono, Tomoji; Murakoshi, Michiaki; Saito, Kenji; Sugiyama, Keikichi; Nishino, Hoyoku; Kato, Hisanori

    2015-12-01

    Nonalcoholic fatty liver disease (NAFLD) describes a spectrum of lesions ranging from simple steatosis to non-alcoholic steatohepatitis (NASH). The excess influx of fatty acids (FAs) into the liver is recognized as a main cause of simple steatosis formation and progression to NASH. Recently, administration of lactoferrin (LF), a glycoprotein present in milk, was suggested to prevent NAFLD development. However, the effect of LF on the contribution of FA to NAFLD development remains unclear. In this study, the effects of LF on FA mixture (FAm)-induced lipotoxicity using human hepatocarcinoma G2 cells were assessed. FAm significantly decreased cell viability and increased intracellular lipid accumulation, whereas LF significantly recovered cell viability without affecting lipid accumulation. FAm-induced lactic dehydrogenase (LDH) and caspase-3/7 activities were significantly decreased by LF and SP600125, a c-Jun N-terminal kinase (JNK) specific inhibitor. We also found that LF added to FAm-treated cells induced Akt phosphorylation, which contributed to inhibition of JNK signaling pathway-dependent apoptosis. Akt inhibitor VIII, an allosteric Akt inhibitor, significantly attenuated the effect of LF on LDH activity and abrogated the ones on cell viability and caspase-3/7 activity. In summary, the present study has revealed that LF has a protective effect on FAm-induced lipotoxicity in a HepG2 model of NAFLD and identified the activation of the Akt signaling pathway as a possibly major mechanism.

  16. Retinoic acid induces multiple hallmarks of the prospermatogonia-to-spermatogonia transition in the neonatal mouse.

    PubMed

    Busada, Jonathan T; Kaye, Evelyn P; Renegar, Randall H; Geyer, Christopher B

    2014-03-01

    In mammals, most neonatal male germ cells (prospermatogonia) are quiescent and located in the center of the testis cords. In response to an unknown signal, prospermatogonia transition into spermatogonia, reenter the cell cycle, divide, and move to the periphery of the testis cords. In mice, these events occur by 3-4 days postpartum (dpp), which temporally coincides with the onset of retinoic acid (RA) signaling in the neonatal testis. RA has a pivotal role in initiating germ cell entry into meiosis in both sexes, yet little is known about the mechanisms and about cellular changes downstream of RA signaling. We examined the role of RA in mediating the prospermatogonia-to-spermatogonia transition in vivo and found 24 h of precocious RA exposure-induced germ cell changes mimicking those that occur during the endogenous transition at 3-4 dpp. These changes included: 1) spermatogonia proliferation; 2) maturation of cellular organelles; and 3), expression of markers characteristic of differentiating spermatogonia. We found that germ cell exposure to RA did not lead to cellular loss from apoptosis but rather resulted in a delay of ∼2 days in their entry into meiosis. Taken together, our results indicate that exogenous RA induces multiple hallmarks of the transition of prospermatogonia to spermatogonia prior to their entry into meiosis.

  17. Anesthesia and cerebral apoptosis.

    PubMed

    Brée, B; Gourdin, M; De Kock, M

    2008-01-01

    General anesthetics interact with targets at the cellular and molecular levels. They have the potential to induce changes in the body and the brain. Usually, these interactions are thought to be short lasting. In contrast, recent evidences suggest that alcohol, a toxic sharing many mechanisms with general anesthetics, induces long term effect at these levels. This is particularly evident in the period of synaptogenesis during which alcohol can induce excessive cerebral apoptosis (histopathologic changes) in juvenile animal models. Even if the vast majority of our patients seems to completely restore homeostasis after general anesthesia, we don't know if the changes induced at the brain level in animal models exist in human. This article intends to supply biological, pharmacological and experimental basis for a possible long term effect of general anesthetics on the human developing brain. PMID:19051443

  18. Arsenic induces apoptosis in rat cerebellar neurons via activation of JNK3 and p38 MAP kinases.

    PubMed

    Namgung, U; Xia, Z

    2001-07-15

    Primary cultures of rat cerebellar neurons were used to study mechanisms of arsenic neurotoxicity. Exposure to 5, 10, or 15 microM sodium arsenite reduced cerebellar neuron viability and induced nuclear fragmentation and condensation as well as DNA degradation to oligonucleosome fragments. Exposure to 1 or 5 mM dimethylarsinic acid caused similar changes. Therefore, both inorganic arsenite and organic dimethylarsinic acid induce apoptosis in cerebellar neurons, with the inorganic form being more toxic. Cotreatment with cycloheximide or actinomycin D, inhibitors of protein or RNA synthesis, respectively, or with the caspase inhibitor zVAD, completely blocked arsenite-induced cerebellar neuron apoptosis. This implies that arsenite-induced cerebellar neuron apoptosis requires new gene expression and caspase activation. Interestingly, sodium arsenite selectively activated p38 and JNK3, but not JNK1 or JNK2 in cerebellar neurons. Blocking the p38 or JNK signaling pathways using the inhibitors SB203580 or CEP-1347 protected cerebellar neurons against arsenite-induced apoptosis. These data suggest that arsenite neurotoxicity may be due to apoptosis caused by activation of p38 and JNK3 MAP kinases.

  19. 3-Nitropropionic acid induces ovarian oxidative stress and impairs follicle in mouse.

    PubMed

    Zhang, Jia-Qing; Shen, Ming; Zhu, Cheng-Cheng; Yu, Feng-Xiang; Liu, Ze-Qun; Ally, Nazim; Sun, Shao-Chen; Li, Kui; Liu, Hong-Lin

    2014-01-01

    Oxidative stress induces many serious reproductive diseases in female mammals and thus poses a serious threat to reproductive health. However, the relationship between reactive oxygen species (ROS)-induced oxidative stress and follicular development, oocyte and embryo quality is not clear. The aim of this study was to investigate the effect of ovarian oxidative stress on the health of follicle and oocyte development. Female ICR mice were dosed with 3-nitropropionic acid (3-NPA) at three different concentrations (6.25, 12.5 and 25 mg/kg) and saline (control) via continuous intraperitoneal injection for 7 days. The treatment with 12.5 mg/kg reduced the weight of mouse ovaries, and significantly increased ROS levels and the activities of antioxidant enzymes--total superoxide dismutase (T-SOD), glutathione peroxidase (GPx) and catalase (CAT)--in granulosa cells and ovarian tissues, but not in other tissues (brain, liver, kidney and spleen). The same treatment significantly increased the percentage of atretic large follicles, and reduced the number of large follicles, the number of ovulated oocytes, and the capacity for early embryonic development compared with controls. It also significantly decreased the ratio of Bcl-2 to Bax, while causing an increase in the mRNA expression of (SOD2, CAT and GP X) and ROS levels in granulosa cells. Collectively, these data indicate that 3-NPA induces granulosa cell apoptosis, large follicle atresia, and an increase of ROS levels in the ovary. Therefore, we have established an in vivo model of ovarian oxidative stress for studying the mechanism of resulting damage induced by free radicals and for the screening of novel antioxidants. PMID:24505260

  20. Gallic Acid Induces Necroptosis via TNF–α Signaling Pathway in Activated Hepatic Stellate Cells

    PubMed Central

    Chang, Ya Ju; Hsu, Shih Lan; Liu, Yi Ting; Lin, Yu Hsuan; Lin, Ming Hui; Huang, Shu Jung; Ho, Ja-an Annie; Wu, Li-Chen

    2015-01-01

    Gallic acid (3, 4, 5-trihydroxybenzoic acid, GA), a natural phenolic acid widely found in gallnuts, tea leaves and various fruits, possesses several bioactivities against inflammation, oxidation, and carcinogenicity. The beneficial effect of GA on the reduction of animal hepatofibrosis has been indicated due to its antioxidative property. However, the cytotoxicity of GA autoxidation causing cell death has also been reported. Herein, we postulated that GA might target activated hepatic stellate cells (aHSCs), the cell type responsible for hepatofibrosis, to mitigate the process of fibrosis. The molecular cytotoxic mechanisms that GA exerted on aHSCs were then analyzed. The results indicated that GA elicited aHSC programmed cell death through TNF–α–mediated necroptosis. GA induced significant oxidative stress through the suppression of catalase activity and the depletion of glutathione (GSH). Elevated oxidative stress triggered the production of TNF–α facilitating the undergoing of necroptosis through the up-regulation of key necroptotic regulatory proteins TRADD and receptor-interacting protein 3 (RIP3), and the inactivation of caspase–8. Calmodulin and calpain–1 activation were engaged, which promoted subsequent lysosomal membrane permeabilization (LMP). The TNF–α antagonist (SPD–304) and the RIP1 inhibitor (necrostatin–1, Nec–1) confirmed GA-induced TNFR1–mediated necroptosis. The inhibition of RIP1 by Nec–1 diverted the cell death from necroptosis to apoptosis, as the activation of caspase 3 and the increase of cytochrome c. Collectively, this is the first report indicating that GA induces TNF signaling–triggered necroptosis in aHSCs, which may offer an alternative strategy for the amelioration of liver fibrosis. PMID:25816210

  1. 3-Nitropropionic Acid Induces Ovarian Oxidative Stress and Impairs Follicle in Mouse

    PubMed Central

    Zhang, Jia-Qing; Shen, Ming; Zhu, Cheng-Cheng; Yu, Feng-Xiang; Liu, Ze-Qun; Ally, Nazim; Sun, Shao-Chen; Li, Kui; Liu, Hong-Lin

    2014-01-01

    Oxidative stress induces many serious reproductive diseases in female mammals and thus poses a serious threat to reproductive health. However, the relationship between reactive oxygen species (ROS)—induced oxidative stress and follicular development, oocyte and embryo quality is not clear. The aim of this study was to investigate the effect of ovarian oxidative stress on the health of follicle and oocyte development. Female ICR mice were dosed with 3-nitropropionic acid (3-NPA) at three different concentrations (6.25, 12.5 and 25 mg/kg) and saline (control) via continuous intraperitoneal injection for 7 days. The treatment with 12.5 mg/kg reduced the weight of mouse ovaries, and significantly increased ROS levels and the activities of antioxidant enzymes—total superoxide dismutase (T-SOD), glutathione peroxidase (GPx) and catalase (CAT) — in granulosa cells and ovarian tissues, but not in other tissues (brain, liver, kidney and spleen). The same treatment significantly increased the percentage of atretic large follicles, and reduced the number of large follicles, the number of ovulated oocytes, and the capacity for early embryonic development compared with controls. It also significantly decreased the ratio of Bcl-2 to Bax, while causing an increase in the mRNA expression of (SOD2, CAT and GPX) and ROS levels in granulosa cells. Collectively, these data indicate that 3-NPA induces granulosa cell apoptosis, large follicle atresia, and an increase of ROS levels in the ovary. Therefore, we have established an in vivo model of ovarian oxidative stress for studying the mechanism of resulting damage induced by free radicals and for the screening of novel antioxidants. PMID:24505260

  2. Nicotinic acid induces secretion of prostaglandin D2 in human macrophages: an in vitro model of the niacin flush.

    PubMed

    Meyers, C Daniel; Liu, Paul; Kamanna, Vaijinath S; Kashyap, Moti L

    2007-06-01

    Nicotinic acid is a safe, broad-spectrum lipid agent shown to prevent cardiovascular disease, yet its widespread use is limited by the prostaglandin D2 (PGD2) mediated niacin flush. Previous research suggests that nicotinic acid-induced PGD2 secretion is mediated by the skin, but the exact cell type remains unclear. We hypothesized that macrophages are a source of nicotinic acid-induced PGD2 secretion and performed a series of experiments to confirm this. Nicotinic acid (0.1-3 mM) induced PGD2 secretion in cultured human macrophages, but not monocytes or endothelial cells. The PGD2 secretion was dependent on the concentration of nicotinic acid and the time of exposure. Nicotinuric acid, but not nicotinamide, also induced PGD2 secretion. Pre-incubation of the cells with aspirin (100 microM) entirely prevented the nicotinic acid effects on PGD2 secretion. The PGD2 secreting effects of nicotinic acid were additive to the effects of the calcium ionophore A23187 (6 microM), but were independent of extra cellular calcium. These findings, combined with recent in vivo work, provide evidence that macrophages play a significant role in mediating the niacin flush and may lead to better strategies to eliminate this limiting side effect.

  3. Effects of tumour necrosis factor-alpha synthesis inhibitors on rat trinitrobenzene sulphonic acid-induced chronic colitis.

    PubMed

    Bobin-Dubigeon, C; Collin, X; Grimaud, N; Robert, J M; Le Baut, G; Petit, J Y

    2001-11-01

    The fact that tumour necrosis factor-alpha (TNF-alpha) is clearly involved in the pathogenesis of intestinal bowel disease, especially Crohn's disease, suggests that TNF-alpha synthesis inhibitors could be beneficial for treatment. The present study assessed the effect of chronic oral gavage of two in vitro TNF-alpha synthesis inhibitors, JM 34 maleate or [N-(4,6-dimethylpyridin-2-yl)-furane-2-carboxamide)] maleate and XC 21 or (N-betapicolyl-tetrafluorophtalimide), on colonic inflammation in trinitrobenzene sulphonic acid-induced colitis in rats. Rats received JM 34 maleate (100 mg/kg) and XC 21 (50 mg/kg) 1 h before colitis induction and then daily for 8 days by oral gavage. The colon was removed on day 8 and processed for clinical score, myeloperoxidase activity, and soluble TNF-alpha release. Treatment with XC 21, as well as dexamethasone and sulphasalazine, reduced colonic damage and decreased (except with dexamethasone) the incidence of diarrhoea. JM 34 maleate failed to improve the clinical signs of chronic colitis. After trinitrobenzene sulphonic acid-induced colitis, myeloperoxidase activity and TNF-alpha colonic mucosal production were substantially increased compared to the control (saline instillation). Both of these inflammatory indicators were then significantly decreased (P< or =0.05) after the four chronic treatments (JM 34 maleate, XC 21, sulphasalazine, and dexamethasone). XC 21 appeared to be as efficient as sulphasalazine in improving colonic inflammation. PMID:11716848

  4. Allicin alleviates inflammation of trinitrobenzenesulfonic acid-induced rats and suppresses P38 and JNK pathways in Caco-2 cells.

    PubMed

    Li, Chen; Lun, Weijian; Zhao, Xinmei; Lei, Shan; Guo, Yandong; Ma, Jiayi; Zhi, Fachao

    2015-01-01

    Background. Allicin has anti-inflammatory, antioxidative and proapoptotic properties. Aims. To evaluate the effects and investigate the mechanism of allicin on trinitrobenzenesulfonic acid-induced colitis, specifically with mesalazine or sulfasalazine. Methods. 80 rats were divided equally into 8 groups: control; trinitrobenzenesulfonic acid; allicin prevention; allicin; mesalazine; sulfasalazine; allicin + sulfasalazine, and mesalazine + allicin. Systemic and colonic inflammation parameters were analysed. In addition, protein and culture medium of Caco-2 cells treated with various concentrations of IL-1β or allicin were collected for investigation of IL-8, NF-κB p65 P38, ERK, and JNK. One-way ANOVA and Kruskal-Wallis H test were used for parametric and nonparametric tests, respectively. Results. Allicin reduced the body weight loss of trinitrobenzenesulfonic acid-induced rats, histological score, serum TNF-α and IL-1β levels, and colon IL-1β mRNA level and induced serum IL-4 level, particularly in combination with mesalazine. In addition, 1 ng/mL IL-1β stimulated the P38, ERK, and JNK pathways, whereas pretreatment with allicin depressed this phenomenon, except for the ERK pathway. Conclusions. The inflammation induced by trinitrobenzenesulfonic acid is mitigated significantly by allicin treatment, particularly combined with mesalazine. Allicin inhibits the P38 and JNK pathways and the expression of NF-κB which explained the potential anti-inflammatory mechanisms of allicin. PMID:25729217

  5. Retinoic acid induced growth arrest of human breast carcinoma cells requires protein kinase C alpha expression and activity.

    PubMed

    Cho, Y; Tighe, A P; Talmage, D A

    1997-09-01

    Retinoic acid inhibits proliferation of hormone-dependent, but not hormone-independent breast cancer cells. Retinoic acid-induced changes in cellular proliferation and differentiation are associated with disturbances in growth factor signaling and frequently with changes in protein kinase C expression. PKC delta, epsilon, and zeta are expressed in both hormone-dependent (T-47D) and hormone-independent (MDA-MB-231) cell lines. Retinoic acid arrested T-47D proliferation, induced PKC alpha expression and concomitantly repressed PKC zeta expression. The changes in PKC alpha and PKC zeta reflect retinoic acid-induced changes in mRNA. In contrast, retinoic acid had no effect on growth, or PKC expression in MDA-MB-231 cells. Growth arrest and the induction of PKC alpha, but not the reduction in PKC zeta, resulted from selective activation of RAR alpha. In total, these results support an important role for PKC alpha in mediating the anti-proliferative action of retinoids on human breast carcinoma cells.

  6. Protective effect of Agave americana Linn. leaf extract in acetic acid-induced ulcerative colitis in rats

    PubMed Central

    Mannasaheb, Basheerahmed A.A.; Kulkarni, Preeti V.; Sangreskopp, Mashood Ahmed; Savant, Chetan; Mohan, Anjana

    2015-01-01

    Introduction: Natural plants always provide core compounds for new drug development. In the present life and food style, inflammatory bowel disease has become common and needs a lead compound for its drug development. Aim: To evaluate the effect of Agave americana Linn. leaf extract in acetic acid-induced ulcerative colitis in rats based on its traditional anti-inflammatory use. Materials and Methods: Male Wistar rats were pretreated with A. americana leaf extract in the dose of 200 and 400 mg/kg p.o. daily for 7 days. On 8th day, 2 ml of 4% v/v acetic acid in saline was instilled into rats’ rectum. Prednisolone was used as standard drug and it was administered on the day of acetic acid instillation and continued for 3 days. Extract treatment was continued till 11th day. Body weight, ulcer score, colonic muscle contraction, antioxidant activity and histopathology were studied. Statistical analysis was performed using Parametric one-way analysis of variance followed by Tukey's posttest. Results: A. americana have retained total body weight significantly (P < 0.01) and decreased colon weight/length ratio. Extract have shown a significant decrease (P < 0.001) in ulcer scores, myeloperoxidase, lipid peroxidase activity. Further, extract have shown significant improvement in colonic muscle contraction, histopathology of colon etc., which is comparable with standard drug. Conclusion: A. americana possess protective effect against acetic acid-induced colitis in rats. PMID:26730148

  7. Mitochondrial control of nuclear apoptosis

    PubMed Central

    1996-01-01

    Anucleate cells can be induced to undergo programmed cell death (PCD), indicating the existence of a cytoplasmic PCD pathway that functions independently from the nucleus. Cytoplasmic structures including mitochondria have been shown to participate in the control of apoptotic nuclear disintegration. Before cells exhibit common signs of nuclear apoptosis (chromatin condensation and endonuclease-mediated DNA fragmentation), they undergo a reduction of the mitochondrial transmembrane potential (delta psi m) that may be due to the opening of mitochondrial permeability transition (PT) pores. Here, we present direct evidence indicating that mitochondrial PT constitutes a critical early event of the apoptotic process. In a cell-free system combining purified mitochondria and nuclei, mitochondria undergoing PT suffice to induce chromatin condensation and DNA fragmentation. Induction of PT by pharmacological agents augments the apoptosis-inducing potential of mitochondria. In contrast, prevention of PT by pharmacological agents impedes nuclear apoptosis, both in vitro and in vivo. Mitochondria from hepatocytes or lymphoid cells undergoing apoptosis, but not those from normal cells, induce disintegration of isolated Hela nuclei. A specific ligand of the mitochondrial adenine nucleotide translocator (ANT), bongkreik acid, inhibits PT and reduces apoptosis induction by mitochondria in a cell-free system. Moreover, it inhibits the induction of apoptosis in intact cells. Several pieces of evidence suggest that the proto-oncogene product Bcl-2 inhibits apoptosis by preventing mitochondrial PT. First, to inhibit nuclear apoptosis, Bcl-2 must be localized in mitochondrial but not nuclear membranes. Second, transfection-enforced hyperexpression of Bcl-2 directly abolishes the induction of mitochondrial PT in response to a protonophore, a pro- oxidant, as well as to the ANT ligand atractyloside, correlating with its apoptosis-inhibitory effect. In conclusion, mitochondrial PT appears

  8. Synthesis and biological activities of transition metal complexes based on acetylsalicylic acid as neo-anticancer agents.

    PubMed

    Rubner, Gerhard; Bensdorf, Kerstin; Wellner, Anja; Kircher, Brigitte; Bergemann, Silke; Ott, Ingo; Gust, Ronald

    2010-10-14

    [(μ(4)-η(2))-(Prop-2-ynyl)-2-acetoxybenzoate]dicobalthexacarbonyl (Co-ASS), a derivative of aspirin (ASS), demonstrated high growth-inhibitory potential against various tumor cells with interference in the arachidonic acid cascade as probable mode of action. The significance of the kind of metal and cluster was verified in this structure-activity study: Co(2)(CO)(6) was respectively exchanged by a tetrameric cobalt-, trimeric ruthenium-, or trimeric ironcarbonyl cluster. Furthermore, the metal binding motif was changed from alkyne to 1,3-butadiene. Compounds were evaluated for growth inhibition, antiproliferative effects, and apoptosis induction in breast (MCF-7, MDA-MB 231) and colon cancer (HT-29) cell lines and for COX-1/2 inhibitory effects at isolated isoenzymes. Additionally, the major COX metabolite prostaglandin E2 (PGE(2)) was quantified in arachidonic acid-stimulated MDA-MB 231 breast tumor cells. It was demonstrated that the metal cluster was of minor importance for effects on cellular activity if an alkyne was used as ligand. Generally, no correlation existed between growth inhibition and COX activity. Cellular growth inhibition and antiproliferative activity at higher concentrations of the most active compounds Prop-ASS-Co(4) and Prop-ASS-Ru(3) correlated well with apoptosis induction.

  9. Regulation of Apoptosis by Inhibitors of Apoptosis (IAPs).

    PubMed

    Berthelet, Jean; Dubrez, Laurence

    2013-03-14

    Inhibitors of Apoptosis (IAPs) are a family of proteins with various biological functions including regulation of innate immunity and inflammation, cell proliferation, cell migration and apoptosis. They are characterized by the presence of at least one N-terminal baculoviral IAP repeat (BIR) domain involved in protein-protein interaction. Most of them also contain a C-terminal RING domain conferring an E3-ubiquitin ligase activity. In drosophila, IAPs are essential to ensure cell survival, preventing the uncontrolled activation of the apoptotic protease caspases. In mammals, IAPs can also regulate apoptosis through controlling caspase activity and caspase-activating platform formation. Mammalian IAPs, mainly X-linked IAP (XIAP) and cellular IAPs (cIAPs) appeared to be important determinants of the response of cells to endogenous or exogenous cellular injuries, able to convert the survival signal into a cell death-inducing signal. This review highlights the role of IAP in regulating apoptosis in Drosophila and Mammals.

  10. [Apoptosis and its biomedical significance].

    PubMed

    Ortega-Camarillo, C; Díaz-Flores, M; Avalos-Rodríguez, A; Vergara-Onofre, M; Rosales-Torres, A M

    2001-01-01

    Cell death can occur through apoptotic or necrotic death pathways. Membrane disruption leads to inflammation, a typical feature of necrosis. Apoptosis constitutes a genetically controlled physiologic process of cell removal. It is characterized by cell shrinkage, chromatin condensation, and DNA cleavage. Apoptotic cells are rapidly recognized and engulfed by phagocytes thus inhibiting an inflammatory response following necrosis. Apoptosis has been proposed as a basic event to protect tissue homeostasis. This paper analyzes the genetic, biochemical, and morphologic characteristics related to apoptosis, as well as its relationship to certain illnesses. PMID:11766462

  11. Apoptosis pathways in neuroblastoma therapy.

    PubMed

    Fulda, Simone; Debatin, Klaus Michael

    2003-07-18

    Apoptosis, the cell's intrinsic death program, plays a crucial role in the regulation of tissue homeostasis, and an imbalance between cell death and proliferation may result in tumor formation. Also, killing of tumor cells by diverse cytotoxic approaches such as anticancer drugs, gamma-irradiation, suicide genes or immunotherapy, is predominantly mediated through induction of apoptosis. Failure to activate apoptotic pathways in response to drug treatment may lead to resistance of neuroblastoma cells to anticancer therapies. Understanding the molecular events that regulate apoptosis induced by cytotoxic therapies and how neuroblastoma cells evade apoptotic events may provide a new paradigm for neuroblastoma therapy. Thus, novel strategies targeting resistance of neuroblastoma cells will be based on insights into the molecular mechanisms of apoptosis as well as other forms of cell death.

  12. Protooncogenes as mediators of apoptosis.

    PubMed

    Teng, C S

    2000-01-01

    Apoptosis has been well established as a vital biological phenomenon that is important in the maintenance of cellular homeostasis. Three major protooncogene families and their encoded proteins function as mediators of apoptosis in various cell types and are the subject of this chapter. Protooncogenic proteins such as c-Myc/Max, c-Fos/c-Jun, and Bcl-2/Bax utilize a synergetic effect to enhance their roles in the pro- or antiapoptotic action. These family members activate and repress the expression of their target genes, control cell cycle progression, and execute programmed cell death. Repression or overproduction of these protooncogenic proteins induces apoptosis, which may vary as a result of either cell type specificity or the nature of the apoptotic stimuli. The proapoptotic and antiapoptotic proteins exert their effects in the membrane of cellular organelles. Here they generate cell-type-specific signals that activate the caspase family of proteases and their regulators for the execution of apoptosis.

  13. Apoptosis and acute kidney injury

    PubMed Central

    Havasi, Andrea; Borkan, Steven C.

    2015-01-01

    Improved mechanistic understanding of renal cell death in acute kidney injury (AKI) has generated new therapeutic targets. Clearly, the classic lesion of acute tubular necrosis is not adequate to describe the consequences of renal ischemia, nephrotoxin exposure, or sepsis on glomerular filtration rate. Experimental evidence supports a pathogenic role for apoptosis in AKI. Interestingly, proximal tubule epithelial cells are highly susceptible to apoptosis, and injury at this site contributes to organ failure. During apoptosis, well-orchestrated events converge at the mitochondrion, the organelle that integrates life and death signals generated by the BCL2 (B-cell lymphoma 2) protein family. Death requires the ‘perfect storm’ for outer mitochondrial membrane injury to release its cellular ‘executioners’. The complexity of this process affords new targets for effective interventions, both before and after renal insults. Inhibiting apoptosis appears to be critical, because circulating factors released by the injured kidney induce apoptosis and inflammation in distant organs including the heart, lung, liver, and brain, potentially contributing to the high morbidity and mortality associated with AKI. Manipulation of known stress kinases upstream of mitochondrial injury, induction of endogenous, anti-apoptotic proteins, and improved understanding of the timing and consequences of renal cell apoptosis will inevitably improve the outcome of human AKI. PMID:21562469

  14. Poly I:C-induced tumor cell apoptosis mediated by pattern-recognition receptors.

    PubMed

    Zhao, Xiangzhong; Ai, Miao; Guo, Yuqi; Zhou, Xianbin; Wang, Li; Li, Xia; Yao, Chengfang

    2012-11-01

    Poly I:C is a synthetic dsRNA that can imitate a viral infection and elicit host immune responses by triggering specific pattern-recognition receptors (PRRs) such as toll-like receptor 3 and retinoic acid inducible gene I(RIG-I)-like receptors, including RIG-I and melanoma differentiation-associated gene 5. Activation of these PRRs by poly I:C triggers a signal transduction cascade that results in the activation of NF-κB and production of type I interferon. Poly I:C has been used as a vaccine adjuvant for cancer immunotherapy for several decades. Evidence from recent studies indicates that poly I:C can directly induce apoptosis in several types of tumor cells, thus providing a new therapeutic approach for cancer treatment. However, the molecular mechanism underlying the induction of apoptosis by poly I:C is still unclear. In this review, we summarize the current knowledge of poly I:C-induced tumor cell apoptosis, focusing on the key molecules and pathways involved in this process.

  15. The Influence of Prolonged Acetylsalicylic Acid Supplementation-Induced Gastritis on the Neurochemistry of the Sympathetic Neurons Supplying Prepyloric Region of the Porcine Stomach.

    PubMed

    Palus, Katarzyna; Całka, Jarosław

    2015-01-01

    This experiment was designed to establish the localization and neurochemical phenotyping of sympathetic neurons supplying prepyloric area of the porcine stomach in a physiological state and during acetylsalicylic acid (ASA) induced gastritis. In order to localize the sympathetic perikarya the stomachs of both control and acetylsalicylic acid treated (ASA group) animals were injected with neuronal retrograde tracer Fast Blue (FB). Seven days post FB injection, animals were divided into a control and ASA supplementation group. The ASA group was given 100 mg/kg of b.w. ASA orally for 21 days. On the 28th day all pigs were euthanized with gradual overdose of anesthetic. Then fourteen-micrometer-thick cryostat sections were processed for routine double-labeling immunofluorescence, using primary antisera directed towards tyrosine hydroxylase (TH), dopamine β-hydroxylase (DβH), neuropeptide Y (NPY), galanin (GAL), neuronal nitric oxide synthase (nNOS), leu 5-enkephalin (LENK), cocaine- and amphetamine- regulated transcript peptide (CART), calcitonin gene-related peptide (CGRP), substance P (SP) and vasoactive intestinal peptide (VIP). The data obtained in this study indicate that postganglionic sympathetic nerve fibers supplying prepyloric area of the porcine stomach originate from the coeliac-cranial mesenteric ganglion complex (CCMG). In control animals, the FB-labelled neurons expressed TH (94.85 ± 1.01%), DβH (97.10 ± 0.97%), NPY (46.88 ± 2.53%) and GAL (8.40 ± 0.53%). In ASA group, TH- and DβH- positive nerve cells were reduced (85.78 ± 2.65% and 88.82 ± 1.63% respectively). Moreover, ASA- induced gastritis resulted in increased expression of NPY (76.59 ± 3.02%) and GAL (26.45 ± 2.75%) as well as the novo-synthesis of nNOS (6.13 ± 1.11%) and LENK (4.77 ± 0.42%) in traced CCMG neurons. Additionally, a network of CART-, CGRP-, SP-, VIP-, LENK-, nNOS- immunoreactive (IR) nerve fibers encircling the FB-positive perikarya were observed in both intact and ASA

  16. Non-enzymatic modifications of prostaglandin H synthase 1 affect bifunctional enzyme activity - Implications for the sensitivity of blood platelets to acetylsalicylic acid.

    PubMed

    Kassassir, Hassan; Siewiera, Karolina; Talar, Marcin; Stec-Martyna, Emilia; Pawlowska, Zofia; Watala, Cezary

    2016-06-25

    Due to its ability to inhibit the blood platelet PGHS-1, acetylsalicylic acid (ASA, Aspirin(®)) is widely used as a preventive agent in atherothrombotic diseases. However, its beneficial effects seem to be lower in diabetic patients, suggesting that protein glycation may impair effective ASA-mediated acetylation process. On the other hand, it is proposed that ASA can prevent some of the late complications of diabetes by lowering the extent of glycation at protein free amino groups. The aim of this work was to evaluate the extents of non-enzymatic N-glycosylation (glycation) and acetylation of blood platelet PGHS-1 (COX-1) and the competition between glycation and acetylation was investigated in order to demonstrate how these two reactions may compete against platelet PGHS-1. When PGHS-1 was incubated with glycating/acetylating agents (glucose, Glu; 1,6-bisphosphofructose, 1,6-BPF; methylglyoxal, MGO, acetylsalicylic acid, ASA), the enzyme was modified in 13.4 ± 1.6, 5.3 ± 0.5, 10.7 ± 1.2 and 6.4 ± 1.1 mol/mol protein, respectively, and its activity was significantly reduced. The prior glycation/carbonylation of PGHS-1 with Glu, 1,6-BPF or MGO decreased the extent of acetylation from 6.4 ± 1.1 down to 2.5 ± 0.2, 3.6 ± 0.3 and 5.2 ± 0.2 mol/mol protein, respectively, but the enzyme still remained susceptible to the subsequent inhibition of its activity with ASA. When PGHS-1 was first acetylated with ASA and then incubated with glycating/carbonylating agents, we observed the following reductions in the enzyme modifications: from 13.4 ± 1.6 to 8.7 ± 0.6 mol/mol protein for Glu, from 5.3 ± 0.5 to 3.9 ± 0.3 mol/mol protein for 1,6-BPF and from 10.7 ± 1.2 to 7.5 ± 0.5 mol/mol protein for MGO, however subsequent glycation/carbonylation did not significantly affect PGHS-1 function. Overall, our outcomes allow to better understand the structural aspects of the chemical competition between glycation and acetylation of PGHS-1

  17. Combinatorial localized dissolution analysis: Application to acid-induced dissolution of dental enamel and the effect of surface treatments.

