Science.gov

Sample records for ache activity assay

  1. An in vitro AChE inhibition assay combined with UF-HPLC-ESI-Q-TOF/MS approach for screening and characterizing of AChE inhibitors from roots of Coptis chinensis Franch.

    PubMed

    Zhao, Hengqiang; Zhou, Siduo; Zhang, Minmin; Feng, Jinhong; Wang, Shanshan; Wang, Daijie; Geng, Yanling; Wang, Xiao

    2016-02-20

    In this study, an in vitro acetylcholinesterase (AChE) inhibition assay based on microplate reader combined with ultrafiltration high performance liquid chromatography-electrospray quadrupole time of flight mass (UF-HPLC-ESI-Q-TOF/MS) was developed for the rapid screening and identification of acetylcholinesterase inhibitors (AChEI) from roots of Coptis chinensis Franch. Incubation conditions such as enzyme concentration, incubation time, incubation temperature and co-solvent was optimized so as to get better screening results. Five alkaloids including columbamine, jatrorrhizine, coptisine, palmatine and berberine were found with AChE inhibition activity in the 80% ethanol extract of C. chinensis Franch. The screened compounds were identified by HPLC-DAD-ESI-Q-TOF/MS compared with the reference stands and literatures. The screened results were verified by in vitro AChE inhibition assays, palmatine showed the best AChE inhibitory activities with IC50 values of 36.6μM among the five compounds. Results of the present study indicated that the combinative method using in vitro AChE inhibition assay and UF-HPLC-ESI-Q-TOF/MS could be widely applied for rapid screening and identification of AChEI from complex TCM extract.

  2. Circannual rhythms of acetylcholinesterase (AChE) activity in the freshwater fish Cnesterodon decemmaculatus.

    PubMed

    Menéndez-Helman, Renata J; Ferreyroa, Gisele V; dos Santos Afonso, Maria; Salibián, Alfredo

    2015-01-01

    The use of biomarkers as a tool to assess responses of organisms exposed to pollutants in toxicity bioassays, as well as in aquatic environmental risk assessment protocols, requires the understanding of the natural fluctuation of the particular biomarker. The aim of this study was to characterize the intrinsic variations of acetylcholinesterase (AChE) activity in tissues of a native freshwater teleost fish to be used as biomarker in toxicity tests, taking into account both seasonal influence and fish size. Specific AChE activity was measured by the method of Ellman et al. (1961) in homogenates of fish anterior section finding a seasonal variability. The highest activity was observed in summer, decreasing significantly below 40% in winter. The annual AChE activity cycle in the anterior section was fitted to a sinusoidal function with a period of 11.2 months. Moreover, an inverse relationship between enzymatic activity and the animal size was established. The results showed that both the fish length and seasonal variability affect AChE activity. AChE activity in fish posterior section showed a similar trend to that in the anterior section, while seasonal variations of the activity in midsection were observed but differences were not statistically significant. In addition, no relationship between AChE and total tissue protein was established in the anterior and posterior sections suggesting that the circannual rhythms observed are AChE-specific responses. Results highlight the importance of considering both the fish size and season variations to reach valid conclusions when AChE activity is employed as neurotoxicity biomarker.

  3. Effect of pharmaceuticals exposure on acetylcholinesterase (AchE) activity and on the expression of AchE gene in the monogonont rotifer, Brachionus koreanus.

    PubMed

    Rhee, Jae-Sung; Kim, Bo-Mi; Jeong, Chang-Bum; Park, Heum Gi; Leung, Kenneth Mei Yee; Lee, Young-Mi; Lee, Jae-Seong

    2013-11-01

    Pharmaceuticals are widely used in human and veterinary medicine. However, they are emerging as a significant contaminant in aquatic environments through wastewater. Due to the persistent and accumulated properties of pharmaceuticals via the food web, their potential harmful effects on aquatic animals are a great concern. In this study, we investigated the effects of six pharmaceuticals: acetaminophen, ATP; atenolol, ATN; carbamazepine, CBZ; oxytetracycline, OTC; sulfamethoxazole, SMX; and trimethoprim, TMP on acetylcholinesterase (AChE; EC 3.1.1.7) activity and its transcript expression with chlorpyrifos (as a positive control) in the monogonont rotifer, Brachionus koreanus. ATP, CBZ, and TMP exposure also remarkably inhibited Bk-AChE activity at 100 μg/L (24 h) and 1000 μg/L (12 h and 24 h). ATP, CBZ, and TMP exposure showed a significant decrease in the Bk-AChE mRNA level in a concentration-dependent manner. However, in the case of OTC and SMX, a slight decrease in Bk-AChE mRNA expression was found but only at the highest concentration. The time-course experiments showed that ATP positively induced Bk-AChE mRNA 12 h after exposure at both 100 and 1000 μg/L, while the Bk-AChE mRNA expression was significantly downregulated over 6 to 24 h after exposure to 1000 μg/L of CBZ, OTC, SMX, and TMP. Our findings suggest that Bk-AChE would be a useful biomarker for risk assessment of pharmaceutical compounds as an early signal of their toxicity in aquatic environments. Particularly, ATP, CBZ, and TMP may have a toxic cholinergic effect on rotifer B. koreanus by inhibiting AChE activity. PMID:24028855

  4. A selective molecularly imprinted polymer for immobilization of acetylcholinesterase (AChE): an active enzyme targeted and efficient method.

    PubMed

    Demirci, Gökhan; Doğaç, Yasemin İspirli; Teke, Mustafa

    2015-11-01

    In the present study, we immobilized acetylcholinesterase (AChE) enzyme onto acetylcholine removed imprinted polymer and acetylcholine containing polymer. First, the polymers were produced with acetylcholine, substrate of AChE, by dispersion polymerization. Then, the enzyme was immobilized onto the polymers by using two different methods: In the first method (method A), acetylcholine was removed from the polymer, and then AChE was immobilized onto this polymer (acetylcholine removed imprinted polymer). In the second method (method B), AChE was immobilized onto acetylcholine containing polymer by affinity. In method A, enzyme-specific species (binding sites) occurred by removing acetylcholine from the polymer. The immobilized AChE reached 240% relative specific activity comparison with free AChE because the active enzyme molecules bounded onto the polymer. Transmission electron microscopy results were taken before and after immobilization of AChE for the assessment of morphological structure of polymer. Also, the experiments, which include optimum temperature (25-65 °C), optimum pH (3-10), thermal stability (4-70 °C), kinetic parameters, operational stability and reusability, were performed to determine the characteristic of the immobilized AChE.

  5. Bactericidal activity of ACH-702 against nondividing and biofilm Staphylococci.

    PubMed

    Podos, Steven D; Thanassi, Jane A; Leggio, Melissa; Pucci, Michael J

    2012-07-01

    Many bacterial infections involve slow or nondividing bacterial growth states and localized high cell densities. Antibiotics with demonstrated bactericidal activity rarely remain bactericidal at therapeutic concentrations under these conditions. The isothiazoloquinolone (ITQ) ACH-702 is a potent, bactericidal compound with activity against many antibiotic-resistant pathogens, including methicillin-resistant Staphylococcus aureus (MRSA). We evaluated its bactericidal activity under conditions where bacterial cells were not dividing and/or had slowed their growth. Against S. aureus cultures in stationary phase, ACH-702 showed concentration-dependent bactericidal activity and achieved a 3-log-unit reduction in viable cell counts within 6 h of treatment at ≥ 16× MIC values; in comparison, the bactericidal quinolone moxifloxacin and the additional comparator compounds vancomycin, linezolid, and rifampin at 16× to 32× MICs showed little or no bactericidal activity against stationary-phase cells. ACH-702 at 32× MIC retained bactericidal activity against stationary-phase S. aureus across a range of inoculum densities. ACH-702 did not kill cold-arrested cells yet remained bactericidal against cells arrested by protein synthesis inhibitors, suggesting that its bactericidal activity against nondividing cells requires active metabolism but not de novo protein synthesis. ACH-702 also showed a degree of bactericidal activity at 16× MIC against S. epidermidis biofilm cells that was superior to that of moxifloxacin, rifampin, and vancomycin. The bactericidal activity of ACH-702 against stationary-phase staphylococci and biofilms suggests potential clinical utility in infections containing cells in these physiological states. PMID:22547614

  6. Selenofuranoside Ameliorates Memory Loss in Alzheimer-Like Sporadic Dementia: AChE Activity, Oxidative Stress, and Inflammation Involvement.

    PubMed

    Chiapinotto Spiazzi, Cristiano; Bucco Soares, Melina; Pinto Izaguirry, Aryele; Musacchio Vargas, Laura; Zanchi, Mariane Magalhães; Frasson Pavin, Natasha; Ferreira Affeldt, Ricardo; Seibert Lüdtke, Diogo; Prigol, Marina; Santos, Francielli Weber

    2015-01-01

    Alzheimer's disease (AD) is becoming more common due to the increase in life expectancy. This study evaluated the effect of selenofuranoside (Se) in an Alzheimer-like sporadic dementia animal model. Male mice were divided into 4 groups: control, Aβ, Se, and Aβ + Se. Single administration of Aβ peptide (fragments 25-35; 3 nmol/3 μL) or distilled water was administered via intracerebroventricular (i.c.v.) injection. Selenofuranoside (5 mg/kg) or vehicle (canola oil) was administered orally 30 min before Aβ and for 7 subsequent days. Memory was tested through the Morris water maze (MWM) and step-down passive-avoidance (SDPA) tests. Antioxidant defenses along with reactive species (RS) were assessed. Inflammatory cytokines levels and AChE activity were measured. SOD activity was inhibited in the Aβ group whereas RS were increased. AChE activity, GSH, and IL-6 levels were increased in the Aβ group. These changes were reflected in impaired cognition and memory loss, observed in both behavioral tests. Se compound was able to protect against memory loss in mice in both behavioral tests. SOD and AChE activities as well as RS and IL-6 levels were also protected by Se administration. Therefore, Se is promising for further studies.

  7. Screening of POP pollution by AChE and EROD activities in Zebra mussels from the Italian Great Lakes.

    PubMed

    Binelli, A; Ricciardi, Francesco; Riva, Consuelo; Provini, Alfredo

    2005-12-01

    The increase of ethoxyresorufin dealkylation (EROD) and the inhibition of acetylcholinesterase (AChE) as biomarkers have been commonly used in vertebrates for the persistent organic pollutants (POPs) biomonitoring of aquatic environments, but very few studies have been performed for invertebrates. Previous researches demonstrated the interference due to some chemicals on EROD and AChE activities of the freshwater bivalve Zebra mussel (Dreissena polymorpha) in laboratory and field studies, showing its possible use for the screening of POP effects. We investigated the contamination of the Italian sub-alpine great lakes (Maggiore, Lugano, Como, Iseo, Garda) by the biomarker approach on Zebra mussel specimens collected at 17 sampling sites with different morphometric characteristics and anthropization levels. Results showed a homogeneous contamination of AChE inhibitors in Lake Garda, Maggiore, Como and Iseo with values ranging from 0.5 to 3 nmol/min/mg proteins and with an average inhibition of about 66% to controls. The planar compounds pollution, able to activate the EROD activity, seems higher in some sampling stations of Lake Garda, Como and Iseo (2-4 pmol/min/mg proteins) than that measured in Lake Lugano (1.5-3 pmol/min/mg proteins). On the contrary, the enzyme activity in Lake Maggiore showed an interesting opposite effect of AhR-binding compounds and trace metals. Finally, the possible use of Zebra mussel specimens maintained at laboratory conditions as controls against the selection of the less polluted sampling site is discussed.

  8. Evaluation of the Toxicity, AChE Activity and DNA Damage Caused by Imidacloprid on Earthworms, Eisenia fetida.

    PubMed

    Wang, Kai; Qi, Suzhen; Mu, Xiyan; Chai, Tingting; Yang, Yang; Wang, Dandan; Li, Dongzhi; Che, Wunan; Wang, Chengju

    2015-10-01

    Imidacloprid is a well-known pesticide and it is timely to evaluate its toxicity to earthworms (Eisenia fetida). In the present study, the effect of imidacloprid on reproduction, growth, acetylcholinesterase (AChE) and DNA damage in earthworms was assessed using an artificial soil medium. The median lethal concentration (LC50) and the median number of hatched cocoons (EC50) of imidacloprid to earthworms was 3.05 and 0.92 mg/kg respectively, the lowest observed effect concentration of imidacloprid about hatchability, growth, AChE activity and DNA damage was 0.02, 0.5, 0.1 and 0.5 mg/kg, respectively.

  9. Sesquiterpenes and a monoterpenoid with acetylcholinesterase (AchE) inhibitory activity from Valeriana officinalis var. latiofolia in vitro and in vivo.

    PubMed

    Chen, Heng-Wen; He, Xuan-Hui; Yuan, Rong; Wei, Ben-Jun; Chen, Zhong; Dong, Jun-Xing; Wang, Jie

    2016-04-01

    Acetylcholinesterase Inhibitor (AchEI) is the most extensive in all anti-dementia drugs. The extracts and isolated compounds from the Valeriana genus have shown anti-dementia bioactivity. Four new sesquiterpenoids (1-4) and a new monoterpenoid (5) were isolated from the root of Valeriana officinalis var. latiofolia. The acetylcholinesterase (AchE) inhibitory activity of isolates was evaluated by modified Ellman method in vitro. Learning and memory ability of compound 4 on mice was evaluated by the Morris water maze. The contents of acetylcholine (Ach), acetylcholine transferase (ChAT) and AchE in mice brains were determined by colorimetry. The results showed IC50 of compound 4 was 0.161 μM in vitro. Compared with the normal group, the learning and memory ability of mice and the contents of Ach and ChAT decreased in model group mice (P<0.01), while the AchE increased (P<0.01). Compared with the model group, Ach and ChAT in the positive control group, the high-dose group and the medium-dose group increased (P<0.01), while the AchE decreased (P<0.01). Compound 4 can improve the learning and memory abilities of APPswe/PSΔE9 double-transgenic mice, and the mechanism may be related to the regulation of the relative enzyme in the cholinergic system. PMID:26976216

  10. Highly sensitive and selective immuno-capture/electrochemical assay of acetylcholinesterase activity in red blood cells: a biomarker of exposure to organophosphorus pesticides and nerve agents.

    PubMed

    Chen, Aiqiong; Du, Dan; Lin, Yuehe

    2012-02-01

    Acetylcholinesterase (AChE) enzyme activity in red blood cells (RBCs) is a useful biomarker for biomonitoring of exposures to organophosphorus (OP) pesticides and chemical nerve agents. In this paper, we reported a new method for AChE activity assay based on selective immuno-capture of AChE from biological samples followed by enzyme activity assay of captured AChE using a disposable electrochemical sensor. The electrochemical sensor is based on multiwalled carbon nanotubes-gold (MWCNTs-Au) nanocomposites modified screen printed carbon electrode (SPCE), which is used for the immobilization of AChE specific antibody. Upon the completion of immunoreaction, the target AChE (including active and inhibited) is captured onto the electrode surface and followed by an electrochemical detection of enzymatic activity in the presence of acetylthiocholine. A linear response is obtained over standard AChE concentration range from 0.1 to 10 nM. To demonstrate the capability of this new biomonitoring method, AChE solutions dosed with different concentrations of paraoxon were used to validate the new AChE assay method. AChE inhibition in OP dosed solutions was proportional to OP concentration from 0.2 to 50 nM. The new AChE activity assay method for biomonitoring of OP exposure was further validated with in vitro paraoxon-dosed RBC samples. The established electrochemical sensing platform for AChE activity assay not only avoids the problem of overlapping substrate specificity with esterases by using selective antibody, but also eliminates potential interference from other electroactive species in biological samples. It offers a new approach for sensitive, selective, and rapid AChE activity assay for biomonitoring of exposure to OPs.

  11. Kinetic evidence that desensitized nAChR may promote transitions of active nAChR to desensitized states during sustained exposure to agonists in skeletal muscle.

    PubMed

    Manthey, Arthur A

    2006-06-01

    During prolonged exposure of postjunctional nicotinic acetylcholine receptors (nAChR) of skeletal muscle to acetylcholine (ACh), agonist-activated nAChR (nAChRa) gradually fall into a refractory "desensitized" state (nAChRd), which no longer supports the high-conductance channel openings characteristic of the initially active nAChRa. In the present study, the possibility was examined that nAChRd, rather than simply constituting a passive "trap" for nAChRa, may actively promote further conversions of nAChRa to nAChRd in a formally autocatalytic manner. Single-ion whole-cell voltage-clamp currents (Na+ and Li+ in separate trials) were measured using two KCl-filled capillary electrodes (5-10 MOmega) implanted at the postjunctional locus of single frog skeletal muscle fibers (Rana pipiens) equilibrated in 30 mM K+ bath media to eliminate mechanical responses. Various nAChR agonists (carbamylcholine, acetylcholine, suberyldicholine) at different concentrations were delivered focally by positive pressure microjet. It was found that the decline of postmaximal agonist-induced currents under these different conditions (driven by the growth of the subpool of nAChRd) consistently followed an autocatalytic logistic rule modified for population growth of fixed units in a planar array: [Formula: see text] (where y represents the remaining agonist-induced current at time t, A=initial maximum current, and n is a constant). Some further experimental features that might result from a self-promoting growth of nAChRd were also tested, namely, (1) the effect of increased nAChRa and (2) the effect of increased nAChRd. Increase in agonist concentration of the superfusate, by increasing the planar density of active nAChRa at the outset, should enhance the probability of autocatalytic interactions with emerging nAChRd, hence, the rate of decline of agonist-induced current, and this was a consistent finding under all conditions tested. Raising the initial level of desensitized nAChRd by

  12. Chlorpyrifos and Malathion have opposite effects on behaviors and brain size that are not correlated to changes in AChE activity

    PubMed Central

    Richendrfer, Holly; Creton, Robbert

    2015-01-01

    Organophosphates, a type of neurotoxicant pesticide, are used globally for the treatment of pests on croplands and are therefore found in a large number of conventional foods. These pesticides are harmful and potentially deadly if ingested or inhaled in large quantities by causing a significant reduction in acetylcholinesterase (AChE) activity in the central and peripheral nervous system. However, much less is known about the effects of exposure to small quantities of the pesticides on neural systems and behavior during development. In the current study we used zebrafish larvae in order to determine the effects of two of the most widely used organophosphates, chlorpyrifos and malathion, on zebrafish behavior and AChE activity. Embryos and larvae were exposed to the organophosphates during different time points in development and then tested at 5 days post-fertilization for behavioral, neurodevelopmental and AChE abnormalities. The results of the study indicate that chlorpyrifos and malathion cause opposing behaviors in the larvae such as swim speed (hypoactivity vs. hyperactivity) and rest. Additionally, the pesticides affect only certain behaviors, such as thigmotaxis, during specific time points in development that are unrelated to changes in AChE activity. Larvae treated with malathion but not chlorpyrifos also had significantly smaller forebrain and hindbrain regions compared to controls by 5 days post-fertilization. We conclude that exposure to very low concentrations of organophosphate pesticides during development cause abnormalities in behavior and brain size. PMID:25983063

  13. Isolation and characterization of pediocin AcH chimeric protein mutants with altered bactericidal activity.

    PubMed

    Miller, K W; Schamber, R; Osmanagaoglu, O; Ray, B

    1998-06-01

    A collection of pediocin AcH amino acid substitution mutants was generated by PCR random mutagenesis of DNA encoding the bacteriocin. Mutants were isolated by cloning mutagenized DNA into an Escherichia coli malE plasmid that directs the secretion of maltose binding protein-pediocin AcH chimeric proteins and by screening transformant colonies for bactericidal activity against Lactobacillus plantarum NCDO955 (K. W. Miller, R. Schamber, Y. Chen, and B. Ray, 1998. Appl. Environ. Microbiol. 64:14-20, 1998). In all, 17 substitution mutants were isolated at 14 of the 44 amino acids of pediocin AcH. Seven mutants (N5K, C9R, C14S, C14Y, G37E, G37R, and C44W) were completely inactive against the pediocin AcH-sensitive strains L. plantarum NCDO955, Listeria innocua Lin11, Enterococcus faecalis M1, Pediococcus acidilactici LB42, and Leuconostoc mesenteroides Ly. A C24S substitution mutant constructed by other means also was inactive against these bacteria. Nine other mutants (K1N, W18R, I26T, M31T, A34D, N41K, H42L, K43N, and K43E) retained from <1% to approximately 60% of wild-type activity when assayed against L. innocua Lin11. One mutant, K11E, displayed approximately 2. 8-fold-higher activity against this indicator. About one half of the mutations mapped to amino acids that are conserved in the pediocin-like family of bacteriocins. All four cysteines were found to be required for activity, although only C9 and C14 are conserved among pediocin-like bacteriocins. Several basic amino acids as well as nonpolar amino acids located within the hydrophobic C-terminal region also were found to be important. The mutations are discussed in the context of structural models that have been proposed for the bacteriocin.

  14. Highly Sensitive and Selective Immuno-capture/Electrochemical Assay of Acetylcholinesterase Activity in Red Blood Cells: A Biomarker of Exposure to Organophosphorus Pesticides and Nerve Agents

    SciTech Connect

    Chen, Aiqiong; Du, Dan; Lin, Yuehe

    2012-02-09

    Acetylcholinesterase (AChE) enzyme activity in red blood cells (RBCs) is a useful biomarker for biomonitoring of exposures to organophosphorus (OP) pesticides and chemical nerve agents. In this paper, we reported a new method for AChE activity assay based on selective immuno-capture of AChE from biological samples followed by enzyme activity assay of captured AChE using a disposable electrochemical sensor. The electrochemical sensor is based on multiwalled carbon nanotubes-gold nanocomposites (MWCNTs-Au) modified screen printed carbon electrode (SPCE). Upon the completion of immunoreaction, the target AChE (including active and inhibited) is captured onto the electrode surface and followed by an electrochemical detection of enzymatic activity in the presence of acetylthiocholine. A linear response is obtained over standard AChE concentration range from 0.1 to 10 nM. To demonstrate the capability of this new biomonitoring method, AChE solutions dosed with different concentration of paraoxon were used to validate the new AChE assay method. AChE inhibition in OP dosed solutions was proportional to its concentration from 0.2 to 50 nM. The new AChE activity assay method for biomonitoring of OP exposure was further validated with in-vitro paraoxon-dosed RBC samples. The established electrochemical sensing platform for AChE activity assay not only avoids the problem of overlapping substrate specificity with esterases by using selective antibody, but also eliminates potential interference from other electroactive species in biological samples. It offers a new approach for sensitive, selective, and rapid AChE activity assay for biomonitoring of exposures to OPs.

  15. mAChRs activation induces epithelial-mesenchymal transition on lung epithelial cells

    PubMed Central

    2014-01-01

    Background Epithelial-mesenchymal transition (EMT) has been proposed as a mechanism in the progression of airway diseases and cancer. Here, we explored the role of acetylcholine (ACh) and the pathway involved in the process of EMT, as well as the effects of mAChRs antagonist. Methods Human lung epithelial cells were stimulated with carbachol, an analogue of ACh, and epithelial and mesenchymal marker proteins were evaluated using western blot and immunofluorescence analyses. Results Decreased E-cadherin expression and increased vimentin and α-SMA expression induced by TGF-β1 in alveolar epithelial cell (A549) were significantly abrogated by the non-selective mAChR antagonist atropine and enhanced by the acetylcholinesterase inhibitor physostigmine. An EMT event also occurred in response to physostigmine alone. Furthermore, ChAT express and ACh release by A549 cells were enhanced by TGF-β1. Interestingly, ACh analogue carbachol also induced EMT in A549 cells as well as in bronchial epithelial cells (16HBE) in a time- and concentration-dependent manner, the induction of carbachol was abrogated by selective antagonist of M1 (pirenzepine) and M3 (4-DAMP) mAChRs, but not by M2 (methoctramine) antagonist. Moreover, carbachol induced TGF-β1 production from A549 cells concomitantly with the EMT process. Carbachol-induced EMT occurred through phosphorylation of Smad2/3 and ERK, which was inhibited by pirenzepine and 4-DAMP. Conclusions Our findings for the first time indicated that mAChR activation, perhaps via M1 and M3 mAChR, induced lung epithelial cells to undergo EMT and provided insights into novel therapeutic strategies for airway diseases in which lung remodeling occurs. PMID:24678619

  16. A fluorescence assay for measuring acetylcholinesterase activity in rat blood and a human neuroblastoma cell line (SH-SY5Y).

    PubMed

    Santillo, Michael F; Liu, Yitong

    2015-01-01

    Acetylcholinesterase (AChE) is an enzyme responsible for metabolism of the neurotransmitter acetylcholine, and inhibition of AChE can have therapeutic applications (e.g., drugs for Alzheimer's disease) or neurotoxic consequences (e.g., pesticides). A common absorbance-based AChE activity assay that uses 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) can have limited sensitivity and be prone to interference. Therefore, an alternative assay was developed, in which AChE activity was determined by measuring fluorescence of resorufin produced from coupled enzyme reactions involving acetylcholine and Amplex Red (10-acetyl-3,7-dihydroxyphenoxazine). The Amplex Red assay was used for two separate applications. First, AChE activity was measured in rat whole blood, which is a biomarker for exposure to AChE inhibitor pesticides. Activity was quantified from a 10(5)-fold dilution of whole blood, and there was a linear correlation between Amplex Red and DTNB assays. For the second application, Amplex Red assay was used to measure AChE inhibition potency in a human neuroblastoma cell line (SH-SY5Y), which is important for assessing pharmacological and toxicological potential of AChE inhibitors including drugs, phytochemicals, and pesticides. Five known reversible inhibitors were evaluated (IC50, 7-225 nM), along with irreversible inhibitors chlorpyrifos-oxon (ki=1.01 nM(-1)h(-1)) and paraoxon (ki=0.16 nM(-1)h(-1)). Lastly, in addition to inhibition, AChE reactivation was measured in SH-SY5Y cells incubated with pralidoxime chloride (2-PAM). The Amplex Red assay is a sensitive, specific, and reliable fluorescence method for measuring AChE activity in both rat whole blood and cultured SH-SY5Y cells. PMID:26165232

  17. Intracellular activity of tedizolid phosphate and ACH-702 versus Mycobacterium tuberculosis infected macrophages

    PubMed Central

    2014-01-01

    Background Due to the emergency of multidrug-resistant strains of Mycobacterium tuberculosis, is necessary the evaluation of new compounds. Findings Tedizolid, a novel oxazolidinone, and ACH-702, a new isothiazoloquinolone, were tested against M. tuberculosis infected THP-1 macrophages. These two compounds significantly decreased the number of intracellular mycobacteria at 0.25X, 1X, 4X and 16X the MIC value. The drugs were tested either in nanoparticules or in free solution. Conclusion Tedizolid and ACH-702 have a good intracellular killing activity comparable to that of rifampin or moxifloxacin. PMID:24708819

  18. AChE for DNA degradation.

    PubMed

    Sánchez-Osuna, María; Yuste, Victor J

    2015-06-01

    DNA hydrolysis is a biochemical process often associated with different forms of cell death, including apoptosis. In a recent paper published in Cell Discovery, Du et al. report that synaptic acetylcholinesterase (AChE-S) shows an unexpected enzymatic activity as DNase switched on after cytotoxic insults. PMID:25930710

  19. PACAP induces plasticity at autonomic synapses by nAChR-dependent NOS1 activation and AKAP-mediated PKA targeting.

    PubMed

    Jayakar, Selwyn S; Pugh, Phyllis C; Dale, Zack; Starr, Eric R; Cole, Samantha; Margiotta, Joseph F

    2014-11-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP) is a pleiotropic neuropeptide found at synapses throughout the central and autonomic nervous system. We previously found that PACAP engages a selective G-protein coupled receptor (PAC1R) on ciliary ganglion neurons to rapidly enhance quantal acetylcholine (ACh) release from presynaptic terminals via neuronal nitric oxide synthase (NOS1) and cyclic AMP/protein kinase A (PKA) dependent processes. Here, we examined how PACAP stimulates NO production and targets resultant outcomes to synapses. Scavenging extracellular NO blocked PACAP-induced plasticity supporting a retrograde (post- to presynaptic) NO action on ACh release. Live-cell imaging revealed that PACAP stimulates NO production by mechanisms requiring NOS1, PKA and Ca(2+) influx. Ca(2+)-permeable nicotinic ACh receptors composed of α7 subunits (α7-nAChRs) are potentiated by PKA-dependent PACAP/PAC1R signaling and were required for PACAP-induced NO production and synaptic plasticity since both outcomes were drastically reduced following their selective inhibition. Co-precipitation experiments showed that NOS1 associates with α7-nAChRs, many of which are perisynaptic, as well as with heteromeric α3*-nAChRs that generate the bulk of synaptic activity. NOS1-nAChR physical association could facilitate NO production at perisynaptic and adjacent postsynaptic sites to enhance focal ACh release from juxtaposed presynaptic terminals. The synaptic outcomes of PACAP/PAC1R signaling are localized by PKA anchoring proteins (AKAPs). PKA regulatory-subunit overlay assays identified five AKAPs in ganglion lysates, including a prominent neuronal subtype. Moreover, PACAP-induced synaptic plasticity was selectively blocked when PKA regulatory-subunit binding to AKAPs was inhibited. Taken together, our findings indicate that PACAP/PAC1R signaling coordinates nAChR, NOS1 and AKAP activities to induce targeted, retrograde plasticity at autonomic synapses. Such

  20. Selective activation of α7 nicotinic acetylcholine receptor (nAChRα7) inhibits muscular degeneration in mdx dystrophic mice.

    PubMed

    Leite, Paulo Emílio Correa; Gandía, Luís; de Pascual, Ricardo; Nanclares, Carmen; Colmena, Inés; Santos, Wilson C; Lagrota-Candido, Jussara; Quirico-Santos, Thereza

    2014-07-21

    Amount evidence indicates that α7 nicotinic acetylcholine receptor (nAChRα7) activation reduces production of inflammatory mediators. This work aimed to verify the influence of endogenous nAChRα7 activation on the regulation of full-blown muscular inflammation in mdx mouse with Duchenne muscular dystrophy. We used mdx mice with 3 weeks-old at the height myonecrosis, and C57 nAChRα7(+/+) wild-type and nAChRα7(-/-) knockout mice with muscular injury induced with 60µL 0.5% bupivacaine (bp) in the gastrocnemius muscle. Pharmacological treatment included selective nAChRα7 agonist PNU282987 (0.3mg/kg and 1.0mg/kg) and the antagonist methyllycaconitine (MLA at 1.0mg/kg) injected intraperitoneally for 7 days. Selective nAChRα7 activation of mdx mice with PNU282987 reduced circulating levels of lactate dehydrogenase (LDH, a marker of cell death by necrosis) and the area of perivascular inflammatory infiltrate, and production of inflammatory mediators TNFα and metalloprotease MMP-9 activity. Conversely, PNU282987 treatment increased MMP-2 activity, an indication of muscular tissue remodeling associated with regeneration, in both mdx mice and WTα7 mice with bp-induced muscular lesion. Treatment with PNU282987 had no effect on α7KO, and MLA abolished the nAChRα7 agonist-induced anti-inflammatory effect in both mdx and WT. In conclusion, nAChRα7 activation inhibits muscular inflammation and activates tissue remodeling by increasing muscular regeneration. These effects were not accompanied with fibrosis and/or deposition of non-functional collagen. The nAChRα7 activation may be considered as a potential target for pharmacological strategies to reduce inflammation and activate mechanisms of muscular regeneration. PMID:24833065

  1. Activation of nicotinic ACh receptors with α4 subunits induces adenosine release at the rat carotid body

    PubMed Central

    Conde, Sílvia V; Monteiro, Emília C

    2006-01-01

    The effect of ACh on the release of adenosine was studied in rat whole carotid bodies, and the nicotinic ACh receptors involved in the stimulation of this release were characterized. ACh and nicotinic ACh receptor agonists, cytisine, DMPP and nicotine, caused a concentration-dependent increase in adenosine production during normoxia, with nicotine being more potent and efficient in stimulating adenosine release from rat CB than cytisine and DMPP. D-Tubocurarine, mecamylamine, DHβE and α-bungarotoxin, nicotinic ACh receptor antagonists, caused a concentration-dependent reduction in the release of adenosine evoked by hypoxia. The rank order of potency for nicotinic ACh receptor antagonists that inhibit adenosine release was DHβE>mecamylamine>D-tubocurarine>α-bungarotoxin. The effect of the endogenous agonist, ACh, which was mimicked by nicotine, was antagonized by DHβE, a selective nicotinic receptor antagonist. The ecto-5′-nucleotidase inhibitor AOPCP produces a 72% inhibition in the release of adenosine from CB evoked by nicotine. Taken together, these data indicate that ACh induced the production of adenosine, mainly from extracellular ATP catabolism at the CB through a mechanism that involves the activation of nicotinic receptors with α4 and β2 receptor subunits. PMID:16444287

  2. Mechanism of interaction of novel uncharged, centrally active reactivators with OP-hAChE conjugates.

    PubMed

    Radić, Zoran; Sit, Rakesh K; Garcia, Edzna; Zhang, Limin; Berend, Suzana; Kovarik, Zrinka; Amitai, Gabriel; Fokin, Valery V; Barry Sharpless, K; Taylor, Palmer

    2013-03-25

    A library of more than 200 novel uncharged oxime reactivators was used to select and refine lead reactivators of human acetylcholinesterase (hAChE) covalently conjugated with sarin, cyclosarin, VX, paraoxon and tabun. N-substituted 2-hydroxyiminoacetamido alkylamines were identified as best reactivators and reactivation kinetics of the lead oximes, RS41A and RS194B, were analyzed in detail. Compared to reference pyridinium reactivators, 2PAM and MMB4, molecular recognition of RS41A reflected in its Kox constant was compromised by an order of magnitude on average for different OP-hAChE conjugates, without significant differences in the first order maximal phosphorylation rate constant k(2). Systematic structural modifications of the RS41A lead resulted in several-fold improvement with reactivator, RS194B. Kinetic analysis indicated K(ox) reduction for RS194B as the main kinetic constant leading to efficient reactivation. Subtle structural modifications of RS194B were used to identify essential determinants for efficient reactivation. Computational molecular modeling of RS41A and RS194B interactions with VX inhibited hAChE, bound reversibly in Michaelis type complex and covalently in the pentacoordinate reaction intermediate suggests that the faster reactivation reaction is a consequence of a tighter RS194B interactions with hAChE peripheral site (PAS) residues, in particular with D74, resulting in lower interaction energies for formation of both the binding and reactivation states. Desirable in vitro reactivation properties of RS194B, when coupled with its in vivo pharmacokinetics and disposition in the body, reveal the potential of this oxime design as promising centrally and peripherally active antidotes for OP toxicity.

  3. Acetylcholinesterase (AChE) is an important link in the apoptotic pathway induced by hyperglycemia in Y79 retinoblastoma cell line

    PubMed Central

    Masha'our, R. Shehadeh; Heinrich, R.; Garzozi, H. J.; Perlman, I.

    2012-01-01

    Acetylcholinesterase (AChE) expression was found to be induced in the mammalian CNS, including the retina, by different types of stress leading to cellular apoptosis. Here, we tested possible involvement of AChE in hyperglycemia-induced apoptosis in a retinal cell line. Y79 retinoblastoma cells were incubated in starvation media (1% FBS and 1 mg/ml glucose) for 16–24 h, and then exposed to hyperglycemic environment by raising extracellular glucose concentrations to a final level of 3.5 mg/ml or 6 mg/ml. Similar levels of mannitol were used as control for hyperosmolarity. Cells were harvested at different time intervals for analysis of apoptosis and AChE protein expression. Apoptosis was detected by the cleavage of Poly ADP-ribose polymerase (PARP) using western blot, and by Terminal deoxynucleotidyl-transferase-mediated dUTP nick-end-labeling (TUNEL) assay. AChE protein expression and activity was detected by western blot and by the Karnovsky and Roots method, respectively. MissionTM shRNA for AChE was used to inhibit AChE protein expression. Treating Y79 cells with 3.5 mg/ml of glucose, but not with 3.5 mg/ml mannitol, induced apoptosis which was confirmed by TUNEL assay and by cleavage of PARP. A part of the signaling pathway accompanying the apoptotic process involved up-regulation of the AChE-R variant and an N-extended AChE variant as verified at the mRNA and protein level. Inhibition of AChE protein expression by shRNA protected Y79 cell from entering the apoptotic pathway. Our data suggest that expression of an N-extended AChE variant, most probably an R isoform, is involved in the apoptotic pathway caused by hyperglycemia in Y79 cells. PMID:22685426

  4. Acetylcholinesterase (AChE) is an important link in the apoptotic pathway induced by hyperglycemia in Y79 retinoblastoma cell line.

    PubMed

    Masha'our, R Shehadeh; Heinrich, R; Garzozi, H J; Perlman, I

    2012-01-01

    Acetylcholinesterase (AChE) expression was found to be induced in the mammalian CNS, including the retina, by different types of stress leading to cellular apoptosis. Here, we tested possible involvement of AChE in hyperglycemia-induced apoptosis in a retinal cell line. Y79 retinoblastoma cells were incubated in starvation media (1% FBS and 1 mg/ml glucose) for 16-24 h, and then exposed to hyperglycemic environment by raising extracellular glucose concentrations to a final level of 3.5 mg/ml or 6 mg/ml. Similar levels of mannitol were used as control for hyperosmolarity. Cells were harvested at different time intervals for analysis of apoptosis and AChE protein expression. Apoptosis was detected by the cleavage of Poly ADP-ribose polymerase (PARP) using western blot, and by Terminal deoxynucleotidyl-transferase-mediated dUTP nick-end-labeling (TUNEL) assay. AChE protein expression and activity was detected by western blot and by the Karnovsky and Roots method, respectively. Mission(TM) shRNA for AChE was used to inhibit AChE protein expression. Treating Y79 cells with 3.5 mg/ml of glucose, but not with 3.5 mg/ml mannitol, induced apoptosis which was confirmed by TUNEL assay and by cleavage of PARP. A part of the signaling pathway accompanying the apoptotic process involved up-regulation of the AChE-R variant and an N-extended AChE variant as verified at the mRNA and protein level. Inhibition of AChE protein expression by shRNA protected Y79 cell from entering the apoptotic pathway. Our data suggest that expression of an N-extended AChE variant, most probably an R isoform, is involved in the apoptotic pathway caused by hyperglycemia in Y79 cells. PMID:22685426

  5. Searching for the Multi-Target-Directed Ligands against Alzheimer's disease: discovery of quinoxaline-based hybrid compounds with AChE, H₃R and BACE 1 inhibitory activities.

    PubMed

    Huang, Wenhai; Tang, Li; Shi, Ying; Huang, Shufang; Xu, Lei; Sheng, Rong; Wu, Peng; Li, Jia; Zhou, Naiming; Hu, Yongzhou

    2011-12-01

    A novel series of quinoxaline derivatives, as Multi-Target-Directed Ligands (MTDLs) for AD treatment, were designed by lending the core structural elements required for H(3)R antagonists and hybridizing BACE 1 inhibitor 1 with AChE inhibitor BYYT-25. A virtual database consisting of quinoxaline derivatives was first screened on a pharmacophore model of BACE 1 inhibitors, and then filtered by a molecular docking model of AChE. Seventeen quinoxaline derivatives with high score values were picked out, synthesized and evaluated for their biological activities. Compound 11a, the most effective MTDL, showed the potent activity to H(3)R/AChE/BACE 1 (H(3)R antagonism, IC(50)=280.0 ± 98.0 nM; H(3)R inverse agonism, IC(50)=189.3 ± 95.7 nM; AChE, IC(50)=483 ± 5 nM; BACE 1, 46.64±2.55% inhibitory rate at 20 μM) and high selectivity over H(1)R/H(2)R/H(4)R. Furthermore, the protein binding patterns between 11a and AChE/BACE 1 showed that it makes several essential interactions with the enzymes.

  6. In Vitro Anti-AChE, Anti-BuChE, and Antioxidant Activity of 12 Extracts of Eleutherococcus Species

    PubMed Central

    2016-01-01

    Neurodegenerative diseases are one of the most occurring diseases in developed and developing countries. The aim of this work focused on the screening of the natural inhibitors of AChE and BuChE and antioxidants in Eleutherococcus species. We found that the ethanol extracts of E. setchuenensis and E. sessiliflorus showed the strongest inhibition towards AChE (IC50: 0.3 and 0.3 mg/mL, resp.). Among chloroform extracts, the most active appeared to be E. gracilistylus (IC50: 0.37 mg/mL). In turn, the ethanol extract of E. henryi inhibited the strongest BuChE with IC50 value of 0.13 mg/mL. Among chloroform extracts, E. gracilistylus, E. setchuenensis, and E. sessiliflorus appeared to be the strongest with IC50 values of 0.12, 0.18, and 0.19 mg/mL. HPTLC screening confirmed the presence of inhibitors in extracts. All extracts exhibited anti-DPPH⁎ activity and single antioxidants have been identified. To the best of our knowledge, no information was available on this activity of compounds in Eleutherococcus. These studies provide a biochemical basis for the regulation of AChE and BuChE and encourage us to continue isolation of active compounds. PMID:27803761

  7. Activity of nAChRs Containing α9 Subunits Modulates Synapse Stabilization via Bidirectional Signaling Programs

    PubMed Central

    Murthy, Vidya; Taranda, Julián; Elgoyhen, A. Belén; Vetter, Douglas E.

    2010-01-01

    Although the synaptogenic program for cholinergic synapses of the neuromuscular junction is well known, little is known of the identity or dynamic expression patterns of proteins involved in non-neuromuscular nicotinic synapse development. We have previously demonstrated abnormal presynaptic terminal morphology following loss of nicotinic acetylcholine receptor (nAChR) α9 subunit expression in adult cochleae. However, the molecular mechanisms underlying these changes have remained obscure. To better understand synapse formation and the role of cholinergic activity in the synaptogenesis of the inner ear, we exploit the nAChR α9 subunit null mouse. In this mouse, functional acetylcholine (ACh) neurotransmission to the hair cells is completely silenced. Results demonstrate a premature, effusive innervation to the synaptic pole of the outer hair cells in α9 null mice coinciding with delayed expression of cell adhesion proteins during the period of effusive contact. Collapse of the ectopic innervation coincides with an age-related hyperexpression pattern in the null mice. In addition, we document changes in expression of presynaptic vesicle recycling/trafficking machinery in the α9 null mice that suggests a bidirectional information flow between the target of the neural innervation (the hair cells) and the presynaptic terminal that is modified by hair cell nAChR activity. Loss of nAChR activity may alter transcriptional activity, as CREB binding protein expression is decreased coincident with the increased expression of N-Cadherin in the adult α9 null mice. Finally, by using mice expressing the nondesensitizing α9 L9′T point mutant nAChR subunit, we show that increased nAChR activity drives synaptic hyperinnervation. PMID:19790106

  8. Biochemical effects of glyphosate based herbicide, Excel Mera 71 on enzyme activities of acetylcholinesterase (AChE), lipid peroxidation (LPO), catalase (CAT), glutathione-S-transferase (GST) and protein content on teleostean fishes.

    PubMed

    Samanta, Palas; Pal, Sandipan; Mukherjee, Aloke Kumar; Ghosh, Apurba Ratan

    2014-09-01

    Effects of glyphosate based herbicide, Excel Mera 71 at a dose of 17.20mg/l on enzyme activities of acetylcholinesterase (AChE), lipid peroxidation (LPO), catalase (CAT), glutathione-S-transferase (GST) and protein content were measured in different tissues of two Indian air-breathing teleosts, Anabas testudineus (Bloch) and Heteropneustes fossilis (Bloch) during an exposure period of 30 days under laboratory condition. AChE activity was significantly increased in all the investigated tissues of both fish species and maximum elevation was observed in brain of H. fossilis, while spinal cord of A. testudineus showed minimum increment. Fishes showed significant increase LPO levels in all the tissues; highest was observed in gill of A. testudineus but lowest LPO level was observed in muscle of H. fossilis. CAT was also enhanced in both the fishes, while GST activity in liver diminished substantially and minimum was observed in liver of A. testudineus. Total protein content showed decreased value in all the tissues, maximum reduction was observed in liver and minimum in brain of A. testudineus and H. fossilis respectively. The results indicated that Excel Mera 71 caused serious alterations in the enzyme activities resulting into severe deterioration of fish health; so, AChE, LPO, CAT and GST can be used as suitable indicators of herbicidal toxicity. PMID:24927388

  9. Biochemical effects of glyphosate based herbicide, Excel Mera 71 on enzyme activities of acetylcholinesterase (AChE), lipid peroxidation (LPO), catalase (CAT), glutathione-S-transferase (GST) and protein content on teleostean fishes.

    PubMed

    Samanta, Palas; Pal, Sandipan; Mukherjee, Aloke Kumar; Ghosh, Apurba Ratan

    2014-09-01

    Effects of glyphosate based herbicide, Excel Mera 71 at a dose of 17.20mg/l on enzyme activities of acetylcholinesterase (AChE), lipid peroxidation (LPO), catalase (CAT), glutathione-S-transferase (GST) and protein content were measured in different tissues of two Indian air-breathing teleosts, Anabas testudineus (Bloch) and Heteropneustes fossilis (Bloch) during an exposure period of 30 days under laboratory condition. AChE activity was significantly increased in all the investigated tissues of both fish species and maximum elevation was observed in brain of H. fossilis, while spinal cord of A. testudineus showed minimum increment. Fishes showed significant increase LPO levels in all the tissues; highest was observed in gill of A. testudineus but lowest LPO level was observed in muscle of H. fossilis. CAT was also enhanced in both the fishes, while GST activity in liver diminished substantially and minimum was observed in liver of A. testudineus. Total protein content showed decreased value in all the tissues, maximum reduction was observed in liver and minimum in brain of A. testudineus and H. fossilis respectively. The results indicated that Excel Mera 71 caused serious alterations in the enzyme activities resulting into severe deterioration of fish health; so, AChE, LPO, CAT and GST can be used as suitable indicators of herbicidal toxicity.

  10. Concomitant alpha7 and beta2 nicotinic AChR subunit deficiency leads to impaired energy homeostasis and increased physical activity in mice.

    PubMed

    Somm, Emmanuel; Guérardel, Audrey; Maouche, Kamel; Toulotte, Audrey; Veyrat-Durebex, Christelle; Rohner-Jeanrenaud, Françoise; Maskos, Uwe; Hüppi, Petra S; Schwitzgebel, Valérie M

    2014-05-01

    Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated cation channels well characterized in neuronal signal transmission. Moreover, recent studies have revealed nAChR expression in nonneuronal cell types throughout the body, including tissues involved in metabolism. In the present study, we screen gene expression of nAChR subunits in pancreatic islets and adipose tissues. Mice pancreatic islets present predominant expression of α7 and β2 nAChR subunits but at a lower level than in central structures. Characterization of glucose and energy homeostasis in α7β2nAChR(-/-) mice revealed no major defect in insulin secretion and sensitivity but decreased glycemia apparently unrelated to gluconeogenesis or glycogenolysis. α7β2nAChR(-/-) mice presented an increase in lean and bone body mass and a decrease in fat storage with normal body weight. These observations were associated with elevated spontaneous physical activity in α7β2nAChR(-/-) mice, mainly due to elevation in fine vertical (rearing) activity while their horizontal (ambulatory) activity remained unchanged. In contrast to α7nAChR(-/-) mice presenting glucose intolerance and insulin resistance associated to excessive inflammation of adipose tissue, the present metabolic phenotyping of α7β2nAChR(-/-) mice revealed a metabolic improvement possibly linked to the increase in spontaneous physical activity related to central β2nAChR deficiency.

  11. Toxicity and mAChRs binding activity of Cassiopea xamachana venom from Puerto Rican coasts.

    PubMed

    Radwan, Faisal F Y; Román, Laura G; Baksi, Krishna; Burnett, Joseph W

    2005-01-01

    A separation of toxic components from the upside down jellyfish Cassiopea xamachana (Cx) was carried out to study their cytotoxic effects and examine whether these effects are combined with a binding activity to cell membrane receptors. Nematocysts containing toxins were isolated from the autolysed tentacles, ruptured by sonication, and the crude venom (CxTX) was separated from the pellets by ultracentrifugation. For identifying its bioactive components, CxTX was fractionated by gel filtration chromatography into six fractions (named fraction I-VI). The toxicity of CxTX and fractions was tested on mice; however, the hemolytic activity was tested on saline washed human erythrocytes. The LD50 of CxTX was 0.75 microg/g of mouse body and for fraction III, IV and VI were 0.28, 0.25 and 0.12 microg/g, respectively. Fractions I, II and V were not lethal at doses equivalent to LD50 1 microg/g. The hemolytic and phospholipase A2 (PLA2) activities of most fractions were well correlated with their mice toxicity. However, fraction VI, which contains the low molecular mass protein components (< or =10 kDa), has shown no PLA2 activity but highest toxicity to mice, highest hemolytic activity, and bound significantly to the acetylcholine muscarinic receptors (mAChRs) isolated from rat brain. The results suggested that fraction VI contains proteinaceous components contributing to most of cytolysis as well as membrane binding events. Meanwhile, fraction IV has shown high PLA2 that may contribute to the venom lethality and paralytic effects. PMID:15581689

  12. Gold nanoclusters-Cu(2+) ensemble-based fluorescence turn-on and real-time assay for acetylcholinesterase activity and inhibitor screening.

    PubMed

    Sun, Jian; Yang, Xiurong

    2015-12-15

    Based on the specific binding of Cu(2+) ions to the 11-mercaptoundecanoic acid (11-MUA)-protected AuNCs with intense orange-red emission, we have proposed and constructed a novel fluorescent nanomaterials-metal ions ensemble at a nonfluorescence off-state. Subsequently, an AuNCs@11-MUA-Cu(2+) ensemble-based fluorescent chemosensor, which is amenable to convenient, sensitive, selective, turn-on and real-time assay of acetylcholinesterase (AChE), could be developed by using acetylthiocholine (ATCh) as the substrate. Herein, the sensing ensemble solution exhibits a marvelous fluorescent enhancement in the presence of AChE and ATCh, where AChE hydrolyzes its active substrate ATCh into thiocholine (TCh), and then TCh captures Cu(2+) from the ensemble, accompanied by the conversion from fluorescence off-state to on-state of the AuNCs. The AChE activity could be detected less than 0.05 mU/mL within a good linear range from 0.05 to 2.5 mU/mL. Our proposed fluorescence assay can be utilized to evaluate the AChE activity quantitatively in real biological sample, and furthermore to screen the inhibitor of AChE. As far as we know, the present study has reported the first analytical proposal for sensing AChE activity in real time by using a fluorescent nanomaterials-Cu(2+) ensemble or focusing on the Cu(2+)-triggered fluorescence quenching/recovery. This strategy paves a new avenue for exploring the biosensing applications of fluorescent AuNCs, and presents the prospect of AuNCs@11-MUA-Cu(2+) ensemble as versatile enzyme activity assay platforms by means of other appropriate substrates/analytes. PMID:26141104

  13. AChE inhibition: one dominant factor for swimming behavior changes of Daphnia magna under DDVP exposure.

    PubMed

    Ren, Zongming; Zhang, Xu; Wang, Xiaoguang; Qi, Pingping; Zhang, Biao; Zeng, Yang; Fu, Rongshu; Miao, Mingsheng

    2015-02-01

    As a key enzyme that hydrolyzes the neurotransmitter acetylcholine in cholinergic synapses of both vertebrates and invertebrates, acetylcholinesterase (AChE) is strongly inhibited by organophosphates. AChE inhibition may induce the decrease of swimming ability. According to previous research, swimming behavior of different aquatic organisms could be affected by different chemicals, and there is a shortage of research on direct correlation analysis between swimming behavior and biochemical indicators. Therefore, swimming behavior and whole-body AChE activity of Daphnia magna under dichlorvos (DDVP) exposure were identified in order to clarify the relationship between behavioral responses and AChE inhibition in this study. In the beginning, AChE activity was similar in all treatments with the control. During all exposures, the tendency of AChE activity inhibition was the same as the behavioral responses of D. magna. The AChE activity of individuals without movement would decrease to about zero in several minutes. The correlation analysis between swimming behavior of D. magna and AChE activity showed that the stepwise behavioral response was mainly decided by AChE activity. All of these results suggested that the toxicity characteristics of DDVP as an inhibitor of AChE on the swimming behavior of organisms were the same, and the AChE activity inhibition could induce loss of the nerve conduction ability, causing hyperactivity, loss of coordination, convulsions, paralysis and other kinds of behavioral changes, which was illustrated by the stepwise behavioral responses under different environmental stresses.

  14. Neuroprotective effect of cellular prion protein (PrPC) is related with activation of alpha7 nicotinic acetylcholine receptor (α7nAchR)-mediated autophagy flux.

    PubMed

    Jeong, Jae-Kyo; Park, Sang-Youel

    2015-09-22

    Activation of the alpha7 nicotinic acetylcholine receptor (α7nAchR) is regulated by prion protein (PrPC) expression and has a neuroprotective effect by modulating autophagic flux. In this study, we hypothesized that PrPC may regulate α7nAchR activation and that may prevent prion-related neurodegenerative diseases by regulating autophagic flux. PrP(106-126) treatment decreased α7nAchR expression and activation of autophagic flux. In addition, the α7nAchR activator PNU-282987 enhanced autophagic flux and protected neuron cells against PrP(106-126)-induced apoptosis. However, activation of autophagy and the protective effects of PNU-282987 were inhibited in PrPC knockout hippocampal neuron cells. In addition, PrPC knockout hippocampal neuron cells showed decreased α7nAchR expression levels. Adenoviral overexpression of PrPC in PrPC knockout hippocampal neuron cells resulted in activation of autophagic flux and inhibition of prion peptide-mediated cell death via α7nAchR activation. This is the first report demonstrating that activation of α7nAchR-mediated autophagic flux is regulated by PrPC, and that activation of α7nAchR regulated by PrPC expression may play a pivotal role in protection of neuron cells against prion peptide-induced neuron cell death by autophagy. These results suggest that α7nAchR-mediated autophagic flux may be involved in the pathogenesis of prion-related diseases and may be a therapeutic target for prion-related neurodegenerative diseases.

  15. Neuroprotective effect of cellular prion protein (PrPC) is related with activation of alpha7 nicotinic acetylcholine receptor (α7nAchR)-mediated autophagy flux.

    PubMed

    Jeong, Jae-Kyo; Park, Sang-Youel

    2015-09-22

    Activation of the alpha7 nicotinic acetylcholine receptor (α7nAchR) is regulated by prion protein (PrPC) expression and has a neuroprotective effect by modulating autophagic flux. In this study, we hypothesized that PrPC may regulate α7nAchR activation and that may prevent prion-related neurodegenerative diseases by regulating autophagic flux. PrP(106-126) treatment decreased α7nAchR expression and activation of autophagic flux. In addition, the α7nAchR activator PNU-282987 enhanced autophagic flux and protected neuron cells against PrP(106-126)-induced apoptosis. However, activation of autophagy and the protective effects of PNU-282987 were inhibited in PrPC knockout hippocampal neuron cells. In addition, PrPC knockout hippocampal neuron cells showed decreased α7nAchR expression levels. Adenoviral overexpression of PrPC in PrPC knockout hippocampal neuron cells resulted in activation of autophagic flux and inhibition of prion peptide-mediated cell death via α7nAchR activation. This is the first report demonstrating that activation of α7nAchR-mediated autophagic flux is regulated by PrPC, and that activation of α7nAchR regulated by PrPC expression may play a pivotal role in protection of neuron cells against prion peptide-induced neuron cell death by autophagy. These results suggest that α7nAchR-mediated autophagic flux may be involved in the pathogenesis of prion-related diseases and may be a therapeutic target for prion-related neurodegenerative diseases. PMID:26295309

  16. Nicotine activates YAP1 through nAChRs mediated signaling in esophageal squamous cell cancer (ESCC).

    PubMed

    Zhao, Yue; Zhou, Wei; Xue, Liyan; Zhang, Weimin; Zhan, Qimin

    2014-01-01

    Cigarette smoking is an established risk factor for esophageal cancers. Yes-associated protein 1 (YAP1), the key transcription factor of the mammalian Hippo pathway, has been reported to be an oncogenic factor for many cancers. In this study, we find nicotine administration can induce nuclear translocation and activation of YAP1 in ESCC. Consistently, we observed nuclear translocation and activation of YAP1 by knockdown of CHRNA3, which is a negative regulator of nicotine signaling in bronchial and esophageal cancer cells. Nicotine administration or CHRNA3 depletion substantially increased proliferation and migration in esophageal cancer cells. Interestingly, we find that YAP1 physically interacts with nAChRs, and nAChRs-signaling dissociates YAP1 from its negative regulatory complex composed with α-catenin, β-catenin and 14-3-3 in the cytoplasm, leading to upregulation and nuclear translocation of YAP1. This process likely requires PKC activation, as PKC specific inhibitor Enzastaurin can block nicotine induced YAP1 activation. In addition, we find nicotine signaling also inhibits the interaction of YAP1 with P63, which contributes to the inhibitory effect of nicotine on apoptosis. Using immunohistochemistry analysis we observed upregulation of YAP1 in a significant portion of esophageal cancer samples. Consistently, we have found a significant association between YAP1 upregulation and cigarette smoking in the clinical esophageal cancer samples. Together, these findings suggest that the nicotine activated nAChRs signaling pathway which further activates YAP1 plays an important role in the development of esophageal cancer, and this mechanism may be of a general significance for the carcinogenesis of smoking related cancers.

  17. Clinical application of clustered-AChR for the detection of SNMG

    PubMed Central

    Zhao, Guang; Wang, Xiaoqing; Yu, Xiaowen; Zhang, Xiutian; Guan, Yangtai; Jiang, Jianming

    2015-01-01

    Myasthenia gravis (MG) is an autoantibody-mediated disease of the neuromuscular junction (NMJ). However, accumulating evidence has indicated that MG patients whose serum anti-acetylcholine receptor (AChR) antibodies are not detectable (serumnegative MG; SNMG) in routine assays share similar clinical features with anti-AChR antibody-positive MG patients. We hypothesized that SNMG patients would have low-affinity antibodies to AChRs that would not be detectable using traditional methods but that might be detected by binding to AChR on the cell membrane, particularly if they were clustered at the high density observed at the NMJ. We expressed AChR subunits with the clustering protein rapsyn (an AChR-associated protein at the synapse) in human embryonic kidney (HEK) cells, and we tested the binding of the antibodies using immunofluorescence. With this approach, AChR antibodies to rapsyn-clustered AChR could be detected in the sera from 45.83% (11/24) of SNMG patients, as confirmed with fluorescence-activated cell sorting (FACS). This was the first application in China of cell-based AChR antibody detection. More importantly, this sensitive (and specific) approach could significantly increase the diagnosis rate of SNMG. PMID:26068604

  18. Highly sensitive electrochemiluminescenc assay of acetylcholinesterase activity based on dual biomarkers using Pd-Au nanowires as immobilization platform.

    PubMed

    Ye, Cui; Wang, Min-Qiang; Zhong, Xia; Chen, Shihong; Chai, Yaqin; Yuan, Ruo

    2016-05-15

    One-dimensional Pd-Au nanowires (Pd-Au NWs) were prepared and applied to fabricate an electrochemiluminescence (ECL) biosensor for the detection of acetylcholinesterase (AChE) activity. Compared with single-component of Pd or Au, the bimetallic nanocomposite of Pd-Au NWs offers a larger surface area for the immobilization of enzyme, and displays superior electrocatalytic activity and efficient electron transport capacity. In the presence of AChE and choline oxidase (ChOx), acetylcholine (ATCl) is hydrolyzed by AChE to generate thiocholine, then thiocholine is catalyzed by ChOx to produce H2O2 in situ, which serves as the coreactant to effectively enhance the ECL intensity in luminol-ECL system. The detection principle is based on the inhibited AChE and reactivated AChE as dual biomarkers, in which AChE was inhibited by organophosphorus (OP) agents, and then reactivated by obidoxime. Such dual biomarkers method can achieve credible evaluation for AChE activity via providing AChE activity before and after reactivation. The liner range for AChE activity detection was from 0.025 U L(-1) to 25 KU L(-1) with a low detection limit down to 0.0083 U L(-1). PMID:26686921

  19. Highly sensitive electrochemiluminescenc assay of acetylcholinesterase activity based on dual biomarkers using Pd-Au nanowires as immobilization platform.

    PubMed

    Ye, Cui; Wang, Min-Qiang; Zhong, Xia; Chen, Shihong; Chai, Yaqin; Yuan, Ruo

    2016-05-15

    One-dimensional Pd-Au nanowires (Pd-Au NWs) were prepared and applied to fabricate an electrochemiluminescence (ECL) biosensor for the detection of acetylcholinesterase (AChE) activity. Compared with single-component of Pd or Au, the bimetallic nanocomposite of Pd-Au NWs offers a larger surface area for the immobilization of enzyme, and displays superior electrocatalytic activity and efficient electron transport capacity. In the presence of AChE and choline oxidase (ChOx), acetylcholine (ATCl) is hydrolyzed by AChE to generate thiocholine, then thiocholine is catalyzed by ChOx to produce H2O2 in situ, which serves as the coreactant to effectively enhance the ECL intensity in luminol-ECL system. The detection principle is based on the inhibited AChE and reactivated AChE as dual biomarkers, in which AChE was inhibited by organophosphorus (OP) agents, and then reactivated by obidoxime. Such dual biomarkers method can achieve credible evaluation for AChE activity via providing AChE activity before and after reactivation. The liner range for AChE activity detection was from 0.025 U L(-1) to 25 KU L(-1) with a low detection limit down to 0.0083 U L(-1).

  20. Activation of the alpha-7 nicotinic acetylcholine receptor (α7 nAchR) reverses referred mechanical hyperalgesia induced by colonic inflammation in mice.

    PubMed

    Costa, Robson; Motta, Emerson M; Manjavachi, Marianne N; Cola, Maíra; Calixto, João B

    2012-10-01

    In the current study, we investigated the effect of the activation of the alpha-7 nicotinic acetylcholine receptor (α7 nAchR) on dextran sulphate sodium (DSS)-induced colitis and referred mechanical hyperalgesia in mice. Colitis was induced in CD1 male mice through the intake of 4% DSS in tap water for 7 days. Control mice received unadulterated water. Referred mechanical hyperalgesia was evaluated for 7 days after the beginning of 4% DSS intake. Referred mechanical hyperalgesia started within 1 day after beginning DSS drinking, peaked at 3 days and persisted for 7 days. This time course profile perfectly matched with the appearance of signs of colitis. Both acute and chronic oral treatments with nicotine (0.1-1.0 mg/kg, p.o.) were effective in inhibiting the established referred mechanical hyperalgesia. The antinociceptive effect of nicotine was completely abrogated by cotreatment with the selective α7 nAchR antagonist methyllycaconitine (MLA) (1.0 mg/kg). Consistent with these results, i.p. treatment with the selective α7 nAchR agonist PNU 282987 (0.1-1.0 mg/kg) reduced referred mechanical hyperalgesia at all periods of evaluation. Despite their antinociceptive effects, nicotinic agonists did not affect DSS-induced colonic damage or inflammation. Taken together, the data generated in the present study show the potential relevance of using α7 nAchR agonists to treat referred pain and discomfort associated with inflammatory bowel diseases.

  1. Natural AChE Inhibitors from Plants and their Contribution to Alzheimer’s Disease Therapy

    PubMed Central

    Murray, Ana Paula; Faraoni, María Belén; Castro, María Julia; Alza, Natalia Paola; Cavallaro, Valeria

    2013-01-01

    As acetylcholinesterase (AChE) inhibitors are an important therapeutic strategy in Alzheimer’s disease, efforts are being made in search of new molecules with anti-AChE activity. The fact that naturally-occurring compounds from plants are considered to be a potential source of new inhibitors has led to the discovery of an important number of secondary metabolites and plant extracts with the ability of inhibiting the enzyme AChE, which, according to the cholinergic hypothesis, increases the levels of the neurotransmitter acetylcholine in the brain, thus improving cholinergic functions in patients with Alzheimer’s disease and alleviating the symptoms of this neurological disorder. This review summarizes a total of 128 studies which correspond to the most relevant research work published during 2006-2012 (1st semester) on plant-derived compounds, plant extracts and essential oils found to elicit AChE inhibition. PMID:24381530

  2. Cardanol-derived AChE inhibitors: Towards the development of dual binding derivatives for Alzheimer's disease.

    PubMed

    Lemes, Laís Flávia Nunes; de Andrade Ramos, Giselle; de Oliveira, Andressa Souza; da Silva, Fernanda Motta R; de Castro Couto, Gina; da Silva Boni, Marina; Guimarães, Marcos Jorge R; Souza, Isis Nem O; Bartolini, Manuela; Andrisano, Vincenza; do Nascimento Nogueira, Patrícia Coelho; Silveira, Edilberto Rocha; Brand, Guilherme D; Soukup, Ondřej; Korábečný, Jan; Romeiro, Nelilma C; Castro, Newton G; Bolognesi, Maria Laura; Romeiro, Luiz Antonio Soares

    2016-01-27

    Cardanol is a phenolic lipid component of cashew nut shell liquid (CNSL), obtained as the byproduct of cashew nut food processing. Being a waste product, it has attracted much attention as a precursor for the production of high-value chemicals, including drugs. On the basis of these findings and in connection with our previous studies on cardanol derivatives as acetylcholinesterase (AChE) inhibitors, we designed a novel series of analogues by including a protonable amino moiety belonging to different systems. Properly addressed docking studies suggested that the proposed structural modifications would allow the new molecules to interact with both the catalytic active site (CAS) and the peripheral anionic site (PAS) of AChE, thus being able to act as dual binding inhibitors. To disclose whether the new molecules showed the desired profile, they were first tested for their cholinesterase inhibitory activity towards EeAChE and eqBuChE. Compound 26, bearing an N-ethyl-N-(2-methoxybenzyl)amine moiety, showed the highest inhibitory activity against EeAChE, with a promising IC50 of 6.6 μM, and a similar inhibition profile of the human isoform (IC50 = 5.7 μM). As another positive feature, most of the derivatives did not show appreciable toxicity against HT-29 cells, up to a concentration of 100 μM, which indicates drug-conform behavior. Also, compound 26 is capable of crossing the blood-brain barrier (BBB), as predicted by a PAMPA-BBB assay. Collectively, the data suggest that the approach to obtain potential anti-Alzheimer drugs from CNSL is worth of further pursuit and development. PMID:26735910

  3. α5-nAChR modulates nicotine-induced cell migration and invasion in A549 lung cancer cells.

    PubMed

    Sun, Haiji; Ma, Xiaoli

    2015-09-01

    Cigarette smoking is the most important risk factor in the development of human lung cancer. Nicotine, the major component in tobacco, not only contributes to carcinogenesis but also promotes tumor metastasis. By binding to nicotinic acetylcholine receptors (nAChRs), nicotine induces the proliferation and migration of non-small cell lung cancer. Recently studies have indicated that α5-nAChR is highly associated with lung cancer risk and nicotine dependence. Nevertheless, it is unclear whether nicotine promotes the migration and invasion through activation of α5-nAChR in lung cancer. In the present study, A549 cell was exposed to 1μN nicotine for 8, 24 or 48h. Wound-healing assay and transwell assay were used to evaluate the capability of A549 cell migration and cell invasion, respectively. Silencing of α5-nAChR was done by siRNA. Western blotting and PCR were used to detect α5-nAChR expression. Nicotine can induce activation of α5-nAChR in association with increased migration and invasion of human lung cancer A549 cell. Treatment of cells with α5-nAChR specific siRNA blocks nicotine-stimulated activation of α5-nAChR and suppresses A549 cell migration and invasion. Reduction of α5-nAChR resulted in upregulation of E-cadherin, consistent with E-cadherin being inhibitive of cancer cell invasion. These findings suggest that nicotine-induced migration and invasion may occur in a mechanism through activation of α5-nAChR, which can contribute to metastasis or development of human lung cancer.

  4. DNA Methyltransferase Activity Assays: Advances and Challenges

    PubMed Central

    Poh, Wan Jun; Wee, Cayden Pang Pee; Gao, Zhiqiang

    2016-01-01

    DNA methyltransferases (MTases), a family of enzymes that catalyse the methylation of DNA, have a profound effect on gene regulation. A large body of evidence has indicated that DNA MTase is potentially a predictive biomarker closely associated with genetic disorders and genetic diseases like cancer. Given the attention bestowed onto DNA MTases in molecular biology and medicine, highly sensitive detection of DNA MTase activity is essential in determining gene regulation, epigenetic modification, clinical diagnosis and therapeutics. Conventional techniques such as isotope labelling are effective, but they often require laborious sample preparation, isotope labelling, sophisticated equipment and large amounts of DNA, rendering them unsuitable for uses at point-of-care. Simple, portable, highly sensitive and low-cost assays are urgently needed for DNA MTase activity screening. In most recent technological advances, many alternative DNA MTase activity assays such as fluorescent, electrochemical, colorimetric and chemiluminescent assays have been proposed. In addition, many of them are coupled with nanomaterials and/or enzymes to significantly enhance their sensitivity. Herein we review the progress in the development of DNA MTase activity assays with an emphasis on assay mechanism and performance with some discussion on challenges and perspectives. It is hoped that this article will provide a broad coverage of DNA MTase activity assays and their latest developments and open new perspectives toward the development of DNA MTase activity assays with much improved performance for uses in molecular biology and clinical practice. PMID:26909112

  5. DNA Methyltransferase Activity Assays: Advances and Challenges.

    PubMed

    Poh, Wan Jun; Wee, Cayden Pang Pee; Gao, Zhiqiang

    2016-01-01

    DNA methyltransferases (MTases), a family of enzymes that catalyse the methylation of DNA, have a profound effect on gene regulation. A large body of evidence has indicated that DNA MTase is potentially a predictive biomarker closely associated with genetic disorders and genetic diseases like cancer. Given the attention bestowed onto DNA MTases in molecular biology and medicine, highly sensitive detection of DNA MTase activity is essential in determining gene regulation, epigenetic modification, clinical diagnosis and therapeutics. Conventional techniques such as isotope labelling are effective, but they often require laborious sample preparation, isotope labelling, sophisticated equipment and large amounts of DNA, rendering them unsuitable for uses at point-of-care. Simple, portable, highly sensitive and low-cost assays are urgently needed for DNA MTase activity screening. In most recent technological advances, many alternative DNA MTase activity assays such as fluorescent, electrochemical, colorimetric and chemiluminescent assays have been proposed. In addition, many of them are coupled with nanomaterials and/or enzymes to significantly enhance their sensitivity. Herein we review the progress in the development of DNA MTase activity assays with an emphasis on assay mechanism and performance with some discussion on challenges and perspectives. It is hoped that this article will provide a broad coverage of DNA MTase activity assays and their latest developments and open new perspectives toward the development of DNA MTase activity assays with much improved performance for uses in molecular biology and clinical practice.

  6. Analysis of AchE and LDH in mollusc, Lamellidens marginalis after exposure to chlorpyrifos.

    PubMed

    Amanullah, B; Stalin, A; Prabu, P; Dhanapal, S

    2010-07-01

    The enzymes Acetylcholinesterase (AchE) and Lactatedehydrogenase (LDH) are used as biological markers in the present study. Enzymes are highly sensitive and used to evaluate the biological effects of organophosphate pesticide chlorpyrifos in freshwater mussel Lamellidens marginalis. The test organisms were exposed to sub-lethal concentration (5 ppm) of chlorpyrifos for 30 days and allowed to recover for seven days. A distinct reduction of the enzyme AchE (34 +/- 3.3 U l(-1)) was found in the treated hepatopancreas. A significant increase in LDH activity in gill, hepatopancreas and muscle was observed. There was a significant recovery in AchE and LDH in the different tissues, after seven days recovery period.. Hence, the changes in the enzymes are found as the best biomarkering tool to evaluate the effect of organophosphate pesticide chlorpyrifos on the aquatic biota.

  7. AChE biosensor based on zinc oxide sol-gel for the detection of pesticides.

    PubMed

    Sinha, Ravi; Ganesana, Mallikarjunarao; Andreescu, Silvana; Stanciu, Lia

    2010-02-28

    Zinc oxide has been used as a matrix for immobilization of acetylcholinesterase (AChE) and detection of the pesticide paraoxon. The immobilized enzyme retained its enzymatic activity up to three months when stored in phosphate buffered saline (pH 7.4) at 4 degrees C. An amperometric biosensor for the detection of paraoxon was designed. The biosensor detected paraoxon in the range 0.035-1.38 ppm and can be used to detect other AChE inhibiting organophosphate pesticides. PMID:20113735

  8. Avarol derivatives as competitive AChE inhibitors, non hepatotoxic and neuroprotective agents for Alzheimer's disease.

    PubMed

    Tommonaro, Giuseppina; García-Font, Nuria; Vitale, Rosa Maria; Pejin, Boris; Iodice, Carmine; Cañadas, Sixta; Marco-Contelles, José; Oset-Gasque, María Jesús

    2016-10-21

    Avarol is a marine sesquiterpenoid hydroquinone, previously isolated from the marine sponge Dysidea avara Schmidt (Dictyoceratida), with antiinflammatory, antitumor, antioxidant, antiplatelet, anti-HIV, and antipsoriatic effects. Recent findings indicate that some thio-avarol derivatives exhibit acetylcholinesterase (AChE) inhibitory activity. The multiple pharmacological properties of avarol, thio-avarol and/or their derivatives prompted us to continue the in vitro screening, focusing on their AChE inhibitory and neuroprotective effects. Due to the complex nature of Alzheimer's disease (AD), there is a renewed search for new, non hepatotoxic anticholinesterasic compounds. This paper describes the synthesis and in vitro biological evaluation of avarol-3'-thiosalicylate (TAVA) and thiosalycil-prenyl-hydroquinones (TPHs), as non hepatotoxic anticholinesterasic agents, showing a good neuroprotective effect on the decreased viability of SHSY5Y human neuroblastoma cells induced by oligomycin A/rotenone and okadaic acid. A molecular modeling study was also undertaken on the most promising molecules within the series to elucidate their AChE binding modes and in particular the role played by the carboxylate group in enzyme inhibition. Among them, TPH4, bearing a geranylgeraniol substituent, is the most significant Electrophorus electricus AChE (EeAChE) inhibitor (IC50 = 6.77 ± 0.24 μM), also endowed with a moderate serum horse butyrylcholinesterase (eqBuChE) inhibitory activity, being also the least hepatotoxic and the best neuroprotective compound of the series. Thus, TPHs represents a new family of synthetic compounds, chemically related to the natural compound avarol, which has been discovered for the potential treatment of AD. Findings prove the relevance of TPHs as a new possible generation of competitive AChE inhibitors pointing out the importance of the salycilic substituents on the hydroquinone ring. Since these compounds do not belong to the class of

  9. Avarol derivatives as competitive AChE inhibitors, non hepatotoxic and neuroprotective agents for Alzheimer's disease.

    PubMed

    Tommonaro, Giuseppina; García-Font, Nuria; Vitale, Rosa Maria; Pejin, Boris; Iodice, Carmine; Cañadas, Sixta; Marco-Contelles, José; Oset-Gasque, María Jesús

    2016-10-21

    Avarol is a marine sesquiterpenoid hydroquinone, previously isolated from the marine sponge Dysidea avara Schmidt (Dictyoceratida), with antiinflammatory, antitumor, antioxidant, antiplatelet, anti-HIV, and antipsoriatic effects. Recent findings indicate that some thio-avarol derivatives exhibit acetylcholinesterase (AChE) inhibitory activity. The multiple pharmacological properties of avarol, thio-avarol and/or their derivatives prompted us to continue the in vitro screening, focusing on their AChE inhibitory and neuroprotective effects. Due to the complex nature of Alzheimer's disease (AD), there is a renewed search for new, non hepatotoxic anticholinesterasic compounds. This paper describes the synthesis and in vitro biological evaluation of avarol-3'-thiosalicylate (TAVA) and thiosalycil-prenyl-hydroquinones (TPHs), as non hepatotoxic anticholinesterasic agents, showing a good neuroprotective effect on the decreased viability of SHSY5Y human neuroblastoma cells induced by oligomycin A/rotenone and okadaic acid. A molecular modeling study was also undertaken on the most promising molecules within the series to elucidate their AChE binding modes and in particular the role played by the carboxylate group in enzyme inhibition. Among them, TPH4, bearing a geranylgeraniol substituent, is the most significant Electrophorus electricus AChE (EeAChE) inhibitor (IC50 = 6.77 ± 0.24 μM), also endowed with a moderate serum horse butyrylcholinesterase (eqBuChE) inhibitory activity, being also the least hepatotoxic and the best neuroprotective compound of the series. Thus, TPHs represents a new family of synthetic compounds, chemically related to the natural compound avarol, which has been discovered for the potential treatment of AD. Findings prove the relevance of TPHs as a new possible generation of competitive AChE inhibitors pointing out the importance of the salycilic substituents on the hydroquinone ring. Since these compounds do not belong to the class of

  10. Comparative analysis of cholinesterase activities in food animals using modified Ellman and Michel assays

    PubMed Central

    Askar, Kasim Abass; Kudi, A. Caleb; Moody, A. John

    2011-01-01

    This study investigated correlations between modified Ellman and Michel assay methods for measuring cholinesterase (ChE) activities. It also established a foundation for the applicability of measuring ChE activities in food animal species as biochemical biomarkers for evaluating exposure to and effects of organophosphorus and carbamate pesticides. Measuring ChE activities in blood and tissue is currently the most important method of confirming the diagnosis of such exposure. The study also characterized the level of ChE activity in the selected organs/tissues of these animals and determined the best organ/tissue in which to measure ChE activity. The ChE activities were found to be higher in cattle than in sheep and higher in erythrocytes than in plasma and serum. The anticoagulant heparin significantly affects AChE activity in plasma compared with ethylenediamine tetra-acetic acid (EDTA). Of the different tissues tested, the mean of ChE activities was found to be highest in tissue from liver, followed by lung, muscle, kidney, and heart for sheep and cattle. In pigs, the ChE activities tested higher in kidney, liver, lung, muscle, and heart. The highest activities of ChE were found in pigs, followed by cattle and sheep. There was no significant difference between the modified Ellman and Michel method, but the percentage coefficient of variance (%CV) values were higher when the Michel method was used. PMID:22468023

  11. Altered GPI modification of insect AChE improves tolerance to organophosphate insecticides.

    PubMed

    Kakani, Evdoxia G; Bon, Suzanne; Massoulié, Jean; Mathiopoulos, Kostas D

    2011-03-01

    The olive fruit fly Bactrocera oleae is the most destructive and intractable pest of olives. The management of B. oleae has been based on the use of organophosphate (OP) insecticides, a practice that induced resistance. OP-resistance in the olive fly was previously shown to be associated with two mutations in the acetylcholinesterase (AChE) enzyme that, apparently, hinder the entrance of the OP into the active site. The search for additional mutations in the ace gene that encodes AChE revealed a short deletion of three glutamines (Δ3Q) from a stretch of five glutamines, in the C-terminal peptide that is normally cleaved and substituted by a GPI anchor. We verified that AChEs from B. oleae and other Dipterans are actually GPI-anchored, although this is not predicted by the "big-PI" algorithm. The Δ3Q mutation shortens the unusually long hydrophilic spacer that follows the predicted GPI attachment site and may thus improve the efficiency of GPI anchor addition. We expressed the wild type B. oleae AChE, the natural mutant Δ3Q and a constructed mutant lacking all 5 consecutive glutamines (Δ5Q) in COS cells and compared their kinetic properties. All constructs presented identical K(m) and k(cat) values, in agreement with the fact that the mutations did not affect the catalytic domain of the enzyme. In contrast, the mutants produced higher AChE activity, suggesting that a higher proportion of the precursor protein becomes GPI-anchored. An increase in the number of GPI-anchored molecules in the synaptic cleft may reduce the sensitivity to insecticides.

  12. Assay and Inhibition of Diacylglycerol Lipase Activity

    PubMed Central

    Johnston, Meghan; Bhatt, Shachi R.; Sikka, Surina; Mercier, Richard W.; West, Jay M.; Makriyannis, Alexandros; Gatley, S. John; Duclos, Richard I.