    PubMed

    Parker, Alexander S; Al Botros, Rehab; Kinnear, Sophie L; Snowden, Michael E; McKelvey, Kim; Ashcroft, Alexander T; Carvell, Mel; Joiner, Andrew; Peruffo, Massimo; Philpotts, Carol; Unwin, Patrick R

    2016-08-15

    A combination of scanning electrochemical cell microscopy (SECCM) and atomic force microscopy (AFM) is used to quantitatively study the acid-induced dissolution of dental enamel. A micron-scale liquid meniscus formed at the end of a dual barrelled pipette, which constitutes the SECCM probe, is brought into contact with the enamel surface for a defined period. Dissolution occurs at the interface of the meniscus and the enamel surface, under conditions of well-defined mass transport, creating etch pits that are then analysed via AFM. This technique is applied to bovine dental enamel, and the effect of various treatments of the enamel surface on acid dissolution (1mM HNO3) is studied. The treatments investigated are zinc ions, fluoride ions and the two combined. A finite element method (FEM) simulation of SECCM mass transport and interfacial reactivity, allows the intrinsic rate constant for acid-induced dissolution to be quantitatively determined. The dissolution of enamel, in terms of Ca(2+) flux ( [Formula: see text] ), is first order with respect to the interfacial proton concentration and given by the following rate law: [Formula: see text] , with k0=0.099±0.008cms(-1). Treating the enamel with either fluoride or zinc ions slows the dissolution rate, although in this model system the partly protective barrier only extends around 10-20nm into the enamel surface, so that after a period of a few seconds dissolution of modified surfaces tends towards that of native enamel. A combination of both treatments exhibits the greatest protection to the enamel surface, but the effect is again transient.

  18. Combinatorial localized dissolution analysis: Application to acid-induced dissolution of dental enamel and the effect of surface treatments.

    PubMed

    Parker, Alexander S; Al Botros, Rehab; Kinnear, Sophie L; Snowden, Michael E; McKelvey, Kim; Ashcroft, Alexander T; Carvell, Mel; Joiner, Andrew; Peruffo, Massimo; Philpotts, Carol; Unwin, Patrick R

    2016-08-15

    A combination of scanning electrochemical cell microscopy (SECCM) and atomic force microscopy (AFM) is used to quantitatively study the acid-induced dissolution of dental enamel. A micron-scale liquid meniscus formed at the end of a dual barrelled pipette, which constitutes the SECCM probe, is brought into contact with the enamel surface for a defined period. Dissolution occurs at the interface of the meniscus and the enamel surface, under conditions of well-defined mass transport, creating etch pits that are then analysed via AFM. This technique is applied to bovine dental enamel, and the effect of various treatments of the enamel surface on acid dissolution (1mM HNO3) is studied. The treatments investigated are zinc ions, fluoride ions and the two combined. A finite element method (FEM) simulation of SECCM mass transport and interfacial reactivity, allows the intrinsic rate constant for acid-induced dissolution to be quantitatively determined. The dissolution of enamel, in terms of Ca(2+) flux ( [Formula: see text] ), is first order with respect to the interfacial proton concentration and given by the following rate law: [Formula: see text] , with k0=0.099±0.008cms(-1). Treating the enamel with either fluoride or zinc ions slows the dissolution rate, although in this model system the partly protective barrier only extends around 10-20nm into the enamel surface, so that after a period of a few seconds dissolution of modified surfaces tends towards that of native enamel. A combination of both treatments exhibits the greatest protection to the enamel surface, but the effect is again transient. PMID:27209395

  19. L-arginine augments the antioxidant effect of garlic against acetic acid-induced ulcerative colitis in rats.

    PubMed

    Harisa, Gamal Eldin I; Abo-Salem, Osama M; El-Sayed, El-Sayed M; Taha, Ehab I; El-Halawany, Nermin

    2009-10-01

    Garlic contains many sulfhydryl compounds that act as antioxidants. However, the role of nitric oxide (NO) in inflammation is controversial. The aim of the present study is to investigate the possible protective effect of garlic against acetic acid-induced ulcerative colitis in rats, as well as the probable modulatory effect of L-arginine (NO precursor) on garlic activity. Intra-rectal inoculation of rats with 4% acetic acid for 3 consecutive days caused a significant increase in the colon weight and marked decrease in the colon length. In addition, acetic acid induced a significant increase in serum levels of nitrate as well as colonic tissue content of malondialdehyde (MDA). Moreover, colonic tissue contents of glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) were markedly reduced. On the other hand, pre-treatment of rats with garlic (0.25 g/kgbwt, orally) for 4 consecutive weeks and 3 days during induction of colitis significantly reduced the increase in the colon weight induced by acetic acid and ameliorated alterations in oxidant and antioxidant parameters. Interestingly, oral co-administration of garlic (0.25 g/kgbwt) and L-arginine (625 mg/kgbwt) for the same period of garlic administration mitigated the changes in both colon weight and length induced by acetic acid and increased garlic effect on colon tissue contents of MDA and GSH. In conclusion, L-arginine can augment the protective effect of garlic against ulcerative colitis; an effect that might be mainly attributed to its NO donating property resulting in enhancement of garlic antioxidant effect. Further studies will be needed to determine which one of the active ingredients of garlic has the main antioxidant effect to be used with L-arginine. PMID:19783514

  20. Acid-induced molten globule state of a prion protein: crucial role of Strand 1-Helix 1-Strand 2 segment.

    PubMed

    Honda, Ryo P; Yamaguchi, Kei-ichi; Kuwata, Kazuo

    2014-10-31

    The conversion of a cellular prion protein (PrP(C)) to its pathogenic isoform (PrP(Sc)) is a critical event in the pathogenesis of prion diseases. Pathogenic conversion is usually associated with the oligomerization process; therefore, the conformational characteristics of the pre-oligomer state may provide insights into the conversion process. Previous studies indicate that PrP(C) is prone to oligomer formation at low pH, but the conformation of the pre-oligomer state remains unknown. In this study, we systematically analyzed the acid-induced conformational changes of PrP(C) and discovered a unique acid-induced molten globule state at pH 2.0 termed the "A-state." We characterized the structure of the A-state using far/near-UV CD, 1-anilino-8-naphthalene sulfonate fluorescence, size exclusion chromatography, and NMR. Deuterium exchange experiments with NMR detection revealed its first unique structure ever reported thus far; i.e. the Strand 1-Helix 1-Strand 2 segment at the N terminus was preferentially unfolded, whereas the Helix 2-Helix 3 segment at the C terminus remained marginally stable. This conformational change could be triggered by the protonation of Asp(144), Asp(147), and Glu(196), followed by disruption of key salt bridges in PrP(C). Moreover, the initial population of the A-state at low pH (pH 2.0-5.0) was well correlated with the rate of the β-rich oligomer formation, suggesting that the A-state is the pre-oligomer state. Thus, the specific conformation of the A-state would provide crucial insights into the mechanisms of oligomerization and further pathogenic conversion as well as facilitating the design of novel medical chaperones for treating prion diseases. PMID:25217639

  1. Rapid and sensitive determination of acetylsalicylic acid and salicylic acid in plasma using liquid chromatography-tandem mass spectrometry: application to pharmacokinetic study.

    PubMed

    Xu, Xiangrong; Koetzner, Lee; Boulet, Jamie; Maselli, Harry; Beyenhof, Jessica; Grover, Gary

    2009-09-01

    A simple and sensitive analytical method using liquid chromatography-tandem mass spectrometry (LC/MS/MS) for determination of acetylsalicylic acid (aspirin, ASA) and its major metabolite, salicylic acid (SA), in animal plasma has been developed and validated. Both ASA and SA in plasma samples containing potassium fluoride were extracted using acetonitrile (protein precipitation) with 0.1% formic acid in it. 6-Methoxysalicylic acid was used as the internal standard (IS). The compounds were separated on a reversed-phase column. The multiple reaction monitoring mode was used with ion transitions of m/z 178.9 --> 136.8, 137.0 --> 93.0 and 167.0 --> 123.0 for ASA, SA and IS, respectively. The lower limits of quantification for ASA and SA were 3 and 30 ng/mL, respectively. The developed method was successfully applied for the evaluation of pharmacokinetics of ASA and SA after p.o. and i.v. administration of 1 mg/kg to rats.

  2. Binary mixtures of diclofenac with paracetamol, ibuprofen, naproxen, and acetylsalicylic acid and these pharmaceuticals in isolated form induce oxidative stress on Hyalella azteca.

    PubMed

    Gómez-Oliván, Leobardo Manuel; Neri-Cruz, Nadia; Galar-Martínez, Marcela; Islas-Flores, Hariz; García-Medina, Sandra

    2014-11-01

    Toxicity in natural ecosystems is usually not due to exposure to a single substance, but is rather the result of exposure to mixtures of toxic substances. Knowing the effects of contaminants as a mixture compared to their effects in isolated form is therefore important. This study aimed to evaluate the oxidative stress induced by binary mixtures of diclofenac with paracetamol, ibuprofen, naproxen, and acetylsalicylic acid and by these nonsteroidal anti-inflammatory drugs (NSAIDs) in isolated form, using Hyalella azteca as a bioindicator. The median lethal concentration (LC50) and the lowest observed adverse effect level (LOAEL) of each NSAID were obtained. Amphipods were exposed for 72 h to the latter value in isolated form and as binary mixtures. The following biomarkers were evaluated: lipid peroxidation (LPX), protein carbonyl content (PCC), and activity of the antioxidant enzymes: superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). Significant increases in LPX and PCC with respect to the control group (p ≤ 0.05) were induced by NSAIDs both in isolated form and as binary mixtures. Changes in SOD, CAT, and GPx activity likewise occurred with NSAIDs in isolated form and as binary mixtures. In conclusion, NSAIDs used in this study induce oxidative stress on H. azteca both in isolated form and as binary mixtures, and the interactions occurring between these pharmaceuticals are probably antagonistic in type.

  3. Histopathological, ultrastructural, and immunohistochemical assessment of hippocampus structures of rats exposed to TCDD and high doses of tocopherol and acetylsalicylic acid.

    PubMed

    Rosińczuk, Joanna; Dymarek, Robert; Całkosiński, Ireneusz

    2015-01-01

    The effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on central nervous system consists of changing expression of estrogen receptors, whereas the result of chronic inflammatory reaction caused by dioxin is occurrence of destructive changes in various organs connected with disturbed metabolism of connective tissue and damage of cells. The aim of the study was to determine the effect of dioxins on function, ultrastructure, and cytological and histological structure of hippocampus, particularly on expression of estrogen receptors in central nervous system as well as to define protective influence of tocopherol (TCP) and acetylsalicylic acid (ASA) on the decrease in activity of proinflammatory effects in central nervous system. It was shown that TCDD contributes to destructive and inflammatory changes along with demyelization of myelin sheaths and atrophy of estrogen receptors in hippocampus. Dioxin contributes to atrophy of estrogen receptors in hippocampus, in which also destructive and inflammatory changes were found along with demyelination of myelin sheaths. Histopathological and ultrastructural image of hippocampus areas in rats, in which both TCP and ASA were used, is characterized by poorly expressed degenerative changes and smaller inflammatory reactivity. Using both TCP and ASA has a protective effect on functions of central nervous system.

  4. Acetylsalicylic Acid reduces the severity of dextran sodium sulfate-induced colitis and increases the formation of anti-inflammatory lipid mediators.

    PubMed

    Köhnke, Thomas; Gomolka, Beate; Bilal, Süleyman; Zhou, Xiangzhi; Sun, Yanping; Rothe, Michael; Baumgart, Daniel C; Weylandt, Karsten H

    2013-01-01

    The role of non-steroidal anti-inflammatory drugs in inflammatory bowel disease is controversial, as they have been implicated in disease aggravation. Different from other cyclooxygenase inhibitors, acetylsalicylic acid (ASA) enhances the formation of anti-inflammatory and proresolution lipoxins derived from arachidonic acid as well as resolvins from omega-3 polyunsaturated fatty acids such as docosahexaenoic acid (DHA). In this study, we examined the effect of ASA on murine dextran sodium sulfate colitis. A mouse magnetic resonance imaging (MRI) protocol and post mortem assessment were used to assess disease severity, and lipid metabolites were measured using liquid chromatography-coupled tandem mass spectrometry. Decreased colitis activity was demonstrated by phenotype and MRI assessment in mice treated with ASA, and confirmed in postmortem analysis. Analysis of lipid mediators showed sustained formation of lipoxin A4 and an increase of DHA-derived 17-hydroxydocosahexaenoic acid (17-HDHA) after treatment with ASA. Furthermore, in vitro experiments in RAW264.7 murine macrophages demonstrated significantly increased phagocytosis activity after incubation with 17-HDHA, supporting its proresolution effect. These results show a protective effect of ASA in a murine colitis model and could give a rationale for a careful reassessment of ASA therapy in patients with inflammatory bowel disease and particularly ulcerative colitis, possibly combined with DHA supplementation.

  5. Histopathological, Ultrastructural, and Immunohistochemical Assessment of Hippocampus Structures of Rats Exposed to TCDD and High Doses of Tocopherol and Acetylsalicylic Acid

    PubMed Central

    Rosińczuk, Joanna; Całkosiński, Ireneusz

    2015-01-01

    The effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on central nervous system consists of changing expression of estrogen receptors, whereas the result of chronic inflammatory reaction caused by dioxin is occurrence of destructive changes in various organs connected with disturbed metabolism of connective tissue and damage of cells. The aim of the study was to determine the effect of dioxins on function, ultrastructure, and cytological and histological structure of hippocampus, particularly on expression of estrogen receptors in central nervous system as well as to define protective influence of tocopherol (TCP) and acetylsalicylic acid (ASA) on the decrease in activity of proinflammatory effects in central nervous system. It was shown that TCDD contributes to destructive and inflammatory changes along with demyelization of myelin sheaths and atrophy of estrogen receptors in hippocampus. Dioxin contributes to atrophy of estrogen receptors in hippocampus, in which also destructive and inflammatory changes were found along with demyelination of myelin sheaths. Histopathological and ultrastructural image of hippocampus areas in rats, in which both TCP and ASA were used, is characterized by poorly expressed degenerative changes and smaller inflammatory reactivity. Using both TCP and ASA has a protective effect on functions of central nervous system. PMID:25879034

  6. Topical application of a film-forming emulgel dressing that controls the release of stratifin and acetylsalicylic acid and improves/prevents hypertrophic scarring.

    PubMed

    Rahmani-Neishaboor, Elham; Jallili, Reza; Hartwell, Ryan; Leung, Victor; Carr, Nicholas; Ghahary, Aziz

    2013-01-01

    Here, we evaluate the efficacy of an emulgel dressing to control the release of an antifibrogenic factor, stratifin (SFN), along with an anti-inflammatory drug, acetylsalicylic acid (ASA), to be used as a wound dressing with hypertrophic scar reducing features. Emulgel dressings were prepared by dispersing positively charged submicron vesicles in carboxymethyl cellulose gel. Release kinetics of SFN/ASA and toxicity for primary skin cells were assessed in vitro. Antifibrogenic efficacy of medicated emulgel dressings was tested on a rabbit ear fibrotic model. Following topical application on the wounds, emulgels formed an occlusive film and controlled the release of SFN and ASA for 7 and 24 hours, respectively. Wounds treated with SFN/ASA-containing emulgel dressings showed an 80% reduction in scar elevation compared with untreated controls. Topical formulations were nontoxic for cultured human keratinocytes and fibroblasts. Inflammation was significantly controlled in treated wounds, as shown by a reduced number of infiltrated CD3(+) T cells (p < 0.001) and macrophages. SFN/ASA-treated wounds showed a significantly higher (p < 0.001) expression of matrix metalloproteinase-1, resulting in reduced collagen deposition and less scarring. Film-forming emulgel dressings that control the release of antifibrogenic and anti-inflammatory factors provide an excellent treatment option for postburn hypertrophic scar management. PMID:23126516

  7. Acetylsalicylic acid (aspirin) and salicylic acid interaction with the human erythrocyte membrane bilayer induce in vitro changes in the morphology of erythrocytes.

    PubMed

    Suwalsky, Mario; Belmar, Jessica; Villena, Fernando; Gallardo, María José; Jemiola-Rzeminska, Malgorzata; Strzalka, Kazimierz

    2013-11-01

    Despite the well-documented information, there are insufficient reports concerning the effects of salicylate compounds on the structure and functions of cell membranes, particularly those of human erythrocytes. With the aim to better understand the molecular mechanisms of the interaction of acetylsalicylic acid (ASA) and salicylic acid (SA) with cell membranes, human erythrocyte membranes and molecular models were utilized. These consisted of bilayers of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), representative of phospholipid classes located in the outer and inner monolayers of the human erythrocyte membrane, respectively. The capacity of ASA and SA to perturb the multibilayer structures of DMPC and DMPE was evaluated by X-ray diffraction while DMPC unilamellar vesicles (LUV) were studied by fluorescence spectroscopy. Moreover, we took advantage of the capability of differential scanning calorimetry (DSC) to detect the changes in the thermotropic phase behavior of lipid bilayers resulting from ASA and SA interaction with PC and PE molecules. In an attempt to further elucidate their effects on cell membranes, the present work also examined their influence on the morphology of intact human erythrocytes by means of defocusing and scanning electron microscopy, while isolated unsealed human erythrocyte membranes (IUM) were studied by fluorescence spectroscopy. Results indicated that both salicylates interact with human erythrocytes and their molecular models in a concentration-dependent manner perturbing their bilayer structures. PMID:24055635

  8. Binding modes of aromatic ligands to mammalian heme peroxidases with associated functional implications: crystal structures of lactoperoxidase complexes with acetylsalicylic acid, salicylhydroxamic acid, and benzylhydroxamic acid.

    PubMed

    Singh, Amit K; Singh, Nagendra; Sinha, Mau; Bhushan, Asha; Kaur, Punit; Srinivasan, Alagiri; Sharma, Sujata; Singh, Tej P

    2009-07-24

    The binding and structural studies of bovine lactoperoxidase with three aromatic ligands, acetylsalicylic acid (ASA), salicylhydoxamic acid (SHA), and benzylhydroxamic acid (BHA) show that all the three compounds bind to lactoperoxidase at the substrate binding site on the distal heme side. The binding of ASA occurs without perturbing the position of conserved heme water molecule W-1, whereas both SHA and BHA displace it by the hydroxyl group of their hydroxamic acid moieties. The acetyl group carbonyl oxygen atom of ASA forms a hydrogen bond with W-1, which in turn makes three other hydrogen-bonds, one each with heme iron, His-109 N(epsilon2), and Gln-105 N(epsilon2). In contrast, in the complexes of SHA and BHA, the OH group of hydroxamic acid moiety in both complexes interacts with heme iron directly with Fe-OH distances of 3.0 and 3.2A respectively. The OH is also hydrogen bonded to His-109 N(epsilon2) and Gln-105N(epsilon2). The plane of benzene ring of ASA is inclined at 70.7 degrees from the plane of heme moiety, whereas the aromatic planes of SHA and BHA are nearly parallel to the heme plane with inclinations of 15.7 and 6.2 degrees , respectively. The mode of ASA binding provides the information about the mechanism of action of aromatic substrates, whereas the binding characteristics of SHA and BHA indicate the mode of inhibitor binding.

  9. Effect of low dose acetylsalicylic acid on the frequency and hematologic activity of left ventricular thrombus in anterior wall acute myocardial infarction

    SciTech Connect

    Kuepper, A.J.V.; Verheugt, F.W.; Peels, C.H.; Galema, T.W.; den Hollander, W.; Roos, J.P.

    1989-04-15

    In this prospective, randomized, placebo-controlled trial the effect of 100 mg acetylsalicylic acid (ASA) once daily on the incidence, hematologic activity and embolic potential of left ventricular (LV) thrombosis was studied in 100 consecutive patients with a first anterior wall acute myocardial infarction (AMI). Patients were randomized to ASA or placebo less than 12 hours after onset of symptoms. Heparin, 5,000 IU subcutaneously twice daily, was given to all patients during immobilization. Echocardiography was performed less than 24 hours, 48 to 72 hours and 1, 2, and 12 weeks after AMI. LV thrombosis was detected by echocardiography in 30 (33%) of the 92 evaluable patients (15 patients given ASA and 15 given placebo). Indium-111 platelet scintigraphy was done in 17 of the 22 patients with an LV thrombus at the second week echocardiogram. Among 7 ASA-treated patients, 4 had positive images; among 10 placebo patients, 5 had positive images. LV thrombus resolution was noted in 3 of 9 patients with a positive scan and in 5 of 8 patients with a negative platelet scan. In 7 of 10 ASA-treated patients and 5 of 12 placebo-treated patients thrombus resolution was observed (difference not significant). Systemic embolism occurred in 2 patients, both given ASA, during the first week after AMI. Thus, low dose ASA has no effect on the incidence, hematologic activity and embolic potential of LV thrombosis in anterior wall AMI.

  10. Acetylsalicylic Acid reduces the severity of dextran sodium sulfate-induced colitis and increases the formation of anti-inflammatory lipid mediators.

    PubMed

    Köhnke, Thomas; Gomolka, Beate; Bilal, Süleyman; Zhou, Xiangzhi; Sun, Yanping; Rothe, Michael; Baumgart, Daniel C; Weylandt, Karsten H

    2013-01-01

    The role of non-steroidal anti-inflammatory drugs in inflammatory bowel disease is controversial, as they have been implicated in disease aggravation. Different from other cyclooxygenase inhibitors, acetylsalicylic acid (ASA) enhances the formation of anti-inflammatory and proresolution lipoxins derived from arachidonic acid as well as resolvins from omega-3 polyunsaturated fatty acids such as docosahexaenoic acid (DHA). In this study, we examined the effect of ASA on murine dextran sodium sulfate colitis. A mouse magnetic resonance imaging (MRI) protocol and post mortem assessment were used to assess disease severity, and lipid metabolites were measured using liquid chromatography-coupled tandem mass spectrometry. Decreased colitis activity was demonstrated by phenotype and MRI assessment in mice treated with ASA, and confirmed in postmortem analysis. Analysis of lipid mediators showed sustained formation of lipoxin A4 and an increase of DHA-derived 17-hydroxydocosahexaenoic acid (17-HDHA) after treatment with ASA. Furthermore, in vitro experiments in RAW264.7 murine macrophages demonstrated significantly increased phagocytosis activity after incubation with 17-HDHA, supporting its proresolution effect. These results show a protective effect of ASA in a murine colitis model and could give a rationale for a careful reassessment of ASA therapy in patients with inflammatory bowel disease and particularly ulcerative colitis, possibly combined with DHA supplementation. PMID:24083240

  11. Binary mixtures of diclofenac with paracetamol, ibuprofen, naproxen, and acetylsalicylic acid and these pharmaceuticals in isolated form induce oxidative stress on Hyalella azteca.

    PubMed

    Gómez-Oliván, Leobardo Manuel; Neri-Cruz, Nadia; Galar-Martínez, Marcela; Islas-Flores, Hariz; García-Medina, Sandra

    2014-11-01

    Toxicity in natural ecosystems is usually not due to exposure to a single substance, but is rather the result of exposure to mixtures of toxic substances. Knowing the effects of contaminants as a mixture compared to their effects in isolated form is therefore important. This study aimed to evaluate the oxidative stress induced by binary mixtures of diclofenac with paracetamol, ibuprofen, naproxen, and acetylsalicylic acid and by these nonsteroidal anti-inflammatory drugs (NSAIDs) in isolated form, using Hyalella azteca as a bioindicator. The median lethal concentration (LC50) and the lowest observed adverse effect level (LOAEL) of each NSAID were obtained. Amphipods were exposed for 72 h to the latter value in isolated form and as binary mixtures. The following biomarkers were evaluated: lipid peroxidation (LPX), protein carbonyl content (PCC), and activity of the antioxidant enzymes: superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). Significant increases in LPX and PCC with respect to the control group (p ≤ 0.05) were induced by NSAIDs both in isolated form and as binary mixtures. Changes in SOD, CAT, and GPx activity likewise occurred with NSAIDs in isolated form and as binary mixtures. In conclusion, NSAIDs used in this study induce oxidative stress on H. azteca both in isolated form and as binary mixtures, and the interactions occurring between these pharmaceuticals are probably antagonistic in type. PMID:25004860

  12. The Ability of PAS, Acetylsalicylic Acid and Calcium Disodium EDTA to Protect Against the Toxic Effects of Manganese on Mitochondrial Respiration in Gill of Crassostrea virginica.

    PubMed

    Crawford, Sherine; Davis, Kiyya; Saddler, Claudette; Joseph, Jevaun; Catapane, Edward J; Carroll, Margaret A

    2011-01-01

    Manganese (Mn) is an essential metal that at excessive levels in brain causes Manganism, a condition similar to Parkinson's disease. Previously we showed that Mn had a neurotoxic effect on the dopaminergic, but not serotonergic, innervation of the lateral ciliated cells in the gill of the Eastern Oyster, Crassostrea virginica. While the mechanism of action of Mn toxicity is not completely understood, studies suggest that Mn toxicity may involve mitochondrial damage and resulting neural dysfunction in the brain's dopaminergic system. In this study we utilized micro-batch chambers and oxygen probes to measure oyster gill mitochondrial respiration in the presence of Mn and potential Mn blockers. The addition of Mn to respiring mitochondria caused a dose dependent decrease in mitochondrial O(2) consumption. Pretreating mitochondria with calcium disodium EDTA (caEDTA), p aminosalicylic acid (PAS) or acetylsalicylic acid (ASA) before Mn additions, provided full protection against the toxic effects of Mn. While mitochondrial pretreatment with any of the 3 drugs effectively blocked Mn toxicity, none of the drugs tested was able to reverse the decrease in mitochondrial O(2) consumption seen in Mn treated mitochondria. The study found that high levels of Mn had a toxic effect on gill mitochondrial O(2) consumption and that this effect could be blocked by the drugs caEDTA, PAS and ASA. C. virginica continues to be a good model with which to investigate the mechanism that underlies manganese neurotoxcity and in the pharmacological study of drugs to treat or prevent Manganism. PMID:21977482

  13. The Ability of PAS, Acetylsalicylic Acid and Calcium Disodium EDTA to Protect Against the Toxic Effects of Manganese on Mitochondrial Respiration in Gill of Crassostrea virginica

    PubMed Central

    Crawford, Sherine; Davis, Kiyya; Saddler, Claudette; Joseph, Jevaun; Catapane, Edward J.; Carroll, Margaret A.

    2011-01-01

    Manganese (Mn) is an essential metal that at excessive levels in brain causes Manganism, a condition similar to Parkinson's disease. Previously we showed that Mn had a neurotoxic effect on the dopaminergic, but not serotonergic, innervation of the lateral ciliated cells in the gill of the Eastern Oyster, Crassostrea virginica. While the mechanism of action of Mn toxicity is not completely understood, studies suggest that Mn toxicity may involve mitochondrial damage and resulting neural dysfunction in the brain’s dopaminergic system. In this study we utilized micro-batch chambers and oxygen probes to measure oyster gill mitochondrial respiration in the presence of Mn and potential Mn blockers. The addition of Mn to respiring mitochondria caused a dose dependent decrease in mitochondrial O2 consumption. Pretreating mitochondria with calcium disodium EDTA (caEDTA), p aminosalicylic acid (PAS) or acetylsalicylic acid (ASA) before Mn additions, provided full protection against the toxic effects of Mn. While mitochondrial pretreatment with any of the 3 drugs effectively blocked Mn toxicity, none of the drugs tested was able to reverse the decrease in mitochondrial O2 consumption seen in Mn treated mitochondria. The study found that high levels of Mn had a toxic effect on gill mitochondrial O2 consumption and that this effect could be blocked by the drugs caEDTA, PAS and ASA. C. virginica continues to be a good model with which to investigate the mechanism that underlies manganese neurotoxcity and in the pharmacological study of drugs to treat or prevent Manganism. PMID:21977482

  14. Acetylsalicylic acid (aspirin) and salicylic acid interaction with the human erythrocyte membrane bilayer induce in vitro changes in the morphology of erythrocytes.

    PubMed

    Suwalsky, Mario; Belmar, Jessica; Villena, Fernando; Gallardo, María José; Jemiola-Rzeminska, Malgorzata; Strzalka, Kazimierz

    2013-11-01

    Despite the well-documented information, there are insufficient reports concerning the effects of salicylate compounds on the structure and functions of cell membranes, particularly those of human erythrocytes. With the aim to better understand the molecular mechanisms of the interaction of acetylsalicylic acid (ASA) and salicylic acid (SA) with cell membranes, human erythrocyte membranes and molecular models were utilized. These consisted of bilayers of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), representative of phospholipid classes located in the outer and inner monolayers of the human erythrocyte membrane, respectively. The capacity of ASA and SA to perturb the multibilayer structures of DMPC and DMPE was evaluated by X-ray diffraction while DMPC unilamellar vesicles (LUV) were studied by fluorescence spectroscopy. Moreover, we took advantage of the capability of differential scanning calorimetry (DSC) to detect the changes in the thermotropic phase behavior of lipid bilayers resulting from ASA and SA interaction with PC and PE molecules. In an attempt to further elucidate their effects on cell membranes, the present work also examined their influence on the morphology of intact human erythrocytes by means of defocusing and scanning electron microscopy, while isolated unsealed human erythrocyte membranes (IUM) were studied by fluorescence spectroscopy. Results indicated that both salicylates interact with human erythrocytes and their molecular models in a concentration-dependent manner perturbing their bilayer structures.

  15. Viral Control of Mitochondrial Apoptosis

    PubMed Central

    Morselli, Eugenia; Touat, Zahia; Kroemer, Guido

    2008-01-01

    Throughout the process of pathogen–host co-evolution, viruses have developed a battery of distinct strategies to overcome biochemical and immunological defenses of the host. Thus, viruses have acquired the capacity to subvert host cell apoptosis, control inflammatory responses, and evade immune reactions. Since the elimination of infected cells via programmed cell death is one of the most ancestral defense mechanisms against infection, disabling host cell apoptosis might represent an almost obligate step in the viral life cycle. Conversely, viruses may take advantage of stimulating apoptosis, either to kill uninfected cells from the immune system, or to induce the breakdown of infected cells, thereby favoring viral dissemination. Several viral polypeptides are homologs of host-derived apoptosis-regulatory proteins, such as members of the Bcl-2 family. Moreover, viral factors with no homology to host proteins specifically target key components of the apoptotic machinery. Here, we summarize the current knowledge on the viral modulation of mitochondrial apoptosis, by focusing in particular on the mechanisms by which viral proteins control the host cell death apparatus. PMID:18516228

  16. Stimulation of proximal tubular cell apoptosis by albumin-bound fatty acids mediated by peroxisome proliferator activated receptor-gamma.