    2012-01-01

    A series of N-formyl-α-amino acid esters of β-lactone derivatives structurally related to tetrahydrolipstatin (THL) and O-3841 were synthesized that inhibit human and murine diacylglycerol lipase (DAGL) activities. New ether lipid reporter compounds were developed for an in vitro assay to efficiently screen inhibitors of 1,2-diacyl-sn-glycerol hydrolysis and related lipase activities using fluorescence resonance energy transfer (FRET). A standardized thin layer chromatography (TLC) radioassay of diacylglycerol lipase activity utilizing the labeled endogenous substrate [1″-14C]1-stearoyl-2-arachidonoyl-sn-glycerol with phosphorimaging detection was used to quantify inhibition by following formation of the initial product [1″-14C]2-arachidonoylglycerol and further hydrolysis under the assay conditions to [1-14C]arachidonic acid. PMID:22738638

  13. Acetylcholinesterase (AChE) gene modification in transgenic animals: functional consequences of selected exon and regulatory region deletion.

    PubMed

    Camp, Shelley; Zhang, Limin; Marquez, Michael; de la Torre, Brian; Long, Jeffery M; Bucht, Goran; Taylor, Palmer

    2005-12-15

    . delaTorre, P. Taylor, Knockout mice with deletions of alternatively spliced exons of Acetylcholinesterase, in: N.C. Inestrosa, E.O. Campus (Eds.), VII International Meeting on Cholinesterases, Pucon-Chile Cholinesterases in the Second Millennium: Biomolecular and Pathological Aspects. P. Universidad Catholica de Chile-FONDAP Biomedicina, 2004, pp. 43-48; R.Y.Y. Chan, C. Boudreau-Larivière, L.A. Angus, F. Mankal, B.J. Jasmin, An intronic enhancer containing an N-box motif is required for synapse- and tissue-specific expression of the acetylcholinesterase gene in skeletal muscle fibers. Proc. Natl. Acad. Sci. USA 96 (1999) 4627-4632], is also presented. The intronic region was floxed and then deleted by mating with Ella-cre transgenic mice. The deletion of this region produced a dramatic phenotype; a mouse with near normal AChE expression in brain and other CNS tissues, but no AChE expression in muscle. Phenotype and AChE tissue activities are compared with the total AChE knockout mouse [W. Xie, J.A. Chatonnet, P.J. Wilder, A. Rizzino, R.D. McComb, P. Taylor, S.H. Hinrichs, O. Lockridge, Postnatal developmental delay and supersensitivity to organophosphate in gene-targeted mice lacking acetylcholinesterase. J. Pharmacol. Exp. Ther. 293 (3) (2000) 896-902].

  14. Acetylcholinesterase (AChE) inhibition aggravates fasting-induced triglyceride accumulation in the mouse liver.

    PubMed

    Yokota, Shin-Ichi; Nakamura, Kaai; Ando, Midori; Kamei, Hiroyasu; Hakuno, Fumihiko; Takahashi, Shin-Ichiro; Shibata, Shigenobu

    2014-01-01

    Although fasting induces hepatic triglyceride (TG) accumulation in both rodents and humans, little is known about the underlying mechanism. Because parasympathetic nervous system activity tends to attenuate the secretion of very-low-density-lipoprotein-triglyceride (VLDL-TG) and increase TG stores in the liver, and serum cholinesterase activity is elevated in fatty liver disease, the inhibition of the parasympathetic neurotransmitter acetylcholinesterase (AChE) may have some influence on hepatic lipid metabolism. To assess the influence of AChE inhibition on lipid metabolism, the effect of physostigmine, an AChE inhibitor, on fasting-induced increase in liver TG was investigated in mice. In comparison with ad libitum-fed mice, 30 h fasting increased liver TG accumulation accompanied by a downregulation of sterol regulatory element-binding protein 1 (SREBP-1) and liver-fatty acid binding-protein (L-FABP). Physostigmine promoted the 30 h fasting-induced increase in liver TG levels in a dose-dependent manner, accompanied by a significant fall in plasma insulin levels, without a fall in plasma TG. Furthermore, physostigmine significantly attenuated the fasting-induced decrease of both mRNA and protein levels of SREBP-1 and L-FABP, and increased IRS-2 protein levels in the liver. The muscarinic receptor antagonist atropine blocked these effects of physostigmine on liver TG, serum insulin, and hepatic protein levels of SREBP-1 and L-FABP. These results demonstrate that AChE inhibition facilitated fasting-induced TG accumulation with up regulation of the hepatic L-FABP and SREBP-1 in mice, at least in part via the activation of muscarinic acetylcholine receptors. Our studies highlight the crucial role of parasympathetic regulation in fasting-induced TG accumulation, and may be an important source of information on the mechanism of hepatic disorders of lipid metabolism. PMID:25383314

  15. Assay of DAGLα/β Activity.

    PubMed

    Bisogno, Tiziana

    2016-01-01

    The endocannabinoid 2-arachidonoylglycerol (2-AG) exerts its physiological action by binding to and functionally activating type-1 (CB1) and type-2 (CB2) cannabinoid receptors. It is thought to be produced through the action of sn-1 selective diacylglycerol lipase (DAGL) that catalyzes 2-AG biosynthesis from sn-2-arachidonate-containing diacylglycerols. Since 2-AG biosynthetic enzymes have been identified only recently, little information on methodological approaches for measuring DAGL activity is as yet available. Here, a highly sensitive radiometric assay to measure DAGL activity by using 1-oleoyl[1-(14)C]-2-arachidonoylglycerol as the substrate is reported. All the steps needed to perform lipid extraction, fractionation by thin-layer chromatography (TLC), and quantification of radiolabeled [(14)C]-oleic acid via scintillation counting are described in detail. PMID:27245901

  16. Comparative study on short- and long-term behavioral consequences of organophosphate exposure: relationship to AChE mRNA expression.

    PubMed

    López-Granero, Caridad; Cardona, Diana; Giménez, Estela; Lozano, Rafael; Barril, José; Aschner, Michael; Sánchez-Santed, Fernando; Cañadas, Fernando

    2014-01-01

    Organophosphates (OPs) affect behavior by inhibiting acetylcholinesterase (AChE). While the cognitive short-term effects may be directly attributed to this inhibition, the mechanisms that underlie OP's long-term cognitive effects remain controversial and poorly understood. Accordingly, two experiments were designed to assess the effects of OPs on cognition, and to ascertain whether both the short- and long-term effects of are AChE-dependent. A single subcutaneous dose of 250 mg/kg chlorpyrifos (CPF), 1.5mg/kg diisopropylphosphorofluoridate (DFP) or 15 mg/kg parathion (PTN) was administered to male Wistar rats. Spatial learning was evaluated 72 h or 23 weeks after exposure, and impulsive choice was tested at 10 and 30 weeks following OPs administration (experiment 1 and 2, respectively). Brain soluble and membrane-bound AChE activity, synaptic AChE-S mRNA, read-through AChE-R mRNA and brain acylpeptide hydrolase (APH) activity (as alternative non-cholinergic target) were analyzed upon completion of the behavioral testing (17 and 37 weeks after OPs exposure). Both short- and long-term CPF treatment caused statistically significant effects on spatial learning, while PTN treatment led only to statistically significant short-term effects. Neither CPF, DFP nor PTN affected the long-term impulsivity response. Long-term exposure to CPF and DFP significantly decreased AChE-S and AChE-R mRNA, while in the PTN treated group only AChE-S mRNA levels were decreased. However, after long-term OP exposure, soluble and membrane-bound AChE activity was indistinguishable from controls. Finally, no changes were noted in brain APH activity in response to OP treatment. Taken together, this study demonstrates long-term effects of OPs on AChE-S and AChE-R mRNA in the absence of changes in AChE soluble and membrane-bound activity. Thus, changes in AChE mRNA expression imply non-catalytic properties of the AChE enzyme.

  17. A miniaturized fibrinolytic assay for plasminogen activators

    NASA Technical Reports Server (NTRS)

    Lewis, M. L.; Nachtwey, D. S.; Damron, K. L.

    1991-01-01

    This report describes a micro-clot lysis assay (MCLA) for evaluating fibrinolytic activity of plasminogen activators (PA). Fibrin clots were formed in wells of microtiter plates. Lysis of the clots by PA, indicated by change in turbidity (optical density, OD), was monitored with a microplate reader at five minutes intervals. Log-log plots of PA dilution versus endpoint, the time at which the OD value was halfway between the maximum and minimum value for each well, were linear over a broad range of PA concentrations (2-200 International units/ml). The MCLA is a modification and miniaturization of well established fibrinolytic methods. The significant practical advantages of the MCLA are that it is a simple, relatively sensitive, non-radioactive, quantitative, kinetic, fibrinolytic micro-technique which can be automated.

  18. In Vitro Activity of ACH-702, a New Isothiazoloquinolone, against Nocardia brasiliensis Compared with Econazole and the Carbapenems Imipenem and Meropenem Alone or in Combination with Clavulanic Acid ▿

    PubMed Central

    Vera-Cabrera, Lucio; Campos-Rivera, Mayra Paola; Escalante-Fuentes, Wendy G.; Pucci, Michael J.; Ocampo-Candiani, Jorge; Welsh, Oliverio

    2010-01-01

    The in vitro activities of ACH-702 and other antimicrobials against 30 Nocardia brasiliensis isolates were tested. The MIC50 (MIC for 50% of the strains tested) and MIC90 values of ACH-702 were 0.125 and 0.5 μg/ml. The same values for econazole were 2 and 4 μg/ml. The MIC50 and MIC90 values of imipenem and meropenem were 64 and >64 μg/ml and 2 and 8 μg/ml, respectively; the addition of clavulanic acid to the carbapenems had no effect. PMID:20308390

  19. Acetylcholinesterase Regulates Skeletal In Ovo Development of Chicken Limbs by ACh-Dependent and -Independent Mechanisms

    PubMed Central

    Spieker, Janine; Ackermann, Anica; Salfelder, Anika; Vogel-Höpker, Astrid; Layer, Paul G.

    2016-01-01

    Formation of the vertebrate limb presents an excellent model to analyze a non-neuronal cholinergic system (NNCS). Here, we first analyzed the expression of acetylcholinesterase (AChE) by IHC and of choline acetyltransferase (ChAT) by ISH in developing embryonic chicken limbs (stages HH17-37). AChE outlined formation of bones, being strongest at their distal tips, and later also marked areas of cell death. At onset, AChE and ChAT were elevated in two organizing centers of the limb anlage, the apical ectodermal ridge (AER) and zone of polarizing activity (ZPA), respectively. Thereby ChAT was expressed shortly after AChE, thus strongly supporting a leading role of AChE in limb formation. Then, we conducted loss-of-function studies via unilateral implantation of beads into chicken limb anlagen, which were soaked in cholinergic components. After varying periods, the formation of cartilage matrix and of mineralizing bones was followed by Alcian blue (AB) and Alizarin red (AR) stainings, respectively. Both acetylcholine (ACh)- and ChAT-soaked beads accelerated bone formation in ovo. Notably, inhibition of AChE by BW284c51, or by the monoclonal antibody MAB304 delayed cartilage formation. Since bead inhibition of BChE was mostly ineffective, an ACh-independent action during BW284c51 and MAB304 inhibition was indicated, which possibly could be due to an enzymatic side activity of AChE. In conclusion, skeletogenesis in chick is regulated by an ACh-dependent cholinergic system, but to some extent also by an ACh-independent aspect of the AChE protein. PMID:27574787

  20. Acetylcholinesterase Regulates Skeletal In Ovo Development of Chicken Limbs by ACh-Dependent and -Independent Mechanisms.

    PubMed

    Spieker, Janine; Ackermann, Anica; Salfelder, Anika; Vogel-Höpker, Astrid; Layer, Paul G

    2016-01-01

    Formation of the vertebrate limb presents an excellent model to analyze a non-neuronal cholinergic system (NNCS). Here, we first analyzed the expression of acetylcholinesterase (AChE) by IHC and of choline acetyltransferase (ChAT) by ISH in developing embryonic chicken limbs (stages HH17-37). AChE outlined formation of bones, being strongest at their distal tips, and later also marked areas of cell death. At onset, AChE and ChAT were elevated in two organizing centers of the limb anlage, the apical ectodermal ridge (AER) and zone of polarizing activity (ZPA), respectively. Thereby ChAT was expressed shortly after AChE, thus strongly supporting a leading role of AChE in limb formation. Then, we conducted loss-of-function studies via unilateral implantation of beads into chicken limb anlagen, which were soaked in cholinergic components. After varying periods, the formation of cartilage matrix and of mineralizing bones was followed by Alcian blue (AB) and Alizarin red (AR) stainings, respectively. Both acetylcholine (ACh)- and ChAT-soaked beads accelerated bone formation in ovo. Notably, inhibition of AChE by BW284c51, or by the monoclonal antibody MAB304 delayed cartilage formation. Since bead inhibition of BChE was mostly ineffective, an ACh-independent action during BW284c51 and MAB304 inhibition was indicated, which possibly could be due to an enzymatic side activity of AChE. In conclusion, skeletogenesis in chick is regulated by an ACh-dependent cholinergic system, but to some extent also by an ACh-independent aspect of the AChE protein. PMID:27574787

  1. Discovery of Highly Potent and Selective α4β2-Nicotinic Acetylcholine Receptor (nAChR) Partial Agonists Containing an Isoxazolylpyridine Ether Scaffold that Demonstrate Antidepressant-like Activity. Part II

    PubMed Central

    Yu, Li-Fang; Eaton, J. Brek; Fedolak, Allison; Zhang, Han-Kun; Hanania, Taleen; Brunner, Dani; Lukas, Ronald J.; Kozikowski, Alan P.

    2012-01-01

    In our continued efforts to develop α4β2-nicotinic acetylcholine receptor (nAChR) partial agonists as novel antidepressants having a unique mechanism of action, structure activity relationship (SAR) exploration of certain isoxazolylpyridine ethers is presented. In particular, modifications to both the azetidine ring present in the starting structure 4 and its metabolically liable hydroxyl side chain substituent have been explored to improve compound druggability. The pharmacological characterization of all new compounds has been carried out using [3H]epibatidine binding studies together with functional assays based on 86Rb+ ion flux measurements. We found that the deletion of the metabolically liable hydroxyl group or its replacement by a fluoromethyl group not only maintained potency and selectivity, but also resulted in compounds showing antidepressant-like properties in the mouse forced swim test. These isoxazolylpyridine ethers appear to represent promising lead candidates in the design of innovative chemical tools containing reporter groups for imaging purposes and of possible therapeutics. PMID:23092294

  2. Rho family and Rap GTPase activation assays.

    PubMed

    Jennings, Richard T; Knaus, Ulla G

    2014-01-01

    The detection of Ras superfamily GTPase activity in innate immune cells is important when studying signaling events elicited by various ligands and cellular processes. The development of high-affinity probes detecting the activated, GTP-bound form of small GTPases has significantly enhanced our understanding of initiation and termination of GTPase-regulated signaling pathways. These probes are created by fusing a high-affinity GTPase-binding domain derived from a specific downstream effector protein to glutathione S-transferase (GST). Such domains bind preferentially to the GTP-bound form of the upstream Rho or Ras GTPase. Coupling these probes to beads enables extraction of the complex and subsequent quantification of the active GTP-binding protein by immunoblotting. Although effector domains that discriminate efficiently between GDP- and GTP-bound states and highly specific antibodies are not yet available for every small GTPase, analysis of certain members of the Rho and Ras GTPase family is now routinely performed. Here, we describe affinity-based pulldown assays for detection of Rho GTPase (Rac1/2, Cdc42, RhoA/B) and Rap1/2 activity in stimulated neutrophils or macrophages.

  3. Toxicological and Biochemical Characterizations of AChE in Phosalone-Susceptible and Resistant Populations of the Common Pistachio Psyllid, Agonoscena pistaciae

    PubMed Central

    Alizadeh, Ali; Talebi-Jahromi, Khalil; Hosseininaveh, Vahid; Ghadamyari, Mohammad

    2014-01-01

    The toxicological and biochemical characteristics of acetylcholinesterases (AChE) in nine populations of the common pistachio psyllid, Agonoscena pistaciae Burckhardt and Lauterer (Hemiptera: Psyllidae), were investigated in Kerman Province, Iran. Nine A. pistaciae populations were collected from pistachio orchards, Pistacia vera L. (Sapindales: Anacardiaceae), located in Rafsanjan, Anar, Bam, Kerman, Shahrbabak, Herat, Sirjan, Pariz, and Paghaleh regions of Kerman province. The previous bioassay results showed these populations were susceptible or resistant to phosalone, and the Rafsanjan population was most resistant, with a resistance ratio of 11.3. The specific activity of AChE in the Rafsanjan population was significantly higher than in the susceptible population (Bam). The affinity (KM) and hydrolyzing efficiency (Vmax) of AChE on acetylthiocholine iodide, butyrylthiocholine iodide, and propionylthiocholine odide as artificial substrates were clearly lower in the Bam population than that in the Rafsanjan population. These results indicated that the AChE of the Rafsanjan population had lower affinity to these substrates than that of the susceptible population. The higher Vmax value in the Rafsanjan population compared to the susceptible population suggests a possible over expression of AChE in the Rafsanjan population. The in vitro inhibitory effect of several organophosphates and carbamates on AChE of the Rafsanjan and Bam populations was determined. Based on I50, the results showed that the ratios of AChE insensitivity of the resistant to susceptible populations were 23 and 21.7-fold to monocrotophos and phosphamidon, respectively. Whereas, the insensitivity ratios for Rafsanjan population were 0.86, 0.8, 0.78, 0.46, and 0.43 for carbaryl, eserine, propoxur, m-tolyl methyl carbamate, and carbofuran, respectively, suggesting negatively correlated sensitivity to organophosphate-insensitive AChE. Therefore, AChE from the Rafsanjan population showed negatively

  4. Toxicological and biochemical characterizations of AChE in phosalone-susceptible and resistant populations of the common pistachio psyllid, Agonoscena pistaciae.

    PubMed

    Alizadeh, Ali; Talebi-Jahromi, Khalil; Hosseininaveh, Vahid; Ghadamyari, Mohammad

    2014-01-01

    The toxicological and biochemical characteristics of acetylcholinesterases (AChE) in nine populations of the common pistachio psyllid, Agonoscena pistaciae Burckhardt and Lauterer (Hemiptera: Psyllidae), were investigated in Kerman Province, Iran. Nine A. pistaciae populations were collected from pistachio orchards, Pistacia vera L. (Sapindales: Anacardiaceae), located in Rafsanjan, Anar, Bam, Kerman, Shahrbabak, Herat, Sirjan, Pariz, and Paghaleh regions of Kerman province. The previous bioassay results showed these populations were susceptible or resistant to phosalone, and the Rafsanjan population was most resistant, with a resistance ratio of 11.3. The specific activity of AChE in the Rafsanjan population was significantly higher than in the susceptible population (Bam). The affinity (K(M)) and hydrolyzing efficiency (Vmax) of AChE on acetylthiocholine iodide, butyrylthiocholine iodide, and propionylthiocholine odide as artificial substrates were clearly lower in the Bam population than that in the Rafsanjan population. These results indicated that the AChE of the Rafsanjan population had lower affinity to these substrates than that of the susceptible population. The higher Vmax value in the Rafsanjan population compared to the susceptible population suggests a possible over expression of AChE in the Rafsanjan population. The in vitro inhibitory effect of several organophosphates and carbamates on AChE of the Rafsanjan and Bam populations was determined. Based on I50, the results showed that the ratios of AChE insensitivity of the resistant to susceptible populations were 23 and 21.7-fold to monocrotophos and phosphamidon, respectively. Whereas, the insensitivity ratios for Rafsanjan population were 0.86, 0.8, 0.78, 0.46, and 0.43 for carbaryl, eserine, propoxur, m-tolyl methyl carbamate, and carbofuran, respectively, suggesting negatively correlated sensitivity to organophosphate-insensitive AChE. Therefore, AChE from the Rafsanjan population showed negatively

  5. Analyte detection using an active assay

    DOEpatents

    Morozov, Victor; Bailey, Charles L.; Evanskey, Melissa R.

    2010-11-02

    Analytes using an active assay may be detected by introducing an analyte solution containing a plurality of analytes to a lacquered membrane. The lacquered membrane may be a membrane having at least one surface treated with a layer of polymers. The lacquered membrane may be semi-permeable to nonanalytes. The layer of polymers may include cross-linked polymers. A plurality of probe molecules may be arrayed and immobilized on the lacquered membrane. An external force may be applied to the analyte solution to move the analytes towards the lacquered membrane. Movement may cause some or all of the analytes to bind to the lacquered membrane. In cases where probe molecules are presented, some or all of the analytes may bind to probe molecules. The direction of the external force may be reversed to remove unbound or weakly bound analytes. Bound analytes may be detected using known detection types.

  6. A Spectrophotometric Assay Optimizing Conditions for Pepsin Activity.

    ERIC Educational Resources Information Center

    Harding, Ethelynda E.; Kimsey, R. Scott

    1998-01-01

    Describes a laboratory protocol optimizing the conditions for the assay of pepsin activity using the Coomasie Blue dye binding assay of protein concentration. The dye bonds through strong, noncovalent interactions to basic and aromatic amino acid residues. (DDR)

  7. Combined 3D-QSAR, molecular docking, and molecular dynamics study of tacrine derivatives as potential acetylcholinesterase (AChE) inhibitors of Alzheimer's disease.

    PubMed

    Zhou, An; Hu, Jianping; Wang, Lirong; Zhong, Guochen; Pan, Jian; Wu, Zeyu; Hui, Ailing

    2015-10-01

    Acetylcholinesterase (AChE) is one of the key targets of drugs for treating Alzheimer's disease (AD). Tacrine is an approved drug with AChE-inhibitory activity. In this paper, 3D-QSAR, molecular docking, and molecular dynamics were carried out in order to study 60 tacrine derivatives and their AChE-inhibitory activities. 3D-QSAR modeling resulted in an optimal CoMFA model with q(2) = 0.552 and r(2) = 0.983 and an optimal CoMSIA model with q(2) = 0.581 and r(2) = 0.989. These QSAR models also showed that the steric and H-bond fields of these compounds are important influences on their activities. The interactions between these inhibitors and AChE were further explored through molecular docking and molecular dynamics simulation. A few key residues (Tyr70, Trp84, Tyr121, Trp279, and Phe330) at the binding site of AChE were identified. The results of this study improve our understanding of the mechanisms of AChE inhibitors and afford valuable information that should aid the design of novel potential AChE inhibitors. Graphical Abstract Superposition of backbone atoms of the lowest-energy structure obtained from MD simulation (magenta) onto those of the structure of the initial molecular docking model (green).

  8. Quantitative comparisons of in vitro assays for estrogenic activities.

    PubMed Central

    Fang, H; Tong, W; Perkins, R; Soto, A M; Prechtl, N V; Sheehan, D M

    2000-01-01

    Substances that may act as estrogens show a broad chemical structural diversity. To thoroughly address the question of possible adverse estrogenic effects, reliable methods are needed to detect and identify the chemicals of these diverse structural classes. We compared three assays--in vitro estrogen receptor competitive binding assays (ER binding assays), yeast-based reporter gene assays (yeast assays), and the MCF-7 cell proliferation assay (E-SCREEN assay)--to determine their quantitative agreement in identifying structurally diverse estrogens. We examined assay performance for relative sensitivity, detection of active/inactive chemicals, and estrogen/antiestrogen activities. In this examination, we combined individual data sets in a specific, quantitative data mining exercise. Data sets for at least 29 chemicals from five laboratories were analyzed pair-wise by X-Y plots. The ER binding assay was a good predictor for the other two assay results when the antiestrogens were excluded (r(2) is 0.78 for the yeast assays and 0.85 for the E-SCREEN assays). Additionally, the examination strongly suggests that biologic information that is not apparent from any of the individual assays can be discovered by quantitative pair-wise comparisons among assays. Antiestrogens are identified as outliers in the ER binding/yeast assay, while complete antagonists are identified in the ER binding and E-SCREEN assays. Furthermore, the presence of outliers may be explained by different mechanisms that induce an endocrine response, different impurities in different batches of chemicals, different species sensitivity, or limitations of the assay techniques. Although these assays involve different levels of biologic complexity, the major conclusion is that they generally provided consistent information in quantitatively determining estrogenic activity for the five data sets examined. The results should provide guidance for expanded data mining examinations and the selection of appropriate

  9. Assessment of the functionality and stability of detergent purified nAChR from Torpedo using lipidic matrixes and macroscopic electrophysiology.

    PubMed

    Padilla-Morales, Luis F; Colón-Sáez, José O; González-Nieves, Joel E; Quesada-González, Orestes; Lasalde-Dominicci, José A

    2016-01-01

    In our previous study we examined the functionality and stability of nicotinic acetylcholine receptor (nAChR)-detergent complexes (nAChR-DCs) from affinity-purified Torpedo californica (Tc) using fluorescence recovery after photobleaching (FRAP) in Lipidic Cubic Phase (LCP) and planar lipid bilayer (PLB) recordings for phospholipid and cholesterol like detergents. In the present study we enhanced the functional characterization of nAChR-DCs by recording macroscopic ion channel currents in Xenopus oocytes using the two electrode voltage clamp (TEVC). The use of TEVC allows for the recording of macroscopic currents elicited by agonist activation of nAChR-DCs that assemble in the oocyte plasma membrane. Furthermore, we examined the stability of nAChR-DCs, which is obligatory for the nAChR crystallization, using a 30 day FRAP assay in LCP for each detergent. The present results indicate a marked difference in the fractional fluorescence recovery (ΔFFR) within the same detergent family during the 30 day period assayed. Within the cholesterol analog family, sodium cholate and CHAPSO displayed a minimum ΔFFR and a mobile fraction (MF) over 80%. In contrast, CHAPS and BigCHAP showed a marked decay in both the mobile fraction and diffusion coefficient. nAChR-DCs containing phospholipid analog detergents with an alkylphosphocholine (FC) and lysofoscholine (LFC) of 16 carbon chains (FC-16, LFC-16) were more effective in maintaining a mobile fraction of over 80% compared to their counterparts with shorter acyl chain (C12, C14). The significant differences in macroscopic current amplitudes, activation and desensitization rates among the different nAChR-DCs evaluated in the present study allow to dissect which detergent preserves both, agonist activation and ion channel function. Functionality assays using TEVC demonstrated that LFC16, LFC14, and cholate were the most effective detergents in preserving macroscopic ion channel function, however, the nAChR-cholate complex

  10. Assessment of the functionality and stability of detergent purified nAChR from Torpedo using lipidic matrixes and macroscopic electrophysiology.

    PubMed

    Padilla-Morales, Luis F; Colón-Sáez, José O; González-Nieves, Joel E; Quesada-González, Orestes; Lasalde-Dominicci, José A

    2016-01-01

    In our previous study we examined the functionality and stability of nicotinic acetylcholine receptor (nAChR)-detergent complexes (nAChR-DCs) from affinity-purified Torpedo californica (Tc) using fluorescence recovery after photobleaching (FRAP) in Lipidic Cubic Phase (LCP) and planar lipid bilayer (PLB) recordings for phospholipid and cholesterol like detergents. In the present study we enhanced the functional characterization of nAChR-DCs by recording macroscopic ion channel currents in Xenopus oocytes using the two electrode voltage clamp (TEVC). The use of TEVC allows for the recording of macroscopic currents elicited by agonist activation of nAChR-DCs that assemble in the oocyte plasma membrane. Furthermore, we examined the stability of nAChR-DCs, which is obligatory for the nAChR crystallization, using a 30 day FRAP assay in LCP for each detergent. The present results indicate a marked difference in the fractional fluorescence recovery (ΔFFR) within the same detergent family during the 30 day period assayed. Within the cholesterol analog family, sodium cholate and CHAPSO displayed a minimum ΔFFR and a mobile fraction (MF) over 80%. In contrast, CHAPS and BigCHAP showed a marked decay in both the mobile fraction and diffusion coefficient. nAChR-DCs containing phospholipid analog detergents with an alkylphosphocholine (FC) and lysofoscholine (LFC) of 16 carbon chains (FC-16, LFC-16) were more effective in maintaining a mobile fraction of over 80% compared to their counterparts with shorter acyl chain (C12, C14). The significant differences in macroscopic current amplitudes, activation and desensitization rates among the different nAChR-DCs evaluated in the present study allow to dissect which detergent preserves both, agonist activation and ion channel function. Functionality assays using TEVC demonstrated that LFC16, LFC14, and cholate were the most effective detergents in preserving macroscopic ion channel function, however, the nAChR-cholate complex

  11. Neuroprotective effects of donepezil against Aβ42-induced neuronal toxicity are mediated through not only enhancing PP2A activity but also regulating GSK-3β and nAChRs activity.

    PubMed

    Noh, Min-Young; Koh, Seong H; Kim, Sung-Min; Maurice, Tangui; Ku, Sae-Kwang; Kim, Seung H

    2013-11-01

    The main purpose of this study was to evaluate whether donepezil, acetylcholinesterase inhibitor, shown to play a protective role through inhibiting glycogen synthesis kinase-3β (GSK-3β) activity, could also exert neuroprotective effects by stimulating protein phosphatase 2A (PP2A) activity in the amyloid-beta (Aβ)42-induced neuronal toxicity model of Alzheimer's disease. In Aβ42-induced toxic conditions, each PP2A and GSK-3β activity measured at different times showed time-dependent reverse pattern toward the direction of accelerating neuronal deaths with the passage of time. In addition, donepezil pre-treatment showed dose-dependent stepwise increase of neuronal viability and stimulation of PP2A activity. However, such effects on them were significantly reduced through the depletion of PP2A activity with either okadaic acid or PP2Ac siRNA. In spite of blocked PP2A activity in this Aβ42 insult, however, donepezil pretreatment showed additional significant recovering effect on neuronal viability when compared to the value without donepezil. Moreover, donepezil partially recovered its dephosphorylating effect on hyperphosphorylated tau induced by Aβ42. This observation led us to assume that additional mechanisms of donepezil, including its inhibitory effect on GSK-3β activity and/or the activation role of nicotinic acetylcholine receptors (nAChRs), might be involved. Taken together, our results suggest that the neuroprotective effects of donepezil against Aβ42-induced neurotoxicity are mediated through activation of PP2A, but its additional mechanisms including regulation of GSK-3β and nAChRs activity would partially contribute to its effects. We investigated neuroprotective mechanisms of donepezil against Aβ42 toxicity: Donepezil increased neuronal viability with reduced p-tau by enhancing PP2A activity. Despite of blocked PP2A activity, donepezil showed additional recovering effect on neuronal viability, which findings led us to assume that additional

  12. Biochemical assays on plasminogen activators and hormones from kidney sources

    NASA Technical Reports Server (NTRS)

    Barlow, Grant H.; Lewis, Marian L.; Morrison, Dennis R.

    1988-01-01

    Investigations were established for the purpose of analyzing the conditioned media from human embryonic kidney cell subpopulations separated in space by electrophoresis. This data is based on the experiments performed on STS-8 on the continuous flow electrophoresis system. The primary biological activity that was analyzed was plasminogen activator activity, but some assays for erythropoeitin and human granulocyte colony stimulating activity were also performed. It is concluded that a battery of assays are required to completely define the plasminogen activator profile of a conditioned media from cell culture. Each type of assay measures different parts of the mixture and are influenced by different parameters. The functional role of each assay is given along with an indication of which combination of assays are required to answer specific questions. With this type of information it is possible by combinations of assays with mathematical analysis to pinpoint a specific component of the system.

  13. Synthesis and inhibitory activity of ureidophosphonates, against acetylcholinesterase: pharmacological assay and molecular modeling.

    PubMed

    Kaboudin, Babak; Arefi, Marzban; Emadi, Saeed; Sheikh-Hasani, Vahid

    2012-01-01

    A novel method has been developed for the synthesis of 1-ureidophosphonates through a three components condensation of aldehyde with amine and diethylphosphite in the presence of sulfanilic acid as catalyst followed by subsequent reaction of the product with isocyanate. This method is easy, rapid, and good yielding. The anticholinesterase (AChE) activities (inhibition potency through IC(50)) of newly synthesized 1-ureidophosphonates were also investigated. The activities of the synthesized compounds toward the enzyme AChE were determined and compared in terms of their molecular structures and it was found, through molecular docking simulations, that the most potent derivative (compound 3i) inhibited the enzyme through binding to the peripheral anionic site (PAS) and not to its acylation site (A site).

  14. Linarin Inhibits the Acetylcholinesterase Activity In-vitro and Ex-vivo.

    PubMed

    Feng, Xinchi; Wang, Xin; Liu, Youping; Di, Xin

    2015-01-01

    Linarin is a flavone glycoside in the plants Flos chrysanthemi indici, Buddleja officinalis, Cirsium setosum, Mentha arvensis and Buddleja davidii, and has been reported to possess analgesic, antipyretic, anti-inflammatory and neuroprotective activities. In this paper, linarin was investigated for its AChE inhibitory potential both in-vitro and ex-vivo. Ellman's colorimetric method was used for the determination of AChE inhibitory activity in mouse brain. In-vitro assays revealed that linarin inhibited AChE activity with an IC50 of 3.801 ± 1.149 μM. Ex-vivo study showed that the AChE activity was significantly reduced in both the cortex and hippocampus of mice treated intraperitoneally with various doses of linarin (35, 70 and 140 mg/Kg). The inhibition effects produced by high dose of linarin were the same as that obtained after huperzine A treatment (0.5 mg/Kg). Molecular docking study revealed that both 4'-methoxyl group and 7-O-sugar moiety of linarin played important roles in ligand-receptor binding and thus they are mainly responsible for AChE inhibitory activity. In view of its potent AChE inhibitory activity, linarin may be a promising therapeutic agent for the treatment of some diseases associated with AChE, such as glaucoma, myasthenia gravis, gastric motility and Alzheimer's disease.

  15. Linarin Inhibits the Acetylcholinesterase Activity In-vitro and Ex-vivo

    PubMed Central

    Feng, Xinchi; Wang, Xin; Liu, Youping; Di, Xin

    2015-01-01

    Linarin is a flavone glycoside in the plants Flos chrysanthemi indici, Buddleja officinalis, Cirsium setosum, Mentha arvensis and Buddleja davidii, and has been reported to possess analgesic, antipyretic, anti-inflammatory and neuroprotective activities. In this paper, linarin was investigated for its AChE inhibitory potential both in-vitro and ex-vivo. Ellman’s colorimetric method was used for the determination of AChE inhibitory activity in mouse brain. In-vitro assays revealed that linarin inhibited AChE activity with an IC50 of 3.801 ± 1.149 μM. Ex-vivo study showed that the AChE activity was significantly reduced in both the cortex and hippocampus of mice treated intraperitoneally with various doses of linarin (35, 70 and 140 mg/Kg). The inhibition effects produced by high dose of linarin were the same as that obtained after huperzine A treatment (0.5 mg/Kg). Molecular docking study revealed that both 4’-methoxyl group and 7-O-sugar moiety of linarin played important roles in ligand-receptor binding and thus they are mainly responsible for AChE inhibitory activity. In view of its potent AChE inhibitory activity, linarin may be a promising therapeutic agent for the treatment of some diseases associated with AChE, such as glaucoma, myasthenia gravis, gastric motility and Alzheimer’s disease. PMID:26330885

  16. Ligand Binding at the α4-α4 Agonist-Binding Site of the α4β2 nAChR Triggers Receptor Activation through a Pre-Activated Conformational State

    PubMed Central

    Indurthi, Dinesh C.; Lewis, Trevor M.; Ahring, Philip K.; Balle, Thomas; Chebib, Mary; Absalom, Nathan L.

    2016-01-01

    The α4β2 nicotinic acetylcholine receptor (nAChR) is the most abundant subtype in the brain and exists in two functional stoichiometries: (α4)3(β2)2 and (α4)2(β2)3. A distinct feature of the (α4)3(β2)2 receptor is the biphasic activation response to the endogenous agonist acetylcholine, where it is activated with high potency and low efficacy when two α4-β2 binding sites are occupied and with low potency/high efficacy when a third α4-α4 binding site is occupied. Further, exogenous ligands can bind to the third α4-α4 binding site and potentiate the activation of the receptor by ACh that is bound at the two α4-β2 sites. We propose that perturbations of the recently described pre-activation step when a third binding site is occupied are a key driver of these distinct activation properties. To investigate this, we used a combination of simple linear kinetic models and voltage clamp electrophysiology to determine whether transitions into the pre-activated state were increased when three binding sites were occupied. We separated the binding at the two different sites with ligands selective for the α4-β2 site (Sazetidine-A and TC-2559) and the α4-α4 site (NS9283) and identified that when a third binding site was occupied, changes in the concentration-response curves were best explained by an increase in transitions into a pre-activated state. We propose that perturbations of transitions into a pre-activated state are essential to explain the activation properties of the (α4)3(β2)2 receptor by acetylcholine and other ligands. Considering the widespread clinical use of benzodiazepines, this discovery of a conserved mechanism that benzodiazepines and ACh potentiate receptor activation via a third binding site can be exploited to develop therapeutics with similar properties at other cys-loop receptors. PMID:27552221

  17. Gastrointestinal acetylcholinesterase activity following endotracheal microinstillation inhalation exposure to sarin in guinea pigs.

    PubMed

    Chanda, Soma; Song, Jian; Rezk, Peter; Sabnekar, Praveena; Doctor, Bhupendra P; Sciuto, Alfred M; Nambiar, Madhusoodana P

    2010-09-01

    The goal of this study was to assess acetylcholinesterase (AChE) inhibition at different regions of the gastrointestinal (GI) tract following inhalation exposure to nerve agent sarin. Seven major regions of the GI tract were removed from saline control animals (n=3) and 677.4 mg/m(3) sarin-exposed animals at 4h (n=4) and 24h (n=4) post-exposure. AChE activity was determined in blood and homogenized tissue supernatant by specific Ellman's assay using Iso-OMPA, a BChE inhibitor, and expressed as activity/optical density of hemoglobin for blood and activity/mg protein for tissues. Our data showed that the AChE activity was significantly decreased for groups both 4h and 24h post-sarin exposure. Among the seven chosen regions of the guinea pig GI tract, duodenum showed the highest AChE activity in control animals. The AChE activity was significantly decreased in the stomach (p=0.03), duodenum (p=0.029), jejunum (p=0.006), and ileum (p=0.006) 4h following sarin exposure. At 24h post-sarin exposure the AChE activity of duodenum (p=0.029) and ileum (p=0.006) was significantly inhibited. Esophagus showed no inhibition following sarin exposure at both 4h and 24h groups. These results suggest that the AChE activity is different in different regions of the GI tract and highest levels of AChE inhibition following sarin exposure were seen in regions exhibiting higher overall AChE activity and cholinergic function.

  18. Monkey Feeding Assay for Testing Emetic Activity of Staphylococcal Enterotoxin.

    PubMed

    Seo, Keun Seok

    2016-01-01

    Staphylococcal enterotoxins (SEs) are unique bacterial toxins that cause gastrointestinal toxicity as well as superantigenic activity. Since systemic administration of SEs induces superantigenic activity leading to toxic shock syndrome that may mimic enterotoxic activity of SEs such as vomiting and diarrhea, oral administration of SEs in the monkey feeding assay is considered as a standard method to evaluate emetic activity of SEs. This chapter summarizes and discusses practical considerations of the monkey feeding assay used in studies characterizing classical and newly identified SEs.

  19. Assay of nitrogenase activity in intact plant systems.

    PubMed

    Jain, M K; Vlassak, K

    1975-01-01

    Nitrogenase activity was assayed in intact system of Cichorium intybus, a non-leguminous commercially cultivated crop, Dahlia pinnata and Helianthus annus, and Taraxacum officinale, a common weed plant. The assay was made in fabricated cylinders which could accomodate pot with plants. In such kind of assay along with rhizosphere microflora, the nitrogen fixed by phyllosphere nitrogen fixing microflora could also be accounted, which otherwise was difficult to be accounted for. PMID:1211718

  20. Nanochannel-based electrochemical assay for transglutaminase activity.

    PubMed

    Fernández, Iñigo; Sánchez, Alfredo; Díez, Paula; Martínez-Ruiz, Paloma; Di Pierro, Prospero; Porta, Raffaele; Villalonga, Reynaldo; Pingarrón, José M

    2014-11-11

    A novel electrochemical assay to quantify transglutaminase activity is reported. The assay is based on the enzyme-controlled diffusion of Fe(CN)6(3-/4-) through amino-functionalized nanochannels of a mesoporous silica thin film on a Au surface in the presence of N-benzyloxycarbonyl-L-glutaminylglycine.

  1. An acetylcholinesterase (AChE) biosensor with enhanced solvent resistance based on chitosan for the detection of pesticides.

    PubMed

    Warner, John; Andreescu, Silvana

    2016-01-01

    Solvent tolerance of immobilized enzymes is important for many biosensing and biotechnological applications. In this paper we report an acetylcholinesterase (AChE) biosensor based on chitosan that exhibits high solvent resistance and enables sensitive detection of pesticides in presence of a high content of organic solvents. The solvent effect was established comparatively for the enzyme immobilized in chitosan and covalently cross-linked with glutaraldehyde. The activity of the immobilized AChE was dependent on the immobilization method and solvent type. The enzyme entrapped in chitosan fully conserved its activity in up to 25% methanol, 15% acetonitrile and 100% cyclohexane while the enzyme cross-linked with glutaraldehyde gradually lost its activity starting at 5% acetonitrile and methanol, and showed variable levels in cyclohexane. The detection limits of the biosensor for paraoxon were: 7.5 nM in 25% methanol, 100 nM in 15% acetonitrile and 2.5 μM in 100% cyclohexane. This study demonstrates that chitosan provides an excellent immobilization environment for AChE biosensors designed to operate in environments containing high amounts of organic solvents. It also highlights the effect of the immobilization material and solvent type on enzyme stability. These findings can enable future selection of the immobilization matrix and solvent type for the development of organic phase enzyme based systems.

  2. An acetylcholinesterase (AChE) biosensor with enhanced solvent resistance based on chitosan for the detection of pesticides.

    PubMed

    Warner, John; Andreescu, Silvana

    2016-01-01

    Solvent tolerance of immobilized enzymes is important for many biosensing and biotechnological applications. In this paper we report an acetylcholinesterase (AChE) biosensor based on chitosan that exhibits high solvent resistance and enables sensitive detection of pesticides in presence of a high content of organic solvents. The solvent effect was established comparatively for the enzyme immobilized in chitosan and covalently cross-linked with glutaraldehyde. The activity of the immobilized AChE was dependent on the immobilization method and solvent type. The enzyme entrapped in chitosan fully conserved its activity in up to 25% methanol, 15% acetonitrile and 100% cyclohexane while the enzyme cross-linked with glutaraldehyde gradually lost its activity starting at 5% acetonitrile and methanol, and showed variable levels in cyclohexane. The detection limits of the biosensor for paraoxon were: 7.5 nM in 25% methanol, 100 nM in 15% acetonitrile and 2.5 μM in 100% cyclohexane. This study demonstrates that chitosan provides an excellent immobilization environment for AChE biosensors designed to operate in environments containing high amounts of organic solvents. It also highlights the effect of the immobilization material and solvent type on enzyme stability. These findings can enable future selection of the immobilization matrix and solvent type for the development of organic phase enzyme based systems. PMID:26695264

  3. Diced electrophoresis gel assay for screening enzymes with specified activities.

    PubMed

    Komatsu, Toru; Hanaoka, Kenjiro; Adibekian, Alexander; Yoshioka, Kentaro; Terai, Takuya; Ueno, Tasuku; Kawaguchi, Mitsuyasu; Cravatt, Benjamin F; Nagano, Tetsuo

    2013-04-24

    We have established the diced electrophoresis gel (DEG) assay as a proteome-wide screening tool to identify enzymes with activities of interest using turnover-based fluorescent substrates. The method utilizes the combination of native polyacrylamide gel electrophoresis (PAGE) with a multiwell-plate-based fluorometric assay to find protein spots with the specified activity. By developing fluorescent substrates that mimic the structure of neutrophil chemoattractants, we could identify enzymes involved in metabolic inactivation of the chemoattractants.

  4. Acetylcholinesterase (AChE) and heat shock proteins (Hsp70) of gypsy moth (Lymantria dispar L.) larvae in response to long-term fluoranthene exposure.

    PubMed

    Mrdaković, Marija; Ilijin, Larisa; Vlahović, Milena; Matić, Dragana; Gavrilović, Anja; Mrkonja, Aleksandra; Perić-Mataruga, Vesna

    2016-09-01

    Polycyclic aromatic hydrocarbons (PAHs) may affect biochemical and physiological processes in living organisms, thus impairing fitness related traits and influencing their populations. This imposes the need for providing early-warning signals of pollution. Our study aimed to examine changes in the activity of acetylcholinesterase (AChE) and the concentration of heat shock proteins (Hsp70) in homogenates of brain tissues of fifth instar gypsy moth (Lymantria dispar L.) larvae, exposed to the ubiquitous PAH, fluoranthene, supplemented to the rearing diet. Significantly increased activity of AChE in larvae fed on the diets with high fluoranthene concentrations suggests the necessity for elucidation of the role of AChE in these insects when exposed to PAH pollution. Significant induction of Hsp70 in gypsy moth larvae reared on the diets containing low fluoranthene concentrations, indicate that changes in the level of Hsp70 might be useful as an indicator of pollution in this widespread forest species. PMID:27343862

  5. Acetylcholinesterase (AChE) and heat shock proteins (Hsp70) of gypsy moth (Lymantria dispar L.) larvae in response to long-term fluoranthene exposure.

    PubMed

    Mrdaković, Marija; Ilijin, Larisa; Vlahović, Milena; Matić, Dragana; Gavrilović, Anja; Mrkonja, Aleksandra; Perić-Mataruga, Vesna

    2016-09-01

    Polycyclic aromatic hydrocarbons (PAHs) may affect biochemical and physiological processes in living organisms, thus impairing fitness related traits and influencing their populations. This imposes the need for providing early-warning signals of pollution. Our study aimed to examine changes in the activity of acetylcholinesterase (AChE) and the concentration of heat shock proteins (Hsp70) in homogenates of brain tissues of fifth instar gypsy moth (Lymantria dispar L.) larvae, exposed to the ubiquitous PAH, fluoranthene, supplemented to the rearing diet. Significantly increased activity of AChE in larvae fed on the diets with high fluoranthene concentrations suggests the necessity for elucidation of the role of AChE in these insects when exposed to PAH pollution. Significant induction of Hsp70 in gypsy moth larvae reared on the diets containing low fluoranthene concentrations, indicate that changes in the level of Hsp70 might be useful as an indicator of pollution in this widespread forest species.

  6. Measuring MAP kinase activity in immune complex assays.

    PubMed

    Cherkasova, Vera A

    2006-11-01

    I present an overview of published methods for measuring mitogen activated protein (MAP) kinase activity on endogenous associated substrates, exogenously added substrates as well as determination of activation loop phosphorylation as a read-out of kinase activity in vivo. Detailed procedures for these assays are given for two MAP kinases (MAPKs) Fus3 and Kss1 and compared with other published protocols, including the protocols for Hog1 and Mpk1 MAPKs. Measuring kinase activity in immune complex assays can serve as an approach for identification of potential substrates of protein kinases as well as for detecting other kinase-associated proteins. PMID:16890454

  7. Functional Analysis and Molecular Docking studies of Medicinal Compounds for AChE and BChE in Alzheimer’s Disease and Type 2 Diabetes Mellitus

    PubMed Central

    Kaladhar, Dowluru SVGK; Yarla, Nagendra Sastry; Anusha, N.

    2013-01-01

    Acetylcholinesterase and Butyrylcholinesterase share unravelling link with components of metabolic syndromes that’s characterised by low levels of HDL cholesterol, obesity, high fast aldohexose levels, hyper-trigliceridaemia and high blood pressure, by regulation of cholinergic transmission and therefore the enzyme activity within a living system. The phosphomotifs associated with amino acid and tyrosine binding motifs in AChE and BChE were known to be common. Phylogenetic tree was constructed to these proteins usinf UPGMA and Maximum Likelihood methods in MEGA software has shown interaction of AChE and BChE with ageing diseases like Alzheimer’s disease and Diabetes. AChE has shown closely related to BChE, retinol dehydrogenase and β-polypeptide. The present studies is also accomplished that AChE, BChE, COLQ, HAND1, APP, NLGN2 and NGF proteins has interactions with diseases such as Alzheimer’s and D2M using Pathwaylinker and STRING. Medicinal compounds like Ortho-7, Dibucaine and HI-6 are predicted as good targets for modeled AChE and BChE proteins based on docking studies. Hence perceptive studies of cholinesterase structure and the biological mechanisms of inhibition are necessary for effective drug development. PMID:23936743

  8. Photolabeling a Nicotinic Acetylcholine Receptor (nAChR) with an (α4)3(β2)2 nAChR-Selective Positive Allosteric Modulator.

    PubMed

    Hamouda, Ayman K; Deba, Farah; Wang, Ze-Jun; Cohen, Jonathan B

    2016-05-01

    Positive allosteric modulators (PAMs) of nicotinic acetylcholine (ACh) receptors (nAChRs) have potential clinical applications in the treatment of nicotine dependence and many neuropsychiatric conditions associated with decreased brain cholinergic activity, and 3-(2-chlorophenyl)-5-(5-methyl-1-(piperidin-4-yl)-1H-pyrrazol-4-yl)isoxazole (CMPI) has been identified as a PAM selective for neuronal nAChRs containing theα4 subunit. In this report, we compare CMPI interactions with low-sensitivity (α4)3(β2)2 and high-sensitivity (α4)2(β2)3 nAChRs, and with muscle-type nAChRs. In addition, we use the intrinsic reactivity of [(3)H]CMPI upon photolysis at 312 nm to identify its binding sites inTorpedonAChRs. Recording fromXenopusoocytes, we found that CMPI potentiated maximally the responses of (α4)3(β2)2nAChR to 10μM ACh (EC10) by 400% and with anEC50of ∼1µM. CMPI produced a left shift of the ACh concentration-response curve without altering ACh efficacy. In contrast, CMPI inhibited (∼35% at 10µM) ACh responses of (α4)2(β2)3nAChRs and fully inhibited human muscle andTorpedonAChRs with IC50values of ∼0.5µM. Upon irradiation at 312 nm, [(3)H]CMPI photoincorporated into eachTorpedo[(α1)2β1γδ] nAChR subunit. Sequencing of peptide fragments isolated from [(3)H]CMPI-photolabeled nAChR subunits established photolabeling of amino acids contributing to the ACh binding sites (αTyr(190),αTyr(198),γTrp(55),γTyr(111),γTyr(117),δTrp(57)) that was fully inhibitable by agonist and lower-efficiency, state-dependent [(3)H]CMPI photolabeling within the ion channel. Our results establish that CMPI is a potent potentiator of nAChRs containing anα4:α4 subunit interface, and that its intrinsic photoreactivy makes it of potential use to identify its binding sites in the (α4)3(β2)2nAChR. PMID:26976945

  9. In Vitro and In Vivo Profiles of ACH-702, an Isothiazoloquinolone, against Bacterial Pathogens▿

    PubMed Central

    Pucci, Michael J.; Podos, Steven D.; Thanassi, Jane A.; Leggio, Melissa J.; Bradbury, Barton J.; Deshpande, Milind

    2011-01-01

    ACH-702, a novel isothiazoloquinolone (ITQ), was assessed for antibacterial activity against a panel of Gram-positive and Gram-negative clinical isolates and found to possess broad-spectrum activity, especially against antibiotic-resistant Gram-positive strains, including methicillin-resistant Staphylococcus aureus (MRSA). For Gram-negative bacteria, ACH-702 showed exceptional potency against Haemophilus influenzae, Moraxella catarrhalis, and a Neisseria sp. but was less active against members of the Enterobacteriaceae. Good antibacterial activity was also evident against several anaerobes as well as Legionella pneumophila and Mycoplasma pneumoniae. Excellent bactericidal activity was observed for ACH-702 against several bacterial pathogens in time-kill assays, and postantibiotic effects (PAEs) of >1 h were evident with both laboratory and clinical strains of staphylococci at 10× MIC and similar in most cases to those observed for moxifloxacin at the same MIC multiple. In vivo efficacy was demonstrated against S. aureus with murine sepsis and thigh infection models, with decreases in the number of CFU/thigh equal to or greater than those observed after vancomycin treatment. Macromolecular synthesis assays showed specific dose-dependent inhibition of DNA replication in staphylococci, and biochemical analyses indicated potent dual inhibition of two essential DNA replication enzymes: DNA gyrase and topoisomerase IV. Additional biological data in support of an effective dual targeting mechanism of action include the following: low MIC values (≤0.25 μg/ml) against staphylococcal strains with single mutations in both gyrA and grlA (parC), retention of good antibacterial activity (MICs of ≤0.5 μg/ml) against staphylococcal strains with two mutations in both gyrA and grlA, and low frequencies for the selection of higher-level resistance (<10−10). These promising initial data support further study of isothiazoloquinolones as potential clinical candidates. PMID

  10. Intensified vmPFC surveillance over PTSS under perturbed microRNA-608/AChE interaction

    PubMed Central

    Lin, T; Simchovitz, A; Shenhar-Tsarfaty, S; Vaisvaser, S; Admon, R; Hanin, G; Hanan, M; Kliper, E; Bar-Haim, Y; Shomron, N; Fernandez, G; Lubin, G; Fruchter, E; Hendler, T; Soreq, H

    2016-01-01

    Trauma causes variable risk of posttraumatic stress symptoms (PTSS) owing to yet-unknown genome–neuronal interactions. Here, we report co-intensified amygdala and ventromedial prefrontal cortex (vmPFC) emotional responses that may overcome PTSS in individuals with the single-nucleotide polymorphism (SNP) rs17228616 in the acetylcholinesterase (AChE) gene. We have recently shown that in individuals with the minor rs17228616 allele, this SNP interrupts AChE suppression by microRNA (miRNA)-608, leading to cortical elevation of brain AChE and reduced cortisol and the miRNA-608 target GABAergic modulator CDC42, all stress-associated. To examine whether this SNP has effects on PTSS and threat-related brain circuits, we exposed 76 healthy Israel Defense Forces soldiers who experienced chronic military stress to a functional magnetic resonance imaging task of emotional and neutral visual stimuli. Minor allele individuals predictably reacted to emotional stimuli by hyperactivated amygdala, a hallmark of PTSS and a predisposing factor of posttraumatic stress disorder (PTSD). Despite this, minor allele individuals showed no difference in PTSS levels. Mediation analyses indicated that the potentiated amygdala reactivity in minor allele soldiers promoted enhanced vmPFC recruitment that was associated with their limited PTSS. Furthermore, we found interrelated expression levels of several miRNA-608 targets including CD44, CDC42 and interleukin 6 in human amygdala samples (N=7). Our findings suggest that miRNA-608/AChE interaction is involved in the threat circuitry and PTSS and support a model where greater vmPFC regulatory activity compensates for amygdala hyperactivation in minor allele individuals to neutralize their PTSS susceptibility. PMID:27138800

  11. An in vivo assay for chemoattractant activity.

    PubMed

    Zetter, B R; Rasmussen, N; Brown, L

    1985-09-01

    We have devised an implantable device for the study of leukocyte chemoattraction. The device consists of a 0.25-mm thick patch of Dacron fabric coupled to a disc of ethylene vinyl acetate copolymer. Such polymers can release biologically active molecules at a constant rate for at least 18 days. Attracted cells invade and are trapped within the Dacron fabric. Upon removal from the host, the fabric patches are sectioned and stained to reveal the distribution of attracted cells. Distinct patterns of cellular accumulation can be seen for different chemoattractant molecules. These include the attraction of eosinophils by histamine, monocytes by tuftsin, and mast cells by glycyl-histidyl-lysine. Maximal accumulation of specific cell types occurs at postimplantation days 1 to 2 for neutrophils, days 3 to 5 for monocytes, and days 5 to 6 for macrophages and eosinophils. Control polymers fail to cause significant leukocyte accumulation, indicating that neither the polymer nor the Dacron fabric provokes an inflammatory response. PMID:3162062

  12. Pitfalls in the assay of carboxymethylcellulase activity. [Sclerotium rolfsii

    SciTech Connect

    Lindner, W.A.; Dennison, C.; Quicke, G.V.

    1983-02-01

    A purified endocellulase from Sclerotium rolfsii and a crude cellulase preparation from Trichoderma reesei are used to illustrate several pitfalls associated with the assay of carboxymethylcellulase activity and the subsequent attainment of linear enzyme dilution curves. It is shown that the nature of both the enzymes and the substrate make the assay unsuitable for use in the calculation of enzyme recovery and purity. (Refs. 16).

  13. Comparison of the luminescent ADP-Glo assay to a standard radiometric assay for measurement of protein kinase activity.

    PubMed

    Sanghera, Jasbinder; Li, Rick; Yan, Jun

    2009-12-01

    Many assay technologies have been developed and utilized to efficiently assay and screen against protein kinase targets. The radiometric assay format for assaying the protein kinase targets has been considered the "Gold Standard" format since it allows the direct readout of kinase functional activity and is a universal assay that is highly sensitive. However, the hazardous nature of the radiometric assay together with the regulatory hurdles has led to the development of alternative assay formats for assessing protein kinase activity measurements. The luminescent ADP-Glo assay has been developed as an alternative to radiometric format for assaying protein kinase targets. This assay allows the measurement of the ADP product formed during the kinase reaction. Therefore, the luminescent ADP-Glo assay is similar to the radiometric format in that it measures the direct product of the protein kinase reaction. Furthermore, since the ADP product is generated by all protein kinase reactions, this is a universal format that can be used for assaying any given protein kinase target. Analysis of data generated with multiple protein kinase targets and the luminescent ADP-Glo technology shows comparable results to the radiometric assay format. Therefore, the luminescent ADP-Glo assay is a robust new technology for evaluating catalytic function of protein kinases as well as other ATPases.

  14. Screening for antimalarial and acetylcholinesterase inhibitory activities of some Iranian seaweeds.

    PubMed

    Ghannadi, A; Plubrukarn, A; Zandi, K; Sartavi, K; Yegdaneh, A

    2013-04-01

    Alcoholic extracts of 8 different types of seaweeds from Iran's Persian Gulf were tested for their antimalarial and acetylcholinesterase enzyme (AChE) inhibitory activities for the first time. A modified Ellman and Ingkaninan method was used for measuring AChE inhibitory activity in which galanthamine was used as the reference. The antimalarial assay was performed using microculture radioisotope technique. Mefloquine and dihydroartemisinin were uased as the standards. The extract of Sargassum boveanum (Sargasseae family) showed the highest AChE inhibitory activity (IC50 equals to 1 mg ml(-1)) while Cystoseira indica (Cystoseiraceae family) exhibited the least activity (IC50 of 11 mg ml(-1)). The species from Rhodophyta (Gracilaria corticata and Gracilaria salicornia) also showed moderate activities (IC509.5, 8.7 mg ml(-1), respectively). All extracts were inactive in antimalarial assay. PMID:24019820

  15. Muscarinic ACh Receptors Contribute to Aversive Olfactory Learning in Drosophila

    PubMed Central

    Silva, Bryon; Molina-Fernández, Claudia; Ugalde, María Beatriz; Tognarelli, Eduardo I.; Angel, Cristian; Campusano, Jorge M.

    2015-01-01

    The most studied form of associative learning in Drosophila consists in pairing an odorant, the conditioned stimulus (CS), with an unconditioned stimulus (US). The timely arrival of the CS and US information to a specific Drosophila brain association region, the mushroom bodies (MB), can induce new olfactory memories. Thus, the MB is considered a coincidence detector. It has been shown that olfactory information is conveyed to the MB through cholinergic inputs that activate acetylcholine (ACh) receptors, while the US is encoded by biogenic amine (BA) systems. In recent years, we have advanced our understanding on the specific neural BA pathways and receptors involved in olfactory learning and memory. However, little information exists on the contribution of cholinergic receptors to this process. Here we evaluate for the first time the proposition that, as in mammals, muscarinic ACh receptors (mAChRs) contribute to memory formation in Drosophila. Our results show that pharmacological and genetic blockade of mAChRs in MB disrupts olfactory aversive memory in larvae. This effect is not explained by an alteration in the ability of animals to respond to odorants or to execute motor programs. These results show that mAChRs in MB contribute to generating olfactory memories in Drosophila. PMID:26380118

  16. Toxin activity assays, devices, methods and systems therefor

    DOEpatents

    Koh, Chung-Yan; Schaff, Ulrich Y.; Sommer, Gregory Jon

    2016-04-05

    Embodiments of the present invention are directed toward devices, system and method for conducting toxin activity assay using sedimentation. The toxin activity assay may include generating complexes which bind to a plurality of beads in a fluid sample. The complexes may include a target toxin and a labeling agent, or may be generated due to presence of active target toxin and/or labeling agent designed to be incorporated into complexes responsive to the presence of target active toxin. The plurality of beads including the complexes may be transported through a density media, wherein the density media has a lower density than a density of the beads and higher than a density of the fluid sample, and wherein the transporting occurs, at least in part, by sedimentation. Signal may be detected from the labeling agents of the complexes.

  17. A new robust kinetic assay for DAP epimerase activity.

    PubMed

    Hor, Lilian; Peverelli, Martin G; Perugini, Matthew A; Hutton, Craig A

    2013-10-01

    DAP epimerase is the penultimate enzyme in the lysine biosynthesis pathway. The most versatile assay for DAP epimerase catalytic activity employs a coupled DAP epimerase-DAP dehydrogenase enzyme system with a commercial mixture of DAP isomers as substrate. DAP dehydrogenase converts meso-DAP to THDP with concomitant reduction of NADP(+) to NADPH. We show that at high concentrations, accumulation of NADPH results in inhibition of DAPDH, resulting in spurious kinetic data. A new assay has been developed employing DAP decarboxylase that allows the reliable characterisation of DAP epimerase enzyme kinetics. PMID:23838343

  18. Novel bis-(−)-nor-meptazinol derivatives act as dual binding site AChE inhibitors with metal-complexing property

    SciTech Connect

    Zheng, Wei; Li, Juan; Qiu, Zhuibai; Xia, Zheng; Li, Wei; Yu, Lining; Chen, Hailin; Chen, Jianxing; Chen, Yan; Hu, Zhuqin; Zhou, Wei; Shao, Biyun; Cui, Yongyao; Xie, Qiong; Chen, Hongzhuan

    2012-10-01

    The strategy of dual binding site acetylcholinesterase (AChE) inhibition along with metal chelation may represent a promising direction for multi-targeted interventions in the pathophysiological processes of Alzheimer's disease (AD). In the present study, two derivatives (ZLA and ZLB) of a potent dual binding site AChE inhibitor bis-(−)-nor-meptazinol (bis-MEP) were designed and synthesized by introducing metal chelating pharmacophores into the middle chain of bis-MEP. They could inhibit human AChE activity with IC{sub 50} values of 9.63 μM (for ZLA) and 8.64 μM (for ZLB), and prevent AChE-induced amyloid-β (Aβ) aggregation with IC{sub 50} values of 49.1 μM (for ZLA) and 55.3 μM (for ZLB). In parallel, molecular docking analysis showed that they are capable of interacting with both the catalytic and peripheral anionic sites of AChE. Furthermore, they exhibited abilities to complex metal ions such as Cu(II) and Zn(II), and inhibit Aβ aggregation triggered by these metals. Collectively, these results suggest that ZLA and ZLB may act as dual binding site AChEIs with metal-chelating potency, and may be potential leads of value for further study on disease-modifying treatment of AD. -- Highlights: ► Two novel bis-(−)-nor-meptazinol derivatives are designed and synthesized. ► ZLA and ZLB may act as dual binding site AChEIs with metal-chelating potency. ► They are potential leads for disease-modifying treatment of Alzheimer's disease.

  19. Nicotine and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone induce cyclooxygenase-2 activity in human gastric cancer cells: Involvement of nicotinic acetylcholine receptor (nAChR) and {beta}-adrenergic receptor signaling pathways

    SciTech Connect

    Shin, Vivian Yvonne; Jin, H.C.; Ng, Enders K.O.; Yu Jun; Leung, W.K.; Cho, C.H.; Sung, J.J.Y.

    2008-12-01

    Induction of cyclooxygenase-2 (COX-2) associates with cigarette smoke exposure in many malignancies. Nicotine and its derivative, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), are the two important components in cigarette smoke that contributes to cancer development. However, the molecular mechanism(s) by which nicotine or NNK promotes gastric carcinogenesis remains largely unknown. We found that nicotine and NNK significantly enhanced cell proliferation in AGS cells that expressed both alpha7 nicotinic acetylcholine receptor ({alpha}7 nAChR) and {beta}-adrenergic receptors. Treatment of cells with {alpha}-bungarotoxin ({alpha}-BTX, {alpha}7nAChR antagonist) or propranolol ({beta}-adrenergic receptor antagonist) blocked NNK-induced COX-2/PGE{sub 2} and cell proliferation, while nicotine-mediated cell growth and COX-2/PGE{sub 2} induction can only be suppressed by propranolol, but not {alpha}-BTX. Moreover, in contrast to the dependence of growth promoting effect of nicotine on Erk activation, inhibitor of p38 mitogen-activated protein kinase (MAPK) repressed NNK-induced COX-2 upregulation and resulted in suppression of cell growth. In addition, nicotine and NNK mediated COX-2 induction via different receptors to modulate several G1/S transition regulatory proteins and promote gastric cancer cell growth. Selective COX-2 inhibitor (SC-236) caused G1 arrest and abrogated nicotine/NNK-induced cell proliferation. Aberrant expression of cyclin D1 and other G1 regulatory proteins are reversed by blockade of COX-2. These results pointed to the importance of adrenergic and nicotinic receptors in gastric tumor growth through MAPK/COX-2 activation, which may perhaps provide a chemoprevention strategy for cigarette smoke-related gastric carcinogenesis.

  20. A calibration curve for immobilized dihydrofolate reductase activity assay.

    PubMed

    Singh, Priyanka; Morris, Holly; Tivanski, Alexei V; Kohen, Amnon

    2015-09-01

    An assay was developed for measuring the active-site concentration, activity, and thereby the catalytic turnover rate (k cat) of an immobilized dihydrofolate reductase model system (Singh et al., (2015), Anal. Biochem). This data article contains a calibration plot for the developed assay. In the calibration plot rate is plotted as a function of DHFR concentration and shows linear relationship. The concentration of immobilized enzyme was varied by using 5 different size mica chips. The dsDNA concentration was the same for all chips, assuming that the surface area of the mica chip dictates the resulting amount of bound enzyme (i.e. larger sized chip would have more bound DHFR). The activity and concentration of each chip was measured.

  1. Mining Chemical Activity Status from High-Throughput Screening Assays

    PubMed Central

    Soufan, Othman; Ba-alawi, Wail; Afeef, Moataz; Essack, Magbubah; Rodionov, Valentin; Kalnis, Panos; Bajic, Vladimir B.

    2015-01-01

    High-throughput screening (HTS) experiments provide a valuable resource that reports biological activity of numerous chemical compounds relative to their molecular targets. Building computational models that accurately predict such activity status (active vs. inactive) in specific assays is a challenging task given the large volume of data and frequently small proportion of active compounds relative to the inactive ones. We developed a method, DRAMOTE, to predict activity status of chemical compounds in HTP activity assays. For a class of HTP assays, our method achieves considerably better results than the current state-of-the-art-solutions. We achieved this by modification of a minority oversampling technique. To demonstrate that DRAMOTE is performing better than the other methods, we performed a comprehensive comparison analysis with several other methods and evaluated them on data from 11 PubChem assays through 1,350 experiments that involved approximately 500,000 interactions between chemicals and their target proteins. As an example of potential use, we applied DRAMOTE to develop robust models for predicting FDA approved drugs that have high probability to interact with the thyroid stimulating hormone receptor (TSHR) in humans. Our findings are further partially and indirectly supported by 3D docking results and literature information. The results based on approximately 500,000 interactions suggest that DRAMOTE has performed the best and that it can be used for developing robust virtual screening models. The datasets and implementation of all solutions are available as a MATLAB toolbox online at www.cbrc.kaust.edu.sa/dramote and can be found on Figshare. PMID:26658480

  2. A new assay system for guinea pig interferon biological activity.

    PubMed

    Yamamoto, Toshiko; Jeevan, Amminikutty; Ohishi, Kazue; Nojima, Yasuhiro; Umemori, Kiyoko; Yamamoto, Saburo; McMurray, David N

    2002-07-01

    We have developed an assay system for guinea pig interferon (IFN) based on reduction of viral cytopathic effect (CPE) in various cell lines. CPE inhibition was detected optimally in the guinea pig fibroblast cell line 104C1 infected with encephalomyocarditis virus (EMCV). The amount of biologically active guinea pig IFN was quantified by estimating viable cell numbers colorimetrically by means of a tetrazolium compound, 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium monosodium salt (WST-1) and 1-methoxy-5-methylphenazinium methylsulfate (PMS). WST-1 color developed until stopped by the addition of sulfuric acid. This had no effect on the colorimetric assay, and the color was stable for at least 24 h. The acid also inactivated the EMCV and, thus, eliminated the viral hazard. Inhibition of CPE activity was highly correlated with the concentration of culture supernatants from BCG-vaccinated guinea pig splenocytes stimulated in vitro with tuberculin or an immunostimulatory oligoDNA. This assay detected guinea pig IFN and human IFN-alpha, but not IFN-gamma from human, mouse, rat, pig, or dog. This assay system has proved useful for the titration of guinea pig IFN, being easy to perform, free from viral hazard, relatively species specific, highly reproducible, and inexpensive.

  3. Cholinesterases in development: AChE as a firewall to inhibit cell proliferation and support differentiation.

    PubMed

    Layer, Paul G; Klaczinski, Janine; Salfelder, Anika; Sperling, Laura E; Thangaraj, Gopenath; Tuschl, Corina; Vogel-Höpker, Astrid

    2013-03-25

    Acetylcholinesterase (AChE) is a most remarkable protein, not only because it is one of the fastest enzymes in nature, but also since it appears in many molecular forms and is regulated by elaborate genetic networks. AChE is expressed in many tissues during development and in mature organisms, as well as in healthy and diseased states. In search for alternative, "non-classical" functions of cholinesterases (ChEs), AChE could either work within the frame of classic cholinergic systems, but in non-neural tissues ("non-synaptic function"), or act non-enzymatically. Here, we review briefly some of the major ideas and advances of this field, and report on some recent progress from our own experimental work, e.g. that (i) non-neural ChEs have pronounced, predominantly enzymatic effects on early embryonic (limb) development in chick and mouse, that (ii) retinal R28 cells of the rat overexpressing synaptic AChE present a significantly decreased cell proliferation, and that (iii) in developing chick retina ACh-synthesizing and ACh-degrading cells originate from the same postmitotic precursor cells, which later form two locally opposing cell populations. We suggest that such distinct distributions of ChAT(+) vs. AChE(+) cells in the inner half retina provide graded distributions of ACh, which can direct cell differentiation and network formation. Thus, as corroborated by works from many labs, AChE can be considered a highly co-opting protein, which can combine enzymatic and non-enzymatic functions within one molecule. PMID:23047026

  4. Extracts and constituents of Leontopodium alpinum enhance cholinergic transmission: Brain ACh increasing and memory improving properties

    PubMed Central

    Hornick, Ariane; Schwaiger, Stefan; Rollinger, Judith M.; Vo, Nguyen Phung; Prast, Helmut; Stuppner, Hermann

    2012-01-01

    Leontopodium alpinum (‘Edelweiss’) was phytochemically investigated for constituents that might enhance cholinergic neurotransmission. The potency to increase synaptic availability of acetylcholine (ACh) in rat brain served as key property for the bioguided isolation of cholinergically active compounds using different chromatographic techniques. The dichlormethane (DCM) extract of the root, fractions and isolated constituents were injected i.c.v. and the effect on brain ACh was detected via the push–pull technique. The DCM extract enhanced extracellular ACh concentration in rat brain and inhibited acetylcholinesterase (AChE) in vitro. The extracellular level of brain ACh was significantly increased by the isolated sesquiterpenes, isocomene and 14-acetoxyisocomene, while silphiperfolene acetate and silphinene caused a small increasing tendency. Only silphiperfolene acetate showed in vitro AChE inhibitory activity, thus suggesting the other sesquiterpenes to stimulate cholinergic transmission by an alternative mechanism of action. Isocomene was further investigated with behavioural tasks in mice. It restored object recognition in scopolamine-impaired mice and showed nootropic effects in the T-maze alternation task in normal and scopolamine-treated mice. Additionally, this sesquiterpene reduced locomotor activity of untreated mice in the open field task, while the activity induced by scopolamine was abolished. The enhancement of synaptic availability of ACh, the promotion of alternation, and the amelioration of scopolamine-induced deficit are in accordance with a substance that amplifies cholinergic transmission. Whether the mechanism of action is inhibition of AChE or another pro-cholinergic property remains to be elucidated. Taken together, isocomene and related constituents of L. alpinum deserve further interest as potential antidementia agents in brain diseases associated with cholinergic deficits. PMID:18541221

  5. Dehydrogenase activity of forest soils depends on the assay used

    NASA Astrophysics Data System (ADS)

    Januszek, Kazimierz; Długa, Joanna; Socha, Jarosław

    2015-01-01

    Dehydrogenases are exclusively intracellular enzymes, which play an important role in the initial stages of oxidation of soil organic matter. One of the most frequently used methods to estimate dehydrogenase activity in soil is based on the use of triphenyltetrazolium chloride as an artificial electron acceptor. The purpose of this study was to compare the activity of dehydrogenases of forest soils with varied physicochemical properties using different triphenyltetrazolium chloride assays. The determination was carried out using the original procedure by Casida et al., a modification of the procedure which involves the use of Ca(OH)2 instead of CaCO3, the Thalmann method, and the assay by Casida et al. without addition of buffer or any salt. Soil dehydrogenase activity depended on the assay used. Dehydrogenase determined by the Casida et al. method without addition of buffer or any salt correlated with the pH values of soils. The autoclaved strongly acidic samples of control soils showed high concentrations of triphenylformazan, probably due to chemical reduction of triphenyltetrazolium chloride. There is, therefore, a need for a sterilization method other than autoclaving, ie a process that results in significant changes in soil properties, thus helping to increase the chemical reduction of triphenyltetrazolium chloride.

  6. Active and passive computed tomography for nondestructive assay

    SciTech Connect

    Bernardi, R T; Camp, D E; Clard, D; Jackson, J A; Martz, H E, Decman, D J; Roberson, G P

    1998-10-28

    Traditional gamma-ray methods used to characterize nuclear waste introduce errors that are related to non-uniform measurement responses associated with unknown radioactive source and matrix material distributions. These errors can be reduced by applying an active and passive tomographic technique (A&PCT) developed at the Lawrence Livermore National Laboratory (LLNL). The technique uses an external radioactive source and active tomography to map the attenuation within a waste barrel as a function of mono-energetic gamma-ray energy. Passive tomography is used to localize and identify specific radioactive waste within the same container. Reconstruction of the passive data using the attenuation maps at specific energies allows internal waste radioactivity to be corrected for any overlying heterogeneous materials, thus yielding an absolute assay of the waste activity. LLNL and Bio-Imaging Research, Inc. have collaborated in a technology transfer effort to integrate an A&PCT assay system into a mobile waste characterization trailer. This mobile system has participated in and passed several formal DOE-sponsored performance demonstrations, tests and evaluations. The system is currently being upgraded with multiple detectors to improve throughput, automated gamma-ray analysis code to simplify the assay, and a new emission reconstruction code to improve accuracy

  7. A molecular beacon assay for measuring base excision repair activities.

    PubMed

    Maksimenko, Andrei; Ishchenko, Alexander A; Sanz, Guenhaël; Laval, Jacques; Elder, Rhoderick H; Saparbaev, Murat K

    2004-06-18

    The base excision repair (BER) pathway plays a key role in protecting the genome from endogenous DNA damage. Current methods to measure BER activities are indirect and cumbersome. Here, we introduce a direct method to assay DNA excision repair that is suitable for automation and industrial use, based on the fluorescence quenching mechanism of molecular beacons. We designed a single-stranded DNA oligonucleotide labelled with a 5'-fluorescein (F) and a 3'-Dabcyl (D) in which the fluorophore, F, is held in close proximity to the quencher, D, by the stem-loop structure design of the oligonucleotide. Following removal of the modified base or incision of the oligonucleotide, the fluorophore is separated from the quencher and fluorescence can be detected as a function of time. Several modified beacons have been used to validate the assay on both cell-free extracts and purified proteins. We have further developed the method to analyze BER in cultured cells. As described, the molecular beacon-based assay can be applied to all DNA modifications processed by DNA excision/incision repair pathways. Possible applications of the assay are discussed, including high-throughput real-time DNA repair measurements both in vitro and in living cells.

  8. α7nAchR/NMDAR coupling affects NMDAR function and object recognition.

    PubMed

    Li, Shupeng; Nai, Qiang; Lipina, Tatiana V; Roder, John C; Liu, Fang

    2013-12-20

    The α7 nicotinic acetylcholine receptor (nAchR) and NMDA glutamate receptor (NMDAR) are both ligand-gated ion channels permeable to Ca2+ and Na+. Previous studies have demonstrated functional modulation of NMDARs by nAchRs, although the molecular mechanism remains largely unknown. We have previously reported that α7nAchR forms a protein complex with the NMDAR through a protein-protein interaction. We also developed an interfering peptide that is able to disrupt the α7nAchR-NMDAR complex and blocks cue-induced reinstatement of nicotine-seeking in rat models of relapse. In the present study, we investigated whether the α7nAchR-NMDAR interaction is responsible for the functional modulation of NMDAR by α7nAchR using both electrophysiological and behavioral tests. We have found that activation of α7nAchR upregulates NMDAR-mediated whole cell currents and LTP of mEPSC in cultured hippocampal neurons, which can be abolished by the interfering peptide that disrupts the α7nAchR-NMDAR interaction. Moreover, administration of the interfering peptide in mice impairs novel object recognition but not Morris water maze performance. Our results suggest that α7nAchR/NMDAR coupling may selectively affect some aspects of learning and memory.

  9. Menthol Alone Upregulates Midbrain nAChRs, Alters nAChR Subtype Stoichiometry, Alters Dopamine Neuron Firing Frequency, and Prevents Nicotine Reward.

    PubMed

    Henderson, Brandon J; Wall, Teagan R; Henley, Beverley M; Kim, Charlene H; Nichols, Weston A; Moaddel, Ruin; Xiao, Cheng; Lester, Henry A

    2016-03-01

    Upregulation of β2 subunit-containing (β2*) nicotinic acetylcholine receptors (nAChRs) is implicated in several aspects of nicotine addiction, and menthol cigarette smokers tend to upregulate β2* nAChRs more than nonmenthol cigarette smokers. We investigated the effect of long-term menthol alone on midbrain neurons containing nAChRs. In midbrain dopaminergic (DA) neurons from mice containing fluorescent nAChR subunits, menthol alone increased the number of α4 and α6 nAChR subunits, but this upregulation did not occur in midbrain GABAergic neurons. Thus, chronic menthol produces a cell-type-selective upregulation of α4* nAChRs, complementing that of chronic nicotine alone, which upregulates α4 subunit-containing (α4*) nAChRs in GABAergic but not DA neurons. In mouse brain slices and cultured midbrain neurons, menthol reduced DA neuron firing frequency and altered DA neuron excitability following nAChR activation. Furthermore, menthol exposure before nicotine abolished nicotine reward-related behavior in mice. In neuroblastoma cells transfected with fluorescent nAChR subunits, exposure to 500 nm menthol alone also increased nAChR number and favored the formation of (α4)3(β2)2 nAChRs; this contrasts with the action of nicotine itself, which favors (α4)2(β2)3 nAChRs. Menthol alone also increases the number of α6β2 receptors that exclude the β3 subunit. Thus, menthol stabilizes lower-sensitivity α4* and α6 subunit-containing nAChRs, possibly by acting as a chemical chaperone. The abolition of nicotine reward-related behavior may be mediated through menthol's ability to stabilize lower-sensitivity nAChRs and alter DA neuron excitability. We conclude that menthol is more than a tobacco flavorant: administered alone chronically, it alters midbrain DA neurons of the nicotine reward-related pathway.