    PubMed

    Arici, Mustafa; Chana, Ravinder; Lewington, Andrew; Brown, Jez; Brunskill, Nigel John

    2003-01-01

    In nephrotic syndrome, large quantities of albumin enter the kidney tubule. This albumin carries with it a heavy load of fatty acids to which the proximal tubule cells are exposed at high concentration. It is postulated that exposure to fatty acids in this way is injurious to proximal tubule cells. This study has examined the ability of fatty acids to interact with peroxisome proliferator-activated receptors (PPAR) in primary cultures of human proximal tubule cells. Luciferase reporter assays in transiently transfected human proximal tubule cells were used to show that albumin bound fatty acids and other agonists activate PPARgamma in a dose-dependent manner. One of the consequences of this activation is apoptosis of the cells as determined by changes in cell morphology, evidence of PARP cleavage, and appearance of DNA laddering. Overexpression of PPARgamma in these cells also results in enhanced apoptosis. Both fatty acid-induced PPAR activation and apoptosis in these cells can be blocked by PPAR response element decoy oligonucleotides. Activation of PPARgamma by the specific agonist PGJ(2) is associated with inhibition of cell proliferation, whereas activation by albumin bound fatty acids is accompanied by increased proliferation. However, the net balance of apoptosis/proliferation favors deletion of cells. These results implicate albumin-bound fatty acids as important mediators of tubular injury in nephrosis and provide fresh impetus for pursuit of lipid-lowering strategies in proteinuric renal disease. PMID:12506134

  17. Requirement for store-operated calcium entry in sodium butyrate-induced apoptosis in human colon cancer cells.

    PubMed

    Sun, Suxia; Li, Wenjun; Zhang, He; Zha, Longying; Xue, Yong; Wu, Xianbo; Zou, Fei

    2012-02-01

    The SOCE (store-operated Ca2+ entry) pathway plays a key role in both normal cells and cancerous cells. However, its molecular mechanism remains a long-lasting puzzle of Ca2+ signalling. In this paper, we provide evidence that butyric acid, a dietary fibre-derived short-chain fatty acid, induces apoptosis of colon cancer cells via SOCE signalling networks. We found that sodium butyrate (NaB) induces Ca2+ release from endoplasmic reticulum, which in turn causes extracellular Ca2+ influx in HCT-116 cells. The Ca2+ release and influx are important, because the addition of chelators, EGTA or BAPTA/AM [1,2-bis-(o-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid tetrakis(acetoxymethyl ester)] respectively blocked NaB-induced apoptosis. Furthermore, down-regulation of STIM1 (stromal interaction molecule 1) by RNA interference or pharmacological blockade of the SOCC (store-operated Ca2+ channel) by 2-APB (2-aminoethoxydiphenyl borate) or SKF-96365 inhibited NaB-induced extracellular Ca2+ influx and apoptosis in HCT-116 cells. Thus we conclude that NaB triggers colon cancer cell apoptosis in an SOCE-dependent manner. This finding provides new insights into how butyric acid suppresses colon carcinogenesis.

  18. Ferulic acid inhibits proliferation and promotes apoptosis via blockage of PI3K/Akt pathway in osteosarcoma cell.

    PubMed

    Wang, Ting; Gong, Xia; Jiang, Rong; Li, Hongzhong; Du, Weimin; Kuang, Ge

    2016-01-01

    Ferulic acid, a ubiquitous phenolic acid abundant in corn, wheat and flax, has potent anti-tumor effect in various cancer cell lines. However, the anti-tumor effect of ferulic acid on osteosarcoma remains unclear. Therefore, we conduct current study to examine the effect of ferulic acid on osteosarcoma cells and explore the underlying mechanisms. In present study, ferulic acid inhibited proliferation and induced apoptosis in both 143B and MG63 osteosarcoma cells dose-dependently, indicated by MTT assay and Annexin V-FITC apoptosis detection. Additionally, ferulic acid induced G0/G1 phase arrest and down-regulated the expression of cell cycle-related protein, CDK 2, CDK 4, CDK 6, confirmed by flow cytometry assay and western blotting. Moreover, ferulic acid upregulated Bax, downregulated Bcl-2, and subsequently enhanced caspase-3 activity. More importantly, ferulic acid dose-dependently inhibited PI3K/Akt activation. Using adenoviruses expressing active Akt, the anti-proliferation and pro-apoptosis of ferulic acid were reverted. Our results demonstrated that ferulic acid might inhibit proliferation and induce apoptosis via inhibiting PI3K/Akt pathway in osteosarcoma cells. Ferulic acid is a novel therapeutic agent for osteosarcoma. PMID:27158383

  19. Akt-dependent NF-kappaB activation is required for bile acids to rescue colon cancer cells from stress-induced apoptosis.

    PubMed

    Shant, Jasleen; Cheng, Kunrong; Marasa, Bernard S; Wang, Jian-Ying; Raufman, Jean-Pierre

    2009-02-01

    Conjugated secondary bile acids promote human colon cancer cell proliferation by activating EGF receptors (EGFR). We hypothesized that bile acid-induced EGFR activation also mediates cell survival by downstream Akt-regulated activation of NF-kappaB. Deoxycholyltaurine (DCT) treatment attenuated TNF-alpha-induced colon cancer cell apoptosis, and stimulated rapid and sustained NF-kappaB nuclear translocation and transcriptional activity (detected by NF-kappaB binding to an oligonucleotide consensus sequence and by activation of luciferase reporter gene constructs). Both DCT-induced NF-kappaB nuclear translocation and attenuation of TNF-alpha-stimulated apoptosis were dependent on EGFR activation. Inhibitors of nuclear translocation, proteosome activity, and IkappaBalpha kinase attenuated NF-kappaB transcriptional activity. Cell transfection with adenoviral vectors encoding a non-degradable IkappaBalpha 'super-repressor' blocked the actions of DCT on both NF-kappaB activation and TNF-alpha-induced apoptosis. Likewise, transfection with mutant akt and treatment with a chemical inhibitor of Akt attenuated effects of DCT on NF-kappaB transcriptional activity and TNF-alpha-induced apoptosis. Chemical inhibitors of Akt and NF-kappaB activation also attenuated DCT-induced rescue of H508 cells from ultraviolet radiation-induced apoptosis. Collectively, these observations indicate that, downstream of EGFR, bile acid-induced colon cancer cell survival is mediated by Akt-dependent NF-kappaB activation. These findings provide a mechanism whereby bile acids increase resistance of colon cancer to chemotherapy and radiation.

  20. Molecular mechanisms of hepatic apoptosis

    PubMed Central

    Wang, K

    2014-01-01

    Apoptosis is a prominent feature of liver diseases. Causative factors such as alcohol, viruses, toxic bile acids, fatty acids, drugs, and immune response, can induce apoptotic cell death via membrane receptors and intracellular stress. Apoptotic signaling network, including membrane death receptor-mediated cascade, reactive oxygen species (ROS) generation, endoplasmic reticulum (ER) stress, lysosomal permeabilization, and mitochondrial dysfunction, is intermixed each other, but one mechanism may dominate at a particular stage. Mechanisms of hepatic apoptosis are complicated by multiple signaling pathways. The progression of liver disease is affected by the balance between apoptotic and antiapoptotic capabilities. Therapeutic options of liver injury are impacted by the clear understanding toward mechanisms of hepatic apoptosis. PMID:24434519

  1. Global analysis of the acid-induced and urea-induced unfolding of staphylococcal nuclease and two of its variants.

    PubMed

    Ionescu, R M; Eftink, M R

    1997-02-01

    We have studied the equilibrium unfolding staphylococcal nuclease and two of its variants, V66W and V66W', over two perturbation axes (acid-induced unfolding as a function of urea concentration and urea-induced unfolding as a function of pH). The transitions were monitored by simultaneous measurements of circular dichroism and fluorescence. With this multidimensional array of data (2 perturbation axes and 2 signals), we present a strategy of performing a global analysis, over as many as 12 individual data sets, to test various models for the unfolding process, to determine with greater confidence the pertinent thermodynamic parameters, and to characterize unfolding intermediates. For example, wildtype nuclease shows a cooperative two-state transition with either urea or pH as denaturant, but the global fits are improved when the model is expanded to include a pH dependence of the urea m value or when two distinct classes of protonic groups are considered. The best fit for wild-type nuclease is with delta G degree 0,UN = 6.4 kcal/mol at pH 7, with the acid-induced unfolding being triggered by protonation of three to five carboxylate groups (with possible contribution from His121), and with the urea m = 2.5 kcal mol-1 M-1. V66W' lacks the last 13 amino acids on the C-terminus, has a tryptophan at position 66, has a predominantly beta-sheet structure, and is less stable than the wild type. For V66W', delta G degree 0,UN = 1.6 kcal/mol, m = 1.2 kcal mol-1 M-1, and there are two or three groups responsible for acid unfolding. V66W, a full-length mutant with two tryptophan residues, unfolds via a three-state mechanism: native reversible intermediate reversible unfolded. It appears that its beta-barrel subdomain retains structure in the intermediate state. Assuming that the unfolding of V66W' and the beta-barrel subdomain of V66W can be described by the same thermodynamic parameters, a global analysis enabled a description of the alpha subdomain of V66W with delta G

  2. Olodaterol attenuates citric acid-induced cough in naïve and ovalbumin-sensitized and challenged guinea pigs.

    PubMed

    Wex, Eva; Bouyssou, Thierry

    2015-01-01

    Excessive coughing is a common feature of airway diseases. Different G-protein coupled receptors, including β2-adrenergic receptors (β2-AR), have been implicated in the molecular mechanisms underlying the cough reflex. However, the potential antitussive property of β2-AR agonists in patients with respiratory disease is a matter of ongoing debate. The aim of our study was to test the efficacy of the long-acting β2-AR agonist olodaterol with regard to its antitussive property in a pre-clinical model of citric acid-induced cough in guinea pigs and to compare the results to different clinically relevant β2-AR agonists. In our study β2-AR agonists were intratracheally administered, as dry powder, into the lungs of naïve or ovalbumin-sensitized guinea pigs 15 minutes prior to induction of cough by exposure to citric acid. Cough events were counted over 15 minutes during the citric acid exposure. Olodaterol dose-dependently inhibited the number of cough events in naïve and even more potently and with a greater maximal efficacy in ovalbumin-sensitized guinea pigs (p < 0.01). Formoterol and salmeterol showed a trend towards reducing cough. On the contrary, indacaterol demonstrated pro-tussive properties as it significantly increased the number of coughs, both in naïve and ovalbumin-sensitized animals (p < 0.001). In conclusion, olodaterol, at doses eliciting bronchodilation, showed antitussive properties in a model of citric acid-induced cough in naïve and ovalbumin-sensitized guinea pigs. This is in agreement with pre-clinical and clinical studies showing antitussive efficacy of β2-AR agonists. Indacaterol increased the number of coughs in this model, which concurs with clinical data where a transient cough has been observed after indacaterol inhalation. While the antitussive properties of β2-AR agonists can be explained by their ability to lead to the cAMP-induced hyperpolarization of the neuron membrane thereby inhibiting sensory nerve activation and the

  3. Olodaterol Attenuates Citric Acid-Induced Cough in Naïve and Ovalbumin-Sensitized and Challenged Guinea Pigs

    PubMed Central

    Wex, Eva; Bouyssou, Thierry

    2015-01-01

    Excessive coughing is a common feature of airway diseases. Different G-protein coupled receptors, including β2-adrenergic receptors (β2-AR), have been implicated in the molecular mechanisms underlying the cough reflex. However, the potential antitussive property of β2-AR agonists in patients with respiratory disease is a matter of ongoing debate. The aim of our study was to test the efficacy of the long-acting β2-AR agonist olodaterol with regard to its antitussive property in a pre-clinical model of citric acid-induced cough in guinea pigs and to compare the results to different clinically relevant β2-AR agonists. In our study β2-AR agonists were intratracheally administered, as dry powder, into the lungs of naïve or ovalbumin-sensitized guinea pigs 15 minutes prior to induction of cough by exposure to citric acid. Cough events were counted over 15 minutes during the citric acid exposure. Olodaterol dose-dependently inhibited the number of cough events in naïve and even more potently and with a greater maximal efficacy in ovalbumin-sensitized guinea pigs (p < 0.01). Formoterol and salmeterol showed a trend towards reducing cough. On the contrary, indacaterol demonstrated pro-tussive properties as it significantly increased the number of coughs, both in naïve and ovalbumin-sensitized animals (p < 0.001). In conclusion, olodaterol, at doses eliciting bronchodilation, showed antitussive properties in a model of citric acid-induced cough in naïve and ovalbumin-sensitized guinea pigs. This is in agreement with pre-clinical and clinical studies showing antitussive efficacy of β2-AR agonists. Indacaterol increased the number of coughs in this model, which concurs with clinical data where a transient cough has been observed after indacaterol inhalation. While the antitussive properties of β2-AR agonists can be explained by their ability to lead to the cAMP-induced hyperpolarization of the neuron membrane thereby inhibiting sensory nerve activation and the

  4. Pancreatic carcinogenesis: apoptosis and angiogenesis.

    PubMed

    Onizuka, Shinya; Kawakami, Shunsuke; Taniguchi, Ken; Fujioka, Hikaru; Miyashita, Kosei

    2004-04-01

    Apoptosis and angiogenesis are critical biologic processes that are altered during carcinogenesis. Both apoptosis and angiogenesis may play an important role in pancreatic carcinogenesis. Despite numerous advances in the diagnosis and treatment of pancreatic cancer, its prognosis remains dismal and a new therapeutic approach is much needed. Recent research has revealed that apoptosis and angiogenesis are closely interrelated. Several reports show that a tumor suppresser gene that is expressed in pancreatic carcinoma and related to malignant potential can induce apoptosis and also inhibit angiogenesis. At present, it is generally accepted that tumor growth in cancers, including pancreatic cancer, depends on angiogenesis. We have identified 2 new angiogenesis inhibitors from a conditioned medium of human pancreatic carcinoma cell line (BxPC-3): antiangiogenic antithrombin III (aaAT-III) and vitamin D binding protein-macrophage activating factor (DBP-maf). These molecules were able to regress tumors in severe combined immunodeficiency disease (SCID) mice, demonstrating potent inhibition of endothelial cell proliferation. Moreover, the angiogenesis inhibitors induced tumor dormancy in the animal model. These results suggest that antiangiogenic therapy using angiogenesis inhibitors may become a new strategy for treatment of pancreatic cancer in the near future. PMID:15084979

  5. APOPTOSIS IN WHOLE MOUSE OVARIES

    EPA Science Inventory

    Apoptosis in Whole Mouse Ovaries
    Robert M. Zucker Susan C. Jeffay and Sally D. Perreault
    Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, 27711.

  6. Fluorescence Lifetime Imaging of Apoptosis

    PubMed Central

    Xiao, Annie; Gibbons, Anne E.; Luker, Kathryn E.; Luker, Gary D.

    2015-01-01

    Genetically-encoded fluorescence resonance energy transfer (FRET) reporters are powerful tools to analyze cell signaling and function at single cell resolution in standard two-dimensional cell cultures, but these reporters rarely have been applied to three-dimensional environments. FRET interactions between donor and acceptor molecules typically are determined by changes in relative fluorescence intensities, but wavelength-dependent differences in absorption of light complicate this analysis method in three-dimensional settings. Here we report fluorescence lifetime imaging microscopy (FLIM) with phasor analysis, a method that displays fluorescence lifetimes on a pixel-wise basis in real time, to quantify apoptosis in breast cancer cells stably expressing a genetically encoded FRET reporter. This microscopic imaging technology allowed us to identify treatment-induced apoptosis in single breast cancer cells in environments ranging from two-dimensional cell culture, spheroids with cancer and bone marrow stromal cells, and living mice with orthotopic human breast cancer xenografts. Using this imaging strategy, we showed that combined metabolic therapy targeting glycolysis and glutamine pathways significantly reduced overall breast cancer metabolism and induced apoptosis. We also determined that distinct subpopulations of bone marrow stromal cells control resistance of breast cancer cells to chemotherapy, suggesting heterogeneity of treatment responses of malignant cells in different bone marrow niches. Overall, this study establishes FLIM with phasor analysis as an imaging tool for apoptosis in cell-based assays and living mice, enabling real-time, cellular-level assessment of treatment efficacy and heterogeneity. PMID:26771007

  7. A rapid method for the simultaneous determination of L-ascorbic acid and acetylsalicylic acid in aspirin C effervescent tablet by ultra performance liquid chromatography-tandem mass spectrometry

    NASA Astrophysics Data System (ADS)

    Wabaidur, Saikh Mohammad; Alothman, Zeid Abdullah; Khan, Mohammad Rizwan

    2013-05-01

    In present study, a rapid and sensitive method using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was developed for the simultaneous determination of L-ascorbic acid and acetylsalicylic acid in aspirin C effervescent tablet. The optimum chromatographic separation was carried out on a reversed phase Waters® Acquity UPLC BEH C18 column (1.7 μm particle size, 100 mm × 2.1 mm ID) with an isocratic elution profile and mobile phase consisting of 0.1% formic acid in water and acetonitrile (75:25, v/v, pH 3.5) at flow rate of 0.5 mL min-1. The influences of mobile phase composition, flow rate and pH on chromatographic resolution were investigated. The total chromatographic analysis time was as short as 2 min with excellent resolution. Detection and quantification of the target compounds were carried out with a triple quadrupole mass spectrometer using negative electrospray ionization (ESI) and multiple reaction monitoring (MRM) modes. The performance of the method was evaluated and very low limits of detection less than 0.09 μg g-1, excellent coefficient correlation (r2 > 0.999) with liner range over a concentration range of 0.1-1.0 μg g-1 for both L-ascorbic acid and acetylsalicylic acid, and good intraday and interday precisions (relative standard deviations (R.S.D.) <3%), were obtained. Comparison of system performance with traditional liquid chromatography-photo diode array detector (HPLC-PDA) was made with respect to analysis time, sensitivity, linearity and precisions. The proposed UPLC-MS/MS method was found to be reproducible and appropriate for quantitative analysis of L-ascorbic acid and acetylsalicylic acid in aspirin C effervescent tablet.

  8. Analysis of fumonisin B1-induced apoptosis.

    PubMed Central

    Jones, C; Ciacci-Zanella, J R; Zhang, Y; Henderson, G; Dickman, M

    2001-01-01

    Fumonisins are mycotoxins produced by Fusarium moniliforme, a prevalent fungus that infects corn and other cereal grains. Fumonisin B1(FB1 is the most common mycotoxin produced by F. moniliforme, suggesting it has toxicologic significance. The structure of FB1 resembles sphingoid bases, and it inhibits ceramide synthase. Because sphingoid bases regulate cell growth, differentiation, transformation, and apoptosis, it is not surprising to find that FB1 can alter growth of certain mammalian cells. Previous studies concluded FB1-induced apoptosis, or cell cycle arrest, in African green monkey kidney fibroblasts (CV-1). In this study we have identified genes that inhibit FB1 induced apoptosis in CV-1 cells and two mouse embryo fibroblasts (MEF). A baculovirus gene, inhibitor of apoptosis (CpIAP), protected these cells from apoptosis. CpIAP blocks apoptosis induced by the tumor necrosis factor (TNF) pathway as well as other mechanisms. Further support for the involvement of the TNF signal transduction pathway in FB1 induced apoptosis was the cleavage of caspase 8. Inhibition of caspases by the baculovirus gene (italic)p35 also inhibited FB1-induced apoptosis. The tumor suppressor gene p53 was not required for FB1 induced apoptosis because p53-/- MEF undergo apoptosis following FB1 treatment. Furthermore, Bcl-2 was not an effective inhibitor of FB1-induced apoptosis in CV-1 cells or p53+/+ MEF. In summary, these results provide new information to help understand the mechanism by which FB1 induces apoptosis. PMID:11359701

  9. Biocontrol agents-mediated suppression of oxalic acid induced cell death during Sclerotinia sclerotiorum-pea interaction.

    PubMed

    Jain, Akansha; Singh, Akanksha; Singh, Surendra; Sarma, Birinchi Kumar; Singh, Harikesh Bahadur

    2015-05-01

    Oxalic acid (OA) is an important pathogenic factor during early Sclerotinia sclerotiorum-host interaction and might work by reducing hydrogen peroxide production (H2 O2 ). In the present investigation, oxalic acid-induced cell death in pea was studied. Pea plants treated with biocontrol agents (BCAs) viz., Pseudomonas aeruginosa PJHU15, Bacillus subtilis BHHU100, and Trichoderma harzianum TNHU27 either singly and/or in consortium acted on S. sclerotiorum indirectly by enabling plants to inhibit the OA-mediated suppression of oxidative burst via induction of H2 O2 . Our results showed that BCA treated plants upon treatment with culture filtrate of the pathogen, conferred the resistance via. significantly decreasing relative cell death of pea against S. sclerotiorum compared to control plants without BCA treatment but treated with the culture filtrate of the pathogen. The results obtained from the present study indicate that the microbes especially in consortia play significant role in protection against S. sclerotiorum by modulating oxidative burst and partially enhancing tolerance by increasing the H2 O2 generation, which is otherwise suppressed by OA produced by the pathogen.

  10. Stearic acid induces proinflammatory cytokine production partly through activation of lactate-HIF1α pathway in chondrocytes.

    PubMed

    Miao, Hongming; Chen, Liang; Hao, Lijun; Zhang, Xuan; Chen, Yujuan; Ruan, Zhihua; Liang, Houjie

    2015-01-01

    The biomechanics stress and chronic inflammation in obesity are causally linked to osteoarthritis. However, the metabolic factors mediating obesity-related osteoarthritis are still obscure. Here we scanned and identified at least two elevated metabolites (stearic acid and lactate) from the plasma of diet-induced obese mice. We found that stearic acid potentiated LDH-a-dependent production of lactate, which further stabilized HIF1α protein and increased VEGF and proinflammatory cytokine expression in primary mouse chondrocytes. Treatment with LDH-a and HIF1α inhibitors notably attenuated stearic acid-or high fat diet-stimulated proinflammatory cytokine production in vitro and in vivo. Furthermore, positive correlation of plasma lactate, cartilage HIF1α and cytokine levels with the body mass index was observed in subjects with osteoarthritis. In conclusion, saturated free fatty acid induced proinflammatory cytokine production partly through activation of a novel lactate-HIF1α pathway in chondrocytes. Our findings hold promise of developing novel clinical strategies for the management of obesity-related diseases such as osteoarthritis.

  11. Possible protective role of pregnenolone-16 alpha-carbonitrile in lithocholic acid-induced hepatotoxicity through enhanced hepatic lipogenesis.

    PubMed

    Miyata, Masaaki; Nomoto, Masahiro; Sotodate, Fumiaki; Mizuki, Tomohiro; Hori, Wataru; Nagayasu, Miho; Yokokawa, Shinya; Ninomiya, Shin-ichi; Yamazoe, Yasushi

    2010-06-25

    Lithocholic acid (LCA) feeding causes both liver parenchymal and cholestatic damages in experimental animals. Although pregnenolone-16 alpha-carbonitrile (PCN)-mediated protection against LCA-induced hepatocyte injury may be explained by induction of drug metabolizing enzymes, the protection from the delayed cholestasis remains incompletely understood. Thus, the PCN-mediated protective mechanism has been studied from the point of modification of lipid metabolism. At an early stage of LCA feeding, an imbalance of biliary bile acid and phospholipid excretion was observed. Co-treatment with PCN reversed the increase in serum alanine aminotransferase (ALT) as well as alkaline phosphatase (ALP) activities and hepatic hydrophobic bile acid levels. LCA feeding decreased hepatic mRNA levels of several fatty acid- and phospholipid-related genes before elevation of serum ALT and ALP activities. On the other hand, PCN co-treatment reversed the decrease in the mRNA levels and hepatic levels of phospholipids, triglycerides and free fatty acids. PCN co-treatment also reversed the decrease in biliary phospholipid output in LCA-fed mice. Treatment with PCN alone increased hepatic phospholipid, triglyceride and free fatty acid concentrations. Hepatic fatty acid and phosphatidylcholine synthetic activities increased in mice treated with PCN alone or PCN and LCA, compared to control mice, whereas these activities decreased in LCA-fed mice. These results suggest the possibility that PCN-mediated stimulation of lipogenesis contributes to the protection from lithocholic acid-induced hepatotoxicity.

  12. Protective Effect of Cod (Gadus macrocephalus) Skin Collagen Peptides on Acetic Acid-Induced Gastric Ulcer in Rats.

    PubMed

    Niu, Huina; Wang, Zhicong; Hou, Hu; Zhang, Zhaohui; Li, Bafang

    2016-07-01

    This research was performed to explore the protective effect of cod skin collagen peptides (CCP) on gastric ulcer induced by acetic acid. The CCP were fractionated into low molecular CCP (LMCCP, Mw < 3 kDa) and high molecular CCP (HMCCP, Mw > 3 kDa). In HMCCP and LMCCP, glycine of accounted for about one-third of the total amino acids without cysteine and tryptophan, and hydrophobic amino acids accounted for about 50%. After 21 d CCP treatment (60 or 300 mg/kg, p.o./daily), the healing effects on acetic acid-induced gastric ulcers were evaluated by macroscopic measure, microscopic measure, and immune histochemistry. Moreover, the expression levels of the growth factors, such as vascular endothelial growth factor, epidermal growth factor, transforming growth factor β1 (TGFβ1), and the heat shock protein 70 (HSP70) was detected. The results showed that both LMCCP and HMCCP could significantly decrease the ulcer areas and promote the healing of the lesions. They also could improve the levels of hexosamine, glutathione, superoxide dismutase, and glutathione peroxidase, and reduce the content of malondialdehyde and inducible nitric oxide synthase. In addition, the expression level of TGFβ1 gene and HSP70 mRNA was significantly improved by the treatment. It suggested that CCP could be able to improve symptoms of gastric ulcer and probably be used in the treatment of gastric ulcer. PMID:27219644

  13. Phenylbutyric acid induces the cellular senescence through an Akt/p21{sup WAF1} signaling pathway

    SciTech Connect

    Kim, Hag Dong; Jang, Chang-Young; Choe, Jeong Min; Sohn, Jeongwon; Kim, Joon

    2012-06-01

    Highlights: Black-Right-Pointing-Pointer Phenylbutyric acid induces cellular senescence. Black-Right-Pointing-Pointer Phenylbutyric acid activates Akt kinase. Black-Right-Pointing-Pointer The knockdown of PERK also can induce cellular senescence. Black-Right-Pointing-Pointer Akt/p21{sup WAF1} pathway activates in PERK knockdown induced cellular senescence. -- Abstract: It has been well known that three sentinel proteins - PERK, ATF6 and IRE1 - initiate the unfolded protein response (UPR) in the presence of misfolded or unfolded proteins in the ER. Recent studies have demonstrated that upregulation of UPR in cancer cells is required to survive and proliferate. Here, we showed that long exposure to 4-phenylbutyric acid (PBA), a chemical chaperone that can reduce retention of unfolded and misfolded proteins in ER, induced cellular senescence in cancer cells such as MCF7 and HT1080. In addition, we found that treatment with PBA activates Akt, which results in p21{sup WAF1} induction. Interestingly, the depletion of PERK but not ATF6 and IRE1 also induces cellular senescence, which was rescued by additional depletion of Akt. This suggests that Akt pathway is downstream of PERK in PBA induced cellular senescence. Taken together, these results show that PBA induces cellular senescence via activation of the Akt/p21{sup WAF1} pathway by PERK inhibition.

  14. Neuroprotective effects of trans-caryophyllene against kainic acid induced seizure activity and oxidative stress in mice.

    PubMed

    Liu, Hao; Song, Zhi; Liao, Daguang; Zhang, Tianyi; Liu, Feng; Zhuang, Kai; Luo, Kui; Yang, Liang

    2015-01-01

    Trans-caryophyllene (TC), a component of essential oil found in many flowering plants, has shown its neuroprotective effects in various neurological disorders. However, the effects of TC on epilepsy haven't been reported before. In this study, we investigated the effect of TC on kainic acid-induced seizure activity caused by oxidative stress and pro-inflammation. We found that TC pretreatment significantly decreased seizure activity score compared to kainic acid treated group. Importantly, TC pretreatment leads to lowering the mortality in kainic acid treated mice. In addition, TC was found to significantly inhibit KA-induced generation of malondialdehyde. TC pretreatment also preserved the activity of GPx, SOD, and CAT. Notably, our data shows that an important property of TC is its capacity to exert cerebral anti-inflammatory effects by mitigating the expression of proinflammatory cytokines, such as TNF-α and IL-1β. These data suggest that TC has a potential protective effect on chemical induced seizure and brain damage. PMID:25417010

  15. Platelet-Rich Plasma in Treatment of Zoledronic Acid-Induced Bisphosphonate-related Osteonecrosis of the Jaws

    PubMed Central

    Sarkarat, Farzin; Kalantar Motamedi, Mohammad Hosein; Jahanbani, Jahanfar; Sepehri, Dena; Kahali, Roozbeh; Nematollahi, Zahra

    2014-01-01

    Background: Bisphosphonate-related osteonecrosis of the jaws (BRONJ) is a well-known challenging entity warranting management. Platelet-Rich Plasma (PRP) plays an important role in bone biology by enhancing bone repair and regeneration. Objectives: The aim of this animal study was to evaluate the effects of PRP on zoledronic acid-induced BRONJ. Materials and Methods: Seven rats were given 0.04 mg Zoledronic acid intravenously once a week for five weeks. Two weeks later, the animals underwent extraction of their first lower molars, bilaterally. After clinical confirmation of the osteonecrosis, PRP was injected randomly into one of the extraction sockets of each rat. Three weeks later, all rats were sacrificed in order to obtain histological sections. The analysis of epithelialization was performed by McNamar’s test, and the analysis of osteogenesis and angiogenesis was performed by the Wilcoxon Sign Rank test. P value was set at 0.05. Results: We found no significant differences between the two groups regarding the amount of epithelialization, angiogenesis or sequestrum formation (P > 0.05), but a significant difference was seen between the two groups regarding the amount of existing vital bone (P < 0.05). Conclusions: Our study demonstrates positive results (preservation or regeneration of bone) using PRP in treatment of BRONJ. Although PRP may enhance osseous regeneration, long-term follow-ups are required to confirm its benefits. PMID:25032151

  16. Isobolographic analysis of interaction between cyclooxygenase inhibitors and tramadol in acetic acid-induced writhing in mice.

    PubMed

    Satyanarayana, Padi S V; Jain, Naveen K; Singh, Amarjit; Kulkarni, Shrinivas K

    2004-07-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) and opioids are the most commonly used analgesics in the management of acute and chronic pain. Combined use of NSAIDs and opioids has been indicated for achieving better analgesia with reduced side effects. The present study was aimed at evaluating the combination of different NSAIDs, which inhibit cyclooxygenase (COX) enzymes and tramadol against acetic acid-induced writhing in mice. The expected beneficial effect of combination regimen was analyzed by isobolographic analysis. The oral and intrathecally administered tramadol, a mu-opioid and naproxen, a nonselective COX inhibitor produced dose-dependent antinociception, however, rofecoxib, a selective COX-2 inhibitor lacked analgesic efficacy in writhing test. Isobolographic analysis showed synergistic or supra-additive interactions for the combinations of naproxen and tramadol after oral and intrathecal administration. However, similar interaction was not observed when tramadol was combined with rofecoxib. Pretreatment with naloxone partially reversed the antinociceptive effect of tramadol per se and its combination with naproxen without modifying the per se effect of NSAID. The results demonstrated marked synergistic interaction between naproxen and tramadol and such interaction involved opioid as well as non-opioid mechanisms of tramadol and inhibition of COX-1 but not COX-2 by naproxen.

  17. A new 5-lipoxygenase selective inhibitor derived from Artocarpus communis strongly inhibits arachidonic acid-induced ear edema.

    PubMed

    Koshihara, Y; Fujimoto, Y; Inoue, H

    1988-06-01

    Natural compounds isolated from the Indonesian plant, Artocarpus communis, inhibit 5-lipoxygenase of cultured mastocytoma cells. One of five compounds, AC-5-1, strongly inhibits 5-lipoxygenase with a half-inhibition dose of 5 +/- 0.12 X 10(-8) M. However, prostaglandin synthesizing activity is not inhibited until 10(-5) M. AC-5-1 is a highly selective inhibitor for 5-lipoxygenase. The AC-5-1 at 10(-5) M inhibits 96% of leukotriene C4 synthesis of mouse peritoneal cells facilitated by calcium-ionophore. Arachidonic acid-induced ear edema of mice, an in vivo inflammatory model, involving leukotriene induction, is strongly inhibited by AC-5-1 in a dose-dependent manner. The inhibition is the strongest of any inhibitors of 5-lipoxygenase reported previously. Since the natural compound AC-5-1 can selectively inhibit 5-lipoxygenase and affect in vivo inflammation, it will be interesting to investigate the role of leukotrienes on inflammation and other physiological processes.

  18. DFT study of the molecular mechanism of Lewis acid induced [4 + 3] cycloadditions of 2-alkylacroleins with cyclopentadiene.

    PubMed

    Domingo, Luis R; Arnó, Manuel; Sáez, José A

    2009-08-21

    The mechanism of the Lewis acid (AlCl(3)) induced [4 + 3] cycloaddition of 2-methylacrolein with cyclopentadiene (Cp) [ J. Am. Chem. Soc. 2004, 126, 2692] has been examined here through DFT calculations at the MPW1K(DCM)/6-31+G** level. Formation of these seven-membered carbocycles is a domino process that comprises three consecutive reactions. The first one is a polar Diels-Alder reaction that is initialized by the nucleophilic attack of Cp to the beta-conjugated position of acrolein, yielding the formation of the endo and exo [4 + 2] cycloadducts. The corresponding LA-[4 + 2] cycloadduct complexes equilibrate through a skeleton rearrangement with a low free activation energy with two seven-membered zwitterionic intermediates, which undergo a rapid intramolecular hydride shift to yield irreversibly the formally endo and exo [4 + 3] cycloadducts. A comparative analysis of this mechanism with that for the Lewis acid induced [4 + 3] cycloadditions of 2-silyloxyacroleins allows establishment of the requirements for the formation of the seven-membered carbocycles.

  19. Effect of ethanolic extract of leaves of Paederia foetida Linn. on acetic acid induced colitis in albino rats

    PubMed Central

    Das, Swarnamoni; Kanodia, Lalit; Mukherjee, Apurba; Hakim, Abdul

    2013-01-01

    Objectives: To evaluate the effect of ethanolic extract of leaves of Paederia foetida on acetic acid induced colitis in albino rats. Materials and Methods: Ethanolic extract of Paederia foetida (EEPF) was prepared by percolation method. Acute toxicity test was done by using Organization for Economic Cooperation and Development guidelines. Albino rats were divided into four groups of five animals each. Groups A and B received 3% gum acacia. Groups C and D received EEPF 500 mg/kg body weight (BW) and 5-aminosalisylic acid 100 mg/kg BW respectively. Colitis was induced by transrectal administration of 4% acetic acid on 5th day. All animals were sacrificed after 48 h of colitis induction and distal 10 cm of the colon was dissected. Colon was weighed for disease activity index (DAI) and scored macroscopically and microscopically. Biochemical assessment of tissue myeloperoxidase (MPO), catalase (CAT) and superoxide dismutase (SOD) was done in colonic tissue homogenate and malondialdehyde (MDA) was estimated in serum. Results: P. foetida showed significant (P < 0.05) reduction in DAI, macroscopic and microscopic lesion score as well as significant (P < 0.05) improvement in MPO, MDA, CAT, and SOD level as compared to Group B. Conclusions: The ethanolic extract of leaves of P. foetida showed significant amelioration of experimentally induced colitis, which may be attributed to its anti-inflammatory and antioxidant property. PMID:24130378

  20. MicroRNA-1290 promotes asiatic acid‑induced apoptosis by decreasing BCL2 protein level in A549 non‑small cell lung carcinoma cells.

    PubMed

    Kim, Ki Bbeum; Kim, Karam; Bae, Seunghee; Choi, Yeonghmin; Cha, Hwa Jun; Kim, Soo Yeon; Lee, Jae Ho; Jeon, So Hyeon; Jung, Ho Jung; Ahn, Kyu Joong; An, In-Sook; An, Sungkwan

    2014-09-01

    Asiatic acid, a triterpenoid derived from Centella asiatica, is a putative anticancer agent in several types of cancer cells. Investigations of its biological role in negative regulation of cell growth have focused on the extent of induction of apoptosis in a cell-type-specific manner. In this study, we identified an important regulator of asiatic acid-induced cell death, microRNA (miR)-1290, which sensitizes cells to asiatic acid-induced cytotoxicity and negatively regulates BCL2 expression. Asiatic acid significantly upregulated miR-1290, and asiatic acid-induced cell death was shown to be dependent on miR-1290 activity. Molecular assays demonstrated that BCL2 mRNA is a direct target of miR-1290-mediated RNA interference. The results of functional studies suggest that miR-1290 suppresses cell viability and cell cycle progression. These data provide insight into miR-1290-mediated cellular mechanisms in asiatic acid-treated A549 non-small cell lung carcinoma cells. PMID:25016979

  1. Low-dose acetylsalicylic acid use and the risk of upper gastrointestinal bleeding: A meta-analysis of randomized clinical trials and observational studies

    PubMed Central

    Valkhoff, Vera E; Sturkenboom, Miriam CJM; Hill, Catherine; Veldhuyzen van Zanten, Sander; Kuipers, Ernst J

    2013-01-01

    BACKGROUND: Low-dose acetylsalicylic acid (LDA, 75 mg/day to 325 mg/day) is recommended for primary and secondary prevention of cardiovascular events, but has been linked to an increased risk of upper gastrointestinal bleeding (UGIB). OBJECTIVE: To analyze the magnitude of effect of LDA use on UGIB risk. METHODS: The PubMed and Embase databases were searched for randomized controlled trials (RCTs) reporting UGIB rates in individuals receiving LDA, and observational studies of LDA use in patients with UGIB. Studies were pooled for analysis of UGIB rates. RESULTS: Eighteen studies were included. Seven RCTs reported UGIB rates in individuals randomly assigned to receive LDA (n=22,901) or placebo (n=22,923). Ten case-control studies analyzed LDA use in patients with UGIB (n=10,816) and controls without UGIB (n=30,519); one cohort study reported 207 UGIB cases treated with LDA only. All studies found LDA use to be associated with an increased risk of UGIB. The mean number of extra UGIB cases associated with LDA use in the RCTs was 1.2 per 1000 patients per year (95% CI 0.7 to 1.8). The number needed to harm was 816 (95% CI 560 to 1500) for RCTs and 819 (95% CI 617 to 1119) for observational studies. Meta-analysis of RCT data showed that LDA use was associated with a 50% increase in UGIB risk (OR 1.5 [95% CI 1.2 to 1.8]). UGIB risk was most pronounced in observational studies (OR 3.1 [95% CI 2.5 to 3.7]). CONCLUSIONS: LDA use was associated with an increased risk of UGIB. PMID:23516680

  2. Downregulation of inducible nitric oxide synthase (iNOS) expression is implicated in the antiviral activity of acetylsalicylic acid in HCV-expressing cells.

    PubMed

    Ríos-Ibarra, Clara Patricia; Lozano-Sepulveda, Sonia; Muñoz-Espinosa, Linda; Rincón-Sánchez, Ana Rosa; Cordova-Fletes, Carlos; Rivas-Estilla, Ana María G

    2014-12-01

    Previously, we described that acetylsalicylic acid (ASA) decreases HCV expression, but the mechanisms involved have not been clearly established. We evaluated the participation of inducible nitric oxide synthase (iNOS) in the regulation of HCV-RNA induced by ASA. Huh7 cells expressing non-structural HCV proteins were exposed to 4 mM ASA and incubated at the same times we reported HCV downregulation (24-72 h), and iNOS mRNA and protein levels were then measured by real-time PCR and Western blot, respectively. Nitric oxide levels were measured at the same time. Inhibition of iNOS mRNA by small interfering RNAs (siRNA) and activation of the iNOS gene promoter by ASA treatment were evaluated. In Huh7 replicon cells treated with ASA, we found decreased levels of iNOS mRNA, iNOS protein and nitrosylated protein levels at 48-72 h. ASA exposure also reduced the transactivation of the iNOS promoter in HCV replicon cells at 48 h, and this was partly due to the decrease in the affinity of transcription factor C/EBP-β for its binding site in the iNOS promoter. siRNA silencing of iNOS decreased HCV-RNA expression (65 %) and potentiated the antiviral effect (80 %) of ASA compared with control cells. ASA reduces iNOS expression by downregulating promoter activity, mRNA and protein levels at the same time that it decreases HCV expression. These findings suggest that the antiviral activity of ASA is mediated partially through the modulation of iNOS.

  3. Simultaneous determination of salicylic, 3-methyl salicylic, 4-methyl salicylic, acetylsalicylic and benzoic acids in fruit, vegetables and derived beverages by SPME-LC-UV/DAD.

    PubMed

    Aresta, Antonella; Zambonin, Carlo

    2016-03-20

    Salicylic and benzoic acid are phenolic acids occurring in plant cells, thus they can be present in fruit and vegetables at various levels. They possess anti-inflammatory and antimicrobial properties, however they may induce symptoms and health problems in a small percentage of the population. Therefore, a low phenolic acid diet may be of clinical benefit to such individuals. In order to achieve this goal, the concentration of these substances in different food and beverages should be assessed. The present work describes for the first time a new method, based on solid phase microextraction (polydimethylsiloxane-divinylbenzene fiber) coupled to liquid chromatography with UV diode array detection, for the simultaneous determination of salicylic acid, 3-methyl salicylic acid, 4-methyl salicylic acid, acetylsalicylic acid and benzoic acid in selected fruit, vegetables and beverages. All the aspects influencing fiber adsorption (time, temperature, pH, salt addition) and desorption (desorption and injection time, desorption solvent mixture composition) of the analytes have been investigated. An isocratic separation was performed using an acetonitrile-phosphate buffer (pH 2.8; 2 mM) mixture (70:30, v/v) as the mobile phase. The estimated LOD and LOQ values (μg/mL) were in the range 0.002-0.028 and 0.007-0.095. The within-day and day-to-day precision values (RSD%) were between 4.7-6.1 and 6.6-9.4, respectively. The method has been successfully applied to the analysis of fava beans, blueberries, kiwi, tangerines, lemons, oranges and fruit juice (lemon and blueberry) samples. The major advantage of the method is that it only requires simple homogenization and/or centrifugation and dilution steps prior to SPME and injection in the LC system. PMID:26775020

  4. Protective role of acetylsalicylic acid in experimental Trypanosoma cruzi infection: evidence of a 15-epi-lipoxin A₄-mediated effect.

    PubMed

    Molina-Berríos, Alfredo; Campos-Estrada, Carolina; Henriquez, Natalia; Faúndez, Mario; Torres, Gloria; Castillo, Christian; Escanilla, Sebastián; Kemmerling, Ulrike; Morello, Antonio; López-Muñoz, Rodrigo A; Maya, Juan D

    2013-01-01

    Chagas' disease, produced by Trypanosoma cruzi, affects more than 8 million people, producing approximately 10,000 deaths each year in Latin America. Migration of people from endemic regions to developed countries has expanded the risk of infection, transforming this disease into a globally emerging problem. PGE₂ and other eicosanoids contribute to cardiac functional deficits after infection with T. cruzi. Thus, the inhibition of host cyclooxygenase (COX) enzyme emerges as a potential therapeutic target. In vivo studies about the effect of acetylsalicylic acid (ASA) upon T. cruzi infection are controversial, and always report the effect of ASA at a single dose. Therefore, we aimed to analyze the effect of ASA at different doses in an in vivo model of infection and correlate it with the production of arachidonic acid metabolites. ASA decreased mortality, parasitemia, and heart damage in T. cruzi (Dm28c) infected mice, at the low doses of 25 and 50 mg/Kg. However, this effect disappeared when the high ASA doses of 75 and 100 mg/Kg were used. We explored whether this observation was related to the metabolic shift toward the production of 5-lipoxygenase derivatives, and although we did not observe an increase in LTB4 production in infected RAW cells and mice infected, we did find an increase in 15-epi-LXA₄ (an ASA-triggered lipoxin). We also found high levels of 15-epi-LXA₄ in T. cruzi infected mice treated with the low doses of ASA, while the high ASA doses decreased 15-epi-LXA₄ levels. Importantly, 15-epi-LXA₄ prevented parasitemia, mortality, and cardiac changes in vivo and restored the protective role in the treatment with a high dose of ASA. This is the first report showing the production of ASA-triggered lipoxins in T. cruzi infected mice, which demonstrates the role of this lipid as an anti-inflammatory molecule in the acute phase of the disease.

  5. Protective Role of Acetylsalicylic Acid in Experimental Trypanosoma cruzi Infection: Evidence of a 15-epi-Lipoxin A4-Mediated Effect

    PubMed Central

    Henriquez, Natalia; Faúndez, Mario; Torres, Gloria; Castillo, Christian; Escanilla, Sebastián; Kemmerling, Ulrike; Morello, Antonio; López-Muñoz, Rodrigo A.; Maya, Juan D.

    2013-01-01

    Chagas' disease, produced by Trypanosoma cruzi, affects more than 8 million people, producing approximately 10,000 deaths each year in Latin America. Migration of people from endemic regions to developed countries has expanded the risk of infection, transforming this disease into a globally emerging problem. PGE2 and other eicosanoids contribute to cardiac functional deficits after infection with T. cruzi. Thus, the inhibition of host cyclooxygenase (COX) enzyme emerges as a potential therapeutic target. In vivo studies about the effect of acetylsalicylic acid (ASA) upon T. cruzi infection are controversial, and always report the effect of ASA at a single dose. Therefore, we aimed to analyze the effect of ASA at different doses in an in vivo model of infection and correlate it with the production of arachidonic acid metabolites. ASA decreased mortality, parasitemia, and heart damage in T. cruzi (Dm28c) infected mice, at the low doses of 25 and 50 mg/Kg. However, this effect disappeared when the high ASA doses of 75 and 100 mg/Kg were used. We explored whether this observation was related to the metabolic shift toward the production of 5-lipoxygenase derivatives, and although we did not observe an increase in LTB4 production in infected RAW cells and mice infected, we did find an increase in 15-epi-LXA4 (an ASA-triggered lipoxin). We also found high levels of 15-epi-LXA4 in T. cruzi infected mice treated with the low doses of ASA, while the high ASA doses decreased 15-epi-LXA4 levels. Importantly, 15-epi-LXA4 prevented parasitemia, mortality, and cardiac changes in vivo and restored the protective role in the treatment with a high dose of ASA. This is the first report showing the production of ASA-triggered lipoxins in T. cruzi infected mice, which demonstrates the role of this lipid as an anti-inflammatory molecule in the acute phase of the disease. PMID:23638194

  6. Effect of acetylsalicylic acid on platelet activation and oxidative profile in a set of Brazilian patients with type 2 diabetes mellitus.

    PubMed

    Duarte, Rita C F; Gonçalves, Líllian H; Campos, Fernanda M F; Filho, Olindo A M; Alves, Michelle T; Fernandes, Ana P; Borges, Karina B G; Dusse, Luci M S; Faria, Mayara C; Gonçalves, Gisele S; Bosco, Adriana A; Sandrim, Valéria C; Carvalho, Maria G

    2015-03-01

    Type 2 diabetes mellitus (DM2) is a metabolic disorder associated with hyperactivation of platelets, increased formation of platelet microparticles (PMPs) and oxidative stress that are related to cardiovascular complications. Acetylsalicylic acid (ASA) is an antiplatelet agent used in the prevention of atherothrombosis. The aim of this study was to evaluate the effect of ASA by means of platelet activation and oxidative profile. We collected blood samples of 81 patients with DM2 before and during ASA treatment. These samples were analyzed to determine the levels of 2,3-dinor thromboxane-B2 (2,3-dinor-TXB2), PMPs, thiobarbituric acid reactive species (TBARS) and 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide (MTT). Moreover, the relationship between the levels of 2,3-dinor-TXB2 with some clinical and laboratory variables such as glycated hemoglobin, platelet count, D dimer, low-density lipoprotein cholesterol and glycoprotein IIb/IIIa and cyclooxygenase-1 polymorphisms was evaluated. ASA intake did not change the levels of PMP, TBARS and MTT. Although a significant decrease in the levels of 2,3 dinorTXB2 (P < 0.001) in patients under ASA has been observed, an equal and satisfactory response to this drug was not found. However, the presence of PIA2 allele in GPIIIa gene may be associated with a better response to ASA intake in these patients, whereas other clinical and laboratory variables showed no association with this drug use. These findings are consistent with previous reports in the literature that patients with DM2 do not benefit in an equal way from the use of ASA for primary prevention of atherothrombotic events.

  7. Reduced mucosal side-effects of acetylsalicylic acid after conjugation with tris-hydroxymethyl-aminomethane. Synthesis and biological evaluation of a new anti-inflammatory compound.

    PubMed

    Varga, Gabriella; Lajkó, Norbert; Ugocsai, Melinda; Érces, Dániel; Horváth, Gyöngyi; Tóth, Gábor; Boros, Mihály; Ghyczy, Miklós

    2016-06-15

    Acetylsalicylic acid (ASA) causes adverse haemorrhagic reactions in the upper gastrointestinal (GI) tract, and previous results have suggested that combination therapy with 2-amino-2-(hydroxymethyl)-1,3-propanediol (Tris) could provide protection in this scenario. Based on this hypothesis, our aim was to develop a new compound from ASA and Tris precursors and to characterize the biological effects of ASA-Tris and the derivatives ASA-bis- and mono-hydroxymethyl-aminomethane (ASA-Bis, ASA-Mono, respectively) using in vivo and in vitro test systems. ASA or ASA conjugates (0.55mmol/kg, each) were administered intragastrically to Sprague-Dawley rats. Changes in the mucosal structure and in the serosal microcirculation were detected by in vivo imaging techniques, the plasma TNF-alpha, tissue xanthine oxidoreductase and myeloperoxidase activities, and liver cytochrome c changes were also determined. In two separate series, platelet aggregation and carrageenan arthritis-induced inflammatory pain were measured in control, ASA and ASA-Tris-treated groups. Severe mucosal injury and a significant decrease in serosal red blood cell velocity developed in the ASA-treated group and an ~2-fold elevation in proinflammatory mediator levels evolved. ASA-Tris did not cause bleeding, microcirculatory dysfunction, mucosal injury or an elevation in proinflammatory markers. The ASA-Mono and ASA-Bis conjugates did not cause macroscopic bleeding, but the inflammatory activation was apparent. ASA-Tris did not influence the cyclooxygenase-induced platelet aggregation significantly, but the inflammatory pain was reduced as effectively as in the case of equimolar ASA doses. ASA-Tris conjugation is an effective approach through which the GI side-effects of ASA are controlled by decreasing the cytokine-mediated progression of pro-inflammatory events.

  8. Adjuvant effect of caffeine on acetylsalicylic acid anti-nociception: prostaglandin E2 synthesis determination in carrageenan-induced peripheral inflammation in rat.

    PubMed

    Fernández-Dueñas, Víctor; Sánchez, Sílvia; Planas, Eulàlia; Poveda, Raquel

    2008-02-01

    In the present study, we report a synergistic interaction between acetylsalicylic acid (ASA) and caffeine (CAF) on the inhibition of nociception in a model of peripheral inflammation in rat; on the contrary no interaction have been found on anti-inflammatory effects and peripheral prostaglandin E2 (PGE-2) synthesis inhibition. Acute inflammation was induced by the subplantar injection of carrageenan into the right hind paw, and the effects of the drugs were evaluated from 0 to 5h. Nociception was assessed using the Randall & Selitto test, and the inflammatory response by plethismometry. Oral administration of ASA (10-400mg/kg) induced dose-related anti-nociceptive and anti-inflammatory effects. On the other hand, oral CAF administration (5-50mg/kg) did not show a dose-related inhibitory effect, neither on the inhibition of nociception nor on the inflammatory response. To analyze a possible interaction between both drugs a dose-response curve to ASA plus a fixed dose of CAF (5mg/kg) was obtained 3h after the injection of carrageenan, when the inflammatory pain peaked. A fixed dose of CAF was able to improve the anti-nociceptive, but not the anti-inflammatory, effects of ASA. We also assessed, by enzyme immunoassay, the effects of the combination on peripheral PGE-2 levels: CAF did not alter the inhibitory effect of ASA on PGE-2 synthesis. Our results corroborate the well-known clinical effects of combining ASA and CAF; on the other hand, we rule out that prostaglandin synthesis inhibition at peripheral sites would be the mechanism responsible of the adjuvant anti-nociceptive effect of CAF.

  9. Acetylsalicylic acid regulates overexpressed small GTPase RhoA in vascular smooth muscle cells through prevention of new synthesis and enhancement of protein degradation.

    PubMed

    Li, Dong-Bo; Fu, Zhi-Xuan; Ruan, Shu-Qin; Hu, Shen-Jiang; Li, Xia

    2012-04-01

    RhoA has been shown to play a major role in vascular processes and acetylsalicylic acid (aspirin) is known to exert a cytoprotective effect via multiple mechanisms. In the present study, we aimed at investigating the effect of aspirin on RhoA expression under a stress state in rat VSMCs (vascular smooth muscle cells) and the underlying mechanisms. The expression of iNOS (inducible nitric oxide synthase) and iNOS activity as well as NO concentration was significantly promoted by LPS (lipopolysaccharide) accompanying the elevation of RhoA expression, which was blocked by the addition of the iNOS inhibitor L-NIL [L-N6-(1-iminoethyl)lysine dihydrochloride]. Aspirin (30 μM) significantly attenuated the elevation of RhoA, while indomethacin and salicylate had no similar effect. The sGC (soluble guanylate cyclase) inhibitor ODQ (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one) showed the same effect as aspirin in down-regulating RhoA but was reversed by the addition of the cGMP analogue 8-Br-PET-cGMP (β-phenyl-1,N2-ethano-8-bromoguanosine 3',5'-cyclic monophosphorothioate). 8-Br-PET-cGMP solely enhanced the RhoA expression that was abrogated by preincubation with aspirin. Degradation analysis indicated that aspirin enhanced the protein degradation rate of RhoA and GDP-bound RhoA seemed to be more susceptible to aspirin-enhanced degradation compared with the GTP-bound form. Our results indicate that aspirin attenuates the LPS-induced overexpression of RhoA both by inhibiting new synthesis and accelerating protein degradation, which may help elucidate the multiple beneficial effects of aspirin.

  10. Cu/Zn superoxide dismutase (SOD1) induction is implicated in the antioxidative and antiviral activity of acetylsalicylic acid in HCV-expressing cells.

    PubMed

    Rivas-Estilla, Ana María; Bryan-Marrugo, Owen Lloyd; Trujillo-Murillo, Karina; Pérez-Ibave, Diana; Charles-Niño, Claudia; Pedroza-Roldan, Cesar; Ríos-Ibarra, Clara; Ramírez-Valles, Eda; Ortiz-López, Rocío; Islas-Carbajal, María Cristina; Nieto, Natalia; Rincón-Sánchez, Ana Rosa

    2012-06-01

    We evaluated the participation of oxidative stress in the negative regulation of hepatitis C virus (HCV)-RNA induced by acetylsalicylic acid (ASA). We used the HCV subgenomic replicon cell system that stably expresses HCV-nonstructural proteins (Huh7 HCV replicon cells) and the parental cell line. Cells were exposed to 4 mM ASA at different times (12-72 h), and pyrrolidine dithiocarbamate (PDTC) was used as an antioxidant control. Reactive oxygen species (ROS) production, oxidized protein levels, cytosolic superoxide dismutase (Cu/Zn-SOD), and glutathione peroxidase (GPx) activity were measured to evaluate oxidative stress. In addition, viral RNA and prostaglandin (PGE(2)) levels were determined. We observed that ASA treatment decreased ROS production and oxidized protein levels in a time-dependent fashion in both parental and HCV replicon cells with a greater extent in the latter. Similar results were found with PDTC exposure. Average GPx activity was decreased, whereas a striking increase was observed in average cytosolic SOD activity at 48 and 72 h in both cells exposed to ASA, compared with untreated cells. HCV replicon cells showed higher levels of Cu/Zn-SOD expression (mRNA and protein) with ASA treatment (48 and 72 h), whereas NS5A protein levels showed decreased expression. In addition, we found that inhibition of SOD1 expression reversed the effect of ASA. Interestingly, PDTC downregulated HCV-RNA expression (55%) and PGE(2) (60%) levels, imitating ASA exposure. These results suggest that ASA treatment could reduce cellular oxidative stress markers and modify Cu/Zn-SOD expression, a phenomenon that may contribute to the mechanisms involved in HCV downregulation.

  11. Lysine acetylsalicylate increases the safety of a paraquat formulation to freshwater primary producers: a case study with the microalga Chlorella vulgaris.

    PubMed

    Baltazar, Maria Teresa; Dinis-Oliveira, Ricardo Jorge; Martins, Alexandra; Bastos, Maria de Lourdes; Duarte, José Alberto; Guilhermino, Lúcia; Carvalho, Félix

    2014-01-01

    Large amounts of herbicides are presently used in the industrialized nations worldwide, with an inexorable burden to the environment, especially to aquatic ecosystems. Primary producers such as microalgae are of especial concern because they are vital for the input of energy into the ecosystem and for the maintenance of oxygen in water on which most of other marine life forms depend on. The herbicide paraquat (PQ) is known to cause inhibition of photosynthesis and irreversible damage to photosynthetic organisms through generation of reactive oxygen species in a light-dependent manner. Previous studies have led to the development of a new formulation of PQ containing lysine acetylsalicylate (LAS) as an antidote, which was shown to prevent the mammalian toxicity of PQ, while maintaining the herbicidal effect. However, the safety of this formulation to primary producers in relation to commercially available PQ formulations has hitherto not been established. Therefore, the aim of this study was to evaluate the toxicity of the PQ+LAS formulation in comparison with the PQ, using Chlorella vulgaris as a test organism. Effect criterion was the inhibition of microalgal population growth. Following a 96 h exposure to increasing concentrations of PQ, C. vulgaris growth was almost completely inhibited, an effect that was significantly prevented by LAS at the proportion used in the formulation (PQ+LAS) 1:2 (mol/mol), while the highest protection was achieved at the proportion of 1:8. In conclusion, the present work demonstrated that the new formulation with PQ+LAS has a reduced toxicity to C. vulgaris when compared to Gramoxone(®). PMID:24296111

  12. Protective role of acetylsalicylic acid in experimental Trypanosoma cruzi infection: evidence of a 15-epi-lipoxin A₄-mediated effect.

    PubMed

    Molina-Berríos, Alfredo; Campos-Estrada, Carolina; Henriquez, Natalia; Faúndez, Mario; Torres, Gloria; Castillo, Christian; Escanilla, Sebastián; Kemmerling, Ulrike; Morello, Antonio; López-Muñoz, Rodrigo A; Maya, Juan D

    2013-01-01

    Chagas' disease, produced by Trypanosoma cruzi, affects more than 8 million people, producing approximately 10,000 deaths each year in Latin America. Migration of people from endemic regions to developed countries has expanded the risk of infection, transforming this disease into a globally emerging problem. PGE₂ and other eicosanoids contribute to cardiac functional deficits after infection with T. cruzi. Thus, the inhibition of host cyclooxygenase (COX) enzyme emerges as a potential therapeutic target. In vivo studies about the effect of acetylsalicylic acid (ASA) upon T. cruzi infection are controversial, and always report the effect of ASA at a single dose. Therefore, we aimed to analyze the effect of ASA at different doses in an in vivo model of infection and correlate it with the production of arachidonic acid metabolites. ASA decreased mortality, parasitemia, and heart damage in T. cruzi (Dm28c) infected mice, at the low doses of 25 and 50 mg/Kg. However, this effect disappeared when the high ASA doses of 75 and 100 mg/Kg were used. We explored whether this observation was related to the metabolic shift toward the production of 5-lipoxygenase derivatives, and although we did not observe an increase in LTB4 production in infected RAW cells and mice infected, we did find an increase in 15-epi-LXA₄ (an ASA-triggered lipoxin). We also found high levels of 15-epi-LXA₄ in T. cruzi infected mice treated with the low doses of ASA, while the high ASA doses decreased 15-epi-LXA₄ levels. Importantly, 15-epi-LXA₄ prevented parasitemia, mortality, and cardiac changes in vivo and restored the protective role in the treatment with a high dose of ASA. This is the first report showing the production of ASA-triggered lipoxins in T. cruzi infected mice, which demonstrates the role of this lipid as an anti-inflammatory molecule in the acute phase of the disease. PMID:23638194

  13. Reduced mucosal side-effects of acetylsalicylic acid after conjugation with tris-hydroxymethyl-aminomethane. Synthesis and biological evaluation of a new anti-inflammatory compound.

    PubMed

    Varga, Gabriella; Lajkó, Norbert; Ugocsai, Melinda; Érces, Dániel; Horváth, Gyöngyi; Tóth, Gábor; Boros, Mihály; Ghyczy, Miklós

    2016-06-15

    Acetylsalicylic acid (ASA) causes adverse haemorrhagic reactions in the upper gastrointestinal (GI) tract, and previous results have suggested that combination therapy with 2-amino-2-(hydroxymethyl)-1,3-propanediol (Tris) could provide protection in this scenario. Based on this hypothesis, our aim was to develop a new compound from ASA and Tris precursors and to characterize the biological effects of ASA-Tris and the derivatives ASA-bis- and mono-hydroxymethyl-aminomethane (ASA-Bis, ASA-Mono, respectively) using in vivo and in vitro test systems. ASA or ASA conjugates (0.55mmol/kg, each) were administered intragastrically to Sprague-Dawley rats. Changes in the mucosal structure and in the serosal microcirculation were detected by in vivo imaging techniques, the plasma TNF-alpha, tissue xanthine oxidoreductase and myeloperoxidase activities, and liver cytochrome c changes were also determined. In two separate series, platelet aggregation and carrageenan arthritis-induced inflammatory pain were measured in control, ASA and ASA-Tris-treated groups. Severe mucosal injury and a significant decrease in serosal red blood cell velocity developed in the ASA-treated group and an ~2-fold elevation in proinflammatory mediator levels evolved. ASA-Tris did not cause bleeding, microcirculatory dysfunction, mucosal injury or an elevation in proinflammatory markers. The ASA-Mono and ASA-Bis conjugates did not cause macroscopic bleeding, but the inflammatory activation was apparent. ASA-Tris did not influence the cyclooxygenase-induced platelet aggregation significantly, but the inflammatory pain was reduced as effectively as in the case of equimolar ASA doses. ASA-Tris conjugation is an effective approach through which the GI side-effects of ASA are controlled by decreasing the cytokine-mediated progression of pro-inflammatory events. PMID:27079640

  14. A comparative study between conventional pan coater and quasi-continuous small batch coater on the stability of tablets containing acetylsalicylic acid.

    PubMed

    Cahyadi, Christine; Chan, Lai Wah; Heng, Paul Wan Sia

    2015-02-01

    The Supercell coater was developed as an in-line small batch tablet coater which uses air-fluidization for tablet coating. Coating time is very much reduced, with improved heat and mass transfer. It was hypothesized that the quasi-continuous Supercell coating process was more suitable for the aqueous coating of tablets containing moisture-sensitive drugs. Acetylsalicylic acid (ASA) was used as the model drug in this study. The extent of ASA degradation in Supercell coating was compared against that of tablets coated using the conventional pan coater. Less than 0.3% of ASA was degraded at the end of the coating process using either coater. The extent of ASA degradation was found to be more pronounced during storage. The Supercell coated tablets exhibited comparable or smaller percentage of ASA degradation than the pan coated tablets at the end of a storage period of 6 months under accelerated stability conditions (40°C/75% RH) and 3 years under ambient conditions (25°C/50% RH). The extent and rate of ASA degradation during storage were dependent on the processing conditions employed during Supercell coating. Increase in temperature generally led to a reduction in ASA degradation, while increase in spray rate and coating level caused more degradation. Greater extent of ASA degradation was observed on the surface of pan coated tablets compared with Supercell coated tablets due to greater moisture contact and the slower and wetter coating process. Changes to the processing conditions also influenced the residual moisture content (0.55-2.86%) of the tablets. However, no direct correlation between the residual moisture content of the tablets after coating and the extent of ASA degradation during storage was found. PMID:25448074

  15. Helicobacter pylori antigens, acetylsalicylic acid, LDL and 7-ketocholesterol - their potential role in destabilizing the gastric epithelial cell barrier. An in vitro model of Kato III cells.