  10. Enzymatic assay for calmodulins based on plant NAD kinase activity

    SciTech Connect

    Harmon, A.C.; Jarrett, H.W.; Cormier, M.J.

    1984-01-01

    NAD kinase with increased sensitivity to calmodulin was purified from pea seedlings (Pisum sativum L., Willet Wonder). Assays for calmodulin based on the activities of NAD kinase, bovine brain cyclic nucleotide phosphodiesterase, and human erythrocyte Ca/sup 2 -/-ATPase were compared for their sensitivities to calmodulin and for their abilities to discriminate between calmodulins from different sources. The activities of the three enzymes were determined in the presence of various concentrations of calmodulins from human erythrocyte, bovine brain, sea pansy (Renilla reniformis), mung bean seed (Vigna radiata L. Wilczek), mushroom (Agaricus bisporus), and Tetrahymena pyriformis. The concentrations of calmodulin required for 50% activation of the NAD kinase (K/sub 0.5/) ranged from 0.520 ng/ml for Tetrahymena to 2.20 ng/ml for bovine brain. The A/sub 0.5/ s ranged from 19.6 ng/ml for bovine brain calmodulin to 73.5 ng/ml for mushroom calmodulin for phosphodiesterase activation. The K/sub 0.5/'s for the activation of Ca/sup 2 +/-ATPase ranged from 36.3 ng/mol for erythrocyte calmodulin to 61.7 ng/ml for mushroom calmodulin. NAD kinase was not stimulated by phosphatidylcholine, phosphatidylserine, cardiolipin, or palmitoleic acid in the absence or presence of Ca/sup 2 +/. Palmitic acid had a slightly stimulatory effect in the presence of Ca/sup 2 +/ (10% of maximum), but no effect in the absence of Ca/sup 2 +/. Palmitoleic acid inhibited the calmodulin-stimulated activity by 50%. Both the NAD kinase assay and radioimmunoassay were able to detect calmodulin in extracts containing low concentrations of calmodulin. Estimates of calmodulin contents of crude homogenates determined by the NAD kinase assay were consistent with amounts obtained by various purification procedures. 30 references, 1 figure, 4 tables.

  11. Synthesis and Assay of SIRT1-Activating Compounds.

    PubMed

    Dai, H; Ellis, J L; Sinclair, D A; Hubbard, B P

    2016-01-01

    The NAD(+)-dependent deacetylase SIRT1 plays key roles in numerous cellular processes including DNA repair, gene transcription, cell differentiation, and metabolism. Overexpression of SIRT1 protects against a number of age-related diseases including diabetes, cancer, and Alzheimer's disease. Moreover, overexpression of SIRT1 in the murine brain extends lifespan. A number of small-molecule sirtuin-activating compounds (STACs) that increase SIRT1 activity in vitro and in cells have been developed. While the mechanism for how these compounds act on SIRT1 was once controversial, it is becoming increasingly clear that they directly interact with SIRT1 and enhance its activity through an allosteric mechanism. Here, we present detailed chemical syntheses for four STACs, each from a distinct structural class. Also, we provide a general protocol for purifying active SIRT1 enzyme and outline two complementary enzymatic assays for characterizing the effects of STACs and similar compounds on SIRT1 activity. PMID:27423864

  12. Fluorescence assay for evaluating microbicidal activity of hand antiseptics.

    PubMed

    Lopez-Gigosos, Rosa M; Mariscal, Alberto; Mariscal-Lopez, Eloisa; Gutierrez-Bedmar, Mario; Fernandez, Joaquin

    2015-11-01

    We developed a fluorescent β-d-glucuronidase activity (BGA)-based assay for detecting and quantifying Escherichia coli in samples to assess the biocide efficacy of hand antiseptics. The fluorescence level is proportional to the number of viable E. coli organisms present. We compared our assay results to those of the E. coli plate count method specified by the European standard for testing hygienic hand rub disinfectant products (EN1500). The plate count method requires excessive handling and materials and is not valid if the number of organisms per plate is too low or high for counting in many of the samples. We optimized the fluorescent assay based on the cleavage of 4-methylumbelliferyl-β-d-glucuronide by adding 4-nitrophenyl-β-d-glucuronide, a nonfluorogenic BGA substrate, to induce glucuronidase activity and reduce assay time. Furthermore, our method can be automated and eliminates the need for multiple dilutions. Fluorescence was temporally monitored, and the time required to reach a specific value of fluorescence was correlated with the initial number of viable E. coli organisms on the samples. There was a positive correlation (P < 0.05) with a high correlation coefficient (R(2) = 0.82) between the E. coli counts by plate count and fluorescence methods. Reported effects in fluorescent BGA were compared to the EN1500 plate count method with five hand disinfectants. We found our method more advantageous, because it was as sensitive as the EN1500 method, requires less time to complete, and is less expensive and less laborious than conventional plating techniques.

  13. Fluorescence assay for evaluating microbicidal activity of hand antiseptics.

    PubMed

    Lopez-Gigosos, Rosa M; Mariscal, Alberto; Mariscal-Lopez, Eloisa; Gutierrez-Bedmar, Mario; Fernandez, Joaquin

    2015-11-01

    We developed a fluorescent β-d-glucuronidase activity (BGA)-based assay for detecting and quantifying Escherichia coli in samples to assess the biocide efficacy of hand antiseptics. The fluorescence level is proportional to the number of viable E. coli organisms present. We compared our assay results to those of the E. coli plate count method specified by the European standard for testing hygienic hand rub disinfectant products (EN1500). The plate count method requires excessive handling and materials and is not valid if the number of organisms per plate is too low or high for counting in many of the samples. We optimized the fluorescent assay based on the cleavage of 4-methylumbelliferyl-β-d-glucuronide by adding 4-nitrophenyl-β-d-glucuronide, a nonfluorogenic BGA substrate, to induce glucuronidase activity and reduce assay time. Furthermore, our method can be automated and eliminates the need for multiple dilutions. Fluorescence was temporally monitored, and the time required to reach a specific value of fluorescence was correlated with the initial number of viable E. coli organisms on the samples. There was a positive correlation (P < 0.05) with a high correlation coefficient (R(2) = 0.82) between the E. coli counts by plate count and fluorescence methods. Reported effects in fluorescent BGA were compared to the EN1500 plate count method with five hand disinfectants. We found our method more advantageous, because it was as sensitive as the EN1500 method, requires less time to complete, and is less expensive and less laborious than conventional plating techniques. PMID:26276114

  14. Fluorescence Assay for Evaluating Microbicidal Activity of Hand Antiseptics

    PubMed Central

    Lopez-Gigosos, Rosa M.; Mariscal-Lopez, Eloisa; Gutierrez-Bedmar, Mario; Fernandez, Joaquin

    2015-01-01

    We developed a fluorescent β-d-glucuronidase activity (BGA)-based assay for detecting and quantifying Escherichia coli in samples to assess the biocide efficacy of hand antiseptics. The fluorescence level is proportional to the number of viable E. coli organisms present. We compared our assay results to those of the E. coli plate count method specified by the European standard for testing hygienic hand rub disinfectant products (EN1500). The plate count method requires excessive handling and materials and is not valid if the number of organisms per plate is too low or high for counting in many of the samples. We optimized the fluorescent assay based on the cleavage of 4-methylumbelliferyl-β-d-glucuronide by adding 4-nitrophenyl-β-d-glucuronide, a nonfluorogenic BGA substrate, to induce glucuronidase activity and reduce assay time. Furthermore, our method can be automated and eliminates the need for multiple dilutions. Fluorescence was temporally monitored, and the time required to reach a specific value of fluorescence was correlated with the initial number of viable E. coli organisms on the samples. There was a positive correlation (P < 0.05) with a high correlation coefficient (R2 = 0.82) between the E. coli counts by plate count and fluorescence methods. Reported effects in fluorescent BGA were compared to the EN1500 plate count method with five hand disinfectants. We found our method more advantageous, because it was as sensitive as the EN1500 method, requires less time to complete, and is less expensive and less laborious than conventional plating techniques. PMID:26276114

  15. Anti-listeria activity of poly(lactic acid)/sawdust particle biocomposite film impregnated with pediocin PA-1/AcH and its use in raw sliced pork.

    PubMed

    Woraprayote, Weerapong; Kingcha, Yutthana; Amonphanpokin, Pannawit; Kruenate, Jittiporn; Zendo, Takeshi; Sonomoto, Kenji; Benjakul, Soottawat; Visessanguan, Wonnop

    2013-10-15

    A novel poly(lactic acid) (PLA)/sawdust particle (SP) biocomposite film with anti-listeria activity was developed by incorporation of pediocin PA-1/AcH (Ped) using diffusion coating method. Sawdust particle played an important role in embedding pediocin into the hydrophobic PLA film. The anti-listeria activity of the PLA/SP biocomposite film incorporated with Ped (PLA/SP+Ped) was detected, while no activity against the tested pathogen was observed for the control PLA films (without SP and/or Ped). Dry-heat treatment of film before coating with Ped resulted in the highest Ped adsorption (11.63 ± 3.07 μg protein/cm(2)) and the highest anti-listeria activity. A model study of PLA/SP+Ped as a food-contact antimicrobial packaging on raw sliced pork suggests a potential inhibition of Listeria monocytogenes (99% of total listerial population) on raw sliced pork during the chilled storage. This study supports the feasibility of using PLA/SP+Ped film to reduce the initial load of L. monocytogenes on the surface of raw pork.

  16. Nanoparticles Ease Aching Joints in Mice

    MedlinePlus

    ... page: https://medlineplus.gov/news/fullstory_161188.html Nanoparticles Ease Aching Joints in Mice Treatment might one ... News) -- New research in mice suggests that tiny nanoparticles might one day be a better way to ...

  17. Automated conductimetric assay of human serum cholinesterase activity.

    PubMed

    Duffy, P; Wallach, J M

    1989-01-01

    Serum cholinesterase activity was determined by conductimetry using samples in the microliter range. Butyrylcholine iodide was demonstrated to be a convenient substrate for the conductimetric assay. Validation of the microassay was made by using either purified enzyme or control serum. In the range of 0-60 U/l, a linear relationship was demonstrated. Correlation with a reference spectrophotometric method was obtained with a slope of 1.18. An explanation of this value is proposed, as different hydrolysis rates were obtained with human sera, depending on the substrate used (butyrylthio- or butyryl-choline ester).

  18. Novel assay for direct fluorescent imaging of sialidase activity

    NASA Astrophysics Data System (ADS)

    Tomin, A.; Shkandina, T.; Bilyy, R.

    2011-07-01

    Here we describe a novel approach to sialidase activity estimation. Sialidases (EC 3.2.1.18, exo-α-sialidases), also known as neuraminidases, are the group of enzymes, which hydrolyze the glycoside bound between terminal sialic acid and subsequent carbohydrate residue in glycoproteins and glycolipids. Sialic acids are the group of monosaccharides with acidic properties, since they are acetylated or glycolylated derivates of neuraminic acid. Flu and some other viruses use neuraminidase activity to infect host cells. The level of sialylation was shown to be tightly connected with tumor cell invasiveness and metastatic potential, sialylation level also determines the clearance of aged or virus-infected cells. Thus, detection of sialidase activity is of primary importance for clinical diagnostics as well as life science research. The authors developed the assay for both visualization and estimation of sialidase activity in living cells. Previously known methods for sialidase activity detection required destruction of cellular material, or were low-sensitive, or provided no information on the activity localization in certain intracellular compartment. To overcome these problems, a fluorogenic neuraminidase substrate, 4-MUNA was utilized, and the method for detection of neuraminidase activity using fluorescent microscopy was proposed, it provided a high signal level and information on cellular localization of the studied enzyme. By using this approach the increase of sialidase activity on apoptotic cells was demonstrated in comparison to viable and primary necrotic cells.

  19. Screening for acetylcholinesterase inhibition and antioxidant activity of selected plants from Croatia.

    PubMed

    Jukic, Mila; Burcul, Franko; Carev, Ivana; Politeo, Olivera; Milos, Mladen

    2012-01-01

    The methanol, ethyl acetate and chloroform extracts of selected Croatian plants were tested for their acetylcholinesterase (AChE) inhibition and antioxidant activity. Assessment of AChE inhibition was carried out using microplate reader at 1 mg mL⁻¹. Antioxidant capacities were determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging test and ferric reducing/antioxidant power assay (FRAP). Total phenol content (TPC) of extracts were determined using Folin-Ciocalteu colorimetric method. Out of 48 extracts, only methanolic extract of the Salix alba L. cortex exerted modest activity towards AChE, reaching 50.80% inhibition at concentration of 1 mg mL⁻¹. All the other samples tested had activity below 20%. The same extract performed the best antioxidative activity using DPPH and FRAP method, too. In essence, among all extracts used in the screening, methanolic extracts showed the best antioxidative activity as well as highest TPC.

  20. Assaying the Kinase Activity of LRRK2 in vitro

    PubMed Central

    Lewis, Patrick A.

    2012-01-01

    Leucine Rich Repeat Kinase 2 (LRRK2) is a 2527 amino acid member of the ROCO family of proteins, possessing a complex, multidomain structure including a GTPase domain (termed ROC, for Ras of Complex proteins) and a kinase domain1. The discovery in 2004 of mutations in LRRK2 that cause Parkinson's disease (PD) resulted in LRRK2 being the focus of a huge volume of research into its normal function and how the protein goes awry in the disease state2,3. Initial investigations into the function of LRRK2 focused on its enzymatic activities4-6. Although a clear picture has yet to emerge of a consistent alteration in these due to mutations, data from a number of groups has highlighted the importance of the kinase activity of LRRK2 in cell death linked to mutations7,8. Recent publications have reported inhibitors targeting the kinase activity of LRRK2, providing a key experimental tool9-11. In light of these data, it is likely that the enzymatic properties of LRRK2 afford us an important window into the biology of this protein, although whether they are potential drug targets for Parkinson's is open to debate. A number of different approaches have been used to assay the kinase activity of LRRK2. Initially, assays were carried out using epitope tagged protein overexpressed in mammalian cell lines and immunoprecipitated, with the assays carried out using this protein immobilised on agarose beads4,5,7. Subsequently, purified recombinant fragments of LRRK2 in solution have also been used, for example a GST tagged fragment purified from insect cells containing residues 970 to 2527 of LRRK212. Recently, Daniëls et al. reported the isolation of full length LRRK2 in solution from human embryonic kidney cells, however this protein is not widely available13. In contrast, the GST fusion truncated form of LRRK2 is commercially available (from Invitrogen, see table 1 for details), and provides a convenient tool for demonstrating an assay for LRRK2 kinase activity. Several different

  1. Development of a Solid-Phase Receptor-Based Assay for the Detection of Cyclic Imines Using a Microsphere-Flow Cytometry System

    PubMed Central

    Rodríguez, Laura P.; Vilariño, Natalia; Molgó, Jordi; Aráoz, Rómulo; Louzao, M. Carmen; Taylor, Palmer; Talley, Todd; Botana, Luis M.

    2013-01-01

    Biologically active macrocycles containing a cyclic imine were isolated for the first time from aquaculture sites in Nova Scotia, Canada, during the 1990s. These compounds display a “fast-acting” toxicity in the traditional mouse bioassay for lipophilic marine toxins. Our work aimed at developing receptor-based detection method for spirolides using a microsphere/flow cytometry Luminex system. For the assay two alternatives were considered as binding proteins, the Torpedo marmorata nicotinic acetylcholine receptor (nAChR) and the Lymnaea stagnalis acetylcholine binding protein (Ls-AChBP). A receptor-based inhibition assay was developed using the immobilization of nAChR or Ls-AChBP on the surface of carboxylated microspheres and the competition of cyclic imines with biotin-α-bungarotoxin (α-BTX) for binding to these proteins. The amount of biotin-α-BTX bound to the surface of the microspheres was quantified using phycoerythrin (PE)-labeled streptavidin and the fluorescence was analyzed in a Luminex 200 system. AChBP and nAChR bound to 13-desmethyl spirolide C efficiently; however the cross-reactivity profile of the nAChR for spirolides and gymnodimine more closely matched the relative toxic potencies reported for these toxins. The nAChR was selected for further assay development. A simple sample preparation protocol consisting of an extraction with acetone yielded a final extract with no matrix interference on the nAChR/microsphere-based assay for mussels, scallops and clams. This cyclic imine detection method allowed the detection of 13-desmethyl spirolide C in the range of 10–6000 μg/kg of shellfish meat, displaying a higher sensitivity and wider dynamic range than other receptor-based assays previously published. This microsphere-based assay provides a rapid, sensitive and easily performed screening method that could be multiplexed for the simultaneous detection of several marine toxins. PMID:23343192

  2. Hormonal activity of polycyclic musks evaluated by reporter gene assay.

    PubMed

    Mori, Taiki; Iida, Mitsuru; Ishibashi, Hiroshi; Kohra, Shinya; Takao, Yuji; Takemasa, Takehiro; Arizono, Koji

    2007-01-01

    Synthetic musk fragrance compounds, such as polycyclic musks (PCMs), are a group of chemicals used extensively as personal care products, and can be found in the environment and the human body. PCMs, such as 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexa-methylcyclopenta-gamma-2-benzopyran (HHCB) and 7-acetyl-1,1,3,4,4,6-hexamethyltetralin (AHTN), are known to have agonistic activities toward human estrogen receptor alpha (hERalpha) and hERbeta, and have antagonistic activity toward the human androgen receptor (hAR), as shown in several reporter gene assays. However, little is known about the interaction of PCMs with the human thyroid hormone receptor (hTR), and the hormonal effects of other PCMs except for HHCB and AHTN. In this study, we focus on the interactions of six PCMs, namely, HHCB, AHTN, 4-acetyl-1,1-dimethyl-6-tert-butyl-indan (ADBI), 6-acetyl-1,1,2,3,3,5-hexamethylindan (AHMI), 6,7-dihydro-1,1,2,3,3-pentamethyl-4(5H)-indanone (DPMI), and 5-acetyl-1,1,2,6-tetramethyl-3-isopropy-lindan (ATII) with hERalpha, hAR, and hTRbeta by in vitro reporter gene assay using Chinese hamster ovary cells. All the samples were found to be agonists toward hERalpha, whereas no agonistic activities of these PCMs for hAR and hTRbeta were observed. No antagonistic activities for hERalpha and hTRbeta were observed at the concentrations tested. However, several PCMs, namely, HHCB, AHTN, ATII, ADBI, and AHMI, showed dose-dependent antagonistic activities for hAR, and the IC50 values of these compounds were estimated to be 1.0 x 10(-7), 1.5 x 10(-7), 1.4 x 10(-7), 9.8 x 10(-6), and 1.4 x 10(-7) M, respectively. The results suggest that these PCMs interact with hERalpha and hAR but have no hormonal effect on hTRbeta. This is the first report on the agonistic and antagonistic activities of ATII, ADBI, AHMI, and DPMI for hERalpha and hAR as determined by in vitro reporter gene assay using stably transfected Chinese hamster ovary cells.

  3. Automated filter paper assay for determination of cellulase activity.

    PubMed

    Decker, Stephen R; Adney, William S; Jennings, Edward; Vinzant, Todd B; Himmel, Michael E

    2003-01-01

    Recent developments in molecular breeding and directed evolution have promised great developments in industrial enzymes as demonstrated by exponential improvements in beta-lactamase and green fluorescent protein (GFP). Detection of and screening for improved enzymes are relatively easy if the target enzyme is expressible in a suitable high-throughput screening host and a clearly defined and usable screen or selection is available, as with GFP and beta-lactamase. Fungal cellulases, however, are difficult to measure and have limited expressibility in heterologous hosts. Furthermore, traditional cellulase assays are tedious and time-consuming. Multiple enzyme components, an insoluble substrate, and generally slow reaction rates have plagued cellulase researchers interested in creating cellulase mixtures with increased activities and/or enhanced biochemical properties. Although the International Union of Pure and Applied Chemists standard measure of cellulase activity, the filter paper assay (FPA), can be reproduced in most laboratories with some effort, this method has long been recognized for its complexity and susceptibility to operator error. Our current automated FPA method is based on a Cyberlabs C400 robotics deck equipped with customized incubation, reagent storage, and plate-reading capabilities that allow rapid evaluation of cellulases acting on cellulose and has a maximum throughput of 84 enzyme samples per day when performing the automated FPA.

  4. Activity-based assay for ricin-like toxins

    DOEpatents

    Keener, William K.; Ward, Thomas E.

    2007-02-06

    A method of detecting N-glycosylase activity in a sample involves incubating an oligodeoxyribonucleotide substrate containing a deoxyadenosine or deoxyuridine residue with the sample to be tested such that the N-glycosylase, if present, hydrolyzes the deoxyadenosine or deoxyuridine residue to result in an N-glycosylase product having an abasic site. A primer is annealed to the N-glycosylase product, and the primer is extended with a DNA polymerase, such as Taq DNA polymerase, that pauses at abasic sites. The resulting extension products are melted from the N-glycosylase product, allowed to form hairpins due to self-complementarity, and further extended in the presence of labeled precursors to result in labeled products. Extension products synthesized from undigested substrate as template do not result in labeled products. Thus, detection of labeled products results in detection of N-glycosylase activity. Oligodeoxyribonucleotide substrates, primer, and positive controls and a kit for N-glycosylase assay are also disclosed.

  5. Evaluation of immunostimulatory activity of Chyawanprash using in vitro assays.

    PubMed

    Madaan, Alka; Kanjilal, Satyajyoti; Gupta, Arun; Sastry, J L N; Verma, Ritu; Singh, Anu T; Jaggi, Manu

    2015-03-01

    Chyawanprash is an ayurvedic formulation used in Indian traditional medicinal system for its beneficial effect on human health. We investigated the immunostimulatory effects of Chyawanprash (CHY) using in vitro assays evaluating the secretion of cytokines such as Tumor Necrosis Factor-alpha (TNF-α), Interleukin-1beta (IL-1β) and Macrophage Inflammatory Protein-1-alpha (MIP-1-α) from murine bone marrow derived Dendritic Cells (DC) which play pivotal role in immunostimulation. The effects of CHY on phagocytosis in murine macrophages (RAW264.7) and Natural Killer (NK) cell activity were also investigated. At non-cytotoxic concentrations (20-500 μg/ml), CHY enhanced the secretion of all the three cytokines from DC. CHY also stimulated both, macrophage (RAW264.7) as well as NK cell activity, in vitro. In conclusion, the data substantiates the immunoprotective role of CHY at cellular level mediated by immunostimulation in key immune cells viz. dendritic Cells, macrophages and NK cells.

  6. A Fluorescence-based Assay of Phospholipid Scramblase Activity.

    PubMed

    Ploier, Birgit; Menon, Anant K

    2016-01-01

    Scramblases translocate phospholipids across the membrane bilayer bidirectionally in an ATP-independent manner. The first scramblase to be identified and biochemically verified was opsin, the apoprotein of the photoreceptor rhodopsin. Rhodopsin is a G protein-coupled receptor localized in rod photoreceptor disc membranes of the retina where it is responsible for the perception of light. Rhodopsin's scramblase activity does not depend on its ligand 11-cis-retinal, i.e., the apoprotein opsin is also active as a scramblase. Although constitutive and regulated phospholipid scrambling play an important role in cell physiology, only a few phospholipid scramblases have been identified so far besides opsin. Here we describe a fluorescence-based assay of opsin's scramblase activity. Opsin is reconstituted into large unilamellar liposomes composed of phosphatidylcholine, phosphatidylglycerol and a trace quantity of fluorescent NBD-labeled PC (1-palmitoyl-2-{6-[7-nitro-2-1,3-benzoxadiazole-4-yl)amino]hexanoyl}-sn-glycero-3-phosphocholine). Scramblase activity is determined by measuring the extent to which NBD-PC molecules located in the inner leaflet of the vesicle are able to access the outer leaflet where their fluorescence is chemically eliminated by a reducing agent that cannot cross the membrane. The methods we describe have general applicability and can be used to identify and characterize scramblase activities of other membrane proteins. PMID:27684510

  7. Analysis of free ACh and 5-HT in milk from four different species and their bioactivity on 5-HT(3) and nACh receptors.

    PubMed

    Gallegos-Perez, Jose-Luis; Limon, Agenor; Reyes-Ruiz, Jorge M; Alshanqeeti, Ali S; Aljohi, Mohammad A; Miledi, Ricardo

    2014-07-25

    Milk is one of the most beneficial aliments and is highly recommended in normal conditions; however, in certain disorders, like irritable bowel syndrome, cow milk and dairy products worsen the gastric symptoms and their use is not recommended. Among the most recognized milk-induced gatrointestinal symptoms are abdominal pain, nausea and vomiting, which are processes controlled by cholinergic and serotonergic transmission. Whether the presence of bioavailable ACh and 5-HT in milk may contribute to normal peristalsis, or to the developing of these symptoms, is not known. In this work we attempt to determine whether the content of free ACh and 5-HT is of physiological significance in milk from four different species: cow (bovine), goat, camel and human. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) was used to identify and quantify free ACh and 5-HT in milk, and activation of the serotonergic and cholinergic ionotropic receptors was investigated using electrophysiological experiments. Our principal hypothesis was that milk from these four species had sufficient free ACh and 5-HT to activate their correspondent receptors expressed in a heterologous system. Our results showed a more complex picture, in which free ACh and 5-HT and their ability to activate cholinergic and serotonergic receptors are not correlated. This work is a first step to elucidate whether 5-HT and ACh, at the concentrations present in the milk, can be associated to a direct function in the GI.

  8. Cell-based flow cytometry assay to measure cytotoxic activity.

    PubMed

    Noto, Alessandra; Ngauv, Pearline; Trautmann, Lydie

    2013-12-17

    Cytolytic activity of CD8+ T cells is rarely evaluated. We describe here a new cell-based assay to measure the capacity of antigen-specific CD8+ T cells to kill CD4+ T cells loaded with their cognate peptide. Target CD4+ T cells are divided into two populations, labeled with two different concentrations of CFSE. One population is pulsed with the peptide of interest (CFSE-low) while the other remains un-pulsed (CFSE-high). Pulsed and un-pulsed CD4+ T cells are mixed at an equal ratio and incubated with an increasing number of purified CD8+ T cells. The specific killing of autologous target CD4+ T cells is analyzed by flow cytometry after coculture with CD8+ T cells containing the antigen-specific effector CD8+ T cells detected by peptide/MHCI tetramer staining. The specific lysis of target CD4+ T cells measured at different effector versus target ratios, allows for the calculation of lytic units, LU₃₀/10(6) cells. This simple and straightforward assay allows for the accurate measurement of the intrinsic capacity of CD8+ T cells to kill target CD4+ T cells.

  9. Quantitative detection of RT activity by PERT assay: feasibility and limits to a standardized screening assay for human vaccines.

    PubMed

    André, M; Morgeaux, S; Fuchs, F

    2000-06-01

    The detection of adventitious retroviruses has always been critical for assessing the safety concerns associated with viral vaccines. Assays for the enzymatic activity of reverse transcriptase (RT) are used as general methods for the detection of both known and unknown retroviruses. Several studies using newly-developed ultrasensitive PCR-based RT assays reported RT activity in viral vaccines grown in chicken cells. Here, we have assessed the performances of such a PCR-based RT assay--PERT assay--for the quantitative detection of RT activity in vaccines. Sensitivity, linearity and reproducibility of the method were studied on purified RT and viral vaccines treated to release RT from potentially contaminant retroviruses. The level of RT activity detected in chicken cell-derived vaccines was higher for live attenuated vaccines compared to inactivated ones. Contrary to other studies, RT activity was found in some mammalian cell-derived vaccines. AZT-TP sensitivity of RT activities detected in these vaccines and discrimination between retroviral and RT-like activities was further investigated. Feasibility and limits of PERT assay as a broad-spectrum retroviruses detection method in vaccines are discussed.

  10. Nondestructive assay using active and passive computed tomography

    SciTech Connect

    Roberson, G. P. ,LLNL

    1998-07-01

    The United States Department of Energy (DOE) has over 600,000 transuranic (TRU) waste drums temporarily stored at nearly 40 sites within the United States. Contents of these drums must be characterized before they are transported for permanent disposal. Traditional gamma-ray methods used to characterize nuclear waste introduce errors that are related to nonuniform measurement responses associated with unknown radioactive source and matrix material distributions. These errors can be reduced by application of tomographic techniques, that measure these distributions. The Lawrence Livermore National Laboratory (LLNL) has developed two tomographic-based waste assay systems. They use external radioactive sources and tomography-protocol to map the attenuation within a waste drum as a function of mono-energetic gamma-ray energy in waste containers. Passive tomography is used to localize and identify specific radioactive waste contents within the same waste containers. Reconstruction of the passive data via the active images allows internal waste radioactivities in a drum to be corrected for any overlying heterogeneous materials, thus yielding an absolute assay of the waste radioactivities. Calibration of both systems requires only point source measurements and are independent of matrix materials. The first system is housed at LLNL and was developed to study and validate research concepts. The second system is being developed with Bioimaging Research, Inc. (BIR) and is housed within a mobile waste characterization trailer. This system has traveled to three DOE facilities to demonstrate the active and passive computed tomography capability. Both systems have participated in and successfully passed the requirements of formal DOE-sponsored intercomparison studies. The systems have measured approximately 1 to 100 grains of plutonium within a variety of waste matrix materials. Laboratory and field results from these two systems over the past several years show that both systems

  11. Electronic structure calculations toward new potentially AChE inhibitors

    NASA Astrophysics Data System (ADS)

    de Paula, A. A. N.; Martins, J. B. L.; Gargano, R.; dos Santos, M. L.; Romeiro, L. A. S.

    2007-10-01

    The main purpose of this study was the use of natural non-isoprenoid phenolic lipid of cashew nut shell liquid from Anacardium occidentale as lead material for generating new potentially candidates of acetylcholinesterase inhibitors. Therefore, we studied the electronic structure of 15 molecules derivatives from the cardanol using the following groups: methyl, acetyl, N, N-dimethylcarbamoyl, N, N-dimethylamine, N, N-diethylamine, piperidine, pyrrolidine, and N-benzylamine. The calculations were performed at RHF level using 6-31G, 6-31G(d), 6-31+G(d) and 6-311G(d,p) basis functions. Among the proposed compounds we found that the structures with substitution by acetyl, N, N-dimethylcarbamoyl, N, N-dimethylamine, and pyrrolidine groups were better correlated to rivastigmine indicating possible activity.

  12. A passive-active neutron device for assaying remote-handled transuranic waste

    SciTech Connect

    Estep, R.J.; Coop, K.L.; Deane, T.M.; Lujan, J.E.

    1989-01-01

    A combined passive-active neutron assay device was constructed for assaying remote-handled transuranic waste. A study of matrix and source position effects in active assays showed that a knowledge of the source position alone is not sufficient to correct for position-related errors in highly moderating or absorbing matrices. An alternate function for the active assay of solid fuel pellets was derived, although the efficacy of this approach remains to be established. 4 refs., 7 figs., 1 tab.

  13. High-Throughput FRET Assay Yields Allosteric SERCA Activators

    PubMed Central

    Cornea, Razvan L.; Lockamy, Elizabeth L.; Gruber, Simon J.; Muretta, Joseph M.; Jin, Dongzhu; Chen, Jiqiu; Dahl, Russell; Bartfai, Tamas; Zsebo, Krisztina M.; Gillispie, Gregory D.; Thomas, David D.

    2013-01-01

    Using fluorescence resonance energy transfer (FRET), we performed a high-throughput screen (HTS) in a reconstituted membrane system, seeking compounds that reverse inhibition of sarco-/endoplasmic reticulum Ca-ATPase (SERCA) by its endogenous regulator, phospholamban (PLB). Such compounds have long been sought to correct aberrant Ca2+ regulation in heart failure. Donor-SERCA was reconstituted in phospholipid membranes with or without acceptor-PLB, and FRET was measured in a steady-state fluorescence microplate reader. A 20,000-compound library was tested in duplicate. Compounds that decreased FRET by more than three standard deviations were considered hits. From 43 primary hits (0.2%), 31 (72%) were found to be false positives upon more thorough testing. The remaining 12 hits were tested in assays of Ca-ATPase activity, and six of these activated SERCA significantly, by as much as 60%, and several also enhanced cardiomyocyte contractility. These compounds directly activated SERCA from heart and other tissues. These results validate our FRET approach and set the stage for medicinal chemistry and pre-clinical testing. We were concerned about the high rate of false positives, resulting from the low precision of steady-state fluorescence. Preliminary studies with a novel fluorescence lifetime plate reader show 20-fold higher precision. This instrument can dramatically increase the quality of future HT. PMID:22923787

  14. High-throughput FRET assay yields allosteric SERCA activators.

    PubMed

    Cornea, Razvan L; Gruber, Simon J; Lockamy, Elizabeth L; Muretta, Joseph M; Jin, Dongzhu; Chen, Jiqiu; Dahl, Russell; Bartfai, Tamas; Zsebo, Krisztina M; Gillispie, Gregory D; Thomas, David D

    2013-01-01

    Using fluorescence resonance energy transfer (FRET), we performed a high-throughput screen (HTS) in a reconstituted membrane system, seeking compounds that reverse inhibition of sarcoplasmic reticulum Ca-ATPase (SERCA) by its cardiac regulator, phospholamban (PLB). Such compounds have long been sought to correct aberrant Ca(2+) regulation in heart failure. Donor-SERCA was reconstituted in phospholipid membranes with or without acceptor-PLB, and FRET was measured in a steady-state fluorescence microplate reader. A 20 000-compound library was tested in duplicate. Compounds that decreased FRET by more than three standard deviations were considered hits. From 43 hits (0.2%), 31 (72%) were found to be false-positives upon more thorough FRET testing. The remaining 12 hits were tested in assays of Ca-ATPase activity, and six of these activated SERCA significantly, by as much as 60%, and several also enhanced cardiomyocyte contractility. These compounds directly activated SERCA from heart and other tissues. These results validate our FRET approach and set the stage for medicinal chemistry and preclinical testing. We were concerned about the high rate of false-positives, resulting from the low precision of steady-state fluorescence. Preliminary studies with a novel fluorescence lifetime plate reader show 20-fold higher precision. This instrument can dramatically increase the quality of future HTS.

  15. Nature of stress: differential effects on brain acetylcholinesterase activity and memory in rats.

    PubMed

    Das, Amitava; Rai, Deepak; Dikshit, Madhu; Palit, Gautam; Nath, Chandishwar

    2005-09-16

    Effect of acute, chronic-predictable and chronic-unpredictable stress on memory and acetylcholinesterase (AChE) was investigated in rats. The animals were subjected to 3 type of stressors--(1) acute immobilization stress, (2) chronic-predictable stress i.e., immobilization daily for 5 consecutive days and (3) chronic-unpredictable stress that included reversal of light/dark cycle, over-night fasting, forced-swimming, immobilization and forced exercise in random unpredictable manner daily for 5 consecutive days. Learning and memory function was studied by single trial Passive avoidance test. AChE activity was assayed spectrophotometrically in the detergent (DS) and salt (SS) soluble fractions in different brain regions. Learning was obtained in acute and chronic-predictable stress groups but not in chronic-unpredictable group. Acute, chronic-predictable and chronic-unpredictable stress caused significant decrease in AChE activity in the DS fraction of cortex, hippocampus and hypothalamus as compared to control. Results indicate that AChE in DS fraction is predominantly affected in stressed and stressed-trained group but cognition is affected only by chronic-unpredictable stress. In acute and chronic-predictable groups the decreased AChE activity in the hippocampal DS fraction during learning may be responsible to maintain cognitive function by enhancing the cholinergic activity.

  16. Immunomodulatory assays to study structure-activity relationships of thalidomide.

    PubMed

    Shannon, E J; Morales, M J; Sandoval, F

    1997-01-01

    Thalidomide, which has a long history of tragedy because of its ability to cause severe birth defects, is very effective in alleviating erythema nodosum leprosum in leprosy patients and aphthous ulcers in AIDS patients. The causes of these inflammatory diseases and the mechanism by which thalidomide diminishes them are unknown. It has been suggested that modulation of the immune response plays an important role. We found that thalidomide exerts immunomodulatory activity in three bioassays. It suppresses an IgM plaque forming cell response in mice injected with sheep erythrocytes: it inhibits TNF-alpha production by LPS stimulated human mononuclear cells: and it enhances IL-2 production by Con-A stimulated human mononuclear cells. We employed these bioassays to compare the activity of 15 analogs of thalidomide with thalidomide itself. Eight of the compounds were derivatives of the glutarimide moiety of thalidomide and the others were phthalimide or derivatives of the phthalimide moiety of thalidomide. N-hydroxyphthalimide, a simple derivative of phthalimide, was more effective than thalidomide and was also the most effective of the compounds assayed in suppressing the IgM plaque and TNF-alpha responses, but it did not enhance the IL-2 response, instead, it significantly suppressed it.

  17. GTP-specific fab fragment-based GTPase activity assay.

    PubMed

    Kopra, Kari; Rozwandowicz-Jansen, Anita; Syrjänpää, Markku; Blaževitš, Olga; Ligabue, Alessio; Veltel, Stefan; Lamminmäki, Urpo; Abankwa, Daniel; Härmä, Harri

    2015-03-17

    GTPases are central cellular signaling proteins, which cycle between a GDP-bound inactive and a GTP-bound active conformation in a controlled manner. Ras GTPases are frequently mutated in cancer and so far only few experimental inhibitors exist. The most common methods for monitoring GTP hydrolysis rely on luminescent GDP- or GTP-analogs. In this study, the first GTP-specific Fab fragment and its application are described. We selected Fab fragments using the phage display technology. Six Fab fragments were found against 2'/3'-GTP-biotin and 8-GTP-biotin. Selected antibody fragments allowed specific detection of endogenous, free GTP. The most potent Fab fragment (2A4(GTP)) showed over 100-fold GTP-specificity over GDP, ATP, or CTP and was used to develop a heterogeneous time-resolved luminescence based assay for the monitoring of GTP concentration. The method allows studying the GEF dependent H-Ras activation (GTP binding) and GAP-catalyzed H-Ras deactivation (GTP hydrolysis) at nanomolar protein concentrations.

  18. Mutagenic activity of isoxazolylnaphthoquinoneimines assayed by micronucleus bone marrow test.

    PubMed

    Sicardi, S M; Ferrato, E

    1995-05-01

    Studies were undertaken to evaluate the ability of various quinoneimines to induce micronuclei in bone marrow cells as a measure of their genotoxicity. Accordingly, 2-hydroxy-N-(3,4-dimethyl-5-isoxazolyl)-1,4-naphthoquinone-4-imine (I), its 2-acetyl derivative (II) and 2-[(5-methyl-3-isoxazolyl)amino]-N-(5-methyl-3-isoxazolyl)-1 ,4- naphthoquinone-4-imine (III), as well as two of their precursors, 2-hydroxynaphthoquinone (NQ-2-OH) and 3,4-dimethyl-5-aminoisoxazole (DMAI) were given by intraperitoneal injection at 5, 50, 100 and 200 mg/Kg doses to S.J.L. Swiss mice with 24 h sampling time. Compounds I and II displayed highly significant differences at 50, 100 and 200 mg/kg doses (p < 0.01) and their mutagenic dose response curves correlated closely with an inverted U-shaped form whose interpretation is still the subject of controversy. NQ-2-OH only produced a significant increase in micronucleus frequency at 50 mg/kg, whereas no mutagenic activity was found for compound III and DMAI at the doses assayed. At 50 mg/kg the order of relative mutagenic potencies was I > II > NQ-2-OH. Mechanisms advanced to explain loss of drug activity at high doses include capture saturation, enzymatic induction during metabolism and participation of an independent defense system. PMID:7753107

  19. Design of multi-target compounds as AChE, BACE1, and amyloid-β(1-42) oligomerization inhibitors: in silico and in vitro studies.

    PubMed

    Hernández-Rodríguez, Maricarmen; Correa-Basurto, José; Martínez-Ramos, Federico; Padilla-Martínez, Itzia Irene; Benítez-Cardoza, Claudia G; Mera-Jiménez, Elvia; Rosales-Hernández, Martha Cecilia

    2014-01-01

    Despite great efforts to develop new therapeutic strategies against Alzheimer's disease (AD), the acetylcholinesterase inhibitors (AChEIs): donepezil, rivastigmine, and galantamine, have been used only as a palliative therapeutic approach. However, the pathogenesis of AD includes several factors such as cholinergic hypothesis, amyloid-β (Aβ) aggregation, and oxidative stress. For this reason, the design of compounds that target the genesis and progression of AD could offer a therapeutic benefit. We have designed a set of compounds (M-1 to M-5) with pharmacophore moieties to inhibit the release, aggregation, or toxicity of Aβ, act as AChEIs and have antioxidant properties. Once the compounds were designed, we analyzed their physicochemical parameters and performed docking studies to determine their affinity values for AChE, β-site amyloid-protein precursor cleaving enzyme 1 (BACE1), and the Aβ monomer. The best ligands, M-1 and M-4, were then synthesized, chemically characterized, and evaluated in vitro. The in vitro studies showed that these compounds inhibit AChE (M-1 Ki = 0.12 and M-4 Ki = 0.17 μM) and BACE1 (M-1 IC50 = 15.1 and M-4 IC50 = 15.4 nM). They also inhibit Aβ oligomerization and exhibit antioxidant activity. In addition, these compounds showed low cytotoxicity in microglial cells. For these reasons, they are promising for future use as drugs in AD mice transgenic models.

  20. Design of multi-target compounds as AChE, BACE1, and amyloid-β(1-42) oligomerization inhibitors: in silico and in vitro studies.

    PubMed

    Hernández-Rodríguez, Maricarmen; Correa-Basurto, José; Martínez-Ramos, Federico; Padilla-Martínez, Itzia Irene; Benítez-Cardoza, Claudia G; Mera-Jiménez, Elvia; Rosales-Hernández, Martha Cecilia

    2014-01-01

    Despite great efforts to develop new therapeutic strategies against Alzheimer's disease (AD), the acetylcholinesterase inhibitors (AChEIs): donepezil, rivastigmine, and galantamine, have been used only as a palliative therapeutic approach. However, the pathogenesis of AD includes several factors such as cholinergic hypothesis, amyloid-β (Aβ) aggregation, and oxidative stress. For this reason, the design of compounds that target the genesis and progression of AD could offer a therapeutic benefit. We have designed a set of compounds (M-1 to M-5) with pharmacophore moieties to inhibit the release, aggregation, or toxicity of Aβ, act as AChEIs and have antioxidant properties. Once the compounds were designed, we analyzed their physicochemical parameters and performed docking studies to determine their affinity values for AChE, β-site amyloid-protein precursor cleaving enzyme 1 (BACE1), and the Aβ monomer. The best ligands, M-1 and M-4, were then synthesized, chemically characterized, and evaluated in vitro. The in vitro studies showed that these compounds inhibit AChE (M-1 Ki = 0.12 and M-4 Ki = 0.17 μM) and BACE1 (M-1 IC50 = 15.1 and M-4 IC50 = 15.4 nM). They also inhibit Aβ oligomerization and exhibit antioxidant activity. In addition, these compounds showed low cytotoxicity in microglial cells. For these reasons, they are promising for future use as drugs in AD mice transgenic models. PMID:24762947

  1. Menthol Alone Upregulates Midbrain nAChRs, Alters nAChR Subtype Stoichiometry, Alters Dopamine Neuron Firing Frequency, and Prevents Nicotine Reward

    PubMed Central

    Henderson, Brandon J.; Wall, Teagan R.; Henley, Beverley M.; Kim, Charlene H.; Nichols, Weston A.; Moaddel, Ruin; Xiao, Cheng

    2016-01-01

    Upregulation of β2 subunit-containing (β2*) nicotinic acetylcholine receptors (nAChRs) is implicated in several aspects of nicotine addiction, and menthol cigarette smokers tend to upregulate β2* nAChRs more than nonmenthol cigarette smokers. We investigated the effect of long-term menthol alone on midbrain neurons containing nAChRs. In midbrain dopaminergic (DA) neurons from mice containing fluorescent nAChR subunits, menthol alone increased the number of α4 and α6 nAChR subunits, but this upregulation did not occur in midbrain GABAergic neurons. Thus, chronic menthol produces a cell-type-selective upregulation of α4* nAChRs, complementing that of chronic nicotine alone, which upregulates α4 subunit-containing (α4*) nAChRs in GABAergic but not DA neurons. In mouse brain slices and cultured midbrain neurons, menthol reduced DA neuron firing frequency and altered DA neuron excitability following nAChR activation. Furthermore, menthol exposure before nicotine abolished nicotine reward-related behavior in mice. In neuroblastoma cells transfected with fluorescent nAChR subunits, exposure to 500 nm menthol alone also increased nAChR number and favored the formation of (α4)3(β2)2 nAChRs; this contrasts with the action of nicotine itself, which favors (α4)2(β2)3 nAChRs. Menthol alone also increases the number of α6β2 receptors that exclude the β3 subunit. Thus, menthol stabilizes lower-sensitivity α4* and α6 subunit-containing nAChRs, possibly by acting as a chemical chaperone. The abolition of nicotine reward-related behavior may be mediated through menthol's ability to stabilize lower-sensitivity nAChRs and alter DA neuron excitability. We conclude that menthol is more than a tobacco flavorant: administered alone chronically, it alters midbrain DA neurons of the nicotine reward-related pathway. SIGNIFICANCE STATEMENT Menthol, the most popular flavorant for tobacco products, has been considered simply a benign flavor additive. However, as we show here

  2. Ni nanoparticle catalyzed growth of MWCNTs on Cu NPs @ a-C:H substrate

    NASA Astrophysics Data System (ADS)

    Ghodselahi, T.; Solaymani, S.; Akbarzadeh Pasha, M.; Vesaghi, M. A.

    2012-11-01

    NiCu NPs @ a-C:H thin films with different Cu content were prepared by co-deposition by RF-sputtering and RF-plasma enhanced chemical vapor deposition (RF-PECVD) from acetylene gas and Cu and Ni targets. The prepared samples were used as catalysts for growing multi-wall carbon nanotubes (MWCNTs) from liquid petroleum gas (LPG) at 825 °C by thermal chemical vapor deposition (TCVD). By addition of Cu NPs @ a-C:H thin layer as substrate for Ni NPs catalyst, the density of the grown CNTs is greatly enhanced in comparison to bare Si substrate. Furthermore the average diameter of the grown CNTs decreases by decreasing of Cu content of Cu NPs @ a-C:H thin layer. However Cu NPs @ a-C:H by itself has no catalytic property in MWCNTs growth. Morphology and electrical and optical properties of Cu NPs @ a-C:H thin layer is affected by Cu content and each of them is effective parameter on growth of MWCNTs based on Ni NPs catalyst. Moreover, adding of a low amount of Ni NPs doesn't vary optical, electrical and morphology properties of Cu NPs @ a-C:H thin layer but it has a profound effect on its catalytic activity. Finally the density and diameter of MWCNTs can be optimized by selection of the Cu NPs @ a-C:H thin layer as substrate of Ni NPs.

  3. Activation of phosphorothionate pesticides based on a cytochrome P450 BM-3 (CYP102 A1) mutant for expanded neurotoxin detection in food using acetylcholinesterase biosensors.

    PubMed

    Schulze, Holger; Schmid, Rolf D; Bachmann, Till T

    2004-03-15

    A novel enzymatic in vitro activation method for phosphorothionates has been developed to allow their detection with acetylcholinesterase (AChE) biosensors. Activation is necessary because this group of insecticides shows nearly no inhibitory effect toward AChE in their pure nonmetabolized form. In contrast, they exert a strong inhibitory effect on AChE after oxidation as it takes place by metabolic activation in higher organisms. Standard chemical methods to oxidize phosphorothionates showed inherent disadvantages that impede their direct use in food analysis. In contrast, a genetically engineered triple mutant of P450 BM-3 (CYP102 A1) could convert the two frequently used insecticides parathion and chlorpyrifos into their oxo variants as was confirmed by GC/MS measurements. The wild-type protein was unable to do so. In the case of chlorpyrifos, the enzymatic activation was as good as the chemical oxidation. In the case of parathion, the P450 activation was more efficient than the oxidation by NBS but neither activation method yielded an AChE inhibition that was as high as with paraoxon. The application of the method to infant food in combination with a disposable AChE biosensor enabled detection of chlorpyrifos and parathion at concentrations down to 20 microg/kg within an overall assay time of 95 min. PMID:15018574

  4. Antioxidant activity of puha (Sonchus oleraceus L.) as assessed by the cellular antioxidant activity (CAA) assay.

    PubMed

    McDowell, Arlene; Thompson, Scott; Stark, Mirjam; Ou, Zong-Quan; Gould, Kevin S

    2011-12-01

    There is considerable interest in antioxidant dietary components that can be protective against degenerative diseases in humans. Puha (Sonchus oleraceus L.) is a rich source of polyphenols, and exhibits strong antioxidant activity as measured by the 2,2-diphenylpicrylhydrazyl (DPPH) assay. However, the potential of puha to protect against degenerative diseases requires that low molecular weight antioxidants (LMWA) are absorbed by, and active in, human cells. The cellular antioxidant activity (CAA) assay was used to investigate the antioxidant activity of puha leaf extracts. Preparation methods of freezing and freeze-drying reduced the total polyphenolic content compared with fresh puha, but did not affect the LMWA potential as determined by the DPPH assay. The IC(50) values were 0.012 ± 0.003 mg/mL and 0.010 ± 0.005 mg/mL for freeze-dried and fresh puha leaves, respectively. Using the CAA assay, it was shown that LMWAs from foliar extracts of puha were effectively absorbed into HepG2 cells, and exerted antioxidant activity at levels comparable to those of extracts from blueberry fruits, the much-touted antioxidant superfood. Methylene blue staining of HepG2 cells indicated that puha extracts were not cytotoxic at concentrations below 100 mg DW/mL. The data indicate the potential of puha as a nutraceutical supplement for human health.

  5. Assessment of acetylcholinesterase activity using indoxylacetate and comparison with the standard Ellman's method.

    PubMed

    Pohanka, Miroslav; Hrabinova, Martina; Kuca, Kamil; Simonato, Jean-Pierre

    2011-01-01

    Assay of acetylcholinesterase (AChE) activity plays an important role in diagnostic, detection of pesticides and nerve agents, in vitro characterization of toxins and drugs including potential treatments for Alzheimer's disease. These experiments were done in order to determine whether indoxylacetate could be an adequate chromogenic reactant for AChE assay evaluation. Moreover, the results were compared to the standard Ellman's method. We calculated Michaelis constant Km (2.06 × 10(-4) mol/L for acetylthiocholine and 3.21 × 10(-3) mol/L for indoxylacetate) maximum reaction velocity V(max) (4.97 × 10(-7) kat for acetylcholine and 7.71 × 10(-8) kat for indoxylacetate) for electric eel AChE. In a second part, inhibition values were plotted for paraoxon, and reactivation efficacy was measured for some standard oxime reactivators: obidoxime, pralidoxime (2-PAM) and HI-6. Though indoxylacetate is split with lower turnover rate, this compound appears as a very attractive reactant since it does not show any chemical reactivity with oxime antidots and thiol used for the Ellman's method. Thus it can be advantageously used for accurate measurement of AChE activity. Suitability of assay for butyrylcholinesterase activity assessment is also discussed.

  6. Alterations in acetylcholinesterase and choline acetyltransferase activities and neuropeptide levels in the ventral spinal cord of the Wobbler mouse during inherited motoneuron disease.

    PubMed

    Yung, K K; Tang, F; Vacca-Galloway, L L

    1994-02-28

    Enzymatic assays for acetylcholine esterase (AChE) and choline acetyltransferase (ChAT) were applied to dorsal and ventral cervical spinal cord regions taken from the Wobbler mouse, a model for inherited motoneuron disease. Early in the disease, ChAT (but not AChE) activity is significantly greater compared with the control littermate specimens. The high ChAT activity correlates with the high thyrotropin releasing hormone (also leucine-enkephalin) concentrations measured in the Wobbler ventral horn early in the disease. Late in the motoneuron disease, both AChE and ChAT activities are significantly lower than in the control littermate specimens. These data correlate with the high substance P, methionine and leucine enkephalin concentrations measured in the Wobbler ventral horn late in the motoneuron disease.

  7. Phe362Tyr in AChE: A Major Factor Responsible for Azamethiphos Resistance in Lepeophtheirus salmonis in Norway

    PubMed Central

    Kaur, Kiranpreet; Jansen, Peder Andreas; Aspehaug, Vidar Teis; Horsberg, Tor Einar

    2016-01-01

    Organophosphates (OP) are one of the major treatments used against the salmon louse (Lepeophtherius salmonis) in Norwegian salmonid aquaculture. The use of OP since the late 1970s has resulted in widespread resistant parasites. Recently, we reported a single mutation (Phe362Tyr) in acetylcholinesterase (AChE) as the major mechanism behind resistance in salmon louse towards OP. The present study was carried out to validate this mechanism at the field level. A total of 6658 salmon louse samples were enrolled from 56 different fish farms across the Norwegian coast, from Vest Agder in the south to Finnmark in the north. All the samples were genotyped using a TaqMan probe assay for the Phe362Tyr mutation. A strong association was observed between areas with frequent use of the OP (azamethiphos) and the Phe362Tyr mutation. This was confirmed at 15 sites where results from independently conducted bioassays and genotyping of parasites correlated well. Furthermore, genotyping of surviving and moribund parasites from six bioassay experiments demonstrated a highly significant negative correlation between the frequency of resistance alleles and the probability of dying when exposed to azamethiphos in a bioassay. Based on these observations, we could strongly conclude that the Phe362Tyr mutation is a major factor responsible for OP resistance in salmon louse on Norwegian fish farms. PMID:26882536

  8. Phe362Tyr in AChE: A Major Factor Responsible for Azamethiphos Resistance in Lepeophtheirus salmonis in Norway.

    PubMed

    Kaur, Kiranpreet; Jansen, Peder Andreas; Aspehaug, Vidar Teis; Horsberg, Tor Einar

    2016-01-01

    Organophosphates (OP) are one of the major treatments used against the salmon louse (Lepeophtherius salmonis) in Norwegian salmonid aquaculture. The use of OP since the late 1970s has resulted in widespread resistant parasites. Recently, we reported a single mutation (Phe362Tyr) in acetylcholinesterase (AChE) as the major mechanism behind resistance in salmon louse towards OP. The present study was carried out to validate this mechanism at the field level. A total of 6658 salmon louse samples were enrolled from 56 different fish farms across the Norwegian coast, from Vest Agder in the south to Finnmark in the north. All the samples were genotyped using a TaqMan probe assay for the Phe362Tyr mutation. A strong association was observed between areas with frequent use of the OP (azamethiphos) and the Phe362Tyr mutation. This was confirmed at 15 sites where results from independently conducted bioassays and genotyping of parasites correlated well. Furthermore, genotyping of surviving and moribund parasites from six bioassay experiments demonstrated a highly significant negative correlation between the frequency of resistance alleles and the probability of dying when exposed to azamethiphos in a bioassay. Based on these observations, we could strongly conclude that the Phe362Tyr mutation is a major factor responsible for OP resistance in salmon louse on Norwegian fish farms. PMID:26882536

  9. Arginase Activity in Mitochondria - an Interfering Factor in Nitric Oxide Synthase Activity Assays

    PubMed Central

    Venkatakrishnan, Priya; Nakayasu, Ernesto S.; Almeida, Igor C.; Miller, R. Timothy

    2009-01-01

    Previously, in tightly controlled studies, using three independent, yet complementary techniques, we refuted the claim that a mitochondrial nitric oxide synthase (mtNOS) isoform exists within pure, rat liver mitochondria (MT). Of those techniques, the NOS-catalyzed [14C]-L-arginine to [14C]-L-citrulline conversion assay (NOS assay) with MT samples indicated a weak, radioactive signal that was NOS-independent [1]. Aliquots of samples from the NOS assays were then extracted with acetone, separated by high performance thin-layer chromatography (HPTLC) and exposed to autoradiography. Results obtained from these samples showed no radioactive band for L-citrulline. However, a fast-migrating, diffuse, radioactive band was observed in the TLC lanes loaded with MT samples. In this manuscript, we identify and confirm that this radioactive signal in MT samples is due to the arginase-catalyzed conversion of [14C]-L-arginine to [14C]-urea. The current results, in addition to reconfirming the absence of NOS activity in rat liver MT, also show the need to include arginase inhibitors in studies using MT samples in order to avoid confounding results when using NOS activity assays. (Supported by ES 011982 & 2G12RR008124 to RTM & UTEP, respectively). PMID:19896461

  10. Arginase activity in mitochondria - An interfering factor in nitric oxide synthase activity assays

    SciTech Connect

    Venkatakrishnan, Priya; Nakayasu, Ernesto S.; Almeida, Igor C.; Miller, R.T.

    2010-04-09

    Previously, in tightly controlled studies, using three independent, yet complementary techniques, we refuted the claim that a mitochondrial nitric oxide synthase (mtNOS) isoform exists within pure, rat liver mitochondria (MT). Of those techniques, the NOS-catalyzed [{sup 14}C]-L-arginine to [{sup 14}C]-L-citrulline conversion assay (NOS assay) with MT samples indicated a weak, radioactive signal that was NOS-independent . Aliquots of samples from the NOS assays were then extracted with acetone, separated by high performance thin-layer chromatography (HPTLC) and exposed to autoradiography. Results obtained from these samples showed no radioactive band for L-citrulline. However, a fast-migrating, diffuse, radioactive band was observed in the TLC lanes loaded with MT samples. In this manuscript, we identify and confirm that this radioactive signal in MT samples is due to the arginase-catalyzed conversion of [{sup 14}C]-L-arginine to [{sup 14}C]-urea. The current results, in addition to reconfirming the absence of NOS activity in rat liver MT, also show the need to include arginase inhibitors in studies using MT samples in order to avoid confounding results when using NOS activity assays.

  11. Assays to Measure PTEN Lipid Phosphatase Activity In Vitro from Purified Enzyme or Immunoprecipitates.

    PubMed

    Spinelli, Laura; Leslie, Nicholas R

    2016-01-01

    PTEN is a one of the most frequently mutated tumor suppressors in human cancers. It is essential for regulating diverse biological processes and through its lipid phosphatase activity regulates the PI 3-Kinase signaling pathway. Sensitive phosphatase assays are employed to study the catalytic activity of PTEN against phospholipid substrates. Here we describe protocols to assay PTEN lipid phosphatase activity using either purified enzyme (purified PTEN lipid phosphatase assay) or PTEN immunopurified from tissues or cultured cells (cellular IP PTEN lipid phosphatase assay) against vesicles containing radiolabeled PIP3 substrate. PMID:27514802

  12. Lymphocyte-derived ACh regulates local innate but not adaptive immunity

    PubMed Central

    Reardon, Colin; Duncan, Gordon S.; Brüstle, Anne; Brenner, Dirk; Tusche, Michael W.; Olofsson, Peder S.; Rosas-Ballina, Mauricio; Tracey, Kevin J.; Mak, Tak W.

    2013-01-01

    Appropriate control of immune responses is a critical determinant of health. Here, we show that choline acetyltransferase (ChAT) is expressed and ACh is produced by B cells and other immune cells that have an impact on innate immunity. ChAT expression occurs in mucosal-associated lymph tissue, subsequent to microbial colonization, and is reduced by antibiotic treatment. MyD88-dependent Toll-like receptor up-regulates ChAT in a transient manner. Unlike the previously described CD4+ T-cell population that is stimulated by norepinephrine to release ACh, ChAT+ B cells release ACh after stimulation with sulfated cholecystokinin but not norepinephrine. ACh-producing B-cells reduce peritoneal neutrophil recruitment during sterile endotoxemia independent of the vagus nerve, without affecting innate immune cell activation. Endothelial cells treated with ACh in vitro reduced endothelial cell adhesion molecule expression in a muscarinic receptor-dependent manner. Despite this ability, ChAT+ B cells were unable to suppress effector T-cell function in vivo. Therefore, ACh produced by lymphocytes has specific functions, with ChAT+ B cells controlling the local recruitment of neutrophils. PMID:23297238

  13. Evidence for the exclusive expression of functional homomeric α7 nAChRs in hypothalamic histaminergic tuberomammillary neurons in rats.

    PubMed

    Tischkau, Shelley; Mhaskar, Yashanad; Uteshev, Victor V

    2014-03-20

    Hypothalamic histaminergic tuberomammillary (TM) neurons in rats express high densities of nicotinic acetylcholine receptors (nAChRs) whose Ca(2+) permeability, kinetic and pharmacological properties are similar to those of heterologous homomeric α7 nAChRs. However, native α7 nAChR subunits can co-assemble with β or α5 nAChR subunits to form functional heteromeric α7-containing α7β or α7α5 nAChRs with kinetics and pharmacology similar to those of α7 homomers. Therefore, although TM nAChRs have been used as an ex vivo model of functional α7 homomers, the molecular makeup of TM nAChRs has not been determined and the expression of functional α7-containing heteromers in TM neurons has not been excluded. To determine the profile of TM nAChR subunit transcripts, we have conducted single-cell qRT-PCR experiments using acutely dissociated TM neurons in rats. TM neurons were found to express transcripts of only principal α3, α6 and α7 nAChR subunits. Transcripts of other known mammalian neuronal subunits (α2, α4-5, α9-10, β2-4) were not detected. In the absence of β and α5 subunits, the expression of functional α7-containing heteromers in TM neurons is highly unlikely because principal α3, α6 and α7 nAChR subunits alone are not known to form functional heteromeric nAChRs. These results support the exclusive expression of native functional α7 homomers in rat TM neurons and introduce these neurons as a unique reliable source of native functional homomeric α7 nAChRs suitable for ex vivo and in vitro pharmacological assays in developing selective α7 nAChR agents.

  14. Muscle-specific kinase (MuSK) autoantibodies suppress the MuSK pathway and ACh receptor retention at the mouse neuromuscular junction

    PubMed Central

    Ghazanfari, Nazanin; Morsch, Marco; Reddel, Stephen W; Liang, Simon X; Phillips, William D

    2014-01-01

    Muscle-specific kinase (MuSK) autoantibodies from myasthenia gravis patients can block the activation of MuSK in vitro and/or reduce the postsynaptic localization of MuSK. Here we use a mouse model to examine the effects of MuSK autoantibodies upon some key components of the postsynaptic MuSK pathway and upon the regulation of junctional ACh receptor (AChR) numbers. Mice became weak after 14 daily injections of anti-MuSK-positive patient IgG. The intensity and area of AChR staining at the motor endplate was markedly reduced. Pulse-labelling of AChRs revealed an accelerated loss of pre-existing AChRs from postsynaptic AChR clusters without a compensatory increase in incorporation of (newly synthesized) replacement AChRs. Large, postsynaptic AChR clusters were replaced by a constellation of tiny AChR microaggregates. Puncta of AChR staining also appeared in the cytoplasm beneath the endplate. Endplate staining for MuSK, activated Src, rapsyn and AChR were all reduced in intensity. In the tibialis anterior muscle there was also evidence that phosphorylation of the AChR β-subunit-Y390 was reduced at endplates. In contrast, endplate staining for β-dystroglycan (through which rapsyn couples AChR to the synaptic basement membrane) remained intense. The results suggest that anti-MuSK IgG suppresses the endplate density of MuSK, thereby down-regulating MuSK signalling activity and the retention of junctional AChRs locally within the postsynaptic membrane scaffold. PMID:24860174

  15. Silencing A7-nAChR levels increases the sensitivity of gastric cancer cells to ixabepilone treatment.

    PubMed

    Tu, Chao-Chiang; Huang, Chien-Yu; Cheng, Wan-Li; Hung, Chin-Sheng; Chang, Yu-Jia; Wei, Po-Li

    2016-07-01

    Gastric cancer is an important health issue worldwide. Currently, improving the therapeutic efficacy of chemotherapy drugs is an important goal of cancer research. Alpha-7 nicotine acetylcholine receptor (A7-nAChR) is the key molecule that mediates gastric cancer progression, metastasis, and therapy responses; however, the role of A7-nAChR in the therapeutic efficacy of ixabepilone remains unclear. A7-nAChR expression was silenced by small interfering RNA (siRNA) technology. The cytotoxicity of ixabepilone was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and ixabepilone-induced apoptosis was analyzed by flow cytometry and annexin V/propidium iodide (PI) apoptotic assay. The expression patterns of anti-apoptotic proteins (AKT, phospho-AKT, Mcl-1, and Bcl-2) and pro-apoptotic proteins (Bad and Bax) were determined by western blot. Our study found that A7-nAChR knockdown (A7-nAChR-KD) AGS cells were more sensitive to ixabepilone administration than scrambled control AGS cells. We found that A7-nAChR knockdown enhanced ixabepilone-induced cell death as evidenced by the increased number of annexin V-positive (apoptotic) cells. After scrambled control and A7-nAChR-KD cells were treated with ixabepilone, we found that pAKT and AKT levels were significantly reduced in both groups of cells. The levels of Bcl-2 and the anti-apoptotic Mcl-1 isoform increased dramatically after ixabepilone treatment in scrambled control cells but not in A7-nAChR-KD cells. Bad and Bax levels did not change between the treatment group and vehicle group in both A7-nAChR-KD and scrambled control cells, whereas cleaved PARP levels dramatically increased in ixabepilone-treated A7-nAChR-KD cells. Our results demonstrated that knockdown of A7-nAChR enhanced the sensitivity of gastric cancer cells to ixabepilone administration. Thus, the A7-nAChR expression level in patients with gastric cancer may be a good indicator of ixabepilone sensitivity.

  16. Brain acetycholinesterase activity in botulism-intoxicated mallards

    USGS Publications Warehouse

    Rocke, T.E.; Samuel, M.D.

    1991-01-01

    Brain acetylcholinesterase (AChE) activity in captive-reared mallards (Anas platyrhynchos) that died of botulism was compared with euthanized controls. AChE levels for both groups were within the range reported for normal mallards, and there was no significant difference in mean AChE activity between birds that ingested botulism toxin and died and those that did not.

  17. Inhibition of acetylcholinesterase activity by essential oil from Citrus paradisi.

    PubMed

    Miyazawa, M; Tougo, H; Ishihara, M

    2001-01-01

    Inhibition of acetylcholinesterase (AChE) activity by essential oils of Citrus paradisi (grapefruit pink in USA) was studied. Inhibition of AChE was measured by the colorimetric method. Nootkatone and auraptene were isolated from C. paradisi oil and showed 17-24% inhibition of AChE activity at the concentration of 1.62 microg/mL. PMID:11858553

  18. A MEMBRANE FILTER PROCEDURE FOR ASSAYING CYTOTOXIC ACTIVITY IN HETEROTROPHIC BACTERIA ISOLATED FROM DRINKING WATER

    EPA Science Inventory

    Cytotoxic activity assays of Gram-negative, heterotrophic bacteria are often laborious and time consuming. The objective of this study was to develop in situ procedures for testing potential cytotoxic activities of heterotrophic bacteria isolated from drinking water systems. Wate...

  19. Acetylcholinesterase-Fc Fusion Protein (AChE-Fc): A Novel Potential Organophosphate Bioscavenger with Extended Plasma Half-Life.

    PubMed

    Noy-Porat, Tal; Cohen, Ofer; Ehrlich, Sharon; Epstein, Eyal; Alcalay, Ron; Mazor, Ohad

    2015-08-19

    Acetylcholinesterase (AChE) is the physiological target of organophosphate nerve agent compounds. Currently, the development of a formulation for prophylactic administration of cholinesterases as bioscavengers in established risk situations of exposure to nerve agents is the incentive for many efforts. While cholinesterase bioscavengers were found to be highly effective in conferring protection against nerve agent exposure in animal models, their therapeutic use is complicated by short circulatory residence time. To create a bioscavenger with prolonged plasma half-life, compatible with biotechnological production and purification, a chimeric recombinant molecule of HuAChE coupled to the Fc region of human IgG1 was designed. The novel fusion protein, expressed in cultured cells under optimized conditions, maintains its full enzymatic activity, at levels similar to those of the recombinant AChE enzyme. Thus, this novel fusion product retained its binding affinity toward BW284c5 and propidium, and its bioscavenging reactivity toward the organophosphate-AChE inhibitors sarin and VX. Furthermore, when administered to mice, AChE-Fc exhibits exceptional circulatory residence longevity (MRT of 6000 min), superior to any other known cholinesterase-based recombinant bioscavengers. Owing to its optimized pharmacokinetic performance, high reactivity toward nerve agents, and ease of production, AChE-Fc emerges as a promising next-generation organophosphate bioscavenger.

  20. Electrochemical Assay for the Signal-on Detection of Human DNA Methyltransferase Activity

    PubMed Central

    Muren, Natalie B.; Barton, Jacqueline K.

    2013-01-01

    Strategies to detect human DNA methyltransferases are needed, given that aberrant methylation by these enzymes is associated with cancer initiation and progression. Here we describe a non-radioactive, antibody-free, electrochemical assay in which methyltransferase activity on DNA-modified electrodes confers protection from restriction for signal-on detection. We implement this assay with a multiplexed chip platform and show robust detection of both bacterial (SssI) and human (Dnmt1) methyltransferase activity. Essential to work with human methyltransferases, our unique assay design allows activity measurements on both unmethylated and hemimethylated DNA substrates. We validate this assay by comparison with a conventional radioactive method. The advantages of electrochemistry over radioactivity and fluorescence make this assay an accessible and promising new approach for the sensitive, label-free detection of human methyltransferase activity. PMID:24164112

  1. Proline-induced changes in acetylcholinesterase activity and gene expression in zebrafish brain: reversal by antipsychotic drugs.

    PubMed

    Savio, L E B; Vuaden, F C; Kist, L W; Pereira, T C; Rosemberg, D B; Bogo, M R; Bonan, C D; Wyse, A T S

    2013-10-10

    Hyperprolinemia is an inherited disorder of proline metabolism and hyperprolinemic patients can present neurological manifestations, such as seizures, cognitive dysfunctions, and schizoaffective disorders. However, the mechanisms related to these symptoms are still unclear. In the present study, we evaluated the in vivo and in vitro effects of proline on acetylcholinesterase (AChE) activity and gene expression in the zebrafish brain. For the in vivo studies, animals were exposed at two proline concentrations (1.5 and 3.0mM) during 1h or 7 days (short- or long-term treatments, respectively). For the in vitro assays, different proline concentrations (ranging from 3.0 to 1000 μM) were tested. Long-term proline exposures significantly increased AChE activity for both treated groups when compared to the control (34% and 39%). Moreover, the proline-induced increase on AChE activity was completely reverted by acute administration of antipsychotic drugs (haloperidol and sulpiride), as well as the changes induced in ache expression. When assessed in vitro, proline did not promote significant changes in AChE activity. Altogether, these data indicate that the enzyme responsible for the control of acetylcholine levels might be altered after proline exposure in the adult zebrafish. These findings contribute for better understanding of the pathophysiology of hyperprolinemia and might reinforce the use of the zebrafish as a complementary vertebrate model for studying inborn errors of amino acid metabolism. PMID:23867765

  2. A microsystem to assay lysosomal enzyme activities in cultured retinal pigment epithelial cells.

    PubMed

    Cabral, L; Unger, W; Boulton, M; Marshall, J

    1988-11-01

    A microsystem to assay the activity of lysosomal enzymes in a small number of cultured RPE cells is described. The activities of acid phosphatase, a-mannosidase, B-glucuronidase and N-acetyl-B-glucosaminidase were estimated in different human RPE cultures of varying passages. Some biochemical characteristics for each of the enzyme assays were studied including the effect of pH, the saturating concentrations of the appropriate substrates and the relationship between the enzyme activity and the number of cells assayed. The method presented is straightforward, avoids complicated tissue fractionation procedures and is able to estimate enzyme activities in as few as 10(4) cells. PMID:3243083

  3. In Vitro Assay to Measure Phosphatidylethanolamine Methyltransferase Activity

    PubMed Central

    Zufferey, Rachel

    2016-01-01

    Phosphatidylethanolamine methyltransferases are biosynthetic enzymes that catalyze the transfer of one or more methyl group(s) from S-adenosyl-L-methionine onto phosphatidylethanolamine, monomethyl-phosphatidylethanolamine, or dimethyl-phosphatidylethanolamine to give either monomethyl-phosphatidylethanolamine, dimethyl-phosphatidylethanolamine or phosphatidylcholine. These enzymes are ubiquitous in animal cells, fungi, and are also found in approximately 10% of bacteria. They fulfill various important functions in cell physiology beyond their direct role in lipid metabolism such as in insulin resistance, diabetes, atherosclerosis, cell growth, or virulence. The present manuscript reports on a simple cell-free enzymatic assay that measures the transfer of tritiated methyl group(s) from S-[Methyl-3H]adenosyl-L-methionine onto phosphatidylethanolamine using whole cell extracts as an enzyme source. The resulting methylated forms of phosphatidylethanolamine are hydrophobic and thus, can be separated from water soluble S-[Methyl-3H]adenosyl-L-methionine by organic extraction. This assay can potentially be applied to any other cell types and used to test inhibitors/drugs specific to a phosphatidylethanolamine methyltransferase of interest without the need to purify the enzyme. PMID:26780155

  4. Urolithins display both antioxidant and pro-oxidant activities depending on assay system and conditions.

    PubMed

    Kallio, Tuija; Kallio, Johanna; Jaakkola, Mari; Mäki, Marianne; Kilpeläinen, Pekka; Virtanen, Vesa

    2013-11-13

    The biological effects of polyphenolic ellagitannins are mediated by their intestinal metabolites, urolithins. This study investigated redox properties of urolithins A and B using ORAC assay, three cell-based assays, copper-initiated pro-oxidant activity (CIPA) assay, and cyclic voltammetry. Urolithins were strong antioxidants in the ORAC assay, but mostly pro-oxidants in cell-based assays, although urolithin A was an antioxidant in cell culture medium. Parent compound ellagic acid was a strong extracellular antioxidant, but showed no response in the intracellular assay. The CIPA assay confirmed the pro-oxidant activity of ellagitannin metabolites. In the cell proliferation assay, urolithins but not ellagic acid decreased growth and metabolism of HepG2 liver cells. In cyclic voltammetry, the oxidation of urolithin A was partly reversible, but that of urolithin B was irreversible. These results illustrate how strongly measured redox properties depend on the employed assay system and conditions and emphasize the importance of studying pro-oxidant and antioxidant activities in parallel.

  5. Enzyme activity assay of glycoprotein enzymes based on a boronate affinity molecularly imprinted 96-well microplate.

    PubMed

    Bi, Xiaodong; Liu, Zhen

    2014-12-16

    Enzyme activity assay is an important method in clinical diagnostics. However, conventional enzyme activity assay suffers from apparent interference from the sample matrix. Herein, we present a new format of enzyme activity assay that can effectively eliminate the effects of the sample matrix. The key is a 96-well microplate modified with molecularly imprinted polymer (MIP) prepared according to a newly proposed method called boronate affinity-based oriented surface imprinting. Alkaline phosphatase (ALP), a glycoprotein enzyme that has been routinely used as an indicator for several diseases in clinical tests, was taken as a representative target enzyme. The prepared MIP exhibited strong affinity toward the template enzyme (with a dissociation constant of 10(-10) M) as well as superb tolerance for interference. Thus, the enzyme molecules in a complicated sample matrix could be specifically captured and cleaned up for enzyme activity assay, which eliminated the interference from the sample matrix. On the other hand, because the boronate affinity MIP could well retain the enzymatic activity of glycoprotein enzymes, the enzyme captured by the MIP was directly used for activity assay. Thus, additional assay time and possible enzyme or activity loss due to an enzyme release step required by other methods were avoided. Assay of ALP in human serum was successfully demonstrated, suggesting a promising prospect of the proposed method in real-world applications.

  6. Acetylcholine as a signaling system to environmental stimuli in plants. III. Asymmetric solute distribution controlled by ACh in gravistimulated maize seedlings.

    PubMed

    Momonoki, Y S; Hineno, C; Noguchi, K

    1998-01-01

    Asymmetric distribution of acetylcholinesterase (AChE) activity has previously been demonstrated to occur in the lower side of the gravity-stimulated maize shoot. The localization of immunoreacted IAA-inositol synthase, AChE and safranin was detected in selected organs of gravistimulated dark grown maize seedlings using a light microscope. Immunoreacted IAA-inositol synthase was asymmetrically distributed in the lower side of the stele of coleoptile node and mesocotyl in maize seedlings placed horizontally. The positive AChE spots in the coleoptile node and mesocotyl were apparently localized in the lower half of the gravistimulated seedlings. Safranin was also asymmetrically distributed in the lower half of the endodermis and stele cells of coleoptile node and mesocotyl. Namely, transport of safranin in the upper half of the coleoptile node and mesocotyl was blocked by gravistimulation. Furthermore, the asymmetric distribution of immunoreacted IAA-inositol synthase was inhibited by neostigmine bromide, AChE inhibitor. These results show that an asymmetric environmental stimulus induces changes in AChE activity, affecting IAA-inositol synthase localization and safranin transport. PMID:12162322

  7. New cholinesterase inhibitors for Alzheimer's disease: Structure Activity Studies (SARs) and molecular docking of isoquinolone and azepanone derivatives.

    PubMed

    Bacalhau, Patrícia; San Juan, Amor A; Marques, Carolina S; Peixoto, Daniela; Goth, Albertino; Guarda, Cátia; Silva, Mara; Arantes, Sílvia; Caldeira, A Teresa; Martins, Rosário; Burke, Anthony J

    2016-08-01

    A library of isoquinolinone and azepanone derivatives were screened for both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) activity. The strategy adopted included (a) in vitro biological assays, against eel AChE (EeAChE) and equine serum BuChE (EqBuChE) in order to determine the compounds IC50 and their dose-response activity, consolidated by (b) molecular docking studies to evaluate the docking poses and interatomic interactions in the case of the hit compounds, validated by STD-NMR studies. Compound (1f) was identified as one of these hits with an IC50 of 89.5μM for EeAChE and 153.8μM for EqBuChE, (2a) was identified as a second hit with an IC50 of 108.4μM (EeAChE) and 277.8μM (EqBuChE). In order to gain insights into the binding mode and principle active site interactions of these molecules, (R)-(1f) along with 3 other analogues (also as the R-enantiomer) were docked into both RhAChE and hBuChE models. Galantamine was used as the benchmark. The docking study was validated by performing an STD-NMR study of (1f) with EeAChE using galantamine as the benchmark. PMID:27231829

  8. Antiviral activity of a Rac GEF inhibitor characterized with a sensitive HIV/SIV fusion assay

    SciTech Connect

    Pontow, Suzanne; Harmon, Brooke; Campbell, Nancy; Ratner, Lee

    2007-11-10

    A virus-dependent fusion assay was utilized to examine the activity of a panel of HIV-1, -2, and SIV isolates of distinct coreceptor phenotypes. This assay allowed identification of entry inhibitors, and characterization of an antagonist of a Rac guanine nucleotide exchange factor, as an inhibitor of HIV-mediated fusion.

  9. Assays to measure the activation of membrane tyrosine kinase receptors: focus on cellular methods.

    PubMed

    Minor, Lisa K

    2003-09-01

    Many methods have been explored as means to measure the activation and inhibition of tyrosine kinase receptors, in vitro using the isolated kinase domain, and in living cells. Kinase activity has been measured in enzyme assays using a peptide substrate, but with different detection systems. These include the radioactive FlashPlate assay, the fluorescent resonance energy transfer (FRET) assay, the dissociation-enhance lanthanide fluorescence immunoassay (DELFIA) and other formats. These methods have successfully identified inhibitors of receptor activity. Cell-based assays have recently emerged to measure receptor activation and inhibition. When membrane tyrosine kinase receptors become activated, they increase their state of phosphorylation. This phosphorylation may lead to an increase in tyrosine kinase-specific activity. Methods have been developed that take advantage of these properties. These include measuring the ligand-stimulated total tyrosine phosphorylation of the receptor using a DELFIA or an ELISA assay, measuring ligand-stimulated enzyme activation of the receptor by quantifying enzyme activity, and dimerization of the activated receptor using bioluminescence resonance energy transfer (BRET). Although cell-based assays are still in their infancy, these techniques may prove a valuable addition to the receptor screening strategy.