    PubMed

    Gajewski, Adrian; Mnich, Eliza; Szymański, Karol; Hinc, Krzysztof; Obuchowski, Michał; Moran, Anthony P; Chmiela, Magdalena

    2016-01-01

    Colonization of gastric tissue in humans by H. pylori Gram-negative bacteria initiates gastric and duodenal ulcers and even gastric cancers. Infections promote inflammation and damage to gastric epithelium which might be followed by the impairment of its barrier function. The role of H. pylori components in these processes has not been specified. H. pylori cytotoxicity may potentially increase in the milieu of anti-inflammatory drugs including acetylsalicylic acid (ASA). The lipid transport-associated molecule such as low density lipoprotein (LDL), which is a classic risk factor of coronary heart disease (CHD) and 7-ketocholesterol (7-kCh) a product of cholesterol oxidation, which may occur during the oxidative stress in LDL could also be considered as pro-inflammatory. The aim of this study was to evaluate the cytotoxicity of H. pylori antigens, ASA, LDL and 7-kCh towards Kato III gastric epithelial cells, on the basis of the cell ability to reduce tetrazolium salt (MTT) and morphology of cell nuclei assessed by 4',6-diamidino-2-phenylindole (DAPI) staining. Kato III cells were stimulated for 24 h, at 37°C and 5% CO2, with H. pylori antigens: cytotoxin associated gene A (CagA) protein, the urease A subunit (UreA), lipopolysaccharide (LPS) and ASA, LDL or 7-kCh. H. pylori LPS, ASA, LDL and 7-kCh, but not H. pylori glycine acid extract (GE), demonstrated cytotoxicity against Kato III cells, which was related to a diminished percentage of MTT reducing cells and to an increased cell population with the signs of DNA damage. The results suggest that damage to gastric epithelial cells can be induced independently by H. pylori antigens, ASA and endogenous lipid transport-associated molecules. During H. pylori infection in vivo, especially in CHD patients, synergistic or antagonistic interactions between these factors might possibly influence the disease course. Further study is necessary to explain these potential effects. PMID:26619253

  16. Increasing the endogenous NO level causes catalase inactivation and reactivation of intercellular apoptosis signaling specifically in tumor cells.

    PubMed

    Bauer, Georg

    2015-12-01

    Tumor cells generate extracellular superoxide anions and are protected against intercellular apoptosis-inducing HOCl- and NO/peroxynitrite signaling through the expression of membrane-associated catalase. This enzyme decomposes H2O2 and thus prevents HOCl synthesis. It efficiently interferes with NO/peroxynitrite signaling through oxidation of NO and decomposition of peroxynitrite. The regulatory potential of catalase at the crosspoint of ROS and RNS chemical biology, as well as its high local concentration on the outside of the cell membrane of tumor cells, establish tight control of intercellular signaling and thus prevent tumor cell apoptosis. Therefore, inhibition of catalase or its inactivation by singlet oxygen reactivate intercellular apoptosis-inducing signaling. Nitric oxide and peroxynitrite are connected with catalase in multiple and meaningful ways, as (i) NO can be oxidated by compound I of catalase, (ii) NO can reversibly inhibit catalase, (iii) peroxynitrite can be decomposed by catalase and (iv) the interaction between peroxynitrite and H2O2 leads to the generation of singlet oxygen that inactivates catalase. Therefore, modulation of the concentration of free NO through addition of arginine, inhibition of arginase, induction of NOS expression or inhibition of NO dioxygenase triggers an autoamplificatory biochemical cascade that is based on initial formation of singlet oxygen, amplification of superoxide anion/H2O2 and NO generation through singlet oxygen dependent stimulation of the FAS receptor and caspase-8. Finally, singlet oxygen is generated at sufficiently high concentration to inactivate protective catalase and to reactivate intercellular apoptosis-inducing ROS signaling. This regulatory network allows to establish several pathways for synergistic interactions, like the combination of modulators of NO metabolism with enhancers of superoxide anion generation, modulators of NO metabolism that act at different targets and between modulators of

  17. Increasing the endogenous NO level causes catalase inactivation and reactivation of intercellular apoptosis signaling specifically in tumor cells

    PubMed Central

    Bauer, Georg

    2015-01-01

    Tumor cells generate extracellular superoxide anions and are protected against intercellular apoptosis-inducing HOCl- and NO/peroxynitrite signaling through the expression of membrane-associated catalase. This enzyme decomposes H2O2 and thus prevents HOCl synthesis. It efficiently interferes with NO/peroxynitrite signaling through oxidation of NO and decomposition of peroxynitrite. The regulatory potential of catalase at the crosspoint of ROS and RNS chemical biology, as well as its high local concentration on the outside of the cell membrane of tumor cells, establish tight control of intercellular signaling and thus prevent tumor cell apoptosis. Therefore, inhibition of catalase or its inactivation by singlet oxygen reactivate intercellular apoptosis-inducing signaling. Nitric oxide and peroxynitrite are connected with catalase in multiple and meaningful ways, as (i) NO can be oxidated by compound I of catalase, (ii) NO can reversibly inhibit catalase, (iii) peroxynitrite can be decomposed by catalase and (iv) the interaction between peroxynitrite and H2O2 leads to the generation of singlet oxygen that inactivates catalase. Therefore, modulation of the concentration of free NO through addition of arginine, inhibition of arginase, induction of NOS expression or inhibition of NO dioxygenase triggers an autoamplificatory biochemical cascade that is based on initial formation of singlet oxygen, amplification of superoxide anion/H2O2 and NO generation through singlet oxygen dependent stimulation of the FAS receptor and caspase-8. Finally, singlet oxygen is generated at sufficiently high concentration to inactivate protective catalase and to reactivate intercellular apoptosis-inducing ROS signaling. This regulatory network allows to establish several pathways for synergistic interactions, like the combination of modulators of NO metabolism with enhancers of superoxide anion generation, modulators of NO metabolism that act at different targets and between modulators of

  18. Mechanisms of p53-induced apoptosis.

    PubMed

    Bennett, M R

    1999-10-01

    The p53 tumour suppressor gene functions in both cell cycle arrest and apoptosis. Despite considerable advances in understanding as to how p53 regulates growth arrest, the mechanisms by which p53 regulates apoptosis are only just emerging. In particular, there appears to be a structural and functional separation between the ability of p53 to induce growth arrest and apoptosis. This review examines the interactions between p53-induced growth arrest and apoptosis, and the mechanisms of p53-induced apoptosis, both via induction of p53 transcriptional targets and via nontranscriptional mechanisms.

  19. Hormesis in Cholestatic Liver Disease; Preconditioning with Low Bile Acid Concentrations Protects against Bile Acid-Induced Toxicity

    PubMed Central

    Verhaag, Esther M.; Buist-Homan, Manon; Koehorst, Martijn; Groen, Albert K.; Moshage, Han; Faber, Klaas Nico

    2016-01-01

    Introduction Cholestasis is characterized by accumulation of bile acids and inflammation, causing hepatocellular damage. Still, liver damage markers are highest in acute cholestasis and drop when this condition becomes chronic, indicating that hepatocytes adapt towards the hostile environment. This may be explained by a hormetic response in hepatocytes that limits cell death during cholestasis. Aim To investigate the mechanisms that underlie the hormetic response that protect hepatocytes against experimental cholestatic conditions. Methods HepG2.rNtcp cells were preconditioned (24 h) with sub-apoptotic concentrations (0.1–50 μM) of various bile acids, the superoxide donor menadione, TNF-α or the Farsenoid X Receptor agonist GW4064, followed by a challenge with the apoptosis-inducing bile acid glycochenodeoxycholic acid (GCDCA; 200 μM for 4 h), menadione (50 μM, 6 h) or cytokine mixture (CM; 6 h). Levels of apoptotic and necrotic cell death, mRNA expression of the bile salt export pump (ABCB11) and bile acid sensors, as well as intracellular GCDCA levels were analyzed. Results Preconditioning with the pro-apoptotic bile acids GCDCA, taurocholic acid, or the protective bile acids (tauro)ursodeoxycholic acid reduced GCDCA-induced caspase-3/7 activity in HepG2.rNtcp cells. Bile acid preconditioning did not induce significant levels of necrosis in GCDCA-challenged HepG2.rNtcp cells. In contrast, preconditioning with cholic acid, menadione or TNF-α potentiated GCDCA-induced apoptosis. GCDCA preconditioning specifically reduced GCDCA-induced cell death and not CM- or menadione-induced apoptosis. The hormetic effect of GCDCA preconditioning was concentration- and time-dependent. GCDCA-, CDCA- and GW4064- preconditioning enhanced ABCB11 mRNA levels, but in contrast to the bile acids, GW4064 did not significantly reduce GCDCA-induced caspase-3/7 activity. The GCDCA challenge strongly increased intracellular levels of this bile acid, which was not lowered by GCDCA

  20. [Apoptosis modulation by human papillomavirus].

    PubMed

    Jave-Suárez, Luis Felipe; Ratkovich-González, Sarah; Olimón-Andalón, Vicente; Aguilar-Lemarroy, Adriana

    2015-01-01

    One of the most important processes to keep the homeostasis in organisms is the apoptosis, also called programmed cell death. This mechanism works through two pathways: The intrinsic or mitochondrial, which responds to DNA damage and extern agents like UV radiation; and the extrinsic or receptor-mediated, which binds to their ligands to initiate the apoptotic trail. The evasion of apoptosis is one of the main causes of cellular transformation to malignity. Many viruses had shown capacity to modify the apoptotic process; among them is the human papillomavirus, which, by means of its oncoproteins, interferes in pathways, reacting with the receptors and molecules and participating in the death mechanism. This creates ideal conditions for cancer development.

  1. Relationship between the acid-induced cough response and airway responsiveness and obstruction in children with asthma.

    PubMed Central

    Shimizu, T.; Mochizuki, H.; Tokuyama, K.; Morikawa, A.

    1996-01-01

    BACKGROUND: In children with asthma little is known about the direct effect of the bronchoconstrictor and bronchodilator response on the cough threshold, or the relationship between bronchial responsiveness and the cough threshold. A study was undertaken to determine the effect of histamine-induced bronchoconstriction and salbutamol-induced bronchodilatation on the cough threshold in response to inhaled acetic acid, and to examine the relationship between the acetic acid cough threshold and bronchial hyperresponsiveness to histamine in children with asthma. METHODS: Nineteen children with asthma (16 boys) of mean (SE) age 10.6 (0.6) years were enrolled in the study. On day 1 each underwent a histamine inhalation challenge to determine the provocative concentration causing a fall in forced expiratory volume in one second (FEV1) of more than 20% (PC20) as an index of individual bronchial hyperresponsiveness. On day 2 the acetic acid cough threshold was determined before and just after the inhalation of the PC20 concentration of histamine, and then salbutamol (1 mg/m2) was inhaled to relieve the bronchoconstriction. Ten of the 19 patients (eight boys) of mean age 12.2 (0.7) years also tried acetic acid inhalation challenge just after salbutamol inhalation. RESULTS: There was no relationship between the bronchial responsiveness to histamine and acetic acid cough threshold in these patients. The acetic acid cough threshold after histamine inhalation was similar to that before histamine, although FEV1 decreased after histamine. In the 10 patients who also tried acetic acid inhalation challenge after salbutamol the cough threshold did not change. CONCLUSIONS: These findings suggest that acid-induced cough sensitivity and bronchomotor tone are independently regulated in children with asthma. PMID:8779132

  2. Dietary interesterified fat enriched with palmitic acid induces atherosclerosis by impairing macrophage cholesterol efflux and eliciting inflammation.

    PubMed

    Afonso, Milessa Silva; Lavrador, Maria Silvia Ferrari; Koike, Marcia Kiyomi; Cintra, Dennys Esper; Ferreira, Fabiana Dias; Nunes, Valeria Sutti; Castilho, Gabriela; Gioielli, Luiz Antonio; Paula Bombo, Renata; Catanozi, Sergio; Caldini, Elia Garcia; Damaceno-Rodrigues, Nilsa Regina; Passarelli, Marisa; Nakandakare, Edna Regina; Lottenberg, Ana Maria

    2016-06-01

    Interesterified fats are currently being used to replace trans fatty acids. However, their impact on biological pathways involved in the atherosclerosis development was not investigated. Weaning male LDLr-KO mice were fed for 16weeks on a high-fat diet (40% energy as fat) containing polyunsaturated (PUFA), TRANS, palmitic (PALM), palmitic interesterified (PALM INTER), stearic (STEAR) or stearic interesterified (STEAR INTER). Plasma lipids, lipoprotein profile, arterial lesion area, macrophage infiltration, collagen content and inflammatory response modulation were determined. Macrophage cholesterol efflux and the arterial expression of cholesterol uptake and efflux receptors were also performed. The interesterification process did not alter plasma lipid concentrations. Although PALM INTER did not increase plasma cholesterol concentration as much as TRANS, the cholesterol enrichment in the LDL particle was similar in both groups. Moreover, PALM INTER induced the highest IL-1β, MCP-1 and IL-6 secretion from peritoneal macrophages as compared to others. This inflammatory response elicited by PALM INTER was confirmed in arterial wall, as compared to PALM. These deleterious effects of PALM INTER culminate in higher atherosclerotic lesion, macrophage infiltration and collagen content than PALM, STEAR, STEAR INTER and PUFA. These events can partially be attributed to a macrophage cholesterol accumulation, promoted by apoAI and HDL2-mediated cholesterol efflux impairment and increased Olr-1 and decreased Abca1 and Nr1h3 expressions in the arterial wall. Interesterified fats containing palmitic acid induce atherosclerosis development by promoting cholesterol accumulation in LDL particles and macrophagic cells, activating the inflammatory process in LDLr-KO mice.

  3. Priming by Hexanoic Acid Induce Activation of Mevalonic and Linolenic Pathways and Promotes the Emission of Plant Volatiles

    PubMed Central

    Llorens, Eugenio; Camañes, Gemma; Lapeña, Leonor; García-Agustín, Pilar

    2016-01-01

    Hexanoic acid (Hx) is a short natural monocarboxylic acid present in some fruits and plants. Previous studies reported that soil drench application of this acid induces effective resistance in tomato plants against Botrytis cinerea and Pseudomonas syringae and in citrus against Alternaria alternata and Xanthomonas citri. In this work, we performed an in deep study of the metabolic changes produced in citrus by the application of Hx in response to the challenge pathogen A. alternata, focusing on the response of the plant. Moreover, we used 13C labeled hexanoic to analyze its behavior inside the plants. Finally, we studied the volatile emission of the treated plants after the challenge inoculation. Drench application of 13C labeled hexanoic demonstrated that this molecule stays in the roots and is not mobilized to the leaves, suggesting long distance induction of resistance. Moreover, the study of the metabolic profile showed an alteration of more than 200 molecules differentially induced by the application of the compound and the inoculation with the fungus. Bioinformatics analysis of data showed that most of these altered molecules could be related with the mevalonic and linolenic pathways suggesting the implication of these pathways in the induced resistance mediated by Hx. Finally, the application of this compound showed an enhancement of the emission of 17 volatile metabolites. Taken together, this study indicates that after the application of Hx this compound remains in the roots, provoking molecular changes that may trigger the defensive response in the rest of the plant mediated by changes in the mevalonic and linolenic pathways and enhancing the emission of volatile compounds, suggesting for the first time the implication of mevalonic pathway in response to hexanoic application. PMID:27148319

  4. Excitatory amino acid transporter 2 downregulation correlates with thalamic neuronal death following kainic acid-induced status epilepticus in rat.

    PubMed

    Sakurai, Masashi; Kurokawa, Haruna; Shimada, Akinori; Nakamura, Kazuhiro; Miyata, Hajime; Morita, Takehito

    2015-02-01

    Recurrent seizures without interictal resumption (status epilepticus) have been reported to induce neuronal death in the midline thalamic region that has functional roles in memory and decision-making; however, the pathogenesis underlying status epilepticus-induced thalamic neuronal death is yet to be determined. We performed histological and immunohistochemical studies as well as cerebral blood flow measurement using 4.7 tesla magnetic resonance imaging spectrometer on midline thalamic region in Sprague-Dawley rats (n = 75, male, 7 weeks after birth, body weight 250-300 g) treated with intraperitoneal injection of kainic acid (10 mg/kg) to induce status epilepticus (n = 55) or normal saline solution (n = 20). Histological study using paraffin-embedded specimens revealed neuronal death showing ischemic-like changes and Fluoro-Jade C positivity with calcium deposition in the midline thalamic region of epileptic rats. The distribution of neuronal death was associated with focal loss of immunoreactivity for excitatory amino acid transporter 2 (EAAT2), stronger immunoreaction for glutamate and increase in number of Iba-1-positive microglial cells showing swollen cytoplasm and long processes. Double immunofluorescence study demonstrated co-expression of interleukin-1 beta (IL-1β) and inducible nitric oxide synthase (iNOS) within microglial cells, and loss of EAAT2 immunoreactivity in reactive astrocytes. These microglial alterations and astrocytic EAAT2 downregulation were also observed in tissue without obvious neuronal death in kainic acid-treated rats. These results suggest the possible role of glutamate excitotoxicity in neuronal death in the midline thalamic region following kainic acid-induced status epilepticus due to astrocytic EAAT2 downregulation following microglial activation showing upregulation of IL-1β and iNOS.

  5. Anti-inflammatory effect of Moringa oleifera Lam. seeds on acetic acid-induced acute colitis in rats

    PubMed Central

    Minaiyan, Mohsen; Asghari, Gholamreza; Taheri, Diana; Saeidi, Mozhgan; Nasr-Esfahani, Salar

    2014-01-01

    Objective: Anti-inflammatory, immuno-modulatory, and antioxidant properties of Moringa oleifera Lam. suggest that it might have beneficial effects on colitis. The present study was performed to investigate the anticolitis effect of Moringa oleifera seeds hydro-alcoholic extract (MSHE) and its chloroform fraction (MCF) on acetic acid-induced colitis in rats. Materials and Methods: Both MSHE and MCF with three increasing doses (50, 100, and 200 mg/kg) were administered orally to separate groups of male Wistar rats, 2 h before ulcer induction (using acetic acid 4%) and continued for 5 days. Prednisolone (4 mg/kg) and normal saline (1 ml/kg) were used in reference and control groups, respectively. All rats were sacrificed 24 h after the last dose (at day 6) and tissue injuries were assessed macroscopically and pathologically. Results: Extracts with three doses mentioned before were effective to reduce weight of distal colon (8 cm) as a marker for inflammation and tissue edema. Three doses of MSHE and two greater doses of MCF (100 and 200 mg/kg) were effective to reduce ulcer severity, area, and index as well as mucosal inflammation severity and extent, crypt damage, invasion involvement, total colitis index, and MPO activity compared with controls. MCF (50 mg/kg) was not significantly effective in reducing evaluated parameters of colitis compared with controls. Conclusion: It is concluded that MSHE and MCF were both effective to treat experimental colitis and this might be attributed to their similar major components, biophenols and flavonoids. Since the efficacy was evident even in low doses of MSHE, presence of active constituents with high potency in seeds is persuasive. PMID:25050310

  6. The Healing Effect of Teucrium polium in Acetic Acid-Induced Ulcerative Colitis in the Dog as an Animal Model

    PubMed Central

    Mehrabani, Davood; Bahrami, Faranak; Hosseini, Seyed Vahid; Ashraf, Mohammad Javad; Tanideh, Nader; Rezaianzadeh, Abbas; Amini, Masoud; Amini, Afshin

    2012-01-01

    BACKGROUND Inflammatory bowel diseases (IBD), which include ulcerative colitis (UC) and Crohn’s disease (CD), are debilitating and chronic disorders with unpredictable courses and complicated treatment measures. Therefore, an efficient treatment protocol seems necessary as therapeutic prophylaxis for these disorders. This study aims to determine the healing effect of Teucrium polium (T. polium) in acetic acid-induced UC in an experimental dog model. METHODS From September to December 2010, eight male (20-25 kg) crossbred dogs were used for induction of UC by 6% acetic acid, transrectally. After one week, three biopsies (10, 20 and 30 cm proximal to the anal verge) were taken from the colon of each animal for histological studies. In the presence of UC, 400 mg/kg/day of T. polium extract was administered orally and transrectally (via enema) for 30 days in six of the dogs. The remaining two dogs were used as controls and did not receive T. polium. Multiple biopsies were taken 7, 14, and 30 days after discontinuation of T. polium in the same manner as before treatment. RESULTS After administration of acetic acid, we noted the presence of multiple ulcers, diffuse inflammation, PMN infiltration in the lamina propria, glandular destruction and goblet cell depletion. Treatment with T. polium restored the colonic architecture with an increased number of healthy cells and a reduction in inflammatory cells. Damage of the surface epithelial cells and mucosal layer of the lumen were reversed, which lead to faster ulcer healing. CONCLUSION T. polium may be a treatment choice for UC and can broaden the current therapy options for UC. PMID:24829634

  7. Functional and cellular characterization of human Retinoic Acid Induced 1 (RAI1) mutations associated with Smith-Magenis Syndrome

    PubMed Central

    2010-01-01

    Background Smith-Magenis Syndrome is a contiguous gene syndrome in which the dosage sensitive gene has been identified: the Retinoic Acid Induced 1 (RAI1). Little is known about the function of human RAI1. Results We generated the full-length cDNA of the wild type protein and five mutated forms: RAI1-HA 2687delC, RAI1-HA 3103delC, RAI1 R960X, RAI1-HA Q1562R, and RAI1-HA S1808N. Four of them have been previously associated with SMS clinical phenotype. Molecular weight, subcellular localization and transcription factor activity of the wild type and mutant forms were studied by western blot, immunofluorescence and luciferase assays respectively. The wild type protein and the two missense mutations presented a higher molecular weight than expected, localized to the nucleus and activated transcription of a reporter gene. The frameshift mutations generated a truncated polypeptide with transcription factor activity but abnormal subcellular localization, and the same was true for the 1-960aa N-terminal half of RAI1. Two different C-terminal halves of the RAI1 protein (1038aa-end and 1229aa-end) were able to localize into the nucleus but had no transactivation activity. Conclusion Our results indicate that transcription factor activity and subcellular localization signals reside in two separate domains of the protein and both are essential for the correct functionality of RAI1. The pathogenic outcome of some of the mutated forms can be explained by the dissociation of these two domains. PMID:20738874

  8. Retinoic Acid Induced 1, RAI1: A Dosage Sensitive Gene Related to Neurobehavioral Alterations Including Autistic Behavior

    PubMed Central

    Carmona-Mora, Paulina; Walz, Katherina

    2010-01-01

    Genomic structural changes, such as gene Copy Number Variations (CNVs) are extremely abundant in the human genome. An enormous effort is currently ongoing to recognize and catalogue human CNVs and their associations with abnormal phenotypic outcomes. Recently, several reports related neuropsychiatric diseases (i.e. autism spectrum disorders, schizophrenia, mental retardation, behavioral problems, epilepsy) with specific CNV. Moreover, for some conditions, both the deletion and duplication of the same genomic segment are related to the phenotype. Syndromes associated with CNVs (microdeletion and microduplication) have long been known to display specific neurobehavioral traits. It is important to note that not every gene is susceptible to gene dosage changes and there are only a few dosage sensitive genes. Smith-Magenis (SMS) and Potocki-Lupski (PTLS) syndromes are associated with a reciprocal microdeletion and microduplication within chromosome 17p11.2. in humans. The dosage sensitive gene responsible for most phenotypes in SMS has been identified: the Retinoic Acid Induced 1 (RAI1). Studies on mouse models and humans suggest that RAI1 is likely the dosage sensitive gene responsible for clinical features in PTLS. In addition, the human RAI1 gene has been implicated in several neurobehavioral traits as spinocerebellar ataxia (SCA2), schizophrenia and non syndromic autism. In this review we discuss the evidence of RAI1 as a dosage sensitive gene, its relationship with different neurobehavioral traits, gene structure and mutations, and what is known about its molecular and cellular function, as a first step in the elucidation of the mechanisms that relate dosage sensitive genes with abnormal neurobehavioral outcomes. PMID:21629438

  9. Adipokines enhance oleic acid-induced proliferation of vascular smooth muscle cells by inducing CD36 expression.

    PubMed

    Schlich, Raphaela; Lamers, Daniela; Eckel, Jürgen; Sell, Henrike

    2015-01-01

    Adipose tissue is not only releasing lipids but also various adipokines that are both dysregulated in the obese state and may contribute to obesity-associated vascular dysfunction and cardiovascular risk. We have previously shown that the combination of adipocyte-conditioned medium (CM) and oleic acid (OA) increases proliferation of human vascular smooth muscle cells (VSMC) in a synergistic way. We identified vascular endothelial growth factor (VEGF) as a component within CM that is responsible for most of the observed effects. In this study, we investigate novel mechanisms that underlie the combined effects of adipokine and oleic acid-induced proliferation of VSMC. Oleic acid leads to significant lipid accumulation in VSMC that is further enhanced by the combined treatment with CM. Accordingly CM stimulates CD36 expression in VSMC while OA is not affecting CD36. Silencing of CD36 was established and prevents lipid accumulation in all tested conditions. CD36 silencing also abrogates CM- and OA-induced proliferation and considerably reduces proliferation induced by the combination of CM and OA. At the same time, VEGF secretion and VEGF-receptor 1 (VEGF-R1) by VSMC was not affected by CD36 silencing. However, VEGF was not able to induce any proliferation in VSMC after CD36 silencing that also blunted VEGF-induced extracellular signal-regulated kinase (ERK) activation. Finally, combined silencing of CD36 together with a blocking antibody against VEGF prevented most of CMOA-induced proliferation. In conclusion, our results demonstrate that CD36 is mediating CM-induced proliferation of VSMC. Induction of CD36 by adipokines enhances the response of VSMC towards VEGF and OA.

  10. Stability of the acetic acid-induced bladder irritation model in alpha chloralose-anesthetized female cats.

    PubMed

    Kullmann, F Aura; Wells, Grace I; Langdale, Christopher L; Zheng, Jihong; Thor, Karl B

    2013-01-01

    Time- and vehicle-related variability of bladder and urethral rhabdosphincter (URS) activity as well as cardiorespiratory and blood chemistry values were examined in the acetic acid-induced bladder irritation model in α-chloralose-anesthetized female cats. Additionally, bladder and urethra were evaluated histologically using Mason trichrome and toluidine blue staining. Urodynamic, cardiovascular and respiratory parameters were collected during intravesical saline infusion followed by acetic acid (0.5%) to irritate the bladder. One hour after starting acetic acid infusion, a protocol consisting of a cystometrogram, continuous infusion-induced rhythmic voiding contractions, and a 5 min "quiet period" (bladder emptied without infusion) was precisely repeated every 30 minutes. Administration of vehicle (saline i.v.) occurred 15 minutes after starting each of the first 7 cystometrograms and duloxetine (1mg/kg i.v.) after the 8(th). Acetic acid infusion into the bladder increased URS-EMG activity, bladder contraction frequency, and decreased contraction amplitude and capacity, compared to saline. Bladder activity and URS activity stabilized within 1 and 2 hours, respectively. Duloxetine administration significantly decreased bladder contraction frequency and increased URS-EMG activity to levels similar to previous reports. Cardiorespiratory parameters and blood gas levels remained consistent throughout the experiment. The epithelium of the bladder and urethra were greatly damaged and edema and infiltration of neutrophils in the lamina propria of urethra were observed. These data provide an ample evaluation of the health of the animals, stability of voiding function and appropriateness of the model for testing drugs designed to evaluate lower urinary tract as well as cardiovascular and respiratory systems function. PMID:24040064

  11. Protective Effect of the Methanolic Extract of Malva parviflora L. leaves on Acetic Acid-induced Ulcerative Colitis in Rats

    PubMed Central

    Dugani, Aisha; Dakhil, Bushra; Treesh, Soad

    2016-01-01

    Background/Aims: Inflammatory bowel disease (IBD) is a general term describing chronic, idiopathic relapsing, inflammatory conditions of the gastrointestinal tract of unknown etiology. Previous studies have indicated that Malva parviflora leaf extract possesses anti-inflammatory, antioxidant, and antiulcerogenic activity. activity. This work aimed to investigatee the anti-inflammatory effect of the methanolic (MEMP) and aqueous (AEMP) extracts of M. parviflora leaves on acetic acid-induced colitis in rats. Materials and Methods: 42 male Wistar albino rats were divided into seven groups (n = 6). Group I: Normal saline control group with no colitis; Group II: Acetic acid colitis group; Group III: 100 mg/kg/5 d MEMP; Group IV: 200 mg/kg/5 d.MEMP; Group V: 100 mg/kg/5 d AEMP; Group VI: 200 mg/kg/5 d AEMP; Group VII: Prednisolone group (2 mg/kg/5 d). Treatments were followed by induction of colitis using intrarectal instillation of 2 mL of 4% acetic acid. Colon damage was evaluated macroscopically (spleen weight/body weight, colon weight/length ratio) and the histological changes were also recorded. Results: The results of this study showed that acetic acid caused severe inflammation of the colon and a significant increase in spleen weight/body weight, and an increase in colon weight/length ratio compared with normal control group. Pretreatment with MEMP and AEMP for 5 days followed by induction of colitis resulted in a significant attenuation of spleen weight and colon weight/length ratio compared with acetic acid control group. Methanolic extract provided better anticolitic effect than aqueous extract; the effect was prominent at the dose of 200 mg/kg. Histopathological findings confirmed the protective effect of the MEMP. Conclusion: In conclusion, MEMP could ameliorate mucosal damage in experimentally induced colitis when given orally. PMID:27184642

  12. Apoptosis in Cryopreserved Eukaryotic Cells.

    PubMed

    Savitskaya, M A; Onishchenko, G E

    2016-05-01

    This review considers apoptosis mechanisms that have been revealed in cryopreserved cells and which can be controlled using different chemical agents, thereby improving the viability of cells after their return to normal conditions. The role of oxidative stress as of the most significant damaging factor is discussed, as well as the reasonability of including antioxidants into cryopreservation/thawing protocols as independent agents or in combination with other compounds.

  13. Apoptosis in irradiated murine tumors.

    PubMed

    Stephens, L C; Ang, K K; Schultheiss, T E; Milas, L; Meyn, R E

    1991-09-01

    Early radiation responses of transplantable murine ovarian (OCaI) and hepatocellular (HCaI) carcinomas were examined at 6, 24, 48, 96, and 144 h after single photon doses of 25, 35, or 45 Gy. Previous studies using tumor growth delay and tumor radiocurability assays had shown OCaI tumors to be relatively radiosensitive and HCaI tumors to be radioresistant. At 6 h, approximately 20% of nuclei in OCaI tumors showed aberrations characteristic of cell death by apoptosis. This contrasted to an incidence of 3% in HCaI tumors. Mitotic activity was eliminated in OCaI tumors but was only transiently suppressed in HCaI tumors. At 24-96 h, OCaI tumors continued to display apoptosis and progressive necrosis, whereas HCaI tumors responded by exhibiting marked pleomorphism. Factors other than mitotic activity may influence tumor radiosensitivity, and one of these may be susceptibility to induction of apoptosis (programmed cell death), because this was a prominent early radiation response by the radiosensitive OCaI tumors.