  10. The stabilization of Au NP-AChE nanocomposites by biosilica encapsulation for the development of a thiocholine biosensor.

    PubMed

    Buiculescu, Raluca; Chaniotakis, Nikos A

    2012-08-01

    We report on the construction of an amperometric biosensor based on the immobilization of the enzyme acetylcholinesterase (AChE) onto gold nanoparticles (Au NPs). The active enzyme is covalently bound directly onto the surface of the Au NPs via a thiol bond. This immobilization provides increased stability and high electron-transfer between the colloidal Au NPs, the catalyst and the transducer surface. To further increase the biosensor stability by protecting the enzyme from denaturation and protease attack, a layer of biosilica was grown around the Au NP enzyme nanocomposite. All steps, i.e., the conjugation of the enzyme to the gold nanoparticles and the encapsulation into biosilica, are monitored and confirmed by ATR-FT-IR spectroscopy. The stabilizing effect of the entrapment was evaluated amperometrically, while the operation of the biosensor was monitored over a period of 4 months. The initial sensitivity of the biosensor was calculated to be 27.58 nA mM(-1) with a linear response to the concentration of the substrate in the range from 0.04 to 0.4 mM. It is thus shown that the biosilica nanocomposites doped with Au NPs-AChE conjugates create a system that provides both signal mediation and significant enzyme stabilization over the existing AChE biosensor. The biosensor had retained all its activity at the end of the 4 months, compared with the normal AChE biosensor whose activity reached 50% after only 42 days of operation.

  11. Functional Human α7 Nicotinic Acetylcholine Receptor (nAChR) Generated from Escherichia coli.

    PubMed

    Tillman, Tommy S; Alvarez, Frances J D; Reinert, Nathan J; Liu, Chuang; Wang, Dawei; Xu, Yan; Xiao, Kunhong; Zhang, Peijun; Tang, Pei

    2016-08-26

    Human Cys-loop receptors are important therapeutic targets. High-resolution structures are essential for rational drug design, but only a few are available due to difficulties in obtaining sufficient quantities of protein suitable for structural studies. Although expression of proteins in E. coli offers advantages of high yield, low cost, and fast turnover, this approach has not been thoroughly explored for full-length human Cys-loop receptors because of the conventional wisdom that E. coli lacks the specific chaperones and post-translational modifications potentially required for expression of human Cys-loop receptors. Here we report the successful production of full-length wild type human α7nAChR from E. coli Chemically induced chaperones promote high expression levels of well-folded proteins. The choice of detergents, lipids, and ligands during purification determines the final protein quality. The purified α7nAChR not only forms pentamers as imaged by negative-stain electron microscopy, but also retains pharmacological characteristics of native α7nAChR, including binding to bungarotoxin and positive allosteric modulators specific to α7nAChR. Moreover, the purified α7nAChR injected into Xenopus oocytes can be activated by acetylcholine, choline, and nicotine, inhibited by the channel blockers QX-222 and phencyclidine, and potentiated by the α7nAChR specific modulators PNU-120596 and TQS. The successful generation of functional human α7nAChR from E. coli opens a new avenue for producing mammalian Cys-loop receptors to facilitate structure-based rational drug design. PMID:27385587

  12. Residues Responsible for the Selectivity of α-Conotoxins for Ac-AChBP or nAChRs

    PubMed Central

    Lin, Bo; Xiang, Shihua; Li, Mengsen

    2016-01-01

    Nicotinic acetylcholine receptors (nAChRs) are targets for developing new drugs to treat severe pain, nicotine addiction, Alzheimer disease, epilepsy, etc. α-Conotoxins are biologically and chemically diverse. With 12–19 residues and two disulfides, they can be specifically selected for different nAChRs. Acetylcholine-binding proteins from Aplysia californica (Ac-AChBP) are homologous to the ligand-binding domains of nAChRs and pharmacologically similar. X-ray structures of the α-conotoxin in complex with Ac-AChBP in addition to computer modeling have helped to determine the binding site of the important residues of α-conotoxin and its affinity for nAChR subtypes. Here, we present the various α-conotoxin residues that are selective for Ac-AChBP or nAChRs by comparing the structures of α-conotoxins in complex with Ac-AChBP and by modeling α-conotoxins in complex with nAChRs. The knowledge of these binding sites will assist in the discovery and design of more potent and selective α-conotoxins as drug leads. PMID:27727162

  13. Evaluation of potential endocrine activity of 2,4-dichlorophenoxyacetic acid using in vitro assays.

    PubMed

    Coady, Katherine K; Kan, H Lynn; Schisler, Melissa R; Gollapudi, B Bhaskar; Neal, Barbara; Williams, Amy; LeBaron, Matthew J

    2014-08-01

    The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) was evaluated in five in vitro screening assays to assess the potential for interaction with the androgen, estrogen and steroidogenesis pathways in the endocrine system. The assays were conducted to meet the requirements of the in vitro component of Tier 1 of the United States Environmental Protection Agency's Endocrine Disruptor Screening Program (EDSP), and included assays for estrogen receptor (ER) binding (rat uterine cytosol ER binding assay), ER-mediated transcriptional activation (HeLa-9903-ERα transactivation assay), androgen receptor (AR) binding (rat prostate cytosol AR binding assay), aromatase enzymatic activity inhibition (recombinant human CYP19 aromatase inhibition assay), and interference with steroidogenesis (H295R steroidogenesis assay). Results from these five assays demonstrated that 2,4-D does not have the potential to interact in vitro with the estrogen, androgen, or steroidogenesis pathways. These in vitro data are consistent with a corresponding lack of endocrine effects observed in apical in vivo animal studies, and thus provide important supporting data valuable in a comprehensive weight of evidence evaluation indicating a low potential of 2,4-D to interact with the endocrine system.

  14. [Methods of hygromycin B phosphotransferase activity assay in transgenic plant].

    PubMed

    Zhuo, Qin; Yang, Xiaoguang

    2004-07-01

    Hygromycin B phosphotransferase (HPT) is a widely used selectable marker protein of transgenic plant. Detection of its activity is critical to studies on the development of various transgenic plants, silence of inserted gene, marker-free system development and safety assessment of transgenic food. In this paper, several methods for detecting the activity of this enzyme were reviewed.

  15. Interlaboratory comparison of four in vitro assays for assessing androgenic and antiandrogenic activity of environmental chemicals.

    PubMed Central

    Körner, Wolfgang; Vinggaard, Anne Marie; Térouanne, Béatrice; Ma, Risheng; Wieloch, Carise; Schlumpf, Margret; Sultan, Charles; Soto, Ana M

    2004-01-01

    We evaluated and compared four in vitro assays to detect androgen agonists and antagonists in an international interlaboratory study. Laboratory 1 used a cell proliferation assay (assay 1) with human mammary carcinoma cells stably transfected with human androgen receptor. The other laboratories used reporter gene assays, two based on stably transfected human prostate carcinoma cells (assay 2) or human mammary carcinoma cells (assay 4), and the third based on transient transfection of Chinese hamster ovary cells (assay 3). Four laboratories received four coded compounds and two controls: two steroidal androgens, two antiandrogens, an androgenic control, 5alpha-dihydrotestosterone (DHT), and an antiandrogenic control, bicalutamide (ICI 176,334). All laboratories correctly detected the androgenic activity of 4-androsten-3,17-dione and 17alpha-methyltestosterone. For both compounds, the calculated androgenic potencies relative to the positive control (RAPs) remained within one order of magnitude. However, laboratory 3 calculated a 50-fold higher RAP for 4-androsten-3,17-dione. All assays detected and quantified the antiandrogenic effect of vinclozolin [median inhibitory concentration (IC50) values ranging from 1.1 times symbol 10(-7) M to 4.7 times symbol 10(-7) M]. In assays 2 and 3, vinclozolin showed partial androgenic activity at the highest concentrations tested. For vinclozolin, calculated antiandrogenic potencies relative to bicalutamide (RAAPs) differed no more than a factor of 10, and IC50 values matched those of bicalutamide. Similarly, we found antiandrogenic activity for tris-(4-chlorophenyl)methanol. RAAP values were between 0.086 and 0.37. Three assays showed cytotoxicity for this compound at or above 1 times symbol 10(-5) M. In summary, all assays proved sensitive screening tools to detect and quantify androgen receptor-mediated androgenic and antiandrogenic effects of these chemicals accurately, with coefficients of variation between 8 and 90%. PMID

  16. Anisotropic a-C:H from Compression of Polyacetylene

    NASA Astrophysics Data System (ADS)

    Bernasconi, M.; Parrinello, M.; Chiarotti, G. L.; Focher, P.; Tosatti, E.

    1996-03-01

    We have simulated the transformation of crystalline trans-polyacetylene into a-C:H under pressure by constant pressure ab initio molecular dynamics. Polyacetylene undergoes a gradual saturation of C-C bonds via chain interlinks, ending up at ~50 GPa with a-C:H containing 80% sp3 carbon atoms. The sp2-->sp3 conversion is irreversible and does not reverse by returning to zero pressure. The final a-C:H is a wide gap insulator and, at variance with the conventionally generated a-C:H, is highly anisotropic keeping some memory of the original polyacetylene chain axis.

  17. Measurement of factor v activity in human plasma using a microplate coagulation assay.

    PubMed

    Tilley, Derek; Levit, Irina; Samis, John A

    2012-09-09

    In response to injury, blood coagulation is activated and results in generation of the clotting protease, thrombin. Thrombin cleaves fibrinogen to fibrin which forms an insoluble clot that stops hemorrhage. Factor V (FV) in its activated form, FVa, is a critical cofactor for the protease FXa and accelerator of thrombin generation during fibrin clot formation as part of prothrombinase (1, 2). Manual FV assays have been described (3, 4), but they are time consuming and subjective. Automated FV assays have been reported (5-7), but the analyzer and reagents are expensive and generally provide only the clot time, not the rate and extent of fibrin formation. The microplate platform is preferred for measuring enzyme-catalyzed events because of convenience, time, cost, small volume, continuous monitoring, and high-throughput (8, 9). Microplate assays have been reported for clot lysis (10), platelet aggregation (11), and coagulation Factors (12), but not for FV activity in human plasma. The goal of the method was to develop a microplate assay that measures FV activity during fibrin formation in human plasma. This novel microplate method outlines a simple, inexpensive, and rapid assay of FV activity in human plasma. The assay utilizes a kinetic microplate reader to monitor the absorbance change at 405 nm during fibrin formation in human plasma (Figure 1) (13). The assay accurately measures the time, initial rate, and extent of fibrin clot formation. It requires only μl quantities of plasma, is complete in 6 min, has high-throughput, is sensitive to 24-80 pM FV, and measures the amount of unintentionally activated (1-stage activity) and thrombin-activated FV (2-stage activity) to obtain a complete assessment of its total functional activity (2-stage activity - 1-stage activity). Disseminated intravascular coagulation (DIC) is an acquired coagulopathy that most often develops from pre-existing infections (14). DIC is associated with a poor prognosis and increases mortality

  18. Modelling interactions between Loop1 of Fasciculin2 (Fas2) and Torpedo californica acetylcholinesterase ( Tc AChE)

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Gu, Jiande; Leszczynski, Jerzy

    2006-11-01

    Four interaction models for the binding of Torpedo californica acetylcholinesterase ( TcAChE) with Loop1 of Fasciculin2 are investigated at the B3LYP/6-311G(d,p) level of theory. The total binding energy of three fragments (P1-P3) which belong to the omega loop Cys67-Cys94 of TcAChE contributes almost 67% of the entire binding, suggesting the domination of this omega loop on the interaction between AChE and Loop1 of Fas2. The energy decomposition illustrates that the interactions mainly consist of electrostatic components. The polar solvent which reduces the binding energies of the studied models implies the significant impact of the solvent on the binding of Fas2 and AChE.

  19. Can hydroxylamine be a more potent nucleophile for the reactivation of tabun-inhibited AChE than prototype oxime drugs? An answer derived from quantum chemical and steered molecular dynamics studies.

    PubMed

    Lo, Rabindranath; Ganguly, Bishwajit

    2014-07-29

    Organophosphorus nerve agents are highly toxic compounds which strongly inhibit acetylcholinesterase (AChE) in the blood and in the central nervous system (CNS). Tabun is one of the highly toxic organophosphorus (OP) compounds and is resistant to many oxime drugs formulated for the reactivation of AChE. The reactivation mechanism of tabun-conjugated AChE with various drugs has been examined with density functional theory and ab initio quantum chemical calculations. The presence of a lone-pair located on the amidic group resists the nucleophilic attack at the phosphorus center of the tabun-conjugated AChE. We have shown that the newly designed drug candidate N-(pyridin-2-yl)hydroxylamine, at the MP2/6-31+G*//M05-2X/6-31G* level in the aqueous phase with the polarizable continuum solvation model (PCM), is more effective in reactivating the tabun-conjugated AChE than typical oxime drugs. The rate determining activation barrier with N-(pyridin-2-yl)hydroxylamine was found to be ∼1.7 kcal mol(-1), which is 7.2 kcal mol(-1) lower than the charged oxime trimedoxime (one of the most efficient reactivators in tabun poisonings). The greater nucleophilicity index (ω(-)) and higher CHelpG charge of pyridinylhydroxylamine compared to TMB4 support this observation. Furthermore, we have also examined the reactivation process of tabun-inhibited AChE with some other bis-quaternary oxime drug candidates such as methoxime (MMB4) and obidoxime. The docking analysis suggests that charged bis-quaternary pyridinium oximes have greater binding affinity inside the active-site gorge of AChE compared to the neutral pyridinylhydroxylamine. The peripheral ligand attached to the neutral pyridinylhydroxylamine enhanced the binding with the aromatic residues in the active-site gorge of AChE through effective π-π interactions. Steered molecular dynamics (SMD) simulations have also been performed with the charged oxime (TMB4) and the neutral hydroxylamine. From protein-drug interaction

  20. Polyacrylic acid-coated cerium oxide nanoparticles: An oxidase mimic applied for colorimetric assay to organophosphorus pesticides.

    PubMed

    Zhang, Shi-Xiang; Xue, Shi-Fan; Deng, Jingjing; Zhang, Min; Shi, Guoyue; Zhou, Tianshu

    2016-11-15

    It is important and urgent to develop reliable and highly sensitive methods that can provide on-site and rapid detection of extensively used organophosphorus pesticides (OPs) for their neurotoxicity. In this study, we developed a novel colorimetric assay for the detection of OPs based on polyacrylic acid-coated cerium oxide nanoparticles (PAA-CeO2) as an oxidase mimic and OPs as inhibitors to suppress the activity of acetylcholinesterase (AChE). Firstly, highly dispersed PAA-CeO2 was prepared in aqueous solution, which could catalyze the oxidation of TMB to produce a color reaction from colorless to blue. And the enzyme of AChE was used to catalyze the substrate of acetylthiocholine (ATCh) to produce thiocholine (TCh). As a thiol-containing compound with reducibility, TCh can decrease the oxidation of TMB catalyzed by PAA-CeO2. Upon incubated with OPs, the enzymatic activity of AChE was inhibited to produce less TCh, resulting in more TMB catalytically oxidized by PAA-CeO2 to show an increasing blue color. The two representative OPs, dichlorvos and methyl-paraoxon, were tested using our proposed assay. The novel assay showed notable color change in a concentration-dependent manner, and as low as 8.62 ppb dichlorvos and 26.73 ppb methyl-paraoxon can be readily detected. Therefore, taking advantage of such oxidase-like activity of PAA-CeO2, our proposed colorimetric assay can potentially be a screening tool for the precise and rapid evaluation of the neurotoxicity of a wealth of OPs.

  1. Polyacrylic acid-coated cerium oxide nanoparticles: An oxidase mimic applied for colorimetric assay to organophosphorus pesticides.

    PubMed

    Zhang, Shi-Xiang; Xue, Shi-Fan; Deng, Jingjing; Zhang, Min; Shi, Guoyue; Zhou, Tianshu

    2016-11-15

    It is important and urgent to develop reliable and highly sensitive methods that can provide on-site and rapid detection of extensively used organophosphorus pesticides (OPs) for their neurotoxicity. In this study, we developed a novel colorimetric assay for the detection of OPs based on polyacrylic acid-coated cerium oxide nanoparticles (PAA-CeO2) as an oxidase mimic and OPs as inhibitors to suppress the activity of acetylcholinesterase (AChE). Firstly, highly dispersed PAA-CeO2 was prepared in aqueous solution, which could catalyze the oxidation of TMB to produce a color reaction from colorless to blue. And the enzyme of AChE was used to catalyze the substrate of acetylthiocholine (ATCh) to produce thiocholine (TCh). As a thiol-containing compound with reducibility, TCh can decrease the oxidation of TMB catalyzed by PAA-CeO2. Upon incubated with OPs, the enzymatic activity of AChE was inhibited to produce less TCh, resulting in more TMB catalytically oxidized by PAA-CeO2 to show an increasing blue color. The two representative OPs, dichlorvos and methyl-paraoxon, were tested using our proposed assay. The novel assay showed notable color change in a concentration-dependent manner, and as low as 8.62 ppb dichlorvos and 26.73 ppb methyl-paraoxon can be readily detected. Therefore, taking advantage of such oxidase-like activity of PAA-CeO2, our proposed colorimetric assay can potentially be a screening tool for the precise and rapid evaluation of the neurotoxicity of a wealth of OPs. PMID:27208478

  2. An expedient synthesis, acetylcholinesterase inhibitory activity, and molecular modeling study of highly functionalized hexahydro-1,6-naphthyridines.

    PubMed

    Almansour, Abdulrahman I; Kumar, Raju Suresh; Arumugam, Natarajan; Basiri, Alireza; Kia, Yalda; Ali, Mohamed Ashraf

    2015-01-01

    A series of hexahydro-1,6-naphthyridines were synthesized in good yields by the reaction of 3,5-bis[(E)-arylmethylidene]tetrahydro-4(1H)-pyridinones with cyanoacetamide in the presence of sodium ethoxide under simple mixing at ambient temperature for 6-10 minutes and were assayed for their acetylcholinesterase (AChE) inhibitory activity using colorimetric Ellman's method. Compound 4e with methoxy substituent at ortho-position of the phenyl rings displayed the maximum inhibitory activity with IC50 value of 2.12 μM. Molecular modeling simulation of 4e was performed using three-dimensional structure of Torpedo californica AChE (TcAChE) enzyme to disclose binding interaction and orientation of this molecule into the active site gorge of the receptor. PMID:25710037

  3. An Expedient Synthesis, Acetylcholinesterase Inhibitory Activity, and Molecular Modeling Study of Highly Functionalized Hexahydro-1,6-naphthyridines

    PubMed Central

    Almansour, Abdulrahman I.; Suresh Kumar, Raju; Arumugam, Natarajan; Basiri, Alireza; Kia, Yalda; Ashraf Ali, Mohamed

    2015-01-01

    A series of hexahydro-1,6-naphthyridines were synthesized in good yields by the reaction of 3,5-bis[(E)-arylmethylidene]tetrahydro-4(1H)-pyridinones with cyanoacetamide in the presence of sodium ethoxide under simple mixing at ambient temperature for 6–10 minutes and were assayed for their acetylcholinesterase (AChE) inhibitory activity using colorimetric Ellman's method. Compound 4e with methoxy substituent at ortho-position of the phenyl rings displayed the maximum inhibitory activity with IC50 value of 2.12 μM. Molecular modeling simulation of 4e was performed using three-dimensional structure of Torpedo californica AChE (TcAChE) enzyme to disclose binding interaction and orientation of this molecule into the active site gorge of the receptor. PMID:25710037

  4. Neurophysiological predictors of long term response to AChE inhibitors in AD patients

    PubMed Central

    Di, L; Oliviero, A; Pilato, F; Saturno, E; Dileone, M; Marra, C; Ghirlanda, S; Ranieri, F; Gainotti, G; Tonali, P

    2005-01-01

    Background: In vivo evaluation of cholinergic circuits of the human brain has recently been introduced using a transcranial magnetic stimulation (TMS) protocol based on coupling peripheral nerve stimulation with motor cortex TMS (short latency afferent inhibition, SAI). SAI is reduced in Alzheimer's disease (AD) and drugs enhancing cholinergic transmission increase SAI. Methods: We evaluated whether SAI testing, together with SAI test-retest, after a single dose of the acetylcholinesterase (AChE) inhibitor rivastigmine, might be useful in predicting the response after 1 year treatment with rivastigmine in 16 AD patients. Results: Fourteen AD patients had pathologically reduced SAI. SAI was increased after administration of a single oral dose of rivastigmine in AD patients with abnormal baseline SAI, but individual responses to rivastigmine varied widely, with SAI change ranging from an increase in inhibition of ∼50% of test size to no change. Baseline SAI and the increase in SAI after a single dose of rivastigmine were correlated with response to long term treatment. A normal SAI in baseline conditions, or an abnormal SAI in baseline conditions that was not greatly increased by a single oral dose of rivastigmine, were invariably associated with poor response to long term treatment, while an abnormal SAI in baseline conditions in conjunction with a large increase in SAI after a single dose of rivastigmine was associated with good response to long term treatment in most of the patients. Conclusions: Evaluation of SAI may be useful for identifying AD patients likely to respond to treatment with AChE inhibitors. PMID:16024879

  5. Enzyme activity assays within microstructured optical fibers enabled by automated alignment

    PubMed Central

    Warren-Smith, Stephen C.; Nie, Guiying; Schartner, Erik P.; Salamonsen, Lois A.; Monro, Tanya M.

    2012-01-01

    A fluorescence-based enzyme activity assay has been demonstrated within a small-core microstructured optical fiber (MOF) for the first time. To achieve this, a reflection-based automated alignment system has been developed, which uses feedback and piezoelectric actuators to maintain optical alignment. The auto-alignment system provides optical stability for the time required to perform an activity assay. The chosen assay is based on the enzyme proprotein convertase 5/6 (PC6) and has important applications in women’s health. PMID:23243579

  6. A Bioluminescence Assay System for Imaging Metal Cationic Activities in Urban Aerosols.

    PubMed

    Kim, Sung-Bae; Naganawa, Ryuichi; Murata, Shingo; Nakayama, Takayoshi; Miller, Simon; Senda, Toshiya

    2016-01-01

    A bioluminescence-based assay system was fabricated for an efficient determination of the activities of air pollutants. The following four components were integrated into this assay system: (1) an 8-channel assay platform uniquely designed for simultaneously sensing multiple optical samples, (2) single-chain probes illuminating toxic chemicals or heavy metal cations from air pollutants, (3) a microfluidic system for circulating medium mimicking the human body, and (4) the software manimulating the above system. In the protocol, we briefly introduce how to integrate the components into the system and the application to the illumination of the metal cationic activities in air pollutants. PMID:27424913

  7. A Bioluminescence Assay System for Imaging Metal Cationic Activities in Urban Aerosols.

    PubMed

    Kim, Sung-Bae; Naganawa, Ryuichi; Murata, Shingo; Nakayama, Takayoshi; Miller, Simon; Senda, Toshiya

    2016-01-01

    A bioluminescence-based assay system was fabricated for an efficient determination of the activities of air pollutants. The following four components were integrated into this assay system: (1) an 8-channel assay platform uniquely designed for simultaneously sensing multiple optical samples, (2) single-chain probes illuminating toxic chemicals or heavy metal cations from air pollutants, (3) a microfluidic system for circulating medium mimicking the human body, and (4) the software manimulating the above system. In the protocol, we briefly introduce how to integrate the components into the system and the application to the illumination of the metal cationic activities in air pollutants.

  8. Erosion of a-C:H films under interaction with nitrous oxide afterglow discharge

    NASA Astrophysics Data System (ADS)

    Zalavutdinov, R. Kh.; Gorodetsky, A. E.; Bukhovets, V. L.; Zakharov, A. P.; Mazul, I. V.

    2009-06-01

    Hydrocarbon film removal using chemically active oxygen formed in a direct current glow discharge with a hollow cathode in nitrous oxide was investigated. In the afterglow region sufficiently fast removal of a-C:H films about 500 nm thick during about 8 h was achieved at N 2O pressure of 12 Pa and 370 K. The erosion rate in the afterglow region was directly proportional to the initial pressure and increased two orders of magnitude at temperature rising from 300 to 500 K. The products of a-C:H film plasmolysis were CO, CO 2, H 2O, and H 2. After removal of a-C:H films previously deposited on stainless steel, molybdenum or tungsten 3-30 nm thick oxide films were formed on the substrates. Reactions of oxygen ion neutralization and atomic oxygen recombination suppressed further oxidation of the materials.

  9. Effects of carbofuran and deltamethrin on acetylcholinesterase activity in brain and muscle of the common carp.

    PubMed

    Ensibi, Cherif; Hernández-Moreno, David; Míguez Santiyán, M Prado; Daly Yahya, Mohamed Néjib; Rodríguez, Francisco Soler; Pérez-López, Marcos

    2014-04-01

    This work investigated the effect from exposure to insecticides carbofuran and deltamethrin on acetylcholinesterase (AChE) activity in the brain and muscle of common carp (Cyprinus carpio). Both pesticides were evaluated through two separate experiments, and carp were exposed in a semi-static system to three different concentrations of carbofuran (10, 50, and 100 μg/L) and deltamethrin (0.08, 0.4, and 0.8 μg/L) during a month with sampling times at 0, 4, 15, and 30 days (n = 7 from each aquarium). AChE activity was significantly inhibited in both organs of carps exposed to carbofuran at all sampling times depending on dose and time, reaching inhibition values of 73.5 and 67.1%, in brain and muscle tissues respectively, after 30 days with the highest concentration. On the contrary, AChE activity was not significantly affected after deltamethrin exposure at all concentrations and times of the assay. This study shows that the measurement of brain and muscle AChE activity in Cyprinus carpio is a useful biomarker of carbamates exposure and/or effects, but has no application with pyrethroids.

  10. A sensitive and facile assay for the measurement of activated protein C activity levels in vivo.

    PubMed

    Orthner, C L; Kolen, B; Drohan, W N

    1993-05-01

    Activated protein C (APC) is a serine protease which plays an important role as a naturally occurring antithrombotic enzyme. APC, which is formed by thrombin-catalyzed limited proteolysis of the zymogen protein C, functions as an anticoagulant by proteolytic inactivation of the coagulation cofactors VIIIa and Va: APC is inhibited by several members of the serpin family as well a by alpha 2-macroglobulin. APC is being developed as a therapeutic for the prevention and treatment of thrombosis. We have developed an assay to quantify circulating levels of enzymatically active APC during its administration to patients, in healthy individuals, and in various disease states. This assay utilizes an EDTA-dependent anti-protein C monoclonal antibody (Mab) 7D7B10 to capture both APC and protein C from plasma, prepared from blood collected in an anticoagulant supplemented with the reversible inhibitor p-aminobenzamidine. Mab 7D7B10-derivatized agarose beads are added to the wells of a 96-well filtration plate, equilibrated with Tris-buffered saline, and incubated for 10 min with 200 microliters of plasma. After washing, APC and protein C are eluted from the immunosorbent beads with a calcium-containing buffer into the wells of a 96-well microtiter plate containing antithrombin III (ATIII) and heparin. The amidolytic activity of APC is then measured on a kinetic plate reader following the addition of L-pyroglutamyl-L-prolyl-L-arginine-p-nitroanilide (S-2366) substrate. The rate of substrate hydrolysis was proportional to APC concentration over a 200-fold concentration range (5.0 to 1,000 ng/ml) when measured continuously over a 15 to 30 min time period.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Assessing Kinase Activity in Plants with In-Gel Kinase Assays.

    PubMed

    Wang, Pengcheng; Zhu, Jian-Kang

    2016-01-01

    The in-gel protein kinase assay is a powerful method to measure the protein phosphorylation activity of specific protein kinases. Any protein substrate can be embedded in polyacrylamide gels where they can be phosphorylated by protein kinases that are separated in the gel under denaturing conditions and then renatured. The kinase activity can be visualized in situ in the gels by autoradiography. This method has been used to compare the activities of protein kinases in parallel samples or to identify their potential substrates. Here, we describe in detail an in-gel kinase assay to measure the activity of some protein kinases in plants.

  12. Active nondestructive assay of nuclear materials: principles and applications

    SciTech Connect

    Gozani, Tsahi

    1981-01-01

    The purpose of this book is to present, coherently and comprehensively, the wealth of available but scattered information on the principles and applications of active nondestructive analysis (ANDA). Chapters are devoted to the following: background and overview; interactions of neutrons with matter; interactions of ..gamma..-rays with matter; neutron production and sources; ..gamma..-ray production and sources; effects of neutron and ..gamma..-ray transport in bulk media; signatures of neutron- and photon-induced fissions; neutron and photon detection systems and electronics; representative ANDA systems; and instrument analysis, calibration, and measurement control for ANDA. Each chapter has an introductory section describing the relationship of the topic of that chapter to ANDA. Each chapter ends with a section that summarizes the main results and conclusions of the chapter, and a reference list.

  13. beta-Galactosidase activity assay using far-red-shifted fluorescent substrate DDAOG.

    PubMed

    Gong, Haibiao; Zhang, Bin; Little, Garrick; Kovar, Joy; Chen, Huaxian; Xie, Wen; Schutz-Geschwender, Amy; Olive, D Michael

    2009-03-01

    beta-Galactosidase (beta-gal) is commonly used as a reporter gene in biological research, and a wide variety of substrates have been developed to assay its activity. One substrate, 9H-(1,3-dichloro-9,9-dimethylacridin-2-one-7-yl) beta-d-galactopyranoside (DDAOG), can be cleaved by beta-gal to produce 7-hydroxy-9H(I,3-dichloro-9,9-dimethylacridin-2-one) (DDAO). On excitation, DDAO generates a far-red-shifted fluorescent signal. Using this substrate, we developed a beta-gal activity assay method. The DDAO signal was stable for at least 18h. The signal intensity was linearly related to both the enzyme amount and substrate concentration. An optimized buffer for the beta-gal/DDAOG assay was also formulated. When compared with the colorimetric substrate o-nitrophenyl-beta-d-galactopyranoside (ONPG), the signal-to-background ratio of the DDAOG method was approximately 12-fold higher. The beta-gal/DDAOG assay method was also tested in transiently transfected cells employing both pharmacologically and genetically inducible gene expression systems. The ability to detect signal induction is comparable to a similar assay using luciferase as the signal generating moiety. The beta-gal/DDAOG assay method should provide a fluorescent reporter assay system for the wide variety of beta-gal systems currently in use. PMID:19103143

  14. A novel prothrombin time assay for assessing the anticoagulant activity of oral factor Xa inhibitors.

    PubMed

    Barrett, Yu Chen; Wang, Zhaoqing; Knabb, Robert M

    2013-09-01

    Conventional prothrombin time (PT) assays have limited sensitivity and dynamic range in monitoring the anticoagulant activity of direct factor Xa inhibitors. Hence, new assays are needed. We modified a PT assay by adding calcium chloride (CaCl2) to the thromboplastin reagent to increase assay dynamic range and improve sensitivity. Effects of calcium and sodium ion concentrations, and sample handling, were evaluated to optimize assay performance. Increasing concentrations of calcium ions produced progressive increases in PT across the factor Xa inhibitor concentrations of 0 to 2500 nmol/L for razaxaban and apixaban. The greatest effect was seen when the thromboplastin reagent was diluted 1:2.25 with 100 mmol/L CaCl2 (thus selected for routine use). The optimized assay showed an interassay precision of 1.5 to 9.3 percentage coefficient of variation (%CV) for razaxaban and 3.1 to 4.6 %CV for apixaban. We conclude that the modified PT assay is likely to be suitable as a pharmacodynamic marker for activity at therapeutic concentrations of factor Xa inhibitors.

  15. A highly sensitive telomerase activity assay that eliminates false-negative results caused by PCR inhibitors.

    PubMed

    Yaku, Hidenobu; Murashima, Takashi; Miyoshi, Daisuke; Sugimoto, Naoki

    2013-01-01

    An assay for telomerase activity based on asymmetric polymerase chain reaction (A-PCR) on magnetic beads (MBs) and subsequent application of cycling probe technology (CPT) is described. In this assay, the telomerase reaction products are immobilized on MBs, which are then washed to remove PCR inhibitors that are commonly found in clinical samples. The guanine-rich sequences (5'-(TTAGGG)n-3') of the telomerase reaction products are then preferentially amplified by A-PCR, and the amplified products are subsequently detected via CPT, where a probe RNA with a fluorophore at the 5' end and a quencher at the 3' end is hydrolyzed by RNase H in the presence of the target DNA. The catalyst-mediated cleavage of the probe RNA enhances fluorescence from the 5' end of the probe. The assay allowed us to successfully detect HeLa cells selectively over normal human dermal fibroblast (NHDF) cells. Importantly, this selectivity produced identical results with regard to detection of HeLa cells in the absence and presence of excess NHDF cells; therefore, this assay can be used for practical clinical applications. The lower limit of detection for HeLa cells was 50 cells, which is lower than that achieved with a conventional telomeric repeat amplification protocol assay. Our assay also eliminated false-negative results caused by PCR inhibitors. Furthermore, we show that this assay is appropriate for screening among G-quadruplex ligands to find those that inhibit telomerase activity.

  16. A highly sensitive telomerase activity assay that eliminates false-negative results caused by PCR inhibitors.

    PubMed

    Yaku, Hidenobu; Murashima, Takashi; Miyoshi, Daisuke; Sugimoto, Naoki

    2013-01-01

    An assay for telomerase activity based on asymmetric polymerase chain reaction (A-PCR) on magnetic beads (MBs) and subsequent application of cycling probe technology (CPT) is described. In this assay, the telomerase reaction products are immobilized on MBs, which are then washed to remove PCR inhibitors that are commonly found in clinical samples. The guanine-rich sequences (5'-(TTAGGG)n-3') of the telomerase reaction products are then preferentially amplified by A-PCR, and the amplified products are subsequently detected via CPT, where a probe RNA with a fluorophore at the 5' end and a quencher at the 3' end is hydrolyzed by RNase H in the presence of the target DNA. The catalyst-mediated cleavage of the probe RNA enhances fluorescence from the 5' end of the probe. The assay allowed us to successfully detect HeLa cells selectively over normal human dermal fibroblast (NHDF) cells. Importantly, this selectivity produced identical results with regard to detection of HeLa cells in the absence and presence of excess NHDF cells; therefore, this assay can be used for practical clinical applications. The lower limit of detection for HeLa cells was 50 cells, which is lower than that achieved with a conventional telomeric repeat amplification protocol assay. Our assay also eliminated false-negative results caused by PCR inhibitors. Furthermore, we show that this assay is appropriate for screening among G-quadruplex ligands to find those that inhibit telomerase activity. PMID:24071983

  17. New immunocapture enzyme (ICE) assay for quantification of cancer procoagulant activity: studies of inhibitors.

    PubMed

    Mielicki, W P; Tagawa, M; Gordon, S G

    1994-04-01

    A new, sensitive and specific immunocapture enzyme (ICE) assay for quantitation of the enzymatic activity of cancer procoagulant (CP) has been developed. The assay had good reproducibility (inter- and intra-assay CV were 6.4% and 5.7% respectively) and was linear for concentrations of CP from 0.5 microgram/ml to 10 micrograms/ml (r2 = 0.995). Using this assay the inhibition of CP by iodoacetamide, mercuric chloride, E-64, leupeptin and antipain was demonstrated. There was no significant effect of cystatin and natural plasma proteinase inhibitors alpha 1-antitrypsin, alpha 1-antichymotrypsin, alpha 2-macroglobulin and antithrombin-III/heparin, on the activity of the CP.

  18. Time-resolved Förster-resonance-energy-transfer DNA assay on an active CMOS microarray

    PubMed Central

    Schwartz, David Eric; Gong, Ping; Shepard, Kenneth L.

    2008-01-01

    We present an active oligonucleotide microarray platform for time-resolved Förster resonance energy transfer (TR-FRET) assays. In these assays, immobilized probe is labeled with a donor fluorophore and analyte target is labeled with a fluorescence quencher. Changes in the fluorescence decay lifetime of the donor are measured to determine the extent of hybridization. In this work, we demonstrate that TR-FRET assays have reduced sensitivity to variances in probe surface density compared with standard fluorescence-based microarray assays. Use of an active array substrate, fabricated in a standard complementary metal-oxide-semiconductor (CMOS) process, provides the additional benefits of reduced system complexity and cost. The array consists of 4096 independent single-photon avalanche diode (SPAD) pixel sites and features on-chip time-to-digital conversion. We demonstrate the functionality of our system by measuring a DNA target concentration series using TR-FRET with semiconductor quantum dot donors. PMID:18515059

  19. Suggested improvements to the standard filter paper assay used to measure cellulase activity.

    PubMed

    Coward-Kelly, Guillermo; Aiello-Mazzari, Cateryna; Kim, Sehoon; Granda, Cesar; Holtzapple, Mark

    2003-06-20

    Two suggestions can be found in the literature to improve the reproducibility of the Mandels' filter paper assay: add supplemental cellobiase and increase the boiling time for color development. Here we provide data that strongly supports adding supplemental cellobiase. Adding supplemental cellobiase increased assay response by 56%. Cellulases from different sources have different cellobiase activities, which would cause significant variation in the assay response. There is no need for additional boiling time-5 minutes is sufficient. For maximum reproducibility, it is essential that the water bath vigorously boil so that temperature excursions are minimized.

  20. Suggested improvements to the standard filter paper assay used to measure cellulase activity.

    PubMed

    Coward-Kelly, Guillermo; Aiello-Mazzari, Cateryna; Kim, Sehoon; Granda, Cesar; Holtzapple, Mark

    2003-06-20

    Two suggestions can be found in the literature to improve the reproducibility of the Mandels' filter paper assay: add supplemental cellobiase and increase the boiling time for color development. Here we provide data that strongly supports adding supplemental cellobiase. Adding supplemental cellobiase increased assay response by 56%. Cellulases from different sources have different cellobiase activities, which would cause significant variation in the assay response. There is no need for additional boiling time-5 minutes is sufficient. For maximum reproducibility, it is essential that the water bath vigorously boil so that temperature excursions are minimized. PMID:12673775

  1. Heavy metal impurities impair the spectrophotometric assay of ribulose bisphosphate carboxylase activity.

    PubMed

    Walbot, V

    1977-01-01

    An inverse relationship between the concentration of ribose 5-phosphate and apparent ribulose bisphosphate carboxylase activity was observed. The Lilley-Walker assay spectrophotometric assay, in which the 3-phosphoglyceric acid-dependent oxidation of reduced pyridine nucleotide is measured, is shown to be highly sensitive to inhibition by heavy metals. Analysis of the purity of reagents showed that ribose 5-phosphate is often contaminated with lead in sufficient quantity to impair the assay. This noncompetitive inhibition by ribose 5-phosphate is independent of the competitive inhibition of this substrate as an ATP sink as described by Slabas and Walker. A method for checking reagent purity and removing heavy metal contaminants is described.

  2. A high-throughput assay of NK cell activity in whole blood and its clinical application

    SciTech Connect

    Lee, Saet-byul; Cha, Junhoe; Kim, Im-kyung; Yoon, Joo Chun; Lee, Hyo Joon; Park, Sang Woo; Cho, Sunjung; Youn, Dong-Ye; Lee, Heyja; Lee, Choong Hwan; Lee, Jae Myun; Lee, Kang Young; Kim, Jongsun

    2014-03-14

    Graphical abstract: - Highlights: • We demonstrated a simple assay of NK cell activity from whole blood. • The measurement of secreted IFN-γ from NK cell enables high-throughput screening. • The NKA assay was validated by clinical results of colorectal cancer patients. - Abstract: Natural killer (NK) cells are lymphocytes of the innate immune system and have the ability to kill tumor cells and virus-infected cells without prior sensitization. Malignant tumors and viruses have developed, however, strategies to suppress NK cells to escape from their responses. Thus, the evaluation of NK cell activity (NKA) could be invaluable to estimate the status and the outcome of cancers, viral infections, and immune-mediated diseases. Established methods that measure NKA, such as {sup 51}Cr release assay and CD107a degranulation assay, may be used to determine NK cell function, but they are complicated and time-consuming because they require isolation of peripheral blood mononuclear cells (PBMC) or NK cells. In some cases these assays require hazardous material such as radioactive isotopes. To overcome these difficulties, we developed a simple assay that uses whole blood instead of PBMC or isolated NK cells. This novel assay is suitable for high-throughput screening and the monitoring of diseases, because it employs serum of ex vivo stimulated whole blood to detect interferon (IFN)-γ secreted from NK cells as an indicator of NKA. After the stimulation of NK cells, the determination of IFNγ concentration in serum samples by enzyme-linked immunosorbent assay (ELISA) provided a swift, uncomplicated, and high-throughput assay of NKA ex vivo. The NKA results microsatellite stable (MSS) colorectal cancer patients was showed significantly lower NKA, 263.6 ± 54.5 pg/mL compared with healthy subjects, 867.5 ± 50.2 pg/mL (p value <0.0001). Therefore, the NKA could be utilized as a supportive diagnostic marker for microsatellite stable (MSS) colorectal cancer.

  3. A smartphone-readable barcode assay for the detection and quantitation of pesticide residues.

    PubMed

    Guo, Juan; Wong, Jessica X H; Cui, Caie; Li, Xiaochun; Yu, Hua-Zhong

    2015-08-21

    In this paper, we present a smartphone-readable barcode assay for the qualitative detection of methyl parathion residues, a toxic organophosphorus pesticide that is popularly used in agriculture worldwide. The detection principle is based on the irreversible inhibition of the enzymatic activity of acetylcholinesterase (AchE) by methyl parathion; AchE catalytically hydrolyzes acetylthiocholine iodine to thiocholine that in turn dissociates dithiobis-nitrobenzoate to produce a yellow product (deprotonated thio-nitrobenzoate). The yellow intensity of the product was confirmed to be inversely dependent on the concentration of the pesticide. We have designed a barcode-formatted assay chip by using a PDMS (polydimethylsiloxane) channel plate (as the reaction reservoir), situated under a printed partial barcode, to complete the whole barcode such that it can be directly read by a barcode scanning app installed on a smartphone. The app is able to qualitatively present the result of the pesticide test; the absence or a low concentration of methyl parathion results in the barcode reading as "-", identifying the test as negative for pesticides. Upon obtaining a positive result (the app reads a "+" character), the captured image can be further analyzed to quantitate the methyl parathion concentration in the sample. Besides the portability and simplicity, this mobile-app based colorimetric barcode assay compares favorably with the standard spectrophotometric method. PMID:26087169

  4. Acetyl cholinesterase activity and muscle contraction in the sea urchin Lytechinus variegatus (Lamarck) following chronic phosphate exposure.

    PubMed

    Boettger, S Anne; McClintock, James B

    2012-03-01

    The common shallow-water sea urchin Lytechinus variegatus is capable of surviving inorganic phosphate exposures as high as 3.2 mg L(-1) and organic phosphate exposures of 1000 mg L(-1) . Nonetheless, chronic exposure to low, medium, and high-sublethal concentrations of organic phosphate inhibits the muscle enzyme acetyl cholinesterase (AChE), responsible for the break down of the neurotransmitter acetylcholine, as well as inhibiting contractions in the muscles associated with the Aristotle's lantern. AChE activity, measured in both a static enzyme assay and by vesicular staining, displayed concentration-dependent declines of activity in individuals maintained in organic phosphate for 4 weeks. The activity of AChE was not adversely affected by exposure to inorganic phosphate or seawater controls over the same time period. Maximum force of muscle contraction and rates of muscle contraction and relaxation also decreased with chronic exposure to increasing concentrations of organic phosphate. Chronic exposure to inorganic phosphates elicited no response except at the highest concentration, where the maximum force of muscular contraction increased compared to controls. These findings indicate that shallow-water populations of Lytechinus variegatus subjected to organic phosphate pollutants may display impaired muscular activity that is potentially related to the inhibition of the muscle relaxant enzyme AChE, and subsequently muscular overstimulation, and fatigue.

  5. How Do Detergents Work? A Qualitative Assay to Measure Amylase Activity

    ERIC Educational Resources Information Center

    Novo, M. Teresa; Casanoves, Marina; Garcia-Vallvé, Santi; Pujadas, Gerard; Mulero, Miquel; Valls, Cristina

    2016-01-01

    We present a practical activity focusing on two main goals: to give learners the opportunity to experience how the scientific method works and to increase their knowledge about enzymes in everyday situations. The exercise consists of determining the amylase activity of commercial detergents. The methodology is based on a qualitative assay using a…

  6. A novel live cell assay to measure diacylglycerol lipase α activity

    PubMed Central

    Singh, Praveen K.; Markwick, Rachel; Howell, Fiona V.; Williams, Gareth; Doherty, Patrick

    2016-01-01

    Diacylglycerol lipase α (DAGLα) hydrolyses DAG to generate the principal endocannabinoid (eCB) 2-arachidonoylglycerol (2-AG) in the central nervous system. DAGLα dependent cannabinoid (CB) signalling has been implicated in numerous processes including axonal growth and guidance, adult neurogenesis and retrograde signalling at the synapse. Recent studies have implicated DAGLα as an emerging drug target for several conditions including pain and obesity. Activity assays are critical to the drug discovery process; however, measurement of diacylglycerol lipase (DAGL) activity using its native substrate generally involves low-throughput MS techniques. Some relatively high-throughput membrane based assays utilizing surrogate substrates have been reported, but these do not take into account the rate-limiting effects often associated with the ability of a drug to cross the cell membrane. In the present study, we report the development of a live cell assay to measure DAGLα activity. Two previously reported DAGLα surrogate substrates, p-nitrophenyl butyrate (PNPB) and 6,8-difluoro-4-methylumbelliferyl octanoate (DiFMUO), were evaluated for their ability to detect DAGLα activity in live cell assays using a human cell line stably expressing the human DAGLα transgene. Following optimization, the small molecule chromogenic substrate PNPB proved to be superior by providing lower background activity along with a larger signal window between transfected and parental cells when compared with the fluorogenic substrate DiFMUO. The assay was further validated using established DAGL inhibitors. In summary, the live cell DAGLα assay reported here offers an economical and convenient format to screen for novel inhibitors as part of drug discovery programmes and compliments previously reported high-throughput membrane based DAGL assays. PMID:27013337

  7. A novel live cell assay to measure diacylglycerol lipase α activity.

    PubMed

    Singh, Praveen K; Markwick, Rachel; Howell, Fiona V; Williams, Gareth; Doherty, Patrick

    2016-06-01

    Diacylglycerol lipase α (DAGLα) hydrolyses DAG to generate the principal endocannabinoid (eCB) 2-arachidonoylglycerol (2-AG) in the central nervous system. DAGLα dependent cannabinoid (CB) signalling has been implicated in numerous processes including axonal growth and guidance, adult neurogenesis and retrograde signalling at the synapse. Recent studies have implicated DAGLα as an emerging drug target for several conditions including pain and obesity. Activity assays are critical to the drug discovery process; however, measurement of diacylglycerol lipase (DAGL) activity using its native substrate generally involves low-throughput MS techniques. Some relatively high-throughput membrane based assays utilizing surrogate substrates have been reported, but these do not take into account the rate-limiting effects often associated with the ability of a drug to cross the cell membrane. In the present study, we report the development of a live cell assay to measure DAGLα activity. Two previously reported DAGLα surrogate substrates, p-nitrophenyl butyrate (PNPB) and 6,8-difluoro-4-methylumbelliferyl octanoate (DiFMUO), were evaluated for their ability to detect DAGLα activity in live cell assays using a human cell line stably expressing the human DAGLα transgene. Following optimization, the small molecule chromogenic substrate PNPB proved to be superior by providing lower background activity along with a larger signal window between transfected and parental cells when compared with the fluorogenic substrate DiFMUO. The assay was further validated using established DAGL inhibitors. In summary, the live cell DAGLα assay reported here offers an economical and convenient format to screen for novel inhibitors as part of drug discovery programmes and compliments previously reported high-throughput membrane based DAGL assays.

  8. Postnatal growth hormone deficiency in growing rats causes marked decline in the activity of spinal cord acetylcholinesterase but not butyrylcholinesterase.

    PubMed

    Koohestani, Faezeh; Brown, Chester M; Meisami, Esmail

    2012-11-01

    The effects of growth hormone (GH) deficiency on the developmental changes in the abundance and activity of cholinesterase enzymes were studied in the developing spinal cord (SC) of postnatal rats by measuring the specific activity of acetylcholinesterase (AChE), a marker for cholinergic neurons and their synaptic compartments, and butyrylcholinesterase (BuChE), a marker for glial cells and neurovascular cells. Specific activities of these two enzymes were measured in SC tissue of 21- and 90 day-old (P21, weaning age; P90, young adulthood) GH deficient spontaneous dwarf (SpDwf) mutant rats which lack anterior pituitary and circulating plasma GH, and were compared with SC tissue of normal age-matched control animals. Assays were carried out for AChE and BuChE activity in the presence of their specific chemical inhibitors, BW284C51 and iso-OMPA, respectively. Results revealed that mean AChE activity was markedly and significantly reduced [28% at P21, 49% at P90, (p<0.01)] in the SC of GH deficient rats compared to age-matched controls. GH deficiency had a higher and more significant effect on AChE activity of the older (P90) rats than the younger ones (P21) ones. In contrast, BuChE activity in SC showed no significant changes in GH deficient rats at either of the two ages studied. Results imply that, in the absence of pituitary GH, the postnatal proliferation of cholinergic synapses in the rat SC, a CNS structure, where AChE activity is abundant, is markedly reduced during both the pre- and postweaning periods; more so in the postweaning than preweaning ages. In contrast, the absence of any effects on BuChE activity implies that GH does not affect the development of non-neuronal elements, e.g., glia, as much as the neuronal and synaptic compartments of the developing rat SC. PMID:22922167

  9. Postnatal growth hormone deficiency in growing rats causes marked decline in the activity of spinal cord acetylcholinesterase but not butyrylcholinesterase.

    PubMed

    Koohestani, Faezeh; Brown, Chester M; Meisami, Esmail

    2012-11-01

    The effects of growth hormone (GH) deficiency on the developmental changes in the abundance and activity of cholinesterase enzymes were studied in the developing spinal cord (SC) of postnatal rats by measuring the specific activity of acetylcholinesterase (AChE), a marker for cholinergic neurons and their synaptic compartments, and butyrylcholinesterase (BuChE), a marker for glial cells and neurovascular cells. Specific activities of these two enzymes were measured in SC tissue of 21- and 90 day-old (P21, weaning age; P90, young adulthood) GH deficient spontaneous dwarf (SpDwf) mutant rats which lack anterior pituitary and circulating plasma GH, and were compared with SC tissue of normal age-matched control animals. Assays were carried out for AChE and BuChE activity in the presence of their specific chemical inhibitors, BW284C51 and iso-OMPA, respectively. Results revealed that mean AChE activity was markedly and significantly reduced [28% at P21, 49% at P90, (p<0.01)] in the SC of GH deficient rats compared to age-matched controls. GH deficiency had a higher and more significant effect on AChE activity of the older (P90) rats than the younger ones (P21) ones. In contrast, BuChE activity in SC showed no significant changes in GH deficient rats at either of the two ages studied. Results imply that, in the absence of pituitary GH, the postnatal proliferation of cholinergic synapses in the rat SC, a CNS structure, where AChE activity is abundant, is markedly reduced during both the pre- and postweaning periods; more so in the postweaning than preweaning ages. In contrast, the absence of any effects on BuChE activity implies that GH does not affect the development of non-neuronal elements, e.g., glia, as much as the neuronal and synaptic compartments of the developing rat SC.

  10. The dual-acting H3 receptor antagonist and AChE inhibitor UW-MD-71 dose-dependently enhances memory retrieval and reverses dizocilpine-induced memory impairment in rats.

    PubMed

    Khan, Nadia; Saad, Ali; Nurulain, Syed M; Darras, Fouad H; Decker, Michael; Sadek, Bassem

    2016-01-15

    Both the histamine H3 receptor (H3R) and acetylcholine esterase (AChE) are involved in the regulation of release and metabolism of acetylcholine and several other central neurotransmitters. Therefore, dual-active H3R antagonists and AChE inhibitors (AChEIs) have shown in several studies to hold promise to treat cognitive disorders like Alzheimer's disease (AD). The novel dual-acting H3R antagonist and AChEI 7-(3-(piperidin-1-yl)propoxy)-1,2,3,9-tetrahydropyrrolo[2,1-b]quinazoline (UW-MD-71) with excellent selectivity profiles over both the three other HRs as well as the AChE's isoenzyme butyrylcholinesterase (BChE) shows high and balanced in vitro affinities at both H3R and AChE with IC50 of 33.9nM and hH3R antagonism with Ki of 76.2nM, respectively. In the present study, the effects of UW-MD-71 (1.25-5mg/kg, i.p.) on acquisition, consolidation, and retrieval in a one-trial inhibitory avoidance task in male rats were investigated applying donepezil (DOZ) and pitolisant (PIT) as reference drugs. Furthermore, the effects of UW-MD-71 on memory deficits induced by the non-competitive N-methyl-d-aspartate (NMDA) antagonist dizocilpine (DIZ) were tested. Our results indicate that administration of UW-MD-71 before the test session dose-dependently increased performance and enhanced procognitive effect on retrieval. However neither pre- nor post-training acute systemic administration of UW-MD-71 facilitated acquisition or consolidation. More importantly, UW-MD-71 (2.5mg/kg, i.p.) ameliorated the DIZ-induced amnesic effects. Furthermore, the procognitive activity of UW-MD-71 in retrieval was completely reversed and partly abrogated in DIZ-induced amnesia when rats were pretreated with the centrally-acting H2R antagonist zolantidine (ZOL), but not with the CNS penetrant H1R antagonist pyrilamine (PYR). These results demonstrate the procognitive effects of UW-MD-71 in two in vivo memory models, and are to our knowledge the first demonstration in vivo that a potent dual

  11. Determination of Pulmozyme (dornase alpha) stability using a kinetic colorimetric DNase I activity assay.

    PubMed

    Lichtinghagen, Ralf

    2006-07-01

    An enzymatic activity assay was developed for the determination of dornase alpha human recombinant desoxyribonuclease (DNase I) stability. The method was adapted from a colorimetric endpoint enzyme activity assay for DNase I based on the degradation of a DNA/methyl green complex. With the described modifications the kinetic measurement of enzyme activity is feasible on an automated analyzer system within a rather short time. The development of this assay was based on the need for reliable detection of a possible loss of enzyme activity after transferring the commercial therapeutic agent into sealed glass vials required for a placebo-controlled study. The measuring range of this stability test was from 0 to 3000 U/L corresponding to 0-120% of the original enzyme activity; CV values of control solutions inside the measuring range were between 3% and 5%. The enzyme activity decreased less than 15% during the observation period of 180 days. In conclusion the current kinetic assay is a reliable method for a simple time-saving determination of DNase I activity to test Pulmozyme stability as required for quality control. As dornase alpha is used for inhalation, this method also proved its reliability in testing DNase stability during aerosolization with new inhalation devices (e-flow). PMID:16682175

  12. Improved sensitivity of an acid sphingomyelinase activity assay using a C6:0 sphingomyelin substrate.

    PubMed

    Chuang, Wei-Lien; Pacheco, Joshua; Cooper, Samantha; Kingsbury, Jonathan S; Hinds, John; Wolf, Pavlina; Oliva, Petra; Keutzer, Joan; Cox, Gerald F; Zhang, Kate

    2015-06-01

    Short-chain C6-sphingomyelin is an artificial substrate that was used in an acid sphingomyelinase activity assay for a pilot screening study of patients with Niemann-Pick disease types A and B. Using previously published multiplex and single assay conditions, normal acid sphingomyelinase activity levels (i.e. false negative results) were observed in two sisters with Niemann-Pick B who were compound heterozygotes for two missense mutations, p.C92W and p.P184L, in the SMPD1 gene. Increasing the sodium taurocholate detergent concentration in the assay buffer lowered the activity levels of these two patients into the range observed with other patients with clear separation from normal controls. PMID:26937397

  13. Activities of the OECD/NEA Expert Group on Assay Data for Spent Nuclear Fuel

    SciTech Connect

    Gauld, Ian C; Rugama, Yolanda

    2009-01-01

    Management of spent nuclear fuel is a key issue for many NEA member countries. In nuclear criticality safety, the decision of many countries to advance burnup credit as part of their licensing strategy has heightened recent interest in experimental data needed to validate computer codes used in burnup credit calculations. This paper discusses recent activities of an Expert Group on assay data, formed under the OECD/NEA/NSC/WPNCS (Working Party on Nuclear Criticality Safety) to help coordinate isotopic assay data activities and facilitate international collaboration between NEA member countries developing or implementing burnup credit methodologies. Recent activities of the Expert Group are described, focusing on the planned expansion of the Spent Fuel Isotopic Composition Database (SFCOMPO), and preparation of a state-of-the-art report on assay data that includes sections on recommended radiochemical analysis methods, techniques, and lessons learned from previous experiments.

  14. A modified ferrous oxidation-xylenol orange assay for lipoxygenase activity in rice grains.

    PubMed

    Timabud, Tarinee; Sanitchon, Jirawat; Pongdontri, Paweena

    2013-12-01

    Ferrous oxidation-xylenol orange assay reagent was reformulated by using spectral analysis of ferric-xylenol orange complex to detect low concentrations of lipoxygenase rice grain products. Reducing the levels of ferrous sulphate and xylenol orange in the FOX reagent enabled the detection of low concentrations of hydroperoxy fatty acid derived from lipoxygenase activity in the range of 0.1-1.5 μM. Protein, substrate and time courses of the modified FOX assay were studied to determine lipoxygenase activity in rice grain. The assay was also applicable as a high throughput technique for comparisons of lipoxygenase activity from various rice varieties. This has important implications for rapid screening for low-lipoxygenase containing rice cultivars in rice breeding program and grain quality during storage.

  15. An improved 96-well turbidity assay for T4 lysozyme activity.

    PubMed

    Toro, Tasha B; Nguyen, Thao P; Watt, Terry J

    2015-01-01

    T4 lysozyme (T4L) is an important model system for investigating the relationship between protein structure and function. Despite being extensively studied, a reliable, quantitative activity assay for T4L has not been developed. Here, we present an improved T4L turbidity assay as well as an affinity-based T4L expression and purification protocol. This assay is designed for 96-well format and utilizes conditions amenable for both T4L and other lysozymes. This protocol enables easy, efficient, and quantitative characterization of T4L variants and allows comparison between different lysozymes. Our method: •Is applicable for all lysozymes, with enhanced sensitivity for T4 lysozyme compared to other 96-well plate turbidity assays;•Utilizes standardized conditions for comparing T4 lysozyme variants and other lysozymes; and•Incorporates a simplified expression and purification protocol for T4 lysozyme.

  16. Expression of APP, BACE1, AChE and ChAT in an AD model in rats and the effect of donepezil hydrochloride treatment.

    PubMed

    Li, Qiang; Chen, Min; Liu, Hongmin; Yang, Liqun; Yang, Guiying

    2012-12-01

    The aim of this study was to investigate the pathological changes in a rat model of Alzheimer's disease (AD) and the effect of donepezil hydrochloride (HCl) treatment. The rat model of AD was established by the bilateral injection of amyloid β₁₋₄₀ (Aβ₁₋₄₀) into the hippocampus. Changes in spatial learning and memory functions were examined using the Morris water maze test and changes in catalase (CAT) and glutathione peroxidase (GSH-Px) activities were determined using chemical colorimetry. Moreover, the changes in acetylcholinesterase (AChE) and choline acetyltransferase (ChAT) expression were analyzed using immunohistochemical staining. The mRNA expression levels of the amyloid precursor protein (APP) and β-secreted enzyme 1 (BACE1) were evaluated using RT-PCR. The effects of donepezil HCl on the aforementioned indices were also observed. The rat memories of the platform quadrants in the blank, sham and donepezil HCl groups were improved compared with those of the rats in the model group. The ratio of swim distance in the fourth platform quadrant (l₄) to the total swim distance (l total) for the model group rats (l₄/l total) was significantly decreased compared with that for the blank and sham group rats. Following donepezil HCl treatment, the ratio of l₄/l total significantly increased. AD modeling caused a significant decrease in the CAT and GSH-Px activities in the brain tissues of the rats. The CAT and GSH-Px activities in the AD model rats significantly increased following donepezil HCl treatment. Moreover, donepezil HCl treatment significantly decreased the AChE, APP and BACE1 mRNA expression levels and increased the ChAT expression levels. Therefore, donepezil HCl was able to significantly decrease learning and memory damage in a rat model of AD.

  17. Development of a spontaneously active dorsal root ganglia assay using multiwell multielectrode arrays.

    PubMed

    Newberry, Kim; Wang, Shuya; Hoque, Nina; Kiss, Laszlo; Ahlijanian, Michael K; Herrington, James; Graef, John D

    2016-06-01

    In vitro phenotypic assays of sensory neuron activity are important tools for identifying potential analgesic compounds. These assays are typically characterized by hyperexcitable and/or abnormally, spontaneously active cells. Whereas manual electrophysiology experiments provide high-resolution biophysical data to characterize both in vitro models and potential therapeutic modalities (e.g., action potential characteristics, the role of specific ion channels, and receptors), these techniques are hampered by their low throughput. We have established a spontaneously active dorsal root ganglia (DRG) platform using multiwell multielectrode arrays (MEAs) that greatly increase the ability to evaluate the effects of multiple compounds and conditions on DRG excitability within the context of a cellular network. We show that spontaneous DRG firing can be attenuated with selective Na(+) and Ca(2+) channel blockers, as well as enhanced with K(+) channel blockers. In addition, spontaneous activity can be augmented with both the transient receptor potential cation channel subfamily V member 1 agonist capsaicin and the peptide bradykinin and completely blocked with neurokinin receptor antagonists. Finally, we validated the use of this assay by demonstrating that commonly used neuropathic pain therapeutics suppress DRG spontaneous activity. Overall, we have optimized primary rat DRG cells on a multiwell MEA platform to generate and characterize spontaneously active cultures that have the potential to be used as an in vitro phenotypic assay to evaluate potential therapeutics in rodent models of pain. PMID:27052585

  18. Zebrafish-based reporter gene assays reveal different estrogenic activities in river waters compared to a conventional human-derived assay.

    PubMed

    Sonavane, Manoj; Creusot, Nicolas; Maillot-Maréchal, Emmanuelle; Péry, Alexandre; Brion, François; Aїt-Aïssa, Selim

    2016-04-15

    Endocrine disrupting chemicals (EDCs) act on the endocrine system through multiple mechanisms of action, among them interaction with estrogen receptors (ERs) is a well-identified key event in the initiation of adverse outcomes. As the most commonly used estrogen screening assays are either yeast- or human-cell based systems, the question of their (eco)toxicological relevance when assessing risks for aquatic species can be raised. The present study addresses the use of zebrafish (zf) derived reporter gene assays, both in vitro (i.e. zf liver cell lines stably expressing zfERα, zfERβ1 and zfERβ2 subtypes) and in vivo (i.e. transgenic cyp19a1b-GFP zf embryos), to assess estrogenic contaminants in river waters. By investigating 20 French river sites using passive sampling, high frequencies of in vitro zfER-mediated activities in water extracts were measured. Among the different in vitro assays, zfERβ2 assay was the most sensitive and responsive one, enabling the detection of active compounds at all investigated sites. In addition, comparison with a conventional human-based in vitro assay highlighted sites that were able to active zfERs but not human ER, suggesting the occurrence of zf-specific ER ligands. Furthermore, a significant in vivo estrogenic activity was detected at the most active sites in vitro, with a good accordance between estradiol equivalent (E2-EQ) concentrations derived from both in vitro and in vivo assays. Overall, this study shows the relevance and usefulness of such novel zebrafish-based assays as screening tools to monitor estrogenic activities in complex mixtures such as water extracts. It also supports their preferred use compared to human-based assays to assess the potential risks caused by endocrine disruptive chemicals for aquatic species such as fish.

  19. Chimeric RNA-DNA molecular beacon assay for ribonuclease H activity.

    PubMed

    Rizzo, J; Gifford, L K; Zhang, X; Gewirtz, A M; Lu, P

    2002-08-01

    Current methods to detect and assay ribonuclease H (RNase H) activity are indirect and time-consuming. Here we introduce a direct and sensitive method, based on the fluorescence quenching mechanism of molecular beacons, to assay RNA cleavage in RNA:DNA hybrids. An RNA-DNA chimeric beacon assay for RNase H enzymatic activity was developed. The substrate is a single-stranded RNA-DNA chimeric oligonucleotide labeled with a 5'-fluorescein and a 3'-DABCYL. The fluorophore (fluorescein) of the probe is held in close proximity to the quencher (DABCYL) by the RNA:DNA stem-loop structure. When the RNA sequence of the RNA:DNA hybrid stem is cleaved, the fluorophore is separated from the quencher and fluorescence can be detected as a function of time. Chimeric beacons with different stem lengths and sequences have been surveyed for this assay with E. coli RNase H. We found that the beacon kinetic parameters are in qualitative agreement with previously reported values using more cumbersome assays. This method permits real-time detection of RNase H activity and a convenient approach to RNase H kinetic and mechanistic study.

  20. Measurement of Separase Proteolytic Activity in Single Living Cells by a Fluorogenic Flow Cytometry Assay

    PubMed Central

    Haaß, Wiltrud; Kleiner, Helga; Müller, Martin C.; Hofmann, Wolf-Karsten; Fabarius, Alice; Seifarth, Wolfgang

    2015-01-01

    ESPL1/Separase, an endopeptidase, is required for centrosome duplication and separation of sister-chromatides in anaphase of mitosis. Overexpression and deregulated proteolytic activity of Separase as frequently observed in human cancers is associated with the occurrence of supernumerary centrosomes, chromosomal missegregation and aneuploidy. Recently, we have hypothesized that increased Separase proteolytic activity in a small subpopulation of tumor cells may serve as driver of tumor heterogeneity and clonal evolution in chronic myeloid leukemia (CML). Currently, there is no quantitative assay to measure Separase activity levels in single cells. Therefore, we have designed a flow cytometry-based assay that utilizes a Cy5- and rhodamine 110 (Rh110)-biconjugated Rad21 cleavage site peptide ([Cy5-D-R-E-I-M-R]2-Rh110) as smart probe and intracellular substrate for detection of Separase enzyme activity in living cells. As measured by Cy5 fluorescence the cellular uptake of the fluorogenic peptide was fast and reached saturation after 210 min of incubation in human histiocytic lymphoma U937 cells. Separase activity was recorded as the intensity of Rh110 fluorescence released after intracellular peptide cleavage providing a linear signal gain within a 90–180 min time slot. Compared to conventional cell extract-based methods the flow cytometric assay delivers equivalent results but is more reliable, bypasses the problem of vague loading controls and unspecific proteolysis associated with whole cell extracts. Especially suited for the investigaton of blood- and bone marrow-derived hematopoietic cells the flow cytometric Separase assay allows generation of Separase activity profiles that tell about the number of Separase positive cells within a sample i.e. cells that currently progress through mitosis and about the range of intercellular variation in Separase activity levels within a cell population. The assay was used to quantify Separase proteolytic activity in leukemic

  1. Mechanism of PTC124 activity in cell-based luciferase assays of nonsense codon suppression.

    PubMed

    Auld, Douglas S; Thorne, Natasha; Maguire, William F; Inglese, James

    2009-03-01

    High-throughput screening (HTS) assays used in drug discovery frequently use reporter enzymes such as firefly luciferase (FLuc) as indicators of target activity. An important caveat to consider, however, is that compounds can directly affect the reporter, leading to nonspecific but highly reproducible assay signal modulation. In rare cases, this activity appears counterintuitive; for example, some FLuc inhibitors, acting through posttranslational Fluc reporter stabilization, appear to activate gene expression. Previous efforts to characterize molecules that influence luciferase activity identified a subset of 3,5-diaryl-oxadiazole-containing compounds as FLuc inhibitors. Here, we evaluate a number of compounds with this structural motif for activity against FLuc. One such compound is PTC124 {3-[5-(2-fluorophenyl)-1,2,4-oxadiazol-3-yl]benzoic acid}, a molecule originally identified in a cell-based FLuc assay as having nonsense codon suppression activity [Welch EM, et al., Nature (2007) 447:87-91]. We find that the potency of FLuc inhibition for the tested compounds strictly correlates with their activity in a FLuc reporter cell-based nonsense codon assay, with PTC124 emerging as the most potent FLuc inhibitor (IC(50) = 7 +/- 1 nM). However, these compounds, including PTC124, fail to show nonsense codon suppression activity when Renilla reniformis luciferase (RLuc) is used as a reporter and are inactive against the RLuc enzyme. This suggests that the initial discovery of PTC124 may have been biased by its direct effect on the FLuc reporter, implicating firefly luciferase as a molecular target of PTC124. Our results demonstrate the value of understanding potential interactions between reporter enzymes and chemical compounds and emphasize the importance of implementing the appropriate control assays before interpreting HTS results.

  2. Modulating temporal control of NF-kappaB activation: implications for therapeutic and assay selection.

    PubMed

    Klinke, David J; Ustyugova, Irina V; Brundage, Kathleen M; Barnett, John B

    2008-06-01

    The activation of transcription factor NF-kappaB (nuclear factor-kappaB) plays a central role in the induction of many inflammatory response genes. This process is characterized by either oscillations or stable induction of NF-kappaB nuclear binding. Changes in dynamics of binding result in the expression of distinct subsets of genes leading to different physiological outcomes. We examined NF-kappaB DNA binding activity in lipopolysaccharide (LPS)-stimulated IC-21 cells by electromobility shift assay and nonradioactive transcription factor assay and interpreted the results using a kinetic model of NF-kappaB activation. Both assays detected damped oscillatory behavior of NF-kappaB with differences in sensitivity and reproducibility. 3,4-Dichloropropionaniline (DCPA) was used to modulate the oscillatory behavior of NF-kappaB after LPS stimulation. DCPA is known to inhibit the production of two NF-kappaB-inducible cytokines, IL-6 and tumor necrosis factor alpha, by reducing but not completely abrogating NF-kappaB-induced transcription. DCPA treatment resulted in a potentiation of early LPS-induced NF-kappaB activation. The nonradioactive transcription factor assay, which has a higher signal/noise ratio than the electromobility shift assay, combined with in silico modeling, produced results that revealed changes in NF-kappaB dynamics which, to the best of our knowledge, have never been previously reported. These results highlight the importance of cell type and stimulus specificity in transcription factor activity assessment. In addition, assay selection has important implications for network inference and drug discovery. PMID:18281385

  3. Modulating Temporal Control of NF-κB Activation: Implications for Therapeutic and Assay Selection

    PubMed Central

    Klinke, David J.; Ustyugova, Irina V.; Brundage, Kathleen M.; Barnett, John B.

    2008-01-01

    The activation of transcription factor NF-κB (nuclear factor-κB) plays a central role in the induction of many inflammatory response genes. This process is characterized by either oscillations or stable induction of NF-κB nuclear binding. Changes in dynamics of binding result in the expression of distinct subsets of genes leading to different physiological outcomes. We examined NF-κB DNA binding activity in lipopolysaccharide (LPS)-stimulated IC-21 cells by electromobility shift assay and nonradioactive transcription factor assay and interpreted the results using a kinetic model of NF-κB activation. Both assays detected damped oscillatory behavior of NF-κB with differences in sensitivity and reproducibility. 3,4-Dichloropropionaniline (DCPA) was used to modulate the oscillatory behavior of NF-κB after LPS stimulation. DCPA is known to inhibit the production of two NF-κB-inducible cytokines, IL-6 and tumor necrosis factor α, by reducing but not completely abrogating NF-κB-induced transcription. DCPA treatment resulted in a potentiation of early LPS-induced NF-κB activation. The nonradioactive transcription factor assay, which has a higher signal/noise ratio than the electromobility shift assay, combined with in silico modeling, produced results that revealed changes in NF-κB dynamics which, to the best of our knowledge, have never been previously reported. These results highlight the importance of cell type and stimulus specificity in transcription factor activity assessment. In addition, assay selection has important implications for network inference and drug discovery. PMID:18281385

  4. A protein chip membrane-capture assay for botulinum neurotoxin activity

    SciTech Connect

    Marconi, Severine; Ferracci, Geraldine; Berthomieu, Maelys; Kozaki, Shunji; Miquelis, Raymond; Boucraut, Jose; Seagar, Michael

    2008-12-15

    Botulinum neurotoxins A and B (BoNT/A and B) are neuromuscular blocking agents which inhibit neurotransmission by cleaving the intra-cellular presynaptic SNARE proteins SNAP-25 and VAMP2, localized respectively in plasma membrane and synaptic vesicles. These neurotoxins are both dangerous pathogens and powerful therapeutic agents with numerous clinical and cosmetic applications. Consequently there is a need for in vitro assays of their biological activity to screen for potential inhibitors and to replace the widely used in vivo mouse assay. Surface plasmon resonance (SPR) was used to measure membrane vesicle capture by antibodies against SNAP-25 and VAMP2. Substrate cleavage by BoNTs modified capture providing a method to assay toxin activity. Firstly using synaptic vesicles as a substrate, a comparison of the EC{sub 50}s for BoNT/B obtained by SPR, ELISA or flow cytometry indicated similar sensitivity although SPR assays were more rapid. Sonication of brain or neuronal cultures generated plasma membrane fragments with accessible intra-cellular epitopes adapted to measurement of BoNT/A activity. SPR responses were proportional to antigen concentration permitting detection of as little as 4 pM SNAP-25 in crude lysates. BoNT/A activity was assayed using monoclonal antibodies that specifically recognize a SNAP-25 epitope generated by the proteolytic action of the toxin. Incubation of intact primary cultured neurons with BoNT/A yielded an EC{sub 50} of 0.5 pM. The SPR biosensor method was sensitive enough to monitor BoNT/A and B activity in cells cultured in a 96-well format providing an alternative to experimental animals for toxicological assays.

  5. Selective activation of SHP2 activity by cisplatin revealed by a novel chemical probe-based assay

    SciTech Connect

    Kuo, Chun-Chen; Chu, Chi-Yuan; Lin, Jing-Jer; Lo, Lee-Chiang

    2010-01-01

    Src homology-2 (SH2) domain-containing phosphatase 2 (SHP2) is known to participate in several different signaling pathways to mediate cell growth, survival, migration, and differentiation. However, due to the lack of proper analytical tools, it is unclear whether the phosphatase activity of SHP2 is activated in most studies. We have previously developed an activity-based probe LCL2 that formed covalent linkage with catalytically active protein tyrosine phosphatases (PTPs). Here, by combining LCL2 with a SHP2 specific antibody, we established an assay system that enables the direct monitoring of SHP2 activity upon cisplatin treatment of cancer cells. The protocol is advantageous over conventional colorimetric or in-gel PTP assays as it is specific and does not require the use of radioisotope reagents. Using this assay, we found SHP2 activity was selectively activated by cisplatin. Moreover, the activation of SHP2 appeared to be specific for cisplatin as other DNA damage agents failed to activate the activity. Although the role of SHP2 activation by cisplatin treatments is still unclear to us, our results provide the first direct evidence for the activation of SHP2 during cisplatin treatments. More importantly, the concept of using activity-based probe in conjunction with target-specific antibodies could be extended to other enzyme classes.

  6. A nanostructure-initiator mass spectrometry-based enzyme activity assay

    PubMed Central

    Northen, Trent R.; Lee, Jinq-Chyi; Hoang, Linh; Raymond, Jason; Hwang, Der-Ren; Yannone, Steven M.; Wong, Chi-Huey; Siuzdak, Gary

    2008-01-01

    We describe a Nanostructure-Initiator Mass Spectrometry (NIMS) enzymatic (Nimzyme) assay in which enzyme substrates are immobilized on the mass spectrometry surface by using fluorous-phase interactions. This “soft” immobilization allows efficient desorption/ionization while also enabling the use of surface-washing steps to reduce signal suppression from complex biological samples, which results from the preferential retention of the tagged products and reactants. The Nimzyme assay is sensitive to subpicogram levels of enzyme, detects both addition and cleavage reactions (sialyltransferase and galactosidase), is applicable over a wide range of pHs and temperatures, and can measure activity directly from crude cell lysates. The ability of the Nimzyme assay to analyze complex mixtures is illustrated by identifying and directly characterizing β-1,4-galactosidase activity from a thermophilic microbial community lysate. The optimal enzyme temperature and pH were found to be 65°C and 5.5, respectively, and the activity was inhibited by both phenylethyl-β-d-thiogalactopyranoside and deoxygalactonojirimycin. Metagenomic analysis of the community suggests that the activity is from an uncultured, unsequenced γ-proteobacterium. In general, this assay provides an efficient method for detection and characterization of enzymatic activities in complex biological mixtures prior to sequencing or cloning efforts. More generally, this approach may have important applications for screening both enzymatic and inhibitor libraries, constructing and screening glycan microarrays, and complementing fluorous-phase organic synthesis. PMID:18319341

  7. Gripped by Gout: Avoiding the Ache and Agony

    MedlinePlus

    ... please review our exit disclaimer . Subscribe Gripped by Gout Avoiding the Ache and Agony Sudden, painful swelling ... toe is often the first warning sign of gout. It can affect other joints as well. Without ...

  8. [Detection of viable metabolically active yeast cells using a colorimetric assay].

    PubMed

    Růzicka, F; Holá, V

    2008-02-01

    The increasing concern of yeasts able to form biofilm brings about the need for susceptibility testing of both planktonic and biofilm cells. Detection of viability or metabolic activity of yeast cells after exposure to antimicrobials plays a key role in the assessment of susceptibility testing results. Colorimetric assays based on the color change of the medium in the presence of metabolically active cells proved suitable for this purpose. In this study, the usability of a colorimetric assay with the resazurin redox indicator for monitoring the effect of yeast inoculum density on the reduction rate was tested. As correlation between the color change rate and inoculum density was observed, approximate quantification of viable cells was possible. The assay would be of relevance to antifungal susceptibility testing in both planktonic and biofilm yeasts.

  9. Direct Proof of the In Vivo Pathogenic Role of the AChR Autoantibodies from Myasthenia Gravis Patients

    PubMed Central

    Kordas, Gregory; Lagoumintzis, George; Sideris, Sotirios; Poulas, Konstantinos; Tzartos, Socrates J.

    2014-01-01

    Several studies have suggested that the autoantibodies (autoAbs) against muscle acetylcholine receptor (AChR) of myasthenia gravis (MG) patients are the main pathogenic factor in MG; however, this belief has not yet been confirmed with direct observations. Although animals immunized with AChR or injected with anti-AChR monoclonal Abs, or with crude human MG Ig fractions exhibit MG symptoms, the pathogenic role of isolated anti-AChR autoAbs, and, more importantly, the absence of pathogenic factor(s) in the autoAb-depleted MG sera has not yet been shown by in vivo studies. Using recombinant extracellular domains of the human AChR α and β subunits, we have isolated autoAbs from the sera of four MG patients. The ability of these isolated anti-subunit Abs and of the Ab-depleted sera to passively transfer experimental autoimmune MG in Lewis rats was investigated. We found that the isolated anti-subunit Abs were at least as efficient as the corresponding whole sera or whole Ig in causing experimental MG. Abs to both α- and β-subunit were pathogenic although the anti-α-subunit were much more efficient than the anti-β-subunit ones. Interestingly, the autoAb-depleted sera were free of pathogenic activity. The later suggests that the myasthenogenic potency of the studied anti-AChR MG sera is totally due to their anti-AChR autoAbs, and therefore selective elimination of the anti-AChR autoAbs from MG patients may be an efficient therapy for MG. PMID:25259739

  10. Inhibition of Microglia Activation as a Phenotypic Assay in Early Drug Discovery

    PubMed Central

    Figuera-Losada, Mariana; Rojas, Camilo; Slusher, Barbara S.