  14. Apoptosis in irradiated murine tumors.

    PubMed

    Stephens, L C; Ang, K K; Schultheiss, T E; Milas, L; Meyn, R E

    1991-09-01

    Early radiation responses of transplantable murine ovarian (OCaI) and hepatocellular (HCaI) carcinomas were examined at 6, 24, 48, 96, and 144 h after single photon doses of 25, 35, or 45 Gy. Previous studies using tumor growth delay and tumor radiocurability assays had shown OCaI tumors to be relatively radiosensitive and HCaI tumors to be radioresistant. At 6 h, approximately 20% of nuclei in OCaI tumors showed aberrations characteristic of cell death by apoptosis. This contrasted to an incidence of 3% in HCaI tumors. Mitotic activity was eliminated in OCaI tumors but was only transiently suppressed in HCaI tumors. At 24-96 h, OCaI tumors continued to display apoptosis and progressive necrosis, whereas HCaI tumors responded by exhibiting marked pleomorphism. Factors other than mitotic activity may influence tumor radiosensitivity, and one of these may be susceptibility to induction of apoptosis (programmed cell death), because this was a prominent early radiation response by the radiosensitive OCaI tumors. PMID:1886987

  15. Involvement of BID translocation in glycyrrhetinic acid and 11-deoxy glycyrrhetinic acid-induced attenuation of gastric cancer growth.

    PubMed

    Lin, Dejian; Zhong, Wei; Li, Juan; Zhang, Bing; Song, Gang; Hu, Tianhui

    2014-01-01

    Glycyrrhetinic acid (GA), the main chemical constituents of licorice, has shown remarkable anticancer activity. However, the side effects limit its widespread use. 11-DOGA is produced through reduction of GA 11-carbonyl to 11-hydroxyl to reduce its side effects, although its anticancer activities are largely unknown. Here, we report that the functional mechanisms of GA and 11-DOGA in gastric cancers, as well as the comparison between these two drugs' pharmacological potential. Firstly, we found that GA and 11-DOGA significantly inhibits the viabilities of gastric cancer cells in dose- and time-dependent manners. Both GA and 11-DOGA induce gastric cancer cells apoptosis and cell cycle arrest in G2 phase by upregulation of p21 and downregulation of cdc2 and cyclin B1. Further studies show that GA and 11-DOGA-induced apoptosis in gastric cancer cells is associated with BID translocation from nucleus to mitochondria. Moreover, GA and 11-DOGA could effectively inhibit tumor formation of gastric cancer cells in nude mice. Comparing with 11-DOGA, GA presents higher toxicity toward gastric cancer cells both in vivo and in vitro. Thus, the elucidation of the functional mechanisms of GA and 11-DOGA-induced attenuation of gastric cancer growth suggests a possible therapeutic role of GA and its derivatives.

  16. EGFR Inhibition Blocks Palmitic Acid-induced inflammation in cardiomyocytes and Prevents Hyperlipidemia-induced Cardiac Injury in Mice.

    PubMed

    Li, Weixin; Fang, Qilu; Zhong, Peng; Chen, Lingfeng; Wang, Lintao; Zhang, Yali; Wang, Jun; Li, Xiaokun; Wang, Yi; Wang, Jingying; Liang, Guang

    2016-01-01

    Obesity is often associated with increased risk of cardiovascular diseases. Previous studies suggest that epidermal growth factor receptor (EGFR) antagonism may be effective for the treatment of angiotensin II-induced cardiac hypertrophy and diabetic cardiomyopathy. This study was performed to demonstrate if EGFR plays a role in the pathogenesis of hyperlipidemia/obesity-related cardiac injuries. The in vivo studies using both wild type (WT) and apolipoprotein E (ApoE) knockout mice fed with high fat diet (HFD) showed the beneficial effects of small-molecule EGFR inhibitors, AG1478 and 542, against obesity-induced myocardial injury. Administration of AG1478 and 542 significantly reduced myocardial inflammation, fibrosis, apoptosis, and dysfunction in both two obese mouse models. In vitro, EGFR signaling was blocked by either siRNA silencing or small-molecule EGFR inhibitors in palmitic acid (PA)-stimulated cardiomyocytes. EGFR inhibition attenuated PA-induced inflammatory response and apoptosis in H9C2 cells. Furthermore, we found that PA-induced EGFR activation was mediated by the upstream TLR4 and c-Src. This study has confirmed the detrimental effect of EGFR activation in the pathogenesis of obesity-induced cardiac inflammatory injuries in experimental mice, and has demonstrated the TLR4/c-Src-mediated mechanisms for PA-induced EGFR activation. Our data suggest that EGFR may be a therapeutic target for obesity-related cardiovascular diseases. PMID:27087279

  17. Human myeloblastic leukemia cells (HL-60) express a membrane receptor for estrogen that signals and modulates retinoic acid-induced cell differentiation

    SciTech Connect

    Kauss, M. Ariel; Reiterer, Gudrun; Bunaciu, Rodica P.; Yen, Andrew

    2008-10-01

    Estrogen receptors are historically perceived as nuclear ligand activated transcription factors. An estrogen receptor has now been found localized to the plasma membrane of human myeloblastic leukemia cells (HL-60). Its expression occurs throughout the cell cycle, progressively increasing as cells mature from G{sub 1} to S to G{sub 2}/M. To ascertain that the receptor functioned, the effect of ligands, including a non-internalizable estradiol-BSA conjugate and tamoxifen, an antagonist of nuclear estrogen receptor function, were tested. The ligands caused activation of the ERK MAPK pathway. They also modulated the effect of retinoic acid, an inducer of MAPK dependent terminal differentiation along the myeloid lineage in these cells. In particular the ligands inhibited retinoic acid-induced inducible oxidative metabolism, a functional marker of terminal myeloid cell differentiation. To a lesser degree they also diminished retinoic acid-induced earlier markers of cell differentiation, namely CD38 and CD11b. However, they did not regulate retinoic acid-induced G{sub 0} cell cycle arrest. There is thus a membrane localized estrogen receptor in HL-60 myeloblastic leukemia cells that can cause ERK activation and modulates the response of these cells to retinoic acid, indicating crosstalk between the membrane estrogen and retinoic acid evoked pathways relevant to propulsion of cell differentiation.

  18. Sida rhomboidea.Roxb extract alleviates pathophysiological changes in experimental in vivo and in vitro models of high fat diet/fatty acid induced non-alcoholic steatohepatitis.

    PubMed

    Thounaojam, Menaka C; Jadeja, Ravirajsinh N; Dandekar, Deven S; Devkar, Ranjitsinh V; Ramachandran, A V

    2012-03-01

    The present study was aim to evaluate protective role of Sida rhomboidea.Roxb (SR) extract against high fat diet/fatty acid induced pathophysiological alterations in experimental model of non-alcoholic steatohepatitis (NASH). Effect of SR extract on plasma levels of markers of hepatic damage, plasma and hepatic lipids, mitochondrial oxidative stress, status of enzymatic and non-enzymatic antioxidants and histopathological changes in liver tissue were evaluated in high fat diet fed C57BL/6J mice. Also, the effect of SR supplementation on lipid accumulation, lipid peroxidation, cytotoxicity and cell viability were evaluated in oleic acid treated HepG2 cells. Supplementation of NASH mice with SR extract prevented high fat diet induced elevation in plasma marker enzymes of liver damage, plasma and hepatic lipids, mitochondrial oxidative stress and compromised enzymatic and non-enzymatic antioxidant status. Further, addition of SR extract to in vitro HepG2 cells minimized oleic acid induced lipid accumulation, higher lipid peroxidation, cytotoxicity and reduced cell viability. These in vivo and in vitro studies suggest that SR extract has the potential of preventing high fat/fatty acid induced NASH mainly due to its hypolipidemic and antioxidant activities.

  19. Foxc2 enhances proliferation and inhibits apoptosis through activating Akt/mTORC1 signaling pathway in mouse preadipocytes

    PubMed Central

    Gan, Lu; Liu, Zhenjiang; Jin, Wei; Zhou, Zhongjie; Sun, Chao

    2015-01-01

    Forkhead box C2 (Foxc2) protein is a transcription factor in regulation of development, metabolism, and immunology. However, the regulatory mechanisms of Foxc2 on proliferation and apoptosis of preadipocytes are unclear. In this study, we found that high-fat-diet-induced obesity elevated the expression of Foxc2 and cyclin E after 6 weeks. Additionally, Foxc2 suppressed preadipocyte differentiation, increased cell counts and augmented G1-S transition of preadipocytes, along with the elevation of cyclin E expression and the reduction levels of p27 and p53. Furthermore, Foxc2 knockdown reduced early apoptotic cells with accompanying reduction of mitochondrial membrane potential and increased fragmentation of genomic DNA. We show that Foxc2 reduces the expression of Bax, caspase-9, and caspase-3 in both serum-starved and palmitic acid-induced cell apoptotic models, which confirms the anti-apoptotic role of Foxc2. Moreover, the protein kinase B (Akt)/mammalian target of rapamycin (mTOR)C1 signaling pathway and the ERK/mTORC1 signaling pathway were activated along with preadipocyte proliferation in response to Foxc2 overexpression, whereas apoptosis marker genes were downregulated during this process. Those effects were blocked by the interference of Foxc2 or signal pathways specific inhibitors. These data collectively reveal that Foxc2 enhances proliferation of preadipocytes and inhibits apoptosis of preadipocytes by activating the Akt/mTORC1 and ERK/mTORC1 signaling pathways. PMID:26113535

  20. Lymphocytic Choriomeningitis Virus Differentially Affects the Virus-Induced Type I Interferon Response and Mitochondrial Apoptosis Mediated by RIG-I/MAVS

    PubMed Central

    Pythoud, Christelle; Rothenberger, Sylvia; Martínez-Sobrido, Luis; de la Torre, Juan Carlos

    2015-01-01

    ABSTRACT Arenaviruses are important emerging human pathogens maintained by noncytolytic persistent infection in their rodent reservoir hosts. Despite high levels of viral replication, persistently infected carrier hosts show only mildly elevated levels of type I interferon (IFN-I). Accordingly, the arenavirus nucleoprotein (NP) has been identified as a potent IFN-I antagonist capable of blocking activation of interferon regulatory factor 3 (IRF3) via the retinoic acid inducible gene (RIG)-I/mitochondrial antiviral signaling (MAVS) pathway. Another important mechanism of host innate antiviral defense is represented by virus-induced mitochondrial apoptosis via RIG-I/MAVS and IRF3. In the present study, we investigated the ability of the prototypic Old World arenavirus lymphocytic choriomeningitis virus (LCMV) to interfere with RIG-I/MAVS-dependent apoptosis. We found that LCMV does not induce apoptosis at any time during infection. While LCMV efficiently blocked induction of IFN-I via RIG-I/MAVS in response to superinfection with cytopathic RNA viruses, virus-induced mitochondrial apoptosis remained fully active in LCMV-infected cells. Notably, in LCMV-infected cells, RIG-I was dispensable for virus-induced apoptosis via MAVS. Our study reveals that LCMV infection efficiently suppresses induction of IFN-I but does not interfere with the cell's ability to undergo virus-induced mitochondrial apoptosis as a strategy of innate antiviral defense. The RIG-I independence of mitochondrial apoptosis in LCMV-infected cells provides the first evidence that arenaviruses can reshape apoptotic signaling according to their needs. IMPORTANCE Arenaviruses are important emerging human pathogens that are maintained in their rodent hosts by persistent infection. Persistent virus is able to subvert the cellular interferon response, a powerful branch of the innate antiviral defense. Here, we investigated the ability of the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) to

  1. Human papillomavirus oncoproteins and apoptosis (Review)

    PubMed Central

    JIANG, PEIYUE; YUE, YING

    2014-01-01

    The aim of this study was to review the literature and identify the association between human papillomavirus (HPV) oncoproteins and apoptosis. HPV-associated apoptosis may be primarily blocked by a number of oncoproteins, including E5, E6 and E7. E5 protein protects cells from tumor necrosis factor-associated apoptosis; the oncoprotein E6 predominantly inhibits apoptosis through the p53 pathway; and oncoprotein E7 is involved in apoptosis activation and inhibition. In addition, HPV oncoproteins are involved in activating or repressing the transcription of E6/E7. In conclusion, HPV oncoproteins, including E5, E6 and E7 protein, may interfere with apoptosis via certain regulatory principles. PMID:24348754

  2. Differences in the influence of the interaction between acetylsalicylic acid and salicylic acid on platelet function in whole blood and isolated platelets: influence of neutrophils.

    PubMed

    González-Correa, J A; Muñoz-Marín, J; López-Villodres, J A; Navas, M D; Guerrero, A; Torres, J A; De La Cruz, J P

    2007-08-01

    The aim of this study was to characterize the influence of the interaction between acetylsalicylic acid (ASA) and salicylic acid (SA) on the inhibition by ASA of platelet aggregation in platelets isolated from whole blood, and to determine whether leukocytes influence this pharmacological interaction. This in vitro study was done in human blood from which we prepared samples of whole blood, platelet-rich plasma (PRP), PRP plus mononuclear leukocytes, and PRP plus neutrophils. The variables recorded were maximum platelet aggregation intensity, thromboxane B2 (TxB2) production, and nitric oxide (NO) production (N=10 different samples in each type of experiment). Different concentrations of ASA and SA were incubated with all samples. In PRP, the concentration of ASA that inhibited maximum aggregation by 50% (IC50) (281+/-16microM) increased with increasing SA concentration to a maximum of more than 2mM when 500microM SA was used. In whole blood, the IC50 for ASA (24.9+/-1.2microM) decreased with decreasing SA concentrations to 7.9+/-0.8microM with 50microM SA and 15.6+/-0.9microM with 125microM SA, and increased to 46.2+/-2.6microM with 250microM SA and 96.3+/-7.2microM with 500microM SA. In experiments with PRP+neutrophils the IC50 of ASA increased in the presence of all concentrations of SA. The antagonistic interactions were also reflected in the changes in TxB2 production in all samples. In samples of neutrophils incubated with ASA, the curve for NO production was shifted to the right, a finding that paralleled the changes in platelet aggregation. In conclusion, the influence of the interaction between ASA and its metabolite SA on platelet aggregation difference depending on the type of sample, and was antagonistic in PRP but partially agonistic in whole blood. Nitric oxide synthesis showed an additive effect of the two compounds.

  3. Effects of the precalving administration of omega-3 fatty acids alone or in combination with acetylsalicylic acid in periparturient dairy cows.

    PubMed

    Grossi, P; Bertoni, G; Cappelli, F Piccioli; Trevisi, E

    2013-06-01

    This study investigated the effects of the administration of long chain omega-3 fatty acids (ω-3 FA) and acetylsalicylic acid (ASA) on inflammation, performance, and fertility in periparturient dairy cows. Five weeks before calving, 26 multiparous dairy cows were randomly assigned to 1 of 3 treatments: ω-3 FA (n = 9; OME), ω-3 FA and ASA (n = 9; OMAS), or palm oil (n = 8; CTR). During the last 3 wk of pregnancy, OME and OMAS groups received daily 12.0 g of fish-derived ω-3 FA, whereas CTR cows received only SFA. In addition, OMAS cows received daily 6.0 mg ASA/kg BW starting at 7 d before calving. Only a few cows had health problems after calving, but those in OMAS were most affected (n = 3 vs. 1 in CTR). Inflammatory status around calving did not improve in OME cows, as confirmed by the patterns of concentration of acute-phase proteins (APP), which were similar to CTR. Compared with CTR and OME, the increase of the positive APP and the decrease of the negative APP (e.g., albumin; P < 0.01) observed in OMAS cows suggested a severe inflammatory status after calving. Compared with OMAS, postcalving energy metabolism was better in OME cows as shown by a lower degree of lipomobilization (smaller BCS drop, greater glucose) and milder ketogenesis (less β-hydroxybutyrate; P < 0.01). Cows in CTR had optimal fertility indices, whereas OMAS was the worst group. The severe inflammation and the more negative energy balance likely contributed to the poor fertility parameters in those cows. It is known that ASA exerts an inhibitory effect on cyclooxygenases, causing a possible decrease in the synthesis of PGF2α. A decreased concentration of PGF2α is connected with alterations in the physiologic processes related to labor and to uterine motility. Cows in OMAS had a longer pregnancy (P < 0.10 vs.OME) and a greater frequency of retained placenta, which may be attributed to decreased synthesis of PGF2α. The administration of ω-3 FA alone did not delay calving or the

  4. In vitro effects of Panax ginseng in aristolochic acid-mediated renal tubulotoxicity: apoptosis versus regeneration.

    PubMed

    Bunel, Valérian; Antoine, Marie-Hélène; Nortier, Joëlle; Duez, Pierre; Stévigny, Caroline

    2015-03-01

    This in vitro study aimed to determine the effects of a Panax ginseng extract on aristolochic acid-mediated toxicity in HK-2 cells. A methanolic extract of ginseng (50 µg/mL) was able to reduce cell survival after treatment with 50 µM aristolochic acid for 24, 48, and 72 h, as evidenced by a resazurin reduction assay. This result was confirmed by a flow cytometric evaluation of apoptosis using annexin V-PI staining, and indicated higher apoptosis rates in cells treated with aristolochic acid and P. ginseng extract compared with aristolochic acid alone. However, P. ginseng extract by itself (5 and 50 µg/mL) increased the Ki-67 index, indicating an enhancement in cellular proliferation. Cell cycle analysis excluded a P. ginseng extract-mediated induction of G2/M cell cycle arrest such as the one typically observed with aristolochic acid. Finally, β-catenin acquisition was found to be accelerated when cells were treated with both doses of ginseng, suggesting that the epithelial phenotype of renal proximal tubular epithelial cells was maintained. Also, ginseng treatment (5 and 50 µg/mL) reduced the oxidative stress activity induced by aristolochic acid after 24 and 48 h. These results indicate that the ginseng extract has a protective activity towards the generation of cytotoxic reactive oxygen species induced by aristolochic acid. However, the ginseng-mediated alleviation of oxidative stress did not correlate with a decrease but rather with an increase in aristolochic acid-induced apoptosis and death. This deleterious herb-herb interaction could worsen aristolochic acid tubulotoxicity and reinforce the severity and duration of the injury. Nevertheless, increased cellular proliferation and migration, along with the improvement in the epithelial phenotype maintenance, indicate that ginseng could be useful for improving tubular regeneration and the recovery following drug-induced kidney injury. Such dual activities of ginseng certainly warrant further in vivo

  5. Anti-inflammatory effects of nesfatin-1 in rats with acetic acid - induced colitis and underlying mechanisms.

    PubMed

    Ozturk, C C; Oktay, S; Yuksel, M; Akakin, D; Yarat, A; Kasimay Cakir, O

    2015-10-01

    Mucosal balance impairment, bacterial over-proliferation, cytokines, inflammatory mediators are known as responsible for inflammatory bowel disease. Besides known anorexigenic, neuroprotective, and anti-apoptotic effects, the major effect of nesfatin-1 on colitis is unknown. Our aim was to investigate the possible anti-inflammatory effects of nesfatin-1 in acetic acid induced colitis model and potential underlying mechanisms. Male Spraque-Dawley rats were anesthetized by intraperitoneal ketamine (100 mg/kg) and chlorpromazine (0.75 mg/kg). For nesfatin-1 and antagonist applications some of the rats were intracerebroventricularly (i.c.v.) cannulated. In colitis group, intrarectally (i.r.) 4% acetic acid solution (1 ml) and 10 minutes later i.c.v. nesfatin-1 (0.05 μg/5 μl) or vehicle (5 μl) were administered. Treatments continued for 3 days. In control group, physiological saline solution was used intrarectally. To identify the underlying effective mechanism of nesfatin-1, rats were divided into 3 subgroups, 5 minutes following colitis induction; i.c.v. atosiban (oxytocin receptor antagonist), SHU9119 (melanocortin receptor antagonist) or GHSR-1a antagonist (ghrelin receptor antagonist) were administered, 5 minutes later nesfatin-1 was administered for 3 days. On the fourth day, rats were decapitated, and colon tissues were sampled. Macroscopic and microscopic damage scores of distal colon, and colonic tissue malondialdehyde, glutathione, myeloperoxidase, superoxide dismutase, catalase, luminol and lucigenin chemiluminescence measurements were analysed. The increased myeloperoxidase activity, malondialdehyde levels, luminol and lucigenin chemiluminescence measurements, macroscopic and microscopic damage scores with colitis induction (P < 0.05 - 0.001) were decreased with nesfatin-1 treatment (P < 0.05 - 0.001). Nesfatin-1 may show this effect by inhibiting neutrophil infiltration through tissues and by decreasing formation of free oxygen radicals. Atosiban and

  6. Docosahexaenoic acid and other fatty acids induce a decrease in pHi in Jurkat T-cells

    PubMed Central

    Aires, Virginie; Hichami, Aziz; Moutairou, Kabirou; Khan, Naim Akhtar

    2003-01-01

    Docosahexaenoic acid (DHA) induced rapid (t1/2=33 s) and dose-dependent decreases in pHi in BCECF-loaded human (Jurkat) T-cells. Addition of 5-(N,N-dimethyl)-amiloride, an inhibitor of Na+/H+ exchanger, prolonged DHA-induced acidification as a function of time, indicating that the exchanger is implicated in pHi recovery. Other fatty acids like oleic acid, arachidonic acid, eicosapentaenoic acid, but not palmitic acid, also induced a fall in pHi in these cells. To assess the role of calcium in the DHA-induced acidification, we conducted experiments in Ca2+-free (0% Ca2+) and Ca2+-containing (100% Ca2+) buffer. We observed that there was no difference in the degree of DHA-induced transient acidification in both the experimental conditions, though pHi recovery was faster in 0% Ca2+ medium than that in 100% Ca2+ medium. In the presence of BAPTA, a calcium chelator, a rapid recovery of DHA-induced acidosis was observed. Furthermore, addition of CaCl2 into 0% Ca2+ medium curtailed DHA-evoked rapid pHi recovery. In 0% Ca2+ medium, containing BAPTA, DHA did not evoke increases in [Ca2+]i, though this fatty acid still induced a rapid acidification in these cells. These observations suggest that calcium is implicated in the long-lasting DHA-induced acidosis. DHA-induced rapid acidification may be due to its deprotonation in the plasma membrane (flip-flop model), as suggested by the following observations: (1) DHA with a –COOH group induced intracellular acidification, but this fatty acid with a –COOCH3 group failed to do so, and (2) DHA, but not propionic acid, -induced acidification was completely reversed by addition of fatty acid-free bovine serum albumin in these cells. These results suggest that DHA induces acidosis via deprotonation and Ca2+ mobilization in human T-cells. PMID:14645139

  7. Blueberry polyphenols attenuate kainic acid-induced decrements in cognition and alter inflammatory gene expression in rat hippocampus

    PubMed Central

    Shukitt-Hale, Barbara; Lau, Francis C.; Carey, Amanda N.; Galli, Rachel L.; Spangler, Edward L.; Ingram, Donald K.; Joseph, James A.

    2016-01-01

    Cognitive impairment in age-related neurodegenerative diseases such as Alzheimer's disease may be partly due to long-term exposure and increased susceptibility to inflammatory insults. In the current study, we investigated whether polyphenols in blueberries can reduce the deleterious effects of inflammation induced by central administration of kainic acid by altering the expression of genes associated with inflammation. To this end, 4-month-old male Fischer-344 (F344) rats were fed a control, 0.015% piroxicam (an NSAID) or 2% blueberry diet for 8 weeks before either Ringer's buffer or kainic acid was bilaterally micro-infused into the hippocampus. Two weeks later, following behavioral evaluation, the rats were killed and total RNA from the hippocampus was extracted and used in real-time quantitative RT-PCR (qRT-PCR) to analyze the expression of inflammation-related genes. Kainic acid had deleterious effects on cognitive behavior as kainic acid-injected rats on the control diet exhibited increased latencies to find a hidden platform in the Morris water maze compared to Ringer's buffer-injected rats and utilized non-spatial strategies during probe trials. The blueberry diet, and to a lesser degree the piroxicam diet, was able to improve cognitive performance. Immunohistochemical analyses of OX-6 expression revealed that kainic acid produced an inflammatory response by increasing the OX-6 positive areas in the hippocampus of kainic acid-injected rats. Kainic acid up-regulated the expression of the inflammatory cytokines IL-1β and TNF-α, the neurotrophic factor IGF-1, and the transcription factor NF-κB. Blueberry and piroxicam supplementations were found to attenuate the kainic acid-induced increase in the expression of IL-1β, TNF-α, and NF-κB, while only blueberry was able to augment the increased IGF-1 expression. These results indicate that blueberry polyphenols attenuate learning impairments following neurotoxic insult and exert anti-inflammatory actions

  8. Apoptosis in cancer: from pathogenesis to treatment

    PubMed Central

    2011-01-01

    Apoptosis is an ordered and orchestrated cellular process that occurs in physiological and pathological conditions. It is also one of the most studied topics among cell biologists. An understanding of the underlying mechanism of apoptosis is important as it plays a pivotal role in the pathogenesis of many diseases. In some, the problem is due to too much apoptosis, such as in the case of degenerative diseases while in others, too little apoptosis is the culprit. Cancer is one of the scenarios where too little apoptosis occurs, resulting in malignant cells that will not die. The mechanism of apoptosis is complex and involves many pathways. Defects can occur at any point along these pathways, leading to malignant transformation of the affected cells, tumour metastasis and resistance to anticancer drugs. Despite being the cause of problem, apoptosis plays an important role in the treatment of cancer as it is a popular target of many treatment strategies. The abundance of literature suggests that targeting apoptosis in cancer is feasible. However, many troubling questions arise with the use of new drugs or treatment strategies that are designed to enhance apoptosis and critical tests must be passed before they can be used safely in human subjects. PMID:21943236

  9. Suberoylanilide hydroxamic acid-induced HeLa cell death is closely correlated with oxidative stress and thioredoxin 1 levels.

    PubMed

    You, Bo Ra; Park, Woo Hyun

    2014-05-01

    Suberoylanilide hydroxamic acid (SAHA) is a histone deacetylase (HDAC) inhibitor which has anticancer effects. We evaluated the growth inhibitory effects of SAHA on HeLa cervical cancer cells in relation to reactive oxygen species (ROS) levels. SAHA inhibited the growth of HeLa cells with an IC(50) of approximately 10 µM at 24 h, and induced apoptosis which was accompanied by the cleavage of PARP, caspase-3 activation and loss of mitochondrial membrane potential (MMP; ∆ψ(m)). All the tested caspase inhibitors prevented HeLa cell death induced by SAHA whereas TNF-α intensified apoptotic cell death in SAHA-treated HeLa cells. With respect to ROS and glutathione (GSH) levels, SAHA increased ROS levels, especially mitochondrial O(2)•- in HeLa cells and also induced GSH depletion. Caspase inhibitors reduced the levels of ROS and GSH depletion in SAHA-treated HeLa cells whereas TNF-α enhanced the levels in these cells. The well-known antioxidant N-acetyl cysteine (NAC) attenuated cell death and an increase in ROS levels was caused by SAHA. Moreover, SAHA decreased the levels of thioredoxin 1 (Trx1) in HeLa cells. While the downregulation of Trx1 enhanced cell death and ROS levels in SAHA-treated HeLa cells, the overexpression of Trx1 attenuated the levels in these cells. In conclusion, SAHA inhibited the growth of HeLa cell via caspase-dependent apoptosis, which was influenced by the mitochondrial O(2)•- and Trx1 levels.

  10. A new coumarin derivative, IMM-H004, attenuates okadaic acid-induced spatial memory impairment in rats

    PubMed Central

    Song, Xiu-yun; Wang, Ying-ying; Chu, Shi-feng; Hu, Jin-feng; Yang, Peng-fei; Zuo, Wei; Song, Lian-kun; Zhang, Shuai; Chen, Nai-hong

    2016-01-01

    Aim: A novel coumarin derivative 7-hydroxy-5-methoxy-4-methyl-3-(4-methylpiperazin-1-yl)-coumarin (IMM-H004) has shown anti-apoptotic, anti-inflammatory and neuroprotective activities. In this study we investigated the effects of IMM-H004 on spatial memory in rats treated with okadaic acid (OKA), which was used to imitate Alzheimer's disease (AD)-like symptoms. Methods: SD rats were administered IMM-H004 (8 mg·kg−1·d−1, ig) or donepezil (positive control, 1 mg·kg−1·d−1, ig) for 25 d. On d 8 and 9, OKA (200 ng) was microinjected into the right ventricle. Morris water maze test was used to evaluate the spatial memory impairments. Tau and β-amyloid (Aβ) pathology in the hippocampus was detected using Western blot and immunohistochemistry. TUNEL staining was used to detect cell apoptosis. Results: OKA-treated rats showed significant impairments of spatial memory in Morris water maze test, which were largely reversed by administration of IMM-H004 or donepezil. Furthermore, OKA-treated rats exhibited significantly increased phosphorylation of tau, deposits of Aβ protein and cell apoptosis in the hippocampus, which were also reversed by administration of IMM-H004 or donepezil. Conclusion: Administration of IMM-H004 or donepezil protects rats against OKA-induced spatial memory impairments via attenuating tau or Aβ pathology. Thus, IMM-H004 may be developed as a therapeutic agent for the treatment of AD. PMID:26838073

  11. Myristic acid potentiates palmitic acid-induced lipotoxicity and steatohepatitis associated with lipodystrophy by sustaning de novo ceramide synthesis

    PubMed Central

    Martínez, Laura; Torres, Sandra; Baulies, Anna; Alarcón-Vila, Cristina; Elena, Montserrat; Fabriàs, Gemma; Casas, Josefina; Caballeria, Joan; Fernandez-Checa, Jose C.; García-Ruiz, Carmen

    2015-01-01

    Palmitic acid (PA) induces hepatocyte apoptosis and fuels de novo ceramide synthesis in the endoplasmic reticulum (ER). Myristic acid (MA), a free fatty acid highly abundant in copra/palmist oils, is a predictor of nonalcoholic steatohepatitis (NASH) and stimulates ceramide synthesis. Here we investigated the synergism between MA and PA in ceramide synthesis, ER stress, lipotoxicity and NASH. Unlike PA, MA is not lipotoxic but potentiated PA-mediated lipoapoptosis, ER stress, caspase-3 activation and cytochrome c release in primary mouse hepatocytes (PMH). Moreover, MA kinetically sustained PA-induced total ceramide content by stimulating dehydroceramide desaturase and switched the ceramide profile from decreased to increased ceramide 14:0/ceramide16:0, without changing medium and long-chain ceramide species. PMH were more sensitive to equimolar ceramide14:0/ceramide16:0 exposure, which mimics the outcome of PA plus MA treatment on ceramide homeostasis, than to either ceramide alone. Treatment with myriocin to inhibit ceramide synthesis and tauroursodeoxycholic acid to prevent ER stress ameliorated PA plus MA induced apoptosis, similar to the protection afforded by the antioxidant BHA, the pan-caspase inhibitor z-VAD-Fmk and JNK inhibition. Moreover, ruthenium red protected PMH against PA and MA-induced cell death. Recapitulating in vitro findings, mice fed a diet enriched in PA plus MA exhibited lipodystrophy, hepatosplenomegaly, increased liver ceramide content and cholesterol levels, ER stress, liver damage, inflammation and fibrosis compared to mice fed diets enriched in PA or MA alone. The deleterious effects of PA plus MA-enriched diet were largely prevented by in vivo myriocin treatment. These findings indicate a causal link between ceramide synthesis and ER stress in lipotoxicity, and imply that the consumption of diets enriched in MA and PA can cause NASH associated with lipodystrophy. PMID:26539645

  12. Myristic acid potentiates palmitic acid-induced lipotoxicity and steatohepatitis associated with lipodystrophy by sustaning de novo ceramide synthesis.

    PubMed

    Martínez, Laura; Torres, Sandra; Baulies, Anna; Alarcón-Vila, Cristina; Elena, Montserrat; Fabriàs, Gemma; Casas, Josefina; Caballeria, Joan; Fernandez-Checa, Jose C; García-Ruiz, Carmen

    2015-12-01

    Palmitic acid (PA) induces hepatocyte apoptosis and fuels de novo ceramide synthesis in the endoplasmic reticulum (ER). Myristic acid (MA), a free fatty acid highly abundant in copra/palmist oils, is a predictor of nonalcoholic steatohepatitis (NASH) and stimulates ceramide synthesis. Here we investigated the synergism between MA and PA in ceramide synthesis, ER stress, lipotoxicity and NASH. Unlike PA, MA is not lipotoxic but potentiated PA-mediated lipoapoptosis, ER stress, caspase-3 activation and cytochrome c release in primary mouse hepatocytes (PMH). Moreover, MA kinetically sustained PA-induced total ceramide content by stimulating dehydroceramide desaturase and switched the ceramide profile from decreased to increased ceramide 14:0/ceramide16:0, without changing medium and long-chain ceramide species. PMH were more sensitive to equimolar ceramide14:0/ceramide16:0 exposure, which mimics the outcome of PA plus MA treatment on ceramide homeostasis, than to either ceramide alone. Treatment with myriocin to inhibit ceramide synthesis and tauroursodeoxycholic acid to prevent ER stress ameliorated PA plus MA induced apoptosis, similar to the protection afforded by the antioxidant BHA, the pan-caspase inhibitor z-VAD-Fmk and JNK inhibition. Moreover, ruthenium red protected PMH against PA and MA-induced cell death. Recapitulating in vitro findings, mice fed a diet enriched in PA plus MA exhibited lipodystrophy, hepatosplenomegaly, increased liver ceramide content and cholesterol levels, ER stress, liver damage, inflammation and fibrosis compared to mice fed diets enriched in PA or MA alone. The deleterious effects of PA plus MA-enriched diet were largely prevented by in vivo myriocin treatment. These findings indicate a causal link between ceramide synthesis and ER stress in lipotoxicity, and imply that the consumption of diets enriched in MA and PA can cause NASH associated with lipodystrophy.

  13. Apoptosis in myocardial ischaemia and infarction.

    PubMed

    Krijnen, P A J; Nijmeijer, R; Meijer, C J L M; Visser, C A; Hack, C E; Niessen, H W M

    2002-11-01

    Recent studies indicate that, in addition to necrosis, apoptosis also plays a role in the process of tissue damage after myocardial infarction, which has pathological and therapeutic implications. This review article will discuss studies in which the role and mechanisms of apoptosis in myocardial infarction were analysed in vivo and in vitro in humans and in animals.

  14. Proteases in Fas-mediated apoptosis.

    PubMed

    Zhivotovsky, B; Burgess, D H; Schlegel, J; Pörn, M I; Vanags, D; Orrenius, S

    1997-01-01

    Involvement of a unique family of cysteine proteases in the multistep apoptotic process has been documented. Cloning of several mammalian genes identifies some components of this cellular response. However, it is currently unclear which protease plays a role as a signal and/or effector of apoptosis. We summarize contributions to the data concerning proteases in Fas-mediated apoptosis.

  15. CHCHD2 connects mitochondrial metabolism to apoptosis.

    PubMed

    Liu, Yong; Zhang, Yanping

    2015-01-01

    As the powerhouse of cells and gatekeeper for apoptosis, mitochondria control life and death. CHCHD2, a mitochondrial protein previously known to regulate metabolism, has recently been identified as an apoptosis inhibitor. New data suggest a model in which CHCHD2 performs a prosurvival function by acting as both a reactive oxygen species scavenger and BCL-XL activator. PMID:27308501

  16. THE ROLE OF APOPTOSIS IN NEUROTOXICOLOGY.

    EPA Science Inventory

    The role of apoptosis in neurodegeneration in developing animals and in adults has become increasingly apparent in the past ten years. Normal apoptosis occurs in the CNS from the embryonic stage through senescence, with different cells in each region of the nervous system having ...

  17. Schistosoma mansoni: possible involvement of protein kinase C in linoleic acid-induced proteolytic enzyme release from cercariae.

    PubMed

    Matsumura, K; Mitsui, Y; Sato, K; Sakamoto, M; Aoki, Y

    1991-04-01

    antagonist, trifluoperazine (TFP), a better calmodulin antagonist on schistosome, or by verapamil, a Ca2+ channel blocker. Linoleic acid-induced release of enzyme was partially inhibited by 0.5 and 5 mM of EGTA and by 1 to 100 microM of H-7. While it was not inhibited by N-[2-(methylamino)ethyl]-5-isoquinolinesulfonamide (H-8) and N-(2-guanidinoethyl)-5-isoquinolinesulfonamide (HA-1004), inhibitors of cyclic nucleotide-dependent protein kinase which were used as negative controls of H-7, W-7, TFP, 8-(N,N-diethylamino)octyl 3,4,5-trimethoxybenzoate (TMB-8), an intracellular Ca2+ antagonist, and verapamil.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:2015870

  18. Induction of apoptosis by Shiga toxins

    PubMed Central

    Tesh, Vernon L

    2010-01-01

    Shiga toxins comprise a family of structurally and functionally related protein toxins expressed by Shigella dysenteriae serotype 1 and multiple serotypes of Escherichia coli. While the capacity of Shiga toxins to inhibit protein synthesis by catalytic inactivation of eukaryotic ribosomes has been well described, it is also apparent that Shiga toxins trigger apoptosis in many cell types. This review presents evidence that Shiga toxins induce apoptosis of epithelial, endothelial, leukocytic, lymphoid and neuronal cells. Apoptotic signaling pathways activated by the toxins are reviewed with an emphasis on signaling mechanisms that are shared among different cell types. Data suggesting that Shiga toxins induce apoptosis through the endoplasmic reticulum stress response and clinical evidence demonstrating apoptosis in humans infected with Shiga toxin-producing bacteria are briefly discussed. The potential for use of Shiga toxins to induce apoptosis in cancer cells is briefly reviewed. PMID:20210553

  19. The role of amino acid-induced mammalian target of rapamycin complex 1(mTORC1) signaling in insulin resistance

    PubMed Central

    Yoon, Mee-Sup; Choi, Cheol Soo

    2016-01-01

    Mammalian target of rapamycin (mTOR) controls cell growth and metabolism in response to nutrients, energy, and growth factors. Recent findings have placed the lysosome at the core of mTOR complex 1 (mTORC1) regulation by amino acids. Two parallel pathways, Rag GTPase-Ragulator and Vps34-phospholipase D1 (PLD1), regulate mTOR activation on the lysosome. This review describes the recent advances in understanding amino acid-induced mTOR signaling with a particular focus on the role of mTOR in insulin resistance. PMID:27534530

  20. The Histone Deacetylase Inhibitor Vaproic Acid Induces Cell Growth Arrest in Hepatocellular Carcinoma Cells via Suppressing Notch Signaling

    PubMed Central

    Sun, Guangchun; Mackey, Lily V.; Coy, David H.; Yu, Cui-Yun; Sun, Lichun

    2015-01-01

    Hepatocellular carcinoma (HCC) is a type of malignant cancer. Notch signaling is aberrantly expressed in HCC tissues with more evidence showing that this signaling plays a critical role in HCCs. In the present study, we investigate the effects of the anti-convulsant drug valproic acid (VPA) in HCC cells and its involvement in modulating Notch signaling. We found that VPA, acting as a histone deacetylase (HDAC) inhibitor, induced a decrease in HDAC4 and an increase in acetylated histone 4 (AcH4) and suppressed HCC cell growth. VPA also induced down-regulation of Notch signaling via suppressing the expression of Notch1 and its target gene HES1, with an increase of tumor suppressor p21 and p63. Furthermore, Notch1 activation via overexpressing Notch1 active form ICN1 induced HCC cell proliferation and anti-apoptosis, indicating Notch signaling played an oncogenic role in HCC cells. Meanwhile, VPA could reverse Notch1-induced increase of cell proliferation. Interestingly, VPA was also observed to stimulate the expression of G protein-coupled somatostatin receptor type 2 (SSTR2) that has been used in receptor-targeting therapies. This discovery supports a combination therapy of VPA with the SSTR2-targeting agents. Our in vitro assay did show that the combination of VPA and the peptide-drug conjugate camptothecin-somatostatin (CPT-SST) displayed more potent anti-proliferative effects on HCC cells than did each alone. VPA may be a potential drug candidate in the development of anti-HCC drugs via targeting Notch signaling, especially in combination with receptor-targeting cytotoxic agents. PMID:26366213

  1. Sulforaphane Ameliorates Okadaic Acid-Induced Memory Impairment in Rats by Activating the Nrf2/HO-1 Antioxidant Pathway.

    PubMed

    Dwivedi, Subhash; Rajasekar, N; Hanif, Kashif; Nath, Chandishwar; Shukla, Rakesh

    2016-10-01

    Okadaic acid (OKA) causes memory impairment and attenuates nuclear factor erythroid 2-related factor 2 (Nrf2) along with oxidative stress and neuroinflammation in rats. Sulforaphane (dietary isothiocyanate compound), an activator of Nrf2 signaling, exhibits neuroprotective effects. However, the protective effect of sulforaphane in OKA-induced neurotoxicity remains uninvestigated. Therefore, in the present study, the role of sulforaphane in OKA-induced memory impairment in rats was explored. A significant increased Nrf2 expression in the hippocampus and cerebral cortex was observed in trained (Morris water maze) rats, and a significant decreased Nrf2 expression in memory-impaired (OKA, 200 ng icv) rats indicated its involvement in memory function. Sulforaphane administration (5 and 10 mg/kg, ip, days 1 and 2) ameliorates OKA-induced memory impairment in rats. The treatment also restored Nrf2 and its downstream antioxidant protein expression (GCLC, HO-1) and attenuated oxidative stress (ROS, nitrite, GSH), neuroinflammation (NF-κB, TNF-α, IL-10), and neuronal apoptosis in the cerebral cortex and hippocampus of OKA-treated rats. Further, to determine whether modulation of Nrf2 signaling is responsible for the protective effect of sulforaphane, in vitro, Nrf2 siRNA and its downstream HO-1 inhibition studies were carried out in a rat astrocytoma cell line (C6). The protective effects of sulforaphane were abolished with Nrf2 siRNA and HO-1 inhibition in astrocytes. The results suggest that Nrf2-dependent activation of cellular antioxidant machinery results in sulforaphane-mediated protection against OKA-induced memory impairment in rats. Graphical Abstract ᅟ.

  2. Mice with hepatocyte-specific FXR deficiency are resistant to spontaneous but susceptible to cholic acid-induced hepatocarcinogenesis.

    PubMed

    Kong, Bo; Zhu, Yan; Li, Guodong; Williams, Jessica A; Buckley, Kyle; Tawfik, Ossama; Luyendyk, James P; Guo, Grace L

    2016-03-01

    Farnesoid X receptor (FXR) belongs to the nuclear receptor superfamily with its endogenous ligands bile acids. Mice with whole body FXR deficiency develop liver tumors spontaneously, but the underlying mechanism is unclear. Moreover, it is unknown whether FXR deficiency in liver alone serves as a tumor initiator or promoter during liver carcinogenesis. This study aims to evaluate the effects of hepatocyte-specific FXR deficiency (FXR(hep-/-)) in liver tumor formation. The results showed that FXR(hep-/-) mice did not show spontaneous liver tumorigenesis with aging (up to 24 mo of age). Therefore FXR(hep-/-) mice were fed a bile acid (cholic acid)-containing diet alone or along with a liver tumor initiator, diethylnitrosamine (DEN). Thirty weeks later, no tumors were found in wild-type or FXR(hep-/-) mice without any treatment or with DEN only. However, with cholic acid, while only some wild-type mice developed tumors, all FXR(hep-/-) mice presented with severe liver injury and tumors. Interestingly, FXR(hep-/-) mouse livers increased basal expression of tumor suppressor p53 protein, apoptosis, and decreased basal cyclin D1 expression, which may prevent tumor development in FXR(hep-/-) mice. However, cholic acid feeding reversed these effects in FXR(hep-/-) mice, which is associated with an increased cyclin D1 and decreased cell cycle inhibitors. More in-depth analysis indicates that the increased in cell growth might result from disturbance of the MAPK and JAK/Stat3 signaling pathways. In conclusion, this study shows that hepatic FXR deficiency may only serve as a tumor initiator, and increased bile acids is required for tumor formation likely by promoting cell proliferation. PMID:26744468

  3. Perfluorooctanoic acid induces gene promoter hypermethylation of glutathione-S-transferase Pi in human liver L02 cells.

    PubMed

    Tian, Meiping; Peng, Siyuan; Martin, Francis L; Zhang, Jie; Liu, Liangpo; Wang, Zhanlin; Dong, Sijun; Shen, Heqing

    2012-06-14

    Perfluorooctanoic acid (PFOA) is one of the most commonly used perfluorinated compounds. Being a persistent environmental pollutant, it can accumulate in human tissues via various exposure routes. PFOA may interfere in a toxic fashion on the immune system, liver, development, and endocrine systems. In utero human exposure had been associated with cord serum global DNA hypomethylation. In light of this, we investigated possible PFOA-induced DNA methylation alterations in L02 cells in order to shed light into its epigenetic-mediated mechanisms of toxicity in human liver. L02 cells were exposed to 5, 10, 25, 50 or 100 mg/L PFOA for 72h. Global DNA methylation levels were determined by LC/ESI-MS, glutathione-S-transferase Pi (GSTP) gene promoter DNA methylation was investigated by methylation-specific polymerase chain reaction (PCR) with bisulfite sequencing, and consequent mRNA expression levels were measured with quantitative real-time reverse transcriptase PCR. A dose-related increase of GSTP promoter methylation at the transcription factor specificity protein 1 (SP1) binding site was observed. However, PFOA did not significantly influence global DNA methylation; nor did it markedly alter the promoter gene methylation of p16 (cyclin-dependent kinase inhibitor 2A), ERα (estrogen receptor α) or PRB (progesterone receptor B). In addition, PFOA significantly elevated mRNA transcript levels of DNMT3A (which mediates de novo DNA methylation), Acox (lipid metabolism) and p16 (cell apoptosis). Considering the role of GSTP in detoxification, aberrant methylation may be pivotal in PFOA-mediated toxicity response via the inhibition of SP1 binding to GSTP promoter. PMID:22425687

  4. Role of COUP-TFI during retinoic acid-induced differentiation of P19 cells to endodermal cells.

    PubMed

    Pickens, Brandy S; Teets, Bryan W; Soprano, Kenneth J; Soprano, Dianne Robert

    2013-04-01

    Retinoic acid (RA) is a positive regulator of P19 cell differentiation. Silencing of pre-B cell leukemia transcription factors (PBXs) expression in P19 cells (AS cells) results in a failure of these cells to differentiate to endodermal cells upon RA treatment. Chicken Ovalbumin Upstream Promoter Transcription Factor I (COUP-TFI) is an orphan member of the steroid-thyroid hormone superfamily. RA treatment of wild type P19 cells results in a dramatic increase in the expression of COUP-TFI; however, COUP-TFI mRNA levels fail to be elevated upon RA treatment of AS cells indicating that PBX expression is required for elevation in COUP-TFI expression. To study the role of COUP-TFI during RA-dependent differentiation of P19 cells, AS cells that inducibly express various levels of COUP-TFI were prepared. Exogenous expression of COUP-TFI in AS cells, in a dose-dependent fashion, leads to growth inhibition, modest cell cycle disruption, and early apoptosis. Furthermore, AS cells can overcome the blockage in RA-dependent differentiation to endodermal cells when either pharmacological levels of COUP-TFI are expressed or a combination of both the expression of physiological levels of COUP-TFI and RA treatment. Additionally, the mRNA level of several pluripotency associated genes including OCT-4, DAX-1, and SF-1 in the COUP-TFI expressing AS cells are reduced. Moreover, analysis of the expression of primary RA response genes indicates that COUP-TFI is involved in the regulatory modulation of the expression of at least two genes, CYP26A1 and HoxA1. These studies demonstrate that COUP-TFI functions as a physiologically relevant regulator during RA-mediated endodermal differentiation of P19 cells. PMID:23018522

  5. Agathisflavone enhances retinoic acid-induced neurogenesis and its receptors α and β in pluripotent stem cells.

    PubMed

    Paulsen, Bruna S; Souza, Cleide S; Chicaybam, Leonardo; Bonamino, Martin Hernán; Bahia, Marcus; Costa, Silvia Lima; Borges, Helena L; Rehen, Stevens K

    2011-10-01

    Flavonoids have key functions in the regulation of multiple cellular processes; however, their effects have been poorly examined in pluripotent stem cells. Here, we tested the hypothesis that neurogenesis induced by all-trans retinoic acid (RA) is enhanced by agathisflavone (FAB, Caesalpinia pyramidalis Tull). Mouse embryonic stem (mES) cells and induced pluripotent stem (miPS) cells growing as embryoid bodies (EBs) for 4 days were treated with FAB (60 μM) and/or RA (2 μM) for additional 4 days. FAB did not interfere with the EB mitotic rate of mES cells, as evidenced by similar percentages of mitotic figures labeled by phospho-histone H3 in control (3.4% ± 0.4%) and FAB-treated groups (3.5% ± 1.1%). Nevertheless, the biflavonoid reduced cell death in both control and RA-treated EBs from mES cells by almost 2-fold compared with untreated EBs. FAB was unable, by itself, to induce neuronal differentiation in EBs after 4 days of treatment. On the other hand, FAB enhanced neuronal differentiation induced by RA in both EBs of mES and miPS. FAB increased the percentage of nestin-labeled cells by 2.7-fold (mES) and 2.4 (miPS) and β-tubulin III-positive cells by 2-fold (mES) and 2.7 (miPS) in comparison to RA-treated EBs only. FAB increased the expression of RA receptors α and β in mES EBs, suggesting that the availability of RA receptors is limiting RA-induced neurogenesis in pluripotent stem cells. This is the first report to describe that naturally occurring biflavonoids regulate apoptosis and neuronal differentiation in pluripotent stem cells.

  6. Synergic Interaction of Rifaximin and Mutaflor (Escherichia coli Nissle 1917) in the Treatment of Acetic Acid-Induced Colitis in Rats.

    PubMed

    Dembiński, Artur; Warzecha, Zygmunt; Ceranowicz, Piotr; Dembiński, Marcin; Cieszkowski, Jakub; Gosiewski, Tomasz; Bulanda, Małgorzata; Kuśnierz-Cabala, Beata; Gałązka, Krystyna; Konturek, Peter Christopher

    2016-01-01

    Background. Inflammatory bowel disease results from the dysregulation of immune response to environmental and microbial agents in genetically susceptible individuals. The aim of the present study was to examine the effect of rifaximin and/or Mutaflor (Escherichia coli Nissle 1917, EcN) administration on the healing of acetic acid-induced colitis. Methods. Colitis was induced in male Wistar rats by rectal enema with 3.5% acetic acid solution. Rifaximin (50 mg/kg/dose) and/or Mutaflor (10(9) CFU/dose) were given intragastrically once a day. The severity of colitis was assessed at the 8th day after induction of inflammation. Results. Treatment with rifaximin significantly accelerated the healing of colonic damage. This effect was associated with significant reversion of the acetic acid-evoked decrease in mucosal blood flow and DNA synthesis. Moreover, administration of rifaximin significantly reduced concentration of proinflammatory TNF-α and activity of myeloperoxidase in colonic mucosa. Mutaflor given alone was without significant effect on activity of colitis. In contrast, Mutaflor given in combination with rifaximin significantly enhanced therapeutic effect of rifaximin. Moreover, Mutaflor led to settle of the colon by EcN and this effect was augmented by pretreatment with rifaximin. Conclusion. Rifaximin and Mutaflor exhibit synergic anti-inflammatory and therapeutic effect in acetic acid-induced colitis in rats. PMID:27433160

  7. Baicalein, a Constituent of Scutellaria baicalensis, Reduces Glutamate Release and Protects Neuronal Cell Against Kainic Acid-Induced Excitotoxicity in Rats.

    PubMed

    Chang, Yi; Lu, Cheng Wei; Lin, Tzu Yu; Huang, Shu Kuei; Wang, Su Jane

    2016-01-01

    Interest in the health benefits of flavonoids, particularly their effects on neurodegenerative disease, is increasing. This study evaluated the role of baicalein, a flavonoid compound isolated from the traditional Chinese medicine Scutellaria baicalensis, in glutamate release and glutamate neurotoxicity in the rat hippocampus. In the rat hippocampal nerve terminals (synaptosomes), baicalein inhibits depolarization-induced glutamate release, and this phenomenon is prevented by chelating the extracellular Ca[Formula: see text] ions and blocking presynaptic Cav2.2 (N-type) and Cav2.1 (P/Q-type) channel activity. In slice preparations, whole cell patch-clamp experiments revealed that baicalein reduced the frequency of miniature excitatory postsynaptic currents, without affecting their amplitude. In a kainic acid rat model, intraperitoneally administering baicalein to rats before the kainic acid intraperitoneal injection substantially attenuated kainic acid-induced neuronal cell death, c-Fos expression, and the activation of the mammalian target of rapamycin in the hippocampus. This study is the first to demonstrate that the natural compound baicalein inhibits glutamate release from hippocampal nerve terminals, and executes a protective action against kainic acid-induced excitotoxicity in vivo. The findings enhance the understanding of baicalein's action in the brain, and suggest that this natural compound is valuable for treating brain disorders related to glutamate excitotoxicity. PMID:27430911

  8. Alpha-Linolenic Acid-Induced Increase in Neurogenesis is a Key Factor in the Improvement in the Passive Avoidance Task After Soman Exposure.

    PubMed

    Piermartiri, Tetsade C B; Pan, Hongna; Chen, Jun; McDonough, John; Grunberg, Neil; Apland, James P; Marini, Ann M

    2015-09-01

    Exposure to organophosphorous (OP) nerve agents such as soman inhibits the critical enzyme acetylcholinesterase (AChE) leading to excessive acetylcholine accumulation in synapses, resulting in cholinergic crisis, status epilepticus and brain damage in survivors. The hippocampus is profoundly damaged after soman exposure leading to long-term memory deficits. We have previously shown that treatment with three sequential doses of alpha-linolenic acid, an essential omega-3 polyunsaturated fatty acid, increases brain plasticity in naïve animals. However, the effects of this dosing schedule administered after a brain insult and the underlying molecular mechanisms in the hippocampus are unknown. We now show that injection of three sequential doses of alpha-linolenic acid after soman exposure increases the endogenous expression of mature BDNF, activates Akt and the mammalian target of rapamycin complex 1 (mTORC1), increases neurogenesis in the subgranular zone of the dentate gyrus, increases retention latency in the passive avoidance task and increases animal survival. In sharp contrast, while soman exposure also increases mature BDNF, this increase did not activate downstream signaling pathways or neurogenesis. Administration of the inhibitor of mTORC1, rapamycin, blocked the alpha-linolenic acid-induced neurogenesis and the enhanced retention latency but did not affect animal survival. Our results suggest that alpha-linolenic acid induces a long-lasting neurorestorative effect that involves activation of mTORC1 possibly via a BDNF-TrkB-mediated mechanism. PMID:25920465

  9. Use of Activated Carbon in Packaging to Attenuate Formaldehyde-Induced and Formic Acid-Induced Degradation and Reduce Gelatin Cross-Linking in Solid Dosage Forms.

    PubMed

    Colgan, Stephen T; Zelesky, Todd C; Chen, Raymond; Likar, Michael D; MacDonald, Bruce C; Hawkins, Joel M; Carroll, Sophia C; Johnson, Gail M; Space, J Sean; Jensen, James F; DeMatteo, Vincent A

    2016-07-01

    Formaldehyde and formic acid are reactive impurities found in commonly used excipients and can be responsible for limiting drug product shelf-life. Described here is the use of activated carbon in drug product packaging to attenuate formaldehyde-induced and formic acid-induced drug degradation in tablets and cross-linking in hard gelatin capsules. Several pharmaceutical products with known or potential vulnerabilities to formaldehyde-induced or formic acid-induced degradation or gelatin cross-linking were subjected to accelerated stability challenges in the presence and absence of activated carbon. The effects of time and storage conditions were determined. For all of the products studied, activated carbon attenuated drug degradation or gelatin cross-linking. This novel use of activated carbon in pharmaceutical packaging may be useful for enhancing the chemical stability of drug products or the dissolution stability of gelatin-containing dosage forms and may allow for the 1) extension of a drug product's shelf-life when the limiting attribute is a degradation product induced by a reactive impurity, 2) marketing of a drug product in hotter and more humid climatic zones than currently supported without the use of activated carbon, and 3) enhanced dissolution stability of products that are vulnerable to gelatin cross-linking.

  10. Synergic Interaction of Rifaximin and Mutaflor (Escherichia coli Nissle 1917) in the Treatment of Acetic Acid-Induced Colitis in Rats

    PubMed Central

    Warzecha, Zygmunt; Ceranowicz, Piotr; Dembiński, Marcin; Cieszkowski, Jakub; Bulanda, Małgorzata; Kuśnierz-Cabala, Beata; Gałązka, Krystyna; Konturek, Peter Christopher

    2016-01-01

    Background. Inflammatory bowel disease results from the dysregulation of immune response to environmental and microbial agents in genetically susceptible individuals. The aim of the present study was to examine the effect of rifaximin and/or Mutaflor (Escherichia coli Nissle 1917, EcN) administration on the healing of acetic acid-induced colitis. Methods. Colitis was induced in male Wistar rats by rectal enema with 3.5% acetic acid solution. Rifaximin (50 mg/kg/dose) and/or Mutaflor (109 CFU/dose) were given intragastrically once a day. The severity of colitis was assessed at the 8th day after induction of inflammation. Results. Treatment with rifaximin significantly accelerated the healing of colonic damage. This effect was associated with significant reversion of the acetic acid-evoked decrease in mucosal blood flow and DNA synthesis. Moreover, administration of rifaximin significantly reduced concentration of proinflammatory TNF-α and activity of myeloperoxidase in colonic mucosa. Mutaflor given alone was without significant effect on activity of colitis. In contrast, Mutaflor given in combination with rifaximin significantly enhanced therapeutic effect of rifaximin. Moreover, Mutaflor led to settle of the colon by EcN and this effect was augmented by pretreatment with rifaximin. Conclusion. Rifaximin and Mutaflor exhibit synergic anti-inflammatory and therapeutic effect in acetic acid-induced colitis in rats. PMID:27433160

  11. Intravenous anesthetic propofol suppresses prostaglandin E2 and cysteinyl leukotriene production and reduces edema formation in arachidonic acid-induced ear inflammation.

    PubMed

    Inada, Takefumi; Hirota, Kiichi; Shingu, Koh

    2015-01-01

    Propofol is an intravenous drug widely used for anesthesia and sedation. Previously, propofol was shown to inhibit cyclo-oxygenase (COX) and 5-lipoxygenase (5-LOX) activities. Because these enzyme-inhibiting effects have only been demonstrated in vitro, this study sought to ascertain whether similar effects might also be observed in vivo. In the current studies, effects of propofol were tested in a murine model of arachidonic acid-induced ear inflammation. Specifically, propofol - as a pre-treatment -- was intraperitoneally and then topical application of arachidonic acid was performed. After 1 h, tissue biopsies were collected and tested for the presence of edema and for levels of inflammatory mediators. The results indicated that the administration of propofol significantly suppressed ear edema formation, tissue myeloperoxidase activity, and tissue production of both prostaglandin E2 and cysteinyl leukotrienes. From the data, it can be concluded that propofol could exert anti-COX and anti-5-LOX activities in an in vivo model and that these activities in turn could have, at least in part, suppressed arachidonic acid-induced edema formation in the ear.

  12. GSK-3β promotes PA-induced apoptosis through changing β-arrestin 2 nucleus location in H9c2 cardiomyocytes.

    PubMed

    Chang, Fen; Liu, Jing; Fu, Hui; Wang, Jinlan; Li, Fang; Yue, Hongwei; Li, Wenjing; Zhao, Jing; Yin, Deling

    2016-09-01

    Palmitic acid (PA), a type of saturated fatty acids, induces cardiovascular diseases by causing cardiomyocyte apoptosis with unclear mechanisms. Akt participates in PA-induced cardiomyocyte apoptosis. GSK-3β is a substrate of Akt, we investigated its role in PA-induced apoptosis. We reveal that PA inhibits GSK-3β phosphorylation accompanied by inactivation of Akt in H9c2 cardiomyocytes. We also reveal that inhibition the activity of GSK-3β by its inhibitor LiCl or knockdown by siRNA significantly attenuates PA-induced cardiomyocyte apoptosis, this suggesting that GSK-3β plays a pro-apoptotic role. To detect its downstream factors, we analyzed the roles of JNK, p38 MAPK and β-arrestin 2 (β-Arr2). Here, we report that GSK-3β regulate PA-induced cardiomyocyte apoptosis by affecting the distribution of β-Arr2. PA diminishes the protein level of β-Arr2 and changes its distribution from nucleus to cytoplasm. Either inhibition of β-Arr2 by its siRNA or overexpression of its protein level by transfection of β-Arr2 full-length plasmid promotes PA-induced cardiomyocyte apoptosis, which remind us to focus on the changes of its location. β-Arr2 siRNA decreased the background level of β-Arr2 in nucleus in normal H9c2 cells. Overexpression of β-Arr2 increased cytoplasm level of β-Arr2 as PA did. While LiCl, the inhibitor of GSK-3β decreased PA-induced apoptosis, accompany with increased nucleus level of β-Arr2. Then we concluded that GSK-3β is closely associated with cardiomyocyte apoptosis induced by PA, it performs its pro-apoptotic function by affecting the location of β-Arr2. LiCl inhibits PA-induced cardiomyocyte apoptosis, which might provide novel therapeutic for cardiovascular diseases induced by metabolic syndrome.

  13. GSK-3β promotes PA-induced apoptosis through changing β-arrestin 2 nucleus location in H9c2 cardiomyocytes.

    PubMed

    Chang, Fen; Liu, Jing; Fu, Hui; Wang, Jinlan; Li, Fang; Yue, Hongwei; Li, Wenjing; Zhao, Jing; Yin, Deling

    2016-09-01

    Palmitic acid (PA), a type of saturated fatty acids, induces cardiovascular diseases by causing cardiomyocyte apoptosis with unclear mechanisms. Akt participates in PA-induced cardiomyocyte apoptosis. GSK-3β is a substrate of Akt, we investigated its role in PA-induced apoptosis. We reveal that PA inhibits GSK-3β phosphorylation accompanied by inactivation of Akt in H9c2 cardiomyocytes. We also reveal that inhibition the activity of GSK-3β by its inhibitor LiCl or knockdown by siRNA significantly attenuates PA-induced cardiomyocyte apoptosis, this suggesting that GSK-3β plays a pro-apoptotic role. To detect its downstream factors, we analyzed the roles of JNK, p38 MAPK and β-arrestin 2 (β-Arr2). Here, we report that GSK-3β regulate PA-induced cardiomyocyte apoptosis by affecting the distribution of β-Arr2. PA diminishes the protein level of β-Arr2 and changes its distribution from nucleus to cytoplasm. Either inhibition of β-Arr2 by its siRNA or overexpression of its protein level by transfection of β-Arr2 full-length plasmid promotes PA-induced cardiomyocyte apoptosis, which remind us to focus on the changes of its location. β-Arr2 siRNA decreased the background level of β-Arr2 in nucleus in normal H9c2 cells. Overexpression of β-Arr2 increased cytoplasm level of β-Arr2 as PA did. While LiCl, the inhibitor of GSK-3β decreased PA-induced apoptosis, accompany with increased nucleus level of β-Arr2. Then we concluded that GSK-3β is closely associated with cardiomyocyte apoptosis induced by PA, it performs its pro-apoptotic function by affecting the location of β-Arr2. LiCl inhibits PA-induced cardiomyocyte apoptosis, which might provide novel therapeutic for cardiovascular diseases induced by metabolic syndrome. PMID:27431999

  14. The Role of Mitochondria in Apoptosis*

    PubMed Central

    Wang, Chunxin; Youle, Richard J.