    2014-01-01

    Complex biological processes such as inflammation, cell death, migration, proliferation, and the release of biologically active molecules can be used as outcomes in phenotypic assays during early stages of drug discovery. Although target-based approaches have been widely used over the past decades, a disproportionate number of first-in-class drugs have been identified using phenotypic screening. This review details phenotypic assays based on inhibition of microglial activation and their utility in primary and secondary screening, target validation, and pathway elucidation. The role of microglia, both in normal as well as in pathological conditions such as chronic neurodegenerative diseases, is reviewed. Methodologies to assess microglia activation in vitro are discussed in detail, and classes of therapeutic drugs known to decrease the proinflammatory and cytotoxic responses of activated microglia are appraised, including inhibitors of glutaminase, cystine/glutamate antiporter, nuclear factor κB, and mitogen-activated protein kinases. PMID:23945875

  11. nAChR agonist-induced cognition enhancement: integration of cognitive and neuronal mechanisms.

    PubMed

    Sarter, Martin; Parikh, Vinay; Howe, William M

    2009-10-01

    The identification and characterization of drugs for the treatment of cognitive disorders has been hampered by the absence of comprehensive hypotheses. Such hypotheses consist of (a) a precisely defined cognitive operation that fundamentally underlies a range of cognitive abilities and capacities and, if impaired, contributes to the manifestation of diverse cognitive symptoms; (b) defined neuronal mechanisms proposed to mediate the cognitive operation of interest; (c) evidence indicating that the putative cognition enhancer facilitates these neuronal mechanisms; (d) and evidence indicating that the cognition enhancer facilitates cognitive performance by modulating these underlying neuronal mechanisms. The evidence on the neuronal and attentional effects of nAChR agonists, specifically agonists selective for alpha4beta2* nAChRs, has begun to support such a hypothesis. nAChR agonists facilitate the detection of signals by augmenting the transient increases in prefrontal cholinergic activity that are necessary for a signal to gain control over behavior in attentional contexts. The prefrontal microcircuitry mediating these effects include alpha4beta2* nAChRs situated on the terminals of thalamic inputs and the glutamatergic stimulation of cholinergic terminals via ionotropic glutamate receptors. Collectively, this evidence forms the basis for hypothesis-guided development and characterization of cognition enhancers.

  12. Editor's Highlight: Analysis of the Effects of Cell Stress and Cytotoxicity on In Vitro Assay Activity Across a Diverse Chemical and Assay Space.

    PubMed

    Judson, Richard; Houck, Keith; Martin, Matt; Richard, Ann M; Knudsen, Thomas B; Shah, Imran; Little, Stephen; Wambaugh, John; Woodrow Setzer, R; Kothya, Parth; Phuong, Jimmy; Filer, Dayne; Smith, Doris; Reif, David; Rotroff, Daniel; Kleinstreuer, Nicole; Sipes, Nisha; Xia, Menghang; Huang, Ruili; Crofton, Kevin; Thomas, Russell S

    2016-08-01

    Chemical toxicity can arise from disruption of specific biomolecular functions or through more generalized cell stress and cytotoxicity-mediated processes. Here, responses of 1060 chemicals including pharmaceuticals, natural products, pesticidals, consumer, and industrial chemicals across a battery of 815 in vitro assay endpoints from 7 high-throughput assay technology platforms were analyzed in order to distinguish between these types of activities. Both cell-based and cell-free assays showed a rapid increase in the frequency of responses at concentrations where cell stress/cytotoxicity responses were observed in cell-based assays. Chemicals that were positive on at least 2 viability/cytotoxicity assays within the concentration range tested (typically up to 100 μM) activated a median of 12% of assay endpoints whereas those that were not cytotoxic in this concentration range activated 1.3% of the assays endpoints. The results suggest that activity can be broadly divided into: (1) specific biomolecular interactions against one or more targets (eg, receptors or enzymes) at concentrations below which overt cytotoxicity-associated activity is observed; and (2) activity associated with cell stress or cytotoxicity, which may result from triggering specific cell stress pathways, chemical reactivity, physico-chemical disruption of proteins or membranes, or broad low-affinity non-covalent interactions. Chemicals showing a greater number of specific biomolecular interactions are generally designed to be bioactive (pharmaceuticals or pesticidal active ingredients), whereas intentional food-use chemicals tended to show the fewest specific interactions. The analyses presented here provide context for use of these data in ongoing studies to predict in vivo toxicity from chemicals lacking extensive hazard assessment. PMID:27208079

  13. Editor's Highlight: Analysis of the Effects of Cell Stress and Cytotoxicity on In Vitro Assay Activity Across a Diverse Chemical and Assay Space.

    PubMed

    Judson, Richard; Houck, Keith; Martin, Matt; Richard, Ann M; Knudsen, Thomas B; Shah, Imran; Little, Stephen; Wambaugh, John; Woodrow Setzer, R; Kothya, Parth; Phuong, Jimmy; Filer, Dayne; Smith, Doris; Reif, David; Rotroff, Daniel; Kleinstreuer, Nicole; Sipes, Nisha; Xia, Menghang; Huang, Ruili; Crofton, Kevin; Thomas, Russell S

    2016-08-01

    Chemical toxicity can arise from disruption of specific biomolecular functions or through more generalized cell stress and cytotoxicity-mediated processes. Here, responses of 1060 chemicals including pharmaceuticals, natural products, pesticidals, consumer, and industrial chemicals across a battery of 815 in vitro assay endpoints from 7 high-throughput assay technology platforms were analyzed in order to distinguish between these types of activities. Both cell-based and cell-free assays showed a rapid increase in the frequency of responses at concentrations where cell stress/cytotoxicity responses were observed in cell-based assays. Chemicals that were positive on at least 2 viability/cytotoxicity assays within the concentration range tested (typically up to 100 μM) activated a median of 12% of assay endpoints whereas those that were not cytotoxic in this concentration range activated 1.3% of the assays endpoints. The results suggest that activity can be broadly divided into: (1) specific biomolecular interactions against one or more targets (eg, receptors or enzymes) at concentrations below which overt cytotoxicity-associated activity is observed; and (2) activity associated with cell stress or cytotoxicity, which may result from triggering specific cell stress pathways, chemical reactivity, physico-chemical disruption of proteins or membranes, or broad low-affinity non-covalent interactions. Chemicals showing a greater number of specific biomolecular interactions are generally designed to be bioactive (pharmaceuticals or pesticidal active ingredients), whereas intentional food-use chemicals tended to show the fewest specific interactions. The analyses presented here provide context for use of these data in ongoing studies to predict in vivo toxicity from chemicals lacking extensive hazard assessment.

  14. A chemiluminescent microtiter plate assay for sensitive detection of protein kinase activity.

    PubMed

    Lehel, C; Daniel-Issakani, S; Brasseur, M; Strulovici, B

    1997-01-15

    A chemiluminescent protein kinase assay using biotinylated substrate peptides captured on a streptavidin-coated microtiter plate and monoclonal antibodies to detect their phosphorylation is described. Assay conditions were optimized and validated for sensitive measurement of protein kinase A, protein kinase C, Ca2+/calmodulin-dependent protein kinase II (CAM-KII), receptor interacting protein, and src activities. The newly developed chemiluminescent assay has several advantages over currently used radioactive or colorimetric methods. It is highly sensitive at low enzyme and substrate concentrations and high, close to physiological ATP levels. It is fast, simple to perform and amenable to automation and high-throughput drug screening. The assay is also robust, exhibiting minimum interference from solvents and test substances from various sources. Overall, among the presently available methods for the detection of protein kinase activity, chemiluminescence was found to provide the highest sensitivity under conditions most closely mimicking the intracellular environment. This assay is expected to be useful in both academic and industrial laboratories, especially in identifying novel classes of protein kinase inhibitors.

  15. A fluorescence-based assay to monitor transcriptional activity of NFAT in living cells.

    PubMed

    Rinne, Andreas; Blatter, Lothar A

    2010-09-01

    Ca(2+)-sensitive NFAT (nuclear factor of activated T-cells) transcription factors are implicated in many pathophysiological processes in different cell types. The precise control of activation varies with NFAT isoform and cell type. Here we present feasibility of an in vivo assay (NFAT-RFP) that reports transcriptional activity of NFAT via expression of red fluorescent protein (RFP) in individual cells. This new tool allows continuous monitoring of transcriptional activity of NFAT in a physiological context in living cells. Furthermore, NFAT-RFP can be used simultaneously with NFAT-GFP fusion proteins to monitor transcriptional activity and subcellular localization of NFAT in the same cell.

  16. A Chromogenic Assay Suitable for High-Throughput Determination of Limit Dextrinase Activity in Barley Malt Extracts.

    PubMed

    Bøjstrup, Marie; Marri, Lucia; Lok, Finn; Hindsgaul, Ole

    2015-12-23

    Twenty-four malt samples were assayed for limit dextrinase activity using a chromogenic assay developed recently in our group. The assay utilizes a small soluble chromogenic substrate which is hydrolyzed selectively by limit dextrinase in a coupled assay to release the chromophore 2-chloro-4-nitrophenol. The release of the chromophore, corresponding to the activity of limit dextrinase, can be followed by measuring the UV absorption at 405 nm. The 24 malt samples represented a wide variation of limit dextrinase activities, and these activities could be clearly differentiated by the assay. The results obtained were comparable with the results obtained from a commercially available assay, Limit-Dextrizyme from Megazyme International Ireland. Furthermore, the improved assay uses a soluble substrate. That makes it well suited for high-throughput screening as it can be handled in a 96-well plate format. PMID:26615836

  17. A barium based coordination polymer for the activity assay of deoxyribonuclease I.

    PubMed

    Song, Chan; Wang, Guan-Yao; Wang, Ya-Ling; Kong, De-Ming; Wang, Yong-Jian; Li, Yue; Ruan, Wen-Juan

    2014-10-01

    A new coordination polymer which shows an unusual 2D inorganic connectivity was constructed. This compound exhibits distinct fluorescence quenching ability to the dye-labeled single-stranded DNA probes with different lengths, based on which an analytical method was developed for the activity assay of deoxyribonuclease I.

  18. Reconciling apparent variability in effects of biochar amendment on soil enzyme activities by assay optimization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We studied the effects of a biochar made from switchgrass on four soil enzymes (ß- glucosidase, ß-N-acetylglucosaminidase, lipase, and leucine aminopeptidase) to determine if biochar would consistently modify soil biological activities. Inconsistent results from enzyme assays of char-amended soils s...

  19. A chip-based assay for botulinum neurotoxin A activity in pharmaceutical preparations.

    PubMed

    Lévêque, Christian; Ferracci, Géraldine; Maulet, Yves; Grand-Masson, Chloé; Seagar, Michael; El Far, Oussama

    2015-05-01

    The production of botulinum neurotoxin A (BoNT/A) for therapeutic and cosmetic applications requires precise determination of batch potency, and the enzymatic activity of BoNT/A light chain is a crucial index that can be measured in vitro. We previously established a SNAP-25 chip-based assay using surface plasmon resonance (SPR) that is more sensitive than the standard mouse bioassay for the quantification of BoNT/A activity. We have now adapted this procedure for pharmaceutical preparations. The optimized SPR assay allowed multiple measurements on a single chip, including the kinetics of substrate cleavage. The activity of five different batches of a pharmaceutical BoNT/A preparation was determined in a blind study by SPR and found to be in agreement with data from the in vivo mouse lethality assay. Biosensor detection of specific proteolytic products has the potential to accurately monitor the activity of pharmaceutical BoNT/A preparations, and a single chip can be used to assay more than 100 samples.

  20. A specific mechanism for nonspecific activation in reporter-gene assays.

    PubMed

    Auld, Douglas S; Thorne, Natasha; Nguyen, Dac-Trung; Inglese, James

    2008-08-15

    The importance of bioluminescence in enabling a broad range of high-throughput screening (HTS) assay formats is evidenced by widespread use in industry and academia. Therefore, understanding the mechanisms by which reporter enzyme activity can be modulated by small molecules is critical to the interpretation of HTS data. In this Perspective, we provide evidence for stabilization of luciferase by inhibitors in cell-based luciferase reporter-gene assays resulting in the counterintuitive phenomenon of signal activation. These data were derived from our analysis of luciferase inhibitor compound structures and their prevalence in the Molecular Libraries Small Molecule Repository using 100 HTS experiments available in PubChem. Accordingly, we found an enrichment of luciferase inhibitors in luciferase reporter-gene activation assays but not in assays using other reporters. In addition, for several luciferase inhibitor chemotypes, we measured reporter stabilization and signal activation in cells that paralleled the inhibition determined using purified luciferase to provide further experimental support for these contrasting effects.

  1. A TR-FRET-based functional assay for screening activators of CARM1.

    PubMed

    Zeng, Hao; Wu, Jiacai; Bedford, Mark T; Sbardella, Gianluca; Hoffmann, F Michael; Bi, Kun; Xu, Wei

    2013-05-10

    Epigenetics is an emerging field that demands selective cell-permeable chemical probes to perturb, especially in vivo, the activity of specific enzymes involved in modulating the epigenetic codes. Coactivator-associated arginine methyltransferase 1 (CARM1) is a coactivator of estrogen receptor α (ERα), the main target in human breast cancer. We previously showed that twofold overexpression of CARM1 in MCF7 breast cancer cells increased the expression of ERα-target genes involved in differentiation and reduced cell proliferation, thus leading to the hypothesis that activating CARM1 by chemical activators might be therapeutically effective in breast cancer. Selective, potent, cell-permeable CARM1 activators will be essential to test this hypothesis. Here we report the development of a cell-based, time-resolved (TR) FRET assay that uses poly(A) binding protein 1 (PABP1) methylation to monitor cellular activity of CARM1. The LanthaScreen TR-FRET assay uses MCF7 cells expressing GFP-PABP1 fusion protein through BacMam gene delivery system, methyl-PABP1 specific antibody, and terbium-labeled secondary antibody. This assay has been validated as reflecting the expression and/or activity of CARM1 and optimized for high throughput screening to identify CARM1 allosteric activators. This TR-FRET platform serves as a generic tool for functional screening of cell-permeable, chemical modulators of CARM1 for elucidation of its in vivo functions. PMID:23585185

  2. Interference sources in ATP bioluminescence assay of silica nanoparticle toxicity to activated sludge.

    PubMed

    Sibag, Mark; Kim, Seung Hwan; Kim, Choah; Kim, Hee Jun; Cho, Jinwoo

    2015-06-01

    ATP measurement provides an overview of the general state of microbial activity, and thus it has proven useful for the evaluation of nanoparticle toxicity in activated sludge. ATP bioluminescence assay, however, is susceptible to interference by the components of activated sludge other than biomass. This paper presents the interference identified specific to the use of this assay after activated sludge respiration inhibition test of silica nanoparticles (OECD 209). We observed a high degree of interference (90%) in the presence of 100 mg/L silica nanoparticles and a low level of ATP being measured (0.01 μM); and 30% interference by the synthetic medium regardless of silica nanoparticle concentration and ATP level in the samples. ATP measurement in activated sludge with different MLSS concentrations revealed interference of high biomass content. In conclusion, silica nanoparticles, synthetic medium and activated sludge samples themselves interfere with ATP bioluminescence; this will need to be considered in the evaluation of silica nanoparticle toxicity to activated sludge when this type of assay is used. PMID:25892589

  3. Interference sources in ATP bioluminescence assay of silica nanoparticle toxicity to activated sludge.

    PubMed

    Sibag, Mark; Kim, Seung Hwan; Kim, Choah; Kim, Hee Jun; Cho, Jinwoo

    2015-06-01

    ATP measurement provides an overview of the general state of microbial activity, and thus it has proven useful for the evaluation of nanoparticle toxicity in activated sludge. ATP bioluminescence assay, however, is susceptible to interference by the components of activated sludge other than biomass. This paper presents the interference identified specific to the use of this assay after activated sludge respiration inhibition test of silica nanoparticles (OECD 209). We observed a high degree of interference (90%) in the presence of 100 mg/L silica nanoparticles and a low level of ATP being measured (0.01 μM); and 30% interference by the synthetic medium regardless of silica nanoparticle concentration and ATP level in the samples. ATP measurement in activated sludge with different MLSS concentrations revealed interference of high biomass content. In conclusion, silica nanoparticles, synthetic medium and activated sludge samples themselves interfere with ATP bioluminescence; this will need to be considered in the evaluation of silica nanoparticle toxicity to activated sludge when this type of assay is used.

  4. Antioxidant Activity/Capacity Measurement. 3. Reactive Oxygen and Nitrogen Species (ROS/RNS) Scavenging Assays, Oxidative Stress Biomarkers, and Chromatographic/Chemometric Assays.

    PubMed

    Apak, Reşat; Özyürek, Mustafa; Güçlü, Kubilay; Çapanoğlu, Esra

    2016-02-10

    There are many studies in which the antioxidant potential of different foods have been analyzed. However, there are still conflicting results and lack of information as a result of unstandardized assay techniques and differences between the principles of the methods applied. The measurement of antioxidant activity, especially in the case of mixtures, multifunctional or complex multiphase systems, cannot be evaluated satisfactorily using a simple antioxidant test due to the many variables influencing the results. In the literature, there are many antioxidant assays that are used to measure the total antioxidant activity/capacity of food materials. In this review, reactive oxygen and nitrogen species (ROS/RNS) scavenging assays are evaluated with respect to their mechanism, advantages, disadvantages, and potential use in food systems. On the other hand, in vivo antioxidant activity (AOA) assays including oxidative stress biomarkers and cellular-based assays are covered within the scope of this review. Finally, chromatographic and chemometric assays are reviewed, focusing on their benefits especially with respect to their time saving, cost-effective, and sensitive nature.

  5. HPLC-MTT assay: anticancer activity of aqueous garlic extract is from allicin.

    PubMed

    Lee, Jenny; Gupta, Shalini; Huang, Jin-Sheng; Jayathilaka, Lasanthi P; Lee, Bao-Shiang

    2013-05-15

    A strategy using reversed-phase high-performance liquid chromatography (HPLC), thin layer chromatography (TLC), mass spectrometry (MS), nuclear magnetic resonance (NMR), chemical synthesis, and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) cell viability assay to identify allicin as the active anticancer compound in aqueous garlic extract (AGE) is described. Changing the pH of AGE from 7.0 to 5.0 eliminated interfering molecules and enabled a clean HPLC separation of the constituents in AGE. MTT assay of the HPLC fractions identified an active fraction. Further analysis by TLC, MS, and NMR verified the active HPLC fraction as allicin. Chemically synthesized allicin was used to provide further confirmation. The results clearly identify the active compound in AGE as allicin.

  6. The Peptide Microarray-Based Resonance Light Scattering Assay for Sensitively Detecting Intracellular Kinase Activity.

    PubMed

    Li, Tao; Liu, Xia; Liu, Dianjun; Wang, Zhenxin

    2016-01-01

    The peptide microarray technology is a robust, reliable, and efficient technique for large-scale determination of enzyme activities, and high-throughput profiling of substrate/inhibitor specificities of enzymes. Here, the activities of cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA) in different cell lysates have been detected by a peptide microarray-based resonance light scattering (RLS) assay with gold nanoparticle (GNP) probes. Highly sensitive detection of PKA activity in 0.1 μg total cell proteins of SHG-44 (human glioma cell) cell lysate (corresponding to 200 cells) is achieved by a selected peptide substrate. The experimental results also demonstrate that the RLS assay can be employed to evaluate the chemical regulation of intracellular kinase activity. PMID:26490469

  7. Estimation of specific activity of 177Lu by 'saturation assay' principle using DOTA as ligand.

    PubMed

    Pillai, Ambikalmajan M R; Chakraborty, Sudipta; Das, Tapas

    2015-01-01

    Lutetium-177 is a widely used therapeutic radionuclide in targeted therapy and it is important to know its specific activity at the time of radiopharmaceutical preparation, especially for radiolabeling peptides. However, there are no direct methods for the experimental determination of the specific activity which can be readily applied in a hospital radiopharmacy. A new technique based on the 'saturation assay' principle using DOTA as the binding agent for the estimation of specific activity of (177)Lu is reported. The studies demonstrate the proof of principle of this new assay technique. The method is general and can be modified and applied for the estimation of specific activity of other metallic radionuclides by using DOTA or other suitable chelating agents.

  8. Chemical composition, antimicrobial, antiradical and anticholinesterase activity of the essential oil of Pulicaria stephanocarpa from Soqotra.

    PubMed

    Ali, Nasser A Awadh; Crouch, Rebecca A; Al-Fatimi, Mohamed A; Arnold, Norbert; Teichert, Axel; Setzer, William N; Wessjohann, Ludger

    2012-01-01

    The chemical composition of the hydrodistilled leaf essential oil from Pulicaria stephanocarpa Balf. Fil was determined by GC-MS analysis, and its antimicrobial, antioxidant and anticholinesterase (AChE) activities were evaluated. Eighty-three compounds were identified representing 97.2% of the total oil. (E)-Caryophyllene 13.4%, (E)-nerolidol 8.5%, caryophyllene oxide 8.5%, alpha-cadinol 8.2% spathulenol 6.8% and tau-cadinol 4.7%, were the main components. Antimicrobial activity of the oil, evaluated using the disc diffusion and broth dilution methods, demonstrated the highest susceptibility on Gram-positive bacteria and Candida albicans. The free radical scavenging ability of the oil was assessed by the DPPH assay to show antiradical activity with IC50 of 330 microg/mL. Moreover, the oil revealed an AChE inhibitory activity of 47% at a concentration of 200 microg/mL using Ellman's method.

  9. Endogenously released ACh and exogenous nicotine differentially facilitate long-term potentiation induction in the hippocampal CA1 region of mice.

    PubMed

    Nakauchi, Sakura; Sumikawa, Katumi

    2012-05-01

    We examined the role of α7- and β2-containing nicotinic acetylcholine receptors (nAChRs) in the induction of long-term potentiation (LTP). Theta-burst stimulation (TBS), mimicking the brain's naturally occurring theta rhythm, induced robust LTP in hippocampal slices from α7 and β2 knockout mice. This suggests TBS is capable of inducing LTP without activation of α7- or β2-containing nAChRs. However, when weak TBS was applied, the modulatory effects of nicotinic receptors on LTP induction became visible. We showed that during weak TBS, activation of α7 nAChRs occurs by the release of ACh, contributing to LTP induction. Additionally, bath-application of nicotine activated β2-containing nAChRs to promote LTP induction. Despite predicted nicotine-induced desensitization, synaptically mediated activation of α7 nAChRs still occurs in the presence of nicotine and contributed to LTP induction. Optical recording of single-stimulation-evoked excitatory activity with a voltage-sensitive dye revealed enhanced excitatory activity in the presence of nicotine. This effect of nicotine was robust during high-frequency stimulation, and was accompanied by enhanced burst excitatory postsynaptic potentials. Nicotine-induced enhancement of excitatory activity was observed in slices from α7 knockout mice, but was absent in β2 knockout mice. These results suggest that the nicotine-induced enhancement of excitatory activity is mediated by β2-containing nAChRs, and is related to the nicotine-induced facilitation of LTP induction. Thus, our study demonstrates that the activation of α7- and β2-containing nAChRs differentially facilitates LTP induction via endogenously released ACh and exogenous nicotine, respectively, in the hippocampal CA1 region of mice.

  10. Capability and limitation study of the DDT passive-active neutron waste assay instrument

    SciTech Connect

    Nicholas, N.J.; Coop, K.L.; Estep, R.J.

    1992-05-01

    The differential-dieaway-technique passive-active neutron assay system is widely used by transuranic waste generators to certify their drummed waste for eventual shipment to the Waste Isolation Pilot Plant (WIPP). Stricter criteria being established for waste emplacement at the WIPP site has led to a renewed interest in improvements to and a better understanding of current nondestructive assay (NDA) techniques. Our study includes the effects of source position, extreme matrices, high neutron backgrounds, and source self-shielding to explore the system`s capabilities and limitations and to establish a basis for comparison with other NDA systems. 11 refs.

  11. Capability and limitation study of the DDT passive-active neutron waste assay instrument

    SciTech Connect

    Nicholas, N.J.; Coop, K.L.; Estep, R.J.

    1992-05-01

    The differential-dieaway-technique passive-active neutron assay system is widely used by transuranic waste generators to certify their drummed waste for eventual shipment to the Waste Isolation Pilot Plant (WIPP). Stricter criteria being established for waste emplacement at the WIPP site has led to a renewed interest in improvements to and a better understanding of current nondestructive assay (NDA) techniques. Our study includes the effects of source position, extreme matrices, high neutron backgrounds, and source self-shielding to explore the system's capabilities and limitations and to establish a basis for comparison with other NDA systems. 11 refs.

  12. Data set of optimal parameters for colorimetric red assay of epoxide hydrolase activity.

    PubMed

    de Oliveira, Gabriel Stephani; Adriani, Patricia Pereira; Borges, Flavia Garcia; Lopes, Adriana Rios; Campana, Patricia T; Chambergo, Felipe S

    2016-09-01

    The data presented in this article are related to the research article entitled "Epoxide hydrolase of Trichoderma reesei: Biochemical properties and conformational characterization" [1]. Epoxide hydrolases (EHs) are enzymes that catalyze the hydrolysis of epoxides to the corresponding vicinal diols. This article describes the optimal parameters for the colorimetric red assay to determine the enzymatic activity, with an emphasis on the characterization of the kinetic parameters, pH optimum and thermal stability of this enzyme. The effects of reagents that are not resistant to oxidation by sodium periodate on the reactions can generate false positives and interfere with the final results of the red assay. PMID:27366781

  13. Distribution of Intravenously Administered Acetylcholinesterase Inhibitor and Acetylcholinesterase Activity in the Adrenal Gland: 11C-Donepezil PET Study in the Normal Rat

    PubMed Central

    Watabe, Tadashi; Naka, Sadahiro; Ikeda, Hayato; Horitsugi, Genki; Kanai, Yasukazu; Isohashi, Kayako; Ishibashi, Mana; Kato, Hiroki; Shimosegawa, Eku; Watabe, Hiroshi; Hatazawa, Jun

    2014-01-01

    Purpose Acetylcholinesterase (AChE) inhibitors have been used for patients with Alzheimer's disease. However, its pharmacokinetics in non-target organs other than the brain has not been clarified yet. The purpose of this study was to evaluate the relationship between the whole-body distribution of intravenously administered 11C-Donepezil (DNP) and the AChE activity in the normal rat, with special focus on the adrenal glands. Methods The distribution of 11C-DNP was investigated by PET/CT in 6 normal male Wistar rats (8 weeks old, body weight  = 220±8.9 g). A 30-min dynamic scan was started simultaneously with an intravenous bolus injection of 11C-DNP (45.0±10.7 MBq). The whole-body distribution of the 11C-DNP PET was evaluated based on the Vt (total distribution volume) by Logan-plot analysis. A fluorometric assay was performed to quantify the AChE activity in homogenized tissue solutions of the major organs. Results The PET analysis using Vt showed that the adrenal glands had the 2nd highest level of 11C-DNP in the body (following the liver) (13.33±1.08 and 19.43±1.29 ml/cm3, respectively), indicating that the distribution of 11C-DNP was the highest in the adrenal glands, except for that in the excretory organs. The AChE activity was the third highest in the adrenal glands (following the small intestine and the stomach) (24.9±1.6, 83.1±3.0, and 38.5±8.1 mU/mg, respectively), indicating high activity of AChE in the adrenal glands. Conclusions We demonstrated the whole-body distribution of 11C-DNP by PET and the AChE activity in the major organs by fluorometric assay in the normal rat. High accumulation of 11C-DNP was observed in the adrenal glands, which suggested the risk of enhanced cholinergic synaptic transmission by the use of AChE inhibitors. PMID:25225806

  14. 3D MI-DRAGON: new model for the reconstruction of US FDA drug- target network and theoretical-experimental studies of inhibitors of rasagiline derivatives for AChE.

    PubMed

    Prado-Prado, Francisco; García-Mera, Xerardo; Escobar, Manuel; Alonso, Nerea; Caamaño, Olga; Yañez, Matilde; González-Díaz, Humberto

    2012-01-01

    and/or targets. We have carried out some theoretical-experimental studies to illustrate the practical use of 3D MI-DRAGON. First, we have reported the prediction and pharmacological assay of 22 different rasagiline derivatives with possible AChE inhibitory activity. In this work, we have reviewed different computational studies on Drug- Protein models. First, we have reviewed 10 studies on DP computational models. Next, we have reviewed 2D QSAR, 3D QSAR, CoMFA, CoMSIA and Docking with different compounds to find Drug-Protein QSAR models. Last, we have developped a 3D multi-target QSAR (3D mt-QSAR) models for the prediction of the activity of new compounds against different targets or the discovery of new targets.

  15. Development and validation of an assay for urinary tissue factor activity.

    PubMed Central

    Lwaleed, B A; Chisholm, M; Francis, J L

    1999-01-01

    BACKGROUND: Activation of blood coagulation is a common complication of cancer and inflammation in both humans and experimental animals. Increased production of tissue factor--the principal initiator of the coagulation process--by endothelial cells, monocytes, and macrophages has been implicated in these conditions. AIM: To investigate whether urinary tissue factor (uTF) might reflect the state of monocyte/macrophage activation and be a useful diagnostic test. METHODS: Urine was centrifuged at 51,000 g to sediment tissue factor containing membrane vesicles. The tissue factor was then solubilised in beta-octyl-glucopyranoside and assayed in a specific chromogenic assay adapted for use in microtitre plates. RESULTS: The assay proved to be sensitive, specific, and reproducible. The normal range of uTF was relatively narrow and unaffected by age, sex, or cigarette smoking. Levels were not significantly influenced by storage of urine samples before assay or by the presence of fresh blood in the urine sample. CONCLUSIONS: This method may have diagnostic application in the study of haemostatic activation in patients with cancer and other disease states. Images PMID:10450183

  16. An optical assay of the transport activity of ClC-7

    PubMed Central

    Zanardi, Ilaria; Zifarelli, Giovanni; Pusch, Michael

    2013-01-01

    Osteoporosis, characterized by excessive osteoclast mediated bone resorption, affects millions of people worldwide representing a major public health problem. ClC-7 is a chloride-proton exchanger localized in lysosomes and in the resorption lacuna in osteoclasts where it is essential for bone resorption. Thus, drugs targeted at ClC-7 have been proposed for ameliorating osteoporosis. However, functional assays suited for high throughput screening (HTS) of ClC-7 function are lacking. Here we describe two complementary variants of purely optical assays of the transport activity of ClC-7, redirected to the plasma membrane employing a genetically encoded fluorescent Cl−/pH indicator fused to the ClC-7 protein. These simple and robust functional assays of ClC-7 transport are well-suited to be applied in HTS of small-molecule inhibitors and may help to develop drugs suited for the treatment of osteoporosis. PMID:23390581

  17. In vitro activity assays for MYST histone acetyltransferases and adaptation for high-throughput inhibitor screening

    PubMed Central

    McCullough, Cheryl E.; Marmorstein, Ronen

    2016-01-01

    Lysine acetylation is a post-translational modification that is carried out by acetyltransferases. The MYST proteins form the largest and most diverse family of acetyltransferases, which regulate gene expression, DNA repair, and cell cycle homeostasis, among other activities, by acetylating both histone and non-histone proteins. This chapter will describe methods for the preparation and biochemical characterization of MYST family acetyltransferases, including protocols for the preparation of recombinant protein, enzyme assays for measuring steady state parameters and binding assays to measure cofactor and inhibitor binding. We also provide details on adapting these assays for high throughput screening for small molecule MYST inhibitors. This chapter seeks to prepare researchers for some hurdles that they may encounter when studying the MYST proteins so that there may be better opportunity to plan appropriate controls and obtain high quality data. PMID:27372752

  18. Assay of insulator enhancer-blocking activity with the use of transient transfection.

    PubMed

    Smirnov, N A; Didych, D A; Akopov, S B; Nikolaev, L G; Sverdlov, E D

    2013-08-01

    We used a transient transfection of cultured cells with linearized plasmids to analyze the enhancer-blocking activity of potential insulators including the standard cHS4 chicken beta-globin insulator and several DNA fragments selected from the human genome sequence. About 60-80% of the potential insulators do reveal the enhancer-blocking activity when probed by the transient transfection assay. The activity of different sequences is characterized by certain tissue specificity and by dependence on the orientation of the fragments relative to the promoter. Thus, the transfection model may be used for quantitative analysis of the enhancer-blocking activity of the potential insulators. PMID:24228877

  19. Plant Compounds Enhance the Assay Sensitivity for Detection of Active Bacillus cereus Toxin

    PubMed Central

    Rasooly, Reuven; Hernlem, Bradley; He, Xiaohua; Friedman, Mendel

    2015-01-01

    Bacillus cereus is an important food pathogen, producing emetic and diarrheal syndromes, the latter mediated by enterotoxins. The ability to sensitively trace and identify this active toxin is important for food safety. This study evaluated a nonradioactive, sensitive, in vitro cell-based assay, based on B. cereus toxin inhibition of green fluorescent protein (GFP) synthesis in transduced monkey kidney Vero cells, combined with plant extracts or plant compounds that reduce viable count of B. cereus in food. The assay exhibited a dose dependent GFP inhibition response with ~25% inhibition at 50 ng/mL toxin evaluated in culture media or soy milk, rice milk or infant formula, products associated with food poisonings outbreak. The plant extracts of green tea or bitter almond and the plant compounds epicatechin or carvacrol were found to amplify the assay response to ~90% inhibition at the 50 ng/mL toxin concentration greatly increasing the sensitivity of this assay. Additional studies showed that the test formulations also inhibited the growth of the B. cereus bacteria, likely through cell membrane disruption. The results suggest that the improved highly sensitive assay for the toxin and the rapid inactivation of the pathogen producing the toxin have the potential to enhance food safety. PMID:25767986

  20. Transactivation and Coactivator Recruitment Assays for Measuring Farnesoid X Receptor Activity.

    PubMed

    Hsu, Chia-Wen Amy; Zhao, Jinghua; Xia, Menghang

    2016-01-01

    The farnesoid X receptor (FXR) is a nuclear receptor responsible for homeostasis of bile acids, lipids, and glucose. Compounds that alter endogenous FXR signaling can be used as therapeutic candidates or identified as potentially hazardous compounds depending on exposure doses and health states. Therefore, there is an increasing need for high-throughput screening assays of FXR activity to profile large numbers of environmental chemicals and drugs. This chapter describes a workflow of FXR modulator identification and characterization. To identify compounds that modulate FXR transactivation at the cellular level, we first screen compounds from the Tox21 10 K compound library in an FXR-driven beta-lactamase reporter gene assay multiplexed with a cell viability assay in the same well of the 1536-well plates. The selected compounds are then tested biochemically for their ability to modulate FXR-coactivator binding interactions using a time-resolved fluorescence resonance energy transfer (TR-FRET) coactivator assay. The assay results from the workflow can be used to prioritize compounds for more extensive investigations. PMID:27518622

  1. Plant compounds enhance the assay sensitivity for detection of active Bacillus cereus toxin.

    PubMed

    Rasooly, Reuven; Hernlem, Bradley; He, Xiaohua; Friedman, Mendel

    2015-03-01

    Bacillus cereus is an important food pathogen, producing emetic and diarrheal syndromes, the latter mediated by enterotoxins. The ability to sensitively trace and identify this active toxin is important for food safety. This study evaluated a nonradioactive, sensitive, in vitro cell-based assay, based on B. cereus toxin inhibition of green fluorescent protein (GFP) synthesis in transduced monkey kidney Vero cells, combined with plant extracts or plant compounds that reduce viable count of B. cereus in food. The assay exhibited a dose dependent GFP inhibition response with ~25% inhibition at 50 ng/mL toxin evaluated in culture media or soy milk, rice milk or infant formula, products associated with food poisonings outbreak. The plant extracts of green tea or bitter almond and the plant compounds epicatechin or carvacrol were found to amplify the assay response to ~90% inhibition at the 50 ng/mL toxin concentration greatly increasing the sensitivity of this assay. Additional studies showed that the test formulations also inhibited the growth of the B. cereus bacteria, likely through cell membrane disruption. The results suggest that the improved highly sensitive assay for the toxin and the rapid inactivation of the pathogen producing the toxin have the potential to enhance food safety. PMID:25767986

  2. An assay to measure poly(ADP ribose) glycohydrolase (PARG) activity in cells.

    PubMed

    James, Dominic I; Durant, Stephen; Eckersley, Kay; Fairweather, Emma; Griffiths, Louise A; Hamilton, Nicola; Kelly, Paul; O'Connor, Mark; Shea, Kerry; Waddell, Ian D; Ogilvie, Donald J

    2016-01-01

    After a DNA damage signal multiple polymers of ADP ribose attached to poly(ADP) ribose (PAR) polymerases (PARPs) are broken down by the enzyme poly(ADP) ribose glycohydrolase (PARG). Inhibition of PARG leads to a failure of DNA repair and small molecule inhibition of PARG has been a goal for many years. To determine whether biochemical inhibitors of PARG are active in cells we have designed an immunofluorescence assay to detect nuclear PAR after DNA damage. This 384-well assay is suitable for medium throughput high-content screening and can detect cell-permeable inhibitors of PARG from nM to µM potency. In addition, the assay has been shown to work in murine cells and in a variety of human cancer cells. Furthermore, the assay is suitable for detecting the DNA damage response induced by treatment with temozolomide and methylmethane sulfonate (MMS). Lastly, the assay has been shown to be robust over a period of several years. PMID:27610220

  3. Direct assay of glutathione peroxidase activity using high-performance capillary electrophoresis.

    PubMed

    Pascual, P; Martinez-Lara, E; Bárcena, J A; López-Barea, J; Toribio, F

    1992-10-01

    A fast, sensitive and direct method has been developed for the determination of glutathione peroxidase activity (both selenium- and non-selenium-dependent) in cell-free preparations. The assay is based on the separation and quantitation of reduced and oxidized glutathione by capillary electrophoresis. The electrophoretic separation buffer was 100 mM sodium tetraborate (pH 8.2) containing 100 mM sodium dodecylsulphate. A micellar electrokinetic mechanism took place under these conditions, and a total mass recovery was observed for both peptides. The reproducibility of migration times was excellent (less than 3% variability). A linear detector response range was observed in the range 5-50 U/ml, and both the reproducibility and accuracy were satisfied. Samples out of this linear range could be analysed by either increasing the reaction time or diluting the enzyme preparation. The results obtained with the new direct capillary electrophoresis assay were compared with those derived from a reversed phase high-performance liquid chromatographic and spectrophotometric coupled assay. A very good agreement was found between the two direct assay methods in all samples. Capillary electrophoresis is a versatile technique that allows the automation of the glutathione peroxidase assay in a reproducible manner and within a relatively short time with sufficient accuracy and precision. PMID:1430007

  4. Transactivation and Coactivator Recruitment Assays for Measuring Farnesoid X Receptor Activity.

    PubMed

    Hsu, Chia-Wen Amy; Zhao, Jinghua; Xia, Menghang

    2016-01-01

    The farnesoid X receptor (FXR) is a nuclear receptor responsible for homeostasis of bile acids, lipids, and glucose. Compounds that alter endogenous FXR signaling can be used as therapeutic candidates or identified as potentially hazardous compounds depending on exposure doses and health states. Therefore, there is an increasing need for high-throughput screening assays of FXR activity to profile large numbers of environmental chemicals and drugs. This chapter describes a workflow of FXR modulator identification and characterization. To identify compounds that modulate FXR transactivation at the cellular level, we first screen compounds from the Tox21 10 K compound library in an FXR-driven beta-lactamase reporter gene assay multiplexed with a cell viability assay in the same well of the 1536-well plates. The selected compounds are then tested biochemically for their ability to modulate FXR-coactivator binding interactions using a time-resolved fluorescence resonance energy transfer (TR-FRET) coactivator assay. The assay results from the workflow can be used to prioritize compounds for more extensive investigations.

  5. An assay to measure poly(ADP ribose) glycohydrolase (PARG) activity in cells

    PubMed Central

    James, Dominic I.; Durant, Stephen; Eckersley, Kay; Fairweather, Emma; Griffiths, Louise A.; Hamilton, Nicola; Kelly, Paul; O'Connor, Mark; Shea, Kerry; Waddell, Ian D.; Ogilvie, Donald J.

    2016-01-01

    After a DNA damage signal multiple polymers of ADP ribose attached to poly(ADP) ribose (PAR) polymerases (PARPs) are broken down by the enzyme poly(ADP) ribose glycohydrolase (PARG). Inhibition of PARG leads to a failure of DNA repair and small molecule inhibition of PARG has been a goal for many years. To determine whether biochemical inhibitors of PARG are active in cells we have designed an immunofluorescence assay to detect nuclear PAR after DNA damage. This 384-well assay is suitable for medium throughput high-content screening and can detect cell-permeable inhibitors of PARG from nM to µM potency. In addition, the assay has been shown to work in murine cells and in a variety of human cancer cells. Furthermore, the assay is suitable for detecting the DNA damage response induced by treatment with temozolomide and methylmethane sulfonate (MMS). Lastly, the assay has been shown to be robust over a period of several years. PMID:27610220

  6. A Simple Luminescent Adenylate-Cyclase Functional Assay for Evaluation of Bacillus anthracis Edema Factor Activity

    PubMed Central

    Israeli, Ma’ayan; Rotem, Shahar; Elia, Uri; Bar-Haim, Erez; Cohen, Ofer; Chitlaru, Theodor

    2016-01-01

    Edema Factor (EF), the toxic sub-unit of the Bacillus anthracis Edema Toxin (ET) is a calmodulin-dependent adenylate cyclase whose detrimental activity in the infected host results in severe edema. EF is therefore a major virulence factor of B. anthracis. We describe a simple, rapid and reliable functional adenylate-cyclase assay based on inhibition of a luciferase-mediated luminescence reaction. The assay exploits the efficient adenylate cyclase-mediated depletion of adenosine tri-phosphate (ATP), and the strict dependence on ATP of the light-emitting luciferase-catalyzed luciferin-conversion to oxyluciferin, which can be easily visualized. The assay exhibits a robust EF-dose response decrease in luminescence, which may be specifically reverted by anti-EF antibodies. The application of the assay is exemplified in: (a) determining the presence of EF in B. anthracis cultures, or its absence in cultures of EF-defective strains; (b) evaluating the anti-EF humoral response in experimental animals infected/vaccinated with B. anthracis; and (c) rapid discrimination between EF producing and non-producing bacterial colonies. Furthermore, the assay may be amenable with high-throughput screening for EF inhibitory molecules. PMID:27548219

  7. An assay to measure poly(ADP ribose) glycohydrolase (PARG) activity in cells

    PubMed Central

    James, Dominic I.; Durant, Stephen; Eckersley, Kay; Fairweather, Emma; Griffiths, Louise A.; Hamilton, Nicola; Kelly, Paul; O'Connor, Mark; Shea, Kerry; Waddell, Ian D.; Ogilvie, Donald J.

    2016-01-01

    After a DNA damage signal multiple polymers of ADP ribose attached to poly(ADP) ribose (PAR) polymerases (PARPs) are broken down by the enzyme poly(ADP) ribose glycohydrolase (PARG). Inhibition of PARG leads to a failure of DNA repair and small molecule inhibition of PARG has been a goal for many years. To determine whether biochemical inhibitors of PARG are active in cells we have designed an immunofluorescence assay to detect nuclear PAR after DNA damage. This 384-well assay is suitable for medium throughput high-content screening and can detect cell-permeable inhibitors of PARG from nM to µM potency. In addition, the assay has been shown to work in murine cells and in a variety of human cancer cells. Furthermore, the assay is suitable for detecting the DNA damage response induced by treatment with temozolomide and methylmethane sulfonate (MMS). Lastly, the assay has been shown to be robust over a period of several years.

  8. Complementary non-radioactive assays for investigation of human flap endonuclease 1 activity

    PubMed Central

    Dorjsuren, Dorjbal; Kim, Daemyung; Maloney, David J.; Wilson, David M.; Simeonov, Anton

    2011-01-01

    FEN1, a key participant in DNA replication and repair, is the major human flap endonuclease that recognizes and cleaves flap DNA structures. Deficiencies in FEN1 function or deletion of the fen1 gene have profound biological effects, including the suppression of repair of DNA damage incurred from the action of various genotoxic agents. Given the importance of FEN1 in resolving abnormal DNA structures, inhibitors of the enzyme carry a potential as enhancers of DNA-interactive anticancer drugs. To facilitate the studies of FEN1 activity and the search for novel inhibitors, we developed a pair of complementary-readout homogeneous assays utilizing fluorogenic donor/quencher and AlphaScreen chemiluminescence strategies. A previously reported FEN1 inhibitor 3-hydroxy-5-methyl-1-phenylthieno[2,3-d]pyrimidine-2,4(1H,3H)-dione displayed equal potency in the new assays, in agreement with its published IC50. The assays were optimized to a low 4 µl volume and used to investigate a set of small molecules, leading to the identification of previously-unreported FEN1 inhibitors, among which aurintricarboxylic acid and NSC-13755 (an arylstibonic derivative) displayed submicromolar potency (average IC50 of 0.59 and 0.93 µM, respectively). The availability of these simple complementary assays obviates the need for undesirable radiotracer-based assays and should facilitate efforts to develop novel inhibitors for this key biological target. PMID:21062821

  9. Plant compounds enhance the assay sensitivity for detection of active Bacillus cereus toxin.

    PubMed

    Rasooly, Reuven; Hernlem, Bradley; He, Xiaohua; Friedman, Mendel

    2015-03-11

    Bacillus cereus is an important food pathogen, producing emetic and diarrheal syndromes, the latter mediated by enterotoxins. The ability to sensitively trace and identify this active toxin is important for food safety. This study evaluated a nonradioactive, sensitive, in vitro cell-based assay, based on B. cereus toxin inhibition of green fluorescent protein (GFP) synthesis in transduced monkey kidney Vero cells, combined with plant extracts or plant compounds that reduce viable count of B. cereus in food. The assay exhibited a dose dependent GFP inhibition response with ~25% inhibition at 50 ng/mL toxin evaluated in culture media or soy milk, rice milk or infant formula, products associated with food poisonings outbreak. The plant extracts of green tea or bitter almond and the plant compounds epicatechin or carvacrol were found to amplify the assay response to ~90% inhibition at the 50 ng/mL toxin concentration greatly increasing the sensitivity of this assay. Additional studies showed that the test formulations also inhibited the growth of the B. cereus bacteria, likely through cell membrane disruption. The results suggest that the improved highly sensitive assay for the toxin and the rapid inactivation of the pathogen producing the toxin have the potential to enhance food safety.

  10. Solid-phase assay of lectin activity using HRP-conjugated glycoproteins.

    PubMed

    Kojima-Aikawa, Kyoko

    2014-01-01

    Various enzyme-conjugated probes have been widely used for detection of specific interactions between biomolecules. In the case of glycan-protein interaction, horseradish peroxidase (HRP)-conjugated glycoproteins (HRP-GPs) are useful for the detection of carbohydrate-binding activity of plant and animal lectins. In this chapter, a typical solid-phase assay of the carbohydrate-binding activity of Sophora japonica agglutinin I, a Gal/GalNAc-specific lectin, using HRP-conjugated asialofetuin is described. HRP-GPs are versatile tools for probing lectin activities in crude extracts, screening many samples at one time, and applicable not only for solid-phase binding assays but also samples which are dot- or Western-blotted onto the membrane. PMID:25117228

  11. Considerations for an active and passive scanner to assay nuclear waste drums

    SciTech Connect

    Martz, H.E.; Azevedo, S.G.; Roberson, G.P.; Schneberk, D.J.; Koenig, Z.M.; Camp, D.C. )

    1990-06-08

    Radioactive wastes are generated at many DOE laboratories, military facilities, fuel fabrication and enrichment plants, reactors, hospitals, and university research facilities. At all of these sites, wastes must be separated, packaged, categorized, and packed into some sort of container--usually 208-L (55-gal) drums--for shipment to waste-storage sites. Prior to shipment, the containers must be labeled, assayed, and certified; the assay value determines the ultimate disposition of the waste containers. An accurate nondestructive assay (NDA) method would identify all the radioisotopes present and provide a quantitative measurement of their activity in the drum. In this way, waste containers could be routed in the most cost-effective manner and without having to reopen them. Currently, the most common gamma-ray method used to assay nuclear waste drums is segmented gamma-ray scanning (SGS) spectrometer that crudely measures only the amount of {sup 235}U or {sup 239}Pu present in the drum. This method uses a spatially-averaged, integrated, emitted gamma-ray-intensity value. The emitted intensity value is corrected by an assumed constant-attenuation value determined by a spatially-averaged, transmission (or active) measurement. Unfortunately, this typically results in an inaccurate determination of the radioactive activities within a waste drum because this measurement technique is valid only for homogeneous-attenuation or known drum matrices. However, since homogeneous-attenuation matrices are not common and may be unknown, other NDA techniques based on active and Passive CT (A PCT) are under development. The active measurement (ACT) yields a better attenuation matrix for the drum, while the passive measurement (PCT) more accurately determines the identity of the radioisotopes present and their activities. 9 refs., 2 figs.

  12. Thiopurine methyl transferase activity: new extraction conditions for high-performance liquid chromatographic assay.

    PubMed

    Ganiere-Monteil, C; Pineau, A; Kergueris, M F; Azoulay, C; Bourin, M

    1999-04-30

    A new liquid-liquid extraction is described for thiopurine methyl transferase (TPMT, EC 2.1.1.67) activity determination: the use of a pH 9.5 NH4Cl buffer solution, before adding the solvent mixture, allows more rapid extraction, avoiding a centrifugation step, and reduces the global cost of analysis. After the extraction step, 6-methylmercaptopurine, synthesised during the enzymatic reaction, is determined by a liquid chromatographic assay. Analytical performance of the assay was tested on spiked erythrocyte lysates. The linear concentration range was 5-250 ng ml(-1) (r> or =0.997, slope=1.497, intercept=-0.367). The recoveries were 82.8, 89.9 and 82.2% for 75, 125 and 225 ng ml(-1), respectively. The coefficients of variation were < or =6.1% for within-day assay (n=6) and < or =9.5% for between-day assay precision (n=6; 14 days). TPMT activity was determined in a French adult Caucasian population (7 =70). The results ranged from 7.8 to 27.8 nmol h(-1) ml(-1) packed red blood cells and the frequency distribution histogram is similar to that previously published.

  13. Agonists with supraphysiological efficacy at the muscarinic M2 ACh receptor

    PubMed Central

    Schrage, R; Seemann, WK; Klöckner, J; Dallanoce, C; Racké, K; Kostenis, E; De Amici, M; Holzgrabe, U; Mohr, K

    2013-01-01

    Background and Purpose Artificial agonists may have higher efficacy for receptor activation than the physiological agonist. Until now, such ‘superagonism’ has rarely been reported for GPCRs. Iperoxo is an extremely potent muscarinic receptor agonist. We hypothesized that iperoxo is a ‘superagonist’. Experimental Approach Signalling of iperoxo and newly synthesized structural analogues was compared with that of ACh at label-free M2 muscarinic receptors applying whole cell dynamic mass redistribution, measurement of G-protein activation, evaluation of cell surface agonist binding and computation of operational efficacies. Key Results In CHO-hM2 cells, iperoxo significantly exceeds ACh in Gi/Gs signalling competence. In the orthosteric loss-of-function mutant M2-Y1043.33A, the maximum effect of iperoxo is hardly compromised in contrast to ACh. ‘Superagonism’ is preserved in the physiological cellular context of MRC-5 human lung fibroblasts. Structure–signalling relationships including iperoxo derivatives with either modified positively charged head group or altered tail suggest that ‘superagonism’ of iperoxo is mechanistically based on parallel activation of the receptor protein via two orthosteric interaction points. Conclusion and Implications Supraphysiological agonist efficacy at muscarinic M2 ACh receptors is demonstrated for the first time. In addition, a possible underlying molecular mechanism of GPCR ‘superagonism’ is provided. We suggest that iperoxo-like orthosteric GPCR activation is a new avenue towards a novel class of receptor activators. Linked Article This article is commented on by Langmead and Christopoulos, pp. 353–356 of this issue. To view this commentary visit http://dx.doi.org/10.1111/bph.12142 PMID:23062057

  14. Determining antioxidant activities of lactobacilli cell-free supernatants by cellular antioxidant assay: a comparison with traditional methods.

    PubMed

    Xing, Jiali; Wang, Gang; Zhang, Qiuxiang; Liu, Xiaoming; Gu, Zhennan; Zhang, Hao; Chen, Yong Q; Chen, Wei

    2015-01-01

    Antioxidant activity of lactic acid bacteria is associated with multiple health-protective effects. Traditional indexes of chemical antioxidant activities poorly reflect the antioxidant effects of these bacteria in vivo. Cellular antioxidant activity (CAA) assay was used in this study to determine the antioxidant activity of cell-free supernatants (CFSs) of 10 Lactobacillus strains. The performance of the CAA assay was compared with that of four chemical antioxidant activity assays, namely, DPPH radical scavenging, hydroxyl radical scavenging (HRS), reducing power (RP), and inhibition of linoleic acid peroxidation (ILAP). Results of the CAA assay were associated with those of DPPH and ILAP assays, but not with those of RP and HRS assays. The inter- and intra-specific antioxidant activities of CFS were characterized by chemical and CAA assays. L. rhamnosus CCFM 1107 displayed a high antioxidative effect similar to positive control L. rhamnosus GG ATCC 53103 in all of the assays. The CAA assay is a potential method for the detection of antioxidant activities of lactobacilli CFSs. PMID:25789875

  15. Nicotinic ACh receptors as therapeutic targets in CNS disorders.

    PubMed

    Dineley, Kelly T; Pandya, Anshul A; Yakel, Jerrel L

    2015-02-01

    The neurotransmitter acetylcholine (ACh) can regulate neuronal excitability by acting on the cys-loop cation-conducting ligand-gated nicotinic ACh receptor (nAChR) channels. These receptors are widely distributed throughout the central nervous system (CNS), being expressed on neurons and non-neuronal cells, where they participate in a variety of physiological responses such as anxiety, the central processing of pain, food intake, nicotine seeking behavior, and cognitive functions. In the mammalian brain, nine different subunits have been found thus far, which assemble into pentameric complexes with much subunit diversity; however, the α7 and α4β2 subtypes predominate in the CNS. Neuronal nAChR dysfunction is involved in the pathophysiology of many neurological disorders. Here we will briefly discuss the functional makeup and expression of the nAChRs in mammalian brain, and their role as targets in neurodegenerative diseases (in particular Alzheimer's disease, AD), neurodevelopmental disorders (in particular autism and schizophrenia), and neuropathic pain.

  16. A high-content screening assay in transgenic zebrafish identifies two novel activators of fgf signaling.

    PubMed

    Saydmohammed, Manush; Vollmer, Laura L; Onuoha, Ezenwa Obi; Vogt, Andreas; Tsang, Michael

    2011-09-01

    Zebrafish have become an invaluable vertebrate animal model to interrogate small molecule libraries for modulators of complex biological pathways and phenotypes. We have recently described the implementation of a quantitative, high-content imaging assay in multi-well plates to analyze the effects of small molecules on Fibroblast Growth Factor (FGF) signaling in vivo. Here we have evaluated the capability of the assay to identify compounds that hyperactivate FGF signaling from a test cassette of agents with known biological activities. Using a transgenic zebrafish reporter line for FGF activity, we screened 1040 compounds from an annotated library of known bioactive agents, including FDA-approved drugs. The assay identified two molecules, 8-hydroxyquinoline sulfate and pyrithione zinc, that enhanced FGF signaling in specific areas of the brain. Subsequent studies revealed that both compounds specifically expanded FGF target gene expression. Furthermore, treatment of early stage embryos with either compound resulted in dorsalized phenotypes characteristic of hyperactivation of FGF signaling in early development. Documented activities for both agents included activation of extracellular signal-related kinase (ERK), consistent with FGF hyperactivation. To conclude, we demonstrate the power of automated quantitative high-content imaging to identify small molecule modulators of FGF. PMID:21932436

  17. A continuous spectrophotometric assay that distinguishes between phospholipase A1 and A2 activities[S

    PubMed Central

    El Alaoui, Meddy; Soulère, Laurent; Noiriel, Alexandre; Popowycz, Florence; Khatib, Abdallah; Queneau, Yves; Abousalham, Abdelkarim

    2016-01-01

    A new spectrophotometric assay was developed to measure, continuously and specifically, phospholipase A1 (PLA1) or phospholipase A2 (PLA2) activities using synthetic glycerophosphatidylcholines (PCs) containing α-eleostearic acid, either at the sn-1 position [1-α-eleostearoyl-2-octadecyl-rac-glycero-3-phosphocholine (EOPC)] or at the sn-2 position [1-octadecyl-2-α-eleostearoyl-rac-glycero-3-phosphocholine (OEPC)]. The substrates were coated onto the wells of microtiter plates. A nonhydrolyzable ether bond, with a non-UV-absorbing alkyl chain, was introduced at the other sn position to prevent acyl chain migration during lipolysis. Upon enzyme action, α-eleostearic acid is liberated and then solubilized into the micellar phase. The PLA1 or PLA2 activity was measured by the increase in absorbance at 272 nm due to the transition of α-eleostearic acid from the adsorbed to the soluble state. EOPC and OEPC differentiate, with excellent accuracy, between PLA1 and PLA2 activity. Lecitase®, guinea pig pancreatic lipase-related protein 2 (known to be a PLA1 enzyme), bee venom PLA2, and porcine pancreatic PLA2 were all used to validate the assay. Compared with current assays used for continuously measuring PLA1 or PLA2 activities and/or their inhibitors, the development of this sensitive enzymatic method, using coated PC substrate analogs to natural lipids and based on the UV spectroscopic properties of α-eleostearic acid, is a significant improvement. PMID:27194811

  18. Electrochemical cells for voltammetry, coulometry, and protein activity assays of small-volume biological samples.

    PubMed

    Feldman, B J; Gheller, S F; Bailey, G F; Newton, W E; Schultz, F A

    1990-02-15

    Cell designs, experimental protocols, and results for electrochemical investigation of small quantitites of biological materials under anaerobic conditions are reported. Three types of electrochemical experiments are considered: (i) cyclic voltammetry of 20- to 100-microliters samples; (ii) direct coulometry of 0.5- to 1.5-ml samples; and (iii) an electrochemically initiated protein activity assay which includes provision for analysis of gaseous reaction products and correlation with electron flux. The first two procedures are illustrated by measurement of the formal electrode potential (E0') and number of electrons transferred (n) in redox reactions of small quantities of biological and inorganic materials. The third procedure is illustrated by assaying the activity of the MoFe protein plus Fe protein complex from Azotobacter vinelandii nitrogenase for reduction of C2H2 to C2H4.

  19. Reconciling Apparent Variability in Effects of Biochar Amendment on Soil Enzyme Activities by Assay Optimization

    SciTech Connect

    Bailey, Vanessa L.; Fansler, Sarah J.; Smith, Jeffery L.; Bolton, Harvey

    2011-02-01

    Applying biochar to soils as an ameliorative substance and mechanism for C sequestration has received a great deal of interest in light of the sustained fertility observed in the Terra Preta soils of Brazil. The effects of synthetic biochars on biochemical processes needs to be better understood in order to determine if this is a reasonable practice in managed systems. The biochar studied was formed from the fast-pyrolysis of a switchgrass feedstock. Four soil enzymes were studied: β-glucosidase, β-N-acetylglucosaminidase, lipase, and leucine aminopeptidase. Both colorimetric and fluorescent assays were used for β-glucosidase and β-N-acetylglucosaminidase. Seven days after biochar was added to microcosms of a Palouse silt loam, the fluorescence-based assays indicated increased activities of the four enzymes, compared to non-amended soil. To clarify the mechanisms of the observed effects,in the absence of soil, purified enzymes or substrates were briefly exposed to biochar and then assayed. Except for β-N-acetylglucosaminidase, the exposure of substrate to biochar reduced the apparent activity of the remaining three enzymes in vitro, suggesting that sorption reactions between the substrate and biochar either removed the substrate from the assays or impeded the enzyme binding. The activity of purified β-N-acetylglucosaminidase increased significantly following biochar exposure, suggesting a chemical stimulation of enzyme functioning. We conclude that biochar added to soil acts as a substrate that can stimulate the soil microbial biomass and its activity. Our in vitro study suggests that biochar is not biochemically inert. Biochar amendments are likely to have effects that are currently difficult to predict, and that could impact overall soil function.

  20. Rapid parallel flow cytometry assays of active GTPases using effector beads

    PubMed Central

    Buranda, Tione; BasuRay, Soumik; Swanson, Scarlett; Agola, Jacob; Bondu, Virginie; Wandinger-Ness, Angela

    2013-01-01

    We describe a rapid assay for measuring the cellular activity of small GTPases in response to a specific stimulus. Effector functionalized beads are used to quantify in parallel multiple, GTP-bound GTPases in the same cell lysate by flow cytometry. In a biologically relevant example, five different Ras family GTPases are shown for the first time to be involved in a concerted signaling cascade downstream of receptor ligation by Sin Nombre hantavirus. PMID:23928044

  1. Gold nanorods-based FRET assay for ultrasensitive detection of DNA methylation and DNA methyltransferase activity.

    PubMed

    Wang, Gang Lin; Luo, Hong Qun; Li, Nian Bing

    2014-09-21

    A fluorescence method for the detection of DNA methylation and the assay of methyltransferase activity is proposed using gold nanorods as a fluorescence quencher on the basis of fluorescence resonance energy transfer. It is demonstrated that this method is capable of detecting methyltransferase with a detection limit of 0.25 U mL(-1), which might make this method a good candidate for monitoring DNA methylation in the future. PMID:25028809

  2. Nicotinic Acetylcholine Receptor (nAChR) Dependent Chorda Tympani Taste Nerve Responses to Nicotine, Ethanol and Acetylcholine.

    PubMed

    Ren, Zuo Jun; Mummalaneni, Shobha; Qian, Jie; Baumgarten, Clive M; DeSimone, John A; Lyall, Vijay

    2015-01-01

    Nicotine elicits bitter taste by activating TRPM5-dependent and TRPM5-independent but neuronal nAChR-dependent pathways. The nAChRs represent common targets at which acetylcholine, nicotine and ethanol functionally interact in the central nervous system. Here, we investigated if the nAChRs also represent a common pathway through which the bitter taste of nicotine, ethanol and acetylcholine is transduced. To this end, chorda tympani (CT) taste nerve responses were monitored in rats, wild-type mice and TRPM5 knockout (KO) mice following lingual stimulation with nicotine free base, ethanol, and acetylcholine, in the absence and presence of nAChR agonists and antagonists. The nAChR modulators: mecamylamine, dihydro-β-erythroidine, and CP-601932 (a partial agonist of the α3β4* nAChR), inhibited CT responses to nicotine, ethanol, and acetylcholine. CT responses to nicotine and ethanol were also inhibited by topical lingual application of 8-chlorophenylthio (CPT)-cAMP and loading taste cells with [Ca2+]i by topical lingual application of ionomycin + CaCl2. In contrast, CT responses to nicotine were enhanced when TRC [Ca2+]i was reduced by topical lingual application of BAPTA-AM. In patch-clamp experiments, only a subset of isolated rat fungiform taste cells exposed to nicotine responded with an increase in mecamylamine-sensitive inward currents. We conclude that nAChRs expressed in a subset of taste cells serve as common receptors for the detection of the TRPM5-independent bitter taste of nicotine, acetylcholine and ethanol.

  3. Kinetic assays for determining in vitro APS reductase activity in plants without the use of radioactive substances.

    PubMed

    Brychkova, Galina; Yarmolinsky, Dmitry; Sagi, Moshe

    2012-09-01

    Adenosine 5'-phosphosulfate (APS) reductase (APR; EC 1.8.4.9) catalyzes the two-electron reduction of APS to sulfite and AMP, a key step in the sulfate assimilation pathway in higher plants. In spite of the importance of this enzyme, methods currently available for detection of APR activity rely on radioactive labeling and can only be performed in a very few specially equipped laboratories. Here we present two novel kinetic assays for detecting in vitro APR activity that do not require radioactive labeling. In the first assay, APS is used as substrate and reduced glutathione (GSH) as electron donor, while in the second assay APS is replaced by an APS-regenerating system in which ATP sulfurylase catalyzes APS in the reaction medium, which employs sulfate and ATP as substrates. Both kinetic assays rely on fuchsin colorimetric detection of sulfite, the final product of APR activity. Incubation of the desalted protein extract, prior to assay initiation, with tungstate that inhibits the oxidation of sulfite by sulfite oxidase activity, resulted in enhancement of the actual APR activity. The reliability of the two methods was confirmed by assaying leaf extract from Arabidopsis wild-type and APR mutants with impaired or overexpressed APR2 protein, the former lacking APR activity and the latter exhibiting much higher activity than the wild type. The assays were further tested on tomato leaves, which revealed a higher APR activity than Arabidopsis. The proposed APR assays are highly specific, technically simple and readily performed in any laboratory.

  4. A rapid bioluminescence assay for measuring myeloperoxidase activity in human plasma.

    PubMed

    Goiffon, Reece J; Martinez, Sara C; Piwnica-Worms, David

    2015-02-10

    Myeloperoxidase (MPO) is a circulating cardiovascular disease (CVD) biomarker used to estimate clinical risk and patient prognosis. Current enzyme-linked immunosorbent assays (ELISA) for MPO concentration are costly and time-intensive. Here we report a novel bioluminescence assay, designated MPO activity on a polymer surface (MAPS), for measuring MPO activity in human plasma samples using the bioluminescent substrate L-012. The method delivers a result in under an hour and is resistant to confounding effects from endogenous MPO inhibitors. In a pilot clinical study, we compared MAPS and two clinical ELISAs using 72 plasma samples from cardiac catheterization patients. Results from parallel MAPS and ELISAs were concordant within 2±11 μg l(-1) MPO with similar uncertainty and reproducibility. Results between parallel MAPS and ELISA were in better agreement than those between independent ELISAs. MAPS may provide an inexpensive and rapid assay for determining MPO activity in plasma samples from patients with CVD or potentially other immune and inflammatory disorders.

  5. A high-throughput colorimetric assay to measure the activity of glutamate decarboxylase.

    PubMed

    Yu, Kai; Hu, Sheng; Huang, Jun; Mei, Le-He

    2011-08-10

    A pH-sensitive colorimetric assay has been established to quantitatively measure glutamate decarboxylase (GAD) activity in bacterial cell extracts using a microplate format. GAD catalyzes the irreversible α-decarboxylation of L-glutamate to γ-aminobutyrate. The assay is based on the color change of bromocresol green due to an increase in pH as protons are consumed during the enzyme-catalyzed reaction. Bromocresol green was chosen as the indicator because it has a similar pK(a) to the acetate buffer used. The corresponding absorbance change at 620 nm was recorded with a microplate reader as the reaction proceeded. A difference in the enzyme preparation pH and optimal pH for GAD activity of 2.5 did not prevent this method from successfully allowing the determination of reaction kinetic parameters and the detection of improvements in enzymatic activity with a low coefficient of variance. Our assay is simple, rapid, requires minimal sample concentration and can be carried out in robotic high-throughput devices used as standard in directed evolution experiments. In addition, it is also applicable to other reactions that involve a change in pH.

  6. A rapid bioluminescence assay for measuring myeloperoxidase activity in human plasma

    PubMed Central

    Goiffon, Reece J.; Martinez, Sara C.; Piwnica-Worms, David

    2015-01-01

    Myeloperoxidase (MPO) is a circulating cardiovascular disease (CVD) biomarker used to estimate clinical risk and patient prognosis. Current enzyme-linked immunosorbent assays (ELISA) for MPO concentration are costly and time-intensive. Here we report a novel bioluminescence assay, designated MPO activity on a polymer surface (MAPS), for measuring MPO activity in human plasma samples using the bioluminescent substrate L-012. The method delivers a result in under an hour and is resistant to confounding effects from endogenous MPO inhibitors. In a pilot clinical study, we compared MAPS and two clinical ELISAs using 72 plasma samples from cardiac catheterization patients. Results from parallel MAPS and ELISAs were concordant within 2±11 μg l−1 MPO with similar uncertainty and reproducibility. Results between parallel MAPS and ELISA were in better agreement than those between independent ELISAs. MAPS may provide an inexpensive and rapid assay for determining MPO activity in plasma samples from patients with CVD or potentially other immune and inflammatory disorders. PMID:25666092

  7. Assessment of estrogenic activity in Tunisian water and wastewater by E-screen assay.

    PubMed

    Limam, Atef; Talorete, Terence P N; Ali, Mourad Ben Sik; Kawano, Mitsuko; Jenhani, Amel Ben Rejeb; Abe, Yukuo; Ghrabi, Ahmed; Isoda, Hiroko

    2007-01-01

    Wastewater and surface water samples from three wastewater treatment plants (WWTPs) and three rivers in Tunisia were assayed for estrogenic activity using the E-screen assay and enzyme-linked immunosorbent assay (ELISA). Results showed that all the Tunisian raw wastewater samples as well as the Roriche river water sample induced a strong proliferative response in human MCF-7 breast cancer cells. Tunisian raw wastewater had an average 17beta-estradiol content of 2,705.4 pg/ml, whereas that of the Roriche river was 36.7 pg/ml, which is sufficient for inducing endocrine-mediated responses in aquatic organisms. Results further showed that the Mornag WWTP, which uses the activated-sludge treatment system, has a higher estrogen removal efficiency than the stabilization ponds of the Gammart and pilot WWTPs. This study, which is the first of such studies in Tunisia, and probably the first in the North African region, underscores the need to detect and monitor the estrogenic activity of water and wastewater, given the scarcity of water in Tunisia and the detrimental impact of endocrine-disrupting compounds on the physiology of both animals and humans. PMID:18382414

  8. Development of a sensitive multi-well colorimetric assay for active NFκB

    PubMed Central

    Renard, Patricia; Ernest, Isabelle; Houbion, Andrée; Art, Muriel; Le Calvez, Hervé; Raes, Martine; Remacle, José

    2001-01-01

    The transcription factor nuclear factor κB (NFκB) is a key factor in the immune response triggered by a wide variety of molecules such as inflammatory cytokines, or some bacterial and viral products. This transcription factor represents a new target for the development of anti-inflammatory molecules, but this type of research is currently hampered by the lack of a convenient and rapid screening assay for NFκB activation. Indeed, NFκB DNA-binding capacity is traditionally estimated by radioactive gel shift assay. Here we propose a new DNA-binding assay based on the use of multi-well plates coated with a cold oligonucleotide containing the consensus binding site for NFκB. The presence of the DNA-bound transcription factor is then detected by anti-NFκB antibodies and revealed by colorimetry. This assay is easy to use, non-radioactive, highly reproducible, specific for NFκB, more sensitive than regular radioactive gel shift and very convenient for high throughput screening. PMID:11160941

  9. A Cell-Based Assay for Measuring Endogenous BcrAbl Kinase Activity and Inhibitor Resistance.

    PubMed

    Ouellette, Steven B; Noel, Brett M; Parker, Laurie L

    2016-01-01

    Kinase enzymes are an important class of drug targets, particularly in cancer. Cell-based kinase assays are needed to understand how potential kinase inhibitors act on their targets in a physiologically relevant context. Current cell-based kinase assays rely on antibody-based detection of endogenous substrates, inaccurate disease models, or indirect measurements of drug action. Here we expand on previous work from our lab to introduce a 96-well plate compatible approach for measuring cell-based kinase activity in disease-relevant human chronic myeloid leukemia cell lines using an exogenously added, multi-functional peptide substrate. Our cellular models natively express the BcrAbl oncogene and are either sensitive or have acquired resistance to well-characterized BcrAbl tyrosine kinase inhibitors. This approach measures IC50 values comparable to established methods of assessing drug potency, and its robustness indicates that it can be employed in drug discovery applications. This medium-throughput assay could bridge the gap between single target focused, high-throughput in vitro assays and lower-throughput cell-based follow-up experiments. PMID:27598410

  10. A Cell-Based Assay for Measuring Endogenous BcrAbl Kinase Activity and Inhibitor Resistance

    PubMed Central

    Ouellette, Steven B.; Noel, Brett M.; Parker, Laurie L.

    2016-01-01

    Kinase enzymes are an important class of drug targets, particularly in cancer. Cell-based kinase assays are needed to understand how potential kinase inhibitors act on their targets in a physiologically relevant context. Current cell-based kinase assays rely on antibody-based detection of endogenous substrates, inaccurate disease models, or indirect measurements of drug action. Here we expand on previous work from our lab to introduce a 96-well plate compatible approach for measuring cell-based kinase activity in disease-relevant human chronic myeloid leukemia cell lines using an exogenously added, multi-functional peptide substrate. Our cellular models natively express the BcrAbl oncogene and are either sensitive or have acquired resistance to well-characterized BcrAbl tyrosine kinase inhibitors. This approach measures IC50 values comparable to established methods of assessing drug potency, and its robustness indicates that it can be employed in drug discovery applications. This medium-throughput assay could bridge the gap between single target focused, high-throughput in vitro assays and lower-throughput cell-based follow-up experiments. PMID:27598410

  11. AChR-specific immunosuppressive therapy of myasthenia gravis.

    PubMed

    Luo, Jie; Lindstrom, Jon

    2015-10-15

    Myasthenia gravis (MG) is an organ-specific autoimmune disease characterized by muscle fatigability. In most cases, it is mediated by autoantibodies targeting muscle nicotinic acetylcholine receptors (AChRs) at the neuromuscular junction. Experimental autoimmune myasthenia gravis (EAMG) is an animal model for MG, which is usually induced by immunization with AChR purified from fish electric organ. Pathological autoantibodies to AChRs are directed at the extracellular surface, especially the main immunogenic region (MIR). Current treatments for MG can help many but not all patients. Antigen-specific immunosuppressive therapy for MG that specifically suppresses the autoimmune response without affecting the entire immune system and avoids side effects of general immunosuppression is currently unavailable. Early attempts at antigen-specific immunosuppression for EAMG using AChR extracellular domain sequences that form epitopes for pathological autoantibodies risked provoking autoimmunity rather than suppressing it. We discovered a novel approach to specific immunosuppression of EAMG with a therapeutic vaccine consisting of bacterially-expressed human AChR cytoplasmic domains, which has the potential to specifically suppress MG without danger of causing exacerbation. This approach prevents development of chronic EAMG when initiated immediately after the acute phase of EAMG, and rapidly reverses established chronic EAMG when started during the chronic phase of EAMG. Successfully treated rats exhibited long-term resistance to re-induction of EAMG. In this review we also discuss the current understanding of the mechanisms by which the therapy works. Vaccination with AChR cytoplasmic domains in adjuvant is promising as a safe, antigen-specific, potent, effective, rapidly acting, and long lasting approach to therapy of MG.

  12. A nanostructure-initiator mass spectrometry-based enzyme activity assay

    SciTech Connect

    Siuzdak, Gary; Northen, Trent R.; Lee, Jinq-Chyi; Hoang, Linh; Raymond, Jason; Hwang, Der-Ren; Yannone, Steven M.; Wong, Chi-Huey; Siuzdak, Gary

    2008-03-10

    We describe a Nanostructure-Initiator Mass Spectrometry (NIMS) enzymatic (Nimzyme) assay in which enzyme substrates are immobilized on the mass spectrometry surface by using fluorous-phase interactions. This 'soft' immobilization allows efficient desorption/ionization while also enabling the use of surface-washing steps to reduce signal suppression from complex biological samples, which results from the preferential retention of the tagged products and reactants. The Nimzyme assay is sensitive to subpicogram levels of enzyme, detects both addition and cleavage reactions (sialyltransferase and galactosidase), is applicable over a wide range of pHs and temperatures, and can measure activity directly from crude cell lysates. The ability of the Nimzyme assay to analyze complex mixtures is illustrated by identifying and directly characterizing {beta}-1,4-galactosidase activity from a thermophilic microbial community lysate. The optimal enzyme temperature and pH were found to be 65 C and 5.5, respectively, and the activity was inhibited by both phenylethyl-{beta}-d-thiogalactopyranoside and deoxygalactonojirimycin. Metagenomic analysis of the community suggests that the activity is from an uncultured, unsequenced {gamma}-proteobacterium. In general, this assay provides an efficient method for detection and characterization of enzymatic activities in complex biological mixtures prior to sequencing or cloning efforts. More generally, this approach may have important applications for screening both enzymatic and inhibitor libraries, constructing and screening glycan microarrays, and complementing fluorous-phase organic synthesis. The interest in leveraging mass spectrometry for studying enzyme activities in complex biological samples derives from its high sensitivity and specificity; however, signal suppression and significant sample preparation requirements limit its overall utility (1). Here we describe a Nanostructure-Initiator Mass Spectrometry (NIMS) enzymatic (Nimzyme

  13. A simple liposome assay for the screening of zinc ionophore activity of polyphenols.

    PubMed

    Clergeaud, Gael; Dabbagh-Bazarbachi, Husam; Ortiz, Mayreli; Fernández-Larrea, Juan B; O'Sullivan, Ciara K

    2016-04-15

    An efficient liposomal system for screening the zinc ionophore activity of a selected library consisting of the most relevant dietary polyphenols is presented. The zinc ionophore activity was demonstrated by exploring the use of zinc-specific fluorophore FluoZin-3 loaded liposomes as simple membrane tools that mimic the cell membrane. The zinc ionophore activity was demonstrated as the capacity of polyphenols to transport zinc cations across the liposome membrane and increase the zinc-specific fluorescence of the encapsulated fluorophore FluoZin-3. In addition, the zinc chelation strength of the polyphenols was also tested in a competition assay based on the fluorescence quenching of zinc-dependent fluorescence emitted by zinc-FluoZin-3 complex. Finally, the correlation between the chelation capacity and ionophore activity is demonstrated, thus underlining the sequestering or ionophoric activity that the phenolic compounds can display, thus, providing better knowledge of the importance of the structural conformation versus their biological activity. Furthermore, the assays developed can be used as tools for rapid, high-throughput screening of families of polyphenols towards different biometals. PMID:26617034

  14. A simple liposome assay for the screening of zinc ionophore activity of polyphenols.

    PubMed

    Clergeaud, Gael; Dabbagh-Bazarbachi, Husam; Ortiz, Mayreli; Fernández-Larrea, Juan B; O'Sullivan, Ciara K

    2016-04-15

    An efficient liposomal system for screening the zinc ionophore activity of a selected library consisting of the most relevant dietary polyphenols is presented. The zinc ionophore activity was demonstrated by exploring the use of zinc-specific fluorophore FluoZin-3 loaded liposomes as simple membrane tools that mimic the cell membrane. The zinc ionophore activity was demonstrated as the capacity of polyphenols to transport zinc cations across the liposome membrane and increase the zinc-specific fluorescence of the encapsulated fluorophore FluoZin-3. In addition, the zinc chelation strength of the polyphenols was also tested in a competition assay based on the fluorescence quenching of zinc-dependent fluorescence emitted by zinc-FluoZin-3 complex. Finally, the correlation between the chelation capacity and ionophore activity is demonstrated, thus underlining the sequestering or ionophoric activity that the phenolic compounds can display, thus, providing better knowledge of the importance of the structural conformation versus their biological activity. Furthermore, the assays developed can be used as tools for rapid, high-throughput screening of families of polyphenols towards different biometals.

  15. Sensitive assay of GTP cyclohydrolase I activity in rat and human tissues using radioimmunoassay of neopterin

    SciTech Connect

    Sawada, M.; Horikoshi, T.; Masada, M.; Akino, M.; Sugimoto, T.; Matsuura, S.; Nagatsu, T.

    1986-04-01

    A highly sensitive and simple assay for the activity of GTP cyclohydrolase I (EC 3.5.4.16) was established using a newly developed radioimmunoassay. D-erythro-7,8-Dihydroneopterin triphosphate formed from GTP by GTP cyclohydrolase I was oxidized by iodine and dephosphorylated by alkaline phosphatase to D-erythro-neopterin, and quantified by a radioimmunoassay for D-erythro-neopterin. This method was highly sensitive and required only 0.2 mg of rat liver tissues for the measurement of the activity. It was reproducible and can be applied for the simultaneous assay of many samples. The activity of GTP cyclohydrolase I was measured in several rat tissues. For example, the enzyme activity in rat striatum (n = 5) was 13.7 +/- 1.5 pmol/mg protein per hour (mean +/- SE), and agreed well with those obtained by high-performance liquid chromatography with fluorescence detection. The activity in the autopsy human brains (caudate nucleus) was measured by this new method for the first time. The activity in the caudate nucleus from parkinsonian patients (n = 6) was 0.82 +/- 0.56 pmol/mg protein per hour which was significantly lower than the control value, 4.22 +/- 0.43 pmol/mg protein per hour (n = 10).

  16. Progress in high-throughput assays of MGMT and APE1 activities in cell extracts.

    PubMed

    Georgiadis, Panagiotis; Polychronaki, Nektaria; Kyrtopoulos, Soterios A

    2012-08-01

    DNA repair activity is of interest as a potential biomarker of individual susceptibility to genotoxic agents. In view of the current trend for exploitation of large cohorts in molecular epidemiology projects, there is a pressing need for the development of phenotypic DNA repair assays that are high-throughput, very sensitive, inexpensive and reliable. Towards this goal we have developed and validated two phenotypic assays for the measurement of two DNA repair enzymes in cell extracts: (1) O(6)-methylguanine-DNA-methyltransferase (MGMT), which repairs the O(6)-alkylguanine-type of adducts induced in DNA by alkylating genotoxins; and (2) apurinic/apyrimidinic endonuclease 1 (APE 1), which participates in base excision repair (BER) by causing a rate-limiting DNA strand cleavage 5' to the abasic sites. The MGMT assay makes use of the fact that: (a) the enzyme works by irreversibly transferring the alkyl group from the O(6) position of guanine to a cystein residue in its active site and thereby becomes inactivated and (b) that the free base O(6)-benzylguanine (BG) is a very good substrate for MGMT. In the new assay, cell extracts are incubated with BG tagged with biotin and the resulting MGMT-BG-biotin complex is immobilized on anti-MGMT-coated microtiter plates, followed by quantitation using streptavidin-conjugated alkaline phosphatase and a chemiluminescence-producing substrate. A one-step/one-tube phenotypic assay for APE1 activity has been developed based on the use of a fluorescent molecular beacon (partially self-complementary oligonucleotide with a hairpin-loop structure carrying a fluorophore and a quencher at each end). It also contains a single tetrahydrofuran residue (THF) which is recognized and cleaved by APE1, and the subsequently formed single-stranded oligomer becomes a fluorescence signal emitter. Both assays are highly sensitive, require very small amounts of protein extracts, are relatively inexpensive and can be easily automated. They have been

  17. [Detection of endotoxin activity in water environment and analysis of influence factors for TAL assay].

    PubMed

    Zhang, Can; Liu, Wen-jun; Zhang, Ming-lu; Tian, Fang; Sun, Wen; Qian, Ling-jia; Zhan, Rui

    2013-09-01

    Endotoxins, derived from cell walls of most Gram-negative bacteria and some cyanobacteria, are common pyrogen and highly immunogenic molecules, and related to many diseases. In this paper, a detection method for endotoxin activity in water environment using kinetic-turbid assay of Tachypleus Amebocyte Lysate (TAL) was established, the influence of pH and salts on TAL assay was investigated. Results showed that it was favorable for TAL assay in the pH range of 6.0-8.4, at low pHs, inhibition results were observed and opposite results were obtained at high pHs. The pH should be adjusted by Tris-HCl (pH = 7.4) buffer before the endotoxin detection. No significant interference was shown in the detection of water containing NaCl, Na2SO4, CaCl2, MgCl2 and KCl with a concentration of less than 50 mg x L(-1), however, the inhibition occurred at the concentration up to 1000-10,000 mg x L(-1). Only 2. 5 mg x L(-1) of FeCl, Fe2(SO4)3, AlCl3 and Al2 (SO4)3 caused significant inhibition. Endotoxin activities of ultrapure water, tap water and recreational water were detected by TAL assay, and their endotoxin activities were < 0.06 EU x mL(-1), 0.46 EU x mL(-1) and 432. 68 EU x mL(-1), respectively. PMID:24288979

  18. "Singing in the Tube"--audiovisual assay of plant oil repellent activity against mosquitoes (Culex pipiens).

    PubMed

    Adams, Temitope F; Wongchai, Chatchawal; Chaidee, Anchalee; Pfeiffer, Wolfgang

    2016-01-01

    Plant essential oils have been suggested as a promising alternative to the established mosquito repellent DEET (N,N-diethyl-meta-toluamide). Searching for an assay with generally available equipment, we designed a new audiovisual assay of repellent activity against mosquitoes "Singing in the Tube," testing single mosquitoes in Drosophila cultivation tubes. Statistics with regression analysis should compensate for limitations of simple hardware. The assay was established with female Culex pipiens mosquitoes in 60 experiments, 120-h audio recording, and 2580 estimations of the distance between mosquito sitting position and the chemical. Correlations between parameters of sitting position, flight activity pattern, and flight tone spectrum were analyzed. Regression analysis of psycho-acoustic data of audio files (dB[A]) used a squared and modified sinus function determining wing beat frequency WBF ± SD (357 ± 47 Hz). Application of logistic regression defined the repelling velocity constant. The repelling velocity constant showed a decreasing order of efficiency of plant essential oils: rosemary (Rosmarinus officinalis), eucalyptus (Eucalyptus globulus), lavender (Lavandula angustifolia), citronella (Cymbopogon nardus), tea tree (Melaleuca alternifolia), clove (Syzygium aromaticum), lemon (Citrus limon), patchouli (Pogostemon cablin), DEET, cedar wood (Cedrus atlantica). In conclusion, we suggest (1) disease vector control (e.g., impregnation of bed nets) by eight plant essential oils with repelling velocity superior to DEET, (2) simple mosquito repellency testing in Drosophila cultivation tubes, (3) automated approaches and room surveillance by generally available audio equipment (dB[A]: ISO standard 226), and (4) quantification of repellent activity by parameters of the audiovisual assay defined by correlation and regression analyses.

  19. "Singing in the Tube"--audiovisual assay of plant oil repellent activity against mosquitoes (Culex pipiens).

    PubMed

    Adams, Temitope F; Wongchai, Chatchawal; Chaidee, Anchalee; Pfeiffer, Wolfgang

    2016-01-01

    Plant essential oils have been suggested as a promising alternative to the established mosquito repellent DEET (N,N-diethyl-meta-toluamide). Searching for an assay with generally available equipment, we designed a new audiovisual assay of repellent activity against mosquitoes "Singing in the Tube," testing single mosquitoes in Drosophila cultivation tubes. Statistics with regression analysis should compensate for limitations of simple hardware. The assay was established with female Culex pipiens mosquitoes in 60 experiments, 120-h audio recording, and 2580 estimations of the distance between mosquito sitting position and the chemical. Correlations between parameters of sitting position, flight activity pattern, and flight tone spectrum were analyzed. Regression analysis of psycho-acoustic data of audio files (dB[A]) used a squared and modified sinus function determining wing beat frequency WBF ± SD (357 ± 47 Hz). Application of logistic regression defined the repelling velocity constant. The repelling velocity constant showed a decreasing order of efficiency of plant essential oils: rosemary (Rosmarinus officinalis), eucalyptus (Eucalyptus globulus), lavender (Lavandula angustifolia), citronella (Cymbopogon nardus), tea tree (Melaleuca alternifolia), clove (Syzygium aromaticum), lemon (Citrus limon), patchouli (Pogostemon cablin), DEET, cedar wood (Cedrus atlantica). In conclusion, we suggest (1) disease vector control (e.g., impregnation of bed nets) by eight plant essential oils with repelling velocity superior to DEET, (2) simple mosquito repellency testing in Drosophila cultivation tubes, (3) automated approaches and room surveillance by generally available audio equipment (dB[A]: ISO standard 226), and (4) quantification of repellent activity by parameters of the audiovisual assay defined by correlation and regression analyses. PMID:26412058

  20. Development of a QPatch Automated Electrophysiology Assay for Identifying KCa3.1 Inhibitors and Activators

    PubMed Central

    Jenkins, David Paul; Yu, Weifeng; Brown, Brandon M.; Løjkner, Lars Damgaard

    2013-01-01

    Abstract The intermediate-conductance Ca2+-activated K+ channel KCa3.1 (also known as KCNN4, IK1, or the Gárdos channel) plays an important role in the activation of T and B cells, mast cells, macrophages, and microglia by regulating membrane potential, cellular volume, and calcium signaling. KCa3.1 is further involved in the proliferation of dedifferentiated vascular smooth muscle cells and fibroblast and endothelium-derived hyperpolarization responses in the vascular endothelium. Accordingly, KCa3.1 inhibitors are therapeutically interesting as immunosuppressants and for the treatment of a wide range of fibroproliferative disorders, whereas KCa3.1 activators constitute a potential new class of endothelial function preserving antihypertensives. Here, we report the development of QPatch assays for both KCa3.1 inhibitors and activators. During assay optimization, the Ca2+ sensitivity of KCa3.1 was studied using varying intracellular Ca2+ concentrations. A free Ca2+ concentration of 1 μM was chosen to optimally test inhibitors. To identify activators, which generally act as positive gating modulators, a lower Ca2+ concentration (∼200 nM) was used. The QPatch results were benchmarked against manual patch-clamp electrophysiology by determining the potency of several commonly used KCa3.1 inhibitors (TRAM-34, NS6180, ChTX) and activators (EBIO, riluzole, SKA-31). Collectively, our results demonstrate that the QPatch provides a comparable but much faster approach to study compound interactions with KCa3.1 channels in a robust and reliable assay. PMID:24351043

  1. HIGHLY SENSITIVE ASSAY FOR ANTICHOLINESTERASE COMPOUNDS USING 96 WELL PLATE FORMAT

    EPA Science Inventory

    The rapid and sensitive detection of organophosphate insecticides using a 96 well plate format is reported. Several features of this assay make it attractive for development as a laboratory-based or field screening assay. Acetylcholinesterase (AChE) was stabilized in a gelati...

  2. Fe65 does not stabilize AICD during activation of transcription in a luciferase assay

    SciTech Connect

    Huysseune, Sandra; Kienlen-Campard, Pascal; Octave, Jean-Noel . E-mail: octave@nchm.ucl.ac.be

    2007-09-21

    The APP intracellular domain (AICD) could be involved in signaling via interaction with the adaptor protein Fe65, and with the histone acetyl transferase Tip60. However, the real function of AICD and Fe65 in regulation of transcription remains controversial. In this study, the human APPGal4 fusion protein was expressed in CHO cells and the transcriptional activity of AICDGal4 was measured in a luciferase-based reporter assay. AICDGal4 was stabilized by expression of Fe65 and levels of AICDGal4 controlled luciferase activity. On the contrary, when human APP was expressed in CHO cells, coexpression of Fe65 increased luciferase activity without affecting the amount of AICD fragment. AICD produced from APP was protected from degradation by orthophenanthroline, but not by lactacystine, indicating that AICD is not a substrate of the chymotryptic activity of the proteasome. It is concluded that Fe65 can control luciferase activity without stabilizing the labile AICD fragment.

  3. An easy-to-perform photometric assay for methyltransferase activity measurements.

    PubMed

    Schäberle, Till F; Siba, Christian; Höver, Thomas; König, Gabriele M

    2013-01-01

    Methyltransferases (MTs) catalyze the transfer of a methyl group from S-adenosylmethionine (SAM) to a suitable substrate. Such methylations are important modifications in secondary metabolisms, especially on natural products produced by polyketide synthases and nonribosomal peptide synthetases, many of which are of special interest due to their prominent pharmacological activities (e.g., lovastatin, cyclosporin). To gain basic biochemical knowledge on the methylation process, it is of immense relevance to simplify methods concerning experimental problems caused by a large variety in substrates. Here, we present a photometric method to analyze MT activity by measuring SAM consumption in a coupled enzyme assay.

  4. DEVELOPMENT OF REFERENCE RANGES FOR PLASMA TOTAL CHOLINESTERASE AND BRAIN ACETYLCHOLINESTERASE ACTIVITY IN FREE-RANGING CARNABY'S BLACK-COCKATOOS (CALYPTORHYNCHUS LATIROSTRIS).

    PubMed

    Vaughan-Higgins, Rebecca; Vitali, Simone; Reiss, Andrea; Besier, Shane; Hollingsworth, Tom; Smith, Gerard

    2016-07-01

    Published avian reference ranges for plasma cholinesterase (ChE) and brain acetylcholinesterase (AChE) are numerous. However, a consistently reported recommendation is the need for species- and laboratory-specific reference ranges because of variables, including assay methods, sample storage conditions, season, and bird sex, age, and physiologic status. We developed normal reference ranges for brain AChE and plasma total ChE (tChE) activity for Carnaby's Black-Cockatoos (Calyptorhynchus latirostris) using a standardized protocol (substrate acetylthiocholine at 25 C). We report reference ranges for brain AChE (19-41 μmol/min per g, mean 21±6.38) and plasma tChE (0.41-0.53 μmol/min per mL, mean 0.47±0.11) (n=15). This information will be of use in the ongoing field investigation of a paresis-paralysis syndrome in the endangered Carnaby's Black-Cockatoos, suspected to be associated with exposure to anticholinesterase compounds and add to the paucity of reference ranges for plasma tChE and brain AChE in Australian psittacine birds.

  5. Anticholinesterase inhibitory activity of quaternary alkaloids from Tinospora crispa.

    PubMed

    Yusoff, Mashitah; Hamid, Hazrulrizawati; Houghton, Peter

    2014-01-01

    Quaternary alkaloids are the major alkaloids isolated from Tinospora species. A previous study pointed to the necessary presence of quaternary nitrogens for strong acetylcholinesterase (AChE) inhibitory activity in such alkaloids. Repeated column chromatography of the vine of Tinospora crispa extract led to the isolation of one new protoberberine alkaloid, 4,13-dihydroxy-2,8,9-trimethoxydibenzo[a,g]quinolizinium (1), along with six known alkaloids-dihydrodiscretamine (2), columbamine (3), magnoflorine (4), N-formylannonaine (5), N-formylnornuciferine (6), and N-trans-feruloyltyramine (7). The seven compounds were isolated and structurally elucidated by spectroscopic analysis. Two known alkaloids, namely, dihydrodiscretamine and columbamine are reported for the first time for this plant. The compounds were tested for AChE inhibitory activity using Ellman's method. In the AChE inhibition assay, only columbamine (3) showed strong activity with IC50 48.1 µM. The structure-activity relationships derived from these results suggest that the quaternary nitrogen in the skeleton has some effect, but that a high degree of methoxylation is more important for acetylcholinesterase inhibition. PMID:24448061

  6. Effect of nicotinic acetylcholine receptor alpha 1 (nAChRα1) peptides on rabies virus infection in neuronal cells.

    PubMed

    Sajjanar, Basavaraj; Saxena, Shikha; Bisht, Deepika; Singh, Arvind Kumar; Manjunatha Reddy, G B; Singh, Rajendra; Singh, R P; Kumar, Satish

    2016-06-01

    Rabies virus (RABV) is neurotropic and causes acute progressive encephalitis. Herein, we report the interaction of nAChRα1-subunit peptides with RABV and the effect of these peptides on RABV infection in cultured neuronal cells. Peptide sequences derived from torpedo, bovine, human and rats were synthesized and studied for their interactions with RABV using virus capture ELISA and peptide immunofluorescence. The results showed specific binding of the nAChRα1-subunit peptides to the RABV. In the virus adsorption assay, these peptides were found to inhibit the attachment of the RABV to the neuronal cells. The nAChRα1-subunit peptides inhibited the RABV infection and reduced viral gene expression in the cultured neuroblastoma (N2A) cells. Torpedo peptide sequence (T-32) had highest antiviral effect (IC50=14±3.01μM) compared to the other peptides studied. The results of the study indicated that nAChRα1-subunit peptides may act as receptor decoy molecules and inhibit the binding of virus to the native host cell receptors and hence may reduce viral infection. PMID:26656837

  7. A Caco-2 cell-based quantitative antioxidant activity assay for antioxidants.

    PubMed

    Wan, Hongxia; Liu, Dong; Yu, Xiangying; Sun, Haiyan; Li, Yan

    2015-05-15

    A Caco-2 cell-based antioxidant activity (CAA) assay for quantitative evaluation of antioxidants was developed by optimizing seeding density and culture time of Caco-2 cells, incubation time and concentration of fluorescent probe (2',7'-dichlorofluorescin diacetate, DCFH-DA), incubation way and incubation time of antioxidants (pure phytochemicals) and DCFH-DA with cells, and detection time of fluorescence. Results showed that the CAA assay was of good reproducibility and could be used to evaluate the antioxidant activity of antioxidants at the following conditions: seeding density of 5 × 10(4)/well, cell culture time of 24h, co-incubation of 60 μM DCFH-DA and pure phytochemicals with Caco-2 cells for 20 min and fluorescence recorded for 90 min. Additionally, a significant correlation was observed between CAA values and rat plasma ORAC values following the intake of antioxidants for selected pure phytochemicals (R(2) = 0.815, p < 0.01), demonstrating the good biological relevance of CAA assay.

  8. A High-Content Assay for Biosensor Validation and for Examining Stimuli that Affect Biosensor Activity.

    PubMed

    Slattery, Scott D; Hahn, Klaus M

    2014-12-01

    Biosensors are valuable tools used to monitor many different protein behaviors in vivo. Demand for new biosensors is high, but their development and characterization can be difficult. During biosensor design, it is necessary to evaluate the effects of different biosensor structures on specificity, brightness, and fluorescence responses. By co-expressing the biosensor with upstream proteins that either stimulate or inhibit the activity reported by the biosensor, one can determine the difference between the biosensor's maximally activated and inactivated state, and examine response to specific proteins. We describe here a method for biosensor validation in a 96-well plate format using an automated microscope. This protocol produces dose-response curves, enables efficient examination of many parameters, and unlike cell suspension assays, allows visual inspection (e.g., for cell health and biosensor or regulator localization). Optimization of single-chain and dual-chain Rho GTPase biosensors is addressed, but the assay is applicable to any biosensor that can be expressed or otherwise loaded in adherent cells. The assay can also be used for purposes other than biosensor validation, using a well-characterized biosensor as a readout for effects of upstream molecules.

  9. A continuous assay for foot-and-mouth disease virus 3C protease activity.

    PubMed

    Jaulent, Agnès M; Fahy, Aodhnait S; Knox, Stephen R; Birtley, James R; Roqué-Rosell, Núria; Curry, Stephen; Leatherbarrow, Robin J

    2007-09-15

    Foot-and-mouth disease virus is a highly contagious pathogen that spreads rapidly among livestock and is capable of causing widespread agricultural and economic devastation. The virus genome is translated to produce a single polypeptide chain that subsequently is cleaved by viral proteases into mature protein products, with one protease, 3C(pro), carrying out the majority of the cleavages. The highly conserved nature of this protease across different viral strains and its crucial role in viral maturation and replication make it a very desirable target for inhibitor design. However, the lack of a convenient and high-throughput assay has been a hindrance in the characterization of potential inhibitors. In this article, we report the development of a continuous assay with potential for high throughput using fluorescence resonance energy transfer-based peptide substrates. Several peptide substrates containing the 3C-specific cleavage site were synthesized, varying both the positions and separation of the fluorescent donor and quencher groups. The best substrate, with a specificity constant k(cat)/K(M) of 57.6+/-2.0M(-1) s(-1), was used in inhibition assays to further characterize the protease's activity against a range of commercially available inhibitors. The inhibition profile of the enzyme showed characteristics of both cysteine and serine proteases, with the chymotrypsin inhibitor TPCK giving stoichiometric inhibition of the enzyme and allowing active site titration of the 3C(pro).

  10. Activation of chemical promutagens by Selenastrum capricornutum in the plant cell/microbe coincubation assay

    SciTech Connect

    Gentile, J.M.; Lippert, M.; Johnson, P.; Shafer, T. )

    1990-05-01

    The critical balance of organisms living in aquatic environments is influenced by the presence and relationship of plants to those environments. However, even though plants occupy a fundamental trophic level within aquatic ecosystems, few studies have focused upon the effect of xenobiotics on aquatic plants, and even fewer studies have dealt with xenobiotic metabolism by aquatic plants. It is well established that plants can metabolize chemicals into mutagens. The impact of these unique plant-activated chemical mutagens on ecosystems, food chains and, ultimately, human health is an important question that will require intensive and integrative investigation. The plant cell/microbe coincubation assay is particularly advantageous for use with unicellular algae. The conditions of this assay are such that chemical metabolism and subsequent mutagen detection can be followed in intact algal cells under simulated field conditions. The purpose of this research was to demonstrate that a unicellular algal species could be used effectively in the plant cell/microbe coincubation assay to activate model chemical mutagens.

  11. A Fluorometric Activity Assay for Light-Regulated Cyclic-Nucleotide-Monophosphate Actuators.

    PubMed

    Schumacher, Charlotte Helene; Körschen, Heinz G; Nicol, Christopher; Gasser, Carlos; Seifert, Reinhard; Schwärzel, Martin; Möglich, Andreas

    2016-01-01

    As a transformative approach in neuroscience and cell biology, optogenetics grants control over manifold cellular events with unprecedented spatiotemporal definition, reversibility, and noninvasiveness. Sensory photoreceptors serve as genetically encoded, light-regulated actuators and hence embody the cornerstone of optogenetics. To expand the scope of optogenetics, ever more naturally occurring photoreceptors are being characterized, and synthetic photoreceptors with customized, light-regulated function are being engineered. Perturbational control over intracellular cyclic-nucleotide-monophosphate (cNMP) levels is achieved via sensory photoreceptors that catalyze the making and breaking of these second messengers in response to light. To facilitate discovery, engineering and quantitative characterization of such light-regulated cNMP actuators, we have developed an efficient fluorometric assay. Both the formation and the hydrolysis of cNMPs are accompanied by proton release which can be quantified with the fluorescent pH indicator 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF). This assay equally applies to nucleotide cyclases, e.g., blue-light-activated bPAC, and to cNMP phosphodiesterases, e.g., red-light-activated LAPD. Key benefits include potential for parallelization and automation, as well as suitability for both purified enzymes and crude cell lysates. The BCECF assay hence stands to accelerate discovery and characterization of light-regulated actuators of cNMP metabolism. PMID:26965118

  12. Visualizing repetitive diffusion activity of double-strand RNA binding proteins by single molecule fluorescence assays.

    PubMed

    Koh, Hye Ran; Wang, Xinlei; Myong, Sua

    2016-08-01

    TRBP, one of double strand RNA binding proteins (dsRBPs), is an essential cofactor of Dicer in the RNA interference pathway. Previously we reported that TRBP exhibits repetitive diffusion activity on double strand (ds)RNA in an ATP independent manner. In the TRBP-Dicer complex, the diffusion mobility of TRBP facilitates Dicer-mediated RNA cleavage. Such repetitive diffusion of dsRBPs on a nucleic acid at the nanometer scale can be appropriately captured by several single molecule detection techniques. Here, we provide a step-by-step guide to four different single molecule fluorescence assays by which the diffusion activity of dsRBPs on dsRNA can be detected. One color assay, termed protein induced fluorescence enhancement enables detection of unlabeled protein binding and diffusion on a singly labeled RNA. Two-color Fluorescence Resonance Energy Transfer (FRET) in which labeled dsRBPs is applied to labeled RNA, allows for probing the motion of protein along the RNA axis. Three color FRET reports on the diffusion movement of dsRBPs from one to the other end of RNA. The single molecule pull down assay provides an opportunity to collect dsRBPs from mammalian cells and examine the protein-RNA interaction at single molecule platform. PMID:27012177

  13. Development of a protease activity assay using heat-sensitive Tus-GFP fusion protein substrates.

    PubMed

    Askin, Samuel P; Morin, Isabelle; Schaeffer, Patrick M

    2011-08-15

    Proteases are implicated in various diseases and several have been identified as potential drug targets or biomarkers. As a result, protease activity assays that can be performed in high throughput are essential for the screening of inhibitors in drug discovery programs. Here we describe the development of a simple, general method for the characterization of protease activity and its use for inhibitor screening. GFP was genetically fused to a comparatively unstable Tus protein through an interdomain linker containing a specially designed protease site, which can be proteolyzed. When this Tus-GFP fusion protein substrate is proteolyzed it releases GFP, which remains in solution after a short heat denaturation and centrifugation step used to eliminate uncleaved Tus-GFP. Thus, the increase in GFP fluorescence is directly proportional to protease activity. We validated the protease activity assay with three different proteases, i.e., trypsin, caspase 3, and neutrophil elastase, and demonstrated that it can be used to determine protease activity and the effect of inhibitors with small sample volumes in just a few simple steps using a fluorescence plate reader.

  14. A novel protease activity assay using a protease-responsive chaperone protein

    SciTech Connect

    Sao, Kentaro; Murata, Masaharu; Fujisaki, Yuri; Umezaki, Kaori; Mori, Takeshi; Niidome, Takuro; Katayama, Yoshiki; Hashizume, Makoto

    2009-06-05

    Protease activity assays are important for elucidating protease function and for developing new therapeutic agents. In this study, a novel turbidimetric method for determining the protease activity using a protease-responsive chaperone protein is described. For this purpose, a recombinant small heat-shock protein (sHSP) with an introduced Factor Xa protease recognition site was synthesized in bacteria. This recombinant mutant, FXa-HSP, exhibited chaperone-like activity at high temperatures in cell lysates. However, the chaperone-like activity of FXa-HSP decreased dramatically following treatment with Factor Xa. Protein precipitation was subsequently observed in the cell lysates. The reaction was Factor Xa concentration-dependent and was quantitatively suppressed by a specific inhibitor for Factor Xa. Protein aggregation was detected by a simple method based on turbidimetry. The results clearly demonstrate that this assay is an effective, easy-to-use method for determining protease activities without the requirement of labeling procedures and the use of radioisotopes.

  15. Potent acetylcholinesterase inhibitors: Synthesis, biological assay and docking study of nitro acridone derivatives.

    PubMed

    Parveen, Mehtab; Aslam, Afroz; Nami, Shahab A A; Malla, Ali Mohammed; Alam, Mahboob; Lee, Dong-Ung; Rehman, Sumbul; Silva, P S Pereira; Silva, M Ramos

    2016-08-01

    The reaction of o-halobenzoic acid with aniline derivatives and their subsequent cyclization reaction yielded the acridone derivatives. The series of nitro acridone derivatives were prepared by Ullmann condensation in presence of copper as catalyst and were characterized by FTIR, (1)H, (13)C NMR and mass spectra. The structure of 5-nitro-(2-phenyl amino) benzoic acid (4) was confirmed by X-ray crystallography and was found to crystallize in P21/c space group. The in vitro efficacy of the compounds for their acetylcholinesterase (AChE) and antimicrobial inhibitory activities have been evaluated against the standard drugs Ampicillin and Gentamicin against Gram positive and Gram negative bacteria. 1,7-Dinitroacridone was found to be the most potent AChE inhibitor (IC50=0.22μM). Moreover, the compounds have been screened for their antioxidant activity using the DPPH assay. Also, docking study results were found to be in good agreement with the results obtained through in vitro experiments. The docking study further predicted possible binding conformation. PMID:27295412

  16. Complete Genome Sequence of Agrobacterium tumefaciens Ach5.

    PubMed

    Huang, Ya-Yi; Cho, Shu-Ting; Lo, Wen-Sui; Wang, Yi-Chieh; Lai, Erh-Min; Kuo, Chih-Horng

    2015-01-01

    Agrobacterium tumefaciens is a phytopathogenic bacterium that causes crown gall disease. The strain Ach5 was isolated from yarrow (Achillea ptarmica L.) and is the wild-type progenitor of other derived strains widely used for plant transformation. Here, we report the complete genome sequence of this bacterium. PMID:26044425

  17. The Ache: Genocide Continues in Paraguay. IWGIA Document No. 17.

    ERIC Educational Resources Information Center

    Munzel, Mark

    In 1972, the Paraguayan Roman Catholic Church protested against the massacre of Indians in Paraguay. This was followed by further protests from Paraguayan intellectuals. These protests led to the removal of Jesus de Pereira, one of the executors of the official Ache policy. Thus, the critics were appeased. Since the beginning of 1973, new protests…

  18. A combined molecular docking and charge density analysis is a new approach for medicinal research to understand drug-receptor interaction: curcumin-AChE model.

    PubMed

    Renuga Parameswari, A; Rajalakshmi, G; Kumaradhas, P

    2015-01-01

    In the present study, a molecular docking analysis has been performed on diketone form of curcumin molecule with acetylcholinesterase (AChE). The calculated lowest docked energy of curcumin molecule in the active site of AChE is -11.21 kcal/mol; this high negative value indicates that the molecule exhibits large binding affinity towards AChE. When the curcumin molecule present in the active site of AChE, subsequently, its conformation has altered significantly and the molecule adopts a U-shape geometry as it is linear in gas phase (before entering into the active site). This conformational transition facilitates curcumin to form strong interaction with Phe330 of acyl-binding pocket and the choline binding site with indole ring of Trp84 and Asp72. The gas phase and the active site analysis of curcumin allows to understand the conformational geometry, nature of molecular flexibility, charge density redistribution and the variation of electrostatic properties of curcumin in the active site. To obtain the gas phase structure, the curcumin molecule was optimized using Hartree-Fock and density functional methods (B3LYP) with the basis set 6-311G(∗∗). A charge density analysis on both gas phase as well as the molecule lifted from the active site was carried out using Bader's theory of atoms in molecules (AIM). The difference in molecular electrostatic potential between the two forms of curcumin displays the difference in charge distribution. The large dipole moment of curcumin (7.54 D) in the active site reflects the charge redistribution as it is much less in the gas phase (4.34 D).

  19. Research on the chemical inactivation of antibiotic activity in assays of sterility and contamination of pharmaceuticals.

    PubMed

    Negretti, F; Casetta, P

    1991-01-01

    Membrane filtration, frequently used for removing antibacterial activity in assays of sterility and contamination of the antibiotics, presents the drawback of adsorption of antibiotic to membrane. The washing with large volumes of peptone water removes partially interferences with microbial growth. We evaluated the inactivating action of some chemical substances (albumin, calcium pantothenate, heparin, hydroxylamine, tri-valent iron) on the antimicrobial activity of membranes employed for antibiotic filtration. The results are not positive for the use of chemical substances in the antibiotic activity neutralization. In fact the per cent reduction of inhibition zones ranges from -61.5% to +20.0% and the inhibiting activity on the growth of colony forming units (CFU) oscillates from 89.6% to 100%. Discovery of new neutralizing substances and severe measures of asepsis in pharmaceutical production are recommended. PMID:12041793

  20. Contribution of α4β2 nAChR in nicotine-induced intracellular calcium response and excitability of MSDB neurons.

    PubMed

    Wang, Jiangang; Wang, Yali; Wang, Yang; Wang, Ran; Zhang, Yunpeng; Zhang, Qian; Lu, Chengbiao

    2014-12-10

    The neurons of medial septal diagonal band of broca (MSDB) project to hippocampus and play an important role in MSDB-hippocampal synaptic transmission, plasticity and network oscillation. Nicotinic acetylcholine receptor (nAChR) subunits, α4β2 and α7 nAChRs, are expressed in MSDB neurons and permeable to calcium ions, which may modulate the function of MSDB neurons. The aims of this study are to determine the roles of selective nAChR activation on the calcium responses and membrane currents in MSDB neurons. Our results showed that nicotine increased calcium responses in the majority of MSDB neurons, pre-treatment of MSDB slices with a α4β2 nAChR antagonist, DhβE but not a α7 nAChR antagonist, MLA prevented nicotine-induced calcium responses. The whole cell patch clamp recordings showed that nicotine-induced inward current and acetylcholine (ACh) induced-firing activity can be largely reduced or prevented by DhβE in MSDB neurons. Surprisingly, post-treatment of α4β2 or α7 nAChR antagonists failed to block nicotine׳s role, they increased calcium responses instead. Application of calcium chelator EGTA reduced calcium responses in all neurons tested. These results suggest that there was a subtype specific modulation of nAChRs on calcium signaling and membrane currents in MSDB neurons and nAChR antagonists were also able to induce calcium responses involving a distinct mechanism.

  1. Estrogenic activity assessment of environmental chemicals using in vitro assays: identification of two new estrogenic compounds.

    PubMed Central

    Lascombe, I; Beffa, D; Rüegg, U; Tarradellas, J; Wahli, W

    2000-01-01

    Environmental chemicals with estrogenic activities have been suggested to be associated with deleterious effects in animals and humans. To characterize estrogenic chemicals and their mechanisms of action, we established in vitro and cell culture assays that detect human estrogen receptor [alpha] (hER[alpha])-mediated estrogenicity. First, we assayed chemicals to determine their ability to modulate direct interaction between the hER[alpha] and the steroid receptor coactivator-1 (SRC-1) and in a competition binding assay to displace 17ss-estradiol (E(2)). Second, we tested the chemicals for estrogen-associated transcriptional activity in the yeast estrogen screen and in the estrogen-responsive MCF-7 human breast cancer cell line. The chemicals investigated in this study were o,p'-DDT (racemic mixture and enantiomers), nonylphenol mixture (NPm), and two poorly analyzed compounds in the environment, namely, tris-4-(chlorophenyl)methane (Tris-H) and tris-4-(chlorophenyl)methanol (Tris-OH). In both yeast and MCF-7 cells, we determined estrogenic activity via the estrogen receptor (ER) for o,p'-DDT, NPm, and for the very first time, Tris-H and Tris-OH. However, unlike estrogens, none of these xenobiotics seemed to be able to induce ER/SRC-1 interactions, most likely because the conformation of the activated receptor would not allow direct contacts with this coactivator. However, these compounds were able to inhibit [(3)H]-E(2) binding to hER, which reveals a direct interaction with the receptor. In conclusion, the test compounds are estrogen mimics, but their molecular mechanism of action appears to be different from that of the natural hormone as revealed by the receptor/coactivator interaction analysis. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 PMID:10903615

  2. A high-throughput assay for modulators of NNT activity in permeabilized yeast cells.

    PubMed

    Meadows, Nicholas A; Saxty, Barbara; Albury, Mary S; Kettleborough, Catherine A; Ashcroft, Frances M; Moore, Anthony L; Cox, Roger D

    2011-08-01

    Nicotinamide nucleotide transhydrogenase (NNT) mutant mice show glucose intolerance with impaired insulin secretion during glucose tolerance tests. Uncoupling of the β cell mitochondrial metabolism due to such mutations makes NNT a novel target for therapeutics in the treatment of pathologies such as type 2 diabetes. The authors propose that increasing NNT activity would help reduce deleterious buildup of reactive oxygen species in the inner mitochondrial matrix. They have expressed human Nnt cDNA for the first time in Saccharomyces cerevisiae, and transhydrogenase activity in mitochondria isolated from these cells is six times greater than is seen in wild-type mitochondria. The same mitochondria have partially uncoupled respiration, and the cells have slower growth rates compared to cells that do not express NNT. The authors have used NNT's role as a redox-driven proton pump to develop a robust fluorimetric assay in permeabilized yeast. Screening in parallel a library of known pharmacologically active compounds (National Institute of Neurological Disorders and Stroke collection) against NNT ± cells, they demonstrate a robust and reproducible assay suitable for expansion into larger and more diverse compound sets. The identification of NNT activators may help in the elucidation of the role of NNT in mammalian cells and assessing its potential as a therapeutic target for insulin secretion disorders.

  3. Mutagenic activity of sweepings and pigments from a household-wax factory assayed with Salmonella typhimurium.

    PubMed

    Varella, S D; Pozetti, G L; Vilegas, W; Varanda, E A

    2004-12-01

    The mutagenic activity of garbage originating from a household wax industry was determined by the Salmonella/microsome assay, using the bacterial strains TA100, TA98 and YG1024. The garbage was obtained by sweeping the floor of the factory at the end of the work shift. Organic compounds were extracted by ultrasound for 30 min in dichloromethane or 70% ethanol. After evaporation of solvent, these extracts (HFS: household-wax factory sweepings) were dissolved in DMSO, and were tested for the mutagenic activity at varying concentrations (HFS-ET: 0.08-0.68 mg/plate, HFS-DCM: 0.60-7.31 mg/plate). The colouring agents (pigments) used in the production of the wax were also dissolved in DMSO and tested with the assay. The concentrations tested for each pigment were: Amaranth: 0.46-3.65 mg/plate, Auramine: 0.15-1.2 mg/plate and Rhodamine B: 0.22-1.82 mg/plate. Both ET and DCM organic extracts had mutagenic activity, especially in the YG1024 strain. The pigments behaved in a similar way, demonstrating that YG1024 was the most sensitive strain for the detection of mutagenicity, and that metabolization increased the activity. Human exposure (occupational and non-occupational) to industrial residues generated during the household-wax manufacturing and packaging process should be monitored, since this type of garbage is normally deposited in the environment without any control.

  4. Functionality and stability data of detergent purified nAChR from Torpedo using lipidic matrixes and macroscopic electrophysiology.

    PubMed

    Padilla-Morales, Luis F; Colón-Sáez, José O; González-Nieves, Joel E; Quesada-González, Orestes; Lasalde-Dominicci, José A

    2016-03-01

    The presented data provides additional information about the assessment of affinity purified nicotinic acetylcholine receptor (nAChR) rich membrane solubilized with long chain (16 saturated carbons) lysophospholipid with glycerol headgroup (LFG-16). The assessment of stability and functionality of solubilized membrane protein is a critical step prior to further crystallization trails. One of the key factors for this task is the appropriate choice of a detergent that can support nAChR activity and stability comparable to the crude membranes. The stability of the nAChR-LFG-16 complex incorporated into lipid cubic phase (LCP) was monitored for a period of 30 days by means of fluorescence recovery after photobleaching (FRAP) and the functionality was evaluated after its incorporation into Xenopus oocyte by means of the two electrode voltage clamp technique. PMID:26870753

  5. Coextracted dissolved organic carbon has a suppressive effect on the acetylcholinesterase inhibition assay.

    PubMed

    Neale, Peta A; Escher, Beate I

    2013-07-01

    The acetylcholinesterase (AChE) inhibition assay is frequently applied to detect organophosphates and carbamate pesticides in different water types, including dissolved organic carbon (DOC)-rich wastewater and surface water. The aim of the present study was to quantify the effect of coextracted DOC from different water samples on the commonly used enzyme-based AChE inhibition assay. Approximately 40% to 70% of DOC is typically recovered by solid-phase extraction, and this comprises not only organic micropollutants but also natural organic matter. The inhibition of the water extracts in the assay differed greatly from the expected mixture effects based on chemical analysis of organophosphates and carbamates. Binary mixture experiments with the known AChE inhibitor parathion and the water extracts showed reduced toxicity in comparison with predictions using the mixture models of concentration addition and independent action. In addition, the extracts and reference organic matter had a suppressive effect on a constant concentration of parathion. The present study thus indicated that concentrations of DOC as low as 2 mg carbon/L can impair the AChE inhibition assay and, consequently, that only samples with a final DOC concentration of less than 2 mgC /L are suitable for this assay. To check for potential suppression in environmental samples, standard addition experiments using an AChE-inhibiting reference compound are recommended. PMID:23424099

  6. The Role of nAChR and Calcium Signaling in Pancreatic Cancer Initiation and Progression

    PubMed Central

    Schaal, Courtney; Padmanabhan, Jaya; Chellappan, Srikumar

    2015-01-01

    Pancreatic cancer shows a strong correlation with smoking and the current therapeutic strategies have been relatively ineffective in improving the survival of patients. Efforts have been made over the past many years to understand the molecular events that drive the initiation and progression of pancreatic cancer, especially in the context of smoking. It has become clear that components of tobacco smoke not only initiate these cancers, especially pancreatic ductal adenocarcinomas (PDACs) through their mutagenic properties, but can also promote the growth and metastasis of these tumors by stimulating cell proliferation, angiogenesis, invasion and epithelial-mesenchymal transition. Studies in cell culture systems, animal models and human samples have shown that nicotinic acetylcholine receptor (nAChR) activation enhances these tumor-promoting events by channeling signaling through multiple pathways. In this context, signaling through calcium channels appear to facilitate pancreatic cancer growth by itself or downstream of nAChRs. This review article highlights the role of nAChR downstream signaling events and calcium signaling in the growth, metastasis as well as drug resistance of pancreatic cancer. PMID:26264026

  7. A fluorometric assay for measurement of mono-ADP-ribosyltransferase activity.

    PubMed

    Klebl, B M; Pette, D

    1996-08-01

    Using 1,N6-etheno NAD, a fluorescent analog of NAD, we extended an existing assay for NAD glycohydrolase to the measurement of mono-ADP-ribosyltransferase (mADP-RT) activity using agmatine as acceptor for ADP-ribose. The reaction products were analyzed by reversed-phase chromatography. In the presence of agmatine two newly formed fluorescent products were tentatively identified as ADP-ribosylagmatine anomers. Fluorescence intensity increased upon splitting the N-glycoside bondage of 1,N6-etheno NAD. Therefore, 1, N6-etheno AMP could be used for calibration. The nonradioactive assay yielded values nearly identical to those obtained with the [carbonyl-14C]NAD method. It proved to be highly reproducible, rapid, and suitable for an improved purification protocol yielding a 76,000-fold enriched mADP-RT preparation from rabbit skeletal muscle. The identity and high purity of the enzyme were confirmed immunochemically. The assay served to determine the pH optimum of the enzyme (pH 9.0) and its KM for 1,N6-etheno NAD (287 microM). PMID:8811894

  8. A Simple Assay to Screen Antimicrobial Compounds Potentiating the Activity of Current Antibiotics

    PubMed Central

    Iqbal, Junaid; Kazmi, Shahana Urooj; Khan, Naveed Ahmed

    2013-01-01

    Antibiotic resistance continues to pose a significant problem in the management of bacterial infections, despite advances in antimicrobial chemotherapy and supportive care. Here, we suggest a simple, inexpensive, and easy-to-perform assay to screen antimicrobial compounds from natural products or synthetic chemical libraries for their potential to work in tandem with the available antibiotics against multiple drug-resistant bacteria. The aqueous extract of Juglans regia tree bark was tested against representative multiple drug-resistant bacteria in the aforementioned assay to determine whether it potentiates the activity of selected antibiotics. The aqueous extract of J. regia bark was added to Mueller-Hinton agar, followed by a lawn of multiple drug-resistant bacteria, Salmonella typhi or enteropathogenic E. coli. Next, filter paper discs impregnated with different classes of antibiotics were placed on the agar surface. Bacteria incubated with extract or antibiotics alone were used as controls. The results showed a significant increase (>30%) in the zone of inhibition around the aztreonam, cefuroxime, and ampicillin discs compared with bacteria incubated with the antibiotics/extract alone. In conclusion, our assay is able to detect either synergistic or additive action of J. regia extract against multiple drug-resistant bacteria when tested with a range of antibiotics. PMID:23865073

  9. The dual-acting AChE inhibitor and H3 receptor antagonist UW-MD-72 reverses amnesia induced by scopolamine or dizocilpine in passive avoidance paradigm in rats.

    PubMed

    Sadek, Bassem; Khan, Nadia; Darras, Fouad H; Pockes, Steffen; Decker, Michael

    2016-10-15

    Both the acetylcholine esterase (AChE) and the histamine H3 receptor (H3R) are involved in the metabolism and modulation of acetylcholine release and numerous other centrally acting neurotransmitters. Hence, dual-active AChE inhibitors (AChEIs) and H3R antagonists hold potential to treat cognitive disorders like Alzheimer's disease (AD). The novel dual-acting AChEI and H3R antagonist 7-(3-(piperidin-1-yl)propoxy)-2,3-dihydropyrrolo[2,1-b]quinazolin-9(1H)-one (UW-MD-72) shows excellent selectivity profiles over the AChE's isoenzyme butyrylcholinesterase (BChE) as well as high and balanced in-vitro affinities at both AChE and hH3R with IC50 of 5.4μM on hAChE and hH3R antagonism with Ki of 2.54μM, respectively. In the current study, the effects of UW-MD-72 (1.25, 2.5, and 5mg/kg, i.p.) on memory deficits induced by the muscarinic cholinergic antagonist scopolamine (SCO) and the non-competitive N-methyl-d-aspartate (NMDA) antagonist dizocilpine (DIZ) were investigated in a step-through type passive avoidance paradigm in adult male rats applying donepezil (DOZ) and pitolisant (PIT) as reference drugs. The results observed show that SCO (2mg/kg, i.p.) and DIZ (0.1mg/kg, i.p.) significantly impaired learning and memory in rats. However, acute systemic administration of UW-MD-72 significantly ameliorated the SCO- and DIZ-induced amnesic effects. Furthermore, the ameliorating activity of UW-MD-72 (1.25mg/kg, i.p.) in DIZ-induced amnesia was partly reversed when rats were pretreated with the centrally-acting H2R antagonist zolantidine (ZOL, 10mg/kg, i.p.), but not with the CNS penetrant H1R antagonist pyrilamine (PYR, 10mg/kg, i.p.). Moreover, ameliorative effect of UW-MD-72 (1.25mg/kg, i.p.) in DIZ-induced amnesia was strongly reversed when rats were pretreated with a combination of ZOL (10mg/kg, i.p.) and SCO (1.0mg/kg, i.p.), indicating that these memory enhancing effects were, in addition to other neural circuits, observed through histaminergic H2R as well as

  10. Alpha3* and alpha 7 nAChR-mediated Ca2+ transient generation in IMR-32 neuroblastoma cells.

    PubMed

    Ween, Hilde; Thorin-Hagene, Kirsten; Andersen, Elisabeth; Grønlien, Jens Halvard; Lee, Chih-Hung; Gopalakrishnan, Murali; Malysz, John

    2010-10-01

    Alpha3-containing (alpha 3*) and alpha 7 nicotinic acetylcholine receptors (nAChRs) are expressed in human IMR-32 neuroblastoma cells and implicated in Ca(2+) signaling. In this study, we investigated the intracellular Ca(2+) transient generation evoked by selective activation of alpha 3* (agonist potency rank order: epibatidine>varenicline>nicotine approximately cytisine) and alpha 7 (rank order in the presence of alpha 7 positive allosteric modulator or PAM: A-795723>NS6784 approximately PNU-282987) using, respectively, varenicline and NS6784 (+alpha 7 PAM) by Ca(2+) imaging. Effects of inhibitors of nAChRs (MLA and mecamylamine), ER Ca(2+) ATPase pump (CPA and thapsigargin), Ca(2+)-induced Ca(2+) release (ryanodine and dantrolene), Ca(2+) channels (nitrendipine, diltiazem, and Cd(2+)), and removal of extracellular Ca(2+) were examined. alpha 7 PAMs, when tested in the presence of NS6784, were more active when added first, followed by the agonist, than in the reverse order. Removal of extracellular Ca(2+) - but not CPA, thapsigargin, ryanodine, dantrolene, nitrendipine, diltiazem, or Cd(2+) - diminished the alpha 7 agonist-evoked Ca(2+) transients. In contrast, only diltiazem and nitrendipine and removal of extracellular Ca(2+) inhibited the alpha 3*-mediated Ca(2+) transients. The differential effect of diltiazem and nitrendipine versus Cd(2+) was due to direct inhibition of alpha 3* nAChRs as revealed by Ca(2+) imaging in HEK-293 cells expressing human alpha 3 beta 4 nAChRs and patch clamp in IMR-32 cells. In summary, this study provides evidence that alpha 3* and alpha 7 nAChR agonist-evoked global Ca(2+) transient generation in IMR-32 cells does not primarily involve voltage-dependent Ca(2+) channels, intracellular Ca(2+) stores, or Ca(2+)-induced Ca(2+) release. These mechanisms may, however, be still involved in other forms of nAChR-mediated Ca(2+) signaling.

  11. Enhanced synthesis and release of dopamine in transgenic mice with gain-of-function α6* nAChRs

    PubMed Central

    Wang, Yuexiang; Lee, Jang-Won; Oh, Gyeon; Grady, Sharon R.; McIntosh, J. Michael; Brunzell, Darlene H.; Cannon, Jason R.; Drenan, Ryan M.

    2014-01-01

    α6β2* nAChRs in the ventral tegmental area (VTA) to nucleus accumbens (NAc) pathway are implicated in the response to nicotine, and recent work suggests these receptors play a role in the rewarding action of ethanol. Here, we studied mice expressing gain-of-function α6β2* nAChRs (α6L9’S mice) that are hypersensitive to nicotine and endogenous acetylcholine (ACh). Evoked extracellular dopamine (DA) levels were enhanced in α6L9’S NAc slices compared to control, non-transgenic (nonTg) slices. Extracellular DA levels in both nonTg and α6L9’S slices were further enhanced in the presence of GBR12909, suggesting intact DA transporter function in both mouse strains. Ongoing α6β2* nAChR activation by ACh plays a role in enhancing DA levels, as α-conotoxin MII completely abolished evoked DA release in α6L9’S slices and decreased spontaneous DA release from striatal synaptosomes. In HPLC experiments, α6L9’S NAc tissue contained significantly more DA, 3,4-dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA) compared to nonTg NAc tissue. Serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), and norepinephrine (NE) were unchanged in α6L9’S compared to nonTg tissue. Western blot analysis revealed increased tyrosine hydroxylase expression in α6L9’S NAc. Overall, these results show that enhanced α6β2* nAChR activity in NAc can stimulate DA production and lead to increased extracellular DA levels. PMID:24266758

  12. Quantifying microbial activity in deep subsurface sediments using a tritium based hydrognease enzyme assay

    NASA Astrophysics Data System (ADS)

    Adhikari, R.; Nickel, J.; Kallmeyer, J.

    2012-12-01

    Microbial life is widespread in Earth's subsurface and estimated to represent a significant fraction of Earth's total living biomass. However, very little is known about subsurface microbial activity and its fundamental role in biogeochemical cycles of carbon and other biologically important elements. Hydrogen is one of the most important elements in subsurface anaerobic microbial metabolism. Heterotrophic and chemoautotrophic microorganisms use hydrogen in their metabolic pathways. They either consume or produce protons for ATP synthesis. Hydrogenase (H2ase) is a ubiquitous intracellular enzyme that catalyzes the interconversion of molecular hydrogen and/or water into protons and electrons. The protons are used for the synthesis of ATP, thereby coupling energy generating metabolic processes to electron acceptors such as CO2 or sulfate. H2ase enzyme targets a key metabolic compound in cellular metabolism therefore the assay can be used as a measure for total microbial activity without the need to identify any specific metabolic process. Using the highly sensitive tritium assay we measured H2ase enzyme activity in the organic-rich sediments of Lake Van, a saline, alkaline lake in eastern Turkey, in marine sediments of the Barents Sea and in deep subseafloor sediments from the Nankai Trough. H2ase activity could be quantified at all depths of all sites but the activity distribution varied widely with depth and between sites. At the Lake Van sites H2ase activity ranged from ca. 20 mmol H2 cm-3d-1 close to the sediment-water interface to 0.5 mmol H2 cm-3d-1 at a depth of 0.8 m. In samples from the Barents Sea H2ase activity ranged between 0.1 to 2.5 mmol H2 cm-3d-1 down to a depth of 1.60 m. At all sites the sulfate reduction rate profile followed the upper part of the H2ase activity profile until sulfate reduction reached the minimum detection limit (ca. 10 pmol cm-3d-1). H2ase activity could still be quantified after the decline of sulfate reduction, indicating that

  13. A real-time fluorogenic assay for the visualization of glycoside hydrolase activity in planta.

    PubMed

    Ibatullin, Farid M; Banasiak, Alicja; Baumann, Martin J; Greffe, Lionel; Takahashi, Junko; Mellerowicz, Ewa J; Brumer, Harry

    2009-12-01

    There currently exists a diverse array of molecular probes for the in situ localization of polysaccharides, nucleic acids, and proteins in plant cells, including reporter enzyme strategies (e.g. protein-glucuronidase fusions). In contrast, however, there is a paucity of methods for the direct analysis of endogenous glycoside hydrolases and transglycosidases responsible for cell wall remodeling. To exemplify the potential of fluorogenic resorufin glycosides to address this issue, a resorufin beta-glycoside of a xylogluco-oligosaccharide (XXXG-beta-Res) was synthesized as a specific substrate for in planta analysis of XEH activity. The resorufin aglycone is particularly distinguished for high sensitivity in muro assays due to a low pK(a) (5.8) and large extinction coefficient (epsilon 62,000 M(-1) cm(-1)), long-wavelength fluorescence (excitation 571 nm/emission 585 nm), and high quantum yield (0.74) of the corresponding anion. In vitro analyses demonstrated that XXXG-beta-Res is hydrolyzed by the archetypal plant XEH, nasturtium (Tropaeolum majus) NXG1, with classical Michaelis-Menten substrate saturation kinetics and a linear dependence on both enzyme concentration and incubation time. Further, XEH activity could be visualized in real time by observing the localized increase in fluorescence in germinating nasturtium seeds and Arabidopsis (Arabidopsis thaliana) inflorescent stems by confocal microscopy. Importantly, this new in situ XEH assay provides an essential complement to the in situ xyloglucan endotransglycosylase assay, thus allowing delineation of the disparate activities encoded by xyloglucan endotransglycosylase/hydrolase genes directly in plant tissues. The observation that XXXG-beta-Res is also hydrolyzed by diverse microbial XEHs indicates that this substrate, and resorufin glycosides in general, may find broad applicability for the analysis of wall restructuring by polysaccharide hydrolases during morphogenesis and plant-microbe interactions.

  14. The antioxidant activity of sulphurous thermal water protects against oxidative DNA damage: a comet assay investigation.

    PubMed

    Braga, P C; Ceci, C; Marabini, L; Nappi, G

    2013-04-01

    Various studies have recently shown that sulphurous waters acts against the oxidants released during respiratory bursts of human neutrophils, and free radicals such as HO•, O2¯•, Tempol and Fremy's salt. However, there is still a lack of data concerning their direct protection of DNA. The aim of this study was to investigate the antigenotoxicity effects of sulphurous water, which has never been previously investigated for this purpose, using the alkaline single cell gel electrophoresis (SCGE) approach (comet assay). The comet assay is a sensitive method for assessing DNA fragmentation in individual cells in genotoxicity studies but can also be used to investigate the activity of agents that protect against DNA damage. The extent of migration was measured by means of SCGE, and DNA damage was expressed as tail moment. All of these assays were made using natural sulphurous water, degassed sulphurous water (no detectable HS), and reconstituted sulphurous water (degassed plus NaHS). DNA damages was significantly inhibited by natural water with HS concentrations of 5.0 and 2.5 μg/mL. The use of degassed water did not lead to any significant differences from baseline values, whereas the reconstituted water led to significant results overlapping those obtained using natural water. These findings confirm the importance of the presence of an HS group (reductive activity) and indicate that, in addition to their known mucolytic activity and trophic effects on respiratory mucosa, HS groups in sulphurous water also protect against oxidative DNA damage and contribute to the water's therapeutic effects on upper and lower airway inflammatory diseases.

  15. Utility of an appropriate reporter assay: Heliotrine interferes with GAL4/upstream activation sequence-driven reporter gene systems.

    PubMed

    Luckert, Claudia; Hessel, Stefanie; Lampen, Alfonso; Braeuning, Albert

    2015-10-15

    Reporter gene assays are widely used for the assessment of transcription factor activation following xenobiotic exposure of cells. A critical issue with such assays is the possibility of interference of test compounds with the test system, for example, by direct inhibition of the reporter enzyme. Here we show that the pyrrolizidine alkaloid heliotrine interferes with reporter signals derived from GAL4-based nuclear receptor transactivation assays by a mechanism independent of luciferase enzyme inhibition. These data highlight the necessity to conduct proper control experiments in order to avoid perturbation of reporter assays by test chemicals.

  16. An improved thyroid hormone reporter assay to determine the thyroid hormone-like activity of amiodarone, bithionol, closantel and rafoxanide.

    PubMed

    Matsubara, Kana; Sanoh, Seigo; Ohta, Shigeru; Kitamura, Shigeyuki; Sugihara, Kazumi; Fujimoto, Nariaki

    2012-01-01

    A number of environmental chemicals have been reported to exhibit thyroid hormone-like activity. Since thyroid hormones play a crucial role in development, it is important to identify chemicals in the environment that are capable of endocrine disruption of thyroid hormone homeostasis. In order to detect thyroid hormone-like activity, the growth of pituitary cell lines has been commonly used as a sensitive marker, albeit with limited specificity to thyroid hormones. Reporter gene assays using the thyroid hormone responsive element (TRE) connected to the luciferase reporter gene have also been developed. Thus far however, this type of assay appears to have limited sensitivity compared to cell growth assays. In the present study, we developed a highly sensitive TRE reporter gene assay by using a pituitary cell line, MtT/E-2, and by culturing cells in a serum-free medium. Our assay was developed in order to detect T3 activity at a concentration of 10(-11)M. This assay identified thyroid hormone-like activity from the antiarrhythmic drug, amiodarone, and from three anti-parasitic drugs, bithionol, closantel and rafoxanide, all commonly used in veterinary medicine. Thyroid hormone-like activity of these compounds was further confirmed by the induction of BCL3 gene expression in MtT/E-2, which is known to be regulated by thyroid hormones. Our improved assay was proved to be a sensitive tool for assessing thyroid hormone-like activity of environmental chemicals. PMID:22015988

  17. Herpes Murine Model as a Biological Assay to Test Dialyzable Leukocyte Extracts Activity

    PubMed Central

    Salinas-Jazmín, Nohemí; Estrada-Parra, Sergio; Becerril-García, Miguel Angel; Limón-Flores, Alberto Yairh; Vázquez-Leyva, Said; Pavón, Lenin; Velasco-Velázquez, Marco Antonio; Pérez-Tapia, Sonia Mayra

    2015-01-01

    Human dialyzable leukocyte extracts (DLEs) are heterogeneous mixtures of low-molecular-weight peptides that are released on disruption of peripheral blood leukocytes from healthy donors. DLEs improve clinical responses in infections, allergies, cancer, and immunodeficiencies. Transferon is a human DLE that has been registered as a hemoderivate by Mexican health authorities and commercialized nationally. To develop an animal model that could be used routinely as a quality control assay for Transferon, we standardized and validated a murine model of cutaneous HSV-1 infection. Using this model, we evaluated the activity of 27 Transferon batches. All batches improved the survival of HSV-1-infected mice, wherein average survival rose from 20.9% in control mice to 59.6% in Transferon-treated mice. The activity of Transferon correlated with increased serum levels of IFN-γ and reduced IL-6 and TNF-α concentrations. Our results demonstrate that (i) this mouse model of cutaneous herpes can be used to examine the activity of DLEs, such as Transferon; (ii) the assay can be used as a routine test for batch release; (iii) Transferon is produced with high homogeneity between batches; (iv) Transferon does not have direct virucidal, cytoprotective, or antireplicative effects; and (v) the protective effect of Transferon in vivo correlates with changes in serum cytokines. PMID:25984538

  18. A simple assay for determining activities of phosphopentomutase from a hyperthermophilic bacterium Thermotoga maritima.

    PubMed

    Moustafa, Hanan M A; Zaghloul, Taha I; Zhang, Y-H Percival

    2016-05-15

    Phosphopentomutase (PPM) catalyzes the interconversion of α-D-(deoxy)-ribose 1-phosphate and α-D-(deoxy)-ribose 5-phosphate. We developed a coupled or uncoupled enzymatic assay with an enzyme nucleoside phosphorylase for determining PPM activities on D-ribose 5-phosphate at a broad temperature range from 30 to 90 °C. This assay not only is simple and highly sensitive but also does not require any costly special instrument. Via this technology, an open reading frame TM0167 from a thermophilic bacterium Thermotoga maritima putatively encoding PPM was cloned. The recombinant PPM was overexpressed in Escherichia coli Rosetta. This enzyme has the highest activity at 90 °C. MnCl2 (0.1 mM) and 50 μM α-D-glucose 1,6-bisphosphate are cofactors. The kinetic parameters of Km and kcat are 1.2 mM and 185 s(-1) at 90 °C, respectively. The enzyme has a half-life time of up to 156 min at 90 °C. This enzyme is the most active and thermostable PPM reported to date. PMID:26924489

  19. Herpes murine model as a biological assay to test dialyzable leukocyte extracts activity.

    PubMed

    Salinas-Jazmín, Nohemí; Estrada-Parra, Sergio; Becerril-García, Miguel Angel; Limón-Flores, Alberto Yairh; Vázquez-Leyva, Said; Medina-Rivero, Emilio; Pavón, Lenin; Velasco-Velázquez, Marco Antonio; Pérez-Tapia, Sonia Mayra

    2015-01-01

    Human dialyzable leukocyte extracts (DLEs) are heterogeneous mixtures of low-molecular-weight peptides that are released on disruption of peripheral blood leukocytes from healthy donors. DLEs improve clinical responses in infections, allergies, cancer, and immunodeficiencies. Transferon is a human DLE that has been registered as a hemoderivate by Mexican health authorities and commercialized nationally. To develop an animal model that could be used routinely as a quality control assay for Transferon, we standardized and validated a murine model of cutaneous HSV-1 infection. Using this model, we evaluated the activity of 27 Transferon batches. All batches improved the survival of HSV-1-infected mice, wherein average survival rose from 20.9% in control mice to 59.6% in Transferon-treated mice. The activity of Transferon correlated with increased serum levels of IFN-γ and reduced IL-6 and TNF-α concentrations. Our results demonstrate that (i) this mouse model of cutaneous herpes can be used to examine the activity of DLEs, such as Transferon; (ii) the assay can be used as a routine test for batch release; (iii) Transferon is produced with high homogeneity between batches; (iv) Transferon does not have direct virucidal, cytoprotective, or antireplicative effects; and (v) the protective effect of Transferon in vivo correlates with changes in serum cytokines.

  20. Improved assay for cholesterol 7 alpha-hydroxylase activity using phospholipid liposome solubilized substrate

    SciTech Connect

    Junker, L.H.; Story, J.A.

    1985-10-01

    A persistent problem in measurement of cholesterol 7 alpha-hydroxylase (7 alpha-OHase) activity by isotope incorporation has been solubilization of cholesterol substrate. Solubilization with Tween 20, for example, resulted in a 75% reduction in 7 alpha-OHase activity after a 60 min incubation of substrate with microsomes. Incorporation of cholesterol substrate into small, unilamellar phospholipid vesicles (liposomes) prevented this effect, resulting in a 50% increase in activity over the same 60 min incubation at optimal concentrations. Using cholesterol in liposomes as substrate, standard assay conditions were determined to be: preparation of liposomes with 180 microM cholesterol substrate and 0.5 mg phospholipid/assay; incubation of these liposomes with 0.5 mg microsomal protein at 37 C for 60 min; addition of a NADPH generating system to start the reaction, and incubation at 37 C for 30 min before stopping the reaction and determining the amount of 7 alpha-hydroxycholesterol formed. This method provides a sensitive and reliable alternative to methods which require more sophisticated equipment and allows total control of substrate concentration in a form readily accessible to the enzyme.

  1. A plaque assay for malignant catarrhal fever virus and virus neutralizing activity.

    PubMed

    Hazlett, D T

    1980-05-01

    A cell-free strain of malignant catarrhal fever virus which produced a readily recognizable cytopathic effect was obtained by serial passage of the virus in a rabbit kidney cell line. Plaque assay of the virus was more rapid and gave higher titres 11 days postinoculation than tube titration, but the latter advantage decreased with a longer incubation period. Plaques were clear with sharp edges and measured 0.5 to 2 mm in diameter after 15 days. A plaque neutralization test was developed and successfully employed for the titration of malignant catarrhal fever virus neutralizing activity in the sera and nasal secretions of blue wildebeest.

  2. A chromism-based assay (CHROBA) technique for in situ detection of protein kinase activity.

    PubMed

    Tomizaki, Kin-ya; Jie, Xu; Mihara, Hisakazu

    2005-03-15

    A unique chromism-based assay technique (CHROBA) using photochromic spiropyran-containing peptides has been firstly established for detection of protein kinase A-catalyzed phosphorylation. The alternative method has advantages that avoid isolation and/or immobilization of kinase substrates to remove excess reagents including nonreactive isotope-labeled ATP or fluorescently-labeled anti-phosphoamino acid antibodies from the reaction mixture. Such a novel protocol based on thermocoloration of the spiropyran moiety in the peptide can offer not only an efficient screening method of potent kinase substrates but also a versatile analytical tool for monitoring other post-translational modification activities. PMID:15745830

  3. Comparative Antimicrobial Activities of Aerosolized Sodium Hypochlorite, Chlorine Dioxide, and Electrochemically Activated Solutions Evaluated Using a Novel Standardized Assay

    PubMed Central

    Thorn, R. M. S.; Robinson, G. M.

    2013-01-01

    The main aim of this study was to develop a standardized experimental assay to enable differential antimicrobial comparisons of test biocidal aerosols. This study represents the first chlorine-matched comparative assessment of the antimicrobial activities of aerosolized sodium hypochlorite, chlorine dioxide, and electrochemically activated solution (ECAS) to determine their relative abilities to decontaminate various surface-associated health care-relevant microbial challenges. Standard microbiological challenges were developed by surface-associating typed Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus subtilis spores, or a clinical methicillin-resistant S. aureus (MRSA) strain on stainless steel, polypropylene, or fabric. All test coupons were subjected to 20-min biocidal aerosols of chlorine-matched (100 ppm) sodium hypochlorite, chlorine dioxide, or ECAS within a standard aerosolization chamber using a commercial humidifier under defined conditions. Biocidal treatment type and material surface had a significant effect on the number of microorganisms recovered from various material surfaces following treatment exposure. Under the conditions of the assay, the order of antimicrobial efficacy of biocidal aerosol treatment was as follows: ECAS > chlorine dioxide > sodium hypochlorite. For all biocides, greater antimicrobial reductions were seen when treating stainless steel and fabric than when treating plastic-associated microorganisms. The experimental fogging system and assay protocol designed within this study were shown capable of differentiating the comparative efficacies of multiple chlorine-matched biocidal aerosols against a spectrum of target organisms on a range of test surface materials and would be appropriate for testing other biocidal aerosol treatments or material surfaces. PMID:23459480

  4. Comparison of in vitro hormone activities of selected phthalates using reporter gene assays.

    PubMed

    Shen, Ouxi; Du, Guizhen; Sun, Hong; Wu, Wei; Jiang, Yi; Song, Ling; Wang, Xinru

    2009-12-01

    Phthalates are widely used in the plastic industry and food packaging, imparting softness and flexibility to normally rigid plastic medical devices and children's toys. Even though phthalates display low general toxicity, there is increasing concern on the effects of endocrine system induced by some of phthalate compounds. The hormone activity of dibutyl phthalate (DBP), mono-n-butyl phthalate (MBP) and di-2-ethylhexyl phthalate (DEHP) were assessed using the luciferase reporter gene assays. The results showed that DBP, MBP and DEHP, not only exhibited potent antiandrogenic activity, with IC(50) value of 1.05x10(-6), 1.22x10(-7)M and exceeding 1x10(-4)M respectively, but also showed the androgenic activity with EC(50) value of 6.17x10(-6), 1.13x10(-5)M and exceeding 1x10(-4)M. We also found that all the three related chemicals possessed thyroid receptor (TR) antagonist activity with IC(50) of 1.31x10(-5), 2.77x10(-6)M and exceeding 1x10(-4)M respectively, and none showed TR agonist activity. These results indicate that TR might be the targets of industrial chemicals. In the ER mediate reporter gene assay, three chemicals showed no agonistic activity except for DBP, which appeared weakly estrogenic at the concentration of 1.0x10(-4)M. Together, the findings demonstrate that the three phthalates could simultaneously disrupt the function of two or more hormonal receptors. Therefore, these phthalates should be considered in risk assessments for human health.

  5. Lysozyme activity in earthworm (Lumbricus terrestris) coelomic fluid and coelomocytes: Enzyme assay for immunotoxicity of xenobiotics

    SciTech Connect

    Goven, A.J.; Chen, S.C.; Fitzpatrick, L.C. . Dept. of Biological Sciences); Venables, B.J. . Dept. of Biological Sciences TRAC Laboratories Inc., Denton, TX )

    1994-04-01

    Lysozyme activity in earthworm (Lumbricus terrestris) coelomic fluid and coelomocytes appears sufficiently sensitive for use as a nonmammalian biomarker to detect toxic effects of sublethal body burdens of Cu[sup 2+]. Lysozyme, a phylogenetically conserved enzyme, is capable of bactericidal activity via action on peptidoglycan of gram-positive bacterial cell walls and functions as a component of an organism's innate antimicrobial defense mechanism. Coelomic fluid and coelomocyte lysozyme activities, which exhibit temperature-response patterns similar to those of human saliva, plasma, serum and leukocyte extracts, were sensitive to Cu[sup 2+] exposure. Lysozyme activity of coelomic fluid and coelomocyte extracts from earthworms exposed for 5 d to CuSO[sub 4], using filter paper contact exposure, decreased with increasing sublethal Cu[sup 2+] concentrations of 0.05 and 0.1 [mu]g/cm[sup 2]. Compared to controls, coelomic fluid lysozyme activity was suppressed significantly at both exposure concentrations, whereas coelomocyte extract lysozyme activity was suppressed significantly at the 0.1-[mu]g/cm[sup 2] exposure concentration. Low inherent natural variability and sensitivity to sublethal Cu[sup 2+] body burdens indicate that lysozyme activity has potential as a biomarker for assaying immunotoxicity of metals.

  6. Chemical models for cytochrome P450 as a biomimetic metabolic activation system in mutation assays.

    PubMed

    Inami, Keiko; Mochizuki, Masataka

    2002-08-26

    DNA damage is a critical factor in carcinogenesis. The Ames assay is a short-term test that screens for DNA-damaging agents. To be detected in the assay, most carcinogens require oxidation by cytochrome P450, a component of the liver homogenate preparation (S9 mix) that is traditionally used to metabolize promutagens to an active form in vitro. A combination of iron(III) porphyrin plus an oxidant activates many promutagens by mimicking cytochrome P450 metabolism. We previously reported that the mutagenicity of the N-nitrosodialkylamines was detected following reaction with tetrakis(pentafluorophenyl)porphyrinatoiron(III) chloride (Fe(F(5)P)Cl) plus tert-butyl hydroperoxide (t-BuOOH), which yielded the same alcohols and aldehydes as the enzymatic reaction. In the present study, to extend the scope of biomimetic models, we tested the mutagenicity of other carcinogens exposed to chemical oxidation systems.We investigated the optimal assay conditions for the models in Salmonella typhimurium TA1538, a strain sensitive to frame-shift mutagens. We activated 2-aminofluorene (AF), benzo[a]pyrene (B[a]P), a tryptophane pyrolysate 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2), and 2-acetylaminofluorene (AAF) with Fe(F(5)P)Cl plus an oxidant-t-BuOOH, m-chloroperoxybenzoic acid (mCPBA), or magnesium monoperoxyphthalate (MPPT)-and we noted the effect of three solvents-acetonitrile (CH(3)CN),1,4-dioxane, and N,N-dimethylformamide (DMF)-on AF activation. All the promutagens became mutagenic in the presence of Fe(F(5)P)Cl plus an oxidant, with the effectiveness of the oxidant varying with the chemical. Aromatic amines, for example, showed the strongest mutagenicity with t-BuOOH whereas polycyclic hydrocarbons showed the strongest mutagenicity with mCPBA. All the promutagens were mutagenic in the presence of Fe(F(5)P)Cl plus MPPT. For AF activation, the order of effectiveness of the solvents was CH(3)CN>1,4-dioxane>DMF. The results suggested that these systems would serve as

  7. Advantages and limitations of different p62-based assays for estimating autophagic activity in Drosophila.

    PubMed

    Pircs, Karolina; Nagy, Peter; Varga, Agnes; Venkei, Zsolt; Erdi, Balazs; Hegedus, Krisztina; Juhasz, Gabor

    2012-01-01

    Levels of the selective autophagy substrate p62 have been established in recent years as a specific readout for basal autophagic activity. Here we compared different experimental approaches for using this assay in Drosophila larvae. Similar to the more commonly used western blots, quantifying p62 dots in immunostained fat body cells of L3 stage larvae detected a strong accumulation of endogenous p62 aggregates in null mutants for Atg genes and S6K. Importantly, genes whose mutation or silencing results in early stage lethality can only be analyzed by microscopy using clonal analysis. The loss of numerous general housekeeping genes show a phenotype in large-scale screens including autophagy, and the p62 assay was potentially suitable for distinguishing bona fide autophagy regulators from silencing of a DNA polymerase subunit or a ribosomal gene that likely has a non-specific effect on autophagy. p62 accumulation upon RNAi silencing of known autophagy regulators was dependent on the duration of the knockdown effect, unlike in the case of starvation-induced autophagy. The endogenous p62 assay was more sensitive than a constitutively overexpressed p62-GFP reporter, which showed self-aggregation and large-scale accumulation even in control cells. We recommend western blots for following the conversion of overexpressed p62-GFP reporters to estimate autophagic activity if sample collection from mutant larvae or adults is possible. In addition, we also showed that overexpressed p62 or Atg8 reporters can strongly influence the phenotypes of each other, potentially giving rise to false or contradicting results. Overexpressed p62 aggregates also incorporated Atg8 reporter molecules that might lead to a wrong conclusion of strongly enhanced autophagy, whereas expression of an Atg8 reporter transgene rescued the inhibitory effect of a dominant-negative Atg4 mutant on basal and starvation-induced autophagy. PMID:22952930

  8. A continuous sirtuin activity assay without any coupling to enzymatic or chemical reactions

    PubMed Central

    Schuster, Sabine; Roessler, Claudia; Meleshin, Marat; Zimmermann, Philipp; Simic, Zeljko; Kambach, Christian; Schiene-Fischer, Cordelia; Steegborn, Clemens; Hottiger, Michael O.; Schutkowski, Mike

    2016-01-01

    Sirtuins are NAD+ dependent lysine deacylases involved in many regulatory processes such as control of metabolic pathways, DNA repair and stress response. Modulators of sirtuin activity are required as tools for uncovering the biological function of these enzymes and as potential therapeutic agents. Systematic discovery of such modulators is hampered by the lack of direct and continuous activity assays. The present study describes a novel continuous assay based on the increase of a fluorescence signal subsequent to sirtuin mediated removal of a fluorescent acyl chain from a modified TNFα-derived peptide. This substrate is well recognized by human sirtuins 1–6 and represents the best sirtuin 2 substrate described so far with a kcat/KM-value of 176 000 M−1s−1. These extraordinary substrate properties allow the first determination of Ki-values for the specific Sirt2 inhibitory peptide S2iL5 (600 nM) and for the quasi-universal sirtuin inhibitor peptide thioxo myristoyl TNFα (80 nM). PMID:26940860

  9. Evaluation and analysis of dengue virus enhancing and neutralizing activities using simple high-throughput assays.

    PubMed

    Li, Xiao-Quan; Chen, Jing; Huang, Yan-Fen; Ding, Xi-Xia; Liu, Li-Dong; Qiu, Li-Wen; Pan, Yu-Xian; Deng, Yong-Qiang; Hu, Dong-Mei; Di, Biao; Qin, Cheng-Feng; Che, Xiao-Yan

    2013-07-01

    The risk of antibody-dependent enhancement (ADE) of dengue virus (DENV) infection is a major obstacle for the development of dengue vaccine candidates. Here, we described a novel approach for assessment of ADE by measuring DENV nonstructural protein 1 (NS1) production in culture supernatants with Fcγ receptor-expressing K562 cells in ELISA format (ELISA-ADE). Enhancing activities quantified by measurement of kinetics of NS1 production were in a good agreement with the results of the virus titration assay. In conjunction with the previously established enzyme-linked immunospot-based micro-neutralization test (ELISPOT-MNT) in 96-well format, the observable dose-response profiles of enhancing and neutralizing activities against all four DENV serotypes were produced with two flaviviral envelope cross-reactive monoclonal antibodies and four primary DENV-1-infected human sera. The simple high-throughput ELISA-ADE assay offers advantages for quantitative measurement of infection enhancement that can potentially be applied to large-scale seroepidemiological studies of DENV infection and vaccination.

  10. A sensitive hydroosmotic toad bladder assay. Affinity and intrinsic activity of neurohypophyseal peptides.

    PubMed

    Eggena, P; Schwartz, I L; Walter, R

    1968-09-01

    A sensitive and precise method for assaying the water permeability response evoked by neurohypophyseal hormones and their synthetic analogues on the isolated urinary bladder of the toad (Bufo marinus L.) is described. The method permits detection of 8-arginine-vasotocin at concentrations as low as 10(-12)M. This sensitivity, not achieved heretofore with this tissue, results largely from minimizing interference of inhibitory substances by means of an "in vitro circulation assembly." The precision of the method derives from a direct comparison between the cumulative dose-response curve of an agonist of unknown potency acting on one hemibladder and that of a reference compound acting on the contralateral hemibladder. Crystalline deamino-oxytocin is used as the reference standard in this assay. The intrinsic activity of 2-(O-methyltyrosine)-oxytocin, as defined by the maximal response, is 12% lower than that of deamino-oxytocin. All other hormonal peptides investigated have the same intrinsic activity as deamino-oxytocin, even 5-valine-oxytocin, in spite of its extremely low affinity. A comparison of the potencies of 8-arginine-vasotocin vs. 8-arginine-vasopressin, 8-ornithine-vasotocin vs. 8-ornithine-vasopressin, 8-alanine-oxytocin vs. 8-alanine-oxypressin, and deamino-8-alanine-oxytocin vs. deamino-8-alanine-oxypressin suggests that an isoleucine residue in position 3 imparts a higher specificity for binding of the hormonal peptide molecule to the bladder receptor than a phenylalanine residue in this locus.

  11. A MULTIPLEXED ASSAY FOR DETERMINATION OF NEUROTOXICANT EFFECTS ON SPONTANEOUS NETWORK ACTIVITY AND CELL VIABILITY FROM MICROELECTRODE ARRAYS

    EPA Science Inventory

    AbstractTITLE: A MULTIPLEXED ASSAY FOR DETERMINATION OF NEUROTOXICANT EFFECTS ON SPONTANEOUS NETWORK ACTIVITY AND CELL VIABILITY FROM MICROELECTRODE ARRAYSABSTRACT BODY: Microelectrode array (MEA) recordings are increasingly being used as an in vitro method to detect and characte...

  12. Multi-tiered Approach to Development of Increased Throughput Assay Models to Assess Endocrine-Disrupting Activity of Chemicals

    EPA Science Inventory

    Screening for endocrine-disrupting chemicals (EDCs) requires sensitive, scalable assays. Current high-throughput screening (HTPS) approaches for estrogenic and androgenic activity yield rapid results, but many are not sensitive to physiological hormone concentrations, suggesting ...

  13. The antimutagenic activity of Lavandula angustifolia (lavender) essential oil in the bacterial reverse mutation assay.

    PubMed

    Evandri, M G; Battinelli, L; Daniele, C; Mastrangelo, S; Bolle, P; Mazzanti, G

    2005-09-01

    Essential oils from Melaleuca alternifolia (tea-tree oil) and Lavandula angustifolia (lavender oil) are commonly used to treat minor health problems. Tea-tree oil possesses broad-spectrum antimicrobial activity, and is increasingly used for skin problems. Lavender oil, traditionally used as an antiseptic agent, is now predominantly used as a relaxant, carminative, and sedative in aromatherapy. Despite their growing use no data are available on their mutagenic potential. In this study, after determining the chemical composition of tea-tree oil and lavender oil, by gas-chromatography and mass spectrometry, we investigated their mutagenic and antimutagenic activities by the bacterial reverse mutation assay in Salmonella typhimurium TA98 and TA100 strains and in Escherichia coli WP2 uvrA strain, with and without an extrinsic metabolic activation system. Neither essential oil had mutagenic activity on the two tested Salmonella strains or on E. coli, with or without the metabolic activation system. Conversely, lavender oil exerted strong antimutagenic activity, reducing mutant colonies in the TA98 strain exposed to the direct mutagen 2-nitrofluorene. Antimutagenicity was concentration-dependent: the maximal concentration (0.80 mg/plate) reduced the number of histidine-independent revertant colonies by 66.4%. Lavender oil (0.80 mg/plate) also showed moderate antimutagenicity against the TA98 strain exposed to the direct mutagen 1-nitropyrene. Its antimutagenic property makes lavender oil a promising candidate for new applications in human healthcare. PMID:15907354

  14. The antimutagenic activity of Lavandula angustifolia (lavender) essential oil in the bacterial reverse mutation assay.