    2016-01-01

    Mitochondria play key roles in activating apoptosis in mammalian cells. Bcl-2 family members regulate the release of proteins from the space between the mitochondrial inner and outer membrane that, once in the cytosol, activate caspase proteases that dismantle cells and signal efficient phagocytosis of cell corpses. Here we review the extensive literature on proteins released from the intermembrane space and consider genetic evidence for and against their roles in apoptosis activation. We also compare and contrast apoptosis pathways in Caenorhabditis elegans, Drosophila melanogaster, and mammals that indicate major mysteries remaining to be solved. PMID:19659442

  15. Cytosolic DNA triggers mitochondrial apoptosis via DNA damage signaling proteins independently of AIM2 and RNA polymerase III.

    PubMed

    Wenzel, Michael; Wunderlich, Michael; Besch, Robert; Poeck, Hendrik; Willms, Simone; Schwantes, Astrid; Kremer, Melanie; Sutter, Gerd; Endres, Stefan; Schmidt, Andreas; Rothenfusser, Simon

    2012-01-01

    A key host response to limit microbial spread is the induction of cell death when foreign nucleic acids are sensed within infected cells. In mouse macrophages, transfected DNA or infection with modified vaccinia virus Ankara (MVA) can trigger cell death via the absent in melanoma 2 (AIM2) inflammasome. In this article, we show that nonmyeloid human cell types lacking a functional AIM2 inflammasome still die in response to cytosolic delivery of different DNAs or infection with MVA. This cell death induced by foreign DNA is independent of caspase-8 and carries features of mitochondrial apoptosis: dependence on BAX, APAF-1, and caspase-9. Although it does not require the IFN pathway known to be triggered by infection with MVA or transfected DNA via polymerase III and retinoid acid-induced gene I-like helicases, it shows a strong dependence on components of the DNA damage signaling pathway: cytosolic delivery of DNA or infection with MVA leads to phosphorylation of p53 (serines 15 and 46) and autophosphorylation of ataxia telangiectasia mutated (ATM); depleting p53 or ATM with small interfering RNA or inhibiting the ATM/ATM-related kinase family by caffeine strongly reduces apoptosis. Taken together, our findings suggest that a pathway activating DNA damage signaling plays an important independent role in detecting intracellular foreign DNA, thereby complementing the induction of IFN and activation of the AIM2 inflammasome. PMID:22140256

  16. Quantification of Apoptosis in Mouse Atherosclerotic Lesions.

    PubMed

    Figg, Nichola L; Bennett, Martin R

    2015-01-01

    Apoptosis is a key process occurring in atherosclerosis, both in humans and in animal models. Apoptosis occurs in all cell types studied thus far, and thus lineage marking is often necessary. Apoptosis should be ascertained using a combination of morphological features and activation of specific pathways (e.g., terminal UTP nick end labeling-TUNEL). Both TUNEL and cryptic epitope antibodies (e.g., cleaved caspase 3) can be used, although they will often give different frequencies. Apoptotic frequency but not rate can be estimated from these methods, as we do not know the timing of apoptosis or how much of the process is marked by each method. We describe the morphological and immunohistochemical methods used in our laboratory to detect apoptotic cells in animal and human atherosclerotic plaques.

  17. [The comeback of mitochondria in Drosophila apoptosis].

    PubMed

    Clavier, Amandine; Rincheval-Arnold, Aurore; Mignotte, Bernard; Guénal, Isabelle

    2016-05-01

    The role of the mitochondrion in mammalian cell apoptosis has been established since the mid-1990s. However, the importance of this organelle in non-mammalian apoptosis has long been regarded as minor, notably because of the absence of a crucial role for cytochrome c in caspase activation. Recent results indicate that the control of caspase activation and apoptosis in Drosophila cell death occurs at the mitochondrial level. Numerous proteins that appear key for Drosophila apoptosis regulation constitutively or transiently bind to mitochondria. They participate in the cell death process at different levels such as degradation of an IAP caspase inhibitor, production of mitochondrial reactive oxygen species or stimulation of the mitochondrial fission machinery. The aim of this review is to take stock of these events that might have their counterpart in humans. PMID:27225920

  18. Autophagy and apoptosis in liver injury

    PubMed Central

    Wang, Kewei

    2015-01-01

    Apoptosis is a primary characteristic in the pathogenesis of liver disease. Hepatic apoptosis is regulated by autophagic activity. However, mechanisms mediating their interaction remain to be determined. Basal level of autophagy ensures the physiological turnover of old and damaged organelles. Autophagy also is an adaptive response under stressful conditions. Autophagy can control cell fate through different cross-talk signals. A complex interplay between hepatic autophagy and apoptosis determines the degree of hepatic apoptosis and the progression of liver disease as demonstrated by pre-clinical models and clinical trials. This review summarizes recent advances on roles of autophagy that plays in pathophysiology of liver. The autophagic pathway can be a novel therapeutic target for liver disease. PMID:25927598

  19. In vivo apoptosis in Shigella flexneri infections.

    PubMed Central

    Zychlinsky, A; Thirumalai, K; Arondel, J; Cantey, J R; Aliprantis, A O; Sansonetti, P J

    1996-01-01

    Shigella flexneri, an etiological agent of bacillary dysentery, causes apoptosis in vitro. Here we show that it also induces apoptosis in vivo. We were able to quantify the number of apoptotic cells in rabbit Peyer's patches infected with S. flexneri by detecting cells with fragmented DNA. Infection with virulent S. flexneri results in massive numbers of apoptotic cells within the lymphoid follicles. In contrast, neither an avirulent strain nor an avirulent strain capable of colonizing Peyer's patches increases the background level of apoptotic cells. Macrophages, T cells, and B cells are shown to undergo apoptosis in vivo. These results indicate that apoptosis may play a crucial role in the pathogenesis of shigellosis. PMID:8945588

  20. Noninvasive real-time imaging of apoptosis.

    PubMed

    Laxman, Bharathi; Hall, Daniel E; Bhojani, Mahaveer Swaroop; Hamstra, Daniel A; Chenevert, Thomas L; Ross, Brian D; Rehemtulla, Alnawaz

    2002-12-24

    Strict coordination of proliferation and programmed cell death (apoptosis) is essential for normal physiology. An imbalance in these two opposing processes results in various diseases including AIDS, neurodegenerative disorders, myelodysplastic syndromes, ischemiareperfusion injury, cancer, autoimmune disease, among others. Objective and quantitative noninvasive imaging of apoptosis would be a significant advance for rapid and dynamic screening as well as validation of experimental therapeutic agents. Here, we report the development of a recombinant luciferase reporter molecule that when expressed in mammalian cells has attenuated levels of reporter activity. In cells undergoing apoptosis, a caspase-3-specific cleavage of the recombinant product occurs, resulting in the restoration of luciferase activity that can be detected in living animals with bioluminescence imaging. The ability to image apoptosis noninvasively and dynamically over time provides an opportunity for high-throughput screening of proapoptotic and antiapoptotic compounds and for target validation in vivo in both cell lines and transgenic animals. PMID:12475931

  1. Measuring Apoptosis at the Single Cell Level

    PubMed Central

    Bouchier-Hayes, Lisa; Muñoz-Pinedo, Cristina; Connell, Samuel; Green, Douglas R.

    2008-01-01

    The use of live cell microscopy has made a number of contributions to the study of apoptosis. Many of the tools and techniques are available that allow us to image the key events that occur during cell death including mitochondrial outer membrane permeabilization, mitochondrial transmembrane potential changes, translocation of Bcl-2 family members, caspase activation, phosphatidylserine flip and plasma membrane rupture. We discuss these techniques here and highlight the advantages and drawbacks of using such approaches to study apoptosis. PMID:18314052

  2. Umbelliprenin Induces Apoptosis in CLL Cell Lines.

    PubMed

    Ziai, Seyed Ali; Gholami, Omid; Iranshahi, Mehrdad; Zamani, Amir Hassan; Jeddi-Tehrani, Mahmood

    2012-01-01

    Chronic lymphocytic leukemia (CLL) remains an incurable disease that requires innovative new approaches to improve therapeutic outcome. Many Ferula species, including F. asa-foetida, synthesize terpenyloxy coumarins. One of these coumarins is umbelliprenin, which has been implicated with induction of apoptosis in some cancer cell lines. In this study induction of apoptosis by umbelliprenin on Jurkat T-CLL and Raji B-CLL cell lines was studied. In this regard, cells were incubated with various concentrations of umbelliprenin in-vitro for different times and assayed for apoptosis with annexin V-FITC/PI double staining flowcytometry method. Results showed that umbelliprenin induced apoptosis in leukemic cells in a dose- and time-dependent manner and that CLL cells were more susceptible to umbelliprenin induced cell death than normal peripheral blood mononuclear cell (PBMCs). Moreover, we study the induction of apoptosis in Jurkat cells by umbelliprenin in the presence of interleukin 4 (IL-4) as an agent that causes resistance to apoptosis in CLL cells, was also student. We showed that IL-4 can not reduce apoptotic effect of umbelliprenin. The preferential toxicity of umbelliprenin for CLL cells, supports the hypothesis that oral administration of umbelliprenin in the form of foods or folk medicines containing this coumarin, might enhance protection against the development of CLL in man with little side effects. In conclusion, umbelliprenin may be an effective therapeutic agent in the treatment of CLL, and thus clinical studies with umbelliprenin may be appropriate.

  3. Umbelliprenin Induces Apoptosis in CLL Cell Lines

    PubMed Central

    Ziai, Seyed Ali; Gholami, Omid; Iranshahi, Mehrdad; Zamani, Amir Hassan; Jeddi-Tehrani, Mahmood

    2012-01-01

    Chronic lymphocytic leukemia (CLL) remains an incurable disease that requires innovative new approaches to improve therapeutic outcome. Many Ferula species, including F. asa-foetida, synthesize terpenyloxy coumarins. One of these coumarins is umbelliprenin, which has been implicated with induction of apoptosis in some cancer cell lines. In this study induction of apoptosis by umbelliprenin on Jurkat T-CLL and Raji B-CLL cell lines was studied. In this regard, cells were incubated with various concentrations of umbelliprenin in-vitro for different times and assayed for apoptosis with annexin V–FITC/PI double staining flowcytometry method. Results showed that umbelliprenin induced apoptosis in leukemic cells in a dose- and time-dependent manner and that CLL cells were more susceptible to umbelliprenin induced cell death than normal peripheral blood mononuclear cell (PBMCs). Moreover, we study the induction of apoptosis in Jurkat cells by umbelliprenin in the presence of interleukin 4 (IL-4) as an agent that causes resistance to apoptosis in CLL cells, was also student. We showed that IL-4 can not reduce apoptotic effect of umbelliprenin. The preferential toxicity of umbelliprenin for CLL cells, supports the hypothesis that oral administration of umbelliprenin in the form of foods or folk medicines containing this coumarin, might enhance protection against the development of CLL in man with little side effects. In conclusion, umbelliprenin may be an effective therapeutic agent in the treatment of CLL, and thus clinical studies with umbelliprenin may be appropriate. PMID:24250490

  4. [Protein kinase C activation induces platelet apoptosis].

    PubMed

    Zhao, Li-Li; Chen, Meng-Xing; Zhang, Ming-Yi; Dai, Ke-Sheng

    2013-10-01

    Platelet apoptosis elucidated by either physical or chemical compound or platelet storage occurs wildly, which might play important roles in controlling the numbers and functions of circulated platelets, or in the development of some platelet-related diseases. However, up to now, a little is known about the regulatory mechanisms of platelet apoptosis. Protein kinase C (PKC) is highly expressed in platelets and plays central roles in regulating platelet functions. Although there is evidence indicating that PKC is involved in the regulation of apoptosis of nucleated cells, it is still unclear whether PKC plays a role in platelet apoptosis. The aim of this study was to investigate the role of PKC in platelet apoptosis. The effects of PKC on mitochondrial membrane potential (ΔΨm), phosphatidylserine (PS) exposure, and caspase-3 activation of platelets were analyzed by flow cytometry and Western blot. The results showed that the ΔΨm depolarization in platelets was induced by PKC activator in time-dependent manner, and the caspase-3 activation in platelets was induced by PKC in concentration-dependent manner. However, the platelets incubated with PKC inhibitor did not results in ΔΨm depolarization and PS exposure. It is concluded that the PKC activation induces platelet apoptosis through influencing the mitochondrial functions and activating caspase 3. The finds suggest a novel mechanism for PKC in regulating platelet numbers and functions, which has important pathophysiological implications for thrombosis and hemostasis.

  5. 2α-Hydroxyursolic Acid Inhibited Cell Proliferation and Induced Apoptosis in MDA-MB-231 Human Breast Cancer Cells through the p38/MAPK Signal Transduction Pathway.

    PubMed

    Jiang, Xue; Li, Tong; Liu, Rui Hai

    2016-03-01

    The mechanisms of action of 2α-hydroxyursolic acid in inhibiting cell proliferation and inducing apoptosis in MDA-MB-231 human breast cancer cells were investigated. The antiproliferative activity and cytotoxicity were determined by the methylene blue assay. The expression of proteins was determined using Western blot. 2α-Hydroxyursolic acid significantly inhibited MDA-MB-231 cell proliferation, and no cytotoxicity was observed at concentrations below 30 μM. 2α-Hydroxyursolic acid significantly down-regulated expressions of TRAF2, PCNA, cyclin D1, and CDK4 and up-regulated the expressions of p-ASK1, p-p38, p-p53, and p-21. 2α-Hydroxyursolic acid induced apoptosis in MDA-MB-231 cells by significantly increasing the Bax/Bcl-2 ratio and inducing the cleaved caspase-3. Additionally, treatment of SB203580, a p38 MAPK specific inhibitor, reversed the inhibition of PCNA, cyclin D1, and Bcl-2 expression induced by 2α-hydroxyursolic acid in MDA-MB-231 cells. These results suggested that 2α-hydroxyursolic acid exhibited anticancer activity through the inhibition of cell proliferation and the induction of apoptosis by regulating the p38/MAPK signal transduction pathway.

  6. Confocal Raman micro-spectroscopy for rapid and label-free detection of maleic acid-induced variations in human sperm

    PubMed Central

    Li, Ning; Chen, Diling; Xu, Yan; Liu, Songhao; Zhang, Heming

    2014-01-01

    Confocal Raman microspectroscopy is a valuable analytical tool in biological and medical research, allowing the detection of sample variations without external labels or extensive preparation. To determine whether this method can assess the effect of maleic acid on sperm, we prepared human sperm samples incubated in different concentrations of maleic acid, after which Raman spectra from the various regions of sperm cells were recorded. Following the maleic acid treatment, Raman spectra indicated significant changes. Combined with other means, we found that the structures and chemical compositions of sperm membranes were damaged, and even the sperm DNA was damaged by the incorporation of maleic acid. Thus, this technique can be used for detection and identification of maleic acid-induced changes in human sperm at a molecular level. Although this particular application of Raman microspectroscopy still requires further validation, it has potentially promise as a diagnostic tool for reproductive medicine. PMID:24877025

  7. Yogurt containing Lactobacillus gasseri OLL 2716 (LG21 yogurt) accelerated the healing of acetic acid-induced gastric ulcer in rats.

    PubMed

    Uchida, Masayuki; Shimizu, Kimiko; Kurakazu, Keiko

    2010-01-01

    We have reported that LG21 yogurt containing Lactobacillus gasseri OLL 2716 (LG21 yogurt) inhibits the formation of HCl-induced acute gastric lesions through the generation of prostaglandin E₂. This study aimed to determine the role of viable Lactobacillus in the healing of acetic acid-induced chronic gastric ulcer. LG21 yogurt or γ-ray radiated LG21 yogurt was administered orally twice a day for 10 d at a dose of 5 ml/kg. LG21 yogurt significantly accelerated the healing of the ulcer, but γ-ray radiated LG21 yogurt did not. However, both yogurts significantly inhibited HCl-induced gastric erosive lesions and enhanced the generation of gastric mucosal prostaglandin E₂. From the above results, it was found that viable bacteria are needed to accelerate the healing of chronic gastric ulcer, but not to inhibit gastric lesions.

  8. [The influence of high pressure on the 3-indoleacetic-acid-induced curvature of Avena coleoptiles in the Went-test].

    PubMed

    Chrometzka, P

    1967-12-01

    1. High atmospheric pressure causes an increase of the 3-indoleacetic-acid-induced curvature of Avena coleoptiles in the Went-test, regardless of whether the applied gas is nitrogen, hydrogen, oxygen, or air. 2. The highest increase was caused by high pressure of oxygen, the lowest by lack of oxygen. 3. The high pressure effect was also observed with coleoptiles which were treated 20 hours prior to the test and which were then kept under normal pressure. 4. High pressure of oxygen for a long period (20 hours) had a poisonous effect on the coleoptiles. They ceased to grow. Preliminary studies have shown that the respiration is enhanced if the coleoptiles have been kept under high pressure. PMID:24554325

  9. Chemometrics-assisted Spectrofluorimetric Determination of Two Co-administered Drugs of Major Interaction, Methotrexate and Aspirin, in Human Urine Following Acid-induced Hydrolysis.

    PubMed

    Maher, Hadir M; Ragab, Marwa A A; El-Kimary, Eman I

    2015-01-01

    Methotrexate (MTX) is widely used to treat rheumatoid arthritis (RA), mostly along with non-steroidal anti-inflammatory drugs (NSAIDs), the most common of which is aspirin or acetyl salicylic acid (ASA). Since NSAIDs impair MTX clearance and increase its toxicity, it was necessary to develop a simple and reliable method for the monitoring of MTX levels in urine samples, when coadministered with ASA. The method was based on the spectrofluorimetric measurement of the acid-induced hydrolysis product of MTX, 4-amino-4-deoxy-10-methylpteroic acid (AMP), along with the strongly fluorescent salicylic acid (SA), a product of acid-induced hydrolysis of aspirin and its metabolites in urine. The overlapping emission spectra were resolved using the derivative method (D method). In addition, the corresponding derivative emission spectra were convoluted using discrete Fourier functions, 8-points sin xi polynomials, (D/FF method) for better elimination of interferences. Validation of the developed methods was carried out according to the ICH guidelines. Moreover, the data obtained using derivative and convoluted derivative spectra were treated using the non-parametric Theil's method (NP), compared with the least-squares parametric regression method (LSP). The results treated with Theil's method were more accurate and precise compared with LSP since the former is less affected by the outliers. This work offers the potential of both derivative and convolution using discrete Fourier functions in addition to the effectiveness of using the NP regression analysis of data. The high sensitivity obtained by the proposed methods was promising for measuring low concentration levels of the two drugs in urine samples. These methods were efficiently used to measure the drugs in human urine samples following their co-administration. PMID:26234512

  10. Functional analysis of a tannic-acid-inducible and hypoviral-regulated small heat-shock protein Hsp24 from the chestnut blight fungus Cryphonectria parasitica.

    PubMed

    Baek, Jin-Ho; Park, Jin-Ah; Kim, Jung-Mi; Oh, Jung-Mi; Park, Seung-Moon; Kim, Dae-Hyuk

    2014-01-01

    A small heat-shock protein gene, CpHsp24, of Cryphonectria parasitica was selected based on its expression pattern, which showed that it was tannic acid inducible and that its induction was severely hampered by a hypovirus. The predicted protein sequence of CpHsp24 consisted of a hallmark α-crystalline domain flanked by a variable N-terminal and a short C-terminal region. Disruption of CpHsp24 resulted in a slow growth rate under standard growth conditions. The CpHsp24-null mutant showed enhanced sensitivity to heat shock, which was consistent with Northern and Western analyses displaying the heat-shock induction of the CpHsp24 gene and protein, respectively. Virulence tests on the excised bark revealed a severe decrease in the necrotic area of the CpHsp24-null mutant. When the hypovirus was transferred, virus-containing CpHsp24-null progeny displayed severely retarded growth patterns with hypovirulent characteristics of reduced pigmentation and sporulation. Because the tannic-acid-inducible and hypoviral-suppressible expression and the severely impaired virulence are also characteristics of the laccase3 gene (lac3), lac3 expression in the CpHsp24-null mutant was also examined. The resulting lac3 induction was severely affected in the CpHsp24-null mutant, suggesting that CpHsp24 is important for lac3 induction and that CpHsp24 may act as a molecular chaperone for the lac3 protein.

  11. Analgesic and Anti-Inflammatory Properties of Gelsolin in Acetic Acid Induced Writhing, Tail Immersion and Carrageenan Induced Paw Edema in Mice

    PubMed Central

    Gupta, Ashok Kumar; Parasar, Devraj; Sagar, Amin; Choudhary, Vikas; Chopra, Bhupinder Singh; Garg, Renu; Ashish; Khatri, Neeraj

    2015-01-01

    Plasma gelsolin levels significantly decline in several disease conditions, since gelsolin gets scavenged when it depolymerizes and caps filamentous actin released in the circulation following tissue injury. It is well established that our body require/implement inflammatory and analgesic responses to protect against cell damage and injury to the tissue. This study was envisaged to examine analgesic and anti-inflammatory activity of exogenous gelsolin (8 mg/mouse) in mice models of pain and acute inflammation. Administration of gelsolin in acetic acid-induced writhing and tail immersion tests not only demonstrated a significant reduction in the number of acetic acid-induced writhing effects, but also exhibited an analgesic activity in tail immersion test in mice as compared to placebo treated mice. Additionally, anti-inflammatory function of gelsolin (8 mg/mouse) compared with anti-inflammatory drug diclofenac sodium (10 mg/kg)] was confirmed in the carrageenan injection induced paw edema where latter was measured by vernier caliper and fluorescent tomography imaging. Interestingly, results showed that plasma gelsolin was capable of reducing severity of inflammation in mice comparable to diclofenac sodium. Analysis of cytokines and histo-pathological examinations of tissue revealed administration of gelsolin and diclofenac sodium significantly reduced production of pro-inflammatory cytokines, TNF-α and IL-6. Additionally, carrageenan groups pretreated with diclofenac sodium or gelsolin showed a marked decrease in edema and infiltration of inflammatory cells in paw tissue. Our study provides evidence that administration of gelsolin can effectively reduce the pain and inflammation in mice model. PMID:26426535

  12. Chondrocyte Apoptosis in the Pathogenesis of Osteoarthritis

    PubMed Central

    Hwang, Hyun Sook; Kim, Hyun Ah

    2015-01-01

    Apoptosis is a highly-regulated, active process of cell death involved in development, homeostasis and aging. Dysregulation of apoptosis leads to pathological states, such as cancer, developmental anomalies and degenerative diseases. Osteoarthritis (OA), the most common chronic joint disease in the elderly population, is characterized by progressive destruction of articular cartilage, resulting in significant disability. Because articular cartilage depends solely on its resident cells, the chondrocytes, for the maintenance of extracellular matrix, the compromising of chondrocyte function and survival would lead to the failure of the articular cartilage. The role of subchondral bone in the maintenance of proper cartilage matrix has been suggested as well, and it has been proposed that both articular cartilage and subchondral bone interact with each other in the maintenance of articular integrity and physiology. Some investigators include both articular cartilage and subchondral bone as targets for repairing joint degeneration. In late-stage OA, the cartilage becomes hypocellular, often accompanied by lacunar emptying, which has been considered as evidence that chondrocyte death is a central feature in OA progression. Apoptosis clearly occurs in osteoarthritic cartilage; however, the relative contribution of chondrocyte apoptosis in the pathogenesis of OA is difficult to evaluate, and contradictory reports exist on the rate of apoptotic chondrocytes in osteoarthritic cartilage. It is not clear whether chondrocyte apoptosis is the inducer of cartilage degeneration or a byproduct of cartilage destruction. Chondrocyte death and matrix loss may form a vicious cycle, with the progression of one aggravating the other, and the literature reveals that there is a definite correlation between the degree of cartilage damage and chondrocyte apoptosis. Because current treatments for OA act only on symptoms and do not prevent or cure OA, chondrocyte apoptosis would be a valid

  13. Evidence of apoptosis in alcoholic cardiomyopathy.

    PubMed

    Fernández-Solà, Joaquim; Fatjó, Francesc; Sacanella, Emilio; Estruch, Ramón; Bosch, Xavier; Urbano-Márquez, Alvaro; Nicolás, José-María

    2006-08-01

    Apoptosis is a mechanism of cell death implicated in the pathogenesis of alcohol-induced organ damage. Experimental studies have suggested alcohol-mediated apoptosis in the cardiac muscle, and there is evidence of skeletal muscle apoptosis in long-term high-dose alcohol consumers. The relation between skeletal and cardiac muscle damage in alcoholism led us to consider the pathogenic role of apoptosis in alcoholic dilated cardiomyopathy. We evaluated apoptosis in the hearts of individuals with long-term alcoholism (n = 19), of those with long-standing hypertension (n = 20), and of those with no known disease as control subjects (n = 7). Alcohol consumption measurement, heart function evaluation, and myocardial immunohistochemical and morphometric analysis were performed. Apoptosis was evaluated with deoxyribonucleotidyl transferase-mediated dUTP-biotin nick end-labeling assay, and BAX and BCL-2 expressions were used to detect induction of and protection from proapoptotic mechanisms, respectively. Hearts from patients with a history of alcoholism showed apoptotic indexes similar to those of organs from hypertensive donors. Subjects with structural heart damage of alcoholic or hypertensive origin showed higher apoptotic indexes in deoxyribonucleotidyl transferase-mediated dUTP-biotin nick end-labeling, BAX, and BCL-2 assays as compared with control subjects (P < .001 for all). Moreover, New York Heart Association class I alcoholic patients displayed higher BAX and BCL-2 expressions as compared with control subjects. We conclude that apoptosis is present to a similar degree in the heart muscle of high-dose alcohol consumers and long-standing hypertensive subjects and is related to structural damage. Proapoptotic mechanisms are activated in alcoholic patients without heart damage.

  14. Solamargine triggers hepatoma cell death through apoptosis

    PubMed Central

    XIE, XIAODONG; ZHU, HAITAO; YANG, HUIJIAN; HUANG, WENSI; WU, YINGYING; WANG, YING; LUO, YANLING; WANG, DONGQING; SHAO, GENBAO

    2015-01-01

    Solamargine (SM), a steroidal alkaloid glycoside extracted from the traditional Chinese herb Solanum incanum, has been evidenced to inhibit the growth and induce apoptosis in a number of human cancer cell lines. In the present study, the anticancer effect of SM and underlying molecular mechanism of SM-induced apoptosis were investigated on the human hepatocellular carcinoma cells, SMMC7721 and HepG2. The proliferation effects of SM on the SMMC7721 and HepG2 cell lines were evaluated using MTT and colony formation assays. In addition, the percentage of apoptosis was measured using an Annexin V/propidium iodide staining method and the cell cycle distribution mediated by SM was analyzed using flow cytometry. The expression levels of B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X protein (Bax), caspase-3, caspase-9, proliferating cell nuclear antigen (pcna) and Ki67 proteins were examined to further demonstrate the proliferate and apoptosis effects of SM on the hepatoma cells. The results indicated that SM effectively inhibited hepatoma cell proliferation and promoted apoptosis. SM resulted in cell cycle arrest at the G2/M phase in the two cell lines. In addition, SM downregulated the levels of proliferation-associated (Ki67 and pcna) and anti-apoptotic (Bcl-2) proteins, and promoted the activity of apoptosis-associated proteins (Bax, caspase-3 and caspase-9). Therefore, the activation of the Bcl-2/Bax and caspase signaling pathways may be involved in the SM-induced apoptosis of hepatoma cells. PMID:26170994

  15. CASPASE CONTROL: PROTAGONISTS OF CANCER CELL APOPTOSIS

    PubMed Central

    Fiandalo, M.V.; Kyprianou, N.

    2013-01-01

    Emergence of castration-resistant metastatic prostate cancer is due to activation of survival pathways, including apoptosis suppression and anoikis resistance, and increased neovascularization. Thus targeting of apoptotic players is of critical significance in prostate cancer therapy since loss of apoptosis and resistance to anoikis are critical in aberrant malignant growth, metastasis and conferring therapeutic failure. The majority of therapeutic agents act through intrinsic mitochondrial, extrinsic death receptor pathways or endoplasmic reticulum stress pathways to induce apoptosis. Current therapeutic strategies target restoring regulatory molecules that govern the pro-survival pathways such as PTEN which regulates AKT activity. Other strategies focus on reactivating the apoptotic pathways either by down-regulating anti-apoptotic players such as BCL-2 or by up-regulating pro-apoptotic protein families, most notably, the caspases. Caspases are a family of cystine proteases which serve critical roles in apoptotic and inflammatory signaling pathways. During tumorigenesis, significant loss or inactivation of lead members in the caspase family leads to impairing apoptosis induction, causing a dramatic imbalance in the growth dynamics, ultimately resulting in aberrant growth of human cancers. Recent exploitation of apoptosis pathways towards re-instating apoptosis induction via caspase re-activation has provided new molecular platforms for the development of therapeutic strategies effective against advanced prostate cancer as well as other solid tumors. This review will discuss the current cellular landscape featuring the caspase family in tumor cells and their activation via pharmacologic intervention towards optimized anti-cancer therapeutic modalities. This article is part of a Special Issue entitled “Apoptosis: Four Decades Later”. PMID:23070001

  16. Palmitic Acid-Induced Neuron Cell Cycle G2/M Arrest and Endoplasmic Reticular Stress through Protein Palmitoylation in SH-SY5Y Human Neuroblastoma Cells

    PubMed Central

    Hsiao, Yung-Hsuan; Lin, Ching-I; Liao, Hsiang; Chen, Yue-Hua; Lin, Shyh-Hsiang

    2014-01-01

    Obesity-related neurodegenerative diseases are associated with elevated saturated fatty acids (SFAs) in the brain. An increase in SFAs, especially palmitic acid (PA), triggers neuron cell apoptosis, causing cognitive function to deteriorate. In the present study, we focused on the specific mechanism by which PA triggers SH-SY5Y neuron cell apoptosis. We found that PA induces significant neuron cell cycle arrest in the G2/M phase in SH-SY5Y cells. Our data further showed that G2/M arrest is involved in elevation of endoplasmic reticular (ER) stress according to an increase in p-eukaryotic translation inhibition factor 2α, an ER stress marker. Chronic exposure to PA also accelerates beta-amyloid accumulation, a pathological characteristic of Alzheimer’s disease. Interestingly, SFA-induced ER stress, G2/M arrest and cell apoptosis were reversed by treatment with 2-bromopalmitate, a protein palmitoylation inhibitor. These findings suggest that protein palmitoylation plays a crucial role in SFA-induced neuron cell cycle G2/M arrest, ER stress and apoptosis; this provides a novel strategy for preventing SFA-induced neuron cell dysfunction. PMID:25402647

  17. Sodium nitroprusside induces apoptosis of rabbit chondrocytes

    NASA Astrophysics Data System (ADS)

    Liang, Qian; Wang, Xiao-Ping; Chen, Tong-Sheng

    2013-02-01

    Osteoarthritis (OA) is characterized by a slowly progressing degradation of the matrix and destruction of articular cartilage. Apoptosis of chondrocyte is accounted for the mechanism of OA. Nitric oxide (NO), as a stimulus, has been shown to induce chondrocyte apoptosis by activating the matrix metalloproteinases (MMPs), increasing the expression of cyclooxygenase 2 (COX-2) and the level of prostaglandin E2 (PGE2), inhibiting the proteoglycan synthesis and type II collagen expression. In this study, sodium nitroprusside (SNP) was administered to be the NO donor to explore the mechanism of NO-induced apoptosis of rabbit chondrocytes obtained from six weeks old New Zealand rabbits. CCK-8 assay revealed the inhibitory effect of SNP on cell viability. We used flow cytometry (FCM) to assess the form of cell death by Annexin-V/propidium iodide (PI) double staining, and evaluate the change of mitochondrial membrane potential (ΔΨm). We found that the SNP induced chondrocyte apoptosis in a dose- and time-dependent manner and an observable reduction of ΔΨm. In conclusion, our findings indicate that SNP induces apoptosis of rabbit chondrocytes via a mitochondria-mediated pathway.