    PubMed

    Evandri, M G; Battinelli, L; Daniele, C; Mastrangelo, S; Bolle, P; Mazzanti, G

    2005-09-01

    Essential oils from Melaleuca alternifolia (tea-tree oil) and Lavandula angustifolia (lavender oil) are commonly used to treat minor health problems. Tea-tree oil possesses broad-spectrum antimicrobial activity, and is increasingly used for skin problems. Lavender oil, traditionally used as an antiseptic agent, is now predominantly used as a relaxant, carminative, and sedative in aromatherapy. Despite their growing use no data are available on their mutagenic potential. In this study, after determining the chemical composition of tea-tree oil and lavender oil, by gas-chromatography and mass spectrometry, we investigated their mutagenic and antimutagenic activities by the bacterial reverse mutation assay in Salmonella typhimurium TA98 and TA100 strains and in Escherichia coli WP2 uvrA strain, with and without an extrinsic metabolic activation system. Neither essential oil had mutagenic activity on the two tested Salmonella strains or on E. coli, with or without the metabolic activation system. Conversely, lavender oil exerted strong antimutagenic activity, reducing mutant colonies in the TA98 strain exposed to the direct mutagen 2-nitrofluorene. Antimutagenicity was concentration-dependent: the maximal concentration (0.80 mg/plate) reduced the number of histidine-independent revertant colonies by 66.4%. Lavender oil (0.80 mg/plate) also showed moderate antimutagenicity against the TA98 strain exposed to the direct mutagen 1-nitropyrene. Its antimutagenic property makes lavender oil a promising candidate for new applications in human healthcare.

  15. Immobilization and activity assay of cytochrome P450 on patterned lipid membranes

    SciTech Connect

    Ueda, Yoshihiro; Morigaki, Kenichi . E-mail: morigaki-kenichi@aist.go.jp; Tatsu, Yoshiro; Yumoto, Noboru; Imaishi, Hiromasa . E-mail: himaish@kobe-u.ac.jp

    2007-04-20

    We report on a methodology for immobilizing cytochrome P450 on the surface of micropatterned lipid bilayer membranes and measuring the enzymatic activity. The patterned bilayer comprised a matrix of polymeric lipid bilayers and embedded fluid lipid bilayers. The polymeric lipid bilayer domains act as a barrier to confine fluid lipid bilayers in defined areas and as a framework to stabilize embedded membranes. The fluid bilayer domains, on the other hand, can contain lipid compositions that facilitate the fusion between lipid membranes, and are intended to be used as the binding agent of microsomes containing rat CYP1A1. By optimizing the membrane compositions of the fluid bilayers, we could selectively immobilize microsomal membranes on these domains. The enzymatic activity was significantly higher on lipid bilayer substrates compared with direct adsorption on glass. Furthermore, competitive assay experiment between two fluorogenic substrates demonstrated the feasibility of bioassays based on immobilized P450s.

  16. Rapid reverse phase-HPLC assay of HMG-CoA reductase activity

    PubMed Central

    Mozzicafreddo, Matteo; Cuccioloni, Massimiliano; Eleuteri, Anna Maria; Angeletti, Mauro

    2010-01-01

    Radioisotope-based and mass spectrometry coupled to chromatographic techniques are the conventional methods for monitoring HMG-CoA reductase (HMGR) activity. Irrespective of offering adequate sensitivity, these methods are often cumbersome and time-consuming, requiring the handling of radiolabeled chemicals or elaborate ad-hoc derivatizing procedures. We propose a rapid and versatile reverse phase-HPLC method for assaying HMGR activity capable of monitoring the levels of both substrates (HMG-CoA and NADPH) and products (CoA, mevalonate, and NADP+) in a single 20 min run with no pretreatment required. The linear dynamic range was 10–26 pmol for HMG-CoA, 7–27 nmol for NADPH, 0.5–40 pmol for CoA and mevalonate, and 2–27 nmol for NADP+, and limit of detection values were 2.67 pmol, 2.77 nmol, 0.27 pmol, and 1.3 nmol, respectively. PMID:20418539

  17. Chlorosulfonation of polystyrene substrates for bioanalytical assays: distribution of activated groups at the surface.

    PubMed

    del Prado, Anselmo; Briz, Nerea; Navarro, Rodrigo; Pérez, Mónica; Gallardo, Alberto; Reinecke, Helmut

    2012-12-01

    In this work the activation of transparent PS substrates by chlorosulfonation is described and their distribution in the subsurface region is analyzed. For this purpose XPS, FTIR-ATR and colorimetry have been used. It is shown that the electrophilic aromatic substitution of polystyrene in pure chlorosulfonic acid is extremely quick with complete surface coverage by chlorosulfonic groups achieved after only a 10 minute reaction time at -10 °C. It is further demonstrated that the reaction is very surface selective and that even after reaction times as long as 3 hours, the modification is limited to a layer with a thickness of less than one micron. The activated PS substrates can be further functionalized in a second step with carboxylic groups. Due to the excellent optical transparency that the samples maintain upon modification, the modified systems were successfully probed for use in ELISA assays.

  18. A continuous spectrophotometric assay method for peptidylarginine deiminase type 4 activity.

    PubMed

    Liao, Ya-Fan; Hsieh, Hui-Chieh; Liu, Guang-Yaw; Hung, Hui-Chih

    2005-12-15

    A simple, continuous spectrophotometric assay for peptidylarginine deiminase (PAD) is described. Deimination of peptidylarginine results in the formation of peptidylcitrulline and ammonia. The ammonia released during peptidylarginine hydrolysis is coupled to the glutamate-dehydrogenase-catalyzed reductive amination of alpha-ketoglutarate to glutamate and reduced nicotinamide adenine dinucleotide (NADH) oxidation. The disappearance of absorbance at 340nm due to NADH oxidation is continuously measured. The specific activity obtained by this new protocol for highly purified human PAD is comparable to that obtained by a commonly used colorimetric procedure, which measures the ureido group of peptidylcitrulline by coupling with diacetyl monoxime. The present continuous spectrophotometric method is highly sensitive and accurate and is thus suitable for enzyme kinetic analysis of PAD. The Ca(2+) concentration for half-maximal activity of PAD obtained by this method is comparable to that previously obtained by the colorimetric procedure.

  19. A rapid fluorescence assay for hSMUG1 activity based on modified molecular beacon.

    PubMed

    Yang, Xue; Tong, Chunyi; Long, Ying; Liu, Bin

    2011-01-01

    A new method for assay of hSMUG1 in real-time using molecular beacon is reported. hSMUG1 could be detected linearly in the range from 0.67 nM to 10.05 nM and the detection limit is 0.168 nM. In addition, this method was applied to detect the activity of hSMUG1 in tumor cells and study kinetics. The probe with low background signal has been shown to be suitable for the real-time monitoring of hSMUG1 activity, making this a promising method of high-throughput clinical sample analysis.

  20. mRNA 5'-cap binding activity in purified influenza virus detected by simple, rapid assay.

    PubMed Central

    Kroath, H; Shatkin, A J

    1982-01-01

    Reovirus mRNA 5'-terminal caps were 3'-radiolabeled with pCp and as affinity probes for proteins with cap binding activity. A rapid, simple, and sensitive blot assay was devised that could detect cellular cap binding protein in a complex polypeptide mixture. By using this method, cap binding activity was found in detergent-treated influenza virus but not in reovirus or vaccinia virus. Preincubation of capped reovirus mRNA with purified cellular cap binding protein reduced its primer effect on influenza transcriptase, whereas priming by ApG was not affected. The results indicate that influenza transcriptase complexes include cap-recognizing proteins that are involved in the formation of chimeric mRNAs. Images PMID:7097854

  1. Contact activation of blood coagulation on a defined kaolin/collagen surface in a microfluidic assay.

    PubMed

    Zhu, Shu; Diamond, Scott L

    2014-12-01

    Generation of active Factor XII (FXIIa) triggers blood clotting on artificial surfaces and may also enhance intravascular thrombosis. We developed a patterned kaolin (0 to 0.3 pg/μm(2))/type 1 collagen fibril surface for controlled microfluidic clotting assays. Perfusion of whole blood (treated only with a low level of 4 μg/mL of the XIIa inhibitor, corn trypsin inhibitor) drove platelet deposition followed by fibrin formation. At venous wall shear rate (100 s(-1)), kaolin accelerated onset of fibrin formation by ~100 sec when compared to collagen alone (250 sec vs. 350 sec), with little effect on platelet deposition. Even with kaolin present, arterial wall shear rate (1000 s(-1)) delayed and suppressed fibrin formation compared to venous wall shear rate. A comparison of surfaces for extrinsic activation (tissue factor TF/collagen) versus contact activation (kaolin/collagen) that each generated equal platelet deposition at 100 s(-1) revealed: (1) TF surfaces promoted much faster fibrin onset (at 100 sec) and more endpoint fibrin at 600 sec at either 100 s(-1) or 1000 s(-1), and (2) kaolin and TF surfaces had a similar sensitivity for reduced fibrin deposition at 1000 s(-1) (compared to fibrin formed at 100 s(-1)) despite differing coagulation triggers. Anti-platelet drugs inhibiting P2Y1, P2Y12, cyclooxygenase-1 or activating IP-receptor or guanylate cyclase reduced platelet and fibrin deposition on kaolin/collagen. Since FXIIa or FXIa inhibition may offer safe antithrombotic therapy, especially for biomaterial thrombosis, these defined collagen/kaolin surfaces may prove useful in drug screening tests or in clinical diagnostic assays of blood under flow conditions.

  2. Contact activation of blood coagulation on a defined kaolin/collagen surface in a microfluidic assay

    PubMed Central

    Zhu, Shu; Diamond, Scott L.

    2014-01-01

    Generation of active Factor XII (FXIIa) triggers blood clotting on artificial surfaces and may also enhance intravascular thrombosis. We developed a patterned kaolin (0 to 0.3 pg/μm2)/type 1 collagen fibril surface for controlled microfluidic clotting assays. Perfusion of whole blood (treated only with a low level of 4 μg/mL of the XIIa inhibitor, corn trypsin inhibitor) drove platelet deposition followed by fibrin formation. At venous wall shear rate (100 s−1), kaolin accelerated onset of fibrin formation by ~100 sec when compared to collagen alone (250 sec vs. 350 sec), with little effect on platelet deposition. Even with kaolin present, arterial wall shear rate (1000 s−1) delayed and suppressed fibrin formation compared to venous wall shear rate. A comparison of surfaces for extrinsic activation (tissue factor TF/collagen) versus contact activation (kaolin/collagen) that each generated equal platelet deposition at 100 s−1 revealed: (1) TF surfaces promoted much faster fibrin onset (at 100 sec) and more endpoint fibrin at 600 sec at either 100 s−1 or 1000 s−1, and (2) kaolin and TF surfaces had a similar sensitivity for reduced fibrin deposition at 1000 s−1 (compared to fibrin formed at 100 s−1) despite differing coagulation triggers. Anti-platelet drugs inhibiting P2Y1, P2Y12, cyclooxygenase-1 or activating IP-receptor or guanylate cyclase reduced platelet and fibrin deposition on kaolin/collagen. Since FXIIa or FXIa inhibition may offer safe antithrombotic therapy, especially for biomaterial thrombosis, these defined collagen/kaolin surfaces may prove useful in drug screening tests or in clinical diagnostic assays of blood under flow conditions. PMID:25303860

  3. Contact activation of blood coagulation on a defined kaolin/collagen surface in a microfluidic assay.

    PubMed

    Zhu, Shu; Diamond, Scott L

    2014-12-01

    Generation of active Factor XII (FXIIa) triggers blood clotting on artificial surfaces and may also enhance intravascular thrombosis. We developed a patterned kaolin (0 to 0.3 pg/μm(2))/type 1 collagen fibril surface for controlled microfluidic clotting assays. Perfusion of whole blood (treated only with a low level of 4 μg/mL of the XIIa inhibitor, corn trypsin inhibitor) drove platelet deposition followed by fibrin formation. At venous wall shear rate (100 s(-1)), kaolin accelerated onset of fibrin formation by ~100 sec when compared to collagen alone (250 sec vs. 350 sec), with little effect on platelet deposition. Even with kaolin present, arterial wall shear rate (1000 s(-1)) delayed and suppressed fibrin formation compared to venous wall shear rate. A comparison of surfaces for extrinsic activation (tissue factor TF/collagen) versus contact activation (kaolin/collagen) that each generated equal platelet deposition at 100 s(-1) revealed: (1) TF surfaces promoted much faster fibrin onset (at 100 sec) and more endpoint fibrin at 600 sec at either 100 s(-1) or 1000 s(-1), and (2) kaolin and TF surfaces had a similar sensitivity for reduced fibrin deposition at 1000 s(-1) (compared to fibrin formed at 100 s(-1)) despite differing coagulation triggers. Anti-platelet drugs inhibiting P2Y1, P2Y12, cyclooxygenase-1 or activating IP-receptor or guanylate cyclase reduced platelet and fibrin deposition on kaolin/collagen. Since FXIIa or FXIa inhibition may offer safe antithrombotic therapy, especially for biomaterial thrombosis, these defined collagen/kaolin surfaces may prove useful in drug screening tests or in clinical diagnostic assays of blood under flow conditions. PMID:25303860

  4. Antimutagenic activity of extracts of natural substances in the Salmonella/microsome assay.

    PubMed

    Horn, Rubem Cesar; Vargas, Vera Maria Ferrão

    2003-03-01

    Scientific information regarding plants used in folk medicine in the form of teas and their effect on human health or on genetic material has been the subject of many different types of investigation. The antimutagenic activity of two plants Maytenus ilicifolia and Peltastes peltatus, both rich in compounds of the flavonoid and tannin groups and frequently employed in folk medicine, was studied. Antimutagenicity was determined against known mutagenic substances (4-oxide-1-nitroquinoline, sodium azide, 2-nitrofluorene, aflatoxin B(1), 2-aminofluorene and 2-aminoanthracene), using the Salmonella/microsome assay. Infusions of P.peltatus showed high cytotoxicity and a co-mutagenic effect for induction of base pair substitution mutations with 4-oxide-1-nitroquinoline (-S9 mix). Infusions of M.ilicifolia produced similar effects for frameshift and base pair substitution mutations. With the mutagens 2-nitrofluorene (TA98) and sodium azide (TA100) no significant enhancement effects (co-mutagenic effects) were observed and inhibition of mutagenic activity and cytotoxicity were also diminished. In assays evaluating antimutagenic activity in the presence of metabolic activation utilizing S9 mix, high and significant inhibition of aflatoxin B(1)-, 2-aminofluorene- and 2-aminoanthracene-induced mutagenicity was observed in the presence of the infusions using both TA98 and TA100 and employing doses ranging from 25 to 500 mg/plate. Seventy-five percent of the doses tested exhibited a significant or suggestive decrease in induced mutagenicity with the infusion of M.ilicifolia. With the infusion of P.peltatus significant or suggestive antimutagenic responses were observed with 50% of the doses evaluated. Complexity was clearly noted in the responses observed in the interaction of aqueous extracts of M.ilicifolia and P.peltastes with the genetic material and metabolites generated by the S9 mix played an important role in the protection of DNA. PMID:12621065

  5. Quantification of microbial activity in subsurface environments using a hydrogenase enzyme assay

    NASA Astrophysics Data System (ADS)

    Adhikari, R. R.; Nickel, J.; Kallmeyer, J.

    2012-04-01

    The subsurface biosphere is the largest microbial ecosystem on Earth. Despite its large size and extensive industrial exploitation, very little is known about the role of microbial activity in the subsurface. Subsurface microbial activity plays a fundamental role in geochemical cycles of carbon and other biologically important elements. How the indigenous microbial communities are supplied with energy is one of the most fundamental questions in subsurface research. It is still an enigma how these communities can survive with such recalcitrant carbon over geological time scales. Despite its usually very low concentration, hydrogen is an important element in subsurface environments. Heterotrophic and chemoautotrophic microorganisms use hydrogen in their metabolic pathways; they either obtain protons from the radiolysis of water and/or cleavage of hydrogen generated by the alteration of basaltic crust, or they dispose of protons by formation of water. Hydrogenase (H2ase) is a ubiquitous intracellular enzyme that catalyzes the interconversion of molecular hydrogen and/or water into protons and electrons. The protons are used for the synthesis of ATP, thereby coupling energy-generating metabolic processes to electron acceptors such as carbon dioxide or sulfate. H2ase activity can therefore be used as a measure for total microbial activity as it targets a key metabolic compound rather than a specific turnover process. Using a highly sensitive tritium assay we measured H2ase enzyme activity in the organic-rich sediments of Lake Van, a saline, alkaline lake in eastern Turkey and in marine subsurface sediments of the Barents Sea. Additionally, sulfate reduction rates (SRRs) were measured to compare the results of the H2ase enzyme assay with the quantitatively most important electron acceptor process. H2ase activity was found at all sites, measured values and distribution of activity varied widely with depth and between sites. At the Lake Van sites H2ase activity ranged from

  6. The relevance of chemical interactions with CYP17 enzyme activity: Assessment using a novel in vitro assay

    SciTech Connect

    Roelofs, Maarke J.E.; Piersma, Aldert H.; Berg, Martin van den; Duursen, Majorie B.M. van

    2013-05-01

    The steroidogenic cytochrome P450 17 (CYP17) enzyme produces dehydroepiandrosterone (DHEA), which is the most abundant circulating endogenous sex steroid precursor. DHEA plays a key role in e.g. sexual functioning and development. To date, no rapid screening assay for effects on CYP17 is available. In this study, a novel assay using porcine adrenal cortex microsomes (PACMs) was described. Effects of twenty-eight suggested endocrine disrupting compounds (EDCs) on CYP17 activity were compared with effects in the US EPA validated H295R (human adrenocorticocarcinoma cell line) steroidogenesis assay. In the PACM assay DHEA production was higher compared with the H295R assay (4.4 versus 2.2 nmol/h/mg protein). To determine the additional value of a CYP17 assay, all compounds were also tested for interaction with CYP19 (aromatase) using human placental microsomes (HPMs) and H295R cells. 62.5% of the compounds showed enzyme inhibition in at least one of the microsomal assays. Only the cAMP inducer forskolin induced CYP17 activity, while CYP19 was induced by four test compounds in the H295R assay. These effects remained unnoticed in the PACM and HPM assays. Diethylstilbestrol and tetrabromobisphenol A inhibited CYP17 but not CYP19 activity, indicating different mechanisms for the inhibition of these enzymes. From our results it becomes apparent that CYP17 can be a target for EDCs and that this interaction differs from interactions with CYP19. Our data strongly suggest that research attention should focus on validating a specific assay for CYP17 activity, such as the PACM assay, that can be included in the EDC screening battery. - Highlights: ► DHEA, produced by CYP17, plays a key role in sexual functioning and development. ► No rapid screening assay for effects on CYP17 is available yet. ► A novel assay using porcine adrenal cortex microsomes (PACMs) was described. ► Endocrine disrupting compounds (EDCs) targeting CYP17 interact differently with CYP19. ► A

  7. Differential Cytokine Changes in Patients with Myasthenia Gravis with Antibodies against AChR and MuSK

    PubMed Central

    Yilmaz, Vuslat; Oflazer, Piraye; Aysal, Fikret; Durmus, Hacer; Poulas, Kostas; Yentur, Sibel P.; Gulsen-Parman, Yesim; Tzartos, Socrates; Marx, Alexander; Tuzun, Erdem; Deymeer, Feza; Saruhan-Direskeneli, Güher

    2015-01-01

    Neuromuscular transmission failure in myasthenia gravis (MG) is most commonly elicited by autoantibodies (ab) to the acetylcholine receptor or the muscle-specific kinase, constituting AChR-MG and MuSK-MG. It is controversial whether these MG subtypes arise through different T helper (Th) 1, Th2 or Th17 polarized immune reactions and how these reactions are blunted by immunosuppression. To address these questions, plasma levels of cytokines related to various Th subtypes were determined in patients with AChR-MG, MuSK-MG and healthy controls (CON). Peripheral blood mononuclear cells (PBMC) were activated in vitro by anti-CD3, and cytokines were quantified in supernatants. In purified blood CD4+ T cells, RNA of various cytokines, Th subtype specific transcription factors and the co-stimulatory molecule, CD40L, were quantified by qRT-PCR. Plasma levels of Th1, Th2 and Th17 related cytokines were overall not significantly different between MG subtypes and CON. By contrast, in vitro stimulated PBMC from MuSK-MG but not AChR-MG patients showed significantly increased secretion of the Th1, Th17 and T follicular helper cell related cytokines, IFN-γ, IL-17A and IL-21. Stimulated expression of IL-4, IL-6, IL-10 and IL-13 was not significantly different. At the RNA level, expression of CD40L by CD4+ T cells was reduced in both AChR-MG and MuSK-MG patients while expression of Th subset related cytokines and transcription factors were normal. Immunosuppression treatment had two effects: First, it reduced levels of IL12p40 in the plasma of AChR-MG and MuSK-MG patients, leaving other cytokine levels unchanged; second, it reduced spontaneous secretion of IFN-γ and increased secretion of IL-6 and IL-10 by cultured PBMC from AChR-MG, but not MuSK-MG patients. We conclude that Th1 and Th17 immune reactions play a role in MuSK-MG. Immunosuppression attenuates the Th1 response in AChR-MG and MuSK-MG, but otherwise modulates immune responses in AChR-MG and MuSK-MG patients

  8. Activity of nitro-polynuclear aromatic hydrocarbons in the sister chromatid exchange assay with and without metabolic activation.

    PubMed

    Nachtman, J P; Wolff, S

    1982-01-01

    Nitro-polynuclear aromatic hydrocarbons are found in diesel particulates. These compounds are potent mutagens in the Ames test. To determine whether nitro-polynuclear aromatic hydrocarbons are active in a mammalian cell assay, 1-nitropyrene, 1,8-dinitropyrene, 2-nitrofluorene, and 4-nitrobiphenyl were incubated with cultures of Chinese hamster ovary cells. The frequency of sister chromatid exchange (SCE) was measured in the presence and absence of rat liver S-9 mix. The addition of S-9 mix resulted in a large increase in the SCEs induced by all four compounds. PMID:7067667

  9. Activity of nitro-polynuclear aromatic hydrocarbons in the sister chromatid exchange assay with and without metabolic activation. [Hamsters

    SciTech Connect

    Nachtman, J.P.; Wolff, S.

    1982-01-01

    Nitro-polynuclear aromatic hydrocarbons are found in diesel particulates.These compounds are potent mutagens in the Ames test. To determine whether nitro-polynuclear aromatic hydrocarbons are active in a mammalian cell assay, 1-nitropyrene, 1,8-dinitropyrene, 2-nitrofluorene, and 4-nitrobiphenyl were incubated with cultures of Chinese hamster ovary cells. The frequency of sister chromatic exchange (SCE) was measured in the presence and absence of rat liver S-9 mix. The addition of S-9 mix resulted in a large increase in the SCEs induced by all four compounds.

  10. Detection and characterisation of Complement protein activity in bovine milk by bactericidal sequestration assay.

    PubMed

    Maye, Susan; Stanton, Catherine; Fitzgerald, Gerald F; Kelly, Philip M

    2015-08-01

    While the Complement protein system in human milk is well characterised, there is little information on its presence and activity in bovine milk. Complement forms part of the innate immune system, hence the importance of its contribution during milk ingestion to the overall defences of the neonate. A bactericidal sequestration assay, featuring a Complement sensitive strain, Escherichia coli 0111, originally used to characterise Complement activity in human milk was successfully applied to freshly drawn bovine milk samples, thus, providing an opportunity to compare Complement activities in both human and bovine milks. Although not identical in response, the levels of Complement activity in bovine milk were found to be closely comparable with that of human milk. Differential counts of Esch. coli 0111 after 2 h incubation were 6.20 and 6.06 log CFU/ml, for raw bovine and human milks, respectively - the lower value representing a stronger Complement response. Exposing bovine milk to a range of thermal treatments e.g. 42, 45, 65, 72, 85 or 95 °C for 10 min, progressively inhibited Complement activity by increasing temperature, thus confirming the heat labile nature of this immune protein system. Low level Complement activity was found, however, in 65 and 72 °C heat treated samples and in retailed pasteurised milk which highlights the outer limit to which high temperature, short time (HTST) industrial thermal processes should be applied if retention of activity is a priority. Concentration of Complement in the fat phase was evident following cream separation, and this was also reflected in the further loss of activity recorded in low fat variants of retailed pasteurised milk. Laboratory-based churning of the cream during simulated buttermaking generated an aqueous (buttermilk) phase with higher levels of Complement activity than the fat phase, thus pointing to a likely association with the milk fat globule membrane (MFGM) layer.

  11. Paraoxonase-1 Enzyme Activity Assay for Clinical Samples: Validation and Correlation Studies

    PubMed Central

    Garelnabi, Mahdi; Younis, Abdelmoneim

    2015-01-01

    Background Paraoxonase-1 (PON1) enzyme is reported in various types of tissues and linked to numerous pathophysiological disorders. It is a potential biomarker in many pathological conditions such as cardiovascular diseases. Material/Methods We conducted several small-scale studies to evaluate PON1 performance as affected by sample types, storage, and interferences. We also carried out short-term studies to compare the performance of the widely used PON1 assay to the similar commercially available PON1 kit assay method; sample size for the method comparison was N=40, and the number varied for other validation experiments. Results Our studies using various types of anticoagulants show that samples collected in tubes with NaF, citrate, EDTA, clot activator, and sodium heparin have increased PON1 levels that are 49%, 24.5%, 19.8%, 11.4%, and 8%, respectively, higher compared to serum samples collected in plain tubes. However, samples collected in lithium heparin tubes demonstrated 10.4% lower PON1 levels compared to serum collected in plain tubes. Biological interference such as hemolysis has little effect on PON1 levels; however, samples spiked with lipids have shown 13% lower PON 1 levels. Our studies comparing the PON1 method commonly available for PON1 assay and a similar non-ELISA commercially available PON1 kit method showed a weak Spearman correlation coefficient of R2=0.40 for the range of 104.9–245.6 U/L. Conclusions The current study provides new validation data on enzyme PON1 performance. While no appreciable change was seen with storage, samples type affects the enzyme performance. Our results should encourage additional clinical studies to investigate other aspects of factors known to affect PON1 enzyme function and performance. PMID:25814092

  12. Effect of Lead stress on phosphatase activity and reducing power assay of Triticum aestivum.

    PubMed

    Gubrelay, U; Agnihotri, R K; Shrotriya, S; Sharma, R

    2015-01-01

    Lead (Pb) is a highly toxic heavy metal for both plants and animals; the environment is increasingly polluted with heavy metals and reduces crop productivity. Plants possess homeostatic mechanisms that allow them to keep correct concentrations of essential metal ions in cellular compartments and to minimize the damaging effects of an excess of nonessential ones. One of their adverse effects on plants are the generation of harmful active oxygen species, leading to oxidative stress and the antioxidative activity seems to be of fundamental importance for adaptive response of plant against environmental stress. The present study explores the effects of lead (soil treated twice/ week) with (10, 30 and 60 mM) on the specific activities of phosphatases which might lead to reducing power assay in (Triticum aestivum PBW344) seedling. A significant decrease in the redox potential of shoot compared to root was observed at the similar concentration of lead. A similar trend on leaves was also noted. Acid and alkaline phosphatase activities were significantly higher in roots than in shoot at all the three concentration of lead i.e. 10, 30 and 60 mM, compared to controls. The above mentioned changes were more pronounced at 60 mM concentration of lead than two other concentrations. These results lead us to suggest that increased lead concentration in soil might lead to adverse effects on plant growth and phosphatase activities. PMID:26107501

  13. Metabolic activation by hamster and rat hepatocytes in the Salmonella mutagenicity assay.

    PubMed

    Poiley, J A; Raineri, R; Andrews, A W; Cavanaugh, D M; Pienta, R J

    1980-12-01

    Intact and homogenized hepatocytes from untreated or Aroclor 1254-treated male and female noninbred Sprague-Dawley rats and noninbred Syrian golden hamsters were compared for their ability to metabolize chemicals in the Salmonella-mammalian microsome mutagenesis assay. The following chemicals were used: two aromatic amines, 2-amino-anthracene and N-2-fluorenylacetamide; two polycyclic aromatic hydrocarbons, 3-methylcholanthrene and benzo[a]pyrene (BP); and one nitrosamine, diethylnitrosamine (DENA). With one exception, hepatocytes from hamsters were more active than were hepatocytes from rats in the activation of these mutagens. The homogenized preparations from Aroclor 1254-treated rats were slightly more active with BP than was the equivalent hamster preparation. Intact hepatocytes from Aroclor 1254-treated hamsters were more efficient at metabolizing the aromatic amines and DENA, whereas homogenates were more effective with the hydrocarbons. Results were similar with the rat preparations, except that only large quantities of Aroclor 1254-treated intact male rat hepatocytes appeared to activate DENA. These results suggest that, in the choice of an activation system, the kind of chemical being evaluated should be considered.

  14. Fluorometric microplate assay to measure glutathione S-transferase activity in insects and mites using monochlorobimane.

    PubMed

    Nauen, Ralf; Stumpf, Natascha

    2002-04-15

    Elevated levels of glutathione S-transferases (GSTs) play a major role as a mechanism of resistance to insecticides and acaricides in resistant pest insects and mites, respectively. Such compounds are either detoxicated directly via phase I metabolism or detoxicated by phase II metabolism of metabolites as formed by microsomal monooxygenases. Here we used monochlorobimane (MCB) as an artificial substrate and glutathione to determine total GST activity in equivalents of single pest insects and spider mites in a sensitive 96-well plate-based assay system by measuring the enzymatic conversion of MCB to its fluorescent bimane-glutathione adduct. The differentiation by their GST activity between several strains of the two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae), with different degrees of resistance to numerous acaricides was more sensitive with MCB compared to the commonly used substrate 1-chloro-2,4-dinitrobenzene (CDNB). Compared to an acaricide-susceptible reference strain, one field population of T. urticae showed a more than 10-fold higher GST activity measured with MCB, in contrast to a less than 2-fold higher activity when CDNB was used. Furthermore, we showed that GST activity can be sensitively assessed with MCB in homogenates of pest insects such as Heliothis virescens, Spodoptera frugiperda (Lepidoptera: Noctuidae), Plutella xylostella (Lepidoptera: Yponomeutidae), and Myzus persicae (Hemiptera: Aphididae). PMID:11950219

  15. Monitoring cholinergic activity during attentional performance in mice heterozygous for the choline transporter: a model of cholinergic capacity limits.

    PubMed

    Paolone, Giovanna; Mallory, Caitlin S; Koshy Cherian, Ajeesh; Miller, Thomas R; Blakely, Randy D; Sarter, Martin

    2013-12-01

    Reductions in the capacity of the human choline transporter (SLC5A7, CHT) have been hypothesized to diminish cortical cholinergic neurotransmission, leading to risk for cognitive and mood disorders. To determine the acetylcholine (ACh) release capacity of cortical cholinergic projections in a mouse model of cholinergic hypofunction, the CHT+/- mouse, we assessed extracellular ACh levels while mice performed an operant sustained attention task (SAT). We found that whereas SAT-performance-associated increases in extracellular ACh levels of CHT+/- mice were significantly attenuated relative to wildtype littermates, performance on the SAT was normal. Tetrodotoxin-induced blockade of neuronal excitability reduced both dialysate ACh levels and SAT performance similarly in both genotypes. Likewise, lesions of cholinergic neurons abolished SAT performance in both genotypes. However, cholinergic activation remained more vulnerable to the reverse-dialyzed muscarinic antagonist atropine in CHT+/- mice. Additionally, CHT+/- mice displayed greater SAT-disrupting effects of reverse dialysis of the nAChR antagonist mecamylamine. Receptor binding assays revealed a higher density of α4β2* nAChRs in the cortex of CHT+/- mice compared to controls. These findings reveal compensatory mechanisms that, in the context of moderate cognitive challenges, can overcome the performance deficits expected from the significantly reduced ACh capacity of CHT+/- cholinergic terminals. Further analyses of molecular and functional compensations in the CHT+/- model may provide insights into both risk and resiliency factors involved in cognitive and mood disorders.

  16. Monitoring cholinergic activity during attentional performance in mice heterozygous for the choline transporter: a model of cholinergic capacity limits

    PubMed Central

    Cherian, Ajeesh Koshy; Miller, Thomas R.; Blakely, Randy D.; Sarter, Martin

    2013-01-01

    Reductions in the capacity of the human choline transporter (SLC5A7, CHT) have been hypothesized to diminish cortical cholinergic neurotransmission, leading to risk for cognitive and mood disorders. To determine the acetylcholine (ACh) release capacity of cortical cholinergic projections in a mouse model of cholinergic hypofunction, the CHT+/− mouse, we assessed extracellular ACh levels while mice performed an operant sustained attention task (SAT). We found that whereas SAT-performance-associated increases in extracellular ACh levels of CHT+/− mice were significantly attenuated relative to wildtype littermates, performance on the SAT was normal. Tetrodotoxin-induced blockade of neuronal excitability reduced both dialysate ACh levels and SAT performance similarly in both genotypes. Likewise, lesions of cholinergic neurons abolished SAT performance in both genotypes. However, cholinergic activation remained more vulnerable to the reverse-dialyzed muscarinic antagonist atropine in CHT+/− mice. Additionally, CHT+/− mice displayed greater SAT-disrupting effects of reverse dialysis of the nAChR antagonist mecamylamine. Receptor binding assays revealed a higher density of α4β2* nAChRs in the cortex of CHT+/− mice compared to controls. These findings reveal compensatory mechanisms that, in the context of moderate cognitive challenges, can overcome the performance deficits expected from the significantly reduced ACh capacity of CHT+/− cholinergic terminals. Further analyses of molecular and functional compensations in the CHT +/− model may provide insights into both risk and resiliency factors involved in cognitive and mood disorders. PMID:23958450

  17. Fluorometric cell-based assay for β-galactosidase activity in probiotic gram-positive bacterial cells - Lactobacillus helveticus.

    PubMed

    Watson, Amanda L; Chiu, Norman H L

    2016-09-01

    Although methods for measuring β-galactosidase activity in intact gram-negative bacterial cells have been reported, the methods may not be applicable to measuring β-galactosidase activity in gram-positive bacterial cells. This report focuses on the development of a fluorometric cell-based assay for measuring β-galactosidase activity in gram-positive cells.

  18. Real Time Ligand-Induced Motion Mappings of AChBP and nAChR Using X-ray Single Molecule Tracking

    PubMed Central

    Sekiguchi, Hiroshi; Suzuki, Yasuhito; Nishino, Yuri; Kobayashi, Suzuko; Shimoyama, Yoshiko; Cai, Weiyan; Nagata, Kenji; Okada, Masato; Ichiyanagi, Kouhei; Ohta, Noboru; Yagi, Naoto; Miyazawa, Atsuo; Kubo, Tai; Sasaki, Yuji C.

    2014-01-01

    We observed the dynamic three-dimensional (3D) single molecule behaviour of acetylcholine-binding protein (AChBP) and nicotinic acetylcholine receptor (nAChR) using a single molecule tracking technique, diffracted X-ray tracking (DXT) with atomic scale and 100 μs time resolution. We found that the combined tilting and twisting motions of the proteins were enhanced upon acetylcholine (ACh) binding. We present the internal motion maps of AChBP and nAChR in the presence of either ACh or α-bungarotoxin (αBtx), with views from two rotational axes. Our findings indicate that specific motion patterns represented as biaxial angular motion maps are associated with channel function in real time and on an atomic scale. PMID:25223459

  19. Evaluation of the oxidase like activity of nanoceria and its application in colorimetric assays.

    PubMed

    Hayat, Akhtar; Cunningham, Jessica; Bulbul, Gonca; Andreescu, Silvana

    2015-07-23

    Nanomaterial-based enzyme mimics have attracted considerable interest in chemical analysis as alternative catalysts to natural enzymes. However, the conditions in which such particles can replace biological catalysts and their selectivity and reactivity profiles are not well defined. This work explored the oxidase like properties of nanoceria particles in the development of colorimetric assays for the detection of dopamine and catechol. Selectivity of the system with respect to several phenolic compounds, the effect of interferences and real sample analysis are discussed. The conditions of use such as buffer composition, selectivity, pH, reaction time and particle type are defined. Detection limits of 1.5 and 0.2μM were obtained with nanoceria for dopamine and catechol. The same assay could be used as a general sensing platform for the detection of other phenolics. However, the sensitivity of the method varies significantly with the particle type, buffer composition, pH and with the structure of the phenolic compound. The results demonstrate that nanoceria particles can be used for the development of cost effective and sensitive methods for the detection of these compounds. However, the selection of the particle system and experimental conditions is critical for achieving high sensitivity. Recommendations are provided on the selection of the particle system and reaction conditions to maximize the oxidase like activity of nanoceria. PMID:26231899

  20. Nicotine Inhibits Cisplatin-Induced Apoptosis via Regulating α5-nAChR/AKT Signaling in Human Gastric Cancer Cells

    PubMed Central

    Wu, Hongqiao; Zhang, Huilin; Zhang, Xiuping; Xiao, Dongjie; Ma, Xiaoli; Wang, Yunshan

    2016-01-01

    Gastric cancer incidence demonstrates a strong etiologic association with smoking. Nicotine, the major component in tobacco, is a survival agonist that inhibits apoptosis induced by certain chemotherapeutic agents, but the precise mechanisms involved remain largely unknown. Recently studies have indicated that α5-nicotinic acetylcholine receptor (α5-nAChR) is highly associated with lung cancer risk and nicotine dependence. Nevertheless, no information has been available about whether nicotine also affects proliferation of human gastric cancer cells through regulation of α5-nAChR. To evaluate the hypothesis that α5-nAChR may play a role in gastric cancer, we investigated its expression in gastric cancer tissues and cell lines. The expression of α5-nAChR increased in gastric cancer tissue compared with para-carcinoma tissues. In view of the results, we proceeded to investigate whether nicotine inhibits cisplatin-induced apoptosis via regulating α5-nAChR in gastric cancer cell. The results showed that nicotine significantly promoted cell proliferation in a dose and time-dependent manner through α5-nAChR activation in human gastric cells. Furthermore, nicotine inhibited apoptosis induced by cisplatin. Silence of α5-nAChR ablated the protective effects of nicotine. However, when co-administrating LY294002, an inhibitor of PI3K/AKT pathway, an increased apoptosis was observed. This effect correlated with the induction of Bcl-2, Bax, Survivin and Caspase-3 by nicotine in gastric cell lines. These results suggest that exposure to nicotine might negatively impact the apoptotic potential of chemotherapeutic drugs and that α5-nAChR/AKT signaling plays a key role in the anti-apoptotic activity of nicotine induced by cisplatin. PMID:26909550

  1. Nicotine Inhibits Cisplatin-Induced Apoptosis via Regulating α5-nAChR/AKT Signaling in Human Gastric Cancer Cells.

    PubMed

    Jia, Yanfei; Sun, Haiji; Wu, Hongqiao; Zhang, Huilin; Zhang, Xiuping; Xiao, Dongjie; Ma, Xiaoli; Wang, Yunshan

    2016-01-01

    Gastric cancer incidence demonstrates a strong etiologic association with smoking. Nicotine, the major component in tobacco, is a survival agonist that inhibits apoptosis induced by certain chemotherapeutic agents, but the precise mechanisms involved remain largely unknown. Recently studies have indicated that α5-nicotinic acetylcholine receptor (α5-nAChR) is highly associated with lung cancer risk and nicotine dependence. Nevertheless, no information has been available about whether nicotine also affects proliferation of human gastric cancer cells through regulation of α5-nAChR. To evaluate the hypothesis that α5-nAChR may play a role in gastric cancer, we investigated its expression in gastric cancer tissues and cell lines. The expression of α5-nAChR increased in gastric cancer tissue compared with para-carcinoma tissues. In view of the results, we proceeded to investigate whether nicotine inhibits cisplatin-induced apoptosis via regulating α5-nAChR in gastric cancer cell. The results showed that nicotine significantly promoted cell proliferation in a dose and time-dependent manner through α5-nAChR activation in human gastric cells. Furthermore, nicotine inhibited apoptosis induced by cisplatin. Silence of α5-nAChR ablated the protective effects of nicotine. However, when co-administrating LY294002, an inhibitor of PI3K/AKT pathway, an increased apoptosis was observed. This effect correlated with the induction of Bcl-2, Bax, Survivin and Caspase-3 by nicotine in gastric cell lines. These results suggest that exposure to nicotine might negatively impact the apoptotic potential of chemotherapeutic drugs and that α5-nAChR/AKT signaling plays a key role in the anti-apoptotic activity of nicotine induced by cisplatin. PMID:26909550

  2. Nicotine Inhibits Cisplatin-Induced Apoptosis via Regulating α5-nAChR/AKT Signaling in Human Gastric Cancer Cells.

    PubMed

    Jia, Yanfei; Sun, Haiji; Wu, Hongqiao; Zhang, Huilin; Zhang, Xiuping; Xiao, Dongjie; Ma, Xiaoli; Wang, Yunshan

    2016-01-01

    Gastric cancer incidence demonstrates a strong etiologic association with smoking. Nicotine, the major component in tobacco, is a survival agonist that inhibits apoptosis induced by certain chemotherapeutic agents, but the precise mechanisms involved remain largely unknown. Recently studies have indicated that α5-nicotinic acetylcholine receptor (α5-nAChR) is highly associated with lung cancer risk and nicotine dependence. Nevertheless, no information has been available about whether nicotine also affects proliferation of human gastric cancer cells through regulation of α5-nAChR. To evaluate the hypothesis that α5-nAChR may play a role in gastric cancer, we investigated its expression in gastric cancer tissues and cell lines. The expression of α5-nAChR increased in gastric cancer tissue compared with para-carcinoma tissues. In view of the results, we proceeded to investigate whether nicotine inhibits cisplatin-induced apoptosis via regulating α5-nAChR in gastric cancer cell. The results showed that nicotine significantly promoted cell proliferation in a dose and time-dependent manner through α5-nAChR activation in human gastric cells. Furthermore, nicotine inhibited apoptosis induced by cisplatin. Silence of α5-nAChR ablated the protective effects of nicotine. However, when co-administrating LY294002, an inhibitor of PI3K/AKT pathway, an increased apoptosis was observed. This effect correlated with the induction of Bcl-2, Bax, Survivin and Caspase-3 by nicotine in gastric cell lines. These results suggest that exposure to nicotine might negatively impact the apoptotic potential of chemotherapeutic drugs and that α5-nAChR/AKT signaling plays a key role in the anti-apoptotic activity of nicotine induced by cisplatin.

  3. A rapid, sensitive, simple plate assay for detection of microbial alginate lyase activity.

    PubMed

    Sawant, Shailesh S; Salunke, Bipinchandra K; Kim, Beom Soo

    2015-09-01

    Screening of microorganisms capable of producing alginate lyase enzyme is commonly carried out by investigating their abilities to grow on alginate-containing solid media plates and occurrence of a clearance zone after flooding the plates with agents such as 10% (w/v) cetyl pyridinium chloride (CPC), which can form complexes with alginate. Although the CPC method is good, advantageous, and routinely used, the agar in the media interferes with the action of CPC, which makes judgment about clearance zones very difficult. In addition, this method takes a minimum of 30 min to obtain the zone of hydrolysis after flooding and the hydrolyzed area is not sharply discernible. An improved plate assay is reported herein for the detection of extracellular alginate lyase production by microorganisms. In this method, alginate-containing agar plates are flooded with Gram's iodine instead of CPC. Gram's iodine forms a bluish black complex with alginate but not with hydrolyzed alginate, giving sharp, distinct zones around the alginate lyase producing microbial colonies within 2-3 min. Gram's iodine method was found to be more effective than the CPC method in terms of visualization and measurement of zone size. The alginate-lyase-activity area indicated using the Gram's iodine method was found to be larger than that indicated by the CPC method. Both methods (CPC and Gram's iodine) showed the largest alginate lyase activity area for Saccharophagus degradans (ATCC 43961) followed by Microbulbifer mangrovi (KCTC 23483), Bacillus cereus (KF801505) and Paracoccus sp. LL1 (KP288668) grown on minimal sea salt medium. The rate of growth and metabolite production in alginate-containing minimal sea salt liquid medium, followed trends similar to that of the zone activity areas for the four bacteria under study. These results suggested that the assay developed in this study of Gram's iodine could be useful to predict the potential of microorganisms to produce alginate lyase. The method also

  4. A Simple and Fast Kinetic Assay for the Determination of Fructan Exohydrolase Activity in Perennial Ryegrass (Lolium perenne L.).

    PubMed

    Gasperl, Anna; Morvan-Bertrand, Annette; Prud'homme, Marie-Pascale; van der Graaff, Eric; Roitsch, Thomas

    2015-01-01

    Despite the fact that fructans are the main constituent of water-soluble carbohydrates in forage grasses and cereal crops of temperate climates, little knowledge is available on the regulation of the enzymes involved in fructan metabolism. The analysis of enzyme activities involved in this process has been hampered by the low affinity of the fructan enzymes for sucrose and fructans used as fructosyl donor. Further, the analysis of fructan composition and enzyme activities is restricted to specialized labs with access to suited HPLC equipment and appropriate fructan standards. The degradation of fructan polymers with high degree of polymerization (DP) by fructan exohydrolases (FEHs) to fructosyloligomers is important to liberate energy in the form of fructan, but also under conditions where the generation of low DP polymers is required. Based on published protocols employing enzyme coupled endpoint reactions in single cuvettes, we developed a simple and fast kinetic 1-FEH assay. This assay can be performed in multi-well plate format using plate readers to determine the activity of 1-FEH against 1-kestotriose, resulting in a significant time reduction. Kinetic assays allow an optimal and more precise determination of enzyme activities compared to endpoint assays, and enable to check the quality of any reaction with respect to linearity of the assay. The enzyme coupled kinetic 1-FEH assay was validated in a case study showing the expected increase in 1-FEH activity during cold treatment. This assay is cost effective and could be performed by any lab with access to a plate reader suited for kinetic measurements and readings at 340 nm, and is highly suited to assess temporal changes and relative differences in 1-FEH activities. Thus, this enzyme coupled kinetic 1-FEH assay is of high importance both to the field of basic fructan research and plant breeding.

  5. A Simple and Fast Kinetic Assay for the Determination of Fructan Exohydrolase Activity in Perennial Ryegrass (Lolium perenne L.)

    PubMed Central

    Gasperl, Anna; Morvan-Bertrand, Annette; Prud’homme, Marie-Pascale; Roitsch, Thomas

    2015-01-01

    Despite the fact that fructans are the main constituent of water-soluble carbohydrates in forage grasses and cereal crops of temperate climates, little knowledge is available on the regulation of the enzymes involved in fructan metabolism. The analysis of enzyme activities involved in this process has been hampered by the low affinity of the fructan enzymes for sucrose and fructans used as fructosyl donor. Further, the analysis of fructan composition and enzyme activities is restricted to specialized labs with access to suited HPLC equipment and appropriate fructan standards. The degradation of fructan polymers with high degree of polymerization (DP) by fructan exohydrolases (FEHs) to fructosyloligomers is important to liberate energy in the form of fructan, but also under conditions where the generation of low DP polymers is required. Based on published protocols employing enzyme coupled endpoint reactions in single cuvettes, we developed a simple and fast kinetic 1-FEH assay. This assay can be performed in multi-well plate format using plate readers to determine the activity of 1-FEH against 1-kestotriose, resulting in a significant time reduction. Kinetic assays allow an optimal and more precise determination of enzyme activities compared to endpoint assays, and enable to check the quality of any reaction with respect to linearity of the assay. The enzyme coupled kinetic 1-FEH assay was validated in a case study showing the expected increase in 1-FEH activity during cold treatment. This assay is cost effective and could be performed by any lab with access to a plate reader suited for kinetic measurements and readings at 340 nm, and is highly suited to assess temporal changes and relative differences in 1-FEH activities. Thus, this enzyme coupled kinetic 1-FEH assay is of high importance both to the field of basic fructan research and plant breeding. PMID:26734049

  6. PERKINSUS-"CIDAL" ACTIVITY OF OYSTER HEMOCYTES USING A TETRAZOLIUM DYE REDUCTION ASSAY: OPTIMIZATION AND APPLICATIONS

    EPA Science Inventory

    A bactericidal assay developed to assess the ability of oyster (Crassostrea virginica) hemocytes to kill the human pathogen Vibrio parahaemolyticus was optimized to estimate killing of the oyster parasite Perkinsus marinus. Assay variables, temperature, hemocyte:parasite ratio, i...

  7. Target site insensitivity mutations in the AChE enzyme confer resistance to organophosphorous insecticides in Leptinotarsa decemlineata (Say).

    PubMed

    Malekmohammadi, M; Galehdari, H

    2016-01-01

    In the present study, we demonstrated the use and optimization of the tetra-primer ARMS-PCR procedure to detect and analyze the frequency of the R30K and I392T mutations in resistant field populations of CPB. The R30K mutation was detected in 72%, 84%, 52% and 64% of Bahar, Dehpiaz, Aliabad and Yengijeh populations, respectively. Overall frequencies of the I392T mutation were 12%, 8% and 16% of Bahar, Aliabad and Yengijeh populations, respectively. No I392T point mutation was found among samples from Dehpiaz field population. Moreover, only 31% and 2% of samples from the resistant field populations were homozygous for R30K and I392T mutations, respectively. No individual simultaneously had both I392T and S291G/R30K point mutations. The incidence of individuals with both S291G and R30K point mutations in the samples from Bahar, Dehpiaz, Aliabad, and Yengijeh populations were 31.5%, 44.7%, 41.6%, and 27.3% respectively. Genotypes determined by the tetra-primer ARMS-PCR method were consistent with those determined by PCR sequencing. There was no significant correlation between the mutation frequencies and resistance levels in the resistant populations, indicating that other mutations may contribute to this variation. Polymorphism in the partial L. decemlineata cDNA AChE gene Ldace2 of four field populations was identified by direct sequencing of PCR-amplified fragments. Among 45 novel mutations detected in this study, T29P mutation was found across all four field populations that likely contribute to the AChE insensitivity. Site-directed mutagenesis and protein expression experiments are needed for a more complete evaluation. PMID:26778439

  8. The regulation of hippocampal nicotinic acetylcholine receptors (nAChRs) after a protracted treatment with selective or nonselective nAChR agonists.

    PubMed

    Auta, J; Longone, P; Guidotti, A; Costa, E

    1999-01-01

    In rats, 1 mg/kg twice daily for 10 d of nicotine, a nonselective agonist of nicotinic acetylcholine receptors (nAChRs), fails to change alpha4 and beta2 nAChR subunit mRNA but significantly decreased alpha7 nAChR subunit mRNA and protein expression, which is associated with a 35-40% decrease in the number of 125I-alpha-Bgtx binding sites in hippocampus. In addition, this schedule of nicotine treatment produced a 40% increase in the number of high- (K(D) 1 nM), but decreased by 25% the number of low-affinity (K(D) 30 nM) binding sites for 3H-epibatidine in hippocampus. In contrast, repeated treatment with lobeline (2.7 mg/kg twice daily for 10 d), which selectively binds to high-affinity binding nAChRs, fails to change the expression of high- or low-affinity nAChRs. These data suggest that a simultaneous upregulation of high-affinity nAChRs and downregulation of low-affinity nAChRs is elicited by ligands that can bind to both low- and high-affinity nAChRs, but not by selective agonists of high-affinity nAChRs. One might infer that in hippocampus, high- and low-affinity nAChRs may be located in the same cells. When these two receptor types are stimulated simultaneously by nonselective ligands for high- and low-affinity nAChRs, they interact, bringing about an increase in binding site density of the high-affinity nAChRs.

  9. A zebrafish scale assay to monitor dioxin-like activity in surface water samples.

    PubMed

    Pelayo, Sergi; López-Roldán, Ramón; González, Susana; Casado, Marta; Raldúa, Demetrio; Cortina, Jose Luis; Piña, Benjamin

    2011-10-01

    New regulations on water quality require a close control of the possible biological activities known or unexpected pollutants may bring about. We present here a protocol based on the direct exposure of zebrafish to river water and the analysis of expression of specific genes in their scales to determine the presence of compounds with dioxin-like biological activity. The method does not require the killing of animals and allows detection of the biological activity after a single day of exposure. When tested, the method with real samples from the Llobregat River, clear temporal and spatial variations were observed, demonstrating its suitability for monitoring natural variations in water quality linked to specific discharges. High biological activities were unrelated to the currently checked water quality parameters (macropollutants, turbidity, TOC, etc.), but they did correlate with the presence of micropollutants (estrogens, detergents, etc.) related to domestic and/or industrial runoffs. The scale assay therefore provides a new tool to evaluate water quality changes that cannot be easily derived from the existing standard analytical procedures. It ranks among the very few described protocols able to detect biological effects from natural water samples, without a pre-concentration step, and after only 24 h of exposure. PMID:21822775

  10. A novel assay of biofilm antifungal activity reveals that amphotericin B and caspofungin lyse Candida albicans cells in biofilms.

    PubMed

    DiDone, Louis; Oga, Duana; Krysan, Damian J

    2011-08-01

    The ability of Candida albicans to form drug-resistant biofilms is an important factor in its contribution to human disease. Assays to identify and characterize molecules with activity against fungal biofilms are crucial for the development of drugs with improved anti-biofilm activity. Here we report the application of an adenylate kinase (AK)-based cytotoxicity assay of fungal cell lysis to the characterization of agents active against C. albicans biofilms. We have developed three protocols for the AK assay. The first measures AK activity in the supernatants of biofilms treated with antifungal drugs and can be performed in parallel with a standard 2,3-bis-(2-methoxy-4-nitro-5-sulphophenyl)-2H-tetrazolium-5-caboxanilide-based biofilm susceptibility assay; a second, more sensitive protocol measures the AK activity present within the biofilm matrix; and a third procedure allows the direct visualization of lytic activity toward biofilms formed on catheter material. Amphotericin B and caspofungin, the two most effective anti-biofilm drugs currently used to treat fungal infections, both directly lyse planktonic C. albicans cells in vitro, leading to the release of AK into the culture medium. These studies serve to validate the AK-based lysis assay as a useful addition to the methods for the characterization of antifungal agents active toward biofilms and provide insights into the mode of action of amphotericin B and caspofungin against C. albicans biofilms.

  11. A novel assay of biofilm antifungal activity reveals that amphotericin B and caspofungin lyse Candida albicans cells in biofilms.

    PubMed

    DiDone, Louis; Oga, Duana; Krysan, Damian J

    2011-08-01

    The ability of Candida albicans to form drug-resistant biofilms is an important factor in its contribution to human disease. Assays to identify and characterize molecules with activity against fungal biofilms are crucial for the development of drugs with improved anti-biofilm activity. Here we report the application of an adenylate kinase (AK)-based cytotoxicity assay of fungal cell lysis to the characterization of agents active against C. albicans biofilms. We have developed three protocols for the AK assay. The first measures AK activity in the supernatants of biofilms treated with antifungal drugs and can be performed in parallel with a standard 2,3-bis-(2-methoxy-4-nitro-5-sulphophenyl)-2H-tetrazolium-5-caboxanilide-based biofilm susceptibility assay; a second, more sensitive protocol measures the AK activity present within the biofilm matrix; and a third procedure allows the direct visualization of lytic activity toward biofilms formed on catheter material. Amphotericin B and caspofungin, the two most effective anti-biofilm drugs currently used to treat fungal infections, both directly lyse planktonic C. albicans cells in vitro, leading to the release of AK into the culture medium. These studies serve to validate the AK-based lysis assay as a useful addition to the methods for the characterization of antifungal agents active toward biofilms and provide insights into the mode of action of amphotericin B and caspofungin against C. albicans biofilms. PMID:21674619

  12. Are fish and standardized FETAX assays protective enough for amphibians? A case study on Xenopus laevis larvae assay with biologically active substances present in livestock wastes.

    PubMed

    Martini, Federica; Tarazona, José V; Pablos, M Victoria

    2012-01-01

    Biologically active substances could reach the aquatic compartment when livestock wastes are considered for recycling. Recently, the standardized FETAX assay has been questioned, and some researchers have considered that the risk assessment performed on fish could not be protective enough to cover amphibians. In the present study a Xenopus laevis acute assay was developed in order to compare the sensitivity of larvae relative to fish or FETAX assays; veterinary medicines (ivermectin, oxytetracycline, tetracycline, sulfamethoxazole, and trimethoprim) and essential metals (zinc, copper, manganese, and selenium) that may be found in livestock wastes were used for the larvae exposure. Lethal (LC(50)) and sublethal effects were estimated. Available data in both, fish and FETAX studies, were in general more protective than values found out in the current study, but not in all cases. Moreover, the presence of nonlethal effects, caused by ivermectin, zinc, and copper, suggested that several physiological mechanisms could be affected. Thus, this kind of effects should be deeply investigated. The results obtained in the present study could expand the information about micropollutants from livestock wastes on amphibians. PMID:22629159

  13. Are Fish and Standardized FETAX Assays Protective Enough for Amphibians? A Case Study on Xenopus laevis Larvae Assay with Biologically Active Substances Present in Livestock Wastes

    PubMed Central

    Martini, Federica; Tarazona, José V.; Pablos, M. Victoria

    2012-01-01

    Biologically active substances could reach the aquatic compartment when livestock wastes are considered for recycling. Recently, the standardized FETAX assay has been questioned, and some researchers have considered that the risk assessment performed on fish could not be protective enough to cover amphibians. In the present study a Xenopus laevis acute assay was developed in order to compare the sensitivity of larvae relative to fish or FETAX assays; veterinary medicines (ivermectin, oxytetracycline, tetracycline, sulfamethoxazole, and trimethoprim) and essential metals (zinc, copper, manganese, and selenium) that may be found in livestock wastes were used for the larvae exposure. Lethal (LC50) and sublethal effects were estimated. Available data in both, fish and FETAX studies, were in general more protective than values found out in the current study, but not in all cases. Moreover, the presence of nonlethal effects, caused by ivermectin, zinc, and copper, suggested that several physiological mechanisms could be affected. Thus, this kind of effects should be deeply investigated. The results obtained in the present study could expand the information about micropollutants from livestock wastes on amphibians. PMID:22629159

  14. Development of an activity assay for discovery of inhibitors of lipopolysaccharide transport.

    PubMed

    Gronenberg, Luisa S; Kahne, Daniel

    2010-03-01

    The outer membrane of gram-negative bacteria contains an outer leaflet composed of lipopolysaccharide (LPS) that is transported to this location by a pathway that is essential for viability. It has been suggested that inhibitors of this pathway could be useful antibiotics. Herein we reconstitute the activity of the ATPase component (LptB) of the ABC transporter that initiates LPS transport and assembly. We developed a high-throughput assay and screened a library of kinase inhibitors against LptB. We identified two classes of ATP-competitive inhibitors. These are the first inhibitors of the ATPase component of any bacterial ABC transporter. The small-molecule inhibitors will be very useful tools for further biochemical studies of the proteins involved in LPS transport and assembly.

  15. A simple and efficient diffusion technique for assay of endo β-1,4-xylanase activity

    PubMed Central

    Samanta, A.K.; Kolte, Atul P.; Senani, S.; Sridhar, Manpal.; Jayapal, Natasha.

    2011-01-01

    Endo-β-1, 4-xylanases is thought to be of great significance for several industries namely paper, pharmaceuticals, food, feed etc. in addition to better utilization of lignocellulosic biomass. The present investigation was aimed to develop an easy, simple and efficient assay technique for endo-β-1, 4-xylanases secreted by the aerobic fungi. Under the proposed protocol, 9 g/L xylan containing agar was prepared in 100 mM phosphate buffer at different pH (4.5, 5.5 and 6.5). The sterilized xylan agar was dispensed in 90 mm petri dishes. 100 µl of culture supernatant of 12 fungal isolates was added to the wells and left overnight at 31±10C. The petri dishes were observed for zone of clearance by naked eye and diameter was measured. Congo red solution (1 g/L) was applied over the petri dishes as per the established protocol and thereafter plates were flooded with 1M Sodium chloride solution for the appearance of zone of clearance. The diameter for zone of clearance by the proposed method and the established protocol was almost identical and ranged from 21 to 42 mm at different pH depending upon the activity of endo-β-1, 4-xylanases. Change of pH towards alkaline side enabled similar or marginal decrease of diameter for the zone of clearance in most of the fungal isolates. The specific activities of these fungal isolates varied from 1.85 to 11.47 IU/mg protein. The present investigation revealed that the proposed simple diffusion technique gave similar results as compared to the established Congo red assay for endo-β-1, 4-xylanases. Moreover, the present technique avoided the cumbersome steps of staining by Congo red and de-staining by sodium chloride. PMID:24031763

  16. Conjugated polyelectrolyte based fluorescence turn-on assay for real-time monitoring of protease activity.

    PubMed

    Wang, Yanyan; Zhang, Yong; Liu, Bin

    2010-10-15

    A fluorescence "turn-on" assay for monitoring protease activity is developed on the basis of a water-soluble carboxylated polyfluorene derivative, PFP-CO₂Na, and its different fluorescence response toward cytochrome c (cyt c) and its fragments. PFP-CO₂Na is synthesized via Suzuki coupling polymerization between 2,7-dibromo-9,9-bis(3'-tert-butyl propanoate)fluorene and 1,4-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-benzene, followed by treatment with trifluoroacetic acid and Na₂CO₃. The fluorescence of PFP-CO₂Na can be significantly quenched by cyt c due to complexation-mediated electron transfer between the polymer and protein. Using the complex of PFP-CO₂Na/cyt c as a substrate, a real-time fluorescence turn-on assay for trypsin activity study has been developed. Addition of trypsin to the substrate solution induces gradual recovery of the fluorescence intensity for PFP-CO₂Na due to trypsin-catalyzed hydrolysis of cyt c, which dissociates the heme moiety from the polymer vicinity. The time-dependent fluorescence intensity increase of PFP-CO₂Na in the presence of trypsin allows us to derive the initial reaction rates and k(cat)/K(m) (5350 M⁻¹ s⁻¹) for trypsin-catalyzed hydrolysis. Addition of trypsin inhibitor efficiently inhibits trypsin-catalyzed hydrolysis reaction of cyt c, which leads to a decreased fluorescence turn-on response of PFP-CO₂Na.

  17. Validation of a high throughput flow cytometric in vitro micronucleus assay including assessment of metabolic activation in TK6 cells.

    PubMed

    Thougaard, Annemette V; Christiansen, Joan; Mow, Tomas; Hornberg, Jorrit J

    2014-12-01

    Genotoxicity is an unacceptable property for new drug candidates and we employ three screening assays during the drug discovery process to identify genotoxicity early and optimize chemical series. One of these methods is the flow cytometric in vitro micronucleus assay for which protocol optimizations have been described recently. Here, we report further validation of the assay in TK6 cells including assessment of metabolic activation. We first optimized assay conditions to allow for testing with and without metabolic activation in parallel in a 96-well plate format. Then, we tested a set of 48 compounds carefully selected to contain known in vivo genotoxins, nongenotoxins and drugs. Avoidance of irrelevant positives, a known issue with mammalian cell-based genotoxicity assays, is important to prevent early deselection of potentially promising compounds. Therefore, we enriched the validation set with compounds that were previously reported to produce irrelevant positive results in mammalian cell-based genotoxicity assays. The resulting dataset was used to set the relevant cut-off values for scoring a compound positive or negative, such that we obtained an optimal balance of high sensitivity (88%) and high specificity (87%). Finally, we tested an additional set of 16 drugs to further probe assay performance and 14 of them were classified correctly. To our knowledge, the present study is the most comprehensive validation of the in vitro flow cytometric micronucleus assay and the first to report parallel assessment with metabolic activation in reasonable throughput. The assay allows for rapidly screening novel compounds for genotoxicity and is therefore well-suited for use in early drug discovery projects. Environ.

  18. Determining estrogenic activity in serum from ovariectomized rats treated with environmental compounds using an in vitro estrogen-mediated transcriptional activation assay (T47D-KBluc)

    EPA Science Inventory

    The use of cell-based assays to quantify low levels of estrogen in human serum is an accepted method. These assays are more sensitive but less specific than radioimmunoassays (RIA). Thus, we hypothesized that estrogen responsive T47D-KBluc cells would detect estrogenic activity i...

  19. Determining estrogenic activity in serum from ovariectomized rats treated with environmental compounds using an in vitro estrogen-mediated transcriptional activation assay (T47D-KBluc).

    EPA Science Inventory

    The use of cell-based assays to quantify low levels of estrogen in human serum is an accepted method. These assays are more sensitive but less specific than radioimmunoassays (RIA). Thus, we hypothesized that estrogen responsive T47D-KBluc cells would detect estrogenic activity i...

  20. Inhibition of Cathepsin Activity in a Cell-Based Assay by a Light-Activated Ruthenium Compound

    PubMed Central

    Respondek, Tomasz; Sharma, Rajgopal; Herroon, Mackenzie K.; Garner, Robert N.; Knoll, Jessica D.; Cueny, Eric; Turro, Claudia; Podgorski, Izabela; Kodanko, Jeremy J.

    2014-01-01

    Light-activated inhibition of cathepsin activity was demonstrated with in a cell-based assay. Inhibitors of cathepsin K, Cbz-Leu-NHCH2CN (2) and Cbz-Leu-Ser(OBn)-CN (3), were caged within the complexes cis-[Ru(bpy)2(2)2]Cl2 (4) and cis-[Ru(bpy)2(3)2](BF4)2 (5), where bpy = 2,2′-bipyridine, as 1:1 mixtures of Δ- and Λ stereoisomers. Complexes 4 and 5 were characterized by 1H NMR, IR and UV-vis spectroscopies and electrospray mass spectrometry. Photochemical experiments confirm that 4 releases two molecules of 2 upon exposure to visible light for 15 min, whereas release of 3 by 5 requires longer irradiation times. IC50 determinations against purified cathepsin K under light and dark conditions with 4 and 5 confirm that inhibition is enhanced from 35 to 88-fold, respectively, upon irradiation with visible light. No apparent toxicity was observed for 4 in the absence or presence of irradiation in bone marrow macrophage (BMM) or PC-3 cells, as judged by the MTT assay, at concentrations up to 10 μM. Compound 5 is well tolerated at lower concentrations (<1 μM) but does show growth inhibitory effects at higher concentrations. Confocal microscopy experiments show that 4 reduces intracellular cathepsin activity in osteoclasts with light activation. These results support further development of caged nitrile-based inhibitors as chemical tools for investigating spatial aspects of proteolysis within living systems. PMID:24729544

  1. Erythrocytes and cell line-based assays to evaluate the cytoprotective activity of antioxidant components obtained from natural sources.

    PubMed

    Botta, Albert; Martínez, Verónica; Mitjans, Montserrat; Balboa, Elena; Conde, Enma; Vinardell, M Pilar

    2014-02-01

    Oxidative stress can damage cellular components including DNA, proteins or lipids, and may cause several skin diseases. To protect from this damage and addressing consumer's appeal to natural products, antioxidants obtained from algal and vegetal extracts are being proposed as antioxidants to be incorporated into formulations. Thus, the development of reliable, quick and economic in vitro methods to study the cytoactivity of these products is a meaningful requirement. A combination of erythrocyte and cell line-based assays was performed on two extracts from Sargassum muticum, one from Ulva lactuca, and one from Castanea sativa. Antioxidant properties were assessed in erythrocytes by the TBARS and AAPH assays, and cytotoxicity and antioxidant cytoprotection were assessed in HaCaT and 3T3 cells by the MTT assay. The extracts showed no antioxidant activity on the TBARS assay, whereas their antioxidant capacity in the AAPH assay was demonstrated. On the cytotoxicity assays, extracts showed low toxicity, with IC50 values higher than 200μg/mL. C. sativa extract showed the most favourable antioxidant properties on the antioxidant cytoprotection assays; while S. muticum and U. lactuca extracts showed a slight antioxidant activity. This battery of methods was useful to characterise the biological antioxidant properties of these natural extracts.

  2. Erythrocytes and cell line-based assays to evaluate the cytoprotective activity of antioxidant components obtained from natural sources.

    PubMed

    Botta, Albert; Martínez, Verónica; Mitjans, Montserrat; Balboa, Elena; Conde, Enma; Vinardell, M Pilar

    2014-02-01

    Oxidative stress can damage cellular components including DNA, proteins or lipids, and may cause several skin diseases. To protect from this damage and addressing consumer's appeal to natural products, antioxidants obtained from algal and vegetal extracts are being proposed as antioxidants to be incorporated into formulations. Thus, the development of reliable, quick and economic in vitro methods to study the cytoactivity of these products is a meaningful requirement. A combination of erythrocyte and cell line-based assays was performed on two extracts from Sargassum muticum, one from Ulva lactuca, and one from Castanea sativa. Antioxidant properties were assessed in erythrocytes by the TBARS and AAPH assays, and cytotoxicity and antioxidant cytoprotection were assessed in HaCaT and 3T3 cells by the MTT assay. The extracts showed no antioxidant activity on the TBARS assay, whereas their antioxidant capacity in the AAPH assay was demonstrated. On the cytotoxicity assays, extracts showed low toxicity, with IC50 values higher than 200μg/mL. C. sativa extract showed the most favourable antioxidant properties on the antioxidant cytoprotection assays; while S. muticum and U. lactuca extracts showed a slight antioxidant activity. This battery of methods was useful to characterise the biological antioxidant properties of these natural extracts. PMID:24134852

  3. Suramin inhibits helicase activity of NS3 protein of dengue virus in a fluorescence-based high throughput assay format.

    PubMed

    Basavannacharya, Chandrakala; Vasudevan, Subhash G

    2014-10-24

    Dengue fever is a major health concern worldwide. The virus encoded non-structural protein 3 (NS3) is a multifunctional protein endowed with protease, helicase, nucleoside triphosphatase (NTPase) and RNA 5' triphosphatase (RTPase) activities. Helicase activity of NS3 catalyzes the unwinding of double stranded polynucleotides by utilizing the energy released from ATP hydrolysis. As this activity is essential for replication, NS3 helicase represents an attractive drug target for developing a dengue antiviral drug. Here, we report fluorescence based molecular beacon helicase assay using a duplex RNA substrate that contains a fluorophore on the 5' end and a quencher on the 3' end of one of the strands. The assay was optimized with respect to several parameters and adapted to 384-well high-throughput screening format, with an average Z' factor of 0.65. Assay validation with a small diverse set library of 1600 compounds identified, suramin as a significant inhibitor of the helicase activity of NS3. Helicase activity deficient NS3 K199A was used in a counter-screen to identify compounds interfering with the assay. Suramin inhibited DENV (dengue virus) NS3 helicase activity with a Ki of 0.75±0.03μM as a non-competitive inhibitor. The molecular beacon helicase assay together with the counter screen and suramin as a tool compound can be used to identify novel inhibitors of DENV helicase.

  4. Assays of physical stability and antioxidant activity of a topical formulation added with different plant extracts.

    PubMed

    Di Mambro, Valéria M; Fonseca, Maria J V

    2005-02-23

    In the present investigation the changes on physical stability (pH, viscosity, flow index and tixotropy) of topical formulations were evaluated following inclusion of different plant extracts containing flavonoids. Also, the antioxidant effect of these plant extracts alone and after addition in the formulation was evaluated using chemiluminescence and the stable free radical 1,1-diphenyl-2-picrylhydrazyl (DPPH(.-)) assays, as well as the inhibition of lipid peroxidation. Formulation added with dl-alpha-tocopherol was used to compare the physical stability and antioxidant activity. Formulations with plant extracts showed pseudoplastic behavior with decreasing on viscosity and tixotropy. The Glycyrrhiza glabra (GG) and Ginkgo biloba (GB) extracts alone and the formulations containing these extracts showed great antioxidant and free radical scavenging activities while the other extracts studied (mixture of Glycyrrhiza glabra, Symphytum officinale L and Arctium majus root, Nelumbium speciosum and soybean) showed lower activity. The results suggest that GG and GB extracts may be used in topical formulations in order to protect skin against damage caused by free radical and reactive oxygen species. PMID:15708669

  5. A yeast-based assay identifies drugs active against human mitochondrial disorders.

    PubMed

    Couplan, Elodie; Aiyar, Raeka S; Kucharczyk, Roza; Kabala, Anna; Ezkurdia, Nahia; Gagneur, Julien; St Onge, Robert P; Salin, Bénédicte; Soubigou, Flavie; Le Cann, Marie; Steinmetz, Lars M; di Rago, Jean-Paul; Blondel, Marc

    2011-07-19

    Due to the lack of relevant animal models, development of effective treatments for human mitochondrial diseases has been limited. Here we establish a rapid, yeast-based assay to screen for drugs active against human inherited mitochondrial diseases affecting ATP synthase, in particular NARP (neuropathy, ataxia, and retinitis pigmentosa) syndrome. This method is based on the conservation of mitochondrial function from yeast to human, on the unique ability of yeast to survive without production of ATP by oxidative phosphorylation, and on the amenability of the yeast mitochondrial genome to site-directed mutagenesis. Our method identifies chlorhexidine by screening a chemical library and oleate through a candidate approach. We show that these molecules rescue a number of phenotypes resulting from mutations affecting ATP synthase in yeast. These compounds are also active on human cybrid cells derived from NARP patients. These results validate our method as an effective high-throughput screening approach to identify drugs active in the treatment of human ATP synthase disorders and suggest that this type of method could be applied to other mitochondrial diseases.

  6. A yeast-based assay identifies drugs active against human mitochondrial disorders

    PubMed Central

    Couplan, Elodie; Aiyar, Raeka S.; Kucharczyk, Roza; Kabala, Anna; Ezkurdia, Nahia; Gagneur, Julien; St. Onge, Robert P.; Salin, Bénédicte; Soubigou, Flavie; Le Cann, Marie; Steinmetz, Lars M.; di Rago, Jean-Paul; Blondel, Marc

    2011-01-01

    Due to the lack of relevant animal models, development of effective treatments for human mitochondrial diseases has been limited. Here we establish a rapid, yeast-based assay to screen for drugs active against human inherited mitochondrial diseases affecting ATP synthase, in particular NARP (neuropathy, ataxia, and retinitis pigmentosa) syndrome. This method is based on the conservation of mitochondrial function from yeast to human, on the unique ability of yeast to survive without production of ATP by oxidative phosphorylation, and on the amenability of the yeast mitochondrial genome to site-directed mutagenesis. Our method identifies chlorhexidine by screening a chemical library and oleate through a candidate approach. We show that these molecules rescue a number of phenotypes resulting from mutations affecting ATP synthase in yeast. These compounds are also active on human cybrid cells derived from NARP patients. These results validate our method as an effective high-throughput screening approach to identify drugs active in the treatment of human ATP synthase disorders and suggest that this type of method could be applied to other mitochondrial diseases. PMID:21715656

  7. Using Carbohydrate Interaction Assays to Reveal Novel Binding Sites in Carbohydrate Active Enzymes.

    PubMed

    Cockburn, Darrell; Wilkens, Casper; Dilokpimol, Adiphol; Nakai, Hiroyuki; Lewińska, Anna; Abou Hachem, Maher; Svensson, Birte

    2016-01-01

    Carbohydrate active enzymes often contain auxiliary binding sites located either on independent domains termed carbohydrate binding modules (CBMs) or as so-called surface binding sites (SBSs) on the catalytic module at a certain distance from the active site. The SBSs are usually critical for the activity of their cognate enzyme, though they are not readily detected in the sequence of a protein, but normally require a crystal structure of a complex for their identification. A variety of methods, including affinity electrophoresis (AE), insoluble polysaccharide pulldown (IPP) and surface plasmon resonance (SPR) have been used to study auxiliary binding sites. These techniques are complementary as AE allows monitoring of binding to soluble polysaccharides, IPP to insoluble polysaccharides and SPR to oligosaccharides. Here we show that these methods are useful not only for analyzing known binding sites, but also for identifying new ones, even without structural data available. We further verify the chosen assays discriminate between known SBS/CBM containing enzymes and negative controls. Altogether 35 enzymes are screened for the presence of SBSs or CBMs and several novel binding sites are identified, including the first SBS ever reported in a cellulase. This work demonstrates that combinations of these methods can be used as a part of routine enzyme characterization to identify new binding sites and advance the study of SBSs and CBMs, allowing them to be detected in the absence of structural data. PMID:27504624

  8. Using Carbohydrate Interaction Assays to Reveal Novel Binding Sites in Carbohydrate Active Enzymes

    PubMed Central

    Wilkens, Casper; Dilokpimol, Adiphol; Nakai, Hiroyuki; Lewińska, Anna; Abou Hachem, Maher; Svensson, Birte

    2016-01-01

    Carbohydrate active enzymes often contain auxiliary binding sites located either on independent domains termed carbohydrate binding modules (CBMs) or as so-called surface binding sites (SBSs) on the catalytic module at a certain distance from the active site. The SBSs are usually critical for the activity of their cognate enzyme, though they are not readily detected in the sequence of a protein, but normally require a crystal structure of a complex for their identification. A variety of methods, including affinity electrophoresis (AE), insoluble polysaccharide pulldown (IPP) and surface plasmon resonance (SPR) have been used to study auxiliary binding sites. These techniques are complementary as AE allows monitoring of binding to soluble polysaccharides, IPP to insoluble polysaccharides and SPR to oligosaccharides. Here we show that these methods are useful not only for analyzing known binding sites, but also for identifying new ones, even without structural data available. We further verify the chosen assays discriminate between known SBS/CBM containing enzymes and negative controls. Altogether 35 enzymes are screened for the presence of SBSs or CBMs and several novel binding sites are identified, including the first SBS ever reported in a cellulase. This work demonstrates that combinations of these methods can be used as a part of routine enzyme characterization to identify new binding sites and advance the study of SBSs and CBMs, allowing them to be detected in the absence of structural data. PMID:27504624

  9. FRET-based protein-DNA binding assay for detection of active NF-kappa B

    SciTech Connect

    Giannetti, Ambra; Baldini, Francesco; Wabuyele, Musundi B; Vo Dinh, Tuan

    2006-01-01

    A novel method to detect the active form of NF-{kappa}B, a transcription factor regulating a battery of inflammatory genes and playing a fundamental role in the development of numerous pathological states, has been developed. In the present work, we used fluorescence resonance energy transfer (FRET) to study DNA-protein binding interaction taking place between double-strand (ds) DNA immobilized in a glass capillary wall and p50 proteins. For this purpose, we developed a regenerable FRET-based system comprising of a single-strand (ss) DNA with auto-complementary sequence that is end-labeled with Cy5 dye and is highly specific for p50 proteins. The proteins were labeled with a Black Hole Quencher (BHQ-3) to be used as FRET pair. The interaction of p50/p50 homodimer active form with its DNA binding site was demonstrated by both electrophoretic mobility shift assays and FRET studies. These preliminary results demonstrated the feasibility of the FRET-based DNA technique to detect the active form of NF-{kappa}B protein with 90% detection efficiency. In addition, we show that the system is stable and highly regenerable.

  10. Antimutagenic and mutagenic activities of some terpenes in the bacterial reverse mutation assay.

    PubMed

    Di Sotto, Antonella; Evandri, Maria Grazia; Mazzanti, Gabriela

    2008-05-31

    The mutagenic and antimutagenic effects of linalool, linalyl acetate and beta-caryophyllene were evaluated by the bacterial reverse mutation assay on Salmonella typhimurium TA 98 and TA 100, and on Escherichia coli WP2uvrA strains. Neither linalool nor beta-caryophyllene showed mutagenicity, but linalyl acetate induced a statistically significant increase in the number of revertant colonies in WP2uvrA, both with and without S9 mixture. Linalool was devoid of antimutagenic activity against 2-nitrofluorene (2NF), sodium azide (SA), methyl methane sulfonate (MMS) and 2-aminoanthracene (2AA). In contrast, beta-caryophyllene showed a strong antimutagenic activity against 2NF: at the maximum concentration tested (6.40mg/plate) the number of 2NF-induced revertant colonies was reduced by 83.9%. beta-Caryophyllene also showed to counteract the mutagenicity of SA (in TA 100), MMS and 2AA (in WP2uvrA): the effect was weak against SA (inhibition lower than 25%) and moderate against MMS and 2AA (up to 30.5%). The antimutagenic activity of beta-caryophyllene observed here suggests further studies to evaluate its possible chemopreventive properties. PMID:18514567

  11. Spectrophotometric assays for the enzymatic hydrolysis of the active metabolites of chlorpyrifos and parathion by plasma paraoxonase/arylesterase.

    PubMed

    Furlong, C E; Richter, R J; Seidel, S L; Costa, L G; Motulsky, A G

    1989-08-01

    Human serum plasma paraoxonase/arylesterase exhibits a genetic polymorphism for the hydrolysis of paraoxon. One allelic form of the enzyme hydrolyzes paraoxon slowly with a low turnover number and the other(s) hydrolyzes paraoxon rapidly with a high turnover number. Chlorpyrifos-oxon, the active metabolite of the insecticide chlorpyrifos (Dursban), is also hydrolyzed by plasma arylesterase/paraoxonase. A specific assay for measuring hydrolysis of this compound is described. This assay is not subject to interference by the esterase activity of serum albumin. The Km for chlorpyrifos-oxon hydrolysis was 75 microM. Hydrolysis was inhibited by phenyl acetate, EDTA, and organic solvents. Enzyme activity required calcium ions and was stimulated by sodium chloride. Hydrolysis was optimized by using methanol instead of acetone to dissolve substrate. Unlike the multimodal distribution of paraoxonase, the distribution of chlorpyrifos-oxonase activity failed to show clear multimodality. An improvement in the assay for hydrolysis of paraoxon by plasma arylesterase/paraoxonase was achieved by elimination of organic solvents. Plotting chlorpyrifos-oxonase activity vs paraoxonase activity for a human population using the new assay conditions provided an excellent resolution of low activity homozygotes from heterozygotes for this allele. A greater than 40-fold difference in rates of chlorpyrifosoxon hydrolysis observed between rat (low activity) and rabbit sera (high activity) correlated well with the reported large differences in LD50 values for chlorpyrifos in these two animals, consistent with an important role of serum paraoxonase in detoxification of organophosphorus pesticides in vivo.

  12. Upconversion nanoparticle-based fluorescence resonance energy transfer assay for organophosphorus pesticides.

    PubMed

    Long, Qian; Li, Haitao; Zhang, Youyu; Yao, Shouzhuo

    2015-06-15

    This paper reports a novel nanosensor for organophosphorus pesticides based on the fluorescence resonance energy transfer (FRET) between NaYF4:Yb,Er upconversion nanoparticles (UCNPs) and gold nanoparticles (AuNPs). The detection mechanism is based on the facts that AuNPs quench the fluorescence of UCNPs and organophosphorus pesticides (OPs) inhibit the activity of acetylcholinesterase (AChE) which catalyzes the hydrolysis of acetylthiocholine (ATC) into thiocholine. Under the optimized conditions, the logarithm of the pesticides concentration was proportional to the inhibition efficiency. The detection limits of parathion-methyl, monocrotophos and dimethoate reached 0.67, 23, and 67 ng/L, respectively. Meanwhile, the biosensor shows good sensitivity, stability, and could be successfully applied to detection of OPs in real food samples, suggesting the biosensor has potentially extensive application clinic diagnoses assays.

  13. Chromogenic assay for the prothrombin activator ecarin from the venom of the saw-scaled viper (Echis carinatus).

    PubMed

    Stocker, K; Fischer, H; Brogli, M

    1986-01-01

    Ecarin, by limited proteolysis and subsequent autocatalytic reactions, causes the conversion of prothrombin into three products with amidolytic activity: meizothrombin, meizothrombin 1 and lpha-thrombin. Ecarin action may be abolished by ethylenediaminetetraacetic acid and the activity of alpha-thrombin can, with a high degree of selectivity, be inhibited by heparin. Thus, ecarin potency may be assayed by measuring the meizothrombin activity generated by ecarin action on human plasma in the presence of heparin. The chromogenic substrate Tosyl-glycyl-L-prolyl-L-arginine-p-nitroanilide (Chromozym TH) is used in this assay. PMID:3082039

  14. Chick Heart Invasion Assay for Testing the Invasiveness of Cancer Cells and the Activity of Potentially Anti-invasive Compounds.

    PubMed

    Bracke, Marc E; Roman, Bart I; Stevens, Christian V; Mus, Liselot M; Parmar, Virinder S; De Wever, Olivier; Mareel, Marc M

    2015-01-01

    The goal of the chick heart assay is to offer a relevant organ culture method to study tumor invasion in three dimensions. The assay can distinguish between invasive and non-invasive cells, and enables study of the effects of test compounds on tumor invasion. Cancer cells - either as aggregates or single cells - are confronted with fragments of embryonic chick heart. After organ culture in suspension for a few days or weeks the confronting cultures are fixed and embedded in paraffin for histological analysis. The three-dimensional interaction between the cancer cells and the normal tissue is then reconstructed from serial sections stained with hematoxylin-eosin or after immunohistochemical staining for epitopes in the heart tissue or the confronting cancer cells. The assay is consistent with the recent concept that cancer invasion is the result of molecular interactions between the cancer cells and their neighbouring stromal host elements (myofibroblasts, endothelial cells, extracellular matrix components, etc.). Here, this stromal environment is offered to the cancer cells as a living tissue fragment. Supporting aspects to the relevance of the assay are multiple. Invasion in the assay is in accordance with the criteria of cancer invasion: progressive occupation and replacement in time and space of the host tissue, and invasiveness and non-invasiveness in vivo of the confronting cells generally correlates with the outcome of the assay. Furthermore, the invasion pattern of cells in vivo, as defined by pathologists, is reflected in the histological images in the assay. Quantitative structure-activity relation (QSAR) analysis of the results obtained with numerous potentially anti-invasive organic congener compounds allowed the study of structure-activity relations for flavonoids and chalcones, and known anti-metastatic drugs used in the clinic (e.g., microtubule inhibitors) inhibit invasion in the assay as well. However, the assay does not take into account

  15. Development of a fluorescent microsphere-based multiplexed high-throughput assay system for profiling of transcription factor activation.

    PubMed

    Yaoi, Takuro; Jiang, Xin; Li, Xianqiang

    2006-06-01

    Transcription factors (TFs), which play crucial roles in the regulation of gene expression in the human genome, are highly regulated by a variety of mechanisms. A single extracellular stimulus can trigger multiple signaling pathways, and these in turn can activate multiple TFs to mediate the inducible expression of target genes. Alterations in the activities of TFs are often associated with human diseases, such as altered activating factor 1, estrogen receptor, and p53 function in cancer, nuclear factor kappaB in inflammatory diseases, and peroxisome proliferator-activated receptor gamma in obesity. A systematic assay for profiling the activation of TFs will aid in elucidating the mechanisms of TF activation, reveal altered TFs associated with human diseases, and aid in developing assays for drug discovery. Here, we developed a 24-plex fluorescent microsphere-based TF activation assay system with a 96-well plate format. The assay system enabled high-throughput profiling of the DNA binding activity of TFs in multiple samples with high sensitivity. PMID:16834534

  16. Oximes: inhibitors of human recombinant acetylcholinesterase. A structure-activity relationship (SAR) study.

    PubMed

    Sepsova, Vendula; Karasova, Jana Zdarova; Korabecny, Jan; Dolezal, Rafael; Zemek, Filip; Bennion, Brian J; Kuca, Kamil

    2013-08-16

    Acetylcholinesterase (AChE) reactivators were developed for the treatment of organophosphate intoxication. Standard care involves the use of anticonvulsants (e.g., diazepam), parasympatolytics (e.g., atropine) and oximes that restore AChE activity. However, oximes also bind to the active site of AChE, simultaneously acting as reversible inhibitors. The goal of the present study is to determine how oxime structure influences the inhibition of human recombinant AChE (hrAChE). Therefore, 24 structurally different oximes were tested and the results compared to the previous eel AChE (EeAChE) experiments. Structural factors that were tested included the number of pyridinium rings, the length and structural features of the linker, and the number and position of the oxime group on the pyridinium ring.

  17. Evaluation of mutagenic and antimutagenic activities of alpha-bisabolol in the Salmonella/microsome assay.

    PubMed

    Gomes-Carneiro, M R; Dias, Daniela M M; De-Oliveira, A C A X; Paumgartten, Francisco J R

    2005-08-01

    alpha-Bisabolol (BISA) is a sesquiterpene alcohol found in the oils of chamomile (Matricaria chamomilla) and other plants. BISA has been widely used in dermatological and cosmetic formulations. This study was undertaken to investigate the mutagenicity and antimutagenicity of BISA in the Salmonella/microsome assay. Mutagenicity of BISA was evaluated with TA100, TA98, TA97a and TA1535 Salmonella typhimurium strains, without and with addition of S9 mixture. No increase in the number of his+ revertant colonies over the negative (solvent) control values was observed with any of the four tester strains. In the antimutagenicity assays, BISA was tested up to the highest nontoxic dose (i.e. 50 and 150 microg/plate, with and without S9 mix, respectively) against direct-acting (sodium azide, SA; 4-nitroquinoline-N-oxide, 4-NQNO; 2-nitrofluorene, 2-NF; and nitro-o-phenylenediamine, NPD) as well as indirect-acting (cyclophosphamide, CP; benzo[a]pyrene, B[a]P; aflatoxin B1, AFB1; 2-aminoanthracene, 2-AA; and 2-aminofluorene, 2-AF) mutagens. BISA did not alter mutagenic activity of SA and of NPD, and showed only a weak inhibitory effect on the mutagenicity induced by 4-NQNO and 2-NF. The mutagenic effects of AFB1, CP, B[a]P, 2-AA and 2-AF, on the other hand, were all markedly and dose-dependently reduced by BISA. It was also found that BISA inhibited pentoxyresorufin-o-depentylase (PROD, IC50 2.76 microM) and ethoxyresorufin-o-deethylase (EROD, 33.67 microM), which are markers for cytochromes CYP2B1 and 1A1 in rat liver microsomes. Since CYP2B1 converts AFB1 and CP into mutagenic metabolites, and CYP1A1 activates B[a]P, 2-AA and 2-AF, results suggest that BISA-induced antimutagenicity could be mediated by an inhibitory effect on the metabolic activation of these promutagens. PMID:15936245

  18. High specific activity enantiomerically enriched juvenile hormones: synthesis and binding assay

    SciTech Connect

    Prestwich, G.D.; Wawrzenczyk, C.

    1985-08-01

    A stereoselective total synthesis of chiral juvenile hormone I is described that allows stoichiometric introduction of two tritium atoms in the final step. Both optical antipodes of the pivotal epoxy alcohol intermediate were prepared in 95% enantiomeric excess by the Sharpless epoxidation of a (Z)-allylic alcohol. Elaboration of the hydroxy-methyl group to a vinyl group followed by selective homogeneous tritiation affords optically active juvenile hormone I analogs at 58 Ci/mmol. Competitive binding of the labeled 10R, 11S and 10S,11R enantiomers with unlabeled enantiomers to the hemolymph binding protein of Manduca sexta larvae was determined by using a dextran-coated charcoal assay. The natural 10R,11S enantiomer has twice the relative binding affinity of the 10S,11R enantiomer. The availability of such high specific activity optically pure hormones will contribute substantially to the search for high-affinity receptors for juvenile hormones in the nuclei of cells. Moreover, the chiral 12-hydroxy-(10R,11S)-epoxy intermediate allows modification of juvenile hormone for solid-phase biochemical and radioimmunochemical work without altering either the biologically important carbomethoxy or epoxy recognition sites.

  19. High specific activity enantiomerically enriched juvenile hormones: synthesis and binding assay.

    PubMed Central

    Prestwich, G D; Wawrzeńczyk, C

    1985-01-01

    A stereoselective total synthesis of chiral juvenile hormone I is described that allows stoichiometric introduction of two tritium atoms in the final step. Both optical antipodes of the pivotal epoxy alcohol intermediate were prepared in 95% enantiomeric excess by the Sharpless epoxidation of a (Z)-allylic alcohol. Elaboration of the hydroxy-methyl group to a vinyl group followed by selective homogeneous tritiation affords optically active juvenile hormone I analogs at 58 Ci/mmol. Competitive binding of the labeled 10R, 11S and 10S,11R enantiomers with unlabeled enantiomers to the hemolymph binding protein of Manduca sexta larvae was determined by using a dextran-coated charcoal assay. The natural 10R,11S enantiomer has twice the relative binding affinity of the 10S,11R enantiomer. The availability of such high specific activity optically pure hormones will contribute substantially to the search for high-affinity receptors for juvenile hormones in the nuclei of cells. Moreover, the chiral 12-hydroxy-(10R,11S)-epoxy intermediate allows modification of juvenile hormone for solid-phase biochemical and radioimmunochemical work without altering either the biologically important carbomethoxy or epoxy recognition sites. PMID:3860862

  20. Electrochemical assay of α-glucosidase activity and the inhibitor screening in cell medium.

    PubMed

    Zhang, Juan; Liu, Ying; Wang, Xiaonan; Chen, Yangyang; Li, Genxi

    2015-12-15

    An electrochemical method is established in this work for the assay of α-glucosidase activity and the inhibitor screening through one-step displacement reaction, which can be directly used in cell medium. The displacement reaction can be achieved via strong binding of 4-aminophenyl-α-D-glucopyranoside (pAPG)/magnetic nanoparticles (MNPs) to pyrene boric acid (PBA) immobilized on the surface of graphite electrode (GE), compared to that of dopamine (DA)/sliver nanoparticles (AgNPs). Since α-glucosidase can specifically catalyze MNPs/pAPG into MNPs/pAP which has no binding capacity with PBA, the activity of both isolated and membrane bound enzyme can be well evaluated by using this proposed method. Meanwhile, signal amplification can be accomplished via the immobilization of DA at the outer layer of AgNPs, and the accuracy can be strengthened through magnetic separation. Moreover, this method can also be utilized for inhibitor screening not only in the medium containing the enzyme but also in cell medium. With good precision and accuracy, it may be extended to other proteases and their inhibitors as well. PMID:26201984

  1. Methodology to assay CYP2E1 mixed function oxidase catalytic activity and its induction

    PubMed Central

    Cederbaum, Arthur I.

    2014-01-01

    The cytochrome P450 mixed function oxidase enzymes are the major catalysts involved in drug metabolism. There are many forms of P450. CYP2E1 metabolizes many toxicologically important compounds including ethanol and is active in generating reactive oxygen species. Since several of the contributions in the common theme series “Role of CYP2E1 and Oxidative/Nitrosative Stress in the Hepatotoxic Actions of Alcohol” discuss CYP2E1, this methodology review describes assays on how CYP2E1 catalytic activity and its induction by ethanol and other inducers can be measured using substrate probes such as the oxidation of para-nitrophenol to para-nitrocatechol and the oxidation of ethanol to acetaldehyde. Approaches to validate that a particular reaction e.g. oxidation of a drug or toxin is catalyzed by CYP2E1 or that induction of that reaction is due to induction of CYP2E1 are important and specific examples using inhibitors of CYP2E1, anti-CYP2E1 IgG or CYP2E1 knockout and knockin mice will be discussed. PMID:25454746

  2. Detection of sodium channel activators by a rapid fluorimetric microplate assay.

    PubMed

    Louzao, M C; Vieytes, M R; Yasumoto, T; Botana, L M

    2004-04-01

    Marine toxins such as brevetoxins and ciguatoxins are produced by dinoflagellates and can accumulate in seafood. These toxins affect humans through seafood consumption. Intoxication is mainly characterized by gastrointestinal and neurological disorders and, in most severe cases, by cardiovascular problems. To prevent the consumption of food contaminated with these toxins, shellfish have been tested by mouse bioassay. However, this method is expensive, time-consuming, and ethically questionable. The objective of this study was to use a recently developed fluorimetric microplate assay to rapidly detect brevetoxins and ciguatoxins. The method is based on the pharmacological effect of brevetoxins and ciguatoxins known to activate sodium channels and involves (i). the incubation of excitable cells in 96 well microtiter plates with the fluorescent dye bis-oxonol, whose distribution across the membrane is potential-dependent, and (ii). dose-dependent cell depolarization by the toxins. Our findings demonstrate that measuring changes in membrane potential induced by brevetoxins and ciguatoxins allowed their quantitation. Active toxins could be reliably detected at concentrations in the nanomolar range. The simplicity, sensitivity, and possibility of being automated provide the basis for development of a practical alternative to conventional testing for brevetoxins and ciguatoxins.

  3. Liquid crystal based sensors monitoring lipase activity: a new rapid and sensitive method for cytotoxicity assays.

    PubMed

    Hussain, Zakir; Zafiu, Christian; Küpcü, Seta; Pivetta, Lucineia; Hollfelder, Nadine; Masutani, Akira; Kilickiran, Pinar; Sinner, Eva-Kathrin

    2014-06-15

    In this work we present liquid crystal (LC) based sensor devices to monitor cell viability. The sensing layer is composed by the LC and a planar monolayer of phospholipids. In the presence of minute traces of phospholipases, which hydrolyze enzymatically phospholipids, the LC-lipid interface is disintegrated. This event causes a change in orientation of the LC, which was followed in a polarized microscope. The lipase activity can be used to measure the cell viability, since members of this enzyme family are released by cells, as they undergo necrosis. The described sensor was used to monitor the presence of the lipases released from three different cell lines, which were either exposed to highly cytotoxic model compounds (sodium azide and paracetamol) or subjected to freeze-thaw cycles to induce cell death by a non-chemical based inducer for apoptosis, such as temperature. Finally, the comparison of lipase activity detected by a state-of-the-art fluorescence assay to the LC based system resulted in the superiority of the LC system concerning incubation time and sensitivity. PMID:24508543

  4. Exonuclease I manipulating primer-modified gold nanoparticles for colorimetric telomerase activity assay.

    PubMed

    Zhang, Lei; Zhang, Sijin; Pan, Wei; Liang, Qingcheng; Song, Xingyu

    2016-03-15

    Telomerase is a widely accepted cancer biomarker. The conventional method for telomerase activity assay, the telomeric repeat amplification protocol (TRAP), is time-consuming and susceptible to contaminants. Therefore, development of simple and sensitive strategies for telomerase detection is still a challenging subject. Here we develop a highly sensitive method for telomerase detection based on primer-modified gold nanoparticles (GNPs) manipulated by exonuclease I (Exo I). In the absence of telomerase, Exo I digests the substrate nucleic acid on the surface of GNPs, inducing the GNPs' aggregation. In the presence of telomerase, the telomerase elongation products which fold into G-quadruplex are resistant to the digestion of Exo I, and protect the GNPs from aggregation. By using this method, we can detect telomerase activity in 100 HL-60 cancer cells mL(-1) by naked eyes, and the detection limit is 29 HL-60 cells mL(-1). This method is very simple and reliable, without any separation and amplification procedure. We also demonstrate the feasibility of this protocol for screening of telomerase inhibitors as anticancer agents. This method is promising to be applied in early clinical diagnosis and drug discovery. PMID:26402592

  5. Urinary metabolites of isorhynchophylline in rats and their neuroprotective activities in the HT22 cell assay

    PubMed Central

    Chen, Fangfang; Qi, Wen; Sun, Jiahong; Simpkins, James W.; Yuan, Dan

    2015-01-01

    Isorhynchophylline is one of the major alkaloids from the Uncaria hook possessing the effects of lowered blood pressure, vasodilatation and protection against ischemia-induced neuronal damage. However, the metabolic pathway of isorhynchophylline has not been fully reported yet. In this paper, the metabolism of isorhynchophylline was investigated in rats. Five metabolites were isolated by using solvent extraction and repeated chromatographic methods, and identified by spectroscopic methods including UV, MS, NMR and CD experiments. Three new compounds were identified as 5-oxoisorhynchophyllic acid-22-O-β-D-glucuronide (M1), 17-O-demethyl-16,17-dihydro isorhynchophylline (M2) and 5-oxoisorhynchophyllic acid (M4) together with two known compounds isorhynchophylline (M0) and rhynchophylline (M3). Possible metabolic pathways of isorhynchophylline are proposed. Furthermore, the activity assay for all the metabolites showed that isorhynchophylline (M0) exhibited potent neuroprotective effects against glutamate-induced HT22 cell death. However, little or weak neuroprotective activities were observed for M1–M4. Our present study is important to further understand its metabolic fate and disposition in humans. PMID:24910000

  6. Nondestructive assay of fission products in spent-fuel assemblies using gamma and photoneutron activation

    NASA Astrophysics Data System (ADS)

    Lakosi, L.; Veres, Á.

    1990-12-01

    Hard γ-radiation (above 1.078 MeV) from spent reactor fuel was detected by means of excitation of 115In to its 4.5 h half-life metastable state induced by the (γ, γ') reaction and subsequent counting of the 336 keV isomeric transition. Resonance-energy quanta were produced by Compton scattering in the source, i.e. the spent fuel itself. The sensitivity of the activation method above 1.67 MeV γ-energy was enhanced by introducing a Be photoneutron converter in order to produce neutrons for exploiting their much larger activation cross sections. For short cooling times (10-40 d) the hard-γ signature of the fuel was due to the fission product 140Ba 140La, detection of which facilitated monitoring of the reactor power which existed in the core just before reactor shutdown. A linear relationship was found between the γ-signal and the fissile content in the fuel. For 100-1000 d cooled fuel the 144Ce 144Pr content could be detected, which was only sensitive to the cooling time. Spent-fuel assemblies of both a research and a power reactor were assayed by these novel methods for reactor operational and nuclear-material safeguard purposes.

  7. Intraperitoneal Exposure to Nano/Microparticles of Fullerene (C60) Increases Acetylcholinesterase Activity and Lipid Peroxidation in Adult Zebrafish (Danio rerio) Brain

    PubMed Central

    Dal Forno, Gonzalo Ogliari; Kist, Luiza Wilges; de Azevedo, Mariana Barbieri; Fritsch, Rachel Seemann; Pereira, Talita Carneiro Brandão; Britto, Roberta Socoowski; Guterres, Sílvia Stanisçuaski; Külkamp-Guerreiro, Irene Clemes; Bonan, Carla Denise; Monserrat, José María; Bogo, Maurício Reis

    2013-01-01

    Even though technologies involving nano/microparticles have great potential, it is crucial to determine possible toxicity of these technological products before extensive use. Fullerenes C60 are nanomaterials with unique physicochemical and biological properties that are important for the development of many technological applications. The aim of this study was to evaluate the consequences of nonphotoexcited fullerene C60 exposure in brain acetylcholinesterase expression and activity, antioxidant responses, and oxidative damage using adult zebrafish as an animal model. None of the doses tested (7.5, 15, and 30 mg/kg) altered AChE activity, antioxidant responses, and oxidative damage when zebrafish were exposed to nonphotoexcited C60 nano/microparticles during 6 and 12 hours. However, adult zebrafish exposed to the 30 mg/kg dose for 24 hours have shown enhanced AChE activity and augmented lipid peroxidation (TBARS assays) in brain. In addition, the up-regulation of brain AChE activity was neither related to the transcriptional control (RT-qPCR analysis) nor to the direct action of nonphotoexcited C60 nano/microparticles on the protein (in vitro results) but probably involved a posttranscriptional or posttranslational modulation of this enzymatic activity. Taken together these findings provided further evidence of toxic effects on brain after C60 exposure. PMID:23865059

  8. Effects of acetylcholinesterase gene silencing on its activity in cultured human skeletal muscle.

    PubMed

    Mis, Katarina; Mars, Tomaz; Golicnik, Marko; Jevsek, Marko; Grubic, Zoran

    2006-01-01

    In spite of several reports demonstrating that acetylcholinesterase (AChE [EC 3.1.1.7]) expression is importantly regulated at the level of its mRNA, we still know little about the relationship between AChE mRNA level and the level of mature, catalytically active enzyme in the cell. Better insight into this relationship is, however, essential for our understanding of the molecular pathways underlying AChE synthesis in living cells. We have approached this problem previously (Grubic et al., 1995; Brank et al., 1998; Mis et al., 2003; Jevsek et al., 2004); however, recently introduced small interfering RNA (siRNA) methodology, which allows blockade of gene expression at the mRNA level, opens new possibilities in approaching the AChE mRNA-AChE activity relationship. With this technique one can eliminate AChE mRNA in the cell, specifically and at selected times, and follow the effects of such treatment at the mature enzyme level. In this study we followed AChE activity in siRNA-treated cultured human myoblasts. Our aim was to find out how the temporal profile of the AChE mRNA decrease is reflected at the level of AChE activity under normal conditions and after inhibition of preexisting AChE by diisopropyl phosphorofluoridate (DFP).AChE activity was determined at selected time intervals after siRNA treatment in both myoblast homogenates and in culture medium to follow the effects of siRNA treatment at the level of intracellular AChE synthesis and at the level of AChE secreted from the cell.

  9. Screening of siddha medicinal plants for its in-vitro acetylcholinesterase and butyrylcholinesterase inhibitory activity

    PubMed Central

    Kadiyala, Madhuri; Ponnusankar, Sivasankaran; Elango, Kannan

    2014-01-01

    Background: The plants selected for the study were traditionally used in siddha system of medicine in neurological disorders. Aim: The aim of the following study isto screen the plant species for both acetylcholinesterase (AchE) and butyrylcholinesterase (BuchE) inhibition by in-vitro Ellman's method and a thin layer chromatography bioautographic assay for newer drug candidates for the treatment of Alzheimer's disease. Materials and Methods: Ellman's colorimetric method was performed in a 96 well micro plate for cholinesterases inhibition using galantamine as standard drug. Results: Present studies confirmed that out of all the tested extracts Hemidesmus indicus R.Br (HI) showed considerable IC50 values for AchE (28.40 ± 0.92 μg/mL) and BuchE (43.47 ± 0.64 μg/mL) inhibition which indicates that HI extract has considerable specificity toward AchE and BuchE compared with all the tested extracts and the activity was followed by Vernonia anthelmintica (VA) Willd and Saussurea lappa Clarke (SL). The bioautograms also confirmed the activity potent extracts. Conclusion: Besides various bioactivities HI, VA and SL exhibited considerable cholinesterases inhibition making it to consider these species for further investigation of new compounds. PMID:24991106

  10. Automation of o-dianisidine assay for ceruloplasmin activity analyses: usefulness of investigation in Wilson's disease and in hepatic encephalopathy.

    PubMed

    Siotto, Mariacristina; Pasqualetti, Patrizio; Marano, Massimo; Squitti, Rosanna

    2014-10-01

    Ceruloplasmin (Cp) is a serum ferroxidase that plays an essential role in iron metabolism. It is routinely tested by immunoturbidimetric assays that quantify the concentration of the protein both in its active and inactive forms. Cp activity is generally analyzed manually; the process is time-consuming, has a limited repeatability, and is not suitable for a clinical setting. To overcome these inconveniences, we have set the automation of the o-dianisidine Cp activity assay on a Cobas Mira Plus apparatus. The automation was rapid and repeatable, and the data were provided in terms of IU/L. The assay was adapted for human sera and showed a good precision [coefficient of variation (CV) 3.7 %] and low limit of detection (LoD 11.58 IU/L). The simultaneous analysis of Cp concentration and activity in the same run allowed us to calculate the Cp-specific activity that provides a better index of the overall Cp status. To test the usefulness of this automation, we tested this assay on 104 healthy volunteers and 36 patients with Wilson's disease, hepatic encephalopathy, and chronic liver disease. Cp activity and specific activity distinguished better patients between groups with respect to Cp concentration alone, and providing support for the clinical investigation of neurological diseases in which liver failure is one of the clinical hallmarks.

  11. Assaying Bcr-Abl kinase activity and inhibition in whole cell extracts by phosphorylation of substrates immobilized on agarose beads.

    PubMed

    Wu, Ding; Nair-Gill, Evan; Sher, Dorie A; Parker, Laurie L; Campbell, Jennifer M; Siddiqui, Mariah; Stock, Wendy; Kron, Stephen J

    2005-12-01

    There is a current and increasing demand for simple, robust, nonradioactive assays of protein tyrosine kinase activity with applications for clinical diagnosis and high-throughput screening of potential molecularly targeted therapeutic agents. One significant challenge is to detect and measure the activity of specific kinases with key roles in cell signaling as an approach to distinguish normal cells from cancer cells and as a means of evaluating targeted drug efficacy and resistance in cancer cells. Here, we describe a method in which kinase substrates fused to glutathione-S-transferase and immobilized on glutathione agarose beads are phosphorylated, eluted, and then assayed to detect kinase activity. The activity of recombinant, purified c-Abl kinase or Bcr-Abl kinase in whole cell extracts can be detected with equivalent specificity, sensitivity, and reproducibility. Similarly, inhibition of recombinant c-Abl or Bcr-Abl in cells or cell extracts by imatinib mesylate and other Bcr-Abl targeted kinase inhibitors is readily assayed. This simple kinase assay is sufficiently straightforward and robust for use in clinical laboratories and is potentially adaptable to high-throughput assay formats.

  12. Inhibition of ACh release at an Aplysia synapse by neurotoxic phospholipases A2: specific receptors and mechanisms of action.

    PubMed Central

    Fossier, P; Lambeau, G; Lazdunski, M; Baux, G

    1995-01-01

    1. Monochain (OS2) and multichain (taipoxin) neurotoxic phospholipases A2 (PLA2), purified from taipan snake venom, both inhibited ACh release at a concentration of 20 nM (90% inhibition in 2 h) at an identified synapse from buccal ganglion of Aplysia californica. 2. The Na+ current was unchanged upon application of either OS2 or taipoxin. Conversely, presynaptic K+ currents (IA and IK) were increased by taipoxin but not by OS2. In addition, OS2 induced a significant decrease of the presynaptic Ca2+ current (30%) while taipoxin increased this latter current by 20-30%. 3. Bee venom PLA2, another monochain neurotoxic PLA2, also inhibited ACh release while non-toxic enzymatically active PLA2s like OS1 (also purified from taipan snake venom) or porcine pancreatic PLA2 elicited a much weaker inhibition of ACh release, suggesting a specific action of neurotoxic PLA2s versus non-toxic PLA2s on ACh release. 4. Using iodinated OS2, specific high affinity binding sites with molecular masses of 140 and 18 kDa have been identified on Aplysia ganglia. The maximal binding capacities were 55 and 300-400 fmol (mg protein)-1 for membrane preparations from whole and buccal ganglia, respectively. These binding sites are of high affinity for neurotoxic PLA2s (Kd values, 100-800 pM) and of very low affinity for non-toxic PLA2s (Kd values in the micromolar range), thus indicating that these binding sites are presumably involved in the blockade of ACh release by neurotoxic PLA2s. Images Figure 8 Figure 9 PMID:8583413

  13. Development and validation of a simple cell-based fluorescence assay for dipeptidyl peptidase 1 (DPP1) activity.

    PubMed

    Thong, Bob; Pilling, James; Ainscow, Edward; Beri, Raj; Unitt, John

    2011-01-01

    Dipeptidyl peptidase 1 (DPP1) (EC 3.4.14.1; also known as cathepsin C, cathepsin J, dipeptidyl aminopeptidase, and dipeptidyl aminotransferase) is a lysosomal cysteinyl protease of the papain family involved in the intracellular degradation of proteins. Isolated enzyme assays for DPP1 activity using a variety of synthetic substrates such as dipeptide or peptide linked to amino-methyl-coumarin (AMC) or other fluorophores are well established. There is, however, no report of a simple whole-cell-based assay for measuring lysosomal DPP1 activity other than the use of flow cytometry (fluorescence-activated cell sorting) or the use of invasive activity-based probes or the production of physiological products such as neutrophil elastase. The authors investigated a number of DPP1 fluorogenic substrates that have the potential to access the lysosome and enable the measurement of DPP1 enzyme activity in situ. They describe the development and evaluation of a simple noninvasive fluorescence assay for measuring DPP1 activity in fresh or cryopreserved human THP-1 cells using the substrate H-Gly-Phe-AFC (amino-fluoro-coumarin). This cell-based fluorescence assay can be performed in a 96-well plate format and is ideally suited for determining the cell potency of potential DPP1 enzyme inhibitors.

  14. Three-stage chromogenic assay for the analysis of activation properties of factor X by cancer procoagulant.

    PubMed

    Mielicki, W P; Gordon, S G

    1993-06-01

    The cysteine proteinase, cancer procoagulant (CP; EC 3.4.22.26) was isolated from human amnion-chorion and purified by precipitation with polyethylene glycol and either ion exchange or immunoaffinity chromatography. A new, sensitive, three-stage chromogenic assay was developed for determination of CP factor X-activating activity. Using this assay some properties including dose-response, effect of calcium, phospholipid and pH on the activation of factor X by CP was determined. There was an excellent linear correlation (r2 = 0.99) between concentration and the enzymatic activity of CP. The activation of factor X by purified CP was calcium dependent with an optimum calcium concentration of 7 mM. CP was not phospholipid dependent. There was a rather broad pH optimum between pH 6.9 and 7.25 for the activation of factor X by CP.

  15. Reporter Phage and Breath Tests: Emerging Phenotypic Assays for Diagnosing Active Tuberculosis, Antibiotic Resistance, and Treatment Efficacy

    PubMed Central

    Jain, Paras; Thaler, David S.; Maiga, Mamoudou; Timmins, Graham S.; Bishai, William R.; Hatfull, Graham F.; Larsen, Michelle H.; Jacobs, William R.

    2011-01-01

    The rapid and accurate diagnosis of active tuberculosis (TB) and its drug susceptibility remain a challenge. Phenotypic assays allow determination of antibiotic susceptibilities even if sequence data are not available or informative. We review 2 emerging diagnostic approaches, reporter phage and breath tests, both of which assay mycobacterial metabolism. The reporter phage signal, Green fluorescent protein (GFP) or β-galactosidase, indicates transcription and translation inside the recipient bacilli and its attenuation by antibiotics. Different breath tests assay, (1) exhaled antigen 85, (2) mycobacterial urease activity, and (3) detection by trained rats of disease-specific odor in sputum, have also been developed. When compared with culture, reporter phage assays shorten the time for initial diagnosis of drug susceptibility by several days. Both reporter phage and breath tests have promise as early markers to determine the efficacy of treatment. While sputum often remains smear and Mycobacterium tuberculosis DNA positive early in the course of efficacious antituberculous treatment, we predict that both breath and phage tests will rapidly become negative. If this hypothesis proves correct, phage assays and breath tests could become important surrogate markers in early bactericidal activity (EBA) studies of new antibiotics. PMID:21996696

  16. Telomerase activity in the various regions of mouse brain: non-radioactive telomerase repeat amplification protocol (TRAP) assay.

    PubMed

    Grin, Yossi; Admoni, Tamar; Priel, Esther

    2014-01-01

    Telomerase, a ribonucleoprotein, is responsible for maintaining the telomere length and therefore promoting genomic integrity, proliferation, and lifespan. In addition, telomerase protects the mitochondria from oxidative stress and confers resistance to apoptosis, suggesting its possible importance for the surviving of non-mitotic, highly active cells such as neurons. We previously demonstrated the ability of novel telomerase activators to increase telomerase activity and expression in the various mouse brain regions and to protect motor neurons cells from oxidative stress. These results strengthen the notion that telomerase is involved in the protection of neurons from various lesions. To underline the role of telomerase in the brain, we here compare the activity of telomerase in male and female mouse brain and its dependence on age. TRAP assay is a standard method for detecting telomerase activity in various tissues or cell lines. Here we demonstrate the analysis of telomerase activity in three regions of the mouse brain by non-denaturing protein extraction using CHAPS lysis buffer followed by modification of the standard TRAP assay. In this 2-step assay, endogenous telomerase elongates a specific telomerase substrate (TS primer) by adding TTAGGG 6 bp repeats (telomerase reaction). The telomerase reaction products are amplified by PCR reaction creating a DNA ladder of 6 bp increments. The analysis of the DNA ladder is made by 4.5% high resolution agarose gel electrophoresis followed by staining with highly sensitive nucleic acid stain. Compared to the traditional TRAP assay that utilize (32)P labeled radioactive dCTP's for DNA detection and polyacrylamide gel electrophoresis for resolving the DNA ladder, this protocol offers a non-toxic time saving TRAP assay for evaluating telomerase activity in the mouse brain, demonstrating the ability to detect differences in telomerase activity in the various female and male mouse brain region. PMID:25225832

  17. Development of a new catalase activity assay for biological samples using optical CUPRAC sensor

    NASA Astrophysics Data System (ADS)

    Bekdeşer, Burcu; Özyürek, Mustafa; Güçlü, Kubilay; Alkan, Fulya Üstün; Apak, Reşat

    2014-11-01

    A novel catalase activity assay was developed for biological samples (liver and kidney tissue homogenates) using a rapid and low-cost optical sensor-based ‘cupric reducing antioxidant capacity' (CUPRAC) method. The reagent, copper(II)-neocuproine (Cu(II)-Nc) complex, was immobilized onto a cation-exchanger film of Nafion, and the absorbance changes associated with the formation of the highly-colored Cu(I)-Nc chelate as a result of reaction with hydrogen peroxide (H2O2) was measured at 450 nm. When catalase was absent, H2O2 produced the CUPRAC chromophore, whereas catalase, being an effective H2O2 scavenger, completely annihilated the CUPRAC signal due to H2O2. Thus, the CUPRAC absorbance due to H2O2 oxidation concomitant with Cu(I)-Nc formation decreased proportionally with catalase. The developed sensor gave a linear response over a wide concentration range of H2O2 (0.68-78.6 μM). This optical sensor-based method applicable to tissue homogenates proved to be efficient for low hydrogen peroxide concentrations (physiological and nontoxic levels) to which the widely used UV method is not accurately responsive. Thus, conventional problems of the UV method arising from relatively low sensitivity and selectivity, and absorbance disturbance due to gaseous oxygen evolution were overcome. The catalase findings of the proposed method for tissue homogenates were statistically alike with those of HPLC.

  18. Development of a new catalase activity assay for biological samples using optical CUPRAC sensor.

    PubMed

    Bekdeşer, Burcu; Özyürek, Mustafa; Güçlü, Kubilay; Alkan, Fulya Üstün; Apak, Reşat

    2014-11-11

    A novel catalase activity assay was developed for biological samples (liver and kidney tissue homogenates) using a rapid and low-cost optical sensor-based 'cupric reducing antioxidant capacity' (CUPRAC) method. The reagent, copper(II)-neocuproine (Cu(II)-Nc) complex, was immobilized onto a cation-exchanger film of Nafion, and the absorbance changes associated with the formation of the highly-colored Cu(I)-Nc chelate as a result of reaction with hydrogen peroxide (H2O2) was measured at 450 nm. When catalase was absent, H2O2 produced the CUPRAC chromophore, whereas catalase, being an effective H2O2 scavenger, completely annihilated the CUPRAC signal due to H2O2. Thus, the CUPRAC absorbance due to H2O2 oxidation concomitant with Cu(I)-Nc formation decreased proportionally with catalase. The developed sensor gave a linear response over a wide concentration range of H2O2 (0.68-78.6 μM). This optical sensor-based method applicable to tissue homogenates proved to be efficient for low hydrogen peroxide concentrations (physiological and nontoxic levels) to which the widely used UV method is not accurately responsive. Thus, conventional problems of the UV method arising from relatively low sensitivity and selectivity, and absorbance disturbance due to gaseous oxygen evolution were overcome. The catalase findings of the proposed method for tissue homogenates were statistically alike with those of HPLC.

  19. Colorimetric Glucose Assay Based on Magnetic Particles Having Pseudo-peroxidase Activity and Immobilized Glucose Oxidase.

    PubMed

    Martinkova, Pavla; Opatrilova, Radka; Kruzliak, Peter; Styriak, Igor; Pohanka, Miroslav

    2016-05-01

    Magnetic particles (MPs) are currently used as a suitable alternative for peroxidase in the construction of novel biosensors, analytic and diagnostic methods. Their better chemical and thermal stabilities predestine them as appropriate pseudo-enzymatic catalysts. In this point of view, our research was focused on preparation of simply and fast method for immobilization of glucose oxidase onto surface of MPs with peroxidase-like activity. Spectrophotometric method (wavelength 450 nm) optimized for glucose determination using modified MPs has been successfully developed. Concentration curve for optimization of method was assayed, and Michaelis-Menten constant (K m) calculated, maximum reaction rate (V max), limit of detection, and correlation coefficient were determined to be 0.13 mmol/l (2.34 mg/dl), 1.79 pkat, 3.74 µmol/l (0.067 mg/dl), and 0.996, respectively. Interferences of other sugars such as sucrose, sorbitol, deoxyribose, maltose, and fructose were determined as well as effect of substances presenting in plasma (ascorbic acid, reduced glutathione, trolox, and urea). Results in comparison with positive and negative controls showed no interferences of the other sugars and no influence of plasma substances to measuring of glucose. The constructed method showed corresponding results with linear dependence and a correlation coefficient of 0.997. Possibility of repeated use of modified MPs was successfully proved. PMID:27041274

  20. Escherichia coli Protein Expression System for Acetylcholine Binding Proteins (AChBPs)

    PubMed Central

    Abraham, Nikita; Paul, Blessy; Ragnarsson, Lotten; Lewis, Richard J.

    2016-01-01

    Nicotinic acetylcholine receptors (nAChR) are ligand gated ion channels, identified as therapeutic targets for a range of human diseases. Drug design for nAChR related disorders is increasingly using structure-based approaches. Many of these structural insights for therapeutic lead development have been obtained from co-crystal structures of nAChR agonists and antagonists with the acetylcholine binding protein (AChBP). AChBP is a water soluble, structural and functional homolog of the extracellular, ligand-binding domain of nAChRs. Currently, AChBPs are recombinantly expressed in eukaryotic expression systems for structural and biophysical studies. Here, we report the establishment of an Escherichia coli (E. coli) expression system that significantly reduces the cost and time of production compared to the existing expression systems. E. coli can efficiently express unglycosylated AChBP for crystallography and makes the expression of isotopically labelled forms feasible for NMR. We used a pHUE vector containing an N-terminal His-tagged ubiquitin fusion protein to facilitate AChBP expression in the soluble fractions, and thus avoid the need to recover protein from inclusion bodies. The purified protein yield obtained from the E. coli expression system is comparable to that obtained from existing AChBP expression systems. E. coli expressed AChBP bound nAChR agonists and antagonists with affinities matching those previously reported. Thus, the E. coli expression system significantly simplifies the expression and purification of functional AChBP for structural and biophysical studies. PMID:27304486

  1. Evaluation of the antioxidants activities of four Slovene medicinal plant species by traditional and novel biosensory assays.

    PubMed

    Kintzios, Spiridon; Papageorgiou, Katerina; Yiakoumettis, Iakovos; Baricevic, Dea; Kusar, Anita

    2010-11-01

    We investigated the antioxidant activity of methanolic and water extracts of Slovene accessions of four medicinal plant species (Salvia officinalis, Achillea millefolium, Origanum vulgare subsp. vulgare and Gentiana lutea). Their free radical-scavenging activity against the DPPH. free radical was studied with a spectrophotometric assay, while their biological activity with the help of a laboratory-made biosensor based on immobilized fibroblast cells (assay duration: 3 min). The observed antioxidant activity of the extracts from the four investigated medicinal plant species was dependent on both the solvent used for extraction and the assay method (conventional or biosensor-based). Independently from the assay method and the solvent used for extraction, the lowest scavenging activity was observed in root extracts of G. lutea. Treatment of the immobilized cells with the plant extracts resulted in an increase of the cell membrane potential (membrane hyperpolarization), possibly due to the reduction of membrane damage due to oxidation. The novel cell biosensor could be utilized as a rapid, high throughput tool for screening the antioxidant properties of plant-derived compounds.

  2. Automated Patch Clamp Analysis of nAChα7 and Na(V)1.7 Channels.

    PubMed

    Obergrussberger, Alison; Haarmann, Claudia; Rinke, Ilka; Becker, Nadine; Guinot, David; Brueggemann, Andrea; Stoelzle-Feix, Sonja; George, Michael; Fertig, Niels

    2014-01-01

    Automated patch clamp devices are now commonly used for studying ion channels. A useful modification of this approach is the replacement of the glass pipet with a thin planar glass layer with a small hole in the middle. Planar patch clamp devices, such as the three described in this unit, are overtaking glass pipets in popularity because they increase throughput, are easier to use, provide for the acquisition of high-quality and information-rich data, and allow for rapid perfusion and temperature control. Covered in this unit are two challenging targets in drug discovery: voltage-gated sodium subtype 1.7 (Na(V)1.7) and nicotinic acetylcholine α7 receptors (nAChα7R). Provided herein are protocols for recording activation and inactivation kinetics of Na(V)1.7, and activation and allosteric modulation of nAChα7R. PMID:24934604

  3. Photography by Cameras Integrated in Smartphones as a Tool for Analytical Chemistry Represented by an Butyrylcholinesterase Activity Assay.

    PubMed

    Pohanka, Miroslav

    2015-06-11

    Smartphones are popular devices frequently equipped with sensitive sensors and great computational ability. Despite the widespread availability of smartphones, practical uses in analytical chemistry are limited, though some papers have proposed promising applications. In the present paper, a smartphone is used as a tool for the determination of cholinesterasemia i.e., the determination of a biochemical marker butyrylcholinesterase (BChE). The work should demonstrate suitability of a smartphone-integrated camera for analytical purposes. Paper strips soaked with indoxylacetate were used for the determination of BChE activity, while the standard Ellman's assay was used as a reference measurement. In the smartphone-based assay, BChE converted indoxylacetate to indigo blue and coloration was photographed using the phone's integrated camera. A RGB color model was analyzed and color values for the individual color channels were determined. The assay was verified using plasma samples and samples containing pure BChE, and validated using Ellmans's assay. The smartphone assay was proved to be reliable and applicable for routine diagnoses where BChE serves as a marker (liver function tests; some poisonings, etc.). It can be concluded that the assay is expected to be of practical applicability because of the results' relevance.

  4. Photography by Cameras Integrated in Smartphones as a Tool for Analytical Chemistry Represented by an Butyrylcholinesterase Activity Assay

    PubMed Central

    Pohanka, Miroslav

    2015-01-01

    Smartphones are popular devices frequently equipped with sensitive sensors and great computational ability. Despite the widespread availability of smartphones, practical uses in analytical chemistry are limited, though some papers have proposed promising applications. In the present paper, a smartphone is used as a tool for the determination of cholinesterasemia i.e., the determination of a biochemical marker butyrylcholinesterase (BChE). The work should demonstrate suitability of a smartphone-integrated camera for analytical purposes. Paper strips soaked with indoxylacetate were used for the determination of BChE activity, while the standard Ellman’s assay was used as a reference measurement. In the smartphone-based assay, BChE converted indoxylacetate to indigo blue and coloration was photographed using the phone’s integrated camera. A RGB color model was analyzed and color values for the individual color channels were determined. The assay was verified using plasma samples and samples containing pure BChE, and validated using Ellmans’s assay. The smartphone assay was proved to be reliable and applicable for routine diagnoses where BChE serves as a marker (liver function tests; some poisonings, etc.). It can be concluded that the assay is expected to be of practical applicability because of the results’ relevance. PMID:26110404

  5. A novel, non-radioactive eukaryotic in vitro transcription assay for sensitive quantification of RNA polymerase II activity

    PubMed Central

    2014-01-01

    Background Many studies of the eukaryotic transcription mechanism and its regulation rely on in vitro assays. Conventional RNA polymerase II transcription assays are based on radioactive labelling of the newly synthesized RNA. Due to the inefficient in vitro transcription, the detection of the RNA involving purification and gel electrophoresis is laborious and not always quantitative. Results Herein, we describe a new, non-radioactive, robust and reproducible eukaryotic in vitro transcription assay that has been established in our laboratory. Upon transcription, the newly synthesized RNA is directly detected and quantified using the QuantiGene assay. Alternatively, the RNA can be purified and a primer extension followed by PCR detection or qPCR quantification can be performed. When applied to assess the activity of RNA polymerase II inhibitors, this new method allowed an accurate estimation of their relative potency. Conclusions Our novel assay provides a non-radioactive alternative to a standard in vitro transcription assay that allows for sensitive detection and precise quantification of the newly transcribed, unlabelled RNA and is particularly useful for quantification of strong transcriptional inhibitors like α-amanitin. Moreover, the method can be easily adapted to quantify the reaction yield and the transcription efficiency of other eukaryotic in vitro systems, thus providing a complementary tool for the field of transcriptional research. PMID:24694320

  6. M1 muscarinic receptor activation mediates cell death in M1-HEK293 cells.

    PubMed

    Graham, E Scott; Woo, Kerhan K; Aalderink, Miranda; Fry, Sandie; Greenwood, Jeffrey M; Glass, Michelle; Dragunow, Mike

    2013-01-01

    HEK293 cells have been used extensively to generate stable cell lines to study G protein-coupled receptors, such as muscarinic acetylcholine receptors (mAChRs). The activation of M1 mAChRs in various cell types in vitro has been shown to be protective. To further investigate M1 mAChR-mediated cell survival, we generated stable HEK293 cell-lines expressing the human M1 mAChR. M1 mAChRs were efficiently expressed at the cell surface and efficiently internalised within 1 h by carbachol. Carbachol also induced early signalling cascades similar to previous reports. Thus, ectopically expressed M1 receptors behaved in a similar fashion to the native receptor over short time periods of analysis. However, substantial cell death was observed in HEK293-M1 cells within 24 h after carbachol application. Death was only observed in HEK cells expressing M1 receptors and fully blocked by M1 antagonists. M1 mAChR-stimulation mediated prolonged activation of the MEK-ERK pathway and resulted in prolonged induction of the transcription factor EGR-1 (>24 h). Blockade of ERK signalling with U0126 did not reduce M1 mAChR-mediated cell-death significantly but inhibited the acute induction of EGR-1. We investigated the time-course of cell death using time-lapse microscopy and xCELLigence technology. Both revealed the M1 mAChR cytotoxicity occurs within several hours of M1 activation. The xCELLigence assay also confirmed that the ERK pathway was not involved in cell-death. Interestingly, the MEK blocker did reduce carbachol-mediated cleaved caspase 3 expression in HEK293-M1 cells. The HEK293 cell line is a widely used pharmacological tool for studying G-protein coupled receptors, including mAChRs. Our results highlight the importance of investigating the longer term fate of these cells in short term signalling studies. Identifying how and why activation of the M1 mAChR signals apoptosis in these cells may lead to a better understanding of how mAChRs regulate cell-fate decisions.

  7. Thiopurine methyltransferase activity in a French population: h.p.l.c. assay conditions and effects of drugs and inhibitors.

    PubMed

    Jacqz-Aigrain, E; Bessa, E; Medard, Y; Mircheva, Y; Vilmer, E

    1994-07-01

    1. Thiopurine methyltransferase (TPMT) is a cytosolic enzyme involved in the catabolism of thiopurine drugs, which are used to treat cancer patients and organ transplant recipients. Because TPMT activity is polymorphic and under genetic control, large interindividual variations in the immunosuppressive activity and toxicity of these drugs may, at least in part, be inherited. 2. We have developed a specific h.p.l.c. method for measuring 6-methyl mercaptopurine formed from 6-mercaptopurine (6-MP) in red blood cell lysates during the TPMT assay procedure. In blinded assays of 55 samples from adult blood donors, the results of the h.p.l.c. method correlated with those of the radiochemical reference method (r = 0.83, P < 0.001). 3. Using this h.p.l.c. assay, we tested the effect of known inhibitors of TPMT activity (syringic acid, p-anisic acid and tropolone) in vitro and showed that they were highly inhibitory. We also found that drugs often administered concomitantly with 6-MP (prednisone, prednisolone, 6-methylprednisolone, cyclophosphamide, methotrexate, and trimethoprim-sulphamethoxazole) had little or no effect on TPMT activity in vitro. 4. In a group of 300 French individuals, TMPT activity was highly variable, ranging from 4.7 to 35.3 nmol h-1 ml-1 of packed red blood cells (nmol h-1 ml-1 PRBC) with a mean value of 19.3 +/- 4.9. TMPT activity was not influenced by sex. 5. This sensitive and reproducible h.p.l.c. assay for TPMT activity in red blood cells may prove useful for prospective clinical studies designed to optimise dosage regimens of thiopurine drugs (detection limit for 6-methyl mercaptopurine is 5 ng ml-1, intra- and inter-assay variations are 6.8 and 8.2%, respectively).

  8. Thiopurine methyltransferase activity in a French population: h.p.l.c. assay conditions and effects of drugs and inhibitors.

    PubMed Central

    Jacqz-Aigrain, E; Bessa, E; Medard, Y; Mircheva, Y; Vilmer, E

    1994-01-01

    1. Thiopurine methyltransferase (TPMT) is a cytosolic enzyme involved in the catabolism of thiopurine drugs, which are used to treat cancer patients and organ transplant recipients. Because TPMT activity is polymorphic and under genetic control, large interindividual variations in the immunosuppressive activity and toxicity of these drugs may, at least in part, be inherited. 2. We have developed a specific h.p.l.c. method for measuring 6-methyl mercaptopurine formed from 6-mercaptopurine (6-MP) in red blood cell lysates during the TPMT assay procedure. In blinded assays of 55 samples from adult blood donors, the results of the h.p.l.c. method correlated with those of the radiochemical reference method (r = 0.83, P < 0.001). 3. Using this h.p.l.c. assay, we tested the effect of known inhibitors of TPMT activity (syringic acid, p-anisic acid and tropolone) in vitro and showed that they were highly inhibitory. We also found that drugs often administered concomitantly with 6-MP (prednisone, prednisolone, 6-methylprednisolone, cyclophosphamide, methotrexate, and trimethoprim-sulphamethoxazole) had little or no effect on TPMT activity in vitro. 4. In a group of 300 French individuals, TMPT activity was highly variable, ranging from 4.7 to 35.3 nmol h-1 ml-1 of packed red blood cells (nmol h-1 ml-1 PRBC) with a mean value of 19.3 +/- 4.9. TMPT activity was not influenced by sex. 5. This sensitive and reproducible h.p.l.c. assay for TPMT activity in red blood cells may prove useful for prospective clinical studies designed to optimise dosage regimens of thiopurine drugs (detection limit for 6-methyl mercaptopurine is 5 ng ml-1, intra- and inter-assay variations are 6.8 and 8.2%, respectively). PMID:7946931

  9. The significance of aches/pains among workers in an electronics factory.

    PubMed

    Ho, S F; Phoon, W H

    1997-06-01

    Three hundred and fifteen female workers with at least three months' employment history in a factory manufacturing disk drives were studied. Each worker completed a self-administered questionnaire on their personal particulars, hours of work, opinion on the work and the workplace and the presence and severity of aches/pains experienced over the past one month. One hundred and forty one (44.8%) of the workers had complaints of aches/pains. Of these, 81 (57.5%) reported an improvement in their symptoms during their off-days. 59 (41.8%) had symptoms affecting two or more sites. The most commonly affected sites were the hands and shoulders, followed by the head and back. There was no significant difference in the prevalence of symptoms between workers from the different work stations. Ninety four (66.7%) of these workers reported that the pains that were severe enough to affect their activities. 76 (53.9%) had to seek some form of medical treatment while 33 (23.4%) had to be on medical leave. However, the physical examinations of this group of workers were normal. The symptoms appeared to be influenced by their attitude towards work. A significantly higher number of workers with symptoms expressed dissatisfaction with work and had complaints of a noisy and cold environment. The study showed that workers' morale and the quality of the work environment may play an important role in improving their general well-being.

  10. A comparative study on the relationship between acetylcholinesterase activity and acute toxicity in Daphnia magna exposed to anticholinesterase insecticides.

    PubMed

    Printes, Liane Biehl; Callaghan, Amanda

    2004-05-01

    Acetylcholinesterase (AChE) activity was measured in Daphnia magna that had been exposed to four organophosphates (OPs; parathion, chlorpyrifos, malathion, and acephate) and one carbamate (propoxur) for 48 h. These results were related to acute toxicity (median effective concentration [EC50] for immobility). For the four OPs, the EC50s were 7.03 pM, 3.17 pM, 10.56 pM, and 309.82 microM, respectively. The EC50 for propoxur was 449.90 pM. Reduction in AChE activity was directly related to an increase in immobility in all chemicals tested. However, the ratio between the EC50 and the AChE median inhibiting concentration ranged from 0.31 to 0.90. A 50% reduction in AChE activity generally was associated with detrimental effects on mobility. However, for acephate, high levels of AChE inhibition (70%) were observed in very low concentrations and were not associated with immobility. In addition, increasing the concentration of acephate further had a slight negative effect on AChE activity but a strong detrimental effect on mobility. Binding sites other than AChE possibly are involved in acephate toxicity to D. magna. Our findings demonstrate different associations between AChE inhibition and toxicity when different chemicals are compared. Therefore, the value of using AChE activity as a biomarker in D. magna will be dependent on the chemical tested.

  11. Depolarization after resonance energy transfer (DARET): a sensitive fluorescence-based assay for botulinum neurotoxin protease activity.

    PubMed

    Gilmore, Marcella A; Williams, Dudley; Okawa, Yumiko; Holguin, Bret; James, Nicholas G; Ross, Justin A; Roger Aoki, K; Jameson, David M; Steward, Lance E

    2011-06-01

    The DARET (depolarization after resonance energy transfer) assay is a coupled Förster resonance energy transfer (FRET)-fluorescence polarization assay for botulinum neurotoxin type A or E (BoNT/A or BoNT/E) proteolytic activity that relies on a fully recombinant substrate. The substrate consists of blue fluorescent protein (BFP) and green fluorescent protein (GFP) flanking SNAP-25 (synaptosome-associated protein of 25 kDa) residues 134-206. In this assay, the substrate is excited with polarized light at 387 nm, which primarily excites the BFP, whereas emission from the GFP is monitored at 509 nm. Energy transfer from the BFP to the GFP in the intact substrate results in a substantial depolarization of the GFP emission. The energy transfer is eliminated when the fluorescent domains separate on cleavage by the endopeptidase, and emission from the directly excited GFP product fragment is then highly polarized, resulting in an overall increase in polarization. This increase in polarization can be monitored to assay the proteolytic activity of BoNT/A and BoNT/E in real time. It allows determination of the turnover rate of the substrate and the kinetic constants (V(max) and k(cat)) based on the concentration of cleaved substrate determined directly from the measurements using the additivity properties of polarization. The assay is amenable to high-throughput applications.

  12. Assessment of developmental delay in the zebrafish embryo teratogenicity assay.

    PubMed

    Teixidó, E; Piqué, E; Gómez-Catalán, J; Llobet, J M

    2013-02-01

    In this study we analyzed some aspects of the assessment of developmental delay in the zebrafish embryotoxicity/teratogenicity test and explored the suitability of acetylcholinesterase (AChE) activity as a biochemical marker and as a higher throughput alternative to morphological endpoints such as head-trunk angle, tail length and morphological score. Embryos were exposed from 4 to 52 h post-fertilization (hpf) to a selection of known embryotoxic/teratogen compounds (valproic acid, retinoic acid, caffeine, sodium salicylate, glucose, hydroxyurea, methoxyacetic acid, boric acid and paraoxon-methyl) over a concentration range. They were evaluated for AChE activity, head-trunk angle, tail length and several qualitative parameters integrated in a morphological score. In general, the different patterns of the concentration-response curves allowed distinguishing between chemicals that produced growth retardation (valproic and methoxyacetic acid) and chemicals that produced non-growth-delay related malformations. An acceptable correlation between the morphological score, AChE activity and head-trunk angle as markers of developmental delay was observed, being AChE activity particularly sensitive to detect delay in the absence of malformations. PMID:22898132

  13. Novel pro-oxidant activity assay for polyphenols, vitamins C and E using a modified CUPRAC method.

    PubMed

    Kondakçı, Esin; Özyürek, Mustafa; Güçlü, Kubilay; Apak, Reşat

    2013-10-15

    In this study, a direct assay, a modified CUPRAC (Cupric Ion Reducing Antioxidant Capacity) method, is developed to determine transition metal ion (Cu(II))-catalyzed pro-oxidant activity of polyphenolic compounds, vitamins C and E, and herbal samples in the presence of proteins containing thiol groups. Since transition metal ion-catalyzed pro-oxidant activity of phenolics is usually initiated with the reduction of the metal to lower oxidation states (as a prerequisite of Fenton-type reactions), this method involves the reduction of copper(II) ions to copper(I) by polyphenolic compounds (simultaneously giving rise to reactive species), binding of the formed Cu(I) to egg white protein -SH groups, and liberation of copper(I)-neocuproine (Cu(I)-Nc) chelate (showing maximum absorbance at 450 nm) by treating the incubation product with a neocuproine-ammonium acetate mixture. The proposed method is validated against atomic absorption spectrometric (AAS) determination of protein-bound copper and protein carbonyl assay of oxidative stress. The proposed assay is faster and more specific than the carbonyl assay, and uses low-cost reagents and equipment. Pro-oxidant activity (i.e. proportional to absorbance) varies linearly over a relatively wide range with concentration, as opposed to the reciprocal correlations (i.e. linear regression of 1/(pro-oxidant activity) versus 1/concentration) of other similar assays. The pro-oxidant activity order of the tested antioxidant compounds in terms of 'Quercetin Equivalent Pro-oxidant Activity' (QREPA) coefficients is: gallic acid > epicatechin > quercetin ≈ catechin > α-tocopherol > rosmarinic acid > trolox > caffeic acid > ascorbic acid.

  14. Dual-readout fluorescent assay of protein kinase activity by use of TiO2-coated magnetic microspheres.

    PubMed

    Bai, Jie; Zhao, Yunjie; Wang, Zhibin; Liu, Chenghui; Wang, Yucong; Li, Zhengping

    2013-05-01

    A simple, highly sensitive, and dual-readout fluorescent assay is developed for the detection of protein kinase activity based on the specific recognition utility of TiO2-coated Fe3O4/SiO2 magnetic microspheres (TMSPs) for kinase-induced phosphopeptides. When the fluorophore-labeled substrate peptides are phosphorylated by the kinase reaction, they can bind specifically to the TiO2 layer of TMSPs by means of phosphate groups, resulting in fluorophore enrichment on the TMSP surfaces. The accumulated fluorophores on the TMSPs are proportional to the kinase activity, and the fluorescence signal readout could be run through either direct fluorescent imaging of the TMSPs or measurement of the fluorescence intensity by simply detaching the fluorescent phosphopeptides into the solution. The TMSPs exhibit extremely high selectivity for capturing phosphorylated peptides over the nonphosphorylated ones, resulting in an ultrahigh fluorescence signal-to-background ratio of 42, which is the highest fluorescence change thus far in fluorescent assays for detection of protein kinase activities. Therefore, the proposed fluorescent assay presents high sensitivity, low detection limit of 0.1 milliunit/μL, and wide dynamic range from 0.5 milliunit/μL to 0.5 unit/μL with protein kinase A (PKA) as a model target. Moreover, the TMSP-based fluorescent assay can simultaneously quantify multiple kinase activities with their specific peptides labeled with different dyes. This new strategy is also successfully applied to monitoring drug-triggered PKA activation in cell lysates. Therefore, the TMSP-based fluorescent assay is very promising in high-throughput screening of kinase inhibitors and in highly sensitive detection of kinase activity, and thus it is a valuable tool for development of targeted therapy, clinical diagnosis, and studies of fundamental life science. PMID:23581884

  15. In Vitro Assays for Assessment of Androgenic and Estrogenic Activity of Defined Mixtures and Complex Environmental Samples

    EPA Science Inventory

    Point sources of endocrine active compounds to aquatic environments such as waste water treatment plants, pulp and paper mills, and animal feeding operations invariably contain complex mixtures of chemicals. The current study investigates the use of targeted in vitro assays des...

  16. Lack of DNA-damaging activity of five non-nutritive sweeteners in the rat hepatocyte/DNA repair assay.

    PubMed

    Jeffrey, A M; Williams, G M

    2000-04-01

    The non-nutritive sweeteners acesulfame-K, aspartame, cyclamate, saccharin and sucralose were tested for DNA damaging activity in the rat hepatocyte/DNA repair assay. Using hepatocytes from F344 and Sprague-Dawley male rats, all were inactive despite strong responses for the positive control, 2-aminofluorene.

  17. A limitation of the continuous spectrophotometric assay for the measurement of myo-inositol-1-phosphate synthase activity.

    PubMed

    Huang, Xinyi; Hernick, Marcy

    2011-10-15

    Myo-inositol-1-phosphate synthase (MIPS) catalyzes the conversion of glucose-6-phosphate to myo-inositol-1-phosphate. The reaction catalyzed by MIPS is the first step in the biosynthesis of inositol and inositol-containing molecules that serve important roles in both eukaryotes and prokaryotes. Consequently, MIPS is a target for the development of therapeutic agents for the treatment of infectious diseases and bipolar disorder. We recently reported a continuous spectrophotometric method for measuring MIPS activity using a coupled assay that allows the rapid characterization of MIPS in a multiwell plate format. Here we validate the continuous assay as a high-throughput alternative for measuring MIPS activity and report on one limitation of this assay-the inability to examine the effect of divalent metal ions (at high concentrations) on MIPS activity. In addition, we demonstrate that the activity of MIPS from Arabidopsis thaliana is moderately enhanced by the addition Mg(2+) and is not enhanced by other divalent metal ions (Zn(2+) and Mn(2+)), consistent with what has been observed for other eukaryotic MIPS enzymes. Our findings suggest that the continuous assay is better suited for characterizing eukaryotic MIPS enzymes that require monovalent cations as cofactors than for characterizing bacterial or archeal MIPS enzymes that require divalent metal ions as cofactors. PMID:21729692

  18. Ultrasensitive detection of protease activity of anthrax and botulinum toxins by a new PCR-based assay.

    PubMed

    Kolesnikov, Alexander V; Kozyr, Arina V; Ryabko, Alyona K; Shemyakin, Igor G

    2016-02-01

    Anthrax and botulism are dangerous infectious diseases that can be fatal unless detected and treated quickly. Fatalities from these diseases are primarily due to endopeptidase toxins secreted by the pathogens. Rapid and sensitive detection of the presence of active toxins is the key element for protection from natural outbreaks of anthrax and botulism, as well as from the threat of bioterrorism. We describe an ultrasensitive polymerase chain reaction (PCR)-based assay for detecting proteolytic activity of anthrax and botulinum toxins using composite probes consisting of covalent peptide-DNA conjugate for the detection of anthrax, and noncovalent protein-aptamer assembly to assay botulinum toxin activity. Probes immobilized on the solid-phase support are cleaved by toxins to release DNA, which is detected by real-time PCR. Both assays can detect subpicogram quantities of active toxins isolated from composite matrices. Special procedures were developed to isolate intact toxins from the matrices under mild conditions. The assay is rapid, uses proven technologies, and can be modified to detect other proteolytic and biopolymer-degrading enzymes. PMID:26620058

  19. Thyroid Histopathology Assessments for the Amphibian Metamorphosis Assay to Detect Thyroid-active Substances

    EPA Science Inventory

    In support of an Organization for Economic Cooperation and Development (OECD) Amphibian Metamorphosis Assay (AMA) Test Guideline for the detection of substances that interact with the hypothalamic-pituitary-thyroid axis, a document was developed that provides a standardized appro...

  20. Pyridostigmine but not 3,4-diaminopyridine exacerbates ACh receptor loss and myasthenia induced in mice by muscle-specific kinase autoantibody

    PubMed Central

    Morsch, Marco; Reddel, Stephen W; Ghazanfari, Nazanin; Toyka, Klaus V; Phillips, William D

    2013-01-01

    In myasthenia gravis, the neuromuscular junction is impaired by the antibody-mediated loss of postsynaptic acetylcholine receptors (AChRs). Muscle weakness can be improved upon treatment with pyridostigmine, a cholinesterase inhibitor, or with 3,4-diaminopyridine, which increases the release of ACh quanta. The clinical efficacy of pyridostigmine is in doubt for certain forms of myasthenia. Here we formally examined the effects of these compounds in the antibody-induced mouse model of anti-muscle-specific kinase (MuSK) myasthenia gravis. Mice received 14 daily injections of IgG from patients with anti-MuSK myasthenia gravis. This caused reductions in postsynaptic AChR densities and in endplate potential amplitudes. Systemic delivery of pyridostigmine at therapeutically relevant levels from days 7 to 14 exacerbated the anti-MuSK-induced structural alterations and functional impairment at motor endplates in the diaphragm muscle. No such effect of pyridostigmine was found in mice receiving control human IgG. Mice receiving smaller amounts of MuSK autoantibodies did not display overt weakness, but 9 days of pyridostigmine treatment precipitated generalised muscle weakness. In contrast, one week of treatment with 3,4-diaminopyridine enhanced neuromuscular transmission in the diaphragm muscle. Both pyridostigmine and 3,4-diaminopyridine increase ACh in the synaptic cleft yet only pyridostigmine potentiated the anti-MuSK-induced decline in endplate ACh receptor density. These results thus suggest that ongoing pyridostigmine treatment potentiates anti-MuSK-induced AChR loss by prolonging the activity of ACh in the synaptic cleft. PMID:23440963

  1. Effectiveness evaluation of glyphosate oxidation employing the H(2)O(2)/UVC process: toxicity assays with Vibrio fischeri and Rhinella arenarum tadpoles.

    PubMed

    Junges, Celina M; Vidal, Eduardo E; Attademo, Andrés M; Mariani, Melisa L; Cardell, Leandro; Negro, Antonio C; Cassano, Alberto; Peltzer, Paola M; Lajmanovich, Rafael C; Zalazar, Cristina S

    2013-01-01

    The H(2)O(2)/UVC process was applied to the photodegradation of a commercial formulation of glyphosate in water. Two organisms (Vibrio fischeri bacteria and Rhinella arenarum tadpoles) were used to investigate the toxicity of glyphosate in samples M(1,) M(2), and M(3) following different photodegradation reaction times (120, 240 and 360 min, respectively) that had differing amounts of residual H(2)O(2). Subsamples of M(1), M(2), and M(3) were then used to create samples M(1,E), M(2,E) and M(3,E) in which the H(2)O(2) had been removed. Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities were measured in tadpoles to determine possible sub-lethal effects. In V. fischeri, M(1,E), which was collected early in the photodegradation process, caused 52% inhibition, while M(3,E), which was collected at the end of the photodegradation process, caused only 17% inhibition. Survival of tadpoles was 100% in samples M(2), M(3), and in M(1,E), M(2,E) and M(3,E). The lowest percentages of enzymatic inhibition were observed in samples without removal of H(2)O(2): 13.96% (AChE) and 16% (BChE) for M(2), and 24.12% (AChE) and 13.83% (BChE) for M(3). These results show the efficiency of the H(2)O(2)/UVC process in reducing the toxicity of water or wastewater polluted by commercial formulations of glyphosate. According to the ecotoxicity assays, the conditions corresponding to M(2) (11 ± 1 mg a.e. L(-1) glyphosate and 11 ± 1 mg L(-1) H(2)O(2)) could be used as a final point for glyphosate treatment with the H(2)O(2)/UV process. PMID:23356336

  2. Comparison of tetrazolium salt assays for evaluation of drug activity against Leishmania spp.

    PubMed

    Ginouves, Marine; Carme, Bernard; Couppie, Pierre; Prevot, Ghislaine

    2014-06-01

    In French Guiana, leishmaniasis is an essentially cutaneous infection. It constitutes a major public health problem, with a real incidence of 0.2 to 0.3%. Leishmania guyanensis is the causal species most frequently encountered in French Guiana. The treatment of leishmaniasis is essentially drug based, but the therapeutic compounds available have major side effects (e.g., liver damage and diabetes) and must be administered parenterally or are costly. The efficacy of some of these agents has declined due to the emergence of resistance in certain strains of Leishmania. There is currently no vaccine against leishmaniasis, and it is therefore both necessary and urgent to identify new compounds effective against Leishmania. The search for new drugs requires effective tests for evaluations of the leishmanicidal activity of a particular molecule or extract. Microculture tetrazolium assays (MTAs) are colorimetric tests based on the use of tetrazolium salts. We compared the efficacies of three tetrazolium salts-3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT), and 2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium (WST-8)-for quantification of the promastigotes of various species of Leishmania. We found that the capacity of Leishmania to metabolize a tetrazolium salt depended on the salt used and the species of Leishmania. WST-8 was the tetrazolium salt best metabolized by L. guyanensis and gave the best sensitivity. PMID:24719447

  3. Comparison of Tetrazolium Salt Assays for Evaluation of Drug Activity against Leishmania spp.

    PubMed Central

    Ginouves, Marine; Carme, Bernard; Couppie, Pierre

    2014-01-01

    In French Guiana, leishmaniasis is an essentially cutaneous infection. It constitutes a major public health problem, with a real incidence of 0.2 to 0.3%. Leishmania guyanensis is the causal species most frequently encountered in French Guiana. The treatment of leishmaniasis is essentially drug based, but the therapeutic compounds available have major side effects (e.g., liver damage and diabetes) and must be administered parenterally or are costly. The efficacy of some of these agents has declined due to the emergence of resistance in certain strains of Leishmania. There is currently no vaccine against leishmaniasis, and it is therefore both necessary and urgent to identify new compounds effective against Leishmania. The search for new drugs requires effective tests for evaluations of the leishmanicidal activity of a particular molecule or extract. Microculture tetrazolium assays (MTAs) are colorimetric tests based on the use of tetrazolium salts. We compared the efficacies of three tetrazolium salts—3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT), and 2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium (WST-8)—for quantification of the promastigotes of various species of Leishmania. We found that the capacity of Leishmania to metabolize a tetrazolium salt depended on the salt used and the species of Leishmania. WST-8 was the tetrazolium salt best metabolized by L. guyanensis and gave the best sensitivity. PMID:24719447

  4. An aptamer based competition assay for protein detection using CNT activated gold-interdigitated capacitor arrays.

    PubMed

    Qureshi, Anjum; Roci, Irena; Gurbuz, Yasar; Niazi, Javed H

    2012-04-15

    An aptamer can specifically bind to its target molecule, or hybridize with its complementary strand. A target bound aptamer complex has difficulty to hybridize with its complementary strand. It is possible to determine the concentration of target based on affinity separation system for the protein detection. Here, we exploited this property using C-reactive protein (CRP) specific RNA aptamers as probes that were immobilized by physical adsorption on carbon nanotubes (CNTs) activated gold interdigitated electrodes of capacitors. The selective binding ability of RNA aptamer with its target molecule was determined by change in capacitance after allowing competitive binding with CRP and complementary RNA (cRNA) strands in pure form and co-mixtures (CRP:cRNA=0:1, 1:0, 1:1, 1:2 and 2:1). The sensor showed significant capacitance change with pure forms of CRP/cRNA while responses reduced considerably in presence of CRP:cRNA in co-mixtures (1:1 and 1:2) because of the binding competition. At a critical CRP:cRNA ratio of 2:1, the capacitance response was dramatically lost because of the dissociation of adsorbed aptamers from the sensor surface to bind when excess CRP. Binding assays showed that the immobilized aptamers had strong affinity for cRNA (K(d)=1.98 μM) and CRP molecules (K(d)=2.4 μM) in pure forms, but low affinity for CRP:cRNA ratio of 2:1 (K(d)=8.58 μM). The dynamic detection range for CRP was determined to be 1-8 μM (0.58-4.6 μg/capacitor). The approach described in this study is a sensitive label-free method to detect proteins based on affinity separation of target molecules that can potentially be used for probing molecular interactions.

  5. Use of a novel radiometric method to assess the inhibitory effect of donepezil on acetylcholinesterase activity in minimally diluted tissue samples

    PubMed Central

    Kikuchi, Tatsuya; Okamura, Toshimitsu; Arai, Takuya; Obata, Takayuki; Fukushi, Kiyoshi; Irie, Toshiaki; Shiraishi, Tetsuya

    2010-01-01

    Background and purpose: Cholinesterase inhibitors have been widely used for the treatment of patients with dementia. Monitoring of the cholinesterase activity in the blood is used as an indicator of the effect of the cholinesterase inhibitors in the brain. The selective measurement of cholinesterase with low tissue dilution is preferred for accurate monitoring; however, the methods have not been established. Here, we investigated the effect of tissue dilution on the action of cholinesterase inhibitors using a novel radiometric method with selective substrates, N-[14C]methylpiperidin-4-yl acetate ([14C]MP4A) and (R)-N-[14C]methylpiperidin-3-yl butyrate ([14C]MP3B_R), for AChE and butyrylcholinesterase (BChE) respectively. Experimental approach: We investigated the kinetics of hydrolysis of [14C]-MP4A and [14C]-MP3B_R by cholinesterases, and evaluated the selectivity of [14C]MP4A and [14C]MP3B_R for human AChE and BChE, respectively, compared with traditional substrates. Then, IC50 values of cholinesterase inhibitors in minimally diluted and highly diluted tissues were measured with [14C]MP4A and [14C]MP3B_R. Key results: AChE and BChE activities were selectively measured as the first-order hydrolysis rates of [14C]-MP4A and [14C]MP3B_R respectively. The AChE selectivity of [14C]MP4A was an order of magnitude higher than traditional substrates used for the AChE assay. The IC50 values of specific AChE and BChE inhibitors, donepezil and ethopropazine, in 1.2-fold diluted human whole blood were much higher than those in 120-fold diluted blood. In addition, the IC50 values of donepezil in monkey brain were dramatically decreased as the tissue was diluted. Conclusions and implications: This method would effectively monitor the activity of cholinesterase inhibitors used for therapeutics, pesticides and chemical warfare agents. PMID:20401964

  6. HPLC-Analysis of Polyphenolic Compounds in Gardenia jasminoides and Determination of Antioxidant Activity by Using Free Radical Scavenging Assays

    PubMed Central

    Uddin, Riaz; Saha, Moni Rani; Subhan, Nusrat; Hossain, Hemayet; Jahan, Ismet Ara; Akter, Raushanara; Alam, Ashraful

    2014-01-01

    Purpose: Gardenia jasminoides is a traditional medicinal plant rich in anti-inflammatory flavonoids and phenolic compounds and used for the treatment of inflammatory diseases and pain. In this present study, antioxidant potential of Gardenia jasminoides leaves extract was evaluated by using various antioxidant assays. Methods: Various antioxidant assays such as 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay, reducing power and total antioxidant capacity expressed as equivalent to ascorbic acid were employed. Moreover, phenolic compounds were detected by high-performance liquid chromatography (HPLC) coupled with diode-array detection. Results: The methanol extract showed significant free radical scavenging activities in DPPH radical scavenging antioxidant assays compared to the reference antioxidant ascorbic acid. Total antioxidant activity was increased in a dose dependent manner. The extract also showed strong reducing power. The total phenolic content was determined as 190.97 mg/g of gallic acid equivalent. HPLC coupled with diode-array detection was used to identify and quantify the phenolic compounds in the extracts. Gallic acid, (+)-catechin, rutin hydrate and quercetin have been identified in the plant extracts. Among the phenolic compounds, catechin and rutin hydrate are present predominantly in the extract. The accuracy and precision of the presented method were corroborated by low intra- and inter-day variations in quantitative results in leaves extract. Conclusion: These results suggest that phenolic compounds and flavonoids might contribute to high antioxidant activities of Gardenia jasminoides leaves. PMID:24754012

  7. Haemocompatibility of hydrogenated amorphous carbon (a-C:H) films synthesized by plasma immersion ion implantation-deposition